Computational and Physical Processes
in Mechanics and Thermal Sciences

COMPUTER METHODS
roR ENGINEERING

witH MATLAB®

APPLICATIONS

Y OGESH JALURIA

Computational and Physical Processes
in Mechanics and Thermal Sciences

COMPUTER METHODS
roR ENGINEERING
witH MATLAB®
APPLICATIONS

Series in Computational and Physical Processes
in Mechanics and Thermal Sciences

A Series of Reference Books and Textbooks

Series Editors

W. J. Minkowycz

Mechanical and Industrial Engineering
University of Illinois at Chicago
Chicago, Illinois

E. M. Sparrow

Mechanical Engineering
University of Minnesota, Twin Cities
Minneapolis, Minnesota

Computer Methods for Engineering with MATLAB® Applications, Second Edition,
Yogesh Jaluria

Numerical Heat Transfer and Fluid Flow, Suhas V. Patankar

Heat Conduction Using Green’s Functions, Second Edition, Kevin D. Cole, James V. Beck,
A. Haji-Sheikh, and Bahman Litkouhi

Numerical Heat Transfer, T.M. Shih

Finite Element Analysis in Heat Transfer, Gianni Comini, Stefano Del Guidice,
and Carlo Nonino

Computer Methods for Engineers, Yogesh Jaluria

Computational Fluid Mechanics and Heat Transfer, Second Edition, John C. Tannehill,
Dale A. Anderson, and Richard H. Pletcher

Computational Grids, Graham F. Casey
Modern Computational Methods, Herbert A. Konig

The Intermediate Finite Element Method: Fluid Flow and Heat Transfer Applications,
Juan C. Henrich and Darrell W. Pepper

Modeling and Dynamics of Regenerative Heat Transfer, A. John Willmott
Computational Heat Transfer, Second Edition, Yogesh Jaluria and Kenneth Torrance

The Finite Element Method: Basic Concepts and Applications, Second Edition,
Darrell W. Pepper and Juan C. Heinrich

Computational Methods in Heat and Mass Transfer, Pradip Majumdar

Computational and Physical Processes
in Mechanics and Thermal Sciences

COMPUTER METHODS
roR ENGINEERING
witH MATLAB®
APPLICATIONS

Y OGESH JALURIA

CRC Press
Taylor & Francis Group
oooooooooooooooooooooo
CRC Press is an imprint of the
Taylor & Francis Group, an informa business

MATLAB?® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20121009

International Standard Book Number-13: 978-1-4398-9727-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface to the Second Edition.........cccccvieiiiiiiieiiieiiecic et xiii
Preface to the First EAItIONccvveeiiiciiiiiieiieceeeeete et XVii
AUENOT <ottt ettt s b e e ebe e s et e ebaeeaseeabeeesseesbeessaeenseessseenseenneas XXi
Chapter 1 INtrodUCHON ..c..coouiriiiiiiriiiciieert ettt 1
1.1 Introductory Remarks.......c..ccoceeviemiriiniincniineniinicnieceieee 1
1.2 Numerical SOIUtion........cceeiiriiriiniiiiniieneeeeeeeeeeeeeee 4
1.3 Importance of Analytical Results..........cccccoceeveriininiininiicnens 6
1.4 Physical Considerations........c..ceceveevuereeneneenenieneneeniesreniens 9
1.5 Application of Computer Methods to Engineering
Problemscoeiviiiiiiiiiiic e 13
1.6 Outline and Scope of the BOOKc.cceceririiniiiiiniiiinice 15
1.6.1 Basic Featuresc..ccoeveeririenenieniiicnieeiesiceieniene 15
1.6.2 Computer Programscc.ccocevvereenenieneniienenienens 16
1.6.3 Examples and Problemsc.ccocevericnenicncnicnnnns 16
1.6.4 A PIEVIEW .ooiiiiiiiieiieeceeee e 17
Chapter 2 Basic Considerations in Computer Methodscccecevieierieiennnnne 21
2.1 INtrodUCHON .e..eevieiiiiiciieiccetec e 21
2.2 Computational Procedure...........coocvevvienieniiiinienieiienieeiees 23
2.2.1 Method Selection..........cccceeeeeneeienercienencieneeienienne 23
2.2.2 Programming Language.........cccccevvevriieniieniiienienieens 25
2.2.3 CoOmMPULET SYSIEIM ...uveeneieeiiieiieeieeniieeieesieeeieesneeieees 30
2.2.4 Program Development............cccceevuerniienieniieennennieenne 31
2.2.4.1 Algorithm.......cooveiiniiiniiiieiieeieieeeeen 31
2.2.4.2 Available Programs.......c.cccooeeveenienneennnenn 34
2243 Validation.........cccceeveevienienieinincncneneneee 35
2.2.5 Serial versus Parallel Computing.........cccccecveervenueene 35
2.3 Numerical Errors and ACCUTaCYcccceeveerieieniieniinieenieeieens 38
2.3.1 Round-Off Error.......cccooceevirieninieniiieneeicnecieneee 40
2.3.2 Truncation Error.......cccocevirvieniiiiiniiniinenicnicienee 42
2.3.3 Accuracy of Numerical Results...........ccocevvuienienneane 45
2.3.4 Numerical Stabilitycccccovvirviiniiiiniinieiiierieeieee 46
2.4 Tterative CONVETZENCE ...cevveeeeeririeiieririeniieeteeieesiresbeesineeieenes 48
2.4.1 Conditions for CONVEIrgencecccuerveereerueeruensueenne 49
2.4.2 Rate of CONVEIrZeNCeccevveeveeenieiiiienienieerreeieenne 50
2.4.3 Termination of Iterationcccccevveeeviieniieniieenienieene 50

vi

Chapter 3

Chapter 4

Contents

2.5 Numerical Parametersccccoovvevieriieiieeiieeciecie e 51

251 StEP SIZE ..eouiiuiiiiiiieiiniiieeeeeeee s 52

2.5.2 Convergence CriterioN........coccovevuerreeeererenenenenuennes 52

2.5.3 Other Arbitrarily Chosen Variables..........c.cceccrennee. 53

2.6 SUMMATY ..ottt 54

ProbBICIMSviieiiieeie e e 56

A Review of MATLAB® Programming............cccccecvecveeeeereeeeneenennes 59

3.1 INtrodUCtiONoc.eoviniiiiiiicicniccrecce e 59

3.2 MATLAB® ENVIrONmMENtccvevviviieierieieierieeieieeeereeveeneenens 59

3.2.1 Basic Commands.......c.ccoceererienerienenienenieneereniens 59

32,2 MALTICRS ettt 61

3.2.3 Arrays and Vectorizationcccceeevveerverieenvenneeenns 62

324 Matrix AlZebra.....ccccoevieeiiieniiiiienieeeee e 63

3.2.5 PolynomialS......cccceecierieriiienieeiieiceiiee e 65

3.2.6 ROOt SOIVING...eevriiiiiiiiieeiieiieeeee e 66

3.2.7 Linear Algebraic EQUationsccccceevvueviiieniennieene 67

3.2.8 Curve Fitting ...coccevviieiieeiieiieeceeceeese e 67

3.2.9 Flow Control.......cccoeceeviirienirienenieneeieneeieneeeenieee 68

3.3 Ordinary Differential EQUAtionsc.cccevvvervieenieniieenienieenns 70

3.4 INPUL/OULPUL .ottt st 72

3.5 SCript Mm-FAlEs .ooeiiiiiiiiiciieceee e 76

3.6 Function m-Files.......ccccooeeviniiiiniiiiiiiiiciccecec e 78

3.7 PLOTHING weeoiiieiieiieeiie ettt s 81

3.8 SUMMATY .etiiiiiiiieiie ettt st 82

Problems.......cooiiiiiiriiiieite e 83

Taylor Series and Numerical Differentiationcceceeeveevieeneennnenn 85

4.1 INtrodUCHiON ..c.eeuieriiiiiriieiciee et 85

4.2 Taylor SETIES ..cveeeueieiieiiieieeete ettt ettt 86

4.2.1 Basic Featuresc..cocevevvieninieniniiinceicncccseecen 86

4.2.2 Finite Difference Calculusc.cccoovevieeveeniianeennnenn 87

4.3 Direct Approximation of Derivatives........c.cccoeeveevueerueeneeennnenn 95

4.4 Taylor-Series Approach and ACCUTaCYcccceevcveerueerveeneeennnenn 98
4.4.1 Finite Difference Approximation of the First

DErivativeccuevueeiiiieiiniciieiceeeceee e 98

4.42 Second Derivativececceevvveerieniienieeieenieeieenieenn 99

4.4.3 Higher-Order Derivatives........ccccevvveeneeneeenieeneennne 101

4.4.4 Higher-Accuracy Approximationscccceeeevenne. 103

4.5 Polynomial Representation...........ccceeevveereerieeneencieeneeneeenne 109

4.6 Partial DerivatiVescccueecueeriierieenieeieenee e 112

4T SUMIMATY weeiiiiiieiieeiieeieeie ettt sttt et esiaesaneenes 117

PrODICINS ... e 118

Contents vii
Chapter 5 RoOts Of EQUALIONSc..ccueuieiiiriniininintctenctceeeeetee e 121
5.1 INtrOdUCHIONeeiiiieiiciieeiie et 121
5.2 Search Method for Real ROOLScceoeeiirieninieicieeee 123
5.3 Bisection Method.........ccooieieriiiiinieeceee e 130
5.4 Regula Falsi and Secant Methodscccocceiniiiiniinenne, 133
5.4.1 Regula Falsi Methodccccoccoiiienienniiniiniiincncnns 133
5.4.2 Secant Method..........cocceeviiiniinieiniiniiiccnieeeeen 134
5.5 Newton—Raphson Method and Modified

Newton’s Method...........cooiiiiiiiiiiiiiieeeeeee 138
5.5.1 Newton—Raphson Method.............cccceivinininnnnne 138
5.5.2 Modified Newton’s Method...........cccceerieieniieiennne. 141
5.5.3 CONVEIZENCeccouieuiiruieiiniieienieeieeieie e 142
5.6 Successive Substitution Methodccocceevierviiniiinieniennne. 147
5.7 Other Methods.......ccueeiiiiiiiiiiiiiieeeeeeeeee e 150
5.7.1 Miiller’s Methodc.ccocevveneniiiienieieieiiiccecncens 151
5.7.2 Iterative Factorization of Polynomialsc..c..c..... 153
5.7.3 Graeffe’s Method..........ccccoeveverieneneieeeee 158
5.7.4 Additional Methods.......c..ccooieevieenieniiennicnieeeenen 160
5.8 SUMMATLY ..ottt 162
Problemsc...ooiiiiiiiiieiec e 162
Chapter 6 Numerical Solution of Simultaneous Algebraic Equations.............. 171
6.1 INrodUCIONc.oeviviiviiiiiriiieictcicer et 171
6.2 Gaussian Eiminationc.ccocecuevvevieiieieiieininiinenineneneene 174
6.2.1 Basic Approachcccceviiieneniininiiieeee 174
6.2.2 Computational Procedure........c..ccccceceeviruinenuenncnne 175
6.2.3 Solution ACCUTACYcceevuervierieniieieniienieeeesieeie e 178
6.2.3.1 Ill-Conditioned Setccccceevvrirrrenennene 179
6.2.3.2 Error Correctioncceceeeeeveeeueeenennns 179
6.2.3.3 PIVOUNG...coiriiriiiiiiicicicicieieteeeeee 180
6.2.4 Matrix Inversion and Determinant Evaluation......... 180
6.2.5 Tridiagonal SyStemsccoceevereererienienienieeeeneenns 181
6.3 Gauss—Jordan Eliminationccccceeeevvevieininiinininencnnns 189
6.3.1 Mathematical Procedurecccccecveivirininencnnns 189
6.3.2 Computational Scheme..........c.cccccoevvevinvinninnnnncnnns 190
6.4 Compact Methods......cccoeoueeieriiriieniiienieenee e 194
6.4.1 Matrix Decompositionc.cccceeverienienienienienene 194
6.4.2 Matrix Decomposition in MATLAB® 196
6.4.3 Crout’s Method..........ccooevienieniiiienieiiiiiiicieeicns 197

6.5 Numerical Solution of Linear Systems by
Matrix INVErSionccceeiviririinienieicieieieeeeeeeeeee e 201
6.5.1 Computational Procedure...........ccccceceevirienennennnnne 202

6.5.2 Additional Considerations..........ccecveeeeevevvereeeeecnnnen. 204

viii

Chapter 7

Contents

6.6 Iterative Methods.......ccceeviiiiiiniiiiiiniecieceeec e 206
6.6.1 Basic Approachc..coccoceveneniiiiinicneiiciiieencs 206

6.6.2 Jacobi and Gauss—Seidel Methodscccceeeenenne. 207

6.6.3 CONVEIZENCEevevieiriiiereeeeerereeeieeiteeeieee e 208

6.6.4 An EXample......coccocvirininininiiiiieeeeeeeeses 209

6.6.5 Relaxation Methods.........ccoceeverieninieiieiecee 210

6.7 Homogeneous Linear EQUationsccccceeeeirveneneniencnnns 214
6.7.1 The Eigenvalue Problemcccoceeiiininnnnnnnnn. 215

6.7.2 The Power Methodc..ccoooveeiiiiiiiiiiniiiiiiice, 220
6.7.2.1 Largest Eigenvalue...........ccccoceeeeniinnnnnn. 220

6.7.2.2 Smallest Eigenvalue........c.ccccccoeceverencnnene 221

6.7.2.3 Intermediate Eigenvalues...........ccccceeennee 222

6.7.3 Other Methods........c.covieriiiiniieiiiieiiceiceeeeen 224

6.8 Solution of Simultaneous Nonlinear Equations 225
6.8.1 Newton—Raphson Method.............ccccceeiiinnnnnnn 226

6.8.2 Modified Jacobi and Gauss—Seidel Methods 227

6.8.3 CONVEIZENCEoouiuiiiieniiniieienieeieeeee e 228

6.9 SUMMATY ..ottt 234
Problemsc...ooiiiiiiiiieiec e 235
Numerical Curve Fitting and Interpolation...........cccccccevevivcnennnnne. 247
7.1 INrOdUCHON ...ttt 247
7.1.1 Exact and Best Fit.......ccccccooveeieiiininiiiiiininicee. 247

7.1.2 Interpolation and Extrapolationc..ccccceeevuennnene 249

7.1.3 Basic Approachc.ccceceeeveeninieninienceeneeee 249

7.1.4 Use of MATLAB® Commandsc.ccccveeruevnnennne 251

7.2 Exact Fit and Interpolationc.cceceveeveneeneneencnieniennens 251
7.2.1 Exact Fit with an nth-Order Polynomial.................. 252

7.2.2 Uniformly Spaced Independent Variable.................. 255

7.3 Lagrange Interpolationcccceveeviereinenieneneeneneeeneens 258
7.4 Newton’s Divided-Difference Interpolating Polynomial....... 262
7.4.1 General Formulas........ccccooeeevienievnnnnninincncnee. 263

7.4.2 Uniformly Spaced Data........cccccoceevervieninneninnennnns 266

7.4.3 EXtrapolationccccceeeeienieninienenieneeenieeeene 268

7.5 Numerical Interpolation with Splinescccccoceevcrienennnes 272
7.6 Method of Least Squares for a Best Fit........cccccocevenienenne. 278
7.6.1 Basic Considerationsccccceevevveveeeenenvenennenne. 278

7.6.2 Linear Regression.......coceoeveevireenenieneeienieeieneans 281

7.6.3 Best Fit with a Polynomialc..coccooiinininnennnn. 283

7.6.4 Nonpolynomial FOrms..........cccccoeevineniinneninncnnns 285
7.6.4.1 Linearization.......c..cccccceevevveeecveieenvenennns 286

7.7 Function of Two or More Independent Variables.................. 293
7.7.1 EXaCt Fit coeoiiiiiiiiiiiiiiiiicicciccccccceeee e 294

T2 BeSt Filiuuiiiiiiiiiiiiiiceeee e 296

Contents

Chapter 8

Chapter 9

7.8 SUMMATLY ..ooiiiiiiiiiiiiiciee et 299
Problemsc...ooiiiiiiiiieeee e 300
Numerical INtegrationcoceverievierienieiieiieieieieieeeeeeeese e 307
8.1 INtroduCtiOnceeuivuivuiriiriiiiienieieieeceeeeeeeeee e 307
8.1.1 Engineering EXamplesccccoceverieniniencnnencnnne. 309
8.2 Rectangular and Trapezoidal Rules for Integration 310
8.2.1 The Rectangular Ruleccccoceeviiriinineniiienen, 311
8.2.2 The Trapezoidal Rule.........cccccoceevieriiniiiniiienee, 312
8.2.3 Truncation Error..........coccoevenieniiniciinieiiinccieeen 313
8.2.3.1 Rectangular Rule........cccccooveviiniinininnnnne. 315
8.2.3.2 Trapezoidal Rule.........cccccoceeviriencniennnnne. 315
8.2.3.3 Total EITor ..cccovivviiiiiiiicicicieicceen 316
8.2.3.4 ACCUIACY ...eorvienieiieieniieieeieeeee e 318
8.3 Simpson’s Rules for Numerical Integration..............cccenee.e. 322
8.3.1 Simpson’s One-Third Rulecccccoceviniininnannnnn. 322
8.3.2 Simpson’s Three-Eighths Rule.........c.cccccevinencnnne. 324
8.3.3 Truncation Errorsc.cccceeevienievieienieiiiininieenenn 326
8.3.4 Use of MATLAB® Integration Commands.............. 330
8.4 Higher-Accuracy Methods..........ccccovveriiieniinieniinieneeenene 332
8.4.1 Richardson Extrapolation.......c..ccccceceevireeneneenennnn. 332
8.4.2 Romberg Integration..........ceceveeveerieneneeneneenennnn, 334
8.4.3 Higher-Order Newton—Cotes Formulas................... 336
8.5 Integration with Segments of Unequal Width....................... 340
8.5.1 Unequally Spaced Data.........cccceevueveenineencneenennn. 340
8.5.2 Adaptive Quadraturececevueeveereenienieneneeneeen 341
8.5.3 Gauss Quadrature............ceevreeeieeeeiuireeiieeeeiee e 343
8.6 Numerical Integration of Improper Integrals............c..c....... 349
8.6.1 Integrals with Infinite Limitscccocevveerirencnee. 350
8.6.2 Singular Integrand..........cccceeoereevinienineniiieneee, 351
8.6.3 Multiple Integralscccceeeeienieneniiniieceeeee, 356
8.7 SUMMATY c.eeiiiiiiiieieiiee e 356
ProbIEMSeeoiiiiiiiiiiieie e 357
Numerical Solution of Ordinary Differential Equations.................. 365
9.1 INtrodUCtiONcouiviivuiriiniiiinieicieeeeeeeteeee e 365
9.1.1 Initial and Boundary Value Problems...................... 366

9.1.2 Reduction of Higher-Order Equations
to First-Order Equations........c..cocceverieninicneenienenns 366
9.1.3 Solution Methods...........ccccoveveienievieiiniiiiininceeen 369
9.2 Euler’s Method.........cccoeviiniininiiiiiiiiicicieicieeeeceeese e 370

9.2.1 Computational Formula and Physical
Interpretation of the Methodcccccveviniincnnn. 370

Chapter 10

Contents

9.2.2 Solution of a System of Equations...........cccceccoceenenne. 372
9.2.3 Errors, Convergence, and Stabilityc.cccceee. 374
9.3 Improvements in Euler’s Methodc..cccooiiinniiinie, 380
9.3.1 Heun’s Methodcccccoeciiiiiiniiniiinecices 380
9.3.2 Modified Euler’s Method........c..ccccceecvvcirininincnnenne. 383
9.4 Runge—Kutta Methods..........cccooceniiiiniiiiniiiiiicciicieees 384
9.4.1 Computational Formulas..............cc.coccoiiininnnn. 386
9.4.2 Truncation Error and Accuracy.........ccocceevereeuennnns 389
9.4.3 System of EQUations.........c.cccceeveviecieiecencnencncnnenne. 391
9.5 Multistep Methods.........ccoecieriiiiiiniiiiniiiniceecceceee 397
9.5.1 Adams Multistep Methodsccccecenieiininncnnes 397
9.5.2 Additional Considerations............c.cceceveevueneecuennnne 401
9.6 Predictor—Corrector Methods..........ccccoceevinieiinieiinienennens 401
9.6.1 Basic Featuresc.ccoceeerenieieienieieieicceeec e 402
9.6.2 Adams Method........ccccoevverieienienieiriiiicienceceee 403
9.6.3 Milne’s Methodccccoeveieieienieiiiiicccenceceeee 404
9.6.4 Hamming’s Method.........cccccevinieviiiininininincnenne. 405
9.6.5 Accuracy and Stability of Predictor—Corrector
MethodS.....covuiiiiiiniiiiieiceeeeee e 406
9.6.5.1 Truncation Errors..........c.cccccooieieninncnnnns 406
9.6.5.2 Step SIZe ..c.eovviiiiiiiiiiieieeeeeee 408
9.6.5.3 Stability......coceeireririieiiciceeec 409
9.6.6 Simultaneous EqUations............ccccceeevevrcnenvcncnnenne. 410
9.6.7 Concluding Remarks on Predictor—Corrector
MethodS.....covuiieiieiiiiieicceeeeeee e 410
9.7 Boundary-Value Problems...........c..ccccoceeiiniiiinnininiiinn, 416
9.7.1 Shooting Methodscccccoceeviriiininiiniiiinicieeees 417
9.7.1.1 Linear Equations..........cccccecccveevueninnuennnnne 419
9.7.2 Finite Difference Methodsccccoevevieniiiennnnen. 420
9.7.3 Eigenvalue Problems............ccccoconiiiiniininnnncnnns 423
9.8 SUMMATIY ..ooiiiiiiiiiiiicce e 430
Problemsc...ooiiiiiiiiieieee e 432
Numerical Solution of Partial Differential Equations...................... 445
10.1 INtrodUCtioNncoveeuiviiriiniiienieieietetceeeeeeeee e 445
10.1.1 Classificationc.coeeuevuerienienienieieieeeeeeeeee e 445
10.1.2 EXAMPILS .eonviiiiiiiieiiiieieeeieeeeeeee e 446
10.1.3 Basic Considerationsccceceeeeeeveeeenenenennenne. 448
10.2 Parabolic PDES........ccccociiiiininiiicieiciccicccieeeeeeecse e 449
10.2.1 Numerical Solution with an Explicit Scheme 450
10.2.2 Stability of Euler’s (FTCS) Method............cccccccee.e. 453
10.2.3 Implicit Methodscocerueeieniienieieieeeeeene 454
10.2.4 Other Methods and Considerations............c.ccccceuee... 456

10.2.5 Multidimensional Problemsccccccevieevvvereeeinnns 458

Contents xi

10.3 EIPtic PDEScoiiiiiiriiiiienenicteteteeeeeeeeeeet e 467
10.3.1 Finite Difference Approach.......c.cccccceeeevverenircnnene. 467
10.3.2 Numerical Solution by Iterative and
Direct Methods........cooeeviiiiiiniiniienieeeeiceeeeee 472
10.3.2.1 Point Relaxation...........ccccceeuvevueniineennenne. 474
10.3.2.2 Direct Methodsccccoeeieriieiininiinnenne. 476
10.3.3 Other Methods........c..coceoieiiiiniiniiiicieecee 476
10.3.4 Other Geometries and Boundary Conditions........... 477
10.3.5 Finite Element and Other Solution Methods............ 480
10.4 Hyperbolic PDEScccccccooiiiiiiiiiiiiiinicceeeneceeeeeeee 489
10.4.1 BasiC ASPECLS ..c.eeruieiiiiieiieieieceeeeeeeee e 489
10.4.2 Method of Characteristicscccecuevecererenercruennen 489
10.4.3 Finite Difference Methodsc.cccecvveeveninencnnenne. 490
10.5 SUMMATY .o e 500
Problemsc...ooiiiiiiiieieeee e 502
Appendix A: Some Common Commands in MATLAB®ccccoceoiinneninennn. 509
Appendix B: Computer Programs in MATLAB®ccccoviiiinninneeeeee, 513
Appendix C: Computer Programs in FORTRANc..ccccoiiiiiiiiiinninnceen, 553

REFEICIICES ... ettt e e e et e e e e eeaaeeeeeesnnes 591

Preface to the Second Edition

Computer methods continue to be critical in the analysis, simulation, design and
optimization of engineering processes and systems. Computational approaches are
needed to solve the complex mathematical equations that typically arise in engineer-
ing problems, for correlating experimental data, and for obtaining numerical results
that are used for improving existing processes and developing new ones. The second
edition follows the basic ideas, discussions, approaches, and presentation employed
in the first edition. The focus is clearly on engineering processes and systems and on
the equations that characterize and describe these. Computer methods that are
employed to solve these equations and the nature and validity of the numerical results
obtained are discussed for a variety of problems. The main thrust is on the discussion
of the various numerical methods that are available for a given problem, on the pre-
sentation of the basic aspects of the methods, discussing their applicability, effi-
ciency and behavior, and then applying these to typical problems chosen from various
engineering disciplines.

Besides discussing the solution of different types of mathematical equations, a
large number of engineering examples and problems were chosen to present the
choice of the method, development of the numerical algorithm and use of the com-
puter to solve the problem. A systematic approach is followed to obtain physically
realistic, valid and accurate results through numerical modeling. Examples from
many different engineering areas are employed to explain the various elements
involved in the numerical solution and to make the presentation relevant and interest-
ing. Similarly, a large number of solved examples and exercises are included to sup-
plement the discussion and to illustrate the ideas and methods presented in the text.
The book continues the thinking that the basic purpose of the computational approach
is to provide physical insight and to obtain inputs for analysis and design of practical
systems. Thus, the solution methodology is linked to both the computer and to the
fundamental nature of the problem to allow the student to appreciate the basic aspects
of the numerical approach.

The book is appropriate as a textbook for engineering undergraduate courses
on computer methods at the sophomore or junior levels. Because the background
of students at the sophomore level may not be sufficient for some of the topics
covered, such as partial differential equations, a few such topics may be avoided
for sophomore students and may be included in the junior or senior courses. The
book is also appropriate as a reference on computational methods for various
other basic and applied undergraduate courses in mechanical engineering and in
other engineering disciplines. The book will also be useful as a reference for
engineers who are interested in using computer methods for analysis, simulation,
design, or data analysis.

xiii

xiv Preface to the Second Edition

The second edition is a substantially revised and updated version of the earlier
book. Recent advances in available computational facilities, both in software and
in hardware, are included. In several places, the presentation has been simplified
and clarified to make it easier to follow. Certainly, the main difference from the
first edition is the extensive use of MATLAB®, instead of a high-level programming
language like Fortran, for numerical modeling. This is done in view of the current
trend in engineering education where MATLAB has emerged as the dominant
environment for the numerical solution of basic mathematical equations. Much of
the discussion on computer solution is thus directed at MATLAB and a large num-
ber of MATLAB commands and programs are given in the text, as well as in the
Appendix, in order to facilitate the presentation as well as to provide ready access
to MATLAB programs for solving exercises given in the text and other similar
problems. In many cases, the programs are focused on the example or problem
being considered, in order to encourage the readers to develop their own computer
programs for specific problems. However, the programs can be easily modified for
different circumstances and parameters. Available MATLAB functions and com-
mands are frequently employed to generate results that can be used for compari-
sons with the results obtained from more detailed and versatile programs. Fortran
has not been abandoned because of its continued importance in engineering and
the existence of substantial software in Fortran for many complex problems.
Several important Fortran programs are included in the Appendix to illustrate the
ease with which one could go from one computational environment or language to
another and to allow those interested in Fortran to use these for their specific prob-
lems. Additional exercises and examples are included in all the chapters. References
have been added on new topics included in the book and references in the first edi-
tion have been updated.

The methods, discussions, and computer programs presented in this textbook are
the result of many years of teaching computer methods to engineering undergraduate
students, in required as well as elective courses. The inputs from many colleagues
and graduate students, as well as undergraduate students, who took the courses from
me, have been valuable in selecting the topics, the depth of coverage, the computer
programs presented here and many other aspects related to computer methods for
solving engineering problems. Inputs from those who have used the first edition in
their courses, particularly from Professor Wally Minkowycz, have been particularly
valuable. The support and assistance provided by the editorial staff of Taylor &
Francis, particularly by Jessica Vakili and Jonathan Plant, have been valuable in the
development of the second edition.

The book would never have been completed without the strong support and
encouragement of my wife, Anuradha. Our children, Ankur, Aseem, and Pratik, as
well as Pratik’s wife Leslie and son Vyan, have also been sources of inspiration and
encouragement for me and have contributed in their own way to my efforts over the
years. I greatly appreciate the patience and understanding of my family that made it
possible for me to spend extensive periods of time on the book.

Preface to the Second Edition XV

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA
Tel: 508 647 7000

Fax: 508-647-7001

E-mail: info@mathworks.com
Web: www.mathworks.com

Preface to the First Edition

The use of computational methods in the analysis and simulation of engineering
processes and systems has grown tremendously over recent years. Increasing national
and international competition has made it imperative to improve existing facilities
and to develop new ones for a wide variety of applications. Because of the constraints
imposed on detailed experimentation needed for design and optimization of systems,
due to excessive time, manpower, and financial requirements, computer simulation is
extensively employed to obtain the desired information. Analytical methods are gen-
erally very restrictive in their applicability to practical problems, and numerical
methods are usually necessary. In addition to the growing need for numerical solu-
tions to engineering problems, we have also seen substantial improvements in the
computational facilities available, both in software and in hardware, over the last
decade. All of these changes have made it more important than ever for engineers
and engineering students to develop expertise in numerical methods and to use them
for solving problems of practical interest.

In recognition of the growing importance of computer methods in engineering,
many courses in engineering curricula now include the numerical solution of engi-
neering problems on the basis of numerical analysis taught earlier at the sophomore
or junior level. Generally, engineering students are first exposed to the computational
procedure through a course on programming, frequently employing Fortran as the
programming language. Numerical methods are then taught at a later stage to intro-
duce the basic concepts of numerical analysis and to allow the students to numerically
solve important mathematical problems such as integration, matrix inversion, root
solving, and solution of differential equations. However, since the basic purpose of the
computational approach is to provide physical insight and to obtain valuable informa-
tion for the analysis and design of practical systems, such courses have been inte-
grated into the engineering curricula at most universities. This implies that the solution
methodology is coupled with the computer on one hand and with the physical or
chemical nature of the problem on the other. The numerical procedure, as well as the
results, are considered in terms of actual problems to permit the student to develop a
physical feel for the numerical approach to engineering problems.

Traditionally, numerical analysis courses have been mathematically oriented.
Although this orientation brings in some very important and fundamental aspects of
numerical analysis, it lacks in the application of the methodology to actual problems.
It is extremely important to integrate the basic understanding of the methods with
their actual use on the computer. Unless the students learn to choose and implement a
computational scheme on the computers available, they will not develop a satisfactory
appreciation or understanding of the numerical technique. In addition, recent advances
in computational facilities, such as structured programming, interactive computer
usage, and graphics output, must be introduced so that the most efficient procedure is

XVii

Xviii Preface to the First Edition

adopted for a given problem. The incorporation of problems derived from various
engineering disciplines aids in this learning process and also makes it interesting and
enjoyable. In addition, it reinforces the important point that the physical or chemical
background of the given problem forms an important element in the selection of the
method and in the evaluation of the accuracy of the results obtained.

This book, directed at computer methods for engineering, integrates the treatment
of numerical analysis with the physical background of the problems being solved and
with the implementation of the methods on available computers, employing several
recent advances in this field. Although a large number of books are available on
numerical analysis, not many satisfactorily discuss the implementation of the method-
ology on the computer, and even fewer discuss the implications of the physical nature
of the problem in the numerical solution. This book recognizes the need for a satisfac-
tory incorporation of these concepts into the mathematical treatment of numerical
analysis. It couples numerical methods for a variety of mathematical problems with
the use of these methods for the solution of engineering problems on the computer.

Numerical methods for important mathematical operations, such as integration,
differentiation, root solving, and solution of algebraic systems, are discussed in
detail. The solution of differential equations, both ordinary and partial, is presented.
Curve fitting, which is an important consideration in engineering problems, is also
discussed. A large number of problems from basic sciences and various engineering
disciplines are chosen to illustrate the use of these methods. The problems chosen
are relatively simple so that they can easily be understood by students at the sopho-
more/junior level. However, in several cases, the basic background of the problem is
outlined so as to bring the important points into proper focus. The importance of the
physical or chemical background of the problem in the selection of the method, the
choice of numerical parameters, the estimation of the accuracy of the results, and the
overall validity of the results is discussed. The book mainly uses Fortran 77 to dem-
onstrate the implementation of the numerical methods on the computer, because of
the overwhelming importance of this language in engineering applications. However,
a few programs in Basic are also given to bring out the similarities between the two
languages and the ease with which one may switch from one to the other. A discus-
sion of other languages and important aspects in computational procedure is included.
A large number of examples, with the corresponding programs, are given. The pro-
grams are written specifically for these examples, so that the students must develop
their own programs for the large number of problems given at the end of the chapters.
Several important features that are currently employed in computational procedure
are demonstrated in these programs. Recent trends in this area are outlined, and their
significance for engineering applications is discussed. The students are strongly
encouraged in every way to develop their own computer programs, since this is an
essential ingredient for learning computer methods.

Most of the material covered in this book has been employed by the author for
courses at the sophomore and junior levels. Since the background of students at the
sophomore level may not be sufficient for some of the topics covered, such as partial
differential equations, this particular topic and a few sections marked with an asterisk
may be avoided by sophomore students. The book can also be used at the senior level,
if such a course is included in the curriculum at this level. The material included is

Preface to the First Edition Xix

quite adequate for a one-semester course. However, the best time to teach this course
is probably at the junior level, so that the students can fully understand the material
and then use it in courses taught at higher levels. The book is also appropriate for
professional engineers in various disciplines and as a reference for courses that
employ computational methods as an important element in the presentation. The
book considers problems from diverse engineering applications, and the treatment is
at a level appropriate for engineering students of all disciplines.

I owe tremendous gratitude to several colleagues and students who have contrib-
uted to my understanding and enjoyment of computational methods for engineering
applications. First, I would like to thank Dr. Frank Kreith, who suggested that I write
this book and contributed several very valuable suggestions on the presentation.
I would also like to acknowledge several stimulating and interesting discussions on
the subject with Professors Dave Briggs and Abdel Zebib. Professor Samuel Temkin
provided me with tremendous support and encouragement. Dr. M. V. Karwe helped
with the numerical solution of some problems. Also of considerable value was the
support provided by the staff of Allyn and Bacon, Inc., particularly by Ray Short.
The manuscript and its several versions were typed with great patience and compe-
tence by Diane Belford and Lynn Ruggiero.

I would like to dedicate this book to my parents, who have always encouraged,
supported, and inspired me to strive for the best I could achieve. The greatest contri-
butions to this effort have been the encouragement and support of my wife, Anuradha,
and of our children, Pratik, Aseem, and Ankur, who had to bear long hours that kept
me away, working on this book, with patience and understanding.

The author extends special thanks to the following reviewers whose contributions
have enriched the text: Professor Clayton Crowe, Washington State University;
Professor Rodney W. Douglass, University of Nebraska; Professor S. V. Patankar,
University of Minnesota; Dr. James F. Welty, U.S. Department of Energy.

Author

Yogesh Jaluria is currently a board of governors professor at Rutgers, the State
University of New Jersey, New Brunswick, New Jersey, and the chairman of the
Mechanical and Aerospace Engineering Department. He received his BS from the
Indian Institute of Technology (IIT), Delhi, India, and his MS and PhD in mechani-
cal engineering from Cornell University. He worked at Bell Labs and at II'T, Kanpur,
before joining Rutgers University in 1980.

Professor Jaluria has contributed more than 450 technical articles, including over
170 in archival journals and 16 chapters in books. He has two patents in materials
processing and is the author/coauthor of seven books. He is also editor/coeditor of 13
conference proceedings, two books, and three special issues of archival journals.
Professor Jaluria received the prestigious 2007 Kern Award from the American
Society of Chemical Engineers (AIChE), the 2003 Robert Henry Thurston Lecture
Award from the American Society of Mechanical Engineers (ASME), and the 2002
Max Jakob Memorial Award, the highest international recognition for eminent
achievement in the field of heat transfer, from ASME and the AIChE.

In 2001, he was named a board of governors professor of mechanical and aero-
space engineering at Rutgers University. He received the 2000 Freeman Scholar
Award for work on fluid flow in materials processing, the 1999 Worcester Reed
Warner Medal for extensive contributions to the engineering literature, and the 1995
Heat Transfer Memorial Award for significant research contributions to the science
of heat transfer, all from ASME. He served as the chair of the Heat Transfer Division
of ASME during 2002-2003. He was the editor of the ASME Journal of Heat
Transfer, the preeminent publication in this field, during 2005-2010, and is on the
editorial boards of several international journals.

XXi

Introduction

1.1 INTRODUCTORY REMARKS

Over the past three decades, there has been a tremendous increase in the use of
computers for engineering problems. This increase has been mainly due to the
growing need to optimize systems and processes in order to raise productivity and
reduce costs. With increasing worldwide competition, it has become necessary to
modernize existing engineering facilities and develop new ones through analysis and
design. Consequently, we have seen a considerable improvement in engineering
systems, particularly those related to electronic circuitry, materials processing,
biotechnology, transportation, and energy generation. The concern with safety,
including homeland security, and with our environment has also led to detailed
investigations of existing engineering processes and to substantial improvements in
many of these to reduce the impact on our environment and to make their use safer.

Because of the complexities involved in most engineering applications, analytical
methods based on mathematical techniques are usually unable to provide a solution
to the equations that characterize their behavior, and computational methods are
needed to obtain quantitative information on physical quantities of interest. Even
though analytical solutions are obtained in a few simple cases, the form of the
solution itself may be quite involved, since the results are frequently expressed as a
series or in terms of integrals and complex functions. In such cases, the computer is
needed to extract the desired information from the analytical solution. Also, the
problem may have to be solved several times with different sets of data, making it
advantageous to use the computer rather than analytical methods.

There has also been a phenomenal increase in the availability of computers over
the recent years. With the advent of microcomputers, such as personal computers
(PCs), computational facilities have become widely available. The computational
power available has also increased dramatically in individual, single-processor,
machines, or serial computers, as well as in linked multiple machines or processors
that result in a parallel computing cluster. There is every indication that these trends
will continue, making computers even more accessible and powerful. Although most
practical engineering problems still require larger and faster computers (such as
supercomputers, minicomputers, or parallel computing systems), microcomputers
do allow the solution of many common problems and are also useful in testing
numerical procedures that may subsequently be employed on larger or parallel
machines. The availability of a wide variety of microprocessors has also substantially
affected the control and operation of systems through automation and expanded the
reach of computational software.

Along with the revolution in computer hardware, there has inevitably been one in the
available software as well, making the use of computers for scientific and engineering

2 Computer Methods for Engineering with MATLAB® Applications

problems easier than ever. Thus, for a wide range of problems, the programs available
in the computer library, commercially available software, or user-friendly computa-
tional environment may be used effectively. However, it is generally necessary to
understand the basic techniques involved in order to modify the program for satisfac-
tory application to a given problem. In industrial systems, the use of commercially
available programs is particularly important, since the processes are often quite
involved and interest lies in obtaining the needed information as rapidly as possible.
For simpler problems, such as those related to individual physical and chemical pro-
cesses that constitute the overall system, it is often easier and more desirable to per-
sonally write the computer program or use an appropriate computational environment,
rather than use a commercially available code written specifically for a given prob-
lem. Therefore, it is important to understand computational methods relevant to
engineering applications and to use them in physical problems that are of interest to
various disciplines.

Computer-aided design, simulation-based design and optimization, and
computer-aided manufacturing are important areas that have grown substantially in
the very recent past. These areas have arisen from the need to optimize on the one hand
and the growing availability of the computers on the other. They are interdisciplinary
in nature, particularly simulation-based design, which is of interest in such diverse
fields as electronic systems and structural design. The basic approach in this case is to
numerically solve the governing equations, choose physical parameters to simulate
existing processes and systems, and finally vary these parameters to optimize the
design for existing and future systems. Several other similar applications of computer
methods have arisen in recent years, making it imperative to link the computational
approach to the physical or chemical aspects of the problem under consideration.

In view of the growth of computer usage and availability in the recent years, it is
surprising that much of the mathematical background underlying numerical analysis
and computer logic has been available for several centuries. Binary logic operations,
which use 2 as the base, instead of 10 employed in the decimal system, and which
form the basis for most present digital computing, have been known and used for
quite some time. Francis Bacon used binary codes in the early seventeenth century
to transmit secret messages. In 1804, Joseph Marie Jacquard used punched cards
with binary codes and logic to operate looms. A mathematical theory for binary
logic was developed by George Boole during the nineteenth century. Similarly,
adding machines and mechanical calculators were developed centuries ago, such as
the one developed by Blaise Pascal in the seventeenth century. Charles Babbage
designed the first automatic digital computer in 1833, with several features similar to
those of modern computers. However, this machine was never constructed.

Modern digital computers were developed largely after World War I1. A high-speed
electronic digital computer was developed during the period from 1945 to 1952 under
the direction of John von Neumann at the Institute for Advanced Study in Princeton,
New Jersey. Binary digits, which can be represented by the opening or closing of a
switch, were stored electrostatically in cathode-ray tubes. Several thousand vacuum
tubes were used for computer memory, which had to be again stored about a thousand
times per second due to the decay of electrostatic charge. Much of the logic behind
this machine has persisted in modern computers. The major advancement has been in

Introduction 3

electronic hardware, particularly in the development of transistors, integrated circuits,
microelectronics, and now nanoscale devices and systems. As a result, there has been
a considerable reduction in size and cost of electronic digital computers and also a
substantial increase in their capability, speed, and reliability. The availability of PCs
has brought computational techniques within easy access for a wide variety of prob-
lems, both for students and for professional engineers. Therefore, the coming years
may be expected to improve the available computational facilities even further through
the advancement in both computer software and hardware. It is also evident that PCs,
with an interface with larger machines or with other machines in a parallel computing
environment for more complicated problems, will continue to grow in availability and
usage. Thus, it is important to learn the computational techniques relevant to engi-
neering problems on the basis of the currently available computational facilities, while
considering expected future trends as well.

Several important and useful features have been incorporated in the modern
computer systems. Among the most important of these is an interactive use of the
computer, rather than the previously common batch operation mode. Frequently, an
interpretive compiler is used so that each program statement entered into the
computer is screened for syntax errors and a message issued if any error has been
committed. The interactive mode allows one to enter variables and make changes in
the program, as the need arises after each run of the program. The execution may
also be stopped to make modifications and then continued. Therefore, the interac-
tive mode is very well suited for the initial stages of program development, when
the testing and debugging of the program is being done, and for obtaining the trends
for a wide range of input parameters. For instance, if the values of x at which a
nonlinear equation f{(x) = 0 is satisfied (known as roots of the equation) are to be
determined, the interactive mode may be used very effectively to obtain the general
behavior of f(x) over the range of interest in x. Various values of x may be entered
and the corresponding values of f(x) obtained. A graph of f(x) versus x may easily
be plotted using available software. The information obtained may then be used to
select the method for finding the roots and also to obtain suitable initial guesses for
the roots. Figure 1.1 shows a few examples where the plot of f(x) versus x would be
particularly useful in root finding.

The batch operation mode involves feeding the complete job into the computer
and then running it with no interaction with the operator until the job is executed.
This mode is appropriate for obtaining the numerical results for different parametric
values after the program has been developed and debugged, particularly for large
programs. Other important features available with present computer systems are
graphics facilities, which plot the computed results, and interfacing between various
computers, which allows program development to be carried out on small computers
in the interactive mode. Once the program has been completed, debugged, and tested,
the numerical code may be transmitted to a larger computer or to a parallel computer
system, which would generally be more efficient for computing and will have greater
storage capability, and run in the batch mode to obtain the desired computed results.
Of course, with the increasing computational power and storage capacity of individual
machines and workstations, code developments, as well as extensive computational
runs, are often carried out on the same unit.

4 Computer Methods for Engineering with MATLAB® Applications

S &) S&)

S) S&)

AN

FIGURE 1.1 Some examples of the plotting of the function f{x) versus x to determine the
approximate values of the roots of the equation f{x) = 0.

1.2 NUMERICAL SOLUTION

The development of a computational procedure, or algorithm, to solve a given
problem requires knowledge of both the available numerical methods and the
methodology to interface with the computer. Since several methods are generally
available for a given application, it is important to understand the applicability and
advantages of each method compared to those of the other methods. For instance, a
system of linear equations may be solved by a wide variety of methods, including
direct methods, which give a solution in a definite number of steps, and iterative
methods, which involve a repeated solution of the equations until a chosen conver-
gence criterion is satisfied. The choice of the method for a given problem depends
mainly on the nature and number of the equations. Direct methods are suitable for
smaller systems and iterative methods for large sets of equations. Also, if the same
system of equations must be solved several times with different constants on the
right-hand side of the equality sign, methods based on matrix inversion are often
preferable since the different solutions may be obtained easily once the coefficient
matrix has been inverted. Similarly, in curve fitting, the method to be adopted is
strongly dependent on the nature and form of the given data. If the data have been
provided at uniform intervals of the independent variable, certain specialized meth-
ods may be used, taking advantage of the uniform distribution of data.

Sometimes, several methods are applicable for a given problem, and the selection
of the method becomes a matter of personal choice. The previous experience with a

Introduction 5

particular method may be an important consideration in its selection. Also, the
availability of certain programs in the computer library may make it advantageous
to choose a given method. Many specialized methods have been developed for spe-
cific applications. Such methods are often limited in their applicability, although
they may be the most efficient ones when applied to the problem for which they are
particularly suited. For instance, certain methods for finding the roots of an algebraic
equation are applicable only to polynomial equations and are popular choices for this
application. They cannot be used for other types of algebraic equations, say, tran-
scendental equations that involve transcendental functions such as exponential, loga-
rithm, and trigonometric functions. Similarly, direct methods for solving systems of
equations apply only for linear equations. Iterative methods are generally necessary
for a system of nonlinear equations.

Itis evident from the preceding discussion that the selection of the most appropriate
numerical method for a given problem is an important consideration and is generally
based on the nature of the problem. Once the method has been selected, one proceeds
to implement it on the computer. The program is written in a programming language
or in the computational environment available on the computer system to be
employed. Although Fortran, with its many versions like Fortran 77, Fortran 90,
Fortran 2003, and Fortran 2008, has been used extensively in engineering applica-
tions on most minicomputers and mainframe systems, Basic, C, C++, and other
languages developed in recent years have often been used on PCs. MATLAB® is
probably the most commonly used computational software being used today on both
PCs and servers to solve mathematical problems that arise in engineering and scien-
tific applications. Most of the numerical solutions discussed in this book, therefore,
employ MATLAB.

The computer program written in the chosen programming language is converted
into machine language by the computer. This process, known as compilation of the
program, is achieved by using the relevant software, termed the compiler, available
on the computer. An operating system is used for the control of the program and the
computer resources. The editing of the program, for making changes and corrections,
is done with the help of the editing system available on the given computer. The
compilation, editing, and execution of the program are governed by the operating
system of the computer and therefore vary with the machine. Similarly, the job
control language, which interfaces the programmer with the computer, depends on
the computer system. For those who may not be familiar with the terms mentioned
here, Chapter 2 outlines the basic features of a computer system.

The interpretation of the numerical results obtained is also an important
consideration, since it relates to the accuracy and the correctness of the numerical
solution. The computational scheme may be employed to yield results for a wide
range of input variables, so that the results may be considered in terms of the physical
or chemical nature of the problem being investigated. If possible, a comparison is
made with available analytical results in order to determine the accuracy of the
computed results. The verification and validation of the numerical scheme involve
ensuring that the results obtained are accurate and valid. These are particularly
important if a commercially available computer program or one available in the
public domain is being employed to solve a given problem. It is also important to

6 Computer Methods for Engineering with MATLAB® Applications

determine the range of governing parameters over which the scheme can be used to
yield accurate numerical results. These considerations are discussed in the following
sections. Once the accuracy and validity of the results have been verified, the desired
results may be obtained in a tabulated or graphical form.

1.3 IMPORTANCE OF ANALYTICAL RESULTS

As mentioned earlier, the equations that arise in most engineering problems are too
complicated to be solved analytically, and computational techniques must be used
to obtain the numerical values needed. Analytical solutions are often obtained only
in very simplified circumstances. Also, as indicated before, analytical results are
frequently given in terms of convergent series, integrals, and complicated functions,
such as transcendental functions, Bessel functions, and so on. In engineering, we
are largely interested in numerical values corresponding to given input data, and the
computer is frequently needed to obtain the desired numerical information from a
given analytical solution. However, analytical results, whenever available, are
extremely important in evaluating the accuracy of the numerical scheme and in
validating the model. Similarly, analytical results may be used to study the conver-
gence characteristics of the numerical method and to decide if the correct solution
has been obtained.

As an example, let us consider the solution of the differential equation that governs
the variation, with time ¢, of the charge ¢ of a capacitor in an electrical circuit that
also contains a voltage source and a resistance. If the initial charge in the capacitor
is Q and the voltage input, resistance, and capacitance are denoted by E, R, and C,
respectively, the governing equation is obtained as follows (Young et al., 2000):

rRY .49 _p (1.

If R, C, and E are constants, the preceding equation may be solved mathemati-
cally to obtain

qg=0e "R+ EC(1-e "’ = EC +(Q - EC)e™"'R¢ 1.2)

The physical problem and the analytical solution are sketched in Figure 1.2. The
charge g decreases from the initial value of Q to a steady-state value of EC, if EC < Q.
Similarly, ¢ increases to a steady charge of EC, if EC > Q.

Several other physical problems are governed by equations similar to Equation 1.1.
The temperature T(f) of a small, heated metal block being cooled by a stream of air,
the moisture content of a wet body drying in air, and the pressure of gas in a container
with an opening are often governed by equations of the same form as Equation 1.1.
However, in actual practice, the parameters, such as R, C, and E, may be the nonlinear
functions of the charge or voltage and may, in some cases, also vary independently
with time. For instance, nonlinear conductors, such as vacuum tubes, do not obey
Ohm’s law, and heat and mass transfer processes operating at the surface of a given

Introduction 7

Switch

Electrical charge (g)

Time (£)

FIGURE 1.2 Variation with time ¢ of the charge ¢ in a capacitor, which is originally at
charge Q, due to the closing of the switch in the electrical circuit shown.

object generally depend on the temperature, concentration, and pressure, making the
differential equation nonlinear. The governing equation may, in general, be written as
do/dr =—-H(d, H)d + B, where ¢ is the dependent variable, H(0, 7) is a functional
parameter, and B is a constant. If g is replaced by ¢ in Equation 1.1, then H(¢, /) = 1/RC
and B = E/R. This equation is linear in ¢, or g, since H and B are constants, resulting
in only the first power of ¢ to appear in the equation.

If H is not a constant but a function of ¢ as H(0, 1), an analytical solution is often
not obtained because of the nonlinear expression —H(¢, /) ¢ that arises on the
right-hand side of the differential equation. In such circumstances, a numerical
solution of the differential equation may be obtained by choosing a time step Ar and
advancing time to compute ¢ as a function of time, starting with the given initial
condition. This computation is done until an insignificant change is observed in ()
from one time level to the next, thereby indicating that the temperature has reached
steady state, given by d¢/df = 0. However, since an analytical solution is available for
the simplified circumstance of Equation 1.1, the numerical scheme should first be
used to solve the problem with H taken as a constant and the computed results
compared with the analytical solution. This comparison will allow determination of
the anticipated accuracy of the numerical results and will also check the correctness
of the procedure. Such a comparison is particularly valuable in complicated problems
where an error in the numerical scheme may go undetected. Fortunately, many
physical and chemical problems can be formulated in terms of idealized circum-
stances, which lead to simplified equations that can be solved analytically. Chapter 8
discusses several methods for solving ordinary differential equations (ODEs) and
demonstrates again the importance of available analytical results.

Similarly, in numerical differentiation and integration, the computational scheme
may be tested by employing simple functions whose derivatives and integrals can be
obtained analytically. In radiative heat transfer, for instance, integration over the

8 Computer Methods for Engineering with MATLAB® Applications

wavelength A of the radiation is frequently needed to determine the total energy lost
or gained, Q, per unit area, at a surface. The expression for Q is

0 =[f)dr (1.3)
I

where f(A) is known as the monochromatic emissive power and is often a fairly com-
plicated function of the wavelength A, generally obtained from a curve fit of experi-
mental measurements. However, the radiation from a blackbody, which is an idealized
circumstance, is well known in physics and is given by Planck’s law, which expresses

S as

= G (1.4
f@) A [exp(c,/AT) - 1]

where T is the surface temperature on the Kelvin scale and c,, ¢, are the known
constants. Figure 1.3 shows the variation of f(A) with A for the ideal surface of a

14

12

. Blackbody, 1600 K
10 4
\
I
| \
I

\

E

=

£

=

S

T

=

x 8- | \

9] 1

z o

o | \

'0’;‘ 61 ' Gray bod
g h y body, 1600 K
E |

8 [N

g 4 - 1, // \\/\
IS |/

£ 1/

3 I/

<]

o i I

3 21 ~

Wavelength (A, tm)

FIGURE 1.3 Variation of the emissive power f(A) with the wavelength A for thermal radia-
tion by a blackbody, a gray body, and a real surface.

Introduction 9

blackbody, for a real or practical surface, and for a gray body for which f()) is a con-
stant fraction of that for a blackbody at all A.

For a blackbody, the integral in Equation 1.3 has been evaluated analytically and
is given by

0=oT* (1.5)

where 6 is known as the Stefan—Boltzmann constant and whose numerical value is
given in the literature as 5.67 x 10~ W/m? K*. Therefore, the computational scheme
developed for numerically determining Q for a wide variety of engineering surfaces,
and thus different f(A), may first be applied to blackbody radiation and the results
compared with the analytical solution given by Equation 1.5 to determine the accu-
racy and validity of the numerical method.

The numerical solution of large systems of linear or nonlinear equations is often
needed in engineering problems. Since small sets of equations, typically three or
four equations, can be solved analytically, the numerical procedure for solving
systems of simultaneous algebraic equations may be employed for a small number of
equations and the numerical results compared with the analytical values, to determine
the accuracy and correctness of the numerical solution.

In numerical methods based on iteration, a convergence criterion € is employed to
decide when to terminate the iteration. Generally, the convergence criterion is applied
to a physical variable in the problem, and computation is stopped when the change
from one iteration to the next is less than the chosen value of €. A relationship
between € and the accuracy of the numerical results may be obtained by a compari-
son of the computed values with the analytical solution that may be available for a
simplified circumstance. This information can then be employed in the choice of the
convergence criterion. If analytical results are not available, an extensive testing of
the numerical procedure, over wide ranges of the initial guess, convergence criterion,
and time step Az, for example, in the problem given by Equation 1.1, must be carried
out to ensure that the numerical results are essentially independent of the values
chosen and that the desired accuracy level has been achieved. Figure 1.4 sketches
typical computed iterative and converged solutions to the ODEs that govern a par-
ticular flow circumstance. The questions related to iterative convergence and to the
choice of the numerical parameters, such as € and At, are extremely important and
are discussed in detail in Chapter 2.

1.4 PHYSICAL CONSIDERATIONS

The physical or basic considerations that give rise to a given mathematical expression
or equation can often be used very effectively in selecting the numerical method, in
choosing an acceptable solution from the several that may be obtained, and in testing
the method for accuracy and correctness. In most engineering problems, the basic
nature of the desired solution is known, along with the range in which it lies. Let us
consider, for example, the free fall of a body of arbitrary shape in air. A terminal
velocity is attained due to the balancing of the gravitational force by the frictional
drag force (Halliday et al., 2004). Depending on the size and shape of the body, an

10 Computer Methods for Engineering with MATLAB® Applications

Velocity

Final converged

/ solution

Possible
iterations

4

FIGURE 1.4 Typical iterations, leading to a converged result, in the numerical solution of
ODEs that determine the velocity profile in a flow.

expression for drag may be obtained from considerations of air flow around the
body. For a flat plate, a commonly employed expression for the frictional force is
(AV*¥7 — BV), where V is the speed at which the plate is moving in stationary air and
A and B are constants that depend on the length of the plate and the properties of air
at the given temperature. Then, if m is the mass of the plate and g the magnitude of
gravitational acceleration, the terminal velocity is the root of the equation

AV — BV =mg (1.6)

From a physical consideration of the problem, we know that the terminal velocity
must have a unique, positive value. The range in which the value lies may also be
estimated from the available results for other bodies, for example, the sphere. A
similar equation is obtained for bodies of other shapes and sizes. In many cases, the
expression for drag is obtained from a curve fit of experimental results and is given
as a fairly complicated function of the velocity V. A solution of the resulting force
balance equation will then yield the terminal velocity for the given body. The method
for solving the above equation may be selected knowing that the root is real, distinct,
and positive. As discussed in Chapter 5, the secant method and the Newton—Raphson
method are two efficient computation schemes that may be employed for this problem.
If a method that determines all possible roots of the equation is used, the physical
considerations are employed in choosing the correct solution. Since the solution is
expected to be unique, the other roots must be complex numbers, negative or beyond
the expected range of values.

Introduction 11

The physical background of the mathematical problem being solved numerically
is particularly important in the solution of nonlinear equations, such as the polyno-
mial equation, Equation 1.6, or transcendental equations. Some examples of the lat-
ter are as follows:

tan x = B (1.7)

X
logx+2x*=4 (1.8)
e+ x2-2x=2 (1.9)

Nonlinear equations arise very frequently in engineering problems, such as those
related to fluid flow, heat transfer, chemical reactions, and dynamics of bodies. The
problems encountered may involve finding the roots of a given nonlinear equation or
solving a system of nonlinear equations. Since the characteristics of nonlinear
equations are generally much more complicated than those of linear equations and
since several solutions are feasible, the physical aspects of the problem are used in
the development of the computational procedure and in deciding which solutions are
acceptable. Even for solving a system of linear equations by iterative methods,
physical considerations are often important in obtaining the starting values. Linear
and nonlinear equations are also frequently obtained in the numerical solution of
partial differential equations (PDEs). The physical nature of the quantities to be
computed is usually employed in the choice of the method, the initial guess, the grid
to discretize a computational region, the desired accuracy level, and the convergence
criterion for the termination of the numerical scheme. Since analytical solutions are
rarely available, the numerical results obtained are generally considered in terms of
the fundamental nature of the problem in order to determine the validity of the
numerical scheme.

Curve fitting is another area in which the physical or basic considerations
underlying the given problem are of particular importance in developing the
computational scheme. Numerical methods are generally used to obtain the best fit
to a given set of data. In such cases, it is important to know the expected trends on
the basis of the physical aspects of the problem, so that the best fit obtained is a true
representative of the process involved.

Consider, for example, the mean daily ambient air temperature at a given loca-
tion. We wish to obtain a mathematical expression from the 365 data points that
represent the measurements of the average daily temperature over a year. We could
obtain a 364th-order polynomial from the given data. However, to do so would
involve a substantial computational effort, both in obtaining the polynomial and in
the subsequent usage of the polynomial in relevant problems. Moreover, the air
temperatures fluctuate due to environmental disturbances. Consequently, we are
interested in obtaining an expression that represents a best fit to the data and also
characterizes the variation over the year. Since we know that the variation is
periodic, with a time period of 365 days, we may try to fit the measurements to a

12 Computer Methods for Engineering with MATLAB® Applications

sinusoidal variation. Examples of some of the distributions that may be employed
are as follows:

T,=A sin [0 — a)] (1.10)
T,=A sin ot + B cos ot (1.11)
T,=A sin ot + b sin 20¢ (1.12)

where 7, is the ambient temperature; ® is the frequency, given as 21/365; ¢ is the time
in days; and A, B, and a are constants to be determined numerically from a best fit.
The first equation is frequently used, with fairly satisfactory results. Figure 1.5 shows
the resulting curve fit qualitatively. Similar considerations are employed in obtaining
empirical correlations from experimental data and for representing material prop-
erty data, such as those of interest in thermodynamics, by a best fit.

Numerical simulation of engineering systems is important in design and
optimization. It involves the mathematical modeling of components and physical or
chemical processes that comprise the given problem to simplify the problem,
followed by a numerical solution of the governing equations obtained. The input
parameters, initially chosen on the basis of available data, are varied until a close
agreement between the physical system and the numerical model is obtained. Once
an existing system or process has been numerically simulated, the effects of variations
in design on the performance of the system may be studied numerically, leading to
optimization. At various stages in such a study, the physical or chemical aspects of
the problem are employed. In fact, the comparison between the numerical model and

e Experimental data

Ambient temperature (°C)

365
-10 T T rl
0 120 240 360
Jan. 1 Time from Jan. 1 (Days)

FIGURE 1.5 Sketch of the best-fit curve to the experimental data on the ambient tempera-
ture variation over the year at a given location.

Introduction 13

the actual system forms the basis for the development of the numerical scheme and
for the study of the numerical results obtained.

Therefore, in the presentation of numerical methods for engineering problems,
actual problems need to be considered, in order to demonstrate the importance of the
physical background of the problem in the selection of the method and in determining
if the numerical results are accurate and valid. The general features of the various
methods are important and must also be studied in detail. However, some of the
important aspects can be best understood in terms of the underlying physical
considerations. Therefore, simple examples from several areas of engineering interest
are employed in this book.

1.5 APPLICATION OF COMPUTER METHODS TO ENGINEERING
PROBLEMS

Computational techniques are used in engineering for a wide variety of applications.
Several examples of problems that are generally solved on the computer have been
given in the preceding discussion. Numerical methods for engineering application
may best be considered in terms of the various mathematical problems that com-
monly arise in engineering. Computer methods for the solution of these problems
may then be considered, using examples of mathematical expressions and equations
from various engineering disciplines. This approach would allow a consideration of
the various methods that may be employed for obtaining the numerical solution of a
particular mathematical problem, say, integration, while employing examples from
engineering to bring out the importance of physical considerations in obtaining
accurate and valid results. This book employs this approach to present and discuss
computer methods for engineering.

Various types of mathematical equations are encountered in engineering applications,
such as linear and nonlinear algebraic equations and ordinary and PDEs. Frequently,
systems of equations, which are linked with each other through the unknown variables,
are obtained. PDEs arise in areas such as heat transfer, fluid mechanics, elasticity,
electrostatics, and combustion. These equations are usually solved by finite-difference
or finite-element methods, which convert the problem into a system of algebraic equa-
tions by applying the PDEs at a finite number of grid points or integrating them over
finite regions. ODEs are also sometimes solved by these methods. Therefore, the solu-
tion of a system of algebraic equations is very important in engineering applications,
and many methods have been developed to solve the different types of equations that
are frequently encountered. Sets of algebraic equations are also directly obtained in
many physical problems, such as those of interest in thermodynamics, economics,
vibrations, structural analysis, and electrical networks. Although linear systems are
particularly important, many engineering problems result in systems of nonlinear
equations, which must be solved iteratively to obtain the solution. However, in most
cases, nonlinear systems are formulated so that the methods for linear equations may
be employed iteratively to converge to the desired solution.

In many engineering problems, the roots of a nonlinear algebraic equation,
transcendental or polynomial, are to be determined. Such problems arise, for instance,

14 Computer Methods for Engineering with MATLAB® Applications

in the determination of the temperature of a body from an energy balance, the termi-
nal velocity of a body falling under gravity, the density of a gas from its equation of
state, and vibration frequencies from the characteristic equation of a given system.
Again, various methods are available, some of which are applicable only to polyno-
mial equations, while others may be used for finding the real or complex roots of
other types of equations. Depending on the nature of the problem, the appropriate
method may be selected. If not much prior information is available on the nature and
approximate magnitude of the roots, the general behavior of the function f(x) that
constitutes the given equation, f(x) = 0, where x is the unknown, may be investigated
numerically. The numerical method for the solution may then be chosen on the basis
of the information obtained on the variation of f(x) with x.

ODEs are important in several areas of engineering interest, such as heat and
mass transfer, dynamics, fluid flow, chemical reactions, electrical circuit analysis,
and elasticity. In some cases, PDEs can be transformed into ODEs. Frequently, sev-
eral ODEs that are coupled through the unknowns are to be solved simultaneously.
The solution procedure depends on the nature of the problem, particularly on the
order of the equation, that is, the highest-order derivative in the equation, and the
boundary conditions. For instance, the following second-order ordinary differential
is obtained for a resonant electrical circuit:

dxv dv (1.13)
i +B dr +V=0

A

where V is the voltage across a capacitor, A and B are constants that depend on the
resistance, inductance, and capacitance in the circuit, and ¢ is time. If the initial
conditions are given as

V<V, and %/=Oatt=0 (1.14)

we have an initial-value problem, in which the integration of the equation may be
started at the given time ¢ = 0 and incremented to larger time to obtain the solution.
If one of the conditions is given at a different time, a boundary-value problem is
obtained, in which a correction scheme is needed to satisfy the given conditions.
Similarly, the boundary conditions may be given at two different spatial locations, or
two different values of the independent variable. Then, iteration is generally employed
to converge to the solution.

Besides algebraic and differential equations, several other mathematical problems
arise in engineering. Numerical differentiation and integration are needed in many
cases, often as part of a more complicated problem. Numerical integration over time
is needed, for instance, in determining the total energy lost or gained by an object,
such as at the surface of a lake. Similarly, integration of velocity across a cross sec-
tion of a channel gives the total volume flow rate in the channel. Numerical differen-
tiation is needed, for example, in the determination of the acceleration of a particle
from the measured variation of its velocity with time. Rate processes are important
in engineering, and numerical differentiation is frequently employed for obtaining
the rates of change of various physical quantities. Numerical techniques are also

Introduction 15

needed in interpolation and extrapolation, employing curve fitting of given data. In
some cases, an exact fit which yields the exact value at the given data points is
appropriate. However, more frequently, a best fit of the data is employed so that the
general features of the results may be represented by a correlating equation, without
forcing the curve to pass through each data point, as seen earlier in Figure 1.5.
Software for graphics can be employed advantageously with the computer solution of
engineering problems to present the numerical results.

In summary, a consideration of numerical methods for engineering application
involves a wide variety of mathematical problems, as outlined here. It is important to
understand the advantages and limitations of a particular method for solving a given
problem. The numerical procedure and the results obtained must also be related to the
physical or basic background of the problem in order to ensure the validity of the com-
putational scheme and to choose an acceptable solution. Similarly, a comparison
between the numerical and analytical results must be made, whenever possible, to
check the accuracy of the results obtained. The development of the numerical scheme
for a given problem may be discussed in several ways. A practical approach is to take
the mathematical problem arising from the actual circumstance, present the computer
program, and discuss the numerical results in terms of the physical aspects of the prob-
lem and available analytical results. It is this approach that is followed here. The com-
putational software chosen is MATLAB, which is presently the most widely used
computational environment for the application of computer methods to engineering
problems. However, other languages and software may also be employed by suitably
modifying the given programs, as discussed in Chapter 2. Of particular importance in
the use of numerical techniques for solving engineering problems is the need to check
the computational scheme for accuracy and to correctly interpret the numerical results
obtained. In this book, these and other aspects mentioned earlier will be considered in
terms of various examples taken from several engineering disciplines, including aero-
nautical, chemical, civil, electrical, industrial, and mechanical engineering.

1.6 OUTLINE AND SCOPE OF THE BOOK

1.6.1 Basic FEATURES

This book presents the mathematical background as well as the application of
computational techniques to problems of engineering interest. The material is
developed by the derivation of the formulas for each method, followed by a discussion
of the accuracy, computational effort, storage requirements, and range of applicability
of the method. For each problem area considered, for example, root solving, several
methods are discussed, emphasizing the ones that are most extensively employed. A
comparison between various methods applicable for a particular type of mathemati-
cal problem is made, in order to indicate the advantages and disadvantages of a given
method. Of particular interest in such a comparison are the associated errors, ease in
programming, computing time and storage needed, and flexibility in the application
to a wide variety of problems. The circumstances under which a given method would
be the preferred one are outlined. This consideration is an important one, since several
methods are frequently available for problems that arise in engineering applications

16 Computer Methods for Engineering with MATLAB® Applications

and the choice of the most appropriate method is highly desirable, in order to minimize
the computing resources needed and to obtain the required accuracy level.

Following a detailed discussion of the mathematical background and the derivation
of the relevant formulas for each numerical method, the computational procedure for
applying the technique is discussed. The important considerations underlying the
development of the numerical scheme are discussed, along with the difficulties that
may be encountered. Appropriate MATLAB commands and schemes are outlined,
whenever appropriate, or reference is made to programs in Appendix B to illustrate
the numerical solution. Finally, examples based on actual engineering or mathematical
problems are given, for most of the methods considered, and the computer program
is outlined. Again, the important features of the program are discussed and the
numerical results obtained are presented and discussed. The emphasis is on presenting
the basic algorithm of the method in terms of its application to an actual physical,
chemical, or mathematical problem. Although the program is discussed as part of the
example and is, therefore, geared to the solution of the specific problem considered,
a few modifications in the program can easily be made to use it for the solution of
other problems of similar nature. This approach of writing a problem-oriented
computer program presents the program simply as a sample and encourages the
reader to write his or her own program on the basis of the information given, making
the program as efficient as possible and employing ongoing improvements in available
computational facilities. General programs that can be used for a wide range of
problems are also presented in many cases.

1.6.2 CoMPUTER PROGRAMS

Many useful features are incorporated in the computer programs given in the book.
Both interactive and batch operation modes are utilized. In the former case, the input
data are fed and the results are obtained interactively by the operator. This makes an
interactive use of the computer preferable for short computer runs and for program
development. The batch mode, in which the entire program is entered with the input
data and the computer gives the results after the complete run, is preferred for large
runs and complicated programs, after the program has been developed, tested, and
debugged. Although most programs are written for the MATLAB environment, sev-
eral programs are also given in Fortran, in order to indicate the similarities and
differences between these and to demonstrate the ease with which the basic logic of
the program can be employed in a different language or environment. Also, Fortran
continues to be an important programming language for engineering problems.
Subroutines or function files are useful in developing complicated programs and are
employed wherever appropriate. In some cases, the outputs are stored in data files for
future analysis or plotting and, in others, these are printed or plotted as soon as the
computational runs are completed.

1.6.3 EXAMPLES AND PROBLEMS

The examples and problems considered in this book are derived from topics of
interest in the major engineering disciplines and in the basic sciences. The physical

Introduction 17

or basic background of the problem is outlined in order to enable the reader to fol-
low the relevance of these considerations in the choice and testing of a particular
numerical technique. Also, a selection of problems that arise in practical circum-
stances makes the discussion interesting and relevant to engineering applications. As
discussed earlier in this chapter, numerical solutions must be considered not only in
terms of the basic nature of the given problem but also in terms of any analytical
solutions available, even if these are for very simple situations. These aspects are
stressed in evaluating the numerical results for accuracy and validity. In solving
problems of engineering interest, the available information on the given system or
process must form the basis for the development of the numerical scheme and for the
verification of the results obtained.

Both the problems and the examples tend to expand on the material covered, so
that they contribute to an increased understanding of the discussion given in the text.
Several new physical phenomena are also introduced in the problems to indicate the
application of the methods presented to a much wider spectrum of engineering
processes. Although the emphasis is, obviously, on the numerical solution, several
problems are also directed at the mathematical background, particularly at the
errors involved and the mathematical formulation for a numerical solution. In
addition, many problems can be solved on a calculator in order to study a given
numerical scheme.

Much of the material presented in this book has been used in courses taught at the
sophomore and junior levels in engineering. A few of the topics covered may be
somewhat advanced for sophomore students. Similarly, the physical background of
the problems may not be familiar to some of the readers. Consequently, a brief dis-
cussion of the important aspects of the problem or example under consideration is
included. In some cases, reference is also made to books that can be consulted for a
more detailed coverage of the topic. A background in programming, such as a fresh-
man-level, one-semester course, is assumed, although some of the important aspects
are covered in Chapters 2 and 3 for completeness.

1.6.4 A PrReviEw

The presentation of the numerical techniques for engineering application starts
with Chapter 2 on the basic considerations in computer methods. This chapter
outlines the important elements in computational procedure, including program
development, numerical errors, accuracy, convergence, and other basic aspects.
Although some of the discussion will be quite familiar to those experienced in
computer programming, many of the aspects considered in this chapter are impor-
tant in obtaining an accurate and valid solution to a problem of engineering inter-
est. This chapter also outlines the current trends in computational methods and
facilities, with respect to both the software development and the growing capabil-
ity of computer systems.

A brief review of MATLAB is presented in Chapter 3 in order to discuss the main
features of this computational environment. Commonly used commands and the
basic procedures to develop a program in MATLAB are outlined. Standard software
that can be used advantageously to solve mathematical problems, such as matrix

18 Computer Methods for Engineering with MATLAB® Applications

inversion, root solving for polynomial equations, solution of a system of linear
equations, and obtaining a best fit from given data, is presented and discussed. Since
plotting of data is easily done in MATLAB, some simple plotting methods are
presented. This chapter serves to give a brief discussion of programming in
MATLAB, while referring to more extensive presentations in other books, and also
outlines the terminology and nomenclature to be used in later chapters

The Taylor series, which forms an important element in the estimation of numeri-
cal truncation errors (TEs), is presented in Chapter 4, along with the numerical
approximation of derivatives. Several methods for differentiation are presented, and
many of the results presented here are employed in later chapters. Methods for
finding the roots of nonlinear algebraic equations are discussed in Chapter 5. Several
methods, which are based on the sign change, at the root, of the function f{x) in the
given equation f(x) = 0, are first considered. Efficient methods such as the secant and
Newton’s methods, which converge very rapidly, although they may also diverge in
certain cases, are discussed in detail. Specialized methods for equations in which
Jf(x) is a polynomial are also discussed. Finally, a comparison between the various
available methods is made.

The solution of simultaneous linear or nonlinear algebraic equations is an important
problem in engineering applications and forms the subject of Chapter 6. Direct as well
as iterative numerical methods are discussed, the latter being the inevitable approach
for most nonlinear equations. Eigenvalue problems are also considered and the avail-
able methods outlined. Numerical methods for curve fitting of data are presented in
Chapter 7, considering both the exact fit as well as the best-fit approach. Various tech-
niques for interpolation are discussed, emphasizing popular methods such as Lagrange
and Newton’s interpolating polynomials. The least-squares method for a best fit is
discussed in detail, and various forms of the function for curve fitting are considered.

Numerical integration forms the subject of Chapter 8, and several important
methods, such as the trapezoidal and Simpson’s rules, Romberg integration, and
Gaussian quadrature, are discussed. The advantages of each method, its limitations,
and the conditions under which it is preferred are considered in some detail. The
associated errors and the resulting accuracy are also discussed. The numerical
integration of improper integrals, whose limits of integration may be infinite or the
integrand may become singular over the range of integration, is also presented.

The solution of differential equations is an important subject in engineering.
Because of the complexity of typical engineering problems, numerical methods are
generally needed. ODEs are considered in Chapter 9 and PDEs in Chapter 10. Both
self-starting methods, such as Euler’s and Runge—Kutta methods, and multistep
methods, such as predictor—corrector methods, are considered for ODEs. Also, the
associated errors, accuracy, stability, and convergence of these methods are
considered, along with their efficiency in terms of the computational effort required.
Several types of equations, including initial-value, boundary-value, and systems of
equations, are considered and the relevant numerical techniques are presented.
Again, a critical comparison between the various methods is made in order to guide
the choice of the most suitable scheme for a given problem. Finite-difference meth-
ods, derived from the numerical approximation of derivatives given in Chapter 4, are
also outlined for ODEs.

Introduction 19

PDEs are included in this book largely for junior- and senior-level students and
also for professional engineers. With the introductory background presented, the
material could also be used for less advanced students. The material covered in
Chapter 10 considers mainly linear equations of parabolic, elliptic, and hyperbolic
type. The basic nature of the equations is discussed in detail, and important numerical
methods for their solution are presented. The questions of accuracy, convergence,
and stability are again considered. Finite difference methods are largely considered,
with a brief introduction to finite element methods, since the former is easier to
understand and can be developed on the basis of the material presented in Chapter 4.
The methods for treating different types of boundary conditions are also outlined.

In all the topics considered here, a large number of examples and problems are
given, so as to provide a strong physical and numerical base for the computational
study of engineering problems. Since the best way to learn numerical methods is by
applying the techniques available to different problems and developing one’s own
computer code, almost all the examples and many of the exercises demand the
development of the relevant program and its use for obtaining the desired numerical
results. Although a calculator may be used in several cases to study the computational
steps in a given method, the readers are strongly encouraged to write computer
programs for the problems given, using the discussions, formulas, and examples
given in the text.

As mentioned earlier, this book is largely directed at the use of the MATLAB
computing environment for solving engineering problems. However, many Fortran
programs are also included in deference to the continued importance of this
programming language in engineering. Extensive expertise and software exist in
Fortran and it continues to be widely used, particularly for complex problems. However,
the student or the reader can easily focus entirely on MATLAB, if desired, or a chosen
mixture of the two computing software may be employed for instruction.

2 Basic Considerations
in Computer Methods

2.1 INTRODUCTION

In the numerical solution of engineering problems, there are several important
aspects that need to be considered in order to ensure the validity of the chosen
approach for a given problem and the accuracy of the results obtained. The
computational procedure involves a consideration of the methods available for solv-
ing the given problem, the appropriate programming language, the computational
environment and software being employed, the computer and its operating system,
and so forth, before proceeding to the development of the numerical scheme, or
algorithm, and the corresponding program. Since these considerations are funda-
mental to most computer methods, this chapter discusses the general approach to
the development of the computational scheme. Also considered are the interfacing
with available computer software and the verification and validation of the numerical
results by a comparison with available analytical and experimental results, as
discussed in Chapter 1.

The consideration of numerical errors and the accuracy of the results is important
in the numerical solution of any given problem. The various types of errors that arise
in the computational approach are discussed, along with methods that may be
employed for reducing the error. The accuracy of the solution may often be estimated
by comparing the numerical results with those from the analytical solution for sim-
pler problems, since the analytical solution of the given problem is presumably not
available. Frequently, satisfactory analytical results are not available for comparison.
In such cases, the numerical scheme itself is first employed to check the accuracy of
the numerical results by ensuring that numerical parameters, such as the chosen time
step and grid size, do not significantly affect the results. This process is often known
as verification of the numerical method. Also, the basic nature of the problem being
solved can often be employed as a check on the validity of the numerical scheme and
the correctness of the results obtained. The accuracy of the numerical results can
frequently be evaluated by substituting the solution obtained back into the algebraic
or PDE being solved to determine how closely it satisfies the equation. Several other
similar procedures are generally employed to check the accuracy of the numerical
solution.

Consider, for example, the dynamics of a moving body whose displacement x is
governed by the ODE dx/df = F(x, 1), where ¢ is time and F(x,) is a given function.
We may assume that the analytical solution is not available, since if it were, there
would be no need to solve the problem numerically. However, the numerical scheme

21

22 Computer Methods for Engineering with MATLAB® Applications

may be employed to solve a simpler equation, say, dx/dt = —ax + b, where a and b are
constants. The mathematical solution to this equation canbe obtained asx = ce ™ + b/a,
where c is a constant to be determined by applying the initial condition, that is, by
using the given value x, of the displacement at time # =0 or at any other specified
time; see Figure 2.1. The accuracy of the numerical method may be estimated by
comparing the numerical solution for this simple problem with the analytical solution.
For a more complicated function F(x, #), the following considerations may be used.
The physical nature of the problem demands that the displacement be real and
positive. Also, it would often be known whether it is periodic or whether it must
increase, or decrease, with time. This information may be employed to select the
correct solution in case multiple solutions arise and also to check the validity of the
numerical scheme. Once the numerical solution x(f) is obtained, numerical
differentiation may be used to determine dx/dr for a few selected values of ¢. These
may then be employed to check if the numerical values of x do indeed satisfy the
equation dx/dz= F(x, ?) to the desired accuracy level. Finally, the step size At
employed in the numerical scheme must be reduced until a further reduction in At
does not significantly affect the numerical results. Of course, if any experimental
results are available on the given problem, these may be effectively used for evaluat-
ing the accuracy of the numerical results.

The numerical methods for the solution of several problems are based on an iterative
approach, in which the solution is gradually improved, starting with an initial, guessed
value until the change in the solution from one step to the next becomes less than a
chosen small quantity, known as the convergence criterion or parameter. In such cases,
the convergence of the iterative procedure is an important consideration, and it is
necessary to determine the conditions under which the scheme may diverge. If a par-
ticular method diverges for a given problem, the problem can sometimes be reformulated

___b{L_l __________ Steady-state
value as t — oo
®
=
=
[}
£
[
Q
=
a,
2
[a)
% Initial
condition
0

Time ()

FIGURE 2.1 Sketch of the analytical solution of the differential equation dx/df = —ax + b,
where a and b are constants and x =x; at 1 = 0.

Basic Considerations in Computer Methods 23

so that the scheme converges. Otherwise, a different method must be employed.
Numerical stability is another important consideration that guides the selection of the
method and of the grid, or step, size in the numerical scheme. Again, it is necessary to
determine when numerical instability might arise and to take steps to avoid it.

This chapter discusses many of these considerations which are basic to most
numerical methods. The general approach to the development of a numerical scheme is
outlined, indicating various important aspects that need to be taken into account. The
concepts of error, accuracy, iteration, convergence, and stability are discussed in general
terms, by taking examples from various topics, such as root solving, numerical
differentiation and integration, curve fitting, and solution of algebraic and differential
equations, considered in greater detail in later chapters. The discussion in this chapter
forms the basis for the development, application, verification, and validation of the
numerical procedures for these and other topics of interest in engineering applications.

2.2 COMPUTATIONAL PROCEDURE

The general approach to the development and application of the computational
procedure for solving a given problem is discussed in this section, indicating the
important aspects that generally need to be considered for an efficient and accurate
scheme. Although some of the considerations outlined here may not be applicable to
a particular circumstance, it is important to recognize the important steps that lead to
a successful numerical method. Most of the items included here are fairly straightfor-
ward and are quite familiar to those who have done a significant amount of numerical
work. However, the systematic approach given here is helpful, particularly for those
who are relatively less experienced in computer methods, in investigating the relevant
aspects that determine the efficiency, accuracy, and validity of the numerical
procedure. It is assumed that the mathematical formulation of the given physical or
engineering problem has been completed and that an analytical solution is not easily
obtainable, so that it has been decided to solve the problem numerically.

2.2.1 METHOD SELECTION

Frequently, several methods are available for the numerical solution of a given
mathematical problem. The selection of the method to be employed, from among the
several applicable methods, is an important consideration and is generally based on
many relevant criteria, such as the following:

. Accuracy

. Efficiency

. Numerical stability

. Programming simplicity

. Versatility

. Computer storage requirements

. Interfacing with available software

. Previous experience with a given method

09N N AW

24 Computer Methods for Engineering with MATLAB® Applications

The accuracy of a given method is an important consideration in its selection for
solving a particular problem. The evaluation of the accuracy of a method may be based
on a comparison of the numerical results with available analytical results, as outlined in
the preceding section, on an estimation of the associated numerical errors, or on various
methods for checking the correctness of the numerical solution, such as substitution of
the numerical results back into the equation being solved to determine the accuracy to
which the numerical solution satisfies it. All these aspects, particularly the numerical
errors that arise in computational methods, are discussed in detail later in this chapter.

The efficiency of a given method is generally based on the total number of
arithmetic operations needed for solving the given problem. This is reduced to the
number of arithmetic operations needed per computational step if the number of steps
is fixed. One could also solve a given problem with different methods and determine
the computational or central processing unit (CPU) time needed in each case, as
obtained from the computer. However, the number of arithmetic operations, which
include addition, subtraction, multiplication, and division, can often be determined by
noting down the various mathematical manipulations performed, per step, in a given
numerical scheme. If a particular method involves a smaller number of total arithmetic
operations needed to solve the given problem, than another method, then it is more
efficient. A higher efficiency of the method also implies shorter computer time and,
thus, lower computational cost. For instance, matrix inversion methods for solving
systems of linear equations, though convenient and widely used, are generally less
efficient than other direct methods, as seen in a later chapter.

Numerical instability refers to the unbounded growth of numerical errors as com-
putation proceeds. It is of particular concern in the solution of differential equations
and, if present, can lead to an erroneous and unacceptable numerical solution.
Therefore, it is important to determine the stability characteristics of the various
methods that are applicable to a given problem. Frequently, the numerical scheme may
be conditionally stable; that is, it may be stable within certain constraints that often
limit the grid or step size. In the solution of parabolic PDEs, for instance, the explicit
schemes, which are generally simpler to use, often restrict the step size to small values,
making these schemes inefficient. Then the implicit methods, which usually do not
have such constraints resulting from stability considerations, are preferred. Thus, the
numerical instability of the method is an important consideration in its selection.

As listed before, several other considerations also play an important role in the
selection of the method. These include simplicity in programming, versatility of the
method, computer storage needed, and interfacing with available software. In
engineering applications, the simplicity and versatility of the method are very
important, since interest often lies in solving a wide variety of problems with the
least amount of effort. This is particularly true for the design and optimization of
systems that often involved a diversity of components and equations. Frequently,
some sacrifice is made with respect to accuracy and efficiency in order to select a
simpler and more versatile method. An example of this is the Runge—Kutta method,
for solving ODEs. This method is often chosen over predictor—corrector methods,
which are more efficient than the former but are also more complicated to program.

The computer storage requirements of the method are generally important in the
simulation of large systems that are of interest in engineering applications. For

Basic Considerations in Computer Methods 25

example, the Jacobi method for solving a system of linear algebraic equations
involves the storage of the matrices of the unknowns at two iterative steps, the present
and the previous one, whereas the Gauss—Seidel method requires the storage of only
the latest values. Thus, the latter method requires only about half the storage needed
by the first method. It is also more efficient on conventional single-processor
computers and is preferred.

The interfacing of the numerical method with the computer software is particularly
important when available programs are being employed. For instance, if a matrix inver-
sion program is available, methods based on the inverse of the matrix for solving a
system of linear equations may be chosen. This is particularly true for MATLAB®, which
has excellent matrix inversion software built into the system. Similarly, prior personal
experience with a given method would be an important consideration in its selection.

2.2.2 PROGRAMMING LANGUAGE

After the numerical method for the solution of the given problem has been selected, the
next step is the development of the computer program or code that allows one to inter-
face with the computer system. However, before proceeding with the code develop-
ment, one must select the programming language and the computer system to be used
and become fully conversant with the selections made. The programming languages,
often termed high-level languages, allow one to write the step-by-step instructions, or
algorithm, for the computer in a form that is quite similar to ordinary English and
algebra. The computer itself interprets and executes statements only in the machine
language, and a compiler is employed by the computer to achieve the translation from
the programming language to the machine language. The machine language program
is then stored, providing direct access for immediate or later execution.

Several high-level programming languages have been developed over the years.
In the past, the most widely used among these, for engineering and science, was
Fortran, which stands for formula translation. It was originally developed by IBM
in the 1950s for scientific and engineering applications and is now available in many
versions, such as Fortran 77, Fortran 90, Fortran 95, and Fortran 2003. It is still
commonly used and remains one of the important languages for high-performance
scientific computing and for benchmarking and ranking the world's fastest
supercomputers, partly because of extensive existing programs for a wide array of
engineering problems. Fortran 90 and beyond are also well suited for use on parallel
machines. Most Fortran programs are structured so that control flows from top to
bottom, rather than one in which control is transferred from one point in the program
to another in a seemingly random fashion. The structured system makes development
as well as debugging relatively easy. Similarly, other important features, such as
object-oriented programming that uses objects, which include information on the
relevant data, methods, and their use to design the computer programs, have also
been incorporated in recent versions. Several Fortran programs are given in this
book to present the algorithm and the logic of the method, as well as to show the
similarities with and differences from the MATLAB environment and to provide
information for those who are well versed in this programming language. Many
books are available on programming in Fortran and may be referenced for details on

26 Computer Methods for Engineering with MATLAB® Applications

the language. See, for instance, the books by Metcalf, Reid, and Cohen (2004),
Chapman (2007), and Chivers and Sleightholme (2009).

There are several other programming languages that have been employed for
solving problems in science and engineering. These include Basic, Pascal, C, Lisp,
and others. Among these, Basic, which stands for beginner’s all-purpose symbolic
instruction code, was also a widely used language, particularly on PCs, since it is
generally simpler to use than Fortran and is well suited for small programs.
However, it is not as versatile as Fortran and is often inconvenient for large, complex
programs. Many improved versions of Basic have been developed in recent years,
and many of the constraints that existed in the earlier versions have been elimi-
nated. A useful version is Visual Basic, which is a relatively easy to learn and use
programming language, because of its graphical development features and deriva-
tion from Basic.

Similarly, other programming languages have their special advantages and
limitations. An important language is C, which is a general-purpose programming
language developed in the last two decades. It is a relatively low-level language,
implying that it is closer to assembly language than high-level languages such as
Fortran. As a result, it is more difficult to move the program from one computer
system to a different one. However, the language was designed to encourage
machine-independent programming, allowing C programs to be compiled for a very
wide variety of computer platforms and operating systems with little or no change to
its source code. The language has several advantageous features in control flow and
data structures because of which it is one of the most popular programming languages
and is widely used on many different software platforms. C has greatly influenced
many other popular programming languages, most notably C++, which originally
began as an extension to C. For details on the C and C++ languages, the books by
Kernighan and Ritchie (1988), Kochan (2004), Prata (2005), King (2008), and
Stroustrup (2000, 2009), among many other available books, may be consulted.

Several other programming languages have gained considerable importance in
the last few years. Among these are languages that allow symbolic manipulation,
that is, languages in which words, sentences, and expressions can be employed for
programming. Lisp, which takes its name from [list programming, is one such
language that is important in the development of intelligence in computers. Similarly,
Prolog and Smalltalk are languages used in generating artificial intelligence in
engineering systems. For details on these languages, several references are available.
See, for instance, the books by Winston and Horn (1989), Clocksin (2003), Clocksin
and Mellish (2004), and Lalonde (2008).

Recent years have seen a tremendous growth in computational software, including
programming languages and computational environments, making it convenient
and efficient to carry out the numerical solution of the wide range of problems
encountered in engineering applications. Some of these that may be mentioned are
MATLAB, Mathematica, SciLab, Maple, GNU Octave, R programming language,
and Perl Data Language. The more computationally intensive aspects in the soft-
ware are often based on some variation of Fortran or C. The main computational
environment used in this book is MATLAB and Chapter 3 is devoted to a brief
discussion on the programming and implementation in this environment.

Basic Considerations in Computer Methods 27

The computer program, written in a high-level language such as Fortran or C++,
is implemented on the computer by means of an interpreter or a compiler. An
interpreter examines each line of the program and checks it for the rules of the
language before it is executed. The interpreted approach is very valuable during
program development, since error messages are given as soon as a statement is
entered. However, it is very slow in the execution of the program. A compiler, on the
other hand, organizes the entire program into a set of machine instructions and
locations, and several compilers are available. The compiler is often written for a
given computer system and is generally a completely separate process undertaken
before the program is run. Once the machine code has been produced by the com-
piler, the compiled program is stored and the program may be executed with a sepa-
rate command. A single command that compiles and executes the program may
also be used. The use of a compiler thus reduces the computer time for a given
problem. Various compilers have their particular advantages and characteristics.
For instance, Unix and Linux are particularly good at providing diagnostic error
messages and are widely used.

From the above brief discussion of the various programming languages widely
employed for engineering problems, it is obvious that the trend has been toward
structured programming and interactive use of the computer, through an interpreter,
which responds almost immediately, or an interactive compiler. Substantial
improvements and modifications continue to be made in the available languages to
simplify programming and to increase the versatility and capability of the language.
Although it is difficult to keep up with all the advancements in the high-level
languages, available interpreters and compilers and computational software, it is
important to determine what is available on a given computer.

In general, an interactive use of the computer is preferable during program
development, since the parameters of the problem may be entered by the operator at
the terminal. The program may be compiled and executed to obtain the output as the
program continues to execute. If the results are unacceptable, the execution may be
stopped at any stage, and the input parameters varied and execution resumed. In the
batch operation mode, the input parameters are part of the program, and the execution
of the program must be completed before any changes can be made. Thus, at the
initial stages of program development, interactive computer usage is particularly
valuable. Once the program has been satisfactorily developed, detailed numerical
results are best obtained by the batch operation mode on the computer.

Example 2.1

Compute the sum S of the series
S=T+HXx+X2 4+ + 4+ X"+ - (2.1)

where x is a variable whose value is to be entered into the program interactively.
In order for the series to be convergent, |x| < 1. This series represents the binomial
expansion of 1/(1 —x), which therefore gives the exact value SX of the series. Compare
the exact and computed values of S to determine the numerical error. Discuss the
dependence of the sum S on the number of terms n taken in the series.

28

Computer Methods for Engineering with MATLAB® Applications

SOLUTION

The value of x is to be entered and terms in Equation 2.1 are to be added
sequentially. The basic considerations relevant to convergence are discussed
in detail later in this chapter. However, it will suffice to mention here that each
term in the series, given in Equation 2.1, is larger than the next term, for |x| < 1.
Thus, the contribution of each additional term to the sum decreases as n is
increased. This relationship is used as a check on the convergence, since it
is not possible to take an infinite number of terms and since it is desirable to
have the least number of terms that give S within an acceptable error. If SN
represents the nth term and S the sum of the series up to and including this
term, then the condition SN/S < €, where € is a chosen small quantity, such as
107, which implies that the contribution of the nth term to the sum § is less
than 10#%, can be employed to check the convergence and to terminate the
computation if this condition is satisfied. The percentage error E is then given
by E=100 [(SX - S)/SX].

The preceding description of the procedure to solve the problem may be
written in terms of the following steps:

. Set the initial value of the sum S as zero.

. Set the initial value of the term n as zero.

. Enter the value of x.

. Add the next term SN = x" to the sum S.

. Check if the convergence criterion SN/S < ¢ is satisfied.

. If the convergence criterion is satisfied, stop and print the results on n, S,
and E.

7. If the convergence criterion is not satisfied, advance n by 1 and go back to

step 4.
8. Continue till convergence criterion is satisfied or a given maximum value of
n is reached.

DUl W —

A fairly simple computer program can be written to follow these steps, as dis-
cussed below and shown in Figure 2.2 in Fortran 77. This program is presented to
show the logic and the various steps involved and for those who are familiar with
the language.

The program would then yield the number of terms needed for the preceding
convergence criterion to be satisfied, the computed sum S of the series, and
the percentage error E. Figure 2.3 presents the typical results obtained from this
program. Here £ is given in a format of the form 0.1E-04, or 0.1 x 10, in order to
check against the convergence criterion of SX/S < 10-. Clearly, the error is a func-
tion of €, which may be chosen to keep the error within an acceptable value. Also,
note that the number of terms needed increases with the value of x. This result
is expected, since convergence is slower at the larger value of x, as discussed in
most textbooks on advanced calculus; see, for instance, Larson et al. (2005) and
Stewart (2007).

This is an interesting problem, which shows the effect of truncating a series
after a certain number of terms and the use of a convergence criterion. The
analytical result of the summation of the infinite series is known and can be used
as a check on accuracy.

Basic Considerations in Computer Methods 29

C PROGRAM SERIES SUMMATION
C
C HERE S IS THE SUM OF THE SERIES UP TO AND INCLUDING THE NTH
C TERM, SN IS THE NTH TERM, SX IS THE EXACT VALUE OF THE
C FUNCTION F(X)=1.0/(1.0-X), WHICH IS REPRESENTED BY THE
C SERIES, AND ER IS THE ERROR.
C
C
C ENTER INPUT QUANTITIES
C
IMPLICIT REAL (A-H,0-2)
DO 5 I=1,5
PRINT *, 'ENTER THE VALUE OF X'
READ *, X
N=0
S=0.0
C
C SUM THE SERIES
C
1 SN=X**N
S=S+SN
C
C CONVERGENCE CHECK
C
IF ((SN/S) .GT. 1E-06)THEN
N=N+1
GO TO 1
ELSE
6 WRITE (1,2)X
2 FORMAT (2X, 'X=', F6.3)
WRITE(1,7)N
7 FORMAT (2X, 'THE REQUIRED NUMBER OF TERMS=',I5)
WRITE(1,3)S
3 FORMAT (2X, 'THE SUM OF THE SERIES=', F12.6)
C
C COMPUTE THE ANALYTICAL VALUE OF THE SUM AND THE ERROR
C

SX=1.0/(1.0-X)
ER=((SX-S) /SX)*100.0
WRITE (1,4)ER

4 FORMAT (2X, 'THE ERROR=', E10.5,'PERCENT' /)
END IF

5 CONTINUE
STOP
END

FIGURE 2.2 Computer program in Fortran for the summation of the series given in
Example 2.1.

30 Computer Methods for Engineering with MATLAB® Applications

ENTER THE VALUE OF X
0.1
X=0.100
THE REQUIRED NUMBER OF TERMS =7
THE SUM OF THE SERIES=1.111111
THE ERROR=.10729E-04PERCENT

ENTER THE VALUE OF X
0.3
X=0.300
THE REQUIRED NUMBER OF TERMS =13
THE SUM OF THE SERIES=1.428571
THE ERROR = .25034E-04PERCENT

ENTER THE VALUE OF X
0.5
X=0.500
THE REQUIRED NUMBER OF TERMS =20
THE SUM OF THE SERIES=1.999998
THE ERROR = .95367E-04PERCENT

ENTER THE VALUE OF X
0.7
X=0.700
THE REQUIRED NUMBER OF TERMS =37
THE SUM OF THE SERIES=3.333328
THE ERROR= .17166E-03PERCENT

ENTER THE VALUE OF X

0.9
X=0.900
THE REQUIRED NUMBER OF TERMS =111
THE SUM OF THE SERIES=09.999912

THE ERROR = .85831E-03PERCENT

FIGURE 2.3 Results from the program in Fortran for Example 2.1.

2.2.3 COMPUTER SYSTEM

The next consideration in the numerical solution of a given problem pertains to the
computer system. Frequently, several systems, ranging from PCs or workstations
to minicomputers and mainframe computers, are available to engineers. Super-
computers may also be accessible for large-scale simulations of engineering sys-
tems. If several computers are available, the selection of the most appropriate one
for a given problem is important. Once this selection has been made, or if only one
computer system is available, one proceeds to obtain detailed information on the
various elements of the system, such as the languages available, the operating sys-
tem, the software available on the system, the input/output facilities, the memory/
storage constraints, and the job control language, so as to implement the computer
program being developed on the system.

Basic Considerations in Computer Methods 31

As mentioned earlier, there are two main steps in the numerical solution of an
engineering problem. The first involves the development of the computer code, and
the second involves repeated execution of the program for a wide variety of input
conditions and governing parameters to generate the numerical data needed for,
say, the design and analysis of a given engineering system such as a furnace, a
boiler, electronic equipment, a robot, a mechanical structure, or a chemical reac-
tor. The computer requirements are usually quite different for these two steps.
Code development involves frequent changes in the program and is thus best suited
to an interactive use of the computer, preferably with an interpreter. The operating
system, examples of which are Microsoft Windows, UNIX, and LINUX, controls
the interaction with the computer, particularly the editor, and is an important com-
ponent in the process. A screen editor, such as word processing programs and
EMACS, which is available on many personal and minicomputers, allows one to
make changes in the program very rapidly by moving the cursor to the desired
location and making the needed modification. A line editor, on the other hand,
allows changes to be made line by line, or in a collection of lines, and is much
slower. The speed of the CPU, which finally runs the program, is not a very impor-
tant consideration during code development. Similarly, the output facilities are not
as important as at the second stage when computational results are being obtained,
in tabular or graphical form.

Thus, during the development of the computer program, a good screen editor,
which allows frequent changes and corrections in the program, is desirable. Also, the
interpreter or compiler should provide adequate error diagnostics. PCs, workstations,
and several minicomputers are particularly suited to code development because of
the availability of most of the desirable features mentioned above.

Once the computer program has been developed, the desired numerical results
for wide ranges of the governing parameters are obtained by repeatedly running the
program with minor changes to enter the appropriate parametric values. Clearly, a
rapid execution, with good output facilities, particularly graphics, is desirable at
this stage. The editor and error diagnostics are not important. Also, an interactive
use of the computer is not necessary. Thus, a batch execution of the developed pro-
gram on a mainframe computer, or on a supercomputer, is the best method, particu-
larly for large, computationally intensive programs. The program is loaded,
compiled, and linked with computer memory before execution, which then pro-
ceeds rapidly.

2.2.4 PROGRAM DEVELOPMENT

2.2.4.1 Algorithm

After the selection and the consideration of the important aspects of the method of
solution, the programming language, and the computer system, one proceeds to the
development of the computer program. However, before the program can be written,
a step-by-step procedure, known as an algorithm, must be developed.

32 Computer Methods for Engineering with MATLAB® Applications

STEP 1. Start the calculation.
2. Input the limits x, and x, on x and the definition of the function f{x).
3. Select the numerical parameters: Step size Ax and the convergence
parameter €.
Initialize: Take x; = x;.
Calculate the first derivative f[{x;)
Check whether the magnitude of the derivative is within €.
If | f'(x;)|>€, then advance x; by Ax and check whether x; < x,. If
| f'(x;)1<g, then go to Step 10.
Stop the calculation if x; > x,.
9. Calculate f[{x;) and again compare its magnitude with €. Continue
with Step 7 if | f'(x,)[>¢ .
10. If | '(x;) I<¢ then calculate the second derivative f[{Z;).
11. If f[{3,) is positive or zero, advance x; by Ax. Go to Step 8.
12. If f[{1,) is negative, a maximum is indicated.
13. Print the required results: x; and f(x;).
14. Stop the calculation.

N ok

IS

FIGURE 2.4 Representation of the algorithm for determining the value and location of the
maximum of a given function f{x) as a sequence of steps to be followed by the computer.

The method of solution is generally expressed in terms of the mathematical
formulas involved in the computation. However, the computer must be programmed
to follow a definite, logical, step-by-step procedure to perform the desired
computation. The algorithm may be written as a sequence of steps to be followed.
More frequently, the algorithm is represented graphically by means of a flow chart,
which shows the steps in the form of a block diagram. Generally, a flow chart is used
to outline the computational procedure, without giving the details of the actual
computational steps, which are eventually entered into the actual program. Thus, a
flow chart serves to indicate the logical sequence of programming steps and is
frequently drawn before the program is developed.

The flow chart follows an accepted collection of symbols to represent input/
output, decision, terminal, and computation. For example, let us consider the
determination of the maximum of a function f(x). In the optimization of engineer-
ing systems, one is frequently concerned with maximization or minimization of
functions, under specified constraints. Let us assume that it is known that the
given function f(x) has a maximum in the range x, < x < x,, where x is the inde-
pendent variable. We know from mathematics that at the maximum, df/dx is zero
and d?f/dx?> must be negative. Employing these characteristics of a maximum, one
may write the algorithm as a sequence of steps, shown in Figure 2.4, or represented
by a flow chart, shown in Figure 2.5.

For this problem, the computational procedure involves entering x, and x,,
advancing x with a chosen step size Ax, and computing the derivative df/dx. If the
derivative is close enough to zero, as indicated by a chosen small quantity €, a
maximum or a minimum is obtained. Then the second derivative d*f/dx? is computed.
A maximum is obtained if d?f/dx? is negative. In this case, the computation is

Basic Considerations in Computer Methods 33

Input
f(x)x X1, Xy

Y

Start/stop
(terminal)
Select Ax, €

Initialize, x; = x;
Input/output

Numerical scheme Numerical
calculate f”(x;) process
? Decision
Y Calculate
)
Connector

Yes

Output
print x;, f (x;)

FIGURE 2.5 Flow chart representation of the algorithm outlined in Figure 2.4.

terminated and the output printed. However, if d*/dx? is positive, a minimum is
indicated. A value of zero indicates a saddle or inflexion point. Then, the computa-
tion of df/dx is again carried out by advancing x until a maximum is obtained or until
the upper limit on x (i.e., x =x,) is attained. If a maximum is not obtained in the
given domain and if f(x) is known to have a maximum in the region, a larger value of
€ may be selected and the procedure repeated. In fact, both € and Ax must be varied
to ensure that the location of the maximum is essentially independent of the values
chosen.

As shown in Figures 2.4 and 2.5, a flow chart is a more convenient representation of
an algorithm. The various symbols used for indicating the type or nature of a given step

34 Computer Methods for Engineering with MATLAB® Applications

are also shown in Figure 2.5. The flow chart is a useful tool as long as it is used to give
an outline of the overall process and not the detailed representations of individual
steps. The numbered sequence of steps, given in Figure 2.4, can also be used instead,
depending on the personal preference of the programmer. However, with experience,
one could form a mental picture of the various steps in the algorithm, particularly for
relatively simple problems, and proceed directly to computer programming.

2.2.4.2 Available Programs

Along with improvements in computer systems in recent years, with respect to memory
and computational speed, there has been an explosive growth in software as well. A
question, which is frequently asked these days, is if there is a need to develop numerical
codes when many general purpose and specialized codes are easily available in the
public and commercial domains. General-purpose programs such as Fidap, Fluent,
Phoenics, Nekton, and Ansys are commercially available and can easily be used to
study a wide variety of engineering problems. Software such as Maple, MathCAD, and
MATLAB can be used for obtaining analytical and numerical solutions to a variety of
mathematical problems such as differential equations, integration, root solving, and
algebraic equations. Similarly, specialized codes such as Polyflow for polymer
processing can be employed for specific problems and applications. In the public
domain, several codes are available free of cost. These include programs for solving
systems of linear equations, for solving ODEs, for inverting matrices, for curve fitting,
and for providing graphical outputs of the computational results.

Commercially available software is generally expensive and usually does not
provide the source code so that it is difficult to make changes in the code for a spe-
cific problem. In many cases, information on the algorithm, accuracy, discretization,
convergence characteristics, range of applicability, and other important aspects asso-
ciated with the software is not available in adequate detail. Despite the claims made
with respect to the wide variety of problems a given software is capable of solving,
one must judge each program very carefully and choose the one most suitable for a
given application, keeping its cost, versatility, accuracy, and other features in mind.
However, the general-purpose programs are finding wide use in industry, usually
with specific changes made in the software to address the requirements of the given
industry.

Computer programs in the public domain do not have many of these concerns and
can often be adapted to a given computer system and linked with other software to
solve a given problem. Thus, a program for solving a system of linear equations by
cyclic reduction, fast Fourier transforms, or matrix decomposition may be used as
part of the overall computer code to simulate an engineering problem. Certainly,
software packages for producing graphical outputs are extensively used with the
computational scheme generating the results. This approach of developing the core
software and linking it with codes available in the public domain is a particularly
attractive approach and is widely used.

Besides the easy availability of a wide variety of computer codes in the public
and commercial domains that have led to considerable improvements and
simplifications in numerical model development for engineering processes, several
other advancements have occurred in recent years. These are expected to continue to

Basic Considerations in Computer Methods 35

have a significant impact on computational methods. Certainly, the most important
development is that of parallel machines which employ several processors, instead of
the single CPU used in traditional serial or sequential computing machines. As
outlined in Section 2.2.5, multiple processors allow concurrent calculations to be
carried out, resulting in a considerable speed up of the process. Similarly, considerable
progress has been made in graphical representations of the results, employing color
plots, contour plots, particle trajectories, two- and three-dimensional graphs, and
vector field graphs, among other useful and interesting features.

The need to use supercomputers to solve complicated problems, such as those
involving three-dimensional transport and turbulent flow, has led to improvements in
computational techniques through vectorization of the variables, so that rather than
treating each quantity in an array as a scalar the whole array is treated as a vector.
Improvements in the user—computer interface, using languages such as Visual Basic,
have also resulted in considerable ease in entering the relevant data such as geometry,
operating conditions, and material characteristics. Information storage and retrieval,
linking with the knowledge base on a given process or material, often using artificial
intelligence techniques, and other new features in computer systems and software
have had a considerable impact on traditional programming. It is expected that such
advancement will continue in the future, resulting in valuable and desirable changes
in the field of computational methods as well.

2.2.4.3 Validation

The final stage in the development of the computer program for solving a given
problem is verification or validation of the numerical scheme. As discussed in Section
1.3, validation is done by a comparison of the numerical results with available
analytical solutions and experimental results. However, the analytical solution of the
problem being solved numerically is obviously not available, at least in a convenient
form, making a numerical solution necessary. Therefore, the numerical scheme is
generally validated by a comparison with the analytical solution available for simpler
problems. For example, the algorithm shown in Figure 2.4 may be used with a simple
analytic function whose maximum can easily be determined mathematically. Thus,
a function such as f(x) = 5 + 4x — 3x3, which can easily be shown to have a maximum
at x = 2/3, may be chosen for the testing of the numerical scheme. The numerically
obtained value may be compared with the analytical one to verify that the scheme is
performing satisfactorily. Other, more complicated expressions may also be
employed, if the corresponding analytical results are known, for the validation of the
computer program. Similarly, experimental results are generally not available on the
problem being solved. However, experimental data on similar systems or problems
may be available. These data can then be used to validate the numerical solution.

2.2.5 SerIAL VERSUS PARALLEL COMPUTING

In this book, it is generally assumed that at a given instant only one computational step
is being carried out on the computer. This assumption applies to most commonly used
computers, such as PCs and minicomputers, for engineering calculations. The compu-
tational procedure in which the required calculations are performed sequentially, with

36 Computer Methods for Engineering with MATLAB® Applications

each step being undertaken by the machine after the previous one is over, is known as
serial or sequential computing. Thus, a single CPU is involved in the computation.
However, in recent years, computers with multiple processors that allow concurrent
calculations have been developed. Generally termed parallel computers, these
machines represent the new generation of computing and have become important in
the numerical simulation of complicated processes and systems.

In order to fully utilize these machines with multiple processing units, one must
write the algorithm so as to employ the feature of parallel computing. Thus, state-
ments must be given to direct various calculation steps to different units. Algorithms
in which different steps are independent of each other are ideally suited for parallel
computing, since each calculation step can easily be assigned to a given processor.
Algorithms that involve strongly coupled steps cannot be solved very efficiently with
parallel computing. Besides the calculation for each step, the processors need to
communicate with each other at various stages in order to solve the overall problem.
Thus, parallel computing involves developing algorithms that allow concurrent
calculations and message passing between processors for greater efficiency.
Depending on the problem and the algorithm, a considerable speed up of the
computation can be obtained for a system consisting of n processors, a value
approaching n indicating an excellent utilization of the parallel computing
environment. Even though the assumption here is serial or sequential computing, the
implications for parallel computing will be given at many places in the book. For
details on parallel computing, see Grama et al. (2003) and Scott et al. (2005).

Example 2.2

A firm needs to borrow $50,000 to undertake improvements in its existing
facilities. For the repayment of the loan, the firm wishes to pay only $1000 each
month, beginning at the end of the first month after taking the loan, toward the
principal and the interest. Considering possible interest rates as 8%, 10%, and 12%,
determine the time required to pay off the loan for these three cases. Calculate the
time required and the future worth (FW), or the value on the day the repayment
is completed, of the money paid toward the loan. Also, determine the amount by
which the final payment must be reduced to pay off the loan exactly.

SOLUTION

Let x denote the percent interest rate, so that an annual compounding yields an
interest of x on $100. Then the annual interest on each dollar is x/100, denoted
by x,. Therefore, the FW of an amount P after n years is P(l + x,)", due to this inter-
est which is compounded annually. Similarly, the present worth (PW), or the value
today, of an amount R paid at the end of n years is R/l + x;)". The concepts of
PW and FW are very important in economic analysis; see, for instance, Stoecker
(1989). First, we need to consider the PW of a series of uniform annual amounts
R, paid at the end of each year starting at the end of the first year. If n is the total
number of years, the PW of such a series of amounts is

R, R R . R
T+x) d+x)* (T+x)° T+ x)"

PW — (2.2)

Basic Considerations in Computer Methods

The series can be summed up to give

(1+ X1)n -1

x(T+ x)"

PW =R

where x; = x/100 (since x is given as a percent).

Equation 2.2 follows from the fact that the PW of an amount P paid at the end
of n years is given by PW = P/l + x,)” and from the consideration of each lump-
sum annual payment to yield the given series. Now, if we consider monthly pay-
ments, the total number of payments become m, where m = 12n, and the interest
rate becomes x,,, where x,, = x/(12 x 100). Thus,

pw = gL X" =1 (2.4)
Xm(1+ X))

The FW of this series of amounts is obtained by simply multiplying the PW by
(1 +x,,)". Therefore,

T+ x,)" =1

Xm

FW =R (2.5)

Now, R is given as $1000 and x as 8%, 10%, or 12%. We wish to compute the time,
in months m, needed to repay the loan, and the FW of the total payment. The PW
is $50,000. Thus, m is to be computed from Equation 2.4, and the FW may then be
obtained from Equation 2.5. The determination of m from Equation 2.4 is a root-
solving problem, which will be presented in Chapter 5. Here, we shall use a very
simple approach, since root-solving methods have not been discussed yet. For a
given value of x,,, the value of m may be increased in steps of 1, startingwithm=1,
and the PW computed from Equation 2.4, until the value of $50,000 is reached.
The computation stops when PW exceeds this amount, since a fixed payment of
$1000 is made each month. In practice, the monthly payment is adjusted to an
appropriate value close to $1000, so that the loan is paid off exactly.

Figure 2.6 shows the algorithm to be employed, in terms of a flow chart.
The computational scheme is very simple for this problem and is based on a
comparison between the PW of $50,000 and the sum of the series in Equation
2.4, employing an increasing number of terms m. Once the latter exceeds the PW,
the loan is paid off and the number of months needed is printed. Also, the FW, on
the date when the loan is paid off, of the total payment made is computed from
Equation 2.5. The PW of the total payment exceeds $50,000, and the last pay-
ment may be reduced to avoid this excess payment or the monthly payments may
be adjusted, as mentioned above. The FW of the loan is $50,000 (1 + x,,)™, and if
this amount is subtracted from the computed FW of the payments, we obtain the
amount by which the final payment may be reduced to pay off the loan exactly.

A computer program may easily be developed on the basis of this algorithm.
Figure 2.7 presents a Fortran 77 program to give the logic and the various steps
indicated in the algorithm.

Figure 2.8 presents the numerical results obtained from such a program. The
inputs are entered and the print out gives the results, along with the input para-
meters to ensure that the correct values are being employed in the calculations.
As seen here, the number of months needed to repay the loan increases with

37

38 Computer Methods for Engineering with MATLAB® Applications

Input data
R, x

Y
Initialize
m=1

v

Calculate

PW |

Calculate FW,
calculate reduction
in final payment

Output
print results

FIGURE 2.6 Flow chart for the problem in economics considered in Example 2.2.

the interest rate, as expected. Also, the FW increases. Note also that, since the
monthly payment is kept constant, the total payment is more than the loan. To
determine the amount needed to repay the loan exactly, subtract the FW of the
loan from the FW of the total payment. This amount is the overpayment and is
subtracted from the last month's payment of $1000 to obtain the reduction in the
final payment if the loan is to be paid off exactly.

2.3 NUMERICAL ERRORS AND ACCURACY

A very important consideration in the solution of a given mathematical, chemical,
physical, or engineering problem by computational methods is the accuracy of the
numerical results obtained. The true measure of inaccuracy, or error, in the numeri-
cal solution is the difference between the numerical and the exact, or analytical,
results. However, the analytical solution of the given problem is presumably not
available, making it necessary to solve it numerically. Thus, alternative methods for
estimating the errors involved and the accuracy of the numerical solution are needed.
The dependence of the errors on the various parameters associated with the numerical
procedure must also be determined, so that the accuracy of the solution may be
improved by varying these parameters.

Basic Considerations in Computer Methods 39

oo NoNoNo N NN NN NS!

PROGRAM ECONOMICS

R IS THE MONTHLY PAYMENT, X THE ANNUAL PERCENT INTEREST,
XM THE MONTHLY INTEREST PER DOLLAR, M THE NUMBER OF MONTHS,
PW THE PRESENT WORTH OF THE PAYMENTS, FW THE FUTURE WORTH
OF THE PAYMENTS, F THE ACTUAL FUTURE WORTH OF THE LOAN AND
RL THE REDUCTION IN THE FINAL PAYMENT IN ORDER TO PAY OFF
THE LOAN EXACTLY

ENTER INPUT VARIABLES

IMPLICIT REAL (A-H,0-2Z)

DO 5, I=1,3

PRINT *, 'ENTER MONTHLY DEPOSIT'
READ (1,*)R

PRINT *, 'ENTER INTEREST RATE'
READ (1,*)X

XM= X/ (12.0%100.0)

M=0

M=M+1

COMPUTE PRESENT WORTH AND CHECK IF LOAN IS PAID OFF

PW=R* ((1.0+XM) **M-1.0) / (XM* (1.0+XM) **M)
IF(PW.LT.50000.0) THEN

GO TO 1

ELSE

WRITE (1,2)R,X

FORMAT (/2X, 'MONTHLY DEPOSIT=',F9.4, 4X,' INTEREST
RATE=',F6.3)

WRITE(1,3)PW,M

FORMAT (2X, 'PRESENT WORTH=', F12.3,4X, 'NUMBER OF
MONTHS="',I5) C

COMPUTE THE FUTURE WORTH AND REDUCTION IN FINAL PAYMENT

FW=PW* (1.0+XM) **M

F=50000%* (1.0+XM) **M

RL=FW-F

WRITE (1,4)FW

FORMAT (2X, 'FUTURE WORTH=',6F12.3)
WRITE (1,9)RL
FORMAT (2X, 'REDUCTION IN FINAL PAYMENT=',6F9.4//)
END IF

CONTINUE

STOP

END

FIGURE 2.7 Computer program in Fortran for the problem in Example 2.2.

40 Computer Methods for Engineering with MATLAB® Applications

ENTER MONTHLY DEPOSIT
1000.0
ENTER INTEREST RATE

MONTHLY DEPOSIT=1000.0000 INTEREST RATE= 8.000
PRESENT WORTH: 50647.547 NUMBER OF MONTHS= 62
FUTURE WORTH= 76466.453

REDUCTION IN FINAL PAYMENT= 977.6354

ENTER MONTHLY DEPOSIT

1000.0
ENTER INTEREST RATE

10.0
MONTHLY DEPOSIT= 1000.0000 INTEREST RATE= 10.000
PRESENT WORTH= 50029.789 NUMBER OF MONTHS= 65
FURUTE WORTH= 85801.844
REDUCTION IN FINAL PAYMENT= 51.0732

ENTER MONTHLY DEPOSIT

1000.0
ENTER INTEREST RATE

12.0
MONTHLY DEPOSIT= 1000.0000 INTEREST RATE= 12.000
PRESENT WORTH= 50168.523 NUMBER OF MONTHS= 70
FURUTE WORTH= 100676.328
REDUCTION IN FINAL PAYMENT= 338.1790

FIGURE 2.8 Numerical results obtained for Example 2.2.

There are several types of errors that arise in a computational solution. The two
most important are the round-off (RO) and the truncation errors (TE). The former is
related to the computer system used and to the number of significant figures retained
in mathematical operations. An error is introduced in essentially every calculation
since a finite number of significant figures or decimal places are retained and all real
numbers are rounded off by the computer. In single precision, the number of signifi-
cant figures retained ranges from 7 to about 14, depending on the computer system.
The TE results from the replacement of an exact mathematical expression or equation
by a numerical approximation. It refers to the difference between an exact expression
and the corresponding truncated form, employed in the numerical solution. The
resulting error in the solution, assuming the round-off error to be negligible, is known
as discretization error. Of course, the discretization error is an idealization since all
computational schemes would generally involve some round-off error.

2.3.1 Rounp-OFF ERROR

The round-off error introduced in a given computation depends on the computer
system used. The number of significant figures, and thus the number of decimal
places retained, varies with the computer. In most cases, the last digit is rounded off

Basic Considerations in Computer Methods 41

to take into account the value of the digit after it. For example, the last retained digit
is usually rounded up if the first discarded digit is 5 or larger. Otherwise, it is
unchanged. Thus, if only four significant figures are to be retained, 4.3757 is rounded
off to 4.376, and 4.3752 to 4.375. However, on some machines, the digits, beyond the
ones that are to be retained, are simply chopped off. For many calculations, the
round-off error is relatively unimportant, being much smaller than the TE, discussed
in Section 2.3.2. However, it can affect the accuracy of the numerical solution and
can be extremely important in certain problems.

The round-off error is fairly random in nature. If the last retained digit is rounded
up, the error, obtained by subtracting the approximate value from the true value, is
negative. If digits are discarded, the error is positive. Because of this random nature
of the error, it does not cancel out in a given computation but rather tends to
accumulate if later calculations are based on earlier ones. Thus, if a particular
numerical scheme requires a large number of arithmetic operations, the cumulative
effect of the round-off error can be quite significant.

It is difficult to determine the round-off error in a given numerical method.
However, the error increases with the total number of arithmetic operations.
Frequently, a count of the arithmetic operations in a computational step, or procedure,
may be made. If a problem can be numerically solved by two methods, the one that
requires a smaller number of arithmetic manipulations will have a smaller round-off
error. It will also be more efficient, since the computational effort required is less.
An example of such a consideration is the solution of a system of n linear algebraic
equations by Gaussian or Gauss—Jordan elimination methods, discussed in Chapter
6. By counting the arithmetic steps involved in the solution, it can be shown that the
former requires total arithmetic operations on the order of n3/3, which is written as
0O(n3/3), and the latter O(n%/2). Thus, Gaussian elimination is more efficient and has
smaller round-off error. Similarly, the multiplication of two n X n matrices can be
shown to involve arithmetic operations on the order of n3, or O(r%), implying greater
round-off error and greater CPU time than the solution of n linear algebraic equations
by the preceding methods.

Frequently, the numerical scheme involves dividing a given computational region
into a finite number of subdivisions. For example, the length L of a rod may be
subdivided into n divisions, where n = L/Ax and Ax is termed the step, or grid, size
along the x-direction, which coincides with the rod axis in this case; see Figure 2.9a.
Thus, the total number of finite regions, or steps, is inversely proportional to Ax,
implying that the number of arithmetic operations varies as 1/Ax. Therefore, as Ax is
reduced, the round-off error is expected to increase. This consideration is important
since it indicates that the grid size may not be reduced indefinitely. In mathematical
analysis, such as differentiation and integration, the desired results are obtained
by taking the limiting condition of Ax — 0. In numerical methods, however, an
extremely small Ax would lead to an extremely large number of arithmetic operations
and to an unacceptably high round-off error, as shown qualitatively in Figure 2.9b.

There are several circumstances for which the round-off error can be particularly
important. For instance, in ill-conditioned matrices, discussed in Chapter 6, a small
error in the computation due to round-off can lead to a large error in the solution.
Similarly, in the solution of ODEs, considered in Chapter 9, round-off error can

42 Computer Methods for Engineering with MATLAB® Applications

i i i i i i
i i i i i i
1 1 1 1 1 1
i i i i i i
1 2 3 4 (n-1) n
<« L >
—>»x
<—Ax+<<~Ax—>‘
(b)
=
2
b
b=l
?
]
=
5
=]
&
Ax=L/n

FIGURE 2.9 (a) Subdivision of a rod of length L into n intervals, each of length Ax, for a
numerical scheme based on discretization of the length. (b) Qualitative representation of the
variation of round-off error with the step size Ax.

accumulate and lead to erroneous results. If numerical instability is present in the
scheme, the solution may be completely disrupted, as outlined later in this sec-
tion. Consider, for example, the ODE dy/dx = —1/x?, whose solution is y = 1/x, or
dy/dx = —1/(2x?y), whose solution is y =1 / Jx ,if y is given as 1.0 at x = 1.0. In both
cases, the solution decreases as x is increased and approaches zero as x — oo. Thus,
at large x, y is small and the round-off error can affect the solution very substantially.
Depending on the step size Ax, the value of x to which the solution is obtained, and
the numerical scheme, the numerical solution may deviate significantly from the
expected variation at large x, as shown in Figure 2.10. The accumulated round-off
error is large, compared to the true solution, at these values of x. Thus, extending the
computation to large x must be avoided in such cases. If numerical instability exists,
the error could increase at a very rapid rate, often resulting in overflow and disrup-
tion of the solution. In many of these cases, double precision may be used to avoid
the problems arising due to round-off error.

2.3.2 TRUNCATION ERROR

TE is a function of the approximations used in the numerical scheme and is
independent of the computer system. It arises because a function, which may be

Basic Considerations in Computer Methods 43

=f(x))

Numerical solution (y

1 Exact solution as x— oo

X

FIGURE 2.10 Possible effect of the round-off error, at large x, on the numerical solution of
a differential equation, whose exact solution decays with increasing x to attain a constant
value as x — oo

represented by an infinite series, is truncated after a finite number of terms for
approximating it numerically on the computer. The nature of such an approximation
and the resulting error are discussed in greater detail in Chapter 4, on the basis of the
Taylor series expansion of analytic functions. However, some of the important con-
siderations are outlined here, in order to discuss the effect on accuracy and the meth-
ods to reduce the total error.

Consider, as an example, the binomial expansion of 1/(1 — x), as given by Equation
2.1. Then, for Ixl < 1,

1
] x=1+x+x2+x3+---+x”+--- (2.6)

The variation of the function f(x) = 1/(1 — x) versus x for 0 <x <0.9 is sketched in
Figure 2.11. Now, the function f(x) is also represented by the above infinite series.
However, if the series is to be entered on a computer for representing the function,
only a finite number of terms can be retained. The discarded terms, thus, give rise to
the TE, which is the difference between the exact value of the function and its
approximate value, obtained after truncation. Figure 2.11 shows the approximations
if one, two, three, or four terms in the series are retained. Clearly, as expected, the
approximation improves as a larger number of terms are retained.

Similarly, as given in most books on calculus, the function f(x) = e* may be repre-
sented by the following infinite series, which is known as the Taylor series expansion
for the function about x = 0:

x2 X xt

e"=1+x+2—!+§+4—!+~- 2.7

Again, a TE arises if a finite number of terms are used to represent the function on
the computer. In numerical analysis, the computational region is often divided into a

44 Computer Methods for Engineering with MATLAB® Applications

10.0
9.0
8.0 Exact
7.0
w
I 6.0
']‘ 5.0
=
< 4.0 A
1+x+x2+x°
307 1+x+x>
2.0 1+x
1.0 1
0.0 T

0 01 02 03 04 05 06 07 08 09
x

FIGURE 2.11 Approximations to the function 1/(1 — x), represented by the series given in
Example 2.1, when only one, two, three, or four terms in the series are retained. Also shown
is the variation of the exact function with x.

finite number of subdivisions, as shown in Figure 2.9a. Then the numerical scheme
is based on the values of a given function f(x) at the finite number of grid points, and
the resulting TE in the formulation depends on the grid size Ax. For example, if the
series in Equation 2.7 is written for x = Ax, then

(Ax)* (Ax)* (Ax)*
20 T g T

et =1+Ax+ (2.8)

The TE resulting from the retention of a finite number of terms to represent f(Ax),
where f(x) = e?*, may be estimated from the above series. The error is generally
written on the basis of the magnitude of the first discarded term. Thus, if only the
first term is retained, the error is said to be on the order of Ax, that is, O(Ax). Similarly,
retaining two terms gives an error of O[(Ax)?], retaining three terms results in an
error of O[(Ax)?], and so on. If the TE is O(Ax), the scheme is said to be first-order
accurate; if the error is O[(Ax)?], it is said to be second-order accurate; and so on.
Since a higher-order error term indicates the retention of a larger number of terms,
O[(Ax)?] represents a smaller TE than O[(Ax)9], where p > g. Thus, the error may be
reduced by reducing Ax or by retaining more terms. The latter approach is generally
known as higher-order approximation. A similar approach is used to derive the TE
thatis associated with a particular numerical scheme. Such derivations are particularly
important for schemes employed in numerical integration and differentiation, and in
the solution of ODEs and PDEs.

Basic Considerations in Computer Methods 45

The preceding brief discussion indicates the importance of TE in characterizing
the accuracy of a given numerical scheme. However, TE indicates only the error in
the formulation of the numerical scheme. The resulting error in the numerical solu-
tion, neglecting round-off error, is the discretization error, as mentioned earlier.
However, discretization error is much more difficult to determine than TE, since
there is always some round-off error present and since the exact, analytical solution
is generally not available. Consequently, the TE is generally taken as the most impor-
tant measure of accuracy of a given numerical scheme.

2.3.3 AccurAacy oF NUMERICAL REesuLTS

The round-off and TEs are the two main sources of inaccuracy in a numerical solution.
However, several other errors may be present. An important one among these is the
error due to incomplete convergence of an iteration, which is a frequently used approach
to obtain a numerical solution. The criterion used for indicating convergence must be
varied to ensure that the iterative scheme has indeed converged. Inaccurate results may
also be due to errors in the input data for a given problem, in the computer program
itself, or in the mathematical formulation of the physical or chemical problem. Although
all these errors are important, numerical methods may be studied independently,
assuming that adequate care has been taken to eliminate such errors. Thus, we shall be
concerned largely with the round-off and TEs and with the resulting total error.

As discussed in the preceding sections, a decrease in the step size Ax leads to an
increase in the number of computations and, thus, to an increase in the round-off
error. On the other hand, the TE is reduced as the step size is reduced. The total
error, resulting from the summation of these two errors, will therefore initially
decrease as the step size is decreased, reach an optimum, and then increase again.
Figure 2.12 shows, qualitatively, the variation of these errors with step size. Clearly,

Errors

Total
S\ error

~ -
o e

Truncation
error

Round-off error

Step size (Ax)

FIGURE 2.12 Sketch of the variation of the round-off, truncation, and total errors with step,
or grid, size Ax.

46 Computer Methods for Engineering with MATLAB® Applications

areduction in step size, or grid refinement, helps in error reduction to a point, beyond
which the round-off error predominates. Thus, it is important to choose a step size
that results in small TEs, without the associated penalty of large round-off errors.

The accuracy of a numerical solution can be best determined by a comparison
between the numerical results and the analytical solution or experimental data, if
available. However, the analytical solution or experimental result is generally not
available for the given problem. Then such a comparison may be made by employing
a problem that is simpler than the one being solved numerically and for which an
analytical solution is available. For example, the numerical scheme for integrating an
arbitrary function h(x) may be used to integrate a simpler function, such as a
polynomial, which can be integrated analytically. The numerical results can then be
compared with analytical ones to quantify the accuracy of the method.

Various other methods are also employed to check the accuracy of the numerical
results. One method is to put the obtained solution back into the equation being solved
and check if the equation is satisfied. For example, after solving the matrix equation
(A)X = B for the unknown X, multiply the solution matrix X with the coefficient matrix
(A) to check how closely the constant matrix B is reproduced. Similarly, in curve fitting,
the computed function may be plotted along with the given data to determine if, indeed,
a satisfactory fit has been achieved; see Figure 2.13. In root solving, the computed roots
x are substituted into the given equation f{x) = 0 to ensure that the equation is satisfied.
The physical nature of the problem is also used, wherever possible, to choose between
multiple solutions and to determine if the numerical results show the expended trends.

2.3.4 NUMERICAL STABILITY

Another important consideration, related to the errors and accuracy of a numerical
solution, is that of numerical stability. It is of particular concern in the numerical

Best fit obtained
numerically

Sfx)

FIGURE 2.13 Comparison between the numerical results obtained for a best fit and the
given data, for a check on the accuracy of the curve fit.

Basic Considerations in Computer Methods 47

solution of ODEs and PDEs. Instability in a numerical scheme can lead to an
unbounded growth of numerical errors that arise in the computation and thus can
completely disrupt the numerical solution. If the scheme is stable, the errors are
bounded and, although they accumulate as computation progresses, they do not grow
to an unacceptably large level.

Let us consider, as an example, the simple ODE dy/dx = f(x, y) = —cy, where x is
the independent variable, y the dependent variable, and ¢ a positive constant. The
analytical solution to this equation is y/y, = e™*, where y =y, at x = 0. This equation
may be solved by any one of the several methods discussed later in this book. One of
the simplest methods is Euler's method, which advances the solution from x; to x,,,,
where x,,, = x; + Ax, by the recursion formula

Yin =¥+ Axflx,) (2.9

Here, the subscript refers to the number of the computational step, starting with
i =0 at x=0. Thus, x, =iAx, where Ax is the step size. This recursion formula is
obtained by simply using the basic definition of a derivative to write dy/dx =

(Vi — Y)Ax = f(x;, y). With flx, y) = —cy,
Vi =i + Ax(=cy) = (1 — ¢ Ax)y; (2.10)

The analytical solution decays exponentially with x, as sketched in Figure 2.14.
However, the numerical solution will decay with x only if ¢ Ax < 1. If the step size Ax
is chosen large enough to make ¢ Ax > 1, the solution becomes oscillatory. Thus, the
difference between the numerical and analytical results increases as Ax increases.
However, the oscillations obtained for ¢ Ax > 1 decay with increasing x, provided
|1 — ¢ Axl < 1. But if Ax is increased still further so that |1 — ¢ Ax| > 1, the numerical
solution grows with increasing x and ultimately becomes very large, as x is increased
to large values; see Figure 2.14. The computer will then indicate that the solution
becomes unbounded. Thus, an increasing solution is obtained instead of the decaying
one given by analysis. This problem is an example of numerical instability, which
must be avoided to obtain a physically realistic solution.

In this case, the scheme is conditionally stable, since if I1 — ¢ Ax| < 1, an unbounded
growth of the solution does not arise. Also, for the simple equation considered, a
repeated application of Equation 2.10 gives the numerical solution as

Yi=Yo (1 —c Ay (2.11)

Thus, the errors in the solution accumulate as x increases, and for I1 — ¢ Ax| > 1, they
become unbounded at large x. Such a situation arises for some of the numerical methods
used for the solution of differential equations. If the method is conditionally stable, the
step size must be kept small enough so that instability does not arise. A good check for
instability is to solve the problem for two values of the step size that are close to each
other. If the results obtained differ tremendously, numerical instability may be present.
Frequently, numerical instability can be avoided by reducing the step size. If the scheme
continues to be unstable even with small step sizes, it is best to find some other method.
For further details on numerical instability, advanced books such as those by Ferziger
(1998) and Jaluria and Torrance (2003) may be consulted.

48 Computer Methods for Engineering with MATLAB® Applications

=
= W\« solution
\\% W
=]
L
g=t
=
3
wvy
g x
=
v
E <
Z cAx>1 1-cAx| <1
> 1-cAs
[1-cAx|>1
Unstable

FIGURE 2.14 Increase in the numerical error and the onset of numerical instability as the
step size Ax is increased in the solution of the differential equation dy/dx =Hcy by Euler's
method.

2.4 ITERATIVE CONVERGENCE

Iteration is a numerical technique that is very commonly employed in the solution of
a wide variety of problems. An approximation to the solution is assumed, and the
approximation is gradually improved by iteration until the approximation to the
solution does not vary significantly from one iteration to the next. The numerical
method is then said to have iteratively converged to the desired numerical solution.
However, convergence is not always obtained, and the conditions under which the
scheme converges should be determined, whenever possible, before it is used in the
solution of a given problem. Some of the important considerations related to iteration
and convergence are outlined in this section.

The solution of nonlinear algebraic equations is usually based on systematic
iteration methods, since except for a few special cases, such as quadratic equations,
the solution cannot be obtained directly by algebra. For example, in the transcendental
equation tan x = 2/x, or in the polynomial equation x*— 11x3 + 41x> — 61x + 30 =0,
the roots, which are the values of x that satisfy the equations, can be obtained by

Basic Considerations in Computer Methods 49

employing iteration. Similarly, systems of nonlinear equations are also generally
solved by iterative methods. Even large systems of linear equations are often solved
more effectively and more accurately by iteration than by direct algebraic meth-
ods. Such large systems frequently arise in the solution of ODEs and PDEs. There
are several other circumstances where iterative procedures are employed to obtain
the solution.

2.4.1 ConNpITIONS FOR CONVERGENCE

A very important consideration in the choice of an iterative method for a given
problem is whether it would converge. As expected, convergence depends on the
chosen, or guessed, initial approximation to the solution. A more rapid convergence
usually results for an approximation that is closer to the actual solution than for
one that is farther away. However, in many cases, the scheme diverges if the
difference between the initial approximation and the actual solution is large. It is
generally difficult to determine the region of convergence over which an arbitrary
initial approximation would lead to convergence. Thus, the physical background of
the problem and any available information on the solution must be used to
approximate the solution as closely as possible. Still, several runs, with different
starting approximations, may be needed before convergence is obtained. In some
cases, the limiting values of the solution are known. Then numerical schemes that
gradually reduce the region in which the solution lies and, thus, always converge
may be developed.

In general, the conditions under which an iterative method converges must be
determined. For many schemes, these conditions are known. For example, consider
the following system of linear equations for the unknowns x, y, and z:

2x +4y +8z=30
Sx+y—-2z=4 (2.12)
x+5y—-3z=10

These equations can be solved by obtaining x in terms of y and z from the first equa-
tion, that is, x = (30 — 4y — 82)/2, and similarly y in terms of x and z from the second,
and z in terms of x and y from the last equation. We then assume starting values for
x, v, and z, and solve for these variables iteratively in succession using the three equa-
tions for x, y, and z till the values do not change significantly from one iteration to the
next. It is seen that, if this procedure is followed, the iterative process does not con-
verge. However, if we solve for the variable with the largest coefficient in each equa-
tion, that is, for z in the first equation, x in the second, and y in the third and then
carry out the iteration, it converges.

The condition for convergence in a system of linear equations, such as the one
given by Equation 2.12, is expressed as

n
g Z
J=Lj=i

a, 2.13)

a;

50 Computer Methods for Engineering with MATLAB® Applications

where a;; is the coefficient of the variable being solved for in a given equation and
a;; are the coefficients of the other variables. This condition requires each equation
to have a dominant coefficient, which is greater in magnitude than the sum of the
magnitudes of the other coefficients in the equation. Although convergence often
occurs for weaker dominance than that given by Equation 2.13, this equation gives
the condition under which convergence will occur. Further details are given in
Chapter 6.

Similarly, the roots of a nonlinear equation f{(x) = 0 may often be determined by
rewriting the equation as x = g(x) and using iteration, starting with an initial guess
for x. This method, known as the successive substitution method, is convergent only
if Ig’(o)l < 1, where x = o is the desired root, and the difference between the starting
approximation and o is not too large. Again, it is difficult to quantify how close to
the root the approximation must be for convergence to result. However, the condition
lg’(o)l < 1 may be used in formulating the function g(x) before iteration is applied.
Further details are given in Chapter 5.

2.4.2 RATE oF CONVERGENCE

It is also important to determine the rate of convergence, if the scheme is confirmed
to be convergent. If o is the desired solution and x; is the ith approximation to
the solution, the magnitude of the error after the ith iteration is I(x; — o). Similarly,
the error after the (i +)th iteration is lx,,, — al. Then the relation between these two
errors indicates how rapidly the scheme is converging. First, for the scheme to be
convergent,

Iy —ol<lx;—oal asi— oo (2.14)
Also, we may write the relationship between the errors as
lx;,; — ol o< Ix; — oul” (2.15)

where 7 is an exponent that depends on the numerical scheme. If n = 1, the scheme
is said to have a first-order convergence, indicating that the error at a given iteration
is proportional to that at the previous one. If n = 2, the scheme is said to have a sec-
ond-order, or quadratic, convergence. Since the error is presumably small as i
becomes large, this implies the squaring of a small quantity, resulting in a rapid
reduction in error. This, in turn, results in a much more rapid convergence than that
for a first-order convergence scheme. A still higher-order convergence will result in
an even faster convergence.

2.4.3 TERMINATION OF ITERATION

The next question is when and how an iterative process should be terminated. If x; is
the approximation to the solution after the ith iteration and x,,, after the (i + I)th

Basic Considerations in Computer Methods 51

iteration, a commonly employed criterion for deciding that convergence has been
achieved and that the iteration should thus be terminated is

lx,, —xl<e (2.16)

where € is a small quantity, known as the convergence parameter in the given
convergence criterion. Unless the solution, or the approximation x;, is zero, € must be
small compared to the solution. Thus, the relative convergence criterion given by

w1 =X @.17)

is also very often employed. If x; is expected to be close to zero, the absolute
convergence criterion, given by Equation 2.16, is more appropriate, with € << 1.0.
Thus, € is an arbitrarily chosen numerical parameter brought in to ascertain that the
iteration has converged. However, if € is too small, the computing time will be exces-
sive; if € is too large, the results may be in significant error. Also, it is necessary to
ensure that the numerical results are essentially independent of the chosen value of
€. These considerations are discussed in greater detail in Section 2.5.

For an example on the use of such a convergence criterion, consider Example 2.1.
We are interested in the sum S of the series. However, in a numerical scheme, we can
sum only a finite number of terms. Then the error involved in neglecting the nth
term, as compared to the sum S of the terms of the series up to this term, may be
employed as the convergence criterion. Thus, if SN is the nth term, we have

SN (2.18)

— =€

S

as the condition for convergence. Similar considerations would apply for other iterative
schemes. Unless the solution or its approximation could possibly be zero, the relative
convergence condition is generally preferred, in comparison with the absolute condi-
tion, since the solution is generally not known, making it difficult to choose the value
of € in Equation 2.16. For the relative convergence condition, Equation 2.17, € may be
chosen to be around 107, as the starting value, in order to obtain a reasonably small
variation from one iteration to the next, in the approximation to the solution.

2.5 NUMERICAL PARAMETERS

The preceding sections have demonstrated that one must often introduce several
arbitrarily chosen parameters into the numerical scheme in order to solve the problem.
Among the most important of these chosen numerical variables are the step, or grid,
size Ax, the convergence parameter €, and the initial approximation to the solution.
It is obvious that since such variables, or parameters, are chosen arbitrarily, it must
be ensured that the numerical results obtained from the scheme are essentially
independent of the chosen values.

52 Computer Methods for Engineering with MATLAB® Applications

2.5.1 Step Size

The effect of the step size Ax on the numerical solution has been considered earlier (see
Figure 2.12). As Ax is reduced, starting with relatively large values, the TE is also
reduced. The round-off error generally does not become significant unless very small
Ax, which involves a very large amount of computation, is employed. Thus, TEs domi-
nate over much of the commonly used range of Ax and, with decreasing Ax, the numer-
ical results tend to approach essentially constant values. When this occurs, the effect of
the step, or grid, size on the solution is negligible. Then the value of Ax may be chosen
as the upper limit of the Ax range in which this effect is small; see Figure 2.15. The
largest value of Ax for which the solution is essentially independent of Ax is chosen so
that both the computational effort and the round-off error are minimized. Of course, at
very small Ax, the round-off error becomes significant and may substantially affect the
solution, as shown in Figure 2.15. Analytically, we allow Ax, or dx, to approach zero in
order to determine, for instance, a derivative or an integral. However, numerically, this
is not possible because of unacceptably high CPU times and large round-off errors.

2.5.2 CONVERGENCE CRITERION

The convergence parameter € must be similarly treated. A relatively large value of €
is initially employed so that a rapid convergence is achieved. Then € is gradually
reduced until the numerical results remain essentially unchanged if € is reduced
further. Since the computations involved increase with reducing €, a continued
reduction in € will ultimately result in substantial round-off error. Thus, as before,
the largest value of € at which the dependence of the numerical solution on € first
disappears is chosen; see Figure 2.16. Also, the convergence criterion may be applied
to different variables being computed in the solution to confirm that convergence has
indeed occurred.

Proper choice Error

of Ax \

Ax

Total numerical error, numerical solution

FIGURE 2.15 Sketch of the variation of the total numerical error and the solution with the
step, or grid, size Ax. Also, indicated is the appropriate value of Ax that may be chosen for the
computations.

Basic Considerations in Computer Methods 53

Numerical solution

Appropriate
choice of €

Convergence parameter (€)

FIGURE 2.16 Sketch of the typical effect of a variation in the convergence parameter € on
the numerical solution.

2.5.3 OTHER ARBITRARILY CHOSEN VARIABLES

An initial approximation to the solution is needed in order to start an iteration
scheme. Since convergence often depends strongly on the starting values, physical
considerations and any available previous results on similar problems must be
employed to choose the initial approximation. In root solving, for instance, the range
of values in which the root lies is often known from the physical nature of the prob-
lem and may be used to obtain the first guess. Similarly, analytical or numerical
results for similar problems are frequently used to obtain the starting values in
iterative schemes for solving differential equations. However, it is important to ensure
that the results are not significantly affected by the chosen initial guess. Thus, the
initial approximation must be varied until the converged numerical solution is
essentially independent of the starting values.

Example 2.3

In a chemical process, the concentration C in kg/m? of a given species decays with
time ¢, in seconds, as follows:

C=22.5+62.3 exp(-0.010 (2.19)

Thus, the concentration approaches a steady-state value of 22.5 kg/m? as time
increases, that is, as t — . If the time t is increased with step size At, starting
with t = 0, determine the dependence of the number of steps, the time ¢t required
to attain steady state, and the concentration at steady state on the convergence
parameter € employed to indicate steady-state conditions.

54 Computer Methods for Engineering with MATLAB® Applications

SOLUTION

The initial concentration, at t=0, is 22.5+62.3 = 84.8 kg/m>. As time t — oo,
C — 22.5 kg/m3. However, we wish to terminate the computation as soon as C
is close to the steady-state value of 22.5 kg/m?, within a chosen convergence
criterion. If such a criterion is not used, the computation will proceed until C is
22.5 kg/m?, within the round-off error of the computer, and this would generally
involve a considerable wastage of computer time. Thus, we may use a condition
of the form

|C-22.5|<e (2.20)

where ¢ is the convergence parameter, in order to decide that the steady-state
value has been attained and that the computation may be terminated.

The given problem is employed to demonstrate the necessity of using a conver-
gence criterion and the effect of € on the results. The concentration C is computed
at increasing time ¢, starting with t = 0, until Equation 2.20 is satisfied. The step size
At determines only the values of t at which C is computed, and thus the time ¢ at
which the computation is terminated is obtained within an accuracy of At. Since
the exact, analytical expression for C is given, no TEs are involved, and round-off
error arises only for each individual computation. There is no accumulation of
error. Thus, the chosen value of At has a small effect on the solution and we may
focus on the effect of €.

A simple calculation may be carried out to increase t from 0, in steps of At, until
Equation 2.20 is satisfied. The convergence criterion ¢ is varied from a high value
of 100, at which convergence occurs at the very first step, to very low values, on
the order of 10~°. The value of At is chosen as 100 s. Thus, t,, would be obtained to
an accuracy of 100 s. A smaller value of At, At=10s, was also considered, and the
effect of this change in At on the results at small values of € was quite small. At steady
state, as determined by Equation 2.20 being satisfied, the number of steps n, time ¢,
and concentration C are obtained. Here, t is related to n simply by t,,=n At.

Figure 2.17 shows the dependence of the number of steps n and of the
steady-state concentration C,; on €. The computational effort, as indicated by n,
increases sharply as € is reduced to very small values, whereas the solution is hardly
affected as € is reduced below about 10=2. This figure indicates the importance of
choosing the proper value of €. A large value of € results in considerable error, and
a very small value leads to a very large, unnecessary computational effort. Here,
a value of 102 may be chosen for e. Such problems, in which the steady-state
condition is to be determined, are frequently encountered in engineering problems.
Although the first estimate of € may be based on expected results or on previous
experience with similar problems, € must be varied to ensure that an appropriate
value is chosen.

2.6 SUMMARY

This chapter discusses some of the important and fundamental considerations that
form the basis for an efficient and accurate numerical scheme. The computational
procedure is discussed in some detail, outlining method selection, programming
language and computer system considerations, and program development. Besides
indicating a systematic approach to the computational solution of a given problem, this

Basic Considerations in Computer Methods 55

200 -
S
a
Q
%
St
o
oy
el
=
=
Z 100 + 25
Steady-state value
Cy=22.5 kg/m?
10-3 1072 107! 10° 10" (For C)
0 1 1 1

: T L T T T T T
10~ 1077 10~ 1073 107! 10! 103 (For n)
Convergence parameter (g)

FIGURE 2.17 Dependence of the number of steps to convergence n and of the steady-state
solution C on the convergence parameter €, for the problem considered in Example 2.3.

discussion also presents some of the recent trends in the area of numerical methods for
engineering applications. Although fairly straightforward for most experienced users
of the computer, this discussion nevertheless focuses on several relevant aspects that
need to be considered before proceeding with the development of the computer code.

Numerical errors and accuracy are of crucial importance in any computational
result. The nature and characteristics of errors that arise, particularly truncation and
round-off errors, are discussed, along with the methods for evaluating and improving
the accuracy of the numerical solution. Numerical instability is also considered. The
convergence of iterative methods, which are frequently used for various types of
problems of engineering interest, is discussed in terms of a few examples. The impor-
tance of a criterion for deciding if convergence has occurred and of determining the
conditions under which the scheme is convergent are outlined. Finally, numerical
variables and parameters, which are often introduced into the numerical method in
order to obtain the solution, are considered. Since such parameters are chosen
arbitrarily, it is important to ensure that the numerical results are not significantly
affected by a variation in the chosen values. Methods to do so and the anticipated
trends are outlined. The various considerations discussed in this chapter will arise in
the following chapters, and the importance of these aspects will become quite apparent
as we proceed with different types of problems and solution methods.

56

Computer Methods for Engineering with MATLAB® Applications

PROBLEMS

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

27

2.8.

2.9.

2.10.

Calculate the number of arithmetic operations involved in solving
the two simultaneous linear algebraic equations, a,x + b,y = ¢, and
a,x + b,y = c¢,, where x and y are the unknowns and a,, a,, b,, b,, c,,
and ¢, are given constants. Try different algebraic approaches to the
solution, using elimination and substitution. Does your answer depend
on the procedure adopted?

Write an algorithm to calculate the real or complex roots of the qua-
dratic equation ax? + bx + ¢ =0, where a, b, and ¢ are given constants.
Use this algorithm with a calculator or computer to find the roots for (a)
a=1,b=3,c=2;(b)a=1,b=-5,c=6;and () a=2,b=1,c=-1.
Employing the binomial series generated by 1/(1 + x), where Ixl < 1,
compute the sum of the series, using a finite number of terms with a
convergence criterion €, as done in Example 2.1. Write an algorithm
for the purpose and, using a calculator or a computer, study the effect
of varying the convergence criterion on the numerical results.

Write an algorithm to determine the maximum of the function
f(x) =12+ 18x — 3x? in the range 0 <x <4. Starting with the lower
limit on x, advance x with a step size Ax=0.1 until the maximum
is determined. Use a calculator or a computer and employ analytical
expressions for the derivatives.

Repeat the preceding problem for determining the minimum of the
function f(x) =7 — 12x> + 2x3 in the range 1 <x < 6.

In Example 2.2, if the requirement is that the FW of the monthly
deposits of $1000 must attain $200,000 at an interest rate of 7.5%,
compute the number of months needed to achieve this FW. Also cal-
culate the PW of the total money deposited. The given program may
be suitably modified to solve this problem.

Employing a calculator or the computer program of Example 2.2, cal-
culate the time needed for the repayment of the loan of $50,000 if the
monthly payment is $1500 and the interest rate is 12%. Repeat the
calculation for a monthly payment of $2000. In both cases, calculate
the last payment if the loan is to be paid off exactly.

Write an algorithm to study round-off errors by adding 1/3 300 times
and 1/6 600 times. Using a calculator or a computer, vary the number
of decimal places retained in the calculations from 1 to 8, by appropri-
ate programming statements. Compute the round-off error and show
its dependence on the number of decimal places retained, in tabular or
graphical form.

The second-order derivative may be written in finite-difference
form as 9%f70x? = [f(x + Ax) — 2f(x) + f(x — Ax)]/(Ax)?, where Ax is the
step or grid size. Compute the resulting error if the round-off errors
involved in the evaluation of the function at the three values of x
are equal. Repeat this calculation if the round-off errors are equal
in magnitude but alternating in sign from one grid point to the next.
Comment on the significance of your results.

Employing Equation 2.9 for the numerical solution of the differen-
tial equation dy/dx = -2y, study the effect of varying Ax on the solu-
tion, including instability at large Ax. Confirm the trends shown in
Figure 2.14.

Basic Considerations in Computer Methods

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

Consider the functions f(x) =2 + 3/x and g(x) = 5.2 + 2.4/x2. Both of
these approach constant values as x — co. Employing a convergence
criterion, as illustrated in Example 2.3, determine the effect of the
convergence parameter € on the value of x, x, at which the solution
has essentially attained these constant values. Does the step size Ax
have any significant effect on the results?

Determine the effect of varying Ax on the computed result for
the second derivative, as given in Problem 2.9, for the function
f(x) =5+ 10x — 4x + 6x3. The second derivative is to be determined
atx = 1. Using a computer or a calculator, calculate the second deriva-
tive at x =1 with Ax=0.5, 0.1, 0.05, and 0.01. Compare the results
obtained with the exact value of 28.

In Example 2.3, employ a relative convergence criterion, as given by
Equation 2.17, and choose the most appropriate value by varying € and
computing its effect on the numerical results.

The numerical integral / of a function f(x) may be obtained by the

b
simple expression f f(x)dx=2 f(x))Ax =1, which involves

summing the function values at various x values, x;=a +i Ax, for
i=0,1,2,...,s0othatn Ax=b-a, x,=a, and x,_, = b — Ax. Using this

formula, which is known as the rectangular rule, compute the integral
2

%xzdx for Ax=2, 1, 0.5, 0.1, 0.05, and 0.01. Compare the results

obtained with the exact value of 8/3. Plot the numerical error versus
the step size Ax. What value of Ax will you choose for such computa-
tions, on the basis of the results obtained?

For the problem given in Example 2.2, with a loan of $50,000 at 12%
interest, consider reducing the monthly payments; that is, instead of
$1000, the payment is, say, $950. Compute the time needed for repay-
ing the loan if the monthly payment is $950. Then recompute with
a monthly payment of $900, and so on. Is a limiting value, beyond
which the monthly payment cannot be decreased further for repaying
the loan, indicated from your results? If so, why does such a limitation
arise?

The mass transfer rate i, in kg/s, at the surface in a chemical reactor
at a particular time is given by the series

©

i = 556.3 Z exp(=0.04r2)
n=1,3,5,...

where n is an odd number. Using a suitable convergence criterion,
determine the number of terms needed for the numerical evaluation
of m and the resulting value of the mass transfer rate.

57

3 A Review of MATLAB®
Programming

3.1 INTRODUCTION

In Chapter 2, we considered the main elements of a computer program, including the
algorithm, programming language, and code development. Commercially available
software, as well as computer programs that are available in the public domain, were
discussed. It was mentioned that, in recent years, MATLAB® has become the most
frequently used software for solving mathematical equations that arise in scientific
and engineering problems. It provides a convenient and user-friendly environment to
enter input data and obtain results in desired graphical, tabulated, or digital form.
Fortran, which was probably the most common programming language used for
engineering applications in the past and which continues to be important even today,
C++, and other high-level programming languages are also frequently used for a
variety of engineering systems. In many cases, programs in these languages and
computed results are coupled with MATLAB programs for employing many attrac-
tive features, such as graphics and optimization, available in MATLAB.

In this chapter, the basic characteristics of the MATLAB environment for the
numerical solution of mathematical problems are briefly outlined in order to discuss
the development of an appropriate code as well as to present a few readily available
commands to solve commonly encountered problems in engineering. Only the main
features of the MATLAB environment are presented here for providing an appropri-
ate, basic, background for presentations in the following chapters. Further details can
be obtained from the references given at the end of the book, such as Rectenwald
(2000), Chapra and Canale (2002), Matthews and Fink (2004), Palm (2005), Chapra
(2005), Gilat (2008), Littlefield and Hanselman (2005), and Moore (2006).

3.2 MATLAB® ENVIRONMENT

3.2.1 Basic COMMANDS

MATLAB provides a software environment in which a wide variety of mathematical
operations can be carried out very easily. Though similar to the C programming lan-
guage in some respects, it has its own style and format based on a large number of avail-
able commands, functions, and algebra built into the environment. Besides the usual
mathematical functions such as sin(x), cos(x), tan(x), exp(x), log(x), abs(x), and so on, to
represent sine, cosine, tangent, exponential, natural logarithm, and absolute value,
respectively, of a variable x, many other specialized functions are available. Here, x is in

59

60 Computer Methods for Engineering with MATLAB® Applications

radians for the trigonometric functions. Similarly, asin, acos, and atan are the inverse of
these functions and yield the angle in radians. MATLAB also has functions like pi to
represent T, as in the circumference 27r of a circle of radius 7, sqrt(x) for square root of
X, eps to denote spacing of floating point numbers and thus a small quantity, infto denote
infinity, NaN to denote not a number (such as 0/0), and real and imag to denote real and
imaginary parts of a complex number. Help is easily available for various functions and
commands. For instance, help(‘exp’) or help exp will provide additional information on
this function. The command who yields all the variables in the given session and whos
gives the detailed information on the variables. All the definitions and variables remain
in the current session till the command clear is typed.

Mathematical operations are denoted by + —, *, /, and /A, where these represent
addition, subtraction, multiplication, division, and raised to a power. Parentheses can
be used to separate various operations for clarity and correctness. Then the operations
within the parentheses are carried out first. The raised to a power operation is
performed next, followed by multiplication and division, and then addition and
subtraction, moving from left to right for the latter two sets of operations. The result
of a calculation is printed immediately as the answer, denoted by ans, unless a
semicolon is placed after the equation. Similarly, the value of a variable being defined
is printed unless a semicolon is placed at the end of the expression.

Examples of such calculations given at the command (>>) level, are

>4+3/2+1-3+4"2-5
ans =
14.5000

whereas
>>4+3/2+1-3+4"2-5;
suppresses the printing. Similarly,

a=3;
b=4%8;
c=sqgrt (55) ;

can be used to define variables a, b, and ¢, without printing. If the semicolon is not
used, the result is printed, as, for example,

>>a=sqgrt (-25)
prints
a=

0+5.0001

where i (or j) is used to indicate the imaginary part of the expression. Also,

>>a=gsqgrt (2+31)

prints

a=
1.6741+4+0.89601

A Review of MATLAB® Programming 61

This also indicates that complex algebra is built into the MATLAB environment
and can be used easily to perform mathematical operations. Thus, imag, real, conj,
angle, and abs can be used to obtain the imaginary part, real part, conjugate, angle
in polar representation (in radians), and magnitude of a complex number. Thus,

abs(A) = |/(real(A))* + (imag(A))? 3.
o imag(A)
angle(A) = tan (7real(A)) (3.2)
Also,
exp(if) = cos(0) + isin(0) (3.3)

Addition, subtraction, multiplication, and division can be performed as done with real
numbers, with MATLAB following the mathematical rules of complex algebra.

The semicolon ends the statement, so that the next definition can be given without
going to the next line, for example,

a=2; b=3; c=4; d=exp(1.5);

Variables are case sensitive and must begin with a letter. Therefore, definitions of
variables and mathematical operations can be carried out easily in the MATLAB
environment.

3.2.2 MATRICES

One of the major strengths of MATLAB lies in the definition, use, and algebra of
matrices. Several functions, programs, and operations are built into the environment,
so that many routine matrix calculations can be carried out easily and concisely. For
instance, matrices with all the elements as one can easily be defined by

>>ones (2, 4)

which yields a 2 X 4 matrix with all the elements as 1. Similarly, ones (4, 2) yields a
4 x 2 matrix with all the elements as 1. We could also define a matrix A as A = ones
(3, 3), A=ones (4,4), A =ones (3, 4), and so on, with A being printed if a semicolon
is not placed at the end of the equation. Similarly, zeros (2, 4) and zeros (4, 2) yield
2 x 4 and 4 x 2 matrices, respectively, with all the elements as 0. An identity matrix,
with zeros every where except at the diagonal where the elements are 1, is obtained
by the command eye (), which gives an n X n identity matrix. In order to enter dif-
ferent values for the elements in a matrix, the rows are separated by a semicolon or
by going to the next line by carriage return. The elements are separated by space and
brackets denote a matrix. For instance, consider the following:

> a=[12 3]; b=[2 4 9]; c=[3; 4; 7]; d=[12 3; 24 6; 35 8];

62 Computer Methods for Engineering with MATLAB® Applications

These statements yield row vectors a and b, with 1, 2, 3 and 2, 4, 9 as the element
values, respectively, and ¢ as a column vector with 3, 4, and 7 as the element values.
The last statement gives d as a 3 X 3 matrix. Thus,

(3 (1 2 3
a=(1 2 3) b=(2 4 9) c=L4J d=L2 4 6J
7 358

The transpose of a matrix is obtained by using an apostrophe, as @', »’, ¢/, and d".
Then, a’ is just the column vector of the elements in matrix a and ¢’ is the row vector
consisting of elements in matrix c. Similarly, d” transposes the rows and columns in
matrix d. Another apostrophe as (d’)” will yield the original matrix d.

A few other useful commands are mentioned here. Random numbers between 0
and 1.0 are generated by the command rand (n), which gives an n X n matrix of
random numbers. The diagonal elements are given by diag (A), where A is a given
square matrix. The command diag (c), where c is a vector, puts the elements on the
diagonal with the other elements being zero. The number of elements in a vector is
given by length (b), where matrix b is a vector. For a square matrix, it gives the
number of rows or columns and for other matrices, m X n, it gives the larger of the
two parameters m and n. The command size (B) gives the number of rows m and
number of columns n of an m X n matrix B.

Any desired element of a matrix A can be obtained by the statement A (m, n),
where m is the row and n is the column of the element. For a row or column vector
B, the command becomes B (k), where the kth element is desired. Similarly, the given
element can be assigned a value, as, for instance,

>> A(2, 3)=9; B(4)=17;

A row of a given matrix A can be obtained by using the colon notation as A (2, :)
and a column by A (, 3), yielding the second row and the third column, respectively.
A (1:2, 2:3) yields the elements in the first and second rows and the second and third
columns. Similarly, A(1:5, 2) and A(1, 1:4) yield the specified elements in the second
column and those in the first row, respectively. All these expressions can also be used
for assigning values to the elements. Elements can be deleted by expressions like
B (3)=[]and B (1:3) =[], where B is a vector. The third element is deleted in the
first case and the first to the third one in the second case.

3.2.3 ARRAYS AND VECTORIZATION

A row vector of linearly spaced elements is given by the command /inspace, whereas
a logarithmic distribution to base 10 is given by logspace. Thus,

>>linspace (xmin, xmax, n);

generates n evenly spaced points between xmin and xmax and including both these
boundary points. Thus, the region is divided into (n — 1) subdivisions. For example,

>>linspace (0, 4, 5)

A Review of MATLAB® Programming 63

gives 0, 1, 2, 3, and 4. If 5 is replaced by 10, we get 0, 0.4444, 0.8889, .. ., 3.5556, and
4.0000. If the number of points is not given, the default value is 100. Similarly, log-
space (0,2,5)yields 1.0000, 3.1623, 10.0000, 31.6228, and 100.0000, since logarithm
to base 10 is 0.0 for 1.0 and 2.0 for 100.0. A vector of evenly spaced points can also
be generated by

>x=0:5;

which yields six points as x =0, 1, 2, 3, 4, 5, giving a default spacing of 1.0 between
the points. The starting value is 0.0 and the ending value is 5.0, if the spacing yields
it as appropriate point. Thus, if 5.5 were employed, instead of 5, in the above
command, the six points will remain the same. However, the spacing can be changed
by specifying the value as

>>x=0:0.5:5

which now yields 11 points separated by 0.5. If the spacing is given as 0.6, instead, 9
points are generated at a spacing of 0.6 with 4.8 as the last point. Different ways of
distributing points over a given region are valuable in plotting the computed results
obtained.

3.2.4 MATRIX ALGEBRA

Once the matrices are defined, MATLAB can be used effectively for various
mathematical operations, such as addition, subtraction, and multiplication of matri-
ces. For instance, if U and V are two matrices, we can use the commands

>>C=U+V
>D=U-V
S>E=U*V

for addition, subtraction, and multiplication of these two matrices, using the basic
matrix algebra covered in mathematics courses. Thus, for addition and subtraction,
the two matrices must have the same number of rows m and columns #n, so that each
element of V is added to or subtracted from the corresponding element in U. This
implies that C; ;= U,;+ V,; and D,;= U, ;- V,;, where the subscripts i and j indicate
the row and the column of an element. However, for multiplication, the number of
rows in V must be equal to the number of columns in U, that is, if U is an m X n
matrix, V must be an n X p matrix. For example,

>U=[2 3 4; 1 1 2; 35 7];
>V=[1 2; 4 3; 6 8];
S>E=U*V

yields E=[3845;1721; 65 77], with2X 1 +3 X4 +4X6=38,2X2+3X3+4Xx8=
45, and so on, on the basis of the fundamental rules of matrix algebra. Clearly, V*U
is not defined since the rows in U are not equal to the columns in V. Also, even if
square matrices are involved so that U*V and V*U are allowed, the two are generally
not equal.

64 Computer Methods for Engineering with MATLAB® Applications

As seen in the preceding, arrays can be generated easily in MATLAB by simple
commands such as

>> x=0: pi/4: pi;

which gives x as 0, 0.7854, 1.5708, 2.3562, and 3.1416, or 0, w/4, ©/2, 3w/4, and T.
This distribution of points can be used to generate other arrays, or vectors, such as

>> y=cos (x) ;

which gives y as 1, 0.7071, 0, —0.7071 and —1. Thus, x represents an array, which can
be used as a variable to generate arrays of functions like cosine, sine, exponential,
logarithm, and so on. This process of generating and using arrays, or vectors, is
known as vectorization. It provides a major advantage of MATLAB over many other
languages and software.

Arrays can also be multiplied and divided by using the operator with a period pre-
ceding the operation as .* and ./, respectively, with no gap between the period and the
operator. Thus, if x and y are two arrays given as

>> x=[1 2 3]; y=1[4 5 6];
then, element-by-element multiplication or division can be achieved by
>> zl=x.*y; z2=x./V;

Here, z1 is obtained as [4 10 18] and z2 as [0.25 0.4 0.5], indicating
element-by-element multiplication and division, respectively.
We can also raise all the elements to a power by the command

>>z3=x."3; z4=y."2;

which gives z3 =[1 8 27] and z4 = [16 25 36], indicating that each element has been
raised to the given power. The same operators can be used for matrices, as long as
the two matrices have the same number of rows m and columns n. Thus, A .* B and
A ./ B give element-by-element multiplication and division for two m Xn matrices A
and B. We can also use A" 2 to square each element in A or A .» (1/2) to take a square
root of each element. Clearly, the placing of a dot before the operator changes the
result and the operation does not follow matrix algebra, but carries out an
element-by-element algebra. For instance, if x is an array, 1 ./ x and x A 2 can be used
to obtain reciprocal and square of all the elements. This again provides a very
effective tool to carry out a series of operations concisely and efficiently.

As an example of the use of arrays, consider the following simple program in
MATLAB:

x=1linspace (0, 0.9, 10);
y=1./(1-x);

z=1l+x+x .7 2+x .7 3+x .
error=100* (y—z) ./ y;
plot (x, error)

A A

4;

A Review of MATLAB® Programming 65

Thus, 10 evenly distributed points are obtained for x between O and 0.9, the
corresponding values of the function 1/(1 — x) are generated and the first five terms
of the Taylor series for the function are added. The TE, in percentage, if only these
terms are retained in the series, is determined and the results are plotted, as shown
in Figure 3.1, indicating increasing error with x. Similarly, additional terms could be
retained in the series and the effect on the error determined. Also, other functions of
x such as sqrt(x), sin(x), and exp(x) can be used, instead of 1./(1 — x), to plot and study
their variation with x. This simple example shows how arrays of the different
quantities can be used effectively to solve problems.

3.2.5 PoLyNOMIALS
MATLAB has an extensive library to formulate, evaluate, and perform mathemati-

cal operations on polynomials. An n-degree polynomial is defined as

P,(x)=Cx" +Cyx" ' +Cyx" 2 +---+ C,x+C,,, (3.4)

Then the polynomial is given as [C, C, C5 ... C, C,,], with the coefficients placed in
descending order of the power of x. Thus, a third-order polynomial, x* — 2x + 12, is
written as [1 0 -2 12]. The value of the polynomial at a given value of x can be
obtained by the command polyval. For example,

>> c=[1 0-2 12];

60

50

40

30 4

Percentage error

20 4

10 A

0 T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Variable x

FIGURE 3.1 The truncation error (TE), in percentage, if only five terms in the Taylor series
for the function 1/(1 — x) are retained to approximate its value, as a function of x.

66 Computer Methods for Engineering with MATLAB® Applications

defines the given polynomial and the following command:

>> polyval (c, 1.5)
ans =
12.3750

yields the value of the polynomial at x = 1.5. Similarly, conv gives the product of two
polynomials, deconv the division, residue the ratio, poly the polynomial from the
roots, polyfit the least-squares fit to given data, and roots the n roots of an n-degree
polynomial. These are discussed in greater detail in the following.

3.2.6 Roort SowvInG

The n roots of a polynomial equation P,(x) = 0 can be obtained easily by using the
roots command. Consider a root-solving problem for temperature 7 obtained from
the energy balance at a surface as

0.6 x5.67x107® x [(850)4 -T*] =40x (T -350) 3.5)

Although computer programs may be written in Fortran, C++, or other programming
languages to solve this root-solving problem, the MATLAB environment provides a
particularly simple solution scheme on the basis of the internal logic of the software.
The polynomial p is given in terms of the coefficients a, b, ¢, d, and e, in descending
powers of 7, as

.6*5.67%10 *—8;

=-40.0*350.0—-0.6*5.67* (10— 8) * (85074);
p=[a b c d e];

Then the roots are simply obtained by using the command

r = roots(p) (3.6)

This yields four roots since a fourth-order polynomial is being considered. It turns
out, when the above scheme is used, that one negative and two complex roots are
obtained in addition to one real root at 645.92, which lies in the appropriate physical
range and is the correct solution.

Also, if the roots r of a polynomial are known, the polynomial may be formed
by the command poly (r). For instance, the roots of the polynomial equation
x3—6x2 + 11x — 6 = 0 can be obtained by the commands

>c=[1-6 11-6];
>> r=roots (c)

which gives r as [3; 2; 1].

A Review of MATLAB® Programming 67

Then the command
>>p=poly (r)

yields the polynomial from the roots just obtained. It must be remembered that the
coefficients are arranged in descending powers of the independent variable.

3.2.7 LINEAR ALGEBRAIC EQUATIONS

A system of linear equations (@) (x) = (b) can be solved very easily in the MATLAB
environment since it is particularly well suited to matrix algebra, as discussed
earlier. Available commands and built-in functions may be used in a MATLAB
environment to obtain the solution. For instance, let us enter the matrices (a) and (b)
in MATLAB as

a=[210¢6; 52 00; 07 22; 00 8 9];
b=1[64; 37; 66; 104];

Then the solution (x) is obtained simply by using (x) = (@)™ (b) as
x=1inv(a)*b

or as

x=a\b

The second approach uses the internal logic of the backslash, \, operator in MATLAB
to indicate the left division of a into b. As discussed in Chapter 6, this operator uses a
direct approach to the solution of the system of linear equation and requires fewer
arithmetic operations compared to the preceding method based on matrix inversion,
resulting in smaller computational time and smaller round-off error.

The solution can also be obtained by the decomposition of the matrix «a into upper (u)
and lower (1) triangular matrices, as discussed in detail in Chapter 6, by the commands

[1,u,pl =1lu(a);
y=1\ (p*b) ;
x=u\y

where p is the permutation matrix which stores the information on row exchanges
during the computation process. When any of these approaches is used, the solution
vector for the given problem is obtained as [5; 6; 4; 8].

3.2.8 Curve FITTING

A computer program may be developed to solve the system of linear algebraic
equations generated by curve-fitting techniques, as discussed later in this book, using
programming languages such as Fortran 90 and C++ However, MATLAB is
particularly well suited for such problems since the command polyfit yields the best

68 Computer Methods for Engineering with MATLAB® Applications

fit to a chosen order of the polynomial for curve fitting. For instance, the following
commands may be used, with % representing the comment statement.

%¥Input Data

>t=[0.2 0.4 0.6 0.8 1.0 1.2 1.8 2.2];
>>y=1[4.29 3.78 3.54 3.59 4.0 4.8 10.11 16.53];
% Cutve Fit

>>yl=polyfit(t,y,1)

>>y2 =polyfit(t,y,2)

>>y3 =polyfit(t,y,3)

Then yl yields the best fit with a first-order polynomial, that is, linear fit, y2 yields a
best fit with a second-order polynomial, and y3 with a third-order polynomial. The
results for the three cases are obtained as

5.9683 0.2135
5.5069 —=7.3133 5.7585
1.0058 1.9845 —3.9929 4.9998

since only two coefficients are needed for a line, three for a parabola, or second-order
polynomial, and four for a cubic, or third-order polynomial. The linear best fit is of
particular interest in curve fitting with nonpolynomial forms, such as exponential,
logarithm, and power-law variations. For instance, if the chosen exponential function
for curve fitting is y = A exp(—ax), a logarithm is taken to yield log(y) = log(A) — ax.
Then a new variable Y is defined as Y =log(y) and a linear fit is obtained from the
given data for Y versus x. From this curve fit, the values of A and a can be deter-
mined. The use of the polyfit function is considered in greater detail in Chapter 7.

3.2.9 Frow CoNTRrOL

Many commands are used to control the flow of the program. These include if...
else...end, for...end, and while...end commands. Relational expressions such
as <, <=, > >=, ==, and ~= refer to, respectively, less than, less than or equal to,
greater than, greater than or equal to, equal to, and not equal to. Similarly, logical
expressions such as &, |, and — refer to, respectively, and, or, and not.

If an expression is false, a zero number is assigned and if it is frue a nonzero
number is assigned. For instance, if we define a and b as

>>a=2; b=4;

Then the statement
>>c=a<b

is true and the result is given as

c=1

A Review of MATLAB® Programming 69

On the other hand, the statement

>>b is smaller=b<a

is false and yields

b is smaller =0

Similarly, a command like

>>Dboth true=a is smaller & b is smaller

indicates that both statements are not true and yields zero. Also, the relational state-
ment pertaining to equal fo is written as

a==

Since this statement is false, the result is given as zero. Other such statements can be
written to check if certain relationships are true or false and can thus be used for flow
control.

The if ... else ... end commands are used as

if x>=y
c="17
else
c=6
end

If x and y are given as 3 and 5, respectively, the above command will yield c as 6,
since x is not greater than or equal to y. Additional conditional statements can be
introduced by using elseif. For example,

if x>=y
c="17
elgeif x==
c=6

else
c=y/x

end

Since x is given as 3, the first two conditions are not satisfied and ¢ is given as 5/3, or
1.6667. The commands after else or elseif can be a print statement, discussed later, a
mathematical operation, a plotting command, or some other statement. For instance,
it could be

else
fprintf ('Warning: either x and y are both negative or x<y\n')

fprintf ('x=%f y=%f \n',x,y)
end

70 Computer Methods for Engineering with MATLAB® Applications

Here, \n moves the cursor to the next line after printing the results, %f is simply a
default format for floating point data, and the apostrophe prints the string of words
given. Print statements are discussed later.

The for ... endcommand gives loops for carrying out a series of repeated
operations, such as

sumx=0;

for k=1:n

sum x=sumx+k;

end

Here, k takes the values of 1, 2, 3, ..., n. Then the result obtained is the sum of n con-

secutive numbers, that is, n(n + 1)/2. Similarly, for. .. end can be used to generate other
loops in which a series of mathematical operations are to be performed. The while . ..
end command is similar in that the given series of mathematical operations are per-
formed while a given statement, such as x > 0.01, is true. The series of operations and
commands are carried out as long as the conditional statement is satisfied. Since the
conditional statement may not be satisfied due to an error in the program or due to the
operations being carried out, the calculations may go on for ever without stopping. The
command break is often used to avoid such infinite loops. It takes the control out of the
loop to the line just after the loop. If some undesirable result is obtained, such as an
extremely high value of a variable beyond the overflow limit specified in the given
software, or if allotted time expires, the loop is broken and the command shifts the
operation to the end of the loop where it may be asked to print or stop.

3.3 ORDINARY DIFFERENTIAL EQUATIONS

MATLAB can be used to solve ODEs quite easily by employing standard commands
available in the software. For example, consider the motion of a stone, which is
thrown vertically at velocity V from the ground at x =0 and at time ¢ = 0 and which
is governed by the differential equation

2

d? dx
Cr =01 (E) 3.7)

where g is the magnitude of gravitational acceleration, given as 9.8 m/s?, and the
velocity is dx/dt, denoted by V. We can solve this equation, if the initial conditions on
x and V are given, to obtain displacement x and velocity V as functions of time ¢. As
mentioned above, x is given as 0 at # = 0. Let us assume that the initial velocity V is
given as 25 m/s.

Thus, the second-order differential equation in terms of the displacement x is
given in Equation 3.7, with the initial conditions

t=0:x=0 and %=25 3.8)

A Review of MATLAB® Programming 71

The corresponding differential equation in terms of the velocity V, where V = dx/dt,
is obtained from Equation 3.7 as

dv
—=-g—0.1V? 39
TR (3.9
with the initial condition
t=0:V=25 (3.10)

Both these cases are initial-value problems since all the necessary conditions are
given at the initial time, = 0. MATLAB can be used very easily for these problems
by using ode23, ode45, and other built-in functions for the solution of ODEs. Both
ode23 and oded5 are based on Runge—Kutta methods, which are discussed in
Chapter 9, and use adaptive step sizes. Two solutions are obtained at each step,
allowing the algorithm to monitor the accuracy and adjust the step size according to
a given or default tolerance. The first method, ode23, uses second- and third-order
Runge—Kutta formulas and the second one, ode45, uses fourth- and fifth-order for-
mulas. Details on these methods are given later in this book. Only the appropriate
commands are given here.

Considering first the equation for the velocity, the following MATLAB statements

dvdt =inline (' (-9.8 —.1*v. 2 2)', 't', 'v');
v0=25;
[t,v] =ode45 (dvdt,1.4,v0)

yield the solution in terms of V. The first command defines the first-order differential
equation (Equation 3.9), the second the initial condition on V, and the third allows
time and velocity to be obtained till time ¢ = 1.4. These can then be plotted, using
MATLAB plotting routines, as shown in Figure 3.2. The velocity decreases from
25 m/s to zero with time. After the velocity becomes zero, the drag reverses direction
and the differential equation changes, so the solution is valid only till V = 0. The final
time may be varied according to the needs of the problem.

Similarly, the equation for x may be solved. However, this is a second-order equa-
tion, which is first reduced to two first-order equations as

% _y 3.11)
%’bg_ 0.1 V2 (3.12)

First, the right-hand side of these two equations is defined as

function dydt=rhs(t,y)
dydt=[y(2); -9.8—-0.1*y(2)"2];

72 Computer Methods for Engineering with MATLAB® Applications

25 T T T T T T T T

15 4 E

10 + B

Velocity

_5 T T T T T T
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time
FIGURE 3.2 Calculated variation of velocity with time from the solution of Equation 3.9.

Thus, y is a taken as a vector with distance and velocity as the two components. Then
the MATLAB commands are given as

y0=1[0;25];
[t,v] =ode45('rhs',1.4,y0)

Again, the initial conditions are given by the first line and the solution by the
second. The results are obtained in terms of distance and velocity, which may be
plotted, as shown in Figure 3.3. Here, the calculated distance x and the velocity V are
plotted against time. Clearly, the results in terms of the velocity V are the same by
the two approaches. Thus, MATLAB may be used effectively for solving such
initial-value problems, considering single equations as well as multiple and
higher-order equations. Other built-in functions for solving ODEs include those
based on implicit and multistep methods, such as odel13 and odel5s. Further details
on such functions and their usage can be obtained by using the help command in
MATLAB. Several common MATLAB commands are given in Appendix A.
Additional programs in MATLAB for such mathematical problems are given in
Appendix B and discussed later in this book.

3.4 INPUT/OUTPUT

A fairly large variety of input and output commands are available in MATLAB to
facilitate interaction with the computer. A common command for entering a given
quantity or parameter is

>> x=1input ('Enter the value of x, x=");

A Review of MATLAB® Programming 73

25 T T T T T T T T

20 A i

—
W
L
L

[u—
(=)
L
L

Velocity, distance

w
L
L

_5 T T T T T T
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time

FIGURE 3.3 Variation of velocity and distance traveled as obtained from a solution of
Equation 3.7.

This command allows the user to enter the value of the variable x, without printing
it out. Just the command x = input(‘x’) can also be used instead. A string input, that
is, a string of letters and numbers can also be given instead of a numeric value. For
instance, the command

>> yourName = input ('Enter your name: ', 's');

prompts the user to enter his/her name. If the semicolon is not used, the computer
prints out the name entered, say, John.

yourName =
=John

The output can be obtained in many different forms, from printing in different
styles or formats to plotting. The command disp is good for simple tasks that have
few requirements. The commands fprintf and sprintf have more control and greater
options, including printing to a file. Also, sprintfis the same as fprintf except that it
returns the data in a MATLAB string variable rather than writing it to a file. Thus,
commands such as the following may be used.

>>disp ('My home is in New Jersey')
>>disp (['Your name igs: ', yourName])

The first one just prints the given string My home is in New Jersey and the
second one prints Your name is: yourName, where yourName is the name entered
earlier. Strings are often used, along with numbers, to present the results in an

74 Computer Methods for Engineering with MATLAB® Applications

easy-to-understand style. The command numZ2str, which allows a variation from a
number to a string, is used as

>>outstring=['x="',num2str(x)];
>>disp (outstring)

which prints
x=3
These two commands can also be combined to give the same result as
>>disp(['x=",num2str(x)])
Similarly,
>>disp(['sin(x) ="', num2str (sin(pi/3))1)
yields
sin(x) =0.86603
Vectorization can also be used with disp as

>>x=0 : pi/5 : 2*pi;
>>y=sin (x);
>>disp ([x 'y'l)

which yields the x and the corresponding sin (x) results. The apostrophe is used in the
disp command to obtain these two variables in the column format, as

0 0
0.6283 0.5878
1.2566 0.9511
1.8850 0.9511
2.5133 0.5878
3.1416 0.0000
3.7699 -0.5878
4.3982 -0.9511
5.0265 -0.9511
5.6549 -0.5878
6.2832 -0.0000

There are several format statements that can be used to obtain the outputs
in desired form. These include short, long, short e, long e, and bank, which
give, respectively, a short (typically four decimal places), long (typically 15 deci-
mal places), exponential short and long representations, and bank-style representa-
tion with two decimal places. Thus, if x =42.546314, then it is given as 42.5463,
42.546314000000002, 4.2546e + 01, 4.254631400000000e + 01, and 42.55,
respectively, in these formats.

Also, various formats such as %s, %d, %f, %e, and %g are used in statements for
printing and refer to output as string, integer, floating-point, exponential notation,
and the most compact format (%f or %e), using the default number of digits and

A Review of MATLAB® Programming 75

decimals. More control is obtained by adding the field width, or total number of
digits, and decimal places in terms of a floating-point number as %8.3f, %12.5e,
%10g, and %7d. For example,

>> fprintf ('x=%f \n', x)
>> fprintf ('x=%8.3f \n', x)
>> fprintf ('x 8.2e \n',x)

)
o
)

o

yield, respectively,

x=42.546314
x=42.546
x=4.25e+01

Similarly, other format statements can be used to obtain the output in desired
form with chosen accuracy and strings.

As an example, let us consider the various commands considered above and see
how the results are printed. Consider the commands

a=1input ('Enter the value of a, a=");
x=a"(1/3);

disp(['x=",num2str(x)])

disp(['The variable x =',num2str(x)])
format short

disp(x)

format long

disp(x)

fprintf ('The variable x is %$7.3f\n', x)
fprintf ('The variable x is %$7.5f\n', x)
fprintf ('The variable x is %$7.3e\n',x)
fprintf ('The variable x is %$7.5e\n', x)
fprintf ('The variable x is %.3g\n', x)
fprintf ('The variable x is %.5g\n', x)

Thus, a value of x is entered, it is raised to power 1/3 and the results are presented
in different formats. For example, if x is entered as 0.4, the results are

Enter the value of a, a=0.4

x=0.73681

The variable x=0.73681
0.7368

0.736806299728077

The variable x is 0.737

The variable x is 0.73681

The variable x is 7.368e-01
The variable x is 7.36806e-01
The variable x is 0.737

The variable x is 0.73681

This indicates the use of various formats to obtain the results in the desired form.

76 Computer Methods for Engineering with MATLAB® Applications

3.5 SCRIPT m-FILES

These are analogous to computer programs in Fortran, C and other languages and
involve a sequence of interactive statements stored in a file, so that the program can
be employed to obtain results for different inputs and conditions. A plain text file can
be generated, using the text editor available in MATLAB or any other text editor,
and saved as a file with an extension of m, such as, test.m. Let us consider the follow-
ing script m-file, saved as test.m,

% Summation of the Taylor Series for 1/(1-x)
for i=1:5

x=1input ('Enter the value of x, x =');
anal=1/(1-x);

sum=1+x+x"2+x"3+x"4;

diff =anal - sum;

error=diff *100/anal

end

Then, the following command
>>test

will run the program, which asks for the input value of x and then prints the percent-
age error if only the first five terms of the Taylor series are retained. The loop runs
this sequence five times, so that results for five x values can be obtained. It can be
shown that the error increases as x is increased. Similarly, other such programs are
written and discussed in this book for the solution of various problems of engineer-
ing and scientific interest. Let us consider a simple script m-file to work with matri-
ces, as discussed earlier.

Example 3.1
Write a script-m file to do the following:

1. Using the rand command, generate a 3 x 2 matrix A consisting of random
numbers between 25 and 5.

2. Print the matrix generated, without printing “A =" or “ans =" But give a
heading “MATRIX A"

3. Determine the smallest element in the matrix and its location.

4. Using the sprintf command, print the value of the smallest element and its
location in terms of row and column numbers.

5. Obtain a new matrix B which flips the matrix, that is, the third row becomes
the first row, the second remains the second, and the first row becomes the
third row.

6. Append a third column to matrix B, with the elements as 4, 7, and 12.

7. Print a heading “MATRIX B” and print matrix B.

A Review of MATLAB® Programming 77

SOLUTION

This example demonstrates the use of various commands described earlier with
respect to matrices and also the output of the results from a simple MATLAB pro-
gram, as given in Figure 3.4.

The results obtained, when this program (Figure 3.4) is executed are given in
Figure 3.5.

Therefore, this example illustrates the development and use of script m-files for
solving mathematical and engineering problems. Once the program is developed,
it can easily be used for solving other similar problems or modified according to

Example 3.1 Solution

o° oP

Hh
)
H
3
Q
ot
o
Q
=]
=

Generate matrix

o® o oP

(3,2) +5;

@
Il
N
(@]
*
K
O]
o]
[oN

Print Matrix A

o® o oP

disp(sprintf ('MATRIX A'))
disp(a)

Determine smallest element and its location

o® o o?

amin=min (min(a)) ;
[i, j]l =find(a==amin) ;

Print results

o® o o?

disp(sprintf ('The smallest element is %.5g.',amin))

disp(sprintf ('The smallest element is at row %.0g
and column %.0g.',1i,3))

Obtain matrix B

o® o o?

b=flipud(a) ;
b(1,3) =4;
b(2,3)=7;
b(3,3)=12;

Print Matrix B

o® o o?

disp(sprintf ('MATRIX B'))
disp (b)

FIGURE 3.4 MATLAB script m-file for the problem given in Example 3.1.

78 Computer Methods for Engineering with MATLAB® Applications

MATRIX A
21.29 23.27
23.12 17.65
7.54 6.95

The smallest element is 6.9508.
The smallest element is at row 3 and column 2.
MATRIX B

7.54 6.95 4.00
23.12 17.65 7.00
21.29 23.27 12.00

FIGURE 3.5 Results from the MATLAB program given in Figure 3.4.

changes in the requirements of the problem. The following example illustrates
the use of MATLAB programming for a problem considered earlier and solved by
using Fortran.

Example 3.2

For the problem considered in Example 2.1, write a MATLAB computer pro-
gram, or script m-file, to obtain the sum of the series in the binomial expansion
of 1/(1 —x), the analytical result, the error and the number of terms needed to
make the ratio of the nth term to the series sum up to this term less than 10-° for
x varying from 0.1 to 0.9.

SOLUTION

Using the algorithm presented in Example 2.1, a MATLAB computer program may
easily be developed. A simple loop may be used to vary x from 0.1 to 0.9 in steps
of 0.1. The corresponding MATLAB program is given in Figure 3.6, employing a
simple for. .. end loop to go up to 1000 terms, if needed. As soon as the conver-
gence check is satisfied, the loop breaks and the results are obtained in terms of
the sum, error and number of terms. These are printed after all the x values have
been considered.

Figure 3.7 shows the results obtained from the program. It is seen that the
results agree with the earlier ones from Example 2.1. However, the error depends
on the number of significant digits retained by the computer system and the soft-
ware and, though small in both cases, is not expected to be equal. Here, the error
varies from 0.01 x 107 for x = 0.1 to 0.8335 x 107 for x = 0.9 and is thus less than
that obtained earlier in Example 2.1.

3.6 FUNCTION m-FILES

These are subroutines, or subprograms, that define functions, which can be used in a
similar way to the MATLAB functions described earlier. Input/output parameters
are given and all variables local to the function are defined. Then the function can be
called to execute a specific mathematical operation or sets of operations. The basic
format is function [output parameter list] = functionName (input parameter list).

A Review of MATLAB® Programming
SERIES SUMMATION

Enter Input Quantities

o° o o oP

5o
e
l—‘HO
St
TN
H
o)

sn=x"(n-1);

S =sn;
for k=1:1000
n=n+1;

o\°

Sum the Series

o° oe

sn=x"(n-1);
s=s+sn;

o\°

Convergence Check

o° oe

if sn/s<=10"(-6),break, end
end

y (i) =x;
m(i) =n;

Compute Analytical Value of the Sum and the Error

o® o o

sum (i) =s;
sx (i) =1/(1-x);
(1) = ((sx (1) —sum (1)) /sx(1))*100.0;
Xx=x+0.1;
end

Print Results

o° o o oP

disp (sprintf ('The values of x are:'))

disp (y)

disp (sprintf ('The number of terms needed are:'))
disp (m)

disp (sprintf ('The sum of the series is:'))

disp (sum)

disp (sprintf ('The error in percent is:'))

disp (er)

FIGURE 3.6 MATLAB script m-file for the problem given in Example 3.2.

80 Computer Methods for Engineering with MATLAB® Applications

The values of x are
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

The number of terms needed are:
7 10 13 16 20 27 37 56 111

The sum of the series is:
1.1111 1.2500 1.4286 1.6667 2.0000 2.5000 3.3333 5.0000 9.9999

The error in percent is:

1.0e-03 *

0.0100 0.0102 0.0159 0.0429 0.0954 0.1023 0.1856 0.3741 0.8335
FIGURE 3.7 Numerical results obtained from the MATLAB program given in Figure 3.6.

The file is saved as functionName.m. Simple examples of function definition are

function [s, p] =addmult (x, y)
Compute sum and product of two matrices

o° o°

s=x+tYy;
p=x*y;
end

The file is stored as addmult.m and, when used, it yields the sum s and product p of
the two variables x and y. Similarly, fnl.m represents the function file

function z=£fnl (x, y)
z=0.5*y+x
end

It defines the function fn/(x, y), which can then be used in the computations similar
to built-in functions like sin(x), exp(x), and log(x). Similarly, absolute.m represents
the function

function y=absolute (x)
if x<0

Yy=-X;

else

y=x;

end

which yields the absolute value of a given variable x.

Function m-files are very important in the development of MATLAB programs,
since functions that are frequently needed are defined by these files. Functions can
also be defined inline, as seen earlier for defining the ODE or as the following three
functions:

fl=dinline('2.*(150.*x./(1l+exp(x)))"', 'x');
f2=1inline (' (2/(pi®0.5)) *exp(-x.*x)"', 'x');
f3=1inline('exp(x) +x*2’, 'x');

A Review of MATLAB® Programming 81

The second entry within parentheses gives the independent variable and the first one
the function definition. In the preceding cases, the second entry is not needed since
it is implied by the function definition. However, if the independent variable were,
say, y or z, then it would be needed. For instance, if ‘y’ is entered instead of ‘x” in the
third function definition, we would get f3(y) = exp(x) + x"2.

Once the function is defined using the inline command, given above, or as a
function file, such as fi.m, the function can be evaluated at a given value of the
independent variable, such as x, where x may be a scalar quantity or an array.
However, if x is a vector, that is, an array, the function must be defined so that the
mathematical operations such as multiplication and division can be performed on an
array by using .* and ./, as discussed earlier. The command used for the evaluation of
the function is feval, written as

feval (f,x) or feval('f', x)

where the first version is used for a function defined inline and the second for a func-
tion defined by a function file. Then, the value of the function f at given scalar x or
the values of f corresponding to the components of an array x are given.

Function files and inline function definitions are extensively used in MATLAB
programming, as seen later in various script files developed for different problems.

3.7 PLOTTING

One of the major strengths in MATLAB is the ease and variety with which outputs
can be obtained in graphical form. A simple sequence of commands, such as

>>x=1linspace (0, 2*pi);

>>yl=sgin (x);

>>y2=cos (x);

>>y3=yl .* y2;

>>plot (x, yl, '*', x, y2, '"+', x, y3, '=-')

uses vectorization to obtain the discrete values of sin (x), cos (x) and sin (x) cos (x),
and plots these on a graph, with *, +, and — as the symbols to characterize the three
variations. Legends and axes can also be defined, such as

legend ('sin(x)', 'cos(x)', 'sin(x) cos(x)"')
axis ([0 2*pi -1.5 1.5])

which must be part of the script file or in one line with the plot command.

Different symbols, line formats, and colors are available. For instance, b, g, r, and
k stand for blue, green, red, and black. Similarly, -, -., --, and : give solid, dash-dot,
dashed, and dotted lines. Also, o, X, +, *, s, d, and h yield circle, cross, plus, asterisk,
square, diamond, and hexagon markers. The command /hold on allows a plot to be
held so that other graphs can be added to the same figure. The hold off releases the
hold on the figure.

82 Computer Methods for Engineering with MATLAB® Applications

Plot of simple trigonometric functions

1.5

1.0 1

0.5

0
-0.5
* sin(x) ++++++ +++* *. *y R o
-1.0 A - cos(x) ot P
— sin(x) cos(x)

_1.5 T T T T T T

0 1 2 3 4 5 6

0 (radians)

FIGURE 3.8 Plot of trigonometric functions sin(x), cos(x), and sin(x) cos(x) versus x, using
MATLAB plotting commands.

Open figure windows can be closed with the command close all, so that other graphs
can be displayed. The labels on the figure can similarly be specified, for instance,

xlabel ('\theta (radians)', 'Fontname', 'Times',
'Fontsize', 14)

This gives O(radians) with the given font characteristics. For the y-label, “sin(\theta)”
may be used. The title of the figure can also be given easily, as, for instance,

Title ('Plot of simple trigonometric functions',
'FontName', 'Helvetica', 'FontSize', 16)

The results are shown in Figure 3.8. Similarly, various other possibilities are avail-
able to obtain the graphs in the desired form, including contour plots.

3.8 SUMMARY

This chapter presents a brief review of MATLAB programming, focusing on com-
mon commands and various features used in developing a MATLAB program in
terms of a script m-file or a function m-file. The main strengths of using the MATLAB
environment are discussed, particularly with respect to the generation, use, and
manipulation of matrices. Simple commands that can be used for root solving of poly-
nomials, curve fitting, solution of linear algebraic equations, ODEs, and so on, are
outlined. Input and output commands, including entering variables and functions, as

A Review of MATLAB® Programming 83

well as plotting, are briefly presented. A few examples are given in order to present
the use of the MATLAB environment, and commands to solve mathematical prob-
lems. This brief review will serve to orient the students to the use of MATLAB for
solving problems in science and engineering. However, for additional details and for
more complex problems and situations, the various references mentioned here may
be consulted. Also, it must be mentioned that, even though this book mainly consid-
ers the basic MATLAB computing environment generally available on common
computer systems, a wide variety of Toolboxes are available and are used for specific
and complex problems. These toolboxes include those for statistical analysis, eco-
nomic analysis, finite-element methods, optimization, symbolic methods, solution of
PDEs, visualization, data processing, and so on.

PROBLEMS

3.1. Become familiar with the MATLAB environment. Use commands
to input data, employ mathematical operations, save variables, and
vary format of outputs. Write a simple script m-file. Save and execute
this file.

3.2. Try different mathematical operations in MATLAB, with and without
semicolon. Print eps, pi, sin(x), and other such built-in functions. Also,
calculate the inverse of sine, cosine, and tangent for common angles
like 30°, 45°, 60°, and 90°. Remember that the angle x is in radians for
such trigonometric functions.

3.3. Define different matrices by defining row and column elements in one
command. Then obtain these matrices by defining the rows separately
first and then using these rows to obtain the matrices.

3.4. Generate a 4 X4 matrix of random numbers ranging from 0 to 8.
Similarly, generate a 3 X 5 matrix of random numbers ranging from 2
to 12.

3.5. The following data are given for the independent variable x and
dependent variable y:

X: 01357911
y: 2 5 14 47 128 281 530

Using the polyfit command, obtain the best fit to these data by increas-
ing orders of the polynomial, from 1 to 5. From these results, is it possi-
ble to determine what order of polynomial is best suited to these data?

3.6. A polynomial equation is given as x’—7x*>+ l4x - 8 =0. Define
this polynomial in the MATLAB environment and, using the roots
function, obtain the three roots of the equation.

3.7. Using the approach discussed in the text, solve Equations 3.7 and 3.9
with the coefficient 0.1 replaced by 0.2 and the initial velocity given
as 45 m/s.

3.8. Plot common functions exp(x), log(x), and x", for n = 1, 2, and 3, versus
x, showing the appropriate title, legends, and labels.

3.9. Define the function f(x) = x> + 2x?> — 4x + 5 by using the inline com-
mand as well as a function file. Then evaluate the function f(x) at x
values of 0, 1, 2, 3, ..., 10. Finally, plot f{x) versus x, with appropriate
labels and ranges of the axes.

84

3.10.

3.11.

3.12.

3.13.

3.14.

Computer Methods for Engineering with MATLAB® Applications

The charge ¢ at a given time 7 in a capacitor in an electrical circuit is
given by the expression:

g=E C+ (QKE C) exp (Kt/RC)

where FE is the source voltage, C the capacitance, Q the initial charge,
and R the resistance. Two circuits are considered with C=1, Q = 10,
R =15, and E =20 in one case and E = 7.5 in the second case, all in SI
units.
Do the following:
a. Write a script-m file to calculate the charge at r =0, r = 200 (which
is large time) and at any arbitrary time 7.
. Define the different variables for the two circuits.
. Calculate charge at =0 and print it as g_initial.
. Calculate charge at r = 200 and print it as g_steady_state.
. Include an input statement to enter 7.
Calculate the charge at time ¢ and print it as g_time_t.
. Run the program to ensure that all desired outputs are obtained.
. Get the results for two times, =5 and # = 10 seconds.
Write a MATLAB script-m file to do the following:
a. Generate a 3 X 5 matrix a of random numbers between 30 and —5.
b. Determine the largest and smallest elements and their locations.
c. Print the information in (b) using the sprintf command.
Solve the following system of equations using the matrix algebra
in MATLAB. Use both the invert matrix and backslash commands.
Write a script-m file for this purpose.

50 h o o0 o

X +x,—-x;=0

X, —X4—x5=0

X +x5—x4=0

2x, +4x; + 6x, =10
—6x, + 3x5+ 5xs=-8
8x, —2x, - 3x5=0

where x|, x,, X3, x,, X5, and x4 are unknowns to be calculated.
For the function f(v) given below,

02512
o OV) 023v-98
T = 450+ llogn) P v

write a script-m file to

. Generate an array of velocities from 50 to 250 m/s.

. Generate the corresponding array of f(v) values.

. Plot f(v) versus v, using your choice of color and line style.

. Label your axes and give a heading to the figure.

. Run your program to ensure that the results are satisfactory.

Using if, while, and for loops, calculate the sum of »n natural numbers,
odd numbers (starting with 1), and even numbers (starting with 2).
Choose and vary n. Validate your results.

o Qa0 o

4 Taylor Series and
Numerical Differentiation

4.1 INTRODUCTION

In problems of engineering interest, the numerical solution is generally based on
discrete values of a given function and its derivatives at a finite number of points in
the computational domain. The need to discretize a function arises since a digital
computer can usually carry out only the standard arithmetic operations, employing a
finite number of discrete values. Also, in many cases, interest lies in estimating the
derivatives from discrete numerical or experimental values of the function, given at
specified data points. The derivatives are then computed at these data points or at a
number of intermediate locations, employing only arithmetic operations. Similarly,
the numerical integration of a function may be carried out, using the discrete values
of the function. Of course, as mentioned earlier, symbolic algebra may also be used
in a few limited cases to differentiate or integrate continuous functions, employing
software such as Maple or Mathematica. This chapter discusses the basic concepts
involved in discretization as well as in the computation of the derivatives of a given
function from given discrete values.

Numerical differentiation refers to the computational procedure for evaluating
the derivatives of a function, which is given as an analytical expression or in terms
of discrete values at a finite number of points in the computational region. There are
many diverse areas in engineering where numerical differentiation is needed. For
example, in the dynamics of particles and systems, the time derivative of the dis-
placement gives the velocity, and the second derivative gives the acceleration, which
on multiplication with the mass of the body yields the force. In many engineering
systems, such as robotics, the motion of the components is quite complex, and
numerical differentiation is needed to determine the forces, velocities, and trajecto-
ries of the elements. Similarly, the heat transfer rate and the shear force at a surface
due to fluid flow over the surface are obtained from the spatial derivatives of the
temperature and the velocity, respectively. The distributions of temperature and
velocity are often too complicated to permit use of the standard analytical methods
for differentiation. The numerical values of the derivatives are also needed, for
example, in optimization to obtain the best solution under given constraints, in eco-
nomics to obtain the effect of a change in the interest rate or inflation on the financial
dealings of a company, in electromagnetics to determine the wavelength at which
maximum energy transfer arises, and in many other problems of practical interest.

Frequently, in engineering problems, one must solve an ODE or a PDE to obtain an
unknown variable. Again, a numerical solution involves a finite number of locations

85

86 Computer Methods for Engineering with MATLAB® Applications

or points where the value of the variable is computed. An important class of numeri-
cal methods for the solution of differential equations is based on replacing the deriv-
atives by their discretized forms, known as finite difference approximations, and
then solving the resulting algebraic equations. The numerical analysis that forms the
basis of discretization of derivatives is often called finite difference calculus.
Differential equations arise in many engineering areas, such as dynamics and vibra-
tions, heat transfer and fluid flow, electronic circuitry, structures, mass transfer, and
neutron diffusion in nuclear reactors. The numerical methods for the solution of
ODEs and PDEs are discussed in Chapters 9 and 10, respectively.

In this chapter, we shall obtain finite difference formulations, which allow the
computation of derivatives from discrete values of the function given at a finite num-
ber of points as well as the representation of derivatives in terms of discrete values.
An important consideration in finite difference calculus is the error that arises due to
the use of an approximation instead of the exact mathematical expression. Some
discussion on the errors associated with discretization was included in Chapter 2.
These errors are considered in greater detail here. The Taylor series forms the basis
of many numerical techniques and also is used for estimating the errors involved.
The general form of the series is presented, and the error resulting from the trunca-
tion of the series after a finite number of terms is determined. There are several
approaches that may be adopted for deriving the finite difference approximation of
the derivatives of a function. These approaches include the direct method, based on
the definition of the derivative, the Taylor-series approach, and the use of a polyno-
mial representation of the function. These three approaches are discussed, with par-
ticular emphasis on the derivation based on the Taylor series since it also yields
quantitative information on the error. Finally, the corresponding approximations for
partial derivatives are outlined.

4.2 TAYLOR SERIES

4.2.1 BAsic FEATURES

Let us consider a function f(x) whose value at a given point x = x; is denoted by f(x,).
The Taylor series is an infinite power series that expresses the value of the function
in a region sufficiently close to x = x; as follows:

(x_xi)z (x_xi)3

fx) = f(-xi)+(x_-xi)f,(xi)"'Tf"(xi)"'Tfm('xi)""“ “.1)

or

2 3
Fo+ A0 =)+ A o0+ S)+ B e @)

where Ax is the magnitude of a finite increment in the independent variable x, from
the given value x = x;, and the primes denote differentiation with respect to x. The

Taylor Series and Numerical Differentiation 87

Taylor-series expansion has been taken about x = x; and, thus, all the derivatives are
evaluated at x = x,. Similarly, we may write

(Ax)
2!

(Ax)’

JOi=Ax) = f(x)-Ax f'(x) + 31

f(x) -

SUx) e 43)

It is assumed that all the derivatives of the function f(x), at x = x,, exist and are finite.
Also, Ax must be sufficiently small so that the series is convergent. Such a power
series has a radius of convergence, given in terms of the increment Ax, within which
the series is convergent (Keisler, 1986; Larson and Edwards, 2009). Generally, the
radius of convergence is finite, and if Ax is taken as larger than this value, the series
is no longer convergent and the region is not sufficiently close to x = x,. However, in
finite difference computations, we do have the freedom to choose the value of Ax and
thus control the convergence of the series and also the accuracy of the solution, as
discussed below.

If an infinite number of terms is taken in the series given by Equations 4.2 and
4.3, the exact value of f(x; + Ax), or f(x; — Ax), may be computed, provided the series
is convergent. However, it is obviously not possible to compute an infinite number of
terms. The practical approach to such a computation is to retain only a few terms in
the series for approximating the function and to estimate the error resulting from
neglecting the remaining terms. If only the first term in the series of Equation 4.2 is
retained, then f(x; + Ax) = f(x,), and the function f(x), is taken as a constant. The
retention of the first two terms gives

Sl + Ax) = fix) + Axf(x;) “@.4)

Thus, a linear approximation of the function is employed over the region from x;
to (x; + Ax), and the slope is taken as constant. Similarly, if the first three terms in the
series are retained,

(Ax)?

2 f”(xi) @.5)

FO+Ax) = f(x)+ Axf'(x;) +

This expression allows a variation in the slope over the region and is, therefore, a
more accurate approximation for f(x; + Ax) than that given by Equation 4.4.

Figure 4.1 shows the three circumstances of retaining one, two, or three terms in
Equation 4.2 graphically. Equation 4.4 becomes exact only if f(x) is a linear function
of x. Similarly, Equation 4.5 is exact for a parabolic, or second-order, function.
Therefore, for an arbitrary function f(x), the accuracy of the representation by the
Taylor series improves as additional terms are retained. Although an nth-order series
expansion is exact for an nth-order polynomial, an infinite number of terms is, in
general, needed for other differentiable and continuous functions.

4.2.2 FiNnite DiFrereNce CALCULUS

In finite difference calculus, the function f(x; + Ax) is generally written as f(x,,,),
indicating the value of the function at a neighboring point x = x,,,, which is at an

88 Computer Methods for Engineering with MATLAB® Applications

o f(x;1) = flx) + Ax f(xy)

i) = fe) + xS) + B9)
— '
Sxi41)

b (e 1) = flxy)

/

X; Xiv1 x

FIGURE 4.1 Approximation of a function f(x) by a Taylor-series expansion, retaining one,
two, or three terms in the series.

incremental distance Ax from the point x = x;, about which the Taylor-series expan-
sion has been taken. Then the series in Equations 4.2 and 4.3 may be written as

Ax)? }
(2x!) f”(xi)t(A;y) Fr) + e 4.6)

SCon) = f(x) = Ax f'(x) +

This infinite series must be truncated after a finite number of terms in order to be
useful in digital computation. If the series is truncated after the (n + 1)th term, that is,
after the term containing the nth power of Ax, the neglected terms may be taken into
account by means of a remainder term R,, given for f(x,,,) by

(Ax)n+l
(n+1!°

_ dn+1f

R" - dxn+l

®

where x, <& < x;,, @7

The derivative in this expression is evaluated at a point x = &, which lies within the
interval from x; to x,,,, and (n + 1)! represents the factorial of (n + 1). This remainder
term is often known as the Lagrange form and its derivation is given in most text-
books on calculus; see, for instance, the books by Amazigo and Ruhenfeld (1980)
and Larson and Edwards (2009).

The expression for the remainder given by Equation 4.7 can be employed for estimat-
ing the error, known as truncation error and briefly considered in Chapter 2, that results
from a truncation of the series. Thus, the error when the series is truncated after the term
containing (Ax)" is less than |d™*! f /dx"*! maX(A)c) "1/(n +1)!, where the maximum mag-
nitude of the derivative in the interval x; < x < x; + 1, is denoted by the subscript “max.”
The value of the (n + I)th derivative of the given function, in the entire interval, is

Taylor Series and Numerical Differentiation 89

generally not known, since this would require an analytical expression for f{xx), which is
assumed to be unknown. If f(x) is known in the interval, the Taylor-series expansion is
not needed for evaluating the function at x = x,,,. Therefore, one cannot use the remain-
der term to determine the error exactly. However, the term does indicate the dependence
of the truncation error on Ax, and we do have control over the value of Ax.

The remainder R,, and thus the error, is usually written as

R, =O[(Ax)™'] 4.8)

where, as discussed in Chapter 2, this expression implies that the truncation error is
on the order of (Ax)**. Since the quantities that multiply (Ax)"*' in Equation 4.7 are
constants over the given interval, the expression O[(Ax)"*'] may be taken to indicate
that the error is proportional to the step size Ax raised to the (n + I)th power. Then
Equation 4.1 may be written, with the corresponding truncation error, as

(Ax)?

fx)= f(x,-)+Axf’(x,-)+ 2

£10)+ O[(Av)'] (4.92)

or

2 3
Fon) = FG)+ Ax)+ S () + B)+ 0[A0] @9y

For an arbitrary function f{x), Equation 4.9b yields a more accurate value of f(x,,,),
as seen in Figure 4.1. Thus, within the radius of convergence of the series, the error
term due to truncation after n terms is related to that due to truncation after (n + 1)
terms as follows:

Ol(Ax)"] > O[(Ax)y™*'] (4.10)

implying that the error is larger in the former case. We will assume this relationship
to be valid, as long as the series is convergent.

The representation of the truncation error as O[(Ax)"] also indicates the behavior
of the error as Ax is reduced. Thus, if Ax is halved, the error becomes 1/2" of the
previous error. The order of the Taylor-series approximation is given by the value of
n. A higher value of n implies the retention of a larger number of terms in the series
and, thus, a smaller truncation error. Usually, Ax is taken as sufficiently small, so that
only the first few terms in the series are required to obtain a fairly accurate estimate
of f(xx;;). The characteristics of the Taylor series and of the error resulting from trun-
cation are illustrated in the following example.

Example 4.1

a. Derive the Taylor-series expansions for e* and log(l —x), about x=0.
Employing the first six terms in the series, determine the values of these
functions at x=0.1, 0.2, 0.3, 0.4, and 0.5. Add the terms successively,

Computer Methods for Engineering with MATLAB® Applications

indicating the effect of the number of retained terms on the accuracy of the
numerical results.
b. The relationship between the pressure p and temperature T of a given fluid is

5301.4

logp =19.2 - 411

where log represents the natural logarithm, p is in kilopascals, abbreviated
as kPa (I kPa =10° N/m?), and T is in kelvins. Using the Taylor-series expan-
sion for p, compute the pressure at T =351, 352, 355, 360, and 370 K, given
the value at 350 K, from Equation 4.11, and using only five terms in the
expansion.

SOLUTION

4.1(a) Here, the functions f(x) = e¥ and log(1 — x) are to be expanded in Taylor series
about x =0, at which location e*=1 and log(1 — x) = 0. The Taylor series about zero
is also often referred to as the Maclaurin series. In order to obtain the series, as given
by Equation 4.1, we need to evaluate the derivatives at x = 0. Thus, for f(x) = e*,

de’) d*e) de") d'e") o
dx dx® A dx*

At x =0, all these derivatives are 1.0. Therefore, the required series for e, about
x =0, is obtained from Equation 4.1 as
. 23 4 X"

e s Tax+ e N X L (4.12)
21 31 4] n!

The second function, log(1 — x), yields the following derivatives:

d[log(1 - x)] _
dx 1-x
d? [log(1 - x)] _ 1
dx? (1- x)2
d [Iog(1 - x)] 2
dx’? (1 - x)3
d* [Iog(1 - x)] _ 6
dx* (1 - x)3

At x =0, the derivatives of the function f(x) = log(1 — x) are

f0)=-1, f0)=-1, f"0)=-2, f”0)=-6,...

Taylor Series and Numerical Differentiation

Therefore, the Taylor-series expansion for log(1 — x) about x =0 is obtained from
Equation 4.1 by setting x;=0 as

x? X X X
|0g(1—x)=O+x-(—])+5~(—1)+§-(—2)+4—!~(—6)+a'(—24)+---
2 3 4 5 n
S P S U A RS (4.13)
2 3 4 5 n

A calculator or a computer may be used to sum a finite number of terms in
the two series given by Equations 4.12 and 4.13. A computer program may also
be easily written for this purpose. Starting with the first term, additional terms can
be included successively and the resulting sum determined. This process is then
continued up to the sixth term, employing the various values of x given in the
problem. For instance, a typical program in MATLAB® for e* could include the
following commands;

n,s
end
f=exp(x)

Appropriate input/output formats can be also included such as

>> fprintf ('N=%1d: S=%.6f\n',n,s)
>> fprintf ('EXACT VALUE= %.6f\n',f)

to obtain the results in a desired form. Similarly, a MATLAB program may be writ-
ten for the function log(1 — x).

The numerical results obtained from such a computer program are shown in
Figure 4.2. The exact values of the functions at the various x values considered
are also computed and printed, along with the numerical results for comparison.
Note that, as expected, the accuracy of the numerical evaluation of the func-
tions from their respective Taylor-series expansions improves as the number of
terms considered increases. Six terms are found to be quite adequate at smaller
x values, although more terms should be employed for x equal to or larger than
0.5 for better accuracy. The convergence is thus slower at larger x, as expected
and as shown in most calculus textbooks. Also, the series for e* converges at
all x, whereas that for log(l — x) converges only if |x| < 1. Therefore, at larger x,
within the convergent space for the given function, additional terms should be
included until the sum remains essentially unchanged with a further addition
of terms.

91

Computer Methods for Engineering with MATLAB® Applications

X=.1 X=.1
N=1:S=1 N=1:S=-1
N=2:S=11 N=2:5S=-105
N=3:S=1.105 N=3:S=-105333
N=4:S=1105167 N=4:S=-105358
N=5:S=1105171 N=5:S=-105360
N=6:S5S=1.105171 N=6:S=-105361

EXACT VALUE = 1.105171

EXACT VALUE =-105361

X=.2 X=2
N=1:S=1 N=1:S=-2
N=2:S=12 N=2:S=-22
N=3:S=122 N=3:S=-222667
N=4:S=1221333 N=4:S=-223067
N=5:S=12214 N=5:S=-223131
N=6:S=1.221403 N=6:S=-223141

EXACT VALUE = 1.221403

EXACT VALUE =-223144

X=23 X=23
N=1:S=1 N=1:S=-3
N=2:S=13 N=2:S=-345
N=3:S=1345 N=3:5S=-354
N=4:5=1.3495 N=4:S5=-356025
N=5:5=1.349837 N=5:S=-356511
N=6:S=1349858 N=6:S=-356632
EXACT VALUE = 1.349859 EXACT VALUE = -356675
X=4 X=4
N=1:S=1 N=1:S=-4
N=2:S=14 N=2:S=-48
N=3:S=148 N=3:S=-501333
N=4:S=1490667 N=4:5=-507733
N=5:S5S=1491733 N=5:S5=-509781
N=6:S=1491819 N=6:S=-510464

EXACT VALUE = 1.491825

EXACT VALUE =-510826

X=.5 X=

N=1:S=1 N=1:S=-5
N=2:S=15 N=2:S=-625
N=3:S=1625 N=3:S=-666667
N=4:S=1.645833 N=4:S=-682292
N=5:5=1.648438 N=5:5=-688542
N=6:S=1648698 N=6:S=-691146

EXACT VALUE = 1.648721

(@ flx) = e*

EXACT VALUE = -.693147

(b) fx) =log (1 - x)

FIGURE 4.2 Numerical results on the summation of the Taylor series expansions for e¢* and
log(1 — x) at various values of x, as given in Example 4.1a, along with the exact values of these
functions.

Taylor Series and Numerical Differentiation

The given relation between p and T, Equation 4.11, may be written as follows:

5301.4 (4.14)

5301.4)

p = exp [19.2 - } = exp(19.2) exp(— T

Therefore, a Taylor-series expansion for exp(-5301.4/T) is needed for computing
the pressure p at temperatures close to T =350 K, about which the expansion is to
be carried out. We may write Equation 4.14 as

p = Af(T), where f(T) = exp(?) = EXp(_ 53(;1 .4) and A= exp(19.2)
(4.15)
The Taylor-series expansion for p is then given by
2
p = psso + (T = 350)Af'(350) + wAf”GSO)
3 4
+ wAf’”(?)SO) + MAV”GSO) + - (4.16)

where p,;, refers to the pressure at 350 K, as calculated from Equation 4.14, and
the quantity within the parentheses indicates the temperature T at which the eval-
uation is made. Now, f/, f”, f””, and so on, are obtained by differentiation as

f‘/(T) - _ %GB/T
vy [B, 2B)
f (T) = k_,_j + FJ eB/T

fr(Ty =] -2 - 22 22

If Tis replaced by 350 K in these expressions and substituted in Equation 4.16, the
series for p is obtained.

The value of the pressure p;5, at T=350 is calculated from Equation 4.14 as
57.5781 kPa. Using this value, we calculate the pressures at T =351, 352, 355,
360, and 370 K from the Taylor-series given by Equation 4.16. Again, a computer
program similar to the ones for the preceding problem may be developed to
sum the series. The numerical results obtained are shown in Figure 4.3. The
sum of the series, considering one, two, and up to five terms, is given, along
with the corresponding exact value from Equation 4.14. As expected, the accu-
racy of the numerical value for the pressure improves as the number of terms
employed is increased. Five terms are found to be quite satisfactory, particularly
for small temperature differences AT = T — 350. However, as (T — 350) increases

93

94 Computer Methods for Engineering with MATLAB® Applications

TEMPERATURE = 351

N=1:P=575781331 N=2:P=60.0699267
N=3:P=60.1167256 N=4: P =60.1172157

N =15:P=60.1172187

THE EXACT VALUE OF THE PRESSURE = 60.1172137

TEMPERATURE = 352

N=1P=575781331 N=2:P=62.5617203
N=3:P=62748916 N =4:P=62.7528363

N =5: P=62.7528845

THE EXACT VALUE OF THE PRESSURE = 62.7528848

TEMPERATURE = 355

N=1:P=575781331 N=2:P=70.0371011
N=3:P=71.2070744 N =4:P=71.2683794
N=3:P=71.2702111

THE EXACT VALUE OF THE PRESSURE = 71.2702421

TEMPERATURE = 360

N=1:P=575781331 N =2: P =382.496069
N=3:P=287.1759625 N =4:P=_87.6660022

N =5: P=87.6961086

THE EXACT VALUE OF THE PRESSURE = 87.6971056

TEMPERATURE = 370

N=1.:P=575781331 N=2: P=107.414005
N=3:P=126.133579 N=4:P=130.053896

N =5: P=130.535599

THE EXACT VALUE OF THE PRESSURE = 130.567704

FIGURE 4.3 Numerical values of the pressure p obtained from a summation of the Taylor
series expansion for the function p(T), as given in Example 4.1b, for various values of the
temperature 7.

to larger values, additional terms will be needed for accurate results. Obviously,
the numerical sum of the series is in considerable error if only one or two terms
are retained, particularly at large AT.

The simple problems given in Example 4.1 illustrate practical applications of the
Taylor-series expansions and also bring out the important aspects that one needs to
bear in mind in summing the series. It is important to ensure that the numerical
results converge to an essentially constant value as the number of terms is increased.
If the results diverge as additional terms are included, the series is not convergent, and
an alternative approach to obtain the desired numerical results must be employed. In
some engineering problems, the function f(x) may be too complicated to be evaluated
easily in the vicinity of the x value at which it is known. Then Taylor series may be
used, as outlined above. The series is also sometimes employed for providing starting
values in the solution of differential equations. However, the major interest in the

Taylor Series and Numerical Differentiation 95

Taylor series is because of the approximation to the derivatives obtained by the use of
the series, as discussed in Section 4.4.

4.3 DIRECT APPROXIMATION OF DERIVATIVES

In many diverse engineering problems, the accurate determination of derivatives
from the measured or calculated values of the function f(x) at a finite number of dis-
crete points is needed. Consider, for example, an engineer, on a test track, involved
in the measurement of the location of a moving body, such as a car, as a function of
time. The velocity and acceleration of the object are given by the computed values of
the first and second derivatives of the displacement. Similarly, a chemical or civil
engineer may measure the concentration of a pollutant in a water body as a function
of location and time and then use this information to obtain the rate of spread of
chemical pollution. Heat and mass transfer processes are also concerned with the
rates of transport, and measurements of temperature and concentration are often
employed for developing models for predicting transport rates in several practical
circumstances. Thus, the approximation of derivatives is important in many practi-
cal problems and also in the solution of differential equations by the finite difference
approach, as presented in Chapters 9 and 10.

A simple approach to the derivation of the finite difference approximation to the
derivatives of a function f{x) is based on the replacement of infinitesimal differ-
ences by finite differences in the mathematical definition of differentiation. Finite
differences are considered in the variation of the independent variable x, and the
values of the function f{x) at discrete points are employed in deriving the approxi-
mation. Consider the variation of f(x) with x, as sketched in Figure 4.4. Three dis-
crete points, denoted by subscripts i — 1, 7, and i + 1, are shown along the x-axis.
We may approximate the derivatives of f(x), with respect to x, in terms of the cor-
responding discrete values.

The first derivative df/dx at x = x; can be approximated by Af/Ax, where A denotes
finite differences. Three approximations for (df/dx); can be written by considering
the differences between the values at the three discrete locations or nodes. These
approximations are as follows:

(%f) - % @.17)
(%) - % @.18)
(gﬁ) - fi+12;){i-1 4.19)

where the subscripts denote the nodal location, in x, where the quantity is evaluated.
The first approximation is known as the two-point forward difference approxima-

96 Computer Methods for Engineering with MATLAB® Applications

flx)

True derivative at x = x;
slope =£7(x;)

Forward
difference
Central

(1) Backward | difference
difference

[€—— Ax —>[¢—— Ax —>|

Xi-1 X Xisl x

FIGURE 4.4 Graphical representation of the forward, backward, and central finite differ-
ence approximations of the first derivative of a function f(x).

tion for (df/dx),, since only two nodes are involved and the value of the function in
the forward, or the increasing x, direction is employed. Similarly, the second
approximation, Equation 4.18, is known as the two-point backward difference,
and the third approximation, Equation 4.19, as the three-point central difference
approximation.

These approximations employ the slopes of the chords to the right of, to the left
of, and centered on the node point at x = x;, as shown in Figure 4.4, to approximate
the gradient of the function at x =x;. Since these are only approximations to the
derivative (df/dx);, an approximate equality sign (=) is used. The central difference
may be interpreted in either of the following two ways:

flzgl _ % [flA)—Cf A ;){1 } (4.200)
or
i+1 — Ji-1 171 1
f,+2A){ =Ax[2(f,.+1 +f,.)—§(fi +f;_1)] (4.20b)

The first equation represents an average of the two one-sided differences, and the
second the difference based on the average values of the function at (i + 1/2) and
(i — 1/2). Because the central difference averages out the variations on either side of

Taylor Series and Numerical Differentiation 97

the node x = x;, it is expected to be a more accurate representation of the derivative.
This is shown to be true on the basis of the Taylor-series approach presented in
Section 4.4.

Similarly, the finite difference approximation for the second derivative d?f/dx? at
X =Xx; may be derived. Thus,

dzf=d/df)=A(Af)=1 fa—f fi-fa

de " delde) T Al Ax) T A A Ax

or
&f _ fin=2fi+fia “.21)
dx? Ax2

Here, the difference in Af/Ax is approximated by the difference between the slopes
of the two chords, on either side of the node at x =x;. In fact, (f,,, — f)/Ax represents
the central difference approximation of the derivative at x =x; + (Ax/2), or i + 1/2,
since it uses the values on either side of this location, with discrete differences of
Ax/2 in x. Similarly (f; —f..;)/Ax represents the central difference approximation of
the derivative at x = x; — (Ax/2), or i — 1/2. Therefore,

a@f A/Af) (Af) (Af)]
dx? ~ Ax| Ax Ax
(i+1/2 i-1/2 (422)
dzf=1[fi+1 -fi _ Ji—fia } _ S =2f i+ fia
- Ax| Ax Ax (Ax)

The preceding finite difference approximation of the second derivative is known
as the three-point central second difference approximation. Other approximations
for the second derivative may also be obtained by employing other finite difference
representations in the above derivation. However, the central second difference is the
most frequently employed approximation. Similarly, finite difference approxima-
tions for higher-order derivatives may be derived. Again, several representations are
usually possible, with central differences being more accurate than one-sided differ-
ences, if the same nodal points are used in the two cases.

The direct approximation of the derivatives thus allows one to derive the
required finite difference representations. The approach is based on the mathe-
matical interpretation of differentiation, and, therefore, it provides a physical
background for the formulation of finite differences. However, it does not give any
information on the accuracy of a particular representation. For an estimation of
the error involved, we must employ the Taylor-series approach as described in
Section 4.4.

98 Computer Methods for Engineering with MATLAB® Applications

4.4 TAYLOR-SERIES APPROACH AND ACCURACY

The Taylor-series expansions about a given nodal point x = x; may be employed to
derive the finite difference approximations of the derivatives of a function f(x).
Since the error resulting from the truncation of the series after a finite number of
terms can be estimated from the remainder term, given by Equation 4.7, the errors
associated with the various finite difference approximations of the derivatives,
obtained by the Taylor-series approach, may also be estimated. Using this
approach, one can derive one-sided, forward and backward, and central difference
approximations.

4.4.1 FiNiTE DIFFERENCE APPROXIMATION OF THE FIRST DERIVATIVE

Consider the variation of the function f(x) with x, as shown in Figure 4.4. If the func-
tion f(x) is sufficiently smooth, it can be expanded in a Taylor series in the neighbor-
hood of x = x;. Assuming that the points x,_, and x,,, lie within the region of convergence
of the series, the function f{x) at these points is given by Equation 4.6 as

fr=f +Axf'+ (Ax) 1 WL(A;‘,)3 £ 4.23)
2 3
S = - re O f/’—%ﬁ"’w @24)

where the subscripts again denote the nodal locations, in x, where the function is
evaluated, and the primes denote differentiation with respect to x.
If Equation 4.23 is solved for the first derivative f[, we obtain

’ f+l f AX (Ax)z "
R R

When the infinite series is replaced by the remainder term, this equation becomes

S —fi Ax
fi'= le 3 —=f" (E) where x, <& < x,,,

f” xf + O(Ax) 4.25)

This equation gives the forward difference approximation of the first derivative,
given by Equation 4.17, along with the truncation error in the approximation.

Similarly, the two-point backward difference for the first derivative may be
obtained by solving Equation 4.18 for f][as follows:

r_ fz‘ _fi—l E "o_ (AX)Z "
f; - Ax + 2 f; 6 ﬁ +

Taylor Series and Numerical Differentiation 99

which gives

’ f;_\ft"— A.X "
fi= e 1+7f (g), where x, | <E< x,

- Jim T +O(Ax) 4.26)
Ax

The truncation error is of the same order as that in the forward difference approxi-
mation. Since the error terms are included in Equations 4.25 and 4.26, the approxi-
mate equality signs of Equations 4.17 and 4.18 are not needed here.

A more accurate finite difference approximation of the first derivative is obtained
by subtracting Equation 4.24 from Equation 4.23, to yield

' i+1 — Ji- A)C 2 "
f =%—% (E), where x,_; <€ <x,,,
_ flzg){l +O [(Ax)z] 4.27)

The result is the three-point central difference approximation of the first derivative,
as given earlier in Equation 4.19. The truncation error is on the order of (Ax)?, and,
therefore, this representation is more accurate than the forward and backward differ-
ences. Graphically, this expression approximates the derivative of the function f{x) at
x; as the slope of the line AC in Figure 4.4. The forward and backward differences
approximate the derivative by the slopes of the chords BC and AB, respectively. Also
note from the preceding expressions that if the step size Ax is halved, the truncation
error is also approximately halved for the forward and backward differences, whereas
the error becomes one-fourth for the central difference.

4.4.2 SecoND DERIVATIVE

A finite difference approximation for the second derivative f[may be derived by
adding Equations 4.23 and 4.24, yielding

Therefore,
=2 f) 2
f;‘// _ f;+1 (Ai;); ﬁ—] _ (Al-);) f//// (E), where X, < % <X,
- %*_ [O(Ax)z] 4.28)

100 Computer Methods for Engineering with MATLAB® Applications

flx)

ey i VT

Sflxisy) /”

Ax/2 | Ax/2 | Ax/2 | Ax/2

L X Xivy Kixl x

FIGURE 4.5 Graphical depiction of the finite difference approximation of the second
derivative.

The result is the second central difference, which was derived in the preceding sec-
tion by the direct approximation approach. The truncation error is O[(Ax)?], and,
therefore, this finite difference approximation is of second order. Graphically, this
expression approximates the second derivative by dividing the difference in the
slopes of the chords that approximate the first derivatives at x,,,,, and x,_,, by Ax; see
Figure 4.5. The slopes of these chords are approximated in the central difference
formulation as follows:

R R (L @29
and
7[5) = g = I w0 v @30)
Thus,
f‘” _ iLl/z _f;‘Lllz +0[(A)C)2]
! Ax
fin =2+ £
= il A L+o [(Ax)*] @.31)

Similarly, one-sided forward or one-sided backward differences may be derived
for £ by employing points on only one side of x = x;, rather than on both sides, as
done for the central difference. Let us consider, for example, the three points at x;,
X and x,,,, as shown in Figure 4.6. The Taylor-series expansion for f(x,) is given
by Equation 4.23, and the expansion for f(x,,,) is

ZAX 2 ZA)C 3 ZA.X ¢ "
(2') ﬁrl+(3') f;rrr +(4') f; IR (432)

Jua = Fi+ QA0 [+

Taylor Series and Numerical Differentiation 101

Sx) fin Siv2
fi_——T

fi—l/

o

[Ax > Ax P Ax > Ax—>

Xisl Xiyg X

FIGURE 4.6 Distribution of the nodal points for deriving forward, backward, and central
difference approximations for higher-order derivatives and also for higher-accuracy formulas.

Now, the first derivative f[may be eliminated from Equations 4.23 and 4.32 to yield
an expression for fj[. Thus, multiplying Equation 4.23 by 2 and subtracting the
resulting equation from Equation 4.32 gives

" f;‘+2 - 2.ﬁ’+1 + f; "

e I I (Ax
/ (Ax)? (/o) 4.33)
ﬁ// - f;’+2 _(z’){;)zl +f;' + O(Ax)

This result is the forward difference approximation of the second derivative. This
approximation is accurate to within an error of order Ax.

Similarly, the backward difference approximation may be obtained by employing
the Taylor-series expansions for f{x,_,) and f(x, ,) as follows:

_h=2ft fi

AP +O0(Ax) 4.34)

f//
i

Note again that the forward and backward difference approximations are less accu-
rate than the central difference approximation if the same number of nodal points is
used in all three cases. Higher-order approximations may be derived by employing
additional points, as shown later. Even though the one-sided differences are less
accurate than the central difference, they are often employed for approximating the
derivatives, particularly near the boundaries of a computational domain since nodal
points may be available on only one side of the boundary.

4.4.3 HIGHER-ORDER DERIVATIVES

The finite difference approximations of higher-order derivatives may be derived by the
use of Taylor-series expansions, as outlined earlier for the first and second derivatives.

102 Computer Methods for Engineering with MATLAB® Applications

However, the derivation becomes more involved as one proceeds to successively
higher derivatives since an increasingly larger number of simultaneous equations
must be solved. The larger number of equations is obtained by employing expansions
at a larger number of nodal points. Thus, the formulas for the third and fourth deriva-
tives may be obtained by employing the expansions for f;,, and f;_,, given by Equations
4.23 and 4.24, along with those for f;,, and f,_,. The expansion for f, is given by
Equation 4.32, and that for f,_, is

(2Ax)*
2!

n (2Ax)3 nr (ZAX)4 nn 4'35
fi—3!fz+4!f;+”‘()

fia=fi-QA0f +

Subtracting Equation 4.35 from Equation 4.32, we obtain

S(Ax)

Jisa = fin =4Ax f — S+ [(AX)S]

The substitution of the finite difference expression for f[from Equation 4.27 gives

_f 2
St =t Lol SO0 g o ar)+ B g o sy

This yields

g da =2t 2 2l of (] @36)

2(ax)’

Similarly, the finite difference approximation for the fourth derivative f[][may be
derived by adding Equations 4.32 and 4.35 and then substituting the approximation
for f[. The resulting approximation is

_ S A 6 -Af+ fin (Ax)* ﬁ

f;/w _ (Ax)4 6 di (E); where Xio < E < X2
_ Jisr =4fin ";2}]:)4_ 4fii+ Jio +0 [(Ax)z] 4.37)

Thus, the five grid points shown in Figure 4.6 are involved in the finite difference
expression for the fourth derivative f[[, with a truncation error of order (Ax).
The corresponding expression for f,"’ also involves these points, except for f;
which drops out in the derivation. By employing a still larger number of points,
one may derive expressions for the fifth and sixth derivatives to the same accuracy.

Taylor Series and Numerical Differentiation 103

However, these derivations are quite involved because of the large number of
equations to be solved. Another method, which is based on difference and deriva-
tive operators, may often be employed more easily for the derivation of higher-
order derivatives. This approach is discussed by Salvadori and Baron (1961) and
Hornbeck (1975).

Equations 4.36 and 4.37 give the central difference approximations of the third
and fourth derivatives of f(x), respectively. Similarly, one-sided forward or one-sided
backward differences may be derived. As mentioned earlier, one-sided differences
are of interest in only a few cases, such as near the boundaries of the computational
region. The central differences are much more important and are employed for the
approximation of the derivatives in a wide variety of engineering problems. Several
of the commonly used finite difference formulations are given in Figures 4.7 through
4.9, including higher-accuracy formulas discussed in Section 4.4.4.

4.4.4 HIGHER-ACCURACY APPROXIMATIONS

The Taylor-series approach for the derivation of finite difference formulas may be
employed for obtaining approximations of higher accuracy, that is, smaller truncation

Forward Difference Approximations of O(Ax)

r_ ﬁ+l —Ji
LI
f/! _ f;+2 _2ﬁ+1 +ﬁ
' (Ax)?
f_m _ ﬁ+3 _3.](;42 +3fz"+1 _.f;'
' (Axy’
fmr - f;’+4 _4f;'+3 +6ﬁ+2 _4f;'+l +f;'

(Ax)*

Forward Difference Approximations of O[(Ax)?]

f/ _ _fi+2 +4fz"+1 _3ﬁ
! 2Ax
" _ﬁ+3 +4f;'+2 _5ﬁ+l +2f;
l (Ax)?
f/// — _3ﬁ+4 +14f;+3 _24.f;'+2 + 18f;+1 _5.](;
' 2(Ax)?
e “2fis + 111y =24f,,5 +26f,,, - 14f,, +3f,

(Ax)!

FIGURE 4.7 Forward finite difference formulas, along with the truncation errors.

104 Computer Methods for Engineering with MATLAB® Applications

Backward Difference Approximations of O(Ax)

r_ f; _f;—
fr=dida
"o_ f; _2f;—1 +Jia
f;' - (Ax)z
f//l - f; _3ﬁ—1 +3ft"—2 _ﬁ—3
' (Ax)’
f//// _ .f; _4.](1“—1 +6ﬁ—2 _4f1"—3 +.f;—4
' (Ax)*

Backward Difference Approximations of O[(Ax)?]

[= 3fi-4fia+fia
! 2Ax
fr = 2fi =Sfia+4fin - fis
’ (Ax)?
fr= 5H-18f 1 +24f , -14f 5 +3fi,
t 2(Ax)’
£ = 3fi-14f +26f_, -24f s +11f_4 -2f._;

(Ax)!

FIGURE 4.8 Backward finite difference formulas, along with the truncation errors.

error than given thus far. All the finite difference representations derived earlier had
a truncation error of order Ax or (Ax)?. Although an accuracy of O[(Ax)?] is adequate
for most problems of practical interest, since we can choose smaller Ax to improve
the accuracy, higher-accuracy formulas are often employed if a given circumstance
demands very accurate numerical results. Such a requirement arises, for instance, in
the determination of the displacement and velocity of a projectile or of a robotic
arm.

Higher-accuracy formulas can be developed by including additional terms in the
Taylor-series expansions. However, a larger number of grid points will be required to
generate the additional equations needed for eliminating the higher-order derivatives
that arise due to the retention of additional terms. Consider, for example, the forward
difference expression for the first derivative fi. As obtained earlier,

If instead of truncating the series after the first term, as done earlier, we retain the
term of order Ax and substitute the forward finite difference expression for f, we

Taylor Series and Numerical Differentiation 105

Central Difference Approximations of O[(Ax)?]

r_ ﬁ+1 _f;’—l
LT
"o_ f;‘+1 _2f; +ﬁ—l
fz" - (Ax)z
f/// - f;’+2 _2ﬁ+1 + 2ﬁ—1 _ﬁ—2
' 2(Ax)’
f//r/ _ .f;‘+2 _4ﬁ+l +6fz‘ _4ﬁ—1 + /i
' (Ax)*

Central Difference Approximations of O[(Ax)*]
~fi2 +8fi =8 S+ fi

fi = 12Ax
f// - _fz"+2 + 16fi+1 _30.f; + léﬁ—l _ft"—Z
! 12(Ax)?
£ = [z 8 —13fi +13f, -8f, + fis
! 8(Ax)?
f///r — _fz"+3 + 12f;+2 - 39f;+l + 56f; - 39ﬁ—l + 12fi-2 - ﬁ—3

6(Ax)*

FIGURE 4.9 Central difference approximations, with the associated truncation errors.

will obtain a higher-accuracy forward difference expression for fi. Thus, from
Equation 4.33,

_ f;+1_ﬁ _H ﬁ+2_2ﬁ+l+ﬁ' _Axf/// . _(Ax)Z

ﬁ, _ . . (Ax)z c f;m +
_—fir +24 Aj;l -3f; (A;c)2 Iz (4.38)
’ _.f;’+ +4f;'+ _Sf;

ﬁ _ 2 e 1 +0 [(Ax)Z]

Similarly, a backward difference expression of O[(Ax)?] may be obtained by retain-
ing an additional term in the backward difference expression for f[and substituting
the backward difference formula of O(Ax) for f[.

Formulations of still higher accuracy can be obtained by retaining additional
terms in the series. As seen in Equation 4.38, the value of the function at an addi-
tional grid point, x,,,, is brought in to obtain the higher accuracy. Similarly, finite
difference expressions for f with truncation errors of order (Ax)* and (Ax)* are
obtained as follows:

1 Ax)?
fi= E(—me +9f_, -18f_, +11f)+ (4) ") 4.39a)

106 Computer Methods for Engineering with MATLAB® Applications

Fe 165,436, —48f, +255)+ A gy @30b)
i 12Ax i-4 i-3 i-2 i-1 i 5 i :

1 Ax)*
B = o o =8 #8f)+ S 17) 390

where is within the range of the appropriate expansion. The first two equations are
third- and fourth-order correct backward differences. The third equation is a fourth-
order accurate, five-point central difference approximation for the first derivative at
x =x;. With these five points, a higher-order approximation for the second derivative is

1

1 = Ty [#1600 =30 416 £ = £
4 46
(AQJE)) % (§), where x,_, <E<ux,,, (4.40)

It is evident that finite difference approximations of desired accuracy may be
derived by the use of Taylor-series expansions. As shown later in Chapters 9 and 10,
most finite difference solutions of ODEs and PDEs are based on expressions of accu-
racy O[(Ax)?]. However, finite difference representations of higher accuracy are also
employed, depending on the special needs of a given problem.

The accuracy of the numerical results may be improved either by employing a
higher-accuracy formula or by reducing the grid spacing Ax. As discussed in Chapter 2,
both of these approaches are employed in practice. Grid refinement, or reducing Ax,
is generally carried out until the numerical results are essentially unaffected by a
further reduction. At this stage, the numerical results are as accurate as can be obtained
with the chosen finite difference expression. A continued reduction in grid spacing
will lead to increasing round-off error and, thus, less accurate results. Then the accu-
racy of the results can be increased by using a higher-accuracy formulation.

An interesting point that may be observed from all the finite difference expres-
sions given here is that the sum of all the coefficients, which multiply the function
values in the numerator, is always zero. This result arises because the derivatives
must become zero if f{x) is a constant. Also, if Ax approaches zero, the numerator
must also approach zero so that the limiting result obtained as Ax — 0 yields a finite
value for an arbitrary continuous function f(x).

Example 4.2

An engineer involved in the design of automobiles uses an experimental system
for studying the motion of a wide variety of vehicular devices in a full-scale labo-
ratory environment. One particular test involves an accurate measurement of the
displacement x of the vehicle as a function of time t. This information is then used
to determine velocity V, acceleration A, and rate of change of acceleration F as
functions of time. In a given experiment, the displacement x was measured over

Taylor Series and Numerical Differentiation 107

a time range of 0-10's, at steps of 0.1 s. Some of the results obtained are given as
follows:

t(s) 0.0 0.1 0.2 0.3 0.4 0.5
x(m) 0.0 0.8733 1.8224 2.8611 4.0032 5.2625
i(s) 0.6 0.8 1.0 1.2

x(m) 6.6528 9.8816 13.80 18.5184

From these data, compute V, A, and F at t=0s, employing forward differences, and
at t=0.3, employing central differences, with a step size At of 0.1 s. Repeat these
calculations for t=0s and t=0.6 s, with a step size At of 0.2 s.

SOLUTION

The velocity V, the acceleration A, and the rate of change of acceleration F are
given in terms of the displacement x and time ¢ by

2 3
_dx A_dx F_dx

V = — = - = -~
dt’ de?’ de?

(4.41)

Since measurements are available only for t>0, the values at t=0s can be
computed only by forward differences. At t=0.3 s, central differences can be
employed with a step size of 0.1 s, and at t=0.6 s, central differences with a step
size of 0.2 s can be employed, according to the data given.

Various orders of approximation may be considered. The formulas needed for
forward differences of O(At) and O[(At)’] are given in Figure 4.7. In addition, for-
mulas of O[(A)?] and O[(A)*] may be obtained, where t is the independent vari-
able, instead of x, in Figures 4.7 through 4.9. For the first derivative, Equations
4.39a and 4.39b give the formulas for backward differences. Similarly, for forward
differences, the first derivative may be approximated, for a function f(t), by

_ b

f,-/
6At

(2f}+3 - 9ff+2 + 18f}+1 -1 1](/) + O [(At)s] (442a)

1
12At

fi = (=3fiea + 16fi3 = 36,5 + 48f; = 25f) + O[(A)*] (4.42b)

These two formulas are employed, in addition to those given in Figure 4.7, in
order to demonstrate the effect of higher-order forward difference approxima-
tions on the numerical results for the velocity V. It is seen from Equation 4.42b
that five points, including the one at which the derivative is sought, are needed
in the forward direction to obtain an accuracy of O[(At)*]. For computing A and F
by forward differences, only formulas of O(At) and O[(At)?] are used. The central
differencing formulas of O[(At)?] and O[(At)*] are given in Figure 4.9. These may
be employed for the computation of the first, second, and third derivatives needed
in the present case.

A calculator may be used to carry out these calculations or a computer program
may be written in MATLAB or Fortran for solving this problem. For example, the time

108

FIGURE 4.10

t at which the derivatives are to be computed can be entered in terms of the integer
variable |, where /=1 att=0s. Then, / is taken as 4 at t = 0.3 s, with At=0.1 s, and
att=0.6s, with At=0.2 s. The step size At also can be entered interactively, as are
the data values needed for the computations. For forward differences, the values of
x atfive points, [, [+ 1, ..., I+4, are to be entered. Similarly, for central differences,
the values of x at six points, /-3, /-2, ..., 1,..., I+3, are needed. The program
would first employ forward differencing to compute the derivatives and then central
differencing.

Typical numerical results obtained from such a computer program are shown
in Figures 4.10 and 4.11. Here, V, A, and F represent the velocity, acceleration,
and rate of change of acceleration. The numbers after these variables indicate the
order of the approximation and the numbers within the parentheses the index /
that labels the time at which the quantity is computed. Also, T represents the time ¢
and DT the time step At. First, consider forward difference results, shown in Figure
4.10, note that the velocity V converges to 8.4 m/s as the order of the approxima-
tion is increased. A considerable error is observed for the first-order approxima-
tion, particularly for the larger At (0.2 s), as expected. However, the third-order
approximation is adequate for this problem, since essentially no change is observed
by going to the fourth-order approximation. The acceleration A is given as 6.2 m/
s? by the second-order approximation at both the mesh sizes considered. Again,
the first-order approximation is in considerable error, particularly at At=0,2 s. The
computed value of F is found to be 13.8 m/s* at At=0.2 s, although a variation is
observed from the first-order to the second-order approximation at At=0.1s. In
this problem, F is a constant at 13.8 m/s?, as illustrated by the remaining results, dis-
cussed below. Thus, a higher-order approximation will not improve the accuracy

FORWARD DIFFERENCES

INPUT DATA:

ENTER THE VALUES OF I, T AND DT

0 0.0 0.1

ENTER THE MEASURED VALUES OF X(I) TO X(I +4)

0.0 0.8733 1.8224 2.8611 4.0032
CALCULATED RESULTS:

TIME = 0.0000 TIME STEP = 0.1000

VI1=8.7330 V2=28.3540 V3=8.4000 V4=28.4000
Al=7.5800 A2=6.2000 FI=13.7998 F2 =13.7997

INPUT DATA:

ENTER THE VALUES OF I, T AND DT

0 0.0 0.2

ENTER THE MEASURED VALUES OF X(I) TO X(I +4)

0.0 1.8224 4.0032 6.6528 9.8816
CALCULATED RESULTS:
TIME = 0.0000 TIME STEP = 0.2000

V1=9.1120 V2=28.2160 V3 =8.4000 V4=2_8.4000
Al=8.9600 A2=6.2000 FI=13.8001 F2=13.8001

problem given in Example 4.2.

Computer Methods for Engineering with MATLAB® Applications

Numerical results obtained by employing forward differences for the

Taylor Series and Numerical Differentiation 109

CENTRAL DIFFERENCES

INPUT DATA:

ENTER THE VALUES OF I, T AND DT

4 0.3 0.1

ENTER THE VALUES OF X(I1X 3) TO X(I + 3)

0.0 0.8733 1.8224 2.8611 4.0032 5.2625 6.6528
CALCULATED RESULTS:

TIME = 0.3000 TIME STEP = 0.1000

V2=10.9040 A2=10.3399 F2=13.8004

V4 =10.8810 A4 =10.3399 F4 =13.8004

INPUT DATA:

ENTER THE VALUES OF I, T AND DT

4 0.6 0.2

ENTER THE VALUES OF X(I1X 3) TO X(I + 3)

0.0 1.8224 4.0032 6.6528 9.8816 13.8 18.5184
CALCULATED RESULTS:

TIME = 0.6000 TIME STEP =0.2000

V2=14 6960 A2=14.4800 F2=13.8000

V4 =14.6040 A4 =14.4799 F4=13.7999

FIGURE 4.11 Numerical results obtained by employing central differences for the problem
given in Example 4.2.

if the function being considered is a polynomial of lower order. Of course, for an
arbitrary function, accuracy is generally improved by employing a higher-order
approximation.

The results from central differencing, shown in Figure 4.11, indicate only small
changes from the second-order to the fourth-order approximations. Thus, the
second-order formulas are adequate for this problem, as is often the case in most
engineering problems. Att=0.3 s, V, A, and F are obtained as 10.881 m/s, 10.34 m/
s?, and 13.8 m/s?, respectively. Similarly, at t=0.6s, V, A, and F are obtained
as 14.604 m/s, 14.48 m/s?, and 13.8 m/s?, respectively. Again, the second-order
approximations are found to be adequate.

Example 4.2 has illustrated the use of numerical differentiation in a practical cir-
cumstance. The displacement x can generally be measured very accurately as a func-
tion of time #, and finite difference formulas can then be employed to yield velocity,
acceleration, and so on. Forward and backward differences are generally used only at
the start and the termination of the measurements, central differences being appropri-
ate for other times. Although higher-order approximations may be used, second-order
formulas often yield satisfactory accuracy in most problems of engineering interest.

4.5 POLYNOMIAL REPRESENTATION

Another frequently employed approach for the derivation of the finite difference
approximations to the derivatives of a given function f(x) is based on a polynomial fit
to the values at the given grid points. Depending on the order of the derivative whose

110 Computer Methods for Engineering with MATLAB® Applications

approximation has to be obtained and the desired accuracy, the order of the polyno-
mial may be chosen. For an nth-order polynomial, (n + 1) grid points are needed to
evaluate all the coefficients that appear in the polynomial. Curve fitting is discussed
in detail in Chapter 7, and only a few simple aspects are presented here in order to
obtain the finite difference approximations.

By way of illustration, let us consider fitting a second-order polynomial to the
three grid points shown in Figure 4.12. The function f(x) is taken as

) =Ay+Ax + Ax2 4.43)

Fitting this parabola to the three points yields

fi=Ag+ A+ Apx;? (4.44a)
Jin =Ag+Aj(x; + A0) + Ay(x; + Ax) (4.44b)
Jia=Ao + A\(x; + 2A%) + Ay(x; + 2Ax)° @.44¢)

From these equations, the coefficients A, A,, and A, may be determined. The first
and second derivatives of the function are given by

i =A +2Ax, 4.45)

£ =24, (4.46)

Since the finite difference expression should depend only on the relative positions
of the grid points, that is, it should be independent of the absolute location of the
points, any arbitrary value of x; may be taken. The algebra is simplified if x; is taken

Sflx)
fi
ft+1
fi+2
<— Ax—><—Ax—)>
Xi Xit1 Xit2 x

FIGURE 4.12 Uniform one-sided distribution of grid points used for illustrating the deriva-
tion of the finite difference approximations of the first and second derivatives by means of a
second-order polynomial representation of the function f(x).

Taylor Series and Numerical Differentiation 111

as 0 so that x,,; = Ax and x,,, = 2Ax. However, the resulting expressions for f and f;[
are the same whatever the value of x;. These expressions are obtained from Equations
4.44 through 4.46 as follows:

! _.fi+2 + 4.f;'+l - 3];
i = et M 230 (4.47)
and
"o_ f;’+2 - 2f;+l + f; 4.48
= Gy o

The approximations are identical to those derived earlier from the Taylor series;
see Equations 4.33 and 4.38. The first expression was shown to have a truncation
error of O[(Ax)?] and the second one of O(Ax). Both the equations give forward
difference approximations because of the chosen grid points, which are on one side
of x = x; in the direction of increasing x. The error term is not explicitly given by
this approach. For an accurate evaluation of the error, one must resort to the Taylor-
series approach.

The polynomial representation is particularly useful in the derivation of finite dif-
ference expressions for grid points that are located at nonuniform distances from
each other. For instance, consider the distribution shown in Figure 4.13. Taking
x; =0, x;,; = Ax, and x;,, = 3 Ax, the parabola of Equation 4.43 gives

fi=4A (4.49a)
fin =Ag+ A Ax + Ay(Ax)? (4.49b)
fin =4+ A,(3Ax) + A,(3Ax) (4.49¢)

Slx)
finz /
Sin
Ji
AxP€——2A x—>|
Xi Xivl Xiy2 x

FIGURE 4.13 Nonuniform distribution of grid points employed for illustrating the use of a
polynomial representation of f(x) to derive the finite difference approximations of the
derivatives.

112 Computer Methods for Engineering with MATLAB® Applications
with
f0)=A, and f7(0)=2A4, 4.50)

From these equations, we obtain the finite difference expressions for f[and f|[as
follows:

’ _.f;+2 + 9]1"+1 - 8ft
f = e 4.51)
and
fr o Jma =3 +2f 4.52)
i 3(Ax)2

Similarly, expressions for other arbitrary distributions of grid points may be
derived. This approach is frequently employed for determining the derivatives from
experimental data. Examples of such data are those pertaining to the variation of
material properties and of physical quantities such as pressure and density with an
independent variable, such as temperature. Such data are generally available at non-
uniformly distributed values of the independent variable, and the polynomial
approach provides a simple method for computing the derivatives.

4.6 PARTIAL DERIVATIVES

In the preceding sections, we have considered the numerical differentiation of an
arbitrary function f(x) that depends on a single independent variable x. The finite
difference representations of the ordinary derivatives of the function were derived by
considering the variation with x. However, in engineering problems, we frequently
encounter circumstances where the dependent variable is a function of two or more
independent variables. In such cases, partial derivatives arise, and the finite differ-
ence approximations of these derivatives are of interest. Since a partial derivative is
defined in terms of the variation of the function with a given independent variable
while the others are held constant, the finite difference approximations are analo-
gous to those for the ordinary derivatives.

Consider, for instance, a function f(x, y). Then the partial first derivatives of the
function are (df/dx) and (df/dy), where y is kept constant in the first case and x in the
second. The variables that are held constant for a particular differentiation are
sometimes indicated by means of subscripts as, for instance, (df/dx), and (df/dx),.
However, it is understood that for the partial differentiation df/dx, only the varia-
tion of f{x, y) with x is under consideration, y being kept unchanged. Since two
independent variables, x and y, are involved, a location in the computational domain
is represented by two subscripts, instead of only one needed for ordinary deriva-
tives. Thus, the value of the function f(x, y) at a grid point represented by indices
(i, j) may be denoted as f; ;, where x = iAx and y = jAy, as shown in Figure 4.14.
Such a grid is employed in the solution of PDEs by finite difference methods, as
discussed in Chapter 10.

Taylor Series and Numerical Differentiation 113

fi+1,/+1
I
fi—l,/‘ f;;,/ fi+1,/‘
I
fi+1,/‘—1

Computational
domain

FIGURE 4.14 A two-dimensional grid indicating the finite number of locations at which the
function f(x, y) is evaluated in the computational domain.

Considering the variation of the function f(x, y) with x alone, we may write the
finite difference approximations of the first and second derivatives, in a manner anal-
ogous to that outlined in Section 4.3:

of _ fi+1, i~ f; j .
(ax),-,— = A Forward difference 4.53)
af fl‘] f; 1j .
(ax)i] Ax Backward difference 4.54)
(gﬁ)” = f””z%b{’_l’ Central difference .55)

Second central difference 4.56)

ﬁ _ Sy =2f 5+ fior
) 5

Therefore, the subscript j is not varied in these expressions. Its presence indicates
that the function also depends on another independent variable.

Similarly, the partial derivatives with respect to y may be obtained. Thus, the
central differences yield
af f;,j+1 - ﬁ,j—l
(ay) = 2Ay 4.57)

ij

114 Computer Methods for Engineering with MATLAB® Applications

(azf) = i =2fi * fijm 4.58)

ay* (Ay)?

In this case, the subscript i is not varied. Thus, all the expressions derived in the
preceding sections may easily be extended to partial derivatives.

The derivation of the finite difference approximations for partial derivatives may,
again, be based on direct approximation, the Taylor series, or polynomial representa-
tion. The Taylor-series expansions about the point (i,j) may be written as

9 Axy (9 Ax) (9

d Ay)* (32 Ay)? [9*

The remainder terms may also be obtained for truncation after a finite number of
terms, as outlined earlier for ordinary derivatives. The remainder term for trunca-
tion after the term containing the mth power of Ax, that is, after (m + 1) terms in
Equation 4.59 is

m+1 m+l1
R,. =D Eﬁﬁl)'((z)x'"f) , wherei<E<i+1 4.61)
’]

Similarly, the remainder term R, is obtained as O[(Ay)"*'] for truncation after
(m + 1) terms in Equation 4.60. The total remainder term is the sum of R, . and R, ,
as discussed in Chapter 10.

Thus, the finite difference approximations may be derived from the Taylor-series
expansions, as given earlier. Sometimes cross derivatives such as 0%f/dxdy have to be
evaluated. The corresponding finite difference representations may be derived by
applying the approximation twice for the two differentiations with different indepen-
dent variables. A two-variable Taylor-series expansion for f(x, y) may also be employed
for the purpose, as outlined by Jaluria and Torrance (2003).

Partial derivatives are of interest in many important engineering applications,
such as those that involve fluid flow, heat and mass transfer, thermodynamics, chemi-
cal reactions, structural vibrations, and electrical fields. Obviously, these topics
encompass a wide range of engineering problems, extending from aerospace and
environmental problems to nuclear and chemical reactors and power plants. Partial
differential equations, which are discussed in detail in Chapter 10, govern such phys-
ical phenomena. The finite difference approximations of the partial derivatives are
then employed for developing the numerical procedure for solving these problems.
An example on the evaluation of partial derivatives is given in the following.

Taylor Series and Numerical Differentiation 115
Example 4.3
Planck's law for blackbody radiation is given as

C

Epn (}"T) = MM]

(4.62)

where ¢; =3.7413 x 108 W um*m?, ¢, =1.4388 x 10*um K, A is wavelength
in um, and T is temperature in K. £, is a function of A and 7, and is known
as the monochromatic emissive power of a blackbody (see Figure 1.3). Thus,
E., is a function of A and T. Partial derivatives of £, are of interest in areas
such as physics and heat transfer. Numerically determine 9f,,/0A and oEy,/dT at
A=4pm and T=1600 K. Repeat the calculation for A =2 um and T=1000 K.
Use different values of AL and AT to ensure accuracy of your results, employ-
ing the second-order formula for the derivative. Compare your results with ana-
lytical ones.

SOLUTION

Energy transfer by radiation is of importance in several areas of engineering and
physical sciences. Planck's law is of considerable value in the calculations for
energy transfer since it gives the characteristics and magnitude of energy lost
through thermal radiation by an idealized surface, termed blackbody, as func-
tions of temperature T and wavelength A. Our interest here lies in numerically
evaluating the rate of change of the emissive power E,, with these two indepen-
dent variables. The results are to be obtained at the two sets of values given for A
and T. Also, the step sizes AL and AT are to be varied so that we may study their
effect on the results and choose the most appropriate values, as outlined earlier
in Section 2.5.

The problem is fairly straightforward, and a calculator may be used for the
calculations or a simple computer program may be written for obtaining the
required numerical results. In such a program, the function E,(A,T) needs to be
defined and the constants ¢, and ¢, specified. The input values for A and 7, at
which the gradients oE,,/0h and oE,/dT are to be determined, can be entered
interactively. The starting values of the step sizes AL and AT can be taken as
1 um and 500 K. These can then be successively halved in the program, and
the corresponding derivatives computed by the following central differencing
formulas for a function f(x,y):

of _ F(x+ Axy) = f(x+Axy) (4.632)

ax 2Ax

if= f(x,y+Ay)—f(x,y+Ay) (4.63b)
ay 2Ay

116 Computer Methods for Engineering with MATLAB® Applications
Therefore, an appropriate computer program may be written as :

ebl=1inline ('3.7413*1078/ ((x"5) * (exp(1.4388*10%4/ (x*t))...
-1))'); x=4;t=1600;

fprintf (' WAVELENGTH= %.2f TEMPERATURE= %.2f\n',x,t)

fprintf ('DX DE/DX DT DE/DT\n')

for i=0:12

dx=1/(2"1) ;dt=500/(2"1) ;

dxebl = (ebl (t,x+dx) -ebl (t,x-dx)) / (2*dx) ;

dtebl = (ebl (t+dt, x)-ebl (t-dt,x))/ (2*dt) ;

fprintf ('%.5f $.2f %$.3f %$.2f\n',dx,dxebl,dt,dtebl)

end

where the given function is defined as ebl (tx), the two independent variables,
temperature t and wavelength x, being assigned alphabetically. The derivatives
with respect to x and t are represented by dxebl and dtebl, respectively.

The numerical results obtained are presented in Figure 4.15. The wave-
length step size AL is varied from 1.0 to 0.00024 pm, and the temperature step
size AT from 500 to 0.122 K. The step sizes are halved in each successive
computation. Here, X and T refer to A and T, respectively. DX refers to Ak and
DT to AT, while DE/DX and DE/DT refer to the derivatives dF,,/0A and oF,;/dT,
respectively. Note that dE,,/dT approaches a constant value, as AT is reduced,
much more rapidly than of,,/0A, with reduction in AA. This indicates that the
results are more sensitive to variations in A, as is also evident from the A°
dependence in the denominator of the function £,,; see Equation 4.62. From
the numerical results presented in Figure 4.15, the computed values of both
0E;,/dT and 9E,;,/dh vary monotonically from the starting value of AA until
they reache constant values at small AA. For still smaller AL, the values may
oscillate due to the appearance of significant round-off error. Thus, dE,;/dT is
evaluated as 67.77 W/m?2 um K at A=4 um and 7=1600 K and as 63.27W/
m2um K at A=2um and T7=1000K. Similarly, 9E,,/oh is evaluated as
-26,813.97 W/m? um? at A=4 um and T = 1600 K and as 9664.07 W/m? um?
at A =2 um and T=1000 K.

The corresponding analytical values may also be determined by using math-
ematics to differentiate £, successively with respect to the two independent vari-
ables A and T. The given sets of input values may then be substituted into the
mathematical expressions obtained. The analytical results thus obtained are as
follows:

L,/ E, /T
A=4, T=1600 -26,813.970 67.765
A=2, T=1000 9664.069 63.268

Therefore, the numerical results obtained are essentially identical to the analytical
results at the chosen values of the step sizes. Obviously, at large values of the step
sizes, the numerical results are in considerable error; see Figure 4.15. An appropri-

Taylor Series and Numerical Differentiation 117

WAVELENGTH =4.00 TEMPERATURE = 1600.00

DX DE/DX DT DE/DT
1.00000 —28565.47 500.000 65.96
0.50000 —27287.70 250.000 67.32
0.25000 —26934.25 125.000 67.65
0.12500 -26844.15 62.500 67.74
0.06250 —26821.52 31.250 67.76
0.03125 —26815.86 15.625 67.76
0.01562 -26814.44 7.812 67.77
0.00781 -26814.09 3.906 67.77
0.00391 -26814.00 1.953 67.77
0.00195 —26813.98 0.977 67.77
0.00098 -26813.97 0.488 67.77
0.00049 -26813.97 0.244 67.77
0.00024 -26813.97 0.122 67.77

WAVELENGTH =2.00 TEMPERATURE = 1000.00

DX DE/DX DT DE/DT
1.00000 6308.24 500.000 97.40
0.50000 8804.91 250.000 72.68
0.25000 9456.31 125.000 65.68
0.12500 9612.72 62.500 63.87
006250 9651.27 31.250 63.42
0.03125 9660.87 15.625 63.31
0.01562 9663.27 7.812 63.28
000781 9663.87 3.906 63.27
0.00391 9664.02 1.953 63.27
0.00195 9664.06 0.977 63.27
0.00098 9664.07 0.488 63.27
0.00049 9664.07 0.244 63.27
0.00024 9664.07 0.122 63.27

FIGURE 4.15 Numerical results obtained for Example 4.3, indicating the dependence of the
computed derivatives on the step sizes AA and AT.

ate reduction in step sizes is, therefore, needed until the change in the numerical
results is small.

4.7 SUMMARY

In this chapter, we have considered the basic concepts underlying numerical differ-
entiation and finite difference calculus. Three different approaches, namely, direct
approximation, Taylor series, and polynomial representation, are presented for the
derivation of the finite difference approximations to the various derivatives of an
arbitrary function f(x). The truncation error resulting from the retention of a finite

118 Computer Methods for Engineering with MATLAB® Applications

number of terms in the Taylor series is considered in detail and is related to the accu-
racy of the various finite difference approximations. The general procedures for
deriving finite difference expressions of higher accuracy and those for higher-order
derivatives are outlined. The Taylor-series approach is the preferred one since it also
yields the error, which the other two methods, although relatively simpler to employ,
do not. In addition, the Taylor-series expansions may be successively applied to
improve the accuracy of the finite difference approximation, if a higher level of accu-
racy is desired in a given application. The polynomial representation approach is
particularly useful if a nonuniform distribution of grid points is employed. Finally,
the chapter discusses partial derivatives and shows how the finite difference approxi-
mations may easily be obtained from those for ordinary derivatives.

PROBLEMS

4.1. Derive the Taylor-series expansions for sin x, (1 —x)7, and ¢*, about
x = 0. Are there any constraints on lx| for the series to be convergent?
Why does the series for log(l — x), derived in Example 4.1, converge
only if Ixl < 1?

4.2. Using the Taylor series for e* and sin x, obtain the series for e* sin x, about
x=0. Compute the value of ¢? sin 0.2 by a summation of the series,
retaining terms so that the first neglected term is O[(Ax)*]. Compare
your result with the true value of the function e* sin x at x = 0.2.

4.3. Show that the Taylor-series expansion for x> about x = 0 is x7 itself.

4.4. Calculate %3 by employing the Taylor series for e*. How many terms
are needed if the error from the true value of the quantity 3 is to be
less than 0.01%?

4.5. The pressure p of a gas is given by the expression log p = 21.6-2420/7,
where T is the temperature in kelvins. Using the exact value of p from
this expression, at 7=400 K, and the Taylor-series expansion for
p(T), compute the pressures at 410, 420, and 450 K. Compare these
values with the exact ones obtained from the given expression. Refer
to Example 4.1b.

4.6. Compute the value of e5"® at x = (.25, employing the corresponding
Taylor-series expansion, and compare the result with the exact value.

477. Consider the function f(x) = 2x"? + 3x. The derivatives of the function
atx = (are all infinite, and therefore the Taylor-series expansion about
x =0 cannot be obtained. Instead, obtain the series about x = 0.1 and
also about x = 0.2. Compare the two and comment on the difference.

4.8. Compute the first and second derivatives of sin x and e* at x = 0, employ-
ing forward and central differencing formulas of O[(Ax)?]. Consider
three values, 0.2, 0.1, and 0.01, of the step size Ax. Compare the numeri-
cal results obtained with the exact, mathematical values of the deriva-
tives. Discuss the effect of Ax on the accuracy of the numerical results.

49. Calculate the numerical value of d[(sin x)*"]/dx at x = 1, using central
difference approximations of O[(Ax)?]. Start with Ax = 0.2 and reduce
it until the numerical result remains essentially unaffected by a further
reduction in Ax.

4.10. Consider the expressions for computing the PW and FW of a series of
equal monthly payments, given by Equations 2.4 and 2.5, respectively.

Taylor Series and Numerical Differentiation

4.11.

4.12.

4.13.

4.14.

4.15.

It is important for the economic planning of an engineering system to
determine the effect of a change in the interest rate x on PW and FW.
Compute the rate of change of these quantities with x, at x = 10%, for
R =3$1000 and m = 240 months. Also, refer to Example 2.2 for details
on this problem. Employ an appropriate value of Ax, as discussed in
Section 2.5.
In Problem 4.10, compute d(FW)/dm and d(PW)/dm, where m is the
number of months, at x = 10%, m = 240, and R = $1000.
The measured temperature distribution in a solar energy heating system
may be represented by the equation

T(x)=15.5+68.2 [1 - M}

A+ x?)

where x is the distance away from the surface being heated and T is
the temperature. Compute the temperature gradient d7/dx and the sec-
ond derivative d’7T/dx? at x = 0. The heat transfer rate is proportional
to the temperature gradient at x = 0. The second derivative is related
to energy lost or gained by radiative transport. Employ forward dif-
ferences to O[(Ax)?] and reduce Ax to obtain numerical results that are
largely independent of the value of Ax chosen.

For the problem considered in Example 4.2, if, in addition to the data
given, the displacements at =0.7 s and 0.9 s are given as 8.1879 m
and 11.7477 m, respectively, compute the velocity and acceleration at
t=0.5 s, using forward, backward, and central differences of O[(Ax)?].
Employ a step size At of 0.1 s.

In a periodic mass transfer process in a chemical plant, the concentra-
tion C of the moisture is obtained from analysis as

C=95 [exp(—0.75x)] cos(t-0.75x-2)

where x is distance in meters, ¢ is the time in seconds, and C is in
kg/m?3. The mass transfer rate is proportional to the gradient dC/0x
at x = 0. The second derivative is related to the rate of moisture addi-
tion per unit volume. Compute both dC/dx and 0*C/dx* at t=1 s and
x =0, using forward differences. Start with Ax = 0.1 m and reduce it to
0.01 m to see whether there is any significant effect on the numerical
results.

In fluid mechanics, the stream function , which is related to the flow
rate, is frequently employed for analysis. The distribution of y for a
particular problem is obtained as

Y= l.l[exp(—y”)]cos(;—;) +0.9[exp(—y°‘7)]sin(y—;]

The velocity V is given by dy/dy, and the shear force generated by
the flow is proportional to dy/dy?. Compute both these derivatives
at y=0.5, with Ay=0.2, 0.1, and 0.05. Employ second-order central
differences.

119

120 Computer Methods for Engineering with MATLAB® Applications

4.16. Itis known from analysis that the distribution of E,, given in Example
4.3, has a maximum at AT =2897.6 um K. Confirm this by using
numerical differentiation to obtain the first and second derivatives,
with respect to A, at 7= 1000 K and AT =2897.6 um K. Remember
that, at a maximum, the first derivative is zero and the second deriva-
tive is negative.

4.17. The hot-wire anemometer is an instrument used for measuring veloci-
ties or temperatures. If, during its calibration, the output signal E is
measured as 0, 1.7, 3.3, and 5.6 V at velocities V of 0, 1, 1.5, and 2 m/s,
obtain the gradient dE/dV at V =0 m/s, using the polynomial repre-
sentation of the function E(V).

4.18. Obtain the finite difference approximation for df/dx, where f(x) is a
given function of x, using four uniformly spaced grid points and the
polynomial representation of f(x).

5 Roots of Equations

5.1 INTRODUCTION

In a wide variety of engineering problems, there is a task of determining the values
of the variable x that would satisfy a given algebraic equation, such as x> — 4x? + 5x = 2,
or x tan x = 1. Depending on the problem, defined by the equation and the range of x
under consideration, these values of x, which are termed as roots of the equation,
may be real or complex and may be finite or infinite in number. Root solving is
needed, for instance, in determining the terminal velocity of a falling body, the con-
centration of a chemical species at a surface subjected to mass transfer, the time
needed to repay a loan at a given interest rate and monthly payment, and the natural
frequencies of vibration of a beam.
The algebraic equation to be solved is represented by the general form

f(x)=0 .1

where the function f{(x) may designate a polynomial or a transcendental expression,
such as x tan x — 1, from the equation given above. The problem of finding the roots
of Equation 5.1, therefore, involves obtaining the values of x at which the function
f(x) is zero. Consequently, the roots are also often referred to as zeros of the function.
Although interest usually lies in determining the real roots of equations with real
coefficients, we do encounter problems, such as periodic processes, in which com-
plex roots are of interest or in which the equation has complex coefficients. Therefore,
the discussion in this chapter is initially directed at obtaining the real roots of equa-
tions with real coefficients, the other circumstances being considered later in
Section 5.5.1.

There are several methods available for finding the roots of algebraic equations.
Some of these are applicable only to polynomial equations, which are obtained when
f(x) represents a polynomial to yield an equation of the form

n-2

S =x"+ax"'+ax"*++a, ,x+a,=0 (5.2)

where n is the degree of the polynomial equation and a,, a,, ..., a, are real coeffi-
cients. This equation has n roots, which may be real or complex. Some of the real
roots may be equal. Also, the complex roots occur in conjugate pairs, that is, a com-

plex root a + ib, where a and b are real and i = /-1, will occur in conjunction with
another root a — ib. For a linear equation, n = 1, the root may be found directly as
x =—a,/a, from the equation a, + a,x = 0. For a quadratic equation, n = 2, the roots

121

122 Computer Methods for Engineering with MATLAB® Applications

may again be determined by using the following well-known expression for the two
roots, o, and o,

—bx b -4ac (5.3)

a,;,0, = 2a

where f(x) = ax? + bx + ¢ =0 is the quadratic equation. Depending on whether the
determinant (b> — 4ac) is positive, zero, or negative, the roots are, respectively, real
and distinct, equal, or complex. In a few limited cases, such formulas are available
for higher-order equations too. Although these formulas provide a direct analytical
method for finding the exact solution, they are usually very restrictive in their appli-
cability and are also often quite complicated. Therefore, it is generally easier or
necessary to use indirect, or iterative, methods to find the roots of a nonlinear equa-
tion, for which n # 1, numerically. Transcendental equations, which involve trigono-
metric and other special functions such as exponentials and logarithms, also arise in
engineering problems. These equations are also generally nonlinear, and the number
of roots is often unknown. Several of the methods considered in this chapter are
applicable to both polynomial and transcendental equations.

In many cases of practical interest, the approximate variation of the function f{x)
with x, the nature of the roots, and the interval over which these are to be determined
are known. For instance, if the surface temperature of a pond, resulting from the
various heat transfer processes operating at the surface, is to be determined, the
energy balance equation must be solved to yield a single, real, positive root in a given
range of temperature. Similarly, if the terminal velocity of a particle moving under
the action of various forces or the lowest natural frequency of vibration of a dynamic
system were to be determined, one would search for real, positive roots of the cor-
responding equations over specified ranges.

Real, negative roots may also be obtained, for instance, when considering tem-
perature and concentration differences, account balances, weight changes, forces, or
velocities that may be positive or negative depending on the direction of motion, and
price changes. If no prior information is available on the function and on the roots, a
rough plot of the variation of f(x) with x may be obtained numerically, for real roots,
to determine the behavior of the function and the approximate location of the roots.
This information may then be used in the choice of the method and the interval over
which the roots are sought. In some engineering problems, such as those concerned
with the stability of systems and with periodic processes, complex roots are of inter-
est. Some of the techniques discussed here may also be employed for finding com-
plex roots. Again, a prior knowledge of the approximate value and nature of the roots
would be useful. Therefore, the basic nature of the problem, which gives rise to the
equation whose roots are to be determined, is often important in the solution of the
equation.

This chapter discusses several numerical methods for finding the real roots of
polynomial and transcendental equations. These include the search method, the
bisection method, the regula falsi method (also known as the method of linear inter-
polation), the secant method, Newton’s method, Newton’s second-order method, and
the method of successive substitution. Some of these are also applicable to complex

Roots of Equations 123

roots, and the corresponding procedure is outlined. There are several other available
methods, such as Muller’s method, Brent’s method, Graeffe’s root-squaring method,
and Bairstow’s iterative factorization of polynomials. These are also briefly dis-
cussed. Since, in many engineering applications, information on the basic back-
ground of the problem may be used effectively in the choice of the method and of the
interval of interest, several examples of engineering problems are taken in order to
illustrate the importance of the characteristics of the problem in the solution of the
equations. Different types of equations are considered in order to present the various
methods considered here.

5.2 SEARCH METHOD FOR REAL ROOTS

The search method is a very simple method, which is based on the change in the sign
of the function f(x) as x is incremented, starting with an initial value x,, to determine
the zero crossings of the function, that is, the locations where the plot of the function
S crosses the x-axis, as shown in Figure 5.1. An increment Ax is chosen, and x is
successively increased by this value. If the function f{(x) changes sign between two
successive values x; and x,,;, then [f(x,) - f(x;;))] <0, and the presence of a real root in
the interval between these values of x is indicated, as shown in Figure 5.1. This pro-
cess is repeated by starting with x = x; and taking a smaller increment to narrow the
interval containing the root. Therefore, one can make the interval in which the root
lies as small as desired by successively reducing the increment Ax to search for the
zero crossing of the function. Generally, one starts with a large step size Ax and suc-
cessively reduces it to a small fraction, say, one-tenth of the previous value, for locat-
ing the root more accurately in the reduced interval obtained from a sign change of
the function. If the initial increment is chosen as Ax and the subsequent reduced incre-
ments are Ax/n, Ax/n?, Ax/n?, and so on, where 7 is a constant, it is evident that the root
may be obtained to the desired accuracy in only a few incremental searches.

S
o o, o,
0 .l 2 3
' Xiv1 x
Ax

FIGURE 5.1 Search method for the real roots of the equation f(x) = 0.

124 Computer Methods for Engineering with MATLAB® Applications

When one root, x =0, has been determined and if other roots are sought, the
incremental search proceeds to larger values of x, taking x > o,; until another sign
change in f(x) occurs and the preceding process is repeated. Generally, one takes the
starting value x,, as the smallest value in the range of interest and proceeds to larger
x until all the real roots in the given range are found. The method can be used to find
positive or negative real roots of a given polynomial or transcendental equation, if
the function f(x) crosses the x-axis. It will fail to find a zero resulting from the func-
tion being tangent to the x-axis, since no sign change occurs in this case.

This method, which is sometimes known as the incremental search method, is
particularly suitable for obtaining the various intervals in which the real roots of the
given equation f(x) =0 are located. Once an interval containing a root has been
found, various other, more efficient methods, discussed later, may be employed for a
faster convergence to the root. Consequently, the incremental search method often
precedes other methods and is thus employed in conjunction with them. Frequently,
the starting point, x = x,, and the incremental step size Ax are chosen and f(x) is
determined for successively incremented values of x over the entire range of interest,
thus yielding the various intervals in which real roots are located. Such a search for
roots over the entire range is often known as exhaustive search. This procedure also
allows one to obtain a rough plot of f(x) versus x and thus determine the approximate
behavior of the function. This information is useful in dealing with problem spots
such as equal, or multiple, roots, obtained if f(x) does not cross the x-axis but is tan-
gent to it, and roots that are very close to each other in value. If no prior information
is available on the nature of the roots and the behavior of the function, a small value
of the increment Ax may be taken at the onset to ensure that no roots are missed in
the search.

The incremental search method is frequently employed with an interactive com-
puter program so that one might choose the increment and the starting point as the
interval containing the root is successively reduced, thus coupling one’s previous
experience and knowledge with the program. The function f(x) may also be plotted,
using available software for graphics, for a visual study of the behavior of the func-
tion and the approximate location of the roots. This is particularly convenient in
MATLAB® due to the availability of plotting software. Search methods, such as the
one outlined here, are frequently employed in optimization of systems, where one
seeks to maximize or minimize a given function. The incremental search method
can easily be extended to find the maxima or minima of a function by seeking the
zeros of the derivative of the function instead of those of the function f(x).

As outlined here, the search method provides an iterative procedure for determin-
ing the roots of the given algebraic equation f(x) = 0. Iteration is terminated when the
root has been determined to the desired accuracy level. A commonly employed
criterion for convergence is specified as

(n) (n=1)
X - X
L s (5.42)

x(m

where x™ and x-V represent the approximations to the root, that is, the values of x at
which the function changes sign, for the nth and the (n —)th iterations, respectively,

Roots of Equations 125

and € is a specified small quantity, often taken in the range 105-1073. The preceding
convergence criterion is thus based on the magnitude of the relative change in the
approximation to the root from one iteration to the next. Another criterion, based on
the increment Ax® for the nth iteration, is also frequently used. This criterion may be
written as follows:

Ax™

W <E& (54b)

The above conditions for convergence, therefore, imply that the fractional error in
the computed root is less than or equal to €. The first criterion, Equation 5.4a, does
not explicitly indicate the accuracy of the root, and, therefore, the second one, which
does give the accuracy, is preferable in most cases. The preceding criteria are also
often replaced by

[xW —x-D] < g (6.5a)
or

[Ax™ | < ¢ (5.5b)

where the actual values of the quantities are considered, instead of the relative mag-
nitudes. This form is particularly useful if the expected value of the root is equal to
or close to zero, since, in this case, the forms in Equation 5.4 cannot be used because
of the denominator becoming zero. The accuracy of the calculated root may be
improved by taking it as the average of the two final x values, x; and x,,,, between
which a sign change occurs, that is, o0 = (x; + x,,,)/2. The following example illus-
trates the use of the search method in finding the real roots of an algebraic
equation.

Example 5.1

The surface of a furnace wall is exposed to radiative, convective, and conductive
heat transfer, as shown in Figure 5.2. Under steady-state conditions, the surface
temperature T is obtained from an energy balance, which yields the equation

eo(ly - TY) = h(T—Ta)+§(T—Tz) (5.6)

where the three terms, from the left, represent heat transfer by radiation, convec-
tion, and conduction, respectively. Here, T, is the temperature of the hot environ-
ment radiating to the surface, T, is the air temperature, and T, is the temperature
at the outer surface of the wall. Also, h is known as the convective heat transfer
coefficient, k is the thermal conductivity of the wall material, d is the wall thick-
ness, € is the emissivity of the surface, and o is the Stefan-Boltzmann constant,
given as 5.67 x 107® W/m? K*. Find the wall temperature by the search method,

126 Computer Methods for Engineering with MATLAB® Applications

Wall
Radiation

RS

T $~Conduction
/\/Y
Convection ' T,

hT,
«—— d—>

FIGURE 5.2 Heat transfer at the surface of the furnace wall considered in Example 5.1.

if T, =1000K, T,=500K, T,=300K, h=50 W/m? K, k=25 W/mK, ¢=0.8, and
d=0.15m.

SOLUTION
The given problem reduces to finding the roots of the equation

f(x) = 0.8 x 5.67 x 1078[(1000)* - x*] = 50(x — 500) — 02155

(x -300) =0

(5.7)

where x is the unknown temperature. Since this is a fourth-order polynomial, there
are four roots that will satisfy the equation. However, a consideration of the physi-
cal problem, described here, indicates that a unique, positive value of the tem-
perature must be obtained in the range 300-1000 K, these being the two extreme
temperatures in the problem. Therefore, we expect only one real and positive root
to lie in this range. The others will be physically unacceptable, being negative,
complex, or beyond the indicated range.

The general behavior of the function f(x) can be first studied by obtaining a
rough plot of f(x) versus x. This plot may be obtained simply by incrementing
x, starting with the lower limit of x=300 K, and computing f(x) until the upper
limit of x =1000 K is reached. In MATLAB, the following commands will yield the
desired graph, with a line at f(x) = 0 to indicate the sign change in f(x).

x=1inspace(300,1000,20) ;
fl=inline (' 0.*x ') ;
f=inline(' (0.8%5.67%10"(-8))* (10"12-
x.%4) —=50.% (x-500)—(25/0.15) .* (x—300) ') ;
plot (x,f(x),'k-',x,f1(x),'k--")
xlabel ('x (K)', 'fontsize',14);ylabel ('f(x)"', 'fontsize',14)

Figure 5.3 shows this plot, and a single, real, positive root is observed to lie between
500 and 550 K.

We may now proceed with the incremental search method, starting with
x =300 K or with a value close to 500 K, and narrow in on the root. A maximum
value of x = 1000 K may also be specified to avoid going beyond the range. In the
present case, the function is well behaved and we do not expect to encounter

Roots of Equations 127

5
1.0 x 10

Fx)(W/m?)

- 1 . 5 T T T T T T
300 400 500 600 700 800 900 1000

x (K)

FIGURE 5.3 A rough plot of f(x) versus x to determine the approximate value of the root in
Example 5.1.

any problems. A computer program in MATLAB is given in Appendix B.1. The
corresponding program in Fortran is given in Appendix C.1 to show a comparison
between the two. The logic is quite similar, but the commands to implement the
algorithm are different, with MATLAB being more convenient to use. However,
for more involved problems, Fortran, C++, or other high-level languages may be
more efficient, as discussed earlier in Chapter 2. The program increments x, with
a chosen increment of 50 K and an initial value of 300 K, until the function f(x)
changes sign. The increment is reduced to one-tenth of the earlier value, and the
initial value of x is now taken as the beginning of the step in which the sign change
occurs. This process is repeated until the unknown temperature x is obtained to
the desired accuracy level, given by the convergence parameter eps.

The numerical results from the MATLAB program at various values of the con-
vergence parameter eps, which is applied to Ax, as given by Equation 5.5b, are
shown in Figure 5.4. These results demonstrate that, as expected, the number of
iterations increases as eps, printed as EPS here, is decreased. Also, the value of
the function f(x) at the estimated root decreases toward zero. Here, F1 and F2
represent f(x) at the two ends of the subinterval. Note that a change only in the
third decimal place occurs when EPS is reduced from 0.01 to 0.001, indicating that
the first value will give adequate accuracy. The desired accuracy will generally be
governed by the engineering application being considered. However, it is impor-
tant to vary the convergence criterion EPS to ensure that the numerical results are
not significantly affected by the value chosen, as discussed in Section 2.5. The
convergence criterion may also be applied to the function f(x), which represents
the net energy gain at the surface. For further details on the physical problem
considered here, books on heat transfer or on college physics, such as Young et al.
(2000), may be consulted.

128 Computer Methods for Engineering with MATLAB® Applications

EPS = 10.00000
X =550.00000
X =540.00000

TEMPERATURE =

EPS = 1.00000
X =550.00000
X =540.00000
X =538.00000

TEMPERATURE =

EPS =0.10000
X =550.00000
X =540.00000
X =538.00000
X =538.00000

TEMPERATURE =

EPS =0.01000
X =550.00000
X =540.00000
X =538.00000
X =538.00000
X =537.97500

TEMPERATURE =

EPS =0.00100
X =550.00000
X =540.00000
X =538.00000
X =538.00000
X =537.97500
X =537.97250

TEMPERATURE =

EPS =0.00010
X =550.00000
X =540.00000
X =538.00000
X =538.00000
X =537.97500
X =537.97250
X =537.97215

TEMPERATURE =

FIGURE 5.4 Numerical results obtained from the MATLAB program for the search method

in Example 5.1.

F1=9191.6667
F1 =727.2266
535.50000

F1=9191.6667

F1 =727.2266

F1=115.6117
537.55000

F1=9191.6667
F1=727.2266
F1=115.6117
F1=5.4168
537.95500

F1=9191.6667
F1 =727.2266
F1=115.6117
F1=5.4168
F1=0.5186
537.97050

F1=9191.6667
F1 =727.2266
F1=115.6117
F1=5.4168
F1=0.5186
F1=0.0287
537.97205

F1=9191.6667
F1=727.2266
F1=115.6117
F1=5.4168
F1=0.5186
F1=0.0287
F1=0.0042
537.97210

F2 = -2957.3902
F2 = -496.9862
F(X) = 727.2266

F2 = -2957.3902
F2 = -496.9862
F2 = -6.8290
F(X)=115.6117

F2 =-2957.3902

F2 =-496.9862
F2 =-6.8290
F2 =-6.8290
F(X)=5.4168

F2 =-2957.3902

F2 = -496.9862
F2 = -6.8290
F2 = -6.8290
F2 = -0.7060
F(X)=0.5186

F2 =-2957.3902

F2 = -496.9862
F2 = -6.8290
F2 = -6.8290
F2 = -0.7060
F2 = -0.0937
F(X) = 0.0287

F2 =-2957.3902

F2 =-496.9862
F2 =-6.8290
F2 =-6.8290
F2 =-0.7060
F2 =-0.0937
F2 =-0.0080
F(X) =0.0042

Roots of Equations 129

As presented earlier in Chapter 3, the given problem can also be solved very eas-
ily by using the software available in MATLAB for finding the roots of polynomial
equations. The given polynomial p is defined by specifying its coefficients and the
roots(p) command is used to obtain all the roots of the equation. The coefficients are
given in descending powers of the independent variable x. Since this is a fourth-order
polynomial, four roots are obtained. For example, the following simple program can
be used to specify the polynomial from Equation 5.7 in descending powers of x and
obtain the roots.

format short e

a=0.8%5.67*10"(-8) ;

b=0;c=0;

d=50+25/0.15;
e=-0.8*5.67*10" (—8) *1000" (4) -50*500-25*300/0.15;
p=[a b c d e];

r=roots (p) ;

disp(r)

This program yields the results

—1.8390e+ 03
6.5052e+02+1.5030e+ 031
6.5052e+02—-1.5030e+ 031
5.3797e+ 02

It is seen that only one root, 537.97, is positive and lies within the acceptable
range of temperature. Two are complex and one is negative, making them unaccept-
able. Also, the root obtained is close to that obtained earlier by the search method.

Similarly, the fzero command, available in MATLAB, can be used to obtain the
location, in x, where the graph of f(x) versus x crosses the x-axis. A search is carried
out for the zero of the function close to a specified location or over a given range. The
function may be defined by an inline statement as

f=1inline('0.8*5.67*10"(-8) * (100074 —x"4) —50*
(x—500) — (25/0.15) * (x—300) ') ;

or a function file £ m may be created to define the function as

function z=f (x)

z=0.8%5.67%10" (—8) * (1000%4 —x"4) —50*
(x—=500) — (25/0.15) * (x—300) ;

where the 3 periods indicate continuation of the command.
For the former case, the fzero command may be given, with a given x, as

>>root =fzero(f,300)

130 Computer Methods for Engineering with MATLAB® Applications

or, with the given range specified, as
>>root =fzero(£,300,1000)
yielding the resulting root as

root =
537.9721

Similarly, for the second case, employing the f.m function file, the command is
given as

>>fzero('£',300)

or

>>root =fzero('f',300,1000)
This gives the root as

root =
537.9721

Thus, the root is close to that obtained earlier and may easily be determined by using
the fzero command if the f(x) versus x graph crosses the x-axis, yielding a real root.

5.3 BISECTION METHOD

The bisection, or half-interval, method may be used for a rapid convergence to the
root once the interval containing a real root has been determined by the incremental
search method or by plotting f(x) versus x. Consider the function f(x), shown in
Figure 5.5, which is known to have only one real root in the interval x; < x < x,. The
interval is bisected, and the function is computed at the midpoint x,, where

X+ X,
=0t (5.8)
f(x)
|
xy X0
X1 o %o Xy x

FIGURE 5.5 Sketch illustrating the computational procedure for the bisection method.

Roots of Equations 131

Now the product f(x,) - f(x,) is calculated. If f{x,) - f(x;) <0, then the root lies in the
interval x, < x < x,, since the function has changed sign in this half-interval. If the
product is positive, then the root must be in the other half-interval x, < x < x,. The
interval containing the root is, therefore, reduced by half, and the preceding procedure
is next applied to the reduced interval. The process is repeated until the location of the
root is obtained to the desired accuracy. Since the interval containing the root is halved
in each bisection, the original interval is reduced by a factor of 2" after n bisections.
The computed root is taken at the midpoint of the interval obtained after n bisections.
Then, the maximum error in the calculated root equals half the size of this interval.
Therefore, the error € in the root is given by [,/2"*, where I, is the starting interval
containing the root. The number of bisections needed to reduce the maximum error to
€ is obtained by taking the logarithm of the equation € = /2" as follows:

n= logty /&) -1 5.9
log2

where log represents the natural logorithm. Therefore, if we wish to reduce the error
to less than 0.1% of the original interval [, that is, €/[, = 0.001, the above equation
yields n = 8.97, implying that only nine bisections are needed to achieve this level of
accuracy.

After each interval-halving operation, the new interval containing the root is
determined, and the designation of the endpoints of the reduced interval is changed,
with x, replacing the appropriate endpoint x, or x,. Figure 5.5 shows a few steps in
the computational procedure, denoting the successive values of x,, x,, and x, by
means of primes. If, at any stage in the computation, the function f(x,) is found to be
zero or close to it, within a specified error, the root of the equation is taken as the
corresponding value of x,, and further computation is stopped. Otherwise, the com-
putation may be carried out for a specified number of bisections » or until the root is
obtained to the desired accuracy, the location of the root being taken as the midpoint
of the successively reducing interval. Frequently, the computation is terminated
when the change in the root from one bisection to the next is less than a specified
error tolerance €. In most practical problems, the value of € may be obtained from a
consideration of the accuracy needed in the determination of the physical quantity
represented by the root. For example, if the pressure of a given volume of gas is to be
obtained by solving its equation of state, € may be chosen as a small fraction of the
acceptable error in the pressure.

The bisection method will always yield a root of the given equation f{x) = 0 if f(x)
changes sign in the interval. However, if the interval contains more than one real
root, one must determine the subintervals containing the roots before proceeding to
bisection. An odd number of roots in the interval x; < x < x, will give f(x,) - f(x,) <O.
If there are no roots in the interval or if there are an even number of roots, then
Sfix)) - flx,) > 0. Several bisections may be needed to obtain the subintervals in which
f(x) changes sign, and the method may converge to the same root more than once. In
such cases, the search method, exhaustive or incremental, may be employed effec-
tively to determine the approximate location of the roots and the subintervals where
bisection may then be used. Similarly, bisection will not locate multiple roots that

132 Computer Methods for Engineering with MATLAB® Applications

arise due to the plot of the function f{x) being tangent to the x-axis, without crossing
it, since a sign change does not occur at the root. Again, the approximate behavior of
the function may be determined graphically or from search methods. If such multiple
roots arise, other methods, discussed later in this chapter, will be needed. If the mul-
tiple root arises at a location where the function f{x) crosses the axis, bisection can be
used to find the root. The numerical process will always converge if the interval
containing a zero crossing of the function f{x) is known. The convergence is faster
than that obtained by the search method.

A MATLAB program is given in Appendix B.2 in order to illustrate the algorithm
discussed here. A similar program in Fortran is given in Appendix C.2 for finding the
root of a given equation log,,(x) + x> — 6 =0 to show the similarities and differences
between the two. In both cases, the function f(x) in the equation f{x) = 0, whose roots
are to be determined, can be employed to solve a given problem. If the MATLAB
program shown is to be used for the problem of Example 5.1, the appropriate function
Jfx) has to be defined. It can be defined within the program as an inline statement, as
done earlier in Appendix B.1, or a function file can be saved as f.m in the same subdi-
rectory as the main program. For the problem in Example 5.1, the function file was
given earlier and is rewritten as

function z=f (x)
z=0.8*%5.67*10"(—8)* (100074 —x™4) —50%*
(x—500) — (25/0.15) * (x —300) ;

Then, if the given program is executed, the program asks for the end points of the
interval and yields the approximations to the root as

Enter lowest value of interval, a=300
Enter highest value of interval, b=1000
Iteration converged
650.0000

475.0000

562.5000

518.7500

540.6250

529.6875

535.1562

537.8906

539.2578

538.5742

538.2324

538.0615

537.9761

537.9333

537.9547

537.9654

537.9707

537.9734

537.9721

Roots of Equations 133

Therefore, the root obtained as the same as that calculated earlier by the search
method. The convergence criterion is based on the absolute value of the function f(x)
at the approximation to the root, which is given by Equation 5.8, becoming less than
the convergence parameter, which is taken as 0.02. Again, this parameter may be
varied to ensure that the results are independent of the value chosen. The conver-
gence, though generally faster than the search method, is still seen to be quite slow
and several methods with faster convergence are discussed in Sections 5.4 and 5.5.

5.4 REGULA FALSI AND SECANT METHODS

5.4.1 RecuLA FaLst METHOD

The regula falsi, or false-position, method is similar to the bisection method in that
it will always yield a real root in the interval in which the function f{x) changes sign.
However, the convergence to the root is generally more rapid. Let us again consider
an interval x, < x < x, found graphically or from the search method to contain a real
root of the equation f{x) = 0. Therefore, f(x,) and f(x,) are opposite in sign. A chord is
drawn joining the two endpoints [x,, f(x,)] and [x,, f(x,)]. The intersection of the
chord, which represents a linear approximation to the function f{x), with the x-axis,
X = x5, is taken as the first estimation of the root of the given equation. From
Figure 5.6, x; may be obtained by using the geometrical relationship between the
two triangles formed as follows:

X f (%) = x, f (%))
=" 5.10
B f) = f(x) ()

Xy X

5

FIGURE 5.6 The regula falsi method for root solving.

134 Computer Methods for Engineering with MATLAB® Applications

If f(x;) is zero or close to zero, within a specified convergence criterion, the pro-
cess is terminated, and the root is located at x = x5. If f(x;) has the same sign as f(x,),
then f(x;) - f(x,) > 0, and the root lies between x, and x;. Then x, remains unchanged
and x, becomes the new value of x,, thus giving the reduced interval containing the
root as x5 < x < x,. Similarly, if f(x;) - f(x,) < 0, then the root is located in the interval
X; < x <x;5. In this case, x; remains unaltered, and x; becomes the new value of x,.
Figure 5.6 shows a few steps in the computational process, denoting new values by
primes.

The new values of x; and x, are employed in Equation 5.10 to yield an improved
approximation to the root. The process is continued, successively reducing the inter-
val containing the root until If(x;)| or the change in the root, which is approximated
by x5, from one computational step to the next is less than a specified small quantity
€. The value of the error tolerance € is chosen on the basis of the accuracy desired in
the evaluation of the root. Since, at each step, a subinterval containing the root is
considered, the method will always converge if a sign change in f(x) occurs in the
initial interval. Multiple roots due to the plot of f(x) being tangent to the x-axis cannot
be located by this method, which requires a sign change in f{(x). The rate of conver-
gence to the root depends on the nature of the function f{x) and the initial interval.
Although convergence is often faster than that obtained by the bisection method,
examples can be found where such is not the case. The procedure outlined above is
also sometimes known as the linear interpolation method.

5.4.2 SEcCANT METHOD

The preceding methods always considered the subinterval that enclosed the root and
will, therefore, always yield the solution if a sign change in f(x) occurs in the interval.
The secant method is similar to the regula falsi, or false-position, method, but it does
not always consider subintervals containing the root. This method is, therefore, not
guaranteed to converge, unlike the enclosure methods discussed so far. However,
when it does converge, it does so more rapidly than the previous methods. Instead of
using the two values of x that bound a subinterval containing a real root, the method
uses the two most recent values of x in the iterative procedure. Therefore, it employs
both interpolation and extrapolation to approximate the root by the intersection of
the line joining the two points [x,, f(x,)] and [x,, f(x,)] with the x-axis. Figure 5.7
shows a few iterative steps for the secant method, using primes to denote the new
values. As in the regula falsi method, a chord is drawn between the two endpoints of
the initial interval, and the intersection with the x-axis is obtained from Equation
5.10. However, in the next step, the interval containing the root is not considered and
the two most recent values of x, x, and x;, are taken. The former thus becomes x; and
the latter x,. These are again substituted in Equation 5.10 to yield the new intersec-
tion point, which is the next approximation to the root. Therefore, the general expres-
sion for iteration by the secant method may be written from Equation 5.10 as

_ X S () = x (%)
T) () G1D

Roots of Equations 135

fx)

X3
X1 o X3 Xy X

%) xi

FIGURE 5.7 The secant method for finding the real roots of an algebraic equation.

where the subscript represents the order of the iteration, starting with x; ; = x, and
X; = X, as the first two approximations to the root.

The above process is continued until |f(x)| <€, where € is the specified conver-
gence parameter. Since the method employs linear extrapolation for subintervals that
do not contain the root, the process may not converge. Convergence depends on the
nature of the function and on the limits of the initial interval. If the initial guesses x,
and x, are chosen sufficiently close to the root, x = o, convergence of the iterative
process to the root can be expected. The method may diverge if the initial guesses are
not well chosen. Therefore, this method is suitable if the interval containing the root
is known to a fairly good approximation from a rough plot of the function or from the
search method. Both the regula falsi and the secant methods may be employed for the
real roots of polynomial as well as transcendental equations. The following examples
illustrate the use of these methods for finding the roots of algebraic equations.

Example 5.2

A flat plate falling freely in air is subjected to a downward gravitational force and
an upward frictional drag due to air. This drag force D; is given by the expression

0.2275V?

= W -0.017v forV =1m/s (5.12)

f

where V is the vertical velocity of the plate and log V is the natural logarithm of V.
A terminal velocity is attained when this drag force equals the gravitational force.
The net force F acting on the plate is given by

F =D —mg (5.13)

where m is the mass of the plate and g the magnitude of the gravitational accel-
eration. Find the terminal velocity by the regula falsi method if m=1 kg and

136

g=9.8 m/s?. Vary the convergence parameter €, applied to F, from 1.0 to 10,
and study the effect on the numerical value obtained for the terminal velocity.

SOLUTION

The terminal velocity is given by the root of the equation

0.2275V?

FV)y = — 22070
V) 465.9 + (logV)**®

-0.017V -98 =0 (5.14)

Since the expression for the drag force Dy is valid for V=1 m/s, we may take the
value of T m/s as the lower limit, x;, of the range in which the root is located. The
upper limit, x,, may be taken as a large value, say, 500 m/s. If the root is not found
within this range, a still larger value of x, may be employed. A rough plot of F(V)
versus V may also be obtained to guide the choice of the initial range of values.
The root is expected to be real, positive, and unique.

A computer program may easily be written for solving this problem by the
regula falsi method. The algorithm is very similar to that for the bisection method,
discussed in the preceding section. The approximation to the root x; is given by
Equation 5.10, instead of Equation 5.8 which was used for the bisection method.
As before, depending on the sign of f(x,) - f(x;), the new values of x; and x, are
chosen. If f(x,) - f(x;) < 0, then the root lies between x; and x;. Thus, x; becomes
the new x,, and the procedure is repeated. Similarly, if f(x,) - f(x;) > 0, x; becomes
the new x,. Iteration is terminated when |f(x;)| < EPS, where EPS is the chosen
convergence parameter. The numerical results obtained for various values of EPS
are shown in Figure 5.8. A velocity V of 173.0431 m/s is obtained for EPS = 107,
and a change of less than 0.003% is observed when EPS is varied from 10~ to this
value. The net force F on the plate is essentially zero, within the chosen conver-
gence criterion. Depending on the desired accuracy of the terminal velocity, the
corresponding value of EPS may be chosen.

Example 5.3

Solve the problem of Example 5.2 by the secant method, and compare the results
with those obtained by the regula falsi, or false-position, method.

SOLUTION

In this case, the two most recent values of the unknown x are employed, with
interpolation and extrapolation, to find the root. Equation 5.11 is used instead of

Computer Methods for Engineering with MATLAB® Applications

EPS =1.00000 TERMINAL VELOCITY = 167.1907 FUN(X) =-0.7216
EPS =0.10000 TERMINAL VELOCITY = 172.2868 FUN(X) =-0.0948
EPS =0.01000 TERMINAL VELOCITY = 172.9755 FUN(X) = -0.0086
EPS =0.00100 TERMINAL VELOCITY = 173.0377 FUN(X) =-0.0008
EPS =0.00010 TERMINAL VELOCITY = 173.0431 FUN(X) =-0.0001

FIGURE 5.8 Computed results for various values of the convergence parameter EPS, using
the regula falsi method for Example 5.2.

Roots of Equations 137

Equation 5.10 to find the next approximation. Therefore, x; and x, are the first two
approximations to the root, followed by x, and x; as the approximations in the
next step. A MATLAB program for the secant method is given in Appendix B.3.
The program is given as a function m-file, where the file, saved as secant.m, is
given as function [p1,err,k] = secant(f,p0,p1,delta,max1). Thus, the function f(x) has
to be stored separately as a function file £.m and specified as a string, such as ‘f,
when calling the secant function m-file. Also, pO and p1 are the starting values for
the unknown x, delta is the convergence parameter and maxT is the given maxi-
mum number of iterations before the execution is stopped if convergence is not
achieved. The results from this program will yield the resulting approximation to
the roots after each iteration and the final result if convergence is obtained. If con-
vergence is not achieved, it will indicate that the maximum number of iterations
has been reached. The print out commands may be suitably modified to obtain
desired format for the results. Similarly, different starting values p0 and p1, as well
as different convergence parameters may be used. The corresponding program in
Fortran is given in Appendix C.3 for comparison.

The initial values of x, and x, may be taken as 150 m/s and 200 m/s, respectively.
The function F(V) is well behaved, with no discontinuities or sharp changes, and
convergence is obtained even with a much larger initial range. For example, with x,
taken as 1 m/s and x, as 500 m/s, convergence is again achieved and a smaller com-
puter (CPU) time than that needed for the regula falsi method is required. However,
a narrower initial interval for the unknown root would generally be needed for the
secant method, as compared to the regula falsi method, in order to obtain conver-
gence. The secant method is not guaranteed to converge since the interval being
considered at any given stage does not necessarily contain the root.

The numerical results for the terminal velocity in the given problem at various
values of the convergence criterion EPS are shown in Figure 5.9. It is interest-
ing to note that the value obtained, for x, = 150 m/s and x, =200 m/s, does not
change when EPS is varied from 107 to 10, for the four significant decimal places
printed. The value itself is within 0.001% of that obtained in Example 5.2, and a
relatively large value of EPS, 0.01 from the results shown, is found to be satisfac-
tory. Therefore, if the appropriate range or interval containing the root is known, a
rapid convergence to the root may be obtained by the secant method. The results

INITIAL X1 = 150.00 INITIAL X2 =200.00

EPS = 1.00000 TERMINAL VELOCITY = 171.1760 FUN(X) =-0.2331
EPS =0.10000 TERMINAL VELOCITY = 172.9019 FUN(X) =-0.0178
EPS =0.01000 TERMINAL VELOCITY = 173.0445 FUN(X) = 0.0001
EPS =0.00100 TERMINAL VELOCITY = 173.0445 FUN(X) = 0.0001
EPS =0.00010 TERMINAL VELOCITY = 173.0445 FUN(X) = 0.0001

INITIAL X1 =2.00 INITIAL X2 = 500.00

EPS = 1.00000 TERMINAL VELOCITY = 170.7368 FUN(X) =-0.2876
EPS =0.10000 TERMINAL VELOCITY = 173.1468 FUN(X) =0.0129
EPS =0.01000 TERMINAL VELOCITY = 173.0430 FUN(X) =-0.0001
EPS =0.00100 TERMINAL VELOCITY = 173.0430 FUN(X) =-0.0001
EPS =0.00010 TERMINAL VELOCITY = 173.0430 FUN(X) =-0.0001

FIGURE 5.9 Computed results from the solution of the problem in Example 5.2 by the
secant method.

138 Computer Methods for Engineering with MATLAB® Applications

for the starting values of x; and x, taken as 2 and 500 m/s, respectively, are also
shown in Figure 5.9. The results are very slightly different from those obtained
when these are taken as 150 and 200 m/s, respectively, and are also very close to
those obtained in Example 5.2.

5.5 NEWTON-RAPHSON METHOD AND MODIFIED
NEWTON’S METHOD

The Newton—Raphson method, or simply Newton’s method, for finding the roots of
polynomial and transcendental equations is very widely used because of its versatil-
ity and generally rapid convergence. The method employs an initial approximation
to the root of a given equation and iteratively improves the root until convergence to
the desired accuracy is achieved. However, as in the secant method, convergence is
not assured. The method is not based on the plot of the function f(x) crossing the
x-axis, and therefore it may be used for complex and multiple roots as well. The
modified Newton’s method is an extension of the conventional method and has cer-
tain important advantages, as discussed later in Section 5.5.2.

5.5.1 NEwWTON—RAPHSON METHOD

If x = x, is the first approximation to the root of the equation f(x) = 0, the function f(x)
may be expanded in a Taylor series about x,, for x close to x,, as given in Chapter 4
to yield

(x-

F0 =)+) e+ C T e (5.15)

where the primes denote the order of the differentiation with respect to x. In order to
determine the root, x = o, we set f(x) equal to zero and then solve the resulting equa-
tion for the root. However, this gives a polynomial equation of order infinity. If only
the first two terms are retained, the next approximation to the root, x,, may be
obtained. Therefore, setting f(x) = 0, we get

0=f(x)+x=x)f"(x)
or

_ S(x)
f(x)

X, =X

where x, represents an improved estimate of the root. In the next iteration, x, is
replaced by this new approximation x,, and a further improved approximation to the
root x; is obtained. The general expression for iteration by Newton’s method is,
therefore, written as follows:

oy = - ("f‘) (5.16)

Roots of Equations 139

where x; and x,,, are the values obtained after the ith and the (i + I)th iterations,
respectively.

This iterative process is continued until the approximation to the root from one
iteration to the next changes by less than a specified small quantity €. As discussed
for the previous methods, the convergence criterion € is often chosen on the basis of
the nature of the physical problem under consideration and may be applied to the
approximate root or to the function f(x), as |f(x,)| < €. Note that Newton’s method is
similar to the secant method, discussed in Section 5.4.2. In the secant method, the
slope f*(x,) is approximated by [f(x;) - f(x,_,)]/(x; — x,_;). If this approximation is
substituted in Equation 5.16, the formula for iteration by the secant method, Equation
5.11, is obtained. Consequently, the convergence characteristics of the secant method
and the Newton—Raphson method are quite similar.

The derivative f'(x;) of the function is needed for using this method. In many
cases, particularly for polynomial equations, the derivative may be obtained easily.
However, there are problems, such as those involving transcendental functions, in
which the differentiation of the function f{x) may be quite complicated. The derivative
may then be computed numerically by a finite difference approximation, as outlined
in Chapter 4. The iterative procedure converges very rapidly, as shown in terms of a
few iterative steps in Figure 5.10. It is seen graphically that the intersection of the
tangent, to the curve of f{x) versus x at a given approximation, with the x-axis, where
Sf(x) =0, gives the next approximation. From the figure, the slope f’(x,) is given by
S(x)/(x; — x,,,), which yields the iterative formula for Newton’s method.

However, the method may not converge if the initial guess is too far from the root
and also if the derivative is close to zero or varies substantially near the root. A few
cases in which the iteration does not converge are shown in Figure 5.11. The com-
puter program should include this possibility so that, if the method diverges or if the
root is not obtained in a specified number of iterations, a new initial guess is chosen
and the numerical procedure for finding the root is carried out again. Any informa-
tion on the value and characteristics of the root, from the physical background of the

&)

X3 X9 *1

FIGURE 5.10 A graphical representation of the Newton—Raphson iterative procedure for
solving an algebraic equation.

140 Computer Methods for Engineering with MATLAB® Applications

S fx)

*1
X x x

I\

*1

K

FIGURE 5.11 A few cases in which the Newton—Raphson method diverges.

problem, from the variation of the function f{x) with x, or from the search method,
will be useful in the choice of the initial approximation, so that a rapid convergence
to the root may be obtained.

Newton’s method may also be used for determining the complex roots of the

equation f(z) = 0, where the complex variable z = x + iy, i being J-1 andxand yreal
quantities. The function f(z) may be written as f(z) = u(x,y) + iv(x,y), where u and
v are the real and imaginary parts of the function. Then the iterative process for
Newton’s method is given by the complex expression

_ f(z)
f/(zi)

where z; represents the approximation to the root after the ith iteration. Therefore, if
complex algebra is available on the computer, complex roots may be determined by
the procedure outlined above for real roots. If complex variables cannot be used, the
following procedure may be used. The real and imaginary parts on the two sides of
the above equation may be equated to obtain the following (Carnahan et al., 1969):

v =% (5.17)

N =x.+(vuy—uux\ s18

i+1 i k uﬁ +l/l>2} J » (.)
[=vu, —uu,\

Yiet = i +kﬁ) (5.19)

Xis Vi

Roots of Equations 141

where u, and u, denote the partial derivatives du/dx and du/dy, respectively. The sub-
scripts x;, y; outside the parentheses indicate that the values are to be determined at
x =x;and y = y,. For obtaining the above equations, the Cauchy—Riemann equations,
u,=v, and u,=-v,, have been employed. Therefore, this method may be used for
finding the zeros of complex functions whose real and imaginary parts can be sepa-
rated easily. In most computer systems, complex algebra is available, and Equation
5.17 may be employed directly to determine the complex roots, as outlined in
Example 5.5. In MATLAB, if the initial guess is given as a complex quantity, com-
plex algebra is automatically employed to yield the complex roots. Of course, if the
roots(p) command is used for a polynomial equation, complex roots, if any, are given
by the results. A similar treatment is applicable if the coefficients of the equation are
not real but complex.

As mentioned earlier, complex functions arise in several engineering problems,
such as those concerned with vibrations, stability of systems, electrical circuits with
alternating current sources, periodic processes, wave phenomena, and flow fields
that may be represented by a complex potential. For further details on complex alge-
bra, see any textbook on calculus, such as Thomas and Finney (1999). It may be
mentioned that though z is used to denote an independent complex variable here for
clarity, the independent variable x will, in general, be used in the following to denote
areal or complex variable.

5.5.2 MobirieEb NEwToN’s METHOD

The Newton—Raphson method can also be used for multiple roots corresponding to
points where the function f{x) becomes tangent to the x-axis. However, since f"(x)
also goes to zero, as f(x) approaches zero at the root, the convergence is slow, and
computational difficulties may arise. For such cases and for achieving a faster rate of
convergence, the above procedure may be modified to obtain Newton’s second-order
method, which employs the second derivative f”(x) of the function in the computa-
tion of the root. If three terms are retained from the Taylor series given in Equation
5.15, instead of the two used for the Newton—Raphson method, we obtain

0= f(x)+(x, —xl)[f/(xl)+W}

To avoid solving this quadratic equation for x,, one may substitute the approximation
for (x, — x,) from the Newton—Raphson method in the brackets above. The resulting
linear equation may be solved to obtain the next approximation to the root. This
method is often known as the modified Newton’s method. Therefore,

_ oy))
R I T R
or
f(x)

(5.20)

X, =

T) =D) 12 (x0)

142 Computer Methods for Engineering with MATLAB® Applications

This equation gives the general expression for iteration by this method as

- oo (5.21)
Xiv1 X f’(_x)_M
1 2f’(xi)

Newton’s second-order method, therefore, requires the value of the second deriv-
ative of the function. Similarly, higher-order modifications of the conventional
Newton’s method may be derived for better convergence characteristics. However,
the applicability of the method is limited by the computational difficulty in obtaining
the derivatives. If they are obtained easily from the given function f{x), the method is
advantageous to use. However, if the derivatives are not easy to obtain, one may need
to compute the finite difference approximations of the derivatives, leading to a con-
siderable increase in the computational effort. In most problems of engineering
interest, the Newton—Raphson method is employed, instead of its higher-order modi-
fications, because of the programming and computational simplicity of the method.

5.5.3 CONVERGENCE

As mentioned earlier, the Newton—Raphson method may not converge. But, if it does
converge, it does so very rapidly. It can be shown that for nonzero f’(ox), where o is a
real root, convergence is guaranteed if the starting value x, is close enough to o
(Carnahan et al., 1969). Also, once the approximation x; to the root is close to the
exact value a, the error after the next iteration, x,,, — 0, can be shown to be propor-
tional to the square of the error in the present step, x; — o.. The relationship between
the two is obtained as follows (Carnahan et al., 1969; Atkinson, 1989)

S
2f"(a)

Xy —o=(x;, —a)? (5.22)

where in the limit i — oo, x; — o Therefore, the error, which is assumed to be small
near the root o, reduces very rapidly with the number of iterations. The resulting
convergence is termed quadratic, or second order, and is more rapid than that for the
other methods discussed earlier in this chapter. Most of these methods have a linear
convergence, that is, the error after a given iteration is proportional to that obtained
after the preceding iteration. Thus, they have first-order convergence. The order of
convergence for the secant method can similarly be shown to be 1.62, implying that
its convergence is faster than methods like search and bisection, but not as fast as
Newton’s method.

Because of its high rate of convergence, applicability to a variety of equations,
and simplicity in programming, the Newton—Raphson method is used extensively in
engineering applications. It is also used as a correction scheme in the solution of
ODEs, for satisfying the boundary conditions, and in the iterative solution of a
system of nonlinear equations. These applications are considered in Chapters 6
and 9. The modified Newton’s method is generally employed if the derivative f'(or)

Roots of Equations 143

goes to zero or becomes very small in the vicinity of the root. The following exam-
ples illustrate the use of these methods.

Example 5.4

The water mass flow rate w, in kg/s, in a heating equipment that transfers energy
from condensing steam to water, is to be obtained from energy balance consider-
ations. If 250 kW of thermal energy are to be exchanged between the two fluids,
the equation for the conservation of energy is given as

250 = 294w |1- exp| ——19%0
215 + 20w)

Find the root of this equation by the Newton—Raphson method. The flow rate is
known to be less than 5 kg/s.

SOLUTION

It is evident from the above outline of the physical problem under consideration
that the root to be obtained is real and positive, being in the range 0 to 5 kg/s. The
given equation may be written as

-1000

f(X) = 294x I:] - eXp(m

)] _250=0 (5.23)

where x is the unknown flow rate in kg/s. To apply the Newton—-Raphson method,
we need a starting guess for the unknown and the value of the derivative df/dx
at each approximation to the root. Although the derivative may be obtained ana-
lytically in this case, there are several problems where the differentiation may be
quite involved. In such cases, numerical differentiation may be employed, using
finite-difference approximations of Chapter 4. Therefore, numerical differentiation
is used here. The function f(x) is determined numerically at two values of x, which
are close to each other and are represented by x and xy, with x> x. Then the
derivative of the function at x is approximated by

df _ foad -) (5.24)
dx XN — X

Once the derivative f'(x) has been evaluated, we use Equation 5.16 to determine
the next approximation to the root.

Appendix B.4 gives a MATLAB script m-file for the Newton—Raphson method.
The difference between x and x is taken arbitrarily as 0.001, considering the
expected value of the root. A smaller value may be chosen for greater accuracy
of the derivative. The initial guess for x is chosen as 0.1 kg/s. Various values of
the convergence criterion EPS, as applied to the function f(x), are considered,
and the results for EPS = 10~ are shown in Figure 5.12. A rapid convergence to
the root, which is obtained as 0.9987 kg/s, is observed. Convergence was found
to occur if the starting value is taken in the range 0 to around 2.5, but divergence

144 Computer Methods for Engineering with MATLAB® Applications

Enter the convergence parameter, eps = 0.001

EPS =0.0010

Enter the initial guess, x(1) =0.1

X =0.1000 FUNCTION F(X) =-220.632656

X =0.8529 FUNCTION F(X) =-28.191628

X =0.9916 FUNCTION F(X) =-1.309440

X =0.9987 FUNCTION F(X) =-0.002785

Iterations Converged

FLOW RATE X =0.9987 FUNCTION F(X) = 0.000001

FIGURE 5.12 Numerical results by the Newton—Raphson method at EPS = 10~ for the
problem in Example 5.4.

of the scheme occurred at higher values. Therefore, a statement for terminat-
ing the computation is included in the program if the approximation to the root
becomes very large, this being specified by its numerical value becoming greater
than 1/EPS. If the iterations diverge, a new starting value is chosen and the compu-
tational scheme repeated. It was found that a smaller value of EPS gave essentially
the same flow rate. A Fortran program is given in Appendix C.4 for comparison
and it is seen that the logic is very similar in the two cases and may be used for
other languages, such as C++, as well.

If the derivative can easily be obtained analytically, the scheme may be modi-
fied to evaluate the derivative directly, instead of using the numerical differentiation
procedure given here. For instance, if the equation to be solved is exp(x) — x> =0,
the derivative f'(x) = exp(x) — 2x and thus the finite-difference approximation is not
needed and the calculated value of f'(x) for each iteration may be obtained from
the preceding expression.

Example 5.5

Several fluid flow circumstances of interest in mechanical and civil engineering
problems can be represented in terms of a complex variable x, known as the com-
plex potential. The complex potential x for a flow is governed by the polynomial
equation

fx)=x" —4x> +7x* - 6x+2=0 (5.25)

Using the Newton—Raphson method, find the complex roots of this equation. The
zeros of the polynomial represent certain locations of symmetry in the flow.

SOLUTION

The given polynomial equation is of fourth order and thus has four roots, which
may be real or complex. The complex roots arise in conjugate pairs. A rough plot
of the function f(x), shown in Figure 5.13, indicates the possibility of a multiple
real root around x =1, as confirmed later in Example 5.6. Therefore, a conjugate
pair of complex roots is sought in the present problem. The mathematics for com-
plex variables available on the computer is employed, with the function f(x), the

Roots of Equations 145

FIGURE 5.13 A plot of the function f(x) versus x for the problem in Example 5.5.

unknown x, the derivative, and the increment Ax, in x, for the next iteration being
defined as complex. The derivative is obtained simply as

df _ 453 —12x2 + 14x - 6 (5.26)
dx

The convergence criterion is applied to the magnitude of the function, given by

VJu® +v?, where u and v are the real and imaginary parts of the function f(x).
The real part represents the velocity potential, and the imaginary part the stream
function which is related to the flow rate. The convergence criterion used ensures
that, at convergence, the magnitudes of both of these are less than a given small
quantity eps.

The MATLAB computer program given in Appendix B.4 may be used, with the
definition of the appropriate function f(x) and the calculation of the derivative f'(x)
from Equation 5.26, for finding the complex roots of the given polynomial equa-
tion, Equation 5.25. If the starting value of x is taken as a complex number, such
as 1.5 +2.0i, where i = v/=1, the complex algebra in MATLAB is automatically
employed. Equation 5.17 is then used to determine the next approximation to the
root and the process is repeated until convergence is achieved. The results for the
convergence parameter eps, which is printed as EPS here, of 10 are shown in
Figure 5.14, indicating a complex root at (1 +).

Therefore, the conjugate root is (1 — /). It must be noted that, depending on the
initial guess, or starting value for the iteration, the scheme may diverge or con-
verge to another root. In this case, it could converge to the multiple real roots at
x=1.0, even if the initial guess is given as a complex number, or to the conjugate
root (1 —1).

Again, the convergence to the root is quite rapid, although each iteration
involves a larger computational effort as compared to that for real variables. The
roots may also be found analytically in this case. The values are found to be identi-
cal to those obtained numerically. Similarly, the roots of the polynomial equation
may simply be found by the following commands in MATLAB:

>p=[1 -4 7 -6 2];
>>disp (roots (p) ;

146 Computer Methods for Engineering with MATLAB® Applications

EPS =0.0010
X =1.5000 + 2.00001
X =1.3546 + 1.5644i
X =1.2366 + 1.2623i
X =1.1334+1.0732i
X =1.0427 + 0.9904i
X =0.9986 + 0.9952i
X =1.0000+ 1.00011
THE SOLUTION IS X = 1.0000 + 1.00011

FIGURE 5.14 The numerical results obtained at EPS = 107 for finding the complex roots of
the polynomial equation of Example 5.5 by the Newton—Raphson method.

The results are printed as

.0000+1.00001
.0000—-1.00001
.0000+0.00001
.0000-0.00001

]

indicating a multiple root at x =1 and complex roots 1 +iand 1 —1i.

Example 5.6

Find the real roots of the polynomial equation given in Equation 5.25 by the
modified Newton’s method, and compare the convergence to the root with that
obtained by the Newton—Raphson method.

SOLUTION

As seen from the rough plot of the given function, shown in Figure 5.13, a multiple
root is expected in the neighborhood of x = 1. The second derivative of the func-
tion is obtained as

d*f)
o - 12x> = 24x + 14 (5.27)

An initial guess, say at x=0.1, is taken. Then, the function and the first and sec-
ond derivatives are computed at this value of x. Equation 5.21 is then employed
to obtain the next approximation to the root. The convergence parameter eps is
applied to the function f(x) and is taken as 10, although only a small difference
in the results was observed when eps was varied between 10~ and about 107.
The computer program given in Appendix B.4 for the Newton—Raphson method
may be easily modified for applying the modified Newton’s method. The numeri-
cal results are shown in Figure 5.15. As mentioned earlier, the analytical solution
yields a multiple root at x =1, and the computed value is obtained as 0.998419.

Roots of Equations 147

MODIFIED NEWTON’S METHOD
EPS = 0.000010

X = 0.100000 FUNCTION = 1.466100
X = 0.606555 FUNCTION=0.176761
X = 0.863423 FUNCTION = 0.019002
X = 0.954440 FUNCTION = 0.002081
X = 0.984829 FUNCTION = 0.000231
X =0.994977 FUNCTION = 0.000026
X =0.996419 FUNCTION = 0.000003

THE SOLUTION IS X =0.998419 FUNCTION = 0.000003
NEWTON-RAPHSON METHOD
EPS = 0.000010

X = 0.100000 FUNCTION = 1.466100
X = 0.410876 FUNCTION=0.467519
X = 0.645094 FUNCTION=0.141824
X = 0.604693 FUNCTION = 0.039600
X = 0.898886 FUNCTION=0.010329
X =0.948940 FUNCTION = 0.002614
X = 0.974405 FUNCTION = 0.000656
X = 0.987205 FUNCTION = 0.000165
X =0.993650 FUNCTION = 0.000040
X = 0.996804 FUNCTION = 0.000010
X = 0.998446 FUNCTION = 0.000003

THE SOLUTION IS X = 0.998446 FUNCTION = 0.000003

FIGURE 5.15 The numerical results for Example 5.6 from the modified Newton’s method
and the Newton—Raphson method.

Because the plot of the function is tangent to the x-axis at this value of x, both f(x)
and f’(x) go to zero at the root, resulting in a slower convergence as compared to
the case where the function crosses the x-axis.

The numerical results obtained by the application of the Newton—Raphson
method to this problem are also shown in Figure 5.14. The values of the root obtained
in the two cases are quite close, but the convergence for the Newton—Raphson
method is much slower. The retention of the additional term, involving a nonzero
”(x), in the modified Newton’s method accelerates the convergence. Therefore,
for multiple roots, arising due to the plot of the function f(x) being tangential to the
x-axis, the modified Newton’s method gives a faster convergence to the root.

5.6 SUCCESSIVE SUBSTITUTION METHOD

The successive substitution, or fixed point, method is an important, but simple,
approach to determine the roots of an equation. Any type of equation, such as poly-
nomial or transcendental, can be considered and the algorithm is quite straight-
forward. However, the scheme may not converge and various strategies are often

148 Computer Methods for Engineering with MATLAB® Applications

employed to obtain convergence. In this method, the equation f(x) = 0 is rewritten to
obtain an equation for the independent variable x as

x = g(x) (5.28)

so that o = g(o) if f(o)) = 0, where . is a root of the original equation. Thus, if x, is
an initial approximation to a root, the successive approximations to the root may be
obtained from the recursion relation

X = 8(x;) (5.29)

Therefore, a successive substitution of the approximation x; to a root into the func-
tion g(x) yields a sequence of iterations that may converge to the root. The equation
X = g(x) can be obtained from the original equation f(x) = 0 in an unlimited number of
ways. In many cases, the equation may contain a linear expression in x. Consider, for
instance, f(x) = x*—6.5x3 + 7x? — 11.5x + 3 = 0. Then the equation for the successive
substitution method may be obtained simply by isolating the linear expression to give
x =g =(x*-6.5x3 + Tx* + 3)/11.5. Similarly, we may rewrite the equation as x = g(x)
= (6.5x3 — Tx? + 11.5x — 3)". Convergence is often sensitive to the choice of g(x) and
may not occur for a chosen form of the function. In the preceding equation, for
instance, the first formulation is appropriate if the root is less than 1.0, and the second
formulation is better if the root is larger than 1.0, as seen in Example 5.7.

In order to modify the convergence characteristics of the method, we can also
employ the following recursion equation:

X = (1=P)x; +Pg(x;) (5.30)

where B is a constant and may be chosen to improve convergence. This equation is
obtained from the consideration that if o = g(o), then o also satisfies the equation
o= (1 - B)a + Bg(or). The choices for g(x) and B are dependent on the behavior of the
function f(x). Because of the arbitrariness in the choice of g(x) and the usual strong
dependence of convergence on the function g(x), the method is not used as frequently
for root solving as other methods like Newton—Raphson. However, in many practical
circumstances, the method is employed for the solution of simultaneous, nonlinear
algebraic equations governing the performance of engineering systems. The succes-
sive substitution method then provides a relatively simple computational technique
for obtaining the values of the physical variables that satisfy the given system of
equations, as discussed later in Chapter 6.

It can be shown that the successive substitution method will converge if for
Ix — al < lx; — o, the function of g(x) possesses a derivative g’(x) such that lg’(x)l < 1.
Here, x, is the initial approximation to the root. This condition implies that the
magnitude of the derivative is less than 1.0 in the computational region. When x; is
close to the root o, the next approximation x,, can be shown to be given by the
approximate relation

X — 0= g'(0)(x; — o) (5.31)

Roots of Equations 149

Therefore, if Ig’(o)l < 1, the method converges to the root in a region near the root.
The derivative g’(ov) is often termed the asymptotic convergence factor. The Newton—
Raphson method, discussed in Section 5.5.1, may also be considered in terms of the
successive substitution method to obtain the convergence characteristics, as outlined
by Carnahan et al. (1969).

The major problem with the successive substitution method is the frequent diver-
gence of the iteration for a given choice of the function g(ct). The condition for con-
vergence given by Equation 5.31, Ig’"(x)l < 1, can sometimes be employed in the
formulation of the function g(x), as indicated for the polynomial equation considered
earlier. Frequently, convergence occurs over a very narrow range of the starting
value, and one may need to try several values before the iteration converges. The
method is very easy to program, and, as seen from Equation 5.31, a linear conver-
gence is obtained when x; is close to the root. The following example illustrates the
use of the successive substitution method for finding the roots of an algebraic equa-
tion and also demonstrates the convergence characteristics of the method.

Example 5.7

The gas flow rate R, in m%/s, through a duct in a chemical reactor due to a fan is
given in terms of the pressure P, in N/m?, by the equation

R=15-75x107"° x P? (5.32)

where

P =80 + 10.5R>"> (5.33)

Employing the successive substitution method, find the gas flow rate at which the
system operates.

SOLUTION

The problem involves finding the roots of the equation

R =15-75x10"° x (80 + 10.5R>3)? (5.34)

Both the pressure P and the flow rate R are real and positive quantities. It is also
obvious from Equation 5.32 that R must be less than 15 m%/s, since P is zero if
R =15 m’/s and imaginary if R is larger than this value. Thus, R lies between 0 and
15 m3/s, the two extreme values being excluded, since nonzero values of R and P
are expected.

Equation 5.34 is already in the form of Equation 5.28, and the successive sub-
stitution method may be applied to this equation. However, it is found that the
method does not converge, mainly because of the large exponent of R on the
right-hand side which makes even a small error in the numerical solution grow

150 Computer Methods for Engineering with MATLAB® Applications

from one iteration to the next. In fact, |g’(ar)|, defined in Equation 5.31, is found to
be larger than 1.0 for R larger than about 3.5. Consequently, the problem may be
reformulated in terms of a smaller exponent of R as

1/2

3/5
R=(P289) " wwherep - (127K (5.35)
10.5 75x10

This gives the equation for R as

172 3/5
(15 -R)/75x10°) " - 80
R = 0 (5.36)

The successive substitution method is now applied to this formulation of the
problem. Since 0 <R <15, the minimum and maximum values of the unknown
may be suitably specified. A simple MATLAB program may be written for this
problem as given in Appendix B.5. Here, z represents the function g(x) and the
absolute value of (z-x) is used with a specified convergence parameter conv to
check for convergence. A fixed number of iterations are specified. A condition
for divergence may also be used for termination of the iterations if the scheme
does not converge. Figure 5.16 shows the numerical results obtained from such
a program for two starting values, 0.5 and 1.0, of the flow rate, denoted by X, for
convergence parameter conv, denoted by CONV, of 10~ and 10

The flow rate is computed as 6.732 m?/s, this value being only slightly changed
by a variation in the convergence parameter, CONV. A larger number of iterations
are needed at the smaller value of CONV, as expected, and the starting value has
a negligible effect on the converged solution. As shown by this example, conver-
gence may often be achieved in successive substitution by rewriting the algebraic
equation in a different way, if the method diverges when applied to the given
equation. It can be verified that |g’(c)| is indeed less than 1.0 near the root for the
formulation given in Equation 5.36.

5.7 OTHER METHODS

So far, we have discussed many important methods for root solving and have consid-
ered their applicability, limitations, convenience, and convergence characteristics.
There are several other methods that are available for finding the roots of certain
types of equations and that are sometimes preferred due to superior convergence, ease
in programming or wider range of applicability. Some of these methods are based on
the techniques and algorithms for the methods discussed earlier and try to improve
the earlier methods. Others employ different approaches to root solving. Some of
these methods are presented in this section.

Roots of Equations 151

X=0.50 CONV =0.0010 X=1.00 CONV =0.0010
X=0.5000 Z =8.3339 X=1.0000 Z=8.2271
X=83339 Z=6.1733 X=82271 Z=6.2136
X=6.1733 Z =6.9075 X=6.2136 Z=06.8951
X=69075 Z=6.6752 X=6.8951 Z=6.6792
X=6.6752 Z=06.7504 X=6.6792 Z=6.7491
X=6.7504 Z=06.7262 X=6.7491 Z=6.7266
X=6.7262 Z =6.7340 X=6.7266 Z=6.7338
X=6.7340 Z=6.7315 X=6.7338 Z=6.7315
X=6.7315 Z=6.7323 X=6.7315 Z=6.7323
THE REQUIRED ROOT IS X =6.7315 THE REQUIRED ROOT IS X =6.7315
X=0.50 CONYV =0.0001 X=1.00 CONYV =0.0001
X=0.5000 Z =8.3339 X=1.0000 Z=8.2271
X=83339 Z=6.1733 X=82271 Z=6.2136
X=6.1733 Z =6.9075 X=6.2136 Z=6.8951
X=69075 Z=6.6752 X=6.8951 Z=6.6792
X=6.6752 Z=06.7504 X=6.6792 Z=6.7491
X=6.7504 Z=06.7262 X=6.7491 Z=06.7266
X=6.7262 Z =6.7340 X=6.7266 Z=6.7338
X=6.7340 Z=6.7315 X=6.7338 Z=6.7315
X=6.7315 Z=6.7323 X=6.7315 Z=6.7323
X=6.7323 Z=6.7320 X=6.7323 Z=6.7320
X=6.7320 Z=6.7321 X=6.7320 Z=6.7321

THE REQUIRED ROOT IS X =6.7320 THE REQUIRED ROOT IS X = 6.7320

FIGURE 5.16 Computed results for the problem in Example 5.7 by the successive substitu-
tion method, for two values of the convergence parameter and two initial estimates of the
unknown root.

5.7.1 MULLER’S METHOD

This method is based on the secant method, which employs the intersection of a line
through two points on the graph of f(x) with the x-axis to approximate the root for the
next iteration. Miiller’s method uses three points, instead of two, obtains the parabola
through these three points, and takes the intersection with the x-axis as the next
approximation, as shown in Figure 5.17. If the three initial function values are f;, f,,
and f, corresponding to the x values of x,, x,, and x,, the parabola going through these
points is determined and its intersection with the x-axis is obtained by solving the
quadratic equation ax?+ bx+ ¢ =0. Using the alternative form of the solution,
we have

-2c

I=—F 77— 5.37
bx+/b* +4dac ©.37)

152 Computer Methods for Engineering with MATLAB® Applications

y=f(x)

FIGURE 5.17 A sketch showing the starting approximations x,, x,, and x, to the root and the
application of Miiller’s method.

where

(Jo =) =x) = (fi = o) (x5 = x,)

“= (X = 2,)(Xg = %,)% = (X0 = %,)(X; = x,)?

po i f)x - %) = (fo = £H)(x - x,)° (5.38)
(1 =2,) (X0 = %,)* = (X5 = %,)(x; = x,)?

c=f,

The derivation is simplified by assuming x = x, to be the best approximation to the
root and changing the independent variable to x — x,. Then, the next approximation
to the root x; is obtained as

X =tz (5.39)

To ensure the stability of the method, the root with the smallest absolute value, that
is, the one closest to x, is chosen. Therefore, for b > 0, the positive sign is used,
otherwise the negative sign is taken. The iterative process is continued till an appro-
priate convergence criterion applied to the root or the function is satisfied. Note that
a particular approximation during the iteration can be complex, even if the previous
values were all real. This is in contrast with other root-finding algorithms like the
secant or Newton’s method, whose iterates will remain real if one starts with real
numbers. Having complex iterates can be an advantage if one is looking for complex
roots or a disadvantage if it is known that all roots are real.

The order of convergence of Miiller’s method can be shown to be approximately
1.84. This can be compared with 1.62 for the secant method and 2 for Newton’s
method. So, the secant method makes less progress per iteration than Miiller’s
method and Newton’s method makes more progress. However, three starting approx-
imations to the root are needed to initiate the iterative scheme. After each iteration,
the latest three approximations may be employed to generate the next value. Thus,

Roots of Equations 153

the algorithm is quite similar to that for the secant method and the programs given
earlier may be modified to obtain one for Miiller’s method.

5.7.2 ITerATIVE FACTORIZATION OF POLYNOMIALS

Analytically, the roots of a polynomial equation can often be obtained by factoriza-
tion and equating each factor to zero. A similar approach may be employed for root
solving by numerical methods. Several methods are based on the iterative factoriza-
tion of the given polynomial and can be used to obtain factors of arbitrary degree.
Generally, linear or quadratic factors are determined so that the roots may be
obtained directly from these factors. Let us first consider Bairstow’s method, which
iteratively determines quadratic factors of the form x? + bx + ¢, and so the roots are
given by Equation 5.3 as

-b+b*-4c

2

The polynomial given in Equation 5.2 can be written as

a,0, =

f(X)=(x*+bx+)dyx" 2 +dx" 3 +dyx"* +--+d,_;x+d,_,)+remainder
(5.40)

where the d’s are functions of b and ¢ and are obtained from a comparison with the
original polynomial of Equation 5.2 as

dy =1
d=a-b
dy=a,-db-c
(541)
dy=a,-d,b-dc

d =a -d_b-d_,c

and the remainder is (x + b)d,_, + d,,.

To extract the quadratic factor from the polynomial, we must reduce the remainder
to zero, within a specified error tolerance. We do so by iteratively reducing d,_, and d,,
to zero. Since both of these are functions of b and ¢, we may use Taylor’s expansion
for a function of two variables. If only the linear terms are retained, we obtain

d,, ad

d,(b+ Ab.c+Ac)=d, (bc)+) Ab+ T Ac =0

d (5.42)
d, ,(b+Ab,c+Ac) = dn_l(b,c)+ Zl Ab+ 5L Ac =0

154 Computer Methods for Engineering with MATLAB® Applications

where Ab and Ac are increments in b and c. We set the equations equal to zero in
order to obtain the next approximation to b and ¢ so that d, and d,_, become zero.

The set of equations for the d’s may be differentiated to obtain a similar sequence
of equations for their partial derivatives. The corresponding expressions are as
follows:

ad, ad,
R G T
d, _ _ 9, _
b =b-d =¢ 5 = 1=
ad, ad,
b - d,—eb-ce, =e¢, e = b-d =e (5.43)
od,_ ad,_
Bb ! = _dn—Z - en—3b - en—4c = en—Z BC ! = en—3
ad, ad,
b = _dn—l - en—Zb —€,3¢=¢,, W =€,
which give
e =-d,—e_b—e_,c fori=273,..,(n-1)
Also,

e,=-1 and e =b-d,

Therefore, the partial derivatives for the remainder terms may be obtained. From
Equations 5.42,

d,=-e, |[Ab-e, ,Ac

(5.44)
=-e, ,Ab-¢, ;Ac

d

n-1
Solving these simultaneous linear equations, we find that Ab and Ac are given by

dn 1€n-2 d 1€n-3
€16, 3 (en 2)
d n€n-2 dn 1€n-1

€,-1€,-3 (en 2)

Ab =
(5.45)
Ac =

To apply Bairstow’s method, initial guessed values of b and ¢ are taken and the
corresponding d’s and e’s are determined. The increments Ab and Ac are obtained for
the next approximation of b and c. The recursion formula is

b, =b+Ab and c,, =c; +Ac (5.46)

Roots of Equations 155

where i is the iteration number. The iterative process for the determination of b and ¢
is continued until IAbl and |Acl are less than a specified convergence criterion. The
quadratic factor thus obtained yields two roots of the equation. The reduced poly-
nomial of degree (n — 2) is next considered to obtain the remaining roots. The algo-
rithm is shown in terms of a flow chart in Figure 5.18.

Bairstow’s method can be used for finding real, equal, or complex roots of a poly-
nomial. Although the analysis appears to be complicated, the method may be pro-
grammed for the computer without too much difficulty. However, convergence cannot
be guaranteed for an arbitrary choice of initial values. If there is some prior informa-
tion available on the roots or on the coefficients of a factor, the method may be used
very effectively to improve the accuracy of the roots. Since divergence may occur with
an arbitrary choice of the initial values of b and ¢, one may restrict the total number of
iterations in the program and choose the starting values again if divergence occurs.

Several other methods have been developed based on the extraction of factors
from polynomials. Synthetic division by a linear or quadratic factor allows one to
obtain equations for the coefficients of the reduced polynomial and for the remain-
der, as discussed above. Bairstow’s method uses the Newton—Raphson method for
the solution of simultaneous nonlinear equations to iteratively reduce the remainder
to zero (see Equation 5.42). If the successive substitution method for simultaneous
nonlinear equations is employed, instead of the Newton—Raphson method, to reduce
the remainder to zero, the procedure is known as Lin’s method. This method
provides a simpler, although less efficient, iterative procedure for obtaining the qua-
dratic factors of a polynomial of degree greater than two. The extraction of linear
factors from the polynomial may also be carried out by using synthetic division.
However, quadratic factors are the most desirable ones since they allow the direct
determination of real and complex roots. The methods based on the iterative factor-
ization of polynomials also have the attractive feature of obtaining all the real,
multiple, and complex roots. Therefore, despite their complexity, they are frequently
used, particularly for problems of engineering interest in which the nature and mag-
nitude of the roots are not known. The following example illustrates the use of
Bairstow’s method.

Example 5.8

Use Bairstow’s method for the iterative factorization of polynomials to find a qua-
dratic factor and the roots of the characteristic equation given as

A —100° + 3502 =500 +24 =0 (5.47)

SOLUTION

The quadratic factor to be determined is taken as x> + bx + ¢, where b and c are to
be obtained from Bairstow’s method. Equations 5.41 and 5.43 give the coefficients
of the remaining polynomial and the derivatives of these coefficients with respect
to b and c. The iterative procedure given by Equations 5.45 and 5.46 is employed
to converge to the desired values of the constants b and ¢, using a convergence

156 Computer Methods for Engineering with MATLAB® Applications

Input data
coefficients a;
and €

Enter initial
guesses for b, ¢

N Store values
” by=b;c;=c

v

Calculate d’s
and the derivatives

e’s
Input calculated ¢
coefficients of Compute increments
remaining A Ab and Ac
polynomial
x v

Calculate new
values for b, ¢

Store calculated b, ¢
Determine coefficients
of remaining polynomial

Is
remaining
polynomial
second

order?

Yes

Determine roots
from second-
order factors

v

Output
all factors and roots

FIGURE 5.18 Flow chart for the solution of a polynomial equation by Bairstow’s method.

Roots of Equations

THE INITIAL GUESS: B =-2.0000

THE QUADRATIC FACTOR:B = -3.000003
REMAINING POLYNOMIAL:D1 =-7.000000

B =-2.776470
B=-3.162417
B =-2.825542
B =-2.969001
B =-2.999051
B =-3.000000
B =-3.000003

THE INITIAL GUESS: B = 0.0000

THE QUADRATIC FACTOR:B = -2.999983
REMAINING POLYNOMIAL:D1 =-7.000084

B =-1.120000
B =-2.010739
B =-2.633198
B =-2.957543
B =-3.005317
B =-2.999916
B =-2.999983

THE INITIAL GUESS: B =2.0000

THE QUADRATIC FACTOR:B =-4.999969
REMAINING POLYNOMIAL:D1 =-5.000042

B =-1.967654
B =-4.887068
B =-4.943721
B =-4.972162
B =-4.986652
B =-4.994331
B =-4.998444
B =-4.999864
B =-4.999969
B =-4.999969

C=1.0000
C=1.352941
C=1.922668
C=1.902719
C=1.973022
C=1.998892

C =1.999998

C =2.000003

C =2.000003
D2 = 12.000000

C =5.0000
C=2.200001
C=1.453996
C=1.577660
C=1.885094
C=1.999321
C=1.999945
C=1.999984
C=1.999984
D2 =12.000400

C=-2.0000
C=-13.789750
C=-14.755200
C=-4.912420
C=-0.009018
C=12.395084

C =3.505467
C=3.918154

C =3.996880

C =3.999967
C=3.999973
C=3.999973
D2 =6.000034

157

FIGURE 5.19 The numerical results for Example 5.8, employing three different starting

values.

criterion of 10=. A computer program may easily be written for this problem,
using the earlier program for Newton’s method. The d’s and e’s are obtained and
employed to determine the increments in b and c for the next iteration. The start-
ing values are taken as b =-2 and c = 1. The iterative process converges to b =-3
and ¢ =+2, which gives the quadratic factor as x2 — 3x + 2. The remaining poly-
nomial is x> — 7x + 12; see Figure 5.19.

Therefore, the roots of the given equation, Equation 5.47, may be obtained by
solving the two quadratic equations

158 Computer Methods for Engineering with MATLAB® Applications

x?=3x+2=0 and x*-7x+12=0 (5.48)

The four roots of the given equation are found to be 4, 3, 2, and 1. It is evident
that the quadratic factor derived from the given polynomial equation will depend
on the starting values of b and c. Six different quadratic factors are possible, since
the first root may be combined with any one of the three remaining ones, the
second root with two remaining ones, and the third with the fourth one, to yield a
quadratic factor each. The convergence of the method is quite rapid, as shown in
Figure 5.19. The convergence criterion must also be varied to ensure a negligible
dependence of the results on the value chosen. Results are also shown for different
sets of starting values and convergence to a different quadratic factor is observed
in the last case.

5.7.3 GRAEFFE’s METHOD

Graeffe’s root-squaring method is suitable for polynomials and can be used to deter-
mine both real and complex roots, as well as multiple roots. It is based on obtaining
anew polynomial, which is of the same degree as the original polynomial and whose
roots are some large, even power of the roots of the original equation. The roots of
the derived equation are first obtained, and these then yield the required roots of the
given equation.

A given polynomial equation may be written as

J)=x-a)(x-0,)(x-a,) (5.49)
where o, 0,,, O, ..., 0., are the roots. A new function F(x) may be defined as
F(x)=(=D"f(x)f(-x) (5.50)
which gives
F(x) = (x* —af)(x* —a3)-(x* —og) (5.51)

Therefore, F(x) contains only even powers of x, and a function f,(x) may be defined as

£f,(x)= FWx) = (x—o2)(x—a2)-(x—a2) (5.52)

Therefore, the roots of the derived equation f,(x) = 0 are squares of the roots of the
original equation. The process may be repeated to obtain a sequence of polynomials
Jus fos fss - - -» sO that a derived polynomial £, (x) is obtained, where

() =(x-a")(x-a7)--(x-ay) =0 (5.53)

The roots of the above equation are a large, even power m of the roots of the original
equation. If loyl > la,l > - - - loy |, then the ratios of the roots of the derived equation,

Roots of Equations 159

lag /oLl oz /ol,... loa /o ||, may be made as small as desired by making m large.
The derived polynomial f,,(x) may be written as follows:

Su(X) =x" = (0 + 08 +--)x" " + (ool + ool +ohos -)x"?

— (ool +oralal +)x" 3 ek (D)ool ..ot (5.54a)

n

or
fu(X)=x" = Ax"+ Ax" 2 4+ +(=1)"A, (5.54b)
Then the magnitude of the roots may be approximated by

A A

= (A),0r gf,...,af = (5.55)
1

if only the leading, or dominant, terms within the parentheses in Equation 5.54a are
retained. The values of the roots o, 0, ..., o, of the original equation may be
obtained by taking the mth root of the above equations, that is,
o, =A™ o, =x(A, / A)"™, and so on. The signs of the roots are not determined
and must be obtained by substitution in the original equation or from any previous
information on the roots, based on the physical nature of the problem.

If the original polynomial equation has real and equal roots, the regular relation-
ship between the coefficients of successive polynomials, as mentioned above, is not
obtained. Since the method does not determine the sign of the root, equal roots, in
Graeffe’s method, are those that have the same absolute value. If the roots o, and
o, are taken as equal, it can be shown from the above analysis that the coefficient
A, of the polynomial f,,(x) is essentially equal to half the square of the correspond-
ing coefficient in the polynomial f,,_,(x) for large m. The other coefficients are
squares of the corresponding preceding values if the remaining roots are real and
distinct. If three equal roots are present, say, o;, 0;,;, and 0;,,, the coefficients A, and
A,,, become one-third of the corresponding preceding values. The corresponding
relationship between the roots and the coefficients of the polynomial may be
obtained from Equation 5.54.

Graeffe’s method may also be used for complex roots, which appear in conjugate
pairs. The conjugate pair may be taken as (# + iv) and (# + iv), and the above analysis
may be applied to such roots. It can be shown that, at large m, the real and distinct
roots give rise to coefficients of the polynomial f,,(x) that are essentially squares of
the corresponding coefficients of f,,_,(x). The presence of complex roots is indicated
by a fluctuation in the sign of a coefficient, since a trigonometric function cos m®,
where m is a constant and the complex roots are written as Re®® and Re™®, appears in
the relationships. If the sign of the coefficient A, fluctuates, the roots o and ¢, are a
conjugate pair of complex roots. The magnitude R of the roots is determined from
the coefficients A, | and A,,, as before. If more than one conjugate pair of complex

160 Computer Methods for Engineering with MATLAB® Applications

roots is present, correspondingly more coefficients in the polynomial f, (x) fluctuate
in sign.

Therefore, Graeffe’s method provides a means of determining all the roots of a
polynomial equation, whether they are real, equal, or complex. However, despite
this attractive feature of the method, it has not become very popular mainly because
of the need to make decisions that considerably complicate the programming. The
round-off error introduced at any stage of the process accumulates in the computa-
tion and affects the accuracy of the roots obtained. Also, the coefficients frequently
exceed the floating-point range of the computer, particularly if there are two roots
which are close to each other and which, therefore, require a large value of m for
the separation of the roots. However, this last problem may be avoided by the scal-
ing of the polynomial, which involves dividing the roots by a scale factor. The
roots of the modified equation yield the scaled roots, from which the desired roots
are obtained.

Probably the best procedure for employing Graeffe’s method is to work interac-
tively with the computer. Such an interactive program would allow one to make
decisions as the computation proceeds and make the necessary changes in the
process. Although Graeffe’s method is not widely used, it does have the attractive
aspect of evaluating all the roots of a polynomial equation. The method is dis-
cussed here since it indicates a different approach, as compared to the methods
outlined earlier in this chapter, to root solving and may form the basis for solving
certain complicated equations of engineering interest that cannot be solved by
other methods. For further details on the method and examples illustrating its use,
see Jaluria (1996).

5.7.4 ADDITIONAL METHODS

There are obviously many more methods available in the literature for root solving.
Many of these are based on considerations and techniques quite similar to those
discussed here. Among those that may be mentioned are Brent’s method, Laguerre’s
method, Householder’s method, Horner’s method, Bernoulli’s method, and Ward’s
method.

Brent’s method is a combination of the bisection method, the secant method and
inverse quadratic interpolation. Before each iteration, the method decides which of
these three is likely to perform the best, and proceeds by doing a step according to
that method. This gives a robust and fast method, which, despite being complicated,
enjoys considerable popularity. Laguerre’s method uses second-order derivatives and
complex algebra to obtain cubic convergence for simple roots whenever the initial
guess X, is close enough to the root x. For a multiple root, the convergence is only
linear. A major advantage of this method is that it is almost guaranteed to converge
to a root of the polynomial. It may even converge to a complex root of the polyno-
mial. Since failure to converge is extremely rare, this method is a good candidate for
a general purpose polynomial root finding algorithm. The algorithm is fairly simple
to use and the speed at which the method converges implies that only a few iterations
are generally needed to get high accuracy. However, theoretical understanding of the

Roots of Equations 161

algorithm is rather limited and this has made the method not as popular as one may
expect.

Householder’s methods lead to a class of methods used for functions of one
real variable with continuous derivatives up to some order m + 1, where m will
then be the order of the Householder’s method, as well as the rate of convergence.
The Householder’s method of order 1 is just Newton’s method and the method of
order 2 yields another method, known as Halley’s method, which has a cubic
order of convergence but involves more operations per iteration. Horner’s method
can be used for finding the roots of a polynomial equation. It employs an iterative
sequence of translations to place the root at the origin. The sum of these transla-
tions is the root of the original equation. Then, synthetic division is employed to
reduce the equation by this root and search for the next root is carried out. The
method becomes quite complicated if the degree of the polynomial equation is
high or if complex roots arise. Similarly, Bernoulli’s method is applicable for
polynomial algebraic equations and obtains the real root with the largest absolute
value.

An important class of methods has been developed using minimization principles.
Ward’s method uses these principles to find the roots of a complex polynomial equa-
tion f(z) = 0, where z is a complex variable and

f(@)=u(x,y)+iv(x,y) and z=x+iy (5.56)

Ward’s method seeks to minimize the function p(x, y), where

p(x,y) = u(x, y)|+[v(x,y) (5.57)

The method is iterative, and at each step the value of p(x, y) is compared with the
values at (x + Ax, y), (x — Ax, y), (x, y + Ay), and (x, y — Ay), where Ax and Ay are
increments in x and y. If a smaller value of P(x, y) is found at any of these four
points, that point becomes the new (x, y) location. If the four points do not give a
smaller value of p, Ax, and Ay may be reduced until they do. Otherwise, the mini-
mum has been reached. Therefore, the method simply moves in the direction of
decreasing p(x, y). The root is obtained when u and v become zero, or smaller than
a chosen convergence parameter. The search for a minimum value of p is, therefore,
expected to lead to the root. However, convergence does not necessarily occur.
Similarly, other functions, such as (u?> + v?), may be minimized. Other minimiza-
tion techniques are also available from mathematical procedures that have been
developed for the optimization of systems. Search methods are frequently used in
optimization, the above procedure being generally termed as lattice search
(Stoecker, 1989; Jaluria, 2008). In engineering problems, one may encounter equa-
tions that are so complicated that the various methods discussed in this chapter may
not be convenient to use. In such cases, one may resort to minimization methods to
obtain the desired roots.

162 Computer Methods for Engineering with MATLAB® Applications

5.8 SUMMARY

In this chapter, several methods for finding the roots of a nonlinear algebraic equa-
tion, including polynomial and transcendental equations, have been presented. The
discussion considers some of the most important and widely used methods, outlin-
ing their limitations and advantages. The selection of the method for solving a
given problem depends on the nature of the equation and of the roots. The physical
characteristics of the problem, if known, are useful in choosing the method and in
determining the interval over which the roots are sought. The incremental search
method may be used to yield the approximate nature of the function f(x) and the
approximate location of the roots. Once this information has been obtained, one
may switch to a method, such as the Newton—Raphson method, that converges
more rapidly. In most problems of practical interest, prior information on the nature
and location of roots is available. This information should be built into the com-
puter program to obtain rapid convergence to the roots and to reject unacceptable
values. MATLAB is particularly convenient to use for polynomial equations since
the available software can be directly used to obtain all the real and complex roots
of the equations.

The convergence criterion, the convergence parameter € and the initial guess must
be varied to ensure that the results obtained are not significantly affected by the
values chosen. Several of these considerations, related to the computational proce-
dure, were also discussed earlier in Chapter 2 and may be employed in developing
the computer program. Some of the methods presented here can also be extended to
the solution of simultaneous equations, as discussed in the next chapter. Further
details on the various methods considered in this chapter may be obtained from the
discussions given by Traub (1964), Ostrowski (1966), Carnahan et al. (1969),
Householder (1970), Brent (1973), and Atkinson (1989). Ralston and Rabinowitz
(1978), Rice (1983), and Gerald and Wheatley (2003) may also be consulted for the
mathematical background of some of the methods outlined here.

PROBLEMS

5.1. We wish to find the cube root of 17, that is, 173, by root solving. Set up
the equation to be solved, and outline a method to compute the desired
value.

5.2. For the following equation, find the first two positive roots, which
represent the lowest frequencies of natural vibration of a mechanical
system:

tan x = tanh x

Use the search method to obtain an accuracy of order 107 on the
roots.

5.3. The root of an algebraic equation is known to be between 0 and
800 m/s. This root is to be determined to an accuracy of £0.1 m/s by
the bisection method. Derive Equation 5.9 and use it to determine the
number of bisections needed to achieve this accuracy.

Roots of Equations

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

The voltage x at a given junction in an electrical circuit is given by the
first positive root of the equation

f(x)=logyx+x>-6=0

Employ the bisection method, following the determination of the
interval containing the root by the search method, to obtain the volt-
age. Also, use the fzero function in MATLAB to obtain the solution
and compare the result with that obtained earlier.

The root of the following equation is to be determined.

x[l—exp(—lioé‘x)] -1=0

Write a function-m file for the secant root solving method. Then,
write a script m-file to use the secant function file to calculate the
root. Using these script files, obtain the results for 5 values of the con-
vergence parameter delta (delta = 1.0, 0.1, 0.01, 0.001, and 0.0001).
The equation that governs the frequency of vibration of a cantilever
beam is of the form

cosx coshx = -1

Use the search method to obtain the approximate locations of the first
two positive roots of this equation. Then use the regula falsi method
to converge to the roots.

If the derivative f’(x;) in Equation 5.16 is replaced by its backward
finite-difference approximation, Equation 4.18, obtain the resulting
recursive formula, and compare it with that for the secant method.
The roots of the equation

B
tanx = —
X

where B is a constant, are needed in a series representation of the tem-
perature field in a conduction heat transfer problem. Use the search
method to obtain the approximate values of the first three positive
roots of this equation, and then use the Newton—Raphson method to
obtain these more accurately. Consider two values, 1.0 and 2.0, of B.
Also use the successive substitution method, and compare the results
with those obtained by Newton’s method.

For the physical problem discussed in Example 5.1, take the values of
T,, h, and k as 1500 K, 10 W/m?K, and 50 W/mK. Using the Newton—
Raphson method, find the resulting surface temperature. The temper-
ature is to be determined to an accuracy of 0.01 K.

Explain what is meant by the statement that the Newton—Raphson
method has second-order convergence. Obtain the general form of
the corresponding convergence formulas for search, bisection, and
successive substitution methods. Compare these with that for the

163

164 Computer Methods for Engineering with MATLAB® Applications

Newton—Raphson method, and discuss the resulting difference in con-
vergent rate.

5.11. Use the Newton—Raphson method for root solving to find the nth root
of a number N, that is, x* = N, in order to derive the formula

X; N
Xi+1=7 I’l—1+x7

i

5.12. The temperature of an electrically heated wire is to be determined
from its energy balance. If the energy input per unit surface area into
the wire due to the electric current is 1000 W/m?, the resulting equa-
tion is obtained as

1000 = 0.5x 5.67 x 1078 x [T* - (300)*]+ 10 x (T - 300)

Determine the temperature 7 of the wire by employing the search
method. Since the equation is a fourth-order polynomial equation,
there are four roots. How would you choose the correct solution? Also,
use the fzero function in MATLAB to obtain the root and compare it
with that obtained earlier.

5.13. In a manufacturing process, a spherical piece of metal is subjected to
radiative and convective heat transfer, resulting in the energy balance
equation

F(T)=0.6x5.67x1078 x[(850)* = T#] - 40 x (T - 350) =0

Obtain a rough plot of the function f(T) versus 7, and use the secant
method to find the real root in the range 350 < T'< 850. Also, use the
roots function in MATLAB to obtain all the roots and compare the
results with the root obtained earlier. Comment on the choice of the
correct root.

5.14. The Planck distribution for the emission of radiation from a blackbody
is given by

(91

= A [exp(c2 INT) - 1]

where E is termed the monochromatic emissive power, A is the wave-
length of radiation, 7 is the temperature, and ¢, and ¢, are constants.
We wish to find the value of A at which E is a maximum. Therefore,
the first positive real root of the equation

dE
a0

is to be determined. Find this value and compare it with the result
given in the literature as A, = 2897.6/T, where A is in um and 7'is in
K. Take the constants ¢, and ¢, as 3.741 x 10% and 1.439 x 10* in the
appropriate units.

Roots of Equations 165

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

In the turbulent flow of a fluid through a smooth pipe, the frictional
force on the fluid is represented in terms of a friction factor f which is
positive and less than 0.1. The equation for fis

=2log;,(Re f12)-0.8

where Re is a constant, termed the Reynolds number, which varies with
the fluid properties, flow rate, and tube diameter. Obtain the approxi-
mate value of the friction factor by the search method, and then use the
Newton—Raphson method to converge to the root for Re = 10* and 109.
If the fluid, in the physical circumstance of the above problem, flows
through a rough pipe, whose roughness is given by a parameter &/D,
where € is the physical size of the surface protrusions and D is the pipe
diameter, the friction factor is given by

1 e/D 2.51
W = —210g10 ﬁ + W

Obtain the friction factor f for €¢/D =10~ at Re = 10° and also for
e/D=4x10"* at Re =107, using the search method. Also, use the
Jfzero function in MATLAB to obtain the root and compare the result
with that obtained earlier.

The equation of state for a gas is given by the van der Waals
equation

(P+£%yy—b)=RT

where P is the pressure, v is the specific volume, 7 is the temperature,
R is the gas constant, and a, b are constants that depend on the gas. For
P =70 atm, T=200 K, R =0.08205 liter atm/mole K, a =3.59,and b =
0.0427, the specific volume is given in liters/mole. Find this value using
the Newton—Raphson method, after obtaining the approximate value
by the search method. Also, use the roots function in MATLAB to
obtain the solution and compare the result with that obtained earlier.
Use the Successive Substitution method to determine the variable v
from the equation

0.55
V= la-v -90| /11
7%107

Use Newton’s method or the Secant method to solve the equation

0.63

exp(x) —x2=0

Use Newton’s method to find the real roots of the equation in Example
5.5, given as

xt—4x3+Tx2-6x+2=0

166 Computer Methods for Engineering with MATLAB® Applications

Also, use the roots function in MATLAB to obtain the roots and com-
pare these with those obtained earlier.
5.21. Solve the following nonlinear system by Newton’s method

X3+3Y2=21
X2+2Y+2=0

Try to solve these equations by the successive substitution method as
well.
5.22. (a) Using the Newton’s method, solve the following equation for the
value of x, which is known to be positive,

X5=[10 (10 - x)°5 - 8P

(b) Plot the appropriate function f(x) versus x to get an approximate
value of the root.

(c) Compare the solution and the convergence of the numerical scheme
for starting guesses of 1 and 2.0 for the root.

(d) Can the bisection method be used for this problem? Explain your
answer.

5.23. Use any suitable method to obtain all the roots of the following poly-
nomial equations:

x*—10x% +35x2 =50x+24 =0

x*=5x3+5x2+5x-6=0

Also use the search method for the real roots. Compare the values
obtained by the two methods. Then, employing the roots function in
MATLAB, obtain the roots of these equations and compare the results
with those obtained earlier.

5.24. Solve the problem discussed in Example 5.4 by the regula falsi and
secant methods. Compare the results obtained and the iterations
needed for convergence with those for the Newton—Raphson method.

5.25. Solve the problem considered in Example 5.7 by the Newton—Raphson
method, and compare the value of the root and the convergence char-
acteristics with those discussed for the successive substitution method.
Comment on the observed differences.

5.26. A cylindrical probe of diameter D is placed in a stream of air, and the
energy transfer from it is measured as 100 W. If the energy balance
equation is obtained as

[%)D““ +50|mD =100

Find the diameter D of the probe using the bisection method. Also
write the equation as f(D) = 0, draw an approximate plot of f(D) versus
D, and discuss the behavior of the function as D increases from zero
to 0.01 m. Also, use the fzero function in MATLAB to obtain the root
and compare it with that obtained earlier.

Roots of Equations

5.27.

5.28.

5.20.

5.30.

5.31.

A loan of $5000 is taken from a bank that charges a nominal annual
interest rate i, compounded monthly. A payment of $200 is made each
month, starting at the end of the first month, toward the loan. If it takes
36 months to pay off the loan, the rate of interest i may be determined
from the following equation, which is obtained by summing the pres-
ent worth of the monthly payments (see Example 2.2):

(1+in2)* -1
i

12

x 200 = 5000
(1+in2)*

Find this interest rate, by any method of your choice. An accuracy of
107 on i is adequate.

A bond of $1000 yields 8% interest annually and has 7 years to
maturity. It is sold for $500 due to the prevailing higher interest
rate i. If the buyer achieves the current interest rate on his investment,
the equation governing the transaction is obtained by equating the
monetary value of the bond before and after the sale (Stoecker, 1989)
as follows:

1000 + 1000 x 0.08 x

-
%=500x(1+i)7

Find the prevailing interest rate i from this equation, using any suit-
able method.
A function y(x) is given as

_ logx-sin (x?/25)
X

y(x)

where log represents the natural logarithm. Determine the maximum
value of y for x > 1.5, using the search method.
Use the Newton—Raphson and the second-order Newton’s methods for
finding the nonzero real roots of the equations

fx)=e*-5-x*=0
fx)=e*+1-x*=0

Compare the results and the rate of convergence obtained by the two
methods. Obtain the roots for two values of €, 102 and 107, where € is
the convergence criterion applied to the two functions represented by
f(x), and comment on the difference, if any.

Find all the roots of the polynomial obtained in Example 5.1 by
Bairstow’s method, and show that only one is acceptable because of
the physical considerations of the problem.

167

168

5.32.

5.33.

5.34.

5.35.

5.36.

5.37.

5.38.

Computer Methods for Engineering with MATLAB® Applications

Using any suitable method, obtain the four roots corresponding to the
polynomial in Problem 5.12. Again, show that three of them are not
acceptable.

For the following polynomial equations, use Bairstow’s method to
determine all the roots:

x*—8x3+22x2-24x+9=0
X =5x*-16x+80=0

Also, obtain the roots by employing the MATLAB function roots and
compare the results with those obtained earlier.

Use the search method to determine the approximate location of the
real roots and the behavior of the polynomial functions in the preced-
ing problem. Once this information has been obtained, how would
you choose the method for finding the real roots more accurately?
Use the Newton—Raphson method for finding the real roots, in the
range 0 < x < 1.5, of the following polynomial equation, which repre-
sents the variation of the force on a vertical structure with distance x:

fx)=x*-3x3+x*+3x-2=0

Also use the modified Newton’s method for the problem and compare
the convergence in the two cases. Obtain a rough plot of f(x) versus x
to guide the choice of the starting value.

Using Bairstow’s method, find all the roots of the following polyno-
mial equations:

X7 =3x0 +2x° =32x2 +96x-64=0
x> —15x* +85x3 =225x2 +274x-120=0
X0 =21x% +175x* = 735x3 +1624x2 - 1764x + 720 =0

Also use the Newton—Raphson method to find the real roots in the
range 0 <x < 1.5 in these three cases. Compare the convergence and
the accuracy obtained by the two methods. The real roots give the
frequencies of vibration of systems represented by these equations.
Use any two applicable methods for finding the first positive real root
of the following transcendental equations:

cosh x =4x
sin x = cos? x
2e*+x-4=0

Compare the convergence of these methods to the root and the com-
putational effort involved.
The calibration curve for a temperature-measuring device is given by

T =15+3.5V+0.6V?> +0.5V3 +0.1V*

Roots of Equations

5.30.

5.40.

5.41.

5.42.

5.43.

5.44.

where T is the temperature in °C and V is the voltage signal.
Determine the voltage output at 7= 30°C and 60°C. Use any suit-
able method.

Obtain a rough plot of the function f(x) where

f(x)=eB(4-x)-2-x

and determine the real roots of f{x) = 0 by the bisection method. How
many bisections are needed to locate the roots with a convergence cri-
terion of € = 10, where ¢ is the change in the root from one iteration to
the next?

Determine the effect of a variation in the convergence criterion € on
the value of the root obtained in Problem 5.9. Take € varying from 1
to 1075.

The critical load for the buckling of a vertical column is governed by
the transcendental equation

tanx = x

where Vx represents the critical load. Solve this equation by the mod-
ified Newton’s method to obtain a real positive root, starting with an
initial guess of x =4.0. Also try to solve it by the successive substitu-
tion method. Discuss your results.

The real and complex roots of the following polynomial equation are
related to the stability of a body subjected to a system of forces:

xX*+3x3+6x2+7x+3=0

where x represents the complex amplification factor for the distur-
bance. Find these roots, using the Newton—Raphson method. Also use
Newton’s second-order method for the real root, which is a multiple
root at x = —1. Compare the convergence by the two methods.

The decomposition of carbon dioxide into oxygen and carbon monox-
ide is governed by the equation

(L—l)x3+3x—2=0
E2

where P is the pressure in atmospheres, E is the temperature-depen-
dent equilibrium constant, and x is the fractional decomposition of
CO,. Using any suitable method, find x for P = 1 atm and E = 1.65.
The vapor pressure P of a material is given in terms of the temperature
T as

logP = a+?+clogT

where log is the natural logarithm and a, b, and ¢ are constants that
depend on the material. If their values are given as 17.5, —2.2 x 104,
and —0.9, respectively, find the temperatures at pressures of 0.01 and

169

170 Computer Methods for Engineering with MATLAB® Applications

0.1 atmospheres, using the search method to determine the approxi-
mate value of the root, followed by the Newton—Raphson method to
converge to the root.

5.45. When water vapor is heated to very high temperatures, it dissociates
to give oxygen and hydrogen. Then the mole fraction, x, of water that
dissociates is given by the equation

where S is the equilibrium constant of the reaction and P is the pres-
sure of the mixture. If the pressure P is given as 3.2 atmospheres and
S as 0.055, compute the value of x that satisfies the above equation,
using any suitable method.

5.46. The current / in an electrical circuit containing resistances R, and R,,
inductance L, and voltage source E is given by the equation

jo BN B crox
R| "R +R

where 7 is the time. If R, = 10 ohms, L = 10 henries, and E =20V, find
the resistance R, that gives a current of 1.4 amperes at#=0.5 s.

6 Numerical Solution of
Simultaneous Algebraic
Equations

6.1 INTRODUCTION

Systems of simultaneous algebraic equations are frequently encountered in
engineering applications such as those concerned with electrical networks, structural
analysis, heat transfer, fluid flow, optimization, vibrations, chemical reactions, and
data analysis. The numerical solution of an ODE or a PDE also often reduces to the
solution of a set of algebraic equations, as discussed later in Chapters 9 and 10. A
system of n simultaneous equations, with x,, x,, ..., x, as the n unknowns, may be
written as

fi(x,%y,...,x,)=0

]‘:Z(xl,xz,...,xn)=(:) 6.

f;z(xpxza---, x,,)=0

where f}, f, .. ., f, denote n different functions of the n independent variables. Various
methods have been developed to solve this system of equations to obtain the values
of the variables x|, x,, ..., x,. The choice of a particular method for a given problem
generally depends on the nature of the equations and the number of unknowns 7.

In many circumstances, the equations are linear in the unknown variables. Such
a system of linear equations has the general form

A X+ apX, + 0+ a4, X, =b

Ay X) + Ay Xy + - + Ay, X, = b,

6.2)

Ay X, +apXy + - +a,,X, =b,

nn n

where the a’s represent n? coefficients and the b’s similarly represent n constants. In
matrix notation, this system may be written more concisely as

AX = B 6.3)

171

172 Computer Methods for Engineering with MATLAB® Applications

where A is a square matrix of the coefficients, X is a column matrix, or vector, of the
unknowns, and B is a column matrix, or vector, of the constants that appear on the
right-hand side of the equations. From Equation 6.2, a; represents an element of the
matrix A and b; an element of the vector B. If the column matrix B is zero, that is, if
the b’s are all zero, the set of equations is said to be homogeneous, and nontrivial
solutions can be obtained only if all the equations are not independent, as discussed
later in this chapter. If the b’s are not all zero, the set of equations is nonhomoge-
neous. In this case, all the equations must be independent in order to yield unique
values of the unknowns.

A system of linear algebraic equations may be solved by employing Cramer’s rule
which gives the unknown x;, as

‘- Det A;
" DetA

6.4)

where A, is the matrix A with its ith column replaced by the column vector B and Det
represents the determinant of the corresponding matrices. It can be shown that the
number of basic arithmetic operations needed to solve for all the unknowns in a set
of equations by Cramer’s rule, employing expansion by minors for obtaining the
determinants, is (n + 1)! Therefore, this method is satisfactory only for a small num-
ber of equations, generally less than 5. For the large sets of equations generally
encountered in engineering problems, the time required to solve the equations using
Cramer’s rule is very large and the method is quite impractical, as compared to other
methods discussed in this chapter. However, Equation 6.4 indicates some important
points regarding the solution of linear simultaneous algebraic equations.

If Det A =0, the matrix A is termed singular, and no unique solution can be
obtained if the numerator is nonzero. However, if the column matrix B is also zero,
then Det A, = 0, since one entire column of the matrix A, is zero. In this case, non-
trivial solutions can be obtained. This is the circumstance of homogeneous equa-
tions, which give rise to eigenvalue problems, as discussed later in this chapter. If
Det A# 0, the equations are said to be all independent, and unique solutions may be
obtained for nonhomogeneous equations. A brief outline of the matrix algebra
needed for the following discussion is given here. For further details, textbooks on
matrices such as Lancaster and Tismenetsky (1985) and Bronson and Costa (2008)
may be consulted.

The solution to the set of linear equations given by Equation 6.3 may also be
written as

X=A"'B (6.5)

where A is the inverse of the matrix A, which must be nonsingular for the inverse
to exist. Then A7 A =1, where [is the identity, or unit, matrix, which is a square
matrix consisting of zeros everywhere except at the diagonal, where all the elements
are unity. Several methods for the solution of simultaneous linear equations are
based on obtaining A~ as an intermediate step. This is particularly advantageous if

Numerical Solution of Simultaneous Algebraic Equations 173

solutions are to be obtained for many systems of equations in which A is unchanged
and only the column vector B varies. Also, many computer systems have available
programs to invert a matrix. For example, matrix inversion is quite straightforward
in MATLAB®. However, most methods, which are used for solving simultaneous
algebraic equations, do not solve for A~ as an intermediate step and solve only for X,
unless there is a particular advantage in obtaining A~!, such as those mentioned
above, or unless the information is needed to study the nature of the equations.

There are two different types of methods, direct and iterative, that may be adopted
for solving Equation 6.3 for the unknown X. Direct methods solve the equations
exactly, except for the computational round-off error, in a finite number of opera-
tions. The methods based on finding the inverse matrix A~ to obtain the solution
from Equation 6.5 fall under direct methods, as do several other methods discussed
in this chapter. These direct techniques are particularly useful when the number of
equations to be solved is typically less than 20. However, a few special methods have
been developed for particular types of equations. These methods may be used advan-
tageously even for a much larger number of equations. Among these are the
Tridiagonal Matrix Algorithm (TDMA), Fast Fourier Transform method, and the
Cyclic Reduction method, all of which are particularly suited for the large number of
algebraic equations obtained from finite difference approximations of PDEs. The
second class of methods is based on iteration. Iterative methods are appropriate for
large systems of algebraic equations, typically of the order of 100 or more equations,
in which the sparseness of the unknowns in the equations often makes iterative com-
putation more efficient. Again, these methods are of particular interest in the finite
difference and finite element solutions of PDEs.

In this chapter, both direct and iterative methods for the numerical solution of
systems of linear algebraic equations are discussed. Most of the direct methods are
based on matrix inversion or on elimination and reduction so that the given set of
equations is obtained in a form that is amenable to a direct solution. Among those
discussed here are the Gaussian elimination, Gauss—Jordan elimination, L U
decomposition, Crout’s decomposition, and matrix inversion methods. The iterative
methods discussed here include the Jacobi, Gauss—Seidel, and relaxation methods.
The solution of homogeneous linear equations, which often result in eigenvalue
problems, is also discussed. The methods outlined for obtaining the eigenvalues and
the corresponding eigenvectors include the Gauss—Jordan method, the power
method, the Jacobi method, and Householder’s method, used in conjunction with
the LR, OR, and QL algorithms. Nonlinear algebraic equations are also of interest in
many engineering applications, and the solution of these equations is outlined. In
most cases, the equations are linearized in order to employ the methods applicable to
linear equations. For small systems of nonlinear equations, methods based on those
discussed in Chapter 5 for a single nonlinear algebraic equation, such as the Newton—
Raphson and the successive substitution methods, may be employed.

MATLAB is particularly useful for the solution of a system of algebraic equations
because of the advantage it has regarding the definition and manipulation of matri-
ces. Matrix multiplication and inversion can be easily obtained by simple MATLAB
commands. Similarly, the elements of a given matrix can be easily defined and aug-
mented matrices can easily be formed from given matrices and vectors, making it

174 Computer Methods for Engineering with MATLAB® Applications

easy to define the given system of equations and solve them to obtain the unknown
variables. This advantage of MATLAB over other computational environments,
particularly for direct methods, is clearly demonstrated in this chapter.

6.2 GAUSSIAN ELIMINATION

Gaussian elimination is a direct method for solving a system of linear algebraic
equations and is frequently employed in a wide variety of engineering problems. By
a process of elimination of the unknowns, the method reduces the given set of
n equations to a triangular set, so that one of the equations has only one unknown.
This unknown is determined and the remaining unknowns are obtained by the pro-
cess of back-substitution. This method is of particular interest since several other
direct methods are based on it.

6.2.1 Basic APPROACH

Let us consider a general system of three linear equations, given as

Ay X +ap X, +a;x; = by
Ay X, + Ay Xy + Ay3 X3 = b,y 6.6)

Ay X; + A3 X, + Ay Xy = by

As a first step, eliminate x, from the second equation by adding it to the equation
obtained by multiplying the first equation by — a,,/a,,. Similarly, multiply the first
equation by —as,/a,, and add the third equation to it to eliminate x, from the third
equation as well. The resulting system of equations is

ay X +apX, +a;3x; = b,
(1) 1 (1)
Ay X, + a3 %, = b, 6.7)

(e8] [¢)] _ ()
az X, + a3 x; = b

where the superscripts indicate new values of the coefficients after the first step.
The first equation, which has been used to eliminate the unknown x, from the
equations that follow, is known as the pivot equation, and the coefficient a,, of the
eliminated unknown is the pivot coefficient or pivot element. In the next step, multi-
ply the second equation by -a$P/a3y and add it to the third equation, in order to elimi-

nate x, from the latter. The result is an upper triangular set, given by

ayX; +apX, +a;3x; = b,

(1 1 (1)
30 Xy + a33 X3 = by (6.8)
(2) (2)
ay x; = b;

where a3’ and b3’ arise from the second step in the elimination process. Now, x; is

directly obtained as b{Ja'y from the last equation. This value may be substituted in

Numerical Solution of Simultaneous Algebraic Equations 175

the second equation to obtain x,, which, along with x,, is substituted in the first
equation to obtain x,. This process, known as back-substitution, can be employed
easily with a triangular set of equations to obtain the unknowns.

The preceding process can easily be extended to n equations, with » unknowns.
Employing successive pivot equations, the elimination procedure, outlined here, is
carried out until the original system of equations is reduced to an upper triangular
set. Back-substitution then yields the unknowns. To illustrate the Gaussian elimina-
tion method, let us consider the following set of equations:

3x+5y+z=16
x+4y+2z=15 6.9
2x+2y+3z=15

where x, y, and z are the unknowns. With the first equation as the pivot equation, x is
eliminated from the other two equations to obtain

3x+5y+z=16
Ty, 5 29
373 3 (6.10)
4y 7z 13

“3%373

Now, we use the second equation as the pivot equation to eliminate y from the third
equation. This results in the following triangular set of equations:

3y+5y+z=16

7y 5z 29
St3=3 6.11)

69z _ 207

21 21

The fractional coefficients in the resulting equations may be avoided by multiplying
on both side by the largest denominator. The value of z is obtained as 3 from the third
equation. Back-substitution then yields the values of the remaining unknowns. The
result is

x=1, y=2, z=3 6.12)

6.2.2 COMPUTATIONAL PROCEDURE

The Gaussian elimination method is very well suited for digital computation. The
system of linear equations is written in matrix form as

AX =B 6.3)

176 Computer Methods for Engineering with MATLAB® Applications

We then consider an augmented matrix C of this set, defined as follows:

ay Ay o 4y Qg
Gy Ay 0 Gy Gypy

C=| . . (6.13)
anl anZ e ann an,n+1

where the (n + l)th column consists of the b’s, with a, ., = b\, a,,,,, = b,, and so on.
The computational procedure is then concerned with reducing this matrix to the
following upper triangular augmented matrix after (n — 1) elimination steps:

ay G Gz o Gy, A1 nv
0 a da - &)),

cob = " i 6.14)
0 0 0 a(”*') a(”‘l)

nn n,n+1

To help with the visualization of these matrices, Figure 6.1 shows qualitatively a
few special types of matrices that are of particular interest in the numerical solution

* % %X % % 0% * %
* % % 0% % * % %
* % % % * % %
* % % * % %
* % EE
* * %
(0
*
* % % Nonzero element
* % %

FIGURE 6.1 Sketch of a few special types of matrices that are of interest in the solution of
simultaneous algebraic equations. (a) Upper triangular matrix, (b) tridiagonal matrix, and
(c) lower triangular matrix.

Numerical Solution of Simultaneous Algebraic Equations 177

of linear systems. This includes the upper and lower triangular matrices and the
tridiagonal matrix, which is discussed later.

The first step in the reduction of the matrix C to the augmented triangular matrix
C@D ig obtained from a generalization of the procedure outlined earlier. Therefore,
the elements a(,.l,-) of the matrix obtained after the first elimination step are given by

a.
a _ il
i =4

a (a;), where2<i<n and lsjsn+1 (6.15)

11

Here, a;; are the elements of the original matrix C. The first row is the pivot row and
a,, is the pivot element. Note that the first element of each row, except the first one,
becomes zero after this computational step.

Similarly, the complete elimination procedure may be generalized by recognizing
that the pivot row varies from the first to the (z — 1)th row as elimination proceeds
and that the pivot element for each step is a,,, where r denotes the number of the pivot
row. Therefore, the general procedure is written as

(r=1)

0 q _ . :
al’ =ayf “—%[aff “], wherer+l<i<n and r=<jsn+1 (6.16)
. at :

The superscripts within parentheses indicate the elimination step, with r varying
from 1 to (n — 1). For r = 1, Equation 6.15 is obtained, with the superscript (0) simply
denoting the coefficients of the original matrix. Again, note that the elements in the
rth column of all the rows that follow the pivot row become zero. Therefore, an upper
triangular matrix, augmented with the modified values of the b’s, which were initially
the given constants on the right-hand side of the given system of equations, is obtained
in the form represented by the matrix C®D after successively applying the preceding
procedure to all the pivot rows, going from the first to the (n — I)th row. Once this
reduced matrix has been obtained, as shown in Figure 6.1a, the unknown x, is
obtained from the elements of the matrix as

x = n,n+l (617)

nn

The other unknowns are obtained from back-substitution as

A; ns1 _E L ayX;
X = juivt 7 , wherei=n-1,n-2,...,2,1 6.13)
a

il

Here the superscripts have been dropped for convenience. In a computer program,
the old elements may be replaced by the new ones as elimination proceeds. No
superscripts are needed if j is varied from (r + 1) to (n + 1) in Equation 6.16 and the
elements in the rth column are simply replaced by zero. Back-substitution yields

178 Computer Methods for Engineering with MATLAB® Applications

the unknowns in the reverse order, starting with x, and ending with x,, as given by
Equation 6.18.

Let us apply the generalized procedure outlined above to the example given ear-
lier, whose augmented matrix C is

1
2 15 (6.19)
3

If Equation 6.16 is successively applied, with the first row as the pivot row in the first
step and then the second row, the matrices obtained in the two steps are

3 5 1 16 3 5 1 16
7 5 29 7 5 29
0 3 3 3| & |03 3 7
-4 7 13 69 207
05 3 3 00 57 21

Therefore, Equation 6.17 yields x; = 3, and back-substitution, given by Equation
6.18, gives x, = 2 and x, = 1. The generalized procedure can easily be applied on the
computer, as discussed in Example 6.1.

It may be mentioned here that the solution of n linear equations by Gaussian
elimination can be shown to require about n3/3 arithmetic operations, as compared
to n? for the multiplication of two n X n matrices (Atkinson, 1989). The method can
also be used for matrix inversion and for the evaluation of a determinant, as outlined
in Section 6.2.4. We now proceed to a consideration of the accuracy of the results
obtained by Gaussian elimination.

6.2.3 SOLUTION ACCURACY

In the preceding example, the Gaussian elimination method yielded the exact solu-
tion of the given system of linear equations, because the number of equations was
small and only whole numbers and exact fractions were involved. On the computer,
however, fractions are replaced by decimals, retaining a limited number of signifi-
cant places. As a consequence, a round-off error is introduced in dealing with quanti-
ties that have a larger number of significant decimal digits than those retained in the
computation. The round-off error and its effect on accuracy and convergence were
considered in detail in Chapter 2. Note from the earlier discussion that the round-off
error may substantially affect the accuracy of the solution if a large number of equa-
tions are involved. Consequently, Gaussian elimination is generally used if the num-
ber of equations is typically less than 20 if most of the unknowns arise in each
equation. Such a system gives rise to a dense coefficient matrix and, consequently,
each element has to be considered at each elimination step. If, however, only a few
unknowns are present in each equation, a sparse coefficient matrix is obtained. In

Numerical Solution of Simultaneous Algebraic Equations 179

certain special cases, several elimination steps are avoided and a larger number of
equations may be solved by Gaussian elimination, while obtaining an acceptable
accuracy level. An important example of such a sparse system is the fridiagonal
matrix, which has nonzero elements only at the diagonal and on either side of the
diagonal; see Figure 6.1b. This system arises in the numerical solution of ODEs and
PDEs and is discussed in greater detail in Example 6.2.

6.2.3.1 Ill-Conditioned Set

The accuracy of the solution is also substantially influenced by the conditioning of
the given system of linear equations. The system is said to be ill-conditioned if a
relatively small change in one of the coefficients results in a relatively large change
in the solution. Similarly, if there are elements in the inverse A~ of the matrix that
are several orders of magnitude larger than those in the original matrix A, then the
matrix is probably ill-conditioned. The main problem with ill-conditioning is that the
round-off error may cause slight changes in the coefficients which may, in turn, result
in a large variation in the solution. To test whether the round-off error is significant
for a given problem, one may use the solution vector computed to determine the con-
stant vector B from the equation AX = B and compare it with the original column
matrix. Also, A may be inverted twice and compared with A, or the product A~ A may
be compared with the identity matrix / to determine whether the round-off error is
large for a given problem. An example of an ill-conditioned set of equations is

x—-1.9999y = 0

x-1.9998y =1.0 6:20)

for which the values of x and y are 19,999 and 10%, respectively. A small change in the
coefficients of y can result in a large effect on the solution. Since the round-off error
can cause such a small change, the solution obtained may be quite inaccurate. To
keep the error small, one may use double precision on the computer. Double precision
reduces the speed of computation but is necessary for an ill-conditioned system.

6.2.3.2 Error Correction

We may also improve the accuracy of the solution obtained by applying an error cor-
rection. If X’ is the solution vector obtained from numerical computation, the con-
stant vector B’ may be found by the substitution of X’ into the given system of
equations, as B’ = AX’". Since the solution obtained is not exact due to the round-off
error, B’ will differ from the original constant matrix B. If X is the exact solution, the
error vector E is defined as X — X’. Therefore, from the original system of equations,
the following equations, known as error equations, are obtained:

AX-X)=B-B or AE=B-B 6.21)

Thus, the error vector may be computed from this set, which differs from the origi-
nal system of equations only in the constant vector. For applying this error correc-
tion, Gaussian elimination is employed to solve the given system of equations in

180 Computer Methods for Engineering with MATLAB® Applications

order to obtain X’, from which B’ is computed. The multipliers in the elimination
process are a""/a’"". We may retain these to solve other systems of equations with
the same coefficient matrix A but a different constant vector B, by applying Equation
6.16 to the (n + 1)th column, which represents the new constant vector. Therefore, the
error correction vector E may be obtained. Then a more accurate solution X to the
set of equations is obtained from

X=X+E (6.22)

The process may be repeated with the improved solution to obtain a still greater
accuracy. However, the exact solution is not obtained at any iterative stage because
of the presence of round-off errors.

6.2.3.3 Pivoting

In the solution of a system of linear equations by Gaussian elimination, we may
encounter steps for which the pivot element is zero, or close to zero. In some
cases, the pivot element may theoretically be zero but may acquire a small, non-
zero value in the computational process due to the round-off error. The use of
such a pivot element would lead to inaccurate results. In fact, the accuracy of the
solution is considerably affected by the magnitude of the pivot element, which is
employed in all the arithmetic operations for elimination in a given step. Greater
accuracy is obtained if reduction is carried out with the row that contains the larg-
est pivot element. A process, known as partial pivoting, in which the rows are
interchanged at each step, to employ the row with the largest pivot element as the
pivot row, is very commonly employed for more accurate results, particularly for
large systems of equations. This procedure also avoids the problem with a zero
pivot element during the elimination process. It is, therefore, necessary to include
partial pivoting in the computational scheme. It can be easily incorporated in the
computer program, as demonstrated in Example 6.1, given at the end of this
section. In some cases, complete pivoting, with both rows and columns being
interchanged to obtain the largest pivot element, is employed, as outlined later for
homogeneous equations.

6.2.4 MATRIX INVERSION AND DETERMINANT EVALUATION

Gaussian elimination may also be employed to obtain the inverse of a matrix. The
inverse A™! is generally not needed in the solution of a set of linear equations.
However, as discussed later, the matrix may be needed for studying the nature of the
equations and for solving several systems of equations that have the same coefficient
matrix A but different constant vector B. Finding A~ is equivalent to solving the
equation AX = I, where X is now an n X n unknown matrix. An augmented matrix C
is formed with the elements of A and I, placing the elements of / on the right-hand
side of matrix A, as those of vector B were placed earlier. By applying Gaussian
elimination to A, the solution matrix can be determined, which is the required inverse
A~'. The computation of the inverse by this method requires about (4/3)n* arithmetic

Numerical Solution of Simultaneous Algebraic Equations 181

operations, which is approximately four times the number of operations required for
solving a set of linear equations (Atkinson, 1989). Other methods for calculating the
inverse of a matrix are discussed in Section 6.5.

In some engineering problems, such as those that arise in vibrations and in stability
analysis, it may be necessary to evaluate the determinant of a matrix. Although not
needed for solving linear equations, since Cramer’s rule is rarely applied, the value
of the determinant may be required for studying the nature of the equations and for
determining whether the inverse of a matrix exists. Gaussian elimination may again
be used for the evaluation of a determinant. The value of the determinant of a matrix
of an upper triangular form is simply the product of the diagonal elements. Therefore,
Gaussian elimination may be used, as discussed earlier for a matrix, to obtain a given
determinant in this form. This method is applicable since the value of a determinant
is not altered if a constant multiple of the elements of a row or column are added to
or subtracted from the elements of another row or column. However, if any two rows
or columns are interchanged, the sign of the determinant is changed. Therefore, if
partial pivoting is used, to achieve greater accuracy or to avoid a zero pivot element,
this change in sign must be taken into account.

Let us consider the determinant of the coefficient matrix of the system of equa-
tions given by Equation 6.9. Then the determinant is

N = W
N B~ W
W N =

We apply Gaussian elimination to this determinant by using Equation 6.16 with r = 1
and then with » = 2 to obtain the upper triangular form

3 5 1
7 5
3 3

69
OOﬁ

The value of this determinant is given by a product of the diagonal elements and is,
therefore, obtained as

6.2.5 TRIDIAGONAL SYSTEMS

The direct solution of systems of linear equations that have tridiagonal, or banded,
coefficient matrices, as shown in Figure 6.1b, is important in many practical problems,

182 Computer Methods for Engineering with MATLAB® Applications

particularly in the numerical solution of PDEs. The set of equations, in this case, may
be written as

b ¢, 0 0 0
X d1
a2 b2 Cz O O
Xy dz
0 a by ¢, 0 0 - 0 _| (6.23)
xn—l d"—l
0o 0 - 0 0 a_ b c,
X, d,
0 0 @ b,

Therefore, the matrix A is tridiagonal if only a;, a;; ,, and a,,,, are nonzero. This
implies that a; =0 for li — jl > 1. If Gaussian elimination is applied to this system,
only one of the a’s is eliminated from the column containing the pivot element in
each step, since the remaining elements below the diagonal are zero. Therefore, only
one elimination process is employed at each step. The original zero elements are kept
unchanged, and the resulting system, after completion of the elimination procedure,
which is often known as the Thomas algorithm, is of the form

bp ¢¢ 0 0 - 0
X d,
0 by ¢ 0 - 0 ,
. X2 d,
0 0 b ¢ .
. =| : (6.24)
X1 d,,
0 ‘e 0 0 b, c]
’ X dn
0o - 0O 0 O b,

where the primes indicate new values. From this system of equations, the unknowns
may easily be obtained by back-substitution, since the last equation has only one
unknown and the others have two, including one which is obtained by solving the
equation below a given equation.

The recursion formulas for the above system may be written in terms of the ele-
ments a,, b;, and c;, where i denotes the row in the coefficient matrix. Therefore, the
new elements are given by

! ! i
a;=0, b/=b-c., b’
i1

(6.25)

S

’ ' ’ i
cl=c, d =di_di-lf
i-1

Numerical Solution of Simultaneous Algebraic Equations 183

with the calculations being carried out for increasing values of 7, from i = 2 to n. Once
the reduced system, given by Equation 6.25, has been obtained, back-substitution
may be applied as follows:

d, _ d/-cix;,,
n Es X = b," (626)

X
On the computer, the new elements simply replace the old ones, and primes are not
needed. The number of operations needed for solving a tridiagonal system is of order
n, O(n), as compared to O(n*/3) for Gaussian elimination applied to a system with a
dense coefficient matrix. Therefore, much smaller computing times and, consequently,
much smaller round-off errors arise in the solution of such systems. Thus, large tridi-
agonal systems are generally solved by this method. Example 6.2 illustrates the use of
Gaussian elimination for solving systems of equations of the tridiagonal form.

In MATLARB, the solution of a system of linear equations can easily be achieved
by defining the matrices a and b and applying the backslash operator, \, described in
Chapter 3. For instance, considering the simple problem given earlier, a and b are
defined as

a=[351; 14 2; 2 2 3]1;
b=[16; 15; 15];

Then, the desired solution x is given by
x=a\b

which uses the internal logic of the \ operator in MATLAB to obtain the left division
of a into b. It uses the Gaussian elimination approach to achieve this, without finding
the inverse of (A). It requires fewer arithmetic operations compared to methods based
on matrix inversion and thus requires less CPU time and has smaller round-off error.
The results are obtained as x = [1.0; 2.0; 3.0], as before.

Example 6.1

The specific volume v of saturated steam in m%kg is given at six dimensionless
temperature T values of 1, 2, 3, 4, 5, and 6, where 1 represents 10°C in physical
terms, as, respectively, 106.4, 57.79, 32.9, 19.52, 12.03, and 7.67 by Reynolds and
Perkins (1977). Using the Gaussian elimination method, obtain a fifth-order poly-
nomial that passes through these data points.

SOLUTION

The required polynomial is of the form

V=xi+ T + 372 + xT° + xsT + xgT° 6.27)

184 Computer Methods for Engineering with MATLAB® Applications

where T is the dimensionless temperature and x,,x, ..., x, are the unknown
coefficients to be determined. The following system of six equations is obtained if
the given data are substituted in this equation:

Xi+ Xo + X3+ X4 + X5 + X, =106.4
X1+ 2X) + 22x3 + 22x4 + 2%%x5 + 2°%, = 57.79

X1+ 3% + 3°x3 + 3%x4 + 3%%5 + 3°x = 32.9

Xi + 4% + 4°x3 + 4¥x4 + 4%xs + 4°x5 = 19.52

X; + 5%, + 5%X3 + 5°X4 + 5*x5 + 5°x, = 12.03
X1+ 6X; + 6°X; + 6°X4 + 6%X5 + 6°x = 7.67

This set of linear equations is to be solved to obtain the unknowns x, where j =1,
2, ..., 6. The augmented matrix consists of six rows and seven columns, where
the seventh column contains the constants on the right-hand side of the equa-
tions. It may be mentioned here that the dimensionless temperature T is employed
simply for convenience. The actual temperatures may also be used if so desired.

A computer program in Fortran is shown in Appendix C.5 to present the logic
for solving this problem by the Gaussian elimination method. The problem is
written for a system of up to 10 equations. The number of equations and the aug-
mented matrix are given as input data. At each elimination step, the row with the
largest pivot element is found, considering the rows below and including the pivot
row. If another row has a pivot element larger than that in the pivot row, it is inter-
changed with the pivot row, making it the pivot row for the next elimination step.
This partial pivoting improves the accuracy of the solution and also avoids prob-
lems if a zero pivot element arises. Gaussian elimination is applied to reduce the
given matrix to an upper triangular one. Then X(6), which represents the unknown
Xe, is computed directly from Equation 6.17. The other unknowns are determined
by back-substitution, using Equation 6.18.

Figure 6.2 shows the computed results. The program also computes the con-
stants B, wherei=1,2, ..., 6, using the equation B = AX, where X is the computed
vector of the unknowns. These computed constants, denoted by B(/) in the pro-
gram, may be compared with the constants in the given equations to determine
the accuracy of the numerical results. It is seen from the results presented that the
computed values of the constants are close to the given values. In fact, they are
identical if we retain the same number of significant figures as those in the given
data. Therefore, a high level of accuracy in the computed results is indicated.

This problem can be solved in MATLAB by using the backslash operator, as dis-
cussed earlier. The matrix a and the vector b is defined from the given equations as

>>a=[1.0 1.0 1.0 1.0 1.0 1.0;1.0 2.0 4.0 8.0 16.0 32.0;1.0
3.0 9.0 27.0 81.0 243.0;1.0 4.0 16.0 64.0 256.0
1024.0;1.0 5.0 25.0 125.0 625.0 3125.0;1.0 6.0 36.0
216.0 1296.0 7776.0];

>>b=[106.4;57.79;32.9;19.52;12.03;7.67];

Numerical Solution of Simultaneous Algebraic Equations 185

THE SOLUTION TO THE EQUATIONS IS
X(1) = 201.26010

X(2) =-128.82130

X(3) = 40.67448

X(d) = -7.42302

X(5) = 074085

X(8) =—0.03108

THE CONSTANT VECTOR OF THE EQUATIONS IS
B(1) = 106.39990

B(2) = 57.79021

B(3) = 32.90009

B@) = 19.52042

B(5) = 12.03053

B(6) = 7.67023

FIGURE 6.2 Numerical results obtained from the solution of the system of linear equations
in Example 6.1 by the Gaussian elimination method.

Matrix a may also be defined by defining the six rows separately as, say, a,,
a,, a;, a,, as, and a,, and then specifying the matrix a as a = [a;; a,; ay; a,; as agl-
Then the command

>>x=a\b
Yields the results as

X =
201.2600
—128.8210
40.6742
—7.4229
0.7408
—0.0311

which are close to those obtained from the Fortran program earlier. But, clearly,
this is a much simpler approach, which uses MATLAB advantageously by employ-
ing the built in backslash operator.

However, a MATLAB program may also be written using the computational
scheme outlined here. Appendix B.6 gives the corresponding MATLAB program
as a function m-file, gauss.m, which reduces the given matrix to an upper trian-
gular matrix and uses another function m-file, backsub.m, for back substitution.
The two matrices a and b are given and the function file is invoked as gauss
(a, b). This yields the desired results as identical to those given above from the
backslash operator. The polynomial obtained for the specific volume v, as given
by Equation 6.27, may also be plotted, along with the given data, to evaluate
the accuracy of the numerical results obtained. Figure 6.3 shows the resulting
graph and the given data, indicating the high level of accuracy achieved in the
computed results.

186 Computer Methods for Engineering with MATLAB® Applications

120
* Data
100 - — Exact fit
= 80
[
g
]
E
Z 60 1
h=
3
2,
Y40 A
20 -
O T T T T

T T T T T
10 15 20 25 30 35 40 45 50 55 60
Dimensionless temperature, T

FIGURE 6.3 Graph of the polynomial given in Equation 6.27, as obtained from the
computed results, along with the given data in Example 6.1.

Example 6.2

The temperature T(x) that arises due to steady-state heat conduction in a bar 30 cm
long is governed by the following ODE, if uniform temperature is assumed across
any cross section:

d’T

Gz -GT=0 (6.28)
where T is the temperature difference from the ambient medium, which is at 20°C,
x is the axial coordinate distance, and G is a constant that depends on the surface
heat transfer rate. As discussed in greater detail in Chapter 9, this equation may be
replaced by a finite difference approximation, using the second central difference
given in Chapter 4, as

T = 2T + Tiy

== _GCT,=0 6.29
(Ax)? (6.29)
where x = i Ax. Considering 30 subdivisions of the length of the rod, with Ax=1 cm,
as shown in Figure 6.4, find the temperature differences T, wherei=1, 2, ..., 29.

O@-—-0—-@-— e 20 Ei__29__ 30

1 2
Ax
T,=100°C T30=100°C

FIGURE 6.4 Physical problem considered in Example 6.2.

Numerical Solution of Simultaneous Algebraic Equations 187

The temperatures differences T, and T, at x=0 and x =30 cm, respectively, are
given as 100°C, and the constant G as (0.071)> cm=. Use Gaussian elimination.

SOLUTION

The system of equations to be solved by Gaussian elimination is
T =2+ G + Ty = 0 (6.30)
or
T+ 2+, -T,=0 fori=12,..,29 (6.31)
where
S = G(AX)* = (0.071)%(1.0)*

The constants F; on the right-hand side of Equation 6.31 are all zero except in the
two equations corresponding to i =1 and 29, where T, and T, appear and yield
F, =100 and F,, = 100. A tridiagonal system is obtained, which may be written as
follows:

2+5 -1 0 0 07, 100
1 2+S -1 0 0 T1 0
0 -1 2485 -1 . ol]=11] ®632
: :) 0
T29
0 0 0 -1 2+5 100

This tridiagonal system of equations can easily be solved by the Gaussian elimi-
nation method, as presented earlier. The three nonzero elements in each row
are denoted by A(l), B(l), and C(/), where =1, 2, ..., 29. The constants on the
right-hand side are denoted by F(/). The coefficients and constants are given as
input data. Gaussian elimination is used to eliminate the left-most element in
each row in one traverse from the top row to the bottom row. The temperature
difference T,, is then computed as F(29)/B(29), where both F and B are the new
values after reduction. Back-substitution then yields the remaining temperature
differences.

Appendix C.6 gives the Tridiagonal Matrix Algorithm (TDMA), also known as
Thomas algorithm, as a subroutine in Fortran. Thus, the matrix coefficients and
the constants F; may be given, and the unknown temperature differences T, com-
puted by this subroutine. Finally, the ambient temperature of 20°C is added to
T; to yield the physical temperatures T, where T, =T+ 20. It is evident that the
program is much simpler than the corresponding program for a system that is not
tridiagonal. Since tridiagonal systems arise frequently in the numerical solution of
differential equations, the above algorithm is of considerable importance. Because
of the associated small number of arithmetic operations, the Gaussian elimina-
tion method of solving a tridiagonal system results in smaller computer time and
smaller round-off error than most of the other methods discussed in this chapter.

188 Computer Methods for Engineering with MATLAB® Applications

THE REQUIRED TEMPERATURES ARE
TP(1) = 114.6583
TP(2) = 109.7937
TP(3) = 105.3816
TP@) = 101.3998
TP(5) = 97.8283
TP(6) = 94.6491
TP(7) = 91.8481
TP(8) = 89.4051
TP(9) = 87.3139
TP(10) = 85.5620
TP(11) = 84.1405
TP(12) = 83.0422
TP(13) = 82.2616
TP(14) = 81.7948
TP(15) = 81.6395
TP(16) = 81.7948
TP(17) = 82.2616
TP(18) = 83.0421
TP(19) = 84.1404
TP(20) = 85.5620
TPQ1) = 87.3140
TP(22) = 89.4052
TP(23) = 91.8462
TPQ4) = 94.6493
TP(25) = 97.8286
TP(26) = 101.4001
TPQ27) = 105.3819
TP(28) = 109.7939
TP(29) = 114.6584

FIGURE 6.5 Computed temperatures obtained by solving the tridiagonal system of equa-
tions in Example 6.2.

The computed temperature distribution is shown in Figure 6.5. The temperatures
at the two ends of the rod, TP(0) and TP(30), are 120°C. The problem is symmetric
about TP(15), and the computational procedure may be simplified by employing
only 16 points and taking TP(16) = TP(14) from symmetry.

Similarly, the tridiagonal system may be solved using MATLAB. Again, the ele-
ments a, b, and ¢ of the coefficient matrix, as well as the constant vector f, are
given and the computational procedure outlined earlier for tridiagonal systems is
applied to obtain the solution. Appendix B.7 gives this algorithm, for Example 6.2,
in MATLAB as an m-file in (a) and as a function m-file in (b). The matrix and the
constant vector are easily defined and element-by-element operations can be used
advantageously to solve the problem. The results obtained are very close to those
given in Figure 6.5. The resulting temperature distribution is also plotted using
MATLAB plotting commands and is shown in Figure 6.6.

Numerical Solution of Simultaneous Algebraic Equations 189

120

115 4

110 A

105 A

100 4

95 A

Physical temperature, T, (°C)

90

85 1

80

0 5 10 15 20 25 30
Distance, x (cm)

FIGURE 6.6 Temperature distribution from the calculated temperatures in Example 6.2.

6.3 GAUSS-JORDAN ELIMINATION

In the Gauss—Jordan elimination method, which is a variation of Gaussian elimination,
the original matrix A of the coefficients is reduced to an identity matrix / so that the
unknowns x,, x,, ..., x, are found directly, without back-substitution. At each step
involved in the elimination of an unknown using a pivot equation, the unknown is
eliminated from the equations above the pivot equation as well as from those below
it. The pivot equation is normalized by dividing it throughout by the pivot element,
so that the diagonal elements are finally obtained as unity, resulting in a reduced
system of equations of the form IX = B/, where B’ now gives the solution vector.
Since the procedure is similar to Gaussian elimination, partial or complete pivoting
may be employed to improve the accuracy of the solution and to avoid the use of a
pivot element, that is, zero, or close to it.

6.3.1 MATHEMATICAL PROCEDURE

Let us consider the following set of linear equations for solving by the Gauss—Jordan
elimination method:

2x+y+3z=9
3x-4y+4z="7 (6.33)
xX+4y-z=3

We normalize the first equation by dividing it by 2, which is the pivot element. Then
we eliminate x from the other two equations by multiplying the normalized pivot

190 Computer Methods for Engineering with MATLAB® Applications

equation by the coefficients of x in the other equations and subtracting the equations
thus obtained from the original equations, to yield

x+§y+§z=§
11 1 13

LIS . 34
7 Y52 2 (6.34a)
7,5 __3
277287

We repeat the above step with the second equation as the pivot equation, which we
first normalized by dividing it by the pivot element —11/2. Thus, y is eliminated from
the first and third equations to give

LT
11" 11
1 13
1.3 6.34b
TR T ()
31 62
11° 11

x=1
y=1 (6.34¢)
=2

6.3.2 COMPUTATIONAL SCHEME

To implement this method on the computer, we follow the same procedure as that
outlined earlier for Gaussian elimination. The augmented matrix C of a system of
linear equations is given by Equation 6.13. The first row is the pivot equation for the
first elimination step, and the elements of the matrix obtained after this step are

a, -
alt) = i, wherel< j<n+1 (6.35a)
Y ap

a,-(j” =a; - a,,a,(_],-), wherel<j<n+1 and 2=<i=sn (6.35b)

We can easily generalize this procedure by noting that Equation 6.35b is not applied
to the pivot row, in a given step, and that the columns to the left of the one containing

Numerical Solution of Simultaneous Algebraic Equations 191

the pivot element are not affected. Therefore, if r denotes the pivot row and, hence,
the elimination step, the Gauss—Jordan elimination method is given by the following
recursion formulas:

(r=1)

o _ Y :
) = where r=j=n+1 (6.36a)
rr

(r=1) (r)

N = qr-b _g4 a,’,

i i - wherer< j<n+1 and 1<i<n, excepti=r (6.36b)

a

In most computational schemes, the new elements simply replace the old ones as
they are computed, to avoid additional storage. However, the j = r column must be
stored separately at each step to provide the a!™" needed in Equation 6.36b. This
situation may be avoided by varying j from right to left or from (r+ 1) to (n + 1). In
the latter case, the j = r column is not computed but may simply be inserted after the
completion of the step, with 1 at the pivot element and zeros above and below it in the
column. Then the storage required is the same as that for the original system. This
approach is demonstrated in Example 6.3, using partial pivoting.

Let us now apply the above generalized procedure to the system of equations

considered earlier, with the augmented matrix C given by

2 1 3 9
C=1[3 -4 4 7 6.37)
1 4 -13

Applying the recursion formulas of Equation 6.36, successively, for =1, 2, and 3,
we find that the resulting matrices are, respectively,

[1 3 9 16 43 7

R 10 — =
T Lo oo

0 - -3 =50t 7 gl [|0otor1

o 15 30|y L3 e 10012
2 2 2 11 11

Thus the required solution is x =1, y = 1, and z = 2. As shown above, the columns to
the left of the pivot element, at each step, are unaffected, and the elements above and
below the pivot element, in the same column, become zero. The solution is given by
the (n + 1)th column. No back-substitution is needed.

If several systems of equations with the same coefficient matrix A and different
constant vector B are given, they can all be solved by application of the above
procedure once. The various constant vectors are simply added as columns to the

192 Computer Methods for Engineering with MATLAB® Applications

augmented matrix, and the reduction process is carried out. At the completion of the
elimination, the solutions for the different systems are given by the corresponding
columns in the reduced matrix. It can be shown that the solution of a system of n
linear equations by the Gauss—Jordan elimination method requires about n%/2 arith-
metic operations. Therefore, this method takes a somewhat larger computing time
and has a larger round-off error than Gaussian elimination and is not preferred for
solving linear systems. However, it can be used to develop a method for matrix inver-
sion employing minimum storage. For inverting a matrix A, the equation to be
solved is AX = I, where X becomes A~! when Gauss—Jordan elimination transforms A
into /. This procedure is discussed in greater detail in Section 6.5. Also, if several
systems of equations with the same coefficient matrix A and different constant
vector B are to be solved, as is the case, for instance, in engineering problems
where the boundary conditions are varied while the governing equations remain
unchanged, Gauss—Jordan elimination is more advantageous to use than Gaussian
elimination.

Example 6.3

Consider the electrical network shown in Figure 6.7a and compute the electric cur-
rents I, I, ..., I, through the six resistances. Also, solve the problem, employing
three loop currents I, 1,, and 1, in the three closed circuits shown in Figure 6.7b.
Use Gauss—Jordan elimination for this problem.

SOLUTION

A system of six linear equations may be written for the six unknowns x;, where x;
represents the current through a given resistance and i=1, 2, ..., 6. By Kirchhoff’s
laws, the sum of the currents entering a node is equated to the sum of the currents
leaving it. Thus,

X1+ X —-x3=0 (6.38a)

Xo = X4 = X5 =0 (6.38b)

60 isg
8V

I I -[

FIGURE 6.7 Electrical network considered in Example 6.3.

Numerical Solution of Simultaneous Algebraic Equations 193

X|+ X5 — X =0 (6.38¢)

Also, the voltage change as one goes around each loop is equated to zero to
yield

2X; + 4x3 +6x4 —10 =10 (6.38d)
—6x4 + 3X5 + 5x6 +8 =0 (6.38¢e)
8X] - 2X2 - 3X5 =0 (6.38f)

Therefore, six independent linear equations are obtained for determining the six
currents ;. If other nodes are considered, only linear combinations of the first
three equations will be obtained; see, for instance, Young et al. (2000).

The Gauss—Jordan elimination method, with partial pivoting, is used for solv-
ing this system of equations. The computer program is quite similar to that for
Gaussian elimination. However, in this case, the elements in the column contain-
ing the pivot element are reduced to zero in rows both above and below the pivot
row. Also, at each step, the pivot row is taken as the row with the largest pivot
element, considering the rows below the pivot row for the preceding step. The
elements of this row are normalized by dividing throughout by the pivot element.
Therefore, the reduced matrix is an identity matrix, instead of the upper triangular
matrix obtained in Gaussian elimination. The augmented matrix, with the constant
vector B taken as the last column, is supplied to the program as input data. This
column vector becomes the solution after the Gauss—Jordan elimination process
has been completed. Therefore, no back-substitution is necessary, and the last
column yields the solution.

Appendix B.8 shows the MATLAB program for the Gauss—Jordan method as
a function m-file, jordan.m. The given matrix a and constant vector b are given
to form the augmented matrix aug = [a b]. The earlier function m-file, gauss.m,
for the Gaussian elimination method is easily modified to obtain the function
m-file for the Gauss—Jordan method. The back-substitution function m-file is not
needed and the commands for generating an upper triangular matrix are modi-
fied to obtain an identity matrix instead. The last column then yields the solution.
Similarly, Appendix C.7 shows the computer program in Fortran. Again, the pro-
gram given earlier for Gaussian elimination is modified to include division of the
pivot row by the pivot element to obtain 1.0 at the diagonal and elimination of
elements both above and below the pivot element to reduce the coefficient matrix
to an identity matrix.

Figure 6.8 shows the results obtained in terms of the six currents, which are the
unknowns x; denoted here by X(/), where /=1, 2, ..., 6. Also shown is the reduced
matrix achieved at the end of the calculations, indicating that, as expected, an
identity matrix is obtained. As done, for Example 6.1, the constant vector B may
also be computed from the obtained values of the currents and compared with
the given values, in order to evaluate the accuracy of the solution. This method
can also be applied to the problem given in Example 6.1 and the same computed
results as before are obtained.

194 Computer Methods for Engineering with MATLAB® Applications

THE SOLUTION TO THE EQUATIONS IS

X(1) = 0.05135
X(2) = 0.66351
X(3)=0.71486
X(4) = 0.96892
X(5) = -0.30541
X(6) = —0.25405

THE REDUCED MATRIX IS

1.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000 0.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000
0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000

FIGURE 6.8 Computed results from the solution of the linear system of equations in
Example 6.3 by the Gauss-Jordan elimination method.

If the loop currents of Figure 6.7b are considered instead, the voltage change
around each loop may be equated to zero:

=2l +120, -6, -10 =0 (6.39a)

=34 -6L +14/; +8 =0 (6.39b)

134 -2, -3, =0 (6.390)

This system may also be solved, using the algorithm discussed above. The result-
ing values of /,, I, and /5 were obtained as 0.0514, 0.7149, and —0.2541 amperes,
which are almost identical to the values of X(1), X(3), and X(6), as expected from
the nomenclature of Figure 6.7. Once these currents have been obtained, the
other currents and desired voltages may be computed from Kirchhoff’s laws.

6.4 COMPACT METHODS

6.4.1 MaTtriXx DECOMPOSITION

There are several numerical methods for the solution of simultaneous linear equa-
tions that are based on the decomposition of the coefficient matrix A into an upper
triangular matrix U and a lower triangular matrix L, as shown in Figure 6.1, such
that

A=LU (6.40)

Numerical Solution of Simultaneous Algebraic Equations 195

In Gaussian elimination, we obtain an upper triangular matrix U of the form

ap dyp o Oy
0 ab ... 4O
v=|? & (6.41)
0 0 anb

In order to obtain the above form, we use Equation 6.16, with the multipliers m;,, at
each elimination step being given by

(r=1)

ir

a

m, = fori=r+1,....,n (6.42)

ir T _(r-1)
arr

These multipliers, if stored, can be used for solving different systems of equations,

AX = B, which have the same coefficient matrix A but a different constant vector B.

Usually, these multipliers m,; are stored in place of the zero elements below the

diagonal of the matrix U, that is, in the space originally employed for a,; for i > j.
Let us consider the lower triangular matrix L, defined as follows:

1 0 O 0
My 10 0

L=}, : (6.43)
mnl ng 1

We can show that A = LU, by using the preceding definitions of L and U and carrying
out the matrix multiplication of Equation 6.40. Therefore, the coefficient matrix A
may be decomposed into the two triangular matrices L and U. If the system of equa-
tions given by Equation 6.9 is considered, the multipliers m;,. may be retained to yield
the matrices

1 0 O 35 1
1 7 5
2 4 69
3 "7 1 0 0 21

It can be easily verified that A = LU.

Recursive formulas for the elements of L and U may be obtained directly from
Equation 6.40 and employed in the solution of a system of linear equations. If the
above form for L, with all the diagonal elements equal to 1, is considered, the decom-
position is the one obtained from Gaussian elimination. For this circumstance,
Doolittle’s method gives the corresponding explicit recursive formulas for the
elements /;;and u;;and employs them in the solution of linear systems (Atkinson, 1989).

196 Computer Methods for Engineering with MATLAB® Applications

Another method, known as Crout’s method, employs a U matrix whose diagonal
elements are all equal to 1. This method is discussed in some detail here, since it is
widely used in many engineering problems. It is also generally more efficient than
the other elimination methods discussed earlier. Consequently, it requires less
computer time and generates smaller round-off error.

6.4.2 Matrix DecomposiTioN IN MATLAB®

In MATLAB, as mentioned in Chapter 3, the L U decomposition is easily obtained
by the command

[Lu.p] = lu(a); (6.452)

Here, p is the permutation matrix which stores the information on row exchanges for
partial pivoting. Then the solution of the system of equations AX = B is obtained by
the commands

y=N\p*b); (6.45b)
x=u\y (6.45¢)

These commands can be employed for the problem in Example 6.3 as

>>a=[11-1000; 01 0-1-10;10001-=-1;...
02 46 0 0; 0 0 0 -6 3 5; 8 -2 0 0 =3 0];

>>b=[0 0 0 10 -8 0]"';

>>[1,u,p] =1lu(a);

>>y =1\ (p*b) ;

>>x=u\y

This yields the results

0.0514
0.6635
0.7149
0.9689
—0.3054
—-0.2541

which are identical to the results from the Gauss—Jordan method presented earlier.
Similarly, three linear equations given by

>>a=[3 5 1;1 4 2;2 2 3];
>>b=[16;15;15];

Numerical Solution of Simultaneous Algebraic Equations 197

can be entered and the preceding L U decomposition used to obtain the solution as

X =
1.0000
2.0000
3.0000

6.4.3 Crout’s METHOD

In Crout’s method, Gaussian elimination is written in a more compact form, using
the following decomposition. Then, the recursive relations for the matrix elements
are obtained using matrix algebra.

L, O 0
A=LU whereL=|"' b 0 0
b e o (6.46)
I ou, g, u,
and U= 0 1 uy U,
0 0 1

From the above decomposition, the product rule of the determinants may be
employed to obtain

Det(A) = Det (L) Det (U) 6.47)

For independent equations, the determinant of matrix A is nonzero, as discussed in
Section 6.1. Therefore, the determinant of matrix L is also nonzero. Since L is a lower
triangular matrix, its determinant is the product of its diagonal elements. This implies
that if Det(L) is nonzero, all the diagonal elements /;; of this matrix are nonzero. It is
shown below that, if /; and a,, are nonzero, L and U matrices exist and their elements
can be determined uniquely.

To solve a system of linear equations by Crout’s method, we write A and U as
augmented matrices of the form

Ly 0 o O[T w0 Wy,
Ly Ly 0 00 1 wy - wy U,,
lnl an lnn O O l un,n+1
(6.48)
ay 4p Gz 4y, Ay
|G G Gyt Gy Gy
anl anZ an3 T ann an,n+l

198 Computer Methods for Engineering with MATLAB® Applications

Recursive formulas for /; and u; may be developed by application of matrix
multiplication to the above equation. Therefore,

Ly = ay,lyy = ap, by = ags, oy, = ay

which gives

ly=a, fori=12,...,n (6.49a)
a, -
ulj=T‘lf forj=2,3,...,n+1 (6.49b)

Similarly,

Lty +1y =ay, sup+h; =ay,
or

by = ay =Ly, Ly =ay -y, (6.49¢)
Also,

Ly + byttyy = Ay, Lty + ity = ay,
or
Ay — Ly Ayy — by
Uy =7 s U= (6.49d)
2 2

Therefore, we may proceed as given above to obtain all the elements of the matri-
ces L and U. General equations may also be developed for /; and u;; as follows:

ly=a, fori=12,...n (6.50a)
w, =2 for j=2,3,..n+1 (6.50b)
1j = l” J=4,9,..., .
& j=23,...n
l=a; =Y L, for|’ 7 (6.50¢)
£ i=jj+L...n
i-1 l
u, = 7 2yt for i=23,....n (6.50d)
Y L j=i+li+2,..,n+l

Numerical Solution of Simultaneous Algebraic Equations 199

We can easily verify that these general equations yield the elements of the two
matrices, given by Equations 6.49, by employing the corresponding values of i and j.
Also, note from the above relations that if a;, and [, are nonzero, the two matrices
exist and can be uniquely determined. As shown earlier, the diagonal elements /; are
all nonzero if matrix A is nonsingular.

It is evident from the recursive formulas given for /; and u;, in Equation 6.50, that
the first column of L and the first row of U are determined first. Then the second
column of L is determined from the third equation, and the second row of U from the
fourth equation. We then proceed to the third column of L and the third row of U, and
continue this process until both matrices are determined. The unknowns x,, x,, .. ., x,
are determined by back-substitution, as before, from

X, =U

n n,n+1

C . (6.51)
u;x; fori=n-Ln-2,...,1

Xi i+l T iiXj

i

=U

J=i+l

The main advantage of compact methods, such as Crout’s method outlined above,
is that a smaller number of arithmetic operations are needed, as compared to those
for the Gaussian and the Gauss—Jordan elimination methods. Besides requiring less
computing time, it also results in smaller round-off error. The algebra for determin-
ing /; and u; may be carried out in double precision for greater accuracy and then
rounded off to single precision to reduce computer storage. This limited use of dou-
ble precision is not possible in regular elimination methods, which would then
require all operations and storage to be done in double precision. Since several ele-
ments in the L and U matrices are 1 or 0, considerable reduction in computer storage
may be accomplished by storing both the matrices in the storage locations for the
original augmented matrix. Then both /;; and u; are termed a;;, and the general equa-
tions may be suitably modified. The first equation, Equation 6.50a, is automatically
satisfied. For the other elements, the old a; values are replaced by new ones, as com-
putation proceeds. Figure 6.9 shows the algorithm for Crout’s method, in terms of a
flow chart.

Other methods based on matrix decomposition and factorization have been devel-
oped. For symmetric matrices, which often arise in many engineering problems such
as those related to the analysis of structures, an important method for factorization is
Cholesky’s method. This method is based on finding a lower triangular matrix L such
that

A=LLT (6.52)

where LT is the transpose of the matrix L. This factorization is possible for matrices
that are symmetric and positive definite, a necessary and usually sufficient condition
for which is that the eigenvalues of the matrix (Section 6.7) be positive. These prop-
erties of matrices are discussed in most books on matrices, such as Reiner (1971) and
Bronson and Costa (2008). Once L has been determined, one obtains the solution x;

200 Computer Methods for Engineering with MATLAB® Applications

Input number of
Equations n
Enter coefficients
a;and b;

Store coefficient
matrix A and
constant vector B

v

Formulate augmented
matrix

v

Calculate elements
of L and U matrices
from Equation 6.50

v

Use back substitution
to compute solution
vector X

v

Compute B from
AX and compare
with given values
to check accuracy

Output results
print X

FIGURE 6.9 Flow chart for the use of Crout’s method for solving a system of linear
equations.

by computing the first unknown x, directly from the resulting linear equation and the
remaining by substitution of the computed values of the preceding unknowns into
the reduced equations, with increasing i. The Cholesky decomposition requires about
(1/6)n? operations, instead of (1/3)n® needed for the Gaussian elimination.

Thus, matrix decomposition methods for solving systems of linear equations are
very efficient. However, the computer programming is generally much more involved
than the elimination methods, such as Gaussian or Gauss—Jordan elimination.
Consequently, engineers frequently use available programs in engineering applica-
tions, rather than develop the necessary software, for methods such as those
discussed here. However, following the approach discussed earlier for elimination

Numerical Solution of Simultaneous Algebraic Equations 201

methods, one may also write computer programs for these methods without too
much difficulty. For further details on these methods, refer to Carnahan et al. (1969),
James et al. (1985), and Atkinson (1989), listed among the references at the end of
this book.

6.5 NUMERICAL SOLUTION OF LINEAR SYSTEMS
BY MATRIX INVERSION

In the methods discussed so far, we solved the system of linear equations, given by
AX = B, by applying various elimination procedures directly to the given system,
without finding the inverse A~ of the coefficient matrix. However, if Det(A) # 0,
the inverse A~ exists, and the solution of the set of linear equations may be
obtained as

X=A"'B 6.5)

If a given set of equations is to be solved, it is generally advantageous to solve the
system directly, without computing the inverse matrix A~'. However, as mentioned
earlier, the matrix itself may be needed in the problem in order for us to study the
behavior of the mathematical or physical system. Also, if several sets of equations
with the same coefficient matrix A but different constant vectors B are to be solved,
it is often more efficient to compute A~! and to employ it with the different constant
vectors B to obtain the corresponding solutions from Equation 6.5. Another impor-
tant consideration is that many computer systems have programs available for matrix
inversion. These prepared programs may often be employed to solve systems of
linear equations.
In MATLAB, the inverse of a given matrix a is obtained by the command

¢ =inv(a) (6.53a)

Then the solution to the given system of linear equations, ax = b is obtained by

x=c*b (6.53b)

or, simply,

x=1inv(a)*b (6.53¢)

Again, this approach may be applied to the examples presented earlier and results
essentially identical to those presented earlier are obtained.

202 Computer Methods for Engineering with MATLAB® Applications

6.5.1 COMPUTATIONAL PROCEDURE

In view of the preceding discussion, it is evident that matrix inversion, as an
intermediate step in solving linear systems, may be desirable in some cases. To invert
a square matrix, such as the coefficient matrix A, we use the following definition of
the inverse A~

AAT =1 (6.54)

where [is the identity or unit matrix. Therefore, the inverse may be obtained by
solving the equation

AX =1 (6.55)

where X assumes the role of the column vector of unknowns and I assumes that of
the constant vector employed earlier. This equation may be solved by applying meth-
ods such as Gaussian elimination and Gauss—Jordan elimination. Then the matrix of
the unknowns yields the inverse A™. Matrix inversion requires about (4/3)n? arithmetic
operations, while only (1/3)n? are needed for directly solving a set of linear equations
by Gaussian elimination. Gauss—Jordan elimination is particularly suitable for matrix
inversion, since it transforms the matrix A into the identity matrix /, which also con-
stitutes the right-hand side of Equation 6.54, and the inverse A~ is obtained directly.
This method is outlined below.
The augmented matrix C for Equation 6.55 is obtained as follows:

ap dp a, 1 0
a a ea o1 0 -0

C= :21 22 2n) (656)
a, a, - a, 0 0 - 0 1

Now, if Gauss—Jordan elimination is applied to this matrix, using Equation 6.36,
until the a’s are replaced by the elements of an identity matrix, the identity matrix in
the augmented matrix above is transformed into the inverse A~'. For illustration, let
us consider the system of equations given by Equation 6.33. The augmented matrix
C for matrix inversion is

21 3 100
C=|13 4 4 010
1 4 -1 0 0 1

As before, the first row is divided by the pivot element, which is 2. Then it is multi-
plied by 3 and subtracted from the second row to yield the second row of the reduced
matrix. The new third row is similarly obtained by subtraction of the normalized

Numerical Solution of Simultaneous Algebraic Equations 203
first row from the third row. This process is continued, using Equation 6.36, to yield
the following matrices during reduction:

1 16

N N 16 4
2 2 2 11 11 11
and 010%—%%

oor T

As discussed before, we must employ partial pivoting, or row interchange, to avoid a
zero pivot element or to increase the accuracy, by considering the pivot row and all
the rows below it at each step and exchanging the rows to employ one with the largest
pivot element as the pivot row for the elimination process.

Once the coefficient matrix has been transformed into /, the original identity
matrix should become A~!. Therefore,

1213 6]
31 31 31
7 -5 1
1 0 _ = -
A 31 31 31
6 7 1
31 31 31

We can easily verify that the above is true by multiplying the original matrix A by
this matrix to obtain /.

_12 130 16]
21 3 ;”1 32 311 100
34 4|5 -3 |0 1 o=t
b4l 7 | oo
31 31 31

The solution vector X may now be obtained by applying Equation 6.5. Therefore,

X=A"'B=[l1, 2]

204 Computer Methods for Engineering with MATLAB® Applications

Similarly, the solution of sets of equations with the same A but different B may be
obtained easily once A~ has been determined. For instance, if B is given as [11, 10,
4], X is computed as

X=A"B=[2,1, 2]

6.5.2 ADDITIONAL CONSIDERATIONS

Partial pivoting is generally incorporated in the program for matrix inversion.
Besides avoiding problems with a zero or relatively small pivot element, it improves
the accuracy of the computational results obtained. Complete pivoting, with both
row and column interchanges, may also be employed to obtain the largest pivot ele-
ment at each step and thus increase the accuracy. Another improvement in matrix
inversion by Gauss—Jordan elimination is obtained by storing the inverted matrix in
the same location as the original matrix. The identity matrix is seldom stored,
although its transformed columns, which finally give the inverse, are stored in place
of the columns in the coefficient matrix, that have been reduced to the diagonal form
by Gauss—Jordan elimination. Most commercially available computer programs for
matrix inversion incorporate these features for accuracy and reduction in storage.

If the storage-saving feature, outlined above, is employed, the general equations
for matrix inversion may be obtained from Equation 6.36. Since the transformed
elements of the identity matrix are stored in place of the diagonalized columns, as
the inversion proceeds, we obtain

’ amf

a . =— forj=12,...,n and j=m
i=12,...,nand i=m

’ !

a. =a.—a .a for

ij ij mj “*im

j=12,...,n foreachiand j = m (6.57)
s
a

a =

mm

=-a, a fori=12,...,nandi=m

im™~*mm

where the prime denotes the new elements which replace the old ones after each
cycle. The first two equations are the same as those given earlier in Equation 6.36.
The last two are obtained from the transformation of an appended identity matrix,
whose elements are zero everywhere except at the diagonal, where they are unity. If
partial pivoting is used, without storing the appended matrix, the matrix obtained
after the reduction process must be reordered, in the same sequence as the row inter-
changes, in order to obtain the inverse of the original matrix. However, each row
interchange during the inversion corresponds to a column interchange in the identity
matrix. Therefore, in the reordering of the final matrix, column interchanges are
performed corresponding to each row interchange in the computation process and in
the reverse sequence, starting with the last row interchange; see James et al. (1985).

Numerical Solution of Simultaneous Algebraic Equations 205

Example 6.4

Solve the equations obtained in Example 6.3 for the six currents in the electrical
network of Figure 6.7a by matrix inversion.

SOLUTION

The Gauss—Jordan elimination method may be used for inverting the coefficient
matrix A in the system of equations AX = B. Then the unknown X is obtained from
the inverse of the matrix A™ as X=A"B. The augmented matrix consists of the
coefficient matrix A with an identity matrix appended to it. Gauss—Jordan elimina-
tion is applied to the coefficient matrix so that it is reduced to an identity matrix.
When this is accomplished, the original identity matrix is transformed into the
inverse of the matrix A, since this amounts to solving the equation AY =/, where
Y is the unknown matrix inverse.

The MATLAB function m-file given in Appendix B.8 for solving a system of
equations by the Gauss—Jordan method may easily be modified to solve the
given system by matrix inversion, as shown in Appendix B.9. The augmented
matrix is formed from the given coefficient matrix a and the identity matrix /,
and Gauss—Jordan elimination is performed on the augmented matrix to reduce
the n x n coefficient matrix to an identity matrix, where n is the number of equa-
tions. The inverse of the matrix may be printed and the unknowns computed from
the equation x=a"'b. In the function m-file, the matrix multiplication command
in MATLAB is used, though commands may be written to achieve this as well
without involving the multiplication software. The computed values, shown in
Figure 6.10 are identical to those obtained in Example 6.3. The matrix a may be
multiplied with its inverse to check whether the identity matrix is obtained. From
the results obtained, it is found that A A~ was very close to the identity matrix /. It
can also be confirmed that the use of Equation 6.53c, in a MATLAB environment,
yields the same results.

THE INVERSE OF THE MATRIX
0.1243 -0.0081 0.1622 0.0311 0.0324 0.0892
0.3432 0.3689 0.1216 0.0858 0.0243 -0.0581
-0.5324 0.3608 0.2838 0.1169 0.0568 0.0311
0.2405 -0.3635 -0.2297 0.0601 -0.0459 -0.0014
0.1027 -0.2676 0.3514 0.0257 0.0703 —0.0568
0.2270 -0.2757 -0.4865 0.0568 0.1027 0.0324

THE SOLUTION TO THE EQUATIONS
0.0514
0.6635
0.7149
0.9689
—-0.3054
—0.2541

FIGURE 6.10 Computed inverse of the coefficient matrix and the solution to the equations
in Example 6.4, using matrix inversion.

206 Computer Methods for Engineering with MATLAB® Applications

6.6 ITERATIVE METHODS

In the preceding sections, we have discussed direct methods for solving a set of simul-
taneous linear equations. These methods are appropriate for a small number of equa-
tions, typically fewer than 20, if the coefficient matrix A is dense. The main limitation
arises from the round-off error, which is incurred in each computation and affects the
overall accuracy of the solution. The tridiagonal system is a special case for which the
computation effort involved is much smaller than that for a general matrix. Thus, for
the tridiagonal case, many more equations may be solved while the desired accuracy
level is preserved. Direct methods provide the solution in a finite number of steps,
and, except for the round-off error, the solution is exact. As seen earlier, MATLAB is
particularly convenient for the direct solution of linear systems. However, for a large
number of equations, typically on the order of several hundred, iterative methods,
which start with an assumed solution and iterate to the desired solution of the system
of equations, within a specified convergence criterion, are often more efficient.

Large sets of linear equations are generally sparse, and iterative methods, which
consider only the nonzero coefficients in the computation, use this sparseness advan-
tageously. Moreover, the round-off error after each iteration simply results in a less
accurate input for the next iteration. Therefore, the resulting round-off error in the
numerical solution is only what arises in the computation for the final iteration. The
error does not accumulate as in direct methods. However, the solution is not exact but
is obtained to an arbitrary, specified, convergence criterion.

6.6.1 BaAsic APPROACH

Let us consider the set of linear equations given by Equation 6.2. These equations
may be rewritten, by solving for the unknowns x;; as follows:

X = b —apx, —apx; - —ay,x,
| =
ap
Y. = by —ay X, —ayx; = = ay,%,
, =
ay (6.58)
bn _anl'xl _an2x2 - _an,n—lxn—l
X, =
a

nn

This system may be written more concisely as
b. — E ! a.. X
! j=1,j=i U/ .
X; = &b T fori=1,2,...,n (6.59)
a;

We need initial guesses for the unknowns to start the iterative process in the
© O ..., x¥ are taken as the initial values, the value

above equations. If x{”, x{*, ..., x
of x, after the first iteration, xl“), is obtained from

Numerical Solution of Simultaneous Algebraic Equations 207

(0) (0) 0)
ON b —apx,’ —a;x _'”_amx;(l
=
ap
Similarly,
b= e
- a.x:
i =1, j=i y=rj . X
x = e fori=12,....n (6.60)

a.

i

The values obtained after the first iteration are then used for the next iteration.
Thus, this iterative process may be written as

b= g

. — a;X;
j=1,j=i .

X = e fori=12,....n 6.61)
a;;

The superscript indicates the number of the iteration. This equation is also often
written as

(I+1)) (D) ()) 1
x = Bl A, x, xl, L x0] (6.62)

i+l

where the function F, is obtained from Equation 6.61 and represents the relationship
between an unknown x; and the other unknowns. The value of the unknown x; after
Literations, x!"”, does not appear on the right-hand side for linear equations. However,
a term containing x”’ may be added in order to alter the convergence characteristics,

as discussed in Section 6.6.5.

6.6.2 JacoBl AND GAUSS—SEIDEL METHODS

The formulation for iteration given in Equation 6.62 is known as the Jacobi iterative
method. To compute the values for a given iteration step, it employs the values from
the previous iteration. Therefore, all the values are computed, using previous values,
before any unknown is updated. This implies that computer storage is needed for the
present iteration as well as for the previous one. For single-processor, or serial, com-
puters, a considerable improvement in the rate of convergence and in the storage
requirements can be obtained by replacing the values from the previous iteration by
new ones as soon as they are computed. Then only the values of the latest iteration
are stored, and each iterative computation of the unknown employs the most recent
values of the other unknowns. This computational scheme, known as the Gauss—
Seidel method, is used extensively for solving large systems of equations that fre-
quently arise in the numerical solution of differential equations.

Let us consider the use of the Gauss—Seidel method for computing the iterative
values of the unknowns, starting with x, and then successively obtaining x,, xs, .. ., X,

n*

208 Computer Methods for Engineering with MATLAB® Applications

Then the second iteration for, say, x;, is obtained from

(2) (2) (1)

- - - e — (1
@ = by —ay X" —ayx," —ayx a;, X,
=

Az

Here, the values of x, and x, are known after the second iteration, and the others are
known only after the first iteration. Similarly, the (I + 1)th iteration for x; may be
written as

i-1 n
b, - E a.xt) — E a.x\’
i il T .
X = ! a = fori=12,...,n (6.63)

i
or

141 141 (i 1+
x = FLaY x0 x xD x 0] (6.64)

i-1

This formulation, therefore, assumes that the computation of the unknowns x; starts
with x, and proceeds with increasing i until all the values are obtained for a given
iteration. The Gauss—Seidel method repeatedly calculates the unknowns, replacing
the values from the previous iteration by new ones and thus requiring only one com-
puter storage space for each unknown. Programming is also simplified since the
most recent value of each unknown is always employed in the computations. This
iterative process will converge to the solution vector if the equations have certain
characteristics, as discussed below. A better initial guess of the unknowns will also
lead to faster convergence, if the process is convergent.

6.6.3 CONVERGENCE

The iterative computation of the unknowns is terminated when a specified conver-
gence criterion is satisfied. Generally, if the change in the value of each unknown
from one iteration to the next is less than a given small quantity €, convergence is
assumed to have been achieved. The convergence criterion € may be applied to the
physical value of the unknown or to its normalized value. Therefore, the condition
for convergence may be written as

|x* - xP|<e fori=12,...,n (6.65a)

or

(1+1) ()
X = x;

<sg fori=12,...,n (6.65b)

e

The second form of the convergence criterion is more appropriate if an estimate of the
magnitude of the unknown x; is not available and none of the unknowns is expected to

Numerical Solution of Simultaneous Algebraic Equations 209

be zero. The choice of € is arbitrary and may be taken as around 10 for the second
form of the criterion, (Equation 6.65b), which specifies the maximum fractional change
in each unknown from one iteration to the next. However, as discussed in Chapter 2,
the dependence of the solution on the convergence criterion must be studied by varying
€ so that the numerical solution obtained is essentially independent of the value cho-
sen. The convergence criterion may also be applied to a few important unknowns,
instead of all x;, in order to reduce the computing time. Similarly, it may be applied to
the sum of the absolute values or of the squares of the changes in all the unknowns
between two successive iterations. With large systems of equations, such alternative
forms of the convergence criterion are often employed to save computer time.

The conditions for convergence of the iterative process have been analyzed for the
Jacobi and the Gauss—Seidel methods and presented in terms of the nature of the
coefficient matrix A. Both of these methods have good convergence characteristics
for diagonally dominant systems, that is, for systems in which each diagonal element
a;; is larger, in absolute value, than the sum of the magnitudes of the other elements
in the row. Thus, if

la;|> Y |ay (6.66)

PRl

the system is said to be diagonally dominant, and convergence is guaranteed for
linear systems. However, convergence is often obtained with weaker diagonal domi-
nance. These methods are particularly useful in the solution of large systems of linear
equations that arise in the numerical solution of PDEs by finite difference or finite
element methods. The equations obtained in these cases usually have diagonal domi-
nance, or conditions close to it, and the above iterative methods are convergent. With
some modifications, these methods may also be employed for nonlinear equations, as
discussed in Section 6.8.

6.6.4 AN EXAMPLE

In order to illustrate the Gauss—Seidel method, let us consider the following set of
linear equations:

Sx+y+2z=17
x+3y+z=38 (6.67)
2x+y+6z=23

This system is diagonally dominant, since the dominant coefficient in each equation
is the diagonal element, which is also larger than the sum of the absolute values of
the other coefficients. Therefore, the Gauss—Seidel iteration is convergent for these
equations. The above equations are rewritten as

_17-y-2¢ _8-x-z2 _23-2x-y
X =] y_ 3) = 6

210 Computer Methods for Engineering with MATLAB® Applications

For the Gauss—Seidel method, the most recent values of x, y, and z are to be used
in the iteration. If the starting values are arbitrarily chosen asx=1,y=1,and z =1,
the values for the first iteration are computed, by rounding off to three decimal dig-
its, as follows:

17-1-2

M = 2.

X 5 8
8-2.8-1

ny _°~7<0°77 _

y 3 1.4

2 = 23—5.66—1.4 2667

Similarly, the next four iterations are obtained as

x® =2.053, y? =1.093, z» =2.967
x® =1.995, y* =1.013, z® =3.000
x® =1.997, y® =1.001, z* =3.001
x® =2.000, y® =1.000, z* =3.000

The exact solution of the above system of equations is x=2, y=1, and z=3.
Therefore, the iterative procedure converges rapidly to yield a solution, that is, within
0.2% of the exact solution in only four iterations. The process will terminate after
four iterations if € in Equation 6.65b is taken as 0.02, and after five iterations if it is
chosen as 0.002. Additional iterations may be needed for a still smaller value of €,
since changes in the fourth and higher decimal places may occur from one iteration
to the next. If the Jacobi method is applied to the above system, the rate of conver-
gence is much slower. Therefore, the Jacobi method is seldom used on traditional or
single-processor computers and is considered largely in order to study the conver-
gence characteristics of other iterative methods in terms of those of the Jacobi method.
However, for multiprocessor, or parallel, computers, the Jacobi method is often more
convenient and has faster convergence since the previous iteration is used in the com-
putations and all the equations may be considered independent of the others.

6.6.5 RELAXATION METHODS

The convergence characteristics of the Gauss—Seidel method can often be consider-
ably improved by the use of point relaxation, which is given by

(1+1)

(1+1)
i i

XD 2 o[g + (1 -)x® (6.68)

where ® is a constant in the range 0 < ® < 2 and [x{"*"], is the value of x; obtained
for the (I + 1)th iteration by using the Gauss—Seidel iteration equation, Equation 6.63.
For m > 2, the process is divergent. If 0 < < 1, the iterative scheme is known as suc-
cessive under-relaxation (SUR), and if 1 < ® < 2, the scheme is termed successive

Numerical Solution of Simultaneous Algebraic Equations 211

over-relaxation (SOR). In the former case, the value for the (I + 1)th iteration is a
weighted average of the value from the previous iteration and that obtained by the
use of the Gauss—Seidel method for the present iteration. In SOR, the change in x;
from one iteration to the next, in the Gauss—Seidel scheme, is multiplied by a factor
between 1.0 and 2.0 to accelerate convergence. At the optimum value of the relax-
ation factor, ®,,, the convergence is much faster than that for Gauss—Seidel. The
relaxation method may be written, using Equation 6.63, as

i-1 n
o|b, - E _ aijxﬁ“l) - 2 o al.jxy)
(U+1y _ j=1 Jj=i+l
; =

a.:

il

1+(1—w)x(” fori=12,....,n (6.69)

i

X

It is obvious that the Gauss—Seidel method is obtained for = 1. In this case, x{"
drops out from the right-hand side. SUR is generally used for nonlinear equations
and for systems that result in a divergent Gauss—Seidel iteration. SOR is widely used
for accelerating the convergence in linear systems. However, the determination of an
optimum value of the relaxation factor ® is often difficult and is generally done by
trial and error. For some systems, it may be available from earlier studies or from
analysis. If several similar systems are to be solved, it is generally worthwhile to
obtain the optimum value of ® by trying various values, over the given range, and
then use it in the computations. For further details on the use of point relaxation in
engineering applications, advanced books on the numerical solution of differential
equations, such as Ferziger (1998) and Jaluria and Torrance (2003), may be con-
sulted. The following example illustrates the use of Gauss—Seidel and SOR methods
for solving a system of linear equations.

Example 6.5

Solve the problem discussed in Example 6.2 by means of the Gauss—Seidel itera-
tive procedure. Then modify the computer program to solve the problem by the
SOR method. Vary the relaxation factor ® to study the effect of its value on the
number of iterations needed for convergence.

SOLUTION

The system of equations to be solved is
T + 2+ GAX)*PT, =T, =0 fori=12,..,29
with
Ty=T,,=100
The given system is rewritten as

=Tt i 10,29
2+ S

212 Computer Methods for Engineering with MATLAB® Applications

where
S =G(Ax)? =(0.071)2 (1.0)?

Since T, and T, are given as 100°C, the equations for T, and T,, become

r . T+ 100
2+ S
100 + Tog

Tog = —— 728

* 2+5S

Therefore, the resulting system of equations can be solved by the Gauss—Seidel
method to obtain the required temperature distribution.

The initial guess, or starting temperature distribution, is taken as T(/) =0, for
I=1,2,... 29, where T(l) denotes T,. Using the preceding equations, the tem-
peratures for the next iteration are computed and compared with the previous
values to check for convergence. It is demanded that the absolute value of the
difference between the two be less than the convergence criterion €, that is, for
convergence,

|(TO), =T, |<& fori=12,..,29

where T represents the new values and TO the previous ones. If this difference for
any value of i is greater than €, the iterative process is repeated, taking the computed
new values as the starting values for the next iteration. Once convergence has been
achieved, we obtain the physical temperature TP by adding the ambient tempera-
ture of 20°C to the temperature difference 7. Appendix B.10 gives the MATLAB
program for this example, with x(i) representing the unknowns, for i=1, 2, ..., 6,
xold (i) the previous iterative values, tp the physical temperatures and k the itera-
tion number. This program can be used to solve a given system of linear equations
by the Gauss-Seidel method. In the MATLAB environment, the programming is
particularly simple since x, xold and tp are vectors representing the temperature
differences, previous values and physical temperatures. Thus, algebra can be used
directly on these vectors to apply the algorithm.

The resulting numerical results in terms of the physical temperatures are shown
in Figure 6.11 for three values of €, 107, 10, and 10~°. Only small differences in
the computed values are observed in going from the smallest to the largest value.
The total number of iterations increases from 454 to 741. A comparison with the
results obtained in Example 6.2 for this tridiagonal system also indicates a small
difference in the temperatures for the smallest value of &. Thus, a value of 10~ for
€ may be used for this problem.

The computer program for the Gauss—Seidel method is clearly much simpler
than that for Gaussian elimination in Example 6.1. If the system is tridiagonal,
Gaussian elimination is preferable, since it takes less computer time and is gener-
ally more accurate. However, the Gauss—Seidel method is advantageous to use
when the coefficient matrix is sparse, although not tridiagonal. Appendix B.11
gives a general MATLAB program for the Gauss—Seidel method as a function
m-file. The inputs needed for invoking this function file are the coefficient matrix

Numerical Solution of Simultaneous Algebraic Equations 213

=103 e=10" =107

No. of iterations = 454 No. of iterations = 598 No. of iterations = 741

The Solution is: The Solution is: The Solution is:
120.0000 120.0000 120.0000
114.6502 114.6567 114.6573
109.7778 109.7905 109.7918
105.3584 105.3771 105.3789
101.3696 101.3940 101.3964

97.7916 97.8213 97.8243
94.6063 94.6410 94.6445
91.7978 91.8370 91.8409
89.3520 89.3952 89.3995
87.2567 87.3034 87.3080
85.5013 85.5509 85.5558
84.0770 84.1289 84.1340
82.9767 83.0303 83.0356
82.1949 82.2495 82.2549
81.7275 81.7826 81.7881
81.5723 81.6273 81.6328
81.7285 81.7827 81.7881
82.1968 82.2497 82.2549
82.9795 83.0305 83.0356
84.0806 84.1292 84.1341
85.5055 85.5513 85.5558
87.2614 87.3038 87.3081
89.3571 89.3957 89.3996
91.8030 91.8375 91.8410
94.6115 94.6415 94.6445
97.7964 97.8218 97.8243
101.3740 101.3945 101.3965
105.3620 105.3774 105.3790
109.7805 109.7908 109.7918
114.6517 114.6568 114.6573
120.0000 120.0000 120.0000

FIGURE 6.11 Computed physical temperatures at three values, 107, 10, and 10, of the
convergence parameter €.

a, the constant vector b, the initial guess vector p, the convergence parameter ep
and the maximum number of iterations max1. Though this function can be used to
solve a system of linear equations by applying the Gauss-Seidel method, it does
not use the sparseness of the matrix a as effectively as the program in Appendix
B.10, which specifies only the non-zero elements of the matrix.

214 Computer Methods for Engineering with MATLAB® Applications

600

500 A

400

300

Number of iterations

200 A

100

1.0 1.2 14 1.6 1.8 2.0
Relaxation factor ()

FIGURE 6.12 Variation of the number of iterations needed for convergence with the relax-
ation factor , in the solution of Example 6.5 by the SOR method.

The computer program given in Appendix B.10 can easily be modified to apply
the SOR method. The relaxation factor & must be entered as a parameter, and the
recursion formula becomes

I I+1
T+ T4

T+
' 2+S

] + (- fori=12..,29 (6.70)

This equation replaces the one given earlier for the Gauss—Seidel scheme. The
modified program was employed for o varying from 1.0 to 2.0. Figure 6.12 shows
the dependence of the number of iterations on the relaxation factor ®, at e = 10~
and 10*. Note that the number of iterations at the optimum value, @, is almost
one-tenth that for Gauss—Seidel iteration. Clearly, SOR is a very efficient method
if the optimum value of the relaxation factor is known. Appendix C.8 gives the
Fortran computer for employing the SOR method for solving the system of linear
equations in this example. The similarity between the MATLAB and Fortran
programs for this problem is evident, though the advantages of MATLAB in matri-
ces and arrays, as well as in plotting, make it much easier to work in a MATLAB
environment. Also, the logic presented in these programs may be employed for
other high-level languages and computational environments.

6.7 HOMOGENEOUS LINEAR EQUATIONS

In many problems of engineering interest, such as those encountered in vibrating sys-
tems, stability analysis, and electrical circuits with alternating currents, the constant

Numerical Solution of Simultaneous Algebraic Equations 215

vector B in the system of linear equations is zero, giving rise to a set of equations of
the form AX = 0. The system of equations is then said to be homogeneous. A trivial
solution, X = 0, exists for this system. However, nontrivial solutions may be obtained
only if the determinant of the coefficient matrix A is zero, that is, Det A = 0. This
occurs when all the equations of the set are not linearly independent, and one or more
equations may be obtained from a linear combination of the others.

In considering simultaneous nonhomogeneous linear equations, we noted from
Cramer’s rule that unique solutions may be obtained only if the determinant, Det A,
is nonzero. However, in simultaneous homogeneous equations, the numerators in the
solution by Cramer’s rule, given in Equation 6.4, are all zero, since the constant
vector B is 0. Therefore, nontrivial solutions may exist only if the denominator, which
is Det A, is also zero. However, unique values of the unknowns x,, x,, ..., x, are not
obtained in this case, since the solution vector X when multiplied by an arbitrary
constant will also satisfy the system of homogeneous equations, AX = 0. Therefore,
the desired solution establishes relationships between the unknowns, and the number
of dependent equations in the set gives the number of unknowns that must be
arbitrarily chosen to obtain the rest.

6.7.1 THE EIGENVALUE PROBLEM

An important class of problems involving homogeneous equations is the eigenvalue
problem, which is of considerable interest in engineering applications. Such prob-
lems occur, for instance, in the analysis of structures for critical buckling loads, in
stress analysis for determining the principal normal stresses, and in the natural
vibration of systems to determine the frequencies and the vibrational modes. The
matrix equation for an eigenvalue problem is

(A-M)X =0 6.71)
or

AX = X 6.72)

where A is a known n X n matrix, X is the solution vector, and A is an unknown
constant. Nontrivial solutions to the above system of equations are obtained only for
certain values of A. These values are known as eigenvalues of the coefficient
matrix A, and the solution vectors X corresponding to these eigenvalues are called
the eigenvectors, which can be determined only to within a multiplicative constant.
In a vibrating system, consisting of masses and springs, as shown in Figure 6.13,
the eigenvalues are the squares of the natural frequencies of vibration, and the
eigenvectors give the displacements of the masses. This problem is discussed in
Example 6.6.

From Cramer’s rule, it is evident that nontrivial solutions may be obtained
only if

Det (A-Al) =0 (6.73)

216 Computer Methods for Engineering with MATLAB® Applications

Wall

—

Wall
FIGURE 6.13 A vibrating system consisting of four masses, denoted by m,, ..., m,, and of
five springs, whose spring constants are denoted by %, ..., k5. The displacements are denoted

by x,, x,, x5, and x,, giving a four-degrees-of-freedom system.

This may be written as

(@, =) ap iz ap,
Y
Det(A_a)=| % (@M ax o (674
an—l,n
a, () a,s e (ann - }\')

Expansion of this determinant results in a polynomial of order n in A. This polyno-
mial, which is known as the characteristic polynomial of matrix A, may be solved
by the methods discussed in Chapter 5 to obtain the eigenvalues, see Example 5.8.
Once the eigenvalues have been obtained, one can determine the eigenvector corre-
sponding to each value by substituting the value in the given equations. If there is
only one linearly dependent equation in the set of equations, one must assume the
value of one unknown to obtain the corresponding values of the remaining unknowns.
Similarly, if there are two dependent equations, the values of two unknowns need to
be assumed, and so on. In many engineering problems, only one dependent equation
arises, and, therefore, the value of only one unknown must be chosen. Textbooks on
linear algebra, such as Williams (2004) and Anton (2010), may be consulted for fur-
ther details on eigenvalue problems.

The preceding procedure of expanding the determinant to obtain the characteris-
tic polynomial, which may then be solved for the eigenvalues, is computationally

Numerical Solution of Simultaneous Algebraic Equations 217

practical only for a small number of equations, typically up to four, and for sparse
matrices. For somewhat larger systems, generally of the order of ten equations, one
may obtain the characteristic polynomial by using the methods developed by
Leverrier and by Faddeev; see Carnahan et al. (1969).

Since a polynomial with all real coefficients can have complex roots, complex
eigenvalues may be obtained. However, in many physical problems, the coefficient
matrix A is symmetric. It can be shown that all the eigenvalues of a symmetric matrix
are real, which substantially simplifies the computational procedure. The solution of
the eigenvalue problem for symmetric matrices is of considerable interest in engi-
neering problems and is discussed in Section 6.7.3. It may be pointed out here that
even though the characteristic polynomial may be generated, by the methods of
Leverrier and Faddeev, for systems containing as many as 25 or 30 equations, the
solution of the polynomial is generally very involved, and the other methods outlined
here are preferred to the root solving procedures of Chapter 5.

The eigenvectors may be obtained by substitution of the eigenvalues, one at a
time, into the given system of equations. The equations thus obtained may be solved
by the use of the Gauss—Jordan method. The method is applied to the matrix (A — Al),
as outlined in Section 6.3, and the process carried out until the reduced matrix is
such that a further application of the method is not possible due to all possible pivot
elements being zero. If the system contains only one dependent equation, then the
process stops with only the last column left to be reduced. The other columns contain
only zeros and one. At this stage, only the independent equations are left, and, if an
arbitrary value is given to one unknown, the other unknowns may be computed from
the resulting nonhomogeneous equations. Similarly, if two dependent equations are
present in the given set, the Gauss—Jordan method yields two unreduced columns.
This requires choosing arbitrary values for two unknowns to obtain two linearly
independent eigenvectors. Column interchanges, besides row interchanges, are fre-
quently employed in the process to avoid taking a pivot element, that is, zero. If a
column interchange is employed, the components of the eigenvector corresponding
to these columns must also be interchanged. Example 6.6 discusses a physical prob-
lem and the use of Gauss—Jordan elimination for determining the eigenvectors.

Example 6.6

For the natural vibration of the three masses, m, 2m, and m, connected by the
four springs shown in Figure 6.14, determine the characteristic polynomial, the
eigenvalues, which correspond to the natural frequencies of vibration, and the

Wall Wall

FIGURE 6.14 The vibrating mass and spring system considered in Example 6.6.

218 Computer Methods for Engineering with MATLAB® Applications

eigenvectors, which give the amplitudes of motion of the masses. The spring con-
stants for the four springs are k, 2k, 2k, and k. The displacements of the three
masses are defined by the coordinates x;, x,, and x, respectively, as shown. Take
k/m=1.0.

SOLUTION

The extension in the first spring, from the left, is x, and that in the second spring is
(x, — x;). Since the inward directed force due to the extension is given by a product
of the spring constant and the extension, the net force acting on the first mass in the
positive x, direction is [2k(x, — x;) — kx;]. Therefore, from Newton’s second law,

mx, = 2k(x, — x7) = kx

mx, + kx; + 2k(x; = x) = 0 (6.75a)

where X; is the second derivative of x, with respect to time t and is, thus, the accel-
eration of the mass. Similarly, for the other masses,

2mx, + 2k(x; = x1) + 2k(x, = x3) = 0 (6.75b)
mX, + 2k(x; — x) + kx3 = 0 (6.750)

From the theory of vibrations, the solution to the above equations may be taken as

X) = X] sin wt
X, = X,sin wt (6.76)
X3 = X3sin ot

where X;, X,, and X; are the amplitudes of motion and o is the natural frequency
in radians/second. If these equations are substituted in the equations of motion,
Equations 6.75, we obtain the following system of linear homogeneous equations
for k/m =1.0:

B-w)X-2X, =0
“Xi+(2-w0)X, = X3 =0 (6.77)
22X, +(2-wh)X; =0
This system may be written in matrix form as
AX = AX (6.78)
where

A= o (6.79)

Numerical Solution of Simultaneous Algebraic Equations 219

and
3 -2 0
A=|-1 2 - (6.80)
0 =2 3

A nontrivial solution of Equation 6.77 can be obtained only if the determinant
of the coefficient matrix (A — A) is zero. Therefore,

Det(A-2A) =| -1 2-A -1 |=0 (6.81)

We obtain the characteristic polynomial for this eigenvalue problem by expanding
this determinant as

AM+8M 170 +6 =0 (6.82a)

The roots of this polynomial equation may be determined by the root-solving
methods given in Chapter 5. Using the search method to obtain the approximate
location of the roots, followed by the Newton—Raphson method, we determine
the eigenvalues, in s, as follows:

M = 0.43845, A, =3.0, A3 = 4.56155 (6.82b)

In MATLARB, the roots can be obtained simply by specifying the polynomial and
invoking the roots command.

To determine the eigenvectors corresponding to these eigenvalues, we sub-
stitute each eigenvalue in Equation 6.77 and obtain the ratios of the amplitudes.
Then, if one of the amplitudes is taken as 1.0, the others may be determined. From
symmetry, X; =X; and both may be taken as 1.0. Then X, is determined for the
three eigenvalues given in Equation 6.82b as, respectively,

X, =1.28078, X, =0, X, =-0.78078 (6.83)

The problem may also be solved by applying the Gauss—Jordan method. Let us
again consider the equations obtained for this problem for the first eigenvalue as

2.56155X; = 2X, + 0.X; = 0
X, + 1.56155X, = X; = 0 (6.84)
0.X; = 2X, + 2.56155X; = 0

220 Computer Methods for Engineering with MATLAB® Applications

If Gauss—Jordan elimination is applied to the coefficient matrix of these equations,
we obtain, after the first two steps,

1 -0.78078 0 1 0 -1
0 0.78078 -1 and [0 1 -1.28077
0 -2 2.56155 0 O 0

Therefore, further application of the Gauss—Jordan method is not possible. At this
stage, two independent algebraic equations, containing the unknowns X;, X,, and
X,, are obtained from the first two rows of the reduced matrix. Therefore, if X is
taken as 1.0, X; is obtained as 1.0, and X, as 1.28077.

In many engineering problems, the set of n homogeneous equations contains
(n—1) independent equations for determining the n components of the eigen-
vector. An application of Gauss—Jordan elimination, with partial and complete
pivoting, if necessary, reduces the system to a set of independent equations at
the stage where further reduction is not possible. If two dependent equations
are present, one must assume two components in order to determine the rest,
and so on. Therefore, small systems of equations may be solved by root-solving
methods followed by Gauss—Jordan elimination to determine the eigenvectors.
Example 6.6 also illustrates the solution of homogeneous ODEs, as considered
again in Chapter 9.

6.7.2 THe POWER METHOD

The power method is a frequently employed iterative procedure for determining the
eigenvalues and the corresponding eigenvectors, particularly if the largest or the
smallest eigenvalue is of interest. Intermediate eigenvalues may also be determined
by gradually eliminating the eigenvalues already found. However, the round-off
errors accumulate, leading to lower accuracy, and the process becomes more
involved as the intermediate eigenvalues are successively determined. Therefore,
the method is well suited mainly for finding the largest and the smallest eigenval-
ues. It has the advantages of a simpler computational procedure, as compared to
several other methods discussed in Section 6.7.3, and of providing the eigenvector
along with the eigenvalue.

6.7.2.1 Largest Eigenvalue

Let us first consider the iterative power method for finding the largest eigenvalue of
the system given by

AX =)\X 6.72)

The method starts with an initial estimate of the eigenvector, denoted as X©.
Usually, all the elements of the initial vector are taken as 1 unless a better estimate
is available. The vector X© is multiplied by the coefficient matrix A to obtain the
vector AX®, This resulting vector is normalized by dividing each of its elements by
any one element, generally chosen as the largest element for accuracy or as the first

Numerical Solution of Simultaneous Algebraic Equations 221

element for convenience. The normalized vector is denoted as XV. If the difference
between the new vector X and the old one X© is less than a chosen convergence
criterion, the process is terminated. Otherwise, X becomes the starting vector for
the next iteration, and the process is repeated. When convergence has been achieved,
the normalizing factor is taken as the largest component of the vector X. Then this
is the largest eigenvalue A, and the normalized vector is the corresponding eigen-
vector. The convergence of the method depends on the initial vector X© and on the
ratio r of the two largest eigenvalues. Convergence is slower if the two are close to
each other in magnitude, that is, if r is close to unity. The dominance ratio r is
defined as

r= (6.85)

where A, is the largest eigenvalue in magnitude and A, is the next largest. Although the
power method is particularly suitable for symmetric matrices, since the eigenvalues
are all real in this case, it can also be used for nonsymmetric matrices. The
convergence of the method to the largest eigenvalue be proved mathematically for
symmetric matrices.

6.7.2.2 Smallest Eigenvalue

In several engineering problems, the smallest eigenvalue is of particular interest. For
instance, designers are interested in the lowest frequency of the natural vibration of
civil engineering structures, such as buildings and bridges, so that they can design
the structures to avoid certain externally induced vibrations. The power method may
be used to determine the smallest eigenvalue and the corresponding eigenvector by
pre-multiplication of the original system, Equation 6.72, by the inverse A~ of the
coefficient matrix. Therefore,

A TAX=AA"X

Now, A7A =1, and if both sides are divided by A, the result is

HX=-X (6.86)

> =

where the inverse matrix A~ is denoted as H. Therefore, if the power method is
applied to Equation 6.86, the largest eigenvalue obtained will be 1/A, which arises
from the matrix H. This largest value of 1/A corresponds to the smallest eigenvalue
in magnitude. However, one must determine the inverse H of the matrix A in order to
apply this method. Therefore, the procedure may not be practical for very large
matrices.

222 Computer Methods for Engineering with MATLAB® Applications

6.7.2.3 Intermediate Eigenvalues

Several procedures are available for obtaining the intermediate eigenvalues, lying
between the smallest and the largest eigenvalues. Most of these methods gradually
remove the known eigenvalues from the problem so that the method converges to the
next eigenvalue. However, this procedure, known as deflation, is suitable if only a
few eigenvalues are needed, since the growth of round-off error often severely
limits the accuracy of the results. If the largest eigenvalue A, and the corresponding
eigenvector X, have been found for the given matrix A, a new matrix A may be
formed in terms of the transpose X[of the matrix, as

MGXT)

A=A
l XX,

(6.87)

It can be shown that XX, is a scalar and equal to the sum of the squares of the
components of the X, eigenvector. The matrix X, X[is a symmetric matrix of the
same dimension as A. It can also be shown that A, has the same eigenvalues and
eigenvectors as A, except for A, which is replaced by zero. Therefore, if the power
method is applied to A, it will converge to the second largest eigenvalue A, and the
corresponding eigenvector X, . Similarly, the next largest eigenvalue A, and the asso-
ciated eigenvector X; may be obtained by applying the power method to a matrix A,,
given as

M (XXT)

AT AT

(6.88)

The power method can be applied quite easily on the computer, particularly if
only the largest eigenvalue is desired. For other eigenvalues, the techniques outlined
here may be applied, although the method is rarely used if more than a few eigen-
values are needed. The rate of convergence can sometimes be accelerated by the
addition of a constant to each diagonal element of the matrix. This shifts all the
eigenvalues by a constant value and may change the dominance ratio favorably to
accelerate convergence. However, the suitable amount of shift must be obtained by
trial and error. Over-relaxation or under-relaxation, similar to that discussed in
Section 6.6, may also be used to achieve faster convergence. Again, the optimum
value of o for the fastest convergence must often be obtained by trying several val-
ues. Example 6.7 discusses the solution of an eigenvalue problem by the power
method.

Example 6.7

For the vibrating system considered in Example 6.6, obtain the largest eigenvalue
and the corresponding eigenvector, using the iterative power method.

Numerical Solution of Simultaneous Algebraic Equations 223

SOLUTION

The given system of equations is written as
AX = WX (6.78)

where A and A are given by Equations 6.79 and 6.80. To use the power method,
an initial guess for the eigenvector is taken as (1, 1, 1), and the coefficient matrix
A is multiplied with this vector, employing the formula for matrix multiplication.
The resulting vector is normalized with the largest component, which gives the
first approximation to the largest eigenvalue of the system. The new vector is com-
pared with the starting vector. If the absolute value of the difference is larger than
the convergence criterion €, the new vector is taken as the starting vector for the
next iteration. The process is continued until

| X, - (XO); | =€ fori =123 (6.89)

where X, is the ith component of the eigenvector after the present iteration and
(XO), is that after the previous iteration. At convergence, the normalizing factor is
the largest eigenvalue, and the computed vector the desired eigenvector.

Appendix B.12 gives the MATLAB m-file for the Power method. It is particu-
larly simple because of the ease of defining and multiplying matrices. The initial
guess is given and the iterative process is carried out till convergence is achieved,
as specified in terms of a given convergence criterion. The results then yield the
largest eigenvalue and the corresponding eigenvector, as shown in Figure 6.15.

The convergence parameter is taken as 10~ here. Smaller values of the param-
eter were also considered, and a negligible difference in the solution was obtained.
Similarly, other starting values were tried, and convergence was found to occur
with essentially the same results for different values close to (1, 1, 1). Convergence
was not achieved if values very far from these were taken, as expected. The con-
verged results, shown in Figure 6.15 are very close to those obtained analytically
in Example 6.6.

The program may easily be used for other such eigenvalue problems. For
instance, a system of six equations was solved by this program as follows:

>>x=[1;1;1;1;1;1]1;

>>a=[2342-11;125-221;2-2-3431;253112;
21 -3-2232;14252 -1];

THE LARGEST EIGENVALUE IS =4.5613

THE EIGENVECTOR IS
X(1) = 1.0000

X(2) = -0.7808

X(3) = 1.0000

FIGURE 6.15 Computed results for the largest eigenvalue and the corresponding eigenvec-
tor for the vibrating system of Example 6.6 by the power method.

224 Computer Methods for Engineering with MATLAB® Applications

and the results obtained were

THE LARGEST EIGENVALUE IS=8.5963
THE EIGENVECTOR IS

.9498

.4225

.5418

.0000

.0994

.9298

O O OO o

Clearly, it is a fairly simple approach to obtain the largest or the smallest eigen-
value and the corresponding eigenvector.

6.7.3 OTHER METHODS

There are several other methods that are available for the solution of eigenvalue
problems. A brief outline is given here for completeness. Among the most important
of these is Householder’s method, used in conjunction with the QL algorithm. This
approach is applicable only to symmetric matrices. Householder’s method is used to
convert an n X n symmetric matrix into a symmetric tridiagonal matrix. This form is
convenient for matrix decompositions and transformations, since the number of
operations for each such manipulation varies as n, rather than as n3, which applies for
the full matrix. Once the tridiagonal form has been obtained, several techniques are
available for finding the eigenvalues. The LR algorithm of Rutishauser (1958) decom-
poses the original symmetric matrix into a product of lower triangular and upper
triangular matrices. The QR algorithm of Francis (1962) decomposes the matrix into
a product of an orthogonal matrix and an upper triangular matrix. Using similarity
transformations, which preserve the eigenvalues of the original matrix, the first algo-
rithm converges to a lower triangular matrix, and the second to an upper triangular
matrix, with the desired eigenvalues in decreasing order of magnitude on the main
diagonal. The decomposition in the LR algorithm may be done very efficiently by the
use of Choleski decomposition, outlined in Section 6.4, if the matrix A is positive
definite, which requires that all the eigenvalues be positive. The QR algorithm is
generally more stable than the LR method and is often preferred. See Carnahan et al.
(1969) and Hornbeck (1982) for details.

The QL method decomposes the matrix into the product of an orthogonal matrix
and a lower triangular matrix. The method is particularly suited for tridiagonal
matrices, such as those produced by Householder’s method. The eventual result of
decomposition and transformation is a diagonal matrix, with the eigenvalues on the
diagonal. In some engineering problems, such as those concerned with the solution
of the differential equations that govern the stresses in a structure, the matrix that
arises is tridiagonal in form, and the above algorithms may be used efficiently, with-
out the need of transformation by Householder’s method.

Nonsymmetric matrices are also of interest in engineering problems, and the
methods discussed in the preceding subsections may be employed for these. Also,

Numerical Solution of Simultaneous Algebraic Equations 225

the above approach for symmetric matrices may be modified to obtain the eigenval-
ues of an unsymmetric matrix. The application of Householder’s method leads to an
upper triangular form with an additional band of elements adjacent to the main diag-
onal. This form, known as the Hessenberg form, may also be obtained by elimina-
tion methods. The LR or the QR algorithms may then be employed to obtain the
eigenvalues. As mentioned earlier, unsymmetric matrices may have complex eigen-
values. The power method can be modified to deal with complex eigenvalues. For
further details, see the treatment of eigenvalue problems by Hornbeck (1982) and
Wilkinson (1988).

Before leaving this section, we mention the Jacobi method, which is a classic,
although inefficient, method for finding all the eigenvalues and eigenvectors of a
symmetric matrix by the use of orthogonal transformations, which preserve the
symmetry as well as the eigenvalues. If Q denotes an orthogonal matrix, we wish to
use a transformation of the form QT AQ to reduce the elements in the ith row and
the jth column of the matrix to zero. However, the reduction of one element to zero
often introduces nonzero elements at positions that have been previously converted
to zero. The process is, therefore, an infinite one, and the matrix eventually tends
toward a diagonal form. At convergence, the eigenvalues are obtained from the
diagonal elements. Eigenvectors may also be obtained along with the eigenvalues
by application of the reduction procedure to an identity matrix along with the given
matrix. The columns of the resulting modified matrix are then the desired eigenvec-
tors. Various modifications of the Jacobi method, such as the threshold method,
which eliminates elements larger than a given threshold value, have been devel-
oped. The Jacobi method is not efficient in terms of computing time, but it is often
available in computer libraries and is frequently used because it is applicable to a
wide variety of eigenvalue problems.

6.8 SOLUTION OF SIMULTANEOUS NONLINEAR EQUATIONS

So far, we have discussed the solution of systems of linear equations, considering
both homogeneous and nonhomogeneous equations. However, in engineering
problems, we are frequently faced with nonlinear equations, for which no direct
methods are available and iterative procedures must be used. The solution of single,
nonlinear algebraic equations, in order to find the roots, was discussed in Chapter 5.
We are concerned here with the solution of a system of nonlinear equations. Such
systems arise in a wide variety of problems. Thermal radiation from a heated body,
for instance, varies as T4, where T is the surface temperature. Material properties
often vary nonlinearly with temperature and pressure. The forces acting on a
moving particle or in a flow often have a nonlinear relationship with velocity. The
iterative methods outlined for linear equations are often modified and employed for
nonlinear equations. However, the methods discussed in Chapter 5 may also be
considered for solving a system of nonlinear equations. An important method,
which is used extensively for solving small sets of equations, is the Newton—Raphson
method.

226 Computer Methods for Engineering with MATLAB® Applications

6.8.1 NEWTON—RAPHSON METHOD

The Newton—Raphson method is based on Taylor series expansions of the functions
fisfos - - - f, of Equation 6.1. The function f; may be expanded in a Taylor series about
(x, X5, ..., x,,), which represents an approximation to the solution. If only the first-
order terms are retained and if the exact solution (X, X,, ..., X,) is substituted for the
unknowns, we obtain the relationship

87
o\ N
+(axlz)xi(x2'_x2)+'“+(axl)n ‘xn_‘xn)

n

Fi T T) = £, (510X ﬁx)+(fl) @ - x)
(6.90)

where the partial derivatives are evaluated at (x,, x,, .. ., x,). The exact solution is not
known, but Equation 6.90 provides a method for improving the approximation to the
solution. If the other functions, f,, f, . . ., f, are similarly expanded about (x,, x,, ..., X,
and the exact solution is substituted for the unknowns, as seen in Equation 6.90, a set
of linear equations is obtained. Since (X;,X,, ..., X,,) is the solution vector, the func-
tions f;(x,,%,,..., x,) fori=1,2, ..., n, are all zero. In this set of linear equations, the
unknowns are the change in x;, Ax;, where Ax; = x; — x;, x/ being the next approxima-
tion. Then, Ax; may be computed from the following:

[oh oh O]
0x; Ox 0x,,
1 2 A.xl _fi
oo || |
ax, ax, o, || =] 6.91)
dax; Ox, 0x,,

The functions and the derivatives are all evaluated at the approximate solution
(x;, X5, ..., Xx,). The matrix containing the derivatives is known as the Jacobian and
its determination may be quite time-consuming if the number of independent vari-
ables is high. Since only linear terms were retained in the Taylor series expansion,
the exact solution is generally not obtained by solving this system of equations.
However, the next approximation to the solution may be obtained as

(l+1))C + Ax(”

(l+1) Ax([)
=5 6.92)

XD = x4 Ax®

Numerical Solution of Simultaneous Algebraic Equations 227

where the superscript (/) represents the values after a given iteration and (/ + 1) those
obtained by solving Equation 6.91 for the next iteration.

Equations 6.92 provide an iterative method for solving the system of nonlinear
equations given by Equation 6.1. An initial, starting, guess of the unknowns is taken,
and the functions f,, f5, . . ., f, and the derivatives, needed in Equation 6.91, are evalu-
ated at these x values, denoted as x{”,x{”, ..., x?2. The set of linear equations is
solved to obtain Ax, which is then used to obtain the next iteration x!" from
Equation 6.92. The process is continued until all the f’s are close to zero or the
unknowns do not change from one iteration to the next, within a specified convergence
criterion.

The method may diverge if the initial guess is too far off from the exact solution.
In physical problems, some prior information is often available on the nature of the
functions and on the expected solution. This information may be used advanta-
geously in choosing the initial values. However, if no information is available, several
trials, with different starting values, may be needed before the process converges.
The partial derivatives are generally computed numerically, since the functions may
be quite involved. This method is extensively employed in the numerical simulation
of engineering systems. It is also used as a correction scheme for the solution
of boundary-value problems in ODEs, as discussed in Chapter 9. Because of the
computational effort required for the evaluation of the derivatives, the Newton—
Raphson method is generally used when the system consists of only a relatively small
number of nonlinear equations, typically less than ten. Other iterative methods, such
as those based on the Jacobi and the Gauss—Seidel methods, are more suitable for
large systems and are discussed below.

6.8.2 MobIFiED JacoBI AND GAUSS—SEIDEL METHODS

The system of nonlinear equations may be considered to be of the form given by
Equation 6.1. These equations are rewritten, by solving for the unknowns x,, x,, ...,
x,, as follows:

X =F.(x,X,.... X,...,x,) fori=12,....n (6.93)

Therefore, the unknown x; is retained on the right-hand side for nonlinear equations,
since it would not, in general, be possible to solve for x; in terms of just the other
unknowns because of the nonlinearity in x;. The nonlinearity may arise because
transcendental equations are involved, because products of the unknowns are pres-
ent in the equations, or because x;, appears as x/', where n # 1. Also, if X, X,,..., X,

represent the solution of the given system of equations, a rearrangement of Equation
6.1 gives, at the solution,

X, =F(x,x%,....%,....,x,) fori=12,...,n (6.94)

228 Computer Methods for Engineering with MATLAB® Applications

We may now develop an iterative procedure for solving the given set of nonlinear
equations. Similar to the Jacobi method for linear equations, the recursion relation
may be written from Equation 6.93 as

x = Ex, 8, xP, a0 fori=1,2,...,n (6.95)

i i

where all the unknowns are computed for the (/ + I)th iteration using the known
values from the previous iteration. We may also replace the unknowns by the new
values as soon as they are computed. This procedure is similar to the Gauss—Seidel
method for linear equations and is given by

20 = a0 w0 xD x0 x 0] fori=1,2,...,n (6.96)

where x,(m) is computed first followed by xg”), and so on for increasing i. Therefore,

the most recently computed values of the unknowns are used for evaluating the
function F;. The formulation for this method is similar to that for the successive
substitution method discussed in Chapter 5. Therefore, this method is also some-
times known as the successive substitution method for solving a system of nonlinear
equations.

6.8.3 CONVERGENCE

The convergence characteristics of nonlinear equations are not as well established as
those for linear equations. A general theory for the iterative solution of nonlinear
equations is not available, although the behavior of certain special sets of equations
has been studied in detail. The equations may also yield multiple solutions, and one
would then need information on the physical aspects of the problem in order to
choose the correct solution. However, the solution of equations that characterize a
physical problem usually results in only one physically realistic solution, and this
solution is the one that is obtained most easily. The other solutions may be physically
unacceptable and are usually not readily obtained when the system of equations is
solved by the above methods.

We may use relaxation to alter the convergence characteristics of the iterative
process. However, it is often difficult to predict the resulting behavior. Over-relaxation
may even slow the convergence in some cases for nonlinear equations and accelerate
it in others. SUR is particularly useful in obtaining convergence for nonlinear sys-
tems. From Equation 6.96, the relaxation method may be written as

I+1 1+1 1+1 1+1 ! ! .
2 = F x0T O xD 1+ (1 —w)x? fori=1,2,...,n (6.97)

where 0 < < 1 for under-relaxation. Similarly, relaxation may be applied to the
modified Jacobi method, Equation 6.95. For highly nonlinear equations, such as
equations where the unknowns appear in powers substantially different from linear,
or 1, and transcendental equations, quite small values of ®, such as 0.1 or smaller,

Numerical Solution of Simultaneous Algebraic Equations 229

may be needed to obtain convergence. Convergence is strongly dependent on the
nature of the equations, and very often several trials, with different starting values,
are needed before convergence is achieved. Also, the modified Jacobi method is
particularly suitable for parallel computer systems, since each equation may be con-
sidered independently.

Example 6.8

In the ammonia production system shown in Figure 6.16, a mixture of 90 moles/s
of nitrogen, 270 moles/s of hydrogen, and 0.9 moles/s of argon, which is present
as an impurity, enters the chemical plant and is mixed with the residual mixture
crossing a bleed valve. In the chemical reactor, a fraction of the entering mixture
combines to give ammonia, which is removed by condensation. A bleed of 23.5
moles/s of the mixture is employed to avoid a buildup of argon, which adversely
affects the reaction. The conversion efficiency of the reactor is 0.57exp(-0.0155 F)),
where F is the argon flow rate in moles/s. This efficiency represents the fraction of
the mixture that is converted to ammonia (Stoecker, 1989). When mass conservation
is applied to the process, the following equations are obtained:

f=— (6.98a)

P =1-0.57e0015h (6.98b)

F = 90 (6.98¢)
(1-BxP)

235

e (6.98d)
4RP + F

B =1

Condenser

Liquid
Ammonia

Reaction
chamber

"

A
~—O

Nitrogen, Bleed
Hydrogen, and
Argon

FIGURE 6.16 The ammonia production system considered in Example 6.8.

230 Computer Methods for Engineering with MATLAB® Applications

where F, is the flow rate of argon entering the reaction chamber, F, is the flow
rate of nitrogen, and B and P are parameters defined above. Solve this system of
nonlinear equations by the successive substitution method to obtain the flow rates
and the amount of ammonia produced.

SOLUTION

This example presents a typical case of systems of nonlinear equations that often
arise in the analysis of chemical reactors. The successive substitution method is
often applied to solve the problem. However, the convergence is dependent on
the sequence of equations solved, as well as on the initial guessed values. One
particular solution process is outlined here.

The four unknowns are taken as f;, P, F,, and B. The starting value of B is arbi-
trarily chosen as 0.1, and the other quantities are computed in the sequence given
by Equations 6.98. The total flow rate of the mixture entering the plant is denoted
by C, where C = F, + 4F,, since the flow rate of nitrogen is F, moles/s and that of
hydrogen is 3F, mol/s. The amount of ammonia produced is denoted by D and is
given by

D = 2F x 0.57e%0155F1 (6.99)

since each mole of nitrogen gives two moles of ammonia, as seen from the chemi-
cal equation

N, + 3H, = 2NH; (6.100)

The convergence criterion may be applied to the total flow rate C or to B as
follows:

C-CO|se or [B-BO|sce (6.101)

where CO and BO are the values after the previous iteration and ¢ is the conver-
gence parameter.

The physical problem discussed here is evidently quite involved. However,
the computer program, shown in Appendix B.13, is quite simple. It is based on
the successive substitution or the modified Gauss—Seidel method outlined ear-
lier. The convergence parameter ¢ is denoted by ep and is taken as 107. It was
ascertained that a still smaller value of & did not significantly affect the numerical
results, though larger values slightly changed the converged results. The results
obtained after each iteration, for the flow rate of argon, the total flow rate, and
the amount of ammonia collected, in moles/s, are indicated in Figure 6.17. The
convergence is slow, partly because of the nature of the equations and partly
because of the first-order convergence of this method. Convergence was not
obtained for values of B very far from the chosen starting value of 0.1. Also, a
change in the sequence of the computations performed resulted in divergence
in some cases. If convergence is not achieved, under relaxation can be used to

Numerical Solution of Simultaneous Algebraic Equations 231

ARGON TOTAL FLOW AMMONIA

1.0000 3717.5205 105.6579

6.3653 621.9412 158.9564
11.6436 708.7917 165.8785
14.4396 749.7037 167.5278
15.8801 770.5167 168.1452
16.6299 781.3446 168.4220
17.0234 787.0322 168.5568
17.2309 790.0337 168.6252
17.3406 791.6215 168.6606
17.3987 792.4624 168.6792
17.4295 792.9081 168.6890
17.4458 793.1444 168.6942
17.4545 793.2697 168.6969
17.4591 793.3361 168.6984
17.4615 793.3713 168.6991
17.4628 793.3900 168.6995
17.4635 793.3999 168.6998
17.4638 793.4052 168.6999
17.4640 793.4080 168.6999
17.4641 793.4095 168.7000
17.4642 793.4102 168.7000
17.4642 793.4107 168.7000
17.4642 793.4109 168.7000
17.4642 793.4110 168.7000
17.4643 7934111 168.7000

Iteration has converged
Converged results are
ARGON = 17.4643 TOTAL FLOW =793.4111 AMMONIA = 168.7000

FIGURE 6.17 Convergence of the computed results for the solution of the system of nonlin-
ear algebraic equations in Example 6.8 by the successive substitution method.

improve the convergence characteristics. Also, the sequence of equations and
the initial guess may be varied to obtain convergence. Such variations are com-
monly used for solving sets of nonlinear equations. Despite these problems with
convergence, the successive substitution method is a much simpler method than
the Newton—Raphson method, for nonlinear equations, and is widely used in
engineering applications.

Example 6.9

For the physical problem described in Example 5.7, employ the Newton—Raphson
method to solve the system of nonlinear equations, given by Equations 5.32 and
5.33, to obtain the flow rate R and the pressure P.

232 Computer Methods for Engineering with MATLAB® Applications

SOLUTION

The system of equations that govern the flow through a duct due to a fan, as given
in Example 5.7, are

3/5
R=(P_80) (6.102a)
10.5
1/2
P=(;§;§a (6.102b)
75 x 10

To use the Newton—Raphson method, we take the two functions that are to be
reduced to zero as

3/5
P - 80
R = “R=R(P,R 6.103
1 (mB) (PR (61032
15-R \"
p=(2=R N _p_ppr 6.103b
1 (75 - 10_6) (P, R) (6.103b)

The initial guesses for R and P and the convergence criterion € are inputs to the pro-
gram, which is shown for MATLAB in Appendix B.14. In order to consider both the
functions R, and P;, the convergence criterion is applied to a parameter B, where

B=R +P (6.104)

Other choices are obviously possible, including considering functions R, and P,
separately.

The four partial derivatives, dR,/dR, dR,/0P, dP,/dR, and dP,/dP, are computed
at the starting, guessed, values of R and P, employing analytical differentiation of
the functions R, and P,. These derivatives are denoted by rr, rp, pr, and pp, respec-
tively, in the program. The increments in R and P, AR, and AP, which are denoted
by dr and dp, respectively, in the program, for the next iteration are then obtained
from Equation 6.91, which gives

IR AR+ Ripp - g (6.105a)
oR aP
LHAR + LHAP - (6.105b)
oR oP

The new values of R and P are determined from Equation 6.92. The iterative process
is repeated until convergence is achieved, as indicated by B < €. Figure 6.18 shows
the results for the starting values of R and P taken as 2 and 100, respectively, and g,
or ep, taken as 10*. For the same convergence criterion, the flow rate was obtained
as 6.7320 m?/s in Example 5.7, indicating a close agreement with the present results.
For smaller values of €, the converged results were not significantly affected. Also,

Numerical Solution of Simultaneous Algebraic Equations 233

Enter the value of parameter r, r = 2

Enter the value of parameter p, p = 100

Enter the value of convergence parameter ep, ep = 0.0001
R=9.8736 P =290.2550

R=6.80644 P =338.1764

R=67326 P=332.0233

R=67321 P =332.0223

THE REQUIRED SOLUTION IS

The flow rate R =6.7321 The pressure P = 332.0223

Enter the value of parameter 7, r =1

Enter the value of parameter p, p =200

Enter the value of convergence parameter ep, ep = 0.0001
R=72408 P =3357523

R=67342 P=332.1454

R=67321 P=332.0223

THE REQUIRED SOLUTION IS

The flow rate R =6.7321 The pressure P = 332.0223

Enter the value of parameter r, r =0

Enter the value of parameter p, p = 300

Enter the value of convergence parameter ep, ep = 0.0001
R=69444 P =343.6930

R=67337 P=332.0180

R=67321 P =332.0223

THE REQUIRED SOLUTION IS

The flow rate R =6.7321 The pressure P = 332.0223

FIGURE 6.18 Numerical results from the solution of the system of nonlinear equations of
Example 6.9 by the Newton—Raphson method.

convergence to the same results was obtained for a fairly wide range of starting
values. It can be seen that convergence is very rapid, despite the considerable
difference between the starting and the converged values. The convergence was
much slower with the successive substitution method, as illustrated by Example 5.7.
Due to its superior convergence characteristics, the Newton—Raphson method is
the preferred method if the number of equations is small.

It must be noted that the two equations, Equation 6.105, for the given problem
are solved directly without resorting to methods available for linear systems. These
methods are needed if the number of independent variable is larger, typically 4
or higher. Then the matrix of the derivatives, Equation 6.91, is determined at each
step and the increments in each of the independent variables are calculated to
advance to the next iteration. For the problem considered here as well, the matrix
may be formed and the increments determined by solving the matrix equation.
For instance, after the derivatives of the functions are obtained, the matrix may be
formulated and the backslash operator employed to obtain the increments as

a=[rr rp;pr ppl;
b=[-rl; —-pl];

234 Computer Methods for Engineering with MATLAB® Applications

dd=a\b;
dr=dd (1) ;
dp=dd(2) ;
r=r+dr;
p=p+dp;

This approach can thus be extended to cases where the number of indepen-
dent variables is larger than two.

6.9 SUMMARY

The solution of simultaneous linear and nonlinear algebraic equations is considered
in this chapter. Several methods are discussed, and their advantages over other meth-
ods and their applicability to the various types and systems of equations that arise in
engineering problems are indicated. The choice of the method for the solution of a
given system depends on whether the equations are linear or nonlinear and on whether
they are homogeneous or nonhomogeneous. It also depends on the number of equa-
tions to be solved and the nature of the equations, particularly the sparseness of the
coefficient matrix. The selection of the method for a given situation is also often influ-
enced by the need to determine other quantities, such as the inverse or the determi-
nant of the coefficient matrix, besides the unknown vector X. Similarly, several
systems of equations with the same coefficient matrix but different constant vectors
may have to be solved. This additional consideration is often an important factor in
the selection of the method. In several cases, the available software in the computer
library may also make a given method more attractive than the others. MATLAB is
particularly well suited for solving systems of equations because of its inherent advan-
tages in matrix algebra. Linear systems can be solved very easily by matrix inversion,
decomposition and matrix manipulation in MATLAB. These approaches can also be
used for simplifying the solution of nonlinear and homogeneous equations.

For linear, nonhomogeneous equations, the methods discussed here include
Gaussian elimination, Gauss—Jordan elimination, Crout’s method, matrix inversion,
and iterative methods. Gaussian elimination is the simplest direct method, in terms
of computer programming, and is appropriate for a small number of equations, typi-
cally of the order of 20 or less, because of the round-off error. However, if the system
is tridiagonal, this method may be used advantageously for several hundred equa-
tions without significant loss of accuracy due to round-off error. In the finite differ-
ence solution of ODEs and PDEs, tridiagonal systems are often obtained, and
Gaussian elimination (TDMA) is the preferred method. If many systems that have
the same coefficient matrix A but different constant vector B are to be solved, Gauss—
Jordan elimination may be used advantageously, since all systems are solved in one
elimination process. Similarly, matrix inversion determines A, which is the same
for all the systems, and the solution X is obtained simply by multiplication of the
inverse with the constant vector, that is, X =A~'B. This approach is very easily
applied in MATLAB to solve linear systems by using the available software.

Crout’s method and other compact methods based on decomposition of the matrix
A are generally more efficient than elimination methods. The round-off error is also
less since the number of operations is smaller than that for Gaussian elimination.

Numerical Solution of Simultaneous Algebraic Equations 235

Computer programming is somewhat more involved. However, because of their
advantage over elimination methods in computing time, compact methods have
become quite popular in recent years. Again, matrix decomposition can be conve-
niently and efficiently applied in MATLAB by using the available software.

Iterative methods, such as Jacobi, Gauss—Seidel, and relaxation methods, are par-
ticularly suitable for large systems of equations, typically of order 100 or larger, and
for sparse coefficient matrices. The round-off error in the solution is due only to the
error that arises in the final iteration. If the optimum value of the relaxation factor ®
is known, the SOR method generally requires less computing time than most direct
methods. The optimum value ®,, is usually not known, and several values may have
to be tried to determine it numerically. The Jacobi method is seldom used, since it
requires greater computer storage and computational effort, on traditional or single-
processor computers, than the Gauss—Seidel method, which remains a popular
choice, along with SOR, for solving large systems of equations. These methods, with
some modifications, are also suitable for nonlinear equations, which generally can-
not be solved by direct methods. Therefore, the successive substitution or the modi-
fied Gauss—Seidel method is frequently used. Relaxation may also be used in this
case, but the effect of relaxation on convergence is often unpredictable in nonlinear
equations. SUR is commonly used to achieve convergence in nonlinear equations.
For a small number of equations, typically less than 10, the Newton—Raphson method
is preferable since its convergence is more rapid.

The solution of linear, homogeneous equations requires methods quite different
from those for nonhomogeneous equations. The eigenvalue problem is discussed in
detail. For a small number of equations, the characteristic polynomial may be solved
to obtain the eigenvalues, and the Gauss—Jordan method may be applied to deter-
mine the corresponding eigenvectors. The power method, which is an iterative
method for determining the largest eigenvalue and the related eigenvector, may be
used for moderately sized systems. The smallest eigenvalue can also be determined
easily. However, intermediate eigenvalues can be obtained accurately if only a few of
them are desired, since the round-off error accumulates as these are successively
determined. The Jacobi method is a classical iterative method that yields all the
eigenvalues and the eigenvectors of symmetric matrices by obtaining the matrix in a
diagonal form. This method is frequently employed, even though it is quite ineffi-
cient, because the software is available on many computer systems. The most effi-
cient method for large matrices is Householder’s method used in conjunction with
the QL algorithm. The former converts a symmetric matrix into a tridiagonal form.
Various methods, such as the QL algorithm, are available for extracting the eigenval-
ues from a tridiagonal matrix by the use of decompositions and transformations.

PROBLEMS

6.1. Compare the Gaussian elimination and Gauss—Jordan elimination
methods for solving a system of linear equations. Which one is more
accurate? Which one is more efficient? Indicate the advantages, if any,
of the latter method over the former.

6.2. Draw the flow chart for solving a system of linear equations by
Gaussian elimination.

236 Computer Methods for Engineering with MATLAB® Applications

6.3. Consider the electrical network shown and write down the algebraic
equations for determining the four loop currents indicated. Solve this
system of linear equations by Gaussian elimination. Check the results
by also solving these equations employing the backslash operator in
MATLAB.

50 6V
II
||
12vV.+ /—\ 40 /—\ 100
6Q L 8Q I,
30 a0 N
||
12V

6.4. a. If the 3 Q resistance in the network for Problem 6.3 is replaced by
an open circuit, resulting in only three loops, compute the three
loop currents by the Gaussian elimination method.

b. If the currents through the remaining six resistances are denoted
by I, I,, ..., I, write down the six linear equations that govern
these currents. Compute their values using Gaussian elimination,
and compare the results with those for the loop currents in the first
part of the problem.

6.5. A third-order polynomial of the form y = Ax?+ Bx>+ Cx + D is to be
fitted to four time-velocity data points. At time x =0, 1, 2, and 3 s, the
velocity is measured as 7, 14, 29, and 58 m/s. Using Gauss—Jordan
elimination, find the curve that passes through these points. Also,
solve the problem by employing the backslash operator in MATLAB
and compare the results with those obtained earlier.

6.6. A fourth-order polynomial passes through the five points for which
the independent and dependent variables, x and y, respectively, are
given as (-2, 37), (-1, 7), (0, 5), (1, 13), and (2, 61). Find the polyno-
mial by any suitable method. Here, x represents the spatial location
and y the species concentration in a chemical reactor.

6.7. Six data points are obtained in the calibration of a velocity-measuring
device. At velocities of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 m/s, the voltage
signals from the instrument are obtained as, respectively, 1.2, 1.74,
2.63, 3.99, 6.04, and 9.1 volts. Find the fifth-order polynomial that
passes through these points. Also, solve the problem by employing the
matrix inversion command in MATLAB and compare the results with
those obtained earlier.

6.8. For the physical problem described in Example 6.2, take the tempera-
ture at the left face as 200°C and that at the right face as 20°C. Write
down the resulting tridiagonal system of equations, and obtain the
solution by Gaussian elimination.

Numerical Solution of Simultaneous Algebraic Equations

6.9.

6.10.

6.11.

6.12.

6.13.

6.14.

Derive the recursion formulas for solving a tridiagonal system of
equations by Gaussian elimination.

Write a MATLAB script file to compute the magnitude of an n X n
determinant by Gaussian elimination, where n can be up to 10. Using
this program, compute the magnitudes of the determinants of the fol-
lowing matrices that arise in the dynamic analysis of structures:

1 2 -1 0 2 0 3 1
32 1 0 31 2

and
21 1 3 -1 0 -2 4
01 2 0 32 1 =2

A system of linear equations is given as follows:

X —2X +2x3+3x, =5
X +5x, -3x;-5x, =13
—X; + X, +3x3-4x, = -6

2x 4+3x, —x3-2x, =18

Determine whether all the equations in this set are independent, using
a computer program as well as matrix methods in MATLAB.

Solve the following system of linear equations by the Gauss—Jordan
method, to indicate the basic procedure involved:

2x +2x, +3x3 =15
X +3x, +x3 =10

3x—x, +2x3 =7

Using the Gauss—Jordan method with partial pivoting, invert the
matrices given in Problem 6.10. Also, multiply the inverse A~ with
the corresponding matrix A, for the two cases, and compare the values
obtained with the identity matrix. Comment on the difference, if any,
between the two. Also, use the inv(A) command in MATLAB to solve
this problem and compare the results with those obtained earlier.
Find the currents in the three resistances located on the three sides of
the triangle in the network shown. The voltages shown at the ends are
the positive voltages imposed at these points. Use matrix inversion to
solve this set of equations, using both a script file and the inv(A) com-
mand in MATLAB.

10V

6Q

4Q 8Q

2Q 10Q

20V 9Q 5V

238

6.15.

6.16.

6.17.

6.18.

Computer Methods for Engineering with MATLAB® Applications

For the electrical network shown, obtain the governing set of linear
equations using the voltage drops across the resistances as unknowns.
Use Crout’s method to solve this system of equations. Also solve the
system by Gaussian elimination, and compare the accuracy obtained
by the two methods.

4Q 4Q 2Q
O— WA
25V 5Q 3Q 6Q
O—WWA
2Q 2Q 1Q

Solve the following system of linear equations using Gaussian elimi-
nation and also Gauss—Jordan elimination, both being employed with
and without partial pivoting:

X +2x, +4x; =18
2x; 4+ 3x, = 5x;, =-18

4x —x, —x3=-14

Compare the results obtained with each other and with the analytical
solution. Does pivoting improve the accuracy of the results?

An industrial organization produces four items, x;, x,, x;, and x,. A
portion of the amount produced for each is used in the manufacture
of other items, and the net product is sold. The balance between the
output and the production rate, resulting from the various inputs,
gives rise to the following four equations, corresponding to the four
items:

2%+ X, +0.x3 + 6x, = 64
Sx;+2x, +0.x3 + 0.x4 =37
0.x; + 7xy +2x3 + 2x4 = 66

0.x; +0.x, + 8x3 +9x, =104

Using Gauss—Jordan elimination, with pivoting, solve this set of equa-
tions. Also, use Crout’s method and compare the results obtained with
those from the former method. Comment on the difference between
the two methods. Check the results obtained by also solving the prob-
lem using the /u matrix decomposition command in MATLAB.
Compute the magnitude of the determinant of the coefficient matrix
of the following system of equations to determine whether it is a sin-
gular matrix.

3x+7y-6z=-15
x-3y+2z=27
9x +5y-6z=>51

Numerical Solution of Simultaneous Algebraic Equations 239

6.19.

6.20.

6.21.

6.22.

6.23.

6.24.

What can you say about the given system on the basis of the computed
value? How will you solve such a system?

Using the power method, determine the largest eigenvalue and the
corresponding eigenvector of the following matrices.

8 4 5 10 5 8
6 10 3| and |5 40 6
8 6 20 8 10 20

Vary the convergence criterion €, applied to the eigenvector, from
10~* to 107!, and study the resulting effect on the number of iterations
needed for convergence, starting with an initial guess of the eigenvec-
toras (1, 1, 1).

Solve the following equations, giving at least three complete steps, by
the Gauss—Seidel method:

2x+8y+3z=27
xX+3y+5z=22
6x+y+2z=14

Do you expect the numerical scheme to converge? Justify your answer.
Consider the following diagonally dominant system of equations:

8x+y+2z=29
x+9y+z=34
2x+3y+7z=48

Using the Jacobi method and also the Gauss—Seidel method, solve
this system. Compare the number of iterations needed for convergence
in the two cases, if the convergence criterion € is taken as 103 and
applied to the computed value of the unknowns.
Solve the system of equations in the preceding problem by the LU
decomposition method, using the /u command in MATLAB. Print the
solution from the LU decomposition method and also print the upper
triangular matrix obtained. If the first and third equations were inter-
changed, would you expect the Gauss—Seidel iteration to converge?
Find the optimum value ©,, for fastest convergence, if the SOR
method is employed for the system of equations given in Problem 6.21.
Plot the number of iterations to convergence against the relaxation
factor ® and discuss your findings.
The temperature distribution in the square region shown is governed
by the Laplace equation, discussed in Chapter 10. The finite difference
approximation to this equation yields a system of algebraic equations
given by

_ 7:'+l, J

+Tj+ T +T
Ti,j_ 4

ij+1 T4

240 Computer Methods for Engineering with MATLAB® Applications

where i is the number of the row and j is the column in which a grid
point is located. For the nine points shown, obtain nine linear equa-
tions for determining the temperatures at these points. Solve this sys-
tem by the Gauss—Seidel method. Note that the temperatures at the
boundaries are given and are used in the equations for all the tempera-
tures, except for the one at position number 5. Also, using the inv(A)
command in MATLAB, solve this problem and compare the results
with those obtained earlier.

40°C
1 2 3
50°C 4 5 6 20°C
7 8 9
100°C

6.25. Solve the preceding problem if the bottom surface is at a temperature
of 1.0, while the others are at 0.0.

6.26. Using the Gauss—Seidel iterative method, solve the following system
of equations:

8x; —x, —2x3 +3x, =22
2x +6x) —x3 + x, =12
X +2x, +10x3 + 2x, =20
3x, —3x, +2x3 +9x, =32

Calculate the results for three tolerance values, 0.1, 0.01, and 0.001.
Discuss the effect of the tolerance on the number of iterations and on
the numerical solution. Also, solve the equations by using MATLAB
commands for matrices. Compare the results from the two methods.

6.27. Find the optimum value ®,, of the relaxation factor for solving the
system of equations in preceding problem by the SOR method, and
compare the number of iterations to convergence with that for the
Gauss—Seidel method.

6.28. The following three linear equations describe the mass balance of an
engineering system, with X, ¥, and Z as design variables.

X-57Y +427Z =147
11X+ 1.1Y -7.6Z=-81.2
-22X-Y +10.72=90.5

Find X, Y, and Z using the Gaussian elimination method. Also, set up
the equations for the Gauss—Seidel method and discuss if the scheme
is expected to converge (Do not actually solve the problem by this
method).

Numerical Solution of Simultaneous Algebraic Equations 241

6.29. A system of linear equations is given as

6x+2y+z+2p=154
4y+2z+p=12.2
xX+5z+3p=17.6
2y +3z+8p=26.6

where x, y, z, and p are the unknowns. Write a script-m file to do the
following:

a. Solve the system of equations by the Gauss—Seidel iterative
method to obtain x, y, z, and p. Print the solution obtained.

b. Solve the system of equations by the LU decomposition method,
using the /u command in MATLAB.

c. Print the solution from the LU decomposition method and also
print the lower and upper triangular matrices obtained.

d. Give the value of the determinant of the coefficient matrix.

e. In Gauss—Seidel, what would you expect if the first equation is
solved for z, instead of x, the second equation for p, third for x and
fourth for y?

6.30. The mass balance for three items x, y, and z in a chemical reactor is
governed by the following linear equations:

4.8x+y+25z=-1.62
22x+45y+1.1z=11.14
-2.1x-3.1y + 10.1z = 15.57

Solve this system of equations by the Gauss—Seidel iteration method to
obtain the values of the three items. The initial guess may be taken as
x=y=2z=0.0 or 1.0. Also, solve the equations by using the matrix com-
mands in MATLAB and compare the results with those obtained earlier.

6.31. Solve the following set of linear equations by the Gauss—Seidel itera-
tion method. The initial guess may be taken as 0.0 or 1.0.

Sx+y+2z=17
x+3y+z=8
2x+y+6z=23

Vary the convergence parameter to ensure that results are independent
of the value chosen.

6.32. As done for Example 6.6, obtain the system of linear homogeneous
equations that govern the vibration of the three-mass system shown.
Using the power method, determine the largest eigenvalue and the
corresponding eigenvector.

242 Computer Methods for Engineering with MATLAB® Applications

6.33. Obtain the characteristic polynomial for Problem 6.32 and find all
the eigenvalues by root solving. Determine the eigenvectors by the
Gauss—Jordan method, as outlined in Example 6.6.

6.34. For the vibrating system shown, use the power method to obtain the
largest and the smallest eigenvalues and the corresponding eigenvec-
tors. Neglect the effect of gravity.

k

i 5 N/kg-m

6.35. The forces acting on a body give rise to stresses in the material. At a
given point in the material, the state of stress is given by the matrix

8 3 6
5 10 2 |x10° N/m?
6 7 20

Numerical Solution of Simultaneous Algebraic Equations

6.36.

6.37.

6.38.

The largest principal stress, which determines the failure of the mate-
rial, is the largest eigenvalue of the stress matrix. Using the iterative
power method, find the largest eigenvalue and the corresponding
eigenvector.

Obtain all the eigenvalues of the stress matrix

12 6 8
8 40 7 |x10°N/m?
6 12 20

and compare the largest value obtained with the elements of the given
matrix. Is the result physically expected?

For the four-mass vibrating system shown, obtain the governing alge-
braic equations, neglecting gravitational effects. Determine the larg-
est eigenvalue and the corresponding eigenvector, using the power
method. Also obtain the smallest eigenvalue and compare it with the
computed largest eigenvalue. Comment on the physical significance
of the difference.

Water flows through two parallel pipe networks, each of which con-
tains a pump to provide the necessary pressure difference Ap. The
water flow rates through the two circuits are Q, and Q,, the total flow
rate being Q. Therefore,

0=0+0,

The characteristics of two pumps are given in terms of the relationship
between the pressure difference and the flow rate as

Ap =550 -100?
Ap =700 - 1503

243

244 Computer Methods for Engineering with MATLAB® Applications

Also, the pressure difference may be computed from changes in eleva-
tion and friction in the pipes to give

Ap =68 +80?

Using the successive substitution method, solve this system of nonlin-
ear equations to obtain the flow rates and the pressure difference.
6.39. Solve Problem 6.38 by the Newton—Raphson method, and discuss the
difference in the convergence characteristics and in the programming
from the successive substitution method.
6.40. Solve the following system of nonlinear equations by using Newton’s
method:

X +3y?2 =21
X2 +2y+2=0

Show two complete cycles of iteration to locate the root for x > 0.

6.41. Consider the physical problem discussed in Example 5.4. The problem
may be posed in terms of the single equation given earlier or in terms
of the two equations, with 6 and w as the two unknowns,

1000
0= 70—7Oexp[—721(5+zow)]
250 =4.2w0

Solve this system of nonlinear equations by the Newton—Raphson
method, and compare the results with those obtained earlier in
Example 5.4.

6.42. Solve the following set of nonlinear equations, which govern the
flow rates in a network of four pipes, by the Gauss—Seidel iterative
method:

Ta+b*+c+d=3.7
a’>+8b+3c-d=49
2a-2b+5c+d*> =828
a-b+c*>+14d =182

Because of the physical nature of the problem considered, a, b,
¢, and d are all real and may be positive or negative. A negative
value indicates flow in a direction opposite to that assumed in the
analysis.

6.43. Solve the problem discussed in Example 6.9 by the successive sub-
stitution method, and compare the convergence characteristics with
those for the Newton—Raphson method used in the given example.

6.44. Alternating current electrical circuits are generally solved by the use
of complex variables, since the sinusoidal variation can be represented
conveniently by complex quantities. The impedance for a resistor is

Numerical Solution of Simultaneous Algebraic Equations

6.45.

6.46.

6.47.

6.48.

6.49.

simply its resistance, whereas the impedances for inductors and capac-
itors are functions of the frequency ®. For an inductor, the impedance
is iowL, where i = \/——1 , and for a capacitor it is—i®wC, where L is the
inductance in henries and C the capacitance in farads. For the circuit
shown, the ac power source is 15 V with a frequency of ®. The phase
angle is arbitrarily taken as zero. Considering the two loop currents /;
and /, and using Kirchhoff’s law, obtain two algebraic equations for
the currents. Then taking the currents, voltages, and impedances as
complex, separate the real and imaginary parts to obtain four linear
equations. Solve these equations by using a MATLAB script file as
well as by using the backslash operator in MATLAB to obtain the
loop currents.

i —-i5Q
6 Inductance |] Capacitance
69009 |

+ I
1

<~ 1V 5Q 8Q

o
Source I,

Following the procedure outlined in Problem 6.44, obtain the lin-
ear equations, with complex coefficients, for the ac electrical circuit
shown. Again, obtain the corresponding linear equations with real
coefficients by separating the real and imaginary parts. Solve these
equations to obtain the magnitude and phase angle of the currents.

4Q
60 30V Capacitance
7 0 T -i8Q
. L Inductance
20V .
~ 0° i6Q 12
Source

Under what conditions would the use of under-relaxation in an itera-
tive scheme, such as Gauss—Seidel, be valuable in altering the conver-
gence characteristics of the method? Give examples.

What would be the result of using over-relaxation with the Jacobi
method?

Discuss some physical circumstances for which the iterative meth-
ods will be more advantageous to use than the direct methods. Justify
your answer.

Several simple matrix commands in MATLAB were discussed in this
chapter. Using any system of equations from the preceding problems,
obtain the solution by employing the backslash, inv(a) and /u commands.
Comment on the results and computational procedures involved.

245

7 Numerical Curve Fitting
and Interpolation

7.1 INTRODUCTION

A problem of considerable interest in engineering applications is that of representing
data at a set of discrete points by means of a smooth and continuous function.
Experimental and numerical studies generally yield results at a finite number of data
points. Such results are often tabulated. However, a much more useful representation
of the data is by means of a smooth curve that passes through the data points or one
that is as close as possible to these. This process is known as curve fitting and the
equation of the curve can be employed to obtain values at intermediate points where
tabulated results are not available. Also, in the numerical simulation of engineering
processes and systems, it is more convenient to use a curve fit of the available data
on the characteristics of the components, such as pumps and blowers, rather than
tabulated results, to obtain the values needed.

Curve fitting is needed in a wide variety of engineering problems. The property
data for materials are generally available at discrete values of the independent vari-
able, such as pressure, temperature, and concentration. Curve fitting yields a func-
tion f(x), where x is the independent variable and f(x) is a material property, such as
density, specific heat, equilibrium constant for a chemical reaction, and electrical
resistance. Then this function f(x) may be used to obtain the desired material prop-
erty at arbitrary values of the independent variable over a given range. Curve fitting
of property data is needed in the simulation and study of many diverse engineering
applications, such as power plants, refrigeration systems, chemical reactors, environ-
mental processes, electronic systems, and building structures. Similarly, experimen-
tal data on many processes of engineering interest, such as wind speed at various
heights above the surface of a lake, velocity of a moving body as a function of time,
the electrical current in an electronic circuit as a function of the input voltage, and
the deflection of a structure under a changing load, are generally obtained in terms
of a continuous function f(x), which can be subsequently employed in the analysis
and design of relevant engineering processes and systems. The calibration curves for
measuring devices, such as pressure transducers and flow meters, are similarly
obtained from data taken at discrete points.

7.1.1 Exact AND Best Fit

There are two basic approaches to curve fitting. The first one involves determining a
curve that passes through every given data point and is known as an exact fit, see

247

248 Computer Methods for Engineering with MATLAB® Applications

Figure 7.1a. Therefore, at the given data points, the curve obtained yields values that
are identical to the given data. An exact fit is appropriate if the data have a high level
of accuracy, as is often the case for numerical simulations and for material property
data. The number of parameters that must be determined for obtaining the approxi-
mating curve, which is often taken as a polynomial, must be equal to the number of
data points. If the data set is large, the determination of the unknown parameters,
which are also consequently large in number, becomes quite involved. Also, the
curve obtained is not very convenient to use and is often ill-conditioned. Thus, if a
large number of data points is available, the second approach, known as the best fit,
is more appropriate. In this case, the curve does not pass through every data point.
However, the difference between the values given by the approximating curve and
the given data is minimized, so that the error in obtaining the values from the curve
is small, see Figure 7.1b. The number of parameters in the curve is typically much
smaller than the number of data points, and simple curves, such as linear and expo-
nential distributions, are frequently used for curve fitting. This approach is also suit-
able if the error in the data is significant, so that the fitted curve need not pass through
each data point and a best fit is more appropriate.

—
)
=

y=f(x)

(b)

y=f

FIGURE 7.1 Curve fitting to given sets of data points: (a) an exact fit and (b) a best fit.

Numerical Curve Fitting and Interpolation 249

7.1.2 INTERPOLATION AND EXTRAPOLATION

Interpolation is employed to determine the dependent variable y = f(x) at intermedi-
ate values between the given data points, and extrapolation is used for finding f(x)
outside the range of the given data. Both are extensively used in engineering applica-
tions and also in developing numerical procedures for differentiation, integration,
root solving, and the solution of differential equations. The use of interpolation and
extrapolation in numerical differentiation and in root solving was demonstrated in
Chapters 4 and 5. The application to other problems in numerical analysis will be
outlined in the following chapters. The basic approach involves fitting an exact curve
to a finite number of discrete points and then applying the desired mathematical
operation, such as differentiation or integration, to the smooth function obtained.

There are several numerical methods that may be employed for determining the
interpolating curve from a given set of data points. Besides the direct evaluation of
the parameters of an interpolating polynomial by substituting the given data and
solving the resulting set of linear equations, as outlined in Chapter 6, interpolation
with Lagrange polynomials and Newton’s divided-difference polynomials is also
discussed here. Splines, which fit subsets of the data with lower-order polynomials,
such as a cubic, are also important in interpolation and are presented in this
chapter.

Caution is needed when extrapolation is employed to compute values beyond the
range of the given data, since the variation of the dependent variable beyond the
given range is not known. There may be substantial changes in the variation as we
move outside the given domain of data points. However, extrapolation is frequently
used to predict values and trends in order to plan and to take decisions. For example,
companies routinely depend on consumer spending trends and predictions of infla-
tion, inventory, money supply and the stock market to plan for the future.

7.1.3 BAsic APPROACH

The choice of the function f(x) to obtain a best fit to a given data set is also an impor-
tant consideration. Although polynomials, particularly straight lines which lead to
linear regression, are very often employed for curve fitting, other forms, such as
exponential and sinusoidal functions, are also used. As mentioned in Chapter 1, the
physical nature of the given problem may often be employed to choose the appropri-
ate form of the function f(x) for a best fit. Periodic processes, such as those encoun-
tered in natural phenomena, are usually fitted with sinusoidal functions, as shown in
Figure 1.5. Similarly, in chemical reactions where the rate of change of concentration
is proportional to the concentration at any given time, the concentration varies expo-
nentially. Therefore, if measurements are taken in such processes, exponential func-
tions are employed for curve fitting. Calibration curves for devices, such as those for
measuring pressure and velocity, are generally obtained as polynomials by using
curve-fitting techniques for a best fit. A few examples of curve fitting are shown in
Figure 7.2. The use of the physical background of the given problem or of any prior
information on the variation of the dependent variable helps in the choice of the most
appropriate form of the curve for a best fit. A proper choice of the function f(x) for

250 Computer Methods for Engineering with MATLAB® Applications

() Periodic

Exponential

—
g}
N&H

Polynomial

y=f(%

FIGURE 7.2 A few examples of curve fitting, employing different forms of the function f{x)
for a best fit.

Numerical Curve Fitting and Interpolation 251

curve fitting not only reduces the number of parameters to be determined but also
yields the desired result in a simple and useful form.

There are several numerical methods for obtaining the best fit to a given data set.
The most widely used technique is based on the minimization of the sum of the
squares of the differences between the actual data and the values obtained from the
best fit. This method, known as the least-squares fit, is discussed in detail and applied
to different forms of the chosen function f(x) for curve fitting. Other methods are also
outlined. Also considered is the circumstance where the dependent variable is a
function of more than one independent variable, say, f(x, y). Such problems are of
interest, for instance, in chemical reactors and power plants, where the fluid proper-
ties and system characteristics depend on two or more independent variables, for
instance, pressure, temperature, and concentration.

7.1.4 Use oFf MATLAB® COMMANDS

As briefly discussed in Chapter 3, MATLAB® has several commands that may be
used easily and directly to obtain a best fit to given data and to obtain interpolated
values. These include the polyfit command, which gives a best fit to the given data set
using the specified order of the polynomial for curve fitting, such as 1 for linear, 2 for
parabola, and 3 for cubic. Similarly, the interp/ command is useful in obtaining
interpolated values from the given data set, using a specified interpolating polyno-
mial, such as linear, cubic, and spline, where the last one refers to a piecewise exact
fit to the given data and is presented in detail later. The interp2 command is used for
two-dimensional curve fitting and interp3 for three-dimensional. These commands
are discussed in greater detail and employed for various examples here.

In this chapter, the numerical methods for obtaining an exact fit to tabulated data
at discrete points are considered first. Various interpolation formulations and
techniques are discussed. Interpolation with splines, particularly cubic splines, is
outlined. The use of the least-squares method for obtaining a best fit with simple
polynomials is then discussed in detail. Other forms of the curve for a best fit are also
considered. Finally, functions of more than one independent variable are considered,
and the corresponding numerical curve-fitting procedures are presented.

7.2 EXACT FIT AND INTERPOLATION

An exact fit of tabulated data is frequently obtained in engineering applications,
using polynomials in most cases. One chooses a general form of the approximating
polynomial and substitutes the given data into the equation for the polynomial in
order to evaluate the parameters in the chosen curve. Therefore, the approximating
polynomial passes through each data point and yields the exact value, as the given
data, at these points. Since the polynomial is exact at the given data points, it is
known as an exact fit. Once the approximating curve has been found, one can employ
it to determine the values of the dependent variable y, which is a function f(x) of the
independent variable x, at arbitrary values of x not included in the tabulated data. As
mentioned earlier, if the chosen value of x lies within the range covered by the given
data, the function f(x) is found at an intermediate value of x, and the process is

252 Computer Methods for Engineering with MATLAB® Applications

known as interpolation. If x lies beyond the range of the data, the process is called
extrapolation.

Both interpolation and extrapolation are widely used in engineering and in
numerical analysis. Extrapolation is employed less frequently than interpolation,
since there are uncertainties associated with evaluating the function at x values
beyond the range for which data are available. If the function is known to be well
behaved beyond the range of data, extrapolation may be used. Otherwise, substantial
error may arise in the extrapolated value. However, interpolation is routinely used for
a wide variety of engineering problems. Measurements and numerical simulations
are carried out at a finite number of discrete data points, and curve fitting is used to
obtain values at intermediate points. Several examples of engineering problems
where this approach is used were given in the preceding section. As mentioned ear-
lier, an exact fit is appropriate if the given data are very accurate and if the number
of data points is relatively small, typically less than 10.

7.2.1 Exact Fit witH AN NTH-ORDER POLYNOMIAL

A polynomial of degree n can be devised to exactly fit (z + 1) data points. The general
form of the polynomial may be taken as

y=fx) =ay,+ax+ax*+--+ax" (7.1)

where y is the dependent variable, x is the independent variable, and the a’s are con-
stants. Two available data points are adequate to describe a first-degree, or linear,
equation. Similarly, three data points are needed for a second-degree, or quadratic,
equation and four points for a third-degree, or cubic, equation as shown in Figure 7.3.
The available data may be denoted as (x;, y,) fori =0, 1, 2, ..., n, where y, is the value
of the function y at x = x;. Then these values may be substituted into the chosen gen-
eral form of the polynomial, Equation 7.1, to yield

Vi =ay+ax; +a,x? +--+a,x' fori=0,12,....n (7.2

nvi

Since x; and y; are known for the given (n + 1) points, Equation 7.2 yields (n + 1)
linear equations for the unknown constants a, to a,, as i is varied from O to n.

A numerical solution of this linear system, employing the methods given in the
preceding chapter, will give these constants, and will thus determine the polynomial
that exactly fits the given data points. Example 6.1 demonstrated the solution of such
a linear system for determining a fifth-order polynomial that provides an exact fit to
the given six data points on the specific volume of steam. The matrix equation that
represents the system of equations yielded by Equation 7.2 is

(1 xo x5 = xg) (a0 (%)
1 xl ‘xlz xln al — yl (73)
1 X xﬁ x:’z a, Y

Numerical Curve Fitting and Interpolation

253
(a) Linear
®
I
=
x
(b) Quadratic
®
I
=
x
(c) Cubic
x
"
=

FIGURE 7.3 Exact fits to given data, using polynomials of first, second, or third order.

254 Computer Methods for Engineering with MATLAB® Applications

The determinant of the above coefficient matrix is known as the Vandermond deter-
minant. It is nonzero unless a point is duplicated, that is, x; = x; for i # j. Therefore,
as shown in Chapter 6, a unique solution may be obtained for a,, «,, ..., a, from
Equation 7.3, giving a unique polynomial that yields the exact value of the dependent
variable at the given data points.

The approach outlined above is fairly simple and can be used for an arbitrary
distribution of data points. However, as mentioned earlier, it is appropriate for rela-
tively small sets of data and for cases where the given data are very accurate. An
exact fit with a single curve is generally employed if the number of data points is
typically less than 10. For a larger number of points, higher-order polynomials are
needed. The coefficients of the polynomial may then be quite small, particularly for
the higher-order terms and if the independent variable attains large values. An exam-
ple of such a representation is the variation of a material property, such as electrical
resistivity p with temperature 7, given by the polynomial

p(T) =a, +aT +a, T+ +a,T" + a,T?

where T could vary from, say, 20°C to 300°C. Then the value of the coefficients,
particularly the higher-order ones such as a,, and a,,, will be very small, giving rise
to accuracy problems in interpolation. The polynomial may also be ill-conditioned,
so that small changes in T result in large changes in p(7). Then even the round-off
error is magnified to yield inaccurate results from the use of such a polynomial for
interpolation.

One method of avoiding these problems is to use a polynomial of lower order,
based on a corresponding smaller data set chosen from the given data. Sometimes,
normalization of the independent variable, say, by defining a new variable T where
T =T /20 in the above example, reduces the range of variation of the independent
variable and thus avoids very small values of the coefficients. This approach was
employed in Example 6.1. The normalizing characteristic quantity, such as 20°C in
the above example or 10°C in Example 6.1, may often be chosen arbitrarily or on the
basis of physical reasoning to reduce the range of the independent variable to a
desired level.

Considering Example 6.1 again, six data points are given and a fifth-order poly-
nomial is to be determined for an exact fit. The matrices corresponding to Equation
7.3 are obtained from the data and the constants a,, a,, ..., a, are determined.
Appendix B.15 gives a MATLAB script file for this problem, using the backslash
operator to solve the system of linear equations to obtain the a’s. The results obtained
from this program are shown in Figure 7.4.

It is easy to see that the results obtained are close to those presented earlier in
Example 6.1, in terms of the a’s and the curve fit obtained. The plot of the polyno-
mial obtained and the data points is essentially identical to that obtained earlier and
shown in Figure 6.3. Once the polynomial is obtained, the values at an intermediate
point may be determined. For instance, the value at x = 3.4 is determined here from
the exact fit obtained. We may also use the command inferpl, with specified curve fit

Numerical Curve Fitting and Interpolation 255

Coefficients of the polynomial are
a —

201.2600
-128.8210
40.6742
-7.4229
0.7408
-0.0311

Current plot held

Interpolated value from exact fit y = 26.5890
Value from linear interpolation y = 27.5480
Value from spline interpolation y = 26.5999

FIGURE 7.4 Coefficients of the polynomial for an exact fit to the data in Example 6.1
and interpolated values at x = 3.4 obtained from this fit, as well as from linear and spline
interpolations.

for interpolation, to obtain the value at an intermediate point. The value at x = 3.4 is
obtained here by using a linear interpolation, as well as a spline interpolation. The
corresponding MATLAB commands are given in Appendix B.15. It is seen that the
two values are somewhat different, with the latter being closer to that from the poly-
nomial exact fit. Splines are discussed in Section 7.5.

7.2.2 UNIFORMLY SPACED INDEPENDENT VARIABLE

In certain cases, the values of the function y are given at uniformly spaced values of the
independent variable x. Such a circumstance arises, for instance, in numerical calcula-
tions and experimental studies where the values of x are taken as equally spaced for
convenience. This is particularly true for tabulated data of material properties.

If the independent variable is uniformly spaced, as shown in Figure 7.5, the deter-
mination of the polynomial f{x) which exactly fits the given data can be simplified by
choosing the following alternate form of the polynomial, instead of the general form
given by Equation 7.1:

2

y—YO=%[Z(X—&Q]+%[Z(X—xM]-P“+%[Z(x—xw] (74)

where L is the range, x,, —x,, of x, n is the order of the polynomial, and the @’s are the
coefficients to be determined. Thus, the number of data points is (n + 1), with (x,, y,),
(X Yy - v (X ¥))s - .-, (x,, ¥,) representing the given data that are to be numerically
curve fitted with a polynomial. Here,

L_ _M X BTN
=X —X, = = yeon
n 2 3

256 Computer Methods for Engineering with MATLAB® Applications

= Va4
B
= y3 J
= Y2 T
" / T Ay,
Ay
T Ay, °
Ay,
Yo ¥
L/4 L/4 L/4 L/4
X0 1 X) L2
L I N x

FIGURE 7.5 Exact fit to uniformly spaced data.

since the values of x are equally spaced. If the data points are successively substi-
tuted into Equation 7.4, we obtain the following in terms of the Ay’s shown in
Figure 7.5:

Ay, =y -y,=a,+a,+a;+ +a,
Ay, =y, =y, =2a, +2%a, +2%a; +---+2"a,

Ay; =y, -y, =3a, +3*a, +3%a; +--+3"aq, (7.5)

Ay, =y, =Y, =na, +n’a, + n’ay ++n'a

n

Equations 7.5 can be solved for a,, a,, ..., a, in terms of Ay, Ay,, ..., Ay, for cho-
sen values of n to obtain the constants for an nth-order polynomial. Table 7.1 gives
the constants for polynomials of the first four degrees, that is, n =1 through n = 4.
Then, for a given set of (n + 1) data points, the degree of the polynomial is 7, and the
values of the constants are obtained simply by substituting the values of the differ-
ences Ay,, Ay,, ..., Ay, into the expressions given in the table. If several data sets are
to be considered, the expressions for the coefficients of the polynomials, such as
those given in Table 7.1, may be stored in the computer and the constants computed
as each data set is entered. If only one or two sets of data are to be curve fitted or if
higher-order polynomials are to be used, it would generally be easier to simply solve
Equation 7.5 for the constants, using the methods given in Chapter 6 for systems of
linear algebraic equations, see Appendix B.15. However, programs based on this
approach for curve fitting are frequently available on computers, and the expressions
for the coefficients may already be stored, so that the given data, at uniformly spaced
values of the independent variable, are entered and the program yields the constants
of an approximating polynomial of the form given by Equation 7.4. Interpolated

Numerical Curve Fitting and Interpolation 257

TABLE 7.1
Constants for Polynomials of the Form Given by Equation 7.4 for Data in
Which the Independent Variable Is Uniformly Spaced

Polynomial a, a, a, a;
Fourth degree, 1 1 1 Ay, —a, —ay —a,
n=4 ﬁ(Ay4_4y3 €(3Ay1_Ay3 E(Ayz_ZAyl)
+6Ay, —4Ay,) -3Ay,) - 6a, -3a, -7a,
Cubic, n=3 1 1 Ay, —a, —a;
6(3Ay1 _Ay3 E(Ayz _2Ay1)
-34y,) -3a,
Quadratic, n =2 1 Ay, —a,
5 (Ayz - ZAyl)
Linear, n=1 Ay,

values are then obtained from the resulting polynomial, as shown in the following
example.

Example 7.1

In a fluid flow system, which experimentally simulates the flow generated in a
room due to a fire, the flow rate F is measured at several values of a governing
parameter R, known as the Richardson number, where R depends on the heat
input by the fire, room dimensions, and fluid properties. The data obtained are
as follows:

R 0.025 0.05 0.1 0.2 0.3 0.4 0.5
F 1.4198 2.548 4.2 5.978 6.908 7.613 7.799

Employing the last five data points, obtain an exact fit and compute the inter-
polated values at R=0.25 and 0.35. Also, obtain the flow rates at R=0, 0.025,
and 0.05 by extrapolation. Compare the last two extrapolated values with the
given data.

SOLUTION

Since the five data points to be considered for an exact fit, with a fourth-order
polynomial, are uniformly spaced, the approach given in Section 7.2.2 may be
employed. The independent variable is R, and the dependent variable is F. Denoting
the data points as (Ry, Fy) (R,, F)), ..., (R, F,), we may compute the AF's as

AF =F -F =5978 - 4.2
AF, = F - F, = 6.908 — 4.2
Af =F -F =7.613-42
AFy = F - R =7.799 - 4.2

258 Computer Methods for Engineering with MATLAB® Applications

where R,=0.1 and F,=4.2. Also, the uniform spacing is R, —R,=R, - R, =
R; =R, =R, - R;=0.1.The total range L is 0.4, and the degree n of the polynomial
is 4. Therefore, from Equation 7.4, the polynomial to be determined may be written
as follows:

2 3 4
F—F0=a1(R_R0)+az(R_RO) +33(R_R0) +a4(R_R0) (77)
0.1 0.1 0.1 0.1

This equation gives
F=Fy+Ai(R=Rp) + A, (R=Rp) +As(R= Ry’ + A;(R = Ry)* (7.8)

where A, = a,/0.1, A, = a,/(0.1)?, and so on.

A simple computer program may be written to compute the differences from
Equation 7.6 and the coefficients in Equation 7.7 from Table 7.1. These coefficients
are then converted to the coefficients of Equation 7.8 for convenience in the appli-
cation of the polynomial for interpolation. Figure 7.6 presents the results from such
a program. The data points are entered, and the coefficients of the polynomial in
Equation 7.8 are computed. This polynomial is then employed to compute the
interpolated or extrapolated values of the flow rate F at several values of R, entered
interactively into the program.

Note from Figure 7.6 that the polynomial obtained yields the exact values at
the given data points, as expected. The extrapolated values at R = 0.025 and 0.05
are close to those obtained experimentally and given in the problem. The value
at R=0 is expected to be zero on physical grounds. However, the extrapolated
value is nonzero, although it is fairly small, being equal to 0.034. Thus, over the
range of R considered here, 0 <R < 0.5, the computed polynomial yields good
accuracy. For values of R larger than 0.5, extrapolation does not give satisfactory
results, since F is obtained as decreasing with increasing R, which is contrary to
the behavior expected for the physical problem considered. However, interpola-
tion in the range 0.1 < R < 0.5 yields physically realistic results, being exact at the
data points employed for deriving the polynomial.

7.3 LAGRANGE INTERPOLATION

A method that is widely used for obtaining an exact fit to a given data set is Lagrange
interpolation. It is based on the use of a special form of the interpolating polynomial,
known as the Lagrange polynomial. For a quadratic function, it is written as

y=fx) =a, (x—x)x—x,) +a; (x—x))x—x,)+a, (x—x)x—x)) (7.9)

where (x,, ¥,),(x;, ¥,), and (x,, y,) are the three given data points and a,, a,, and a, are
the constants to be determined from these points. It can easily be seen that Equation
7.9 represents a second-order polynomial, which can also be rewritten in the form
given by Equation 7.1. Substituting the given data points successively in Equation 7.9,
we can easily determine the constants as follows:

Yo

= (xg = x)(xy = x,)

Numerical Curve Fitting and Interpolation 259

RO=0.1

FO=4.2

F1=5.978

F2 =6.908

F3=7.613

F4 =7.799

THE COEFFICIENTS OF THE POLYNOMIAL ARE

Al =26.3892 A2 =-115.5793

A3 =333.0837 A4 =-382.0837

ENTER THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R=0.0

R=0 F=.034

ENTER THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R=0.025

R=.025 F=1.4181

ENTER THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R=0.05

R=.05 F=2.5476

ENTER THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R=0.25

R=.25 F=6.4886

ENTER THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R=0.35

R=.35 F=7.2855

ENTER. THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R=04

R=4 F=7.613

ENTER THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R=0.5
R=.5 F="7799

FIGURE 7.6 Coefficients of the polynomial obtained for an exact fit in Example 7.1, along
with the interpolated results for the dependent variable F at several values of the independent
variable R.

N
(x; = x0)(x; = x,)

Y2
(x; = X)(x; — x;)

a =

(7.10)

a, =

Similarly, if (n + 1) data points are given, an nth-order Lagrange polynomial may be
written by taking n factors in each term, instead of two taken for the quadratic
function of Equation 7.9. Thus, an nth-order Lagrange polynomial is written as

260 Computer Methods for Engineering with MATLAB® Applications
y=f(x)=a,(x—x)(x=x) - (x=x,)+a;(x = x)(x = %) (x - x,)

+ota,(x—xp)(x—x) - (x—x,_;) (7.11)

The coefficients a;, where i varies from O to n, can be determined by substitution of

the (n + 1) data points into Equation 7.11 to obtain expressions such as those given by
Equation 7.10. The resulting interpolating polynomial is

LT/ X%
v=fx)= Zy,l:‘[kxi | (7.12)

Jj=i

where the product sign [T denotes multiplication of the n factors obtained by varying
Jj from O to n, excluding j = i, for the quantity within the parentheses. Thus, for exam-
ple, a third-order Lagrange polynomial is obtained from Equation 7.12 as

y= (x = x)(x = x,)(x — x3) (x = x)(x = 2x,)(x = x3)
(X9 = x;)(xg = %,)(xg = X3) 0 (0 = x0)(x; = x,)(x; = x3) :
(x = x5)(x =X)(x — x3) (x—xp)(x=x)(x—x,)

(x5 = x0)(x, = X)(x, = x3) : (6 = X0)(x3 = x)(x3 = x,) }

Lagrange interpolation is applicable to an arbitrary distribution of the independent
variable x. The determination of the coefficients of the polynomial does not require
the solution of a system of equations, as was the case for the methods discussed in
the preceding section. The interpolating polynomial, Equation 7.12, can easily be
entered and the necessary calculations performed on a computer for obtaining the
desired exact fit to the given data. The programming is quite simple, as illustrated in
Example 7.2. Because of the applicability of the method to arbitrary distributions of
data points and the ease with which it may be applied, Lagrange interpolation is
widely employed for engineering applications. Programs available on many computers
for interpolation are also frequently based on this method.

Example 7.2

The deflection of a structure under loading is measured at five different values of
the force applied X, in kilonewtons (kN). The deflection Y is in centimeters, and
the data are given as follows:

X (kN) 0.5 1.0 1.5 2.0 2.5
Y (cm) 3.0 3.9 5.2 7.3 10.5

Employing Lagrange interpolation, compute the deflection at the intermediate
load values of 0.75, 1.25, 1.8, and 2.2 kN. Also obtain the extrapolated values at O
and 3.0 kN. Such problems are of interest in civil engineering, though many more
data points are generally obtained, requiring higher-order polynomials for an exact fit
or resorting to a best fit.

Numerical Curve Fitting and Interpolation 261

SOLUTION

The Lagrange polynomial to be computed is given by Equation 7.12. Since five
data points are given, a fourth-order polynomial can be derived to exactly fit the
given points. The coefficients a; of the polynomial in Equation 7.11 are given by

the product
a,-=H/ v (713)
1 x-x;)

where X;and Y; are the values of the independent and dependent variables, respec-
tively, at the data points. The interpolated value of Y at a given X is then obtained
from Equation 7.11.

We can easily write a computer program to calculate the coefficients of the
polynomial and then to use these to determine the corresponding interpolated value
of Y. Appendix C.9 shows the program in Fortran for Lagrange interpolation. The
number of data points N is read, along with the given data. Also read is the num-
ber of intermediate points M at which interpolated or extrapolated values of the
dependent variable are desired. The values of the independent variable at which
interpolation/extrapolation is needed are denoted by XL and are read from the data
entered. The coefficients, a, or A(/) here, of the Lagrange polynomial are calculated
from Equation 7.13, and then the interpolated/extrapolated value of the dependent
variable, denoted by YL, is obtained from Equation 7.11. The values of XL are
sequentially changed according to the given input, and the corresponding values
of YL are computed. Finally, the calculated results are printed in tabular form, as
shown in Figure 7.7, along with the coefficients A(/) of the Lagrange polynomial.

THE VALUES FROM LAGRANGE INTERPOLATION ARE

XL = 0.0000 YL = 2.0000
XL = 0.5000 YL = 3.0000

XL = 0.7500 YL = 3.4289

XL = 1.0000 YL = 3.9000

XL = 1.2500 YL = 4.4727

XL = 1.5000 YL = 5.2000

XL = 1.8000 YL = 6.3426

XL = 2.0000 YL = 7.3000

XL = 2.2000 YL = 8.4346

XL = 2.5000 YL = 10.5000

XL = 3.0000 YL = 15.0000

COEFFICIENTS OF THE LAGRANGE POLYNOMIAL ARE
A() = 2.0000

AQ2) = —10.4000
A@3) = 20.8000
A@) = —19.4667
A(5) = 7.0000

FIGURE 7.7 Computed interpolated and extrapolated values from Lagrange interpolation
and coefficients of the Lagrange polynomial for Example 7.2.

262 Computer Methods for Engineering with MATLAB® Applications

Coefficients of the polynomial in descending powers of x are

-0.0667
0.8667
—1.3833
2.4833
2.0000
Interpolated values:
xp=0.0000 yp=2.0000
xp=0.5000 yp=3.0000
xp=0.7500 yp=3.4289
xp =1.0000 yp=3.9000
xp=12500 yp=4.4727
xp = 15000 yp=5.2000
xp=1.8000 yp=06.3426
xp =2.0000 yp="7.3000
xp=2.2000 yp=2_8.4346
xp =2.5000 yp=10.5000
xp =3.0000 yp=15.0000

FIGURE 7.8 Coefficients of the general polynomial in descending powers of x, as calculated
by the use of the MATLAB script file in Appendix B.16 for Lagrange interpolation in Example
7.2, along with computed interpolated values at various specified values of the independent
variable.

Note that, as expected, the calculated values of the dependent variable are
exact at the data points employed for obtaining the Lagrange polynomial. The
interpolated values at XL = 0.75, 1.25, 1.8, and 2.2 kN are found to be within the
expected range. Also, a deflection of 2.0 cm is obtained at zero load, indicating
the deflection due only to the weight of the structure. The extrapolated value
at XL =3.0 kN is 15.0 cm, which is qualitatively satisfactory, since the deflec-
tion increases with load. However, both values at XL =0 and 3.0 are beyond
the range of the given data and their accuracy is not known. Thus, these values
must be used with caution, unless validation from further experimentation is
obtained.

Appendix B.16 presents the script file in MATLAB for Lagrange interpolation.
The logic is similar to that discussed above. However, the ease with which polyno-
mials may be specified and multiplied makes the program quite simple. Also, the
general polynomial, such as Equation 7.1, in descending powers of x is obtained
directly. This polynomial can then be employed to calculate the interpolated val-
ues at chosen values of x and also for plotting, if needed. The results obtained
from this script file are given in Figure 7.8.

7.4 NEWTON'’S DIVIDED-DIFFERENCE INTERPOLATING
POLYNOMIAL
An extensively used form of the polynomial for interpolation is Newton’s divided-

difference polynomial. It can be used for an arbitrary distribution of data points,
although simplified formulas result for uniformly spaced points and form the basis

Numerical Curve Fitting and Interpolation 263

for several interpolation schemes, such as forward, backward, and central Newton—
Gregory formulas, as outlined later in this section.

7.4.1 GEeNErAL FORMULAS

First-order, or linear, interpolation is the simplest form of interpolation and is
obtained by drawing a straight line connecting two data points, as sketched in
Figure 7.8. The value of the function f{x) at a given value of the independent variable
x can be obtained from the interpolating straight line. Thus, from geometry,

£~ f(x0) _ fO) = Fx)

X=X, X — X

or

J(x) = fx)+

f(xl)_f(x())(x—xo)
X =X,

=cy+c(x=-x) (7.14)

where ¢, and ¢, are coefficients of the interpolating polynomial. Here, ¢, represents
a finite divided-difference approximation of the first derivative, as given by Equation
4.17. Only two coefficients are needed here because the interpolating polynomial is
a straight line.

In a similar way, a second-order, or quadratic, interpolation may be considered.
On the basis of Equation 7.14, the general form of the polynomial is taken as

y =) =cot e (x=Xp) + ¢ (6 = x)(x = x) (7.15)

Three data points are needed to determine the coefficients ¢, ¢,, and c,. Employing
the first point, denoted by (x,, y,), we obtain c, as

¢ =f(xp) (7.16)
Similarly, the second point, (x,, y,), yields

o = SO0 _ 00 = () (7.17)

X1 =X X1 =X

We obtain the third coefficient c, by substituting the third point, (x,, y,), in Equation
7.15. Employing the results given by Equations 7.16 and 7.17, we obtain
S(x) = f(x) _ S(x) = f(x)
(X =x0)(% = x) (X = x0)(x, = x;)
f)=fx) f(x) = f(xo)
- hTh N1 =% (7.18)
Xy =X

, =

Therefore, from the preceding equations, ¢, and ¢, for quadratic interpolation are
identical to those for linear interpolation. The third term on the right-hand side of

264 Computer Methods for Engineering with MATLAB® Applications

Sfx)

—— True curve for f(x)
— - - Linear interpolation
- --- Quadratic interpolation

Value from linear
interpolation

Value from quadratic \ .
interpolation — 4 F-

X x X1 Xy x

FIGURE 7.9 Interpolation with a straight line and a second-order polynomial for the deriva-
tion of Newton’s divided-difference method.

Equation 7.15 improves the interpolation by introducing curvature, as shown graphi-
cally in Figure 7.9. The coefficient c, is similar to the finite difference representation
of the second derivative; see Equation 4.21. The general form of the polynomial,
Equation 7.15, is similar to the Taylor series expansion, presented in Section 4.2.
Also, the first-order divided difference, Equation 7.17, can be used to determine the
second-order divided difference, Equation 7.18. These features allow the develop-
ment of a recursive formula for determining the coefficients of Newton’s interpolat-
ing polynomials of arbitrary order.

From the above discussion, the general form for an nth-order Newton’s polyno-
mial may be written as follows:

y=f(x)=cy+c(x=x0)+ ¢ (x=x)(x = x)+
(7.19)
+ cn('x_'xo)(-x_ xl)“'(x_'xn—l)
To determine the (n + 1) coefficients, c,, ¢y, ..., c¢,, in the nth-order polynomial, we
need (n + 1) data points. When these points, denoted by (x, yo),(x;s Y1), -« -5 (X, V),
are substituted in the general form of the polynomial, the coefficients are given by the
equations

¢y = f(xp)
Ferx Flx.. 7.20
o = (x,)iéz)_xo()ﬁ Xp) = F(x,,x,%)) (:

c, =F(x,,X,_ |0y X1, %)

Numerical Curve Fitting and Interpolation 265

where the function F denotes finite divided differences. Therefore,

X)— f(x.
Py = 7= 1G)
X = X;
F(x,,x)-F(x;, x
F(x,,x;,%,) = (i, 2,) = POt %) (7.21)
X; = X
Ft %21 %) = F(x,, X, qyeees Xy X)) = F (X1 Xyipseees Xps Xp)

X, — X

Note from the above expressions that a recursive formula may be written to deter-
mine the coefficients. Therefore, the problem is well suited for digital computation.
The higher-order differences are determined from the lower-order differences.
Therefore, we evaluate the coefficients by starting with ¢, and successively calculating
¢}, €5, €3, and so on, up to ¢,. Once the coefficients have been determined, the interpo-

lating polynomial is obtained from Equation 7.19, which may also be written as

y=f(x) = f(xp)+ (x=x)F(x;, x) + (x = %0)(x = X)F (x5, X1, Xp) +°+°
+(x=x)(x=x)(x=x,_)F(X,, X,_15-. %5 Xp) (7.22)

As mentioned above, the general form of Newton’s interpolating polynomial is
similar to the Taylor-series expansion, since terms representing higher-order deriva-
tives are successively added to improve the accuracy of the representation. As given
by Equation 4.7, the remainder term R, in a Taylor-series expansion is

dn+1f
n = dxn+l

®) (X = X))

R n+D!

where x;, < & < x,,,

The derivative is evaluated at a point & which lies in the interval from x; to x;,,.
Similarly, for an nth-order Newton’s interpolating polynomial, the expression for the
remainder and, thus, for the error is

_ am'f (®) (x = xp)(x = x)...(x = x,)

Ri= g (n+1)! ’

where x, <& < x, (7.23)

Since the function f(x) and its derivatives are not known, in general, the (n + 1)th
derivative may be replaced by the corresponding finite divided difference. Thus, R
may be written as

n

R, =[F(x, X,y X,_js. - s X5 X)] (X =xp)(x =x)). . .(x —=x,,) (7.24)

This expression can be used to estimate the error if an additional data point (x,,, y,.,;)
is available as follows:

R, =[F(x,p X5 - - - Xp5 X)](x =X0)(x —=X7). . .(x —=x,,) (7.25)

266 Computer Methods for Engineering with MATLAB® Applications

Since the additional data point is generally not available, the interpolating
polynomial itself may be used to obtain an additional point, and the error determined
from Equation 7.25. Example 7.3 illustrates the use of Newton’s method for
interpolation.

7.4.2 UNIFORMLY SPACED DATA

Several simplified formulas can be derived from the above results if the data are
given at equally spaced values of the independent variable x. If Ax is the interval
between the data, the values of x are given by

x,=xy+iAx fori=1,2,....n (7.26)

Such uniformly spaced data are obtained, for instance, from numerical simulations
of engineering systems, tables of material properties, and experimental studies in
which the independent variable is taken at uniformly spaced intervals for conve-
nience. Then the coefficients c,, ¢, and ¢, are given by

¢ = f(xy)

o = SO = (%) _ Ao

A& A (7.27)
c =f(x2)_2f(x1)+f(xo)= AZfO

’ 2(Ax) 21(Ax)?

where Af, is known as the first forward difference and Af, as the second forward
difference at x = x,. These constitute the numerator of the forward finite difference
approximations of the first and second derivatives to O(Ax), see Figure 4.7. Therefore,
in general, the coefficient ¢, of the polynomial is given by

An
C, =F(x,,%,_ 1, s X, %) = nV(A{:)” (7.28)

From Equation 7.22, Newton’s interpolating polynomial can be written for equally
spaced data as follows:

A A2
y=f(X)=f(x0)+£(x—xo)+ 2!(A])E))2 (x =X)(x = x5 = Ax) +--
+ nﬁ;f)n (x = xo)(x = xg = Ax)...[x = xy = (n—-DAx] + R, (7.29)

where the remainder R, is the same as that given by Equation 7.23. The above inter-
polating polynomial is known as the Newton—Gregory forward interpolation
formula. One can generate a forward difference table by taking forward differences
at each x, then taking differences of the differences, and so on. An example of such

Numerical Curve Fitting and Interpolation 267

a forward difference table is shown in Table 7.2a. The general formula for computing
these differences at x = x; is

A'f = AL~ AL (7.30)

Then these differences may be substituted into Equation 7.29 to yield the interpolating
polynomial. The subscript gives the location, in x, where the difference is evaluated,
and the superscript indicates the order of the difference. The lowest order differences
Af; are given by n = 1. Also, n = 0 corresponds to the values of the function f,.

In a similar way, a backward difference polynomial, known as the Newton—Gregory
backward interpolation polynomial, may be derived. The backward differences at
x =x, are denoted by Vf,, V2 f,, and so on, and are obtained from Figure 4.8 or a back-
ward difference table generated in a manner analogous to that for forward differences,
see Table 7.2b. The corresponding interpolating polynomial is written as follows:

y=f00=flx)+ VAxf" (x=x,)+ 2&2’)2 (= 2,)(x =X, + Ax)+ -+
+ nZnA{:)" (x=x,)(x-x, —Ax)..[x—x, + (n-DAx]+ R, (7.31)

TABLE 7.2
Examples of Difference Tables for Computing the Interpolation Polynomials,
Using Divided Differences, for Uniformly Spaced Data

(a) Forward Differences

X f(x) Af A% A3 A A3 ASf
1 —4 3 5 2 1 1
2 -1 8 7 3 2 2

3 7 15 10 5 4

4 22 25 15 9

5 47 40 24

6 87 64

7 151

(b) Backward Differences

X f(x) \%i v2f V3§ Vit V5t vof
1 4

2 -1 3

3 7 8 5

4 2 15 7 2

5 47 25 10 3

6 87 40 15 5 1

7 151 64 24 9 2 1

268 Computer Methods for Engineering with MATLAB® Applications

where Ax = x, — x, =x, — x;, and so on, and R, is the remainder which can be derived
in a manner similar to that given earlier for the forward difference formulation. Also,
the general formula for the backward difference at x = x; is

Vif, =V =V (7.32)

where the subscripts denote the value of x at which the difference is obtained and the
superscript gives the order of the difference.

Thus, if the data are given at equally spaced values of the independent variable,
the above simplified formulas may be employed. The corresponding forward, or
backward differences are generated, using Equation 7.30 or Equation 7.32, and the
desired value of the function f(x) is determined from the interpolating polynomial,
for a given value of x. The choice of the formula, forward or backward, for interpola-
tion depends on the value of x, in relation to the given data points, at which f(x) is to
be determined. Thus, if x is close to x,, the forward difference formula is more appro-
priate than the backward formula. Similarly, if x is close to x,, the backward differ-
ence form is used. Several central difference formulas have also been derived to
accommodate interpolation in the region near the middle of the distribution of the
data points. Consult Carnahan et al. (1969) and Hornbeck (1982), listed in the
References, for the relevant formulas.

7.4.3 EXTRAPOLATION

The process of estimating the function f(x) at a point x which lies beyond the range
of the given data points is known as extrapolation. However, the most accurate esti-
mation for f{x) is generally obtained when x is close to the middle of the range. Also,
the behavior of the function beyond the given data is not known. Thus, the estimated
value of f(x) could be in considerable error. Because of the element of uncertainty
involved, values of the function obtained by extrapolation must be treated with cau-
tion. If any information is available on the nature of the function, and on its behavior
beyond the range of the given data, one must consider the extrapolated values in
terms of this information to judge their validity and accuracy.

Extrapolation is frequently needed in engineering applications. We are all famil-
iar with predictions of weather, future trends in economic parameters, expected out-
put from engineering systems, demand for engineering products, and so on.
Extrapolation is, therefore, necessary for future planning of engineering resources
and output. It is also often needed for the control and design of systems and pro-
cesses. If the data are available at discrete, evenly spaced points, the Newton—Gregory
forward or backward formula, as appropriate, may be used for extrapolation.
Lagrange interpolation or Newton’s divided-difference polynomials may be
employed for an arbitrary distribution of data points. The procedures for extrapola-
tion are similar to those for interpolation. However, since estimations are being made
for points beyond the range of the given data, it must be reiterated that an element of
uncertainty arises in the results, and extreme care must be exercised in the use of the
values obtained.

Numerical Curve Fitting and Interpolation 269

Example 7.3

Solve the problem given in Example 7.1 by Newton’s divided-difference inter-
polation, employing the data over the range 0.05 <R <0.4. Use polynomials of
increasing order and compute the remainder term in each case.

SOLUTION

The data points to be considered for deriving the interpolating polynomial are as
follows:

X 0.05 0.1 0.2 0.3 0.4
Y 2.548 4.2 5.978 6.908 7.613

where X is the independent variable and Y the dependent variable. We use differ-
ent symbols here, as compared to those in Example 6.1, in order to derive a gen-
eralized solution procedure, based on Newton’s divided-difference polynomials.
Since five data points are employed for an exact fit, a fourth-order polynomial of
the form given by Equation 7.19 may be derived.

Appendix B.17 gives the program in MATLAB for computing the interpolating
polynomial. The number of data points and the corresponding data are entered
in the program. We calculate the divided differences from the formulas given in
Equation 7.21 and use them to determine the coefficients of the divided-difference
polynomial. A matrix f(i, j) is used to store the divided differences. The first col-
umn of this matrix consists of the given values of y at the five data points, and
the first row contains the coefficients of the polynomial. The value of x at which
interpolation is desired is denoted by xp and is entered interactively by the user.
The interpolated value is obtained by means of Equation 7.22. The remainder term
R is also calculated, employing Equation 7.25 and the computed value of the cor-
responding higher-order divided difference. The various symbols used are defined
in the program, and the important steps in the computation are indicated.

The numerical results obtained are presented in Figure 7.10. The number of
data points employed n is printed, along with the computed values of the coef-
ficients c(i). The value xp of the independent variable at which interpolation is
sought is entered interactively. The program computes the interpolated value of
the dependent variable y, employing zeroth, first, second, third, and fourth-order
approximations. These approximations refer to the first term, the first two terms,
the first three terms, and so on, in Equation 7.22. Thus, the last, or fourth-order,
approximation is the most accurate one. This is also shown by the presented results
since the remainder term decreases as the order of the approximation increases.
The remainder term for the last approximation involves an additional point and is
thus not computed here. For the other approximations, we compute the remainder
term from Equation 7.25 by simply using the next-order divided difference, which
is known from earlier calculations.

Note again that the interpolating polynomial yields the exact value of the
dependent variable at the given data points, as expected. Also, the interpolated
values at x=0.25 and 0.35 are close to those obtained earlier in Example 7.1.
The extrapolated values at X=0.025 and 0.5 agree closely with the experimental
data, and the value at X=0 with that obtained earlier. Thus, Newton’s method
may be used as an alternative to the procedure outlined in Example 7.1. However,
this method does not require uniformly spaced data points, as needed for the

270 Computer Methods for Engineering with MATLAB® Applications

Enter the number of data points, n =5
Enter values of the independent variable, x = [0.05 0.1 0.2 0.3 0.4];
Enter corresponding values of the dependent variable, y = [2.548 4.2 5.978 6.908
7.613];
Coefficients of the polynomial c0, cl, c2, ... are
Cc=
2.5480
33.0400
-101.7333
237.3333
—381.4286

Enter x where interpolation is desired, xp = 0
xp =0.000

Interpolated value of y = 2.548
Remainder term = —1.652
Interpolated value of y = 0.896
Remainder term = -0.509
Interpolated value of y = 0.387
Remainder term = —0.237
Interpolated value of y = 0.150
Remainder term =-0.114
Interpolated value of y = 0.036

Enter x where interpolation is desired, xp = 0.025
xp = 0.025

Interpolated value of y = 2.548
Remainder term = -0.826
Interpolated value of y = 1.722
Remainder term = —-0.191
Interpolated value of y = 1.531
Remainder term = -0.078
Interpolated value of y = 1.453
Remainder term = —-0.034
Interpolated value of y = 1.419

Enter x where interpolation is desired, xp = 0.25
xp = 0.250

Interpolated value of y = 2.548

Remainder term = 6.608

Interpolated value of y = 9.156

Remainder term = -3.052

FIGURE 7.10 Numerical results obtained from Newton’s divided-difference method for the
problem considered in Example 7.3.

Numerical Curve Fitting and Interpolation 271

Interpolated value of y = 6.104
Remainder term = 0.356
Interpolated value of y = 6.460
Remainder term = 0.029
Interpolated value of y = 6.489

Enter x where interpolation is desired, xp = 0.35
xp = 0.350

Interpolated value of y = 2.548
Remainder term = 9.912
Interpolated value of y = 12.460
Remainder term = —7.630
Interpolated value of y = 4.830
Remainder term = 2.670
Interpolated value of y = 7.500
Remainder term = -0.215
Interpolated value of y = 7.285

Enter x where interpolation is desired, xp = 0.4
xp = 0.400

Interpolated value of y = 2.548
Remainder term = 11.564
Interpolated value of y = 14.112
Remainder term = —10.682
Interpolated value of y = 3.430
Remainder term = 4.984
Interpolated value of y = 8.414
Remainder term = —0.801
Interpolated value of y = 7.613

Enter x where interpolation is desired, xp = 0.5
xp = 0.500

Interpolated value of y = 2.548
Remainder term = 14.868
Interpolated value of y = 17.416
Remainder term = —18.312
Interpolated value of y =-0.896
Remainder term = 12.816
Interpolated value of y = 11.920
Remainder term = —4.119
Interpolated value of y = 7.801

FIGURE 7.10 Continued.

272 Computer Methods for Engineering with MATLAB® Applications

method employed in Example 7.1. Also, the method yields the remainder term
which reflects the increase in the accuracy of the interpolation as the order of the
approximation is increased. The program is more involved than Lagrange interpola-
tion, as given in Example 7.2. However, this method has the important advantages
of ease in employing varying orders of approximation and ease of evaluating the
accuracy by means of the remainder term. Both Lagrange and Newton’s divided-
difference interpolation are widely used in engineering applications.

7.5 NUMERICAL INTERPOLATION WITH SPLINES

In the preceding sections, we considered several methods and forms of interpolating
functions for an exact fit to a given data set. In many engineering problems, such as
calibration of measuring and diagnostic instrumentation, numerical simulation of
systems, and measurement of material properties, the available data points are rela-
tively few, the function f(x) is reasonably well behaved, and the accuracy level is very
high, so that these techniques for an exact fit are appropriate. However, there are
several cases where an alternative approach, which is based on curve fitting of small
subsets of data points with lower-order polynomials, provides a better representation
of the data. Such interpolating polynomials that are employed to yield a piecewise
exact fit to the data are known as spline functions. The basic concept is based on the
drafting technique of using a thin, flexible strip, known as a spline, to draw a smooth
curve through a given distribution of points. Although the interpolating polynomial
may be linear, quadratic, cubic, or of some other order, the cubic spline function is
the most widely used one and is discussed here. Splines are advantageous to use
when the conventional interpolation methods, such as those discussed in the previous
sections, yield polynomials of higher order and the interpolating curve is of wiggly
or oscillating character, as shown in Figure. 7.11. In such cases, spline interpolation
often yields a better approximation. This approach is particularly valuable in the
interpolation of accurate material property data over wide ranges of the independent
variable such as temperature and pressure.

Let us consider two arbitrary points x; and x,,, at which the function f{(x) is given.
The general form of the cubic that passes through these points and provides the inter-
polation function between the two may be taken as

i) =ay+ax+a,x*>+ax® forx;<x<x,, (7.33)

There are four unknown constants in this polynomial. Since the curve passes through
the two points x; and x,,;, two conditions that must be used are

fi(x) =ay +ax; + a,x* +a;x} (7.34a)

Ji(Xi) = ag + ayxi, + @7 +azxi, (7.34b)
The remaining two conditions may be chosen arbitrarily to obtain a smooth transi-
tion from one cubic distribution to the adjacent ones. An effective choice is the con-
tinuity of the first and second derivatives at the two points. Thus, the slope and

Numerical Curve Fitting and Interpolation 273

(a)

=
S

FIGURE 7.11 Interpolation with single polynomials over the entire range and with piece-
wise cubic splines for a step change in the dependent variable. (a) Third-order polynomial fit,
(b) seventh-order polynomial fit, and (c) cubic spline interpolation.

curvature of f,(x) match those of f;_,(x) at x = x; and those of f,,,(x) at x = x,,. A special
treatment will be needed at the end points of the given data.

Since the second derivative of a cubic is a straight line over each interval, as
shown in Figure 7.12, a first-order Lagrange interpolation may be derived from
Section 7.3 to represent the second derivative, over the interval x;<x<x,,, as
follows:

FI = f) T T (7:39)

Xis1 X

Integrating this equation twice and applying Equations 7.34 to determine the
constants that arise, we obtain the cubic f; (x) over x; < x < x,;:

274 Computer Methods for Engineering with MATLAB® Applications

=z
Py
S7 ()
f”(xi_lz/“\‘ £ i)
”(i+) ”
\uff\@,ﬁ)
S (i)
—
Xi_ Xio1 i Xis1 Xiy2 o Xig3 x

FIGURE 7.12 Variation of the second derivative f”(x) over the subintervals that constitute
the given range of data for spline interpolation.

: Ax,
700 =) St) O A [AT AR
+ f(A)CxPTI)_Agif”(xiJrl)} (x-x), where Ax; = x;,, - x; (7.36)

Equation 7.36 yields the interpolating cubic distributions over each of the subinter-
vals in the range x, < x < x,. We determine the second derivatives in Equation 7.36
by using the matching condition for the first derivative, that is,

fix) = £l (x) (7.37)

Now, f(x) may be differentiated and x set equal to x; to obtain the derivative at the
left-hand limit of interval i. Similarly, f;, (x) is differentiated and x set equal to x; to
yield the derivative at the right-hand limit of interval (i—1). The two results obtained
are equated to give a set of linear simultaneous equations of the form

Ax [(o) + 2000 = X)) + x5 f 1 (x40

6 fGx)-f(x) _ fG) =)
Ax; Ax;_y |

where Ax; | =x; — x;_; (7.38)

Here, the fact that f”(x;) is the same when x; is approached from either side, as shown
in Figure 7.12, has also been used. This condition may be stated as

£ (x) = fh(x) (7.39)

Numerical Curve Fitting and Interpolation 275

For (n + 1) data points, represented by the values of the independent variable x;,
where i =0, 1, 2, ..., n, the number of intervals is n. Therefore, n cubics are gener-
ated by Equation 7.36 for spline interpolation. However, there are (n + 1) unknown
second derivatives in the equations for the n cubics. Equation 7.38, when written
for all the interior points, thatis, fori=1, 2, 3, ..., (n — 1), yields (n — 1) equations
for the evaluation of the second derivative. Since only f'(x._,), f'(x) and f"(x;,,)
appear as unknowns in Equation 7.38, the system of equations is tridiagonal and
may easily be solved by Gaussian elimination, as illustrated in Example 6.2.
However, we still need two additional conditions at the end points of the data set,
that is, for i = 0 and i = n, in order to determine f"(x,) and f”(x,). These conditions
are usually taken as

f"(%)=0 and f"(x,)=0 (7.40)

Thus, the analogous elastic strip for drawing a curve through the given points is
allowed to assume a natural, unconstrained straight line beyond the given range of
data points. This spline, known as a natural cubic spline, is the one most frequently
employed for an arbitrary data set.

Several other approximations for the end conditions have been employed for dif-
ferent types of data, see Ferziger (1998). For data that are expected to lie on a peri-
odic curve, the end conditions are often taken as f”(x,) =f"(x,_) and f”(x,) =f"(x,),
representing the repetitive nature of the curve. Another frequently used set of condi-
tions is f”(x,) = f"(x,) and f”(x,_;) =f"(x,), which makes f” constant in the intervals
at the two ends. It also makes f(x) quadratic in these intervals. Other choices for the
end conditions are also possible. However, the natural spline is the most commonly
employed interpolating spline. Equation 7.36 gives the cubic equation for each inter-
val, and Equation 7.38, along with Equation 7.40 or one of the other end conditions
chosen, gives the tridiagonal system for obtaining the (n + 1) second derivatives. For
further details on splines, see Ahlberg et al. (1967). The following example illus-
trates the use of spline interpolation in a problem of practical interest.

Example 7.4

Thermocouple junctions of dissimilar metals and alloys are extensively used in
engineering applications for temperature measurement. A voltage difference V
is generated between two junctions at different temperatures. Calibration tables,
which give the voltage V in millivolts (mV) for one junction at 0°C and the other at
temperature T in °C, are available in the literature for several types of thermocou-
ple junctions. The values for a Chromel-Alumel thermocouple, which is generally
known as type K thermocouple and consists of nickel-chromium and nickel-
aluminum alloys, are given as follows:

°C) 10 20 30 40 50 60 70 80 90
mV) 0397 0.798 1.203 1.611 2.022 2436 2.85 3.266 3.681

°C) 100 110 120 130 140 150
mV) 4.095 4.508 4919 5.327 5.733 6.137

< =4 < =

(
(
(
(

276 Computer Methods for Engineering with MATLAB® Applications

Employing cubic spine interpolation, obtain the temperatures if the voltage output
values are 1.0, 3.0, 4.343, 5.855, 6.0, and 6.097 mV. Compare the results obtained
at 4.343, 5.855, and 6.097 mV with those given in the literature as 106°C, 143°C,
and 149°C, respectively.

SOLUTION

This problem is well suited for spline interpolation, since the tabulated values are
very accurate and since the large number of data points makes an exact fit with a
single polynomial difficult to apply and also inaccurate, as discussed earlier. The
voltage V is measured in engineering processes, and the temperature T is obtained
by interpolation from the calibration data. Thus, V is taken as the independent
variable and T as the independent variable.

Appendix C.10 presents the computer program in Fortran for spline inter-
polation. The number of data points is entered interactively by the user, and
the program reads the relevant data from files V.DAT and T.DAT, for volt-
age and temperature, respectively, stored in the computer. Two subroutines,
DERIVATIVE and SPLINE, are employed in the program. The former generates
the tridiagonal matrix for the second derivative f”(x), denoted by T2 in the
program. The elements of the matrix are obtained from Equations 7.38 and
7.40. The Thomas algorithm, derived in Example 6.2, is employed to obtain the
values of the second derivative needed for the cubic spline given by Equation
7.36. The voltage at which interpolation is desired is denoted by VP and is
entered into the main program by the user. The subroutine SPLINE determines
the interval in which VP lies, derives the relevant cubic spline using Equation
7.36, and computes the interpolated value TP of the temperature. The main
program prints the results and inquires whether interpolation at another value
of V is needed. Thus, interpolated results may be obtained at the desired values
of the output voltage V.

The numerical results obtained are presented in Figure 7.13. The interpolated
temperatures for V= 1.0, 3.0, and 6.0 mV are found to be physically realistic and to
lie in the appropriate subintervals of the given data. Also, the values for V =4.343,
5.855, and 6.097 are very close to those given in the literature as 106°C, 143°C,
and 149°C, respectively, lending strong support to the accuracy of the interpolated
results obtained. In fact, several additional values of V were considered, and the
results were found to be very accurate. Thus, cubic spline interpolation may be
used satisfactorily for this problem and other similar ones, such as material prop-
erty data.

The algorithm presented in Appendix C.10 may be used to develop the cor-
responding MATLAB script m-file. However, the program is fairly involved and the
interpolation commands discussed earlier may be used directly for spline inter-
polation. Thus, the command interp1 may be used effectively for this example to
obtain the desired interpolated values. The command is given as

interpl (v, t,vp, 'spline!')
or as
yp=spline(v,t,vp)

where v and t are the two arrays of data for the independent and depen-
dent variables, respectively, and vp is the array of v values where interpolated

Numerical Curve Fitting and Interpolation 277

ENTER THE NUMBER OF DATA POINTS
15
ENTER THE VALUE OF V FOR INTERPOLATION
1.0
VOLTAGE V = 1.00000 TEMPERATURE T = 24.99982

IF YOU WANT ADDITIONAL INTERPOLATION , TYPE 1

ENTER THE VALUE OF V FOR INTERPOLATION
3.0
VOLTAGE V = 3.00000 TEMPERATURE T = 73.60907

IF YOU WANT ADDITIONAL INTERPOLATION , TYPE 1

ENTER THE VALUE OF V FOR INTERPOLATION 4.343
VOLTAGE V = 4.34300 TEMPERATURE T = 106.00078

IF YOU WANT ADDITIONAL INTERPOLATION , TYPE 1

ENTER THE VALUE OF V FOR INTERPOLATION 5.855
VOLTAGE V = 5.85500 TEMPERATURE T = 143.01590

IF YOU WANT ADDITIONAL INTERPOLATION , TYPE 1

ENTER THE VALUE OF V FOR INTERPOLATION 6.0
VOLTAGE V = 6.00000 TEMPERATURE T = 146.60565

IF YOU WANT ADDITIONAL INTERPOLATION , TYPE 1

ENTER THE VALUE OF V FOR INTERPOLATION 6.097
VOLTAGE V = 6.09700 TEMPERATURE T = 149.00882

IF YOU WANT ADDITIONAL INTERPOLATION , TYPE 1
2

FIGURE 7.13 Computed results from spline interpolation for the problem considered in
Example 7.4.

results are desired, using spline interpolation. Thus, a simple script file may be
written as

v=[0.397 0.798 1.203 1.611 2.022 2.436 2.85 3.266 3.681 ...
4.095 4.508 4.919 5.327 5.733 6.137];

t=[10 20 30 40 50 60 70 80 90 100 110 120 130 140 150];
vp=[1.0 3.0 4.343 5.855 6.0 6.097];

yp=spline(v,t,vp)

This yields the desired results as

yp= 24.9982 73.6091 106.0008 143.0141 146.6028 149.0074

278 Computer Methods for Engineering with MATLAB® Applications

Clearly, the results are very close to those obtained earlier by using the com-
puter program whose algorithm was discussed above.

7.6 METHOD OF LEAST SQUARES FOR A BEST FIT

In the preceding sections, we discussed interpolation with approximating functions
that pass through each given data point. Such an exact fit is appropriate if the given
data are of a high level of accuracy. If the number of points is relatively small, a
single polynomial approximation may be employed for interpolation. If a large num-
ber of points are given, spline interpolation, which yields lower-order polynomials,
such as cubics, to fit small subsets of the data, can be used to piecewise approximate
the data for obtaining values of the dependent variable at intermediate points.
However, the data obtained in many engineering applications have a significant
amount of associated error. Experimental data, for instance, would generally have
some noise, or error, whose magnitude would depend on the instrumentation and the
arrangement employed for the measurements. In such cases, a polynomial interpola-
tion that demands that the approximating curve pass through each data point is not
appropriate.

A better approach is to derive a function that provides a best fit to the given data
by somehow minimizing the difference between the given values of the dependent
variable and those obtained from the approximating curve. Figure 7.14 shows a few
circumstances where a best fit will be much more satisfactory than an exact fit.
Because of the error associated with the data, it is not necessary for the approximat-
ing curve to match each data point. A curve that adequately represents the general
trend of the data, without necessarily passing through each point, will be useful in
characterizing the data and deriving correlating equations for quantitatively describ-
ing the physical or chemical process under consideration. Such correlations are
extremely important in engineering applications and are often the desired output
from an experimental study. The measurements on the deflection of a building struc-
ture due to the flow of water, for instance, can be used to yield a best fit that then can
be employed in the design of such structures for locating them in streams and in the
sea. Similarly, measurements of the velocities of accelerating automobiles can be
used to derive correlating equations that characterize the dependence of the accelera-
tion on various parameters, such as shape, weight, and fuel mixture. Heat and mass
transfer from surfaces are often measured for different geometries and flow condi-
tions. The results obtained are then curve fitted to yield correlations that can be used
for future analysis and design of similar processes and systems.

7.6.1 Basic CONSIDERATIONS

Several criteria can be used to derive the curve that best fits the data. If the approxi-
mating function is denoted by f(x) and the given data points by (x;, y,), where y is the
dependent variable, x is the independent variable, and i = 1, 2, ..., n, the error e, at
X = x; is given by

e; =y, —fx) (7.41a)

Numerical Curve Fitting and Interpolation 279

()

FIGURE 7.14 Data distributions for which a best fit is more appropriate than an exact fit.

One method for obtaining a best fit to the data is to minimize the sum of these
individual errors, that is, minimize 21, €¢;- However, this approach is not satisfactory
since this criterion allows the errors to cancel out and thus does not yield a unique
curve. Moreover, the curve may not represent the general trend of the data at all. If
the sum of the absolute values of the errors, 2 | ¢ |, is minimized, the result is bet-
ter, but, again, a unique best fit is generally not obtained. Another approach that may
be used is the minimax criterion, which minimizes the maximum error, (e,),,,, for
the data points. However, this method is heavily influenced by a single point that may

280 Computer Methods for Engineering with MATLAB® Applications

have large error. Although unsuitable for obtaining a best fit in most engineering
problems, this approach is often appropriate for fitting a simple function to a much
more complicated one, as outlined by Carnahan et al. (1969).

The most commonly used approach for a best fit is the method of least squares. In
this method, the sum S of the squares of the errors is minimized. The expression

for S is
2 e = 2 - f(x,) (7.41b)

This approach generally yields a unique curve that provides a good representation of
the given data, if the approximating function is properly chosen. As outlined in
Section 1.4, one must employ the basic nature of the problem under consideration in
choosing the form of the approximating function. Thus, for the measurements of the
average daily temperature over the year, a sinusoidal function will yield a good best
fit to the data, see Figure 1.5. Similarly, in most experimental studies of engineering
systems and processes, the expected trends are known from the physical nature of
the problem, allowing one to choose an appropriate function for curve fitting.

Let us consider, as an example, the measurement of a physical variable, which
may be, say, the length, weight, or density of a given material. If » measurements are
taken, the results will generally differ because of the experimental error involved.
Let us denote these measurements as [,, [, ..., [,. If L denotes the desired best fit to
these measurements, then

S=-L*+U0,-L*+---+(,- L) (7.42)

To minimize this sum § of the squares of the differences, we differentiate S twice to
obtain

g—i = 20, ~L)=2(l, L) =--=2(, = L) = =2 [21,. —nL (7.43)
dzs

Since n is positive, the value of L for which dS/dL = 0 gives a minimum value of
the sum S. From Equation 7.43, this value is obtained as

i (7.45)

Therefore, if the sum S is minimized, the value of the quantity L is simply the
arithmetic mean of the measurements. One will expect this value to be the best

Numerical Curve Fitting and Interpolation 281

representation of the data if the measurements are all taken with equal care and are
thus of comparable accuracy. This example provides a physical basis for the method
of least squares and may easily be extended to a function f(x), using the consideration
of a single unknown variable L given above.

7.6.2 LINEAR REGRESSION

The procedure of obtaining a best fit to a given data set is often known as regression.
Let us first consider fitting a straight line to a set of data points denoted by (x,, y,),
(x5, ¥5)s - .-, (x,,, ¥,), where x is the independent variable and y the dependent variable.
Although engineering applications usually lead to nonlinear functions, there are sev-
eral circumstances where a linear variation closely approximates the measurements.
Moreover, exponential and power-law forms, which are very frequently encountered
in practical problems, can often be reduced to linear variations, as illustrated later in
this section. Consequently, linear regression is very important in a wide variety of
engineering applications, particularly in the derivation of correlating equations from
experimental data.
The equation of the straight line for curve fitting may be taken as

fx)=a+bx (7.46)

where a and b are the coefficients that must be determined from the given set of n
data points. Thus, a and b are to be chosen such that the sum S of the squares of the
deviations of the data points from the values obtained from the equation of the
straight line, Equation 7.46, is a minimum. This implies that

S= 2 (v, - a - bx,)* — minimum (7.47)

The minimum occurs when the partial derivatives of S with respect to a and b are
both zero. Thus,

ENEER §

i z -2(y;—a-bx;)=0 (7.48a)
ENEER §
o= D, 20 —a=bx)x; =0 (7.48b)

=

These equations may be simplified and expressed as

E)’i—za—szi -0
N vixi= Y ax =y bt =0 (7.49)

282 Computer Methods for Engineering with MATLAB® Applications

which may be written for the unknowns a and b as

na+b§: X; = Xyi (7.50)
a x.+b N x? = XV (7.51)
Durb Y=Yy

where the summations are all from i =1 to i = n.

Equations 7.50 and 7.51 are linear in the unknowns and may be solved simultane-
ously to yield the desired values of a and b. Using Cramer’s rule, we obtain a and b
in terms of the relevant determinants as follows:

E Vi E Xi
e Dy (7.52)

be PRI (7.53)
n Exi
S S

where the vertical bars indicate magnitude of the determinant. We may employ the
given set of n data points to compute ® X;,* Y;,*® x?,and® x;y;. Then we use these
values to calculate the determinants in Equations 7.52 and 7.53. These equations then
yield the coefficients a and b for the straight line, Equation 7.46, that provides a best
fit to the given data.

To quantify the accuracy with which the computed straight line fits the given data,
we compute the sum of the squares of the deviations of the data from the mean to
represent the spread before regression is applied. Denoting this sum by S,, and the
mean by y, we have

n

Sp= > =) (7.54)

m

i=1

The spread in the data that remains after regression is indicated by S, where

S = Z (y, —a—bx.)? (7.55)

Numerical Curve Fitting and Interpolation 283

Therefore, the extent of improvement due to curve fitting by a straight line is indi-
cated by

P = (7.56)

where r is known as the correlation coefficient. A good correlation for linear regres-
sion is indicated by a high value of r, the maximum of which is 1.0. However, the
given data should also be plotted along with the computed curve, in order to deter-
mine, qualitatively, how good a representation of the data is provided by the fit.
Equation 7.56 can also be used for higher-order polynomials and nonpolynomial
forms of the function for a best fit, as outlined later in this section. See Draper and
Smith (1998) for further details on the application of regression analysis.

7.6.3 Best Fit witH A POLYNOMIAL

Linear regression yields a straight line that provides a best fit to a given data set. It is
simple to apply, since only two unknown coefficients, a and b in Equation 7.46, are
to be determined. In many cases, particularly if the range of the independent variable
is relatively small, a straight line provides a fairly good representation of the data.
Also, as outlined in Section 7.6.4, certain nonlinear forms, such as exponentials, may
be transformed to yield linear variations. However, the data may have a definite trend
that is poorly represented by a straight line. An example of such a situation is shown
in Figure 7.15, which illustrates that a straight line is not a satisfactory choice for
curve fitting in this case. A polynomial, such as a parabola or a cubic, will be more
appropriate.

In order to obtain a best fit to the given data, let us consider an mth-order poly-
nomial, given as

f) =co+cx+c x>+ +c, x" (7.57)

y=f(x)

FIGURE 7.15 A polynomial best fit to given data.

284 Computer Methods for Engineering with MATLAB® Applications

Then the sum S of the squares of the deviations of the data from the curve is given by
S = 2 (i - — X7 ==X) (7.58)

We determine the coefficients ¢, ¢, ..., ¢,, by extending the procedure outlined in
the preceding section for linear regression. Therefore, S is differentiated with respect
to each of the coefficients, and the partial derivatives are set equal to zero in order to
minimize S. This gives

2 _ ——c XM) =

GCO E(yt sz CnXi) 0

a—Cl = —22 x;(y; - —Cxt ==, x")=0 (7.59)
7__22-76 (yl_c() C2xi2_”'_cmxim)=0

Equations 7.59 may be simplified and rearranged to yield the following system of
(m + 1) linear equations for the (m + 1) unknowns c, ¢, ..., ¢,

me

nco+clzxi+c22xi2+---+cm2x{”=Ey,.

cozxi+c12xf+c22x?+~--+cm2x.'"*'=Ex,-y,— (7.60)
m+l m+2 2m_

15 AT RIS R Y

where all the summations are from i = 1 to i = n. It can easily be verified that the equa-
tions for linear regression, Equations 7.50 and 7.51, are obtained for a first-order poly-
nomial, m = 1. The methods given in Chapter 6 may be employed to solve the above
system of equations, which are linear in the unknown coefficients c, ¢y, ..., ¢,

Curve fitting with polynomials is generally restricted to small values of the order
m of the polynomial, in order to avoid extensive calculations for the determination of
the coefficients and to obtain simple correlating curves that approximate the general
trends of the data. Typical values of m range from 1 to 4, the appropriate value being
chosen on the basis of the accuracy and spread of the data, as well as the number of
data points. For a relatively large spread of the data, a lower-order polynomial fit will
generally be more appropriate. Computation is involved in evaluating the summa-
tions in Equation 7.60 and then solving this system of equations, which may be recast
in matrix notation. For a second-order polynomial, for instance, we have

X;

[n Ex,. E ,\(CO\ Ey,
E X; E x? E fo t x.yl. (7.61)
S¢S0 S

2

X)Cyl-

i

Numerical Curve Fitting and Interpolation 285

Various elimination and matrix inversion or decomposition methods, given in
Chapter 6, may be employed for solving Equation 7.60 or 7.61 for the coefficients.
Gaussian elimination is the most popular choice because of the small number of
equations to be solved in most cases. The correlation coefficient r may again be
determined from Equation 7.56 to evaluate how good a fit is given by the resulting
polynomial.

The polyfit command in MATLAB can be used conveniently for polynomial
regression. Linear regression is obtained if the order of the polynomial is given as 1,
as discussed in Chapter 3. Linear regression can also be used for nonpolynomial
forms, as discussed in the next section. Higher order polynomials can be determined
for a best fit by specifying the order of the desired polynomial. The use of the polyfit
command is illustrated in Example 7.5.

7.6.4 NoNPoOLYNOMIAL FORMS

The method of least squares is not restricted to polynomials for curve fitting and may
easily be applied to various other forms that contain constant coefficients. An exam-
ple of a physical situation where such a form is more appropriate than a polynomial
is the periodic variation in ambient temperature considered in Chapter 1; see
Figure 1.5. Equations 1.10 through 1.12 give some of the sinusoidal functions that
may be employed for curve fitting. Considering the function given in Equation 1.11,
for example, we obtain

f(x) =A sin mx + B cos x (7.62)

and

S = 2 (y; — Asinwx; — Bcoswx;)? (7.63)
where the sum S is to be minimized for a best fit. Thus,

% = 2 -2(y; - Asinwx; — Bcoswx;)sinwx; =0

as

9B 2 -2(y; - Asinwx; — Bcoswx;)coswx; =0

This gives the equations

AE (sinwx;,)* + BE (sinwx; coswyx;) = E y; sin wx; (7.64)

AE (sinwx; coswx;)+ B E (coswx;)* = E ¥; COS (X; (7.65)

which can be easily solved for A and B.

286 Computer Methods for Engineering with MATLAB® Applications

Nonpolynomial forms are important in a wide variety of engineering problems.
If the function chosen for curve fitting has constant coefficients, such as A and B in
Equation 7.62, the method of least squares can be easily applied. However, if the
constants do not appear as coefficients, for example, the constant @ in Equation
1.10, a straightforward application of the method is not possible. Therefore, the
nonpolynomial forms employed for the curve fitting of various types of engineer-
ing data are chosen such that the constants to be determined appear only as
coefficients.

Besides periodic processes, an example of which is considered above, several
engineering applications involve power-law and exponential variations, some of
which can be linearized as outlined below. The example given by Equations 1.1 and
1.2, for instance, concerns an exponential variation. Similarly, processes that
approach a constant magnitude at large values of the independent variable x can
often be represented by polynomials with negative exponents, for example,

y=cot+ x4+ cx? (7.66)

Processes where such an equation may be applicable are the charging of a capacitor
in an electrical circuit, the free fall of an object under gravity to attain a terminal
velocity, and the dissolution of salt in a given amount of liquid until saturation occurs.
However, unless the physical or chemical nature of the given data indicates the suit-
ability of a particular nonpolynomial form, curve fitting is first explored using a
polynomial, with varying orders of the polynomial, to obtain a satisfactory represen-
tation of the data, see Example 7.5.

7.6.4.1 Linearization

In several cases, a nonlinear form chosen to curve fit the given data may be linear-
ized by suitable transformations so that linear regression may be applied. Consider,
for example, the exponential variation that is commonly encountered in engineering
problems, as shown in Figure 1.2. The general form of an exponential variation may
be taken as

f) = cjee (7.67)

where ¢, and ¢, are constants to be determined for a best fit. In engineering applica-
tions, ¢, is generally positive, and ¢, may be positive, as in the convective heating of
a metal block, or negative, as in radioactive decay and discharge of a capacitor. If the
natural logarithm of Equation 7.67 is taken, we obtain

log [f(x)] =logc, + c,x (7.68)

Thus, log[f(x)] is a linear function of x, and linear regression may be applied using x
as the independent variable and the natural logarithm of y, where y =f(x), as the
dependent variable. Then y; in Equations 7.52 and 7.53 is replaced by log y,. Also,
a =log c,and b = c,, where a and b are the coefficients for linear regression, Equation
7.46. This approach is frequently employed for obtaining correlating equations for

Numerical Curve Fitting and Interpolation 287

measured heat and mass transfer rates from bodies and surfaces under different
physical and chemical conditions.
Similarly, the power-law variation given by the general form

JOErRE (7.69)

is frequently employed for the representation of certain engineering processes.
Again, a natural logarithm of the equation is taken to yield

log [f(x)] =logc, + ¢, logx (7.70)

where the logarithm to base 10 may also be taken for convenience, instead of the
natural logarithm. Again, linear regression may be applied, with log x and log [f(x)]
as the independent and dependent variables, respectively, to obtain the coefficients c,
and c,.

Similarly, various other forms, such as

f= er - (771a)
2

fX)=c¢ +cx™! (771b)

f(x) = ccf - (771¢)
2

may be linearized by taking the reciprocal of f(x), of x, or of both as the independent
and dependent variables. Thus, these equations may be rewritten as

Y = (6—2) + (l) X (7.722)
¢ ¢

y=c,+c, X (7.72b)
1 C,

Y = (—) + (—) X (772¢)
¢ ¢

where y = f(x), Y = 1/f(x), and X = 1/x. Therefore, linear regression may be applied to
these transformed equations to obtain the coefficients ¢, and c¢,. These examples also
indicate the importance of linear regression in the curve fitting of engineering data.
Many processes of practical interest are governed by exponential, power law, and
other forms given above, and linear regression is employed to determine the unknown
coefficients. Example 7.5 illustrates the use of the method of least squares for obtain-
ing a best fit to a given data set.

288 Computer Methods for Engineering with MATLAB® Applications

Example 7.5

a. In a chemical reaction, the effect of the concentration C of a catalyst on the
rate R of the reaction is investigated experimentally. The measurements of C
in g/m* and of R in g/s yield the following:

C(g/m3) 01 02 05 10 12 18 20 26 35 4.0
R (g/s) 1.85 191 2.07 232 240 2.54 2.56 2.53 2.03 1.24

Using the method of least squares and considering polynomials up to the
fifth order, obtain a best fit to these data.
b. A small, heated metal block cools in air, and its temperature T is measured
as a function of time t to give the following data:

t(s) 1 2 5 10 15 20 25 30
T(°C) 109.58 99.25 73.78 4515 26.78 17.24 9.85 697

From physical considerations of the problem, the temperature is expected
to decay exponentially, as Ae™, where A and a are constants. Employing
the program developed in Part (a), obtain a best fit to the given data and
determine the constants A and a.

SOLUTION

a. From the data presented, we can see that the reaction rate R increases with
concentration C of the catalyst up to a point and then decreases. Thus, we
expect that linear regression would not be satisfactory, and therefore we
attempt curve fitting with polynomials. However, we can also obtain the
results for linear regression from the numerical scheme by choosing the
order of the polynomial as 1.

Denoting the independent variable by x and the dependent variable by y,
for generality, we obtain a system of linear equations, as given by Equation
7.60. Then we solve this system to obtain the coefficients c; of the polyno-
mial. Appendix B.18 presents the script m-file in MATLAB and Appendix
C.11 presents the computer program in Fortran for the least-squares method
for polynomial regression. In the latter, the data points are represented by
X(l) and Y(/), and the coefficients of the polynomial by C(/). The order of
the polynomial is denoted by MP, which gives the number of coefficients
to be determined as N =MP + 1. The various other symbols employed are
defined in the program.

In the given program, the input data and the chosen order of the poly-
nomial for curve fitting are read from an appended data set. The system of
linear equations, given by Equation 7.60, is then generated. The correspond-
ing augmented matrix, with the constant vector on the right-hand side of
Equation 7.60 being stored as the (N +l)th column, is obtained. Gaussian
elimination is employed for the solution of this system of equations. A sub-
routine called GAUSS is employed. This subroutine applies the Gaussian
elimination algorithm to the system of equations. Thus, the coefficient matrix
is reduced to an upper triangular matrix, and back-substitution is employed
to determine the coefficients C(/). The subroutine GAUSS is the same as that
developed earlier for Example 6.1 and employs partial pivoting for accu-
racy and for avoiding a zero pivot element. The computed coefficients are
printed and thus a polynomial of form given by Equation 7.57 is obtained for

Numerical Curve Fitting and Interpolation

a best fit. The values of the dependent variable Y(/) at the given data points
X(l) are calculated using this polynomial. These values are then compared
with the given data to estimate the accuracy of the best fit obtained.

Figure 7.16 shows the computed results for polynomials of order 1, 3,
and 5. A comparison of the results with the given data shows that linear
regression is in considerable error, as expected. The third-order polynomial
fit is fairly accurate, although the fifth-order regression is more accurate.
However, because of the smaller computational effort required and the ease
in application to engineering problems, a third-order polynomial best fit is
very frequently employed in practice, rather than higher-order polynomials.
These trends are illustrated more clearly in Figure 7.17, where the given data
points are plotted, along with some of the polynomials derived from the
method of least squares. Again, note that a third-order polynomial yields a
fairly accurate representation of the data.

Using a somewhat similar logic, the MATLAB script file in Appendix
B.18 is developed. However, this program uses the convenience of matrix
specification and algebra available in the MATLAB environment, yielding a
fairly simple script file. The given data are entered and the desired order of
the polynomial best fit is specified. The matrices for polynomial regression
are obtained by appropriate summations of the data. The backslash operator
is used to solve the system of linear equations to determine the coefficients

THE ORDER OF THE POLYNOMIAL =1
THE CONSTANTS OF THE POLYNOMIAL ARE

cQ) =

2.25954

CQ2) = -0.06778
THE VALUES CALCULATED FROM THE BEST FIT ARE

289

X(1) =0.1000 Y(I) =2.2528
X(2) =0.2000 Y(2) =2.2460
X@3) =0.5000 Y(3) =2.2257
X@) = 1.0000 Y@) =2.1918
X(5) = 1.2000 Y(5) =2.1782
X(6) =1.8000 Y(6) =2.1375
X(7) =2.0000 Y(7) =2.1240
X(8) =2.6000 Y(@8) =2.0833
X(9) =3.5000 Y(9) =2.0223

X(10)=4.0000

Y(10) = 1.9884

THE ORDER OF THE POLYNOMIAL =3
THE CONSTANTS OF THE POLYNOMIAL ARE

c()
CcQ) =
C@3) =

1.82437
0.43013
0.09669

C@) = -0.05961

FIGURE 7.16 Calculated results for Example 7.5(a), using polynomials of order 1, 3, and 5

for a best fit.

290 Computer Methods for Engineering with MATLAB® Applications

THE VALUES CALCULATED FROM THE BEST FIT ARE

X() =0.1000 Y(1) = 1.8683
X(2) =0.2000 Y(2) =19138
X(@3) =0.5000 Y(3) =2.0562
X@) =1.0000 Y4) =2.2916
X() =1.2000 Y(5) =2.3768
X(6) =1.8000 Y(6) =2.5643
X(7) =2.0000 Y(7) = 2.5945
X(8) =2.6000 Y(8) =2.5487
X(© =3.5000 Y(9) =19587
X(10)=4.0000 Y(10) = 1.2772

THE ORDER OF THE POLYNOMIAL =5
THE CONSTANTS OF THE POLYNOMIAL ARE

C(1) = 179686
C(2) = 0.52743
C(3) = 0.14705
C@) = -0.21183
C(5) = 0.06872
C(6) = -0.00884

THE VALUES CALCULATED FROM THE BEST FIT ARE

X(1) = 0.1000 Y(1) = 1.8509
X(2) = 0.2000 Y(2) = 1.9066
X@3) = 0.5000 Y(3) = 2.0749
X@) = 1.0000 Y(4) = 2.3194
X(5) = 1.2000 Y(5) = 2.3960
X(6) = 1.8000 Y(6) = 2.5416
X(7) = 2.0000 Y(7)= 2.5618
X(8) = 2.6000 Y(8) = 2.5288
X(9) = 3.5000 Y(9) = 2.0301
X(10) = 4.0000 Y(¥) = 1.2400

FIGURE 7.16 Continued.

of the polynomial. The coefficients are printed for the form represented by
Equation 7.57. These are then rearranged in descending powers of the inde-
pendent variable to use these with MATLAB functions, such as polyval, to
obtain the desired values of the dependent variable from the best fit.

The results obtained from this script file for a third-order polynomial are:
The constants of the polynomial are
Cc=

1.8244
.4300

0.0968

-0.0596

o

Numerical Curve Fitting and Interpolation 291

e Data

FIGURE 7.17 Comparison between given data and the best-fit obtained, using polynomials
of different order.

The values calculated from the best fit are

.8683
.9138
.0562
.2916
.3767
.5643
.5945
.5487
.9587
L2772

y=

PR NMNMDNDNDNDNRERE

Thus, the results obtained are very close to those presented earlier. Similarly,
the results for other orders of the polynomial, as given by the specified value
of np, may be obtained. For linear regression, np is set equal to 1, as seen
in the following example.

b. Consider regression with an exponential of the form

y =Ae™ (7.73)

Taking natural logarithms of both sides, we obtain
logy =logA - ax (7.74)
= B - ax

where B=log A is a constant. Thus, we may apply linear regression to
the given data, employing log y as the dependent variable and x as the

292 Computer Methods for Engineering with MATLAB® Applications

THE CONSTANTS OF THE POLYNOMIAL ARE

C) = 478000
C(2) = -0.09695

CONSTANT A =119.10 EXPONENT = -0.09695
THE VALUES CALCULATED FROM THE BEST FIT ARE

X1 = 1.0000 Y1) =108.0993
X(2) = 2.0000 Y(2) =98.1109
X(@3) = 5.0000 Y(3) =73.3503

X@) = 10.0000
X(5) = 15.0000
X(6) = 20.0000
X(7) = 25.0000
X(8) = 30.0000

Y(4) =45.1726
Y(5) =27.8195
Y(6) = 17.1326
Y(7) =10.5510
Y(8) =6.4978

THE CORRELATION COEFFICIENT = 0.9998

FIGURE 7.18 Numerical results obtained with an exponential best fit for the problem
considered in Example 7.5(b).

independent variable. The results obtained are shown in Figure 7.18. The
constants for the linear best fit are C(l) and C(2), which correspond to B and
-a in Equation 7.74. Therefore, log A =B = C(1), which gives A = exp[C(1)]
and a =-C(2). The resulting constants A and a are obtained from the pro-
gram as 119.1 and 0.09695, respectively. The term exponent in this figure
refers to —a in Equation 7.73.

The values of the dependent variable Y(/) are also calculated from the
best fit and are found to be close to the given data. The correlation coef-
ficient r for this problem is found to be 0.9998, which indicates a very
good representation of the given data by the exponential function y = 119.1
exp(—0.09695x). Similarly, the program given in Appendix C.11 may be
employed for other nonpolynomial forms.

Similarly, the MATLAB script file given in Appendix B.18 may be used
with np =1 to obtain a linear best fit to the given data, with x as the inde-
pendent variable and log y as the dependent variable. The script file may be
modified by employing the following after applying polynomial regression
with np=1:

disp('Constants of the linear regression are:')
c=a\b

Constant =exp (c (1))

Exponent =c(2)

plot (x1,yl,'*")

hold

x=1linspace(0,40,40) ;

y = Constant*exp (Exponent. *x) ;
plot(x,y, 'k-")

xlabel ('x', 'Fontsize',b14)
ylabel ('y', 'Fontsize',6 14)

Numerical Curve Fitting and Interpolation 293

The results obtained are
Constants of the linear regression are

Cc=

4.7800

-0.0970
Constant =119.1062
Exponent =-0.0970

The results obtained also yield the graphical representation of Figure 7.19,
which shows the given data and the best fit thus obtained, indicating the close
approximation of the data by the exponential best fit. We can also directly use
the polyfit command to obtain the best fit. For instance, we could use

x=[1 2 5 10 15 20 25 30];
y=1[109.58 99.25 73.78 45.15 26.78 17.24 9.85 6.97];

y=1log(y);
pl=polyfit(x,y,1)

This would then yield the two coefficients as —0.0970 and 4.7800, arranging
them in descending powers of x. Thus, from Equation 7.74, B =4.7800 and
a=-0.0970 and the results are the same as those given above. Thus, the polyfit
function may be used conveniently to obtain the best fit to the given data using
a polynomial of specified order.

7.7 FUNCTION OF TWO OR MORE INDEPENDENT VARIABLES

In the preceding sections, we considered curve fitting for dependent variables that
are functions of only one independent variable. However, in engineering applications,

120

100 A

80 -

= 60 A

40

20

FIGURE 7.19 Given data and the exponential best-fit obtained in Example 7.5(b).

294 Computer Methods for Engineering with MATLAB® Applications

we frequently encounter functions of two or more independent variables. In many
cases, interest lies in representing the dependence of such functions on only one
independent variable, while the others are held constant at given values. Then, an
exact or a best fit, as appropriate, may be employed, as discussed earlier, to charac-
terize this variation. However, there are several circumstances where it is necessary
to consider the variation of the dependent variable y with two or more independent
variables, say, x,, x,, and so on. The pressure generated by a pump, for instance,
depends on both the speed and the flow rate. Similarly, properties of gases, such as
density, depend on the pressure as well as the temperature. Although curve fitting
may be carried out with only one independent variable, taking the others at specified
values and thus generating a number of curves that fit the data, it is often more con-
venient and desirable to seek a single function such as f(x,, x,) that represents the
dependence on all the independent variables.

7.71 Exact Fit

Let us consider a variable y which is a function of two independent variables x, and
X,. Then if an exact fit with a second-order polynomial is sought, we may employ the
general equation

y=A+Bx, +Cx} (7.75)

where the coefficients A, B, and C are functions of x,. Again, employing second-
order polynomials, we may write

A=ay+ax, +a,x3 (7.76)
B =by +bx, +b,x2 177)
C=cy+cx, +0,% (7.78)

Equation 7.75 may be written at three different values of x, as follows:

y=A +Bx +Cx} (7.79)
V= Ay +Byx, +Cyx? (7.80)
vy =A; +Byx +Cyxf (7.81)

where (A,, B, C;) correspond to one value of x,, (4,, B,, C,) to another, and (A, B,
C,) to a third value of x,.

The first step involves determining the coefficients in Equations 7.79 through 7.81
by employing three data points, in terms of y and x,, at each value of x,. Thus, as
shown in Figure 7.20, we need nine data points to evaluate these nine coefficients.

Numerical Curve Fitting and Interpolation 295

Xxy=D;
Q
B
2
=
0 D
KXo =
= 2=1
Xxy=Ds
X1

FIGURE 7.20 Sketch of a function, f{x,, x,), of two independent variables x, and x,, showing
the nine data points needed for an exact fit with second-order polynomials.

Each curve in Figure 7.20 is represented by a second-order polynomial, which is
determined at the given value of x, if three data points are available for this curve.
Thus, a set of three equations is solved, as discussed in Section 7.2, to obtain the
coefficients A,, B, and C, in Equation 7.79. Similarly, the coefficients in Equations
7.80 and 7.81 are determined. Thus, we now have the values A, A,, and A, for the
variable A in Equation 7.76 at three values of x,. Using these values, we may deter-
mine the coefficients a,, a,, and a,. Similarly, we determine the coefficients in
Equations 7.77 and 7.78 using the values B,, B,, By, and C,, C,, C; at the three given
values of x,. Thus, the procedure for an exact fit is applied twice to obtain all the
relevant coefficients.

The coefficients obtained from the nine data points shown in Figure 7.20 yield an
exact second-order polynomial fit to the given data. The resulting general equation is
written as

v =(ay+a,x, + a,x3)+ (by + by x, + byx3)x, +(cy + %, + ¢, x2)x2 (7.82)

Thus, the functional dependence of y on x, and x, is represented by this equation.
This approach may easily be extended to higher-order polynomials and functions of
more than two variables. However, the solution becomes more involved because of
the larger number of coefficients to be determined. For instance, if third-order poly-
nomials are employed instead of the parabolas in Equation 7.82, we must determine
sixteen coefficients, employing four data points in terms of y and x, at four different
values of x,. Similarly, 25 data points are needed for fourth-order polynomials.
Similar increase in the complexity of the solution and of the resulting polynomial fit
arises if functions of more than two independent variables are considered. Other

296 Computer Methods for Engineering with MATLAB® Applications

forms of the function for the exact fit, besides that given in Equation 7.75, may also
be considered.

7.7.2 Best Fit

A best fit is often more appropriate than an exact fit for functions of two or more
independent variables. Experimental data with a significant amount of error, for
example, are better represented by a best fit than by a curve that passes through each
data point. These considerations have been discussed earlier in relation to functions
of one independent variable and apply equally well to multiple variables.

Let us first consider multiple linear regression, assuming the dependent variable
y to be a linear function of x, and x, as

Y =fx,x) = co+ €1X; + €y (7.83)

where c,, c,, and ¢, are constants to be computed. Employing the procedure given
earlier for linear regression, we determine the sum S to be minimized as follows:

S = 2 (i = Co = €11 = €2%y;)° (7.84)

where the subscript i, which varies from 1 to n, is used to denote the n data points.
Differentiating S with respect to the coefficients and setting the partial derivatives
equal to zero yields the minimum value of S. Thus,

as

acy -2 E,(yi —Cp =X = 6Xy) =0
aS

ac, =-2 E X, (Vi —¢o — Xy —6%,,;) =0
as

E =-2 E X (Vi =€ =Xy = €3X,,;) =0

where the summations are fromi=1toi=n.
The above equations yield the following system of linear equations for the
unknowns ¢, ¢, and ¢,:

ncy + ¢ z X 6 2 KXo, = E Yi (7.85)
o yj X TG E (x,)* +¢ 2 XX = 2 X1iYi (7.86)
Co 2 X+ € 2 XX 6 2 (x2,i)2 = 2 X2 Vi (7.87)

Numerical Curve Fitting and Interpolation 297

These simultaneous equations may be solved for ¢, ¢, and ¢, to give the best fit,
Equation 7.83. In this case, a regression plane is obtained instead of a line, since y
varies with two independent variables x, and x,. The correlation coefficient is again
obtained from Equation 7.56, with appropriate change in the definition of S, to take
the dependence of y on both x, and x, into account.

By employing the following general form of the function for a best fit, we can
extend the procedure outlined above for multiple regression to functions of more
than two variables:

V=X Xgy ooy X)) =CoF O X F CXp + 00 €, (7.88)

The system of linear equations for evaluating the coefficients ¢, ¢, . . ., ¢,, may easily
be derived as given above for the case of two independent variables. Similarly, mul-
tiple polynomial regression, with orders higher than linear, may be derived for intro-
ducing curvature into the best fit.

Also, linearization of nonlinear functions, such as exponentials and power-law vari-
ations, can often be carried out, as outlined earlier for functions of a single variable x.
Then multiple linear regression may be applied. Thus, if y is of the general form

V= CoX; Xyt Xon (7.89)
the equation may be transformed by taking its natural logarithm to give

log y=1logc,+c, logx, +¢c,logx, +---+¢, log x,, (7.90)

Multiple linear regression may now be applied. Example 7.6 illustrates the use of this
procedure for a practical circumstance.

Example 7.6

The flow of water in an open channel with a slight downward slope is an impor-
tant circumstance in civil engineering applications. The channel is specified in
terms of its hydraulic radius R, which is the cross-sectional area divided by the
wetted perimeter consisting of the sides and bottom of the channel, and the
slope S. The slope is given as tan 6, where 6 is the angle that the bottom makes
with the horizontal, considered positive for downhill flow. The volume flow rate
Q in m*/s is measured as a function of R and S for certain open channels to yield
the following data:

R (m) 0.5 1.0 1.5 2.0
S
1.5x107 1.91 3.10 411 5.03
5x103 3.48 6.66 7.51 9.19
9x103 4.67 7.59 10.08 12.33

It is expected, from theoretical considerations, that Q varies as ASPR¢, where A, b, and ¢
are constants. Obtain a best fit to the given data and determine these constants.

298 Computer Methods for Engineering with MATLAB® Applications

SOLUTION

Since the dependent variable Q is a function of two independent variables R and
S, multiple regression, as outlined in Section 7.7.2, may be applied. The form of
the function to be employed is

Q=AS"Re (7.91)
Taking natural logarithms of both sides, we obtain
log Q=log A+blogS+clogR (7.92)

Thus, multiple linear regression may be used with log S and log R as the indepen-
dent variables and log Q as the dependent variables.

The dependent variable log Q is denoted by y, and log S and log R by x, and
X,, respectively. Then, the system of linear equations to be solved for the constants
Co €1, and ¢, in the linear function y =c,+ ¢,x; + ¢,X,, for a best fit is given by
Equations 7.85 through 7.87. The coefficients of this system of equations may be
obtained from the twelve data points given. Thus, n =12, and the summations,
such as ¥ x;; and X x,; y, are from i=1 to i=12. Employing a calculator or a
simple program in MATLAB, we obtain the following system of equations:

12¢, - 66.045¢, + 1.216¢, = 20.575 (7.93)
—66.045¢, + 370.164¢, — 6.695¢, =—109.871 (7.94)
1.216¢, — 6.695¢, + 3.376¢, = 4.345 (7.95)

The above system of linear equations can easily be solved by using matrix
methods or the backslash operator in MATLAB to obtain the coefficients as

Co=4.4235, ¢, = 0.505, ¢, = 0.6945 (7.96)

From Equation 7.92, c,=log A, ¢, =b, and ¢, =c. This gives A =exp(c,) =exp
(4.4235) = 83.387. Therefore, the best fit to the given data is obtained as

Q = 83.38750:505 R0-:6945 (7.97)

A MATLAB script file may also be written to solve the preceding multiple
regression problem. The given data are entered and the various summations are
carried out. The matrices representing the equations, Equations 7.85 through 7.87,
are formulated and the constants for multiple regression are calculated. The trans-
formations to the original variables are then made to yield the desired results. The
following script file may thus be used for this problem.

sl=1.5e-3;s2=5e-3;s83=9e-3;

s(l:4) =s1;s(5:8) =s82;8(9:12) =83;

rl=[0.5 1.0 1.5 2.0];

r=[rl rl rl];

g=1[1.91 3.1 4.11 5.03 3.48 6.66 7.51 9.19 4.67 7.59 10.08 ...
12.33]1;

Numerical Curve Fitting and Interpolation 299

s=1log(s);r=1log(r);q=1log(q) ;

n=1length(q) ;

a=[n sum(s) sum(r);sum(s) sum(s.*s) sum(s.*r);...
sum(r) sum(s.*r) sum(r.*r)];

b= [sum(qg) sum(s.*q) sum(r.*q)];

disp('Constants for multiple linear regression are:')

c=a\b'

A=exp(c(l));

b=c(2);

c=c(3);

fprintf ('A=%.4f b=%.4f ¢c=%.4f/n',A,b,c)

The results obtained from this program are
Constants for multiple linear regression are

Cc=
4.4234
0.5050
0.6945

A=83.3760 b=0.5050 ¢c=0.6945

In a similar way, other power-law and exponential variations may be treated for
functions of two or more independent variables. Multiple polynomial regression,
with polynomials of order higher than linear, may also be employed for certain
circumstances, using a similar, although more complicated, approach.

7.8 SUMMARY

This chapter presents numerical methods for the curve fitting of data given at dis-
crete points, considering both an exact fit and a best fit. In the former case, the
approximating curve passes through each data point and is appropriate if the data
have a high level of accuracy and a relatively small number of points are given.
Various forms of the approximating function are considered, including the general
equation of a polynomial, Lagrange polynomial, and Newton’s divided-difference
polynomials. The use of these interpolating polynomials for evaluating the function
at intermediate points, where data are not available, is discussed. Lagrange interpo-
lation is particularly useful for an arbitrary distribution of points and is widely used.
If a large number of very accurate data points are given, spline interpolation, which
provides a piecewise exact fit to the data, is more appropriate than a single curve,
since polynomials of high order may be ill-conditioned and are also inconvenient to
use in practical circumstances. The equations for cubic splines are derived. Examples
are given to demonstrate the use of interpolation in engineering problems. MATLAB
functions for interpolation using different forms of the interpolating curve, such as
linear, cubic or spline, are presented.

A best fit, which minimizes the error between the data and the approximating
curve without forcing it to pass through each given data point, is extensively employed
for correlating engineering data. It is more suitable than an exact fit for data that have
a significant amount of associated error. Experimental data generally do have some
error, and a best fit is used for representing the observed trends. This approach is

300 Computer Methods for Engineering with MATLAB® Applications

generally used with lower-order polynomials, such as straight lines, parabolas, and
cubics, to obtain a best fit to a large number of data points. The method of least
squares is discussed in detail, considering linear regression, polynomial regression,
and nonpolynomial forms. In several important engineering applications, special
forms, such as exponential and power-law variations, are of interest. These forms
may often be linearized by suitable transformations, and linear regression may be
applied. Finally, functions of two or more variables are considered. A few simple
procedures for an exact fit, as well as for a best fit, are outlined.

The choice of the form of the approximating function for curve fitting is an impor-
tant consideration. Frequently, the basic nature of the problem under consideration
may be employed to determine the general nature of the variation and the function
chosen appropriately. If no prior information is available on the expected trends, a
rough plot of the data may be used to guide the choice of the function for curve fit-
ting. A best fit is much more extensively used in engineering problems than an exact
fit, because of the presence of significant error in most available data and also because
a large number of data points are often given. One may start with simple linear
regression and then proceed to parabolas and cubics, in order to check whether a
better representation is obtained with a higher-order function.

Lagrange interpolation is a very popular choice for an exact fit, since a system of
linear equations does not have to be solved, as is the case for the general form of an
nth-order polynomial. Newton’s method is particularly useful if the data points are
evenly spaced. Extrapolation is also employed in some cases to compute the value of
the function at a point beyond the range of the given data. However, one should exer-
cise extreme care while using extrapolated values, since the behavior of the function
beyond the given range is often not known. There are also several special interpolat-
ing functions, such as Chebyshev polynomials, that are employed in the analysis of
engineering systems and processes, see Hornbeck (1982). Also, there are other meth-
ods for deriving the interpolating function. One such method is Hermite interpola-
tion which uses both the function and its derivative at a given number of data points,
as outlined by Ferziger (1998).

PROBLEMS

7.1. Consider a second-order Lagrange polynomial and show that it may
be recast in the general form of a second-order polynomial given by
Equation 7.1. Obtain the relationship between the coefficients of the
two polynomials.

7.2. Show that Lagrange interpolation is a more efficient method for inter-
polation than that obtained by using the general form of an nth order
polynomial, as demonstrated in Example 6.1.

7.3. Compare the Lagrange and Newton’s divided-difference interpolation
methods, indicating their respective advantages over the other. Which
one is expected to require less computer time for interpolation with an
arbitrary distribution of data points?

7.4. The specific heat C of pure copper is given at 100, 200, 400, 600, and
800 K as 252, 356, 397, 417, and 433 J/kg K. Employ Lagrange inter-
polation to compute the values at 300 K and 500 K. Also, compute

Numerical Curve Fitting and Interpolation

7.5.

7.6.

77.

7.8.

7.9.

7.10.

7.11.

7.12.

7.13.

the extrapolated value at 1000 K and compare it with the value of 451
given in the literature.

The density of air at 200, 300, 400, and 500 K is obtained as 1.7458,
1.1614, 0.8711, and 0.6964 kg/m?, respectively, from tabulated prop-
erty data in the literature. For this uniformly spaced data, obtain a
third-order interpolating polynomial.

A car showroom has 100 cars at the beginning of a week, and the
number left after each day is tabulated as follows:

Time (days) 0 1 2 3 4 5 6
Cars left (N) 100 75 65 52 46 39 34

We wish to extrapolate these results to predict the cars left at the end
of the week. Using an exact fit, predict the number of cars left in the
showroom after seven days. Comment on the result obtained.

Use a second-order and also a third-order polynomial regression for
Problem 7.6. Compare the results obtained with that obtained ear-
lier with an exact fit, and comment on the difference. Which method
would you expect to yield a more dependable prediction? Discuss.
The force F on a structure due to winds is measured as a function of wind
speed V. The results at speeds of 5, 10, 15, 20, and 25 m/s are obtained as
36.2, 52.5, 85.6, 150.0, and 210.9 newtons. Obtain a fourth-order inter-
polating polynomial that provides an exact fit to these data points.

The future worth (FW) of a given sum of money R after n years is
R(1 + x)", where x is the interest rate per unit amount, say $1.00, com-
pounded annually. Therefore, the FW ratio, FW/R gives the FW per
unit deposit and may be determined at interest rates of 8%, 10%, 12%,
and 15% for 15 years as 3.172, 4.177, 5.474, and 8.137. Employing
Newton’s divided-difference interpolation method, compute the
corresponding values at 9% and 12.5% interest rates. Also give the
resulting FW for a deposit of $5000 at these rates. Using the interpl
command in MATLAB, obtain the interpolated values and compare
with those obtained earlier.

The voltage v applied across an electrical circuit is varied, and the
resulting current i measured. For v values of 1, 2, 3.5, 5, and 6 V, the
current is 1.5, 1.8, 2.6, 3.0, and 3.5 amperes. Use Newton’s divided-
difference method to obtain the electrical current at v =4 and 5.5 V.
An important fluid property is the kinematic viscosity which deter-
mines the viscous, or frictional, forces acting in a flow. The kinematic
viscosity of air multiplied by 10° is given at 350, 450, 500, 550, and
650 K as 20.92, 32.39, 38.79, 45.57, and 60.21 m?/s, respectively. Using
any suitable interpolation method, compute the intermediate values at
400 and 600 K. Compare the results obtained with the values given in
the literature as 26.41 x 107 m?/s and 52.69 x 10-° m?/s, respectively.
Also, solve the problem using the interpl command in MATLAB, and
compare the results with those obtained earlier.

From the data given in Problem 7.9, determine the interest rate if the
FW ratio FW/K is 6.5.

The calibration table for a copper-constantan thermocouple which is
employed for temperature measurement gives the temperature 7'in °C

301

302 Computer Methods for Engineering with MATLAB® Applications

for different values of the voltage output V in millivolts (mV). Using
interpolation with a cubic spline for the following data, compute
the temperatures corresponding to thermocouple outputs of 0.9 and
1.75 mV:

T(°C) 10 20 30 40 50 60 70 80
V(mV) 0391 0789 1196 1.611 2.035 2.467 2908 3.357

Also, solve the problem using the interpl command in MATLAB for
a spline exact fit and compare the results with those obtained earlier.

7.14. Using the data in Problem 7.13 with Lagrange interpolation, calculate
the voltage output at 7= 65°C. Employ a fourth-order polynomial and
choose appropriate data points.

7.15. The transport rate m of a chemical species at a porous surface is mea-
sured as a function of the difference in concentration AC between the
surface and the ambient medium. The results obtained are as follows:

AC (kg/m?) 0.1 0.3 0.4 0.5 0.7 0.9 1.0
m (kg/s) 253 333 358 378 412 438 45

A power-law variation of the form m = A(AC)“ is expected to govern
this mass transfer process. Obtain a best fit to the given data by the
method of least squares and determine the constants A and a. Also,
use the polyfit command in MATLAB to solve this problem and com-
pare the results with those obtained earlier.

7.16. Experimental runs are performed on a compressor to determine the
relationship between the volume flow rate Q and the pressure differ-
ence P. It is expected that Q will be proportional to P?, where b is a
constant. The measurements yield the mass flow rate Q for different
pressure differences P as

P (atm) 5.0 10.0 15.0 20.0 25.0 30.0
QO (m%h) 74 13.3 16.5 19.0 20.6 24.3

It is known that there is some error in the data. Will you use a best or
an exact fit? Use the appropriate fit to these data and determine the
coefficients. Is the equation obtained by you a good fit?

7.17. Tests are performed on a nuclear power system to ensure safe shutdown
in case of an accident. The measurements yield the power output P
versus time ¢ in hours as

t (h) 1 3 5 9 10 12
P (MW) 13.0 7.0 5.4 4.7 4.5 4.2

From theoretical considerations, the power is expected to vary as
a+ blt, where a and b are constants. It is also known that there is
significant error in the data. What curve fitting will you use? Use an
appropriate fit to these data points and determine the relevant con-
stants. Is it a good curve fit? Briefly explain your answer.

Numerical Curve Fitting and Interpolation 303

7.18. Experiments are carried out on a plastic extrusion die to determine the
relationship between the mass flow rate m and the pressure difference
P. We expect the relationship to be of the form m = AP", where A and
n are constants. The measurements yield the mass flow rate m for dif-
ferent pressure differences P as

m (kg/h) 12.8 15.5 17.5 19.8 220
P (atm) 10.0 15.0 20.0 25.0 30.0

Obtain a best fit to these data, using MATLAB commands, and deter-
mine the coefficients A and 7. Plot the results from your best or exact
fit, along with the data to see if it is a good fit.
7.19. A set of four data points is given as:
x= 05 10 15 20
y= 30 39 52 73
where x is the independent variable and y is the dependent variable.
Write a script-m file to do the following:
a. Obtain the polynomial that passes through all these four points.
b. Use this polynomial to find the value at x = 1.7 by interpolation.
c. Obtain a linear least-squares best fit (linear regression) to these
data points.
d. Use the linear regression to obtain the value at x = 1.7.
e. Plot the data points and the linear best fit on a x—y plot.
7.20. The concentration of salt decreases in a container because of mass
transfer at the surface. The concentration C is measured as a function
of time 7 to yield

t(s) 01 02 03 05 10 20 40 45 50
C (kg/m?* 833 817 80.0 769 69.6 570 382 346 313

An exponential variation of the form C = Be™" is expected on physi-
cal grounds. Obtain a best fit to the data using a MATLAB script file,
and determine the constants B and b. Also, solve the problem using
the polyfit function in MATLAB and compare the results with those
obtained earlier.

7.21. The temperature 7, pressure p (in kilopascals), and specific volume
v, which is inverse of density, for saturated steam are obtained from
tabulated data in the literature as follows:

T(°C) 10 20 30 40 50 60 70 80 90
P (k Pa) 1.23 234 425 738 1235 1994 31.19 47.39 70.13
v (m¥/kg) 1064 5779 3290 1952 12.03 7.67 504 341 236

Obtain a best fit, with a third-order polynomial, to the T-v data. Using
the polynomial obtained, compute the specific volumes at 55°C and
75°C. Also calculate the value at 100°C, and compare it with the
given value of 1.673 m3/kg. Also, using the polyfit command in
MATLAB, obtain the best fit polynomial and compare with that
obtained earlier.

7.22. Using the data given in the preceding problem, obtain a best fit to the
specific volume dependence on pressure. Consider both second- and

304 Computer Methods for Engineering with MATLAB® Applications

third-order polynomials. Using the polynomials obtained, calculate
the specific volumes at 5.0 and 25.0 kPa.

7.23. The pressure-temperature relationship for saturated steam is suggested
to be of the form log p = C + D/T, where C and D are constants and log
represents the natural logarithm. Using linear regression with the data
in Problem 7.21, determine the values of these constants. Is the given
functional dependence of p on T a satisfactory representation?

7.24. The acceleration of certain objects is studied in an experimental test
track for automobiles. The distance traveled by an object L is mea-
sured as a function of time 7 to yield the following:

t(s) 0.1 0.2 0.5 1.0 1.5 1.8 2.0 3.0
L (m) 026 055 156 390 741 1028 12.6 309

Obtain a best fit to this data, considering first-, second, and third-or-
der polynomials. Using these polynomials, calculate the values of the
dependent variable L at the time intervals employed for the given data
to evaluate the accuracy of the polynomial representations. Discuss
the results obtained.

7.25. In the preceding problem, calculate the correlation coefficient to esti-
mate the improvement in the representation of the data by means of
curve fitting.

7.26. For the experimental data given in Example 7.1, obtain a best fit, using
second- and third-order polynomials. Compare the interpolated val-
ues obtained by the exact fit in Example 7.1 with those obtained from
the best fit. Comment on the difference.

7.27. Solve the problem given in Example 7.2 by Newton’s divided-dif-
ference method, and compare the interpolated results obtained with
those given earlier.

7.28. The temperature 7 of a small copper sphere cooling in air is measured
as a function of time ¢ to yield the following:

t(s) 0.2 0.6 1.0 1.8 20 30 50 60 80
T(°C) 146.0 1295 1148 903 851 63.0 346 256 141

An exponential temperature decrease is expected from theoretical
considerations. Using linear regression, obtain the exponent ¢ and the
constant C, where T = Ce™ represents the variation. Also, solve this
problem using the polyfit function in MATLAB.

7.29. The temperature of a furnace wall is expected to vary sinusoidally
with a time period of one day, because of the daily start-up and shut-
down. The measured temperatures at several time intervals 7, where ¢
is measured from midnight, are given as follows:

t (h) 2 3 5 8 10 15 18 22 24
T(¢C) 865 977 1040 101.7 925 623 550 675 80.0

Obtain a best fit to these data, using the method of least
squares and assuming a sinusoidal variation of the form
Asin(2mt/24) + Bcos(2mt/24) + C, where A, B, and C are constants
that are to be determined.

Numerical Curve Fitting and Interpolation

7.30.

7.31.

7.32.

7.33.

7.34.

7.35.

7.36.

7.37.

7.38.

7.39.

7.40.

Calculate the correlation coefficients for the various polynomials con-
sidered for least-squares best fit in Example 7.5, and discuss the trends
indicated by the results obtained.

Derive an expression for the correlation coefficient corresponding to a
third-order polynomial best fit to a data set represented by (x;, y,), from
i =1 to in=n. Discuss the physical implications of this coefficient.
Can the correlation coefficient be related to the accuracy of the best fit
obtained?

Consider an equation of the form y = sin(max) + Ax?, where A, a, and
b are constants. Can the method of least squares be applied to this
equation for a given set of data points? Discuss.

Outline a procedure for obtaining a best fit with a power-law function
of the form y = z + bx", where a, b, and n are constants.

Consider a functional dependence of y on the independent variable
x of the form given by Equation 7.66. Using this equation, outline a
procedure for deriving a best fit to given data.

Use polyfit in MATLAB to get the best fit to the following data,
using first, second, and third order polynomials. Then plot the data
as well as the three best fit curves obtained. Which is the best fit?
Discuss.

x 0 01 02 03 04 05 06 038 1.0 12
y- 0 087 182 286 4.0 526 6.65 988 138 18.52

The flow rate F'is given at various values of the pressure P as

P 0.02 0.05 0.1 0.2 0.3 04 0.5
F 1.7 29 5.6 6.6 7.8 8.7 9.3

Use the last five points to get an exact fit. Use extrapolation with
this fit to obtain values at 0.025 and 0.05. Compare with given data.
Comment on the results.

Obtain the first, second, and third order best fits to the data in the
preceding problem. Plot all the three curves and the data to determine
the best curve to use.

Six data points generated by a polynomial are given. Outline a method
for finding the order of the polynomial. Also apply your method to y
values of 3.61, 5.38, 11.0, 18.34, 28.63, and 35.0 corresponding to x
values of 0.2, 0.5, 1.0, 1.4, 1.8, and 2.0, respectively, where x is the
independent variable and y the dependent variable.

Five data points are given, with one of them in considerable error. How
will you find this point, using the interpolation methods discussed in
the text? Consider, as an example, the following data set:

X 0.25 0.75 1.25 2.5 3.0
Y 2.80 4.60 5.75 7.94 6.5

where x is the independent variable and y the dependent variable.
The decay of the electrical current / in an electronic circuit is mea-
sured as a function of time ¢, following the opening of a switch. The
data obtained are given as follows:

305

306 Computer Methods for Engineering with MATLAB® Applications

t(s) 0.5 1.0 15 25 35 50 65 90 95
I (amperes) 132 101 87 69 63 51 47 42 40

From theoretical considerations, the current is expected to follow a
variation of the form A7, where A and a are constants. Obtain a best
fit to the given data, and determine the values of these constants.

7.41. The flow rate Q in circular pipes is measured as a function of the pres-
sure difference Ap and diameter D. The resulting data for the flow rate
in m%/s are given as follows:

Ap(atm) D (m) 0.3 0.5 1.0 14
0.5 0.13 0.43 2.1 4.55
0.9 0.25 0.81 40 8.69
12 0.34 112 55 11.92
1.8 0.54 1.74 8.59 18.63

Using the method of least squares, obtain a best fit for the flow rate as
a function of the two independent variables D and Ap. It is expected
that Q varies as BD® Ap’, where B, a, and b are constants to be
determined.

7.42. Repeat the preceding problem if the values of the pipe diameter were
given as 0.5, 0.8, 1.4, and 1.9, instead, with the remaining values
unchanged. Similarly, solve the problem again if all the values were
unchanged but the pressure difference values Ap were given as 0.7,
1.2, 1.5 and 2.1, instead.

8 Numerical Integration

8.1 INTRODUCTION

A problem that frequently arises in engineering applications is that of integration of
a given function f(x) over a specified range of the independent variable x. In many
cases, the function f(x) is continuous, finite, and well behaved over the range of inte-
gration a < x < b, where a and b are constants. Then, the integral / where

1 =ff(x)dx ®.1)

may often be determined by using available mathematical or analytical techniques.
The results for common elementary functions such as sin x, cos x, e, x2, 1/x, and so
on, are well known, and those for many more complicated functions are given in
integral tables. Symbolic algebra available in MATLAB®, Mathematica, Maple, and
other such environments may also be used in many cases to obtain the integral ana-
lytically. Analytical, or closed-form, expressions for integrals, whenever available,
are of considerable value since they are exact, that is, without the errors that inevita-
bly arise in numerical methods. Moreover, they are generally applicable over given
domains without any limitations, so that the effect of varying the physical parame-
ters, associated with the problem, on the integral may easily be investigated. In addi-
tion, analytical results can be employed in the validation of a numerical integration
scheme and for estimating the accuracy of the results.

In engineering problems, the function f(x) is often too complicated to be inte-
grated analytically. One or both limits of integration may be infinite, and the func-
tion f(x) itself may be discontinuous or infinite at some point. Also, the function may
be available only at certain discrete points, say, from an experimental study or from
the numerical solution of a differential equation. In this last circumstance, curve fit-
ting, as discussed in the preceding chapter, may sometimes be employed to yield a
function f(x) that can be integrated analytically. Otherwise, numerical integration is
necessary. Similarly, for the various other circumstances mentioned above, analyti-
cal methods may be unavailable, may be time consuming, or may be too difficult to
apply, making it essential to use numerical integration.

Integration, which is also often called quadrature, basically refers to the area
between the curve of f(x) versus x and the x axis, from x=a to x=b, as shown
graphically in Figure 8.1. As expected, the integral / is positive if the area above the
x axis is larger than that below it. This graphical representation of the integral
I=] 2 f(x)dx will frequently be referred to in the development of formulas for
numerical integration.

307

308 Computer Methods for Engineering with MATLAB® Applications

fx) f(x)
Positive
b

a b x a W x

Negative

FIGURE 8.1 Graphical representation of the integral of a function f(x) over x, between the
limits x = a and x = b, as the area between the curve and the x-axis.

In this chapter, various methods for the numerical integration of a continuous or
discretized function f(x) are presented. The most common approach is based on
replacing the function f(x) or the tabulated data with a simple polynomial that can be
easily integrated. This approach gives rise to the Newton—Cotes formulas, the sim-
plest one being obtained when the function f(x) is taken as constant over the various
segments into which the given range a < x < b is divided. The most commonly used
Newton—Cotes formulas are the trapezoidal, Simpson’s one-third, and Simpson’s
three-eighths rules, which are based, respectively, on linear, parabolic, and cubic, or
third-order, polynomial approximations. Although these formulas are derived for
continuous functions, their application to evenly and unevenly spaced data is also
discussed, since experimental and numerical results are generally available at such
discrete values of the independent variable x.

The truncation errors (TEs) in these formulas are determined to evaluate the
resulting accuracy. As the number of segments # into which the region is divided is
increased, or the segment or step size Ax is reduced, the TE decreases, so that the
numerical value of the integral approaches the exact value. However, as Ax is reduced
to very small values, the computational effort and the round-off error increase sub-
stantially, as discussed in Section 2.3, resulting in an increase in the total error with
a further reduction in Ax. Thus, even though the mathematical definition of integra-
tion demands that Ax — 0, a lower limit on Ax is imposed by the round-off error in
numerical integration. These considerations are again discussed later in this chapter.

In many engineering applications, an accuracy higher than that provided by the
relatively simple trapezoidal and Simpson’s rules is demanded from numerical inte-
gration. Various methods for improving the accuracy, such as Richardson’s extra-
polation and higher-order integration formulas, are discussed. Romberg integration,
which provides very high accuracy, without an associated substantial increase in the
computational effort and the round-off error, as encountered at very small segment
size Ax, is of particular importance in such applications and is discussed in detail.

Also considered in this chapter is Gauss quadrature, which is particularly suit-
able for cases where the evaluation of the integrand f(x) is involved and is thus time

Numerical Integration 309

consuming. Adaptive methods, which increase the accuracy of the computation by
focusing on intervals in which the inaccuracy is larger than that in other intervals,
are also outlined. Finally, improper integrals, in which the integrand becomes infi-
nite at some point or the limits of integration are infinite, are discussed, and some of
the techniques that may be employed for computing the integral are presented.

8.1.1 ENGINEERING EXAMPLES

Before proceeding to the various methods for numerical integration, let us consider
a few examples of engineering interest in which numerical integration is needed, in
order to provide a physical background for the discussion to follow. In electrical
engineering, the root mean square (RMS) value of an electrical current /(f), which
varies periodically with time 7, is given by

1,

©

Inwmis =li 12(r)ds 8.2
0

where ¢, is the time for one cycle. Numerical integration is generally needed for an
arbitrary periodic variation of I(f). Periodic processes are also encountered in natural
phenomena, such as the daily and yearly variations of environmental temperatures,
and numerical integration is employed to compute the resulting transport of mass
and energy, say, from the surface of a lake. The integral of the current I(f) entering a
capacitor, _=SI (t)dt, gives the stored charge Q(f). Thus, the voltage V(f) across the
capacitor, due to the current in a given electrical circuit containing the capacitor, of
capacitance C, may be determined, since V=0/C. A similar integral arises in civil
engineering for water storage in a reservoir due to the inflow minus the outflow, both
of which are time dependent. The variation with time is often very complicated, or
the values are known only at certain discrete data points, making it necessary to use
numerical integration.

Integration is very important in radiation heat transfer where integrals over sur-
faces, volumes, wavelength interval of the radiation, and total angle of the incident
radiation are needed to compute the energy transport rates. In most practical cases,
these integrals are too complicated to be obtained by analytical methods. The integral
of the emissive power of a blackbody, Equation 4.62, over wavelength ranging from
zero to infinity is one such example. The mass or energy transfer from a surface is
frequently obtained from an integral of the transport rate, given as a time-dependent
mass or heat transfer flux, per unit area and time. Although some simple problems
may be solved analytically, most practical circumstances require numerical integra-
tion. Such problems often arise in chemical reactors and manufacturing processes.

The volume flow rate in a circular tube, Q, is obtained by an integral of the veloc-
ity distribution V(r) as follows:

R

0= f V(r)2nrdr (8.3)

0

310 Computer Methods for Engineering with MATLAB® Applications

where R is the radius of the tube and r the radial distance from the axis. In most
practical cases, V(r) is a complicated function or is available only at discrete data
points, thus requiring numerical integration for the computation of Q. In dynamic
systems, the work done W is related to the force F(x) and distance x as

w =j’F(x)dx (8.4)

where x, and x, are the initial and final positions. Again, for an arbitrary functional
dependence F(x), numerical integration is needed.

The few examples outlined here indicate the importance of numerical integration
in many diverse engineering fields. Some relatively simple integral expressions are
also given. However, many more complicated forms are often encountered in engi-
neering. For example, multiple integrals commonly arise in radiation due to integra-
tion over several independent variables. Improper integrals, due to the integrand
becoming singular or the integration limits becoming infinite, are also often of interest.
Many of these cases are considered in this chapter. We now proceed to the derivation
of some of the commonly used formulas for numerical integration.

8.2 RECTANGULAR AND TRAPEZOIDAL RULES
FOR INTEGRATION

The most commonly used schemes for numerical integration are the Newton—Cotes
formulas, which are based on the approximation of a complicated function f(x), or of
tabulated data, with a simple polynomial that can be integrated easily. Thus, the
integral 7 is written as

I =j‘ F(x)dx sj‘Pm (x)dx 8.5)

where P, (x) is an mth order polynomial of the form

B, (x)= po+ px+ pox® + 4 p,a”" 8.6)

The p’s are constants that are determined by choosing an interpolating polynomial
that yields the same values of the dependent variable as the given function f(x) at a
finite number of points, as done in Section 7.2.1. However, the replacement of f(x) by
P, (x) is done piecewise over each of the n intervals into which the total range of x is
subdivided. The general approach to the derivation of the Newton—Cotes formulas is
based on Lagrange interpolation, which was discussed in the preceding chapter.
However, the first few approximations may be derived by simple direct methods,
which are based on the graphical interpretation of integration.

The first step in the numerical integration of a function f(x) is the division of the
integration range a < x < b into a finite number n of intervals or strips, as shown in

Numerical Integration 311

Figure 8.2. If Ax is the width of each interval, then Ax = (b — a)/n. The largest value
of Ax is (b—a), which is obtained when the entire range of integration is taken as a
single interval. The independent variable x varies from x = a to x = b in steps of Ax,
so that x may be written as

X =a+iAx, where i=0,12,...,(n-1),n (8.7)

Thus, x, = a, x, = b, and x, represents the value at an intermediate grid point, as shown
in Figure 8.2. The corresponding ordinates are denoted by fi, f1, f5, - -+, fi--+ f,- The
interpolating polynomial, Equation 8.6, is now applied piecewise to the function or
data over these intervals of constant width. Each segment has two end points that can
be used to determine a polynomial of order 1, that is, a straight line, m = 1. However,
for higher order polynomials, more than one segment will be needed in order to pro-
vide the necessary number of points for the determination of all the coefficients of
the interpolating polynomial.

8.2.1 THE RECTANGULAR RULE

The simplest approximation to the function f(x) is a zeroth-order polynomial, that is,
a constant value over each interval. Then the function f(x) is approximated as a con-
stant, at f; or f;,,, over the interval x; < x < x,,,. Thus, the area under the curve in this
interval is taken as f;Ax, or f;,,Ax. For an increasing function, as sketched in Figure 8.2,
the approximation of the function as f; over the interval underestimates the actual
area under the curve, and the approximation as f;,, overestimates the integral.
Similarly, for a decreasing function, the former approximation provides an upper
bound for the integral, and the latter approximation a lower bound.

312 Computer Methods for Engineering with MATLAB® Applications

Therefore, the given integral [is approximated, in the rectangular numerical
integration scheme, by

I =}f(x)dxs 2 fAx (8.8)
or

I =}f(x)dx = §ﬁ+le (8.9)

The first formulation sums the ordinates at the beginning of each interval and multi-
plies the sum with the step size Ax, to give the numerical approximation to the inte-
gral. The second formulation sums the ordinates at the end of each interval and
approximates the integral by the product of this sum with Ax. As shown in Figure 8.2
and as mentioned above, the two formulations provide the upper and lower bounds
for the given integral if the function f(x) is a monotonically increasing or decreasing
function of x. It must also be noted that the difference between the integrals from the
two formulations is simply If, — fylAx, that is, the product of Ax and the difference
between the two end ordinates.

The rectangular rule yields the exact value of the integral only if f(x) is a constant.
For an arbitrary function, the TE is generally very large and the method is seldom
used. However, this discussion serves to illustrate the basic concepts involved in
numerical integration.

8.2.2 THEe TrAPEZOIDAL RULE

The next order approximation of the function f(x) is by means of a first-order poly-
nomial, which implies that the function is replaced by a straight line over each inter-
val, as sketched in Figure 8.3. Then the area under the curve in each element or
interval is replaced by that of a trapezoid. If the areas of these trapezoids are denoted
by, I, ..., 1, asindicated in Figure 8.3, then

1;(%)&(
I, =(f';f2)Ax
I = (fi-12+ﬁ) A (8.10)

Numerical Integration 313

f@®)
fia
N\ f Linear
‘" approximation
= i+1
-+ f
I= M Ax/ 4
2 i+l +fi
Ax
2
Ax Ax
Xi-1 X; i1 X

FIGURE 8.3 Approximation of the given function by straight lines over each of the segments,
in which the integration domain is subdivided, for the trapezoidal rule.

Therefore, the integral / may be approximated by
. Ax
I=ff(x)dx57(f0+2fl+2f2+---+2fn_1+fn) (8.11)

It can easily be shown that the result obtained by this method is simply the average
of the results from the two formulations of the rectangular rule, given by Equations 8.8
and 8.9.

The trapezoidal rule for numerical integration is extensively used in engineering
applications. It is fairly simple to program and it also imposes no constraints on the
choice of the number of intervals n. Simpson’s one-third rule, which is discussed
later in this chapter, for instance, requires n to be even. Since each interval can be
treated separately by the trapezoidal rule, as given in Equation 8.10, the method can
easily be extended to numerical integration with intervals of unequal width. This is
of particular importance in the integration of a function that is given at a finite num-
ber of data points, as is the case in several engineering applications.

8.2.3 TRuNCATION ERROR

In order to derive the TEs associated with the rectangular and trapezoidal rules for
numerical integration, let us define a function y(x) as

y(x) =jf(x)dx (8.12)

so that y(x) is the integral of the function f(x) from x = a to x, as shown graphically in
Figure 8.4. Also, from Equation 8.12 and from basic calculus,

Y(x)=f(x). yr(x)=r(x). v (x)=r"(x)-. ®8.13)

314 Computer Methods for Engineering with MATLAB® Applications

Rectangular
rule, Equation 8.9

d
fw=-3
fi+]
Trapezoidal
rule, Equation 8.10
Rectangular
rule, Equation 8.8
Ax
Xi Xit1 x
I=y(x)
A Yit1
Yir1|~ Vi
Y
Vi

FIGURE 8.4 Sketch of a function and its integral for the estimation of TE in numerical
integration by the rectangular and trapezoidal rules.

Since y(x) represents the integral of the function, the exact integral over the range
X; < x < Xy 18 y(x;,,) — y(x). With y(x,) denoted by y,, the exact area under the curve in
the given interval is, therefore, y,,, — y;.

Assuming both y(x) and f{x) to be continuous and smooth over the interval
x; <x<x,,, we may expand y,, and f;,, in Taylor series about x =x;. Thus, if the
derivatives are denoted by primes, the expansion for y,,, is given by

Ax)’ Ax)’
Vi1 = Yi + Axyi + (le)y[’ + (;!)y,f” + O[(Ax)4]

Using the relations in Equation 8.13, this formula gives the exact integral over the
interval x; < x < x,,, as

Ar) Ax)
Vi =Y = Axy] + (2!) v+ (3!) i+ 0[(&)4]

Ax)’ Ax)’ 4
= Axf, + (2!) £+ (3!) ﬁ”+o[(Ax)] (8.14)

Numerical Integration 315

Similarly, y, may be expanded in a Taylor series about x = x,,, as follows:

Ax) Ax)’ 4
Yi = Yin _Axﬁﬂ + (2') ‘fl‘-;-l - (3y) f;’:l +0[(Ax)]

Thus, the exact integral over the interval x; < x < x,,, is given by

(Ax)’
2!

3
Jiat (AS? Jia+Ol(Ax)*) &.15)

Vi1 = Vi = AXfiy, -

8.2.3.1 Rectangular Rule

In the rectangular rule, the integral over the interval x; < x < x,,, is approximated by
fi Ax in the first formulation, Equation 8.8, and by f,,; Ax in the second formulation,
Equation 8.9. The exact integral is y,,; — y;. Therefore, from Equation 8.14, the TE in
the first formulation of the rectangular rule is

TE = (y. -v)- flx

Exact Numerical
value approximation
2
(M) ' 3
= f/+0|(Ax
2 1

This implies that the leading term of the TE associated with this step is [(Ax)?/2]f;"
Similarly, from Equation 8.15, the TE in the second formulation of the rectangular
rule is obtained as follows:

TE = (yi+1 - Vi) = finhx

Exact Numerical |
value approximation
(ax)

Using the remainder theorem, discussed in Chapter 4, we write the error per step in
the two formulations, respectively, as follows:

TE (&) A
step=(2)f (g) and . 2) f'(E) wherex,<g<x, (810

8.2.3.2 Trapezoidal Rule
Expanding the function f{x) in a Taylor series about x = x;, we obtain

AxY Ax)’ 4
AR C N of(ax)']

316 Computer Methods for Engineering with MATLAB® Applications

Therefore,

' i1 — Ji Ax " Ax ’ 1 3
ﬁ=fmf—2ﬁ-f6)ﬁ+oﬁmw (8.17)

This formula is simply the forward difference approximation for f;[along with the
associated TE, as derived in Chapter 4. Substituting this expression into Equation 8.14,
we obtain

sz i+1 — Ji Ax " sz m
yi+l_yi=Axfz"+% %—71. _(6)f’ _

. (A;)z o 0[(Ax)4] (8.18)

J +fi _ 1 P 4
=M—5—-§maﬁ+qmﬂ]
Since (y,,; — ;) is the exact area under the curve and Ax(f,, +f)/2 the trapezoidal
area in the interval considered, the TE per step is the difference between the two,
that is,

Again, using the remainder theorem, we write the TE for integration over the inter-
val x; <x < x,, as

TE 1
wep =12

3

f”(%) where x; <€<x;,, (8.19)

This expression gives the TE in the (i +)th strip, or subinterval, see Figure 8.2.
Therefore, the TE per step in the trapezoidal rule is O[(Ax)3]. Since the error is zero
if f” =0, the method is exact only for a linear function.

8.2.3.3 Total Error

The total error in integrating the function f(x) over the entire interval a <x<b is
obtained by the summation of the errors over n subintervals. Therefore, the total
truncation error E for the trapezoidal rule is

E= 2 [—%(Ax)z f (E;)}, where x; <&; < x;,, (8.20)

The maximum total error may be estimated from this expression by employing the
largest value of f” in each subinterval. However, the second derivative f” may not be

Numerical Integration 317

easy to evaluate in many practical circumstances. A more useful alternative expres-
sion for the total error is obtained by defining an arithmetic mean f;[] of the values
of f”(€) in the n strips. Then

2 f(&)=nf. 8.21)

Therefore, the total truncation error E may be expressed in terms of f[, as follows:

1 (Ax)3 b—afa”

E=——(Ax)3na'v’=—ﬁ

(8.22)
- L (-l

Assuming f]. to remain essentially constant as the step size Ax is varied, we write
the total TE as

E = S;(Ax)? = O[(Ax)*] (8.23)

where S; = —(b—a) fo /12 and is assumed to be a constant, as indicated by the
approximation (=) sign. Thus, the trapezoidal rule is a second-order method.

Proceeding in a similar manner for the rectangular rule, we can show that the
total TEs, for the two formulations of Equations 8.8 and 8.9, are, respectively,

Ax ’ Ax !
=5 (b-a)fi and -Z(b-a)f (8.24)
where f][is the average of the f”(€,) values in the n strips. This expression may again
be written as

E = Si (Ax) = O(Ax) (8.25)

where Sy = (b-a)f,,/12 and is again assumed to be essentially a constant. Therefore,
the rectangular rule is a first-order method. Both the trapezoidal and the rectangular
rules for numerical integration are quite simple to program. The difference between
the two lies only in the incorporation of the ordinates at the ends of the total range in
the summation of the ordinates for the numerical scheme. The rectangular rule uses
only the ordinate at x = a in the first formulation and at x = b in the second formula-
tion, whereas the trapezoidal rule uses the average of the two. The ordinates in the
interior region are summed in all three cases, see Equations 8.8, 8.9, and 8.11. Since
the trapezoidal rule is more accurate than the rectangular rule, there is no reason to
use the latter. In fact, the trapezoidal rule is among the most widely used schemes for
numerical integration in problems of engineering interest because of its simplicity.

318 Computer Methods for Engineering with MATLAB® Applications

8.2.3.4 Accuracy

As shown in the expressions for the TEs in the rectangular and trapezoidal integra-
tion methods, the error decreases as the step size Ax is decreased, that is, as the
number of segments 7 is increased. This behavior is expected, as discussed in Section
2.3. Thus, the accuracy of the numerical results can be improved by decreasing Ax,
a process generally known as grid refinement. However, as Ax is decreased, the
number of segments increases and so does the computational effort. This results in
an increase in the round-off error. Therefore, the total error, which includes the TE
and round-off errors, is reduced by decreasing Ax to a certain point, beyond which
the round-off error becomes substantial and the total error increases with decreasing
Ax, see Figure 2.12. All of these considerations were discussed in Section 2.3 and are
repeated here to emphasize the importance of numerical errors and the need to vary
the grid size, Ax, keeping it larger than the constraint imposed by the round-off error,
to ensure that the numerical solution is essentially independent of the value chosen.
Figure 8.5 shows a typical variation of the numerical value of the integral / with the
segment size Ax. Then the largest grid size at which the solution becomes essentially
independent of Ax, so that a further reduction in the segment size does not signifi-
cantly affect the results, is chosen, as shown in the figure.

Example 8.1

A capacitor in an electrical circuit is initially at zero charge. Attime t of 1 s, a switch
is closed, and a time-dependent electric current /(t) charges up the capacitor. The
current is given as

I(t) = 4(1 _ e—O,S)e—O.S(t—T)“ _ e—[) (826)

Using the trapezoidal rule for numerical integration, compute the charge Q and
the voltage V across the capacitor as functions of time up to t=20s. The capaci-
tance C of the capacitor is 0.025 farad.

f

Proper choice
of Ax

Numerical value of integral, /

FIGURE 8.5 Dependence of the numerical value of the integral 7 on the segment size Ax
and a suitable choice of Ax for further computations.

Numerical Integration 319

SOLUTION
The charge Q stored by the capacitor is given by the integral

Q) = f I(t")dt’ 8.27)
0

where t is the time at which the charge is to be determined and t’ is simply a
dummy variable. The voltage across the capacitor is given by

V(i) = — (8.28)

Here, it is assumed that the charge and thus the voltage across the capacitor are
zero att=1s, as given in the problem. Therefore, this problem requires the appli-
cation of the trapezoidal rule for evaluating the integral

Q(U =f4(1 _ e—OAS)e—O,S(t’—U(-[_ e—t’)dtl (829)
1

Appendix B.19 presents a MATLAB function-m file for solving this problem.
The current /() is the function to be integrated and is entered as a string. Thus, a
function file f87.m, as given below, is defined for this problem and the function f
in the function m-file in Appendix B.19 is entered as f81".

function z=1£81(x)
z=4* (1l-exp(—0.5)) .*exp (—0.5*% (x-1)) . * (1—exp (—x)) ;
end

Note that .* is used instead of * for multiplication in order to allow x to be speci-
fied as an array, if needed.

The lower limit of the integral is a and the upper limit is b. The number of subin-
tervals m is specified, so that the segment size h is given by h = (b — a)/m. Therefore,
the function m-file given in Appendix B.19 is invoked as trap(‘f81’, 1, 2, 8); for 1
as the lower limit, 2 as the upper limit, and 8 as the number of segments, yielding
h=0.125. The upper limit is varied in increments of 2 each to study its effect on
the integral. For the given problem, b is thus varied from 2 to 20 s. The sum of
the ordinates in the interior region of the integration domain is computed, and the
trapezoidal rule is applied to yield the numerical value of the integral in Equation
8.29. This gives the electrical charge Q at time t. From the computed value of
Q, the voltage V is determined from Equation 8.28. An alternative, more com-
pact, implementation of the algorithm for the trapezoidal rule is also shown in
Appendix B.19. Here, x is employed as an array, for which the function definition
given above is needed. Obviously, there are different ways of applying the formu-
las to obtain the integral.

Figure 8.6 presents some of the numerical results obtained, with the upper limit
of the integral b being varied from 2 to 20 s. The number of segments and thus
the step size h was also varied, starting with 2 s and then successively halving it.
The results remain essentially unchanged as h is decreased from 0.125 to 0.0625 s,
indicating the former to be adequate for this computation. The results at h=2s
were found to be in considerable error. The effect of the segment size h is shown

320 Computer Methods for Engineering with MATLAB® Applications

more clearly in Figure 8.7 by a plot of the charge Q at t=2, 4, and 8 s versus h.
Clearly, the accuracy is improved as h is decreased, over the range considered,
due to the decrease in the TE. Also, the effect of h on the results is smaller at large
values of t. This behavior is expected from the function being integrated, since the
integrand approaches zero at large time, giving a constant value of the integral as
t becomes large.

Step size =2.0000

Time = 2 Charge = 1.8203 Voltage = 72.8117

Time = 4 Charge = 1.3396 Voltage = 53.5851

Time = 6 Charge = 2.2241 Voltage = 88.9637

Time= 8 Charge = 2.5659 Voltage = 102.6346
Time = 10 Charge = 2.6924 Voltage = 107.6964
Time = 12 Charge =2.7390 Voltage = 109.5602
Time = 14 Charge = 2.7561 Voltage = 110.2460
Time = 16 Charge = 2.7625 Voltage = 110.4982
Time = 18 Charge = 2.7648 Voltage = 110.5910
Time =20 Charge = 2.7656 Voltage = 110.6252

Step size = 1.0000

Time = 2 Charge = 0.9101 Voltage = 36.4059
Time = 4 Charge = 2.0454 Voltage = 81.8159
Time = 6 Charge = 2.4938 Voltage = 99.7509
Time = 8 Charge = 2.6603 Voltage = 106.4101
Time = 10 Charge = 2.7216 Voltage = 108.8629
Time = 12 Charge = 2.7441 Voltage = 109.7654
Time = 14 Charge = 2.7524 Voltage = 110.0974
Time = 16 Charge = 2.7555 Voltage = 110.2195
Time = 18 Charge = 2.7566 Voltage = 110.2644
Time =20 Charge = 2.7570 Voltage = 110.2810
Step size = 0.2500

Time = 2 Charge = 0.9368 Voltage = 37.4712
Time = 4 Charge = 2.0624 Voltage = 82.4962
Time = 6 Charge = 2.5028 Voltage = 100.1135
Time= 8 Charge = 2.6662 Voltage = 106.6470
Time = 10 Charge = 2.7263 Voltage = 109.0531
Time = 12 Charge = 2.7485 Voltage = 109.9384
Time = 14 Charge = 2.7566 Voltage = 110.2641
Time = 16 Charge = 2.7596 Voltage = 110.3839
Time = 18 Charge = 2.7607 Voltage = 110.4280
Time =20 Charge = 2.7611 Voltage = 110.4442

Step size = 0.1250

Time = 2 Charge = 0.9382 Voltage = 37.5280

Time = 4 Charge = 2.0634 Voltage = 82.5346

Time= 6 Charge = 2.5034 Voltage = 100.1359
Time= 8 Charge = 2.6666 Voltage = 106.6631
Time = 10 Charge = 2.7267 Voltage = 109.0669
Time = 12 Charge = 2.7488 Voltage = 109.9513
Time = 14 Charge = 2.7569 Voltage = 110.2767
Time = 16 Charge = 2.7599 Voltage = 110.3964
Time = 18 Charge = 2.7610 Voltage = 110.4404
Time =20 Charge = 2.7614 Voltage = 110.4566

FIGURE 8.6 Numerical results obtained for the charge Q and the voltage V, as functions of

time 7, in Example 8.1, at several values of the step size h.

Numerical Integration 321

Step size = 0.0625

Time = 2 Charge = 0.9386 Voltage = 37.5422

Time = 4 Charge = 2.0636 Voltage = 82.5442

Time= 6 Charge = 2.5035 Voltage = 100.1416
Time= 8 Charge = 2.6667 Voltage = 106.6672
Time = 10 Charge = 2.7268 Voltage = 109.0704
Time =12 Charge = 2.7489 Voltage = 109.9546
Time = 14 Charge = 2.7570 Voltage = 110.2799
Time = 16 Charge = 2.7600 Voltage = 110.3996
Time = 18 Charge = 2.7611 Voltage = 110.4436
Time = 20 Charge = 2.7615 Voltage = 110.4598

FIGURE 8.6 Continued.

The results show that the charge Q approaches a constant value of around 2.76
coulombs as time increases beyond about 18 s. This indicates that the capacitor
is fully charged by this time. A constant voltage difference of 110.46 V across the
capacitor is also attained. The electrical current asymptotically approaches zero,
as expected from the form of the given function /(). Thus, as t — oo, the charge Q
and voltage V approach constant values, indicating a finite constant value of the
integral as the upper integration limit approaches infinity. The integral for t — oo
may also be evaluated analytically to yield Q as 2.76176, which agrees closely with
the numerical result obtained. Appendix C.12 gives the corresponding program in
Fortran for this problem and a similar logic is employed to implement the algo-
rithm for the trapezoidal rule.

t=8s
2.0 A t=ds
"
Na}
g
°
=
2
L
(o7
Q.
o0
=
=
O 1.0 A
t=2s
T T
0 1.0 2.0
Step size h (s)

FIGURE 8.7 Variation of the computed capacitor charge Q, att = 2,4, and 8 s, with the time
step h.

322 Computer Methods for Engineering with MATLAB® Applications

8.3 SIMPSON'’S RULES FOR NUMERICAL INTEGRATION

One can improve the accuracy with which an integral is computed by increasing the
number of segments 7 into which the range of integration is divided, constrained by
the round-off error which becomes significant as the step size Ax is reduced to very
small values, or by employing higher-order polynomials P, (x) to approximate the
function f(x). The trapezoidal rule uses a straight line to approximate the function
over each segment. Simpson’s one-third rule, usually referred to as simply Simpson’s
rule, uses second-order polynomials, that is, parabolas, to approximate the function.
One connects successive groups of three points on the f(x) versus x curve with
parabolas to determine the area under the curve over the interval defined by these
points. Similarly, a third-order polynomial, m = 3, requires four points on the curve
for the approximation of the function and leads to what is known as Simpson’s three-
eighths rule. Since each segment of the integration domain is associated with only
two points on the curve, as shown in Figure 8.2, Simpson’s one-third rule requires a
minimum of two segments and an even number of segments n into which the total
range of integration is subdivided. Simpson’s three-eighths rule requires a minimum
of three segments, and, if it is used in conjunction with the one-third rule, n may be
odd or even.

8.3.1 SiMpsON’s ONE-THIRD RuLE

The function f{x) in the integral

1 =ff(x)dx @®.1)

is replaced by a second-order polynomial, or a parabola, for numerical integration by
Simpson’s rule. Three points on the curve of f(x) versus x are needed to determine
this parabola. Consider the three points (x,_, f._)), (x;,), and (x,,,, f,;), as shown in
Figure 8.8. A parabola that passes through these three points may be found and the
area under the curve of f(x) approximated by that under the parabola. Two segments,
each of width Ax, are involved in this computation, since three points are needed to
define the parabola.

We may employ the various methods of interpolation discussed in Chapter 7 to
determine the parabola passing through the three given points. Lagrange
interpolation provides the general method for deriving Newton—Cotes formulas.
However, because only a second-order polynomial, m = 2, is under consideration
here, we may simply employ the general form of the equation for a parabola and
determine the coefficients by substituting the coordinates for the three points into
this equation, as done in Section 7.2.1. Therefore, the second-order polynomial may
be taken as

P, (x) =Ax*+Bx+C (8.30)

Numerical Integration 323

fx) /i f Parabola
ﬁl/ h \< J(Pz(x):Ax2+Bx+C
Function
f)
Ax Ax
Xi-1 X; Xitl x

FIGURE 8.8 Replacement of the function f{x) over the width of two segments by a parabola
for the derivation of Simpson’s one-third rule.

Since this parabola passes through the three points being considered, as shown in
Figure 8.8, the constants A, B, and C can be determined from

fo = A(-Ax) + B(-Ax)+C
f=C
fr = A(Ax)' + B(Ax)+C

where x; has been taken at the origin, x = 0, to simplify the calculation. Such a choice
does not affect the generality of the derivation. From the above equations,

A=ﬁ_1—2f;-'|2'ﬁ+l, B=ﬁ+1_ﬁ_1, C=f;
2(Ax> 2Ax

The area under the polynomial of Equation 8.30 is denoted by 1, and is given by

Ax
I,= [(A¥ +Bx+C)dx= [Ax3+Bx2+Cx]_AX - %A(Ax)S +2C(Ax)

3 2

pe— =

Therefore, the area under the curve in the two segments is approximated by

Jior =20 + fia (S A+ S
1 =[3+2fl]Ax—(3)Ax (8.31)

p

where the expressions for A and C, given above, have been substituted. This formula
is known as Simpson’s rule, or as Simpson’s one-third rule, because the step size
Ax is divided by 3 in the formula. The use of the one-third in the terminology
distinguishes this method from a similar one, derived later, in which Ax is multiplied
by 3/8, instead of 1/3, and which is known as Simpson’s three-eighths rule.

324 Computer Methods for Engineering with MATLAB® Applications

f@ frn Fa L

h
Xo X1 X Xp-2 Xp-1 Xp x

FIGURE 8.9 Application of Simpson’s rule, with an even number of strips, for the numeri-
cal integration of a function f(x) over the range x =a to x = b.

We may use the expression in Equation 8.31 for the integral over two segments
to determine the integral over the entire range a <x < b, which is divided into n
segments of equal width Ax. Here, n must be even in order to consider groups of two
segments for the application of Equation 8.31, see Figure 8.9. Then the total integral
I is approximated by the following:

I =}f<x)dx = Enup),

where (I,); is the integral given by Equation 8.31 for the jth group of two segments.
Thus, i in Equation 8.31 is given by i = 2j — 1. Therefore,

Ax n-1 n=2
g S e

It is shown later in this section that the TE per step in numerical integration by
Simpson’s rule is O[(Ax)’], which results in a total error of O[(Ax)*]. Therefore, this
is a fourth-order method and is much more accurate than the trapezoidal rule for an
arbitrary function f(x). If the function being integrated is a polynomial of order zero,
one, two, or three, Simpson’s rule is exact, that is, there is no TE. This is because the
leading term in the TE contains only the fourth derivative f”, all terms containing
the lower derivatives having canceled out. Computer programming for Simpson’s
rule is more involved than that for the trapezoidal rule. However, because of its much
higher accuracy level, Simpson’s rule is widely used in engineering applications,
where accuracy is usually important. Example 8.2 demonstrates the use of this
method in a problem of practical interest.

8.3.2 SimPsON’s THREe-EIGHTHS RuLE

If a third-order polynomial, m = 3, is employed to approximate the integrand f{x) by
requiring that it pass through four points on the curve of f(x), Simpson’s three-eighths

Numerical Integration 325

Polynomial
Ps(x) = Ax® + Ba? D
f) - ___K_f(jc) x°+ Bx"+ Cx +
/ ft .f;+1 ﬁ+2 T
/// fia Function
/ Sx)

FIGURE 8.10 Replacement of the function f(x) over the width of three segments by a third-
order polynomial for the derivation of Simpson’s three-eighths rule.

rule is obtained. A minimum of three segments are needed in order to provide the
four points for the determination of the polynomial, as shown in Figure 8.10. The
general equation for the polynomial is taken as

Py(x)= Ax* + Bx> +Cx+ D (8.33)

In a manner similar to that given in the preceding for the derivation of the one-third
rule, the polynomial is determined by substitution of the coordinates of the four points
through which it passes. The integral over the three segments is approximated by the
corresponding integral 1, of the polynomial P;(x). The resulting expression for /, is

I, =

Ax(fioy +3f+3fui + fa) (8.34)

0| W

For application of this method over the entire range of integration, n must be a
multiple of 3. Then the integral I is approximated by

n/3

I =jf(x)dx = Z(Ip)j

where (1,); is the integral for the jth group of three segments, giving i in Equation
8.34 as i =3j— 2. Thus,

I=§M[fo+3.2 (Fefi) ez 3 f,»+f,,] (835)

i=3,0,9.

=14,

It is shown below that the TE in numerical integration by Simpson’s three-eighths
rule is of the same order as that for the one-third rule. Because of this and the require-
ment that the number of segments n must be a multiple of 3, the three-eighths rule is
seldom used by itself. Simpson’s one-third rule is easier to program, and the constraint

326 Computer Methods for Engineering with MATLAB® Applications

on n is only that it must be even. However, if the two methods are used together, no such
constraint on n is needed. If n is even, Simpson’s one-third rule is employed for numeri-
cal integration over the entire region. If n is odd, one can use Simpson’s three-eighths
rule, for instance, to compute the area under the curve in the first three segments and
the one-third rule for the remaining even number of segments. Thus, a combination of
the two methods provides fourth-order accuracy in the numerical results, without
restricting the number of segments that may be employed, except that n > 2.

8.3.3 TRuUNCATION ERRORS

The derivation of the TEs associated with the two Simpson’s rules for numerical
integration follows the procedure presented for the trapezoidal rule. Thus, y(x) repre-
sents the integral = f(x)dx, and y'(x) = f(x), y"(x) =f'(x), and so on. The exact area
under the curve of f(x) over the two segments shown in Figure 8.11 is y,,, — v,
Expanding y,,, and y, , in Taylor series about y,, we obtain

Ax 2 A}C 3 A)C 4 A)C 5
Vit = Vi +A)Cy,/ + (2‘) yi” + (3') yim + (4') yi//// +(5!)yi//n/ Foeee
Ax 2 Ax 3 Ax 4 A_x 5
yl_] =y‘ —Axy["'(2!) yl// _(3!) yi/// + (4!) i/l// _(5!) yi/fl// +..‘
Therefore,
Ax)’ AxY
Yier = Vi = 2Axf, +(3)f” +(60)fiw + O[(Ax)7] (8.36)

where the relationships between y(x) and f(x), from Equation 8.13, have been used. The
finite difference approximation for f[is needed to obtain the expression for Simpson’s
one-third rule on the right-hand side of Equation 8.36. From Section 4.4.2,

"o_ fz"+1 _Z.f; +f1"—1 _i 2 11 4

Substituting this expression for f;[] into Equation 8.36, we obtain the resulting
equation:

A.x 1 5 rree 7
Yiet = Vi =T(fi+l +4f +ﬁ—])_%(m) i +0[(Ax)]

Exact Val
xact Value Simpson’s One-Third Rule TE

From the remainder theorem, the truncation error per step (TE/step) of Simpson’s
one-third rule for numerical integration is
TE 1

e -9—O(Ax)5 £7"(€), where x_, <E<x,, (8.37)

Numerical Integration 327

=2
fi+1
/

fir AT

Xi1| X Xiv1 x

- 7'y
Yir1 Vi1~ Vi1
Yi v

Yi-1

FIGURE 8.11 Sketch of a function y’(x) and its integral y(x) for the estimation of TE in
Simpson’s rule for numerical integration.

"’

Therefore, the error will be zero if f”” = 0. This implies that the method is exact for
polynomials up to third-order. We obtain the total error E by summing the errors in
all the steps:

E= [—(Ax)s A (Ez) . where x,,_, <; <x,

Again, defining an arithmetic mean f[] of the values of /”” in the n/2 subintervals,
each of width 2Ax, we may write the total TE as

1

R SE 1 b-a nn
90

nn S
3 fo =_%(M) 2Ax o

1 nn
E- —@(MY (b-a)f

E=-—-(Ax)

(8.38)

328 Computer Methods for Engineering with MATLAB® Applications

If £l is assumed to remain essentially unchanged as Ax is varied, the total error E
may be expressed as

E = S,(Ax)* = O[(Ax)*] (8.39)

where S, = —(b-a) £,)"/180 and is assumed to be a constant. This indicates that
Simpson’s one-third rule is fourth-order accurate. On the basis of this expression for
the TE, higher-order accuracy may be obtained by the use of Richardson extrapola-
tion, as discussed in the next section.

The TE for Simpson’s three-eighths rule may be derived in a similar way. It can

be shown that the TE per step in the expression given by Equation 8.34 is

TE 3

o =50 (& 77(E). wherex <& <,

Proceeding as before, we can show that the total error E is

E=- %(Ax)4 (b-a)f,)" =S¢ (Ax)* (8.40)
where f[][is the arithmetic mean of the values of f”” in the n/3 subintervals, each of
width 3Ax. Therefore, the method is also fourth-order accurate, and the total error is
somewhat larger than that for the one-third rule for a given step size Ax. However, if
the total integration region is divided into three segments for the application of the
three-eighths rule and into two segments for the one-third rule, the former yields
more accurate results, because the step size is (b — a)/3 in the first case and (b — a)/2
in the second case. The smaller step size for the application of the three-eighths rule
then yields a smaller total TE.

Example 8.2

The velocity profile in the turbulent flow of a fluid in a smooth circular pipe may
be represented by the empirical power-law equation

7

U(x) = 5(1 - 1) (8.41)
R

where U(x) is the axial velocity in the pipe, in m/s, x is the radial distance from the

axis, in meters, and R is the radius of the pipe. The total volume flow rate in the

pipe is then given by the integral f§ U(x)2mxdx. Using Simpson’s one-third rule,

compute this integral as accurately as possible for R=0.1 m. Also determine the

average velocity.

SOLUTION

The integral to be evaluated numerically is

V7

0.1
| = 5(1 - L) 2mx dx (8.42)
[0.1

Numerical Integration 329

Since x and R are in meters and the velocity U is in m/s, this integral will yield the
volume flow rate in m3/s. We obtain the average velocity V,, by dividing the flow
rate by the area of cross section of the pipe. Therefore,

L B (8.43)

Vav =
R 7(0.1)°

Appendix B.20 presents the computer program in MATLAB as a function
m-file for the numerical integration of a given function by Simpson’s one-third
rule. The function file is simp(f,a,b,n), where f is the function to be integrated, a
and b are the lower and upper limits of integration, respectively, and n is the total
number of segments. In employing this function file, the function to be integrated
is defined separately as another function file, f82.m, given as

function z=1£82(x)
z=5%((1-x/0.1) .7 (1/7)) *2*pi.*x;
end

Again. * and A are employed so that x can be treated as an array. Then, the
function m-file for Simpson’s rule is invoked by the command simp(‘f82’,0,0.1,10);,
where the given function to be integrated is entered as a string, the limits of inte-
gration a and b are 0 and 0.1 here and the number of segments n is entered as 10.
The integral / is computed by Simpson’s one-third rule to yield the resulting flow
rate. Then, the average velocity is obtained by the use of Equation 8.43. As given
earlier for the trapezoidal rule, an alternative, more compact, implementation of
the algorithm for the Simpson’s one-third rule is also shown in Appendix B.20.

The numerical results obtained from the numerical scheme are presented in
Figure 8.12. The computed flow rate and the average velocity are shown for the
number of subdivisions n ranging from 10 to 5120. Note that n =320 is quite
adequate for this problem. Again, at much larger values of n, the round-off error
is expected to become significant and to increase the total error, acting against
the decrease in the TE, as n is increased. Although n is successively doubled a
chosen number of times in this program, a better approach would be to continu-
ously monitor the effect of increasing n on the numerical value of the integral. If
the change in / from one value of n to the next higher value is smaller than a cho-
sen convergence criterion, then the computation may be terminated. In the given
function m-file, n is increased to values much larger than necessary, in order to

n= 10 Flow rate = 0.1230 Avg. vel. =3.9165
n= 20 Flow rate = 0.1259 Avg. vel. =4.0079
n= 40 Flow rate = 0.1272 Avg. vel. =4.0492
n= 80 Flow rate = 0.1278 Avg. vel. =4.0679
n= 160 Flow rate = 0.1281 Avg. vel. =4.0763
n= 320 Flow rate = 0.1282 Avg. vel. =4.0802
n= 640 Flow rate = 0.1282 Avg. vel. =4.0819
n=1280 Flow rate = 0.1283 Avg. vel. =4.0827
n=2560 Flow rate = 0.1283 Avg. vel. =4.0830
n=>5120 Flow rate = 0.1283 Avg. vel. =4.0832

FIGURE 8.12 Numerical results on the flow rate and the average velocity, obtained in
Example 8.2, for various values of the number of subdivisions 7.

330 Computer Methods for Engineering with MATLAB® Applications

determine if the effect of round-off error becomes significant at the larger values.
The results shown indicate that the trends are pretty much as expected, and the
round-off error is small over the range of n considered.

The ratio of the average velocity V,, to the velocity V, . at the axis can be
shown analytically to be given by the expression

Ve 2n?

Vinax (n + 1)(2n + 1)

(8.44)

where 1/n is the exponent in Equation 8.41. In the present case, n=7 and V,,,, =

max

5 m/s, being the velocity atthe axis, x = 0. This gives V,, = 0.8167V,,, = 0.40835 m/s.
This analytical value agrees closely with the numerical result obtained, lending
support to the accuracy of the numerical scheme.

8.3.4 Use oF MATLAB® INTEGRATION COMMANDS

We have discussed some of the commonly used methods for numerical integration.
The basic formulas and the algorithms have been presented, along with MATLAB
and Fortran programs. However, there are several commands for numerical integra-
tion that are available in the MATLAB environment and that can be used quite
effectively in many cases. Among the most common commands is quad, which is
invoked to obtain the integral s as

s=quad('f',a,b)

where fis a function file, which defines the function to be integrated, a is the lower limit
of integration and b the upper limit. The command numerically obtains an approxima-
tion to the integral of scalar-valued function f from a to b to within an error of 1.e—6
using recursive adaptive Simpson quadrature. The adaptive scheme allows it to use finer
subdivisions in regions with accuracy lower than the desired value, as discussed later.
An inline definition of the function f can also be used. Then the command used is

s=quad(f,a,b)

As an example, if the speed v is given as a function of time fas v =2 + 31 + 21> + £.
Then the integral _=6 v(t)dr gives the total distance traveled. This integral can be
obtained by using the gquad command as

>>v=1inline ('2+3*t+2*t."2+t."3");
>>dist =quad(v,0,2)

This gives the result as

dist =
19.3333

Similarly, the function may be defined as

function z=fn(t)
z=2+3*t+2*t.%2+t."3;
end

Numerical Integration 331

Then the quad command is invoked as
>>dist =quad('fn',0,2)
yielding the result as

dist =
19.3333

Other limits may be easily employed as

>>dist =quad('fn',0,4)
dist =

138.6667
>>dist =quad('fn',0,1)
dist =

4.4167

There are several other such commands, including quad2d for numerically evalu-
ating a double integral over a planar region, triplequad for numerically evaluating
a triple integral, and trapz, which computes the integral using the trapezoidal
method. All these commands, along with the guad command discussed above, may
be employed instead of the various methods for integration given here to simplify the
programming or to verify the results. For instance, Examples 8.1 and 8.2 may be
solved by using the quad command as

>>int =quad('f81',1,6)
int =

2.5036
>>int =quad('£f82',0,0.1)
int =

0.1283

where the given function files f81.m and f82.m are used and the limits of integration
are specified. Clearly, it is easier to use the available commands for integration.
However, greater flexibility and control, particularly on the numerical parameters, is
obtained by algorithms and programs developed by the user.

As mentioned earlier, symbolic algebra can also be used in MATLAB to obtain
analytical expressions for the integral in many cases. We first need to construct sym-
bolic numbers, variables and objects. The command x = sym('x") creates the sym-
bolic variable with name x and stores the result in x. The symbolic integration
function is given by the command int. Thus, we could use

>>t=sgym('t');
>>s=1int (2+3*t +2*t*2+t"3)

which yields the result

s:
t™4/4+ (2*t£73) /3 + (3*t72) /2 +2*t

332 Computer Methods for Engineering with MATLAB® Applications

Similarly, the integral [e~ dx is obtained by

>>x=gym('x"');
>> g =int (exp (—x"2))
s:

(pi™(1/2) *erf (x)) /2

where erf is the error function.
A few other examples may thus be given as

>> int (x*2)
ans =

x*3/3

>>int (sin(x))
ans =

-cos (x)

>>int (exp (=x))
ans =

—1/exp (x)
>>1int (log (x))
ans =

x* (log(x)—1)
>>int (1/x)
ans =

log (x)

8.4 HIGHER-ACCURACY METHODS

Accuracy is particularly important in engineering applications. In the dynamics of
bodies, for instance, the integration of the force over distance gives the energy, an
accurate determination of which is necessary to study the damping and accelerating
characteristics of the body for a suitable control system. Similarly, the integral of
mass transfer rate over time yields the total mass transfer from a chemical reactor.
An accurate evaluation of this integral is needed for supplying the required inflow of
material into the system. Because of the high level of accuracy generally needed in
engineering problems, methods have been developed for improving the accuracy of
the numerical results obtained from integration formulas such as those discussed in
the preceding sections. Higher-order Newton—Cotes formulas may also be employed
for obtaining greater accuracy in numerical integration. This section discusses sev-
eral of these higher-accuracy methods.

8.4.1 RICHARDSON EXTRAPOLATION

Richardson extrapolation, which is also called deferred approach to the limit, is
a numerical method for improving the accuracy of the results obtained from a
given numerical scheme, provided an estimate of the total discretization error is
available.

Numerical Integration 333

Although the technique is applied to numerical integration here, it can be used for
a wide variety of numerical problems, such as the solution of differential equations
by finite difference methods. Let us first consider integration by the trapezoidal rule.
The total TE is given by Equation 8.23 as E = S, (Ax)*. Then, if I is the exact inte-
gral, and [, and I, are the numerical values of the integral obtained with step sizes
Ax, and Ax,, we may write, using TE to represent the total discretization error,

I=1,+S;(Ax,) (8.45a)

and

I=1+58:(Ax,) (8.45b)

From these equations, the constant S; may be estimated as follows:

I,-1
S =2 1 8.46
"7 (Ax)? - (Ax,)? (8.46)
Then, from Equation 8.45b,
I, -1
I=l+—2 "1 .
2+(Ax1/Ax2)2—1 (8.47)

Equation 8.47 does not yield the exact value of the integral /, since the expression
for the TE is only an approximate one and since TE is employed instead of the total
discretization error. However, an improved estimate for / is obtained from Equation
8.47. The second term in this equation represents the TE for integration with a step
size of Ax,. If Ax, is taken as half of Ax,, that is, Ax,/Ax, =2, then

L-1, 41,-1
y2-h _th=h

; ; (8.48)

I=1,

It can be easily shown that this expression for the integral is identical to that obtained
from Simpson’s one-third rule with a step size of Ax,. Therefore, the integral is
obtained to fourth-order accuracy.

Similarly, if Simpson’s one-third rule is considered, the total TE from Equation
8.39 is S(Ax)*. As before, we may write

I=1,+S,(Ax,)* (8.49a)

and

I=1,+5 (Ax,)* (8.49b)

334 Computer Methods for Engineering with MATLAB® Applications

where, again, [is the exact integral and /, and I, are the numerical values from
Simpson’s rule for step sizes Ax, and Ax,, respectively. Then

12 _Il

Sg=—F— —— .
*% (An) —(An)’ (830

and

IZ _Il

Iel+—— "0
2F AxlAx) —1

(8.51)

Equation 8.51 yields an improved estimate of the integral. Thus, TE of O[(Ax)*] has
been eliminated. Then, this expression gives the results to a sixth-order accuracy,
since the next term in the TE for Simpson’s rule is O[(Ax)®]. If Ax, = Ax,/2, a more
accurate approximation to the integral is obtained from

I, -1 161, -1
+21_621

= 8.52
15 15 (8.52)

I=1,

Therefore, the accuracy of the numerical results obtained from the trapezoidal
rule or from Simpson’s rule can be substantially improved by computing the integral
twice, with two different step sizes, and using Equation 8.47 or 8.51. Generally,
numerical integration is carried out with a chosen step size, which is then halved to
yield the second estimate 7, of the integral. Then Equation 8.48 or 8.52 yields the
improved estimate. This method does not require any major change in the computer
program since the numerical scheme is simply applied twice. The computational
effort is essentially doubled. However, because of the considerable improvement in
accuracy and the simplicity of its application, Richardson extrapolation is frequently
used.

8.4.2 ROMBERG INTEGRATION

Richardson extrapolation substantially improves the accuracy of the numerical
results by eliminating the leading term in the TE. Thus, one may obtain fourth-
order accuracy by applying the trapezoidal rule twice, with different step sizes, and
using Richardson extrapolation to determine the improved value of the integral,
as given above. One may apply this technique in succession to eliminate still
higher-order terms in the TE. This leads to an efficient method, known as Romberg
integration, which is widely used for obtaining numerical results of high
accuracy.

The TE in the trapezoidal rule for numerical integration was obtained in terms of
the dominant term by the use of the remainder theorem. However, it can be shown
(Ralston, 1965; Davis and Rabinowitz, 1967; Ralston and Rabinowitz, 1978) that if

Numerical Integration 335

the higher-order terms are included, the error E in the trapezoidal rule may be
written as

8

E=A (Ax) + 4, (Ax)' + Ay (Ax) + A, (Ax) +-- (8.53)

where the A’s are constants. The leading term, of order (Ax)?, was eliminated by the
application of Richardson extrapolation in the preceding section. It the integral com-
puted by the trapezoidal rule, with n segments, is denoted as /,, and the improved
value of the integral by Richardson extrapolation as /, ,,, then, from Equation 8.48,
41,, -1

= 02] _10*'/2 (8.54)
where the two integrals by the trapezoidal rule are obtained with n/2 and n intervals,
corresponding to step sizes Ax and Ax/2, respectively.

Similarly, we eliminate the second term in the series representing the total TE,
Equation 8.53, by applying Richardson extrapolation again. Since this term is of
fourth order, the next extrapolation will be of sixth-order accuracy. Denoting this
second extrapolation as /, ,, we obtain

42 Il,n - Il,n/2

8.55
pE. (8.55)

12,)1 =

The process may be continued indefinitely, improving the value of the integral by
successively eliminating the higher-order terms in the error. The general formula for
the kth-order extrapolation is obtained as follows:

_ 4 Ik—l,n - Ik—l,n/z

= 8.56
o (8:56)

I,

Thus, the value of the integral may be improved to the desired level of accuracy.
Figure 8.13 shows a schematic of Romberg integration. First, /,, and I, , are deter-
mined from the trapezoidal rule, with one and two elements, respectively. These
yield the first extrapolation /,,. Similarly, /,, used with I, gives I, ,. The second
extrapolation, I, ;, is computed from /, , and I, ,. This computation of the integrals by
the trapezoidal rule and of the improved values by Richardson extrapolation contin-
ues until the results remain essentially unchanged from one order of extrapolation to
the next. Thus, if If, ,—1, , is less than a chosen convergence criterion €, the process
is terminated there. If not, we employ eight elements for the trapezoidal rule to deter-
mine the improved values of the integral for eight elements. Then, we compare I; ¢
with I, ¢ for convergence. Thus, the criterion for convergence may be written as

I}\,n - Ik—l,n =€ (857)

336 Computer Methods for Engineering with MATLAB® Applications

Iy;0
o —>»o0 11,2

I 0,2

104 —>»0 —}O'

A
NN,

10,16 11,16 12,16 13,16 14,16

FIGURE 8.13 A schematic of Romberg integration, indicating the various levels of
extrapolation.

where A represents the highest order of extrapolation that can be obtained with n
elements.

Romberg integration can, therefore, be used to obtain results of arbitrary accu-
racy, as far as TE is concerned. However, the round-off error, as always, imposes a
limitation on the accuracy that may be achieved in practice. Example 8.3 demon-
strates the use of Romberg integration in the accurate evaluation of an integral.

8.4.3 HIGHER-ORDER NEWTON—COTES FORMULAS

So far, we have considered only the zeroth-, first-, second-, and third-order Newton—
Cotes formulas. In general, these formulas are quite adequate for most engineering
applications. The trapezoidal and Simpson’s one-third rules are extensively used.
The three-eighths rule is generally used in conjunction with the one-third rule if an
odd number of segments is to be employed. We derived the formulas for these cases
simply by taking the general form of the polynomial, whose coefficients were deter-
mined by making this curve pass through the required number of points on the plot
of f(x) versus x. However, the general approach for the derivation of Newton—Cotes
formulas is based on the use of Lagrange interpolation, presented in Chapter 7. Since
the segments are of uniform width, the points employed in the determination of the
interpolating polynomial are uniformly distributed.

Closed Newton—Cotes formulas are those for which the data points at the two
ends of the integration interval are known. Thus, the rectangular, trapezoidal, and
Simpson’s rules are all closed formulas. Open Newton—Cotes formulas are based on
integration limits that lie beyond the range of available data. Although seldom used
for numerical integration, open formulas are of interest in the solution of ODEs.
Table 8.1 gives the formulas and the TEs per step for several Newton—Cotes closed
integration schemes. Note that the accuracy improves substantially as the order of
the polynomial increases from zero to two. The error for Simpson’s three-eighths

337

960°T1 _
(3)uf (V)7

(8)uf ()25

doyg aad 31

88¢C

M

“fo1+ L+ "Los+ Los+ L+ fel)s

Sy

M

o T ; o = o[nI s, o[oog
Sr+ e+ ST+ e+ L)t

anr
8

Vo m ; — syySre-va1y s, uosdwrg
(" + e+ de+ e
vV S T Q[payy-ouo s uosdwig
VNI Hloto s foscut
xyv L a[nu feprozadely,
K + _L\ .
w10 xyy o[n1 repnSuedy
e[nw.o4 aweN

1

spudwigag Jo
"ON WwinwiuIy

papaaN spudwsas
Jo JaquinN wnwiuiy 3y} pue dajs aad 31 ay) yum Suoje ‘sejnuioq uoneagagu] paso) $3)0)—UOIMIN

1’8 314VL

Numerical Integration

338 Computer Methods for Engineering with MATLAB® Applications

rule is of the same order as that for the one-third rule. In fact, the former is somewhat
larger in magnitude for the same segment size.

The accuracy again increases substantially as the order of the polynomial
changes from two or three to four, the formula for which is often known as Boole’s
rule. The next-order polynomial is found to yield an accuracy of the same order as
Boole’s law, as observed for the two Simpson’s rules. Because of the constraints
imposed on the minimum number of points and, therefore, on the minimum and
total number of segments that must be used for higher-order formulas, these are
generally more difficult to program and are less versatile. As a consequence, the
trapezoidal and Simpson’s rules are the most extensively employed methods for
numerical integration in engineering problems. However, Richardson extrapolation
is frequently used, as in Romberg integration, to improve the accuracy of the
numerical results.

Example 8.3

A mathematical function frequently encountered in the analysis of several engi-
neering problems is the Gaussian error function, erf z, which is defined as

2 p 2
effz = = [e™dx (8.58)

Using Romberg integration, compute the value of the error function at z=0.5, 1.0,
1.5, and 2.0, with a convergence criterion parameter € in Equation 8.57 of 10-°.

SOLUTION

The recursion formula for computing the various orders of extrapolation in
Romberg integration is given by Equation 8.56. For convenience, the first-order
approximation, or extrapolation, is taken as the trapezoidal rule, with Richardson
extrapolation being the second-order extrapolation. Then /; ,, represents the inte-
gral by the trapezoidal rule with m segments. With this change, the recursion
formula for the kth-order extrapolation becomes

k-1
_ 4 lk71/n - lk4,n4

L (8.59)

Ik,n

where /I, , represents the more accurate extrapolation of (k-I)th order, and /,_; .,
the less accurate one, that is, at half the number of segments as the former. The
recursion formula given by Equation 8.59 is more convenient to use than that
given earlier by Equation 8.56, since we start with the first-order extrapolation,
which is simply the trapezoidal rule, and we can successively double the number
of segments, starting with 1 and keeping track of increasing accuracy by means
of the subscript n.

The computer program for solving this problem is presented in Appendix C.13 for
Fortran and Appendix B.21 for MATLAB. The given function f(x) = 2/n) exp(-x?),
which is to be integrated, is defined, the input variables, such as the convergence
criterion €, are entered, and the value of z at which the error function erf z is to

Numerical Integration

be computed is given. Integration by the trapezoidal rule is carried out with one
segment, over the range x=0 to x = z. The segment size is successively halved,
making maximum use of the segment areas already calculated. The program then
computes the higher-order extrapolations, using Equation 8.59. At each iterative
step, corresponding to a given number of subdivisions, the difference between
the two highest possible extrapolations /; , and /,_, ,, as defined in Equation 8.57,
is determined. Using Equation 8.57, if this difference is less than or equal to €, the
program is terminated; otherwise, the segment size is halved and the computa-
tion continued. After convergence has been achieved for a given value of z, other
values of z, as given in the problem, are successively entered until all the required
numerical values have been obtained.

The numerical results obtained from the given computer program are shown in
Figure 8.14. The number of iterative steps needed in each case are shown, along
with the computed value of the error function. The number of iterations needed
are found to increase with z, over the range considered. The value of the error
function is listed in most books on mathematical functions, and the values cor-
responding to z=0.5, 1.0, 1.5, and 2.0 are given, respectively, as 0.5205, 0.8427,
0.9661, and 0.9953. Clearly, these values given in the literature are very close
to those obtained from the present computation. Since the number of segments
needed for four iterative steps is eight, the results indicate the rapid increase in
accuracy as the segment width is halved. As mentioned earlier, Romberg integra-
tion is an extremely efficient and accurate method. Consequently, it is widely
employed in engineering problems.

339

Enter the value of z=10.5
No. of iterations = 1
No. of iterations = 2
No. of iterations = 3

Enter the value of z= 1.0
No. of iterations = 1
No. of iterations = 2
No. of iterations = 3
No. of iterations = 4

Enter the value of z= 1.5
No. of iterations = 1
No. of iterations = 2
No. of iterations = 3
No. of iterations = 4

Enter the value of z=2.0
No. of iterations = 1
No. of iterations = 2
No. of iterations = 3
No. of iterations = 4
No. of iterations = 5

Erf(z) = 0.501790
Erf(z) = 0.520602
Erf(z) = 0.520500

Erf(z) = 0.771743
Erf(z) = 0.843103
Erf(z) = 0.842712
Erf(z) = 0.842701

Erf(z) = 0.935482
Erf(z) = 0.954758
Erf(z) = 0.966707
Erf(z) = 0.966097

Erf(z) = 1.149046
Erf(z) = 0.936492
Erf(z) = 0.998921
Erf(z) = 0.995266
Erf(z) = 0.995322

FIGURE 8.14 Numerical results obtained for Example 8.3, indicating the number of itera-
tive steps needed for Romberg integration and the computed values of the error function.

340 Computer Methods for Engineering with MATLAB® Applications

8.5 INTEGRATION WITH SEGMENTS OF UNEQUAL WIDTH

All of the formulas for numerical integration presented so far were based on segments
of equal width. This implies that the points, on the curve of the function f(x), that
were used for determining the interpolating polynomial were equally spaced.
However, this procedure is not necessarily the most efficient one. In regions where
the function varies very gradually or where its value is small, the number of points
for function evaluation may be reduced without significantly affecting the accuracy
of the results. The optimum distribution of points for the numerical integration of a
given function may also be derived to obtain maximum accuracy with a given num-
ber of function evaluations. In these cases, the segments into which the range of
integration is subdivided are not of equal width. Similarly, experimental or numeri-
cal data may be available at only specified points which may be unevenly distributed.
Procedures for the numerical integration of such data are needed. This section con-
siders various methods for improving the efficiency of numerical integration by
using unequal segments and also the methods that may be employed for integrating
a function whose value is given at unevenly spaced data points.

8.5.1 UNEQUALLY SPACED DATA

Experimental results are often obtained at unevenly spaced values of the indepen-
dent variable. In an experimental study of the displacement of a moving body such
as a car as a function of time, for instance, more frequent measurements are gener-
ally taken at small times, just after the onset of motion, than at large times. Similarly,
the pressure loading on a building due to the wind is measured only at discrete loca-
tions, which may not be evenly spaced. Numerical solutions may also yield results at
unequally spaced data points. Thus, we are faced with the problem of integrating a
function f(x) which is available simply as data at arbitrary, unevenly spaced values of
the independent variable.

One approach for solving this problem is to employ the curve-fitting techniques
given in the preceding chapter, in order to obtain a continuous function f{x). Then the
range of integration may be subdivided into segments of equal width, and numerical
integration may be carried out by, say, the Newton—Cotes formulas, using the
ordinates obtained from the function f(x) derived from curve fitting. This approach
is often employed in engineering problems, since experimental and numerical data
are often curve fitted for using the results in other computations, as discussed in
Chapter 7.

The second approach employs the data as given and simply obtains the integral in
each segment. The trapezoidal rule may be applied to each segment and the results
summed to yield the integral I as follows:

I=Axlﬁ);fl+Ax2ﬁ;fz+Ax3ﬁ;ﬁ+...+Axn% (8.60)

where Ax). Ax,, ..., Ax, are the widths of the n segments that correspond to (n + 1)
data points, x; represents the value of the independent variable at a given point, and f;

Numerical Integration 341

is the corresponding value of the function. Here, Ax, Ax,, ..., Ax, are not equal, as
was assumed for deriving Equation 8.11. A computer program can be easily written
to compute the integral /, using Equation 8.60 for unequal segment widths.

If two adjacent segments are of equal width, Simpson’s one-third rule may be
used to obtain the integral over these segments. Thus, if Ax, ; and Ax; are equal, the
integral I, for these two subdivisions is given by

S

I - (%) Ax (8.61)

Similarly, if three segments are of equal width, Simpson’s three-eighths rule,
Equation 8.34, may be employed. Since Simpson’s rules are more accurate than the
trapezoidal rule, an implementation of Simpson’s rule in the numerical integration,
wherever possible, will increase the accuracy of the results. Thus, a program may be
developed that checks the widths of adjacent segments before applying numerical
integration to the data. If two consecutive segments are of equal width, Simpson’s
one-third rule is employed, and if three segments are of equal width, Simpson’s
three-eighths rule is used. If the widths of two adjacent segments are different, the
trapezoidal rule is employed. Example 8.4 demonstrates an application of this proce-
dure to unevenly spaced experimental data.

8.5.2 ADAPTIVE QUADRATURE

One can employ Romberg integration to obtain numerical results to any desired
accuracy, within the constraints imposed by the round-off error. However, since
segments of equal width are employed, the entire range of integration is treated uni-
formly. This approach is not the most efficient one if the function is slowly varying
or small in magnitude in certain regions, where fewer points can be taken. Adaptive
quadrature enables one to increase the number of points in regions where the
accuracy is not at the desired level, while keeping fewer points in regions where
satisfactory accuracy has been attained.

Several methods have been developed to achieve such an uneven distribution of
points. The main idea is to focus on regions where the error is larger than the desired
value. Suppose the integral

I=ff(x)dx ®.1)

is to be computed with total error less than €. Then the error in each subinterval of
width Ax must be less than € Ax/(b — a), so that the total error is less than €. We start
by dividing the range of integration into equal segments of width Ax. The integral
over each segment is determined by use of, say, the trapezoidal rule. Then each seg-
ment is subdivided into two subintervals of width Ax/2, and the integral is computed.
From Richardson’s extrapolation, Equation 8.46, an estimate of the error in these

342 Computer Methods for Engineering with MATLAB® Applications

segments of width Ax/2 is (I, — 1,)/3, where I, is the integral with two segments of
width Ax/2 each and [, is the integral over the segment of width Ax. If this error is
less than €(Ax/2)/(b — a), no further subdivision of the corresponding segments is
needed, and the estimate of the integral over the segments is taken for the computation
of the total integral over the entire region. If the error is larger than € (Ax/2)/(b — a), in
certain segments, these segments are halved and the above procedure is repeated until
the specified accuracy has been attained in these.

This method, therefore, allows one to systematically reduce the error in regions
where it is too large, while keeping regions where satisfactory accuracy has been
attained unaffected. Simpson’s rule may also be used instead of the trapezoidal rule.
However, since the final accuracy is prescribed, the trapezoidal rule is more appro-
priate because it is simpler to use. Adaptive quadrature is particularly useful for
complicated functions that have a large variation over certain regions and a small
variation over others. In the integration of exp(—50x2) over 0 < x < 1, for instance,
many more subintervals are needed at small x than at large x to attain uniform accu-
racy over the entire region. Adaptive quadrature is a valuable method in such cases.
For further details, see Forsythe et al. (1977), Ferziger (1998), and Gerald and
Wheatley (2003).

Example 8.4

In an experiment on the motion of accelerating bodies, the velocity V, in m/s, of
a body is measured at several time intervals t, in seconds. The data obtained are
tabulated for time ranging from 0 to 2.0 s as follows:

t 0.0 0.1 0.2 0.3 0.5 0.7 0.8 1.0
% 9.50 10.00 10.57 11.24 12.97 15.38 16.93 20.9
t 1.1 1.3 1.5 1.6 1.7 1.8 2.0

% 23.41 29.74 38.17 43.33 49.21 55.88 71.90

Compute the distance traveled by the body x as a function of time t.

SOLUTION

The experimental data are given at unevenly distributed values of the independent
variable t. The distance traveled x is given by the integral

= [v)dt (8.62)
X [()

where t” is a dummy variable. We shall employ the procedure outlined in Section
8.5.1 for numerical integration to obtain x(t). As discussed earlier, Simpson’s three-
eighths rule is employed when three adjacent segments are of equal width, and
Simpson’s one-third rule when only two adjacent segments are of equal width. If
the size of a given subdivision is different from that of the next subdivision, the
trapezoidal rule must be used.

The MATLAB computer program used to evaluate the integral in Equation 8.62,
employing the unevenly spaced data given in the problem is given in Appendix B.22.

Numerical Integration 343

Simpson three-eighths rule

I=4 Time =0.3000 Velocity = 11.2400 Distance = 3.0919
Simpson one-third rule

[=6 Time =0.7000 Velocity = 15.3800 Distance = 8.3252
Trapezoidal rule

[=7 Time =0.8000 Velocity = 16.9300 Distance = 9.9407
Trapezoidal rule

[=8 Time = 1.0000 Velocity = 20.9000 Distance = 13.7237
Trapezoidal rule

[=9 Time=1.1000 Velocity = 23.4100 Distance = 15.9392
Simpson one-third rule

[=11 Time = 1.5000 Velocity = 38.1700 Distance = 27.9752
Simpson three-eighths rule

[=14 Time = 1.8000 Velocity = 55.8800 Distance = 41.9128
Trapezoidal rule

[=15 Time=2.0000 Velocity = 71.9000 Distance = 54.6908

FIGURE 8.15 Computed distance traveled x as a function of time ¢ from the velocity data
given in Example 8.4. The various integration schemes employed over different regions of the
given data are also indicated.

The given data are entered, along with an arbitrary small quantity eps. The widths
of three adjacent subdivisions, starting with t=0 and proceeding in the direction
of increasing time, are determined. The small allowable difference eps is employed
to determine whether the segment widths are equal. Here, eps is taken as 107,
which is an arbitrary small quantity and will not affect the numerical results for
the given data set. Obviously, eps is used to avoid problems caused by round-off
error, because of which two equal segment widths may be indicated as differ-
ent due to differences in round-off error. If the first two segments are of different
width, the trapezoidal rule is employed. If the widths are equal, the third segment
is also considered, and if all three are equal in width, Simpson’s three-eighths
rule is used. Otherwise, Simpson’s one-third rule is employed. Thus, it is a fairly
straight forward application of the integration formulas.

The numerical results obtained are shown in Figure 8.15. The data point up
to which the given integral is computed, the corresponding time, the velocity,
and the total distance x traveled up to this point are given. The method used
for numerical integration in the preceding subdivision(s) is also indicated. Thus,
the three-eighths rule is employed first, followed by Simpson’s one-third rule, then
the trapezoidal rule, and so on. The velocity V is printed in order to ensure that the
input data have been correctly read. At the end of 2 s, the total distance traveled
is obtained as 54.69 m. This program is quite flexible and can be used for a wide
variety of unevenly spaced data.

8.5.3 Gauss QUADRATURE

In many engineering problems, the evaluation of the integrand f(x) is very involved
and time-consuming. Gauss quadrature is based on a variety of interpolating func-
tions and gives maximum accuracy for a given number of function evaluations.

344 Computer Methods for Engineering with MATLAB® Applications

However, the x locations where the function f(x) is to be evaluated are adjustable.
Thus, for a two-point formula, the integral

I= f f(x)dx (7.63a)

-1
is approximated by

I=Af(x)+Af(x) (8.63b)

where A, A,, x,, and x, are all unknowns. The integration limits are taken as —1
and 1. The integral between the finite limits a and b can be transformed into the
limits =1 by means of the transformation

2x—(a+b)

8.64
g (8.64)

E=

Thus, the integral may be taken over the limits — 1 to 1 without loss of generality.
This simplifies the computation and generalizes the formulation. Example 8.5 illus-
trates how this transformation is carried out in practice.

Now, if we require that Equation 8.63b yield the integrals for constant, linear,
parabolic, and cubic functions exactly, the four coefficients in the equation can be
determined. Thus, employing 1, x, x?, and x* as the functions, and substituting these
for f(x,) and f(x,), we have

1

Alf(xl)+A2f(x2)=f1dx=2 or A +A, =2

1
Alf(x])+A2f(x2)=fxdx=0 or Ax +Ax, =0

A 2 2
Af(xl +Af X, =f =3 Or A1x12+A2‘x§=§

Af(x)+ A f(x, =f

or Ax’+Ax3=0

which gives

Therefore,

e fk—) +f() (865)

Numerical Integration 345

which is known as the two-point Gauss—Legendre formula. This integral estimate is
exact for polynomials up to the third order, that is, cubics, and is, therefore, of the
same order of accuracy as Simpson’s rule. It is interesting to note that this accuracy
is achieved on the basis of only two function evaluations, at x = + 1/\/3_

The above discussion indicates the general features and the power of Gauss
quadrature. The general formula for this method may now be written as follows:

L= Afx)+Af(x)+ A f(g)+-+ A, f(x,) (8.60)

where n is the number of points in the range —1 < x < 1 at which the function f(x) is
calculated. The integral under consideration is f 11 f(x)dx, which is obtained from
the integral E: f(x)dx by means of the transformation given by Equation 8.64. The
derivation of higher-order formulas for Gauss quadrature is quite involved. Basically,
orthogonal polynomials, such as Legendre, Chebyshev, Hermite, and Laguerre
polynomials, are taken to represent the function over the range —1 <x < 1. These
polynomials are generally discussed in books on advanced calculus. The locations
where the function is to be evaluated are actually the n zeros of an nth-degree
Legendre polynomial. Table 8.2 gives the n locations, along with the corresponding
weights A, A,, ..., A,, for the Gauss—Legendre formulas, considering n up to 24,
which should be adequate for most practical problems. Other commonly employed
quadrature formulas are the Gauss—Chebyshev, Gauss—Laguerre, and Gauss—Hermite
integration formulas, given by Abramowitz and Stegun (1964) and Stroud and
Secrest (1966). Although the derivation of these formulas is complicated, the appli-
cation to numerical integration is not, as illustrated in Example 8.5.

The error E in Gauss—Legendre quadrature, which is usually referred to simply as
Gauss quadrature, is obtained for an n-point formula as

22n+1 (n|)4
E~—— "L __flul(g) where ~1<E<lI 8.67)
(2n+1)(2n!)

Therefore, a polynomial of degree (2n — 1) is integrated exactly, since the (2n)th
derivative, f ?7, is zero in this case, resulting in zero error. This implies that if n
points are employed in Gauss quadrature, the accuracy obtained is of the same order
as that obtained with a polynomial of order (2n — 1) in Newton—Cotes formulas.
Therefore, Gauss quadrature is a powerful method that is frequently used in engi-
neering applications. However, a systematic reduction in error, as achieved by
Romberg integration, is not possible in Gauss quadrature, and one must repeat the
entire integration scheme with higher-order formulas if a greater accuracy is needed.
Gauss quadrature maximizes the accuracy for a given number of function evalua-
tions and is particularly suitable for complicated functions. However, the method is
not applicable to problems where tabulated data are given at arbitrary locations,
since function evaluations at definite points are needed. In some cases, it may be
possible to take the data at the points specified by the quadrature formula and, thus,
use Gauss quadrature for numerical integration.

346 Computer Methods for Engineering with MATLAB® Applications

TABLE 8.2

Weighting Factors A and the Values of the Independent
Variable x at Which the Function f(x) Must Be Evaluated
for the Gauss-Legendre Formulas, Considering up to the
24-Point Approximation

= 9 A
0.5773502692 1.0000000000
3 0.0000000000 0.8888888889
0.7745966692 0.5555555556
4 0.3399810436 0.6521451549
0.8611363116 0.3478548451
5 0.0000000000 0.5688888889
0.5384693101 0.4786286705
0.9061798459 0.2369268850
6 0.2386191861 0.4679139346
0.6612093865 0.3607615730
0.9324695142 0.1713244924
7 0.0000000000 0.4179591837
0.4058451514 0.3818300505
0.7415311856 0.2797053915
0.9491079123 0.1294849662
8 0.1834346425 0.3626837834
0.5255324099 0.3137066459
0.7966664774 0.2223810345
0.9602898565 0.1012285363
9 0.0000000000 0.3302393550
0.3242534234 0.3123470770
0.6133714327 0.2606106964
0.8360311073 0.1806481607
0.9681602395 0.0812743884
10 0.1488743390 0.2955242247
0.4333953941 0.2692667193
0.6794095683 0.2190863625
0.8650633667 0.1494513492
0.9739065285 0.0666713443
12 0.1252334085 0.2491470458
0.3678314990 0.2334925365
0.5873179543 0.2031674267
0.7699026742 0.1600783285
0.9041172564 0.1069393260
16 0.9815606342 0.0471753364
0.0950125098 0.1894506105
0.2816035508 0.1826034150
0.4580167777 0.1691565194

0.6178762444 0.1495959888

Numerical Integration

TABLE 8.2 (continued)

Weighting Factors A and the Values of the Independent
Variable x at Which the Function f(x) Must Be Evaluated
for the Gauss-Legendre Formulas, Considering up to the

24-Point Approximation

n +x; A;

16 07554044084 0.1246289713
0.8656312024 0.0951585117
0.9445750231 0.0622535239
0.9894009350 0.0271524594

20 0.0765265211 0.1527533871
0.2277858511 0.1491729865
0.3737060887 0.1420961093
0.5108670020 0.1316886384
0.6360536807 0.1181945320
0.7463319065 0.1019301198
0.8391169718 0.0832767416
0.9122344283 0.0626720483
0.9639719273 0.0406014298
0.9931285992 0.0176140071

24 0.0640568929 0.1279381953
0.1911188675 0.1258374563
0.3150426797 0.1216704729
0.4337935076 01155056681
0.5454214714 0.1074442701
0.6480936519 0.0976186521
0.7401241916 0.0861901615
0.8200019860 0.0733464814
0.8864155270 0.0592985849
0.9382745520 0.0442774388
0.9747285560 0.0285313886
0.9951872200 0.0123412298

Example 8.5

347

In a civil engineering application, a vertical plate 1 m high and 1.2 m wide is
positioned in a stream of flowing water in a channel. The pressure p exerted on
the plate due to the flow is measured at several vertical locations x, where x=0
represents the top edge of the plate. Curve fitting is employed to obtain p as a
function of x. The resulting expression for pressure in Newtons/(meters squared)

and x in meters is

p(x) = 10 + 4.6x = 16.2x* + 8.9x> - 41.3x* + 22.6x°

(8.68)

348 Computer Methods for Engineering with MATLAB® Applications

Using Gauss quadrature with two as well as four function evaluations, compute
the total force exerted on the plate due to the flow.

SOLUTION

The resulting force on the plate F is given by the equation

1

F =fp(x)1.2dx

0
1

= 1.2fp(x)dx Newtons (8.69)
0

where 1.2dx represents the area of a differential surface element at a vertical loca-
tion given by x. Since p(x) is a fifth-order polynomial in x, the above integral can
easily be evaluated analytically to yield 4.631667, giving the force F as 5.558 N.
However, let us apply Gauss quadrature to this problem in order to demonstrate
the use of this method for numerical integration.

We must first change the limits of the integration to —1 and 1 by employing
Equation 8.64. Thus, since a=0 and b =1, § is given by

g = w =2x -1
or
X = 0.55 + 0.5 (8.70)
which gives
dx = 0.5dg 8.71)

Therefore, the expression for the total force F on the plate becomes

1

F=1 .zf[m +4.6(0.55 + 0.5) - 16.2(0.58 + 0.5)° + 8.9(0.5€ + 0.5’
-1
- 41.3(0.55 + 0.5)" + 22.6(0.5¢ + 0.5)4]0.5d§ (8.72)

or,
1

F=1.2(f(g)de (8.73)
)

where f(€) is the function to be integrated, as given above.

Numerical Integration 349

Using the two-point Gauss—Legendre formula, F is given by

R (I C I

Similarly, for the four-point Gauss—Legendre formula,
F=12[Af (x) + Af (x2) + Af (x) + A (x)] (8.75)

where the required x’s and A’s are given in Table 8.2. Two function evaluations
are involved in the former case, and four in the latter. Thus, for the two-point
formula,

) = 5.129892

1
5
f(%) = -0.5826686
which gives
F=1.2(4.547223) = 5.456668 Newtons
Similarly, for the four-point formula,
F=1.2[A(—C) + Bf(-D) + Bf(D) + Af(C)]

whereA = 0.347854845, B = 0.652145155, C=0.861136312,and D = 0.339981044.
This gives F=5.558 N. Thus, the four-point formula gives a very high level of
accuracy with only four evaluations of the function f(€). Even for the two-point for-
mula, with only two function evaluations, the error is only 1.82%. This error figure
indicates the efficiency of this method and its considerable value for complicated
functions frequently encountered in engineering applications.

8.6 NUMERICAL INTEGRATION OF IMPROPER INTEGRALS

In the preceding sections, the limits of integration a and b in the integral Eﬁ f(x)dx
were taken as finite, and the integrand f{x) was assumed to be continuous and finite
over the range a < x < b. However, in engineering computations, we are often faced
with integrals in which either the limits of integration are infinite or the integrand is
singular at some point in the range of integration. Such integrals are known as
improper integrals, and special procedures are often required for their evaluation.
Some of these integrals are discussed here. It is assumed that the integral exists and
is finite. This assumption is often based on the nature of the physical quantity repre-
sented by the integral. For instance, if the integral represents the total energy lost by
a given body, the integral is expected to be finite. Similarly, if an integral over time

350 Computer Methods for Engineering with MATLAB® Applications

yields the total distance traveled by a body that is decelerating due to an applied
force, the integral must approach a finite value as the upper limit of integration
approaches infinity. The analytical methods for proving that an integral exists and is
finite are generally given in most advanced calculus books.

8.6.1 INTEGRALS WITH INFINITE LIMITS

In problems of engineering interest, we often encounter integrals of the form
I fxodx, [. f(x)dxor . f(x)dx, where either one or both of the limits of integra-
tion are infinite. In the example of the retarding body, outlined above, the lower limit
is finite, say, time ¢ =0, and the upper limit is infinite. The mass transfer from an
infinite surface, which approximates, say, the surface of a large lake, would involve
an integral over the range —oo < x < oo. Similarly, flow rates in jets and plumes often
require integration from —ee to oo, since no walls, which limit the extent of the flow,
are assumed to be present. Statistical distributions, like Gaussian and Poisson distri-
butions, also generally involve infinite limits of integration.

There are several methods by which such integrals may be evaluated. The most
common and often convenient approach is to write a given integral of the form
S : f(x)dx as EZ f(x)dx and to evaluate the integral with increasing values of b, until
any further increase in b results in a negligible change in the integral. This approach
was demonstrated in Example 8.1, where the charge Q in the capacitor was computed
by the integral [, I(')dt’, I(r) being the current, f the time, and #* simply a dummy
variable. Thus as t — oo, the charge attains a finite value. We obtained this result by
increasing the upper limit of integration until the charge QO remained unchanged as ¢
was increased further. Similarly, for integrals of the form [”_ f(x)dx or f°_°w f(x)dx,
this approach may be used, suitably decreasing the lower limit and/or increasing the
upper limit.

The integrand f{x) may approach zero in an asymptotic manner as x — oo. In some
cases, the dominant terms at large x can be employed to simplify the function and
integrate it analytically. Thus, the given integral is written as

[#(s)as= [r{e)ass [7(s)ax 376)

a

where s is chosen to be sufficiently large so that the function f(x) may be replaced by
a simpler asymptotic approximation f(x) for x =s. Then the first integral on the
right-hand side of Equation 8.76 is evaluated numerically and the second integral
analytically. Examples of functions for which this approach may be employed are
S = 1e* + e >+ 3x2) and f(x) = 1/(e>* + 2x3 + 1). At large x, the first function may
be approximated as e, and the second as e™*, both of which may be integrated ana-
lytically over s < x < oo to yield e and e™*/5, respectively. Again, s may be varied
until the numerical value of the total integral |, : f(x)dx shows a negligible change
with a further increase in s. This procedure, wherever applicable, is more efficient
than replacing the upper limit by a large number b and computing the integral for
increasing values of b, as outlined earlier.

Numerical Integration 351

In some cases, a transformation of the independent variable may be employed to
change the infinite limit of integration into a finite one. Commonly used transforma-
tions are y = x™ and y = e, both of which give zero for the new variable y as x goes
to infinity. For instance, consider the following two integrals:

x
I=|——dx .
,[1+x+x3 ®.772)

0

1
= dx ,
{ e (8.77b)

We can transform the first integral into one with finite limits by using the transfor-
mation y = 1/x. This gives dx = —dy/y?, and the integral becomes

0 1

Y el My dy e dy
[1+x+x3dx[1+(1/y)+1/y3 y2 _[1+y2+y3 (8783)

Similarly, we transform the integral in Equation 8.77b by employing y=e™ as
follows:

© 0 1
dx 1 dy dy
I = = e L 8.78b

,{ex+e"‘ 1y+(1/y) y 01+y2 ()

Thus, integrals over infinite regions may be transformed into integrals over finite
regions. However, in some cases, the transformed integrand may be singular at one of
the limits. Then the problem with an infinite limit is replaced by one involving a sin-
gular integrand, discussed in the following subsection. In general, it is easier to handle
an infinite limit of integration than an integrand that becomes singular. Therefore, one
must consider whether or not a given transformation simplifies the problem.

8.6.2 SINGULAR INTEGRAND

Another class of improper integrals is the one in which the limits of integration are
finite but the integrand is singular in the range of integration, generally at one or both
limits. However, the singularity is assumed to be gentle enough for the integral to
exist and be finite. Examples of such integrals are

/2

‘et 1 PRI
[oo [i [ofen

352 Computer Methods for Engineering with MATLAB® Applications

In all of these cases, the integrand becomes singular at the lower or the upper limit
of integration, and the integral can be shown to exist.

There are several methods for dealing with such improper integrals. Among these
are integrating by parts, subtracting out the singularity, using a power series to
approximate the integral near the point of singularity, and transforming the vari-
ables. Obviously, the appropriate method depends on the nature of the singularity,
and all of these techniques may be considered to determine if one of them would
work. Let us illustrate the use of some of these strategies to eliminate the singularity
by means of examples.

The integral
eX
=~dx (8.79a)
) VX
can be integrated by parts to yield
2 . 2
f C dx=2xet| + f 2Jxet dx (8.79b)
0 \/; ’ 0

The first term on the right-hand side can easily be evaluated, and the second term is
an integral that is not singular. This remaining integral can thus be computed ana-
lytically or by means of the various numerical methods presented in this chapter.
The singularity in this integral can also be subtracted out as follows:

e’ -1

2 2 2
x 1

The first integral on the right-hand side is singular, but it can easily be integrated
analytically. The second integral is nonsingular, since (ex - 1) /\/; can be shown to
approach zero at the lower limit of integration.

The singularity in the integral

1
341
f T i (8.81a)
0

V1-x?

can be eliminated by use of the transformation x = sin y. Then +/1 — x> = cosy, and
dx = cos y dy. The integral becomes

l " (sin y)3 +1 "2

fj:_;xlzd“!wsycosydy =_Of[(siny)3 +1]dy (8.81b)

0

Numerical Integration 353

The resulting integral is nonsingular and can be integrated by any numerical
method.

Another strategy that is sometimes applicable is the expansion of the integrand in
a power series about the singular point and retention of a few leading terms that can
be integrated by standard methods. Gauss quadrature is also particularly suitable for
certain types of singularities, since formulas are sometimes available that have
already accounted for the singularity in the choice of the weighting function.

A frequently used procedure, if the above strategies do not work, is to replace the
integration limit where the singularity exists by a quantity close to this limit, but not
equal to it. Thus, EZ f(x)dx is replaced by [f+s f(x)dx, where € is a small quantity, if
f(x) is singular at x = a. Then numerical integration is carried out over the range
a+¢e < x<bh, and € is made smaller, starting with a chosen small value, until the
computed integral is not significantly affected by a further reduction in €. This
method is not very efficient, particularly if equally wide intervals are used. However,
the range of integration may be broken down into a region close to the point of singu-
larity and others farther away, so that a finer mesh may be used near the singularity.
For example, the following integrals may be written as

1 0.99

1 | T
fmdx={mdx+fmdx (8.82a)

0 0.99

0.01

- 1 .
[N f N f NP (8.82b)

with € being reduced toward zero till the integrals do not vary significantly with a
further reduction in €. The upper limit in the second integral in Equation
8.82b is infinity and can be treated by the methods given in Section 8.6.1. The
integration region € <x<0.01 may be further subdivided as € <x<0.001 and
0.001 £x £0.01, if necessary. Adaptive quadrature can also be used advantageously
for this problem.

Example 8.6

Many physical measurements follow the symmetrical, bell-shaped curve of the
Gaussian, or normal, frequency distribution, sketched in Figure 8.16. Repeated
measurements of the fluid velocity in a hydraulic control system are found to
closely approximate the Gaussian distribution

(8.83)

f(x) = \/zlc—oexp[—;(x;u)

354 Computer Methods for Engineering with MATLAB® Applications

[

FIGURE 8.16 Sketch of the Gaussian, or normal, frequency distribution, with 1L as the mean
value.

where f(x) is the height of the frequency curve corresponding to a given velocity
x, W is the mean value, and & is known as the standard deviation. For the given
circumstance, =10 m/s and 6 =5 m/s. Compute the fraction of the measure-
ments for which the velocity is larger than or equal to 0, 5.0, 10.0, and 15.0 m/s,
respectively.

SOLUTION

The normal distribution extends from x = —eo to x =+ o0 and is symmetrical about
the mean . The area under the curve from, say, x = x; to x = x,, gives the fraction
of the total measurements for which the velocity lies between x, and x,. Therefore,
the integral to be computed is

| = ff(x)dx (8.84)

Xmin

where x,,;, is the minimum value of velocity considered. For the given problem,
Xmin =0, 5.0, 10.0, and 15.0 m/s, respectively. Since [, f(x) dx covers the entire
range of measurements, this integral equals 1.0. Similarly, [, f(x)dx = 0.5, since it
represents half of the measurements taken.

The given problem involves the evaluation of an improper integral, since the
upper limit is infinity. Thus, following the approach given in the preceding section
for such problems, we may compute the integral

I = ff(x)dx (8.85)

Xmin

by any standard method for numerical integration, such as Simpson’s rule, and
increase x,., until the value of the integral remains essentially unchanged as x..,
is increased further. This approach is followed in the computer program for this
problem. As given in Appendix B.23, the function m-file for Simpson’s method,
given in Appendix B.20, is easily modified for this problem. The segment width h
is chosen, and the four given values for x.,, are successively entered. The upper

Numerical Integration

limit of integration x,,,, is varied until the integral varies by less than a convergence
parameter €, taken as 10~ here, with a further increase in x,,,,. The segment size h
and the convergence parameter must be varied to ensure that the results obtained
are not significantly dependent on the values chosen.

The numerical results obtained are shown in Figure 8.17, in terms of the inte-
gral at various values of x,,,,, for each of the four given values of x,,. It is found
that an x,,,, of 40.0 m/s is adequate for the approximation of infinity, which is the
upper limit of integration in Equation 8.84. The convergence parameter &€ and
the segment width h were also varied. The values chosen were found to be quite
satisfactory. Thus, from the results obtained, 97.725% of the measurements, or
0.97725 in fractional notation, yield a positive fluid velocity, that is, x > 0. Similarly,
84.135% of the measurements give a velocity larger than or equal to 5 m/s, and so
on. Tabulated results for the integration of the normal distribution curve are avail-
able in the literature. For the four cases considered here, the values given in the
literature are 97.72, 84.13, 50.0, and 15.87%, respectively. Clearly, these values
are very close to those obtained from the given computer program. Further details
on this problem and tabulated results on the area under the frequency distribution
curve may be obtained from any statistics textbook.

355

min

min

X,in = 0.0000

Integral = 0.47725 Xpmax = 10.0000
Integral = 0.818595 Xpax = 15.0000
Integral = 0.9545 Xpmax = 20.0000
Integral = 0.9759 Xpmax = 25.0000
Integral = 0.977218 Xpmax = 30.0000
Integral = 0.97725 Xpmax = 35.0000
Integral = 0.97725 Xpax = 40.0000
Xpmin = 5.0000

Integral = 0.682689 Xpmax = 15.0000
Integral = 0.818595 Xpmax = 20.0000
Integral = 0.839995 Xpmax = 25.0000
Integral = 0.841313 Xpmax = 30.0000
Integral = 0.841344 Xpmax = 35.0000
Integral = 0.841345 Xpmax = 40.0000
Xin = 10.0000

Integral = 0.47725 Xpmax = 20.0000
Integral = 0.49865 Xpax = 25.0000
Integral = 0.499968 Xpmax = 30.0000
Integral = 0.5 Xpmax = 35.0000
Integral = 0.5 Xpmax = 40.0000
Xpin = 15.0000

Integral = 0.157305 Xpmax = 25.0000
Integral = 0.158624 Xpmax = 30.0000
Integral = 0.158655 Xpmax = 35.0000
Integral = 0.158655 Xpmax = 40.0000

FIGURE 8.17 Numerical results obtained from the integration of the Gaussian distribution

from x = x,,;;, to x = oo, for Example 8.6, at several values of x,,,.

356 Computer Methods for Engineering with MATLAB® Applications

8.6.3 MuLTIPLE INTEGRALS

There are a few other forms of integrals that have not been discussed thus far. Among
these are multiple integrals, which arise for functions that depend on more than one
independent variable. Integrals over the surface area, for example, to compute the
evaporation from a pond, or over the volume of a body involve multiple integrals.
Similarly, the work done in the two-dimensional motion of a particle on a flat surface
and the total force acting on a vertical surface, such as a building, require double
integrals of the form

b h(x)
I =f ff(x,y)dydx (8.86)

a glv)

We evaluate such multiple integrals by twice applying the numerical methods
discussed in this chapter, first for the inner integral over y and then for the outer
integral over x. If the range of integration a < x < b is divided into n segments, so that
X; = a + iAx, then we may define a function F(x) as

F(xi) = [f(x,.,y) dy (8.87)
8(x)

so that x is held constant at x;. This integral may be computed as a one-dimensional
integral on y. Thus, (n + 1) ordinates, corresponding to F(x;), withi=0, 1, ..., n, are
generated. Since these ordinates are at evenly spaced points, we can employ
Simpson’s one-third rule to evaluate the integral /, provided n is even. Similarly,
other numerical methods may be employed.

8.7 SUMMARY

This chapter presents several available methods for the numerical integration of a given
continuous function f{x) over a finite range of the independent variable x. These meth-
ods, which include the rectangular, trapezoidal, Simpson’s one-third, and Simpson’s
three-eighths rules for numerical integration, form the first four orders of the
Newton—Cotes formulas. They are discussed in detail in this chapter, particularly the
trapezoidal and Simpson’s one-third rules, because of their wide usage. The TEs
associated with these formulas are also derived. Simpson’s one-third rule is a very
popular choice in engineering problems, since it is fourth-order accurate, as compared
to the trapezoidal rule which is second-order accurate. Also, when it is used in con-
junction with the three-eighths rule, it imposes no constraints on the choice of the
number n of the segments, or subintervals, of the integration region, except that n be
two or larger. The trapezoidal rule is also widely used because of its simplicity.
Higher-order Newton—Cotes formulas are also presented, although they are used
only if a very high level of accuracy is needed. The accuracy of the numerical results
can also be improved by a reduction in the step size Ax. However, at very small

Numerical Integration 357

values of Ax, the round-off error may become significant. Higher-order formulas can
then be employed more advantageously. MATLAB integration commands that may
be used directly are also presented.

Various methods for the successive improvement in accuracy are also discussed,
including Richardson’s extrapolation, which is applicable to several other numerical
procedures as well, and Romberg integration, which is a very efficient method for
achieving any desired accuracy level. Romberg integration is based on the trapezoi-
dal rule and uses a procedure similar to Richardson’s extrapolation to successively
eliminate the higher-order terms in the TE. It is presently one of the most widely
used methods for the numerical integration of well-behaved functions.

Gauss quadrature uses the minimum number of function evaluations for comput-
ing the integral and is therefore particularly suitable for very complicated functions.
Different formulas can be derived for a wide variety of functions and integration
limits so that the results are very accurate and the number of function evaluations is
minimized. Singularities can also be effectively dealt with in several cases. However,
the tables of the weight factors and the zeros must be stored or computed. The pro-
gramming is more involved and less versatile than that for, say, Simpson’s rule. Also,
this method is generally not applicable for data available at arbitrarily spaced values
of the independent variable.

For unevenly spaced data points, one can use the trapezoidal and Simpson’s rules,
using the latter if two or three adjacent segments are of the same width and the trap-
ezoidal rule if the widths of adjacent segments are unequal. It is also possible to use
curve fitting to obtain a continuous function to represent the data. Then the standard
methods for numerical integration may be used. By focusing on regions where the
accuracy is less than that in others and retaining fewer points in regions where the
desired accuracy level has been attained, one can effectively use the method of adap-
tive quadrature for functions that are small in magnitude or slowly varying in certain
regions.

This chapter also discusses the various methods for treating improper integrals,
which exist and are finite although either the integrand blows up within the range of
integration or the integration limits are infinite. Analytical procedures, such as trans-
formation of the independent variable and integration by parts, can often be employed
to eliminate the singularity. However, the most common approach is to replace the
integration limit that is infinite or where the integrand is singular by a quantity that
is large or close to, but not equal to, the limit. Numerical integration is then carried
out and this quantity is varied until the numerical results are not significantly affected
by a further variation. Although inefficient, this approach is applicable to most engi-
neering problems involving improper integrals. Gauss quadrature can also be used
advantageously for certain types of functions.

PROBLEMS

8.1. Consider the integral =—§f(x)dx for the linear function f(x) =3 + 5x.
Show that the numerical results obtained by use of the trapezoidal
and Simpson’s one-third rules for this integral are exactly equal to the
analytical value, except for the round-off error. Employ two and then
four subdivisions of the integration domain.

358 Computer Methods for Engineering with MATLAB® Applications

8.2. For the parabola f(x) = 3 + 2x + 3x2, show that the numerical integra-
tion 513 f(x)dx by Simpson’s rule yields the exact analytical value,
except for the round-off error. What effect would you expect an
increase in the number of subdivisions to have on the accuracy of the
numerical results? Explain.

8.3. Consider the integral % f(x)dx, where f(x)=3+5x+2x*+x3
Estimate the total TE and the maximum TE per step for evaluating
this integral by the rectangular and trapezoidal rules. Consider the
three segment sizes Ax = 0.1, 0.2, and 0.5.

8.4. Calculate the TE per step at x=0.5 and x=1.0 for the integral

02(x5 +2x* + X3 +4x2 +2x +6), taking Ax=0.1, 0.25, and 0.5.
Consider the trapezoidal rule and both Simpson’s rules for numerical
integration. Discuss the effect, on the error, of a reduction in segment
size and also of the numerical method employed.

8.5. The TE in the numerical evaluation of the integral = [, f f(x)dx by
the trapezoidal rule is given by Equation 8.22. If f[] is approximated
as [f'(b) — f(@)/(b — a), obtain the resulting estimate of the error, and
add it to the formula for numerical integration by the trapezoidal rule
to obtain a more accurate scheme known as the trapezoidal rule with
end correction.

8.6. Apply the procedure outlined in Problem 8.5 to the rectangular rule,
and compare the resulting formula with that for the trapezoidal rule.

8.7. Show that if Richardson’s extrapolation is applied to the trapezoidal
rule, the formula obtained is the same as that for Simpson’s one-third
rule. Also apply Richardson’s extrapolation to the rectangular rule,
and discuss the resulting formula for numerical integration.

8.8. The temperature T at the wall of a furnace varies periodically over the
day as

. 2w
T(t)=125+50 smﬂ(t -6)

where 7 is the time in hours measured from midnight and 7 is in °C.
The ambient temperature 7, is 25°C, and the surface area A of the
wall is 10 m?. If the heat transfer coefficient / is given as 20 W/m?°C,
the heat transfer from the wall is given by [[T(¢) - T,]hAdt. Using the
trapezoidal rule, compute this integral as accurately as possible for the
time interval 7 = 6 to r = 12. Also evaluate the integral analytically and
compare the result with the computed value. Use the quad function in
MATLAB to verify the results obtained.

8.9. In chemical engineering, we frequently need to evaluate the amount
of heat required to raise the temperature of a given material from a
value 7, to T,. If C(T) is the specific heat of the material, the amount
of energy needed is _=;:|2 mC(T)dT, where m is the mass of the material,
since the specific heat is the energy required to raise the temperature
of unit mass of the material by unit temperature. The average spe-
cific heat C,, is given by [? C(T)dT]/(T2 —T,). The specific heat of a
material is given, in J/kg K, as follows:

2 3

T T T
c(r)= 200475+ 2.8(70) + 0.42(70)

Numerical Integration

8.10.

8.11.

8.12.

8.13.

8.14.

where T, is the reference temperature of 100 K. For 1kg of the
material, compute the total energy, in joules, needed to raise the tem-
perature from 100 to 1000 K. Also determine the average specific heat
over this temperature range. Use the trapezoidal rule, and reduce the
segment size, starting with 100 K, until the results remain essentially
unchanged with further reduction.

The pressure p on a 10 m high structure due to the wind is given by the
expression

_ 150x
1+e*

p(x)

where x is measured in meters from the bottom of the structure and
the pressure is in N/m?. If the structure is 2 m wide, the total force due
to wind is given by the integral

10

f2'(ISOx) dr
1+e*
0

Compute this integral as accurately as possible by the trapezoidal rule.

Also, use the guad function in MATLAB and compare the result with

that obtained earlier.

Consider the Gaussian error function erf z defined in Example 8.3.

Write a script-m file to do the following:

a. Calculate the integral using the trapezoidal rule with 20 sub-
divisions of the integration domain. You may use the available
function-m file for the trapezoidal rule.

b. Vary z from 1 to 2. Use a For ... End loop to calculate the integral
withz=1,1.1,1.2,..., 2.0.

c. Output the values of the integral for z = 1.0 and 2.0.

d. Using the values of the integral calculated in Part b, plot the inte-
gral versus z.

Consider the expression for blackbody radiation given by Equation
4.62. The integral of this expression over all wavelengths, that is,
il 80 E,,dA, gives the total energy radiated by a blackbody per unit area
and time. Using Simpson’s rule, compute this integral at 7= 1000 K
as accurately as possible. The analytical result is given in the literature
as oT*, where G is known as the Stefan-Boltzmann constant and has a
value of 5.67 x 10 W/m? K*. Compare your numerical result with the
analytical value at 1000 K.
Using Simpson’s rule, repeat the problem given in Example 8.1, and
compare the results obtained with those given in the example. Discuss
the observed differences between the trapezoidal and Simpson’s rules
for this problem.
Using Simpson’s three-eighths rule, compute the total momentum
flow in the problem outlined in Example 8.2. The momentum flow is
given by the integral % p[U(x)]*2mxdx, where p is the fluid density,
given as 1 kg/m? for the fluid considered. Also, calculate the integral
using the guad function and compare the result with that obtained
earlier.

359

360

8.15.

8.16.

8.17.

8.18.

Computer Methods for Engineering with MATLAB® Applications

The RMS value of an electric current /(f), where / varies periodically
with time ¢, is given by the expression

where 7, is the time period for one cycle in the variation of 1(z). If 1(7)
is given as 5Se” sin 4mt, with 7, = 0.5 s, compute the RMS value, using
Simpson’s rule.

The force F(x) exerted per centimeter on a vertical plate immersed in
flowing water is given by the expression

F(x) = 1.5x%™>

where x is measured from the top of the plate and F(x) is in N/cm. If
the plate is 10 cm high, the total force F, in Newtons, on the plate is
given by

10

Fy = f F(x)dx
0

Employing Romberg integration, compute F to a convergence crite-

rion of 107,

For the preceding problem, write a script-m file to do the following:

a. Calculate the integral using the trapezoidal rule with 1, 2, 4, 8, 16,
32, 64, 128, and 256 subdivisions of the integration domain, in
sequence. You may use the available function-m file for the trap-
ezoidal rule.

b. Print the results for the nine cases.

c. Richardson extrapolation gives

4T (h) - T(2h)

Sh) = 3

where T(h) is the integral from the trapezoidal rule for step size h
and T(2h) that for step size 2k and S is the result from Simpson’s
rule. Using this equation and results from Part a, calculate the
Simpson’s rule results for the different subdivisions considered.

d. Print the results obtained.

e. From the results, how many subdivisions are satisfactory for the
trapezoidal and Simpson’s rules?

The meniscus of a liquid film supported by surface tension can often

be represented as

h(x) = Ae~¥*

where /(x) is the height as a function of horizontal distance x and A
and a are constants. The total volume of liquid supported by surface
tension is then given by the integral W =—é h(x) dx, where W is the width

Numerical Integration

8.19.

8.20.

8.21.

8.22.

8.23.

8.24.

8.25.

8.26.

of the meniscus and L is its length. If W, L, &, and x are all in centime-
ters, compute this volume for A =0.8, a=2.0, W=1, and L=1cm,
using Romberg integration.

Calculate the integral in the preceding problem using Simpson’s rule.
Also use the guad command in MATLAB to get the integral and com-
pare the results. Do you expect the two-point Gauss—Legendre method
to give accurate results for this problem? Explain your answer.
The velocity v(f) of a moving particle is given as v() =5(1-¢
Using Romberg integration, compute the total distance S traveled by
the particle from 7= 10 s to 7 =20 s. Note that the distance traveled
between ¢t =t, and 7 = t, is simply given by the integral = v(t)dt

We wish to evaluate the integral jg sin?dx by means ‘of Romberg
integration. Are any difficulties encountered in the application of
Romberg integration to this problem? If so, suggest methods to over-
come them.

Using Romberg integration, repeat the problem given in Example 8.2.
Compare the results obtained with those given in the example, and
comment on the numerical accuracy and the computational effort
involved in the two methods used for this problem.

The velocity v of a moving body is measured at several time intervals
t and is tabulated as follows:

—t/lO).

t(s) 0 1 2 3 5 7 8 10
v(m/s) 10 11.5 148 21.1 475 1003 139.6 250.0

Using this uneven distribution of data points, compute the distance
traveled x as a function of time ¢, and find the total distance traveled
by the body in 10 s.

The pressure p in a gas being compressed by a moving piston is mea-
sured at various positions x of the piston, where x is measured from
the starting position of the piston. The data are tabulated as follows:

x (m) 0 0.1 0.2 0.4 0.5 0.8 0.9 1.0
p(N/m?») 40 423 453 534 583 803 896 10.0

The total work done over this distance of 1 m by the piston is given
by the integral As) p(x)dx, where A is the cross-sectional area of the
piston. Compute this integral, taking A = 0.5 m?.

The fluid velocity V is measured at several radial locations r for flow
in a circular pipe of radius 1 cm. The velocities in cm/s are tabulated
as follows:

r (cm) 0 0.2 0.5 0.6 0.8 0.9 1.0
V(em/s) 1.0 0.96 0.75 064 036 0.19 0.0

The volume flow in the pipe is given by the integral & V (r)27r dr, where
R is the radius of the pipe. Using the data given, compute this integral.
The turbulent flow in a pipe of diameter 0.2 m is given by the velocity
distribution

361

362 Computer Methods for Engineering with MATLAB® Applications

where U is the velocity at the axis, r is the radial distance from the
axis, and R is the radius of the pipe. Using the four-point Gauss—
Legendre integration formula, compute the volume flow rate in the
pipe. Take U =2 m/s. Verify the result obtained by using the quad
function. Also, see if an analytical result can be obtained by using
symbolic algebra in MATLAB.

8.27. Using the two-point, as well as the four-point, Gauss—Legendre inte-
gration scheme, solve Problem 8.18. Then compare the results obtained
and the computational effort involved for the two methods, Romberg
integration and Gauss quadrature, considered for this problem.

8.28. Using the trapezoidal rule, compute the value of the improper integral

7.5dx
f \/— 1+ x
as accurately as possible.
8.29. Using Simpson’s rule, compute the improper integral

©

2 dx
L+e ™ +x2
0
as accurately as possible.
8.30. Using any convenient integration scheme, determine the integral

and compare the numerical value obtained with the analytical result
of m/4.

8.31. An integral commonly encountered in the estimation of the moisture
lost at the surface of a wet body, such as paper or cloth, is of the form
Jo x4 dx, which is singular at x = 0. Compute this integral by varying
the lower limit, starting with 0.1, and then reducing it to values as small as
needed to make the neglected area under the curve negligible. Compare
the numerical result obtained with the analytical value obtained by
using mathematics as well as symbolic algebra in MATLAB.

8.32. Determine the integral

1
5(1+x%)
f 102 dx

0

which arises in a mass transfer calculation for a chemical engineering
process. Employ any suitable method.

8.33. The work done W by a force F(x, y) in a two-dimensional dynamics
problem is given by the integral

12

W=ff(x2—2xy+3xy2+y3)dydx
00

Numerical Integration

8.34.

8.35.

Using the trapezoidal rule as outlined in Equations 8.86 and 8.87, cal-
culate this integral.
The area A enclosed by a curve on a plane is given by the integral

22y
A =ff(x2 +y2)dxdy
0y

Using the trapezoidal rule, compute this integral.

Calculate the integral < e*dx by using four important methods for
numerical integration, namely, the trapezoidal rule, Simpson’s one-
third rule, Romberg integration, and Gauss quadrature, as well as the
quad function. Compare the results obtained and the computational
efforts involved in all of these methods. Comment on the conclusions
that may be drawn from such a comparison.

363

9 Numerical Solution
of Ordinary Differential
Equations

9.1 INTRODUCTION

Ordinary differential equations, or ODEs, which are equations that consist of func-
tions of a single independent variable and their derivatives, arise in many diverse
engineering problems. Several physical laws, such as those concerned with the
transport of mass, momentum, and energy, are expressed in terms of differential
equations. In many cases, only one independent variable, such as time or distance,
exists in the problem, because of the nature of the problem or because of simplifica-
tions and approximations made with respect to the other variables. Also, in a few
circumstances, the functional dependence on two or more independent variables
can be expressed, by suitable transformations, in terms of a single variable.
Therefore, many problems of engineering interest are described by ODEs. These
equations arise, for instance, in heat and mass transfer, dynamics of particles, vibra-
tions of systems, electrical circuitry, and chemical kinetics. Although analytical
methods may be employed for the solution of some ODEs, numerical techniques are
generally needed for most of the equations that arise in engineering applications.

A general ODE may be written in terms of the independent variable x and the
dependent function y(x) as

dy d?y dry
f(.x,y’dx’dxz,”'y dxn

=0 ©.1)

where the highest derivative is of order n. Then the equation is known as an nth-
order ODE. The highest-order derivative is often separated, to obtain the preceding
equation as

9.2)

dny dy dn—ly
= F(X,y,a,“', dxn_l

A function y(x) that satisfies this equation is said to be a solution of the equation.
There may be many functions y(x) that satisfy a given differential equation. To obtain
a unique solution, which is obviously needed in a physical problem, n conditions on

365

366 Computer Methods for Engineering with MATLAB® Applications

y(x) and/or on its derivatives must be given at specified values of x. These conditions
must be independent, that is, one condition may not be derived from a combination
of the others.

9.1.1 INITIAL AND BOUNDARY VALUE PROBLEMS

If all of the n conditions are specified at the same value of x, say, x = x|, then the
problem represented by the ODE and the given conditions is termed an initial-value
problem. If the conditions are specified at more than one value of the independent
variable x, the problem is termed as boundary-value problem (BVP). In the former
case, there is a definite starting point, and one can obtain the solution by varying x in
order to move outward from this starting point. An example of an initial-value
problem was given by Equation 1.1, which is of the form dy/dx = Ay + B, where A and
B are constants, and by the initial condition y =y, at x = x,,. This equation governs,
for instance, the temperature of a small, heated metal sphere being cooled by a
stream of cold air and the charge in the capacitor which forms part of the electrical
circuit shown in Figure 1.2. Boundary value problems (BVPs) are more involved,
since conditions specified at different values of x are to be satisfied. Because at least
two conditions are needed for specification at different x values, the ODE must be at
least of second order for a BVP. Several of the methods employed for BVPs are based
on those for initial-value problems, often employing the root-solving procedures of
Chapter 5 to satisfy the given boundary conditions.

9.1.2 RebpucTioN OF HIGHER-ORDER EQUATIONS TO FIRST-ORDER EQUATIONS

The nth-order equation, given by Equation 9.2, can be reduced to a system of n
first-order equations by defining (n—1) new variables Y,, where i = 1, 2, ..., (n—1), as
follows:

dy
T dx
_y
T dx? 9.3)

Y,

Y

dn—ly
Y"—l = dxn—l

Then, the given ODE may be written as the following # first-order equations:

d
dﬁ =4

dy,_ .

L=Yit wherei=23,.,(n-1) 94)

dy,

P (6K YY)

Numerical Solution of Ordinary Differential Equations 367

As an example of the above procedure, consider the following third-order,
nonlinear, equation that governs the flow over a two-dimensional wedge:

&f o dif dr\’

where x is the dimensionless distance from the wedge surface, fis the nondimen-
sional stream function, which is related to the velocity field, and [is a constant
that gives the wedge angle Br in radians. Figure 9.1 gives a graphical represen-
tation of this physical problem. Equation 9.5, which is typical of several fluid flow
circumstances encountered in aeronautical, chemical, and mechanical engineer-
ing, may be written as three first-order equations by defining two variables, F,
and F,, as

df dazf
F=-—"- F=—5 (9.6)
(a) As x—o0, f'—1.

1.0 4

0
X
FIGURE 9.1 Graphical representation of the physical problem governed by Equation 9.5.
(a) Sketch of the flow over a two-dimensional wedge; (b) qualitative sketch of the variation of
the functions fand f” with x.

368 Computer Methods for Engineering with MATLAB® Applications

to yield
d
oy
dF,
woh ©7)
dr,

& =~/ B-B(1-F)

The velocity component parallel to the wedge surfaces is given by F, = df/dx.
Figure 9.1b shows, qualitatively, the distributions of fand F,. This problem is consid-
ered again in greater detail later. Therefore, a given nth-order ODE can generally be
reduced to a system of n first-order equations and we can focus our attention on the
solution of first-order equations.

A first-order ODE may be written in the form

d
= F(xy) 9.8)

The methods used for solving a system of first-order equations are based on those for
a single equation, and, since most higher-order equations can generally be reduced
to a system of first-order equations, most of the available methods are directed at
solving a single first-order equation, given by Equation 9.8. In many problems of
engineering interest, the differential equations obtained are nonlinear, with the
dependent variable and its derivatives appearing as nonlinear functions in the equa-
tion. Equation 9.5 is an example of a nonlinear ODE. However, if the equation can
be written in the form given by Equation 9.2, the solution procedure is essentially the
same for linear and nonlinear equations. Still, nonlinear problems generally involve
a greater computational effort and, in BVPs, may lead to convergence difficulties.
For linear equations, one can often use the superposition of solutions to simplify the
computational scheme. Linear, homogeneous, BVPs arise in some engineering
applications, such as the natural vibration of systems. These situations lead to
eigenvalue problems which often require special solution techniques.

In view of the above discussion, ODEs may be classified as first-order or higher-
order, single equation or system of equations, initial-value or boundary-value, linear
or nonlinear, and homogeneous or inhomogeneous. Although there are often large
differences in the analytical solution of these different types of equations, the appli-
cable numerical procedures are quite similar. However, the classification of the prob-
lem as initial-value or boundary-value is important, since different techniques for
solving the equation or for satisfying the boundary conditions are generally needed.
The solution of a single first-order equation is particularly important since it forms
the basis for solving other types of equations.

Analytical solutions of ODEs may be obtained in a few simple cases, particularly
for linear equations. As discussed in Chapter 1, analytical results, whenever available,
are useful in the validation and testing of the numerical scheme, which may be first
employed for the simple problem whose analytical solution is known. Once the

Numerical Solution of Ordinary Differential Equations 369

procedure has been tested for correctness and accuracy, one may proceed to the
solution of more involved problems that cannot be solved analytically. If no relevant
analytical results are available, one considers the numerical results obtained in terms
of the physical or basic nature of the problem to determine whether the results follow
expected trends. In several engineering problems, some experimental data may be
available on the problem being solved numerically and may be employed for the
validation of the method and the numerical results.

9.1.3 SoLuTioN METHODS

Several methods are available for the solution of ODEs. Although each method has
its particular advantages over other methods, and also certain disadvantages, many
numerical methods are generally applicable to a given problem, and the choice of the
method frequently becomes a matter of personal preference. Generally, one solves
higher-order equations by reducing them to a system of first-order equations, as
outlined above. BVPs are often solved by shooting methods, which are based on the
methods applicable for initial-value problems. Consider, for example, the problem
shown in Figure 9.1 and governed by Equation 9.5. This is a BVP, with the boundary
conditions given as follows:

Atx=0: f=0and F =0

9.9
Asx—>ow: F —1

Therefore, the conditions are specified at two values of the independent variable x.
If F,, or d?f/dx?, is given at x = 0 instead of the third condition, an initial-value prob-
lem will be obtained. Therefore, F, at x = 0 may be guessed, the equation solved as an
initial-value problem, and a correction scheme employed to iteratively vary the
guessed value of F, until the third condition in Equation 9.9 is satisfied to a desired
tolerance level. Such an approach is known as a shooting method and is frequently
employed. Therefore, much of the discussion in this chapter is directed at the first-order
initial-value problem, followed by a consideration of other problems and techniques,
particularly the finite difference methods that can be used to solve BVPs directly.

There are mainly two types of methods available for solving the first-order
initial-value problem given by Equation 9.8. In the first case, the desired solution at
a given value of x is obtained in terms of the function F(x, y) evaluated at various x
values between x and x—Ax, where Ax is the chosen increment in x. The values for
X < x—Ax are not needed, and the methods are, therefore, self-starting, since only the
initial condition is needed to obtain the solution at the next step, x = Ax. Euler’s
method and the Runge—Kutta methods fall in this category. The methods that consti-
tute the second category require information at values of x less than x—Ax and are not
self-starting. These are known as multistep methods and require other methods to
yield the solution for the first few steps beyond the initial condition. Included in this
category are Adams multistep formulas and the predictor—corrector methods, such
as Hamming’s and Milne’s methods. The multistep methods are among the most
efficient numerical techniques available for solving ODEs.

370 Computer Methods for Engineering with MATLAB® Applications

This chapter discusses various methods that may be employed for solving
first-order initial-value problems, outlining the important advantages and limitations
of each method. The solution of a system of ODEs is considered next. The solution
of BVPs is considered in terms of shooting methods, using the techniques for
initial-value problems, and in terms of finite difference methods. The techniques
applicable for eigenvalue problems are also discussed.

9.2 EULER’S METHOD

Let us consider the solution of the first-order ODE

dy
L= F(xy) ©.8)
with the initial condition
¥(%) =¥ (9.10)

where y, is the value of y(x) at a given value of the independent variable, x = x,,.
A numerical solution of this differential equation involves obtaining the numerical
values of the function y(x) at discrete values of x, termed node points, for x > x,. If
Ax represents a uniform step size, that is, a constant difference between successive
values of x at which the numerical solution is to be obtained, the node points x;
are defined by

X; = Xy +iAx, wherei=0,1,2,... (9.11)

The numerical values of the solution at these points may be denoted by y,, y, - - -,
¥, ---. Therefore, the numerical scheme must provide a means of evaluating y,,,
from the given or computed solution at the preceding grid points. If interest lies in
determining the solution for x < x,, instead of x > x,, x; may be taken as x; = x, — iAx,
or a simple transformation of the independent variable may be employed to yield a
new variable that increases as x decreases. Therefore, we shall consider only the case
of increasing x here.

9.2.1 CoMPUTATIONAL FORMULA AND PHYSICAL INTERPRETATION
OF THE METHOD

Euler’s method is one of the simplest methods available for solving ODEs. However,
it is very seldom used since several more efficient methods are available. The main
reason for studying this method is that it is simple and allows a consideration of
many of the basic features of the numerical solution of ODEs without the additional
complexity of other methods. The computational formula for solving Equation 9.8 by
Euler’s method is

Vi =Y +Ax F(x,,y,) withi=0,12,... 9.12)

Numerical Solution of Ordinary Differential Equations 371

Therefore, the solution can be obtained for increasing x, starting with x = x,,.
This implies that the method is self-starting. Figure 9.2 shows the geometric
interpretation of Euler’s method. The exact solution is denoted by y(x), and a
qualitative comparison between the computed results and the exact solution is
shown. The tangent to the curve at x = x; has a slope of F(x;, y,) and approximates
the true curve for x; <x < x,,. At the initial point, x = x,, the line tangent to the
graph of y(x), as shown, approximates the numerical solution for 0 < x < Ax. As x
increases, the numerical results increasingly deviate from the exact solution, due to
accumulation of error.

There are several other ways of interpreting Euler’s method. If the function y(x) is
assumed to be analytic near x;, it may be expanded in a Taylor series, using Equation
4.2, as follows:

2
dy| (Ax) @y
Vil =i +Axa + > |, where x; < g <X, (9.13)
Xi g
(a) Numerical
y > solution after
one step
Exact
/ solution
Tangent to
Yo Initial Y cfrve
condition
[—Ax —>
X0 x, x

(b) Numerical solution /(
y from Euler’s method
Exact solution
y(x)

Error after two
steps

Ax Ax Ax Ax
X0 %1 X X3 Xy x

FIGURE 9.2 Graphical interpretation of Euler’s method. (a) Numerical solution and error
after the first step; (b) accumulation of error with increasing independent variable x.

372 Computer Methods for Engineering with MATLAB® Applications

Euler’s method is obtained if the last term, which then becomes the TE for this com-
putational step, is dropped. Therefore, this formulation for deriving Euler’s method
allows a determination of the error, as discussed in detail later in this section.

We may also use numerical differentiation, with a forward difference approxima-
tion for the derivative, to represent Equation 9.8 as

d
FOpy)= o

_ it 7Y
= (9.14)

X

This equation also gives the formula for Euler’s method. Similarly, numerical inte-
gration may be applied to the given differential equation to give

Kist

Vi = v+ [F(xy) dx 9.15)

Therefore, the change in y is represented by the area under the F(x, y) curve. One can
obtain an approximation to the integral by taking F(x, y) as constant over the inter-
val. This is the rectangular rule for numerical integration, as discussed in the preced-
ing chapter. Thus,

Kist

fF(x,y) dx = (x;,, = x)F(x;,y;) = AxF(x;,y,;)

which gives

Yio =V, + Ax F(x,,y,) 9.12)

Figure 9.3 shows a few steps of this numerical integration to obtain the function y(x).

Both the Taylor-series formulation and the numerical integration procedure can
be employed to generate more accurate methods. The former leads to single-step
methods such as the Runge—Kutta formulas, and the latter to multistep methods,
particularly the predictor—corrector methods. Euler’s method does not yield a high
level of accuracy in the solution and is, therefore, rarely used. However, because the
method is so simple, it is used in some engineering applications to obtain an initial
estimate of the physical variables, by solving the governing differential equations
with a relatively small step size Ax. The method also serves to illustrate the basic
considerations that arise in the numerical solution of ODEs.

9.2.2 SOLUTION OF A SYSTEM OF EQUATIONS

Euler’s method may easily be extended to yield a solution of a system of first-order
equations. Consider the following system of three equations:

Numerical Solution of Ordinary Differential Equations 373

(@) dy _—
dx
Iy=
P_c: F(x3,}’3)'
£ I3= Ax
a L= |Fyy)
1= F(xAl,yl)~ Ax
F(xo:yo)‘ *
Ax
x
(b) »
Ya=y3+ly
Numerical V3=yy+l3
solution
j Ya=y1+l
=Yoo+l
Yo
Ax Ax Ax Ax
X X, X X3 Xy x

FIGURE 9.3 Sketch of a few steps in the numerical integration of the differential equation
by Euler’s method to yield the numerical solution y(x).

Dm Ry, 7) with ¥, () = Yy
% = B(x,Y,1,,Y,) with ¥, (x,) = Yoy 9.16)
dy;

o =BGy with Y (x) = Y,

where V), Y,, and Y; are three dependent variables whose values are given at x = x,,.
We obtain the numerical solution of these equations from Euler’s method by
employing the computational formulas

Yiou =", +Ax K (xi’YI,i9Y2,i’Y3,i)
Yim =Y, +MAx F, (xi’Yl,i’YZ,i’Y?a,i) O.17)

Yim=Y;, +Ax F; (xiayl,ivyz,i»ya,i)

374 Computer Methods for Engineering with MATLAB® Applications

Thus, we obtain the numerical solution by proceeding in the direction of increasing x,
starting with the initial conditions at x = x,,, and successively calculating the three
independent variables Y, Y,, and Y; at each step.

9.2.3 ERRORS, CONVERGENCE, AND STABILITY

It is important to examine the errors associated with the numerical solution of a
differential equation in order to determine the accuracy of the results obtained. As
discussed in Chapter 2, several types of errors arise in numerical computation.
Among the most important of these are the round-off and TEs. The round-off error
arises due to the retention of a finite number of significant figures by the computer.
The round-off error is, therefore, a function of the computer and may be reduced by
the use of double precision in the computation. The TE arises due to the approxima-
tion of a function by a finite number of terms in the infinite series that represents the
function. The series is generally truncated after a few terms to develop the scheme
for the numerical solution of the differential equation. Therefore, the dropping of the
remaining terms leads to the TE. A very important aspect in the error analysis of
numerical methods is the growth or accumulation of errors as computation progresses,
since this consideration is related to the stability of the scheme, as discussed below.

To find the TE in Euler’s method, let us assume that the exact solution to the
differential equation, y(x,), is known at x; and is employed in Equation 9.12 to compute
the solution at x,,,. Then

Vis1 = Y(xi)"' Ax F [xi’y(xi)] (0.18)

If the exact solution is analytic near x;, we may represent it by a Taylor series as
follows:

dy| (&) @y () @
y(xi+m)=y(xi)+mayx +(2)dx§x n 3!) Ky (9.19)
From Equations 9.18 and 9.19,
2 A2
YX; + AX) =y, = (A;) STX +0[(Ax)'] (9.20)

Xl

since (dy/dx), = F[x;, y(x;)]. Here, y(x, + Ax)—-y,,; is the TE from x, to x;,,, starting
with the exact solution at x,. The leading term of the error is of the order of (Ax)> and
may be denoted as O[(Ax)?].

Equation 9.20 gives the TE per step in Euler’s formula. However, this is not the
total error in the numerical solution at x,,,, since the exact solution y(x,) is not known
at x;, except for the first step where the initial condition is given as exact. The value
of y; obtained by Euler’s method contains the error accumulated in previous steps.
The total error at a given value of x; will be the product of the error per step and the

Numerical Solution of Ordinary Differential Equations 375

number of steps. Since the number of steps is x,,,/Ax, the total error is proportional
to Ax and may, therefore, be denoted as O(Ax) for Euler’s method. For a detailed deri-
vation of the total error, see Hornbeck (1982). Because the total error is of the first
order in Ax, Euler’s method is a first-order method.

In the above discussion, we have not considered the round-off error, which is
inevitably present in any numerical solution. We can reduce the TE by making the
step size Ax smaller. As illustrated above, this error decreases linearly with Ax.
However, a reduction in Ax also results in an increase in the number of steps to
obtain the solution over a given range in x. This results in an increase in the computing
time and the round-off error, as shown qualitatively in Figure 9.4. An optimum value
of Ax at which the error is minimum is, therefore, expected. Because of the round-off
error, the numerical solution will always differ from the exact solution of the
differential equation. However, neglecting the round-off error, if the numerical solu-
tion approaches the exact solution, as the step size Ax approaches zero, the numerical
method applied to a given differential equation is said to be convergent. The
numerical techniques discussed in this chapter are convergent when applied to most
differential equations, and, therefore, the convergence of the scheme is generally
assumed. This definition of convergence is different from that employed in earlier
chapters to indicate a negligible change in the solution from one step to the next
during an iterative computational scheme. To distinguish between these two
definitions, we shall refer to an iterative process as being iteratively convergent.

A very important consideration in the numerical solution of differential equations
is that of stability of the numerical method. Although several definitions of stability
are used in the literature, the most commonly employed definition simply considers
a numerical method to be unstable if it yields an unbounded solution when the exact
solution is bounded. Instability arises due to the amplification of the error, and, under

Error

Total error

1
Number of steps, Nec —
Ax

FIGURE 9.4 Qualitative representation of the variation of the truncation, round-off, and
total errors, in the numerical solution of an ODE, with the total number of steps N, which
varies inversely as the step size Ax.

376 Computer Methods for Engineering with MATLAB® Applications

certain conditions, an unbounded growth may arise. The stability of a numerical
scheme depends on both the method and the differential equation. For instance, as
discussed in detail by Ferziger (1998), if Euler’s method is applied to the differential
equation dy/dx =— oy, where o is a positive constant, the scheme is conditionally
stable. If 1-atAxl > 1, Euler’s method gives rise to an increasing solution, whereas a
decaying solution is given by analysis. Therefore, the scheme is stable only for a
certain range of values of o. Ax. Oscillations that increase in amplitude with increasing
x are observed, indicating the presence of instability (see Section 2.3.4). Numerical
schemes, which are stable for any value of the step size and other governing para-
meters, are said to be unconditionally stable. Similarly, there are unconditionally
unstable schemes that are unstable for all values. However, the computational scheme
can be analyzed in only a few cases to determine its stability characteristics. A com-
mon approach employed in practice is to obtain the numerical solutions with two
significantly different step sizes. If the two results are substantially different,
numerical instability may be assumed to be present. If the two solutions are close to
each other, then the scheme is probably stable.

In the numerical solution of a differential equation, it is important to consider the
questions of accuracy, convergence, and stability, as outlined above. The exact solution
is generally available only for a few simple cases. However, a comparison between the
numerical solution for these cases and the exact solution will yield important information
on the accuracy and correctness of the numerical results. It is also important to vary
the step size Ax after the corresponding numerical solution has been obtained. By
varying the step size, one can often determine whether the scheme is convergent and
stable. The numerical results should be essentially independent of the step size. This
process of grid refinement to ensure that the results do not depend on the grid and on
other numerical parameters chosen by the user is often known as verification (Roache,
2010). Similarly, comparison of the numerical results obtained with experimental data,
analytical results and other available results, as well as consideration of the basic nature
of the problem, to ensure that the mathematical and numerical model satisfactorily
represents the process or system is known as validation. Several of these considerations
were also discussed earlier in Chapter 2. The following example illustrates the use of
Euler’s method in solving a first-order initial-value problem.

Example 9.1

An electrical circuit consists of an inductance [, a resistance R, and an emf
source £, as shown in Figure 9.5. Initially, the switch is open and there is no
current in the circuit. At time t =0, the switch is closed and the current builds
up. After 0.5 s, the switch is again opened and the current decreases with time
to zero. Using Euler’s method, solve this problem to obtain the variation of the
current with time for (a) E=20V, L =5 henries, and R=10 Q, and (b) E=20V,
L =10 henries, and R=5 Q.

SOLUTION

We obtain the differential equation that governs the current / for the first part of
the problem, when the switch is closed, by adding the voltage changes around

Numerical Solution of Ordinary Differential Equations 377

L

770000
Inductance 1 N

Switch

FIGURE 9.5 Electrical circuit considered in Example 9.1.

the circuit and setting the sum equal to zero. The voltage across the inductance
is L(d//dt), and that across the resistance is RI. For the analysis of such electrical
circuits, see, for instance, Halliday et al. (2010) and Ogata (2003). Thus,

Lﬂ +RI-E=0 9.21)
dt
or
d_E R ith 1=0att =0 9.22)
de [L

where t is the time, in seconds, elapsed following the closing of the switch. We
obtain the equation that applies for the second phase when the switch is reopened
by setting £=0:

a = —EI with [= [, att = 0.5 (9.23)
dt L

The initial condition for this equation is the current /; at t = 0.5, where I, is obtained
from the numerical solution of Equation 9.22.

Therefore, the problem involves the solution of two first-order ODEs. We must
first solve Equation 9.22 to obtain the current / from t=0 to t=0.5 s. Then we
solve Equation 9.23 to obtain the current until it becomes essentially zero. The
problem is a simple one and can be solved analytically. Here, we will consider
its solution by the simple one-step, self-starting, Euler’s method and compare the
numerical results with the analytical solution.

For the two sets of data given for this problem, the equations are obtained as

% =4-2 forO=<t=<0.5 (9.24a)

% -2 fort>05 (9.24b)

378

Computer Methods for Engineering with MATLAB® Applications
and
d/
o 2-0.5 forO=<t=<0.5 (9.25a)
d/
a -0.5/ fort > 0.5 (9.25b)

The computational formula for Euler’s method is given by

I,'+1 = I,"FAtF(t,‘,I,‘) with j = 0,1,2,... (9_26)

where the subscript i represents the computed values after the ith step, and
subscript (i + 1) those after the (i + th step. Here, F represents the function on the
right-hand side of the equations. In the present case, F depends only on /, which
in turn is a function of time t. Also, t=1i At, where At is the time step and /, is the
current at t=0.

Appendix B.24 gives the computer programs in MATLAB® for this problem.
Two algorithms are shown, the first as a function m-file and the other as a script
m-file. In the former case, the function F, taken as f in the program, is given as
a string, along with the beginning and end points, a and b, of the time range to
be considered. The number of steps, n, is also given, so that the step size can be
computed. The initial condition yO is also specified. Then, Euler’s method is used
to yield the values of the dependent variable y at various values of the independent
variable t. In order to use this function file for the given problem, the two functions
F(t, 1) are defined as

function z=fel(x,y)
z=4-2*vy;
end

function z=fe2(x,y)
z=N2 *y;
end

Then, the function file euler.m is employed as

sl=euler('fel',0,0.5,0,50);
s2=euler('fe2',0.5,8,s1(51,2),750);
plot(sl(:,1),s81(:,2))

hold on

plot(s2(:,1),s2(:,2))

This solves the two ODEs by the Euler’s method and plots the results, discussed
later.

The second MATLAB program solves the first ODE, followed by the second
one, as given in the problem and as discussed in the preceding. The various
symbols employed are defined in the program. The given parameters, £, L,
and R, the time step, dt, and the total time for the computation are entered.
The initial condition /(0) =0 is employed to start the computational scheme.
Equation 9.24a or 9.25a is solved until t=0.5. At this point, the computed

Numerical Solution of Ordinary Differential Equations 379

value of the current is employed as the initial condition for Equation 9.24b or
9.25b, and the computation is continued until the total time is reached. A con-
vergence criterion may also be employed to terminate the computation when /
does not change significantly with time, as given by a convergence parameter.
The time step dt and the convergence parameter must be varied to ensure that
the results obtained are essentially independent of the values chosen. The time
step was varied from 10~ to 10~* and a value of 102 was found to be adequate,
since decreasing dt further did not significantly affect the results.

Figure 9.6 shows the numerical results obtained for the two sets of data given
in the problem. In both cases, the current [rises sharply from zero as the switch is
closed. The maximum value of the current is obtained at t = 0.5 s, beyond which
the current decreases because of the reopening of the switch. A larger maximum
value of the current will be obtained if the switch is kept closed for a longer period
of time. The second set of parameters results in a slower increase in the current,
following the closing of the switch, and also a slower decrease after the switch
has been reopened, as compared to the results for the first set. This behavior is
expected since the derivative d//dt, in the governing equations, is smaller in the
second case.

Equation 9.21 can be solved analytically to give

| = ;[1 - exp(—RLt)] (9.27)
Similarly, Equation 9.23 may be solved to give
| = 2[1 - exp(—RLt‘)]exp [—Lt[tl)] (9.28)

where ¢, is the time at which the switch is reopened. The numerical results are
found to agree quite well with the analytical solution. The current at t=0.5 is

1.25 A

1.00 A
<
= 075 — E=20,R=10, L=5
§ ---- E=20, R=5,L=10
=
3 050

0.25 N

04 T T - - . , ""--I ------
0 1 2 3 4 5 6 7 3
Time, £ (s)

FIGURE 9.6 The computed variation of the current 7 with time ¢ for the two cases consid-
ered in Example 9.1. The time step At is taken as 0.01 s for these results.

380 Computer Methods for Engineering with MATLAB® Applications

obtained from Equation 9.27 for the two cases as 1.264 and 0.885 A, respectively.
These values are close to those obtained numerically, see Figure 9.6.

Appendix C.14 shows the program in Fortran for solving the same problem,
as that given in Appendix B.24(b). As illustrated in the examples given in earlier
chapters, the two programs are very similar in form. The basic logic employed
is the same. The program in MATLAB is simpler because of the several features
that allow considerable ease in input/output, control and plotting. As mentioned
earlier, Fortran is often more appropriate for complicated circumstances. The two
programs also illustrate the ease with which one may switch from one programming
language to the other.

9.3 IMPROVEMENTS IN EULER’S METHOD
9.3.1 HEeuN’s METHOD

There are several numerical schemes that are based on modifications of Euler’s
method and that can be used for solving ODEs. One of the most important is the
improved Euler’s method or Heun's method. In Euler’s method, the function F(x, y),
which represents the derivative dy/dx of the dependent variable y, is taken as constant
over the interval Ax at the value computed at the start of the interval. However, the
derivative usually changes as x increases over the interval, and the accuracy of the
solution can be improved if a better approximation is used for the derivative. Using
Heun’s method, one achieves this improvement by first calculating y,,, from Euler’s
method, denoting this intermediate value as y;,, and then using this value to obtain
a better approximation to the derivative. Considering the first-order initial-value
problem of Equation 9.8, Heun’s method is given by

Vi = Vi + Ax F(‘xi’yi) (9.29a)

Yis1 =i +%[F(xi,yi)+F(xi+1,YT+1)] (9.29b)

Therefore, Euler’s method is employed twice in succession, and the average of the
approximations to the derivative at the two ends of the interval is used to give a more
accurate value of y,,,. Since y,,, is unknown, the derivative at x,,, is approximated by
F(x;,;,y:.,). The method is self-starting since only the conditions at x; are needed to
obtain y,,,.

The preceding procedure gives one of the simplest forms of the predictor—corrector
methods, which are discussed in detail later in this chapter. Equation 9.29a is a pre-
dictor equation for the first approximation to y,,,, and Equation 9.29b is a corrector
equation to yield an improved estimate of y,,,. Figure 9.7 shows a graphical represen-
tation of this method. The improvement in the estimate of y,,, is seen in terms of a
better approximation to the slope of the graph of y(x). Also shown is the integration
of F(x, y), as given by Equation 9.15, using the trapezoidal rule to obtain y,,;.

Numerical Solution of Ordinary Differential Equations 381

? ¥;.1(Improved value)

Slope=F(x;,1, ¥{31)

A Viv1

Ji \

Slope=F(x;, y;)

Ax/2 Ax/2
X X+ % Xit1 x
=
T
» F(xi, 1 ¥i01)
1
Flx; 7)) Flx; 97)
I Y=yl
/ Yis1 = Vit (I+1)
X1 X+ % Xis1 x

FIGURE 9.7 Graphical representation of the improved Euler’s method, also known as
Heun’s method.

One can also use Equation 9.29b iteratively by substituting the value of y,,,,
obtained after the first computation in place of y;,,, to obtain the next, improved,
approximation to y,,,. A sequence of corrected values of y,,, may thus be gener-
ated. The iterative process is terminated when the change in y,,, from one iteration
to the next is smaller than a prescribed convergence parameter. However, greater
accuracy, as compared to that obtained with Euler’s method, is expected in the
solution even if Equations 9.29a and 9.29b are used only once, without iteration.

From the Taylor-series expansion for y(x), as given by Equation 9.19, greater accuracy
is expected in the evaluation of y,,,, if the terms of order (Ax)? are also retained. However,
since the second derivative d?y/dx? is not known, it may be approximated by

@g Y (X)) = y'(x;) _ F(xi, Y = F(xi,)
dx? Ax Ax

382 Computer Methods for Engineering with MATLAB® Applications

where the prime denotes the first derivative with respect to x. When this expression
is substituted in the truncated Taylor series, using y;,, for y,,, which is not known,
we obtain

(AX)2 F(xin»yz)_F(xi’yi)
2 Ax

Vist =Y +Ax F(xi’yi)+
Therefore,
Y=Yt % [F(xi»yi)+ F(xi+1,y7+1)] (9.29b)

where the derivative at x,,, has been approximated by F (xm, Vinl) and the interme-
diate value y;,, is obtained from Equation 9.29a. Therefore, the method retains the
second-order terms. The TE at each step is O[(Ax)*], and the total, or global, error is
O[(Ax)?]. The method is, therefore, a second-order method. An improved accuracy is
obtained if iteration is employed with Equation 9.29b. Also, higher-order formulas
may be derived by retaining additional terms in the Taylor-series expansion, as done
for the Runge—Kutta methods, which are discussed in the next section. However, to
achieve this increased accuracy, we need a larger computational effort for the deter-
mination of the intermediate approximations to the derivative.

The improved Euler’s method may also be obtained by the application of the trap-
ezoidal integration formula to the differential equation, Equation 9.8, instead of the
rectangular rule which yielded Euler’s method, as shown in Figure 9.7. Integrating
the differential equation, we obtain

Ax
Visr =Y = o [F(xnyi)"' F(xi+l’yi+1)] 9:30)

Again, y;,, in the parentheses on the right is replaced by y;,, which is obtained from
Equation 9.29a. Then, Equation 9.29b is obtained. The TE per step for the trapezoi-
dal rule was given in Chapter 8 as

CI

where y”(€) is the third derivative of y with respect to x at a point & which lies
between x; and x,,,. If y”” is assumed to be constant over this step size, it may be
evaluated at x; to yield an estimate of the TE per step as

TE=-— "> -(Ax) (9.31)

Numerical Solution of Ordinary Differential Equations 383

This expression for the error applies if Equation 9.30 is solved by iteration for y,,, and
not if the approximation given by Equation 9.29b is employed.

If the unknown y,,, appearing on the right-hand side of Equation 9.30, is not
approximated as y;,,, we cannot solve for y,,, directly, except for extremely simple
cases. A nonlinear algebraic equation would generally be involved, and the iterative
methods of Chapter 5 may be employed to determine y,,, from this equation. Such
methods, which require the solution of a nonlinear algebraic equation to obtain the
new value of the function y, are known as implicit. Another implicit method that can
be derived by the application of the backward difference formula to the differential
equation, Equation 9.8, gives

Viet =Y = Ax F(xi+l’yi+]) (9.32)

This method, known as the implicit Euler or the backward Euler method, is first-order
accurate.

Implicit methods involve more computation per step, as compared to the explicit
methods discussed earlier. However, these methods generally have better numerical
stability and are often unconditionally stable, as is the backward Euler method
given above. In explicit methods, stability considerations may sometimes restrict
the step size to a small value. In such cases, implicit methods may be preferable
because of weaker restrictions on step size. However, it must be noted that the
stability of a numerical scheme does not indicate the accuracy of the results. In fact,
the TE in the implicit Euler method is equal in magnitude, but opposite in sign, to
that in Euler’s method.

9.3.2 MobirieD EULER’s METHOD

We can obtain another modification of Euler’s method by employing the midpoint,
X; + (Ax/2) in a given step for the evaluation of the derivative F(x, y). This method,
often known as the modified Euler’s method or the improved polygon method, is
given by

Yisiz =Y t % F(X,-,y,-) (9.33a)

i =3+ 8 F (545 ©.33)

Euler’s method is employed twice, first to obtain an approximation y,,,,, at the mid-
point and second to evaluate y,,, from the derivative approximated at the midpoint.
This method is self-starting, since the computation is based on the known conditions
at x = x;. It is second-order accurate and is also known as the second-order Runge—
Kutta method, as discussed in the next section. The geometrical interpretation of the
method is shown in Figure 9.8, indicating the use of the midway point in determining
V- Also, compare this figure with Figure 9.2 to see the difference between this
scheme and Euler’s method.

384 Computer Methods for Engineering with MATLAB® Applications

y
) Ax

Ji Slope=F(x;+ T’yi*%)

TTEIN by
Vi !._:~ . Yi+1
\\\A:/Slope:F(xi, kD)
Ax/2 Ax/2
% X+ % X1 x

FIGURE 9.8 The modified Euler’s method, also known as the improved polygon method or
as the second-order Runge—Kutta method.

Both Heun’s method and the modified Euler’s method are employed for engineering
applications where a very high level of accuracy is not necessary and a simple compu-
tational scheme is desired. The former method is a simple form of the predictor—
corrector methods, which are discussed in greater detail later in this chapter. The latter
method is a second-order Runge—Kutta scheme and is thus a relatively less accurate
version of a class of methods extensively used for practical problems. More accurate
formulas, particularly the fourth-order methods, are much more important for engi-
neering problems. The flow charts for both of these methods are shown in Figure 9.9.
A MATLAB program for Heun’s method, without iteration, is given in Appendix B.25
as a function m-file. It can be seen that the algorithm is quite similar to that for Euler’s
method and can easily be used to solve ODEs. This Appendix also gives the function
definitions for solving the equations given in Example 9.1 and a simple script file to use
the function file to obtain the desired solution, as presented earlier for Euler’s method.

Several other modifications of Euler’s method are available in the literature. We have
considered only self-starting methods here. Some of the modifications of Euler’s method
are not self-starting, and one of the self-starting methods is needed to obtain the first few
steps. Similarly, other implicit and explicit modifications of Euler’s method may be
derived. The accuracy of these methods may be improved by Richardson’s deferred
approach to the limit, discussed in Section 8.4.1 and also later in this chapter.

9.4 RUNGE-KUTTA METHODS

An important class of self-starting methods for the numerical solution of ODEs is
based on retaining higher-order terms in the Taylor-series expansion of the depen-
dent variable y(x) and employing the computed values of the function F(x, y), which
represents the derivative of y(x), at several values of x in the interval x; < x < x,,,. The
resulting schemes, known as the Runge—Kutta methods, are widely used for the solu-
tion of various types of ODEs. In recent years, there has been an increase in the use

Numerical Solution of Ordinary Differential Equations

()

Input
X0 Yo Flx, y)

Initialize
X =%)i = Yo

v

Choose
AX, € Xpax

v

Predictor

Vi1 =i+ Ax Flx;, ;)

Corrector
| visr=vi +%[F(xi’ ¥i) +EO 1 v)]

* —
Yix1 = Vin1

Yes
Xip1 =%+ Ax

Output
printx;,1, yiy1

X=X Yi= Vsl

A

385

FIGURE 9.9 Flow charts for the solution of a first-order ODE by (a) Heun’s method with
iteration and (b) modified Euler’s, or impoved polygon, method.

of other methods, such as the predictor—corrector methods, which are often more
efficient. However, the Runge—Kutta methods are usually employed to start these
latter methods, which are not self-starting. The Runge—Kutta methods have several
important advantages over other methods, besides being self-starting. They are easy
to program, they have good numerical stability, and the step size can be changed
easily to improve accuracy. However, for comparable accuracy, they often require
more computer time than the more efficient methods. Also, the local error is not
estimated easily. Nevertheless, the Runge—Kutta methods are probably the most

widely used technique for solving ODEs that arise in engineering applications.

386 Computer Methods for Engineering with MATLAB® Applications

Input
X0 Yor Flx, _)/)

Choose Ax, €, X,
Initialize: x; = ¢, ¥; = o

v

Apply modified Euler’s method
J o Y=yt EEF)

Yir1= i+ Ax Fla+ % Viry,)

X1 =X+ Ax

Output
Print x;,1, yi41

Xi= X1)i = Vivl

A

FIGURE 9.9 Continued.

9.4.1 CoMpPUTATIONAL FORMULAS

Runge—Kutta formulas involve a weighted average of the derivative calculated at vari-
ous locations within a step size Ax. Let us consider the first-order ODE given by

dy

¥ e F(xy) ©.8)

with
(%)= 9.10)

If F(x, y) is evaluated at two values of x within the interval x; < x < x,,;, we obtain
the second-order Runge—Kutta method, which has the same accuracy as that obtained
by retaining terms up to order (Ax)? in a Taylor-series expansion for y(x). If F(x, y) is
evaluated at only one point, x = x;, we obtain the first-order Euler’s method. Similarly,
F(x, y) is evaluated at three locations in the interval for the third-order method and
so on. Since the locations at which the function F(x, y) is computed and the weighting
factors to be used can be chosen in several ways, a family of formulas can be obtained
for solving the given differential equation. The derivation of these formulas is quite

Numerical Solution of Ordinary Differential Equations 387

involved and is based on a comparison between the terms of the Taylor-series expan-
sion for y(x), about x;, and those of the expansion for the approximations to the change
in the dependent variable over the given step. For instance, the second-order method
may be expressed as follows:

Yier =Y +C K + K, (9.34a)

where
K, = Ax F(x,,y,) (9.34b)
K, = Ax F('xi +pAx,y; + PzKl) (9.34¢)

Thus, the K’s approximate the change in y over the computational step.

The constants C,, C,, p,, and p, are to be determined for an accurate evaluation of
V- As discussed in detail by Ralston (1965), Ralston and Rabinowitz (1978), and
Carnahan et al. (1969), one can find the relationships among these constants by
comparing the expansions for y(x) and K,. One of the constants may be chosen
arbitrarily. If C, is taken as 1/2, then it is found that C, =1/2 and p, =p,=1. This
choice, therefore, leads to Heun’s method, given in the preceding section. If C, is
chosen as 1, then C, =0 and p, = p, = 1/2, resulting in the modified Euler’s method.
Similarly, other second-order formulas may be obtained. The first-order Runge—Kutta
method is simply Euler’s method. One derives higher-order methods similarly by
employing Taylor’s expansions of y(x) and retaining terms up to order (Ax)? for the
third-order formulas and up to (Ax)* for the fourth-order. Still higher-order formulas
have also been developed but are rarely used because of the large amount of
computation involved at each step, see Butcher (1964) and Shanks (1966) for details.

The third-order method obtained by Kutta is given by

Yis1 = Vi +W (9.352)
where
K, = Ax F(x,,y;) (9.35b)
K,=MAxF xi+g,y,.+£ (9.35¢)
2 2
K; = Ax F(x; + Ax,y, + 2K, - K, (9.35d)

The fourth-order Runge—Kutta formulas are of the general form

Vi = i +(CK, + C,K, + CiK; + C,K,) (9.36)

388 Computer Methods for Engineering with MATLAB® Applications

where the C’s are constants. Depending on the choice of the locations where the K’s
are determined and of the appropriate parameters that arise, several fourth-order
formulas have been developed. The most widely employed formula is the classical
Runge—Kutta method given by

K, +2K, +2K; + K,

Yisi =Yi + 9.372)
6
where

K, = Ax F(x,,y;) (9.37b)
K, = Ax F(x,. +ﬂ,y,. +5) (9.37¢)]

2 2
K, =AxF(x,.+ﬂ,y,.+&) (9.37d)

2 2
K, = Ax F(x, + Ax,y, + K;) (9.37¢)

Therefore, four evaluations of the derivative function are made within the interval
x; < x < x;,, in order to obtain approximations to the change in y over this step, and a
suitable weighted average is employed. The TE per step is of order (Ax), since terms
up to order (Ax)* are retained in the expansions.

Several other fourth-order formulas are available, see Carnahan et al. (1969).
A formula that was quite widely used in the past is the one developed by Gill (1951).
This method minimizes the round-off error and also reduces the computer storage
requirements in the solution of a system of equations. The formula was, therefore,
particularly useful for small computers. It is given by

ey K, +2-2)K, g(2+ V2)K, +K, 9.38)
where
K, = Ax F(x,.y;) (9.38b)
K,=MAF xi+&,y,-+£ (9.38¢)
2 2
Ax 2-1 2-1
K, =AxF(xi+2,yi+\/_2 K1+\/_2 Kz) (9.38d)

Numerical Solution of Ordinary Differential Equations 389

NN

K, =Ax F| x; + Ax,y, K, (9.38e)

The fourth-order Runge—Kutta method, given by Equations 9.37, continues to be
a popular choice for the solution of ODEs. It is also frequently employed for BVPs by
incorporating a root-solving scheme, such as the secant or the Newton—Raphson
method, for satisfying the boundary conditions. The main attractive features of this
method are, as mentioned earlier, high accuracy level, good stability characteristics,
ease in programming, applicability to a wide variety of problems, self-starting
computational scheme, and ease with which the step size may be changed to improve
accuracy. All of these features are common to all fourth-order Runge—Kutta formulas.
The classical method is the most widely used one mainly because it has been the
standard method for many years and because it is available in most computer librar-
ies. In engineering applications, where a simple method that yields reasonably accu-
rate results is particularly attractive, the Runge—Kutta methods are commonly
employed, despite the availability of more efficient methods. However, for applications
that involve a substantial computational effort, the Runge—Kutta methods are gener-
ally used only to start the scheme, and other methods, such as the predictor—corrector
methods, are employed after the first few steps to obtain the solution.

As briefly discussed in Chapter 3, MATLAB functions ode23 and ode45 can eas-
ily be used to solve ODEs. Both are based on Runge—Kutta methods. The function
ode23 is a lower order method and is employed as

[tout, yout] =ode23('f',trange,y0)

where f is the function F(x,y) representing the right-hand of a first-order ODE,
Equation 9.8, and entered as a string, trange is range of the independent variable ¢
from the initial value #0 to the end point ffinal and y0 is the initial condition y = y0
at t = t0. The output is given in terms of ¢ values tout and corresponding values of
the dependent variable yout. Similarly, ode45 is a higher order method for solving a
first-order ODE and the command to use it is similar to that for ode23, given above.
Both these methods can be used for higher order ODEs by converting these into a
system of first-order equations, as discussed earlier. The application to higher order
ODE:s is demonstrated in an example later in the chapter. Considerable flexibility is
available in employing these functions and other such methods are available in the
MATLAB environment.

9.4.2 TRUNCATION ERROR AND ACCURACY

One of the major problems with the Runge—Kutta methods is that a quantitative esti-
mate of the local TE is usually difficult to obtain. Therefore, it is often difficult to
determine whether the step size is small enough to yield numerical results of desired
accuracy. A common procedure is to run the computational scheme for different step
sizes and to compare the results obtained. The step size is then chosen such that
a further reduction in size does not significantly affect the results. However, this

390 Computer Methods for Engineering with MATLAB® Applications

process is very time-consuming, and other methods for estimating the error and for
improving the accuracy of the results have been developed.

The truncation error per step, TE, for a nth-order Runge—Kutta method may be
written as

TE = A(Ax)™ +0 [(Ax)'”z] 9.39)

where A is a constant that depends on the function F(x, y) and its higher-order par-
tial derivatives. If Ax is small, the error is determined largely by the first term, and
the bounds for A may be determined, as discussed by Ralston and Rabinowitz
(1978). One method of estimating the TE is to obtain the two solutions y,,, and y,,,
corresponding to step sizes Ax and Ax/2, respectively, by integrating between the
two x values x; and x,,,. If Y,,, is the exact solution, an estimate of the TE and an
improvement in the accuracy of the numerical solution may be obtained from the
above expression for TE, considering only the dominant term. This approach,
known as Richardson’s extrapolation and discussed earlier in Chapter 8, gives

Yooy = Yo = A(Ax)"™ %
oo i = A(A;) fom
Therefore,
Y= % (9.40)

which gives a more accurate approximation to the solution. Also,

TE = Y.y =y = Afx) " = z(yz__ly) 4D

Therefore, for the fourth-order Runge—Kutta method, TE is obtained as

16

TE = —
15

(5’”1 - yi+l) 942)

One can use this estimate of the TE to adjust the step size and thus maintain the
desired accuracy level. However, if this estimation were done at each step, the
number of calculations performed would rise to approximately three times that for
the Runge—Kutta method. Therefore, the error may be computed once every m
steps, where m is chosen arbitrarily. Collatz (1966) gave another procedure for con-
trolling the error, based on the calculation of the absolute value I(K; — K))/(K, — K))I

Numerical Solution of Ordinary Differential Equations 391

from Equation 9.37 after each step. If this quantity becomes larger than a few hun-
dredths, then the error is too large and the step size should be reduced. Several
other similar procedures have been given in the literature for limiting the error in
Runge—Kutta methods.

Note from the preceding discussion that we can decrease the TE by reducing the
step size Ax. However, a reduction in Ax also results in an increase in the number of
steps needed for the integration of the equation over a given interval. This, in turn,
increases the round-off error, which depends on the number of arithmetic operations
performed. The total TE may be estimated as a product of the error per step and the
number of steps. Since the latter varies inversely with the step size, the accumulated
TE for the nth-order Runge—Kutta method is of order (Ax)". Therefore, as Ax is
reduced, the TE is decreased while the accumulated round-off error increases. An
estimate for the total error due to truncation and round-off is usually difficult to
obtain. However, if analytical results are available for some simple cases, a compari-
son between the analytical and numerical results allows one to determine the overall
accuracy of the numerical scheme.

The stability characteristics of the Runge—Kutta methods are generally good.
Of particular interest in any numerical scheme is its partial instability, which
may arise even when the equation being solved is not inherently unstable and
which is dependent largely on the step size. If dF(x, y)/dy is positive, then the
error may increase without bound as x increases. On the other hand, if it is nega-
tive, then the error remains bounded for small Ax, see Fox (1962) and Ferziger
(1998). An important parameter is the step factor Ax dF/dy, which affects the
propagation of the error. The stability of various formulas has been considered,
and the criteria for choosing the step factor have been given. A practical approach
in most cases is to solve the problem for different step sizes, and, if close agree-
ment is obtained between the corresponding results, the scheme may be assumed
to be stable.

9.4.3 SysTEM OF EQUATIONS

The Runge—Kutta methods can also be employed for solving a system of first-order
ODEs and, therefore, for solving an nth-order differential equation, since it can usu-
ally be reduced to n first-order equations, as outlined earlier.

Let us consider the two simultaneous first-order equations

% - F(xy.2) 9.43)
E=6(xr.2) (9.44)

with

y=y, and z=2z, atx=x, (9.45)

392 Computer Methods for Engineering with MATLAB® Applications

Then the classical fourth-order Runge—Kutta method for this problem is given by

K, +2K, +2K, + K

Vi =Y t l s 6 : : (9.462)
and
- =Z,~+K1+2K222K3+K4 (9.46b)
where
K, =AXF(xiayz‘,Zi) K1/=AXG(XisYirZ t)
[A K K\ [Ax K, K
K2=A-XFLX +7’y1+7’zi+7J K2=AXGLX +7’y1+7’zi+ 2)
_ N . Ax K K
K3—AxF(x+2,y,+2 f 2) K;—AxG(x+2,y,+2,Z,-+2
K, =AxF(x, +Axv,y, +K,,z +K]) Ki=Ax G(x +Ax,y, + K,z + K])

(9.46¢)

The computation must be carried out in the sequence given above, since K[is
needed for calculating K,, K, for calculating K{, and so on.

To illustrate the application of the above formulas to a higher-order ODE, let us
consider the following equation, which governs the vibration of a mass connected to
two boundaries through a spring and a damper:

2
((11—2+ Bg+kx P 947)
Here, m is the mass of the vibrating body, B the viscous friction coefficient of the
damper, k the spring constant, P an external force, x the displacement of the mass,
and ¢ the time. The system is illustrated in Figure 9.10. We can reduce it to two
first-order equations by defining a new variable y as

dx
Z_vy=F 9.48
o == Py 948)
Therefore,
dy
m +By+kx=P
or

dy P-By-kx

- - 9.49
i - G(x,y,1) 949)

Numerical Solution of Ordinary Differential Equations 393

FIGURE 9.10 A vibrating system consisting of a vibrating mass m, a spring of stiffness k, a
damper of friction coefficient B, and an external force P.

The two first-order equations, Equations 9.48 and 9.49, may now be solved by the
Runge—Kutta method given above.
The recursion formulas for advancing from ¢, to #,,, are obtained as follows:

K, +2K, +2K, + K

Xipy =X+ 2 6 2 4 (9.50a)
- K| +2K, 221(3 +K, (9.50b)
where
. At
K, = Aty, K, =%(P_Byi_kxi)
_ K . Arf K K
Kz—At(yi+ 2) K; = mkP B(y > —k|x >

\

)

s8] S o)
[

A
K,=M(y,+K]) K= mt P B(y, + K) = k(x, + K,)]

Here, At is the step size in time 7, and y represents the rate of change of the
displacement x with time, that is, the velocity of the mass m. Note that the initial
values of x and y are needed for starting the computation. These may be specified as
follows:

Att=0: x=x, and y=%=yo 9.51)

394 Computer Methods for Engineering with MATLAB® Applications

Similarly, we can use the method to solve third-, fourth-, or still higher-order
equations by reducing them to a system of first-order equations. Considerations of
error, accuracy, and stability are similar to those discussed for first-order equations,
although these concerns become more involved for a system of equations. The
following example illustrates the use of Runge—Kutta methods for solving ODEs.

Example 9.2

A projectile of mass m is shot vertically upward at a velocity of 100 m/s. The frictional
force acting on the projectile due to its motion in air is given as m(AV + BV?), where
A and B are constants and V is the velocity at any given time t. Using the fourth-
order Runge—Kutta method, compute the vertical position x and the velocity V of the
projectile as functions of time for (@) A=0.01 s, B=0.00Tm~, and (b) A=0.1 s,
B =0.01T m™. Solve for the vertical motion until the velocity becomes zero.

SOLUTION

The projectile is subjected to retardation due to the gravitational force of magnitude,
mg, where g is the magnitude of the gravitational acceleration, and the frictional
force due to the motion in air. We obtain the governing differential equation for the
vertical displacement x by writing the force balance, from Newton’s Second Law, as

’x dx
m——5 = -mg - mAV +BV?), whereV = — (9.52)
dt dt
Here, d’x/dt? is the acceleration of the projectile, taken as positive in the verti-
cally upward direction. The gravitational force is negative since it acts downward.
The frictional force is also negative since it acts in a direction opposite to that of
the motion. Therefore, the equation to be solved is
2 2
37’2‘ - g [a® B(d—x)] - Fx,0 9.53)

dr TP

This equation is solved until the velocity drops to zero and the projectile
reaches its maximum height, before starting the downward motion. The initial
conditions for Equation 9.53 are as follows:

Att=0:x=0 and %=100 (9.54)

Since Sl units are being used, g=9.8 m/s?. Also, x, t, and V are in m, s, and m/s,
respectively.

The second-order equation, given above, may be broken down into two
first-order equations as

(9.55a)

=1
]
<

(jT\t/ = —g - (AV + BV?) (9.55b)

Numerical Solution of Ordinary Differential Equations 395

Then the initial conditions for starting the Runge—Kutta scheme are as follows:
Att=0:x=0 and V =100 (9.55¢)

Appendix B.26 presents the MATLAB script file and Appendix C.15 the
corresponding Fortran program for this problem. The various symbols employed
are defined in the program. The function F(x,t) = dV/dt = —g — (AV + BV?) is defined
and input parameters are entered. The fourth-order Runge—Kutta scheme is written,
using the formulas given in Equations 9.46. Then, in terms of the nomenclature
used here, the recursion formulas are as follows:

Ki = AtV, Ki = At(—g ~ AV, - BV?)
"2
K2=At(V+ﬁ) = At|-g - A(V +—)—B(\/i+&) !
2 k 2 2)
’ 2
K3=At(\/,+&) At(g- (v +&)-B(\/,+K2) |
2 L 2 2 }
Ky = At(V; + K3) At[-g — AV; + K}) = BV, + K)*]
Xiv = X; + K1 + 2K2 22K3 + K4 \/,-_” _ \/, + K1 + 2K2 46'2K3 + K;’;

(9.56)

Therefore, the displacement x and the velocity V at the next time step, denoted by
the subscript (i + 1), are obtained in terms of the values at the present time step,
denoted by subscript i. The computation is carried out, starting with the initial
conditions, until the velocity becomes less than or equal to zero. The exact point
where it becomes zero may be obtained by interpolation.

Figures 9.11 and 9.12 show the numerical results obtained for the two sets of
input data given. The time step At can be taken as larger in the first case, since the
variation with time is slower due to the smaller frictional force. However, At must
be varied to ensure that the numerical results are not significantly altered if At is
made smaller. For the two cases shown, At values of 0.05 s and 0.01 s are taken,

300 A
—— Displacement, x(1)

200 - - - - Velocity, V (m/s)

100 +-=__

Velocity, V(m/s) Displacement, x(m)

Time, £(s)

FIGURE 9.11 Computed variation of the velocity V and the displacement x with time # for
Example 9.2, for A =0.01 s7, B=0.001 m™', and Ar=0.05 s.

396 Computer Methods for Engineering with MATLAB® Applications

E

= 100 4

é \\\

v \

E 80 A \\

8 \\

= AN —— Displacement, x(m)

% 60 -

A AN - - - Velocity, V (m/s)

® SN

£ 10

S/ \~*~

£ 20- el

Q S~

s /T

VT .

> 0 T T T T T T ‘—l
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time, £(s)

FIGURE 9.12 Computed results for A=0.1 s and B=0.01 m™ in Example 9.2, with
At=0.01s.

respectively, and found to be satisfactory, since a further reduction in At resulted in
a negligible change in the results. As expected, the maximum height, or displace-
ment, is found to be larger when A and B are smaller. Also, the time taken to reach
this height is larger. The problem may easily be solved analytically for A=B8=0
(that is, no frictional drag) to obtain the maximum height as 510.2 m, and the time
taken to reach it as 10.2 s. These values compare well with the results shown.

The program is quite simple because of the self-starting feature of the method.
The program, written for the present initial-value problem, may be used to obtain
results for arbitrary values of the input parameters. It may be modified to solve
other second-order initial-value problems. The use of this method for BVPs
requires a correction scheme, as discussed later in this chapter.

As discussed earlier, MATLAB functions ode23 and ode45 can be easily
employed to solve this problem. The two dependent variables are x and V. A vec-
tor y is used with these two as components to specify the two ODEs and the initial
conditions. The commands used are

y0=[0;100];
[t,v] =ode45('rhs',10,vy0) ;
n=1length(t) ;
for i=1:n
if v(i,2) <0

break
else
tl(i) =t(i);vli(i,1) =v(i,1);v1i(i,2)=v(i,2);
end
end

plot(tl,v1(:,1),'M',t1,v1(:,2))

where y0 represents the initial value of the dependent vector y, tis the independent
variable and v is the solution matrix. Then, the first column of v represents x and
the second column represents V. The results are plotted for x and V versus t. The
function rhs.m is given as

function dydt =rhs(t,y)

Numerical Solution of Ordinary Differential Equations 397

a=0.01;b=0.001;
dydt= [y (2); H9.8K(a*xy (2)+bxy(2)"2)];
end

where the constants in the problem A and B are given as a and b and the right-hand
sides of Equation 9.55 are given. The constants a and b may be changed for
the second part of the problem. Additional commands are needed to stop the
computation when V becomes negative. The results obtained are essentially
identical to those obtained earlier.

9.5 MULTISTEP METHODS

In the methods considered so far for the solution of Equation 9.8, we computed the
value of y,, by using the known conditions at x; and the approximations to the
derivative at various other points in the interval x; < x < x,,,. However, a large number
of function evaluations are needed for each step, where this number is equal to the
order of the method. Therefore, interest lies in methods that give comparable accu-
racy with a smaller number of function evaluations per step. The multistep methods
form an important class of efficient methods that use the information at mesh points
preceding x;, along with that at x;, to yield y,,,. Several multistep formulas have been
derived. Formulas in which y,,; is given explicitly in terms of known values of the
dependent variable y and of the function F(x, y) at x,, X, and so on, are termed open
formulas. Similarly, finite difference formulas that include unknown values of y and
F usually require iteration to solve for y,,,. Such formulas are termed implicit or
closed.

If the formula requires the values of F' at mesh points preceding x;, the method is
not self-starting, since at the initial condition, x = x,,, the only known condition is the
given value y, of the variable y, from which the function F(x, y) may be evaluated at
this point. The conditions prior to x; are not known. Therefore, a self-starting method,
such as a Runge—Kutta formula with the same order of accuracy as that of the
multistep formula under consideration, must be employed in the first few steps, until
the information needed to proceed with the given multistep method is obtained.

9.5.1 AbAMS MULTISTEP METHODS

The multistep formulas may easily be derived from the Taylor-series expansion of
the dependent variable y, written as

Vi =Y+ A F + E'+-- 9.57)

where the primes denote differentiation with respect to x. We obtain this expansion
from Equation 9.19 by noting that

dy) _ &y
(@) -7 (&) -

’

|

398 Computer Methods for Engineering with MATLAB® Applications

and so on. If the series in Equation 9.57 is truncated after the second term, Euler’s
method is obtained. This may be considered as the first open multistep formula. We
can generate a series of higher-order formulas from Equation 9.57 by replacing the
derivatives by their finite difference approximations from Chapter 4. If backward
differences are used, the formulas obtained are known as Adams—Bashforth or
Adams open formulas. Therefore, if F[is approximated as

+0(Ax) (9.58)

the equation for y,,, becomes

2
Yix1 =yi+AXFi+(A;) £ ;xE_l +0[(Ax)3]

or,

Viet = Vi +Ax [31:1 _;E—l}"'OI:(Ax)S] 9.59)
Therefore, a second-order formula, known as the second open Adams formula,
is obtained. If F” is taken as constant over the interval x; < x < x,,;, the TE per step
in Equation 9.58 may be approximated as AxF,"/2, which leads to a TE of 5(Ax)*F,"/12
in Equation 9.59. The total error is O[(Ax)?], as discussed later. The method is thus a
second-order method because of the order of the total TE.
Similarly, we can derive the third-order formula by employing the following
backward difference approximations for F;[and F[:

” i i1t E—
F' = WZ +0(Ax) (9.602)
F =3E—42F+E_2+0[(M)2] (9.60b)
which leads to the equation
23 16 5 4
Vit = Vi + Ax 12F,-—12E-_1+12F,-_2]+0(AX) (9.61)

Again, if F”” is assumed to be constant over the given step Ax, the error incurred
in Equation 9.60a may be written as AxF;"’, and that in Equation 9.60b as (Ax)*F,"/3;
see Chapter 4. Then these expressions for F[and F[may be used in Equation 9.61 to
yield a TE of 3(Ax)* F,"/8.

Numerical Solution of Ordinary Differential Equations 399

The general formula for the Adams—Bashforth method may be written as

Vo = 3 A N B, + O [(Ax)] 962)

m=1

Thus, the TE per step is O[(Ax)"*']. The order of the method is n, since the number of
steps needed to solve Equation 9.8 up to a given value of x varies as 1/Ax, leading to
a total TE of order (Ax)". In Equation 9.62, n may be varied to obtain Adams—
Bashforth methods of different order. Table 9.1 gives the corresponding values of
the B’s, which are the coefficients for these explicit methods, for n up to 6. One can
determine the TE for higher-order formulas by retaining the error terms in the finite
difference approximations for the derivatives, as outlined above. Note that these
methods are explicit and, thus, no iteration is needed for computing y,,,.

We derive the Adams-Moulton or Adams closed formulas by employing a
backward Taylor-series expansion of y(x), obtained as

(o (&),

yi=yi+1_AxE+l+ 2 i+l 3| i T
which gives
2 3
Ax Ax
Yis1 =yi+AxE+1_(2)EL1+(3|) F;Z1+"' (963)

If the series is truncated after the second term, an implicit formula for y,,, is
obtained as follows:

Vi1 =Y+ A F, +0 [(Ax)z] (9.64)

The TE in this equation can easily be shown to be —(Ax)?F’/2. Again, if the derivatives
of F in the preceding series are replaced by backward difference approximations,

TABLE 9.1

The Values of the Coefficient B, for the Adams—Bashforth Method,
for nup to 6

n K m=1 2 3 4 5 6

1 By 1

2 2,, 3 -1

3 12 By, 23 -16 5

4 24 By, 55 -59 37 -9

5 720 Bs,, 1901 2774 2616 ~1274 251

6 1440 By, 4277 -7923 9982 ~7298 2877 475

400 Computer Methods for Engineering with MATLAB® Applications

higher-order formulas are obtained. Therefore, we derive the second-order formula
by employing

which gives

N[=

Yier = ¥ +Ax [;E"'

F., } +0 [(Axf] (9.65)

This formula is the same as the trapezoidal rule for integration discussed in
Chapter 8, and, therefore, as shown before, the TE per step is—(Ax)*F”/12. Note that
since F,,, is involved in Equations 9.64 and 9.65, these formulas are implicit and
iteration is needed to solve for y,,,.

Both the first-order and the second-order Adams-Moulton formulas are self-
starting, since F,_|, F, ,, and so on, are not involved. However, the third- and higher-
order formulas are not self-starting and need a self-starting method, such as Runge—
Kutta, to solve for the first few steps. The general expression for the Adams closed
formulas is

n-1
Voot = i+ A8 N B Fr, + O ()] (9:66)

m=0

where 7 is the order of the method. Table 9.2 gives the coefficients f;, for various
values of n up to 6.

The Adams open and closed formulas are an important class of multistep formulas.
Although they are rarely used separately, combinations of the two sets of formulas

TABLE 9.2

The Values of the Coefficient b, for the Adams—Moulton Formulas,
fornup to 6

n B* m=0 1 2 3 4 5
1 B 1

2 2, 1 1

3 128, 5 8 -1

4 248, 9 19 -5 1

5 72087, 251 646 —264 106 -19

6 14408;, 475 1427 -798 482 -173 27

Numerical Solution of Ordinary Differential Equations 401

yield some of the most efficient predictor—corrector methods for solving ODEs, as
discussed in the next section. One can also derive the Adams formulas by applying
numerical integration to the differential equation, see Carnahan et al. (1969). The TE
can be obtained quite easily for these methods. A smaller number of computations of
the function F are needed in these formulas, as compared to those in the corresponding
Runge—Kutta method, since the values of F' at the preceding points are obtained
from calculations performed for the earlier steps. The closed formulas are solved by
iteration and the resulting error can be shown to be much less than that in an open
formula of the same order. Also, the implicit methods generally possess better
stability characteristics; see Ferziger (1998).

9.5.2 ADDITIONAL CONSIDERATIONS

Several other multistep methods have been developed. A simple method that is often
considered in studying the stability of multistep methods is the midpoint method,
discussed in detail by Atkinson (1989) and given by

Yiet = Vi +2Mx F(xi’yi) 9.67)

This method is second-order accurate and is not self-starting, since y; , is involved.
A feature common to the various multistep methods is the existence of multiple solu-
tions to the difference equation. For a convergent method, one of the solutions closely
approximates the exact solution and is known as the fundamental solution. The other
solutions, known as parasitic solutions, are not related to the exact solution of the
differential equation. If these parasitic solutions grow with each computational step,
instability arises in the numerical scheme. The growth of the parasitic solution is
often exponential and oscillatory, leading to a rapid overpowering of the fundamen-
tal solution. In a stable scheme, the parasitic solution remains small compared to the
fundamental solution. In practice, the numerical solution is obtained at two signifi-
cantly different step sizes, and stability is assumed if the results are in reasonably
close agreement. A reduction in step size also often leads to stability in a previously
unstable solution.

The Runge—Kutta methods are often more stable than the corresponding multistep
methods. Also, the starting method for computing the first few steps in multistep
methods can substantially affect the final results. Therefore, it is important to vary
the starting method to ensure that the results are essentially independent of the
method used. Despite these disadvantages, multistep methods are frequently
employed, particularly as predictor—corrector methods, and have, in many cases,
replaced the Runge—Kutta scheme, which was the standard solution procedure for
many years.

9.6 PREDICTOR-CORRECTOR METHODS

The predictor—corrector methods combine the advantages of accuracy and stability
of the implicit formulas with the simplicity of the explicit formulas. The main

402 Computer Methods for Engineering with MATLAB® Applications

problem with the implicit equations is the time-consuming iterative procedure nec-
essary for obtaining the solution. However, if a first estimate y;,, of the new value of
the dependent variable is provided by the application of an explicit method at each
step, the number of iterations needed for convergence to the solution by the use of the
implicit method may be minimized. Therefore, an explicit formula is taken as the
“predictor” to give a first estimate of the solution, followed by the use of an implicit
formula as the “corrector” to obtain a better approximation to the solution.

9.6.1 Basic FEATURES

The predictor—corrector methods are generally more efficient than the Runge—Kutta
methods of the same order. The fourth-order Runge—Kutta method requires four
function evaluations for advancing the solution by one step. The corresponding
predictor—corrector method requires only one function evaluation for the predic-
tor, since the other values are available from earlier computations, and, if fewer
than three iterations are needed for the corrector, this method will require less
computer time than the Runge—Kutta formulas of the same order. A detailed com-
parison between these two families of methods for solving ODEs is given by Hall
et al. (1972). Another important advantage of the predictor—corrector methods is
the ability to estimate the TE at each step. This ability allows one to choose a suit-
able step size for achieving the desired accuracy level and also to estimate the
accuracy of the converged solution. Because of these advantages, the predictor—
corrector methods are among the most popular ones at the present time. However,
the problem of starting the scheme is usually present, since most schemes are
based on multistep formulas such as those discussed in Section 9.5 and are not self-
starting.

The improved Euler’s method, given by Equations 9.29, is one of the simplest
predictor—corrector methods. Euler’s method is used as the predictor to give the first
estimate y;,, of the dependent variable as

Vi =y +Ax F(x,y;) (9.29a)

The trapezoidal rule for numerical integration is then used as the corrector to give
Ax .
Vi =Y t+ o [F(xnyl')‘*' F(xm’ yi+1)] (9.29b)

This method is self-starting, unlike most other predictor—corrector methods, and
is commonly employed in problems of engineering interest. As mentioned before,
the method is also known as Heun'’s predictor—corrector method. The TE per step
for the predictor is

(Ax)" a2y

2 dx?

Numerical Solution of Ordinary Differential Equations 403

For the corrector, the error is

3

(Ax) a2y
12 d®

when the corrector is taken as Equation 9.30 and is solved by iteration. The error is
larger if Equation 9.29b is employed, without iteration.

We apply iteration to Equation 9.30 by substituting the computed value obtained
into the right-hand side of the equation to obtain an improved value of y,,,. The process
is repeated until a specified convergence criterion is satisfied. The above corrector
equation may also be employed with other multistep formulas as the predictor. A
commonly employed nonself-starting scheme is obtained by the use of the midpoint
method, given in Equation 9.67, with Equation 9.29b as the corrector. Note from the
above expressions for the TEs that the use of the corrector considerably improves the
accuracy of the solution.

Several other predictor—corrector methods are employed in the solution of ODEs.
The basic characteristics of these methods are the same as those outlined above.
A predictor is employed to yield a first estimate of the dependent variable y,,, at
the next step, and this value is used to start the iterative solution of the corrector
for an improved value of y,,,. Among the most important and widely used predictor—
corrector methods are the Adams method, Milne’s method, and Hamming’s method.
None of these methods is self-starting, and generally a Runge—Kutta scheme, of the
same order as the given predictor—corrector method, is employed for the first few
steps. One can also use a Taylor-series expansion of the variable y(x) to obtain the
values of y,, y,, ¥5, and so on, needed to start the method. For instance, y;, may be
written as

Ax) Ax)
i = Yo+ Ax F(xo,y0)+(2)F’(xo,yo)+(3!) F'(xp30) 4 (968

The values of the function F and its derivatives are obtained from the given
differential equation, Equation 9.8. The number of terms retained in the series should
be chosen to yield an error of the same order as that obtained by the given predictor—
corrector method. However, the higher-order derivatives of the given differential
equation may be quite involved. In such cases, the Runge—Kutta method is preferable
for obtaining the starting values.

9.6.2 AbpAaMS METHOD

We can obtain a family of predictor—corrector methods by employing the Adams—
Bashforth formulas as the predictor and the Adams-Moulton methods of same order
as the corrector (see Tables 9.1 and 9.2). If the fourth-order formulas are chosen, the
predictor equation is

S %[SSF ~59F,_, +37F_, -9F_,] (9.69a)

404 Computer Methods for Engineering with MATLAB® Applications
and the corresponding corrector formula is

Vi = Vi + %[9&1 +19F, -5F_ + F,_,] (9.69b)

The superscript (0) indicates the predicted value that forms the first estimate for
the corrector. The values of y and F for the first three steps of Ax, beyond the initial
condition, are needed for starting this method. A fourth-order Runge—Kutta method
may be employed to generate these values. Then the predictor gives an estimate for
the next value of y, and, using this value as the first estimate, one iterates the corrector
until convergence, in terms of a specified criterion, has been achieved. Similarly, the
Adams formulas of different orders may be used to generate other predictor—correc-
tor methods. The TEs associated with this method are discussed later.

9.6.3 MILNE’'s METHOD

This method is based on integrating the differential equation, Equation 9.8, to
obtain

Kisl

Y = Vit [F (x,y)dx (9.70)

i-3

The integral may be viewed as area under the curve from x, ; to x,,,, as shown in
Figure 9.13. If F[x, y(x)] is approximated by the quadratic expression ax?+ bx + c,
where a, b, and c are constants, we can determine the constants by employing the

d
F(x!y):d_i

ax’+bx+c

J

X3 KXo X X Xigl x

FIGURE 9.13 Sketch of the numerical integration used for the derivation of the predictor
equation in Milne’s method.

Numerical Solution of Ordinary Differential Equations 405

value of the function F; at x;, the value F, | at x,_;, and so on. If the above integral is
then carried out, we obtain

W)=yt 3 M[2E - R 4] 7

This is the predictor equation for Milne’s method. The corrector is simply obtained
from Simpson’s integration rule, given by Equation 8.31, as

Ax
Vit = Yia 5 [+4F + F 972)

This is a fourth-order method since the total TE is O[(Ax)*], as shown later. Higher-
order schemes have also been developed; see Carnahan et al. (1969) for the sixth-
order Milne’s method.

9.6.4 HAMMING’S METHOD

Hamming’s method is based on the use of a general class of corrector equations
represented by

Vit =Y 4,1 Y; 1 ¥4 1)
+ Ax(b Fo+bF +b_ F_ + bi-zE-z) ©.73)

i+1

where the a’s and b’s are constants. This equation includes the correctors employed
for the fourth-order Adams and Milne’s predictor—corrector methods. We can deter-
mine the constants by employing Taylor-series expansions for all the variables and
functions that appear in the above equation. Terms are retained up to O[(Ax)*], and
the coefficients of similar terms on both sides of the equation are set equal. This
results in the number of unknowns being larger than the relationships between them
so that a few constants must be chosen arbitrarily. Hamming (1959) studied the sta-
bility of this corrector and chose the parameters to obtain better stability character-
istics than those of the corrector used in Milne’s method. The resulting equation is

Yis1 = %(9)’;' - yi—2)+ %AX(EH +2F - F_,) 9.74)

1

The method employs the same predictor as that used in the fourth-order Milne’s
predictor—corrector method. A modifier equation is also used in order to reduce the
error in the predicted value of y,,. The computational formulas for Hamming’s
method are, therefore, given in the order in which they are used as follows:

Predictor:) =y, 5 + %Ax(ZF,. ~F_ +2F_,) (9.75a)

406 Computer Methods for Engineering with MATLAB® Applications

Modifier: 3" = y!°) —2(W - y,.) (9.75b)
121
1 3
Corrector: y,,, = §(9)’i — Vi) + gAx(Fm +2F -F_,) 0759

The superscript (0) refers to the initial estimate that may be employed for starting
the iteration process in the corrector equation. The estimate from the predictor is
employed in the modifier, which provides the first estimate y'"} for computing F,,,
on the right-hand side of the corrector for the first iteration. In practice, the step size
is chosen so that only one or two iterations are needed for convergence. In fact, the

method is generally used without iteration.

9.6.5 AcCURACY AND STABILITY OF PREDICTOR—CORRECTOR METHODS

We have given the general formulas employed in several important predictor—
corrector methods. The basic characteristics of all the methods are quite similar,
and any one of these can generally be employed for a given ODE. The choice of a
particular method is frequently made on the basis of personal preference, since the
difference in the computational procedure and in the numerical results is generally
small. However, the TEs associated with each formula are different from those that
arise in other formulas. Similarly, the stability and convergence characteristics are
different. These differences are sometimes important in the choice of the method for
solving a given problem and are discussed here.

9.6.5.1 Truncation Errors

Let us first consider the TE at each step in the application of the formulas discussed
above. Proceeding as outlined earlier for the second- and third-order Adams—
Bashforth methods, we obtain the error that arises in the fourth-order formula as

(Ei+1)p = %(M)S F"" (E)’ X3 E<xy, 9.76)

where (E,,,), is the estimate of the TE in the predictor for the (i + l)th step. The cor-
responding error (E,,,), in the corrector, which is the fourth-order Adams—Moulton
formula, is

1
(E..) = —%(Ax)j F(g), x,<E<x, 977)

Note that the error in the corrector is much smaller than that in the predictor.

If we assume the value at x; to be exact and if the round-off errors in the calcula-
tions for the (i +)th step are taken as negligible, as done before for estimating the TE
per step, the exact solution at x,,, may be written as

251
y(wa) =38+ 55 (Ax) F 978)

Numerical Solution of Ordinary Differential Equations 407

or as
19 5 nn

() = Vit =500 (A0)' F 9.79)

where ') is the predicted value from the predictor, and y,,, is the converged value

from the corrector. From these equations, we obtain the estimate of the truncation
error per step, after the application of the corrector equation, by determining
(Ax)’ F"" and then using Equation 9.77 as follows:

19 ©
E. =———y. . — 9.80
i+l 270 [yz+l y1+1] ()

In addition to the assumptions given above, this estimate is based on the assump-
tions that F”” is essentially constant over the interval x, ; < x < x,,, and that the TEs
per step in the predictor and the corrector are given by Equations 9.76 and 9.77,
respectively. This estimate of the error may be used for determining whether the
desired accuracy level is being maintained in the computation.

Similar estimates may be obtained for Milne’s method and for Hamming’s method.
We can obtain the TE in the predictor of Milne’s method by considering the approxi-
mation employed for the function F in the integral of Equation 9.70. The corrector is
based on Simpson’s rule, the error for which was obtained in Chapter 8. The result-
ing TEs per step are thus obtained as

14

(Ei), = g5 (Ax) F7"(E). x5 <E <y 9.81)
and
(v), = —%(M)SF””(E), X <E<x,, 9.82)

Following the above procedure, the estimate for the TE per step, after convergence
of the corrector equation, is given by

B = =g [y -] ©83)

The same approach may be applied to Hamming’s method. Then the TEs are
obtained (Carnahan et al., 1969) as follows:

(), = (8 P77 (8). 5 <t 084

408 Computer Methods for Engineering with MATLAB® Applications

and

(Ei+1)c - _%O(M)S " (E)’ X ,<E <Xy 9.85)

This results in the estimate for the TE per step as

9 ©
E. =——/y. - 9.86
i+l 121 [y1+1 y1+1] ()

Note from the above expressions that the TE per step in the corrector is the
smallest for Milne’s method, followed by that in Hamming’s method and that in the
fourth-order Adams predictor—corrector method. The errors in the last two methods
are close to each other and more than twice that in Milne’s method. However, these
methods have better stability characteristics than Milne’s method, as discussed
below. The TE may be estimated at each step to ensure that the numerical results
have the desired accuracy. The step size can, therefore, be reduced if the error is too
large, or it can be increased, to save computer time, if the error is too small. This abil-
ity to estimate the TE at each step is one of the important advantages of predictor—
corrector methods over Runge—Kutta methods. However, a change in the step size
is much more involved in predictor—corrector methods, since values of the deriva-
tive function F are needed at evenly spaced x values preceding x;.

9.6.5.2 Step Size

An approach frequently adopted in changing the step size in predictor—corrector
methods is simply to restart the computation scheme, with the last computed value
of y as the initial condition for the new step size. Therefore, the starting method
will again be needed for generating the values for the first few steps, and then the
predictor—corrector method may be employed. Another approach is to use interpo-
lation to obtain F values at the new spacing for x < x,, using the computed values
for the previous step size. A polynomial fit, as discussed in Chapter 7, may be
employed to obtain a curve that passes through the available F' values at the previ-
ous spacing. The required F values at the new spacing may then simply be obtained
by interpolation, as shown qualitatively in Figure 9.14. The estimate of the TE per
step may be employed in the subsequent calculations to determine whether a
change in the step size is again needed.

In predictor—corrector methods, the step size should be small enough to ensure
convergence of the corrector equation in only one or two iterations. This is neces-
sary in order to maintain the advantage of these methods, over one-step methods of
comparable accuracy. However, a larger step size is desirable for reducing the com-
putation for a given range of the independent variable x and, therefore, also for
reducing the round-off error. The step size may be changed on the basis of the TE,
as outlined above, or if more than two iterations are needed for the convergence of
the corrector.

Numerical Solution of Ordinary Differential Equations 409

Interpolating
polynomial

l Ax €A%

B Next step with new grid
spacing
e Old computed values of y
A Interpolated values of y
Ax Old grid spacing
Ax New grid spacing

FIGURE 9.14 Interpolation of the preceding numerical results in order to vary the step size
in predictor—corrector methods.

9.6.5.3 Stability

The stability characteristics of the various predictor—corrector methods discussed
here have been studied in the literature, as considered in detail by Carnahan et al.
(1969), Ralston and Rabinowitz (1978), and Atkinson (1989). If the corrector is iter-
ated to convergence, then the stability of the predictor is not of much concern since it
simply provides a first estimate. In fact, most predictors do not possess good stability
characteristics. The stability of the corrector is, however, important, and the growth
of error is studied to determine the overall stability of the scheme. If the corrector is
not iterated but is employed only once, the stability of both the predictor and the cor-
rector equations must be studied.

The corrector equations for the Adams method and Hamming’s method have
good stability characteristics. These methods are, therefore, often preferred over
Milne’s method, whose corrector equation is unstable for some differential equa-
tions. The stability analysis of multistep methods involves a consideration of the
growth of the parasitic solutions, mentioned earlier. Milne’s method is stable if the
exact solution of the differential equation decays with increasing x and is generally
known as a marginally stable method.

Most of the stability analyses consider simple linear equations, and the results
obtained are often extended to more involved equations, particularly nonlinear
equations. However, such an extension of the conclusions of the simple stability
analyses may not be applicable in many cases. A practical approach employed in
most engineering applications is to obtain the results for different step sizes. If the
computed values do not differ significantly from each other, then the computa-
tional scheme is assumed to be stable. Also, analytical solutions may be available
for a few simple circumstances. Then one can use a comparison of the numerical
results with these solutions to study the accuracy of the results obtained and the

410 Computer Methods for Engineering with MATLAB® Applications

stability characteristics of the method. Also, a reduction in step size usually results
in an improvement in the stability of the numerical scheme.

9.6.6 SIMULTANEOUS EQUATIONS

It must be pointed out that, although the multistep and the predictor—corrector
methods have been discussed for the first-order initial-value problem given by
Equations 9.8 and 9.10, these methods may easily be extended to a system of simul-
taneous first-order equations. Since higher-order equations may be reduced to a
system of first-order equations, as outlined in Section 9.1.2, these methods may be
used for solving higher-order equations as well. A starting method, such as the
Runge—Kutta method, is used to generate the required values for the first few steps,
for each of the n dependent variables Y, where j=1, 2, ..., n. The appropriate
formulas are then applied to each equation in sequence at each step to obtain the
values (Y)),,, at x;,,. At each step, the stored function values from the preceding steps
are employed to compute the new values, which are then stored for use in the next
step. The procedure is a simple extension of the method for solving a single first-
order equation.

There are several engineering problems that involve a wide range of scale, say, in
length or time. In fluid flow and heat transfer, for instance, a small length scale may
often be important in a given region, while a much larger length scale characterizes
the remaining region. Similarly, in process control and chemical kinetics, a wide
range of time or rate constants may arise. A system of equations that is associated
with widely different time constants or eigenvalues is known as stiff, and special
techniques are often needed to solve such a system. The step size must be small
enough to treat the smallest scale or the fastest component of the process. An nth-
order differential equation will, in general, have n scales. Employing an extremely
small step size to take into account the smallest scale, although the other components
can be treated with much larger step sizes, is obviously inefficient. A very small step
size will result in large computer time and also large round-off errors. A major prob-
lem lies in maintaining a smooth behavior of the solution at large values of the inde-
pendent variable, since this can lead to instability in this region. The problem of
stiffness is similar to that of ill-conditioning encountered in matrices, discussed in
Chapter 6. Several special techniques have been developed to solve stiff problems.
The most popular among these is Gear’s method. For further details, see Gear (1971),
Hall and Watt (1976), and Ferziger (1998).

9.6.7 CoNcLUDING REMARKS ON PREDICTOR—CORRECTOR METHODS

The preceding discussion indicates that the predictor—corrector methods are among
the most efficient methods available for the solution of ODEs. In addition, the TE at
each step is determined during the computation and may be employed for maintaining
the desired accuracy level by changing the step size whenever the error is excessive.
However, these methods are more involved than the self-starting methods, such as
Runge—Kutta formulas, which continue to be a very popular choice for the solution
of the ODEs that arise in engineering problems.

Numerical Solution of Ordinary Differential Equations 411

The choice of a predictor—corrector method, from among those considered here,
is often not an easy one, since the Adams method, Milne’s method, and Hamming’s
method are all quite comparable in terms of efficiency and accuracy. Hamming’s
method avoids the instability problems of Milne’s method and is, therefore, often
preferred. Also, it very seldom requires iteration and is generally used without itera-
tion, making it a relatively more efficient method to use. However, if stability prob-
lems do not arise, Milne’s method is superior because of its higher accuracy level. In
general, personal preference and prior experience with the method are strong criteria
for choosing it. Otherwise, Hamming’s method may be chosen, despite the slight
additional complexity in programming. The second-order predictor—corrector meth-
ods, although somewhat simpler to program, are rarely used because of the resulting
lower accuracy in the results. MATLAB has several functions based on multistep
methods available for the solution of ODESs. These include odel13, which is a multi-
step Adams—Bashforth—-Moulton solver of varying order, and odel5s, which is an
implicit multistep numerical solver of varying order. The latter one is often employed
if ode45 is too inefficient or fails to yield the solution.

Example 9.3

A metal block of volume V and surface area a is initially at temperature T,. At the
surface, a constant energy input g, per unit area and time, is imposed at time t=0
by thermal radiation, while the surface also loses energy by convection to air at
temperature T, surrounding the block. If the temperature in the block is assumed
to be uniform at any given time and is denoted by T(t), energy balance leads to the
following governing equation for the temperature:

pCV((jTZ =ga-haT -T,) (9.87a)

where p and C are the density and specific heat, respectively, of the metal. The
parameter h is termed the convective heat transfer coefficient, and its value
depends on the flow of air around the block and the temperatures involved. If
the temperature difference (7-T,) is taken as the dependent variable 6, the above
equation may be written as

do qa ha
S T g A-Be
dt pCV pCV 9.87b)

where A and B are parameters defined as A = qa/pCV and B = ha/pCV. Using the
fourth-order Adams predictor—corrector method, solve this problem to obtain 6()
if @ at t=0is given as 100°C. Consider two circumstances, given as (a) A = 10°C/s,
B=0.05s"and (b) A=2°C/s, B=0.03 s.

SOLUTION

The given problem involves solving the following one-dimensional ODEs:

de
— =10 -0.050
dt (9.88)

412 Computer Methods for Engineering with MATLAB® Applications

do =2-0.030 (9.89)
dt

with the initial condition

0 =100°C fort =0 (9.90)

The given equations are quite simple and may be solved analytically. However,
they may be used to demonstrate the application of the Adams predictor—corrector
method to ODEs. Then we can compare the numerical results with the analytical
solution to evaluate the accuracy of the numerical scheme. However, in actual
practice, A and B are usually not constants but vary with 8 and ¢, resulting in
much more complicated problems for which the analytical solution may not be
available.

The formulas for the fourth-order Adams predictor-corrector method are
given by Equations 9.69. A starting method is needed to generate the 6 values at
the three time steps, At, 2 At, and 3 At, so that Equation 9.69a can be employed
to obtain the predicted value at t=4 At, where At is the time step. The fourth-
order Runge—Kutta scheme, given by Equations 9.37, is employed to obtain these
starting values. The value at t=0 is, of course, the initial condition 8(0) = 100.
The predicted value is corrected iteratively, using Equation 9.69b, until a speci-
fied convergence criterion has been satisfied. Thus, the value of 6 at the next
time step, denoted by i+ 1, is obtained from the known values at the previous
four time steps. Using this new computed value, the computation proceeds to
the next time step. Thus, 6(t) is obtained with increasing time, starting with the
initial condition. The computation is carried out until the temperature 6 does not
change significantly from one time step to the next, indicating the attainment of
steady-state conditions.

Appendix B.27 shows the MATLAB script file for solving the first-order ODEs in
this problem by the Adams predictor—corrector method. The fourth-order Runge—
Kutta method is used for the first three steps. Then these three values, along with
the initial condition, are employed to compute the intermediate value from the
predictor. This value is then used to start the iteration of the corrector. This itera-
tion is terminated when the dependent variable y changes less than a specified
convergence parameter epl from one iteration to the next. A time step At of 0.05
s is taken. For this value of At, only one or two iterations were needed for the con-
vergence of the corrector. Another convergence parameter ep is used to terminate
the overall computation, for which the criterion used is

7;'+1 _Ti

W =< 9.91)

where ¢ is a chosen convergence criterion for determining steady state. A value of
10~* was employed for €, or ep. A value of 10 was used for epl. These values, as
well as At, were varied to ensure a negligible effect of the chosen values, on the
numerical results.

Figure 9.15 shows the computed variation of temperature 8 with time t for the
two cases. The initial temperature difference (7-T,) is 100°C. In the first case, for
which A=10°C/s and B=0.05 s, the energy input is larger than the convective

Numerical Solution of Ordinary Differential Equations

2.00

1.75 1

1.50 1

1.25

Temperature, 8 x1072 (°C)

— A=10, B=0.05
--—A=2, B=0.03

T T T T T T T
0 02 04 06 08 10 12 14 16 1.

Time, £x1072 (s)

413

FIGURE 9.15 Variation of temperature 6 with time ¢ for the two cases of Example 9.3,
computed using the fourth-order Adam’s predictor—corrector method. The results are obtained

with € = 10 and Ar=0.05 s.

energy loss at t=0. Thus, d6/dt =5 at t = 0 from Equation 9.88. This positive initial
value of the slope results in a temperature increase with time. Finally, a constant
value of 8=200°C is attained at steady state. In the second case, the energy
input is less than the loss, and the metal block cools down to a temperature of
6 =67°C at steady state. The steady-state temperatures can easily be obtained
analytically from Equations 9.88 and 9.89. At steady state, 6 stops changing with
time, and, therefore, do/dt=0. If d8/dt is set equal to zero in these equations,
we obtain 6 =200°C and 66.67°C in the two cases. These values agree closely
with the numerical results obtained. The computed variation of 6 with t was also
compared with the analytical solution, and a close agreement between the two
was obtained. For further details on the physical aspects of this problem and other
similar ones, see Incropera et al. (2006).

Example 9.4

A metal piece of mass m is released at zero velocity in a liquid and allowed
to fall freely under gravity. The frictional force, or drag, acting on the piece is
m(AV + BV?), where A and B are constants and V is the downward velocity. Briefly
discuss the methods that can be used to solve this problem. Then, using any
appropriate method, compute the velocity V as a function of time t for B=0.1 m™
at two values of A given as A=2 and 4 s

SOLUTION

The governing ODE for this problem may be derived on the basis of the discussion
in Example 9.2 as

dv

kA (AV + BV?) (9.92)

414 Computer Methods for Engineering with MATLAB® Applications
with the following initial condition:

Att=0:V =0 (9.93)

Here, g is the magnitude of acceleration due to gravity and is equal to 9.8 m/s?
in SI units. Therefore, the equations to be solved for the two cases are

?}T\t/ =9.8-(2V +0.1V?) = F(t,V) (9.94)
and

dv)

g =9.8-(4V +0.1V*) = F(t,V) (9.95)

Therefore, these are first-order ODEs, with the initial condition given by Equation
9.93. They can be solved by all the methods discussed so far. The fourth-order
Runge—Kutta method is particularly convenient since it is accurate and self starting.
The MATLAB functions ode23 and ode45 can also be used conveniently. The
Adam'’s predictor—corrector method, demonstrated in the previous example, can
also be employed. Details on these methods and examples have been given earlier.
Let us use Hamming’s method, employing the predictor, modifier and corrector
in sequence only once for each step, to demonstrate the use of the predictor—
corrector approach without iteration.

The numerical scheme is similar to that for the Adams predictor—corrector
method, outlined in Example 9.3. We use the fourth-order Runge—Kutta method
to obtain the values of the velocity at the first three time steps, the value at t=0
being given by the initial condition. Once the values at time steps 0, At, 2 At, and
3 At have been computed, the predicted value at t = 4 At is obtained from Equation
9.75a, written for the present problem as

VO =V, + %At(ZF,» 4 2F) 9.96a)

As this equation shows, to compute the predicted value of V at a given time
step, we must know the values of the function F at the previous four steps. This

predicted value is used in the modifier, to obtain an improved estimate V% as

Ve = vl e A -) (9.96b)

The step size At was chosen as 0.05 s, and iteration is not used. The corrector is
given by

Vi = %(9%» S Vo) AUES 26 - Fy (9.960)

Numerical Solution of Ordinary Differential Equations

where F is F(x;.1, V). The two values V. and V,,; were found to be very close

for this value of At. If a larger time step is chosen, iteration may be needed to
satisfy a specified convergence criterion.

Appendix B.28 gives the MATLAB script file for the solution of this problem.
The computation is terminated when the velocity V stops changing, indicating the
attainment of the terminal velocity. This condition is determined by the conver-
gence criterion

Via - Vil = ¢ (9.97)

where ¢ is a chosen small quantity. It was taken as 10* and reduced to smaller
values to ensure that the numerical results remain essentially unchanged. Figure
9.16 shows the computed velocity variation with time for the two cases. The
velocity starts at zero, as given by the initial condition, rises sharply, and then
gradually approaches the terminal velocity. The terminal velocity is attained when
the net force on the body is zero, resulting in dV/dt becoming zero. Therefore,
from Equation 9.94, the terminal velocity for the first case is given by the root of
the equation

9.8~ (2v +0.1v%) = 0 (9.98)

which gives V as 4.07 m/s. Similarly, the value for the second case is obtained as
2.31 m/s. The numerical results agree closely with these values.

A comparison of the programs for the Adams method and Hamming’s method
shows that the two are fairly similar in the general approach. Both need a start-
ing method. However, Hamming’s method is generally used without iteration, as
presented here. The error may be monitored to ensure that the step size is not
too large. Hamming’s method is popular for problems that require a high level of
accuracy. As mentioned earlier, it is generally more efficient than a Runge—Kutta
scheme of the same order.

4_
= 3
E
N
= -
g 24 v
S /
2)/ — A=2,B=0.1
14/ -—— A=4,B=0.1
0 T T T T T

T T
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time, ¢ (s)

FIGURE 9.16 Variation of velocity V with time # computed using Hamming’s method with-

out iteration of the corrector for B=0.1 m™ and A =2 and 4 s, as given in Example 9.4.

415

416 Computer Methods for Engineering with MATLAB® Applications

9.7 BOUNDARY-VALUE PROBLEMS

So far, we have considered the solution of initial-value problems, in which all the
conditions to be satisfied by the solution are specified at one value of the independent
variable x. Integration of the ODE is started at this point, which is often specified as
x =0. Also, if the conditions are all specified at a given nonzero value of x, say, x = a,
a change of variable x to X , where X = x —a can be employed to impose the condi-
tions at zero value of the transformed independent variable x. However, in engineer-
ing applications, we are frequently concerned with problems in which the conditions
are imposed at two, or more, different values of the independent variable. Such prob-
lems, known as boundary value problems, arise, for instance, in mass diffusion
through a porous plate, conduction heat transfer in extended surfaces, vibration of
strings, fluid flow over a surface, and deflection of a beam under a given loading.
Since at least two conditions, specified at two different values of the independent
variable, are necessary for a BVP, we are concerned with differential equations of
second or higher order.
A simple example of a two-point BVP is the second-order equation

&Y Flryy) 999)

with the boundary conditions

y@=A and y(b)=B (9.100)

Here, y is the dependent variable, and y’ the first derivative. Two conditions on y
are specified at two values, a and b, of the independent variable x. Therefore, the
solution must satisfy the given boundary conditions at x =a and x = b. We cannot
start at an initial point and march, with increasing x, to obtain the desired solution,
since the derivative y” is not known at x = a or x = b.

There are two main approaches to the numerical solution of such BVPs. The first
approach reduces the problem to an initial-value problem and uses trial and error to
satisfy the boundary conditions. Methods based on this approach are known as
shooting methods, since the adjustment of initial conditions to satisfy the conditions
at the other location is similar to shooting at a target. In this case, the previously
discussed methods for solving initial-value problems are employed, with a root-
solving method from Chapter 5, to satisfy the given boundary conditions. The sec-
ond approach is based on obtaining a finite difference approximation to the differential
equations and the boundary conditions and then solving the resulting algebraic equa-
tions by the methods discussed in Chapter 6. Both approaches have their advantages
and disadvantages, and the choice is often made on the basis of accuracy needed,
available software and personal preference. MATLAB also has built-in functions for
the solution of BVPs. A particularly useful one is the function bvp4c, which is a BVP
solver and can be used with bvpinit to form the initial solution guess and bvpval to
evaluate/interpolate the solution obtained. Let us first consider shooting methods,
employing the discussion given in the preceding sections of this chapter.

Numerical Solution of Ordinary Differential Equations 417

9.7.1 SHOOTING METHODS

The basic approach is to convert a BVP into an equivalent initial-value problem, by
applying all the conditions at one value of the independent variable x and using
guessed values for those that are unknown. For instance, the problem given in
Equations 9.99 and 9.100 can be reduced to the following initial-value problem:

d? ,
dxiij = F(x’ y,y) (9101)
y@)=A and y'(a)=P (9.102)

where P is an unknown that must be determined so that the condition y(b) = B is
satisfied in order to yield the solution to the given BVP. Once a value of P is chosen,
the initial-value problem, given by Equations 9.101 and 9.102, may be solved by any
of the methods discussed earlier in this chapter. However, the value of y(b) will not,
in general, be equal to the value B demanded by the boundary condition at x = b. An
iterative adjustment of the initial slope P is, therefore, needed to satisfy the boundary
condition y(b) =B within a specified convergence criterion Figure 9.17 illustrates
this process of correcting the initial slope until the solution of the equivalent initial-
value problem satisfies the given boundary condition at x = b.

From the above treatment, the BVP reduces to the solution of an equivalent
initial-value problem, with the initial slope P being obtained by iteratively solving
the equation

»w(P)=B or f(P)=y,(P)-B=0 (9.103)
y
Iterations ="
Pl Target
et Converged
o solution
r= tan 6=P
x=a x=b x

FIGURE 9.17 Sketch of the iterations to the converged solution, employing a shooting
method for solving a BVP.

418 Computer Methods for Engineering with MATLAB® Applications

where y, is the value of the dependent variable at x = b, and the parentheses indicate
its dependence on P. This is a problem in root solving and a suitable method may
be obtained from the various methods discussed in Chapter 5. The secant method,
which was found to converge very rapidly in most cases, and the bisection method,
which always converges if the interval containing the root is known, are both quite
suitable for this application. Considering the secant method, if two solutions of the
initial-value problem are obtained using P, , and P, as two estimates of the initial
slope, yielding the corresponding values of y at x = b as y,(P,_,) and y,(P,), then the
next approximation to the root of Equation 9.103 is obtained by recognizing that P
replaces x in Equation 5.11 as

j : (9.104)

The initial-value problem is then solved with P,,, as the initial slope, and y,(P,,,) is
obtained. If the convergence criterion, specified as, say, ly,(P,,,)—Bl < €, where € is a
specified small quantity, is not satisfied, a new approximation to the root is obtained
from Equation 9.104. The iterative process is continued until the specified conver-
gence criterion is met.

The Newton—Raphson method can also be used if one numerically determines
the derivative d[y,(P)I/dP by solving the initial-value problem for two estimates, P;
and P, + AP, of the initial slope, where AP is a small change in P. This procedure was
demonstrated in Example 5.4. Once the derivative has been determined, the next
estimate P,,, of the root is given by

yb(Pi)_B
Boa=PF - (9.105)
[WAWMHM

This technique is frequently employed in shooting methods because of the good
convergence characteristics of the Newton—Raphson method. Also, this method
applies for complex solutions and also if f(P) is tangent to the P-axis, resulting in
multiple roots, as discussed in Section 5.5.

Shooting methods may employ efficient methods, such as the predictor—corrector
methods, for solving the initial-value problem, since several iterations may be needed
before convergence is achieved. However, Runge—Kutta methods are often preferred
because of their self-starting feature. Automatic step changes, on the basis of error
estimates, are generally not used since the solution is needed at exactly x=>b.
Therefore, a fixed step size Ax is preferred. However, the step size may be changed
from one solution of the initial-value problem to the next, ensuring that x=> is
exactly attained, in order to improve the accuracy of the results or to reduce the
computer time. Although we have considered a simple second-order BVP here, the
technique is applicable to higher-order equations and to more involved problems.
Both linear and nonlinear differential equations can be solved by this approach.

Numerical Solution of Ordinary Differential Equations 419

However, superposition can be used for linear equations, making shooting particularly
simple in this case.

9.7.1.1 Linear Equations
Consider a linear second-order differential equation of the form

d? d
G2 =8 sy g 9106)

with boundary conditions
y(a)=A and y(b) =B (9.107)

Again, we can recast this problem as an initial-value problem by taking y’(a) = P,
instead of the condition at y = b. We obtain two solutions to this initial-value problem
by taking the initial slope as P, and P,. With these solutions denoted as Y,(x) and
Y,(x), respectively, a linear combination of these solutions is also a solution to the
differential equation. Therefore,

y(x) = ¥i(x) + 6, Y, (x) (9.108)

is also a solution, which satisfies the initial condition y(a) =A. The relationship
between c, and ¢, may be found by substituting Equation 9.108 into the differential
equation, Equation 9.106, to give

&y,
1 dx2

dy,
c -8 (x)gl—gz (0)Y,

a2y, dy,
+Cz[dx22 _gl(x)j_gZ(x)YZ = g;(x)

(9.109)

Since both Y;(x) and Y,(x) independently satisfy the differential equation, the quanti-
ties within the parentheses are both g,(x). Therefore,

c+c, =1 9.110)
The value of y(x) at x = b is obtained as
() = Y, (D) + ,Y, (D)

This equation may be set equal to B, to satisfy the given boundary condition. Then
¢, and ¢, may be obtained from Equation 9.110 and the following equation:

eY,(b) +c,Y,(b) = B ©.111)

420 Computer Methods for Engineering with MATLAB® Applications

We obtain the desired solution y(x) by substituting the computed values of ¢, and ¢,
into Equation 9.108. Thus,

W(x) = {[(B-r.0+[X®)-B]nw} ©112)

1
Y, (b)-Y,(b)

Therefore, this solution satisfies the given differential equation and both bound-
ary conditions. Iteration is not needed. This technique can also be used for higher-
order, linear BVPs. If the number of unknown conditions at the initial point, x = a,
were n, we would need to obtain (n + 1) solutions and to take a linear combination of
these numerical solutions to obtain the required solution to the ODE.

9.7.2 FINITE DIFFERENCE METHODS

In this approach, one reduces the solution of an ODE to the solution of a system of
algebraic equations by obtaining a finite difference approximation to the differential
equation at a number of mesh points. The interval a < x < b, over which the numerical
solution is to be obtained, is divided into n equally spaced subintervals of length Ax,
as shown in Figure 9.18. Then the values of x at the mesh, or node, points are denoted
by x; where

x,=a+iAx for i=0,1,2,....n (9.113)
Also,
Xx,=a+nAx=>b and x,=a (9.114)
Therefore,
Aro? : a ©.115)

We wish to obtain the solution y; at these node points. The given boundary condi-
tions are employed to compute y, and y, or to obtain algebraic equations from which
these may be determined. The differential equation is replaced by its finite difference

i=0 i=n
| 12 5
[|

3 4
1
a " x=b x
’|<1|‘
FIGURE 9.18 Subdivision of a given interval into a finite number of subintervals for
employing finite difference methods to solve an ODE.

x=0 x

Numerical Solution of Ordinary Differential Equations 421

approximation at the interior mesh points, resulting in (n—1) algebraic equations. One
can solve this resulting set of simultaneous algebraic equations by employing the
methods discussed in Chapter 6 to obtain the dependent variable y at the mesh points.
The finite difference methods for solving ODEs are often of lower accuracy than the
shooting methods, discussed earlier, though the programming is simpler for linear
equations. The solution is more involved for nonlinear equations. Consequently,
shooting methods are more frequently employed, and finite difference methods are
used as an alternative technique in case problems are encountered with shooting.

As discussed in Chapter 4, there are several finite difference approximations to
the first- and higher-order derivatives of the dependent variable y. If central differ-
ences are employed, the first and second derivatives of y at the ith mesh point are
approximated by

dy _ Yim =y 2
- 12Ax 1+0[(Ax)] 9.116)
and
dZ i+ -2 i i-
et (U] I

Therefore, the second-order differential equation, given by Equation 9.99, is approxi-
mated at the ith node by

i+_2i+i— i+l ~ Ji-
ylyy1=F[xi,yi,y1yl] ©.118)

(Ax)z 2Ax

When this approximation is applied at all the interior points, (n—1) equations in (n—1)
unknowns are obtained. The boundary conditions yield

Yo=A and y, =B 9.119)

These relationships are used in the system of equations generated by Equation 9.118,
wherever y, and y, appear.

If the differential equation is linear, the algebraic equations obtained are also
linear. Similarly, a nonlinear differential equation results in nonlinear algebraic
equations and a homogeneous differential equation in a homogeneous system. These
different types of systems were considered in Chapter 6, and the corresponding
direct and iterative methods were discussed. The same may be used for solving the
resulting simultaneous algebraic equations.

If the given ODE is linear, the finite difference equations obtained from Equation
9.118 are linear and tridiagonal, since the ith equation contains only y,_,, y;, and y,,;.
Such a system can easily be solved by a direct method such as Gaussian elimination,

422 Computer Methods for Engineering with MATLAB® Applications

and several efficient algorithms have been developed for the purpose, see Example
6.2. Because the resulting system of equations is tridiagonal, the computation of the
unknowns can be carried out efficiently and with a small round-off error. The com-
puter program is also very simple. As a consequence of these advantages, the finite
difference methods are frequently employed for solving linear BVP in ODE:s.
Nonlinear algebraic equations, arising from a nonlinear ODE, are generally linear-
ized. This is done by using the values from the previous iteration for the nonlinear
terms, as shown in Section 6.8.2. The result is a linearized tridiagonal system of
equations, which is solved with iteration, to yield the solution y; at the nodal points.
The Newton—Raphson method may also be used if the number of nodes is small.
However, shooting methods are generally easier to use for nonlinear ODEs than
finite difference methods.

In many cases, the boundary conditions are more complicated than the simple
ones considered above. Frequently, a relationship between the derivative y” and the
function y is given as, say,

ay' +a,y=ay,at x=a or x=b>b (9.120)

Then, one approach is to use one-sided forward or one-sided backward finite dif-
ference approximations at the two boundaries for the derivative. At x = a, y’ may be
approximated by

ra NN 9.121
Y= ()

where y, is the value of y at x = a, or x,,, and y, that at the adjacent nodal point. When
substituted in Equation 9.120, this equation gives the relationship between y, and y,
as

a % tay, =a; (9.122)

However, the TE in the approximation of Equation 9.121 is O(Ax), whereas the
error in the finite difference equations for the interior points is O[(Ax)*]. To improve
the accuracy of the finite difference equation for the boundary point, a fictitious
point x_; can be taken outside the computational region, as shown in Figure 9.19.
Then y’ is approximated by central differences to an accuracy of O[(Ax)?] as
follows:

P 1TV 9123
Y =TS ()

Therefore, the finite difference equation for the boundary point at x = a, or x,, is

a ylz_A)yc_l +ayy, = 9.124)

Numerical Solution of Ordinary Differential Equations 423

Boundary
m ional
Co Putat ona
domain
* -9 —— 06— —0 ——0—— O —————————
X_1 Xo X X X3 Xy x

FIGURE 9.19 Use of a fictitious point x_; outside the computational region for approximating
a gradient condition at the boundary.

The finite difference equation, Equation 9.118, is applied at x = a, and the unknown
v_, is eliminated between the equation thus obtained and the above equation, result-
ing in a relationship of accuracy O[(Ax)?] between y, and y,.

The above finite difference formulation has a TE of order (Ax)>. Higher accuracy
in the numerical results can be achieved by the use of smaller step size or higher-
order methods. Richardson extrapolation, Equation 9.40, may also be used to improve
the accuracy. However, higher-order methods involve more than one point on either
side of the ith grid point. Therefore, a tridiagonal system is not obtained, and the
treatment of the boundary conditions also becomes more involved, see Ferziger
(1998) and Jaluria and Torrance (2003) for details.

The finite difference approximation to the differential equation can be obtained
in many ways, leading to different sets of algebraic equations. The given equation
may also be reduced to a system of first-order equations and the finite difference
approximations applied to these (Keller, 1968). Equations of order higher than two
can be reduced to an equivalent system of first- or second-order equations. A tridi-
agonal system is obtained if a system of second-order equations is employed with
finite difference approximations of O[(Ax)?]. In circumstances where the tridiagonal
system is not obtained, the Gauss—Seidel and SOR iterative methods may be used.
Similarly, iterative methods are used for nonlinear equations, as discussed in
Section 6.8.

9.7.3 EIGENVALUE PROBLEMS

Homogeneous ODEs, which give rise to eigenvalue problems, are frequently
encountered in elasticity theory, vibrations, stability analysis, and mechanics of
materials. In this case, the solution can be obtained only for certain values of the
parameters of the system. These values, examples of which are the natural frequen-
cies of vibration of a given structure, are related to the characteristic quantities,
known as eigenvalues, of the problem. The eigenvalue problem for homogeneous
algebraic equations was discussed in Chapter 6. One generally solves the differen-
tial equation by reducing it to an equivalent system of algebraic equations, using
finite difference approximations.

424 Computer Methods for Engineering with MATLAB® Applications

Consider, for example, the following equation, which arises in the natural vibration
of beams:

2
% +a’y=0 withy(0)=0 and y(L)=0 9.125)

where a is a constant and L is the length of the beam. If the second-order central
difference approximation, Equation 9.117, is used for the second derivative, the
finite difference equation is

Vit + [az (Ax) -2] y+y., =0 fori=12,.. n-1 (9.126)

where n is the number of subintervals and y, =y, = 0. This system of equations may
be written in matrix form as follows:

(A-nl)y=0 (9.127)

where A is a tridiagonal coefficient matrix, A is the eigenvalue, [is an identity matrix,
and y is the unknown vector of the values at the nodal points.

The above system of homogeneous equations may be solved to obtain the eigen-
values and the corresponding eigenvectors. The analytical solution gives the eigen-
values as A, = —(nm/L)?, where n=1, 2, ..., and the eigenvectors as sin nmx. A good
approximation to the lowest eigenvalue is generally obtained by taking only a few
grid points, typically around 10. However, a much larger number of subintervals is
needed to accurately determine the higher eigenvalues. The power method discussed
in Chapter 6 is particularly suitable for determining the smallest eigenvalue and the
corresponding eigenvector. Larger eigenvalues may also be obtained in ascending
order, as outlined earlier. Other methods, such as the QL algorithm, may also be used
very efficiently, since the finite difference approximation leads to symmetric tridi-
agonal matrices in many cases.

Example 9.5

The flow of a fluid over a two-dimensional wedge, as shown in Figure 9.1, is gov-
erned by the third-order ODE

B df\’
dfdﬁ[1(d)}0 128

where x is the dimensionless distance away from the wedge in a direction normal
to either edge as shown, f is known as the dimensionless stream function, so that
df/dx is the dimensionless velocity in the direction parallel to either side of the
wedge, and B is a constant related to the wedge angle. Thus, B =0 gives the flow

Numerical Solution of Ordinary Differential Equations 425

over a flat plate. Also, the stream function f lies between 0 and 1.0. The boundary
conditions for this problem are as follows:

Atx =0: f =0 and ﬁ=0 (9.129)
dx
As x — oo : g—>1 (9.130)
dx

Note that the boundary conditions are given in terms of both f and its
derivative.

Despite the complexity of the physical phenomenon involved, this problem
is chosen because it presents a third-order, nonlinear, boundary-value, ODE sys-
tem. Thus, it permits the illustration of several important concepts in the solution
of BVPs. Furthermore, such equations are frequently encountered in fluid flow
phenomena of interest to several engineering disciplines. Using the fourth-order
Runge—Kutta method, with the shooting technique, solve this problem for B =0
and B=0.5.

SOLUTION

The given equation may be broken down into a system of three first-order equa-
tions as outlined in Equation 9.7. Therefore, the three equations are written as

df
dx
du
dx
dv
dx

=v (9.131)

—fv - B(1 = u?)

where u and v are the first and second derivatives of f, respectively. The two con-
ditions in Equation 9.129 are given at x = 0. However, the third condition, given
by Equation 9.130, is u — 1 as x — oo, making the system a BVP. An initial-value
problem is obtained if the value of v = d*f/dx? is guessed at x = 0. The Runge—Kutta
method may then be applied to the first-order equations in Equation 9.131 with the
following boundary conditions:

Atx=0: f=0 u=0 v=s (9.132)

where s is a guessed value which must be adjusted by means of a correction
scheme until the condition given by Equation 9.130 is satisfied.

Appendix B.29 presents the computer program in MATLAB for this problem.
The ode45 function is used for solving the three coupled first-order ODEs. The
three dependent variables are f, u, and v. A vector y is used to represent these
three scalars as components, so that the right-hand sides of Equation 9.131 and
the initial conditions are specified in terms of y. The initial-value problem is first
solved with a chosen value of v(0) = s and then with an incremented value s + As,
with As taken as 0.001 here. A quantity edge is chosen as 6.0 to represent x — eo.

426 Computer Methods for Engineering with MATLAB® Applications

The value of u = df/dx at edge is then determined for s and s + As. This allows us to
compute the derivative du_(A)/dA, where u_, represents the value of u for x — .
The desired value of u., is 1.0 and the Newton—Raphson correction scheme, given
by Equation 9.105 is employed. This gives an improved value s, of the guessed
boundary condition v(0) as

s - s_ Ux(s) =T (9.133
i du..(s)/ds 1
where
duw(s) _ Uals + As) = u(s) (9.133b)

ds As

The improved value of s is now taken and the above procedure repeated. This pro-
cess is carried out until the value of u,, becomes 1, within a specified convergence
parameter ep, that is,

lu. -1 =< ep (9.134)

The various symbols used are defined in the program. The right-hand sides
of the three equations are defined by the function rhsi.m, which is also given in
Appendix B.29. Thus, b= and the initial conditions are given by the vector y0.
As mentioned above, the three dependent variables f, u, and v are represented by
the vector y. The parameters such as ep, edge, and As, chosen by the user, must be
varied to ensure that the results are independent of the values chosen. It was found
that an ep value of 10, edge larger than 6.0 and As of 10~ were quite adequate.

The numerical results obtained are shown in Figures 9.20 and 9.21, in terms
of the variation of f, u, and v with the independent variable x. Physically, u versus
x represents the velocity distribution, which goes from zero at the wedge surface
to 1.0 far away from the wedge. The dimensionless velocity gradient v is related

2.5
2.0 —f
--- u=dfldx
Ty 15+ - v=d?fldx®
I Y A
L [- T T T TTTTTTTTT
//
051+~ _~
// =~ -
/7 ~
0 T = T T T
0 2 4 6 8 10

FIGURE9.20 Computed variation of the functions f, u = (df/dx), and v = (du/dx), in Example
9.5, with the independent variable x, at § = 0. Here, edge is taken as 10 and ep as 1073

Numerical Solution of Ordinary Differential Equations 427

2.5
2.0 —f
--- u=df/dx
f$|°_‘§ 1.5 ——— v=d?fdx?
\lnx
g
e 104 e
N
A
054 A~
/ N
’ ~ -
O T = T T T
0 2 4 6 8 10

FIGURE 9.21 Computed results at § = 0.5 for Example 9.5.

to the frictional force due to the fluid. At B =0, from Equation 9.128, d*f/dx>* =0
at x=0, since f=0 at x=0. This is reflected in the zero gradient, at x=0, of
the curve of v versus x. The results are shown for edge =10 and ep = 10=. The
choice of the value of edge is an important consideration. Since the boundary
condition is given for x — o, a large value of x is needed for satisfying this con-
dition. The initial choice of edge may be based on results available from earlier
computations. Otherwise, an arbitrary value is taken and gradually varied until
the results are not affected by a further variation. It is also important to vary the
initial guessed value of s to ensure that the results do not depend on the starting
guess. Figure 9.22 shows the variation of s with the number of iterations, as the
correction scheme proceeds. It is seen that the convergence is quite rapid and
that the result is independent of the starting value of s over a fairly wide range. If

1.4
1.3 4
1.2 4

0

1.1+

1.0 4

0.9 1
0.8 1
0.7 1

Velocity gradient at x

0.6
0.5 1

0;4 T T T T

3 4 5 6 7 8
Number of iterations

(=}
—
o 4

FIGURE 9.22 Convergence of the correction scheme in Example 9.5, shown in terms of the
velocity gradient v(0) = s versus the number of iterations.

428 Computer Methods for Engineering with MATLAB® Applications

the scheme does not converge after a large number of iterations, the initial guess
should be changed and the calculation repeated.

This problem can also be solved by using the various methods and algorithms
discussed earlier. The function ode45 is chosen here in order to demonstrate the
ease and versatility of using this function for higher-order ODEs. The problem con-
sidered here is a complicated one, but it can be seen that root solving can easily
be applied with methods for solving initial-value problems to obtain the desired
solution. Fortran may also be employed for the solution of this problem using a
similar approach. However, the programming is more complicated, as given by
Jaluria (1996).

Example 9.6

A rod of length L has its two ends at temperatures T, and T,. It loses energy by
convection at the lateral surface, as shown in Figure 9.23. If the temperature is
assumed to be uniform over any given cross section, the temperature T in the rod
is a function only of x, the distance from one end. Then the governing equation
for T(x) is

2
kA% = hp(T-T,) (9.135)

where k is a property known as thermal conductivity of the rod material, A is the
area of cross section of the rod, p is its circumferential perimeter, h is the convec-
tive heat transfer coefficient and T, is the ambient air temperature. The equation
may be nondimensionalized by the use of dimensionless temperature 6 and dis-
tance X, defined as follows:

T-T. X
0 = L X==
T T, [(9.136)
The governing equation then becomes
a0 _ MLy pg where p = [y 9.137)
dx? KA KA '
h T, Perimeter
Rod Energy loss \ r
Area
T,) A T,

A
~
Y

FIGURE 9.23 Conduction heat transfer in a rod, as considered in Example 9.6.

Numerical Solution of Ordinary Differential Equations 429

Here P is a dimensionless parameter that characterizes the problem. Solve this
equation by the finite difference method for (T,-T)/T,-T,)=0.5 and P=0, 0.5,
1.0, 5.0, and 25.0.

SOLUTION

By nondimensionalizing the governing equation, we can apply the numerical
results obtained to a wide range of physical parameters, given here as k, A, L, h, p,
and T,. The equation to be solved is

2
37% = P% (9.138)

with the following boundary conditions:

At X=0: 6=1.0
(9.139)
At X=1: 06=05
These conditions follow from the definitions of 8 and X and from the given tem-
perature ratio (T,-T)/(T,—T,).

In order to use the finite difference approach for this problem, we take N
nodal points over the interval, as shown in Figure 9.24. Therefore, the interval
0<X<1is divided into (N-1) equal subintervals of length AX. Then the value of
X at the node points is denoted by X, where X, = (i-1)AX, fori=1,2, ..., N. Also,
AX =1/(N-1), since the total dimensionless length is 1.0. The finite difference
equation is

01 = 20, + 6,4

=P%; for i=23,..,N=2

or
01 — [2 +P? (AX)Z]G,- +0,,=0 (9.141)

This equation is applied at each interior nodal point, to give rise to (N-2) equations
which form a tridiagonal system. Also, 8 =1.0 fori=1, and 6 = 0.5 fori=N.

2 3 4 5 N
-—o-—o-—o-—T—T— f—,— e - — -0 - % -—

-

FIGURE 9.24 Subdivision of the rod in Example 9.6 for employing the finite difference
approach.

430 Computer Methods for Engineering with MATLAB® Applications

Temperature, 6

FIGURE 9.25 Computed temperature distributions for Example 9.6, with the number of
grid points N taken as 51.

Appendix B.30 gives the computer program in MATLAB and Appendix C.16
the corresponding one in Fortran for solving this second-order ODE. The symbols
employed in the programs are indicated at the beginning. The parameter P and
the number of grid points N are chosen by the user. The boundary conditions are
employed to set the values at the two extreme grid points. Equation 9.141 is used
to generate the tridiagonal matrix, whose three terms in each row are denoted
by A(l), B(l), and C(/), respectively. The boundary conditions give 6(1) and 6(N),
which yield the constants on the right-hand side of the first and last equations of
the set. In the Fortran program, subroutine TRIDIAG is used to solve this system
of equations and give the temperatures at the nodal points. In MATLAB, the script
file given earlier for Example 6.2 is used. The algorithm and the computer program
were discussed in detail earlier and are not repeated here.

Figure 9.25 shows the computed temperature distributions. The number of grid
points N is taken as 51 for these results. At P=0, the distribution is linear. This
result is expected, as seen from Equation 9.137, which gives d?6/dX?> =0 for P=0
and, thus a linear variation for this case. As P becomes larger, the distribution devi-
ates from the linear variation. At P=25.0, the temperature 8 is found to be zero,
or T=T,, over a substantial portion of the rod. This indicates that the heat inputs
at the two ends of the rod are lost in short distances near these ends, resulting in
uniform temperature at T, over much of the rod. These results were also compared
with the analytical solution of Equation 9.137, and a good agreement between the
two was obtained. For further details on the physical aspects of this problem and
other similar ones, see Incropera et al. (2006). Such problems commonly arise in
heat and mass transfer processes of interest in chemical and mechanical engineer-
ing systems.

9.8 SUMMARY

The solution of ODEs is discussed in this chapter. The methods for solving the first-
order equation are presented in detail since higher-order equations and boundary
value problems are generally solved by reducing them to an equivalent system of

Numerical Solution of Ordinary Differential Equations 431

first-order equations, which are then solved by these methods. The methods consid-
ered include Euler’s method and its modifications, Runge—Kutta methods, multistep
methods, and predictor—corrector methods. Euler’s method is an inaccurate, although
simple, method and is rarely used. It is considered here mainly because of its sim-
plicity which allows the presentation of the basic concepts involved in solving ODEs.
The modified Euler’s method and the improved Euler’s method, which is also known
as Heun’s method, are second-order accurate and are often used in engineering
applications if a very high level of accuracy is not needed.

The Runge—Kutta methods are among the most popular numerical schemes for
solving ODEs. Although usually less efficient than the corresponding predictor—
corrector methods, they have the advantages of being self-starting and simpler to
program. The Runge—Kutta methods are very widely used in engineering problems,
particularly if the problem is to be solved only a few times with different parametric
values. MATLAB functions ode23 and ode45 use these methods to generate lower
and higher accuracy schemes, respectively, for solving initial-value problems.

If a substantial computational effort is involved, the predictor—corrector methods
will be more appropriate, since these methods are more efficient and allow a simpler
estimation of the TE, per step, which can be employed for a better control on the
accuracy of the numerical results. The multistep methods, such as the Adams—
Bashforth and Adams—Moulton methods, are seldom used by themselves, since a com-
bination of the open and closed formulas leads to the predictor—corrector methods
which have the advantages of both formulas. However, multistep and predictor—cor-
rector methods are generally not self-starting, and a Taylor-series expansion of the
dependent variable or a Runge—Kutta formula of the same order must be employed
to compute the first few steps. Among the predictor—corrector methods discussed
here are Adams method, Milne’s method, and Hamming’s method. All three meth-
ods are comparable in accuracy, although Milne’s method has the smallest TE.
However, it is unstable for certain equations. Hamming’s method uses a modifier
based on the TE to improve the estimate of the dependent variable obtained from the
predictor and, therefore, generally requires no iteration or only one iteration for con-
vergence of the corrector. It also has very good stability characteristics. The choice
of a predictor—corrector formula for a given application is often a matter of personal
preference, since all three methods are quite comparable in accuracy and efficiency.

BVPs are frequently solved by converting them into equivalent initial-value prob-
lems. Some of the conditions needed at the initial point are guessed, the differential
equation is solved, and the guessed values are adjusted until the boundary conditions
specified at other values of the independent variable are satisfied. Methods based on
this approach are termed shooting methods, and the predictor—corrector methods are
particularly suitable for such a solution, since several iterations may be involved and
an efficient scheme is desirable. Finite difference methods may also be used for solv-
ing BVPs. These methods reduce the differential equation to a system of algebraic
equations, which can be solved by the standard methods discussed in Chapter 6.
Generally, finite differencing results in a tridiagonal system which can easily be
solved by Gaussian elimination. This approach is particularly suitable for linear dif-
ferential equations which give rise to linear algebraic equations. Nonlinear differential
equations lead to nonlinear systems which must be solved iteratively. Homogeneous

432 Computer Methods for Engineering with MATLAB® Applications

equations arise if the differential equation is homogeneous, and the corresponding
eigenvalue problem may be solved by employing the methods given in Chapter 6.

Higher-order initial-value problems are solved by reducing them to a system of
first-order equations, which are then solved by the various methods discussed here.
The solution of a system of simultaneous differential equations is a simple extension
of the procedure for a single equation. Accuracy and stability of the numerical
scheme are important considerations in the solution of a given problem. The step size
may initially be chosen on the basis of an estimate of the TE, if available. However,
it is important to vary the step size in order to ensure a negligible dependence of the
results obtained on the chosen value. If the results for two significantly different step
sizes are close, the numerical scheme is probably stable. In some cases, the available
estimate of the error and the constraints for stability may be employed for the choice
of the method and the step size.

Whenever possible, the numerical results must be compared with the analytical
results available for simpler cases in order to check the accuracy and correctness of
the computational procedure. Richardson’s extrapolation may also be used for
improving the accuracy of the results. It is usually better to go to a higher-order for-
mula for greater accuracy than continue to reduce the step size, since the round-off
error and the computer time increase as the step size is reduced. Several methods
have been developed in recent years to attain a high level of accuracy while retaining
the efficiency of predictor—corrector methods, see Gear (1971), Lambert (1973),
Shampine and Gordon (1975), and Ferziger (1998) for details.

PROBLEMS

9.1. The differential equation dy/dx = F(x, y), with y=0 at x=0, is to be
solved by Euler’s method. If the function F(x, y) is zero or infinite
at x =0, how would you start the computation? Is this approach also
applicable to the fourth-order Runge—Kutta scheme?

9.2. A stone is thrown vertically upward in air at a velocity of 50 m/s. A
frictional drag AV?, where A is a constant and V is the velocity, acts
on the stone in the direction opposite to that of the motion. The stone
rises until the velocity becomes zero and then accelerates downward
to the ground. Its velocity is governed by the following equations,
while going upward and while coming down, respectively:

av ,
ar - eV
av ,
o memAV

where 7 is time and g is the gravitational acceleration, given as 9.8 m/s”.
If A is given as 103 m™, solve the first equation to obtain the time
when velocity becomes zero. Using this as the initial condition for the
second equation, find the velocity attained by the falling stone in the
time taken for the upward motion. Use Euler’s method and vary the
time step At to ensure that the results are not significantly affected by
the step size chosen.

Numerical Solution of Ordinary Differential Equations

9.3.

9.4.

9.5.

9.6.

9.7.

Problem 9.2 may also be formulated in terms of the vertical distance x by
noting that V = dx/dt. The resulting equation for the upward motion is

d’x dx
F”g'A(a)

The following initial conditions are given

2

Att=0: x=0 and %=20n1/s
Using Euler’s method, solve this problem to find the maximum height
to which the stone rises. Also, solve the problem by using the ode45
function in MATLAB and compare the results with those obtained
earlier.
Repeat Problem 9.2 with A =0, and compare the numerical results
obtained with the corresponding values from the exact, analytical
solution of the differential equation and with those obtained earlier
forA=103m™.
A stone is dropped at zero velocity from the top of a building at time
t = 0. The differential equation that yields the displacement x from the
top of the building is (with x =0 at 7 = 0)

where g is the magnitude of gravitational acceleration, given as 9.8 m/s?,
and V is the downward velocity dx/dz. Using Euler’s method and also
the ode23 function, calculate the displacement x and velocity V as
functions of time, taking the time step as 0.5 s.

A stone is thrown vertically upward in air at a velocity of 30 m/s. Due
to gravity and air friction, the governing ODE, for the velocity V as a
function of time #, is obtained as

where g =9.8 m/s? and A = 0.002 m™. Solve this equation by Heun’s
method till V becomes zero or negative, using two step sizes Ax = 0.01
and 0.1 and compare the results. Plot the results obtained. Also use the
ode23 command in MATLAB to get the solution and compare with
your earlier results.

A copper sphere of diameter 5 cm is initially at temperature 200°C.
It cools in air by convection and radiation. The temperature 7 of the
sphere is governed by the equation

pcvo% = -[s0(T* - T + WT - T.)] A

where p is the density of copper, C its specific heat, V,, the volume of
the sphere, 7 the time, € a property of the surface known as emissivity,

433

434 Computer Methods for Engineering with MATLAB® Applications

o a constant known as the Stefan—Boltzmann constant, 7, the ambient
temperature, A the surface area of the sphere, and i the convective
heat transfer coefficient. The initial condition is as follows:

Att=0:1=200°C

Using Heun’s method, without iteration, solve this differential equa-
tion to find the temperature variation with time, until the temperature
drops below 50°C. Use the following values:

p=9000 kg/m* C=400J/kgK £=0.5
0=567x103W/m? K* T, =25°C h=15W/m> K

Employ time steps of 0.5 and 1.0 min, and compare the results obtained
in the two cases.

9.8. In the preceding problem, if the surface emissivity € is low and
the convective heat transfer coefficient / is high, radiation may be
neglected to obtain the governing equation as

pCV, ‘(li—{ = —hA(T -T,)

Using the modified Euler’s (second-order Runge—Kutta) method with
a time step of 1 s, solve this problem for z = 100 W/m? K. Also solve
this equation mathematically, and compare the numerical results
with the analytical solution. Comment on the error in the numerical
solution.

9.9. A first-order ODE is given as

dy
E = —05_)7

The initial condition is given as y(0) = 5.0. Write a script-m file to do
the following:
a. Solve the differential equation by Heun’s method to obtain y values
from t =0 to = 10.
b. Use three step sizes: h=2.0, h=1.0, and A =0.1.
c. Plot the results obtained for the three / values on one figure, using
a different color or symbol for each case.
d. The exact (mathematical) solution to the problem is y = 5 exp(-0.57).
Plot the exact solution also on the same figure as the numerical
results.
e. From these results, what is the most appropriate step size?
9.10. Apply Richardson’s extrapolation to Euler’s method, and obtain
expressions for the error and for an improved numerical solution.
9.11. Solve the nonlinear ODE

% =32 +x% with y(0)=1

Numerical Solution of Ordinary Differential Equations

9.12.

9.13.

9.14.

by Euler’s method, using step size Ax values of 0.1, 102, 103, and 10~
Compare the results obtained, and discuss the effect of decreasing the
step size on the resulting error.

Mass

A rod of length L is attached at one end to a horizontal support and
swings about this support, as shown in the figure. The motion of this
pendulum is governed by

2
?17+%sin ¢=0

where ¢ is the angle that the rod makes with the vertical at any given
time ¢ and g is the gravitational acceleration. The initial conditions are
given as follows:

At1=0: ¢=% and i—‘f=o

If Lis given as 0.2 m and g is 9.8 m/s?, obtain the numerical solution over
twice the period of oscillation, using Heun’s method, with iteration, to
solve the corrector equation. The frequency f of the rod is given by

_/g
f= 4Lm?

A fourth-order predictor—corrector method is used to solve a differ-
ential equation from x =0 to x = B, with a step size Ax. However, at
x =B, the error per step is found to be too large, and it is decided to
reduce the step size to Ax/2. Using extrapolation of the computed val-
ues, outline how this change may be carried out.

The height H of water in a tank, whose cross-sectional area is A, is a
function of time 7 due to an inflow ¢;, and an outflow ¢,,,.. The governing
differential equation arises from a mass balance as

dH
ATZ = qin ~ Yout

435

436 Computer Methods for Engineering with MATLAB® Applications

where ¢;, and ¢, are the volume flow rates, and the density of water is
taken as constant. The initial height, at # = 0, is zero. Compute the time
taken for the height to rise to 2 m. The area A is given as 0.03 m?, and

¢ =6 % 10 m¥/s. The outflow is given by gy, =3 x 10~*/Hm?/s.
Solve this problem by the fourth-order Runge—Kutta method. What is
the height attained at steady state, and how long does it take to reach
this value?

9.15. Solve the preceding problem numerically with an initial height of 4
m and g;, = 0. Determine the time taken for the height to drop to 2 m.
Also solve the equation mathematically, and compare this computed
value of the time with the analytical result.

9.16. The temperature of a metal block being heated in an oven is governed
by the equation

a7 =10.5-0.06T
dr

Solve this equation by Euler’s and Heun’s methods to get 7 as a func-
tion of time 7. Take the initial temperature as 100°C at 1 = 0.

9.17. A projectile of mass 0.2 kg is initially at rest. It is accelerated by the
application of a constant vertical thrust of 10 N for a period of 5 s.
The frictional drag on the projectile is given as AV?3, where A = 1072
m™ and V is the velocity. The gravitational acceleration is 9.8 m/s?.
Following the discussion in Problem 9.2, obtain the differential equa-
tions for the upward motion. Solve these equations by the use of a
fourth-order predictor—corrector method to obtain the velocity and
height as functions of time ¢, till the projectile returns to the ground.

9.18.

Damper .
C —j Spring

Mass

T

X

A vibrating system consists of a body of mass m attached to a wall
through a spring, of spring constant k, and a damper, of damping coef-
ficient C, as shown. The displacement x of the mass from its static-
equilibrium position is governed by the equation

mx+Cx+kx=0
where X is the second derivative of x with respect to time ¢, and x is

the first derivative. If the initial displacement x(0) is given as 0.1 m
and the initial velocity x(0) as zero, use Milne’s method to compute

Numerical Solution of Ordinary Differential Equations

9.19.

9.20.

9.21.

9.22.

9.23.

the displacement x as a function of time for 0<¢t<2s. Takem=5 g,
C =20 Ns/m, and k =500 N/m.

Solve the preceding problem with the damper absent, that is, C =0,
and compare the results with those obtained earlier, with the damper
present.

The flow of a fluid over a flat plate, aligned with the flow, is governed
by the equation

2fm +ﬂ” =0

where the primes represent differentiation with respect to an indepen-
dent variable n, that is, f” = d*f/dn2. The dimensionless velocity in the
direction along the plate is given by f’, which is to be computed. The
dimensionless quantity fis termed the stream function. The boundary
conditions for this problem are as follows:

Atn=0: f=0 f'=0
Atm=o: f'=1

Employing the fourth-order Runge—Kutta method, solve this BVP. For
the application of the second boundary condition, take 11 = 8 as being
large enough to represent infinity (see also Example 9.5).

If the flat plate in the preceding problem is heated, the temperature in
the flow adjacent to the plate is governed by

" ﬁ /_
0"+ 50 =0

where 0 is the dimensionless temperature, f is the stream function
from Problem 9.20, and Pr is a parameter, known as Prandtl number,
which is a characteristic of the fluid. The boundary conditions are as
follows:

Atn=0: 0=1
Atm=o: 0=0

Using the fourth-order Runge—Kutta method, solve this problem to
obtain 0 as a function of n for Pr=1.0.

Use the finite difference approach to solve Problem 9.20. Would you
expect this method to be more efficient, in computer time, than the
shooting methods? Also, which method is expected to be more accu-
rate? Discuss.

h T,
Heat loss
Fin
T, Iy
0 T(x) dx

S
~
i A

437

438 Computer Methods for Engineering with MATLAB® Applications

The conduction heat transfer in an extended surface, known as a fin,
yields the following equation for the temperature 7, if the temperature
distribution is assumed to be one-dimensional in x, where x is the
distance from the base of the fin, as shown in the figure:

d’T h

e Hff’(T -T.)=0
Here, p is the perimeter of the fin, being 2nR for a cylindrical fin
of radius R; A is the cross-sectional area, being TR? for a cylindrical
fin; k is the thermal conductivity of the material; 7, is the ambient
fluid temperature; and % is the convective heat transfer coefficient. The
boundary conditions are as follows:

Atx=0: T=T,
dr
Atx=L: —=
X o 0
where L is the length of the fin. Solve this equation to obtain 7(x) for
R =1cm, h=20 Wm?K, k=15 W/m K, L =25 cm, T, =80°C, and
T..=20°C. Use a predictor—corrector method.
9.24. Solve the preceding problem with the following conditions, which
make it an initial-value problem:

Atx=0: T=T,, d—T=—104K/m

dx
9.25.
Spring Mass
k m

A block of wood, resting on a horizontal surface, is attached to a wall
through a spring, as shown. The displacement x of the block from its
equilibrium position is governed by

d’x k

a TN
where ¢ is time, k the spring constant, m the mass of the block, | the
coefficient of friction, and g the gravitational acceleration. The frictional
force is positive if the velocity dx/dr is negative, and vice-versa. Taking
m=2kg, k=200 N/m, g =9.8 m/s?, and L = 0.4, compute x as a function
of time, for time 7 up to 3 s. The initial conditions are as follows:

Atr=0: x=0.1m and %=0

Numerical Solution of Ordinary Differential Equations

9.26.

9.27.

9.28.

Employ the fourth-order Runge—Kutta method. Also, solve it by using
the ode45 function and compare the results with those obtained earlier.
Solve the following initial-value problem by Hamming’s method, and
compare the predicted and corrected values for x up to 4.0:

d?y dy

——5+3-=+2y=0
o Y

Atx=0: y= =0

Take Ax =0.1 and study the effect of the chosen convergence crite-
rion on the number of iterations needed for the corrector. Compare
the converged results with those obtained from the corrector without
iteration. Discuss the implications of these comparisons.

Solve the following linear differential equation by the method of
superposition:

d?y
wt 2y=6
Atx=0: y=1
Atx=10: y=5

L Ry
750000
—7
— E R,
O
Switch

In the electrical circuit shown, the switch is open and a current / exists,
where I = E/(R, + R,). At time ¢ = 0, the switch is closed. The current
I(7) is then governed by the equation

E

dl .
L7+R]I=E with 1(0)—m

dt
where L is the inductance in the circuit. Solve this equation by a
Runge—Kutta formula to obtain 7 as a function of time, until the cur-
rent is close to steady state. Compare the numerical results obtained
with the analytical solution:

1(1) _E 1 L

"2 -RIL
R, R +R,

Take E=10 V,R, =R, =5 Q, and L =1 henry.

440

9.29.

9.30.

Computer Methods for Engineering with MATLAB® Applications

Switch
o

The capacitor C, in the electrical circuit shown, has an initial charge
of g, and at time ¢ = 0, the switch is closed. The governing equation
for charge ¢(?) is

d’gq
L
dr?

1 . dg

+ éq =0 with ¢(0) = ¢, and E(O) =0

Using a Runge—Kutta formula, solve this equation for ¢,= 0.1 cou-
lomb, C = 10~ farad, and L = 0.01 henry. The frequency of oscillation

of this circuit is given by +/1/LC . Obtain ¢(f) over a few cycles.

Ambient temperature
T.
Heat loss f

Die T, T(x) @ —> U

The temperature 7(x) in a moving rod, shown in the figure, which loses
energy to the environment, at temperature 7., is given by the equation

d’T 1,.dT 2h

W—EUE—E(T—TMFO

where x is the distance from a die out of which the material emerges
at temperature 7, U is the velocity of the material, / is the convective
heat transfer coefficient, R is the radius of the material, and o0 and
k are material properties known as thermal diffusivity and thermal
conductivity, respectively. The boundary conditions are as follows:

Atx=0: T=T,
Atx=0: T=T,

Numerical Solution of Ordinary Differential Equations 441

9.31.

9.32.

9.33.

9.34.

Employing any shooting method, compute 7(x). Take U=1 mm/s,
h=20W/m? K, o= 10~* m?/s, k = 100W/m K, T, = 600K, 7., =300 K,
and R = 0.02 m. For the second boundary condition, start with a large
value of x, say, 1 m, to represent o, and then vary this value until the
results are not significantly affected by a further increase.

Solve the following BVP by a shooting method:

d’y dy
x2@+2xa+xy=0
Atx=1: y=1
Atx=5: y=6

Formulate the preceding problem for solution by the finite difference
method, and outline the numerical scheme that may be adopted to
solve the resulting algebraic equations.

Deflection

;

P—>@ ® «— P

The deflection y of a beam, shown in the figure and loaded axially
with force P, is governed by

2
gx—Z+%y=O with y(0) = y(L)=0

where E is the modulus of elasticity of the material, / is known as its
area moment of inertia, L is the length of the rod, and x is the distance
from one end. We are interested in finding the smallest value of P for
this eigenvalue problem, since this gives the first failure mode of the
rod. Taking P/(EI) as A, solve this problem by the power method, taking
five subdivisions of the rod, to obtain the smallest eigenvalue. Find the
corresponding critical load P, if EI=1.5 x 10 N m? and L= 1 m.

If a heated vertical plate is placed in a quiescent ambient medium, a
flow is generated adjacent to the plate because the fluid becomes buoy-
ant due to heating. The dimensionless stream function f, which gives
the velocity as f’, and temperature 0 in this flow are governed by the
coupled system of equations

FU A3 =2 P +0=0
0" +3Prf6' =0

442 Computer Methods for Engineering with MATLAB® Applications

with the boundary conditions
F(0)=f"(0)=1-6(0) = f(0) =6() =0

where the quantity within the parentheses represents the location,
in the independent variable 1, where the condition is applied. The
primes indicate differentiation with respect to 1, and Pr is a param-
eter that depends on the fluid (see Problem 9.21). Solve this system of
equations by converting it into five first-order equations and employ-
ing the fourth-order Runge—Kutta method, with shooting. Obtain the
velocity and temperature distributions, f’(n) and 6(n), respectively, for
Pr=1.0. Take n = 8 as being sufficiently large to apply the conditions

at infinity.
9.35. In a radiating fin (see Problem 9.23), the temperature 7(x) is gov-
erned by
T p 4 4
@_E[h(T_Tw)_SO‘(T -7,):| =0

with the following boundary conditions:

Here, € is a property of the surface known as emissivity, and ¢ is a
constant (see Problem 9.7). Employing the finite difference method,
solve this problem for the parametric values given in Problem 9.23,
with € given as 0.5 and ¢ = 5.67 x 10 W/m? K*.

9.36. Solve Problem 9.33 by taking two, three, or four subdivisions of the
rod for generating the finite difference equations and obtaining the
polynomial from its characteristic determinant. Compare the com-
puted value of the smallest eigenvalue A, with the analytical result
/L2

9.37. Using the finite difference method, repeat Problem 9.30. Discuss the
accuracy given by the two approaches. When would the finite differ-
ence approach be the preferred one for such problems?

9.38. Study the stability of the second-order Runge—Kutta method by con-
sidering the differential equation dy/dx = — ay, where a is a constant.
Also determine the TE.

9.39. Outline a numerical scheme for solving the differential equation
dy/dx = Ax72, where A is a constant and y = 0 at x = 0, without using
the analytical solution.

9.40. Consider the differential equation d?y/dx? = ay, which is to be solved
by finite difference methods. Discuss the nature of the resulting alge-
braic equations and put them in matrix form. Outline the numerical
scheme for solving this set of equations and give reasons for your
choice.

‘min

Numerical Solution of Ordinary Differential Equations 443

9.41. Show that the modified Euler’s method is second-order accurate.

9.42. Solve the problem of Example 9.2 by Milne’s predictor—corrector
method, and compare the results with those obtained earlier by the
Runge—Kutta method. Comment on the difference between the com-
putational effort involved in the two methods.

9.43. Consider a third-order ODE of the form d*y/dx3 = F(x, y, dy/dx).
Develop a finite difference scheme for solving this equation if y = A at
x=a;y=DBatx=b; and dy/dx = C at x = a. Assume that F is a linear
function in the dependent variable y.

9.44. Consider a nonlinear second-order ODE of the form d?y/dx*=
F(x, y, dy/dx), where F' is nonlinear in y. Using the finite difference
approach, obtain a numerical scheme for solving this equation.
Assume the problem to be a boundary-value one with y=A at x=a
and y=Batx=>.

’I O Numerical Solution of
Partial Differential
Equations

10.1 INTRODUCTION

In the preceding chapter, the numerical solution of ODEs, which involve a single
independent variable, was discussed. However, for a wide variety of problems in
science and engineering, the dependent variables are functions of two or more
independent variables, such as time and the spatial coordinate distances. Consequently,
the differential equations that govern such problems involve partial derivatives and
are known as partial differential equations (PDEs). These equations arise in almost
all areas of engineering, for instance, in fluid mechanics, elasticity, heat transfer,
energy systems, environmental flows, hydraulics, neutron diffusion in nuclear reac-
tors, and structural analysis. The numerical solution of PDEs is generally more
involved than that of ODEs because of the presence of several independent vari-
ables, each with its own initial and boundary conditions. Therefore, effort is often
made, whenever possible, by the use of simplifying approximations and transforma-
tions, to reduce the governing PDE to an ODE. However, this simplification is pos-
sible in only a limited number of cases. Because of the complicated nature of PDEs,
analytical solutions are rarely obtained, and numerical methods are necessary for
most problems of practical interest.

10.1.1 CLASSIFICATION

Many of the classifications outlined in Chapter 9 for ODEs also apply for PDEs.
Therefore, the equations may be linear or nonlinear, homogeneous or inhomo-
geneous, of first or higher order, and may involve a single equation or a system of
equations. The initial and boundary conditions are specified in terms of the vari-
ous independent variables, making it possible for the problem to be an initial-value
problem in relation to one independent variable and a boundary value problem in
relation to another variable. However, the suitable initial and boundary conditions
that may be imposed for a given equation are determined by the type of the equa-
tion. Each type demands a particular set of initial and boundary conditions that
must be specified to obtain a well-posed problem that is amenable to an analytical
or a numerical solution.

445

446 Computer Methods for Engineering with MATLAB® Applications

Let us consider the general form of a second-order PDE in two independent vari-
ables, given as

29 9% o b
A%, B c?iplx v, 2 %0 10.1
o T Paxay T g T (x PP x ay) (10.)

where A, B, and C may also be functions of the two independent variables x and y and
of the dependent variable ¢ and its first-order derivatives. If ¢ appears in the first
power throughout, the equation is said to be /inear. This requires that A, B, and C be
functions of only x and y and that D contain only linear functions of ¢ and its first-
order derivatives. We shall concern ourselves mainly with linear PDEs in this chapter.
Nonlinear equations are also frequently encountered, for example, in fluid flow.
However, the solution of nonlinear equations is usually much more involved than
linear equations, and only a brief outline of the applicable numerical techniques is
given later in the chapter.

The classification of the above PDE is based on the sign of B> —4AC. The equa-
tion is said to be elliptic when B*—4AC <0, parabolic when B>—-4AC =0, and
hyperbolic when B?—4AC >0. This classification is related to the nature of
characteristics, which are lines or surfaces along with a disturbance or information
can propagate. A PDE in two dimensions, as given by Equation 10.1, reduces to
an ODE along a characteristic. A hyperbolic equation has two real and distinct
characteristics, which are often employed to obtain the solution. In this case, a dis-
turbance propagates at finite speed over a finite region, bounded by the two families
of characteristics. For parabolic equations, the two families of characteristics
merge, giving rise to an infinite propagation speed and information flow in one direc-
tion. Therefore, in a parabolic equation, the solution at a given point depends only on
the results obtained along this direction up to the point and not on results in the
region beyond it. For time as an independent variable, this implies that the solution
is affected by the occurrences in the past, but not by those in the future. For elliptic
equations, complex characteristics are obtained, and, therefore, no directional restric-
tions arise and a disturbance propagates in all directions. The solution at a given
point is affected by disturbances at every other point in the region where the elliptic
equation applies. There are no preferred directions, and the solution must be obtained
over the entire region simultaneously. Therefore, the mathematical character of the
equation is indicated by its classification, which also determines the suitable bound-
ary conditions and the solution procedure.

10.1.2 EXAMPLES

A few examples of the three types of PDEs are considered here for illustration of the
preceding discussion. A very common parabolic equation is the one-dimensional,
unsteady, heat conduction equation, which is given as

T _aT

Numerical Solution of Partial Differential Equations 447

where T(x,) is the temperature, x is a spatial coordinate, ¢ is the time, and o is a
constant, known as the thermal diffusivity of the material. This equation requires
the specification of an initial condition, in time, and two boundary conditions, in x.
Another important parabolic equation is the transient convective—diffusive
transport equation, which may be written for a one-dimensional problem as

9 o005 0%0
rCsl =Dt (10.3)

where ¢(x, 7) is the dependent variable, such as temperature, concentration, or den-
sity, and C and D are constants. Again, an initial condition in time and two bound-
ary conditions in x are needed. This equation applies for practical problems such
as material movement in chemical reactors, extrusion of plastics, and transport of
discharged effluents in a water stream.

Two elliptic equations that are frequently encountered in engineering problems
are Laplace’s and Poisson’s equations, written, respectively, as follows:

82¢ 32(1) B
92 92
29, ﬁ ~BCxy) (10.5)

where ¢(x, y) is the dependent variable and [may be a constant or a function of x and
y. These equations arise in several areas such as fluid mechanics, electrostatics, elas-
ticity, and conduction heat transfer. In conduction, the dependent variable becomes
the temperature 7 and [is a distributed heat source. Boundary conditions are needed
at all the edges of the solution domain. Frequently, these are specified as the value of
0, of its derivative, or of a linear combination of the two, at the boundaries.

A common hyperbolic equation is the wave equation, written as

P _ 200 (10.6)

=c
at? ax?

where c is the propagation velocity of the wave and 0(x, 7) is the physical dependent
variable, such as the displacement of a string. Two initial conditions are needed, and
the spatial domain may or may not be bounded. If bounded, boundary conditions are
needed at the two boundaries of the region. This equation governs the vibration of a
string as well as the behavior of waves in a given medium. Another simple hyper-
bolic equation is the first-order convection equation, given as

L L)
A AN S 10.7
FrRar 0 10.7)

where the physical quantity ¢(x, f) is convected at constant velocity c. The character-
istics are straight lines, given by x — ct = constant, for this equation, which may be

448 Computer Methods for Engineering with MATLAB® Applications

differentiated with respect to x or ¢ to obtain a second-order PDE of the form given
by Equation 10.1.

10.1.3 Basic CONSIDERATIONS

The preceding discussion illustrates that one must determine the type of the given
PDE before proceeding to its numerical solution. If more than two independent vari-
ables are to be considered, the equation retains the characteristics of the three types
of equations discussed above, as determined by the highest derivatives in each of the
independent variables. Unsteady, two-dimensional, mass diffusion, for instance, is
governed by the equation

(10.8)

ot axr ay*

2 2
aC D(9*’C 9°*C)
where C is the concentration of a diffusing chemical species and D is known as the
mass diffusivity. The problem retains the parabolic nature with respect to its time
dependence and the elliptic behavior with respect to the spatial coordinates.
Therefore, one marches in time, to obtain the concentration distribution at each time
interval, using the distribution at the preceding interval. The concentration distribu-
tion at a specified time, which is generally taken as zero, is needed as the initial
condition. Also, conditions involving the concentration and/or its derivatives must be
specified at all the boundaries of the region.

The classification of PDEs is discussed here in terms of second-order equations,
which are the most frequently encountered equations in engineering applications.
However, higher-order equations are also of interest in many problems. Fourth-order
equations arise, for instance, in fluid flow and in solid mechanics. These equations
can usually be solved by the methods applicable to the second-order elliptic equa-
tions, although the finite difference equations are obviously more involved. In fact, a
fourth-order PDE may often be broken down into two second-order equations, which
are solved simultaneously. First-order equations also occur in a few cases. Very
often, these equations have real characteristics and can be solved by the methods
employed for the hyperbolic equation of second order.

The main approach to the solution of a PDE is based on the reduction of the equa-
tion to a system of algebraic equations, which are then solved by direct or iterative
methods to yield the value of the dependent variable at a finite number of mesh
points. Two techniques that are commonly employed for generating the governing
system of algebraic equations are the finite difference and the finite element methods.
Finite difference methods apply the approximations to the PDE at a finite number of
grid points in the computational domain. Finite element methods divide the region
into a finite number of subdivisions. The integral form of the PDE is then applied to
each element, and the integrals are minimized or the integral statement satisfied,
using interpolation functions that contain adjustable parameters, in order to satisfy
the conservation principles. In both cases, a system of algebraic equations is obtained
from the application of the method at the boundaries and in the interior region.

Numerical Solution of Partial Differential Equations 449

The finite element method has become very important in recent years because of
its versatility in treating a wide variety of boundary conditions, material property
variations, and complicated geometries. However, it is generally more involved than
the finite difference method and is advantageous to use only when some of the
complications mentioned above are present. We shall restrict our discussion in this
chapter to relatively simple problems and largely to the finite difference methods of
solving them. A brief discussion of the finite element approach is also given later in
the chapter, including a comparison with the finite difference technique. Also, there
are other methods available for solving PDEs, such as boundary element, control
volume, and spectral methods. In most cases, the PDE is reduced to a system of
algebraic equations, which are solved by the methods given in Chapter 6.

In this chapter, the three types of PDEs mentioned above are considered, and an
introductory treatment of their solution is given. The subject is an extensive one, and
various complexities arise in diverse engineering applications; see, for instance, the
book by Jaluria and Torrance (2003) on the numerical solution of heat transfer
problems. Here, we are interested mainly in a consideration of the basic approach to
the numerical solution of these different types of equations. Therefore, a few simple
equations are taken and their solution is discussed. The parabolic equations are treated
first since the methods for solving them are similar to those used for ODEs and since
they also form the basis for some of the methods used for elliptic equations.

10.2 PARABOLIC PDEs

The solution domain in parabolic equations stretches outward indefinitely in one
coordinate direction, say, z, from the given initial values, as shown in Figure 10.1.
The equation is solved for the dependent variable ¢ by advancing, or marching, in the
direction of increasing or decreasing value of the independent variable z, depending

Direction of solution
advancing

Boundary Boundary
conditions conditions

Computational domain

z=0
> x Initial conditions

FIGURE 10.1 Solution domain for a parabolic PDE, along with the necessary boundary and
initial conditions.

450 Computer Methods for Engineering with MATLAB® Applications

on the problem and starting with the initial conditions at z=0. The solution must
satisfy the prescribed boundary conditions, in the other independent variable x, as
the solution advances in z. For results obtained with increasing z, the solution at any
z depends on the values of ¢ at smaller z but is independent of those at larger z. This
implies a definite direction for disturbance propagation. A physical analogy to this
circumstance is a fast-flowing river in which a disturbance at a given location travels
downstream but does not affect the flow upstream. The solution procedures for
parabolic equations are, therefore, based on marching outward from the initial
conditions in one of the independent variables, while satisfying the given boundary
conditions in the other.

10.2.1 NUMERICAL SOLUTION WITH AN EXPLICIT SCHEME

Let us consider the one-dimensional transient heat conduction problem, given by
Equation 10.2, as an example of a parabolic PDE. Therefore, the dependent variable
is the temperature 7(x, 1), which is governed by the equation

2
a%%:%: (10.2)

Since the equation contains the second derivative in x and only the first derivative in
time 7, two boundary conditions are needed in x and a single initial condition in ¢.
These may be prescribed in terms of 7(x, ?) as

T(a,t)=A
T(b,1)=B (10.9)
T(x,0)=T,

where x = a and x = b represents the boundaries of the region and Tj is the initial
condition. In general, 7, may be a function of x, and A and B may be functions of
time. However, for simplicity these are taken as constants here. The problem, as
given above, is properly posed for obtaining the solution for ¢ > 0.

The above parabolic PDE may be solved numerically by finite difference
methods. A space-time grid, with Ax and Ar denoting the corresponding mesh sizes,
is taken, as shown in Figure 10.2. Then, the finite difference approximations to the
derivatives are applied to the given equation at each grid point. Several finite differ-
ence approximations can be obtained, depending on the representations used for the
derivatives, as discussed in Chapter 4. For instance, a forward difference representa-
tion may be used for the partial derivative in time to obtain

oT _ T:'Jrl,j _Ti,j

97 10.10
ot At ()

Numerical Solution of Partial Differential Equations 451

T, T, T,

ir1j-1 Liv1j Livnja
irl P
) Tija Ti,j Tijn
i é I

hd Y I

Ax At Tt 1j- 1 i-1,j Ti—l,/’+

A
Y

i-1
t
1
0
0 1 -1 7 j+l n
>«

FIGURE 10.2 Space-time grid for the solution of a parabolic PDE by finite difference
methods.

where the subscript (i + 1) denotes the values at time (¢ + Af), and i those at time .
The spatial location is given by j. For the mesh shown in Figure 10.2, x = jAx and
t = iAt. The TE is O(Af), as obtained in Chapter 4.

A central difference approximation may be employed for the second derivative to
obtain the approximation at time ¢ and location x as

(aZT) _ l]+l 2T +7;]1

fye (Ax)2 (10.11)

with a TE of O[(Ax)?]. In this expression, the second derivative in x is approximated
at time t. If the above finite difference representations are substituted into Equation
10.2, the resulting equation may be written as

7—;'+1,j = T;',j (A)C)z (i,j+1 2T + Tj]) (1012)

where the TE is O(Ar) + O[(Ax)?]. Therefore,

=(A-2F)T; + F(T ;. + T ;-) (10.13)

1+1]

452 Computer Methods for Engineering with MATLAB® Applications

where F is a constant known as the grid Fourier number and is given by

_ oAt
C(Ax)?

(10.14)

Equation 10.13 gives the temperature at time (f + Af) at the grid point whose
spatial coordinate is x = jAx, in terms of the temperatures at time ¢ at the grid points
with coordinates (x — Ax), x, and (x + Ax). The temperatures at x = ¢ and x = b remain
constant at A and B, respectively, because of the given boundary conditions. The
initial condition gives the temperatures at the grid points at time # = 0 as T, where T},
may be given as a constant or as a function of x. Using Equation 10.13, the temperature
distribution at time 7 = At may be determined from the given temperatures at ¢ = 0.
Similarly, the distribution at the second time step ¢ = 2At¢ is obtained, employing the
computed values at the first time step. Therefore, the solution is obtained at increasing
values of time ¢. This time marching may be continued indefinitely. However, the
process is generally terminated when a specified time ¢,,, has been attained or when
the steady state, as given by a negligible change in the solution with increasing time,
is reached. In most cases, a steady-state circumstance is attained at large time, and a
convergence criterion may be applied to the solution in order to terminate the
computation when the solution is sufficiently close to the steady state. A convergence
criterion is generally needed since the solution may approach the steady state
asymptotically, thus taking infinite time, theoretically, to reach it exactly. The choice
of the convergence criterion, therefore, affects the computational time taken to obtain
the solution. Also, as discussed in Chapter 2, the convergence criterion must be
varied to ensure a negligible dependence of the numerical results on the chosen
parameter.

If F is chosen as 1/2, Equation 10.13 becomes

T Ti,j+1 + Tz,j-l

i+l,j =

(10.15)

which implies that the new temperature at a grid point is the average of the old
temperatures at the two adjacent grid points. A graphical method, known as the
Schmidt—Binder method, has been developed on the basis of this equation. A uni-
form distribution of grid points is taken, and the temperature at a point, for the next
time step, is simply given by the intersection of the normal to the x-axis at this point
with the line joining the graphical points representing the present temperatures at the
two adjacent grid points, as shown in Figure 10.3. Therefore, the solution to the dif-
ferential equation, Equation 10.2, may be obtained graphically over a desired time
interval, starting with the initial conditions.

The computational scheme of Equation 10.13 gives the temperatures at time
(t + Ap) in terms of known temperatures at time #. Therefore, the temperatures at a
given time step may be determined explicitly from known values at the previous
time step. This method is known as the explicit Euler method and is also referred
to as the forward time central space (FTCS) method, because of the finite

Numerical Solution of Partial Differential Equations 453

EE— 1

< L >
T(x,0) = T,
T(0, t) = T(L, t) = T

t=iAt

(T-T)(Ty—Ty)

FIGURE 10.3 Graphical solution of transient heat conduction in a wall, with F=1/2
(Schmidt-Binder method).

difference approximations used. It provides the simplest computational procedure
for computing the time-dependent temperature distribution, starting with the initial
conditions.

10.2.2 StaBiLTy of EuLer’s (FTCS) METHOD

The above method becomes unstable at large values of F, and stability is assured
only if

3 aAt <l
S (Ax)? T2

(10.16)

Therefore, an amplification of the round-off and TEs arises if F > 1/2 and may lead to
an unbounded growth in the solution as the computation advances in time, resulting in
overflow. This condition for numerical stability is obtained by stability analysis, consid-
ering the growth of errors introduced into the solution; see, for instance, Roache (1976),

454 Computer Methods for Engineering with MATLAB® Applications

Ferziger (1998), and Jaluria and Torrance (2003). A physical explanation may also be
given in terms of Equation 10.13. If F'> 1/2, the coefficient of T;; on the right-hand
side of Equation 10.13 is negative. This implies that a larger value of the temperature
T;; at time ¢ gives rise to a smaller value of the temperature T}, ; at the same location
at the next time step. Similarly, a smaller value of 7; ; at time 7 results in a larger value
of T;,,; at (t+ Af). The result is an oscillatory and unstable solution. Figure 10.4
shows the nature of this instability in terms of the computed results for transient
conduction in a plate of thickness L at different values of F' (from Jaluria and Torrance,
2003). The temperature distributions are obtained by solving Equation 10.2 with
A=B=T, where T, is a constant temperature. The results are shown in terms of
dimensionless coordinate distance x/L and temperature 0 = (T — T))/(T;, — T,). Only
half the conduction region is shown because of symmetry. Clearly, instability arises
as F increases beyond 0.5.

The major problem with the stability criterion given by Equation 10.16 is the
constraint that it imposes on the allowable time step for a given grid spacing Ax,
which is generally chosen as small to keep the TE small. For a given value of the
thermal diffusivity o, the maximum permissible time step At is given by the stability
constraint as

(Ax)?

At
= 200

(10.17)

A small value of At is desirable for keeping the TE, which is of order At in this for-
mulation, down to a desired level. However, the stability criterion generally limits
the time step to a value that is much smaller than that needed for maintaining the
accuracy of the solution. Therefore, the explicit method often severely constrains the
time step and results in excessive computational time. Consequently, other methods
have been developed which, although often more involved than the FTCS method,
have better stability characteristics.

10.2.3 ImpLicIT METHODS

In the FTCS explicit method, the finite difference approximation for the second spa-
tial derivative, 0*T/ox?, is written, in Equation 10.11, at time z. A family of implicit
methods may be obtained by approximating this derivative at a different time,
between ¢ and 7 + Ar. The resulting finite difference equation is

T,,;,-T; Ty _2Ti+lj+Ti+1j—1 T =21 ; +T,
- L= - : L (y -1 ! ! (10.18)
(Ax)?

At Y (Ax)?

where v is a parameter that lies between O and 1. Therefore, the second derivative is
written as a weighted average of the finite difference approximations corresponding
to time levels 7 and ¢ + At.

Numerical Solution of Partial Differential Equations

455

t=0 t=0
15 4.5 2.8 56
6.0
0.8 758 0.8 1
8.4
0.6 0.6
11.2s
[«n) D
0.4 1 0.4
F=1/6 F=0.52
0.2 A 0.2
I T T T T T T
0 0.1 0.3 0.5 0 0.1 0.3 0.5
x/L x/L
t=0
1.0
4.32
0.8 7.56's
0.6
F=06
D
0.4 - 10.8
0.2
T T T
0 0.1 0.3 0.5
x/L

FIGURE 10.4 Time-dependent temperature distributions for one-dimensional conduction
in a plate, governed by Equation 10.2, at various values of the grid Fourier number F, with
time 71in seconds. (Adapted from Jaluria, Y. and Torrance, K.E., Computational Heat Transfer,
2nd edn, Taylor & Francis, New York, NY, 2003.)

If y=0, the FTCS explicit method, given in Section 10.2.1, is obtained. For
v = 1/2, the second derivative is evaluated midway between the two time levels, and
the TE can be shown to become O[(Af)?] + O[(Ax)?]. This method, known as the
Crank—Nicolson method, is very popular for the solution of parabolic equations. If
v =1, the second derivative is evaluated at time ¢ + Af, and the formulation is known

456 Computer Methods for Engineering with MATLAB® Applications

as the fully implicit or the Laasonen method. The TE is the same as that for the
FTCS explicit method. From Equation 10.18, the finite difference equations for the
Crank—Nicolson and the fully implicit methods are, respectively,

_FTi+l,j+l +2(1+ F)Ti+1,j - FT,

i+l,j-1

= FT,,, +2(- F)T,, + FT,,_, (10.19)

_FTL‘+1,j+1 +(1+ 2F)Ti+1,j - FTi+1,j-1 = T;] (10.20)

As seen from Equation 10.18, a set of simultaneous linear algebraic equations
must be solved for implicit methods to obtain the temperature distribution at time
t+ Atr. A tridiagonal system arises which is conveniently solved at each time step by
Gaussian elimination, as discussed in Chapter 6, to obtain the time-dependent tem-
perature distribution. The solution marches in time, starting with the known initial
values, until steady state or a specified time ¢,,,, is reached. The numerical proce-
dure is more involved than the FTCS explicit method. However, the implicit meth-
ods generally have much better stability characteristics. The Crank—Nicolson
implicit method is unconditionally stable, and much larger time steps can be taken
as compared to the FTCS explicit method. The only constraint on the time step is
generally because of accuracy considerations. However, oscillations that generally
remain bounded do arise in the solution for certain problems at large values of F
and may lead to a restriction on Az, although at much larger values than that given
by Equation 10.17.

The FTCS method, on the other hand, often restricts the time step to much
smaller values than those demanded by the desired accuracy of the results. The
Crank—Nicolson method also has a lower TE in time, O[(A?)?], as mentioned above,
allowing a larger time step for given accuracy. This arises because the finite differ-
ence approximation for the time derivative is in effect obtained midway between
the two time levels f and ¢ + Az, making it a central difference approximation with
TE of O[(A?)?]. Therefore, this method yields numerical results of greater accuracy
than those from the FTCS method with a smaller computational cost. Even for non-
linear equations, which require iteration for solving the resulting set of algebraic
equations, the Crank—Nicolson method is generally superior because only a few
iterations are often needed for the linearized tridiagonal set. The numerical proce-
dure may be graphically represented in terms of a computational molecule, which
illustrates the grid points involved in the computation. Figure 10.5 shows the com-
putational molecules for the FTCS, Crank—Nicolson, and fully implicit methods.
These indicate the relationships between the values at the neighboring grid points.
Examples 10.1 and 10.2 demonstrate the application of the FTCS and Crank—
Nicolson methods, respectively.

10.2.4 OTHER METHODS AND CONSIDERATIONS

The major advantage of implicit methods over the explicit methods is the numerical
stability, which allows much larger time steps in the computation. This consideration

Numerical Solution of Partial Differential Equations 457

FTCS method Crank—Nicolson Fully implicit
method method

X

FIGURE 10.5 Computational molecules for the explicit Euler (FTCS), Crank—Nicolson,
and fully implicit methods.

is particularly important in regions where the solution varies slowly with time, for
example, near the steady state. Because the resulting algebraic equations are in the
tridiagonal form, the number of arithmetic operations needed to solve the set for
each time step is only O(n), n being the number of grid points where the tempera-
tures are to be computed. This is of the same order as the number of arithmetic
operations necessary for taking one time step using the explicit method. Generally,
the computer time taken by the implicit methods per time step is around twice that
for the FTCS method. Since, in many cases, the time step Af for the implicit methods
may be taken as large as 10 to 100 times that allowed by the explicit method, due to
stability considerations, a substantial reduction in computer time may be obtained
by the use of implicit methods. The explicit method has the advantage of simpler
programing.

Since the computation for the explicit method requires only the known values
from the previous time step, the method can be used for solving nonlinear equations
without much difficulty, whereas the solution of the simultaneous nonlinear equa-
tions that arise in the implicit methods requires iteration. Nonlinear equations arise
in many physical problems, for instance, in the one-dimensional transient conduc-
tion problem if the material properties are not constant but vary with the tempera-
ture. Explicit methods are also advantageous to use if the boundary conditions are
time-dependent.

Because of this advantage of an explicit procedure over implicit methods, for
nonlinear problems, for time-dependent boundary conditions, and for other com-
plexities in the problem, several other explicit methods with better stability charac-
teristics than the FTCS method have been developed. Two explicit methods that are
unconditionally stable for the problem under consideration are the Saul’yev and
Dufort-Frankel methods. The corresponding finite difference equations for these
methods, for the one-dimensional unsteady conduction problem, are

T, T,

i+1,j — tij

At

T, T,

i+1,j-1 — Livl,j T

(Ax)?

T, +T,

i,j+1

(10.21a)

’I;'+2,j _Ti+1,j . ’772‘4-1,]'—1 _T;'+l,j - T;’+2,j + T;‘+2,j+l l (1021b)

At (Ax)?

458 Computer Methods for Engineering with MATLAB® Applications

and

= ; T...-T.,,.-T_,.+T
i+1,j i-1,j i,j+1 i+1,j i-1,j i,j-1
= 10.22
2A1 ¢ (Ax)? (10.22)

In the first case, two equations are used, with the computation in the first one
proceeding in the positive x direction for the (n + 1)th time interval and in the second
one in the negative x direction for the (n + 2)th time interval. The two equations are
used consecutively to advance by two time steps. In each equation, the right-hand
side is explicitly known from previous calculations, one obtained with increasing j
and the other with j decreasing. In the second method, a central difference approxi-
mation is used for the derivative in time, giving a TE of O[(A?)?], and the temperature
at the jth grid point is split into the values at two time steps # and ¢ + At. Although this
method is unconditionally stable, it is not self-starting because values at 1 — At are
needed for computing those at # + At. Thus, it requires another method to start the
computation. Also, it can behave poorly under certain conditions and is not widely
used. Various other explicit and implicit methods are given by Carnahan et al. (1969),
Smith (1978), and Ferziger (1998).

10.2.5 MULTIDIMENSIONAL PROBLEMS

The methods discussed here for solving the one-dimensional transient problem can
easily be extended to multidimensional problems. Two-dimensional, unsteady diffu-
sion processes are governed by Equation 10.8 for mass transfer and the following
equation for heat conduction:

aT 9’T 0*T

Using the FTCS explicit formulation, we obtain the finite difference equation as
follows:

T’+l,j,k - 7:’,_j,k

i Tjors =2T 50+ Ty Tijunr = 2T 50+ Ty
At

(Ax)? (Ayy?

(10.24)

where the first subscript refers to time, the second subscript to the location in the x
direction, and the third subscript to the location in the y direction. The correspond-
ing step sizes are At, Ax, and Ay, respectively. Therefore, the temperature distribution
at the next time step, f + Af, may be obtained in terms of the known values at time 7.
Two grid Fourier numbers F| and F, arise, where

B oAt an _ At
" (Axy? 2 (Ayy

(10.25a)

Numerical Solution of Partial Differential Equations 459
Also, the finite difference equation is
Ty == 2F -2F, Wi+ P + T)+ B (T + T 500) (10.25b)

Stability considerations, similar to those for the one-dimensional problem, arise,
and the implicit methods may be employed advantageously. If Ax= Ay, the grid
Fourier number F (= 2F, =2F,) < 1/4 for numerical stability in the explicit FTCS
method. From Equation 10.25b, stability requires that 1 —2F, —2F, > 1. As men-
tioned earlier, the equation retains the characteristics of a parabolic equation in time
and those of an elliptic equation in the spatial coordinates. Therefore, the solution is
obtained by marching in time, while satisfying the boundary conditions at the
boundaries of the region. Similarly, the three-dimensional transient conduction
problem may be solved. The constraint on F, for Ax = Ay = Az, where z is the third
coordinate, is obtained as F < 1/6 from stability considerations. For further details,
see Smith (1978), Carnahan et al. (1969), and Jaluria and Torrance (2003).

The numerical solution of parabolic differential equations has been discussed
here in terms of the transient heat conduction problem, since it is an important
problem and also because several other parabolic equations of engineering interest
are of similar form. For instance, the equation that governs the motion of fluid due to
a plate being suddenly set into motion, from rest, in an infinite medium is

ou_ u (10.26)
ot ox?

where u is the velocity in the direction of motion x, and v is a property of the fluid known
as kinematic viscosity. The treatment given here may easily be applied to this equation
and also extended to other forms of parabolic equations. In several cases, there is no
time dependence, and the equation is parabolic in one of the spatial coordinates. An
example of such a circumstance is the boundary-layer flow over a surface. In this case,
the variation with time is replaced by a variation with x, the direction in which the main
flow occurs; see Figure 10.6. Information travels downstream to larger x from a given
point, but is assumed not to travel upstream to smaller x, similar to the time-dependent
problem. However, this problem is nonlinear, as are several problems of practical inter-
est, and explicit methods are often easier to use in such cases.

u=u,
_ _ _ _Edge of the boundary
Fluid stream -7 - layer
y - Velocity

e, -7 distribution
-5 -
5 /

u=0 Solid surface
f—x

FIGURE 10.6 Sketch of the boundary-layer flow over a flat surface. This flow is governed
by a parabolic PDE.

460 Computer Methods for Engineering with MATLAB® Applications

Several methods that employ the useful features of both implicit and explicit
methods have also been developed and are among the most popular techniques for
solving parabolic PDEs in two or more dimensions. One such method is the alternating
direction implicit (ADI) method, discussed in the next section. This method employs
the implicit formulation in one direction and treats the other direction explicitly,
the two directions being interchanged from one step to the next. The result is a
tridiagonal system at each step. The ADI method is the most important method in
a class of methods known as splitting methods, several of which are available in
the literature.

The imposition of the boundary conditions for parabolic PDEs has been consid-
ered here simply in terms of the value of the dependent variable, such as 7, being
specified at the boundaries. However, in practical problems, several other boundary
conditions arise, particularly those related to the gradient of the dependent variable.
Such boundary conditions and the relevant finite difference formulations are
considered later and also in Example 10.2.

Example 10.1

In a chemical manufacturing system, a process involves the diffusion of salt into a
layer of water. The layer is of thickness L and initially has a uniform salt concen-
tration C,. At time t=0, the layer is brought into contact with saline solution at
one surface, and the concentration at this surface is raised to C,, while the other
surface is maintained at concentration C,. The mass diffusivity, also known as the
diffusion coefficient, of salt in water is denoted by D. The governing PDE for the
concentration C(x, t) in the water layer, where x is the coordinate distance mea-
sured from the surface whose concentration is raised to C,, is

2
e _ac (10.27)
ox at

Figure 10.7 illustrates this problem. The corresponding initial and boundary condi-
tions are as follows:

Fort<0:C=C,atall x

Fort >0: C=C, atx=0 and C=C, atx =1L (10.28)

Using the FTCS explicit method, solve this one-dimensional transient diffusion
problem to obtain the time-dependent concentration distribution in the material.

SOLUTION

In the problem, the numerical values of the physical quantities, such as concen-
tration and the water layer thickness, are not given, so that the problem may be
solved in generalized terms. Thus, the governing equation and the boundary con-
ditions may be nondimensionalized to obtain a general solution that can be used
for different sets of physical quantities.

Numerical Solution of Partial Differential Equations 461

Steady-state concentration
distribution

CO > X

FIGURE 10.7 The physical problem, the coordinate system, and the expected transient
behavior of the concentration distribution for Example 10.1.

We start by defining the following dimensionless quantities:

X=1, ?_Dt 0=C_CO

L I C. -G,

(10.29)

where X, t, and 0 are the dimensionless distance, time, and concentration, respec-
tively. We can formulate the given problem in terms of these quantities by using
the above definitions to replace the physical variables by dimensionless ones.
Then the governing equation is obtained as

L)

90 _ 98 (10.30)
ax* ot
The initial and boundary conditions become
6(X,0)=0, 60,t)=1 6(1t)=0 (10.31)

Therefore, the above dimensionless, parabolic, PDE may be solved to obtain
8(X, t). If the concentrations at the boundaries, mass diffusivity, and thickness of

462 Computer Methods for Engineering with MATLAB® Applications

the layer are given, the physical concentration distributions can be also determined
from Equation 10.29. This implies that the problem must be solved only once in
dimensionless terms, instead of separately for each set of physical parameters. For
this reason, the equations are often nondimensionalized and results are obtained in
generalized terms, as outlined here.

For the FTCS explicit method, the forward difference approximation is used for
the first derivative in time, and central difference for the second derivative in the
spatial coordinate x. This yields

9i+1,j =(1- 2F)6i,j + F(ei,/+1 + ei,/-1) (10.32)
where
At
F = 10.33
(AX)? ()

Here, the subscript i represents the time step, and j the spatial grid point. Therefore,
t = iAt and X =jAX. Appendix B.31 gives the MATLAB® script file and Appendix
C.17 gives the Fortran computer program for solving this problem by the explicit
method. An interactive program is written so that the number of grid points, or grid
size, and the initial concentration may be given as inputs. The time step is taken as
the largest value from Equation 10.17 to avoid numerical instability. For the chosen
total number of grid points, the mesh length is determined so as to obtain a total
dimensionless distance of 1.0. The output is printed at specified time intervals,
given by a chosen number of time steps, and the computation is carried out until
a specified time is attained. A convergence criterion may also be employed to
stop the computation when steady-state conditions are reached, as indicated by
a concentration distribution that does not vary with time. The computed results
may be stored, printed, or plotted. The variable names employed in the program
are defined at the beginning of the program, and the various important steps in the
computation are indicated.

Figures 10.8 and 10.9 present the numerical results obtained with F=0.5,
which gives the maximum time step for a stable numerical scheme. The initial
dimensionless concentration 6 is zero throughout the plate, and the steady-state
distribution is a linear variation from 1.0 at one surface to 0.0 at the other. We
can easily obtain the steady-state result by setting the transient term in Equation
10.30 equal to zero and solving the ODE d?6/dX? =0, to obtain 8 =1 - X as the
steady-state distribution. Figure 10.8 shows the concentration distribution at vari-
ous time intervals. Note that the steady-state distribution is attained by ¢ = 0.5.
Figure 10.9 shows the variation of the dimensionless concentration 6 with time ¢t
at several locations within the plate. Note that the temperatures increase sharply
from the initial value of 0.0, as time t increases. The final approach to the
steady-state value is a gradual one. Also, the concentration starts changing from
zero at a later time for points which are farther away from the surface x=0,
where the step change in concentration occurs. This indicates a finite speed
for the propagation of the mass diffusion effects in the FTCS method. At each
time step, only the next grid point is affected, as seen from Equation 10.32 and
Figure 10.3. For details on the physical aspects of this problem and other similar

Numerical Solution of Partial Differential Equations 463

1.0

N o o
= o o
1 1 1

<
)
Il

Dimensionless concentration, 6

FIGURE 10.8 Computed concentration distribution at various time intervals for Example 10.1.
The dimensionless time step [1¢ and the grid size AX are taken as 0.01 and 0.1, respectively.

ones in heat and mass transfer, standard textbooks in the area, such as Incropera
et al. (2006), may be consulted.

Example 10.2

A flat plate of thickness L is initially at a uniform temperature T,. At time t=0,
the temperature at one surface is raised to T, while the other surface is kept

1.0

o o o
NS [e)} (o]
1 1 1

Dimensionless concentration, 0
=}
o
1

T
0 005 010 015 020 025 030 035 040 045 0.50

Time, T

FIGURE 10.9 Computed variation of the concentration in Example 10.1, at various loca-
tions with time, indicating the approach to steady-state conditions at large time.

464 Computer Methods for Engineering with MATLAB® Applications

perfectly insulated. The thermal diffusivity of the material is denoted by . Solve
this problem by the Crank—Nicolson method.

SOLUTION

This problem is very similar to the one discussed in Example 10.1. The governing
equation is Equation 10.2. The given initial and boundary conditions may be writ-
ten for this problem as follows:

Fort<0: T=T, atall x
aT

Fort >0: T=T, atx=0 and a—=0 at x =L (10.34)
X

The last condition implies a perfectly insulated surface. The heat transfer
at the surface is proportional to d7/0x and is zero if the temperature gradient is
zero. Dimensionless quantities similar to those defined in Equation 10.29 may be
employed to obtain the governing dimensionless equation. Thus, the nondimen-
sionalization employed here is

X=X =% g-T-h (10.35)
L L T, -T

and the governing equation is

2
96 _ % (10.36)
x* 9
The initial and boundary conditions become
- 00
8(X,00 =0, 60,t) =1 67(1,0 =0 (10.37)

The governing equation, with the above initial and boundary conditions, is
solved by the Crank-Nicolson iterative scheme. The finite difference equation for
this method is obtained for Equation 10.36 as

—Fe,'_,,]'j_” + 2(1 + F)e,'_”//’ - Fe,‘”,j_] = Fe,'//‘.” + 2(1 - F)O,,/ + F@,-,/-_1 (1 0.38)

where F = At/(AX)?, i represents the time step, and j is the spatial grid location.
This equation may be written more concisely as

AB[_1 + BO/ + Cel'+1 =R (10.39)

where the 6 values are at the next time step, i+ 1, and R is the expression on
the right-hand side of Equation 10.38. Therefore, R is a function of the 6 values
at the present time step 7 and is thus known. The constants A, B, and C are the

Numerical Solution of Partial Differential Equations 465

coefficients on the left-hand side of Equation 10.38 and depend on the value
of F chosen. No constraints arise in this problem due to stability considerations,
and the time step and the grid size are chosen on the basis of desired accuracy.
However, as mentioned earlier, bounded oscillations may arise in this method for
some problems at large values of F. In most cases, accuracy is the main consider-
ation in the choice of the grid size and the time step.

The MATLAB script file for this problem is given in Appendix B.32 and the
corresponding Fortran computer program is given in Appendix C.18. An interac-
tive program is written to allow the user to enter the input parameters, such as
time step, initial conditions and the number of grid points. A tridiagonal matrix is
generated from Equation 10.38, which is divided by 2 to simplify the computation.
The form of the equation is given by Equation 10.39. The appropriate boundary
conditions, given by Equation 10.37, are also incorporated to obtain the tridiagonal
matrix, as discussed earlier in Example 6.2. The total number of grid points n is
given, the left boundary being i=1 and the right one being i=n. For the right
boundary, X=1, the second-order backward difference approximation, given in
Figure 4.8, is used so that the error is O[(Ax)?]. Thus,

(60) _ 9,-/,-_2 - 49,‘[,'_1 + 36,‘//‘ -0 (1040)
ij

X 20X

or

4 1
0, = 39/-,,-_1 - gﬂf,,-_z (10.41)

where j is replaced by n for the right boundary. A tridiagonal matrix, with rows
from 2 to n — 1, corresponding to the interior points in the computational domain,
is obtained. This tridiagonal matrix is solved to obtain the time-dependent tem-
perature distribution, which then serves as the input for the computation of the
distribution at the next time step. The boundary temperatures are obtained using
the equations given above. This process is repeated until a specified time limit,
or the steady-state circumstance, is attained. Results are obtained and plotted at
specified time intervals.

Figure 10.10 shows the computed temperature distributions at different time
intervals. The initial temperature is zero throughout the plate, and then at time
t = 0, the temperature 0 at the left surface, X =0, is raised to 1.0 and held at this
value. The right surface, X=1, is insulated. Steady-state conditions are obtained
when 8 = 1.0 throughout the plate, within the chosen convergence criterion. This
figure shows that the temperature distributions approach the steady-state distribu-
tion as time elapses. Steady state is attained when time ¢ reaches a value of around
4.5. This is much larger than the time taken to reach steady state in Example 10.1;
see Figure 10.9. However, in the previous example, one surface was maintained
at 8 = 0, whereas in this example, the entire plate is heated or cooled. This implies
a greater transfer of energy in the present case, as compared to the mass transfer
in Example 10.1. Figure 10.11 shows the variation of the temperature at several
locations in the plate with time. The temperatures are found to rise sharply from
the initial value of 0 and to approach the steady-state value of 1.0 gradually as
time increases.

466 Computer Methods for Engineering with MATLAB® Applications

e e 2 2 =
() ~ oo Ne) (=}
1 1 1 1 |

o
w
Il

Dimensionless temperature, 6

FIGURE 10.10 Computed temperature distribution at various time intervals for Example
10.2. Here, At =0.05 and AX =0.1.

In both Examples 10.1 and 10.2, we have considered one-dimensional transient
mass and heat diffusion problems in order to relate the computational procedure
to the physical aspects of such problems. However, the numerical schemes dis-
cussed here can easily be extended to other physical circumstances that are gov-
erned by parabolic PDEs. Such problems arise, for instance, in fluid flow as given
by Equation 10.26, diffusion of moisture in porous media, neutron diffusion in
nuclear reactors, and water seepage into the ground.

1.0

o o
=)} <]
L L

Dimensionless temperature, 6
o
K
1

O i T T T T T T T T T
0 05 10 15 20 25 30 35 40 45 50

Time, £x2

FIGURE 10.11 Variation of the temperature at several locations in the plate with dimen-
sionless time ¢ for Example 10.2. The approach to steady state is again seen at large time.

Numerical Solution of Partial Differential Equations 467

10.3 ELLIPTIC PDEs

In an elliptic PDE, a disturbance at a given point propagates in all directions, in
contrast to a parabolic PDE in which there is a definite direction for the flow of
information. Therefore, the solution domain in an elliptic PDE is an enclosed one,
with boundary conditions specified everywhere along the edges of this domain, as
shown in Figure 10.12. The solution at each point is influenced by the solution at
every other point in the region where the elliptic PDE applies. Therefore, the numeri-
cal solution at the finite number of grid points taken in the region must be obtained
simultaneously. This characteristic of elliptic PDEs generally makes the numerical
solution more involved than that for parabolic PDEs, in which a marching procedure
may be adopted to advance the solution in a particular direction, say, in the direction
of increasing time, starting with the initial conditions. Because of the advantages of
such a marching scheme, particularly in numerical stability and convergence
characteristics, elliptic equations are often formulated as time-dependent parabolic
equations, which are solved by time marching to yield the desired solution to the
elliptic equations at steady state.

10.3.1 FiNiTE DIFFERENCE APPROACH

Several important physical processes are governed by elliptic PDEs. These include
conductive and convective heat transfer, mass transfer, the diffusion of neutrons in a
nuclear reactor, deflection of a membrane or a plate, interaction of electromagnetic
fields, and fluid flow. In order to discuss the numerical techniques for solving elliptic
PDEzs, let us consider a specific physical problem, namely, that of the two-dimensional
steady-state heat conduction in the rectangular region shown in Figure 10.13. In the
absence of heat sources in the region, the temperature 7(x, y) is governed by Laplace’s
equation

T T _
ox? = ay?

0 (10.42)

Ny

Computational region

for o(x, y) Boundary conditions

specified on entire
boundary, often in
terms of ¢ or d0/dn

FIGURE 10.12 Solution domain for an elliptic PDE, along with the necessary boundary
conditions.

468 Computer Methods for Engineering with MATLAB® Applications

y A
In
K
H |11 T(x, y) T,
T.
Y 3 > X
j« L >

FIGURE 10.13 Coordinate system and boundary conditions for steady-state heat conduc-
tion in a rectangular region.

where x and y are the coordinate axis, as indicated in Figure 10.13. The boundary
conditions are given in terms of specified values of the temperatures. Such a problem
in which the value of the unknown variable, being temperature in this case, is given
at the boundaries is known as a Dirichlet problem, and the conditions as Dirichlet
boundary conditions. If the gradient of the variable is specified instead at the given
boundary, the condition is known as Neumann boundary condition, considered in
Example 10.2 and also later in this section. If a relationship between the gradient and
the value of the variable is given at the boundary, the condition is known as mixed
boundary condition. The following discussion of the numerical methods for the solu-
tion of elliptic PDEs is directed at the above elliptic equation with Dirichlet bound-
ary conditions. However, most of the methods considered are applicable to other
boundary conditions and other elliptic equations as well.

We wish to determine the temperature 7(x, y) in the interior of the region shown
in Figure 10.13 by solving the governing elliptic PDE, Equation 10.42. The boundary
conditions, shown in Figure 10.13, may be written as follows:

Atx=0:T(x,y)=T, forO=<y=<H
Atx=L:T(x,y)=T, forO<sy=<H
Aty=0:T(x,y)=T, forO<x<L
Aty=H:T(x,y)=T, forO<x<L

(10.43)

Therefore, the value of the dependent variable T(x, y) is completely specified on the
boundaries of the region in which Equation 10.42 applies. To obtain a numerical
solution of the given elliptic equation by finite difference methods, we impose a grid
with a mesh size of Ax by Ay on the region, as shown in Figure 10.14. Then the
numerical solution consists of determining the temperatures at the finite number of
grid points in the solution domain. As done earlier for parabolic PDEs, the tempera-
ture 7(x, y) at a grid point (i, j) is denoted by 7; ,, where

i

x=iAx and y= jAy (10.44)

Numerical Solution of Partial Differential Equations 469

YA
_ n T
7y
Ti—l,/‘+1 Ti,j+1 Ti+1,j+1
j+l *—o—o
T -T.mi T.y.
], z;l,]: é,/ : ¢H—l,/
Tigjat---Tij
j-1 *
H T, Tij-1y, T,
—> Ax [« Ay
2
1
Y TS >
=0 1 2 -1 i i+1 m x
j=0
[« L >

FIGURE 10.14 Subdivision of the computational region by means of a grid with a mesh size
of Ax by Ay in the two directions x and y. The nomenclature for the labeling of the tempera-
tures at the grid, or mesh, points is also indicated.

Similarly, the temperatures at other grid points are labeled, as shown in Figure 10.14.
If the length L in the x direction is divided into m equal subdivisions, and the height
H in the y direction into n equal subdivisions, then

Ax = L and Ay= H (10.45)
m n

Thus, i varies from 0 to m and j from O to n.

We may now proceed to obtain a finite difference approximation to the given
elliptic PDE. The second partial derivatives at the grid point (i, j) may be approxi-
mated, in central difference form and in terms of the temperatures at the neighboring
grid points, as follows:

azl T - 2T+ T,y
oxr (Ax)?

(10.46)

9*T _ Ty -2T;+T, .,
9y? (Ay)*

(10.47)

470 Computer Methods for Engineering with MATLAB® Applications

where the TE in Equation 10.46 is O[(Ax)?] and that in Equation 10.47 is O[(Ay)?*], as
obtained in Chapter 4. Substituting these finite difference approximations into
Equation 10.42, we obtain

T, -2T;+T.; T,,,-2T,+T,,, -0 (10.48)
(Ax)? (Ay)?

The above finite difference equation can be written at each of the interior points
in the computational domain. Therefore, a system of [(m — 1) (n - 1)] simultaneous
linear equations is obtained. These equations may be solved by the methods discussed
in Chapter 6 to obtain the [(m —1) (n — 1)] unknown temperatures at the interior grid
points. Frequently, a square mesh, with Ax = Ay, is employed. In this case, Equation
10.48 may be written as

T;-J _ Ti+1,j + Ti—l,j ZTi,jH + T;',j—l (1049)

which implies that the temperature at a given grid point is simply an average of the
temperatures at the four adjacent grid points. The computational molecule, which
indicates the effect of the values at the neighboring grid points on that at a given
node, is shown in Figure 10.15a for this second-order approximation of Laplace’s

(a) (b)

Ay

FIGURE 10.15 Computational molecules for various finite difference schemes for solving
Laplace’s equation: (a) second-order approximation; (b) and (c) two different fourth-order
approximations.

Numerical Solution of Partial Differential Equations 471

equation. We can also obtain higher-order approximations by using a larger number
of points in the neighborhood of the grid point being considered; see Figure 4.9.
Figures 10.15b and c show, for instance, the computational molecules for fourth-
order approximations of Laplace’s equation. The accuracy of the numerical results
can be improved by the use of a higher-order difference method or by a reduction of
the mesh size. However, the first approach has problems near the boundaries because
of the large number of neighboring points needed for the approximation at a given
nodal point. Therefore, grid refinement, with the spacing between the grid points
being reduced until the numerical results are essentially independent of the mesh
size, is often preferred for improving the accuracy.

As shown by Equation 10.48, we are faced with the task of solving a large set of
linear algebraic equations. If the number of points at which the numerical solution is
to be obtained is M in the x direction and N in the y direction, where M =m — 1 and
N = n -1 for the problem considered above, the number of unknowns is MN. The set
of equations to be solved for this problem may be written as

AT = B (10.50)

where the coefficient matrix A is of size MN X MN and B is a vector whose elements
are all zero except for those that arise from the boundary conditions. The unknown
temperatures constitute a vector 7 whose elements are T\, 1,5, ..., Ty, T5 ;s - . o,
T, x- Then the coefficient matrix A from Equation 10.49 is of the following form:

4 1 1
1 -4] I
1 -4 1
Al 1 ! (10.51)
11 -4 1
] 1 -4

where only the elements at the diagonal, on either side of it, and in the two distant
bands shown are nonzero.

Therefore, the coefficient matrix is not tridiagonal but has two additional bands,
which are one element wide and are far removed from the main diagonal. In fact, the
last nonzero element in the first row and the lowest nonzero element in the first
column are both at the (N + I)th position. Since the coefficient matrix is very sparse,
although not tridiagonal, iterative methods can be employed advantageously as
compared to direct methods for solving this system of equations. The number of
equations is generally large, since even for a coarse grid with M = N =20, we have
400 equations. We shall first consider iterative methods for solving the system of
linear equations obtained from the finite difference formulation, followed by a dis-
cussion of some direct methods that have been developed in recent years.

472 Computer Methods for Engineering with MATLAB® Applications

10.3.2 NUMERICAL SOLUTION BY ITERATIVE AND DIRECT METHODS

Several iterative methods for solving simultaneous linear equations were discussed
in Chapter 6. These included the Jacobi, the Gauss—Seidel, and the SOR or SUR
methods. It was indicated that diagonal dominance is needed for the convergence of
these methods. The finite difference equation, Equation 10.48, can be written for
each grid point. Then the coefficient of T;; is the largest one in magnitude and its
absolute value is equal to the sum of the coefficients of the other terms. The system
of equations can be arranged so that the dominant terms appear along the diagonal.
As discussed in Section 6.6, the absolute value of the diagonal coefficient must be
larger than the sum of the absolute values of the remaining coefficients in each row
of the matrix for a diagonally dominant system that is guaranteed to converge.
However, the present system of equations, where the absolute value of the diagonal
coefficient is equal to the sum of the absolute values of the remaining coefficients in
each row, has adequate diagonal dominance to converge in most cases. Therefore, for
the application of iterative methods, Equation 10.48 is solved for T ;, which consti-
tutes the diagonally dominant term, to give

_ T +T;+ (AX/A)’)Z(Ti,jn +T;,.1) (10.52)
n 2[1+ (Ax/Ay)*] '

This equation yields Equation 10.49 if Ax = Ay.

In the Jacobi iteration method, we start with initial, assumed values of the depen-
dent variable at all the grid points in the computational domain. Using this assumed
initial distribution, we obtain the next approximation to the solution from Equation
10.52 and compare it with the starting solution. If a specified convergence criterion is
not satisfied, the computed results are used in Equation 10.52 to obtain the next
iteration. This process is repeated until the given convergence criterion is satisfied.
Generally, the convergence criterion demands that the change in the value of the
dependent variable from one iteration to the next be less than a prescribed small quan-
tity €, at each grid point. The computed results from two successive iterations are,
therefore, stored, and the values are updated only after the completion of the computa-
tion for a given iteration. This numerical scheme is given by the recursive formula

(l) (1) 2 () (1)
e _ T+ T ¢ (Ax/AyY (10, + T, o leiem

201+ (Ax/Ay)*] (10.53)

l=j=n-1

where the superscript [or [+ 1 refers to the number of the iteration. The starting
values are denoted by the superscript (0). As discussed in Chapter 6, this method is
inefficient for conventional, or single-processor, computers, since the old values of
the unknown are replaced by the new ones only after all the values for a given itera-
tion have been computed and since both of the iterative solution vectors must be
stored.

Numerical Solution of Partial Differential Equations 473

A considerable improvement in the computational procedure for single-processor
machines, such as PCs and workstations, is obtained by the Gauss—Seidel method,
which employs the most recent values of the unknowns in the computation. Generally,
a systematic traverse is used, for instance, by increasing i at a given value of j, which
is itself increased by 1 after each traverse in the x direction. Then 7, , ;and 7}, , are
calculated before T;; for a given iteration. Therefore, the iterative scheme for the
Gauss—Seidel method is given by

T(l)

i+l,j

LT + (A Ay (10, + T2

5]

]"if;”)= forlsi=sm-1

21+ (Ax/Ay)’] (10.54)

l=sj=n-1

The previous value of an unknown is replaced by the new value as soon as it is
obtained, and, therefore, only one value of each unknown needs to be stored. The
programming is also simplified, since we must deal with only one iterative value
of the temperature at a given grid point. The method converges if the system is
diagonally dominant, which is adequately achieved in the problem being consid-
ered. Convergence is generally obtained with even weaker diagonal dominance.
The systems of linear equations obtained from the finite difference approxima-
tion of the differential equations that arise in common engineering problems gen-
erally have sufficient diagonal dominance for the iterative methods to be employed
satisfactorily.

The convergence of the iterative scheme is given in terms of the change in the
computed values from one iteration to the next. If the magnitude of this change, at
each grid point, is less than a specified small number €, which is known as the con-
vergence parameter, the scheme is assumed to have converged. This convergence
criterion may be given in terms of the absolute or the normalized value of the change
in the temperatures. Therefore, the iterative process is terminated if

T4 T se forlsism-1
R (10.55a)
sjsn-

or

’7[)‘55 forl=si=sm-1
7Y (10.55b)

l=j=n-1
The value of € is taken as small, say, 10~ for the second convergence criterion, and

is varied over a few orders of magnitude to ensure that the computed results are
independent of the value chosen.

474 Computer Methods for Engineering with MATLAB® Applications

10.3.2.1 Point Relaxation

The Gauss—Seidel method converges about twice as fast as the Jacobi method, on
conventional computing machines with a single CPU, for a given convergence crite-
rion. The rate of convergence can be improved considerably by the use of the SOR
method, discussed in Chapter 6. This method is given by the formula

T = ol los + (1=)T (10.56)

where @ is a constant, known as the relaxation factor, and [T;;""]4 is the value
obtained from the Gauss—Seidel iteration formula, such as Equation 10.54. For SOR,
o lies between 1 and 2. The method diverges for ® > 2; the Gauss—Seidel scheme is
obtained for m = 1; and SUR is obtained if 0 < ® < 1. Substituting Equation 10.54
into Equation 10.56, we can write the recursion formula for the SOR method for the
problem under consideration as

T, + T + (Ax/ Ay (T, + T4
T4 = o [l”z(“(M/A)(2)” +15) + (-0 forl<ism-1
y
l=sj=n-1
(10.57)

There is an optimum value of the relaxation factor, ®,,, at which convergence
is the fastest. For a square region, with n = m, the Gauss—Seidel method converges
about twice as fast as the Jacobi method and the SOR method, at the optimum
value of the relaxation factor, six and 19 times faster, respectively, than the Gauss—
Seidel method for n =10 and n =30 (Jaluria and Torrance, 2003). Therefore, if
@, is known, the SOR method is very efficient. However, ®,, varies with the
PDE, the boundary conditions, the grid spacing, the geometry of the computa-
tional domain, and so on. It is not known in most cases, and the analytical deter-
mination of its value is quite involved. Therefore, one generally determines it by
solving the problem at different values of ® to obtain the optimum or by employing
the information available on other similar problems. If several problems of a par-
ticular type are to be solved, it would be worthwhile to spend the effort and time
to determine @,

The rate of convergence is quite sensitive to the value of ® and, for a value far
from the optimum value, the convergence rate is close to that for the Gauss—Seidel
method. For some simple cases, ®,, may be obtained analytically. For Laplace’s
equation in a rectangular region with Dirichlet conditions (see Figure 10.13), the
optimum value is given by

2

o = o (10.582)

Numerical Solution of Partial Differential Equations 475

where

1 n (Ax\ T
a=m COSZ‘I'(A*))) COS; (1058b)

Therefore, for m =n = 20, Wy = 1.7295; and for m = n = 30, it is 1.8107, with Ax = Ay
in these cases. Figure 10.16 shows the dependence of the number of iterations, for
convergence, on o for a rectangular region. The need to employ a value close to the
optimum is clear. It may also be mentioned here that SUR is generally used to
improve the convergence characteristics of the iterative process, particularly for
nonlinear equations which may diverge when Gauss—Seidel iteration is applied.

Though we have discussed only point relaxation here, several other similar relaxation

10 -
107°
le=107%

1073

Relative number of iterations
(92
1

f 1073

mopt

1.0 1.5 2.0

FIGURE 10.16 Variation of the number of iterations, normalized by the number at the opti-
mum, for convergence of the second-order finite difference scheme for Laplace’s equation in a
square region, with the relaxation factor ®, for the SOR method. Note the strong dependence
on ® and the considerable reduction in number of iterations as ® varies from 1.0 (Gauss—

Seidel) to the optimum value ®,,. Here, the number of subdivisions in either direction is 20.

476 Computer Methods for Engineering with MATLAB® Applications

methods have been developed to employ blocks of unknowns, rather than a single
unknown, in order to increase the efficiency of the method. Such methods, known as
block relaxation are commonly used in the solution of elliptic PDEs, as discussed in
greater detail by Jaluria and Torrance (2003).

10.3.2.2 Direct Methods

Several direct methods, based on elimination, were discussed in Chapter 6. Among
the most important of these are the Gaussian elimination and the matrix decomposi-
tion methods. Many other methods, such as Gauss—Jordan and matrix inversion
methods, are based on Gaussian elimination. For a tridiagonal matrix system,
Gaussian elimination may be used very effectively, as demonstrated in Example 6.2.
In this case, the number of arithmetic operations required are of order n, instead of
n? for a general system of n equations. In the triangular decomposition method, such
as Crout’s method, the coefficient matrix A is factored into lower and upper triangular
matrices, each of which may be solved by forward and backward substitution.
However, except for tridiagonal systems, these direct methods are often not as
efficient as the iterative methods, such as the optimized SOR method, and also give
rise to larger round-off errors. Therefore, iterative methods are frequently used for
solving the large systems of algebraic equations obtained from the finite difference
approximation of elliptic PDEs. Nonlinear algebraic equations are obtained if the
elliptic PDE is nonlinear. In such cases, iteration is generally necessary for the solu-
tion of the equations, and iterative methods, such as the Gauss—Seidel and relaxation
methods, are particularly appropriate.

Recently, specialized direct methods for solving finite difference approximations
of the Poisson and Laplace equations in simple geometries have been developed.
These methods include the cyclic reduction and the fast Fourier transform methods,
which are among the most efficient means for solving these equations in simple,
two-dimensional regions for Dirichlet or Neumann boundary conditions. A discus-
sion of these methods is beyond the scope of this book. Further details and refer-
ences may be obtained from Ferziger (1998) and Jaluria and Torrance (2003).
Generally, available computer software is used for the application of these methods,
since the algorithms tend to be very involved.

10.3.3 OTHER METHODS

An efficient iterative method for solving elliptic PDEs is the ADI method, which
gives rise to a tridiagonal set in each iterative step. The method employs the unknown
values of the dependent variable from the current iteration along one direction and
known values from the previous iteration along the other direction. In the next step,
these directions are reversed. An acceleration parameter ®, similar to that in the
SOR method, is used to improve the rate of convergence. The recursion formulas for
two iterative steps are

(I+1) ~ NI+ (I+1) 0)
Ti+1,j -2+ UJ)Ti,j + Ti-l,j Ti,j+1

T Q-0 + T
(Ax)? (Ayy*

L0 (10.59a)

Numerical Solution of Partial Differential Equations 477

I+ I+ I+ 1+2 I+ I+
T — -)T + T . T -+)T + T ~0 (10.59b)
(Ax)? (Ay)*

These two steps are considered together to constitute one complete iteration. The
tridiagonal sets obtained are solved by Gaussian elimination, and the iteration is
repeated until convergence is attained. This method, developed by Peaceman and
Rachford (1955), is used extensively for two-dimensional steady-state diffusion prob-
lems, governed by elliptic equations, and transient problems, as outlined below.

In several cases, particularly for nonlinear problems, the elliptic PDE is solved by
considering an equivalent time-dependent problem, which is parabolic in time.
Laplace’s equation may, for instance, be solved by obtaining the transient solution of
the equation

oT 0°T d*T

where the steady-state solution at large time is the required solution of the elliptic
PDE. One could use time marching to solve this problem, using the various tech-
niques outlined in the preceding section. The ADI method may be employed without
iteration for this problem and is one of the most efficient methods for such two-
dimensional transient problems. The corresponding finite difference equations, with
the superscripts denoting the time step, are as follows:

vl SO (ORI S (ORI KUY SO U
. Jo_ - gy @)2 (10.61a)
At (Ax) y

(1+2) (1+1) (I+1) (I+1) (1+1) (1+2) 142) | +2)
7 -T; _ T.;; _2Ti,j . +T.; + T 2Ti,j : +T,75 (10.61b)
At (Ax) (Ay)

The two equations are employed together consecutively to advance by two time
steps. Tridiagonal systems are obtained in both cases. This approach for solving an
elliptic PDE is frequently employed for nonlinear equations, such as those encoun-
tered in fluid mechanics and in heat transfer. The main advantage is that time march-
ing generally yields better stability and convergence characteristics.

10.3.4 OTHER GEOMETRIES AND BOUNDARY CONDITIONS

We have considered simple rectangular regions and Dirichlet boundary conditions in
the above discussion. However, there are many complexities that arise due to irregu-
larly shaped regions and more involved boundary conditions. Since these consider-
ations are particularly important in real physical problems, a brief discussion of these
aspects is included here.

478 Computer Methods for Engineering with MATLAB® Applications

T—l, j
[]
—>y 1
L @ @ @ @
l Tojo To,j ETO,j Tojs1 To,je2
x ? T,
e,
L Ve

FIGURE 10.17 Distribution of grid points at a boundary, showing the fictitious point T, ;
outside the region.

Consider a boundary at x = 0, as shown in Figure 10.17 with a distribution of grid
points. If the boundary condition is of Neumann type, that is d7/dx = B, where B is a
constant, the value Tj; at the boundary is not known and must be obtained from a
finite difference approximation of the derivative in terms of the neighboring grid
points. The simplest formulation is

T _T,=To, _p (10.62)

oax Ax
which employs a forward difference in x and is accurate only to order Ax. We can
derive a more accurate approximation of the derivative by employing the Taylor-

series expansions for the three points adjacent to the boundary, as discussed in
Chapter 4. This gives

OT _ =Ty, +4T,; =31,

= 10.63
ox 2Ax B ()

This formulation has a TE of order (Ax)? and may be written for all the points on the
boundary. Therefore, an equation for T, " in terms of the values at the neighboring
grid points, is obtained. Similar equations may be written at other boundaries.

Another approach is to employ a fictitious point 7, ; outside the boundary, as shown
in Figure 10.17, and write dT/dx in the central difference approximation; that is,

or _T,-T,,
BN Al Y R 10.64
ox 2Ax B ()

Then T, ; is eliminated between this equation and the finite difference equation of

the given PDE, written for the grid point (0, j) at the boundary. This also gives an

Numerical Solution of Partial Differential Equations 479

error of O[(Ax)*]. However, a row of unknowns at points outside the boundary is
introduced, increasing the computational effort. Similarly, other, more involved,
boundary conditions may be treated. The resulting equations for the surface grid
points are used along with the equations for the interior region to obtain the
solution.

An approach frequently employed in fluid flow and in heat and mass transfer is
based on the mass, momentum, and energy balance equations for the finite regions
represented by the surface grid point. For instance, a rectangular region of dimensions
Ay X (Ax/2) may be placed symmetrically surrounding the grid point with tempera-
ture T ;. Then finite difference equations are written to balance the mass, momen-
tum, and energy transported across the boundaries of this finite region against those
stored in the region. This approach gives an accurate and physically representative
equation for the dependent variable at the surface node. The equation will also be
consistent with basic physical or chemical laws governing the transport processes
under consideration. This approach is the preferred one for many transport phe-
nomena of interest in engineering applications. For further details, see Jaluria and
Torrance (2003).

Frequently, we are faced with an irregular region, and it becomes necessary to
obtain an equation applicable to an interior grid point that lies near such a boundary.
Consider a point C in a square mesh, as shown in Figure 10.18, with points A and B
at the boundary. Since these points A and B are at distances ,Ax and B,Ay, respec-
tively, away from C, where 3, and [, are constants that are both less than 1.0, the
finite difference equation, such as Equation 10.49, derived for the interior region
does not apply at C. One method of determining the value at C is to use interpolation
between the points A and 3, or B and 4. An average of these interpolations may also
be employed to represent the value at C.

Another method is to employ Taylor series expansions to derive the finite differ-
ence approximations for the derivatives at the point C in terms of the values at the
points A, B, C, 3, and 4. These are then substituted in the given PDE to yield the

FIGURE 10.18 Grid points of a rectangular mesh near an irregular boundary.

480 Computer Methods for Engineering with MATLAB® Applications

equation that applies at C. For instance, the finite difference approximation for
Laplace’s equation at point C is obtained by this method as follows:

2T, N 2T, N 2T, N 27T, _
Bid+PB) B, A+Py) 1+p, 1+B,

2 2
—+—|T-=0 10.65
(61+Bz) c (10.65)

Therefore, T- may be obtained in terms of the values at the boundary and the interior
points. This applies for Dirichlet conditions. For further details and for other boundary
conditions, see Forsythe and Wasow (1960) and Smith (1978).

We conclude this discussion on the finite difference solution of elliptic PDEs by
repeating that a finite difference approximation is obtained for the given PDE, employ-
ing a chosen grid in the computational region, to yield a system of algebraic equations.
For Dirichlet conditions, the values at the boundary grid points are known. For other
boundary conditions, algebraic equations are obtained that relate the values at the
boundaries with those at the interior grid points. The resulting system of equations
may be solved by direct or iterative methods to yield the desired solution. Iterative
methods are more frequently used because of the large number of equations that arise
and the simplicity in programming. Iteration is usually necessary for nonlinear equa-
tions. Time marching may be employed in some cases, and specialized direct methods
are also available for some simple problems. Examples 10.3 and 10.4 discuss the
Gauss—Seidel and the SOR methods, respectively, for solving elliptic PDEs.

10.3.5 FINITE ELEMENT AND OTHER SOLUTION METHODS

In the preceding sections, we considered the solution of parabolic and elliptic PDEs
by means of finite difference approximations, which are applied to the governing
differential equations. However, in recent years, the finite element method has gained
in popularity for practical problems in engineering. Finite difference methods are
simpler to comprehend, and it is easier to develop computer programs for them. They
are still widely used for engineering problems because of this ease in programming,
and, therefore, we discussed them in detail here. However, practical circumstances
often involve complexities, such as complicated geometries, boundary conditions,
and material property variations. In such cases, the finite element approach provides
a very versatile method that can be employed for a wide range of engineering prob-
lems. Frequently, available software is used, since the development of the computer
program is generally involved and time-consuming.

The finite element method is based on the integral formulation of the conservation
principles. The computational region is divided into a number of finite elements, sev-
eral forms and types of which are available for different geometries and governing
equations. Triangular elements for two-dimensional problems and tetrahedral elements
for three-dimensional problems are commonly employed, as shown in Figure 10.19.
The variation of the dependent variable is generally taken in terms of simple polynomi-
als and frequently as linear within the elements. Integral equations that apply for each
element are derived, and the conservation postulates are satisfied by minimization of
the integrals or by reducing their weighted residuals to zero. The latter gives rise to a

Numerical Solution of Partial Differential Equations 481

FIGURE 10.19 Finite element discretization, employing triangular elements.

commonly used method known as Galerkin’s method. Thus, the distribution of the
dependent variable within the elements, and then in the entire region, is obtained. As
mentioned above, the method is particularly suitable for irregular boundaries and com-
plicated boundary conditions. Consequently, it is widely used for practical problems in
engineering. For details on finite element methods, see the books by Mitchell and Wait
(1977), Huebner et al. (1995), and Reddy and Gartling (2010).

Two other approaches have gained in importance in recent years. These are the
boundary element method and the control volume approach. The former is similar to the
finite element method, except that the integral formulation for the computational domain
is transformed to one that applies for the bounding surface. Although somewhat limited
in its applicability, this method is finding much interest for many problems of practical
interest, particularly for those where the phenomena at the surface are of main concern.
The method has the advantage, over finite element methods, of a smaller number of ele-
ments and unknowns. See the books by Brebbia (1977), Banerjee and Butterfield (1981),
and Beer et al. (2010) on the background and application of this method.

The control volume approach is also based on the integral formulation. The physical
region is divided into a set of nonoverlapping control volumes, such as those obtained
by drawing lines parallel to the coordinate axes midway between the nodes; see the
dashed lines in Figure 10.14. The integral conservation statement is applied to each
control volume, using interpolation between the node points to approximate the inte-
grands. Thus, the volume and surface integrals are approximated, using values at the
nodes. The resulting algebraic equations are similar to those obtained from the finite
difference approach, which is based on the differential equations. However, the finite
volume method satisfies the conservation principles more accurately and is particu-
larly valuable for the numerical formulation of the boundary conditions. Greater
flexibility and versatility is obtained as compared to the finite difference methods
and the programming is generally much simpler than that for the finite and boundary
element methods. See Patankar (1980) and Jaluria and Torrance (2003) for details on
this method.

482 Computer Methods for Engineering with MATLAB® Applications

Example 10.3

The transverse deflection ¢ of a flexible membrane, which cannot resist any bending,
is governed by the Poisson equation

2 2
L A _g (10.66)

where p is the pressure on the membrane and T is the tension per unit length
at the edges. For small deflections, T may be assumed to be constant. A square
membrane, of 1.0 m side, is fixed at its boundaries and is subjected to a pressure
of 4 x 107 N/m?; see Figure 10.20. The tension T is 108 N/m. Employing the Gauss—
Seidel method, compute the variation of the deflection ¢ across the membrane.
Take Ax=Ay =0.1 m.

SOLUTION

The elliptic PDE to be solved numerically is

2 2
0 L0 5y, (10.67)

with the boundary conditions

Atx=0 and x=1.0m:¢=0 forO=sy =1.0m

Aty =0 and y=1.0m:¢=0 forO<x<1.0m (10.68)

6=0
K
0=0
=0
v
9=0
— » x
< 1m >

FIGURE 10.20 Coordinate system for computing the deflection ¢(x, y) of a square mem-
brane, as considered in Example 10.3.

Numerical Solution of Partial Differential Equations 483

where ¢ is also in meters. The origin is taken at the lower left corner of the
membrane and x and y are along two sides of the square, as shown in Figure
10.20. Taking the grid spacing to be equal in both directions, that is, Ax = Ay, we
obtain the finite difference approximation of the governing equation as follows:

_ Grerj + ¢i-1,j + @1 + ¢i,/-1 + 0.4 (AX)2

O j " 2 (10.69)

where x = iAx and y = iAy, as shown in Figure 10.14. Also, for Ax = 0.1, the last term
becomes 0.001.

The iterative scheme for the Gauss—Seidel method is obtained from Equation
10.54 for this problem as follows:

0 1) (/1) (1) 1<i=n-1
[¢l+1,/ + ¢I,/+1 + ¢171,/ + ¢l,/71] + OOO] fOr . (1070)
4 1=j=

q)(’*” -
K =n-1

where n is the number of subdivisions in each of the two directions. Appendix
B.33 gives the MATLARB script file for this problem. An initially uniform ¢ distribu-
tion is assumed in the computational domain, and Equation 10.70 is employed
to compute the values for the next iteration. Only the most recent value of ¢ at
any given grid point is stored, so that the values are updated as soon as they are
computed. The program allows an interactive input of parameters such as num-
ber of grid points in each direction, initial uniform value of ¢ in the domain, and
convergence parameter. The grid size and the number of grid points in the x and y
directions may be taken as different, if the computational domain is not a square
or if the boundary conditions are nonsymmetric. Note that the constant 0.001
in Equation 10.70 must be replaced, in the program, by 0.4/[2/(Ax)* + 2/(Ay)?] for
arbitrary Ax and Ay.

The computation is terminated if the number of iterations exceeds a specified
limit or if the following convergence criterion is satisfied:

o — o =e forl=si=n-1 and 1=j=n-1 10.71)
,/)]

where € is the convergence parameter, denoted by ep in the program. Figure
10.21 shows the variation of ¢ with x at different values of y. Because of the
symmetry of the given problem, a similar plot of ¢ versus y is obtained at the
corresponding values of x. Note in this figure that, as imposed by the bound-
ary conditions, ¢ is zero at the boundaries and is maximum midway between
the boundaries. Thus, the maximum deflection is at the center of the square
region and is around 2.9 cm for the given values of the physical variables. The
deflection ¢ increases as y increases from O at the boundary to 0.5 m at the
midway point and then decreases toward the far boundary at y = 1.0 m. Because
of symmetry, one could also consider only one-fourth of the membrane,
employing the zero slope conditions of d¢/dx =0 at x=0.5 m and d¢/dy =0 at
y=0.5m.

484 Computer Methods for Engineering with MATLAB® Applications

3.0

2.5

2.0 1

1.5

¢ x 102

1.0

0.5

FIGURE 10.21 Computed distributions of the deflection ¢0(x, y) at various values of the
coordinate distance y, for Example 10.3. The grid spacing Ax = Ay = 0.1 m.

Example 10.4

a. The temperature in a long bar of square cross section is governed by the
Laplace equation. The temperature at one surface is T;, while the other three
surfaces are maintained at temperature T,, see Figure 10.22. Using the SOR
method, compute the temperature distribution in the bar. Also determine
the optimum value of the relaxation factor .

b. Using the program developed in Part (a), solve the equation V2y =0, with
the boundary conditions shown in Figure 10.23. This equation governs the

Tl
N
T2
T(x) T
X)
Loy
Y
TZ
1
< L >

FIGURE 10.22 Physical problem considered in Example 10.4(a), along with the coordinate
system.

Numerical Solution of Partial Differential Equations 485

Y=1.0 y=0
/‘{ - Y=095
vy =20(1-Y)
Y= 1.0 VZ\V=0‘O \I]:O

Y

I {—Y:0.0S

/ N y=0 X=10
y=20Y X

FIGURE 10.23 Flow problem governed by Laplace’s equation, as considered in Example
10.4(b).

flow of a fluid in the absence of viscous, or frictional, and rotational effects.
Here, y is known as the dimensionless stream function. It is related to the
flow rate and, hence, to the flow field. Compute the y distribution in the
flow region due to the inflow and outflow as shown in Figure 10.23, and
obtain streamlines, or contours of constant y, corresponding to y =0, 0.05,
0.1, 0.25, 0.5, 0.75, and 1.0.

SOLUTION

a. We can formulate the given problem in dimensionless terms by defining the
nondimensional temperature ¢ and coordinate distances X and Y as

X y
= L, X=2, v=2 10.72
¢ 1 1 ()

where T(x, y) is the temperature at an arbitrary location, given by the coor-
dinates x and y in the computational domain, and L is the length or width of
the region, as shown in Figure 10.22. The governing equation is obtained as

2 2
ﬂ+ﬂ =0 (10.73)

with the following boundary conditions:

AtX=0 and X=1.0:¢=0 for 0=Y =<1.0
AtY =0 ¢=0 for 0<X<1.0 (10.74)
AtY =1.0: ¢=1.0 for 0<X<1.0

486 Computer Methods for Engineering with MATLAB® Applications

If a rectangular region of length L and width W is considered instead,
the above nondimensionalization may again be used, so that the governing
equation remains unchanged. However, L/W will appear as a parameter in
the boundary conditions in that case.

For the SOR method, the iterative scheme is obtained from Equation
10.57 as follows:

) (1+7) 0] (1+1) .
(+1) - ¢i+1,/ +¢i—T,j +¢j,j+1 +¢1,/+_1 + (1 _ (D)) fOI’] <i<sn-1

i 4 " 1=sjsn-1

(10.75)

where the grid spacings Ax and Ay are taken as equal and n is the number
of subdivisions in each direction, as shown in Figure 10.14 for a rectangular
region.

For SOR, o lies between 1 and 2. We need to solve the problem for
several values of ® to determine the optimum value. The Gauss—Seidel
method is obtained for = 1. Appendix B.34 gives the MATLAB script file
and Appendix C.19 the computer program in Fortran for the SOR method.
The program allows one to choose the number of grid points in the two
directions, from which the grid sizes are determined. The initial, guessed
distribution of ¢ is taken as uniform throughout the computational domain.
The value of this initial guess may be specified. A convergence criterion on
@;; is employed to check for convergence, see Equation 10.71. We can also
specify the maximum number of iterations in order to terminate the com-
putation if convergence is not attained. The convergence parameter and
the grid size, or number of grid points, are varied to ensure that the results
obtained are not significantly dependent on the values chosen. A subroutine
is used in the Fortran program to specify the boundary conditions.

Figure 10.24 shows the variation of the number of iterations for con-
vergence with the relaxation factor ®. The optimum value is found to be

300

250 -

200 -

150 A

100 -

Number of iterations

50 A

0 T T T T T T T T
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Relaxation factor, ®

FIGURE 10.24 Variation of the number of iterations, for convergence in Example 10.4(a),
with the relaxation factor m, employing AX = AY =0.1.

Numerical Solution of Partial Differential Equations 487

1.0
— Y=02
....... =04
—— =06
© 0.8 - -—- =08
&
]
2
«©
b
T
g /,// \\\\
- // \\
a Ve N
< ’ A
S 0.4 - / A
5 / N
2 2 \
2 / L T~ N\
b5 // /_/ ~. \
£ / e - \
— 02_ 7 ~ \
=) // e \\\ \
O NN
/L - N\
1,7 N
O = T T T T T T T T T

FIGURE 10.25 Computed temperature distributions in Example 10.4(a), with ® = 1.6.

around 1.55. Note that the number of iterations increases sharply as o is
varied away from the optimum value. Therefore, the SOR method is advan-
tageous to use if the value of o is close to the optimum. Also, see Figure
6.12, which illustrates the application of the SOR method to a system of lin-
ear equations. Figures 10.25 and 10.26 show the temperature distributions
in the region. Three surfaces are at temperature ¢ =0, and the fourth one
is at 0 = 1.0. The temperatures decrease as one moves away from the hot
surface. The distributions are symmetric about X = 0.5, as expected.

b. The y(X, Y) distribution in the flow region is governed by Equation 10.73
with ¢ replaced by y. The problem, as presented in Figure 10.23, is given

1.0

0.8

0.6

0.4

0.2

Dimensionless temperature, ¢

FIGURE 10.26 Computed temperature variation with Y at various values of X in Example
10.4(a), with o = 1.6.

488 Computer Methods for Engineering with MATLAB® Applications

in nondimensional terms, so that y varies from 0 to 1, as do the coordinate
distances X and Y. The boundary conditions are written as follows:

AtY =0 and Y =1.0: ¢y =0 for0< X <1.0

AtX =1.0: Y =0 for0<Y <1.0

At X = 0: v =10 for 0.05 =Y < 0.95 (10.76)
AtX = 0: P = 20Y for0 <Y < 0.05

At X = 0: P =2001-Y) for0.95<Y < 1.0

These equations imply that y = 0 on three sides of the enclosure and that it
varies linearly to 1.0 at the inflow/outflow channels. Although more involved
than Equation 10.74, these conditions can easily be incorporated into the
program by a suitable modification of the subroutine BCOND in the Fortran
program given earlier, or by modifying the conditions in the MATLAB pro-
gram. One can then employ the main program to obtain the results for
chosen values of the grid spacing AX and AY.

Figure 10.27 shows the contours of constant y, or streamlines, at y values
of 0, 0.05, 0.1, 0.25, 0.5, 0.75, and 1.0. The computed y values at the nodal
points are used with a simple linear interpolation scheme to determine the
X, Y locations where these y values are attained. Using graphical proce-
dures, similar to those for Part (a), we draw the contours by joining the vari-
ous locations on the X - Y plane where a given value of y is obtained. The
grid spacing AX = AY was taken as 0.025 at the start and reduced to 0.01 to
confirm that the results were not significantly dependent on the value cho-
sen. A convergence parameter € of 10° was employed in Equation 10.71,
with ¢ replaced by y. Again, € was varied to ensure a negligible effect of the
value chosen on the numerical results.

Y=1.0

y=10 0.75 0.5 0.10.05 |0

J//

FIGURE 10.27 Computed contours of constant stream function y for Example 10.4(b).

1.0

Numerical Solution of Partial Differential Equations 489

This problem represents an important circumstance encountered in
several engineering applications, particularly in mechanical and civil engi-
neering. The problem concerns the flow field generated in an enclosed
region due to the inflow and outflow of a fluid, assuming the viscous and
rotational effects to be absent. If rotational effects are present, with viscous
effects still negligible, the Poisson equation is obtained and may be solved
in a similar way.

10.4 HYPERBOLIC PDEs
10.4.1 Basic AspecTs

Hyperbolic PDEs arise in several problems of engineering interest, such as vibration of
rods and strings, transmission of sound in air, and supersonic flow. As discussed ear-
lier, hyperbolic PDEs have two real and distinct characteristics. Information travels at
finite speed in regions defined by these characteristics, as shown in Figure 10.28. An
observer at point 0 in Figure 10.28a is affected by disturbances only in the region of
dependence of the point 0, and a disturbance at 0 can be felt only in the region of
influence, where both of these regions are marked by the two families of character-
istics. The movement of an object in a stationary fluid or flow of the fluid past a
stationary object at speeds greater than the speed of sound in that fluid is known as
supersonic flow and is also governed by a hyperbolic PDE. Figure 10.28b shows the
supersonic flow of air over an airplane, and the region of influence is given by the
two characteristic lines shown. A disturbance at O is, therefore, felt only in the
region of influence, and an observer outside this region is not affected by the pres-
ence of the airplane. For this reason, the sound of a supersonic airplane is heard
only after it has passed overhead. In this figure, the angle 0 is given by sin 0 = a/V,
where a is the speed of sound in air and V is the speed of the air flow, with V > a for
supersonic flow. If V/a = 2, for instance, the angle 6, which is known as the angle of
the Mach cone, is 30°. This flow circumstance is analogous to that of an airplane
moving at speed V in quiescent air.

10.4.2 METHOD OF CHARACTERISTICS

An important numerical technique for solving hyperbolic PDEs is the method of
characteristics. In this method, the computational domain is divided into finite
regions by the two families of characteristics, taking the grid points at the intersec-
tions of these lines, as shown in Figure 10.28a. The properties of characteristics are
used to reduce the problem to a system of ODEs, which are solved by methods simi-
lar to those discussed in Chapter 9 for ODEs. The main advantage of this method is
that the important properties of the exact solution are preserved in the numerical
solution. Discontinuities, such as shock waves in supersonic flow, can easily be
treated, since discontinuities can occur only along characteristics. However, this
method is difficult to use in complicated geometries, because of the problem of keep-
ing track of the characteristics, and in problems where an elliptic or parabolic PDE
may apply in one portion of the computational domain and a hyperbolic PDE in the

490 Computer Methods for Engineering with MATLAB® Applications

Region of influence
o, = Constant

V>a

Airplane

Zone of action

Zone of silence

FIGURE 10.28 Characteristics associated with a hyperbolic PDE. (a) Information travel as
limited by characteristics in the computational region; (b) supersonic flow of air over an
airplane, indicating the zones of action and silence.

other. For further details on the methods based on characteristics for solving hyper-
bolic PDEs, see Smith (1978) and Ferziger (1998).

10.4.3 FiNiTE DIFFERENCE METHODS

Much of the recent work on hyperbolic PDEs has been based on finite difference
methods, which are quite similar to those discussed earlier for parabolic and elliptic

Numerical Solution of Partial Differential Equations 491

equations. Some of these methods are outlined here. Two important hyperbolic
equations that we considered earlier are the first-order convection equation

o I
e AN S 10.7
o Car 0 (10.7)

and the second-order wave equation

o _ 200 (10.6)

a2~ ¢ ox?

where c is the convection velocity in the former case and the propagation velocity of
the wave in the latter. Also, ¢ is a dependent variable such as temperature in the first
case and deflection of a string in the second.

The initial and boundary conditions for the wave equation may be written as
follows:

Att=0: ¢=0,(x) g—(f=a2(x)

Atx=0: ¢p=p, forz>0 (10.77)

Atx=L: ¢=8, forz>0

where o, and o, are given constants, or functions of x, and 3, and 3, are constants. It
may be pointed out that Equation 10.7 yields Equation 10.6, on differentiation, as
follows:

¢ _ 0 00\ _ 90 00\ ___a(99\ _
Era at(_c ax) - 6x(az) - ax(_c ax) - (107®

Therefore, the methods for solving the first-order equation may also be used for
solving the second-order equation.

The solution domain for the wave equation is shown in Figure 10.29. The bound-
ary conditions are specified at two values of the spatial coordinate x, and the initial
conditions are given at t = 0. The dependent variable ¢ is to be computed at all of the
grid points over a given time interval. Starting with the known values at 7 =0, the
numerical solution progresses in the direction of increasing time, or increasing i,
with the boundary conditions being satisfied at each time step. If central difference
approximations for the second derivatives are substituted into the wave equation, we
obtain the finite difference equation

=20, L =20, . s
¢l+1,] (Aq;l),]z-'- ¢l—1,] _ C2 ¢l,]+l (A(j'));,)]2+ q)x,]—l (1079)

492 Computer Methods for Engineering with MATLAB® Applications

Solution
A
A
t
Gir1,j
Boundary ; O o1 O [9n Boundary
conditions — conditions
At
Ax

61,

i=0 |] > x
j=0 Initial j=m
conditions

FIGURE 10.29 Solution domain for the wave equation, indicating the initial and boundary
conditions needed and the mesh employed.

which gives

o2 B0
(Ax)*

Piarj = =iy + (@1 + 0) +2 [1 -c? (Ar)” } o ; (10.80)

(Ax)?

This equation is an explicit representation since the values to be computed at a
given time step are obtained directly from known values at earlier time steps.
The initial conditions are given in terms of the function ¢ and its derivative d¢/or.
The condition on the derivative provides a relation between ¢, ; and ¢, ;, and, there-
fore, the values of ¢, ; for starting the computational scheme may be determined.
The stability of the above representation may be considered in terms of our ear-
lier discussion on the stability of the explicit schemes for parabolic equations.
Then we would expect the numerical scheme to become unstable when the
coefficient of ¢; ; becomes negative. Therefore, the method would be expected to be
stable if

S (10.81)

This stability condition is frequently known as the Courant condition, and the
dimensionless parameter cAt/Ax as the Courant number. A more detailed stability
analysis of the method also yields the above stability constraint. Example 10.5 dem-
onstrates the solution of the wave equation by this explicit method.

Numerical Solution of Partial Differential Equations 493

t A

Domain of
influence

Domain of
dependence

FIGURE 10.30 Domains of dependence and influence for the first-order convection equa-
tion, which is a hyperbolic PDE.

Similarly, the finite difference approximation for Equation 10.7 may be written as

Pivr =i —c iy = Pijr (10.82)

At Ax

Backward differences are used so that the solution depends only on the domain of
dependence, as shown in Figure 10.30. This method is known as the backward or
upwind difference method. The formulation is, therefore, of accuracy [O(Af), O(Ax)].
Again, the necessary condition for stability is Equation 10.81. This condition basi-
cally ensures that the solution at a given location at a given time is affected only by
the values at the grid points in its domain of dependence. Example 10.6 discusses the
numerical solution of this equation, along with the stability considerations.

A more accurate explicit method is the Lax—Wendroff method, which is second-
order accurate in both time and space. It is also stable for Courant numbers less than
unity and is frequently employed for linear hyperbolic equations. When applied to
the first-order convection equation, the finite difference form of this method is
obtained as follows:

(ALY
2(Ax)?

A
¢i+1,j = ¢i,j - %(q)i,jﬂ - q)i,j—l) + (¢i,j+1 - 2(')1',]' + (')i,j—l) (10-83)

We can also apply the method to the second-order wave equation by breaking the
equation down into two coupled first-order equations as

99 _ du (10.84a)

at = ox

494 Computer Methods for Engineering with MATLAB® Applications

w90
du _ 09 10.84b
ar ~ Cox ()

The stability constraint is given by Equation 10.81. It can be shown that the results
are theoretically exact when the Courant number is 1.0 and that the accuracy of the
solution decreases as the Courant number decreases below 1.0. Therefore, the value
of this parameter is generally chosen to be around unity.

Several other explicit and implicit methods, similar to those for parabolic PDEs,
have been developed for hyperbolic PDEs. These methods include the uncondition-
ally stable Crank—Nicolson method, which yields a tridiagonal system of equations for
the one-dimensional problem. For two or three space dimensions, splitting methods
similar to the ADI method, outlined earlier, are employed. These methods are also
unconditionally stable and give rise to tridiagonal systems, which are easily solved
by Gaussian elimination. Many such methods have been developed and applied to
aerodynamic applications. For further details, see Ferziger (1998).

Example 10.5

Consider the vibration of a string, 1T m in length, stretched between two supports
with an initial tension of 40 N. The mass of the string is 0.04 kg/m. The string is
displaced from its equilibrium position, as shown in Figure 10.31, held at rest in
this configuration, and then released. Compute the variation of the displacement
at various points along the string with time. For approximately one period of vibra-
tion, following the release of the string from rest, determine the configuration of
the string at various intermediate time intervals. Also consider the case when the
string is plucked in the middle, instead of at the one-fourth point, and obtain the
string configuration as a function of time.

SOLUTION

The governing equation for this problem is the wave equation, written as
s =C (10.85)

where u is the vertical displacement at a point on the string, indicated by coor-
dinate distance x, t is the time following the release of the string from rest, and
c? is a constant. For a vibrating string, it can be shown from the derivation of the

Displacement

I
0.001 m ! 40N

3 |
0.25 m ;li 0.75 m :l

FIGURE 10.31 Physical circumstance of a vibrating string, considered in Example 10.5.

Numerical Solution of Partial Differential Equations 495

governing equation that ¢ = 7/m, where T is the tension and m is the mass per unit
length of the string. Therefore, in the given problem,

=T o AN 000 ms (10.86)
m ~ 0.04 kg/m

We now select the value of Ax as 0.05 m, giving 21 grid points along the string.
We must consider the Courant number C = cAt/Ax to select a suitable time step.
As discussed in Section 10.4, C < 1 for numerical stability, and a greater accuracy
is obtained if C is close to 1.0, that is,

=1 (10.87)

This gives the value of At as 1.58 x 107 s. Therefore, At is chosen as 0.0015 s for
convenience.

The initial conditions, on u(x, t) in meters, for the string plucked at the one-
fourth point, are as follows:

0.016x for0 = x = 0.25

u(x,0) = 10.88
(x,0) w(]—x) for0.25<x=<1.0 ()

au
—(x,00=0 10.
ot (x,0) (10.89)
The boundary conditions are
u(0,t) = u(l,t) =0 (10.90)

Similarly, the initial conditions for plucking the string in the middle may be
written.

The given problem may be solved by finite difference methods. If central
differences are used, the finite difference equation is Equation 10.80, which may
be written for the present case as

Ujyr,j = —Uj-; + CZ(UI,/'H + Ui,j—1) +2(1- CZ)UI,/ (10.91)

where C? = (T/m)(At)*/(Ax)*. The initial condition given by Equation 10.89 is written,
using central differencing, as

Uszj = U,

=0 (10.92)
2At

where v, is the value at a fictitious point one time step before the initial condi-
tion, i=1. Thus,

Uz// = U(),j (1 093)

496 Computer Methods for Engineering with MATLAB® Applications

Substituting this relationship into Equation 10.91 for i =1, we obtain

2
U, = 7(U1,/+1 + U1,/_1) +(1- CZ)UL/ (10.94)

Equation 10.94 is used for advancing from the initial configuration to the first
time interval, t = At. Beyond that, Equation 10.91 is employed. A first-order approxi-
mation may also be used for Equation 10.89, giving u, ;= u, ;. The boundary condi-
tions give the displacement at grid points 1 and 21 as zero. For the remaining points,
we compute the displacement for the next time step, using the values at the adjacent
points corresponding to the previous time steps. Since the values of the displace-
ments for only the last two time steps are needed to advance the solution, only three
arrays corresponding to time intervals ¢, t+ At, and t + 2At need to be considered,
where the values at t + 2At are obtained in terms of the other two arrays.

Appendix B.35 shows the MATLAB script file and Appendix C.20 the Fortran
computer program for solving this problem. The various symbols employed are
defined in the programs. Arrays u, u,, and u, contain the displacements at time ¢,
t+At, and t+2At. The input values are entered and the maximum number of
time steps, as well as the time intervals after which the output is obtained, may be
specified. As indicated above, Ax=0.05 m, At=0.0015 s, and n =21, where n is
the total number of grid points. The initial distribution is entered and the boundary
conditions are given to proceed with the computations.

The displacements at various locations along the string are computed as time
elapses. Figure 10.32 shows the variation of the displacement at four locations
with time. A periodic behavior is clearly seen, as expected. Also, the time period is
found to be about 0.2 s. Figure 10.33 shows the configuration of the string at vari-
ous time intervals. The string starts at its initial distribution, given in Figure 10.31,
and, as time elapses, the displacement at each point undergoes a periodic process.
At different time intervals, different displacements exist at the various grid points,

Displacement vs. time

Displacement, u x 10 (m)

T
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time, £ (s)

FIGURE 10.32 Computed displacements at four locations along the string as functions of
time in Example 10.5.

Numerical Solution of Partial Differential Equations 497

(a)
0.004 -

0.002

Displacement, u (m)
=)

|
5o
=3
S
s}
1

—0.004 A

0.004

o

=3

S

e}
1

Displacement, u (m)
S
>
S
0 =)
1 1

—0.004 A

0 01 02 03 04 05 06 07 08 09 1.0

FIGURE 10.33 Calculated configuration of the string in Example 10.5 at various time
intervals, when it is plucked at the one-fourth point, as shown in Figure 10.31.

giving rise to different configurations of the string. Initially, the displacements are
all positive, that is, on one side of the equilibrium position. Then, with time, the
displacements become negative over portions of the string. Figure 10.34 shows
the corresponding results for the case when the string is plucked in the middle. An
expected symmetry arises in the displacement.

Example 10.6
Consider the first-order convection equation

apP apP
—+Cc— =
at X

0 (10.95)

498 Computer Methods for Engineering with MATLAB® Applications

Displacement vs. x

0.002

Displacement, # (m)
=)
1

—-0.002

FIGURE 10.34 Calculated configuration of the string at various time intervals, when it is
plucked in the middle.

which governs the transport of a physical or chemical quantity P(x, t) by convection.
Here, x is the spatial coordinate distance, t is time, and P represents a convected
quantity such as concentration or temperature. Using Euler’s method, the back-
ward or upwind differencing method, and the Lax-Wendroff method, solve this
hyperbolic equation. The initial and boundary conditions are given as follows:

Att=0: P=0 forx=0

Att>0: P=1 forx=0 (10.96)

Take the convection velocity c as 2.5 m/s. Solve for x up to 5.0 m, taking the grid
size Ax as 0.5 m. Compute the results up to time t=2.0 s, taking the step size At
as 0.05, 0.1, and 0.2 s.

SOLUTION

Several important transport problems in fluid flow and heat transfer are governed
by first-order hyperbolic equations such as the one given here. For instance, wave
propagation in a shallow water body is governed by a nonlinear first-order hyper-
bolic equation. The solution to the problem given here is simply the movement of
the step change, at x=0 and t = 0, downstream, with no change in amplitude and
at the convection velocity c. Thus, we can use this analytical result to evaluate the
solution of the given equation by the three methods considered.

The finite difference equation for the solution of Equation 10.95 by Euler’s
method is

Py = PR - ¢ Pojs1 = B jm (10.97)
At 2Ax

Numerical Solution of Partial Differential Equations 499

where the first subscript refers to the time step and the second to the spatial location.
Thus, this method uses forward difference for the derivative with respect to time
and second-order central difference for the spatial derivative. The finite difference
equations for the backward difference method and the Lax-Wendroff method are
obtained from Equations 10.82 and 10.83 as

Pi+1,j - B,/ = - 'Df,/' - 'Dfr/'-1

10.98

At Ax ()
cAt cA(AL)?

Pi+1,/’ = Pi,/’ - E(R‘,/n = 'Di,/'—1) + W(Pi,jﬂ - 2Pi,j + P[,j—]) (10.99)

Thus, all three methods are explicit, and the only parameter that arises is the
Courant number C, given by

c - A (10.100)
Ax

For the values given in the problem, C=0.25, 0.5, and 1.0. As pointed out earlier,
the last two methods are unstable for C > 1.0.

A computer program in MATLAB is written for solving the given problem, as
shown in Appendix B.36. The input quantities and the initial and boundary condi-
tions are entered. The numerical method for solving the problem is chosen inter-
actively by the user. Computations for the three values of the time step At are
then carried out up to time t=2.0 s at each step size. The computed results are
printed at five locations in x, corresponding to x=1, 2, 3, 4, and 5 m. The various
symbols employed are defined in the program. Here, p and pn are used to denote
values at the previous and present time steps, respectively, and i denotes the spa-
tial location. Calculations are needed for the ten grid points corresponding to i =2
to i=11. However, both Euler’s method and the Lax-Wendroff method need the
value at (i + 1) to calculate the value at i. One approach to avoiding the problem
that arises at i = 11 is to compute the value at i = 11 using the backward difference
method which does not require the value at i=12. This is done in the program,
and the computed results are obtained for all three methods.

The results are shown in Figure 10.35 in terms of the computed variation of
P at a few locations as a function of time. Interestingly, the numerical solution is
exact for both the upwind differencing and the Lax-Wendroff methods at Courant
number C=1.0. Generally, accuracy is expected to increase as At is decreased,
at a given value of Ax, because of smaller TE in time. However, for this particular
problem, C = 1.0 yields the exact solution. In fact, as mentioned earlier, C is gen-
erally taken as close to 1.0 for greater accuracy. The results from both of these
methods at C=0.5 and C = 0.25 are unable to capture the expected step variation
in P. However, that is not surprising since any numerical method will introduce
computational errors.

The Lax-Wendroff method is expected to be more accurate due to second-
order accuracy in space. Euler’s method is found to be unstable. The solution
oscillates at low values of C, and these oscillations grow without bound as time
increases. This instability was found to be worse at large C, as expected. As shown

500 Computer Methods for Engineering with MATLAB® Applications

.I
'l
!
1.0
=
)
[
0.5
C=1.0
x=50m
C=1.0
x#=30m) Backward differencing method
Backward diff. and = = = Lax—Wendroff method
L-W methods — . — Euler’ thod
atC=1.0 uler’s metho
1
0 Time (2) 2.0 3.0

FIGURE 10.35 Numerical results in terms of the computed variation of the dependent
variable P with time ¢ for Example 10.6.

by Ferziger (1998), this method is unconditionally unstable for this problem, and,
therefore, instability arises in all cases as time elapses. For C > 1.0, the other two
methods were also found to indicate numerical instability.

This problem is a fairly simple example of a hyperbolic equation. However, it
has been chosen to demonstrate the use of three numerical techniques for solving
hyperbolic equations and the constraints imposed by numerical instability.

10.5 SUMMARY

This chapter gives a brief discussion on the numerical solution of PDEs. The solution
procedure is dependent on the type of the PDE: parabolic, elliptic, or hyperbolic.
Employing simple examples of these three types of PDEs, various important numerical
methods for solving them are outlined. Only linear equations are considered to illus-
trate the methods, since nonlinear PDEs, although important in many engineering
applications, are beyond the scope of this book. However, in several cases, a nonlin-
ear PDE may be linearized and then solved by the methods discussed in this chapter.
Still, the nonlinear problem is generally much more involved than the linear one.
Frequently, the stability and the convergence characteristics of the numerical scheme
are not known for nonlinear equations, and numerical experimentation is needed to
ensure the accuracy and correctness of the solution.

The main approach to the solution of PDEs, considered in this chapter, is by
means of finite difference methods, which give rise to a system of algebraic equations.

Numerical Solution of Partial Differential Equations 501

A solution of this system of equations yields the value of the dependent variable at a
finite number of grid points in the computational domain. Parabolic equations are
solved by marching in one coordinate direction. Explicit methods allow the compu-
tation of values at a given step from the known values at earlier steps. However, the
step size is generally constrained in explicit methods due to considerations of numer-
ical stability. Implicit methods have better stability characteristics, but they require
the solution of a system of simultaneous algebraic equations. Direct methods are
usually employed if the system is tridiagonal. Otherwise, iterative methods, such as
the Gauss—Seidel and the SOR methods, are used. A tridiagonal system is obtained
in one-dimensional problems, and Gaussian elimination is used for these. For multi-
dimensional problems, splitting methods, which treat one direction as implicit and
alternate between the various directions, are frequently employed, since these meth-
ods also give rise to tridiagonal systems.

Elliptic PDEs are often solved by iterative methods. Direct methods are applicable
in a few special cases. Splitting methods, such as the ADI method, can also be used,
with an acceleration parameter to obtain a faster convergence. In some cases, a
pseudotransient term is added to the elliptic PDE. Then the resulting equation is
parabolic in time and may be solved by time-marching techniques, giving the
required solution at large time.

Hyperbolic PDEs are solved by methods similar to those for parabolic PDEs. A
specialized method, known as the method of characteristics, is also an important
method for hyperbolic equations, since it allows the treatment of discontinuities
which frequently arise in these equations. In recent years, finite difference methods
have become very popular for the solution of hyperbolic PDEs, and several very
efficient schemes have been developed.

Another approach to the solution of PDEs is the finite element method. In this
method, the solution domain is subdivided into finite regions, and the PDE is inte-
grated over each region, employing weight functions with the equation. The solution
and the weight functions are taken as polynomials, and the integrals or the weighted
residuals are minimized, or reduced to zero, to yield a system of algebraic equations
that is solved by the usual methods. Although more complicated in implementation,
the finite element methods have become very popular in recent years because of their
advantages in the treatment of irregular boundaries and complex boundary condi-
tions. A brief outline of the finite element, the boundary element, and the control
volume methods for solving PDEs is included in this chapter.

Several programs are given here in both MATLAB and in Fortran to solve linear
PDEs, such as the common two-dimensional elliptic equation and the well-known
parabolic and hyperbolic equations. A function pdepe is also available to solve ini-
tial-BVP for parabolic—elliptic PDEs in 1-D for small systems of parabolic and ellip-
tic PDEs in one space variable x and time ¢ to modest accuracy. The function pdeval
is then used to evaluate/interpolate the solution obtained. However, for more compli-
cated problems, particularly nonlinear equations, the use of the PDE Toolbox in
MATLAB is probably the best approach. Different algorithms are available and
complicated geometries and boundary conditions can be handled by employing the
commands available in this toolbox. Various plotting routines are also available to
obtain the computed results in appropriate graphical forms, such as contour plots.

502 Computer Methods for Engineering with MATLAB® Applications

PROBLEMS
10.1. Consider the governing PDE for the dependent variable ¢(x, y), given as

2
900 5%
ox dy ay?

where A and B are constants. Determine the nature of this equation,
and give a set of boundary conditions that may be applied to it.

10.2. The temperature 7(x, y) in a steady, two-dimensional flow with heat
transfer is governed by the equation

T T

U—+V—— (0T az—T\
0x dy

(Xkﬁ‘l’ asz

+0

where u(x, y) and v(x, y) are the two velocity components, 0. is a
constant known as thermal diffusivity, and Q(x, y) is a function that
gives the energy generation per unit volume in the fluid. Determine
the nature of this equation, and specify suitable boundary conditions.
Also, for each of the three special circumstances of (a) u =v =0, (b)
o=0, and (c) 9*T/ox> =0, classify the resulting reduced equations,
and give the relevant boundary conditions.

10.3. In a one-dimensional diffusion problem, the governing equation
is 0¢/dr = C 0*0/dx?, where O(x, 1) is the dependent variable, C is
a constant, x is the spatial coordinate, and 7 is time. The boundary
condition at x =0 is given as dd/dx = B, where B is a constant. The
condition at the other boundary, at x =L, is given as ¢ = 0. Obtain
the finite difference equation for solving this problem by the Crank—
Nicolson method. Write the gradient boundary condition in terms of
forward differences, using both the first-order and the second-order
approximations. Is the resulting system of equations tridiagonal? If
not, can it be obtained in tridiagonal form by simple elimination?

10.4. For the numerical solution of a one-dimensional transient diffusion
problem, governed by

2
9 _ 490
at ox?

the explicit Euler method is to be used. If the grid size Ax is taken as
0.1 m, find the maximum time step that may be employed for a stable
numerical scheme, if A =10°m?/s. Also find the limitation on the
time step if the grid size is reduced to 0.01 m.

10.5. A long bar of rectangular cross section is initially at a uniform tem-
perature T;,. Attime ¢ = 0, the temperature at the outer surface is raised
to 7, and held at this value. Write down the governing PDE and obtain
the finite difference equations for solving this problem by the explicit
FTCS and the Crank—Nicolson methods. Also give the equations for
the relevant boundary and initial conditions. Indicate the constraints,
if any, on the time step, due to stability considerations, for chosen
values of Ax and Ay. What method would you employ for solving

Numerical Solution of Partial Differential Equations

10.6.

10.7.

10.8.

10.9.

the system of algebraic equations obtained in the Crank—Nicolson
method? Justify your choice.

Consider the one-dimensional conduction heat transfer in a plate of
thickness 3 cm. The plate is initially at 1000°C. At time #=0, the
temperature at two surfaces is dropped to 0°C and maintained at this
value. The thermal diffusivity is given as 5 x 10° m?/s. Employing
Ax = 0.3 cm, solve this problem numerically to obtain the time-depen-
dent temperature distributions for F'=1/6, 0.5, 0.52, and 0.6. Does
numerical instability arise for 7' > 0.5? Discuss.

Solve the preceding problem graphically, by the Schmidt-Binder
method, for F=0.5.

If a plate in a stationary fluid is suddenly set into motion, at a veloc-
ity U, the governing equation is du/dt = v d*u/dx?, where u is the local
velocity, v is a constant known as kinematic viscosity of the fluid, t
is time, and x is the distance out from the plate, which is at x =0,
as shown in the figure. The boundary conditions are, therefore, as
follows:

Atx=0: u=U fort>0
asx—>o: u—0

The initial condition is the following:
For t<=0:u=0 forx=0

This problem is to be solved by the explicit FTCS method. The values
of u are computed, at each time step, outward from the plate until u is
zero. Taking U = 1 m/s, v = 10~ m?%/s, and Ax = 0.01 m, find the maxi-
mum time step that may be employed if numerical instability is to be
avoided. Using this maximum time step, solve this problem.

x
A
_}
u(x, t)
>
u
Plate

—_— U

For specifying the boundary condition d¢/dx =B in Problem 10.3,
a fictitious grid point is taken outside the computational domain, as
shown. The boundary condition is then written in central difference
form, using this point. The finite difference equation for the PDE is
also written for a point at the boundary, again employing this fictitious
point. The unknown value of ¢ at this grid point outside the region is
eliminated by using the two equations thus obtained. The resulting
equation gives the finite difference equation for the boundary condi-
tion. Compare this result with that given in Equation 10.63.

503

504 Computer Methods for Engineering with MATLAB® Applications

01, bo,; 01, 0,
e ——— e —— —— e - ——— 0~ —-
Fictitious
grid point

10.10. We wish to solve the following equation for ¢(x, y)
92 ad
P f@

This equation is nonlinear because of the presence of the function f(¢).
Formulate a simple numerical scheme, based on the discussion in the
text, for solving this problem.

10.11. One-dimensional conduction in a rod of length L is governed by the
equation

10T 9°T

o ar =g HI T
where x is the distance from one end, as shown, ¢is time, 7, is the ambi-
ent temperature, and H is a heat loss parameter. For time 7 < 0, the tem-
perature throughout the rod is 7,. At ¢ =0, the temperatures at the two
ends, at x =0 and x = L, are raised to 100°C and held at this value for
t>0. Using any suitable numerical method, solve this problem. Take
T,=15°C, o0 = 10°m?/s, L= 0.4 m, Ax=0.04 m, and H = 100 m™.

HT,
Heat loss /J
_ x=1L
100¢c |*=° Tt 100°C
L > %
< L N

10.12. The one-dimensional diffusion of water in a porous medium is gov-
erned by the equation D 0>C/dx? = dC/dt, where C is the concentration
of water in kg/m? and D is the mass diffusivity in m?/s. A long, hollow
cylinder of outer diameter 0.2 m and inner diameter 0.1 m is initially
dry; that is, water concentration is zero. Then, at time 7 = 0, the outer
surface is brought in contact with water, raising the concentration
there to 1000 kg/m?, while the concentration at the inner surface is
held at zero. If D =10~ m?/s, obtain the time-dependent concentra-
tion profiles in the cylinder, taking ten grid points across the annular
region. Neglect the effect of curvature in the problem and treat the
region as a slab.

Numerical Solution of Partial Differential Equations

10.13.

10.14.

10.15.

10.16.

10.17.

Consider the problem discussed in Example 10.1. Study the effect of
varying the grid size on the numerical results, by solving the prob-
lem with Ax half and also twice the value taken in the example. Take
Ax = Ay. Compare the results obtained with the earlier results pre-
sented in Example 10.1, and discuss the dependence on grid size.
Steady-state mass diffusion in an enclosed region is governed by
Laplace’s equation for the concentration C. Consider the diffusion
in a rectangular region of length 0.3 m and width 0.1 m. The third
dimension is given as large. For this two-dimensional mass diffusion
problem, the concentration, in nondimensional terms, is given as 1.0
at one surface and as 0.0 at the remaining three surfaces. Compute
the concentration distribution in the region by the SOR method, and
determine the optimum value of the relaxation factor. Compare this
value with that obtained from the analytical expression, Equation
10.58, given in the text.

A rectangular trampoline may be considered as a rubber membrane,
of length L and width W, fastened securely at the boundary. As given
in Example 10.3, the vertical deflection f'is governed by the equation

92 92

GT]; + yjz[=-p/T
where p is the pressure and 7 the tension. Solve this problem by
the Gauss—Seidel method, taking p/T=10 m”, L=2.0 m, and
W=10m.
If fluid friction, or viscosity, is taken as negligible in a flow, the flow
is termed inviscid. In the absence of rotational effects, the flow is then
governed by the equation V?y =0, where is the stream function.
A line of constant y is known as a streamline, and the velocity field
may be obtained from a given y distribution. Consider the flow in a
channel whose cross-sectional area varies as shown. The boundary
conditions on are also given, as linear distributions at the inflow
and outflow. Compute the y distribution in the channel, and obtain
the streamlines, or contours of constant , corresponding to y =0,
0.2, 0.4, 0.6, 0.8, and 1.0. Use the Gauss—Seidel iterative scheme. See
also Example 10.4(b).

i v=1
! Linear
Idistribution
| iny v=1 !
10 cm ———> i
71 Linear i
AL T !Inﬂow distribution __| 5_511

i iny Outflow
i y=0 i
P 30 cm >

A solid cylinder of diameter D and length L has its two ends at tem-
perature 7,, and the curved, lateral surface at temperature 7,. The
temperature distribution may be assumed to be independent of the

505

506 Computer Methods for Engineering with MATLAB® Applications

angular position. Thus, the problem becomes two-dimensional, or
axisymmetric. Write the governing PDE and obtain the relevant finite
difference equation for solving this problem by the SOR method. Use
polar coordinates.

10.18. The flow of a very viscous fluid in a circular tube, as shown, is gov-
erned by the equation

1dp
Viu=—-+—
“ wdz

where the vector operator V2 may be written in polar coordinates,
u(x, y) is the velocity in the axial direction z, L is the coefficient of
viscosity, and dp/dz is the constant pressure drop along the flow. The
velocity is zero at the boundary. Formulate this problem for a numeri-
cal solution by the Gauss—Seidel method. Give the governing equation
and the relevant boundary conditions in finite difference form, and
outline the numerical procedure.

10.19. We are interested in the steady-state temperature distribution in a
hollow cylinder of length L and inner and outer diameters D; and
D, respectively. The inner and outer surfaces are at temperature
T,, and the ends at 7. Formulate this problem as a two-dimensional
transient heat conduction problem whose solution yields the steady-
state results at large time. Also give the finite difference equations
for solution by the ADI method. What is the order of the TE in this
formulation?

10.20. A rectangular finite difference mesh is used for solving Laplace’s
equation in a circular region. Consider the grid points near the cir-
cular boundary, and derive the applicable finite difference equation,
as done in the text, taking a uniform grid distribution along both
directions.

10.21. A long rod of rectangular, 10 cm X 5 cm, cross section has all the
surfaces maintained at 100°C. Due to nuclear reaction, energy is gen-
erated within the material at a uniform rate Q of 5 x 107 W/m?3. The
thermal conductivity k of the material is 50 W/m K. The temperature
distribution in steady-state conduction with energy generation is gov-
erned by the Poisson equation

T T O
72+72+?=0
0x dy

Using the Gauss—Seidel iterative method, solve this problem to obtain
the temperature distribution. Plot the temperature variation along the
two axes of the rectangular region.

Numerical Solution of Partial Differential Equations 507

10.22.

10.23.

10.24.

10.25.

10.26.

10.27.

Consider the one-dimensional convection equation

Determine the nature of this equation and give a set of relevant bound-
ary conditions. Also obtain the finite difference equation for solving it
by the Crank—Nicolson method.

In Example 10.5, if the initial deflection of the string results from
being plucked at the one-third point instead of at the one-fourth point,
compute the time-dependent displacements at various locations on the
string after the string has been released.

The longitudinal vibration of a beam is governed by the equation

Pu_p o

ax> E a2

where x is the coordinate along the axis, 7 is time, u is the longitudinal
displacement, p is the material density, and E is a constant known as
the elastic modulus for the material. The two ends of the beam, at
x=0and x =L, are fixed. A deflection 4, is given at the midpoint of
the beam and then released from rest. Using the explicit method, for-
mulate this problem for a numerical solution. Give the relevant finite
difference equations and outline the numerical procedure.

A string is fixed at its two ends. The initial deflection u is given as

u=2(x-02) for0.2<x=<0.6
u=20.8-x) for0.6<x=<0.8
u=0 atall other values of x in the range 0 and 1.0

Also, the time derivative of u is zero, that is,
ou
—(x,0)=0
Y (x,0)

Using the explicit method, solve this equation with the constant ¢ in
the governing wave equation given as 1.0. Take Ax = 0.1 and Courant
number = 0.5 and 1.0. Compute the results up to ¢ =2.0. Discuss the
observed trends in terms of the nature of hyperbolic equations.
Determine the nature of the following equation which governs the
propagation of waves in a nonuniform medium:

9%u

ou_ 9
> 9

X

N
¢ (x)ax}

where u represents the displacement and ¢? varies with location.
Outline a numerical method for solving this problem.

If the problem discussed in Example 10.5 is to be solved by the Crank—
Nicolson method, give the resulting finite difference equations. Also

508 Computer Methods for Engineering with MATLAB® Applications

outline the numerical method that may be adopted for solving these
equations.

10.28. If in Example 10.5, the initial rate of change of displacement
ou/dt(x, 0) is given as 0.1 m/s for 0 < x < 1, compute the resulting dis-
placement as a function of time at four points on the string.

10.29. If in Example 10.6, P =0 for < 0 and e~ at x =0 for 7 > 0, solve the
given hyperbolic PDE.

10.30. In a rectangular region of length L and width W, with L/W =2, the
Laplace equation governs the electric field ¢. The value of ¢ is zero on
three sides and is given as sin(nx/L) on the fourth side y = W. Compute
the ¢ distribution in the region.

10.31. The dimensionless concentration C of a diffusing species in a square
region is governed by

9*C 9*C aC

ox? T ay? T ar

Starting with an initial value of C as zero in the entire region, calculate
the transient and steady-state distributions, using the FTCS method. C
is given as zero on two opposite sides of the region and as 1.0 on the
other two. Both X and Y vary from O to 1.0. Determine if the initial
conditions affect the steady-state distribution.

Appendix A: Some Common
Commands in MATLAB®

FOR MATRICES a AND b

a.*b a./b a.\b
a*b a/b a\b
rand (n)

b=26*rand(3)-10

max (a)
min(a)
max (max(a))
(min

(a))

[1,j] =find(a==max(max(a)))

a
min (min (a

Element by element arithmetic; a and b must have
identical rows and columns

Matrix algebra; a and b must have appropriate rows and
columns to perform these operations

Generates random numbers between 0 and 1 foranxn
matrix

Generates 3 X 3 matrix of random numbers between —10
and 16

Gives maximum element in one-dimensional array a

Gives minimum element in array a

Gives maximum element in matrix a

Gives minimum element in matrix a

Gives row and column where maximum element is
located

FOR SYSTEM OF EQUATIONS ax=b

inv(a)

aal=

x=ab
x=1inv(a)*b
x=a\b

[1,u,p] =1u(a)

y=1\(p*b) ; x=u\y

Gives inverse a~! of the matrix a

Identity matrix I

Yields the solution x; b is column vector

Yields the solution vector x

Backslash operator; also gives the solution x

Decomposition of matrix a into upper and lower
triangular matrices; p is permutation matrix

Yields the solution x

OUTPUT
> a=2.0;
>> b=4.5;

>> s = ['The number that is obtained is', num2str(a)]

yields

The number that is obtained is 2.0

>> g =gprintf (' The number %.5g is modified to %.5g.',a,b)

yields

The number 2.0 is modified to 4.5.

509

510 Appendix A: Some Common Commands in MATLAB®

Another command is fprintf, which is similar to sprintf and displays data to the
formatted string in the command window, whereas sprintf creates a character string
which can be displayed or modified like a character array.

Similarly, try other formats: %.0g gives integers; %.3f is used for fixed-point num-
bers, with three places after the decimal; %8.4f gives the width of characters as 8 and
4 places after the decimal; g gives the best of fixed or floating point formats; bank gives
fixed format for dollars and cents, that is, 2 decimal digits; e is the exponent format.

Use of a semi-colon at the end of a statement suppresses printing of the given or
calculated number. Similarly, disp(s) suppresses the printing of s = and simply gives
the specified or calculated value.

POLYNOMIALS

SPECIFICATION OF POLYNOMIALS

>p=[1 -4 7 -6 2]

represents

X —4x*+7x?2—6x+2

Coefficients are arranged in descending powers of the independent variable.
ROOTS

>> r=roots (p)

gives the roots of the polynomial as

1.00+1.00 i
1.00-1.00 1
1.00
1.00

>> pp=poly (r)
bp =
1.00 —4.00 7.00 -6.00 2.00

gives the polynomial with the array r as the roots.

ALGEBRA OF POLYNOMIALS

>> a=[1 2 3 4];

>> b=1[1 4 9 16];

>> c=conv(a,b) % convolution (multiplication) of polynomials
Cc =

1 6 20 50 75 84 64

Appendix A: Some Common Commands in MATLAB® 511

>> d=a+b %
d =

2 6 12 20

>> d=b-a %
4 =

02 6 12

>> [qg,r] =deconv (c,b) %
q =

123 4 %
r =

0000 %

>> g=[1 6 20 48 69 72 44];
>> h=polyder (g) %

h =

6 30 80 144 138 72

CURVE HTTING, PLOTTING

For the following data:

> x=[0 .1 .2 .3 .4 .5 .6
>> y=[-.45 1.98 3.28 6.16 7.

Curve fitting is obtained by

>> n=2;
>> p=polyfit(x,y,n)

p:
-9.8147 20.1338 -0.0327

>> xi=1inspace (0, 1, 100);
>> yi=polyval(p, xi);

>> plot (x,y,'g*',xi,yi, 'b-")

addition

subtraction

division

quotient polynomial

remainder polynomial

differentiation of a polynomial
with coefficients given by vector g

.7

.8 .9 1.0];

08 7.34 7.66 9.56 9.48 9.30 11.2];

o

specify order of the polynomial
for best fit

gives best fit with nth order
polynomial

Coefficients arranged in
descending powers of x

100 evenly spaced points between
0 and 1

values of given polynomial at x
values of x;

plotting with given symbols,
color, labels and title

>> xlabel ('x'), ylabel('y=£f(x)")
>> title('Second Order Curve Fitting')

DEFINITION OF A FUNCTION

A function may be defined inline or as part of a script file, as, for example,

512 Appendix A: Some Common Commands in MATLAB®

f=inline('x."3+3*x.%2-4*x+2")
g=inline ('x.*exp(x)—x."0.5+3")

where .* and » are used to allow x to be a vector, or array.
The function may also be defined by a function file f.m and g.m as

function z=1£f (x)
z=x."3+43*x.72-4*x+2;
end

and

function z=g(x)
z=x.%*exp(x)-x."0.5+3;

end

Then, the value of the function at given x, where x may be scalar or vector, is
obtained by

feval (f,x) or feval ('f',6x)

where the former is used for the function defined inline and the latter for the function
defined by a function file.

Appendix B: Computer
Programs in MATLAB®

B.1:
B.2:
B.3:
B.4:
B.5:
B.6:
B.7:

B.8:
B.9:

B.10:

B.11:

B.12:
B.13:

B.14:
B.15:
B.16:

B.17:

B.18:
B.19:

B.20:

B.21:
B.22:
B.23:
B.24:

B.25:
B.26:
B.27:
B.28:
B.29:

Search method for finding the roots of an algebraic equation

Bisection method for finding the roots of an algebraic equation

Secant method for root solving

Newton’s method for root solving

Successive substitution method for root solving

Gaussian elimination method for solving a system of linear equations

a. Gaussian elimination method for a tridiagonal coefficient matrix

b. Tridiagonal matrix algorithm

Gauss—Jordan method for solving a system of linear equations

Solving a system of linear equations by matrix inversion

Solving the system of linear equations in Example 6.5 by the Gauss—Seidel

method

Gauss—Seidel method for solving a system of linear equations

Power method for solving an eigenvalue problem

Successive substitution method for solving a system of nonlinear algebraic

equations

Newton’s method for solving a system of nonlinear algebraic equations

Interpolation with an exact fit

Lagrange interpolation

Newton’s divided difference method for interpolation

Polynomial regression

a. Numerical integration by trapezoidal rule

b. Alternative implementation of algorithm

a. Numerical integration by Simpsons’s rule

b. Alternative implementation of algorithm

Romberg integration

Integration with segments of unequal width

Numerical integration of an improper integral by Simpsons’s one-third rule

a. Euler’s method for solving a first-order ODE

b. Solution of ODEs in Example 9.1 by Euler’s method

Heun’s method for solving a first-order ODE

Fourth-order Runge—Kutta method

Adam’s predictor—corrector method

Hamming’s predictor—corrector method

a. Solution of a third-order boundary value problem by Runge—Kutta method
with shooting technique

b. Defining the three ODEs in Example 9.5

513

514 Appendix B: Computer Programs in MATLAB®

B.30: Finite difference method for solving second-order ODE
B.31: Forward time central space (FTCS) method

B.32: Crank-Nicolson method

B.33: Gauss—Seidel method for an elliptic PDE

B.34: SOR method for an elliptic PDE

B.35: Solution of the wave equation

B.36: Solution of first-order convection (hyperbolic) equation

o\°

SEARCH METHOD FOR FINDING THE ROOTS OF AN ALGEBRAIC
EQUATION

o\°

o\°

This program finds the real roots of the equation
f(x) =0 by the incremental search method

o oP

o\

Here, eps 1is the convergence parameter, dx the
increment in x, dxl the increment at sign change of
f(x), and f1 and f2 the values of the function f(x) at
two consecutive x values

o° o o o

o\

Define function f (x)

o\°

H

=inline('0.8*5.67*10%" (-8)* (1000%4-x"4) -50* (x-500) -
(25/0.15) * (x-300) ') ;

o\°

o\

Enter starting values

o\°

eps=10.0;

for i=1:6

x=300;dx=50;

dx1=dx;

a=f(x)*f(x);

fprintf ('EPS=%.5f\n', eps)

o\

o\

Check for convergence to the root

o\°

while dx1>eps

o\

o\

Check for sign change in f (x)

o\

while a>0

f1=£f(x);

x=x+dx;

f2=1£f(x);

a=f1*f2;

end

fprintf ('X=%.5f F1=%10.4f F2=%10.4f\n"',x,£f1,£f2)

<

Appendix B: Computer Programs in MATLAB® 515

f1=1£f(x);
x=x+dx;
f2=1£f(x);
a=f1*f2;
end

Print numerical results

o° o o

fprintf (' TEMPERATURE =% .5f F(X)=%.4f\n\n',x,£f1)

Vary convergence parameter

o° o o

eps =eps/10;

end

B.2

% BISECTION METHOD FOR FINDING THE ROOTS OF AN ALGEBRAIC
g EQUATION

% This program finds the real roots of the equation

% f(x) =0 by the Bisection method

% eps is the convergence parameter; fa, fb and fc are

% values of the function f(x) at the two ends, a and b,
% of the domain containing the root and at the mid point,
% respectively.

format short

eps=0.02;

% Enter limits of the domain

a=1input ('Enter lowest value of interval, a="');

b=1input ('Enter highest value of interval, b=");

Apply Bisection method

o o o°

for i=1:40

fa=f(a);
fb=f (b) ;
c(i)=(a+b)/2;

fec=£f(c(1));

o
]

516 Appendix B: Computer Programs in MATLAB®

Check for convergence

o o°

if (abs(fc) <= eps)

disp (sprintf ('Iteration converged'))
break
nd

(0]

Next iteration

o° o o

if (fa*fc<0)

b=c(i);
else
a=c(i);
end
end
c=c';

Print results

o° o o

disp(c)

o

SECANT METHOD FOR ROOT SOLVING

o

function [pl,err,k] =secant (f,p0,pl,delta,maxl)

o

o

f is the function in the equation f(x) =0 entered as a
string, p0 and pl are the two ends of the domain, given
as inputs in the function call, delta is the convergence
parameter and maxl is the specified maximum number of
iterations

o° o o o° oP°

o

Apply Secant method

o

for k=1:maxl
p2=pl - feval(f,pl)*(pl-p0)/(feval(f,pl)-feval (f,p0));
fprintf ('Approximation to the root=%.4f\n',p2);

o

o

Calculate error

o

err =abs (p2-pl) ;

o

o

Update values

o

p0=pl;
pl=p2;

o

% Apply convergence condition

Appendix B: Computer Programs in MATLAB®

o\

if (k>2)&(err<delta)

fprintf ('The root is=%8.4f\n’,pl);
break

end

end

Stop if convergence not achieved

o° o o

if (k ==max1l)
disp('Max number of iterations reached')
end

B.4

o°

NEWTON-RAPHSON METHOD FOR ROOT SOLVING

oe

o°

Given equation: f(x) =0

o° o o°

oe

the next approximation to the root is x(i+1)

o°

Hh

=inline('294*w* (1 - exp(-1000/(21*(5+20*w)))) - 250');

o°

o°

Enter convergence parameter

oe

eps = input ('Enter the convergence parameter, eps="');
fprintf ('EPS= %.4f\n',eps);

o°

o°

Enter starting value of the root

o°

o]

(1) =input ('Enter the initial guess, x(1)="');

oe

o°

Apply Newton-Raphson method

o°

for i=1:20

fprintf ('X= %.4f FUNCTION F(X)= %0.6f\n',x(1),£f(x(1)));
fd= (£(x (i) +0.001)-£(x(i)))/0.001;
x(1+1)=x(i) - f(x(i))/£fd;

o°

o°

Check for convergence and print results

oe

if (abs(x(i+1)-x(1i)) <= eps)

fprintf ('FLOW RATE X= %.4f FUNCTION F (X)=
$.68\n',x(i+1),£(x(i+1)));
break
end

end

517

eps is the convergence parameter, fd is the derivative
of the function at the present approximation x(i), and

518 Appendix B: Computer Programs in MATLAB®

o
ul

SUCCESSIVE SUBSTITUTION METHOD FOR ROOT SOLVING
Given equation: f(x) =0, rewritten as x=z=g(x)

conv is the convergence parameter, x is the present
approximation to the root and z the next approximation

Enter initial guess for the root and convergence parameter

o° o° o° o° o o° o° o° o°

x =1input ('Enter the value of x, x=");
conv = input ('Enter the value of Convergence Parameter, conv=");
fprintf ('X= %.2f CONV= %.4f\n',6x,conv) ;

Apply successive substitution

o° o o°

for i=1:20
z=(((((15-x)/(7.5*10"-5))" .5)-80)/10.5)" .6;
fprintf ('X=%.4f =%.4f\n"',x,2);

Check for divergence of scheme

o° o o°

if abs(z-x) >1/conv

disp ('Convergence not achieved') ;
break

end

Check for convergence

o° o o°

f abs(z-x) <conv

-

Print results

o° o o°

fprintf ('THE REQUIRED ROOT IS X=%.4f\n',Kx);
break

elseif abs(z-x) >=conv

X=12z;

end

end

B.6

(a)

GAUSSIAN ELIMINATION METHOD FOR SOLVING
A SYSTEM OF LINEAR EQUATIONS

a 1is the coefficient matrix, b the constant vector, x
the vector of unknowns and tr the transformed upper
triangular matrix

o® o° o° o° o o° o

Appendix B: Computer Programs in MATLAB® 519

o\

Input data

o\

function [x,tr] =gauss(a,b)
[n n] =size(a);

x =zeros(n,1);
c=zeros(l,n+1);

o\

o\

Form the augmented matrix

o\

aug= [a b];

o\

o\

Partial pivoting

o\

for p=1:n-1
[v,j] =max(abs(aug(p:n,p))) ;
c=aug(p,:);
aug(p, :) =aug(j+p-1,:);
aug(j +p-1,:) =c;

% Check if matrix is singular

if aug(p,p) ==0

'a was singular. No unique solution'
break
nd

o (D

o\

Obtain upper triangular matrix

o\

for k=p+1:n
m=aug (k,p) /aug (p, p) ;
aug(k,p:n+1) =aug(k,p:n+1)-m*aug(p,p:n+1);
end
end

o\

o\

Apply back-substitution

o\

tr=aug(l:n,1l:n);
x=backsub(aug(l:n,1:n),aug(l:n,n+1));

<

(b)

o\

Back Substitution

o\

function x=Dbacksub(a,b)

n=length (b) ;

x=zeros(n,1);

x(n) =b(n)/a(n,n);

for k=n-1:-1:1

x(k) =(b(k)-a(k,k+1:n)*x(k+1:n))/a(k,k);
end

end

520 Appendix B: Computer Programs in MATLAB®

(a)

o°

GAUSSIAN ELIMINATION METHOD FOR A TRIDIAGONAL
COEFFICIENT MATRIX

o° of

o°

n is the number of unknowns, s is a parameter from the
problem being solved, a, b and c are coefficients in
the tridiagonal matrix, f is the constant vector and tp
is the physical temperature

o° o o° o

o°

Enter input data

o°

Il
. — N o
w0

=100;£(29) =100;
)

©Q FHh B3 W

=-1;b(1l:n) =2+s;c(l:n-1) =-1;

o°

o°

Apply tridiagonal matrix algorithm

o°

for i=2:n;
d=a(i)./b(i-1);

b(i) =b(i)-c(i-1).*d;
f(i)=£(i)-£(i-1).*d;
nd

)

% Apply back-substitution

% Plot the results obtained

tp(2:30) =t (1:29) +20;

tp(1l) =120;tp(31) =120;

x=1linspace(0,30,31);

plot (x,tp, 'k")

xlabel ('Distance x (cm)', 'Fontsize',6 14)

ylabel ('Physical Temperature Tp (Degrees C)', 'Fontsize',K 14)

(b) TRIDIAGONAL MATRIX ALGORITHM

function t=tdma(a,b,c,f,n)
for i=2:n;

d=a(i)./b(i-1);

b(i) =b(i)-c(i-1).*d;

Appendix B: Computer Programs in MATLAB®

£(1) =£(1)-£(i-1) .*4d;

[0}

nd

Apply back-substitution

t(3) =(£(3)-c(3).*c(3+1))./b(3)

w

o° o o o° o o

o°

GAUSS-JORDAN METHOD FOR SOLVING
A SYSTEM OF LINEAR EQUATIONS

521

a is the coefficient matrix, b is the constant vector,

X is the vector of the n unknowns and tr is the

transformed matrix which should be an identity matrix

function [x,tr] =jordan(a,b)

o o

— e

X=
Cc=

Enter input data

n n] =size(a);

zeros (n, 1) ;
zeros (1l,n+1);

aug= [a b];

o o

o°

Partial pivoting

for p=1:n
[v,j] =max(abs(aug(p:n,p)));
c=aug(p, :);
aug(p, :) =aug(j 1,:);
aug (j +p-1,)=

o o

o°

o o

o°

Check if coefficient matrix is singular

if aug(p,p) ==
'a was singular. No unique solution'
break

end

Apply Gauss-Jordan method

for k=p+1:n+1

aug (p, k) =aug(p,k) /aug(p,p) ;
end
aug(p,p) =1

522 Appendix B: Computer Programs in MATLAB®

for i=1:n
if 1 ~=p
for j=p+1:n+1
aug(i,j) =aug(i,j)-aug(i,p) *aug(p,Jj) ;
end
aug(i,p) =0;
end
end
nd

(0]

Output solution

o° o o

tr=aug(l:n,1l:n);
x=aug(:,n+1)

o]
©w

SOLVING A SYSTEM OF LINEAR EQUATIONS
BY MATRIX INVERSION

a 1s the coefficient matrix, b is the constant vector,
x 1is the vector of the n unknowns, d is the calculated
inverse of the matrix a and tr is the transformed
matrix which should be an identity matrix

o° o o° ol° o o° o° o°

function [x,tr] =matinv(a,b)

Enter input data

o° o o°

[n n] =size(a);
x=zeros(n,1);
c=zeros(l,n+1);
d=eye(n);

Form augmented matrix

o® o° o

aug= [a d];

Partial pivoting

o° o° o

for p=1:n
[v,j] =max(abs(aug(p:n,p))) ;
c=aug(p, :);
aug(p, :) =aug(j+p-1,:);
aug(j +p-1,:) =c;

Check if coefficient matrix is singular

o® o° o

if aug(p,p) ==0
'a was singular. No unique solution'

Appendix B: Computer Programs in MATLAB®

break
end

Apply Gauss-Jordan method

o° o o°

for k=p+1:2*n
aug (p, k) =aug(p,k) /aug (p,p) ;
end

aug(p,p) =1;
for i=1:n
if 1~=p

for j=p+1:2*n

523

aug(i,j) =aug(i,j)-aug(i,p)*aug(p,j);

end
aug(i,p) =0;
end
end
end

Output results

o° o° o°

tr=aug(l:n,1l:n);
d=aug(l:n,n+1:2*n);
disp(d) ;

x=d*b;

disp (%) ;

B.10

s is a parameter in the problem,

Input given data

o o o o o o° o° o

A

s=0.071"2;

0]
e}
0]
|
o
o
o
=

Enter initial guess

o° o° oP°

x=zeros(1,31)
x(1) =100;
x(31) =100;

Gauss-Seidel iteration

o° o° oP°

SOLVING THE SYSTEM OF LINEAR EQUATIONS
IN EXAMPLE 6.5 BY THE GAUSS-SEIDEL METHOD

eps 1is the convergence

parameter, tp is the physical temperature

524 Appendix B: Computer Programs in MATLAB®

for k=1:1000

Store old values

o® o o°

»
o)
=
Q.
|

-

Calculate new values

o° o o°

for i=2:30
x(1) = (x(i+1) +x(i-1))/(2+s);
end

Check for convergence

o° o oP°

if abs(x-xo0ld) <=eps
fprintf ('No. of iterations=%g\n',k);
fprintf ('The Solution is:\n');
tp=x+20;
disp(tp');
break
end
end
for j=1:31;
y(3) =(3-1)*1.0;
end
plot (y,tp)

B.1l1

GAUSS-SEIDEL METHOD FOR SOLVING
A SYSTEM OF LINEAR EQUATIONS

o° o o°

function x=gseid(a,b,p,ep, maxl)

a 1is the coefficient matrix, b is the constant vector,
x 1s the vector of the n unknowns, p is the initial
guess for the vector of unknowns, ep is the convergence
parameter, and maxl is the specified maximum number of
iterations

Determine number of unknowns

o° o° o° o° o o° oP° o° o°

B

=length(b) ;

Apply Gauss-Seidel iteration

o° o o°

for k=1:max1l

Appendix B: Computer Programs in MATLAB® 525

for j=1:n
if j==1
x(1) =(b(1)-a(l,2:n)*p(2:n))/a(l,1);
elseif j==n
x(n) =(b(n)-a(n,l:n-1)*(x(1:n-1))"')/a(n,n);
else
x(j)=(b(j)-a(j,1:3-1)*(x(1:3-1)) "'~
a(j,j+1l:n)*p(j+1:n))/a(3,J);
end
end

Calculate error and apply convergence criterion

o oP o°

err =abs (norm(x'-p)) ;

p=x';

if (err <ep)

break

end

end

Xx=x"';

B.12

% POWER METHOD FOR SOLVING AN EIGENVALUE PROBLEM

% X 1s the eigenvector, xo is the eigenvector at the
% previous iteration, a is the coefficient matrix, eps is
% the convergence parameter, and c is the largest

% eigenvalue

% Enter initial guess

x=1input ('Initial guess of unknown eigenvector=");
a=1input ('Coefficient matrix a=");

eps=0.0001;

Apply Power method

o o o

for i=1:30
XO=X;
X=a*x;
c=max (x) ;

Il
bl
~
Q

Check for convergence

o0° o0 o0 X

-

f (abs(x-x0)) <eps

Print results

o o o

526 Appendix B: Computer Programs in MATLAB®

c,x
break
end
end

B.13

oe

SUCCESSIVE SUBSTITUTION METHOD FOR SOLVING
A SYSTEM OF NONLINEAR ALGEBRAIC EQUATIONS

o o

oe

ep is the convergence parameter, b, p, fl1, f2 are
parameters in the problem, and c¢ is the total flow rate
of the mixture entering the plant

o o

o°

ep=0.0000001;

b=0.1;
c=180.0;
bo=Db;
disp (' ARGON TOTAL FLOW AMMONIA')

for 1i=1:50
£1=0.9/(1.0-b);
p=1.0-0.57*exp(-0.0155*f1) ;
£2=90.0/(1.0-b*p) ;
b=1.0-23.5/(4.0%f2*p+f1);
c=f1+4.0*f2;
d=0.57*exp(-0.0155*f1)*2.0*£2;
fprintf ('%.4£ $.4f %.4f\n',f1,c,d)
if (abs(b-bo)) <ep
disp('Iteration has converged')
disp ('Converged results are')
fprintf ('ARGON=%.4f TOTAL FLOW= %.4f
AMMONIA= %.4f\n',f1,c,d)
break
end
bo=Db;
end

o]
|_I
'S

o°

NEWTON'S METHOD FOR SOLVING A SYSTEM
OF NONLINEAR ALGEBRAIC EQUATIONS

o o

o°

r and p are parameters in the problem, ep is the
convergence parameter and dr, dp are the increments in
r and p, respectively

o o o

o°

Enter starting values

o°

r =1input ('Enter the value of parameter r, r =');

p=input ('Enter the value of parameter p, p =');

ep = input ('Enter the value of convergence parameter
ep, ep =');

Appendix B: Computer Programs in MATLAB® 527

for i=1:10
rl= ((p-80)/10.5)"0.6-r;
pl= ((15-r)*(10"6)/75)"0.5-p;
b=r1"2+p1”*2;

Check for convergence

o° o o

if b<ep
disp ('THE REQUIRED SOLUTION IS:')
fprintf ('The flow rate R=%.4f The pressure
P=%.4f\n',r,p)
break
end

Calculate partial derivatives

o° o o

rr=-1;

rp=3/(5%(10.5%0.6)* ((p-80)"0.4));
pr=-1/(2*((7.5%¥10"-5)"0.5)* ((15-r)"0.5)) ;
pp=-1;

d=rr*pp-rp*pr;

Determine increments for the next iteration

o° o o

dr= (-rl*pp+pl*rp)/d;
dp= (-pl*rr+rl*pr)/d;

Calculate values of r and p for the next iteration

o° o o

r=r+dr;
p=p+dp;

Print results

o° o o

fprintf ('R =%.4f P =%.4f\n',r,p)
end

[v:]
[y
(5,

INTERPOLATION WITH AN EXACT FIT
Fifth order polynomial, y=f (x)

c is the coefficient matrix, a is the vector
representing the constants of the polynomial in
ascending powers of x, and p is the vector of constants
of the polynomial in descending powers of x

o° o o° o° o o o° o o o

Enter given data
=[12 3 45 6];
=[106.4 57.79 32.9 19.52 12.03 7.67]"';

e X

528 Appendix B: Computer Programs in MATLAB®

Form Matrix

o oP

Q
Il
"

>
o
w
w
>
N
k]
>
w
w
>
N
w
>
ul

Find coefficients of polynomial

o° o o

disp('Coefficients of the polynomial are:')
a=c\y

plot(x,y,'*")

hold

Find value at x=3.4

o° o o

p=a(6:-1:1);

x1=3.4;

yl=polyval (p,x1) ;

fprintf (' Interpolated value from exact fit y=%.4f\n',yl)

Use of Matlab functions

o° o o

y2=interpl(x,y',x1,'linear');

y3 =interpl(x,y',x1, 'spline');

fprintf ('Value from linear interpolation
fprintf ('Value from spline interpolation
x=1inspace(1,6,20);

y=polyval (p,x) ;

plot(x,y,'-g")

xlabel ('x', 'Fontsize',14) ;ylabel ('y', 'Fontsize',b 14)

B.16
% LAGRANGE INTERPOLATION
% w 1s the number of data points and c is the vector of
% constants of the polynomial in descending powers of x
% Enter given data
x=[0.51.0 1.5 2.0 2.5];
y=1[3.0 3.9 5.2 7.3 10.5];
% Get number of data points or unknowns
=length (x) ;
=w-1;

=zeros (w,w) ;

d° o0 M 35 =

Calculate coefficients of the general polynomial

o°

for k=1:n+1
v=1;

Appendix B: Computer Programs in MATLAB® 529

for j=1:n+1

if k~=73

v=conv (v,poly(x(3)))/(x(k)-x(3));

end

end

1(k,:) =v;

end

c=y*1l;

% Print coefficients of the polynomial

% Check accuracy of polynomial

xp=[0 0.5 0.75 1.0 1.25 1.5 1.8 2.0 2.2 2.5 3.0];
yp=polyval (c,xp) ;

disp('Interpolated values:')

for k = 1:11

fprintf ('xp=%.4f yp=%.4f\n',xp(k),yp(k))
end
B.17

o°

NEWTON'S DIVIDED DIFFERENCE METHOD FOR INTERPOLATION

o°

o°

c is the vector of the coefficients of the polynomial
for Newton's divided differences

o o

o°

Enter input data

o°

=input ('Enter the number of data points, n="');
x=1input ('Enter values of the independent variable, x="');
y =input ('Enter corresponding values of the dependent
variable, y=");

ja]

o°

h

(1:5,1)=vy;

o°

o°

Apply Newton's Divided Difference method

o°

for k=1:(n-1)

1=k+1;

for m=1: (n-k)

f(m,1) = (f(m+1,k)-f(m,k))/(x(m+k)-x(m));

end

end

disp('Coefficients of the polynomial c0, cl, c2 ... are:'")
c=£f(1,1:n)"'

530 Appendix B: Computer Programs in MATLAB®

Enter value of independent variable for interpolation

o° o o

for i=1:6
xp =input ('\nEnter x where interpolation is desired,
xp=");
fprintf ('xp =%.3f\n',xp)

Calculate interpolated results and remainder

o° o o

o

=1;z=0;

for i=1:n

z=z+£(1,1)*b;

fprintf ('Interpolated value of y =%.3f\n',z)
b=Db* (xp-x(1)) ;

if i<n

r=b*f(1,i+1);

fprintf ('Remainder term =%.3f\n',r)
end

end

end

o
[y
[e0]

POLYNOMIAL REGRESSION

n is the number of data points, c¢ is the vector
representing the constants of the polynomial in
ascending powers of x, and p is the vector of constants
of the polynomial in descending powers of x

Input given data

o® o° o° o° o o° o° o° o°

x =1input ('Enter values of the independent variable, x="');
y =input ('Enter values of the dependent variable, y=");
np = input ('Enter order of polynomial for best fit, np="');

]

n=length (x) ;

m=np+1;

%

% Initialize matrices
%

a=zeros (m,m) ;
b=zeros(m,1) ;

Apply polynomial regression

o° o° o

for i=1:m
for j=1:m
nl=1i+3j-2;
for k=1:n

Appendix B: Computer Programs in MATLAB® 531

a(i,j)=a(i,j) +x(k)’*ni;

end
end
for k=1:n
b(i) =b(i) +y (k) *x(k)*(i-1);
end
end

o°

o°

Print polynomial constants and values calculated from
best fit

o°

o°

disp ('The constants of the polynomial are:')

c=a\b

p=c(m:-1:1);

disp ('The values calculated from the best fit are:')
s=polyval (p,x) ;

y=s'

(a)

o°

NUMERICAL INTEGRATION BY TRAPEZOIDAL RULE

o°

function s=trap(f,a,b,m)

o°

o°

f is the function, entered as a string, a and b are the
limits of integration, m is the number of subintervals,
and s the sum or quadrature

o° o° o

o°

Calculate step or segment size

o°

h= (b-a)/m;
fprintf ('Step Size=%.4f\n',h)
for i=1:10

o\

o°

Apply Trapezoidal rule

o°

s=0;

for k=1:m-1

x=a+h*k;

s=s+feval (f,x) ;

end

s=h* (feval (f,a) + feval (f,b)) /2 +h*s;

% Print results

fprintf ('Time = %2g Charge=%.4f Voltage =

o°

.4f\n',b,s,s/0.025) ;

o°

532 Appendix B: Computer Programs in MATLAB®

Vary upper limit for integration

o oP

o

=2+b;m= (b-a) /h;
end

(b)
ALTERNATIVE IMPLEMENTATION OF ALGORITHM

Apply Trapezoidal rule

o° o o o

=a:h:b;
=feval ('f81',x);
s=h*(0.5*f (1) +sum(f(2:n-1)) +0.5*f (n)) ;

X

o\

B.20

(a)
NUMERICAL INTEGRATION BY SIMPSONS'S RULE

o oP

function s=simp2(f,a,b,n)

f is the function, entered as a string, a and b are the
limits of integration, n is the number of subintervals,
m is the number of two-segment intervals and s the sum
or quadrature

o° o o o° o o?

for i=1:10

Calculate segment size h and number of two-segment
sections m

= (b-a) /n;
=n/2;

Apply Simpson's rule

o o 0 B I o° o° o° o

sl1=0;
s2=0;
for k=1:m

x=a+h*(2*k-1) ;

sl=sl+feval(f,x);

end

for k=1:(m-1)

xXx=a+h*2*k;

s2=g82+ feval (f,x) ;

end

s=h*(feval (f,a) + feval (f,b) +4*sl +2*s2)/3;

)
<

Appendix B: Computer Programs in MATLAB® 533

Print results

o oP

fprintf ('n=%4g Flow Rate=%.4f Avg. Vel.
s/ (pi*0.01)) ;

%.4f\n',n,s, ...

Vary number of segments n

o° o o

n=2%*n;
end
(b)
% ALTERNATIVE IMPLEMENTATION OF ALGORITHM
%
% Apply Simpson's rule
%
x=a:h:b;

f=feval ('f82"',x);
s=(h/3)*(£(1) +4*sum(f(2:2:n)) +
2*sum (£ (3:2:n-1)) +£f(n+1));

o°

w
N
[y

ROMBERG INTEGRATION

This program obtains the integral of a given function
f(x) over specified lower limit xmin and upper limit
xmax by using Romberg integration with a convergence
parameter ep; h is the step size

Define the function to be integrated

o o° o° o o° o° o° o o

Hh

=inline (' (2.0/sqgrt (pi)) *exp(-x"2)");

Enter input values

o° o o°

ep=0.00001;

dif=1.0;

xmin=0.0;

xmax = input ('Enter the value of z =');
h=xmax-xmin;

Carry out first order (Trapezoidal rule) calculations

o o o°

= |
=

1,1) =0.5%h* (f (xmin) + £ (xmax)) ;
printf ('No. of iterations=%2g Erf(z) =%.6f\n',n,y(1,1));

Apply convergence criterion

o0 o0 o HhN B

534 Appendix B: Computer Programs in MATLAB®

while dif >ep

o° o o

m=2"(n-1);

h=h/2.0;

n=n-+1;

y(1,n) =0.5*y(1,n-1);
for k=1:m

x=xmin+ (2*k-1) *h;
y(1l,n) =y(1,n) +h*f(x);
end
for k=2:n

Calculate higher order extrapolations

y(k,n) = (4" (k-1) *y (k-1,n) -y (k-1,n-1)) / (4" (k-1) -1) ;

end
dif=abs(y(n,n)-y(n-1,n));

Print results

o° o o

fprintf ('No. of iterations=%2g
end

B.22

quadrature

Enter given data

o® o o° o° o o o° o o o

<

Erf(z) =%.6f\n',n,y(n,n));

INTEGRATION WITH SEGMENTS OF UNEQUAL WIDTH

This program calculates the integral from experimental
data on the dependent variable v given at unevenly
distributed values of the independent variable t; eps is
a specified small number and s is the sum or

=[0o .1 .2 .3 .5.7 .811.11.31.51.6 1.7 1.8 2.0];
=[9.5 10 10.57 11.24 12.97 15.38 16.93 20.9 23.41. ..

29.74 38.17 43.33 49.21 55.88 71.9];

o° o° o°

eps=1.0e-6;

Starting values

o° o° o

m=length(t) ;
i=1;
s=0;

o° o° o°

=
5
[
—
0]
b
A
3

Specify small quantity eps to compare segment widths

Compare adjacent segment widths dtl, dt2 and dt3

Appendix B: Computer Programs in MATLAB® 535

dt=t(i+1)-t(1);
if i==m-1
dtl=dt;dt2=0;dt3=0;
elseif i==m-2
dtl=dt;dt2=t(i+2)-t(i+1);dt3=0;
else
dtl=dt;dt2=t(i+2)-t(i+1);de3=t(i+3)-t(i+2);
end

o°

o°

Apply Trapezoidal rule

o°

if abs(dt2-dtl) >eps
s=s+ (v(i+1) +v(i))*dt/2;
i=1+4+1;
disp ('Trapezoidal rule')

o°

o°

Apply Simpson's one-third rule

o°

elseif abs(dt3-dt2) >eps
s=s+ (v(i) +4.0*v(1i+1) +v(1i+2))*dt/3.0;
i=1+42;
disp('Simpson one-third rule')

o°

o°

Apply Simpson's three-eighths rule

o°

else
s=s+ (v(i) +3.0*v(i+1) +3.0*v(i+2)...
+v(i+3))*dt*3.0/8.0;
1i=1+43;
disp('Simpson three-eighths rule')
end

o°

o°

Print results

o°

fprintf ('I=%2g Time=%.4f Velocity=%.4f
), s)

Distance=%.4f\n',i,t(i),v(i),s

end

B.23

% NUMERICAL INTEGRATION OF AN IMPROPER
% INTEGRAL BY SIMPSONS'S ONE-THIRD RULE
function s=simpimp(f,a,b,h)

f is the function, entered as a string, a and b are the
limits of integration, h is the width of each
subinterval, and s the sum or quadrature

Define starting parameters

o° o° o° o° o o° o

536 Appendix B: Computer Programs in MATLAB®

for i=1:4
xmin=a;
se=0.0;
fprintf ('xmin=%.4f\n',xmin) ;
for j=1:8
xmax =Db;

o°

oe

Calculate number of sub-intervals n and number of
two-segment sections m

oe

o\

n= (b-a)/h;

m=n/2;

% Apply Simpson's rule
sl1=0;

s2=0;

for k=1:m

x=a+h*(2%k-1);

sl=sl1+feval (f,x);

end

for k=1:(m-1)

x=a+h*2*k;

s2=s2+ feval (f,x) ;

end

s=h*(feval (f,a) + feval (f,b) +4*sl +2*s2)/3;

% Print results
fprintf (' Integral = %4g xmax=%.4f\n',s,b);
% Vary number of segments n

if abs(s-se) >0.00001

b=b+5.0;
se=g;
else

break
end

end
a=a+5.0;
b=a+10.0;
end
B.24

(a)

o

EULER'S METHOD FOR SOLVING A FIRST-ORDER ODE

o

function e=euler(f,a,b,y0,n)

Appendix B: Computer Programs in MATLAB® 537

f is the function entered as a string 'f'

a and b are the starting and end points

y0 is the initial condition y (1)

n is the number of steps

e[t' y'] is the output where t is the vector of
independent variable and y is the vector of dependent
variable

(b-a) /n;
zeros (1,n+1);
zeros (1,n+1);
a:h:b;

Fh PN (T 5 0 o° o° o° o° o° o o° o°
- Il
Il
!
o

=y (Jj) +h*feval (£,t(3),v(3));

(b)

o°

SOLUTION OF ODES IN EXAMPLE 8.1 BY EULER'S METHOD

o o°

o°

Given ODE: dy/dt=f (t,y)

o°

o°

dt is step size, tn is total range of t, y0 is initial
value of y, and n is total number of t values

o o°

o°

Enter given ODE

o°

dydt =inline ('2-0.5%y','t','y"');

o°

o°

Choose step size and total time

o°

dt=0.01;
tn=800*dt;

o°

o°

Enter initial conditions and starting values

o°

vy0=0;

nl=51;
t=(0:dt:tn) ';
n=1length(t) ;
y=yO0*ones (n,1) ;

o°

o°

Apply Euler's Method

o°

for j=2:nl;
yv(j) =y (j-1) +dt*dydt (£t (j-1),y(§-1));

538 Appendix B: Computer Programs in MATLAB®

nd

o (D

o\

Second ODE

o\

dydt =inline('-0.5*y!','t','y');
for j=nl+1:n;

y(J) =y (3-1) +dt*dydt (£ (j-1),y(3-1));
end

o\

o\

Plot results

o\

plot(t,vy,'-g')

% HEUN'S METHOD FOR SOLVING A FIRST-ORDER ODE

function s=heun(f,a,b,ya,h)

% f is the function entered as a string 'f'

% a and b are the starting and end points

% ya is the initial condition y (1)

% h is the step size

% s[t' y'] is the output where t is the vector of
% independent variable and y is the vector of dependent
% variable

m= (b-a) /h;

t=zeros(l,m+1)

y=zeros(l,m+1)

t=a:h:b;

y (1) =ya;

for j=1:m

kl=feval (f,t(3),y(3));

k2 =feval (£, t(j+1) v(j) +h*kl) ;
v(i+1) =y () + (h/2) * (k1 +k2) ;
end

S=[t’ Yl]

(b)

function z=fel(x,y)
=4-2%y;

end

(c)

function z=fe2(x,y)
z=-2%y;

end

Appendix B: Computer Programs in MATLAB® 539

(d)

sl=heun('fel',0,0.5,0,0.01);
s2=heun('fe2',0.5,8,s81(51,2),0.01) ;
plot(sl(:,1),s1(:,2))

hold

plot(s2(:,1),82(:,2))

B.26

% FOURTH-ORDER RUNGE-KUTTA METHOD

; Enter the function f for the ODE dv/dt=f(t,v)
;zinline('—9.8—(O.Ol*v+0.001*vA2) ") ;

o°

o°

Choose time step and enter initial conditions

oe

dt = input ('Step size dt =');
t=0;

x=0;

v=100.0;

i=1;

]

while v>=0

o°

o°

Initialize variables

oe

gq=X;z=V;
tp(i) =t;xp(i) =x;vp (i) =v;

o°

o°

Apply 4th order Runge-Kutta formulas

o°

rklx=dt*z;

rklv=dt*f (z) ;

rk2x=dt* (z+rklv/2) ;

rk2v=dt*f (z+rklv/2) ;
rk3x=dt* (z + rk2v/2) ;

rk3v=dt*f (z+rk2v/2) ;
rkdx=dt* (z + rk3v) ;
rk4v=dt*f (z + rk3v) ;

x=q+ (rklx+2*rk2x+ 2*rk3x + rk4x) /6;
v=z+ (rklv+2*rk2v + 2*rk3v+rk4v) /6;

% Advance to next time step
t=t+dt;
i=1+41;

540 Appendix B: Computer Programs in MATLAB®

o

Plot results

o

plot (tp,xp,'-', tp,vp, '--")

o°

ADAM'S PREDICTOR-CORRECTOR METHOD

o°

o°

dt is time step, ep is the convergence parameter for
steady state and epl is the convergence parameter for
the corrector

o o o

o°

Enter function f(y) in ODE dy/dt=f (y)

o°

f=inline('10-0.05*y") ;

: Enter initial conditions
:(l) =0;

v(1) =100;

Zp:0.000l;

epl=0.00001;

o°

o°

Choose time step

o°

dt = input ('Time step dt=");
for i=1:3

o°

o°

Apply Runge-Kutta for first 3 steps

o°

rkl=dt*f(y(i));
rk2=dt*f (y (i) +rkl/2) ;
rk3=dt*f(y (i) +rk2/2) ;
rk4 =dt*f (y (i) +rk3);
y(i+1) =y (i) + (rkl+2*rk2+2*rk3 +rk4) /6;
t(i+1) =t(i) +dt;
end
s=abs((y(i+1)-y(1))/(y(i)*dt));

% Apply convergence criterion

% Apply predictor

y(i+1) =y (i) +dt* (55*f£(y(i))-59*f(y(i-1))...
+37*E£(y(i-2))-9*f(y(1i-3)))/24;
yp(i+1) =y(i+1);

Appendix B: Computer Programs in MATLAB® 541

dy=abs(y(i+1)-y(i));

o°

o°

Apply corrector with iteration

o°

while dy >=epl
y(1+1) =y (i) +de* (9*f(y(i+1)) +19*E(y(i)) ...
-5*f(y(i-1)) +f(y(i-2)))/24;

dy=abs(y(i+1)-yp(i+1));
end
t(i+1)=t(i) +dt;
s=abs((y(i+1)-y(i))/(y(i)*dt));

nd

o° (D

o°

Plot results

o°

plot(t,y,'-")

B.28
% HAMMING'S PREDICTOR-CORRECTOR METHOD
% Define function f(x,y) in dy/dx=£f(x,y)

% dt is time step and ep is convergence parameter for
% steady state

f=inline('9.8- (2*y+0.1*y"2) ") ;

% Enter initial conditions

% Choose step size dt

dt = input ('Time step dt=");

o°

o°

Apply Runge-Kutta method for the first three steps

o°

for i=1:3
rkl=dt*f(y(i));
rk2=dt*f (y (i) +rkl/2);
rk3=dt*f (y (i) +rk2/2);
rk4 =dt*f (y (i) + rk3) ;
y(i+1) =y (i) + (rkl+2*rk2 +2*rk3 +rk4) /6
t(1i+4+1) —t(l) +dt;
end

yp(i+1) =y(1+1);ym(i+1) =yp(i+1);yc(i+1)=yp(i+1);

542 Appendix B: Computer Programs in MATLAB®

s=abs((y(i+1)-y(1))/(y(i)*dt));

% Apply convergence criterion

% Apply Predictor

yp(i+1) =y(i-3) +de*(4/3)* (2*£(y (1)) -£(y(i-1))...
+2*E(y(i-2)));

o°

o°

Apply Modifier

o°

ym(i+1) =yp(i+1)-(112/121)* (yp(i)-y(1));

o°

o°

Apply Corrector

o°

ye(i4+1) =(1/8)*(9*y(i)-y(i-2)) + (3/8)*dt*. ..
(E(ym(i+1)) +2*£(y(i))-£(y(i-1)));

o°

o°

Update results

o°

y(i+1) =yc(i+1);

t(i+1) =t(i) +dt;

s=abs((y(i+1)-y(i))/(y(i)*dt));
nd

o° (D

o°

Plot results

o°

plot(t,y,'-")

B.29

(a)

% SOLUTION OF A THIRD-ORDER BOUNDARY-VALUE PROBLEM BY

% RUNGE-KUTTA METHOD WITH SHOOTING TECHNIQUE

% t is the independent variable, v represents the three
% dependent variables, ep is the convergence parameter,
% er is the difference between two values of variable
% v(2), or velocity, at the second boundary, yO

% represents the initial conditions, s is the unknown
% variable v (3) to be determined at t=0

% Enter convergence parameter and starting values
ep=0.001;

s=0.5;

Appendix B: Computer Programs in MATLAB® 543

for i=1:20;

Apply convergence criterion

o o o

if abs(el-1) <ep
break
end

Apply ode45 to solve the ODEs

o° o° oP°

y0o=[0;0;s];
[t,v] =ode45('rhsl',6 edge,yO0) ;
el=v(length(v),2);

Compute the derivative for Newton-Raphson

o° o° o

y0=1[0;0;s4+0.001];

[t,v] =oded5('rhsl',edge,y0) ;
e2 =v(length(v),2);
er=e2-el;

der= (er)/0.001;

Apply Newton-Raphson method

o° o° o

s=s-(el-1)/der;

end

; Plot the results
glot(t,v(:,l),'—',t,v(:,2),'——',t,v(:,3),'—”)
(b)

Defining the three ODEs in Example 8.5

o° o?

function dydt =rhsl(t,y)

b=0.5;

dydt = [y (2) ;y(3) ;-y (1) *y(3) -b* (1-y(2)"2)1;
end

B.30

o°

FINITE DIFFERENCE METHOD FOR SOLVING SECOND-ORDER ODE

o o

o°

S, p are parameters in the problem, nt is the total
number of grid points, a, b and c¢ are coefficients in
the tridiagonal matrix, f is the constant vector, t is

o°

o°

544 Appendix B: Computer Programs in MATLAB®

o\

the dimensionless temperature and tp is the physical
temperature

o oP

o\

Enter input data

o\

p =input ('Parameter P=");

nt = input (' Total number of grid points=");
n=nt-2;

s=2+ (p"2)*((1.0/(nt-1))"2);

o\

o\

Enter boundary conditions and form tridiagonal matrix

o\

f(1)=1;f(n) =0.5;
f(2:n-1) =0;
a(2:n)=-1;b(l:n)=s;c(l:n-1)=-1;

o\

o\

Apply tridiagonal matrix algorithm

o\

for i=2:n;
d=a(i)./b(i-1);

b(i) =b(i)-c(i-1).*d;
£(i) =£(1i)-£(i-1).*d;
end

o\

o\

Apply back-substitution

o\

t(n)=£f(n)./b(n);
for i=1:n-1;

j=n-i;

t(3)=(£(3)-c(3).*t(3+1))./b(F);

end

% Calculate resulting temperature distribution

tp(2:nt-1) =t (1l:n);
tp(l) =1;tp(nt) =0.5;

o\

o\°

Plot the results obtained

o\

x=1linspace(0,1,51);
plot (x,tp, 'k")

xlabel ('Distance X', 'Fontsize',6 14)
ylabel ('Temperature T', 'Fontsize', 14)
B.31

o°

FORWARD TIME CENTRAL SPACE (FTCS) METHOD

o°

o°

th is the unknown theta, or dimensionless

Appendix B: Computer Programs in MATLAB® 545

concentration, tint is the initial value of th taken as
uniform, kmax is the maximum number of time steps,
kprint the steps after which results are printed or
plotted,dx is the grid size, dt the time step, n the
number of grid points, k represents the time step and i
the spatial grid point

Enter starting values

o° o°® o° o° o° o° o° o° o

tint =input ('Enter the initial condition tint=");

n=input ('Enter number of grid points n="');

kmax = input ('Enter maximum number of time steps kmax="');

kprint = input ('Time steps after which results are plotted
kprint=");

Specify boundary conditions

o° o o

th(1l,2:n) =tint;
th(l:kmax,1) =1.0;
dx=1/(n-1);

Calculate maximum time step to avoid numerical instability

= (dx"2)/2;
for k=2:kmax;

Apply FTCS method

o0 o o° Q. o0 o° o°
(e
|

for i=2:n-1;
th(k,1i) =th(k-1,1i) +dt* (th(k-1,i+1)-2*th
(k-1,1) +th(k-1,1i-1))/(dx"*2);
end
end

Store results for plotting

o° o o

for j=1:10;
m=kprint*j +1;
time = (m-1) *dt;
fprintf ('Time=%.4f\n"', time)
tp(j,1:n) =th(m,1:n);
end

Plot results

o° o o

x=1inspace(0,1,n);

plot (x, tp)

xlabel ('X'") ;ylabel ('Dimensionless concentration, \theta');
title ('Concentration Versus Distance at Different Times')

546 Appendix B: Computer Programs in MATLAB®

B.32
CRANK-NICOLSON METHOD

t is the unknown dimensionless temperature, tint is the
initial value of t taken as uniform, kmax is the maximum
number of time steps, kprint the steps after which
results are printed or plotted, dx is the grid size, dt
the time step, n the number of grid points, k
represents the time step and i the spatial grid point,
and a, b, ¢ and f are the parameters of the tridiagonal
system

Enter starting values

o o° o° o o° o° o° o° o° o° o° o° o°

tint =input ('Enter the initial condition tint=");

n=input ('Enter number of grid points n="');

dt =input ('Enter the time step dt="');

kmax = input ('Enter maximum number of time steps kmax="');

kprint = input ('Time steps after which results are plotted
kprint=");

Specify boundary conditions

o° o o

t(1l,2:n) =tint;
t(l:kmax,1) =1.0;
dx=1/(n-1)

Calculate the parameters of the tridiagonal system

o° o o

for k=2:kmax;
a(l:n-2) =-dt/(2*dx"2) ;
b(1:n-2) =1+dt/(dx"*2);
c(l:n-2) =-dt/(2*dx"*2) ;
for i=2:n-1;
f(i-1) =t (k-1,1) +dt*(t(k-1,i+1)-2*t
(k-1,1) +t(k-1,1i-1))/(2*dx"2) ;
end
) =£(
)
) =

1)-a(l)*t(k,1);
a(n-2)-c(n-2)/3;
b(n)+4*c(n—2)/3;

f(1
a(n-2
b(n-2

Use the TDMA function file to obtain temperatures at
the next time step

o° o o° oP

t(k,2:n-1) =tdma(a,b,c,f,n-2);

Apply boundary condition at the right boundary

o° o o

t(k,n) =4*t(k,n-1)/3-t(k,n-2)/3;
end

Appendix B: Computer Programs in MATLAB® 547

Store results for plotting

o° o o

for j=1:10;
m=kprint*j+1;
time = (m-1) *dt;
fprintf ('Time=%.4f\n"', time)
tp(j,1:n) =t(m,1:n);
end

Plot results

o° o o

x=1inspace(0,1,n);

plot (x, tp)

xlabel ('X'") ;ylabel ('Dimensionless Temperature, \theta');
title ('Temperature Versus Distance at Different Times')

B.33

GAUSS-SEIDEL METHOD FOR AN ELLIPTIC PDE

m and n are grid points in x and y directions, imax is
maximum number of iterations, phi is the unknown
dependent variable, phiol the value of phi at the

previous iteration, and ep the convergence parameter

Input given data

o° o° o° o o° o° o° o o°

m=input ('Enter number of grid points in x direction m=");

n=input ('Enter number of grid points in y direction n=");

phint = input ('Enter initial guess for phi taken as uniform
phint=");

imax = input ('Enter maximum number of iterations imax="');

ep = input ('Enter convergence parameter ep="');

% Calculate grid or mesh lengths
dx=1/m;

dy=1/n;

% Apply boundary conditions
phi(2:m-1,2:n-1) =phint;

phi(1,1:n) =0;

phi(m,1:n) =0;

phi(l:m,1) =0;

phi(l:m,n) =0;

Apply Gauss-Seidel iterative scheme

o° o° o°

548 Appendix B: Computer Programs in MATLAB®

for i=1:imax;
phiol(l:m,1:n) =phi(l:m,1:n);
for j=2:m-1;
for k=2:n-1;
phi(j,k) = ((phi(j +1,k) +phi(j-1,k)) /...
(dx™2) + (phi(j,k+1) +phi(j, k-1))/(dy*2))/(2/...
(dx*2) +2/(dy”*2)) +0.001;
end
end

o°

Check for convergence

o o

if abs(phi-phiol) <ep
break
end
nd

(0]

o°

Plot results

o° o

xp=1linspace(0,1,m);

nn=(n+1)/2;

plot (xp,phi(1:m,nn-4) ,xp,phi(l:m,nn-3),xp,phi(l:m,nn-2),...
xp,phi(l:m,nn-1),xp,phi(l:m,nn))

B.34

o°

SOR METHOD FOR AN ELLIPTIC PDE

o°

o°

m and n are grid points in x and y directions,
respectively, imax is maximum number of iterations, phi
is the unknown dependent variable,phiol the value of
phi at the previous iteration, and ep the convergence
parameter

o° o o o° oP°

o°

Input given data

o°

m=input ('Enter number of grid points in x direction m=");

n=input ('Enter number of grid points in y direction n=");

phint = input ('Enter initial guess for phi taken as uniform
phint=");

imax = input ('Enter maximum number of iterations imax=");

ep = input ('Enter convergence parameter ep="') ;

% Calculate grid or mesh lengths
dx=1/m;
dy=1/n;

% Specify relaxation parameter w

Appendix B: Computer Programs in MATLAB®

o

€

=0.5;
for ni=1:14;

Apply boundary conditions

o° o o

phi(2:m-1,2:n-1) =phint;
phi(1,1:n) =0;
phi(m,1:n) =0;
phi(l1:m,1) =0;
phi(l:m,n) =1;

Apply SOR iterative scheme

o° o o

for i=1:imax;
phiol(1l:m,1:n) =phi(l:m,1:n);
for j=2:m-1;
for k=2:n-1;

549

phi(j,k) =w* ((phi(j+1,k) +phi(j-1,k))/...
(dx"2) + (phi (j,k+1) +phi (j,k-1))/(dy*2)) /...
(2/(dx"2) +2/ (dy"2)) + (1-w) *phiol (§,k) ;

end
end

Check for convergence

o° o o

if abs(phi-phiol) <ep
break
end
nd

(0]

Plot results

o° o o

s(ni) =1;

w=w+0.1;

end
rf=1linspace(0.5,1.9,14) ;
plot (rf, s)

B.35

o

SOLUTION OF THE WAVE EQUATION

o° o o° o° oP°

o

to 1.0, u is the dependent variable, with u,

o

o

This script file solves a second-order hyperbolic
partial differential equation by the finite difference
method. dx is grid size, dt is time step, n is number
of grid points, c¢ is the Courant number, being taken close
ul and u2
representing values at time t, t+dt and t+2dt, nlim is
the maximum number of time steps, and nprint is number

550 Appendix B: Computer Programs in MATLAB®

of steps after which results are displayed

Enter input quantities

o° o o o

dx =input ('Grid size dx=");

dt = input ('Time step="');

nlim=input ('Maximum number of time steps nlim="');

nprint =input ('Time steps after which results are displayed
nprint=");

c=1000* (dt™2) / (dx"2) ;

([
o

Set the boundary conditions

o0 o0 oe L. 3

n=(1/dx) +1;

nn= (0.25/dx) +1;

ul(l:nn) =linspace(0,0.004,nn) ;

ul (nn:n) =linspace(0.004,0, (n+1-nn)) ;
u2(l:n) =0;

Initialize the variables

o° o o

for i=2:n-1;

u2 (i) =ul(i) +c*(ul(i+1)-2*ul(i) +ul(i-1))/2;
end
time=0;
t=dt;
time=t;
while t<nlim*dt

m=m+1;

Save previous values

o° o o

u(l:n)=ul(l:n);
ul(l:n) =u2(1l:n);

Obtain results for next time step

o° o o

t=t+dt;
time=t;
for i=2:n-1;
u2 (i) =2%ul(i)-u(i) +c*x(ul(i+1)-...
2*ul (1) +ul(i-1));
end

Store results for display

o° o o

if m==nprint;
J=3+1;
up(j,l:n) =u2(l:n);

Appendix B: Computer Programs in MATLAB® 551

m=0;
fprintf ('Time=%.4f\n', time)
else
end
end

Plot results

o oP o°

x=1linspace(0,1,n);
plot (x,up)

B.36
SOLUTION OF FIRST-ORDER CONVECTION (HYPERBOLIC) PDE

X 1s the coordinate distance, t is the time, p(i)
represents the values of the dependent variable p at
previous time and pn(i) those at the present time step,
n is number of spatial grid points, c¢ is convection
velocity, co is the Courant number, dx is the step
size, dt is the time step, tmax is the maximum time for
the computation and t is the time

Enter input quantities

o o o° o° o o° o° o o o° o o

dx = input ('Enter grid size dx=");
dt = input ('Enter time step dt=");
c=2.5;

Choose solution method: 1 for backward difference, 2
for Euler's and 3 for Lax-Wendroff method

o° o o° o°

m= input ('Choose solution method m=");

% Input initial and boundary conditions
p(2:n) =0;

pn(2:n) =0;

p(l) =1.0;

pn(1l) =1;

t=0;

j=1;

pl(l) =0;p2(1) =0;p3(1) =0;p4 (1) =0;
co=c*dt/dx;

Compute results for next time step

o° o° o°

while t<tmax-eps;
t=t+dt;

552 Appendix B: Computer Programs in MATLAB®

Jj=3+1;
for i=2:n;
if (i-n+1) |m==

o°

o°

Backward or upwind difference method

o°

pn(i) = (1-co) *p (i) + co*p(i-1);
elseif m==2

o°

o°

Euler's method

o°

pn(i) =p(i)-co* (p(i+1)-p(i-1))/2;
else m==3

o°

o°

Lax-Wendroff method

o°

pn(i) =p(i)-co*(p(i+1)-p(i-1))/2+ (co™2)*...
(p(i+1)-2*p(i) +p(i-1))/2;
end
end

o°

o°

Store results for display and update previous values

o°

pl(j) =pn(3);p2(j) =pn(5);p3(j) =pn(7);p4(j) =pn(9);
p(2:n) =pn(2:n) ;
nd

o° (D

o°

Plot results

o°

ts=1inspace (0,2, (2/dt+1));
plot (ts,pl,ts,p2,ts,p3,ts,p4)

Appendix C: Computer
Programs in FORTRAN

C.1: Search method for finding the roots of an algebraic equation
C.2: Root solving with the bisection method

C.3: Root solving with the secant method

C.4: Newton—Raphson method for finding the roots of an algebraic equation
C.5: Gaussian elimination method for a system of linear equations
C.6: Tridiagonal matrix algorithm

C.7: The Gauss—Jordan elimination method

C.8: SOR method for solving a system of linear equations

C.9: Lagrange interpolation

C.10: Spline interpolation

C.11: Least-squares method for polynomial regression

C.12: Trapezoidal rule for numerical integration

C.13: Romberg integration

C.14: Euler’s method for solving an ODE

C.15: Runge—Kutta method for solving a second-order ODE

C.16: Finite difference method for a second order-ODE

C.17: Forward time central space (FTCS) method for a parabolic PDE
C.18: Crank—Nicolson method for a parabolic PDE

C.19: SOR method for an elliptic PDE

C.20: Solution of the wave equation

c.1
C SEARCH METHOD FOR FINDING THE ROOTS OF AN ALGEBRAIC
C EQUATION
C
C THIS PROGRAM FINDS THE REAL ROOTS OF THE EQUATION
C F(X) =0
C BY THE SEARCH METHOD
C
C HERE X IS THE UNKNOWN, XMAX IS THE MAXIMUM VALUE OF X,
C F1,F2 ARE THE VALUES OF THE FUNCTION F (X) AT TWO
C CONSECUTIVE X VALUES, DX IS THE INCREMENT IN X, AND
C EPS IS THE CONVERGENCE CRITERION ON X
C
C DEFINE GIVEN FUNCTION F (X)
C
F(X) =0.8*5.67E-8* (1000.0%**4.0-X**4.0)-50.0* (X-500.0)
C $ —(25.0/0.15) * (X-300.0)

553

554 Appendix C: Computer Programs in FORTRAN

c
Cc SPECIFY INITIAL PARAMETERS
c
EPS=10.0
DO 14 I=1,6
XMAX =1000.0
X=300.0
DX=50.0
WRITE (6,16)EPS
16 FORMAT (2X, 'EPS=",F10.5/)
F1=F(X)
4 X=X+ DX
F2=F (X)
A=F1*F2
c
c CHECK FOR CHANGE IN SIGN OF F (X)
c
IF(A .LT. 0.0)THEN
WRITE(6,15)X,F1,F2
c
c CHECK FOR CONVERGENCE TO THE ROOT
c
IF(DX .LT. EPS) GO TO 7
X=X-DX
DX =DX/10.0
GO TO 4

ELSE IF(A .EQ. 0.0) THEN
7 WRITE(6,10)X,F1
15 FORMAT (2X, 'X="',F10.4,4X, 'F1=",F10.4,4X,'F2=",F10.4)

10 FORMAT (/2X, 'TEMPERATURE =',6F10.4,4X,'F(X) ="',F10.4//)
ELSE
IF(X .GT. XMAX) STOP
Fl1=F2
GO TO 4
END IF
c
Cc VARY CONVERGENGE CRITERION
c
14 EPS=EPS/10.0
12 STOP
END
c.2
C ROOT SOLVING WITH THE BISECTION METHOD
C
C X IS THE INDEPENDENT VARIABLE, FUN(X) IS THE GIVEN
C FUNCTION, X1 AND X2 ARE THE TWO EXTREME VALUES OF X
C BOUNDING THE REGION WHICH CONTAINS THE ROOT AT A

Appendix C: Computer Programs in FORTRAN 555

GIVEN ITERATION, X3 IS THE APPROXIMATION TO THE ROOT,
F1l, F2 AND F3 ARE THE CORRESPONDING VALUES OF THE
FUNCTION, AND EPS IS THE CONVERGENCE CRITERION

DEFINE THE GIVEN FUNCTION

oo NN NONe!

FUN (X) =ALOG10 (X) +X*X—-6.0
EPS=1.0
DO 4 I=1,5
X1=2.0
X2=5.0
1 F1=FUN (X1)
F2 =FUN (X2)

Cc COMPUTE APPROXIMATION TO THE ROOT

X3=(X1+X2)/2.0
F3 =FUN (X3)

c CHECK FOR CONVERGENCE

IF (ABS(F3) .LE. EPS) GO TO 2
IF ((F1*F3) .GE. 0.0) THEN
X1=X3
GO TO 1
ELSE
X2 =X3
GO TO 1
END IF
2 WRITE (6,3)EPS,X3,F3
3 FORMAT (2X, 'EPS="',F8.5,4X, 'TERMINAL VELOCITY="',6F10.4,4X,
$ '"FUN(X) =',F8.4)

Cc VARY CONVERGENCE CRITERION

4 EPS=EPS/10
STOP
END

ROOT SOLVING WITH THE SECANT METHOD

X IS THE INDEPENDENT VARIABLE, FUN(X) IS THE GIVEN
FUNCTION, X1 AND X2 ARE THE X VALUES FROM THE TWO
PREVIOUS ITERATIONS, STARTING WITH THE TWO POINTS
BOUNDING THE REGION, X3 IS THE APPROXIMATION TO THE
ROOT, F1, F2 AND F3 ARE THE CORRESPONDING VALUES OF

oo NeNeNe!

556 Appendix C: Computer Programs in FORTRAN

THE FUNCTION, AND EPS IS THE CONVERGENCE CRITERION

DEFINE FUNCTION

NN

FUN(X) =0.2275*X*X/ (465.9 + ALOG (X) **2.58)—-0.017*X—-9.8
X1=150.0
X2=200.0
WRITE (6,12)X1,X2
12 FORMAT (/10X, 'INITIAL X1="',F7.2,10X, 'INITIAL X2="',F7.2//)
EPS=1.0
DO 2 I=1,5
1 F1=FUN (X1)
F2 = FUN (X2)

Cc COMPUTE THE APPROXIMATION TO THE ROOT

X3 = (X1*F2 —X2*F1) / (F2 - F1)
F3 = FUN (X3)

Q

CHECK FOR CONVERGENCE

IF (ABS(F3) .GT. EPS) THEN
X1=X2
X2 =X3
GO TO 1
ELSE
11 WRITE (6,13)EPS,X3,F3
13 FORMAT (2X, 'EPS="',F8.5,4X, 'TERMINAL VELOCITY="',F10.4,4X,
$ 'FUN(X) ="',F8.4)
END IF

Q

VARY CONVERGENCE CRITERION

2 EPS=EPS/10
STOP
END

NEWTON-RAPHSON METHOD FOR FINDING THE ROOTS OF AN
ALGEBRAIC EQUATION

THIS PROGRAM FINDS THE REAL ROOTS OF AN EQUATION
F(X) =0 BY THE NEWTON-RAPHSON METHOD

oo eNe!

Appendix C: Computer Programs in FORTRAN 557

c
c
c
c HERE X IS THE INDEPENDENT VARIABLE, Y1 THE VALUE OF THE
c FUNCTION AT X, Y2 THE FUNCTION AT X+0.001, YD THE
c DERIVATIVE, DX THE INCREMENT IN X FOR THE NEXT
c ITERATION, EPS THE CONVERGENCE CRITERION ON THE
c FUNCTION AND XMAX THE MAXIMUM VALUE OF X
c
c
c DEFINE FUNCTION AND SPECIFY INPUT PARAMETERS
c
Y (X) =294.0%X* (1.0—-EXP(-1000.0/(21.0*(5.0+20.0%*X))))—250.0
EPS=0.001
WRITE (6,15)EPS
15 FORMAT (2X, 'EPS="',F8.4/)
X=0.1
XMAX=5.0
1 Y1=Y(X)
WRITE (6,10) X,Y1
c
c CHECK FOR CONVERGENCE
c
IF(ABS(Y1l) .GT. EPS) THEN
XN=X+0.001
Y2 =Y (XN)
YD= (Y2-Y1)/0.001
c
c CHECK IF RESULTS DIVERGE
c
IF(YD .GE. (1.0/EPS))GO TO 20
c
c COMPUTE NEW APPROXIMATION TO THE ROOT
c
DX =-Y1/YD
X=X+DX
IF(X .GE. XMAX)GO TO 20
GO TO 1
ELSE

5 WRITE(6,12) X,Y1
12 FORMAT (/2X, 'FLOW RATE X="',F8.4,4X, 'FUNCTION

$ F(X)="',F12.6)
10 FORMAT (2X, 'X="',F8.4,4X, 'FUNCTION F(X) =',F12.6)
END IF
20 STOP

END

558

(@]
ul

oo NN NN NN NN NS

(@}

[e O OS]

10
11

12

Appendix C: Computer Programs in FORTRAN

GAUSSIAN ELIMINATION METHOD FOR A SYSTEM OF LINEAR
EQUATIONS

A(I,J) REPRESENTS THE ELEMENTS OF THE AUGMENTED MATRIX
BEING REDUCED BY THE GAUSSIAN ELIMINATION METHOD,
Al(I,J) ARE THE ELEMENTS OF THE ORIGINAL AUGMENTED
MATRIX, X(I) ARE THE UNKNOWN VARIABLES, N IS THE
NUMBER OF EQUATIONS, M IS THE NUMBER OF COLUMNS IN

THE AUGMENTED MATRIX, K REPRESENTS THE NUMBER OF THE
PIVOT ROW AND B(I) REPRESENTS THE CONSTANTS ON THE
RIGHT-HAND SIDE OF THE GIVEN SYSTEM OF EQUATIONS

PARAMETER (IN=10)

DIMENSION A(IN,IN+1),A1(IN,IN+1),X(IN)
PRINT *, 'NUMBER OF EQUATIONS ARE :'
READ (5, *)N

M=N+1

ENTER THE COEFFICIENT MATRIX

PRINT *, 'THE ELEMENTS OF THE ORIGINAL AUGMENTED MATRIX
$ ARE :'
READ (5,*) ((A(I,J),J=1,M),I=1,N)
DO 101 J=1,N
DO 1 I=1,M
Al1(I,J)=A(I,J)
CONTINUE
CONTINUE

CALL SUBROUTINE TO SOLVE THE SYSTEM OF EQUATIONS

CALL GAUSS (N, A, X)

WRITE (6,9)

FORMAT (2X, 'THE SOLUTION TO THE EQUATIONS IS:'//)

DO 10 I=1,N

WRITE(6,11)I,X(I)

CONTINUE

FORMAT (2X, 'X(',I1,"') ="',F12.5)

WRITE (6,12)

FORMAT (//2X, 'THE CONSTANT VECTOR OF THE EQUATIONS
$ Is:'//)

CALCULATE THE CONSTANT VECTOR B USING THE SOLUTION
OBTAINED TO CHECK THE ACCURACY OF THE RESULTS

DO 13 I=1,N
¥Y=0.0
DO 14 J=1,N

Appendix C: Computer Programs in FORTRAN 559

Y=Y+X(J)*Al(I,Jd)

14 CONTINUE
WRITE (6,15)I,Y
15 FORMAT (2X, 'B(',I1,') ="',F12.5)
13 CONTINUE
STOP
END
c
c
SUBROUTINE GAUSS (N,A,X)
DIMENSION A(10,11),X(10)
N1=N-1
M=N+1
c
c FIND THE ROW WITH THE LARGEST PIVOT ELEMENT
c
DO 2 K=1,N1
Kl1=K+1
K2 =K
B0 =ABS (A (K,K))
DO 3 I=K1,N
B1=ABS(A(I,K))
IF((BO—-B1) .LT. 0.0) THEN
B0 =B1
K2=1I
END IF
3 CONTINUE
IF((K2—-K) .NE. 0) THEN
c
c INTERCHANGE ROWS TO OBTAIN THE LARGEST PIVOT ELEMENT
c
DO 5 J=K,M
C=A(K2,d)
A(K2,J) =A(K,J)
5 A(K,J) =C
END IF
DO 2 I=K1,N
c
c APPLY THE GAUSSIAN ELIMINATION ALGORITHM
c
DO 6 J=K1,M
A(I,J)=A(I,J)-A(I,K)*A(K,J)/A(K,K)
6 CONTINUE
A(I,K)=0.0
2 CONTINUE
c
c APPLY BACK SUBSTITUTION
c

X (N) =A(N,M) /A(N,N)
po 7 11=1,N1
I=N-I1

560

oo NeNe!

[e OO Ne!

oo NONe!

Appendix C: Computer Programs in FORTRAN

S=0.0
Jl=I+1
DO 8 J=J1,N
S=S+A(I,J)*X(J)
X(I)=(A(I,M)-S)/A(I,I)
RETURN
END

TRIDIAGONAL MATRIX ALGORITHM
SUBROUTINE TDMA (A,B,C,F,N,T)

A, B AND C ARE THE THREE ELEMENTS IN EACH ROW, WITH B
AT THE DIAGONAL, F IS THE CONSTANT ON THE RIGHT-HAND
SIDE OF EACH EQUATION, N IS THE NUMBER OF EQUATIONS
AND T IS THE VARIABLE TO BE COMPUTED

DIMENSION A (N),B(N),C(N),F(N),T(N)

REDUCE THE A'S TO ZERO BY GAUSSIAN ELIMINATION AND
DETERMINE THE NEW COEFFICIENTS

NN = N-1
DO 5 I=2,N
D=A(I)/B(I—-1)
B(I) =B(I)-C(I—-1)*D
F(I) =F(I)-F(I-1)*D

APPLY BACK SUBSTITUTION

T(N) =F(N) /B(N)
DO 6 I=1,NN
J=N-1I
T(J) = (F(J)—C(J)*T(J+1))/B(J)
RETURN
END

THE GAUSS-JORDAN ELIMINATION METHOD

A(I,J) REPRESENTS THE ELEMENTS OF THE AUGMENTED MATRIX,
X (I) DENOTES THE UNKNOWN VARIABLES, K IS THE NUMBER OF
THE PIVOT ROW, N IS THE NUMBER OF EQUATIONS, AND M IS

Appendix C: Computer Programs in FORTRAN 561

c N+1.

DIMENSION A(10,11),X(10)

PRINT *, 'NUMBER OF EQUATIONS N IS: '
READ (5, *)N

M=N+1

(@}

READ COEFFICIENTS OF THE AUGMENTED MATRIX

PRINT *, 'THE ELEMENTS OF THE AUGMENTED MATRIX ARE: '
READ(5,*) ((A(I,J),d=1,M),I=1,N)

N1=N-1

DO 6 K=1,N

Kl=K+1

K2=K

(@}

SEARCH FOR ROW WITH LARGEST PIVOT ELEMENT

BO=ABS (A (X,K))
DO 1 I=K,N
B1=ABS(A(I,K))
IF((BO—-B1l) .LT. 0.0)THEN
B0 =B1
K2=1
END IF

1 CONTINUE

DECIDE IF ROW INTERCHANGE IS NEEDED FOR MAXIMUM PIVOT
ELEMENT

[e O OS]

IF((K2—-K) .NE. 0)THEN

QN

INTERCHANGE ROW FOR OBTAINING LARGEST PIVOT ELEMENT

DO 2 J=K,M

C=A(K2,J)

A(K2,J) =A(K,J)
2 A(K,J) =C

END IF

Cc APPLY GAUSS JORDAN ELIMINATION

3 DO 4 J=K1,M

a A(K,J) =A(K,J) /A (K, K)
A(K,K)=1.0
DO 6 I=1,N
IF (I .NE. K) THEN
DO 5 J=K1,M

5 A(I,J) =A(I,J)-A(I,K)*A(K,J)
A(I,K)=0.0

562

11

12
13

(@]
©

oo oNe NN NI NI NI NN

Appendix C: Computer Programs in FORTRAN

END IF
CONTINUE

DETERMINE THE UNKNOWNS

DO 7 I=1,N

X(I)=A(I,M)

WRITE (6, 8)

FORMAT (2X, 'THE SOLUTION TO THE EQUATIONS IS:'//)
DO 9 I=1,N

WRITE(6,10)I,X(I)

FORMAT (2X, 'X(',I1,') ="',F12.5)

WRITE (6,11)

FORMAT (//2X, 'THE REDUCED MATRIX IS'//)
DO 13 I=1,N

WRITE (6,12) (A(I,J),J=1,N)

FORMAT (10F10.3)

CONTINUE

STOP

END

SOR METHOD FOR SOLVING A SYSTEM OF LINEAR EQUATIONS

T(I) REPRESENTS THE TEMPERATURE DIFFERENCES FROM THE
AMBIENT TEMPERATURE, TO(I) DENOTES THE TEMPERATURE
DIFFERENCES AFTER THE PREVIOUS ITERATION, TP IS THE
ACTUAL TEMPERATURE,S IS A CONSTANT DEFINED IN THE
PROBLEM AND N IS THE NUMBER OF EQUATIONS

ENTER VALUES OF RELEVANT PARAMETERS

DIMENSION T (31),TO(31)
S=(0.071**2)*(1.0**2) +2.0
W=1.8

N=29

NN = N-1

EPS=0.0001

T(0) =100.0

T(30) =100.0

INPUT STARTING VALUES

J=0
DO 1 I=
T(I)=0.

, N

Appendix C: Computer Programs in FORTRAN 563

(@}

Q
©

oo NN NI NN NS

STORE COMPUTED VALUES AFTER EACH ITERATION

2 DO 3 I=1,N
3 TO(I) =T(I)

COMPUTE THE END VALUES T (1) AND T(N)

T(1) = (T(2) +100.0)/8
T(N) = (100.0+T(N—-1))/S

COMPUTE INTERMEDIATE VALUES

DO 4 I=2,NN
4 T(I)=W*x(T(I+1)+T(I—-1))/S+ (1.0-W)*T(I)

CHECK FOR CONVERGENCE

J=J+1
DO 5 I=1,N
IF(ABS(TO(I)—-T(I)) .GT. EPS) GO TO 2
5 CONTINUE
WRITE (6,6)EPS
6 FORMAT (//2X, 'EPS="',F10.5)
WRITE(6,7)J
7 FORMAT (/2X, 'NUMBER OF ITERATIONS="',I4/)

COMPUTE ACTUAL TEMPERATURES

DO 8 I=0,N+1
TP=T(I) +20.0

8 WRITE(6,9)I,TP

9 FORMAT (2X, 'TP(',I2,') ="',F12.4)
STOP
END

LAGRANGE INTERPOLATION

X IS THE INDEPENDENT VARIABLE AND Y THE DEPENDENT
VARIABLE, WITH X(I) AND Y(I) REPRESENTING THE GIVEN
DATA POINTS. N IS THE NUMBER OF DATA POINTS, XL THE
VALUE OF X AT WHICH INTERPOLATION IS DESIRED AND YL THE
CORRESPONDING COMPUTED VALUE OF Y AT X=XL. A(I)
REPRESENTS THE COEFFICIENTS OF THE LAGRANGE POLYNOMIAL
AND M IS THE NUMBER OF POINTS

AT WHICH INTERPOLATED VALUES ARE NEEDED.

564 Appendix C: Computer Programs in FORTRAN

DIMENSION X (10),Y(10),A(10)
C ENTER THE GIVEN DATA

READ (5, *)
READ (5, *)
READ (5, *)
READ (5, *)
WRITE(6,1

10 FORMAT (2X,
$ ARE:'//)

DO 6 K=1,M
READ (5, *) XL

X(I),I=1,N)
Y(I),I=1,N)
)

THE VALUES FROM LAGRANGE INTERPOLATION

Cc COMPUTE THE COEFFICIENTS OF THE LAGRANGE POLYNOMIAL

DO 2 J=1,N
A(J) =Y (J)
DO 1 I=1,N
IF(I .NE. J) THEN
A(J) =A(J)/(X(J)-X(I))
END IF
1 CONTINUE
2 CONTINUE

CALCULATE THE INTERPOLATED VALUE OF THE DEPENDENT
VARIABLE

[e O OS]

YL=0.0
DO 4 J=1,N
S=1.0
DO 3 I=1,N
IF(I .NE. J) THEN
S=5*(XL-X (1))
END IF

3 CONTINUE

4 YL=YL+ S*A(J)

Cc PRINT THE CALCULATED RESULTS

WRITE (6,5) XL, YL
5 FORMAT (2X, 'XL="',F9.4,4X,'YL=",F9.4)
6 CONTINUE
WRITE (6,7)
7 FORMAT (//2X, 'COEFFICIENTS OF THE LAGRANGE POLYNOMIAL
$ ARE:'")
DO 9 I=1,N
WRITE(6,8)I,A(I)
8 FORMAT (/4X,'A(',I1,')=",F9.4)

Appendix C: Computer Programs in FORTRAN 565

9 CONTINUE
STOP
END
c.10
Cc SPLINE INTERPOLATION
c
Cc V IS THE INDEPENDENT VARIABLE, T THE DEPENDENT
Cc VARIABLE, M THE NUMBER OF DATA POINTS, T2 THE SECOND
Cc DERIVATIVE OF THE DEPENDENT VARIABLE, VP THE VALUE OF V
Cc AT WHICH THE INTERPOLATED VALUE TP IS DESIRED AND
Cc V(I),T(I) REPRESENT THE VALUES AT THE DATA POINTS.
c
c
DIMENSION V(15),T(15),T2(15)
c
Cc ENTER INPUT VARIABLES AND DATA
c
PRINT *,'ENTER THE NUMBER OF DATA POINTS'
READ *,M
OPEN (UNIT=11,FILE= 'V.DAT')
OPEN (UNIT=12,FILE= 'T.DAT')
READ (11,*) (V(I),I=1,M)
READ (12,*) (T(I),I=1,M)
CLOSE (UNIT=11)
CLOSE (UNIT=12)
c
c CALL SUBROUTINE TO COMPUTE THE SECOND DERIVATIVE T2
c
CALL DERIVATIVE(M,V,T,T2)
c
Cc SPECIFY VALUE OF V FOR INTERPOLATION
c
2 PRINT *,'ENTER THE VALUE OF V FOR INTERPOLATION'
READ *,VP
c
c CALL SUBROUTINE TO USE SPLINE INTERPOLATION
c
CALL SPLINE(M,V,T,T2,VP,TP)
c
c OUTPUT RESULTS
c

WRITE(6,4)VP, TP

4 FORMAT (2X, 'VOLTAGE V="',F9.5,4X, 'TEMPERATURE

S T="',F9.5//)

PRINT *,'IF YOU WANT ADDITIONAL INTERPOLATION, TYPE 1'
READ *,MORE
IF (MORE .EQ. 1) GO TO 2
STOP
END

566

oo NN N NI NS

(@}

(@}

NN

Appendix C: Computer Programs in FORTRAN

SUBROUTINE DERIVATIVE

THIS SUBROUTINE CALCULATES THE SECOND DERIVATIVE VALUES
T2 NEEDED FOR A CUBIC SPLINE INTERPOLATION. A,B AND C
ARE THE ELEMENTS IN EACH ROW OF THE TRIDIAGONAL MATRIX
AND D REPRESENTS THE CONSTANTS ON THE RIGHT-HAND SIDE
OF THE EQUATIONS THAT YIELD THE T2 VALUES.

SUBROUTINE DERIVATIVE (M,V,T,T2)
DIMENSION V(15),T(15),T2(15),A(15),B(15),C(15),D(15)

COMPUTE THE ELEMENTS OF THE TRIDIAGONAL MATRIX

C(1) =V (2)-Vv(1)

DO 1 I=2,M-1

A(I)=V(I)-V(I-1)

B(I)=2.0*%(V(I+1)-V(I-1))

C(I)=V(I+1)-V(I)

D(I)=6.0*((T(I+1)-T(I))/C(I)- (T(I)-T(I-1))/A(I))

SOLVE THE TRIDIAGONAL SYSTEM FOR THE SECOND DERIVATIVE

DO 2 I=3,M—1

B(I) =B(I)—-A(I)*C(I—-1)/B(I-1)
D(I)=D(I)—-A(I)*D(I-1)/B(I—-1)
T2(1) =0
T2 (M) =0.
T2(M—-1) =D(M—-1)/B(M—-1)

DO 3 I=2,M—2

IN=M-1I

T2 (IN) = (D(IN)—C(IN)*T2(IN+1))/B(IN)
RETURN

END

SUBROUTINE SPLINE
THIS SUBROUTINE OBTAINS THE RELEVANT CUBIC SPLINE AND
COMPUTES THE DESIRED INTERPOLATED VALUE OF THE
DEPENDENT VARIABLE

SUBROUTINE SPLINE (M,V,T,T2,VP,TP)
DIMENSION V(15),T(15),T2(15)

DETERMINE THE INTERVAL IN WHICH VP LIES

Appendix C: Computer Programs in FORTRAN 567

DO 1 I=1,M-1
IF (VP .LE. V(I+1)) THEN
S1=V(I+1)-V(I)
S2=VP-V(I)
S3=V(I+1)-VP

COMPUTE THE INTERPOLATED VALUE FROM THE CUBIC SPLINE

TP=T2(I)*S3*(S3**2/S1-S81)/6.0+T2(I+1)*S2
* (S2**2/S1-S1)/6.0+T(I)*S3/S1+T(I+1)*S2/S1
GO TO 2
END IF
CONTINUE
RETURN
END

LEAST-SQUARES METHOD FOR POLYNOMIAL REGRESSION

DIMENSION A(10,11),C(10),X(25),Y(25)

ENTER THE INPUT DATA

OPEN (UNIT=15,FILE = 'REGRES.DAT')
READ (15, *) MP

READ (15, *)ND

READ (15, *) (X(I),I=1,ND)
READ(15,*) (Y(I),I=1,ND)

N=MP+1

M=N+1

INITIALIZE THE COEFFICIENT MATRIX

DO 2 K=1,ND

A(I,J) =A(I,J) +X(K)**L

CONTINUE

DO 4 K=1,ND

A(I,M) =A(I,M) +Y(K)*X(K)**(I-1)

568 Appendix C: Computer Programs in FORTRAN

5 CONTINUE
Cc CALL SUBROUTINE TO SOLVE THE SYSTEM OF EQUATIONS

CALL GAUSS(N,A,C)
WRITE (6,12)MP

12 FORMAT (2X, 'THE ORDER OF THE POLYNOMIAL="',I2/)
WRITE (6, 9)

9 FORMAT (2X, 'THE CONSTANTS OF THE POLYNOMIAL ARE:'/)
DO 10 I=1,N

10 WRITE(6,11)I,C(I)

11 FORMAT (2X,'C(',I1,') ="',F12.5)

CALCULATE THE VALUES OBTAINED FROM THE POLYNOMIAL IN
ORDER TO CHECK THE ACCURACY OF THE RESULTING BEST FIT

[e O OS]

WRITE (6,13)
13 FORMAT (/2X, 'THE VALUES CALCULATED FROM THE BEST FIT
S ARE:'/)
DO 7 I=1,ND
Y(I)=0.0
DO 6 J=1,N
6 Y(I)=Y(I)+C(J)*X(I)**(J-1)
WRITE(6,8)I,X(I),I,Y(I)
8 FORMAT (2X, 'X(',I2,') ="',F10.4,5X,'Y(',I1,"') =",
S F10.4)
CLOSE (UNIT=15)
STOP
END

~

SUBROUTINE GAUSS(N,A,C)
DIMENSION A(10,11),C(10)
N1=N-1
M=N+1

FIND THE ROW WITH THE LARGEST PIVOT ELEMENT

(@}

DO 2 K=1,N1
Kl=K+1
K2 =K
BO=ABS (A (X,K))
DO 3 I=K1,N
B1=ABS(A(I,K))
IF((B0O-B1) .LT. 0.0) THEN
B0 =B1
K2=1
END IF

3 CONTINUE
IF((K2-K) .NE. 0) THEN

Appendix C: Computer Programs in FORTRAN 569

c INTERCHANGE ROWS TO OBTAIN THE LARGEST PIVOT ELEMENT
c
DO 5 J=K,M
D=A(K2,J)
A(K2,J) =A(K,J)
5 A(K,J) =D
END IF
DO 2 I=K1,N
c
c APPLY THE GAUSSIAN ELIMINATION ALGORITHM
c
DO 6 J=K1,M
6 A(I,J) =A(I,J)-A(I,K)*A(K,J)/A(K,K)
2 A(I,K)=0.0
c
c APPLY BACK SUBSTITUTION
c
C(N) =A(N,M) /A (N,N)
DO 7 I1=1,N1
I=N-I1
$=0.0
Jl=I+1
DO 8 J=J1,N
8 S=S+A(I,J)*C(J)
7 C(I)=(A(I,M)-8)/A(I,I)
RETURN
END
c.12
c TRAPEZOIDAL RULE FOR NUMERICAL INTEGRATION
c
c F(X) IS THE FUNCTION TO BE INTEGRATED AND REPRESENTS
c THE ELECTRIC CURRENT AS A FUNCTION OF TIME T IN
c SECONDS, V IS THE VOLTAGE, Q IS THE ELECTRICAL CHARGE
c IN COULOMBS, C IS THE CAPACITANCE IN FARADS, DT IS THE
c TIME STEP, N IS THE NUMBER OF SUBDIVISIONS, AND TMIN
c AND TMAX ARE THE MINIMUM AND MAXIMUM VALUES OF T.
c
IMPLICIT REAL (A-H,0-2)
c
c DEFINE FUNCTION TO BE INTEGRATED
c
F(X) =4.0%(1.0-EXP(-0.5))* (EXP(-0.5* (X-1.0)))
$ *(1.0—-EXP (X))
c
c ENTER INPUT VALUES
c
TMIN=1.0

C=0.025

570 Appendix C: Computer Programs in FORTRAN

PRINT *,'ENTER THE STEP SIZE DT'
READ *,DT

DO 6 J=1,6

WRITE(6,7)DT

7 FORMAT (//5X, 'STEP SIZE DT="',F7.5)
WRITE (6,1)
1 FORMAT (/6X, 'TIME T', 19X, 'CHARGE Q', 17X, 'VOLTAGE V')
WRITE (6,2)
2 FORMAT (5X,8 ('—'),17X,10('="'),15X,11('=") /)
c
C VARY TIME AT WHICH CHARGE IS TO BE COMPUTED
c
DO 3 TMAX=2.0,20.0,2.0
N = (TMAX — TMIN) /DT
c
c COMPUTE SUM OF INTERIOR ORDINATES FOR TRAPEZOIDAL RULE
c
SUM=0.0
T = TMIN + DT
DO 4 I=1,N-1
SUM = SUM + F (T)
T=T+DT
4 CONTINUE
c
C APPLY TRAPEZOIDAL RULE
c
Q= (DT/2.0)* (F(TMIN) +2.0*SUM + F (TMAX))
v=09/C
WRITE (6,5) TMAX,Q,V
5 FORMAT (5X,F5.2,21X,E9.4,16X,E9.4)
3 CONTINUE
6 DT =DT/2
STOP
END
c.13
c ROMBERG INTEGRATION
c
c F(X) IS THE FUNCTION TO BE INTEGRATED, X THE
c INDEPENDENT VARIABLE, XMIN AND XMAX THE MINIMUM AND
c MAXIMUM VALUES OF X, DX THE SEGMENT WIDTH, ERF (Z) THE
c ERROR FUNCTION AT Z, EPS THE CONVERGENCE CRITERION, Y
c THE VALUE OF THE INTEGRAL CORRESPONDING TO AN
c EXTRAPOLATION, M THE NUMBER OF SEGMENTS,
c AND DIF THE DIFFERENCE BETWEEN THE RESULTS FOR THE TWO
c HIGHEST ORDERS OF EXTRAPOLATION AT A GIVEN NUMBER OF
c SEGMENTS .
c

DIMENSION Y (8,38)

Appendix C: Computer Programs in FORTRAN

c DEFINE FUNCTION TO BE INTEGRATED
c
F(X) = (2.0/SQRT(3.14159)) *EXP (-X**2)
c
c ENTER INPUT VALUES
c
EPS=0.00001
XMIN=0.0
DO 7 J=1,4
PRINT *,'ENTER THE VALUE OF Z'
READ *,XMAX
DX = XMAX — XMIN
c
c FIRST ORDER (TRAPEZOIDAL RULE) CALCULATION
c
N=1
Y(1,1) =0.5*DX* (F (XMIN) + F (XMAX))
WRITE(6,1)N,Y(1,1)
1 FORMAT (2X, 'NO. OF ITERATIONS=', I2, 5X,
$=', F9. 6)
2 M=2%* (N—-1)
DX=DX/2.0
N=N+1
Y(1,N) =0.5*Y(1,N-1)
DO 3 K=1,M
X=XMIN+ (2*K-1) *DX
3 Y(1,N) =Y (1,N) +DX*F (X)
c
c COMPUTE HIGHER ORDER EXTRAPOLATIONS
c
DO 4 K=2,N
4 Y(K,N) = (4.0** (K-1)*Y(K-1,N) - Y(K-1,N-1))
S /(4.0%* (K—1) —1.0)
DIF=ABS(Y(N,N) —Y(N-1,N))
WRITE(6,5)N,Y(N,N)
5 FORMAT (2X, 'NO. OF ITERATIONS=',I2,5X,
$ "ERF(Z) =',F9.6)
c
c APPLY CONVERGENCE CRITERION
c

IF (DIF .GT. EPS)THEN
IF(N .LT. 8)THEN
GO TO 2
ELSE
PRINT *, 'MORE THAN 8 ITERATIONS'
END IF
ELSE

571

'"ERF (Z)

572 Appendix C: Computer Programs in FORTRAN

WRITE (6, 6) XMAX, Y (N, N)

6 FORMAT (/4X, 'VALUE OF Z="',F5.3,5X, 'ERF(Z) ="',
$ F9.6//)
END IF
7 CONTINUE
STOP
END
C.14
c EULER'S METHOD FOR SOLVING AN ODE
c
c THIS PROGRAM NUMERICALLY SOLVES A FIRST ORDER
c DIFFERENTIAL EQUATION USING EULER’S METHOD
c
c
c
c
c IN THE FOLLOWING PROGRAM
c
c T STANDS FOR TIME T EE STANDS FOR E.M.F. OF THE
$ BATTERY
c
c EI STANDS FOR CURRENT ER STANDS FOR RESISTANCE
c
c EPS IS THE CONVERGENCE CRITERION
c
c DT IS STEP SIZE IN T EL STANDS FOR INDUCTANCE
c
c
IMPLICIT REAL (A-H,0-2)
OPEN (UNIT=10,FILE="ET')
OPEN (UNIT=11,FILE="EI')
c
c FILE 'ET' CONTAINS VALUES OF TIME T
c FILE 'EI' CONTAINS VALUES OF EI AT CORRESPONDING T
c
c INPUT PARAMETERS
PRINT*, ' INPUT PARAMETERS'
PRINT*, 'EE="','ER="','EL ='
READ*, EE, ER, EL
PRINT*, 'STEP SIZE DT ='
READ*, DT
PRINT*, ' CONVERGENCE CRITERION EPS ='
READ* , EPS
c
c SET INITIAL CONDITIONS:
c

T=0.0

Appendix C: Computer Programs in FORTRAN 573

EI=0.
WRITE (10, *)T
WRITE (11, *)EI

c
c CALCULATIONS FOR THE NEXT STEP USING EULER'S METHOD
c
11 T=T+DT
EI =EI +DT* (EE/EL — ER*EI/EL)
c
c AT T=0.5 SEC. THE E.M.F. IS REMOVED FROM THE CIRCUIT
c
IF(T.GT.0.5)G0O TO 99
c
WRITE (10, *)T
WRITE (11, *)EI
GO TO 11
99 PRINT*,'T="',T,'EI=",EI
PRINT*, 'AT THIS STAGE E.M.F. IS REMOVED FROM THE
$ CIRCUIT'
100 EI =EI +DT* (-ER*EI/EL)
IF(EI.LE.EPS) GO TO 199
WRITE (10, *)T
WRITE (11, *)EI
T=T+DT
GO TO 100
199 PRINT*, 'TOTAL TIME FOR EI TO BECOME LESS THAN
$ EPS= ',T,' SEC.'
PRINT*, 'THE VALUES OF TIME T ARE IN THE FILE ET'
PRINT*, 'THE VALUES OF CURRENT EI ARE IN THE FILE EI'
PRINT*’ IR R RS EEEEEEE RS N
CLOSE (10)
CLOSE (11)
STOP
END
c.15

RUNGE-KUTTA METHOD FOR A SECOND-ORDER ODE

THIS PROGRAM NUMERICALLY SOLVES A SECOND ORDER
DIFFERENTIAL EQUATION USING THE 4TH ORDER RUNGE-KUTTA
METHOD

IN THE FOLLOWING PROGRAM

T STANDS FOR TIME DT STANDS FOR STEP SIZE IN T

X STANDS FOR DISPLACEMENT V STANDS FOR VELOCITY

oo oNeNeNeo NN NI NONONe!

574 Appendix C: Computer Programs in FORTRAN

c A AND B ARE THE CONSTANTS APPEARING IN THE
C DIFFERENTIAL EQUATION
c
c G IS THE ACCELERATION DUE TO GRAVITY=9.8 M/ (SEC**2)
c
IMPLICIT REAL (A-H,0-2Z)
OPEN (UNIT=14,FILE= 'RT')
OPEN (UNIT=15,FILE= 'RX')
OPEN (UNIT=16,FILE= 'RV')
c
c VALUES OF T ARE WRITTEN IN FILE RT
c VALUES OF X ARE WRITTEN IN FILE RX
c VALUES OF V ARE WRITTEN IN FILE RV
c
c
c INPUT PARAMETERS
PRINT*, ' INPUT PARAMETERS'
PRINT*, 'A= ', 'B= !
READ*,A, B
PRINT*, 'DT=
READ*, DT
G=9.8
c
c SET INITIAL CONDITIONS
c
T=0.
X=0.
V=100.
WRITE (14, *)T
WRITE (15, *)X
WRITE (16, *)V
c
c NEXT TIME STEP
c
11 0=X
Z=V
c
C Q AND Z ARE VALUES OF X AND V RESPECTIVELY, AT PREVIOUS
c TIME STEP
c
c CALCULATIONS FOR THE NEXT STEP USING 4TH ORDER
c RUNGE-KUTTA METHOD
c

RK1X =DT*Z
RK1V =DT* (-G —A*Z —B*(Z**2))
RK2X =DT* (Z + RK1V/2.

RK2V =DT* —A*(Z—FRKlV/2.) —B* (Z+RK1V/2.) **2)
7 +RK2V/2.

RK3V =DT* —A*(Z—FRK2V/2.) —B* (Z 4+ RK2V/2.) **2)

RK4X = DT* (Z 4+ RK3V)

(
(
(-G
RK3X =DT* (
(-G
(
(-G

RK4V =DT* —A* (Z+RK3V) —-B*(Z +RK3V) **2)

Appendix C: Computer Programs in FORTRAN 575

X=0Q +(RK1X +2.*RK2X+2.*RK3X + RK4X) /6.
V=2 +(RK1V+2.*RK2V + 2. *RK3V +RK4V) /6.

T=T+DT
C
C CALCULATIONS ARE STOPPED WHEN V BECOMES ZERO.
C
IF(V.GT.0.) THEN
WRITE (14,*)T
WRITE (15, *)X
WRITE (16,*)V
GO TO 11
END IF
C
C OUTPUT RESULTS
C
PRINT*, 'THE VELOCITY HAS BECOME ZERO OR NEGATIVE'
PRINT*, 'TOTAL TIME TAKEN TO REACH MAXIMUM HEIGHT =',
$ T, 'SEC'
PRINT*, 'TOTAL HEIGHT REACHED BY THE
PROJECTILE=",X, '"METERS'
CLOSE (UNIT=14)
CLOSE (UNIT=15)
CLOSE (UNIT=16)
STOP
END
C.16

FINITE DIFFERENCE METHOD FOR A SECOND-ORDER ODE

THIS PROGRAM SOLVES A SECOND ORDER ORDINARY
DIFFERENTIAL EQUATION

USING THE FINITE DIFFERENCE METHOD
NOMENCLATURE :

X: DIMENSIONLESS X COORDINATE

TH : ARRAY FOR TEMPERATURE (DIMENSIONLESS)
CONSTANT APPEARING IN THE DIFFERENTIAL EQUATION
LOWER DIAGONAL OF THE TRIDIAGONAL MATRIX

MAIN DAIGONAL OF THE TRIDIAGONAL MATRIX

UPPER DIAGONAL OF THE TRIDIAGONAL MATRIX
ARRAY FOR RIGHT HAND SIDE COLUMN MATRIX
ARRAY CONTAINING SOLUTIONS OF THE TRIDIAGONAL
SYSTEM

: NUMBER OF GRID POINTS

DX : GRID SIZE

HUQwwo

oo NN NN NN NN NN N NN NI NONe!
=1

576 Appendix C: Computer Programs in FORTRAN

(@]

EQUATION SOLVED: (TH)''= (P*P)* (TH) FIN PROBLEM

IMPLICIT REAL (A-H,0-2)

PARAMETER (N=51)

DIMENSION A(N-2),B(N-2),C(N-2),D(N-2),T(N-2),TH(N)
OPEN (UNIT=50,FILE="IX")

OPEN (UNIT=51,FILE="ITH')

FILE IX CONTAINS VALUES OF X
FILE ITH CONTAINS VALUES OF TEMPERATURE, TH

INPUT PARAMETERS

oMo NeNe!

PRINT*, 'P="
READ*, P
DX=1./(N-1)
PRINT*, 'DX="',DX

VALUE OF N CAN BE CHANGED. THE DIMENSION STATEMENT
SHOULD BE MODIFIED ACCORDINGLY .

SUBROUTINE 'BC' PROVIDES THE BOUNDARY CONDITIONS

oMo NeNe!

CALL BC(TH,N)

'"FMTDM' FORMS THE TRIDIAGONAL MATRIX AND THE RIGHT HAND
SIDE COLUMN MATRIX

oo NONe!

CALL FMTDM(DX,P,N,TH,A,B,C,D)

THE TRIAGINAL MATRIX THUS GENERATED IS OF DIMENSION N -2

THE SUBROUTINE 'TRIDIAG' SOLVES THE TRIDIAGONAL SYSTEM.
THE SOLUTIONS ARE RETRIEVED IN THE ARRAY 'T'.

oMo NeNe!

CALL TRIDIAG(A,B,C,D,T,N-2)

QN

BACK SUBSTITUTION FROM MATRIX 'T' TO 'TH'

(@]

DO 5 I=2,N-1
TH(I)=T(I-1)
5 CONTINUE

C CALCULATIONS OVER

X =-DX
DO 6 I=1,N
X =X+ DX
WRITE (50, *)X
WRITE (51, *)TH(I)
6 CONTINUE

Appendix C: Computer Programs in FORTRAN 577

oo NONe!

oo NN N NeS!

PRINT *,'THE VALUES OF X ARE STORED IN FILE IX'
PRINT *, 'THE VALUES OF TEMPERATURE ARE STORED IN FILE

S ITH'

STOP
END

THE FOLLOWING SUBROUTINE FORMS THE TRIDIAGONAL MATRIX
OF THE FORM

A*T(I-1) +B*T(I) +C*T(I+1) =R

SUBROUTINE FMTDM (P,DX,N,T,A,B,C,R)
DIMENSION T (N),A(N),B(N),C(N),R(N)
A(1) =0.0
DO 1 I=2,N-2
A(I)=1.0
CONTINUE
DO 2 I=1,N-3
C(I)=1.0
CONTINUE
C(N-2)=0.0
DO 3 I=1,N-2
B(I)= —(2.0 +(P**2)* (DX**2))
CONTINUE
R(1)= -T(1)
R(N-2)= —T(N)
DO 4 I=2,N-3
R(I)=0.0
CONTINUE
RETURN
END

THE FOLLOWING SUBROUTINE SOLVES THE TRIDIAGONAL SYSTEM
USING THE THOMAS ALGORITHM

A,B,C ARE THE DIAGONALS AS MENTIONED IN THE MAIN
PROGRAM.
F CONTAINS THE RIGHT HAND SIDE. T CONTAINS SOLUTIONS.

SUBROUTINE TRIDIAG(A,B,C,F,T,M)
DIMENSION A (M),B(M),C(M),F(M),T(M)
PRINT*, 'SOLVING TRIDIAG'

DO 2 I=2,M
D=A(I)/B(I-1)
B(I)= B(I) -C(I—-1)*D
F(I) =F(I)-F(I—-1)+*D

CONTINUE

T (M) =F (M) /B (M)

DO 3 I=1,M-1

578

Cc.17

oo NN NN NN NN NN NN NN NN NN NN NN NN N e

Appendix C: Computer Programs in FORTRAN

J=M-1I
T(J) = (F(J) - C(J)*T(J+1))/B(J)

CONTINUE

RETURN

END

SET THE BOUNDARY CONDITIONS

SUBROUTINE BC (T, IL)
DIMENSION T (IL)
T(1)=1.0

T(IL) =0.5

RETURN

END

FORWARD TIME CENTRAL SPACE (FTCS) METHOD FOR A
PARABOLIC PDE

THIS PROGRAM SOLVES A PARABOLIC EQUATION BY THE FTCS
METHOD

WHEN THE PROGRAM IS RUN, IT PROMPTS FOR THE INPUT
VALUES REQUIRED. TYPE IN THE INPUT VALUES AND THE
OUTPUT WILL BE STORED IN A FILE CALLED 'FTCS.DAT'.

DESCRIPTION OF THE INPUT PARAMETERS:

IL IS THE NUMBER OF GRID POINTS.

DX IS THE GRID SIZE.

TINIT IS THE INITIAL VALUE OF THE SOLUTION VECTOR,
THETA, TAKEN AS UNIFORM OVER THE WHOLE DOMAIN.

NLIM IS THE MAXIMUM NUMBER OF TIME STEPS BEFORE
STOPPING.

NSTEP IS THE NUMBER OF TIME STEPS AFTER WHICH PRINTOUT
OCCURS.

DESCRIPTION OF OTHER VARIABLES USED:

T IS THE SOLUTION, THETA, AT THE NTH TIME STEP.

TOL IS THE SOLUTION, THETA, AT THE (N-1)TH TIME STEP.

DT IS THE TIME STEP USED. THE PROGRAM USES THE
MAXIMUM TIME STEP ALLOWED FROM STABILITY
CONSIDERATIONS.

Appendix C: Computer Programs in FORTRAN 579

c
c

oo NeNe!

[eeNONe!

10

15

ENTER INPUT PARAMETERS

IMPLICIT REAL*8 (A—H,0-2Z)

DIMENSION T (50),TOL(50)

PRINT*, 'ENTER NO. OF GRID POINTS, IL='

READ (5, *) IL

PRINT*, 'ENTER GRID SIZE, DX='"

READ (5, *) DX

PRINT*, 'ENTER INITIAL VALUE OF CONCENTRATION TAKEN AS'
PRINT*, 'UNIFORM OVER THE WHOLE DOMAIN'

READ (5, *) TINT

PRINT*, 'ENTER MAXIMUM NO. OF TIME STEPS BEFORE
STOPPING'

READ (5, *) NLIM

PRINT*, 'ENTER NO. OF TIME STEPS AFTER WHICH PRINTOUT

OCCURS'

READ (5, *) NSTEP
ISTEP1=0
ISTEP2=0
TIME=0.

OPEN FILES FOR STORING NUMERICAL RESULTS

OPEN (UNIT=10,FILE= 'FTCS.DAT')

SET THE INITIAL CONDITIONS

DO 10 I=1,IL
T(I) =TINT
TOL (I) = TINT
CONTINUE

CALCULATE THE MAXIMUM POSSIBLE TIME STEP TO AVOID
INSTABILITY

DT =DX**2/2.

PRINT*, 'TIME STEP="',DT
WRITE (10,120)DX,DT

WRITE (10,130)IL

WRITE (10,140) TIME

WRITE (10,150) (T(I),I=1,1IL)

INCREMENT THE ITERATION COUNTER AND CHECK IF THE CHOSEN
MAXIMUM NUMBER OF ITERATIONS IS EXCEEDED.

ISTEP1=ISTEP1+1

ISTEP2 =ISTEP2+1

TIME =TIME + DT
IF(ISTEP1.GT.NLIM)GO TO 50

SAVE THE SOLUTION AT THE PREVIOUS TIME STEP

580 Appendix C: Computer Programs in FORTRAN

c
DO 20 I=1,IL
TOL(I) =T(I)
20 CONTINUE
c
Cc APPLY FTCS SCHEME AT INTERIOR POINTS
c
DO 30 I=2,IL-1
T(I)=TOL(I) +DT*(TOL(I+1)—2.*TOL(I) +TOL(I—1))/DX**2
30 CONTINUE
c
Cc APPLY BOUNDARY CONDITIONS
c
T(1)=1.
T(IL) =0
c
Cc OUTPUT THE RESULTS
c
IF (ISTEP2.EQ.NSTEP) THEN
WRITE(10,140)TIME
WRITE(10,150) (T(I),I=1,1IL)
ISTEP2=0
GO TO 15
END IF
GO TO 15
120 FORMAT (/,4X,'DX="',F4.2,4X,'DT=",F4.2)
130 FORMAT (//,4X,'IL=",13)
140 FORMAT (/,1X,'AT T="',F7.3,1X, 'CONCENTRATION FIELD IS:')
150 FORMAT (1X,20 (F8.4,2X))
50 CLOSE (UNIT=10)
STOP
END
c.18

CRANK-NICOLSON METHOD FOR A PARABOLIC PDE

THIS PROGRAM SOLVES 1D, UNSTEADY HEAT EQUATION BY
EMPLOYING IMPLICIT CRANK-NICOLSON SCHEME. EQUATION
SOLVED IS THE ONE IN EXAMPLE 10.2.

THE OUTPUT WILL BE IN CN.DAT

SUBROUTINE 'FMTDIG' FORMS THE TRIDIAGONAL MATRIX.
'TDIG'INVERTS THE MATRIX AND SOLVES FOR TEMPERATURE.

oHoNoNoNe NN NI NN N Ne!

DESCRIPTION OF INPUT PARAMETERS:

Appendix C: Computer Programs in FORTRAN 581

(@} oo NN NONe!

oo NN N NeS!

100

110

IL
DX
DT

NUMBER OF GRID POINTS.
DIMENSIONLESS GRID SIZE.
DIMENSIONLESS TIME STEP.

TINT THE INITIAL CONDITIONS TAKEN AS UNIFORM OVER THE

WHOLE DOMAIN.

NLIM THE MAXIMUM NUMBER OF TIME STEPS TAKEN BEFORE

STOPPING.

NSTEP THE NUMBER OF TIME STEPS AFTER WHICH PRINTOUT

OCCURS.

DESCRIPTION OF OTHER VARIABLES USED:

T

THE DIMENSIONLESS SOLUTION AT NTH TIME STEP.

TOL THE DIMENSIONLESS SOLUTION AT (N-1)TH TIME STEP.

PARAMETER (IN=50)

DIMENSION T (IN), TOL (IN)

DIMENSION A (IN),B(IN),C(IN),R(IN), SOLN(IN)

PRINT*, 'ENTER NUMBER OF GRID POINTS, IL='"

READ (5, *) IL

PRINT*, 'ENTER GRID SIZE, DX='"

READ (5, *) DX

PRINT*, 'ENTER TIME STEP,DT="

READ (5, *) DT

PRINT*, 'ENTER INITIAL CONDITIONS, TAKEN AS UNIFORM'
PRINT*, 'OVER THE WHOLE DOMAIN'

READ (5, *) TINT

PRINT*, 'ENTER MAXIMUM NO. OF TIME STEPS BEFORE
STOPPING'

READ (5, *) NLIM

PRINT*, 'ENTER NO. OF TIME STEPS AFTER WHICH PRINTOUT
OCCURS'

READ (5, *) NSTEP

OPEN THE OUTPUT FILE

OPEN (UNIT=10,FILE='CN.DAT')
WRITE(10,100)DX,DT

FORMAT (/,4X,'DX="',F4.2,2X,'DT=",F4.2)
WRITE(10,110)IL

FORMAT (/,4X,'IL=",13,//)

ISTEP1=0
ISTEP2=0
TIME=0.

SET THE INITIAL CONDITION

582 Appendix C: Computer Programs in FORTRAN

DO 10 I=1,IL

T(I)=TINT
TOL (I) =TINT
10 CONTINUE
c
c SET THE BOUNDARY CONDITIONS
c
CALL BCOND(T,DX,DT, IL)
WRITE (10,120) TIME
WRITE(10,130) (T(I),I=1,IL)
c
c SOLVE FOR T ON INTERIOR POINTS AT NTH TIME STEP
c
c INCREMENT THE ITERATION COUNTERS AND CHECK FOR THE
c MAXIMUM LIMIT OF ITERATIONS
c
20 ISTEP1 =ISTEP1 +1
ISTEP2 = ISTEP2 + 1
TIME = TIME + DT
IF (ISTEP1.GT.NLIM)GO TO 40
c
c FORM THE TRIDIAGONAL SYSTEM OF EQUATIONS
c
CALL FMTDIG (DX,DT,IL,T,TOL,A,B,C,R)
N=IL-1
c
c SOLVE THE TRIDIAGONAL SYSTEM OF EQUATIONS
c
CALL TDIG(A,B,C,R,SOLN,N)
c
c OBTAIN DESIRED SOLUTION
c
DO 26 I=2,IL
T(I) =SOLN(I)
26 CONTINUE
c
c IMPOSE THE BOUNDARY CONDITIONS
c
CALL BCOND(T,DX,DT, IL)
c
c SAVE SOLUTION FOR NEXT TIME STEP
DO 25 I=1,IL
TOL(I) =T(I)
25 CONTINUE
c
c OUTPUT THE RESULTS
c

IF (ISTEP2.EQ.NSTEP) THEN
WRITE(10,120) TIME
120 FORMAT (/,1X,'AT T="',F7.3,1X, 'TEMPERATURE FIELD IS:')
WRITE(10,130) (T(I),I=1,1IL)

Appendix C: Computer Programs in FORTRAN

130

40

FORMAT (1X,20 (F8.4,2X))
ISTEP2 =0
GO TO 20

END IF

GO TO 20

CLOSE (UNIT =10)

STOP

END

583

A AR R R EREREREREEREREREEEEREREREEEEREREEEEREREREEEEREEREREREEE]

oo NN N NeS!

oo OO Ne!

10

20

SUBROUTINE FMTDIG (DX,DT,IL,T,TOL,A,B,C,R)

THIS SUBROUTINE FORMS THE TRIDIAGONAL MATRIX FOR THE
CRANK-NICOLSON METHOD. THE GENERIC FORM OF THE EQUATION
IS:

A*T(I-1) +B*T(I) +C*T(I+1) =R

DIMENSION T (IL),TOL(IL),A(IL),B(IL),C(IL),R(IL)
DO 10 I=2,IL-1
A(I-1) =-DT/ (2.*DX**2)
C(I-1) =-DT/(2.*DX**2)
CONTINUE
DO 20 I=2,IL-1
B(I-1)=1.+DT/DX**2

R(I-1) =TOL(I) +DT* (TOL(I+1) —2.*TOL(I) +TOL(I-1))

/ (2. *DX*%*2)

INCORPORATE THE APPROPRIATE BOUNDARY CONDITIONS:

LEFT BOUNDARY:

IF(I.EQ.2) R(I-1)=R(I-1)-A(I-1)*T(I-1)
IF(I.EQ.IL-1)THEN

A(I) =—DT/DX**2

B(I) = (1.+DT/DX**2)

R(I) = (1.-DT/DX**2)*TOL (IL) + (DT/DX**2) *TOL (IL—1)
END IF

CONTINUE

RETURN

END

AR R R EREREREREEREREREEEEREREREEEEREREEEEREREREEEEREEREREREE]

oo NONe!

SUBROUTINE TDIG(A,B,C,R,SOLN,N)

SOLUTION IS RETURNED IN THE ARRAY CALLED 'SOLN'.

THIS SUBROUTINE INVERTS A TRIDIAGONAL MATRIX BY THOMAS
ALGORITHM.

584

20

30

Appendix C: Computer Programs in FORTRAN

DIMENSION A(N),B(N),C(N),R(N),bSOLN (N)
DO 20 I=2,N
D=A(I)/B(I-1)
B(I) =B(I)-C(I-1)*D
R(I)=R(I)-R(I-1)*D
CONTINUE
SOLN(N+ 1) =R(N) /B(N)
DO 30 I=1,N-1
J=N-1I
SOLN (J+1) = (R(J) —C(J) *SOLN(J+2)) /B (J)
CONTINUE
RETURN
END

(AR R EREEREREREEEEREEEEEEREREREEEEREEEEEEREREREEEEREREREE]

[e O OS] [e O OS]

oo NONe!

C.19

oo NN NN NI NN Q!

SUBROUTINE BCOND (T,DX,DT, IL)

THIS SUBROUTINE IMPLEMENTS THE APPROPRIATE BOUNDARY
CONDITIONS

DIMENSION T (IL)

LEFT BOUNDARY:
ISOTHERMAL; DIMENSIONLESS TEMPERATURE FIXED AT 1.0

T(1l) =1.

RIGHT BOUNDARY :
ADIABATIC

T(IL) =4.* T(IL-1)/3.-T(IL-2)/3.

RETURN
END

SUCCESSIVE OVER RELAXATION (SOR) METHOD FOR AN ELLIPTIC
PDE

THIS PROGRAM SOLVES THE LAPLACE EQUATION BY EMPLOYING
THE SUCCESSIVE OVER RELAXATION (SOR) ITERATION METHOD.

WHEN THE PROGRAM IS RUN IT PROMPTS FOR THE INPUT VALUES
REQUIRED.

ENTER THE INPUT VALUES AND THE OUTPUT WILL BE IN A FILE
CALLED 'SOR.DAT'

DESCRIPTION OF INPUT PARAMETERS:

Appendix C: Computer Programs in FORTRAN 585

(@} oo NN NONe!

oo NeNeNe!

IL
JL
DX
DY

IS THE NUMBER OF GRID POINTS IN THE X DIRECTION.
IS THE NUMBER OF GRID POINTS IN THE Y DIRECTION.
IS THE GRID SIZE IN X DIRECTION.
IS THE GRID SIZE IN Y DIRECTION.

OMEGA IS THE RELAXATION PARAMETER
PHIINT IS THE INITIAL GUESS FOR PHI TAKEN UNIFORM OVER

THE WHOLE DOMAIN.

ITMAX IS THE NUMBER OF MAXIMUM ITERATIONS BEFORE

STOPPING.

EPSI IS THE CONVERGENCE CRITERION.

DESCRIPTION OF OTHER VARIABLES:

PHI IS THE SOLUTION VARIABLE AT NTH TIME STEP.
PHIOL IS THE SOLUTION VARIABLE AT N-1TH TIME STEP.

CHARACTER*2 XFILE(5)

CHARACTER*2 YFILE(5)

DIMENSION PHI(21,21),PHIOL(21,21)

PRINT*, 'ENTER INITIAL GUESS FOR PHI TAKEN UNIFORM'
PRINT*, 'OVER THE WHOLE DOMAIN'

READ (5, *) PHIINT

PRINT*, 'ENTER GRID SIZE DX=, DY='

READ (5, *) DX, DY

PRINT *,'ENTER NO. OF GRID POINTS IL=, JL= '
PRINT*, ' MAXIMUM POSSIBLE IS 21 FOR BOTH IL AND JL,'
PRINT*, 'UNLESS DIMENSION STATEMENTS ARE CHANGED.'
READ (5, *) IL,JL

PRINT *,'ENTER THE RELAXATION PARAMETER'
READ (5, *) OMEGA

PRINT*, 'ENTER MAXIMUM NO. OF ITERATIONS ALLOWED BEFORE
STOPPING'

READ (5, *) ITMAX

PRINT *,'ENTER CONVERGENCE CRITERION'
READ (5, *) EPSI

PRINT*, 'THE INPUT VALUES ARE:'

PRINT*, 'INITIAL GUESS FOR PHI ="',6 PHIINT

PRINT*, 'DX="',DX, 'DY=",DY
PRINT*,'IL="',IL,'JL=",JL

PRINT*, 'MAX NO. OF ITERATIONS="',6 ITMAX
PRINT*, ' CONVERGENCE CRITERION="',6 EPSI

ITERATION =0

SET INITIAL DISTRIBUTION OF PHI

DO 51 I=1,IL
DO 5 J=1,JL
PHI(I,J) =PHIINT

586 Appendix C: Computer Programs in FORTRAN

5 CONTINUE
51 CONTINUE
c
c START SOLVING FOR PHI.
c
15 ITERATION = ITERATION + 1
IF (ITERATION.GE.ITMAX)GO TO 40
c
c SAVE THE FIELD AT PREVIOUS TIME STEP.
c
DO 101 I=1,IL
DO 10 J=1,JL
PHIOL(I,J) =PHI(I,J)
10 CONTINUE
101 CONTINUE
c
c EMPLOY SOR ITERATIVE METHOD FOR PHI AT INTERIOR POINTS.
c
DO 20 J=2,JL-1
DO 20 I=2,IL-1
PHIGS = (PHI(I+1,J) +PHI(I-1,J)) /DX**2 +
$ (PHI(I,J+1) +PHI(I,J—1))/DY**2
PHIGS = PHIGS/ (2./DX**2 +2./DY**2)
PHI (I,J) = OMEGA*PHIGS + (1.-OMEGA) *PHIOL (I, J)
20 CONTINUE
c
c IMPOSE THE BOUNDARY CONDITIONS
c
CALL BCOND (PHI, IL,JL)
c
c CHECK FOR CONVERGENCE
c

DO 35 I=1,IL
DO 35 J=1,JL
IF (ABS(PHI(I,J) —PHIOL(I,J)).GE.EPSI)GO TO 15

35 CONTINUE
GO TO 50
40 PRINT*, 'SOLN. DOES NOT CONVERGE
$ IN',ITMAX, 'ITERATIONS'
50 OPEN (UNIT=10,FILE= 'SOR.DAT')
WRITE (10,110)EPSI
110 FORMAT (1X, ' CONVERGENCE CRITERION ='1X,E9.1)
WRITE (10,115) OMEGA
115 FORMAT (//,1X, 'RELAXATION PARAMETER =',6F5.2)
WRITE (10,120) ITERATION
120 FORMAT (//,1X, 'NO. OF ITERATIONS TO

$ CONVERGE=',1X,I4,//)
WRITE(10,130)

130 FORMAT (1X, 'PHI DISTRIBUTION IS:',//)
WRITE (10,140) (I,I=1,IL)
140 FORMAT (1X, 'I="',8X,11(I2,8X))

DO 60 J=1,JL

Appendix C: Computer Programs in FORTRAN 587

60
100

WRITE(10,100)J, (PHI(I,J),I=1,1IL)
CONTINUE
FORMAT (1X, 'J="',I2,3X,11(F8.5,2X))
STOP
END

C*)\'***)\'*)\'***)\'*****)\'***)\'*)\'***)\'***************************

[e O OS]

QN

25

30

Q
N
o

oo NN NN NN NN NN Ne!

SUBROUTINE BCOND (PHI, IL,JL)

THIS SUBROUTINE IMPLEMENTS APPROPRIATE BOUNDARY
CONDITIONS.

DIMENSION PHI (IL,JL)

SET THE CONDITIONS ON I=1 AND I=IL SURFACES.

DO 25 J=1,JL
PHI (1,J) =0.
PHI (IL,J) =0.

CONTINUE

SET THE CONDITIONS ON J=1 AND J=JL SURFACES

DO 30 I=1,IL
PHI(I,1) =0.
PHI(I,JL) =1.

CONTINUE

RETURN

END

SOLUTION OF THE WAVE EQUATION

THIS PROGRAM SOLVES A SECOND-ORDER HYPERBOLIC PARTIAL
DIFFERENTIAL EQUATION BY THE FINITE DIFFERENCE METHOD.

SUBROUTINE INPUT PROVIDES THE INPUT DATA NECESSARY TO
RUN THE PROGRAM

DESCRIPTION OF VARIABLES:

DX IS THE GRID SIZE.

IL IS THE NUMBER OF GRID POINTS.

DT IS THE TIME STEP.

C IS THE COURANT NUMBER. CHOOSE DX AND DT SUCH THAT C
IS APPROXIMATELY 1.0.

U, Ul, U2 CONTAIN THE U FIELD AT THE THREE TIME STEPS T,
T+DT AND T+ 2DT, WHERE U IS THE DEPENDENT VARIABLE.

588 Appendix C: Computer Programs in FORTRAN

c NLIM=MAXIMUM NUMBER OF TIME STEPS BEFORE TERMINATION
c OF THE CALCULATION.
c NSTEP =NUMBER OF TIME STEPS AFTER WHICH PRINTOUT
OCCURS.
c
c
DIMENSION U(25),Ul(25),U2(25)
c
C ENTER THE INPUT VALUES
c
CALL INPUT (DX,DT, IL,Ul,NLIM,NSTEP, ASQOR)
c
OPEN (UNIT=10,FILE = 'HPB.DAT')
C=ASQR*DT**2/DX**2
c
c SET THE BOUNDARY CONDITIONS
c
CALL BCOND (U2, IL)
c
C INITIALIZE THE VARIABLES
c
DO 10 I=2,IL-1
U2(I)=U1(I) +C*(Ul(I+1)—-2.*ULl(I)+Ul(I-1))/2.
10 CONTINUE
c
ISTEPL1=1
ISTEP2 =1
T=DT
c
c SOLVE FOR U AT SUCCESSIVE TIME STEPS
C AND SAVE THE PREVIOUS VALUES
c
30 DO 20 I=1,IL
U(I) =UL(I)
Ul(I) =U2(1I)
20 CONTINUE
c
c INCREMENT THE TIME
c
T=T+DT
ISTEPL = ISTEP1 + 1
IF (ISTEP1.GT.NLIM)GO TO 50
ISTEP2 = ISTEP2 + 1
c
c CALCULATE NEW 'U2'
c
DO 40 I=2,IL-1
U2(I)=2.*%U1(I)-U(I)+C*(Ul(I+1)-2.*%Ul(I)+Ul(I-1))
40 CONTINUE
c

C OUTPUT THE RESULTS

Appendix C: Computer Programs in FORTRAN 589

C

100

110

50

IF (ISTEP2.EQ.NSTEP) THEN
WRITE (10,100)T

FORMAT (//,1X, 'AT TIME="',F8.4,1X,'U FIELD IS')
WRITE(10,110) (U2(I),I=1,IL)
FORMAT (/,1X,20 (F8.4,2X))
ISTEP2 =0

GO TO 30

END IF

GO TO 30

STOP

END

C***

oo NN NI NS

[e OO NS

Q

10

SUBROUTINE INPUT (DX,DT,IL,Ul,NLIM,NSTEP,ASQR)

THIS SUBROUTINE PROVIDES THE INPUT VALUES TO THE MAIN
PROGRAM.

DESCRIPTION OF THE VARIABLES:

DX =GRID SIZE.

DT =TIME STEP.

IL =NUMBER OF GRID POINTS.

NLIM=MAXIMUM NUMBER OF TIME STEPS TO BE COMPUTED.
NSTEP = NUMBER OF TIME STEPS AFTER WHICH PRINTOUT
OCCURS.

ASQR =CONSTANT IN THE DIFFERENTIAL EQUATION.

Ul CONTAINS THE INITIAL DISTRIBUTION OF THE DEPENDENT
VARIABLE.

DIMENSION Ul (25)

DX=0.05

DT=0.0015

ASQR=1000.

IL=21

PRINT*, 'ENTER MAXIMUM NUMBER OF TIME STEPS ALLOWED'
READ (1, *)NLIM

PRINT*, 'ENTER NO. OF TIME STEPS AFTER WHICH OUTPUT
OCCURS'

READ (1, *) NSTEP

INITIAL DISTRIBUTION OF Ul

DO 10 I=1,IL

IF(I.LE.6)Ul(I) =FLOAT(I-1)*DX*0.0016
IF(I.GT.6)Ul(I) =-0.004* (FLOAT(I-1)*DX-1.)/0.75.
PRINT*,Ul(I)

CONTINUE

RETURN

END

C***

590 Appendix C: Computer Programs in FORTRAN

SUBROUTINE BCOND (U2, IL)

c
Cc THIS SUBROUTINE IMPOSES THE BOUNDARY CONDITIONS
c

DIMENSION U2 (25)

U2(1) =0.

U2 (IL) =0.

RETURN

END

References

Abramowitz, M. and Stegun, L.A., Eds., Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables, National Bureau of Standards, Applied Mathematical
Series, US Govt. Printing Office, Washington, DC, Vol. 55, 1964.

Ahlberg, H.J., Nilson, E.N., and Walsh, J.L., The Theory of Splines and Their Applications,
Academic Press, New York, NY, 1967.

Amazigo, J.C. and Ruhenfeld, L., Advanced Calculus and Its Applications to the Engineering
and Physical Sciences, Wiley, New York, NY, 1980.

Anton, H., Elementary Linear Algebra, 10th edn, Wiley, New York, NY, 2010.

Atkinson, K., An Introduction to Numerical Analysis, 2nd edn, Wiley, New York, NY, 1989.

Banerjee, P.K. and Butterfield, R., Boundary Element Method in Engineering Science,
McGraw-Hill, London, 1981.

Beer, G., Smith, 1., and Duenser, C., The Boundary Element Method with Programming: For
Engineers and Scientists, Springer, Heidelberg, 2010.

Brebbia, C.A., The Boundary Element Method for Engineers, 3rd edn, McGraw-Hill, London,
1977.

Brent, R., Some efficient algorithms for solving systems of nonlinear equations, STAM J. Num.
Anal., 10, 327-344, 1973.

Bronson, R. and Costa, G.B., Matrix Methods: Applied Linear Algebra, 3rd edn, Academic
Press, New York, NY, 2008.

Butcher, J.C., On Runge—Kutta processes of high order, J. Austr. Math. Soc., 4, 179-194,
1964.

Carnahan, B.H., Luther, H.A., and Wilkes, J.O., Applied Numerical Methods, Wiley, New York,
NY, 1969.

Chapra, S.C., Applied Numerical Methods with MATLAB for Engineers and Scientists,
McGraw-Hill, New York, NY, 2005.

Chapra, S.C. and Canale, R.P., Numerical Methods for Engineers, 4th edn, McGraw-Hill,
New York, NY, 2002.

Clocksin, W.E., Prolog Programming for the Working Programmer, Springer-Verlag, New York,
NY, 2003.

Clocksin, W.F. and Mellish, C.S., Programming in PROLOG: Using the ISO Standard, 5th edn,
Springer-Verlag, New York, NY, 2004.

Collatz, L., The Numerical Treatment of Differential Equations, 3rd edn, Springer-Verlag,
Berlin, 1966.

Davis, PJ. and Rabinowitz, P., Numerical Integration, Ginn-Blaisdell, Waltham, MA, 1967.

Draper, N.R. and Smith, H., Applied Regression Analysis, 3rd edn, Wiley-Interscience,
New York, NY, 1998.

Ferziger, J., Numerical Methods for Engineering Applications, 2nd edn, Wiley-Interscience,
New York, NY, 1998.

Forsythe, G. and Wasow, W., Finite Difference Methods for Partial Differential Equations,
Wiley, New York, NY, 1960.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B., Computer Methods for Mathematical
Computations, Prentice-Hall, Englewood Cliffs, NJ, 1977.

Fox, L., Numerical Solution of Ordinary and Partial Differential Equations, Pergamon Press,
Oxford, 1962.

591

592 References

Francis, J.G.F., The QR transformation, Comput. J., 4, 265-271, 1961; and 4, 332-345,
1962.

Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-
Hall, Englewood Cliffs, NJ, 1971.

Gebhart, B., Heat Transfer, 2nd edn, McGraw-Hill, New York, NY, 1971.

Gerald, C.F. and Wheatley, P.O., Applied Numerical Analysis, 7th edn, Addison-Wesley,
Reading, MA, 2003.

Gilat, A., MATLAB: An Introduction with Applications, 3rd edn, Wiley, New York, NY,
2008.

Gill, S., A process for the step-by-step integration of differential equations in an automatic
computing machine, Proc. Camb. Philos. Soc., 47, 96-108, 1951.

Grama, A., Karypis, G., Kumar, V., and Gupta, A., Introduction to Parallel Computing,
2nd edn, Addison-Wesley, Wesley, MA, 2003.

Hall, G. and Watt, J.M., Modern Numerical Methods for Ordinary Differential Equations,
Clarendon Press, Oxford, 1976.

Hall, T.E., Enright, W.N., Fellen, B.M., and Sedgewick, A.E., Comparing numerical methods
for ordinary differential equations, SIAM J. Num. Anal., 9, 603-637, 1972.

Halliday, D., Resnick, R., and Walker, J., Fundamentals of Physics Extended, 9th edn, Wiley,
New York, NY, 2010.

Hamming, R.W., Stable predictor—corrector methods for ordinary differential equations,
J. Assoc. Comput. Mach., 6, 37-47, 1959.

Hornbeck, R.W., Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1982.

Householder, A.S., The Numerical Treatment of a Single Nonlinear Equation, McGraw-Hill,
New York, NY, 1970.

Huebner, K.H., Thornton, E.A., and Byrom, T.G., The Finite Element Method for Engineers,
3rd edn, Wiley, New York, NY, 1995.

Incropera, F.P., Dewitt, D.P., Bergman, T.L., and Lavine, A.S., Introduction to Heat Transfer,
5th edn, Wiley, New York, NY, 2006.

Jaluria, Y., Computer Methods for Engineering, Taylor & Francis, Washington, DC, 1996.

Jaluria, Y., Design and Optimization of Thermal Systems, 2nd edn, CRC Press, Boca Raton,
FL, 2008.

Jaluria, Y. and Torrance, K.E., Computational Heat Transfer, 2nd edn, Taylor & Francis,
New York, NY, 2003.

James, M.L., Smith, G.M., and Wolford, J.C., Applied Numerical Methods for Digital
Computation, 3rd edn, Harper & Row, New York, NY, 1985.

Keisler, H.J., Elementary Calculus: An Infinitesimal Approach, 2nd edn, Prindle, Weber &
Schmidt, Boston, MA, 1986.

Keller, H.B., Numerical Methods for Two-Point Boundary-Value Problems, Ginn-Blaisdell,
Waltham, MA, 1968.

Kernighan, B.W. and Ritchie, D.M., C Programming Language, 2nd edn, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

King, K.N., C Programming: A Modern Approach, 2nd edn, Norton & Co., New York, NY,
2008.

Kochan, S.G., Programming in C, 3rd edn, Sams, Indianapolis, IN, 2004.

Lalonde, W., Discovering Smalltalk, Pearson Tech., Indianapolis, IN, 2008.

Lambert, J.D., Computational Methods in Ordinary Differential Equations, Wiley, New York,
NY, 1973.

Lancaster, P. and Tismenetsky, M., Theory of Matrices: With Applications, 2nd edn, Academic
Press, New York, NY, 1985.

Larson, R. and Edwards, B.H., Calculus, 9th edn, Brooks Cole, Pacific Grove, CA, 2009.

Larson, R., Hostetler, R.P., and Edwards, B.H., Calculus (with Analytical Geometry), 8th edn,
Brooks Cole, Pacific Grove, CA, 2005.

References 593

Littlefield, B.L. and Hanselman, D.C., Mastering MATLAB 7, Prentice-Hall, Englewood
Cliffs, NJ, 2005.

Matthews, J.H. and Fink, K.D., Numerical Methods Using MATLAB, 4th edn, Prentice-Hall,
Englewood Cliffs, NJ, 2004.

Mitchell, A.R. and Wait, R., The Finite Element Method in Partial Differential Equations,
Wiley, New York, NY, 1977.

Moore, H., MATLAB for Engineers, Prentice-Hall, Englewood Cliffs, NJ, 2006.

Ogata, K., System Dynamics, 4th edn, Prentice-Hall, Englewood Cliffs, NJ, 2003.

Ostrowsky, A.M., Solution of Equations and Systems of Equations, Academic Press, New York,
NY, 1966.

Palm, W.J., l11, Introduction to MATLAB 7 for Engineers, McGraw-Hill, New York, NY, 2005.

Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Taylor & Francis, New York, NY,
1980.

Peaceman, D.W. and Rachford, H.H., The running solution of parabolic and elliptic differen-
tial equations, J. Soc. Indust. Appl. Math., 3, 28-41, 1955.

Prata, S., C++ Primer Plus, 5th edn, Sams, Indianapolis, IN, 2005.

Ralston, A., A First Course in Numerical Analysis, McGraw-Hill, New York, NY, 1965.

Ralston, A. and Rabinowitz, P., A First Course in Numerical Analysis, 2nd edn, McGraw-Hill,
New York, NY, 1978.

Rectenwald, G., Numerical Methods with MATLAB, Prentice-Hall, Englewood Cliffs, NJ, 2000.

Reddy, J.N. and Gartling, D.K., The Finite Element Method in Heat Transfer and Fluid
Dynamics, 3rd edn, CRC Press, Boca Raton, FL, 2010.

Reiner, 1., Introduction to Matrix Theory and Linear Algebra, Holt, Rinehart and Winston,
New York, NY, 1971.

Reynolds, W.C. and Perkins, H.C., Engineering Thermodynamics, 2nd edn, McGraw-Hill,
New York, NY, 1977.

Rice, J.R., Numerical Methods, Software and Analysis, McGraw-Hill, New York, NY, 1983.

Roache, P.J., Computational Fluid Dynamics, Revised Printing, Hermosa Pub., Albuquerque,
NM, 1976.

Roache, P.J., Fundamentals of Verification and Validation, Hermosa Pub., Albuquerque, NM,
2010.

Rutishauser, H., Solution of Eigenvalue Problems with the LR Transformation, National
Bureau of Standards, Applied Mathematical Series, US Govt. Printing Office, Washigton,
DC, Vol. 49, pp. 47-81, 1958.

Salvadori, M.G. and Baron, M.L., Numerical Methods in Engineering, 2nd edn, Prentice-Hall,
Englewood Cliffs, NJ, 1961.

Scott, L.R., Clark, T., and Bagheri, B., Scientific Parallel Computing, Princeton University
Press, Princeton, NJ, 2005.

Shampine, L.P. and Gordon, M.K., Computer Solution of Ordinary Differential Equations,
Freeman, San Francisco, CA, 1975.

Shanks, E.B., Solutions of differential equations by evaluations of functions, Math. Comput.,
20, 21-38, 1966.

Smith, G.D., Numerical Solution of Partial Differential Equations, 2nd edn, Oxford University
Press, Oxford, 1978.

Stewart, J., Calculus, 6th edn, Brooks Cole, Pacific Grove, CA, 2007.

Stoecker, W.E., Design of Thermal Systems. 3rd edn, McGraw-Hill, New York, NY, 1989.

Stroud, A.H. and Secrest, D., Gaussian Quadrature Formulas, Prentice-Hall, Englewood
Cliffs, NJ, 1966.

Stroustrup, B., The C++ Programming Language: Special Edition, Addison-Wesley, Reading,
MA, 2000.

Stroustrup, B., Programming: Principles and Practice Using C++, Addison-Wesley, Reading,
MA, 2009.

594 References

Thomas, G.B. and Finney, R.L., Calculus and Analytic Geometry, 9th edn, Addison-Wesley,
Reading, MA, 1999.

Traub, J.F., Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs,
NIJ, 1964.

Wilkinson, J.H., The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1988.

Williams, G., Linear Algebra, 5th edn, Jones and Bartlett Publishers, Sudbury, MA, 2004.

Winston, P.H. and Horn, B.K.P., LISP, 3rd edn, Addison-Wesley, Reading, MA, 1989.

Young, H.D., Freedman, R.A., Sandin, T.R., and Ford, A.L., Sears and Zemansky’s University
Physics, 10th edn, Addison-Wesley, Reading, MA, 2000.

Mechanical Engineering

Computer Methods for Engineering with
MATLAB® Applications, Second Edition
Substantially revised and updated, Computer Methods for Engineer-
ing with MATLAB® Applications, Second Edition presents equations
to describe engineering processes and systems. It includes computer
methods for solving these equations and discusses the nature and |
validity of the numerical results for a variety of engineering problems.

This edition now uses MATLAB® in its discussions of computer
solution.

New to the Second Edition

e Recent advances in computational software and hardware ‘
e A large number of MATLAB® commands and programs for
solving exercises and to encourage readers to develop their
own computer programs for specific problems
e Additional exercises and examples in all chapters
e New and updated references

The text follows a systematic approach for obtaining physically realis-
tic, wvalid, and accurate results through numerical modeling.

It employs examples from many engineering areas to explain the
elements involved in the numerical solution and make the presenta- |
tion relevant and interesting. It also includes a wealth of solved exer-
cises to supplement the discussion and illustrate the ideas and
methods presented. The book shows how a computational approach
can provide physical insight and obtain inputs for the analysis and
design of practical engineering systems.

RTA03kkL

CRC Press IRV REEAN 1<EN: 978-1-591L-903L-8

Suite 300, Boca Raton, FL 33487 ‘ “ ‘ ‘ ‘ ‘ 9 Olo O|D|‘

Taylor & Francis Group 711 Third Avenue
an informa business New York, NY 10017
2 Park Square, Milton Park

WWW.CIFCpress.cCoOm apingdon, Oxon OX14 4RN, UK ICRIEEECERITTELY:

