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Preface to the Second Edition

Computer methods continue to be critical in the analysis, simulation, design and 
optimization of engineering processes and systems. Computational approaches are 
needed to solve the complex mathematical equations that typically arise in engineer-
ing problems, for correlating experimental data, and for obtaining numerical results 
that are used for improving existing processes and developing new ones. The second 
edition follows the basic ideas, discussions, approaches, and presentation employed 
in the first edition. The focus is clearly on engineering processes and systems and on 
the equations that characterize and describe these. Computer methods that are 
employed to solve these equations and the nature and validity of the numerical results 
obtained are discussed for a variety of problems. The main thrust is on the discussion 
of the various numerical methods that are available for a given problem, on the pre-
sentation of the basic aspects of the methods, discussing their applicability, effi-
ciency and behavior, and then applying these to typical problems chosen from various 
engineering disciplines.

Besides discussing the solution of different types of mathematical equations, a 
large number of engineering examples and problems were chosen to present the 
choice of the method, development of the numerical algorithm and use of the com-
puter to solve the problem. A systematic approach is followed to obtain physically 
realistic, valid and accurate results through numerical modeling. Examples from 
many different engineering areas are employed to explain the various elements 
involved in the numerical solution and to make the presentation relevant and interest-
ing. Similarly, a large number of solved examples and exercises are included to sup-
plement the discussion and to illustrate the ideas and methods presented in the text. 
The book continues the thinking that the basic purpose of the computational approach 
is to provide physical insight and to obtain inputs for analysis and design of practical 
systems. Thus, the solution methodology is linked to both the computer and to the 
fundamental nature of the problem to allow the student to appreciate the basic aspects 
of the numerical approach.

The book is appropriate as a textbook for engineering undergraduate courses 
on computer methods at the sophomore or junior levels. Because the background 
of students at the sophomore level may not be sufficient for some of the topics 
covered, such as partial differential equations, a few such topics may be avoided 
for sophomore students and may be included in the junior or senior courses. The 
book is also appropriate as a reference on computational methods for various 
other basic and applied undergraduate courses in mechanical engineering and in 
other engineering disciplines. The book will also be useful as a reference for 
engineers who are interested in using computer methods for analysis, simulation, 
design, or data analysis.
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The second edition is a substantially revised and updated version of the earlier 
book. Recent advances in available computational facilities, both in software and 
in hardware, are included. In several places, the presentation has been simplified 
and clarified to make it easier to follow. Certainly, the main difference from the 
first edition is the extensive use of MATLAB®, instead of a high-level programming 
language like Fortran, for numerical modeling. This is done in view of the current 
trend in engineering education where MATLAB has emerged as the dominant 
environment for the numerical solution of basic mathematical equations. Much of 
the discussion on computer solution is thus directed at MATLAB and a large num-
ber of MATLAB commands and programs are given in the text, as well as in the 
Appendix, in order to facilitate the presentation as well as to provide ready access 
to MATLAB programs for solving exercises given in the text and other similar 
problems. In many cases, the programs are focused on the example or problem 
being considered, in order to encourage the readers to develop their own computer 
programs for specific problems. However, the programs can be easily modified for 
different circumstances and parameters. Available MATLAB functions and com-
mands are frequently employed to generate results that can be used for compari-
sons with the results obtained from more detailed and versatile programs. Fortran 
has not been abandoned because of its continued importance in engineering and 
the existence of substantial software in Fortran for many complex problems. 
Several important Fortran programs are included in the Appendix to illustrate the 
ease with which one could go from one computational environment or language to 
another and to allow those interested in Fortran to use these for their specific prob-
lems. Additional exercises and examples are included in all the chapters. References 
have been added on new topics included in the book and references in the first edi-
tion have been updated.

The methods, discussions, and computer programs presented in this textbook are 
the result of many years of teaching computer methods to engineering undergraduate 
students, in required as well as elective courses. The inputs from many colleagues 
and graduate students, as well as undergraduate students, who took the courses from 
me, have been valuable in selecting the topics, the depth of coverage, the computer 
programs presented here and many other aspects related to computer methods for 
solving engineering problems. Inputs from those who have used the first edition in 
their courses, particularly from Professor Wally Minkowycz, have been particularly 
valuable. The support and assistance provided by the editorial staff of Taylor & 
Francis, particularly by Jessica Vakili and Jonathan Plant, have been valuable in the 
development of the second edition.

The book would never have been completed without the strong support and 
encouragement of my wife, Anuradha. Our children, Ankur, Aseem, and Pratik, as 
well as Pratik’s wife Leslie and son Vyan, have also been sources of inspiration and 
encouragement for me and have contributed in their own way to my efforts over the 
years. I greatly appreciate the patience and understanding of my family that made it 
possible for me to spend extensive periods of time on the book.
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MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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Preface to the First Edition

The use of computational methods in the analysis and simulation of engineering 
processes and systems has grown tremendously over recent years. Increasing national 
and international competition has made it imperative to improve existing facilities 
and to develop new ones for a wide variety of applications. Because of the constraints 
imposed on detailed experimentation needed for design and optimization of systems, 
due to excessive time, manpower, and financial requirements, computer simulation is 
extensively employed to obtain the desired information. Analytical methods are gen-
erally very restrictive in their applicability to practical problems, and numerical 
methods are usually necessary. In addition to the growing need for numerical solu-
tions to engineering problems, we have also seen substantial improvements in the 
computational facilities available, both in software and in hardware, over the last 
decade. All of these changes have made it more important than ever for engineers 
and engineering students to develop expertise in numerical methods and to use them 
for solving problems of practical interest.

In recognition of the growing importance of computer methods in engineering, 
many courses in engineering curricula now include the numerical solution of engi-
neering problems on the basis of numerical analysis taught earlier at the sophomore 
or junior level. Generally, engineering students are first exposed to the computational 
procedure through a course on programming, frequently employing Fortran as the 
programming language. Numerical methods are then taught at a later stage to intro-
duce the basic concepts of numerical analysis and to allow the students to numerically 
solve important mathematical problems such as integration, matrix inversion, root 
solving, and solution of differential equations. However, since the basic purpose of the 
computational approach is to provide physical insight and to obtain valuable informa-
tion for the analysis and design of practical systems, such courses have been inte-
grated into the engineering curricula at most universities. This implies that the solution 
methodology is coupled with the computer on one hand and with the physical or 
chemical nature of the problem on the other. The numerical procedure, as well as the 
results, are considered in terms of actual problems to permit the student to develop a 
physical feel for the numerical approach to engineering problems.

Traditionally, numerical analysis courses have been mathematically oriented. 
Although this orientation brings in some very important and fundamental aspects of 
numerical analysis, it lacks in the application of the methodology to actual problems. 
It is extremely important to integrate the basic understanding of the methods with 
their actual use on the computer. Unless the students learn to choose and implement a 
computational scheme on the computers available, they will not develop a satisfactory 
appreciation or understanding of the numerical technique. In addition, recent advances 
in computational facilities, such as structured programming, interactive computer 
usage, and graphics output, must be introduced so that the most efficient procedure is 
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adopted for a given problem. The incorporation of problems derived from various 
engineering disciplines aids in this learning process and also makes it interesting and 
enjoyable. In addition, it reinforces the important point that the physical or chemical 
background of the given problem forms an important element in the selection of the 
method and in the evaluation of the accuracy of the results obtained.

This book, directed at computer methods for engineering, integrates the treatment 
of numerical analysis with the physical background of the problems being solved and 
with the implementation of the methods on available computers, employing several 
recent advances in this field. Although a large number of books are available on 
numerical analysis, not many satisfactorily discuss the implementation of the method-
ology on the computer, and even fewer discuss the implications of the physical nature 
of the problem in the numerical solution. This book recognizes the need for a satisfac-
tory incorporation of these concepts into the mathematical treatment of numerical 
analysis. It couples numerical methods for a variety of mathematical problems with 
the use of these methods for the solution of engineering problems on the computer.

Numerical methods for important mathematical operations, such as integration, 
differentiation, root solving, and solution of algebraic systems, are discussed in 
detail. The solution of differential equations, both ordinary and partial, is presented. 
Curve fitting, which is an important consideration in engineering problems, is also 
discussed. A large number of problems from basic sciences and various engineering 
disciplines are chosen to illustrate the use of these methods. The problems chosen 
are relatively simple so that they can easily be understood by students at the sopho-
more/junior level. However, in several cases, the basic background of the problem is 
outlined so as to bring the important points into proper focus. The importance of the 
physical or chemical background of the problem in the selection of the method, the 
choice of numerical parameters, the estimation of the accuracy of the results, and the 
overall validity of the results is discussed. The book mainly uses Fortran 77 to dem-
onstrate the implementation of the numerical methods on the computer, because of 
the overwhelming importance of this language in engineering applications. However, 
a few programs in Basic are also given to bring out the similarities between the two 
languages and the ease with which one may switch from one to the other. A discus-
sion of other languages and important aspects in computational procedure is included. 
A large number of examples, with the corresponding programs, are given. The pro-
grams are written specifically for these examples, so that the students must develop 
their own programs for the large number of problems given at the end of the chapters. 
Several important features that are currently employed in computational procedure 
are demonstrated in these programs. Recent trends in this area are outlined, and their 
significance for engineering applications is discussed. The students are strongly 
encouraged in every way to develop their own computer programs, since this is an 
essential ingredient for learning computer methods.

Most of the material covered in this book has been employed by the author for 
courses at the sophomore and junior levels. Since the background of students at the 
sophomore level may not be sufficient for some of the topics covered, such as partial 
differential equations, this particular topic and a few sections marked with an asterisk 
may be avoided by sophomore students. The book can also be used at the senior level, 
if such a course is included in the curriculum at this level. The material included is 
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quite adequate for a one-semester course. However, the best time to teach this course 
is probably at the junior level, so that the students can fully understand the material 
and then use it in courses taught at higher levels. The book is also appropriate for 
professional engineers in various disciplines and as a reference for courses that 
employ computational methods as an important element in the presentation. The 
book considers problems from diverse engineering applications, and the treatment is 
at a level appropriate for engineering students of all disciplines.
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applications. First, I would like to thank Dr. Frank Kreith, who suggested that I write 
this book and contributed several very valuable suggestions on the presentation. 
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the subject with Professors Dave Briggs and Abdel Zebib. Professor Samuel Temkin 
provided me with tremendous support and encouragement. Dr. M. V. Karwe helped 
with the numerical solution of some problems. Also of considerable value was the 
support provided by the staff of Allyn and Bacon, Inc., particularly by Ray Short. 
The manuscript and its several versions were typed with great patience and compe-
tence by Diane Belford and Lynn Ruggiero.

I would like to dedicate this book to my parents, who have always encouraged, 
supported, and inspired me to strive for the best I could achieve. The greatest contri-
butions to this effort have been the encouragement and support of my wife, Anuradha, 
and of our children, Pratik, Aseem, and Ankur, who had to bear long hours that kept 
me away, working on this book, with patience and understanding.
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1 Introduction

1.1  ​INTRODUCTORY REMARKS

Over the past three decades, there has been a tremendous increase in the use of 
computers for engineering problems. This increase has been mainly due to the 
growing need to optimize systems and processes in order to raise productivity and 
reduce costs. With increasing worldwide competition, it has become necessary to 
modernize existing engineering facilities and develop new ones through analysis and 
design. Consequently, we have seen a considerable improvement in engineering 
systems, particularly those related to electronic circuitry, materials processing, 
biotechnology, transportation, and energy generation. The concern with safety, 
including homeland security, and with our environment has also led to detailed 
investigations of existing engineering processes and to substantial improvements in 
many of these to reduce the impact on our environment and to make their use safer.

Because of the complexities involved in most engineering applications, analytical 
methods based on mathematical techniques are usually unable to provide a solution 
to the equations that characterize their behavior, and computational methods are 
needed to obtain quantitative information on physical quantities of interest. Even 
though analytical solutions are obtained in a few simple cases, the form of the 
solution itself may be quite involved, since the results are frequently expressed as a 
series or in terms of integrals and complex functions. In such cases, the computer is 
needed to extract the desired information from the analytical solution. Also, the 
problem may have to be solved several times with different sets of data, making it 
advantageous to use the computer rather than analytical methods.

There has also been a phenomenal increase in the availability of computers over 
the recent years. With the advent of microcomputers, such as personal computers 
(PCs), computational facilities have become widely available. The computational 
power available has also increased dramatically in individual, single-processor, 
machines, or serial computers, as well as in linked multiple machines or processors 
that result in a parallel computing cluster. There is every indication that these trends 
will continue, making computers even more accessible and powerful. Although most 
practical engineering problems still require larger and faster computers (such as 
supercomputers, minicomputers, or parallel computing systems), microcomputers 
do allow the solution of many common problems and are also useful in testing 
numerical procedures that may subsequently be employed on larger or parallel 
machines. The availability of a wide variety of microprocessors has also substantially 
affected the control and operation of systems through automation and expanded the 
reach of computational software.

Along with the revolution in computer hardware, there has inevitably been one in the 
available software as well, making the use of computers for scientific and engineering 
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problems easier than ever. Thus, for a wide range of problems, the programs available 
in the computer library, commercially available software, or user-friendly computa-
tional environment may be used effectively. However, it is generally necessary to 
understand the basic techniques involved in order to modify the program for satisfac-
tory application to a given problem. In industrial systems, the use of commercially 
available programs is particularly important, since the processes are often quite 
involved and interest lies in obtaining the needed information as rapidly as possible. 
For simpler problems, such as those related to individual physical and chemical pro-
cesses that constitute the overall system, it is often easier and more desirable to per-
sonally write the computer program or use an appropriate computational environment, 
rather than use a commercially available code written specifically for a given prob-
lem. Therefore, it is important to understand computational methods relevant to 
engineering applications and to use them in physical problems that are of interest to 
various disciplines.

Computer-aided design, simulation-based design and optimization, and 
computer-aided manufacturing are important areas that have grown substantially in 
the very recent past. These areas have arisen from the need to optimize on the one hand 
and the growing availability of the computers on the other. They are interdisciplinary 
in nature, particularly simulation-based design, which is of interest in such diverse 
fields as electronic systems and structural design. The basic approach in this case is to 
numerically solve the governing equations, choose physical parameters to simulate 
existing processes and systems, and finally vary these parameters to optimize the 
design for existing and future systems. Several other similar applications of computer 
methods have arisen in recent years, making it imperative to link the computational 
approach to the physical or chemical aspects of the problem under consideration.

In view of the growth of computer usage and availability in the recent years, it is 
surprising that much of the mathematical background underlying numerical analysis 
and computer logic has been available for several centuries. Binary logic operations, 
which use 2 as the base, instead of 10 employed in the decimal system, and which 
form the basis for most present digital computing, have been known and used for 
quite some time. Francis Bacon used binary codes in the early seventeenth century 
to transmit secret messages. In 1804, Joseph Marie Jacquard used punched cards 
with binary codes and logic to operate looms. A mathematical theory for binary 
logic was developed by George Boole during the nineteenth century. Similarly, 
adding machines and mechanical calculators were developed centuries ago, such as 
the one developed by Blaise Pascal in the seventeenth century. Charles Babbage 
designed the first automatic digital computer in 1833, with several features similar to 
those of modern computers. However, this machine was never constructed.

Modern digital computers were developed largely after World War II. A high-speed 
electronic digital computer was developed during the period from 1945 to 1952 under 
the direction of John von Neumann at the Institute for Advanced Study in Princeton, 
New Jersey. Binary digits, which can be represented by the opening or closing of a 
switch, were stored electrostatically in cathode-ray tubes. Several thousand vacuum 
tubes were used for computer memory, which had to be again stored about a thousand 
times per second due to the decay of electrostatic charge. Much of the logic behind 
this machine has persisted in modern computers. The major advancement has been in 
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electronic hardware, particularly in the development of transistors, integrated circuits, 
microelectronics, and now nanoscale devices and systems. As a result, there has been 
a considerable reduction in size and cost of electronic digital computers and also a 
substantial increase in their capability, speed, and reliability. The availability of PCs 
has brought computational techniques within easy access for a wide variety of prob-
lems, both for students and for professional engineers. Therefore, the coming years 
may be expected to improve the available computational facilities even further through 
the advancement in both computer software and hardware. It is also evident that PCs, 
with an interface with larger machines or with other machines in a parallel computing 
environment for more complicated problems, will continue to grow in availability and 
usage. Thus, it is important to learn the computational techniques relevant to engi-
neering problems on the basis of the currently available computational facilities, while 
considering expected future trends as well.

Several important and useful features have been incorporated in the modern 
computer systems. Among the most important of these is an interactive use of the 
computer, rather than the previously common batch operation mode. Frequently, an 
interpretive compiler is used so that each program statement entered into the 
computer is screened for syntax errors and a message issued if any error has been 
committed. The interactive mode allows one to enter variables and make changes in 
the program, as the need arises after each run of the program. The execution may 
also be stopped to make modifications and then continued. Therefore, the interac-
tive mode is very well suited for the initial stages of program development, when 
the testing and debugging of the program is being done, and for obtaining the trends 
for a wide range of input parameters. For instance, if the values of x at which a 
nonlinear equation f(x) = 0 is satisfied (known as roots of the equation) are to be 
determined, the interactive mode may be used very effectively to obtain the general 
behavior of f(x) over the range of interest in x. Various values of x may be entered 
and the corresponding values of f(x) obtained. A graph of f(x) versus x may easily 
be plotted using available software. The information obtained may then be used to 
select the method for finding the roots and also to obtain suitable initial guesses for 
the roots. Figure 1.1 shows a few examples where the plot of f(x) versus x would be 
particularly useful in root finding.

The batch operation mode involves feeding the complete job into the computer 
and then running it with no interaction with the operator until the job is executed. 
This mode is appropriate for obtaining the numerical results for different parametric 
values after the program has been developed and debugged, particularly for large 
programs. Other important features available with present computer systems are 
graphics facilities, which plot the computed results, and interfacing between various 
computers, which allows program development to be carried out on small computers 
in the interactive mode. Once the program has been completed, debugged, and tested, 
the numerical code may be transmitted to a larger computer or to a parallel computer 
system, which would generally be more efficient for computing and will have greater 
storage capability, and run in the batch mode to obtain the desired computed results. 
Of course, with the increasing computational power and storage capacity of individual 
machines and workstations, code developments, as well as extensive computational 
runs, are often carried out on the same unit.
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1.2  NUMERICAL SOLUTION

The development of a computational procedure, or algorithm, to solve a given 
problem requires knowledge of both the available numerical methods and the 
methodology to interface with the computer. Since several methods are generally 
available for a given application, it is important to understand the applicability and 
advantages of each method compared to those of the other methods. For instance, a 
system of linear equations may be solved by a wide variety of methods, including 
direct methods, which give a solution in a definite number of steps, and iterative 
methods, which involve a repeated solution of the equations until a chosen conver-
gence criterion is satisfied. The choice of the method for a given problem depends 
mainly on the nature and number of the equations. Direct methods are suitable for 
smaller systems and iterative methods for large sets of equations. Also, if the same 
system of equations must be solved several times with different constants on the 
right-hand side of the equality sign, methods based on matrix inversion are often 
preferable since the different solutions may be obtained easily once the coefficient 
matrix has been inverted. Similarly, in curve fitting, the method to be adopted is 
strongly dependent on the nature and form of the given data. If the data have been 
provided at uniform intervals of the independent variable, certain specialized meth-
ods may be used, taking advantage of the uniform distribution of data.

Sometimes, several methods are applicable for a given problem, and the selection 
of the method becomes a matter of personal choice. The previous experience with a 
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FIGURE 1.1  Some examples of the plotting of the function f(x) versus x to determine the 
approximate values of the roots of the equation f(x) = 0.
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particular method may be an important consideration in its selection. Also, the 
availability of certain programs in the computer library may make it advantageous 
to choose a given method. Many specialized methods have been developed for spe-
cific applications. Such methods are often limited in their applicability, although 
they may be the most efficient ones when applied to the problem for which they are 
particularly suited. For instance, certain methods for finding the roots of an algebraic 
equation are applicable only to polynomial equations and are popular choices for this 
application. They cannot be used for other types of algebraic equations, say, tran-
scendental equations that involve transcendental functions such as exponential, loga-
rithm, and trigonometric functions. Similarly, direct methods for solving systems of 
equations apply only for linear equations. Iterative methods are generally necessary 
for a system of nonlinear equations.

It is evident from the preceding discussion that the selection of the most appropriate 
numerical method for a given problem is an important consideration and is generally 
based on the nature of the problem. Once the method has been selected, one proceeds 
to implement it on the computer. The program is written in a programming language 
or in the computational environment available on the computer system to be 
employed. Although Fortran, with its many versions like Fortran 77, Fortran 90, 
Fortran 2003, and Fortran 2008, has been used extensively in engineering applica-
tions on most minicomputers and mainframe systems, Basic, C, C++, and other 
languages developed in recent years have often been used on PCs. MATLAB® is 
probably the most commonly used computational software being used today on both 
PCs and servers to solve mathematical problems that arise in engineering and scien-
tific applications. Most of the numerical solutions discussed in this book, therefore, 
employ MATLAB.

The computer program written in the chosen programming language is converted 
into machine language by the computer. This process, known as compilation of the 
program, is achieved by using the relevant software, termed the compiler, available 
on the computer. An operating system is used for the control of the program and the 
computer resources. The editing of the program, for making changes and corrections, 
is done with the help of the editing system available on the given computer. The 
compilation, editing, and execution of the program are governed by the operating 
system of the computer and therefore vary with the machine. Similarly, the job 
control language, which interfaces the programmer with the computer, depends on 
the computer system. For those who may not be familiar with the terms mentioned 
here, Chapter 2 outlines the basic features of a computer system.

The interpretation of the numerical results obtained is also an important 
consideration, since it relates to the accuracy and the correctness of the numerical 
solution. The computational scheme may be employed to yield results for a wide 
range of input variables, so that the results may be considered in terms of the physical 
or chemical nature of the problem being investigated. If possible, a comparison is 
made with available analytical results in order to determine the accuracy of the 
computed results. The verification and validation of the numerical scheme involve 
ensuring that the results obtained are accurate and valid. These are particularly 
important if a commercially available computer program or one available in the 
public domain is being employed to solve a given problem. It is also important to 
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determine the range of governing parameters over which the scheme can be used to 
yield accurate numerical results. These considerations are discussed in the following 
sections. Once the accuracy and validity of the results have been verified, the desired 
results may be obtained in a tabulated or graphical form.

1.3  IMPORTANCE OF ANALYTICAL RESULTS

As mentioned earlier, the equations that arise in most engineering problems are too 
complicated to be solved analytically, and computational techniques must be used 
to obtain the numerical values needed. Analytical solutions are often obtained only 
in very simplified circumstances. Also, as indicated before, analytical results are 
frequently given in terms of convergent series, integrals, and complicated functions, 
such as transcendental functions, Bessel functions, and so on. In engineering, we 
are largely interested in numerical values corresponding to given input data, and the 
computer is frequently needed to obtain the desired numerical information from a 
given analytical solution. However, analytical results, whenever available, are 
extremely important in evaluating the accuracy of the numerical scheme and in 
validating the model. Similarly, analytical results may be used to study the conver-
gence characteristics of the numerical method and to decide if the correct solution 
has been obtained.

As an example, let us consider the solution of the differential equation that governs 
the variation, with time t, of the charge q of a capacitor in an electrical circuit that 
also contains a voltage source and a resistance. If the initial charge in the capacitor 
is Q and the voltage input, resistance, and capacitance are denoted by E, R, and C, 
respectively, the governing equation is obtained as follows (Young et al., 2000):

	
R

q
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E
d
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(1.1)

If R, C, and E are constants, the preceding equation may be solved mathemati-
cally to obtain

	 q Q EC EC Q ECt RC t RC t RC= + − = + −− − −e e e/ / /( ) ( )1 	
(1.2)

The physical problem and the analytical solution are sketched in Figure 1.2. The 
charge q decreases from the initial value of Q to a steady-state value of EC, if EC < Q. 
Similarly, q increases to a steady charge of EC, if EC > Q.

Several other physical problems are governed by equations similar to Equation 1.1. 
The temperature T(t) of a small, heated metal block being cooled by a stream of air, 
the moisture content of a wet body drying in air, and the pressure of gas in a container 
with an opening are often governed by equations of the same form as Equation 1.1. 
However, in actual practice, the parameters, such as R, C, and E, may be the nonlinear 
functions of the charge or voltage and may, in some cases, also vary independently 
with time. For instance, nonlinear conductors, such as vacuum tubes, do not obey 
Ohm’s law, and heat and mass transfer processes operating at the surface of a given 
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object generally depend on the temperature, concentration, and pressure, making the 
differential equation nonlinear. The governing equation may, in general, be written as 
dϕ/dt = −H(ϕ, t)ϕ + B, where ϕ is the dependent variable, H(ϕ, t) is a functional 
parameter, and B is a constant. If q is replaced by ϕ in Equation 1.1, then H(ϕ, t) = 1/RC 
and B = E/R. This equation is linear in ϕ, or q, since H and B are constants, resulting 
in only the first power of ϕ to appear in the equation.

If H is not a constant but a function of ϕ as H(ϕ, t), an analytical solution is often 
not obtained because of the nonlinear expression −H(ϕ, t) ϕ that arises on the 
right-hand side of the differential equation. In such circumstances, a numerical 
solution of the differential equation may be obtained by choosing a time step Δt and 
advancing time to compute ϕ as a function of time, starting with the given initial 
condition. This computation is done until an insignificant change is observed in ϕ(t) 
from one time level to the next, thereby indicating that the temperature has reached 
steady state, given by dϕ/dt = 0. However, since an analytical solution is available for 
the simplified circumstance of Equation 1.1, the numerical scheme should first be 
used to solve the problem with H taken as a constant and the computed results 
compared with the analytical solution. This comparison will allow determination of 
the anticipated accuracy of the numerical results and will also check the correctness 
of the procedure. Such a comparison is particularly valuable in complicated problems 
where an error in the numerical scheme may go undetected. Fortunately, many 
physical and chemical problems can be formulated in terms of idealized circum-
stances, which lead to simplified equations that can be solved analytically. Chapter 8 
discusses several methods for solving ordinary differential equations (ODEs) and 
demonstrates again the importance of available analytical results.

Similarly, in numerical differentiation and integration, the computational scheme 
may be tested by employing simple functions whose derivatives and integrals can be 
obtained analytically. In radiative heat transfer, for instance, integration over the 
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FIGURE 1.2  Variation with time t of the charge q in a capacitor, which is originally at 
charge Q, due to the closing of the switch in the electrical circuit shown.
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wavelength λ of the radiation is frequently needed to determine the total energy lost 
or gained, Q, per unit area, at a surface. The expression for Q is

	

Q f=
∞

∫ ( )λ λd
0 	

(1.3)

where f(λ) is known as the monochromatic emissive power and is often a fairly com-
plicated function of the wavelength λ, generally obtained from a curve fit of experi-
mental measurements. However, the radiation from a blackbody, which is an idealized 
circumstance, is well known in physics and is given by Planck’s law, which expresses 
f(λ) as
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where T is the surface temperature on the Kelvin scale and c1, c2 are the known 
constants. Figure 1.3 shows the variation of f(λ) with λ for the ideal surface of a 
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FIGURE 1.3   Variation of the emissive power f(λ) with the wavelength λ for thermal radia-
tion by a blackbody, a gray body, and a real surface.
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blackbody, for a real or practical surface, and for a gray body for which f(λ) is a con-
stant fraction of that for a blackbody at all λ.

For a blackbody, the integral in Equation 1.3 has been evaluated analytically and 
is given by

	 Q = σT 4	 (1.5)

where σ is known as the Stefan–Boltzmann constant and whose numerical value is 
given in the literature as 5.67 × 10−8 W/m2 K4. Therefore, the computational scheme 
developed for numerically determining Q for a wide variety of engineering surfaces, 
and thus different f(λ), may first be applied to blackbody radiation and the results 
compared with the analytical solution given by Equation 1.5 to determine the accu-
racy and validity of the numerical method.

The numerical solution of large systems of linear or nonlinear equations is often 
needed in engineering problems. Since small sets of equations, typically three or 
four equations, can be solved analytically, the numerical procedure for solving 
systems of simultaneous algebraic equations may be employed for a small number of 
equations and the numerical results compared with the analytical values, to determine 
the accuracy and correctness of the numerical solution.

In numerical methods based on iteration, a convergence criterion ε is employed to 
decide when to terminate the iteration. Generally, the convergence criterion is applied 
to a physical variable in the problem, and computation is stopped when the change 
from one iteration to the next is less than the chosen value of ε. A relationship 
between ε and the accuracy of the numerical results may be obtained by a compari-
son of the computed values with the analytical solution that may be available for a 
simplified circumstance. This information can then be employed in the choice of the 
convergence criterion. If analytical results are not available, an extensive testing of 
the numerical procedure, over wide ranges of the initial guess, convergence criterion, 
and time step Δt, for example, in the problem given by Equation 1.1, must be carried 
out to ensure that the numerical results are essentially independent of the values 
chosen and that the desired accuracy level has been achieved. Figure 1.4 sketches 
typical computed iterative and converged solutions to the ODEs that govern a par-
ticular flow circumstance. The questions related to iterative convergence and to the 
choice of the numerical parameters, such as ε and Δt, are extremely important and 
are discussed in detail in Chapter 2.

1.4  PHYSICAL CONSIDERATIONS

The physical or basic considerations that give rise to a given mathematical expression 
or equation can often be used very effectively in selecting the numerical method, in 
choosing an acceptable solution from the several that may be obtained, and in testing 
the method for accuracy and correctness. In most engineering problems, the basic 
nature of the desired solution is known, along with the range in which it lies. Let us 
consider, for example, the free fall of a body of arbitrary shape in air. A terminal 
velocity is attained due to the balancing of the gravitational force by the frictional 
drag force (Halliday et al., 2004). Depending on the size and shape of the body, an 
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expression for drag may be obtained from considerations of air flow around the 
body. For a flat plate, a commonly employed expression for the frictional force is 
(AV13/7 − BV), where V is the speed at which the plate is moving in stationary air and 
A and B are constants that depend on the length of the plate and the properties of air 
at the given temperature. Then, if m is the mass of the plate and g the magnitude of 
gravitational acceleration, the terminal velocity is the root of the equation

	 AV13/7 − BV = mg	 (1.6)

From a physical consideration of the problem, we know that the terminal velocity 
must have a unique, positive value. The range in which the value lies may also be 
estimated from the available results for other bodies, for example, the sphere. A 
similar equation is obtained for bodies of other shapes and sizes. In many cases, the 
expression for drag is obtained from a curve fit of experimental results and is given 
as a fairly complicated function of the velocity V. A solution of the resulting force 
balance equation will then yield the terminal velocity for the given body. The method 
for solving the above equation may be selected knowing that the root is real, distinct, 
and positive. As discussed in Chapter 5, the secant method and the Newton–Raphson 
method are two efficient computation schemes that may be employed for this problem. 
If a method that determines all possible roots of the equation is used, the physical 
considerations are employed in choosing the correct solution. Since the solution is 
expected to be unique, the other roots must be complex numbers, negative or beyond 
the expected range of values.
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FIGURE 1.4  Typical iterations, leading to a converged result, in the numerical solution of 
ODEs that determine the velocity profile in a flow.
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The physical background of the mathematical problem being solved numerically 
is particularly important in the solution of nonlinear equations, such as the polyno-
mial equation, Equation 1.6, or transcendental equations. Some examples of the lat-
ter are as follows:

	
tan x

B
x

=
	

(1.7)

	 log x + 2x2 = 4 	 (1.8)

	 ex + x2 − 2x = 2	 (1.9)

Nonlinear equations arise very frequently in engineering problems, such as those 
related to fluid flow, heat transfer, chemical reactions, and dynamics of bodies. The 
problems encountered may involve finding the roots of a given nonlinear equation or 
solving a system of nonlinear equations. Since the characteristics of nonlinear 
equations are generally much more complicated than those of linear equations and 
since several solutions are feasible, the physical aspects of the problem are used in 
the development of the computational procedure and in deciding which solutions are 
acceptable. Even for solving a system of linear equations by iterative methods, 
physical considerations are often important in obtaining the starting values. Linear 
and nonlinear equations are also frequently obtained in the numerical solution of 
partial differential equations (PDEs). The physical nature of the quantities to be 
computed is usually employed in the choice of the method, the initial guess, the grid 
to discretize a computational region, the desired accuracy level, and the convergence 
criterion for the termination of the numerical scheme. Since analytical solutions are 
rarely available, the numerical results obtained are generally considered in terms of 
the fundamental nature of the problem in order to determine the validity of the 
numerical scheme.

Curve fitting is another area in which the physical or basic considerations 
underlying the given problem are of particular importance in developing the 
computational scheme. Numerical methods are generally used to obtain the best fit 
to a given set of data. In such cases, it is important to know the expected trends on 
the basis of the physical aspects of the problem, so that the best fit obtained is a true 
representative of the process involved.

Consider, for example, the mean daily ambient air temperature at a given loca-
tion. We wish to obtain a mathematical expression from the 365 data points that 
represent the measurements of the average daily temperature over a year. We could 
obtain a 364th-order polynomial from the given data. However, to do so would 
involve a substantial computational effort, both in obtaining the polynomial and in 
the subsequent usage of the polynomial in relevant problems. Moreover, the air 
temperatures fluctuate due to environmental disturbances. Consequently, we are 
interested in obtaining an expression that represents a best fit to the data and also 
characterizes the variation over the year. Since we know that the variation is 
periodic, with a time period of 365 days, we may try to fit the measurements to a 
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sinusoidal variation. Examples of some of the distributions that may be employed 
are as follows:

	 Ta = A sin [ω(t − a)]	 (1.10)

	 Ta = A sin ωt + B cos ωt	 (1.11)

	 Ta = A sin ωt + b sin 2ωt	 (1.12)

where Ta is the ambient temperature; ω is the frequency, given as 2π/365; t is the time 
in days; and A, B, and a are constants to be determined numerically from a best fit. 
The first equation is frequently used, with fairly satisfactory results. Figure 1.5 shows 
the resulting curve fit qualitatively. Similar considerations are employed in obtaining 
empirical correlations from experimental data and for representing material prop-
erty data, such as those of interest in thermodynamics, by a best fit.

Numerical simulation of engineering systems is important in design and 
optimization. It involves the mathematical modeling of components and physical or 
chemical processes that comprise the given problem to simplify the problem, 
followed by a numerical solution of the governing equations obtained. The input 
parameters, initially chosen on the basis of available data, are varied until a close 
agreement between the physical system and the numerical model is obtained. Once 
an existing system or process has been numerically simulated, the effects of variations 
in design on the performance of the system may be studied numerically, leading to 
optimization. At various stages in such a study, the physical or chemical aspects of 
the problem are employed. In fact, the comparison between the numerical model and 
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ture variation over the year at a given location.
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the actual system forms the basis for the development of the numerical scheme and 
for the study of the numerical results obtained.

Therefore, in the presentation of numerical methods for engineering problems, 
actual problems need to be considered, in order to demonstrate the importance of the 
physical background of the problem in the selection of the method and in determining 
if the numerical results are accurate and valid. The general features of the various 
methods are important and must also be studied in detail. However, some of the 
important aspects can be best understood in terms of the underlying physical 
considerations. Therefore, simple examples from several areas of engineering interest 
are employed in this book.

1.5  �APPLICATION OF COMPUTER METHODS TO ENGINEERING 
PROBLEMS

Computational techniques are used in engineering for a wide variety of applications. 
Several examples of problems that are generally solved on the computer have been 
given in the preceding discussion. Numerical methods for engineering application 
may best be considered in terms of the various mathematical problems that com-
monly arise in engineering. Computer methods for the solution of these problems 
may then be considered, using examples of mathematical expressions and equations 
from various engineering disciplines. This approach would allow a consideration of 
the various methods that may be employed for obtaining the numerical solution of a 
particular mathematical problem, say, integration, while employing examples from 
engineering to bring out the importance of physical considerations in obtaining 
accurate and valid results. This book employs this approach to present and discuss 
computer methods for engineering.

Various types of mathematical equations are encountered in engineering applications, 
such as linear and nonlinear algebraic equations and ordinary and PDEs. Frequently, 
systems of equations, which are linked with each other through the unknown variables, 
are obtained. PDEs arise in areas such as heat transfer, fluid mechanics, elasticity, 
electrostatics, and combustion. These equations are usually solved by finite-difference 
or finite-element methods, which convert the problem into a system of algebraic equa-
tions by applying the PDEs at a finite number of grid points or integrating them over 
finite regions. ODEs are also sometimes solved by these methods. Therefore, the solu-
tion of a system of algebraic equations is very important in engineering applications, 
and many methods have been developed to solve the different types of equations that 
are frequently encountered. Sets of algebraic equations are also directly obtained in 
many physical problems, such as those of interest in thermodynamics, economics, 
vibrations, structural analysis, and electrical networks. Although linear systems are 
particularly important, many engineering problems result in systems of nonlinear 
equations, which must be solved iteratively to obtain the solution. However, in most 
cases, nonlinear systems are formulated so that the methods for linear equations may 
be employed iteratively to converge to the desired solution.

In many engineering problems, the roots of a nonlinear algebraic equation, 
transcendental or polynomial, are to be determined. Such problems arise, for instance, 
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in the determination of the temperature of a body from an energy balance, the termi-
nal velocity of a body falling under gravity, the density of a gas from its equation of 
state, and vibration frequencies from the characteristic equation of a given system. 
Again, various methods are available, some of which are applicable only to polyno-
mial equations, while others may be used for finding the real or complex roots of 
other types of equations. Depending on the nature of the problem, the appropriate 
method may be selected. If not much prior information is available on the nature and 
approximate magnitude of the roots, the general behavior of the function f(x) that 
constitutes the given equation, f(x) = 0, where x is the unknown, may be investigated 
numerically. The numerical method for the solution may then be chosen on the basis 
of the information obtained on the variation of f(x) with x.

ODEs are important in several areas of engineering interest, such as heat and 
mass transfer, dynamics, fluid flow, chemical reactions, electrical circuit analysis, 
and elasticity. In some cases, PDEs can be transformed into ODEs. Frequently, sev-
eral ODEs that are coupled through the unknowns are to be solved simultaneously. 
The solution procedure depends on the nature of the problem, particularly on the 
order of the equation, that is, the highest-order derivative in the equation, and the 
boundary conditions. For instance, the following second-order ordinary differential 
is obtained for a resonant electrical circuit:
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where V is the voltage across a capacitor, A and B are constants that depend on the 
resistance, inductance, and capacitance in the circuit, and t is time. If the initial 
conditions are given as
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we have an initial-value problem, in which the integration of the equation may be 
started at the given time t = 0 and incremented to larger time to obtain the solution. 
If one of the conditions is given at a different time, a boundary-value problem is 
obtained, in which a correction scheme is needed to satisfy the given conditions. 
Similarly, the boundary conditions may be given at two different spatial locations, or 
two different values of the independent variable. Then, iteration is generally employed 
to converge to the solution.

Besides algebraic and differential equations, several other mathematical problems 
arise in engineering. Numerical differentiation and integration are needed in many 
cases, often as part of a more complicated problem. Numerical integration over time 
is needed, for instance, in determining the total energy lost or gained by an object, 
such as at the surface of a lake. Similarly, integration of velocity across a cross sec-
tion of a channel gives the total volume flow rate in the channel. Numerical differen-
tiation is needed, for example, in the determination of the acceleration of a particle 
from the measured variation of its velocity with time. Rate processes are important 
in engineering, and numerical differentiation is frequently employed for obtaining 
the rates of change of various physical quantities. Numerical techniques are also 
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needed in interpolation and extrapolation, employing curve fitting of given data. In 
some cases, an exact fit which yields the exact value at the given data points is 
appropriate. However, more frequently, a best fit of the data is employed so that the 
general features of the results may be represented by a correlating equation, without 
forcing the curve to pass through each data point, as seen earlier in Figure 1.5. 
Software for graphics can be employed advantageously with the computer solution of 
engineering problems to present the numerical results.

In summary, a consideration of numerical methods for engineering application 
involves a wide variety of mathematical problems, as outlined here. It is important to 
understand the advantages and limitations of a particular method for solving a given 
problem. The numerical procedure and the results obtained must also be related to the 
physical or basic background of the problem in order to ensure the validity of the com-
putational scheme and to choose an acceptable solution. Similarly, a comparison 
between the numerical and analytical results must be made, whenever possible, to 
check the accuracy of the results obtained. The development of the numerical scheme 
for a given problem may be discussed in several ways. A practical approach is to take 
the mathematical problem arising from the actual circumstance, present the computer 
program, and discuss the numerical results in terms of the physical aspects of the prob-
lem and available analytical results. It is this approach that is followed here. The com-
putational software chosen is MATLAB, which is presently the most widely used 
computational environment for the application of computer methods to engineering 
problems. However, other languages and software may also be employed by suitably 
modifying the given programs, as discussed in Chapter 2. Of particular importance in 
the use of numerical techniques for solving engineering problems is the need to check 
the computational scheme for accuracy and to correctly interpret the numerical results 
obtained. In this book, these and other aspects mentioned earlier will be considered in 
terms of various examples taken from several engineering disciplines, including aero-
nautical, chemical, civil, electrical, industrial, and mechanical engineering.

1.6  OUTLINE AND SCOPE OF THE BOOK

1.6.1  Basic Features

This book presents the mathematical background as well as the application of 
computational techniques to problems of engineering interest. The material is 
developed by the derivation of the formulas for each method, followed by a discussion 
of the accuracy, computational effort, storage requirements, and range of applicability 
of the method. For each problem area considered, for example, root solving, several 
methods are discussed, emphasizing the ones that are most extensively employed. A 
comparison between various methods applicable for a particular type of mathemati-
cal problem is made, in order to indicate the advantages and disadvantages of a given 
method. Of particular interest in such a comparison are the associated errors, ease in 
programming, computing time and storage needed, and flexibility in the application 
to a wide variety of problems. The circumstances under which a given method would 
be the preferred one are outlined. This consideration is an important one, since several 
methods are frequently available for problems that arise in engineering applications 
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and the choice of the most appropriate method is highly desirable, in order to minimize 
the computing resources needed and to obtain the required accuracy level.

Following a detailed discussion of the mathematical background and the derivation 
of the relevant formulas for each numerical method, the computational procedure for 
applying the technique is discussed. The important considerations underlying the 
development of the numerical scheme are discussed, along with the difficulties that 
may be encountered. Appropriate MATLAB commands and schemes are outlined, 
whenever appropriate, or reference is made to programs in Appendix B to illustrate 
the numerical solution. Finally, examples based on actual engineering or mathematical 
problems are given, for most of the methods considered, and the computer program 
is outlined. Again, the important features of the program are discussed and the 
numerical results obtained are presented and discussed. The emphasis is on presenting 
the basic algorithm of the method in terms of its application to an actual physical, 
chemical, or mathematical problem. Although the program is discussed as part of the 
example and is, therefore, geared to the solution of the specific problem considered, 
a few modifications in the program can easily be made to use it for the solution of 
other problems of similar nature. This approach of writing a problem-oriented 
computer program presents the program simply as a sample and encourages the 
reader to write his or her own program on the basis of the information given, making 
the program as efficient as possible and employing ongoing improvements in available 
computational facilities. General programs that can be used for a wide range of 
problems are also presented in many cases.

1.6.2  Computer Programs

Many useful features are incorporated in the computer programs given in the book. 
Both interactive and batch operation modes are utilized. In the former case, the input 
data are fed and the results are obtained interactively by the operator. This makes an 
interactive use of the computer preferable for short computer runs and for program 
development. The batch mode, in which the entire program is entered with the input 
data and the computer gives the results after the complete run, is preferred for large 
runs and complicated programs, after the program has been developed, tested, and 
debugged. Although most programs are written for the MATLAB environment, sev-
eral programs are also given in Fortran, in order to indicate the similarities and 
differences between these and to demonstrate the ease with which the basic logic of 
the program can be employed in a different language or environment. Also, Fortran 
continues to be an important programming language for engineering problems. 
Subroutines or function files are useful in developing complicated programs and are 
employed wherever appropriate. In some cases, the outputs are stored in data files for 
future analysis or plotting and, in others, these are printed or plotted as soon as the 
computational runs are completed.

1.6.3  Examples and Problems

The examples and problems considered in this book are derived from topics of 
interest in the major engineering disciplines and in the basic sciences. The physical 
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or basic background of the problem is outlined in order to enable the reader to fol-
low the relevance of these considerations in the choice and testing of a particular 
numerical technique. Also, a selection of problems that arise in practical circum-
stances makes the discussion interesting and relevant to engineering applications. As 
discussed earlier in this chapter, numerical solutions must be considered not only in 
terms of the basic nature of the given problem but also in terms of any analytical 
solutions available, even if these are for very simple situations. These aspects are 
stressed in evaluating the numerical results for accuracy and validity. In solving 
problems of engineering interest, the available information on the given system or 
process must form the basis for the development of the numerical scheme and for the 
verification of the results obtained.

Both the problems and the examples tend to expand on the material covered, so 
that they contribute to an increased understanding of the discussion given in the text. 
Several new physical phenomena are also introduced in the problems to indicate the 
application of the methods presented to a much wider spectrum of engineering 
processes. Although the emphasis is, obviously, on the numerical solution, several 
problems are also directed at the mathematical background, particularly at the 
errors  involved and the mathematical formulation for a numerical solution. In 
addition, many problems can be solved on a calculator in order to study a given 
numerical scheme.

Much of the material presented in this book has been used in courses taught at the 
sophomore and junior levels in engineering. A few of the topics covered may be 
somewhat advanced for sophomore students. Similarly, the physical background of 
the problems may not be familiar to some of the readers. Consequently, a brief dis-
cussion of the important aspects of the problem or example under consideration is 
included. In some cases, reference is also made to books that can be consulted for a 
more detailed coverage of the topic. A background in programming, such as a fresh-
man-level, one-semester course, is assumed, although some of the important aspects 
are covered in Chapters 2 and 3 for completeness.

1.6.4  A Preview

The presentation of the numerical techniques for engineering application starts 
with Chapter 2 on the basic considerations in computer methods. This chapter 
outlines the important elements in computational procedure, including program 
development, numerical errors, accuracy, convergence, and other basic aspects. 
Although some of the discussion will be quite familiar to those experienced in 
computer programming, many of the aspects considered in this chapter are impor-
tant in obtaining an accurate and valid solution to a problem of engineering inter-
est. This chapter also outlines the current trends in computational methods and 
facilities, with respect to both the software development and the growing capabil-
ity of computer systems.

A brief review of MATLAB is presented in Chapter 3 in order to discuss the main 
features of this computational environment. Commonly used commands and the 
basic procedures to develop a program in MATLAB are outlined. Standard software 
that can be used advantageously to solve mathematical problems, such as matrix 



18	 Computer Methods for Engineering with MATLAB® Applications

inversion, root solving for polynomial equations, solution of a system of linear 
equations, and obtaining a best fit from given data, is presented and discussed. Since 
plotting of data is easily done in MATLAB, some simple plotting methods are 
presented. This chapter serves to give a brief discussion of programming in 
MATLAB, while referring to more extensive presentations in other books, and also 
outlines the terminology and nomenclature to be used in later chapters

The Taylor series, which forms an important element in the estimation of numeri-
cal truncation errors (TEs), is presented in Chapter 4, along with the numerical 
approximation of derivatives. Several methods for differentiation are presented, and 
many of the results presented here are employed in later chapters. Methods for 
finding the roots of nonlinear algebraic equations are discussed in Chapter 5. Several 
methods, which are based on the sign change, at the root, of the function f(x) in the 
given equation f(x) = 0, are first considered. Efficient methods such as the secant and 
Newton’s methods, which converge very rapidly, although they may also diverge in 
certain cases, are discussed in detail. Specialized methods for equations in which 
f(x) is a polynomial are also discussed. Finally, a comparison between the various 
available methods is made.

The solution of simultaneous linear or nonlinear algebraic equations is an important 
problem in engineering applications and forms the subject of Chapter 6. Direct as well 
as iterative numerical methods are discussed, the latter being the inevitable approach 
for most nonlinear equations. Eigenvalue problems are also considered and the avail-
able methods outlined. Numerical methods for curve fitting of data are presented in 
Chapter 7, considering both the exact fit as well as the best-fit approach. Various tech-
niques for interpolation are discussed, emphasizing popular methods such as Lagrange 
and Newton’s interpolating polynomials. The least-squares method for a best fit is 
discussed in detail, and various forms of the function for curve fitting are considered.

Numerical integration forms the subject of Chapter 8, and several important 
methods, such as the trapezoidal and Simpson’s rules, Romberg integration, and 
Gaussian quadrature, are discussed. The advantages of each method, its limitations, 
and the conditions under which it is preferred are considered in some detail. The 
associated errors and the resulting accuracy are also discussed. The numerical 
integration of improper integrals, whose limits of integration may be infinite or the 
integrand may become singular over the range of integration, is also presented.

The solution of differential equations is an important subject in engineering. 
Because of the complexity of typical engineering problems, numerical methods are 
generally needed. ODEs are considered in Chapter 9 and PDEs in Chapter 10. Both 
self-starting methods, such as Euler’s and Runge–Kutta methods, and multistep 
methods, such as predictor–corrector methods, are considered for ODEs. Also, the 
associated errors, accuracy, stability, and convergence of these methods are 
considered, along with their efficiency in terms of the computational effort required. 
Several types of equations, including initial-value, boundary-value, and systems of 
equations, are considered and the relevant numerical techniques are presented. 
Again, a critical comparison between the various methods is made in order to guide 
the choice of the most suitable scheme for a given problem. Finite-difference meth-
ods, derived from the numerical approximation of derivatives given in Chapter 4, are 
also outlined for ODEs.
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PDEs are included in this book largely for junior- and senior-level students and 
also for professional engineers. With the introductory background presented, the 
material could also be used for less advanced students. The material covered in 
Chapter 10 considers mainly linear equations of parabolic, elliptic, and hyperbolic 
type. The basic nature of the equations is discussed in detail, and important numerical 
methods for their solution are presented. The questions of accuracy, convergence, 
and stability are again considered. Finite difference methods are largely considered, 
with a brief introduction to finite element methods, since the former is easier to 
understand and can be developed on the basis of the material presented in Chapter 4. 
The methods for treating different types of boundary conditions are also outlined.

In all the topics considered here, a large number of examples and problems are 
given, so as to provide a strong physical and numerical base for the computational 
study of engineering problems. Since the best way to learn numerical methods is by 
applying the techniques available to different problems and developing one’s own 
computer code, almost all the examples and many of the exercises demand the 
development of the relevant program and its use for obtaining the desired numerical 
results. Although a calculator may be used in several cases to study the computational 
steps in a given method, the readers are strongly encouraged to write computer 
programs for the problems given, using the discussions, formulas, and examples 
given in the text.

As mentioned earlier, this book is largely directed at the use of the MATLAB 
computing environment for solving engineering problems. However, many Fortran 
programs are also included in deference to the continued importance of this 
programming language in engineering. Extensive expertise and software exist in 
Fortran and it continues to be widely used, particularly for complex problems. However, 
the student or the reader can easily focus entirely on MATLAB, if desired, or a chosen 
mixture of the two computing software may be employed for instruction.
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2 Basic Considerations 
in Computer Methods

2.1  INTRODUCTION

In the numerical solution of engineering problems, there are several important 
aspects that need to be considered in order to ensure the validity of the chosen 
approach for a given problem and the accuracy of the results obtained. The 
computational procedure involves a consideration of the methods available for solv-
ing the given problem, the appropriate programming language, the computational 
environment and software being employed, the computer and its operating system, 
and so forth, before proceeding to the development of the numerical scheme, or 
algorithm, and the corresponding program. Since these considerations are funda-
mental to most computer methods, this chapter discusses the general approach to 
the development of the computational scheme. Also considered are the interfacing 
with available computer software and the verification and validation of the numerical 
results by a comparison with available analytical and experimental results, as 
discussed in Chapter 1.

The consideration of numerical errors and the accuracy of the results is important 
in the numerical solution of any given problem. The various types of errors that arise 
in the computational approach are discussed, along with methods that may be 
employed for reducing the error. The accuracy of the solution may often be estimated 
by comparing the numerical results with those from the analytical solution for sim-
pler problems, since the analytical solution of the given problem is presumably not 
available. Frequently, satisfactory analytical results are not available for comparison. 
In such cases, the numerical scheme itself is first employed to check the accuracy of 
the numerical results by ensuring that numerical parameters, such as the chosen time 
step and grid size, do not significantly affect the results. This process is often known 
as verification of the numerical method. Also, the basic nature of the problem being 
solved can often be employed as a check on the validity of the numerical scheme and 
the correctness of the results obtained. The accuracy of the numerical results can 
frequently be evaluated by substituting the solution obtained back into the algebraic 
or PDE being solved to determine how closely it satisfies the equation. Several other 
similar procedures are generally employed to check the accuracy of the numerical 
solution.

Consider, for example, the dynamics of a moving body whose displacement x is 
governed by the ODE dx/dt = F(x, t), where t is time and F(x, t) is a given function. 
We may assume that the analytical solution is not available, since if it were, there 
would be no need to solve the problem numerically. However, the numerical scheme 
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may be employed to solve a simpler equation, say, dx/dt = –ax + b, where a and b are 
constants. The mathematical solution to this equation can be obtained as x = ce−at + b/a, 
where c is a constant to be determined by applying the initial condition, that is, by 
using the given value x0 of the displacement at time t = 0 or at any other specified 
time; see Figure 2.1. The accuracy of the numerical method may be estimated by 
comparing the numerical solution for this simple problem with the analytical solution. 
For a more complicated function F(x, t), the following considerations may be used. 
The physical nature of the problem demands that the displacement be real and 
positive. Also, it would often be known whether it is periodic or whether it must 
increase, or decrease, with time. This information may be employed to select the 
correct solution in case multiple solutions arise and also to check the validity of the 
numerical scheme. Once the numerical solution x(t) is obtained, numerical 
differentiation may be used to determine dx/dt for a few selected values of t. These 
may then be employed to check if the numerical values of x do indeed satisfy the 
equation dx/dt = F(x, t) to the desired accuracy level. Finally, the step size Δt 
employed in the numerical scheme must be reduced until a further reduction in Δt 
does not significantly affect the numerical results. Of course, if any experimental 
results are available on the given problem, these may be effectively used for evaluat-
ing the accuracy of the numerical results.

The numerical methods for the solution of several problems are based on an iterative 
approach, in which the solution is gradually improved, starting with an initial, guessed 
value until the change in the solution from one step to the next becomes less than a 
chosen small quantity, known as the convergence criterion or parameter. In such cases, 
the convergence of the iterative procedure is an important consideration, and it is 
necessary to determine the conditions under which the scheme may diverge. If a par-
ticular method diverges for a given problem, the problem can sometimes be reformulated 
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FIGURE 2.1  Sketch of the analytical solution of the differential equation dx/dt = ​−ax + b, 
where a and b are constants and x = x0 at t = 0.
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so that the scheme converges. Otherwise, a different method must be employed. 
Numerical stability is another important consideration that guides the selection of the 
method and of the grid, or step, size in the numerical scheme. Again, it is necessary to 
determine when numerical instability might arise and to take steps to avoid it.

This chapter discusses many of these considerations which are basic to most 
numerical methods. The general approach to the development of a numerical scheme is 
outlined, indicating various important aspects that need to be taken into account. The 
concepts of error, accuracy, iteration, convergence, and stability are discussed in general 
terms, by taking examples from various topics, such as root solving, numerical 
differentiation and integration, curve fitting, and solution of algebraic and differential 
equations, considered in greater detail in later chapters. The discussion in this chapter 
forms the basis for the development, application, verification, and validation of the 
numerical procedures for these and other topics of interest in engineering applications.

2.2  COMPUTATIONAL PROCEDURE

The general approach to the development and application of the computational 
procedure for solving a given problem is discussed in this section, indicating the 
important aspects that generally need to be considered for an efficient and accurate 
scheme. Although some of the considerations outlined here may not be applicable to 
a particular circumstance, it is important to recognize the important steps that lead to 
a successful numerical method. Most of the items included here are fairly straightfor-
ward and are quite familiar to those who have done a significant amount of numerical 
work. However, the systematic approach given here is helpful, particularly for those 
who are relatively less experienced in computer methods, in investigating the relevant 
aspects that determine the efficiency, accuracy, and validity of the numerical 
procedure. It is assumed that the mathematical formulation of the given physical or 
engineering problem has been completed and that an analytical solution is not easily 
obtainable, so that it has been decided to solve the problem numerically.

2.2.1  Method Selection

Frequently, several methods are available for the numerical solution of a given 
mathematical problem. The selection of the method to be employed, from among the 
several applicable methods, is an important consideration and is generally based on 
many relevant criteria, such as the following:

	 1.	Accuracy
	 2.	Efficiency
	 3.	Numerical stability
	 4.	Programming simplicity
	 5.	Versatility
	 6.	Computer storage requirements
	 7.	 Interfacing with available software
	 8.	Previous experience with a given method
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The accuracy of a given method is an important consideration in its selection for 
solving a particular problem. The evaluation of the accuracy of a method may be based 
on a comparison of the numerical results with available analytical results, as outlined in 
the preceding section, on an estimation of the associated numerical errors, or on various 
methods for checking the correctness of the numerical solution, such as substitution of 
the numerical results back into the equation being solved to determine the accuracy to 
which the numerical solution satisfies it. All these aspects, particularly the numerical 
errors that arise in computational methods, are discussed in detail later in this chapter.

The efficiency of a given method is generally based on the total number of 
arithmetic operations needed for solving the given problem. This is reduced to the 
number of arithmetic operations needed per computational step if the number of steps 
is fixed. One could also solve a given problem with different methods and determine 
the computational or central processing unit (CPU) time needed in each case, as 
obtained from the computer. However, the number of arithmetic operations, which 
include addition, subtraction, multiplication, and division, can often be determined by 
noting down the various mathematical manipulations performed, per step, in a given 
numerical scheme. If a particular method involves a smaller number of total arithmetic 
operations needed to solve the given problem, than another method, then it is more 
efficient. A higher efficiency of the method also implies shorter computer time and, 
thus, lower computational cost. For instance, matrix inversion methods for solving 
systems of linear equations, though convenient and widely used, are generally less 
efficient than other direct methods, as seen in a later chapter.

Numerical instability refers to the unbounded growth of numerical errors as com-
putation proceeds. It is of particular concern in the solution of differential equations 
and, if present, can lead to an erroneous and unacceptable numerical solution. 
Therefore, it is important to determine the stability characteristics of the various 
methods that are applicable to a given problem. Frequently, the numerical scheme may 
be conditionally stable; that is, it may be stable within certain constraints that often 
limit the grid or step size. In the solution of parabolic PDEs, for instance, the explicit 
schemes, which are generally simpler to use, often restrict the step size to small values, 
making these schemes inefficient. Then the implicit methods, which usually do not 
have such constraints resulting from stability considerations, are preferred. Thus, the 
numerical instability of the method is an important consideration in its selection.

As listed before, several other considerations also play an important role in the 
selection of the method. These include simplicity in programming, versatility of the 
method, computer storage needed, and interfacing with available software. In 
engineering applications, the simplicity and versatility of the method are very 
important, since interest often lies in solving a wide variety of problems with the 
least amount of effort. This is particularly true for the design and optimization of 
systems that often involved a diversity of components and equations. Frequently, 
some sacrifice is made with respect to accuracy and efficiency in order to select a 
simpler and more versatile method. An example of this is the Runge–Kutta method, 
for solving ODEs. This method is often chosen over predictor–corrector methods, 
which are more efficient than the former but are also more complicated to program.

The computer storage requirements of the method are generally important in the 
simulation of large systems that are of interest in engineering applications. For 
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example, the Jacobi method for solving a system of linear algebraic equations 
involves the storage of the matrices of the unknowns at two iterative steps, the present 
and the previous one, whereas the Gauss–Seidel method requires the storage of only 
the latest values. Thus, the latter method requires only about half the storage needed 
by the first method. It is also more efficient on conventional single-processor 
computers and is preferred.

The interfacing of the numerical method with the computer software is particularly 
important when available programs are being employed. For instance, if a matrix inver-
sion program is available, methods based on the inverse of the matrix for solving a 
system of linear equations may be chosen. This is particularly true for MATLAB®, which 
has excellent matrix inversion software built into the system. Similarly, prior personal 
experience with a given method would be an important consideration in its selection.

2.2.2  Programming Language

After the numerical method for the solution of the given problem has been selected, the 
next step is the development of the computer program or code that allows one to inter-
face with the computer system. However, before proceeding with the code develop-
ment, one must select the programming language and the computer system to be used 
and become fully conversant with the selections made. The programming languages, 
often termed high-level languages, allow one to write the step-by-step instructions, or 
algorithm, for the computer in a form that is quite similar to ordinary English and 
algebra. The computer itself interprets and executes statements only in the machine 
language, and a compiler is employed by the computer to achieve the translation from 
the programming language to the machine language. The machine language program 
is then stored, providing direct access for immediate or later execution.

Several high-level programming languages have been developed over the years. 
In the past, the most widely used among these, for engineering and science, was 
Fortran, which stands for formula translation. It was originally developed by IBM 
in the 1950s for scientific and engineering applications and is now available in many 
versions, such as Fortran 77, Fortran 90, Fortran 95, and Fortran 2003. It is still 
commonly used and remains one of the important languages for high-performance 
scientific computing and for benchmarking and ranking the world's fastest 
supercomputers, partly because of extensive existing programs for a wide array of 
engineering problems. Fortran 90 and beyond are also well suited for use on parallel 
machines. Most Fortran programs are structured so that control flows from top to 
bottom, rather than one in which control is transferred from one point in the program 
to another in a seemingly random fashion. The structured system makes development 
as well as debugging relatively easy. Similarly, other important features, such as 
object-oriented programming that uses objects, which include information on the 
relevant data, methods, and their use to design the computer programs, have also 
been incorporated in recent versions. Several Fortran programs are given in this 
book to present the algorithm and the logic of the method, as well as to show the 
similarities with and differences from the MATLAB environment and to provide 
information for those who are well versed in this programming language. Many 
books are available on programming in Fortran and may be referenced for details on 
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the language. See, for instance, the books by Metcalf, Reid, and Cohen (2004), 
Chapman (2007), and Chivers and Sleightholme (2009).

There are several other programming languages that have been employed for 
solving problems in science and engineering. These include Basic, Pascal, C, Lisp, 
and others. Among these, Basic, which stands for beginner’s all-purpose symbolic 
instruction code, was also a widely used language, particularly on PCs, since it is 
generally simpler to use than Fortran and is well suited for small programs. 
However, it is not as versatile as Fortran and is often inconvenient for large, complex 
programs. Many improved versions of Basic have been developed in recent years, 
and many of the constraints that existed in the earlier versions have been elimi-
nated. A useful version is Visual Basic, which is a relatively easy to learn and use 
programming language, because of its graphical development features and deriva-
tion from Basic.

Similarly, other programming languages have their special advantages and 
limitations. An important language is C, which is a general-purpose programming 
language developed in the last two decades. It is a relatively low-level language, 
implying that it is closer to assembly language than high-level languages such as 
Fortran. As a result, it is more difficult to move the program from one computer 
system to a different one. However, the language was designed to encourage 
machine-independent programming, allowing C programs to be compiled for a very 
wide variety of computer platforms and operating systems with little or no change to 
its source code. The language has several advantageous features in control flow and 
data structures because of which it is one of the most popular programming languages 
and is widely used on many different software platforms. C has greatly influenced 
many other popular programming languages, most notably C++, which originally 
began as an extension to C. For details on the C and C++ languages, the books by 
Kernighan and Ritchie (1988), Kochan (2004), Prata (2005), King (2008), and 
Stroustrup (2000, 2009), among many other available books, may be consulted.

Several other programming languages have gained considerable importance in 
the last few years. Among these are languages that allow symbolic manipulation, 
that is, languages in which words, sentences, and expressions can be employed for 
programming. Lisp, which takes its name from list programming, is one such 
language that is important in the development of intelligence in computers. Similarly, 
Prolog and Smalltalk are languages used in generating artificial intelligence in 
engineering systems. For details on these languages, several references are available. 
See, for instance, the books by Winston and Horn (1989), Clocksin (2003), Clocksin 
and Mellish (2004), and Lalonde (2008).

Recent years have seen a tremendous growth in computational software, including 
programming languages and computational environments, making it convenient 
and efficient to carry out the numerical solution of the wide range of problems 
encountered in engineering applications. Some of these that may be mentioned are 
MATLAB, Mathematica, SciLab, Maple, GNU Octave, R programming language, 
and Perl Data Language. The more computationally intensive aspects in the soft-
ware are often based on some variation of Fortran or C. The main computational 
environment used in this book is MATLAB and Chapter 3 is devoted to a brief 
discussion on the programming and implementation in this environment.
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The computer program, written in a high-level language such as Fortran or C++, 
is implemented on the computer by means of an interpreter or a compiler. An 
interpreter examines each line of the program and checks it for the rules of the 
language before it is executed. The interpreted approach is very valuable during 
program development, since error messages are given as soon as a statement is 
entered. However, it is very slow in the execution of the program. A compiler, on the 
other hand, organizes the entire program into a set of machine instructions and 
locations, and several compilers are available. The compiler is often written for a 
given computer system and is generally a completely separate process undertaken 
before the program is run. Once the machine code has been produced by the com-
piler, the compiled program is stored and the program may be executed with a sepa-
rate command. A single command that compiles and executes the program may 
also be used. The use of a compiler thus reduces the computer time for a given 
problem. Various compilers have their particular advantages and characteristics. 
For instance, Unix and Linux are particularly good at providing diagnostic error 
messages and are widely used.

From the above brief discussion of the various programming languages widely 
employed for engineering problems, it is obvious that the trend has been toward 
structured programming and interactive use of the computer, through an interpreter, 
which responds almost immediately, or an interactive compiler. Substantial 
improvements and modifications continue to be made in the available languages to 
simplify programming and to increase the versatility and capability of the language. 
Although it is difficult to keep up with all the advancements in the high-level 
languages, available interpreters and compilers and computational software, it is 
important to determine what is available on a given computer.

In general, an interactive use of the computer is preferable during program 
development, since the parameters of the problem may be entered by the operator at 
the terminal. The program may be compiled and executed to obtain the output as the 
program continues to execute. If the results are unacceptable, the execution may be 
stopped at any stage, and the input parameters varied and execution resumed. In the 
batch operation mode, the input parameters are part of the program, and the execution 
of the program must be completed before any changes can be made. Thus, at the 
initial stages of program development, interactive computer usage is particularly 
valuable. Once the program has been satisfactorily developed, detailed numerical 
results are best obtained by the batch operation mode on the computer.

Example 2.1

Compute the sum S of the series

	 S = 1 + x + x2 + x3 + … + xn + …	 (2.1)

where x is a variable whose value is to be entered into the program interactively. 
In order for the series to be convergent, |x| < 1. This series represents the binomial 
expansion of 1/(1 − x), which therefore gives the exact value SX of the series. Compare 
the exact and computed values of S to determine the numerical error. Discuss the 
dependence of the sum S on the number of terms n taken in the series.
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SOLUTION

The value of x is to be entered and terms in Equation 2.1 are to be added 
sequentially. The basic considerations relevant to convergence are discussed 
in detail later in this chapter. However, it will suffice to mention here that each 
term in the series, given in Equation 2.1, is larger than the next term, for |x| < 1. 
Thus, the contribution of each additional term to the sum decreases as n is 
increased. This relationship is used as a check on the convergence, since it 
is not possible to take an infinite number of terms and since it is desirable to 
have the least number of terms that give S within an acceptable error. If SN 
represents the nth term and S the sum of the series up to and including this 
term, then the condition SN/S < ε, where ε is a chosen small quantity, such as 
10−6, which implies that the contribution of the nth term to the sum S is less 
than 10−4%, can be employed to check the convergence and to terminate the 
computation if this condition is satisfied. The percentage error E is then given 
by E = 100 [(SX – S)/SX].

The preceding description of the procedure to solve the problem may be 
written in terms of the following steps:

	 1.	Set the initial value of the sum S as zero.
	 2.	Set the initial value of the term n as zero.
	 3.	Enter the value of x.
	 4.	Add the next term SN = xn to the sum S.
	 5.	Check if the convergence criterion SN/S < ε is satisfied.
	 6.	 If the convergence criterion is satisfied, stop and print the results on n, S, 

and E.
	 7.	 If the convergence criterion is not satisfied, advance n by 1 and go back to 

step 4.
	 8.	Continue till convergence criterion is satisfied or a given maximum value of 

n is reached.

A fairly simple computer program can be written to follow these steps, as dis-
cussed below and shown in Figure 2.2 in Fortran 77. This program is presented to 
show the logic and the various steps involved and for those who are familiar with 
the language.

The program would then yield the number of terms needed for the preceding 
convergence criterion to be satisfied, the computed sum S of the series, and 
the percentage error E. Figure 2.3 presents the typical results obtained from this 
program. Here E is given in a format of the form 0.1E–04, or 0.1 × 10−4, in order to 
check against the convergence criterion of SX/S < 10−6. Clearly, the error is a func-
tion of ε, which may be chosen to keep the error within an acceptable value. Also, 
note that the number of terms needed increases with the value of x. This result 
is expected, since convergence is slower at the larger value of x, as discussed in 
most textbooks on advanced calculus; see, for instance, Larson et al. (2005) and 
Stewart (2007).

This is an interesting problem, which shows the effect of truncating a series 
after a certain number of terms and the use of a convergence criterion. The 
analytical result of the summation of the infinite series is known and can be used 
as a check on accuracy.
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C	 	 PROGRAM SERIES SUMMATION
C
C	 	 HERE S IS THE SUM OF THE SERIES UP TO AND INCLUDING THE NTH
C	 	 TERM, SN IS THE NTH TERM, SX IS THE EXACT VALUE OF THE
C	 	 FUNCTION F(X)=1.0/(1.0–X), WHICH IS REPRESENTED BY THE
C	 	 SERIES, AND ER IS THE ERROR.
C
C
C	 	 ENTER INPUT QUANTITIES
C
	 	 	 IMPLICIT REAL (A–H,O–Z)
	 	 	 DO 5 I=1,5
	 	 	 PRINT *, 'ENTER THE VALUE OF X'
	 	 	 READ *, X
	 	 	 N=0
	 	 	 S=0.0
C
C	 	 SUM THE SERIES
C
	 1		 SN=X**N
	 	 	 S=S+SN
C
C	 	 CONVERGENCE CHECK
C
	 	 	 IF ((SN/S) .GT. 1E–06)THEN
	 	 	 N=N+1
	 	 	 GO TO 1
	 	 	 ELSE
	 6		 WRITE (1,2)X
	 2		 FORMAT(2X, 'X=', F6.3)
	 	 	 WRITE(1,7)N
	 7		 FORMAT(2X, 'THE REQUIRED NUMBER OF TERMS=',I5)
	 	 	 WRITE(1,3)S
	 3		 FORMAT(2X, 'THE SUM OF THE SERIES=', F12.6)
C
C	 	 COMPUTE THE ANALYTICAL VALUE OF THE SUM AND THE ERROR
C
	 	 	 SX=1.0/(1.0–X)
	 	 	 ER=((SX–S)/SX)*100.0
	 	 	 WRITE(1,4)ER
	 4		 FORMAT(2X, 'THE ERROR=', E10.5,'PERCENT' /)
	 	 	 END IF
	 5		 CONTINUE
	 	 	 STOP
	 	 	 END

FIGURE 2.2  Computer program in Fortran for the summation of the series given in 
Example 2.1.
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2.2.3  Computer System

The next consideration in the numerical solution of a given problem pertains to the 
computer system. Frequently, several systems, ranging from PCs or workstations 
to minicomputers and mainframe computers, are available to engineers. Super
computers may also be accessible for large-scale simulations of engineering sys-
tems. If several computers are available, the selection of the most appropriate one 
for a given problem is important. Once this selection has been made, or if only one 
computer system is available, one proceeds to obtain detailed information on the 
various elements of the system, such as the languages available, the operating sys-
tem, the software available on the system, the input/output facilities, the memory/
storage constraints, and the job control language, so as to implement the computer 
program being developed on the system.

 ENTER THE VALUE OF X
0.1
   X = 0.100
   THE REQUIRED NUMBER OF TERMS = 7
   THE SUM OF THE SERIES = 1.111111
   THE ERROR =.10729E-04PERCENT

 ENTER THE VALUE OF X
0.3
   X = 0.300
   THE REQUIRED NUMBER OF TERMS = 13
   THE SUM OF THE SERIES = 1.428571
   THE ERROR = .25034E-04PERCENT

 ENTER THE VALUE OF X
0.5
   X = 0.500
   THE REQUIRED NUMBER OF TERMS = 20
   THE SUM OF THE SERIES = 1.999998
   THE ERROR = .95367E-04PERCENT

 ENTER THE VALUE OF X
0.7
   X = 0.700
   THE REQUIRED NUMBER OF TERMS = 37
   THE SUM OF THE SERIES = 3.333328
   THE ERROR = .17166E-03PERCENT

 ENTER THE VALUE OF X
0.9
   X = 0.900
   THE REQUIRED NUMBER OF TERMS = 111
   THE SUM OF THE SERIES = 9.999912
   THE ERROR = .85831E-03PERCENT

FIGURE 2.3  Results from the program in Fortran for Example 2.1.
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As mentioned earlier, there are two main steps in the numerical solution of an 
engineering problem. The first involves the development of the computer code, and 
the second involves repeated execution of the program for a wide variety of input 
conditions and governing parameters to generate the numerical data needed for, 
say, the design and analysis of a given engineering system such as a furnace, a 
boiler, electronic equipment, a robot, a mechanical structure, or a chemical reac-
tor. The computer requirements are usually quite different for these two steps. 
Code development involves frequent changes in the program and is thus best suited 
to an interactive use of the computer, preferably with an interpreter. The operating 
system, examples of which are Microsoft Windows, UNIX, and LINUX, controls 
the interaction with the computer, particularly the editor, and is an important com-
ponent in the process. A screen editor, such as word processing programs and 
EMACS, which is available on many personal and minicomputers, allows one to 
make changes in the program very rapidly by moving the cursor to the desired 
location and making the needed modification. A line editor, on the other hand, 
allows changes to be made line by line, or in a collection of lines, and is much 
slower. The speed of the CPU, which finally runs the program, is not a very impor-
tant consideration during code development. Similarly, the output facilities are not 
as important as at the second stage when computational results are being obtained, 
in tabular or graphical form.

Thus, during the development of the computer program, a good screen editor, 
which allows frequent changes and corrections in the program, is desirable. Also, the 
interpreter or compiler should provide adequate error diagnostics. PCs, workstations, 
and several minicomputers are particularly suited to code development because of 
the availability of most of the desirable features mentioned above.

Once the computer program has been developed, the desired numerical results 
for wide ranges of the governing parameters are obtained by repeatedly running the 
program with minor changes to enter the appropriate parametric values. Clearly, a 
rapid execution, with good output facilities, particularly graphics, is desirable at 
this stage. The editor and error diagnostics are not important. Also, an interactive 
use of the computer is not necessary. Thus, a batch execution of the developed pro-
gram on a mainframe computer, or on a supercomputer, is the best method, particu-
larly for large, computationally intensive programs. The program is loaded, 
compiled, and linked with computer memory before execution, which then pro-
ceeds rapidly.

2.2.4  Program Development

2.2.4.1  Algorithm
After the selection and the consideration of the important aspects of the method of 
solution, the programming language, and the computer system, one proceeds to the 
development of the computer program. However, before the program can be written, 
a step-by-step procedure, known as an algorithm, must be developed.
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The method of solution is generally expressed in terms of the mathematical 
formulas involved in the computation. However, the computer must be programmed 
to follow a definite, logical, step-by-step procedure to perform the desired 
computation. The algorithm may be written as a sequence of steps to be followed. 
More frequently, the algorithm is represented graphically by means of a flow chart, 
which shows the steps in the form of a block diagram. Generally, a flow chart is used 
to outline the computational procedure, without giving the details of the actual 
computational steps, which are eventually entered into the actual program. Thus, a 
flow chart serves to indicate the logical sequence of programming steps and is 
frequently drawn before the program is developed.

The flow chart follows an accepted collection of symbols to represent input/
output, decision, terminal, and computation. For example, let us consider the 
determination of the maximum of a function f(x). In the optimization of engineer-
ing systems, one is frequently concerned with maximization or minimization of 
functions, under specified constraints. Let us assume that it is known that the 
given function f(x) has a maximum in the range x1 < x < x2, where x is the inde-
pendent variable. We know from mathematics that at the maximum, df/dx is zero 
and d2f/dx2 must be negative. Employing these characteristics of a maximum, one 
may write the algorithm as a sequence of steps, shown in Figure 2.4, or represented 
by a flow chart, shown in Figure 2.5.

For this problem, the computational procedure involves entering xl and x2, 
advancing x with a chosen step size Δx, and computing the derivative df/dx. If the 
derivative is close enough to zero, as indicated by a chosen small quantity ε, a 
maximum or a minimum is obtained. Then the second derivative d2f/dx2 is computed. 
A maximum is obtained if d2f/dx2 is negative. In this case, the computation is 

STEP	1.	 Start the calculation.
	 2.	 Input the limits x1 and x2 on x and the definition of the function f(x).
	 3.	� Select the numerical parameters: Step size Δx and the convergence 

parameter ε.
	 4.	 Initialize: Take xi = x1.
	 5.	 Calculate the first derivative �f xi( )
	 6.	 Check whether the magnitude of the derivative is within ε.
	 7. 	� If | ( )ʹf xi |>ε, then advance xi by Δx and check whether xi < x2. If

| ( ) |ʹ <f xi ε, then go to Step 10.
	 8.	 Stop the calculation if xi > x2.
	 9.	� Calculate �f xi( ) and again compare its magnitude with ε. Continue 

with Step 7 if | ( )ʹf xi |>ε .
	 10.	If | ( ) |ʹ <f xi ε then calculate the second derivative ��f xi( ) .
	 11.	 If ��f xi( )  is positive or zero, advance xi by Δx. Go to Step 8.
	 12.	If ��f xi( ) is negative, a maximum is indicated.
	 13.	Print the required results: xi and f xi( ).
	 14.	Stop the calculation.

FIGURE 2.4  Representation of the algorithm for determining the value and location of the 
maximum of a given function f(x) as a sequence of steps to be followed by the computer.
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terminated and the output printed. However, if d2f/dx2 is positive, a minimum is 
indicated. A value of zero indicates a saddle or inflexion point. Then, the computa-
tion of df/dx is again carried out by advancing x until a maximum is obtained or until 
the upper limit on x (i.e., x = x2) is attained. If a maximum is not obtained in the 
given domain and if f(x) is known to have a maximum in the region, a larger value of 
ε may be selected and the procedure repeated. In fact, both ε and Δx must be varied 
to ensure that the location of the maximum is essentially independent of the values 
chosen.

As shown in Figures 2.4 and 2.5, a flow chart is a more convenient representation of 
an algorithm. The various symbols used for indicating the type or nature of a given step 

Start

Start

Input
f (x), x1, x2

Numerical scheme
calculate f´ (xi)

Output
print xi, f (xi)

Stop

Stop Start/stop
(terminal)

Input/output

Numerical
process

Decision

Connector

Select Δx, ε
Initialize, xi = x1

Yes

Yes

Yes

No

No

No

Is
xi > x2?

Is
| f´(xi)| ≤ ε?

Calculate
f˝(xi)

Is
f˝(xi) < 0?

xi = x1 + Δx

xi = xi + Δx

FIGURE 2.5  Flow chart representation of the algorithm outlined in Figure 2.4.
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are also shown in Figure 2.5. The flow chart is a useful tool as long as it is used to give 
an outline of the overall process and not the detailed representations of individual 
steps. The numbered sequence of steps, given in Figure 2.4, can also be used instead, 
depending on the personal preference of the programmer. However, with experience, 
one could form a mental picture of the various steps in the algorithm, particularly for 
relatively simple problems, and proceed directly to computer programming.

2.2.4.2  Available Programs
Along with improvements in computer systems in recent years, with respect to memory 
and computational speed, there has been an explosive growth in software as well. A 
question, which is frequently asked these days, is if there is a need to develop numerical 
codes when many general purpose and specialized codes are easily available in the 
public and commercial domains. General-purpose programs such as Fidap, Fluent, 
Phoenics, Nekton, and Ansys are commercially available and can easily be used to 
study a wide variety of engineering problems. Software such as Maple, MathCAD, and 
MATLAB can be used for obtaining analytical and numerical solutions to a variety of 
mathematical problems such as differential equations, integration, root solving, and 
algebraic equations. Similarly, specialized codes such as Polyflow for polymer 
processing can be employed for specific problems and applications. In the public 
domain, several codes are available free of cost. These include programs for solving 
systems of linear equations, for solving ODEs, for inverting matrices, for curve fitting, 
and for providing graphical outputs of the computational results.

Commercially available software is generally expensive and usually does not 
provide the source code so that it is difficult to make changes in the code for a spe-
cific problem. In many cases, information on the algorithm, accuracy, discretization, 
convergence characteristics, range of applicability, and other important aspects asso-
ciated with the software is not available in adequate detail. Despite the claims made 
with respect to the wide variety of problems a given software is capable of solving, 
one must judge each program very carefully and choose the one most suitable for a 
given application, keeping its cost, versatility, accuracy, and other features in mind. 
However, the general-purpose programs are finding wide use in industry, usually 
with specific changes made in the software to address the requirements of the given 
industry.

Computer programs in the public domain do not have many of these concerns and 
can often be adapted to a given computer system and linked with other software to 
solve a given problem. Thus, a program for solving a system of linear equations by 
cyclic reduction, fast Fourier transforms, or matrix decomposition may be used as 
part of the overall computer code to simulate an engineering problem. Certainly, 
software packages for producing graphical outputs are extensively used with the 
computational scheme generating the results. This approach of developing the core 
software and linking it with codes available in the public domain is a particularly 
attractive approach and is widely used.

Besides the easy availability of a wide variety of computer codes in the public 
and  commercial domains that have led to considerable improvements and 
simplifications in numerical model development for engineering processes, several 
other advancements have occurred in recent years. These are expected to continue to 
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have a significant impact on computational methods. Certainly, the most important 
development is that of parallel machines which employ several processors, instead of 
the single CPU used in traditional serial or sequential computing machines. As 
outlined in Section 2.2.5, multiple processors allow concurrent calculations to be 
carried out, resulting in a considerable speed up of the process. Similarly, considerable 
progress has been made in graphical representations of the results, employing color 
plots, contour plots, particle trajectories, two- and three-dimensional graphs, and 
vector field graphs, among other useful and interesting features.

The need to use supercomputers to solve complicated problems, such as those 
involving three-dimensional transport and turbulent flow, has led to improvements in 
computational techniques through vectorization of the variables, so that rather than 
treating each quantity in an array as a scalar the whole array is treated as a vector. 
Improvements in the user–computer interface, using languages such as Visual Basic, 
have also resulted in considerable ease in entering the relevant data such as geometry, 
operating conditions, and material characteristics. Information storage and retrieval, 
linking with the knowledge base on a given process or material, often using artificial 
intelligence techniques, and other new features in computer systems and software 
have had a considerable impact on traditional programming. It is expected that such 
advancement will continue in the future, resulting in valuable and desirable changes 
in the field of computational methods as well.

2.2.4.3  Validation
The final stage in the development of the computer program for solving a given 
problem is verification or validation of the numerical scheme. As discussed in Section 
1.3, validation is done by a comparison of the numerical results with available 
analytical solutions and experimental results. However, the analytical solution of the 
problem being solved numerically is obviously not available, at least in a convenient 
form, making a numerical solution necessary. Therefore, the numerical scheme is 
generally validated by a comparison with the analytical solution available for simpler 
problems. For example, the algorithm shown in Figure 2.4 may be used with a simple 
analytic function whose maximum can easily be determined mathematically. Thus, 
a function such as f(x) = 5 + 4x − 3x3, which can easily be shown to have a maximum 
at x = 2/3, may be chosen for the testing of the numerical scheme. The numerically 
obtained value may be compared with the analytical one to verify that the scheme is 
performing satisfactorily. Other, more complicated expressions may also be 
employed, if the corresponding analytical results are known, for the validation of the 
computer program. Similarly, experimental results are generally not available on the 
problem being solved. However, experimental data on similar systems or problems 
may be available. These data can then be used to validate the numerical solution.

2.2.5  Serial versus Parallel Computing

In this book, it is generally assumed that at a given instant only one computational step 
is being carried out on the computer. This assumption applies to most commonly used 
computers, such as PCs and minicomputers, for engineering calculations. The compu-
tational procedure in which the required calculations are performed sequentially, with 
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each step being undertaken by the machine after the previous one is over, is known as 
serial or sequential computing. Thus, a single CPU is involved in the computation. 
However, in recent years, computers with multiple processors that allow concurrent 
calculations have been developed. Generally termed parallel computers, these 
machines represent the new generation of computing and have become important in 
the numerical simulation of complicated processes and systems.

In order to fully utilize these machines with multiple processing units, one must 
write the algorithm so as to employ the feature of parallel computing. Thus, state-
ments must be given to direct various calculation steps to different units. Algorithms 
in which different steps are independent of each other are ideally suited for parallel 
computing, since each calculation step can easily be assigned to a given processor. 
Algorithms that involve strongly coupled steps cannot be solved very efficiently with 
parallel computing. Besides the calculation for each step, the processors need to 
communicate with each other at various stages in order to solve the overall problem. 
Thus, parallel computing involves developing algorithms that allow concurrent 
calculations and message passing between processors for greater efficiency. 
Depending on the problem and the algorithm, a considerable speed up of the 
computation can be obtained for a system consisting of n processors, a value 
approaching n indicating an excellent utilization of the parallel computing 
environment. Even though the assumption here is serial or sequential computing, the 
implications for parallel computing will be given at many places in the book. For 
details on parallel computing, see Grama et al. (2003) and Scott et al. (2005).

Example 2.2

A firm needs to borrow $50,000 to undertake improvements in its existing 
facilities. For the repayment of the loan, the firm wishes to pay only $1000 each 
month, beginning at the end of the first month after taking the loan, toward the 
principal and the interest. Considering possible interest rates as 8%, 10%, and 12%, 
determine the time required to pay off the loan for these three cases. Calculate the 
time required and the future worth (FW), or the value on the day the repayment 
is completed, of the money paid toward the loan. Also, determine the amount by 
which the final payment must be reduced to pay off the loan exactly.

SOLUTION

Let x denote the percent interest rate, so that an annual compounding yields an 
interest of x on $100. Then the annual interest on each dollar is x/100, denoted 
by x1. Therefore, the FW of an amount P after n years is P(l + x1)n, due to this inter-
est which is compounded annually. Similarly, the present worth (PW), or the value 
today, of an amount R paid at the end of n years is R/(l + x1)n. The concepts of 
PW and FW are very important in economic analysis; see, for instance, Stoecker 
(1989). First, we need to consider the PW of a series of uniform annual amounts 
R, paid at the end of each year starting at the end of the first year. If n is the total 
number of years, the PW of such a series of amounts is
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The series can be summed up to give
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+
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(2.3)

where x1 = x/100 (since x is given as a percent).
Equation 2.2 follows from the fact that the PW of an amount P paid at the end 

of n years is given by PW = P/(l + x1)n and from the consideration of each lump-
sum annual payment to yield the given series. Now, if we consider monthly pay-
ments, the total number of payments become m, where m = 12n, and the interest 
rate becomes xm, where xm = x/(12 × 100). Thus,
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+ −
+

R
x

x x
m

m

m m
m

( )
( )

1 1
1

	 (2.4)

The FW of this series of amounts is obtained by simply multiplying the PW by 
(1 + xm)m. Therefore,

	
FW =

+ −
R

x
x
m

m

m

( )1 1
	 (2.5)

Now, R is given as $1000 and x as 8%, 10%, or 12%. We wish to compute the time, 
in months m, needed to repay the loan, and the FW of the total payment. The PW 
is $50,000. Thus, m is to be computed from Equation 2.4, and the FW may then be 
obtained from Equation 2.5. The determination of m from Equation 2.4 is a root-
solving problem, which will be presented in Chapter 5. Here, we shall use a very 
simple approach, since root-solving methods have not been discussed yet. For a 
given value of xm, the value of m may be increased in steps of 1, starting with m = 1, 
and the PW computed from Equation 2.4, until the value of $50,000 is reached. 
The computation stops when PW exceeds this amount, since a fixed payment of 
$1000 is made each month. In practice, the monthly payment is adjusted to an 
appropriate value close to $1000, so that the loan is paid off exactly.

Figure 2.6 shows the algorithm to be employed, in terms of a flow chart. 
The computational scheme is very simple for this problem and is based on a 
comparison between the PW of $50,000 and the sum of the series in Equation 
2.4, employing an increasing number of terms m. Once the latter exceeds the PW, 
the loan is paid off and the number of months needed is printed. Also, the FW, on 
the date when the loan is paid off, of the total payment made is computed from 
Equation 2.5. The PW of the total payment exceeds $50,000, and the last pay-
ment may be reduced to avoid this excess payment or the monthly payments may 
be adjusted, as mentioned above. The FW of the loan is $50,000 (1 + xm)m, and if 
this amount is subtracted from the computed FW of the payments, we obtain the 
amount by which the final payment may be reduced to pay off the loan exactly.

A computer program may easily be developed on the basis of this algorithm. 
Figure 2.7 presents a Fortran 77 program to give the logic and the various steps 
indicated in the algorithm.

Figure 2.8 presents the numerical results obtained from such a program. The 
inputs are entered and the print out gives the results, along with the input para
meters to ensure that the correct values are being employed in the calculations. 
As seen here, the number of months needed to repay the loan increases with 
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the interest rate, as expected. Also, the FW increases. Note also that, since the 
monthly payment is kept constant, the total payment is more than the loan. To 
determine the amount needed to repay the loan exactly, subtract the FW of the 
loan from the FW of the total payment. This amount is the overpayment and is 
subtracted from the last month's payment of $1000 to obtain the reduction in the 
final payment if the loan is to be paid off exactly.

2.3  NUMERICAL ERRORS AND ACCURACY

A very important consideration in the solution of a given mathematical, chemical, 
physical, or engineering problem by computational methods is the accuracy of the 
numerical results obtained. The true measure of inaccuracy, or error, in the numeri-
cal solution is the difference between the numerical and the exact, or analytical, 
results. However, the analytical solution of the given problem is presumably not 
available, making it necessary to solve it numerically. Thus, alternative methods for 
estimating the errors involved and the accuracy of the numerical solution are needed. 
The dependence of the errors on the various parameters associated with the numerical 
procedure must also be determined, so that the accuracy of the solution may be 
improved by varying these parameters.

Output
print results

Stop

Yes

No

Is
PW ≥ 50,000

?

Calculate FW,
calculate reduction

in final payment

m = m + 1

Start

Input data
R, x

Initialize
m = 1

Calculate
PW

FIGURE 2.6  Flow chart for the problem in economics considered in Example 2.2.



Basic Considerations in Computer Methods	 39

C	 PROGRAM ECONOMICS
C	 	R IS THE MONTHLY PAYMENT, X THE ANNUAL PERCENT INTEREST,
C	 	XM THE MONTHLY INTEREST PER DOLLAR, M THE NUMBER OF MONTHS,
C	 	PW THE PRESENT WORTH OF THE PAYMENTS, FW THE FUTURE WORTH
C	 	OF THE PAYMENTS, F THE ACTUAL FUTURE WORTH OF THE LOAN AND
C	 	RL THE REDUCTION IN THE FINAL PAYMENT IN ORDER TO PAY OFF
C	 	THE LOAN EXACTLY
C
C
C	 	ENTER INPUT VARIABLES
C
	 		 IMPLICIT REAL (A–H,O–Z)
	 		 DO 5, I=1,3
	 		 PRINT *, 'ENTER MONTHLY DEPOSIT'
	 		 READ (1,*)R
	 		 PRINT *, 'ENTER INTEREST RATE'
	 		 READ (1,*)X
	 		 XM= X/(12.0*100.0)
	 		 M=0
	 1		 M=M+1
C
C	 	COMPUTE PRESENT WORTH AND CHECK IF LOAN IS PAID OFF
C
	 		 PW=R*((1.0+XM)**M–1.0)/(XM*(1.0+XM)**M)
	 		 IF(PW.LT.50000.0)THEN
	 		 GO TO 1
	 		 ELSE
	 		 WRITE(1,2)R,X
	 2		 FORMAT(/2X, 'MONTHLY DEPOSIT=',F9.4, 4X,' INTEREST 
	 		 RATE=',F6.3)
	 		 WRITE(1,3)PW,M
	 3		 �FORMAT(2X, 'PRESENT WORTH=', F12.3,4X, 'NUMBER OF 

MONTHS=',I5) C
C
C	 	COMPUTE THE FUTURE WORTH AND REDUCTION IN FINAL PAYMENT
C
	 		 FW=PW*(1.0+XM)**M
	 		 F=50000*(1.0+XM)**M
	 		 RL=FW–F
	 		 WRITE(1,4)FW
	 4		 FORMAT(2X, 'FUTURE WORTH=',F12.3)
	 		 WRITE(1,9)RL
	 9		 FORMAT(2X,'REDUCTION IN FINAL PAYMENT=',F9.4//)
	 		 END IF
	 5		 CONTINUE
	 		 STOP
	 		 END

FIGURE 2.7  Computer program in Fortran for the problem in Example 2.2.
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There are several types of errors that arise in a computational solution. The two 
most important are the round-off (RO) and the truncation errors (TE). The former is 
related to the computer system used and to the number of significant figures retained 
in mathematical operations. An error is introduced in essentially every calculation 
since a finite number of significant figures or decimal places are retained and all real 
numbers are rounded off by the computer. In single precision, the number of signifi-
cant figures retained ranges from 7 to about 14, depending on the computer system. 
The TE results from the replacement of an exact mathematical expression or equation 
by a numerical approximation. It refers to the difference between an exact expression 
and the corresponding truncated form, employed in the numerical solution. The 
resulting error in the solution, assuming the round-off error to be negligible, is known 
as discretization error. Of course, the discretization error is an idealization since all 
computational schemes would generally involve some round-off error.

2.3.1  Round-Off Error

The round-off error introduced in a given computation depends on the computer 
system used. The number of significant figures, and thus the number of decimal 
places retained, varies with the computer. In most cases, the last digit is rounded off 

	 ENTER MONTHLY DEPOSIT
1000.0
	 ENTER INTEREST RATE
8.0
	 MONTHLY DEPOSIT=1000.0000    INTEREST RATE= 8.000
	 PRESENT WORTH: 50647.547          NUMBER OF MONTHS= 62
	 FUTURE WORTH= 76466.453
	 REDUCTION IN FINAL PAYMENT= 977.6354

	 ENTER MONTHLY DEPOSIT
1000.0
	 ENTER INTEREST RATE
10.0
	 MONTHLY DEPOSIT= 1000.0000    INTEREST RATE= 10.000
	 PRESENT WORTH= 50029.789          NUMBER OF MONTHS= 65
	 FURUTE WORTH=	85801.844
	 REDUCTION IN FINAL PAYMENT= 51.0732

	 ENTER MONTHLY DEPOSIT
1000.0
	 ENTER INTEREST RATE
12.0
	 MONTHLY DEPOSIT= 1000.0000    INTEREST RATE= 12.000
	 PRESENT WORTH= 50168.523          NUMBER OF MONTHS= 70
	 FURUTE WORTH= 100676.328
	 REDUCTION IN FINAL PAYMENT= 338.1790

FIGURE 2.8  Numerical results obtained for Example 2.2.
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to take into account the value of the digit after it. For example, the last retained digit 
is usually rounded up if the first discarded digit is 5 or larger. Otherwise, it is 
unchanged. Thus, if only four significant figures are to be retained, 4.3757 is rounded 
off to 4.376, and 4.3752 to 4.375. However, on some machines, the digits, beyond the 
ones that are to be retained, are simply chopped off. For many calculations, the 
round-off error is relatively unimportant, being much smaller than the TE, discussed 
in Section 2.3.2. However, it can affect the accuracy of the numerical solution and 
can be extremely important in certain problems.

The round-off error is fairly random in nature. If the last retained digit is rounded 
up, the error, obtained by subtracting the approximate value from the true value, is 
negative. If digits are discarded, the error is positive. Because of this random nature 
of the error, it does not cancel out in a given computation but rather tends to 
accumulate if later calculations are based on earlier ones. Thus, if a particular 
numerical scheme requires a large number of arithmetic operations, the cumulative 
effect of the round-off error can be quite significant.

It is difficult to determine the round-off error in a given numerical method. 
However, the error increases with the total number of arithmetic operations. 
Frequently, a count of the arithmetic operations in a computational step, or procedure, 
may be made. If a problem can be numerically solved by two methods, the one that 
requires a smaller number of arithmetic manipulations will have a smaller round-off 
error. It will also be more efficient, since the computational effort required is less. 
An example of such a consideration is the solution of a system of n linear algebraic 
equations by Gaussian or Gauss–Jordan elimination methods, discussed in Chapter 
6. By counting the arithmetic steps involved in the solution, it can be shown that the 
former requires total arithmetic operations on the order of n3/3, which is written as 
O(n3/3), and the latter O(n3/2). Thus, Gaussian elimination is more efficient and has 
smaller round-off error. Similarly, the multiplication of two n × n matrices can be 
shown to involve arithmetic operations on the order of n3, or O(n3), implying greater 
round-off error and greater CPU time than the solution of n linear algebraic equations 
by the preceding methods.

Frequently, the numerical scheme involves dividing a given computational region 
into a finite number of subdivisions. For example, the length L of a rod may be 
subdivided into n divisions, where n = L/Δx and Δx is termed the step, or grid, size 
along the x-direction, which coincides with the rod axis in this case; see Figure 2.9a. 
Thus, the total number of finite regions, or steps, is inversely proportional to Δx, 
implying that the number of arithmetic operations varies as l/Δx. Therefore, as Δx is 
reduced, the round-off error is expected to increase. This consideration is important 
since it indicates that the grid size may not be reduced indefinitely. In mathematical 
analysis, such as differentiation and integration, the desired results are obtained 
by  taking the limiting condition of Δx → 0. In numerical methods, however, an 
extremely small Δx would lead to an extremely large number of arithmetic operations 
and to an unacceptably high round-off error, as shown qualitatively in Figure 2.9b.

There are several circumstances for which the round-off error can be particularly 
important. For instance, in ill-conditioned matrices, discussed in Chapter 6, a small 
error in the computation due to round-off can lead to a large error in the solution. 
Similarly, in the solution of ODEs, considered in Chapter 9, round-off error can 
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accumulate and lead to erroneous results. If numerical instability is present in the 
scheme, the solution may be completely disrupted, as outlined later in this sec-
tion. Consider, for example, the ODE dy/dx = –1/x2, whose solution is y = 1/x, or 
dy/dx = –l/(2x2y), whose solution is y x= 1 , if y is given as 1.0 at x = 1.0. In both 
cases, the solution decreases as x is increased and approaches zero as x → ∞. Thus, 
at large x, y is small and the round-off error can affect the solution very substantially. 
Depending on the step size Δx, the value of x to which the solution is obtained, and 
the numerical scheme, the numerical solution may deviate significantly from the 
expected variation at large x, as shown in Figure 2.10. The accumulated round-off 
error is large, compared to the true solution, at these values of x. Thus, extending the 
computation to large x must be avoided in such cases. If numerical instability exists, 
the error could increase at a very rapid rate, often resulting in overflow and disrup-
tion of the solution. In many of these cases, double precision may be used to avoid 
the problems arising due to round-off error.

2.3.2  Truncation Error

TE is a function of the approximations used in the numerical scheme and is 
independent of the computer system. It arises because a function, which may be 
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FIGURE 2.9  (a) Subdivision of a rod of length L into n intervals, each of length Δx, for a 
numerical scheme based on discretization of the length. (b) Qualitative representation of the 
variation of round-off error with the step size Δx.
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represented by an infinite series, is truncated after a finite number of terms for 
approximating it numerically on the computer. The nature of such an approximation 
and the resulting error are discussed in greater detail in Chapter 4, on the basis of the 
Taylor series expansion of analytic functions. However, some of the important con-
siderations are outlined here, in order to discuss the effect on accuracy and the meth-
ods to reduce the total error.

Consider, as an example, the binomial expansion of 1/(1 − x), as given by Equation 
2.1. Then, for |x| < 1,
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The variation of the function f(x) = 1/(1 − x) versus x for 0 ≤ x ≤ 0.9 is sketched in 
Figure 2.11. Now, the function f(x) is also represented by the above infinite series. 
However, if the series is to be entered on a computer for representing the function, 
only a finite number of terms can be retained. The discarded terms, thus, give rise to 
the TE, which is the difference between the exact value of the function and its 
approximate value, obtained after truncation. Figure 2.11 shows the approximations 
if one, two, three, or four terms in the series are retained. Clearly, as expected, the 
approximation improves as a larger number of terms are retained.

Similarly, as given in most books on calculus, the function f(x) = ex may be repre-
sented by the following infinite series, which is known as the Taylor series expansion 
for the function about x = 0:
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Again, a TE arises if a finite number of terms are used to represent the function on 
the computer. In numerical analysis, the computational region is often divided into a 

N
um

er
ic

al
 so

lu
tio

n 
( y

 =
 f (

x)
)

Exact solution as x → ∞

x

FIGURE 2.10  Possible effect of the round-off error, at large x, on the numerical solution of 
a differential equation, whose exact solution decays with increasing x to attain a constant 
value as x → ∞.
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finite number of subdivisions, as shown in Figure 2.9a. Then the numerical scheme 
is based on the values of a given function f(x) at the finite number of grid points, and 
the resulting TE in the formulation depends on the grid size Δx. For example, if the 
series in Equation 2.7 is written for x = Δx, then

	
eΔ Δ

Δ Δ Δx x
x x x

= + + + + =1
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!

( )
!

( )
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� 	 (2.8)

The TE resulting from the retention of a finite number of terms to represent f(Δx), 
where f(x) = eΔx, may be estimated from the above series. The error is generally 
written on the basis of the magnitude of the first discarded term. Thus, if only the 
first term is retained, the error is said to be on the order of Δx, that is, O(Δx). Similarly, 
retaining two terms gives an error of O[(Δx)2], retaining three terms results in an 
error of O[(Δx)3], and so on. If the TE is O(Δx), the scheme is said to be first-order 
accurate; if the error is O[(Δx)2], it is said to be second-order accurate; and so on. 
Since a higher-order error term indicates the retention of a larger number of terms, 
O[(Δx)p] represents a smaller TE than O[(Δx)q], where p > q. Thus, the error may be 
reduced by reducing Δx or by retaining more terms. The latter approach is generally 
known as higher-order approximation. A similar approach is used to derive the TE 
that is associated with a particular numerical scheme. Such derivations are particularly 
important for schemes employed in numerical integration and differentiation, and in 
the solution of ODEs and PDEs.
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FIGURE 2.11  Approximations to the function 1/(1 − x), represented by the series given in 
Example 2.1, when only one, two, three, or four terms in the series are retained. Also shown 
is the variation of the exact function with x.
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The preceding brief discussion indicates the importance of TE in characterizing 
the accuracy of a given numerical scheme. However, TE indicates only the error in 
the formulation of the numerical scheme. The resulting error in the numerical solu-
tion, neglecting round-off error, is the discretization error, as mentioned earlier. 
However, discretization error is much more difficult to determine than TE, since 
there is always some round-off error present and since the exact, analytical solution 
is generally not available. Consequently, the TE is generally taken as the most impor-
tant measure of accuracy of a given numerical scheme.

2.3.3  Accuracy of Numerical Results

The round-off and TEs are the two main sources of inaccuracy in a numerical solution. 
However, several other errors may be present. An important one among these is the 
error due to incomplete convergence of an iteration, which is a frequently used approach 
to obtain a numerical solution. The criterion used for indicating convergence must be 
varied to ensure that the iterative scheme has indeed converged. Inaccurate results may 
also be due to errors in the input data for a given problem, in the computer program 
itself, or in the mathematical formulation of the physical or chemical problem. Although 
all these errors are important, numerical methods may be studied independently, 
assuming that adequate care has been taken to eliminate such errors. Thus, we shall be 
concerned largely with the round-off and TEs and with the resulting total error.

As discussed in the preceding sections, a decrease in the step size Δx leads to an 
increase in the number of computations and, thus, to an increase in the round-off 
error. On the other hand, the TE is reduced as the step size is reduced. The total 
error, resulting from the summation of these two errors, will therefore initially 
decrease as the step size is decreased, reach an optimum, and then increase again. 
Figure 2.12 shows, qualitatively, the variation of these errors with step size. Clearly, 
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FIGURE 2.12  Sketch of the variation of the round-off, truncation, and total errors with step, 
or grid, size Δx.
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a reduction in step size, or grid refinement, helps in error reduction to a point, beyond 
which the round-off error predominates. Thus, it is important to choose a step size 
that results in small TEs, without the associated penalty of large round-off errors.

The accuracy of a numerical solution can be best determined by a comparison 
between the numerical results and the analytical solution or experimental data, if 
available. However, the analytical solution or experimental result is generally not 
available for the given problem. Then such a comparison may be made by employing 
a problem that is simpler than the one being solved numerically and for which an 
analytical solution is available. For example, the numerical scheme for integrating an 
arbitrary function h(x) may be used to integrate a simpler function, such as a 
polynomial, which can be integrated analytically. The numerical results can then be 
compared with analytical ones to quantify the accuracy of the method.

Various other methods are also employed to check the accuracy of the numerical 
results. One method is to put the obtained solution back into the equation being solved 
and check if the equation is satisfied. For example, after solving the matrix equation 
(A)X = B for the unknown X, multiply the solution matrix X with the coefficient matrix 
(A) to check how closely the constant matrix B is reproduced. Similarly, in curve fitting, 
the computed function may be plotted along with the given data to determine if, indeed, 
a satisfactory fit has been achieved; see Figure 2.13. In root solving, the computed roots 
x are substituted into the given equation f(x) = 0 to ensure that the equation is satisfied. 
The physical nature of the problem is also used, wherever possible, to choose between 
multiple solutions and to determine if the numerical results show the expended trends.

2.3.4  Numerical Stability

Another important consideration, related to the errors and accuracy of a numerical 
solution, is that of numerical stability. It is of particular concern in the numerical 
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FIGURE 2.13  Comparison between the numerical results obtained for a best fit and the 
given data, for a check on the accuracy of the curve fit.
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solution of ODEs and PDEs. Instability in a numerical scheme can lead to an 
unbounded growth of numerical errors that arise in the computation and thus can 
completely disrupt the numerical solution. If the scheme is stable, the errors are 
bounded and, although they accumulate as computation progresses, they do not grow 
to an unacceptably large level.

Let us consider, as an example, the simple ODE dy/dx = f(x, y) = −cy, where x is 
the independent variable, y the dependent variable, and c a positive constant. The 
analytical solution to this equation is y/y0 = e−cx, where y = y0 at x = 0. This equation 
may be solved by any one of the several methods discussed later in this book. One of 
the simplest methods is Euler's method, which advances the solution from xi to xi+1, 
where xi+1 = xi + Δx, by the recursion formula

	 yi+1 = yi + Δxf(xi, yi)	 (2.9)

Here, the subscript refers to the number of the computational step, starting with 
i = 0 at x = 0. Thus, xi = iΔx, where Δx is the step size. This recursion formula is 
obtained  by  simply using the basic definition of a derivative to write dy/dx =
(yi+1 − yi)/Δx = ​f (xi, yi). With f(x, y) = −cy,

	 yi+1 = yi + Δx(−cyi) = (1 − c Δx)yi	 (2.10)

The analytical solution decays exponentially with x, as sketched in Figure 2.14. 
However, the numerical solution will decay with x only if c Δx < 1. If the step size Δx 
is chosen large enough to make c Δx > 1, the solution becomes oscillatory. Thus, the 
difference between the numerical and analytical results increases as Δx increases. 
However, the oscillations obtained for c Δx > 1 decay with increasing x, provided 
|1 – c Δx| < 1. But if Δx is increased still further so that |1 − c Δx| > 1, the numerical 
solution grows with increasing x and ultimately becomes very large, as x is increased 
to large values; see Figure 2.14. The computer will then indicate that the solution 
becomes unbounded. Thus, an increasing solution is obtained instead of the decaying 
one given by analysis. This problem is an example of numerical instability, which 
must be avoided to obtain a physically realistic solution.

In this case, the scheme is conditionally stable, since if |1 − c Δx| < 1, an unbounded 
growth of the solution does not arise. Also, for the simple equation considered, a 
repeated application of Equation 2.10 gives the numerical solution as

	 yi = y0 (1 − c Δx)i	 (2.11)

Thus, the errors in the solution accumulate as x increases, and for |1 − c Δx| > 1, they 
become unbounded at large x. Such a situation arises for some of the numerical methods 
used for the solution of differential equations. If the method is conditionally stable, the 
step size must be kept small enough so that instability does not arise. A good check for 
instability is to solve the problem for two values of the step size that are close to each 
other. If the results obtained differ tremendously, numerical instability may be present. 
Frequently, numerical instability can be avoided by reducing the step size. If the scheme 
continues to be unstable even with small step sizes, it is best to find some other method. 
For further details on numerical instability, advanced books such as those by Ferziger 
(1998) and Jaluria and Torrance (2003) may be consulted.



48	 Computer Methods for Engineering with MATLAB® Applications

2.4  ITERATIVE CONVERGENCE

Iteration is a numerical technique that is very commonly employed in the solution of 
a wide variety of problems. An approximation to the solution is assumed, and the 
approximation is gradually improved by iteration until the approximation to the 
solution does not vary significantly from one iteration to the next. The numerical 
method is then said to have iteratively converged to the desired numerical solution. 
However, convergence is not always obtained, and the conditions under which the 
scheme converges should be determined, whenever possible, before it is used in the 
solution of a given problem. Some of the important considerations related to iteration 
and convergence are outlined in this section.

The solution of nonlinear algebraic equations is usually based on systematic 
iteration methods, since except for a few special cases, such as quadratic equations, 
the solution cannot be obtained directly by algebra. For example, in the transcendental 
equation tan x = 2/x, or in the polynomial equation x4 − 11x3 + 41x2 − 61x + 30 = 0, 
the roots, which are the values of x that satisfy the equations, can be obtained by 
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FIGURE 2.14  Increase in the numerical error and the onset of numerical instability as the 
step size Δx is increased in the solution of the differential equation dy/dx = -cy by Euler's 
method.
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employing iteration. Similarly, systems of nonlinear equations are also generally 
solved by iterative methods. Even large systems of linear equations are often solved 
more effectively and more accurately by iteration than by direct algebraic meth-
ods. Such large systems frequently arise in the solution of ODEs and PDEs. There 
are several other circumstances where iterative procedures are employed to obtain 
the solution.

2.4.1  Conditions for Convergence

A very important consideration in the choice of an iterative method for a given 
problem is whether it would converge. As expected, convergence depends on the 
chosen, or guessed, initial approximation to the solution. A more rapid convergence 
usually results for an approximation that is closer to the actual solution than for 
one that is farther away. However, in many cases, the scheme diverges if the 
difference between the initial approximation and the actual solution is large. It is 
generally difficult to determine the region of convergence over which an arbitrary 
initial approximation would lead to convergence. Thus, the physical background of 
the problem and any available information on the solution must be used to 
approximate the solution as closely as possible. Still, several runs, with different 
starting approximations, may be needed before convergence is obtained. In some 
cases, the limiting values of the solution are known. Then numerical schemes that 
gradually reduce the region in which the solution lies and, thus, always converge 
may be developed.

In general, the conditions under which an iterative method converges must be 
determined. For many schemes, these conditions are known. For example, consider 
the following system of linear equations for the unknowns x, y, and z:

	 2x + 4y + 8z = 30

	 5x + y − 2z = 4	 (2.12)

	 x + 5y − 3z = 10

These equations can be solved by obtaining x in terms of y and z from the first equa-
tion, that is, x = (30 − 4y − 8z)/2, and similarly y in terms of x and z from the second, 
and z in terms of x and y from the last equation. We then assume starting values for 
x, y, and z, and solve for these variables iteratively in succession using the three equa-
tions for x, y, and z till the values do not change significantly from one iteration to the 
next. It is seen that, if this procedure is followed, the iterative process does not con-
verge. However, if we solve for the variable with the largest coefficient in each equa-
tion, that is, for z in the first equation, x in the second, and y in the third and then 
carry out the iteration, it converges.

The condition for convergence in a system of linear equations, such as the one 
given by Equation 2.12, is expressed as

	
a aii ij

j j i

n

>
= ≠
∑
1,

	 (2.13)
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where aii is the coefficient of the variable being solved for in a given equation and 
aij are the coefficients of the other variables. This condition requires each equation 
to have a dominant coefficient, which is greater in magnitude than the sum of the 
magnitudes of the other coefficients in the equation. Although convergence often 
occurs for weaker dominance than that given by Equation 2.13, this equation gives 
the condition under which convergence will occur. Further details are given in 
Chapter 6.

Similarly, the roots of a nonlinear equation f(x) = 0 may often be determined by 
rewriting the equation as x = g(x) and using iteration, starting with an initial guess 
for x. This method, known as the successive substitution method, is convergent only 
if |g′(α)| < 1, where x = α is the desired root, and the difference between the starting 
approximation and α is not too large. Again, it is difficult to quantify how close to 
the root the approximation must be for convergence to result. However, the condition 
|g′(α)| < 1 may be used in formulating the function g(x) before iteration is applied. 
Further details are given in Chapter 5.

2.4.2  Rate of Convergence

It is also important to determine the rate of convergence, if the scheme is confirmed 
to be convergent. If α is the desired solution and xi is the ith approximation to 
the solution, the magnitude of the error after the ith iteration is |(xi – α)|. Similarly, 
the error after the (i + l)th iteration is |xi+1 − α|. Then the relation between these two 
errors indicates how rapidly the scheme is converging. First, for the scheme to be 
convergent,

	 |xi+1 − α| < |xi − α|  as i → ∞	 (2.14)

Also, we may write the relationship between the errors as

	 |xi+1 − α| ∝ |xi − α|n	 (2.15)

where n is an exponent that depends on the numerical scheme. If n = 1, the scheme 
is said to have a first-order convergence, indicating that the error at a given iteration 
is proportional to that at the previous one. If n = 2, the scheme is said to have a sec-
ond-order, or quadratic, convergence. Since the error is presumably small as i 
becomes large, this implies the squaring of a small quantity, resulting in a rapid 
reduction in error. This, in turn, results in a much more rapid convergence than that 
for a first-order convergence scheme. A still higher-order convergence will result in 
an even faster convergence.

2.4.3  Termination of Iteration

The next question is when and how an iterative process should be terminated. If xi is 
the approximation to the solution after the ith iteration and xi+1 after the (i + l)th 
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iteration, a commonly employed criterion for deciding that convergence has been 
achieved and that the iteration should thus be terminated is

	 |xi+1 − xi| ≤ ε	 (2.16)

where ε is a small quantity, known as the convergence parameter in the given 
convergence criterion. Unless the solution, or the approximation xi, is zero, ε must be 
small compared to the solution. Thus, the relative convergence criterion given by

	

x x
x

i i

i

+ −
≤1 ε

	

(2.17)

is also very often employed. If xi is expected to be close to zero, the absolute 
convergence criterion, given by Equation 2.16, is more appropriate, with ε << 1.0. 
Thus, ε is an arbitrarily chosen numerical parameter brought in to ascertain that the 
iteration has converged. However, if ε is too small, the computing time will be exces-
sive; if ε is too large, the results may be in significant error. Also, it is necessary to 
ensure that the numerical results are essentially independent of the chosen value of 
ε. These considerations are discussed in greater detail in Section 2.5.

For an example on the use of such a convergence criterion, consider Example 2.1. 
We are interested in the sum S of the series. However, in a numerical scheme, we can 
sum only a finite number of terms. Then the error involved in neglecting the nth 
term, as compared to the sum S of the terms of the series up to this term, may be 
employed as the convergence criterion. Thus, if SN is the nth term, we have

	

SN
S

≤ ε
	

(2.18)

as the condition for convergence. Similar considerations would apply for other iterative 
schemes. Unless the solution or its approximation could possibly be zero, the relative 
convergence condition is generally preferred, in comparison with the absolute condi-
tion, since the solution is generally not known, making it difficult to choose the value 
of ε in Equation 2.16. For the relative convergence condition, Equation 2.17, ε may be 
chosen to be around 10−4, as the starting value, in order to obtain a reasonably small 
variation from one iteration to the next, in the approximation to the solution.

2.5  NUMERICAL PARAMETERS

The preceding sections have demonstrated that one must often introduce several 
arbitrarily chosen parameters into the numerical scheme in order to solve the problem. 
Among the most important of these chosen numerical variables are the step, or grid, 
size Δx, the convergence parameter ε, and the initial approximation to the solution. 
It is obvious that since such variables, or parameters, are chosen arbitrarily, it must 
be ensured that the numerical results obtained from the scheme are essentially 
independent of the chosen values.
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2.5.1  Step Size

The effect of the step size Δx on the numerical solution has been considered earlier (see 
Figure 2.12). As Δx is reduced, starting with relatively large values, the TE is also 
reduced. The round-off error generally does not become significant unless very small 
Δx, which involves a very large amount of computation, is employed. Thus, TEs domi-
nate over much of the commonly used range of Δx and, with decreasing Δx, the numer-
ical results tend to approach essentially constant values. When this occurs, the effect of 
the step, or grid, size on the solution is negligible. Then the value of Δx may be chosen 
as the upper limit of the Δx range in which this effect is small; see Figure 2.15. The 
largest value of Δx for which the solution is essentially independent of Δx is chosen so 
that both the computational effort and the round-off error are minimized. Of course, at 
very small Δx, the round-off error becomes significant and may substantially affect the 
solution, as shown in Figure 2.15. Analytically, we allow Δx, or dx, to approach zero in 
order to determine, for instance, a derivative or an integral. However, numerically, this 
is not possible because of unacceptably high CPU times and large round-off errors.

2.5.2  Convergence Criterion

The convergence parameter ε must be similarly treated. A relatively large value of ε 
is initially employed so that a rapid convergence is achieved. Then ε is gradually 
reduced until the numerical results remain essentially unchanged if ε is reduced 
further. Since the computations involved increase with reducing ε, a continued 
reduction in ε will ultimately result in substantial round-off error. Thus, as before, 
the largest value of ε at which the dependence of the numerical solution on ε first 
disappears is chosen; see Figure 2.16. Also, the convergence criterion may be applied 
to different variables being computed in the solution to confirm that convergence has 
indeed occurred.
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FIGURE 2.15  Sketch of the variation of the total numerical error and the solution with the 
step, or grid, size Δx. Also, indicated is the appropriate value of Δx that may be chosen for the 
computations.
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2.5.3  Other Arbitrarily Chosen Variables

An initial approximation to the solution is needed in order to start an iteration 
scheme. Since convergence often depends strongly on the starting values, physical 
considerations and any available previous results on similar problems must be 
employed to choose the initial approximation. In root solving, for instance, the range 
of values in which the root lies is often known from the physical nature of the prob-
lem and may be used to obtain the first guess. Similarly, analytical or numerical 
results for similar problems are frequently used to obtain the starting values in 
iterative schemes for solving differential equations. However, it is important to ensure 
that the results are not significantly affected by the chosen initial guess. Thus, the 
initial approximation must be varied until the converged numerical solution is 
essentially independent of the starting values.

Example 2.3

In a chemical process, the concentration C in kg/m3 of a given species decays with 
time t, in seconds, as follows:

	 C = 22.5 + 62.3 exp(−0.01t)	 (2.19)

Thus, the concentration approaches a steady-state value of 22.5 kg/m3 as time 
increases, that is, as t → ∞. If the time t is increased with step size Δt, starting 
with t = 0, determine the dependence of the number of steps, the time tss required 
to attain steady state, and the concentration at steady state on the convergence 
parameter ε employed to indicate steady-state conditions.
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FIGURE 2.16  Sketch of the typical effect of a variation in the convergence parameter ε on 
the numerical solution.
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SOLUTION

The initial concentration, at t = 0, is 22.5 + 62.3 = 84.8 kg/m3. As time t → ∞, 
C → 22.5 kg/m3. However, we wish to terminate the computation as soon as C 
is close to the steady-state value of 22.5 kg/m3, within a chosen convergence 
criterion. If such a criterion is not used, the computation will proceed until C is 
22.5 kg/m3, within the round-off error of the computer, and this would generally 
involve a considerable wastage of computer time. Thus, we may use a condition 
of the form

	 |C − 22.5| ≤ ε	 (2.20)

where ε is the convergence parameter, in order to decide that the steady-state 
value has been attained and that the computation may be terminated.

The given problem is employed to demonstrate the necessity of using a conver-
gence criterion and the effect of ε on the results. The concentration C is computed 
at increasing time t, starting with t = 0, until Equation 2.20 is satisfied. The step size 
Δt determines only the values of t at which C is computed, and thus the time tss at 
which the computation is terminated is obtained within an accuracy of Δt. Since 
the exact, analytical expression for C is given, no TEs are involved, and round-off 
error arises only for each individual computation. There is no accumulation of 
error. Thus, the chosen value of Δt has a small effect on the solution and we may 
focus on the effect of ε.

A simple calculation may be carried out to increase t from 0, in steps of Δt, until 
Equation 2.20 is satisfied. The convergence criterion ε is varied from a high value 
of 100, at which convergence occurs at the very first step, to very low values, on 
the order of 10−9. The value of Δt is chosen as 100 s. Thus, tss would be obtained to 
an accuracy of 100 s. A smaller value of Δt, Δt = 10 s, was also considered, and the 
effect of this change in Δt on the results at small values of ε was quite small. At steady 
state, as determined by Equation 2.20 being satisfied, the number of steps n, time tss, 
and concentration Css are obtained. Here, tss is related to n simply by tss = n Δt.

Figure 2.17 shows the dependence of the number of steps n and of the 
steady-state concentration Css on ε. The computational effort, as indicated by n, 
increases sharply as ε is reduced to very small values, whereas the solution is hardly 
affected as ε is reduced below about 10−2. This figure indicates the importance of 
choosing the proper value of ε. A large value of ε results in considerable error, and 
a very small value leads to a very large, unnecessary computational effort. Here, 
a value of 10−2 may be chosen for ε. Such problems, in which the steady-state 
condition is to be determined, are frequently encountered in engineering problems. 
Although the first estimate of ε may be based on expected results or on previous 
experience with similar problems, ε must be varied to ensure that an appropriate 
value is chosen.

2.6  SUMMARY

This chapter discusses some of the important and fundamental considerations that 
form the basis for an efficient and accurate numerical scheme. The computational 
procedure is discussed in some detail, outlining method selection, programming 
language and computer system considerations, and program development. Besides 
indicating a systematic approach to the computational solution of a given problem, this 
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discussion also presents some of the recent trends in the area of numerical methods for 
engineering applications. Although fairly straightforward for most experienced users 
of the computer, this discussion nevertheless focuses on several relevant aspects that 
need to be considered before proceeding with the development of the computer code.

Numerical errors and accuracy are of crucial importance in any computational 
result. The nature and characteristics of errors that arise, particularly truncation and 
round-off errors, are discussed, along with the methods for evaluating and improving 
the accuracy of the numerical solution. Numerical instability is also considered. The 
convergence of iterative methods, which are frequently used for various types of 
problems of engineering interest, is discussed in terms of a few examples. The impor-
tance of a criterion for deciding if convergence has occurred and of determining the 
conditions under which the scheme is convergent are outlined. Finally, numerical 
variables and parameters, which are often introduced into the numerical method in 
order to obtain the solution, are considered. Since such parameters are chosen 
arbitrarily, it is important to ensure that the numerical results are not significantly 
affected by a variation in the chosen values. Methods to do so and the anticipated 
trends are outlined. The various considerations discussed in this chapter will arise in 
the following chapters, and the importance of these aspects will become quite apparent 
as we proceed with different types of problems and solution methods.
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FIGURE 2.17  Dependence of the number of steps to convergence n and of the steady-state 
solution Css on the convergence parameter ε, for the problem considered in Example 2.3.
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PROBLEMS

	 2.1.	� Calculate the number of arithmetic operations involved in solving 
the two simultaneous linear algebraic equations, a1x + b1y = c1, and 
a2x + b2y = c2, where x and y are the unknowns and a1, a2, b1, b2, c1, 
and c2 are given constants. Try different algebraic approaches to the 
solution, using elimination and substitution. Does your answer depend 
on the procedure adopted?

	 2.2.	� Write an algorithm to calculate the real or complex roots of the qua-
dratic equation ax2 + bx + c = 0, where a, b, and c are given constants. 
Use this algorithm with a calculator or computer to find the roots for (a) 
a = 1, b = –3, c = 2; (b) a = 1, b = –5, c = 6; and (c) a = 2, b = 1, c = –1.

	 2.3.	� Employing the binomial series generated by 1/(1 + x), where |x| < 1, 
compute the sum of the series, using a finite number of terms with a 
convergence criterion ε, as done in Example 2.1. Write an algorithm 
for the purpose and, using a calculator or a computer, study the effect 
of varying the convergence criterion on the numerical results.

	 2.4.	� Write an algorithm to determine the maximum of the function 
f(x) = 12 + 18x – 3x2 in the range 0 ≤ x ≤ 4. Starting with the lower 
limit on x, advance x with a step size Δx = 0.1 until the maximum 
is determined. Use a calculator or a computer and employ analytical 
expressions for the derivatives.

	 2.5.	� Repeat the preceding problem for determining the minimum of the 
function f(x) = 7 − 12x2 + 2x3 in the range 1 ≤ x ≤ 6.

	 2.6.	� In Example 2.2, if the requirement is that the FW of the monthly 
deposits of $1000 must attain $200,000 at an interest rate of 7.5%, 
compute the number of months needed to achieve this FW. Also cal-
culate the PW of the total money deposited. The given program may 
be suitably modified to solve this problem.

	 2.7.	� Employing a calculator or the computer program of Example 2.2, cal-
culate the time needed for the repayment of the loan of $50,000 if the 
monthly payment is $1500 and the interest rate is 12%. Repeat the 
calculation for a monthly payment of $2000. In both cases, calculate 
the last payment if the loan is to be paid off exactly.

	 2.8.	� Write an algorithm to study round-off errors by adding 1/3 300 times 
and 1/6 600 times. Using a calculator or a computer, vary the number 
of decimal places retained in the calculations from 1 to 8, by appropri-
ate programming statements. Compute the round-off error and show 
its dependence on the number of decimal places retained, in tabular or 
graphical form.

	 2.9.	� The second-order derivative may be written in finite-difference 
form as ∂2f/∂x2 = [ f(x + Δx) − 2f(x) + f(x − Δx)]/(Δx)2, where Δx is the 
step or grid size. Compute the resulting error if the round-off errors 
involved in the evaluation of the function at the three values of x 
are equal. Repeat this calculation if the round-off errors are equal 
in magnitude but alternating in sign from one grid point to the next. 
Comment on the significance of your results.

	 2.10.	� Employing Equation 2.9 for the numerical solution of the differen-
tial equation dy/dx = –2y, study the effect of varying Δx on the solu-
tion, including instability at large Δx. Confirm the trends shown in 
Figure 2.14.
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	 2.11.	� Consider the functions f(x) = 2 + 3/x and g(x) = 5.2 + 2.4/x2. Both of 
these approach constant values as x → ∞. Employing a convergence 
criterion, as illustrated in Example 2.3, determine the effect of the 
convergence parameter ε on the value of x, xss, at which the solution 
has essentially attained these constant values. Does the step size Δx 
have any significant effect on the results?

	 2.12.	� Determine the effect of varying Δx on the computed result for 
the second derivative, as given in Problem 2.9, for the function 
f(x) = 5 + 10x – 4x2 + 6x3. The second derivative is to be determined 
at x = 1. Using a computer or a calculator, calculate the second deriva-
tive at x = 1 with Δx = 0.5, 0.1, 0.05, and 0.01. Compare the results 
obtained with the exact value of 28.

	 2.13.	� In Example 2.3, employ a relative convergence criterion, as given by 
Equation 2.17, and choose the most appropriate value by varying ε and 
computing its effect on the numerical results.

	 2.14.	� The numerical integral I of a function f(x) may be obtained by the 

simple expression f x x f x x I
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summing the function values at various x values, xi = a + i Δx, for 
i = 0, 1, 2, . . ., so that n Δx = b – a, x0 = a, and xn–1 = b – Δx. Using this 
formula, which is known as the rectangular rule, compute the integral 
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d≡  for Δx = 2, 1, 0.5, 0.1, 0.05, and 0.01. Compare the results 

obtained with the exact value of 8/3. Plot the numerical error versus 
the step size Δx. What value of Δx will you choose for such computa-
tions, on the basis of the results obtained?

	 2.15.	� For the problem given in Example 2.2, with a loan of $50,000 at 12% 
interest, consider reducing the monthly payments; that is, instead of 
$1000, the payment is, say, $950. Compute the time needed for repay-
ing the loan if the monthly payment is $950. Then recompute with 
a monthly payment of $900, and so on. Is a limiting value, beyond 
which the monthly payment cannot be decreased further for repaying 
the loan, indicated from your results? If so, why does such a limitation 
arise?

	 2.16.	� The mass transfer rate ṁ , in kg/s, at the surface in a chemical reactor 
at a particular time is given by the series
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where n is an odd number. Using a suitable convergence criterion, 
determine the number of terms needed for the numerical evaluation 
of �m and the resulting value of the mass transfer rate.
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3 A Review of MATLAB® 
Programming

3.1  INTRODUCTION

In Chapter 2, we considered the main elements of a computer program, including the 
algorithm, programming language, and code development. Commercially available 
software, as well as computer programs that are available in the public domain, were 
discussed. It was mentioned that, in recent years, MATLAB® has become the most 
frequently used software for solving mathematical equations that arise in scientific 
and engineering problems. It provides a convenient and user-friendly environment to 
enter input data and obtain results in desired graphical, tabulated, or digital form. 
Fortran, which was probably the most common programming language used for 
engineering applications in the past and which continues to be important even today, 
C++, and other high-level programming languages are also frequently used for a 
variety of engineering systems. In many cases, programs in these languages and 
computed results are coupled with MATLAB programs for employing many attrac-
tive features, such as graphics and optimization, available in MATLAB.

In this chapter, the basic characteristics of the MATLAB environment for the 
numerical solution of mathematical problems are briefly outlined in order to discuss 
the development of an appropriate code as well as to present a few readily available 
commands to solve commonly encountered problems in engineering. Only the main 
features of the MATLAB environment are presented here for providing an appropri-
ate, basic, background for presentations in the following chapters. Further details can 
be obtained from the references given at the end of the book, such as Rectenwald 
(2000), Chapra and Canale (2002), Matthews and Fink (2004), Palm (2005), Chapra 
(2005), Gilat (2008), Littlefield and Hanselman (2005), and Moore (2006).

3.2  MATLAB® ENVIRONMENT

3.2.1  Basic Commands

MATLAB provides a software environment in which a wide variety of mathematical 
operations can be carried out very easily. Though similar to the C programming lan-
guage in some respects, it has its own style and format based on a large number of avail-
able commands, functions, and algebra built into the environment. Besides the usual 
mathematical functions such as sin(x), cos(x), tan(x), exp(x), log(x), abs(x), and so on, to 
represent sine, cosine, tangent, exponential, natural logarithm, and absolute value, 
respectively, of a variable x, many other specialized functions are available. Here, x is in 
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radians for the trigonometric functions. Similarly, asin, acos, and atan are the inverse of 
these functions and yield the angle in radians. MATLAB also has functions like pi to 
represent π, as in the circumference 2πr of a circle of radius r, sqrt(x) for square root of 
x, eps to denote spacing of floating point numbers and thus a small quantity, inf to denote 
infinity, NaN to denote not a number (such as 0/0), and real and imag to denote real and 
imaginary parts of a complex number. Help is easily available for various functions and 
commands. For instance, help(‘exp’) or help exp will provide additional information on 
this function. The command who yields all the variables in the given session and whos 
gives the detailed information on the variables. All the definitions and variables remain 
in the current session till the command clear is typed.

Mathematical operations are denoted by +, −, *, /, and ^, where these represent 
addition, subtraction, multiplication, division, and raised to a power. Parentheses can 
be used to separate various operations for clarity and correctness. Then the operations 
within the parentheses are carried out first. The raised to a power operation is 
performed next, followed by multiplication and division, and then addition and 
subtraction, moving from left to right for the latter two sets of operations. The result 
of a calculation is printed immediately as the answer, denoted by ans, unless a 
semicolon is placed after the equation. Similarly, the value of a variable being defined 
is printed unless a semicolon is placed at the end of the expression.

Examples of such calculations given at the command (>>) level, are

>> 4 + 3/2 + 1 − 3 + 4^2 − 5
ans = 
 14.5000

whereas

>> 4 + 3/2 + 1 − 3 + 4^2 − 5;

suppresses the printing. Similarly,

a = 3;
b = 4*8;
c = sqrt(55);

can be used to define variables a, b, and c, without printing. If the semicolon is not 
used, the result is printed, as, for example,

>> a = sqrt (−25)
prints
a = 
  0 + 5.000i

where i (or j) is used to indicate the imaginary part of the expression. Also,

>> a = sqrt (2 + 3i)
prints
a = 
  1.6741 + 0.8960i
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This also indicates that complex algebra is built into the MATLAB environment 
and can be used easily to perform mathematical operations. Thus, imag, real, conj, 
angle, and abs can be used to obtain the imaginary part, real part, conjugate, angle 
in polar representation (in radians), and magnitude of a complex number. Thus,

	
abs real imagA A A( ) = +( ( )) ( ( ))2 2

	
(3.1)

	
angle tan

imag
real

1A
A

A
( ) = ⎛

⎝⎜
⎞
⎠⎟

− ( )
( ) 	

(3.2)

Also,

	 exp i cos i sin( ) ( ) ( )θ θ θ= + 	 (3.3)

Addition, subtraction, multiplication, and division can be performed as done with real 
numbers, with MATLAB following the mathematical rules of complex algebra.

The semicolon ends the statement, so that the next definition can be given without 
going to the next line, for example,

a = 2; b = 3; c = 4; d = exp(1.5);

Variables are case sensitive and must begin with a letter. Therefore, definitions of 
variables and mathematical operations can be carried out easily in the MATLAB 
environment.

3.2.2  Matrices

One of the major strengths of MATLAB lies in the definition, use, and algebra of 
matrices. Several functions, programs, and operations are built into the environment, 
so that many routine matrix calculations can be carried out easily and concisely. For 
instance, matrices with all the elements as one can easily be defined by

>> ones (2, 4)

which yields a 2 × 4 matrix with all the elements as 1. Similarly, ones (4, 2) yields a 
4 × 2 matrix with all the elements as 1. We could also define a matrix A as A = ones 
(3, 3), A = ones (4, 4), A = ones (3, 4), and so on, with A being printed if a semicolon 
is not placed at the end of the equation. Similarly, zeros (2, 4) and zeros (4, 2) yield 
2 × 4 and 4 × 2 matrices, respectively, with all the elements as 0. An identity matrix, 
with zeros every where except at the diagonal where the elements are 1, is obtained 
by the command eye (n), which gives an n × n identity matrix. In order to enter dif-
ferent values for the elements in a matrix, the rows are separated by a semicolon or 
by going to the next line by carriage return. The elements are separated by space and 
brackets denote a matrix. For instance, consider the following:

>> a  = [1 2 3]; b  = [2 4 9]; c  = [3; 4; 7]; d  = [1 2 3; 2 4 6; 3 5 8];
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These statements yield row vectors a and b, with 1, 2, 3 and 2, 4, 9 as the element 
values, respectively, and c as a column vector with 3, 4, and 7 as the element values. 
The last statement gives d as a 3 × 3 matrix. Thus,
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The transpose of a matrix is obtained by using an apostrophe, as a′, b′, c′, and d′. 
Then, a′ is just the column vector of the elements in matrix a and c′ is the row vector 
consisting of elements in matrix c. Similarly, d′ transposes the rows and columns in 
matrix d. Another apostrophe as (d′)′ will yield the original matrix d.

A few other useful commands are mentioned here. Random numbers between 0 
and 1.0 are generated by the command rand (n), which gives an n × n matrix of 
random numbers. The diagonal elements are given by diag (A), where A is a given 
square matrix. The command diag (c), where c is a vector, puts the elements on the 
diagonal with the other elements being zero. The number of elements in a vector is 
given by length (b), where matrix b is a vector. For a square matrix, it gives the 
number of rows or columns and for other matrices, m × n, it gives the larger of the 
two parameters m and n. The command size (B) gives the number of rows m and 
number of columns n of an m × n matrix B.

Any desired element of a matrix A can be obtained by the statement A (m, n), 
where m is the row and n is the column of the element. For a row or column vector 
B, the command becomes B (k), where the kth element is desired. Similarly, the given 
element can be assigned a value, as, for instance,

>> A(2, 3) = 9; B(4) = 7;

A row of a given matrix A can be obtained by using the colon notation as A (2, :) 
and a column by A (:, 3), yielding the second row and the third column, respectively. 
A (1:2, 2:3) yields the elements in the first and second rows and the second and third 
columns. Similarly, A(1:5, 2) and A(1, 1:4) yield the specified elements in the second 
column and those in the first row, respectively. All these expressions can also be used 
for assigning values to the elements. Elements can be deleted by expressions like 
B (3) = [ ] and B (1:3) = [ ], where B is a vector. The third element is deleted in the 
first case and the first to the third one in the second case.

3.2.3  Arrays and Vectorization

A row vector of linearly spaced elements is given by the command linspace, whereas 
a logarithmic distribution to base 10 is given by logspace. Thus,

>> linspace (xmin, xmax, n);

generates n evenly spaced points between xmin and xmax and including both these 
boundary points. Thus, the region is divided into (n − 1) subdivisions. For example,

>> linspace (0, 4, 5)
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gives 0, 1, 2, 3, and 4. If 5 is replaced by 10, we get 0, 0.4444, 0.8889, . . ., 3.5556, and 
4.0000. If the number of points is not given, the default value is 100. Similarly, log-
space (0, 2, 5) yields 1.0000, 3.1623, 10.0000, 31.6228, and 100.0000, since logarithm 
to base 10 is 0.0 for 1.0 and 2.0 for 100.0. A vector of evenly spaced points can also 
be generated by

>> x = 0:5;

which yields six points as x = 0, 1, 2, 3, 4, 5, giving a default spacing of 1.0 between 
the points. The starting value is 0.0 and the ending value is 5.0, if the spacing yields 
it as appropriate point. Thus, if 5.5 were employed, instead of 5, in the above 
command, the six points will remain the same. However, the spacing can be changed 
by specifying the value as

>> x = 0:0.5:5

which now yields 11 points separated by 0.5. If the spacing is given as 0.6, instead, 9 
points are generated at a spacing of 0.6 with 4.8 as the last point. Different ways of 
distributing points over a given region are valuable in plotting the computed results 
obtained.

3.2.4  Matrix Algebra

Once the matrices are defined, MATLAB can be used effectively for various 
mathematical operations, such as addition, subtraction, and multiplication of matri-
ces. For instance, if U and V are two matrices, we can use the commands

>> C = U + V
>> D = U – V
>> E = U * V

for addition, subtraction, and multiplication of these two matrices, using the basic 
matrix algebra covered in mathematics courses. Thus, for addition and subtraction, 
the two matrices must have the same number of rows m and columns n, so that each 
element of V is added to or subtracted from the corresponding element in U. This 
implies that Ci,j = Ui,j + Vi,j and Di,j = Ui,j − Vi,j, where the subscripts i and j indicate 
the row and the column of an element. However, for multiplication, the number of 
rows in V must be equal to the number of columns in U, that is, if U is an m × n 
matrix, V must be an n × p matrix. For example,

>> U =[2 3 4; 1 1 2; 3 5 7];
>> V =[1 2; 4 3; 6 8];
>> E = U * V

yields E = [38 45; 17 21; 65 77], with 2 × 1 + 3 × 4 + 4 × 6 = 38, 2 × 2 + 3 × 3 + 4 × 8 =
45, and so on, on the basis of the fundamental rules of matrix algebra. Clearly, V*U 
is not defined since the rows in U are not equal to the columns in V. Also, even if 
square matrices are involved so that U*V and V*U are allowed, the two are generally 
not equal.
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As seen in the preceding, arrays can be generated easily in MATLAB by simple 
commands such as

>> x = 0: pi/4: pi;

which gives x as 0, 0.7854, 1.5708, 2.3562, and 3.1416, or 0, π/4, π/2, 3π/4, and π. 
This distribution of points can be used to generate other arrays, or vectors, such as

>> y = cos(x);

which gives y as 1, 0.7071, 0, −0.7071 and −1. Thus, x represents an array, which can 
be used as a variable to generate arrays of functions like cosine, sine, exponential, 
logarithm, and so on. This process of generating and using arrays, or vectors, is 
known as vectorization. It provides a major advantage of MATLAB over many other 
languages and software.

Arrays can also be multiplied and divided by using the operator with a period pre-
ceding the operation as .* and ./, respectively, with no gap between the period and the 
operator. Thus, if x and y are two arrays given as

>> x = [1 2 3]; y = [4 5 6];

then, element-by-element multiplication or division can be achieved by

>> z1 = x .* y; z2 = x ./ y;

Here, z1 is obtained as [4 10 18] and z2 as [0.25 0.4 0.5], indicating 
element-by-element multiplication and division, respectively.

We can also raise all the elements to a power by the command

>> z3 = x .^ 3; z4 = y .^ 2;

which gives z3 = [1 8 27] and z4 = [16 25 36], indicating that each element has been 
raised to the given power. The same operators can be used for matrices, as long as 
the two matrices have the same number of rows m and columns n. Thus, A .* B and 
A ./ B give element-by-element multiplication and division for two m ×n matrices A 
and B. We can also use A.̂  2 to square each element in A or A .^ (1/2) to take a square 
root of each element. Clearly, the placing of a dot before the operator changes the 
result and the operation does not follow matrix algebra, but carries out an 
element-by-element algebra. For instance, if x is an array, 1 ./ x and x .̂  2 can be used 
to obtain reciprocal and square of all the elements. This again provides a very 
effective tool to carry out a series of operations concisely and efficiently.

As an example of the use of arrays, consider the following simple program in 
MATLAB:

x = linspace (0, 0.9, 10);
y = 1./(1 − x);
z = 1 + x + x .^ 2 + x .^ 3 + x .^ 4;
error = 100*(y − z) ./ y;
plot (x, error)
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Thus, 10 evenly distributed points are obtained for x between 0 and 0.9, the 
corresponding values of the function 1/(1 − x) are generated and the first five terms 
of the Taylor series for the function are added. The TE, in percentage, if only these 
terms are retained in the series, is determined and the results are plotted, as shown 
in Figure 3.1, indicating increasing error with x. Similarly, additional terms could be 
retained in the series and the effect on the error determined. Also, other functions of 
x such as sqrt(x), sin(x), and exp(x) can be used, instead of 1./(1 – x), to plot and study 
their variation with x. This simple example shows how arrays of the different 
quantities can be used effectively to solve problems.

3.2.5  Polynomials

MATLAB has an extensive library to formulate, evaluate, and perform mathemati-
cal operations on polynomials. An n-degree polynomial is defined as

	 P x C x C x C x C x Cn
n n n

n n( ) = + + + + +− −
+1 2

1
3

2
1� 	 (3.4)

Then the polynomial is given as [C1 C2 C3 . . . Cn Cn+1], with the coefficients placed in 
descending order of the power of x. Thus, a third-order polynomial, x3 – 2x + 12, is 
written as [1 0 –2 12]. The value of the polynomial at a given value of x can be 
obtained by the command polyval. For example,

>> c = [1 0 –2 12];
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FIGURE 3.1  The truncation error (TE), in percentage, if only five terms in the Taylor series 
for the function 1/(1 – x) are retained to approximate its value, as a function of x.
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defines the given polynomial and the following command:

>> polyval (c, 1.5)
ans = 
12.3750

yields the value of the polynomial at x = 1.5. Similarly, conv gives the product of two 
polynomials, deconv the division, residue the ratio, poly the polynomial from the 
roots, polyfit the least-squares fit to given data, and roots the n roots of an n-degree 
polynomial. These are discussed in greater detail in the following.

3.2.6  Root Solving

The n roots of a polynomial equation Pn(x) = 0 can be obtained easily by using the 
roots command. Consider a root-solving problem for temperature T obtained from 
the energy balance at a surface as

	
0 0 0 0 0. . ( ) ( )6 5 67 1 85 4 358 4 4× × × −⎡⎣ ⎤⎦ = × −− T T

	
(3.5)

Although computer programs may be written in Fortran, C++, or other programming 
languages to solve this root-solving problem, the MATLAB environment provides a 
particularly simple solution scheme on the basis of the internal logic of the software. 
The polynomial p is given in terms of the coefficients a, b, c, d, and e, in descending 
powers of T, as

a = 0.6*5.67*10 ̂ − 8;
b = 0;
c = 0;
d = 40.0;
e = −40.0*350.0 − 0.6*5.67*(10^− 8)*(850^4);
p = [a b c d e];

Then the roots are simply obtained by using the command

	 r p= roots( ) 	 (3.6)

This yields four roots since a fourth-order polynomial is being considered. It turns 
out, when the above scheme is used, that one negative and two complex roots are 
obtained in addition to one real root at 645.92, which lies in the appropriate physical 
range and is the correct solution.

Also, if the roots r of a polynomial are known, the polynomial may be formed 
by  the command poly (r). For instance, the roots of the polynomial equation 
x3 – 6x2 + 11x – 6 = 0 can be obtained by the commands

>> c = [1 – 6 11 – 6];
>> r = roots (c)

which gives r as [3; 2; 1].
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Then the command

>> p = poly (r)

yields the polynomial from the roots just obtained. It must be remembered that the 
coefficients are arranged in descending powers of the independent variable.

3.2.7  Linear Algebraic Equations

A system of linear equations (a) (x) = (b) can be solved very easily in the MATLAB 
environment since it is particularly well suited to matrix algebra, as discussed 
earlier. Available commands and built-in functions may be used in a MATLAB 
environment to obtain the solution. For instance, let us enter the matrices (a) and (b) 
in MATLAB as

a = [2 1 0 6; 5 2 0 0; 0 7 2 2; 0 0 8 9];
b = [64; 37; 66; 104];

Then the solution (x) is obtained simply by using (x) = (a)−1 (b) as

x = inv(a)*b

or as

x = a\b

The second approach uses the internal logic of the backslash, \, operator in MATLAB 
to indicate the left division of a into b. As discussed in Chapter 6, this operator uses a 
direct approach to the solution of the system of linear equation and requires fewer 
arithmetic operations compared to the preceding method based on matrix inversion, 
resulting in smaller computational time and smaller round-off error.

The solution can also be obtained by the decomposition of the matrix a into upper (u) 
and lower (l) triangular matrices, as discussed in detail in Chapter 6, by the commands

[l,u,p] = lu(a);
y = l\(p*b);
x = u\y

where p is the permutation matrix which stores the information on row exchanges 
during the computation process. When any of these approaches is used, the solution 
vector for the given problem is obtained as [5; 6; 4; 8].

3.2.8  Curve Fitting

A computer program may be developed to solve the system of linear algebraic 
equations generated by curve-fitting techniques, as discussed later in this book, using 
programming languages such as Fortran 90 and C++. However, MATLAB is 
particularly well suited for such problems since the command polyfit yields the best 
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fit to a chosen order of the polynomial for curve fitting. For instance, the following 
commands may be used, with % representing the comment statement.

%Input Data
>> t = [0.2 0.4 0.6 0.8 1.0 1.2 1.8 2.2];
>> y = [4.29 3.78 3.54 3.59 4.0 4.8 10.11 16.53];
% Cutve Fit
>> y1 = polyfit(t,y,1)
>> y2 = polyfit(t,y,2)
>> y3 = polyfit(t,y,3)

Then y1 yields the best fit with a first-order polynomial, that is, linear fit, y2 yields a 
best fit with a second-order polynomial, and y3 with a third-order polynomial. The 
results for the three cases are obtained as

5.9683 0.2135
5.5069 −7.3133 5.7585
1.0058 1.9845 −3.9929 4.9998

since only two coefficients are needed for a line, three for a parabola, or second-order 
polynomial, and four for a cubic, or third-order polynomial. The linear best fit is of 
particular interest in curve fitting with nonpolynomial forms, such as exponential, 
logarithm, and power-law variations. For instance, if the chosen exponential function 
for curve fitting is y = A exp(–ax), a logarithm is taken to yield log(y) = log(A) – ax. 
Then a new variable Y is defined as Y = log(y) and a linear fit is obtained from the 
given data for Y versus x. From this curve fit, the values of A and a can be deter-
mined. The use of the polyfit function is considered in greater detail in Chapter 7.

3.2.9  Flow Control

Many commands are used to control the flow of the program. These include if. . .
else. . .end, for. . .end, and while. . .end commands. Relational expressions such 
as  < , < =,  >, > =, = =, and ~ = refer to, respectively, less than, less than or equal to, 
greater than, greater than or equal to, equal to, and not equal to. Similarly, logical 
expressions such as &, |, and – refer to, respectively, and, or, and not.

If an expression is false, a zero number is assigned and if it is true a nonzero 
number is assigned. For instance, if we define a and b as

>> a = 2; b = 4;

Then the statement

>> c = a < b

is true and the result is given as

c = 1
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On the other hand, the statement

>> b_is_smaller = b < a

is false and yields

b_is_smaller = 0

Similarly, a command like

>> both_true = a_is_smaller & b_is_smaller

indicates that both statements are not true and yields zero. Also, the relational state-
ment pertaining to equal to is written as

a = = 3

Since this statement is false, the result is given as zero. Other such statements can be 
written to check if certain relationships are true or false and can thus be used for flow 
control.

The if . . . else . . . end commands are used as

if x >= y
c = 7
else
c = 6
end

If x and y are given as 3 and 5, respectively, the above command will yield c as 6, 
since x is not greater than or equal to y. Additional conditional statements can be 
introduced by using elseif. For example,

if x >= y
c = 7
elseif x == 2
c = 6
else
c = y/x
end

Since x is given as 3, the first two conditions are not satisfied and c is given as 5/3, or 
1.6667. The commands after else or elseif can be a print statement, discussed later, a 
mathematical operation, a plotting command, or some other statement. For instance, 
it could be

else
fprintf ('�Warning: either x and y are both negative or x < y\n')
fprintf ('x = %f y = %f \n',x,y)
end
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Here, \n moves the cursor to the next line after printing the results, %f is simply a 
default format for floating point data, and the apostrophe prints the string of words 
given. Print statements are discussed later.

The for ... end command gives loops for carrying out a series of repeated 
operations, such as

sum x = 0;
for k = 1:n
sum x = sum x + k;
end

Here, k takes the values of 1, 2, 3, . . ., n. Then the result obtained is the sum of n con-
secutive numbers, that is, n(n + 1)/2. Similarly, for . . . end can be used to generate other 
loops in which a series of mathematical operations are to be performed. The while . . . 
end command is similar in that the given series of mathematical operations are per-
formed while a given statement, such as x > 0.01, is true. The series of operations and 
commands are carried out as long as the conditional statement is satisfied. Since the 
conditional statement may not be satisfied due to an error in the program or due to the 
operations being carried out, the calculations may go on for ever without stopping. The 
command break is often used to avoid such infinite loops. It takes the control out of the 
loop to the line just after the loop. If some undesirable result is obtained, such as an 
extremely high value of a variable beyond the overflow limit specified in the given 
software, or if allotted time expires, the loop is broken and the command shifts the 
operation to the end of the loop where it may be asked to print or stop.

3.3  ORDINARY DIFFERENTIAL EQUATIONS

MATLAB can be used to solve ODEs quite easily by employing standard commands 
available in the software. For example, consider the motion of a stone, which is 
thrown vertically at velocity V from the ground at x = 0 and at time t = 0 and which 
is governed by the differential equation
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where g is the magnitude of gravitational acceleration, given as 9.8 m/s2, and the 
velocity is dx/dt, denoted by V. We can solve this equation, if the initial conditions on 
x and V are given, to obtain displacement x and velocity V as functions of time t. As 
mentioned above, x is given as 0 at t = 0. Let us assume that the initial velocity V is 
given as 25 m/s.

Thus, the second-order differential equation in terms of the displacement x is 
given in Equation 3.7, with the initial conditions
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The corresponding differential equation in terms of the velocity V, where V = dx/dt, 
is obtained from Equation 3.7 as
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with the initial condition

	 t V= =0 : 25 	 (3.10)

Both these cases are initial-value problems since all the necessary conditions are 
given at the initial time, t = 0. MATLAB can be used very easily for these problems 
by using ode23, ode45, and other built-in functions for the solution of ODEs. Both 
ode23 and ode45 are based on Runge–Kutta methods, which are discussed in 
Chapter 9, and use adaptive step sizes. Two solutions are obtained at each step, 
allowing the algorithm to monitor the accuracy and adjust the step size according to 
a given or default tolerance. The first method, ode23, uses second- and third-order 
Runge–Kutta formulas and the second one, ode45, uses fourth- and fifth-order for-
mulas. Details on these methods are given later in this book. Only the appropriate 
commands are given here.

Considering first the equation for the velocity, the following MATLAB statements

dvdt = inline('(−9.8 –. 1*v .̂  2)', 't', 'v');
v0 = 25;
[t,v] = ode45(dvdt,1.4,v0)

yield the solution in terms of V. The first command defines the first-order differential 
equation (Equation 3.9), the second the initial condition on V, and the third allows 
time and velocity to be obtained till time t = 1.4. These can then be plotted, using 
MATLAB plotting routines, as shown in Figure 3.2. The velocity decreases from 
25 m/s to zero with time. After the velocity becomes zero, the drag reverses direction 
and the differential equation changes, so the solution is valid only till V = 0. The final 
time may be varied according to the needs of the problem.

Similarly, the equation for x may be solved. However, this is a second-order equa-
tion, which is first reduced to two first-order equations as
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First, the right-hand side of these two equations is defined as

function dydt = rhs(t,y)
dydt = [y(2); −9.8 − 0.1*y(2)^2];
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Thus, y is a taken as a vector with distance and velocity as the two components. Then 
the MATLAB commands are given as

y0 = [0;25];
[t,v] = ode45('rhs',1.4,y0)

Again, the initial conditions are given by the first line and the solution by the 
second. The results are obtained in terms of distance and velocity, which may be 
plotted, as shown in Figure 3.3. Here, the calculated distance x and the velocity V are 
plotted against time. Clearly, the results in terms of the velocity V are the same by 
the two approaches. Thus, MATLAB may be used effectively for solving such 
initial-value problems, considering single equations as well as multiple and 
higher-order equations. Other built-in functions for solving ODEs include those 
based on implicit and multistep methods, such as ode113 and ode15s. Further details 
on such functions and their usage can be obtained by using the help command in 
MATLAB. Several common MATLAB commands are given in Appendix A. 
Additional programs in MATLAB for such mathematical problems are given in 
Appendix B and discussed later in this book.

3.4  INPUT/OUTPUT

A fairly large variety of input and output commands are available in MATLAB to 
facilitate interaction with the computer. A common command for entering a given 
quantity or parameter is

>> x = input ('Enter the value of x, x = ');
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FIGURE 3.2  Calculated variation of velocity with time from the solution of Equation 3.9.
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This command allows the user to enter the value of the variable x, without printing 
it out. Just the command x = input(‘x’) can also be used instead. A string input, that 
is, a string of letters and numbers can also be given instead of a numeric value. For 
instance, the command

>> yourName = input ('Enter your name: ', 's');

prompts the user to enter his/her name. If the semicolon is not used, the computer 
prints out the name entered, say, John.

yourName = 
= John

The output can be obtained in many different forms, from printing in different 
styles or formats to plotting. The command disp is good for simple tasks that have 
few requirements. The commands fprintf and sprintf have more control and greater 
options, including printing to a file. Also, sprintf is the same as fprintf except that it 
returns the data in a MATLAB string variable rather than writing it to a file. Thus, 
commands such as the following may be used.

>> disp ('My home is in New Jersey')
>> disp (['Your name is: ', yourName])

The first one just prints the given string My home is in New Jersey and the 
second one prints Your name is: yourName, where yourName is the name entered 
earlier. Strings are often used, along with numbers, to present the results in an 
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FIGURE 3.3  Variation of velocity and distance traveled as obtained from a solution of 
Equation 3.7.
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easy-to-understand style. The command num2str, which allows a variation from a 
number to a string, is used as

>> outstring = ['x = ',num2str(x)];
>> disp (outstring)

which prints

x = 3

These two commands can also be combined to give the same result as

>> disp(['x = ',num2str(x)])

Similarly,

>> disp(['sin(x) = ',num2str(sin(pi/3))])

yields

sin(x) = 0.86603

Vectorization can also be used with disp as

>> x = 0 : pi/5 : 2*pi;
>> y = sin (x);
>> disp ([x 'y'])

which yields the x and the corresponding sin (x) results. The apostrophe is used in the 
disp command to obtain these two variables in the column format, as

 0 	    0
0.6283  0.5878
1.2566  0.9511
1.8850  0.9511
2.5133  0.5878
3.1416  0.0000
3.7699 –0.5878
4.3982 –0.9511
5.0265 –0.9511
5.6549 –0.5878
6.2832 –0.0000

There are several format statements that can be used to obtain the outputs 
in  desired form. These include short, long, short e, long e, and bank, which 
give,  respectively, a short (typically four decimal places), long (typically 15 deci-
mal places), exponential short and long representations, and bank-style representa-
tion with two decimal places. Thus, if x = 42.546314, then it is given as 42.5463, 
42.546314000000002, 4.2546e + 01, 4.254631400000000e + 01, and 42.55, 
respectively, in these formats.

Also, various formats such as %s, %d, %f, %e, and %g are used in statements for 
printing and refer to output as string, integer, floating-point, exponential notation, 
and the most compact format (%f or %e), using the default number of digits and 
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decimals. More control is obtained by adding the field width, or total number of 
digits, and decimal places in terms of a floating-point number as %8.3f, %12.5e, 
%10g, and %7d. For example,

>> fprintf ('x = %f \n',x)
>> fprintf ('x = %8.3f \n',x)
>> fprintf ('x = %8.2e \n',x)

yield, respectively,

x = 42.546314
x = 42.546
x = 4.25e + 01

Similarly, other format statements can be used to obtain the output in desired 
form with chosen accuracy and strings.

As an example, let us consider the various commands considered above and see 
how the results are printed. Consider the commands

a = input('Enter the value of a, a = ');
x = a^(1/3);
disp(['x = ',num2str(x)])
disp(['The variable x =',num2str(x)])
format short
disp(x)
format long
disp(x)
fprintf('The variable x is %7.3f\n',x)
fprintf('The variable x is %7.5f\n',x)
fprintf('The variable x is %7.3e\n',x)
fprintf('The variable x is %7.5e\n',x)
fprintf('The variable x is %.3g\n',x)
fprintf('The variable x is %.5g\n',x)

Thus, a value of x is entered, it is raised to power 1/3 and the results are presented 
in different formats. For example, if x is entered as 0.4, the results are

Enter the value of a, a = 0.4
x = 0.73681
The variable x = 0.73681
0.7368
0.736806299728077
The variable x is 0.737
The variable x is 0.73681
The variable x is 7.368e-01
The variable x is 7.36806e-01
The variable x is 0.737
The variable x is 0.73681

This indicates the use of various formats to obtain the results in the desired form.
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3.5  SCRIPT m-FILES

These are analogous to computer programs in Fortran, C and other languages and 
involve a sequence of interactive statements stored in a file, so that the program can 
be employed to obtain results for different inputs and conditions. A plain text file can 
be generated, using the text editor available in MATLAB or any other text editor, 
and saved as a file with an extension of m, such as, test.m. Let us consider the follow-
ing script m-file, saved as test.m,

% Summation of the Taylor Series for 1/(1 − x)
%
for i = 1:5
x = input('Enter the value of x, x =');
anal = 1/(1 − x);
sum = 1 + x + x^2 + x^3 + x^4;
diff = anal – sum;
error = diff *100/anal
end

Then, the following command

>> test

will run the program, which asks for the input value of x and then prints the percent-
age error if only the first five terms of the Taylor series are retained. The loop runs 
this sequence five times, so that results for five x values can be obtained. It can be 
shown that the error increases as x is increased. Similarly, other such programs are 
written and discussed in this book for the solution of various problems of engineer-
ing and scientific interest. Let us consider a simple script m-file to work with matri-
ces, as discussed earlier.

Example 3.1

Write a script-m file to do the following:

	 1.	Using the rand command, generate a 3 × 2 matrix A consisting of random 
numbers between 25 and 5.

	 2.	Print the matrix generated, without printing “A =” or “ans =.” But give a 
heading “MATRIX A.”

	 3.	Determine the smallest element in the matrix and its location.
	 4.	Using the sprintf command, print the value of the smallest element and its 

location in terms of row and column numbers.
	 5.	Obtain a new matrix B which flips the matrix, that is, the third row becomes 

the first row, the second remains the second, and the first row becomes the 
third row.

	 6.	Append a third column to matrix B, with the elements as 4, 7, and 12.
	 7.	Print a heading “MATRIX B” and print matrix B.
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SOLUTION

This example demonstrates the use of various commands described earlier with 
respect to matrices and also the output of the results from a simple MATLAB pro-
gram, as given in Figure 3.4.

The results obtained, when this program (Figure 3.4) is executed are given in 
Figure 3.5.

Therefore, this example illustrates the development and use of script m-files for 
solving mathematical and engineering problems. Once the program is developed, 
it can easily be used for solving other similar problems or modified according to 

%	 Example 3.1 Solution
%
format bank
%
%	 Generate matrix
%
a = 20*rand(3,2) + 5;
%
%	 Print Matrix A
%
disp(sprintf('MATRIX A'))
disp(a)
%
%	 Determine smallest element and its location
%
amin = min(min(a));
[i, j] = find(a = = amin);
%
%	 Print results
%
disp(sprintf('The smallest element is %.5g.',amin))
disp(sprintf('The smallest element is at row %.0g ... 
and column %.0g.',i,j))

%
%	 Obtain matrix B
%
b = flipud(a);
b(1,3) = 4;
b(2,3) = 7;
b(3,3) = 12;
%
%	 Print Matrix B
%
disp(sprintf('MATRIX B'))
disp(b)

FIGURE 3.4  ​MATLAB script m-file for the problem given in Example 3.1.
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changes in the requirements of the problem. The following example illustrates 
the use of MATLAB programming for a problem considered earlier and solved by 
using Fortran.

Example 3.2

For the problem considered in Example 2.1, write a MATLAB computer pro-
gram, or script m-file, to obtain the sum of the series in the binomial expansion 
of 1/(1 – x), the analytical result, the error and the number of terms needed to 
make the ratio of the nth term to the series sum up to this term less than 10−6 for 
x varying from 0.1 to 0.9.

SOLUTION

Using the algorithm presented in Example 2.1, a MATLAB computer program may 
easily be developed. A simple loop may be used to vary x from 0.1 to 0.9 in steps 
of 0.1. The corresponding MATLAB program is given in Figure 3.6, employing a 
simple for. . . end loop to go up to 1000 terms, if needed. As soon as the conver-
gence check is satisfied, the loop breaks and the results are obtained in terms of 
the sum, error and number of terms. These are printed after all the x values have 
been considered.

Figure 3.7 shows the results obtained from the program. It is seen that the 
results agree with the earlier ones from Example 2.1. However, the error depends 
on the number of significant digits retained by the computer system and the soft-
ware and, though small in both cases, is not expected to be equal. Here, the error 
varies from 0.01 × 10−3 for x = 0.1 to 0.8335 × 10−3 for x = 0.9 and is thus less than 
that obtained earlier in Example 2.1.

3.6  FUNCTION m-FILES

These are subroutines, or subprograms, that define functions, which can be used in a 
similar way to the MATLAB functions described earlier. Input/output parameters 
are given and all variables local to the function are defined. Then the function can be 
called to execute a specific mathematical operation or sets of operations. The basic 
format is function [output parameter list] = functionName (input parameter list). 

MATRIX A
	 21.29	 23.27
	 23.12	 17.65
	 7.54	 6.95
The smallest element is 6.9508.
The smallest element is at row 3 and column 2.
MATRIX B
	 7.54	 6.95	 4.00
	 23.12	 17.65	 7.00
	 21.29	 23.27	 12.00

FIGURE 3.5  Results from the MATLAB program given in Figure 3.4.
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% SERIES SUMMATION
%
% Enter Input Quantities
%
x = 0.1;
for i = 1:9
n = 1;
sn = x^(n − 1);
s = sn;
for k = 1:1000
n = n + 1;
%
% Sum the Series
%
sn = x^(n − 1);
s = s + sn;
%
% Convergence Check
%
if sn/s <= 10^(−6),break,end
end
	 y(i) = x;
m(i) = n;
%
% Compute Analytical Value of the Sum and the Error
%
sum(i) = s;
sx(i) = 1/(1 − x);
er(i) = ((sx(i)−sum(i))/sx(i))*100.0;
	 x = x + 0.1;
end
%
% Print Results
%
%
    disp(sprintf('The values of x are:'))
    disp(y)
    disp(sprintf('The number of terms needed are:'))
    disp(m)
    disp(sprintf('The sum of the series is:'))
    disp(sum)
    disp(sprintf('The error in percent is:'))
    disp(er)

FIGURE 3.6  MATLAB script m-file for the problem given in Example 3.2.
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The file is saved as functionName.m. Simple examples of function definition are

function [s, p] = addmult (x, y)
% Compute sum and product of two matrices
%
s = x + y;
p = x*y;
end

The file is stored as addmult.m and, when used, it yields the sum s and product p of 
the two variables x and y. Similarly, fn1.m represents the function file

function z = fn1 (x, y)
z = 0.5*y + x
end

It defines the function fn1(x, y), which can then be used in the computations similar 
to built-in functions like sin(x), exp(x), and log(x). Similarly, absolute.m represents 
the function

function y = absolute (x)
if x < 0
y = −x;
else
y = x;
end

which yields the absolute value of a given variable x.
Function m-files are very important in the development of MATLAB programs, 

since functions that are frequently needed are defined by these files. Functions can 
also be defined inline, as seen earlier for defining the ODE or as the following three 
functions:

f1 = inline('2.*(150.*x./(1 + exp(x)))', 'x');
f2 = inline('(2/(pi^0.5))*exp(−x.*x)', 'x');
f3 = inline('exp(x) + x^2′, 'x');

The values of x are
	 0.1000	 0.2000	 0.3000	 0.4000	 0.5000	 0.6000	 0.7000	 0.8000	 0.9000

The number of terms needed are:
	 7	 10	 13	 16	 20	 27	 37	 56	 111

The sum of the series is:
	 1.1111	 1.2500	 1.4286	 1.6667	2.0000	 2.5000	 3.3333	 5.0000	 9.9999

The error in percent is:
	 1.0e – 03 *
	 0.0100	 0.0102	 0.0159	 0.0429	 0.0954	 0.1023	 0.1856	 0.3741	 0.8335

FIGURE 3.7  Numerical results obtained from the MATLAB program given in Figure 3.6.
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The second entry within parentheses gives the independent variable and the first one 
the function definition. In the preceding cases, the second entry is not needed since 
it is implied by the function definition. However, if the independent variable were, 
say, y or z, then it would be needed. For instance, if ‘y’ is entered instead of ‘x’ in the 
third function definition, we would get f3(y) = exp(x) + x^2.

Once the function is defined using the inline command, given above, or as a 
function file, such as f1.m, the function can be evaluated at a given value of the 
independent variable, such as x, where x may be a scalar quantity or an array. 
However, if x is a vector, that is, an array, the function must be defined so that the 
mathematical operations such as multiplication and division can be performed on an 
array by using .* and ./, as discussed earlier. The command used for the evaluation of 
the function is feval, written as

feval(f,x) or feval('f',x)

where the first version is used for a function defined inline and the second for a func-
tion defined by a function file. Then, the value of the function f at given scalar x or 
the values of f corresponding to the components of an array x are given.

Function files and inline function definitions are extensively used in MATLAB 
programming, as seen later in various script files developed for different problems.

3.7  PLOTTING

One of the major strengths in MATLAB is the ease and variety with which outputs 
can be obtained in graphical form. A simple sequence of commands, such as

>> x = linspace (0, 2*pi);
>> y1 = sin (x);
>> y2 = cos (x);
>> y3 = y1 .* y2;
>> plot (x, y1, '*', x, y2, ' + ', x, y3, '−')

uses vectorization to obtain the discrete values of sin (x), cos (x) and sin (x) cos (x), 
and plots these on a graph, with *, +, and – as the symbols to characterize the three 
variations. Legends and axes can also be defined, such as

legend ('sin(x)', 'cos(x)', 'sin(x) cos(x)')
axis ([0 2*pi –1.5 1.5])

which must be part of the script file or in one line with the plot command.
Different symbols, line formats, and colors are available. For instance, b, g, r, and 

k stand for blue, green, red, and black. Similarly, -, -., --, and : give solid, dash-dot, 
dashed, and dotted lines. Also, o, x, +, *, s, d, and h yield circle, cross, plus, asterisk, 
square, diamond, and hexagon markers. The command hold on allows a plot to be 
held so that other graphs can be added to the same figure. The hold off releases the 
hold on the figure.
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Open figure windows can be closed with the command close all, so that other graphs 
can be displayed. The labels on the figure can similarly be specified, for instance,

xlabel ('\theta (radians)', 'Fontname', 'Times', ... 
'Fontsize', 14)

This gives θ(radians) with the given font characteristics. For the y-label, “sin(\theta)” 
may be used. The title of the figure can also be given easily, as, for instance,

Title ('Plot of simple trigonometric functions', ... 
'FontName', 'Helvetica', 'FontSize', 16)

The results are shown in Figure 3.8. Similarly, various other possibilities are avail-
able to obtain the graphs in the desired form, including contour plots.

3.8  SUMMARY

This chapter presents a brief review of MATLAB programming, focusing on com-
mon commands and various features used in developing a MATLAB program in 
terms of a script m-file or a function m-file. The main strengths of using the MATLAB 
environment are discussed, particularly with respect to the generation, use, and 
manipulation of matrices. Simple commands that can be used for root solving of poly-
nomials, curve fitting, solution of linear algebraic equations, ODEs, and so on, are 
outlined. Input and output commands, including entering variables and functions, as 
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MATLAB plotting commands.
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well as plotting, are briefly presented. A few examples are given in order to present 
the use of the MATLAB environment, and commands to solve mathematical prob-
lems. This brief review will serve to orient the students to the use of MATLAB for 
solving problems in science and engineering. However, for additional details and for 
more complex problems and situations, the various references mentioned here may 
be consulted. Also, it must be mentioned that, even though this book mainly consid-
ers the basic MATLAB computing environment generally available on common 
computer systems, a wide variety of Toolboxes are available and are used for specific 
and complex problems. These toolboxes include those for statistical analysis, eco-
nomic analysis, finite-element methods, optimization, symbolic methods, solution of 
PDEs, visualization, data processing, and so on.

PROBLEMS

	 3.1. � Become familiar with the MATLAB environment. Use commands 
to input data, employ mathematical operations, save variables, and 
vary format of outputs. Write a simple script m-file. Save and execute 
this file.

	 3.2. � Try different mathematical operations in MATLAB, with and without 
semicolon. Print eps, pi, sin(x), and other such built-in functions. Also, 
calculate the inverse of sine, cosine, and tangent for common angles 
like 30°, 45°, 60°, and 90°. Remember that the angle x is in radians for 
such trigonometric functions.

	 3.3.	� Define different matrices by defining row and column elements in one 
command. Then obtain these matrices by defining the rows separately 
first and then using these rows to obtain the matrices.

	 3.4.	� Generate a 4 × 4 matrix of random numbers ranging from 0 to 8. 
Similarly, generate a 3 × 5 matrix of random numbers ranging from 2 
to 12.

	 3.5.	� The following data are given for the independent variable x and 
dependent variable y:

	 x: 0 1 3 5 7 9 11
	 y: 2 5 14 47 128 281 530

			�   Using the polyfit command, obtain the best fit to these data by increas-
ing orders of the polynomial, from 1 to 5. From these results, is it possi-
ble to determine what order of polynomial is best suited to these data?

	 3.6.	� A polynomial equation is given as x3 – 7x2 + 14x – 8 = 0. Define 
this polynomial in the MATLAB environment and, using the roots 
function, obtain the three roots of the equation.

	 3.7.	� Using the approach discussed in the text, solve Equations 3.7 and 3.9 
with the coefficient 0.1 replaced by 0.2 and the initial velocity given 
as 45 m/s.

	 3.8.	� Plot common functions exp(x), log(x), and xn, for n = 1, 2, and 3, versus 
x, showing the appropriate title, legends, and labels.

	 3.9.	� Define the function f(x) = x3 + 2x2 − 4x + 5 by using the inline com-
mand as well as a function file. Then evaluate the function f(x) at x 
values of 0, 1, 2, 3, . . ., 10. Finally, plot f(x) versus x, with appropriate 
labels and ranges of the axes.
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	 3.10.	� The charge q at a given time t in a capacitor in an electrical circuit is 
given by the expression:

	 q = E C + (Q - E C) exp(-t/RC)

			�   where E is the source voltage, C the capacitance, Q the initial charge, 
and R the resistance. Two circuits are considered with C = 1, Q = 10, 
R = 15, and E = 20 in one case and E = 7.5 in the second case, all in SI 
units.

			   Do the following:
		  a. � Write a script-m file to calculate the charge at t = 0, t = 200 (which 

is large time) and at any arbitrary time t.
		  b.  Define the different variables for the two circuits.
		  c.  Calculate charge at t = 0 and print it as q_initial.
		  d.  Calculate charge at t = 200 and print it as q_steady_state.
		  e.  Include an input statement to enter t.
		  f.  Calculate the charge at time t and print it as q_time_t.
		  g.  Run the program to ensure that all desired outputs are obtained.
		  h.  Get the results for two times, t = 5 and t = 10 seconds.
	 3.11.	 Write a MATLAB script-m file to do the following:
		  a.  Generate a 3 × 5 matrix a of random numbers between 30 and −5.
		  b.  Determine the largest and smallest elements and their locations.
		  c.  Print the information in (b) using the sprintf command.
	 3.12.	� Solve the following system of equations using the matrix algebra 

in MATLAB. Use both the invert matrix and backslash commands. 
Write a script-m file for this purpose.

				    x1 + x2 − x3 = 0
				    x2 − x4 − x5 = 0
				    x1 + x5 − x6 = 0
				    2x2 + 4x3 + 6x4 = 10
				    −6x4 + 3x5 + 5x6 = −8
				    8x1 − 2x2 − 3x5 = 0

			   where x1, x2, x3, x4, x5, and x6 are unknowns to be calculated.
	 3.13.	 For the function f(v) given below,
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			   write a script-m file to
		  a.  Generate an array of velocities from 50 to 250 m/s.
		  b.  Generate the corresponding array of f(v) values.
		  c.  Plot f(v) versus v, using your choice of color and line style.
		  d.  Label your axes and give a heading to the figure.
		  e.  Run your program to ensure that the results are satisfactory.
	 3.14.	� Using if, while, and for loops, calculate the sum of n natural numbers, 

odd numbers (starting with 1), and even numbers (starting with 2). 
Choose and vary n. Validate your results.
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4 Taylor Series and 
Numerical Differentiation

4.1  INTRODUCTION

In problems of engineering interest, the numerical solution is generally based on 
discrete values of a given function and its derivatives at a finite number of points in 
the computational domain. The need to discretize a function arises since a digital 
computer can usually carry out only the standard arithmetic operations, employing a 
finite number of discrete values. Also, in many cases, interest lies in estimating the 
derivatives from discrete numerical or experimental values of the function, given at 
specified data points. The derivatives are then computed at these data points or at a 
number of intermediate locations, employing only arithmetic operations. Similarly, 
the numerical integration of a function may be carried out, using the discrete values 
of the function. Of course, as mentioned earlier, symbolic algebra may also be used 
in a few limited cases to differentiate or integrate continuous functions, employing 
software such as Maple or Mathematica. This chapter discusses the basic concepts 
involved in discretization as well as in the computation of the derivatives of a given 
function from given discrete values.

Numerical differentiation refers to the computational procedure for evaluating 
the derivatives of a function, which is given as an analytical expression or in terms 
of discrete values at a finite number of points in the computational region. There are 
many diverse areas in engineering where numerical differentiation is needed. For 
example, in the dynamics of particles and systems, the time derivative of the dis-
placement gives the velocity, and the second derivative gives the acceleration, which 
on multiplication with the mass of the body yields the force. In many engineering 
systems, such as robotics, the motion of the components is quite complex, and 
numerical differentiation is needed to determine the forces, velocities, and trajecto-
ries of the elements. Similarly, the heat transfer rate and the shear force at a surface 
due to fluid flow over the surface are obtained from the spatial derivatives of the 
temperature and the velocity, respectively. The distributions of temperature and 
velocity are often too complicated to permit use of the standard analytical methods 
for differentiation. The numerical values of the derivatives are also needed, for 
example, in optimization to obtain the best solution under given constraints, in eco-
nomics to obtain the effect of a change in the interest rate or inflation on the financial 
dealings of a company, in electromagnetics to determine the wavelength at which 
maximum energy transfer arises, and in many other problems of practical interest.

Frequently, in engineering problems, one must solve an ODE or a PDE to obtain an 
unknown variable. Again, a numerical solution involves a finite number of locations 
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or points where the value of the variable is computed. An important class of numeri-
cal methods for the solution of differential equations is based on replacing the deriv-
atives by their discretized forms, known as finite difference approximations, and 
then solving the resulting algebraic equations. The numerical analysis that forms the 
basis of discretization of derivatives is often called finite difference calculus. 
Differential equations arise in many engineering areas, such as dynamics and vibra-
tions, heat transfer and fluid flow, electronic circuitry, structures, mass transfer, and 
neutron diffusion in nuclear reactors. The numerical methods for the solution of 
ODEs and PDEs are discussed in Chapters 9 and 10, respectively.

In this chapter, we shall obtain finite difference formulations, which allow the 
computation of derivatives from discrete values of the function given at a finite num-
ber of points as well as the representation of derivatives in terms of discrete values. 
An important consideration in finite difference calculus is the error that arises due to 
the use of an approximation instead of the exact mathematical expression. Some 
discussion on the errors associated with discretization was included in Chapter 2. 
These errors are considered in greater detail here. The Taylor series forms the basis 
of many numerical techniques and also is used for estimating the errors involved. 
The general form of the series is presented, and the error resulting from the trunca-
tion of the series after a finite number of terms is determined. There are several 
approaches that may be adopted for deriving the finite difference approximation of 
the derivatives of a function. These approaches include the direct method, based on 
the definition of the derivative, the Taylor-series approach, and the use of a polyno-
mial representation of the function. These three approaches are discussed, with par-
ticular emphasis on the derivation based on the Taylor series since it also yields 
quantitative information on the error. Finally, the corresponding approximations for 
partial derivatives are outlined.

4.2  TAYLOR SERIES

4.2.1  Basic Features

Let us consider a function f(x) whose value at a given point x = xi is denoted by f(xi). 
The Taylor series is an infinite power series that expresses the value of the function 
in a region sufficiently close to x = xi as follows:
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where Δx is the magnitude of a finite increment in the independent variable x, from 
the given value x = xi, and the primes denote differentiation with respect to x. The 
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Taylor-series expansion has been taken about x = xi and, thus, all the derivatives are 
evaluated at x = xi. Similarly, we may write
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(4.3)

It is assumed that all the derivatives of the function f(x), at x = xi, exist and are finite. 
Also, Δx must be sufficiently small so that the series is convergent. Such a power 
series has a radius of convergence, given in terms of the increment Δx, within which 
the series is convergent (Keisler, 1986; Larson and Edwards, 2009). Generally, the 
radius of convergence is finite, and if Δx is taken as larger than this value, the series 
is no longer convergent and the region is not sufficiently close to x = xi. However, in 
finite difference computations, we do have the freedom to choose the value of Δx and 
thus control the convergence of the series and also the accuracy of the solution, as 
discussed below.

If an infinite number of terms is taken in the series given by Equations 4.2 and 
4.3, the exact value of f(xi + Δx), or f(xi − Δx), may be computed, provided the series 
is convergent. However, it is obviously not possible to compute an infinite number of 
terms. The practical approach to such a computation is to retain only a few terms in 
the series for approximating the function and to estimate the error resulting from 
neglecting the remaining terms. If only the first term in the series of Equation 4.2 is 
retained, then f(xi + Δx) ≃ f(xi), and the function f(x), is taken as a constant. The 
retention of the first two terms gives

	 f(xi + Δx) ≅ f(xi) + Δxf ′(xi)	 (4.4)

Thus, a linear approximation of the function is employed over the region from xi 
to (xi + Δx), and the slope is taken as constant. Similarly, if the first three terms in the 
series are retained,
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This expression allows a variation in the slope over the region and is, therefore, a 
more accurate approximation for f(xi + Δx) than that given by Equation 4.4.

Figure 4.1 shows the three circumstances of retaining one, two, or three terms in 
Equation 4.2 graphically. Equation 4.4 becomes exact only if f(x) is a linear function 
of x. Similarly, Equation 4.5 is exact for a parabolic, or second-order, function. 
Therefore, for an arbitrary function f(x), the accuracy of the representation by the 
Taylor series improves as additional terms are retained. Although an nth-order series 
expansion is exact for an nth-order polynomial, an infinite number of terms is, in 
general, needed for other differentiable and continuous functions.

4.2.2  Finite Difference Calculus

In finite difference calculus, the function f(xi + Δx) is generally written as f(xi+1), 
indicating the value of the function at a neighboring point x = xi+1, which is at an 
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incremental distance Δx from the point x = xi, about which the Taylor-series expan-
sion has been taken. Then the series in Equations 4.2 and 4.3 may be written as
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This infinite series must be truncated after a finite number of terms in order to be 
useful in digital computation. If the series is truncated after the (n + l)th term, that is, 
after the term containing the nth power of Δx, the neglected terms may be taken into 
account by means of a remainder term Rn, given for f (xi+1) by
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The derivative in this expression is evaluated at a point x = ξ, which lies within the 
interval from xi to xi+1, and (n + 1)! represents the factorial of (n + 1). This remainder 
term is often known as the Lagrange form and its derivation is given in most text-
books on calculus; see, for instance, the books by Amazigo and Ruhenfeld (1980) 
and Larson and Edwards (2009).

The expression for the remainder given by Equation 4.7 can be employed for estimat-
ing the error, known as truncation error and briefly considered in Chapter 2, that results 
from a truncation of the series. Thus, the error when the series is truncated after the term 

containing (Δx)n is less than d /dn n nf x x n+ + +Δ +1 1 1 1
max

( ) ( )!, where the maximum mag-
nitude of the derivative in the interval xi < x < xi + 1, is denoted by the subscript “max.” 
The value of the (n + l)th derivative of the given function, in the entire interval, is 
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f (xi)
f (xi+1)  ≈  f (xi)

f (xi+1)  ≈  f (xi) + Δ x f´(xi) +

f (xi+1)  ≈  f (xi) + Δ x f´(xi)

f (xi+1)

(Δ x)2

2!
f˝(xi)

FIGURE 4.1  Approximation of a function f(x) by a Taylor-series expansion, retaining one, 
two, or three terms in the series.
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generally not known, since this would require an analytical expression for f(x), which is 
assumed to be unknown. If f(x) is known in the interval, the Taylor-series expansion is 
not needed for evaluating the function at x = xi+1. Therefore, one cannot use the remain-
der term to determine the error exactly. However, the term does indicate the dependence 
of the truncation error on Δx, and we do have control over the value of Δx.

The remainder Rn, and thus the error, is usually written as
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where, as discussed in Chapter 2, this expression implies that the truncation error is 
on the order of (Δx)n+1. Since the quantities that multiply (Δx)n+1 in Equation 4.7 are 
constants over the given interval, the expression O[(Δx)n+1] may be taken to indicate 
that the error is proportional to the step size Δx raised to the (n + l)th power. Then 
Equation 4.1 may be written, with the corresponding truncation error, as
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or
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(4.9b)

For an arbitrary function f(x), Equation 4.9b yields a more accurate value of f(xi+1), 
as seen in Figure 4.1. Thus, within the radius of convergence of the series, the error 
term due to truncation after n terms is related to that due to truncation after (n + 1) 
terms as follows:

	 O[(Δx)n] > O[(Δx)n+1]	 (4.10)

implying that the error is larger in the former case. We will assume this relationship 
to be valid, as long as the series is convergent.

The representation of the truncation error as O[(Δx)n] also indicates the behavior 
of the error as Δx is reduced. Thus, if Δx is halved, the error becomes 1/2n of the 
previous error. The order of the Taylor-series approximation is given by the value of 
n. A higher value of n implies the retention of a larger number of terms in the series 
and, thus, a smaller truncation error. Usually, Δx is taken as sufficiently small, so that 
only the first few terms in the series are required to obtain a fairly accurate estimate 
of f(xi+1). The characteristics of the Taylor series and of the error resulting from trun-
cation are illustrated in the following example.

Example 4.1

	 a.	Derive the Taylor-series expansions for ex and log(1 − x), about x = 0. 
Employing the first six terms in the series, determine the values of these 
functions at x = 0.1, 0.2, 0.3, 0.4, and 0.5. Add the terms successively, 
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indicating the effect of the number of retained terms on the accuracy of the 
numerical results.

	 b.	The relationship between the pressure p and temperature T of a given fluid is

	
log .

.
p

T
= −19 2

5301 4

	
(4.11)

		  where log represents the natural logarithm, p is in kilopascals, abbreviated 
as kPa (l kPa = 103 N/m2), and T is in kelvins. Using the Taylor-series expan-
sion for p, compute the pressure at T = 351, 352, 355, 360, and 370 K, given 
the value at 350 K, from Equation 4.11, and using only five terms in the 
expansion.

SOLUTION

4.1(a) Here, the functions f(x) = ex and log(1 − x) are to be expanded in Taylor series 
about x = 0, at which location ex = 1 and log(1 – x) = 0. The Taylor series about zero 
is also often referred to as the Maclaurin series. In order to obtain the series, as given 
by Equation 4.1, we need to evaluate the derivatives at x = 0. Thus, for f(x) = ex,
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At x = 0, all these derivatives are 1.0. Therefore, the required series for ex, about 
x = 0, is obtained from Equation 4.1 as
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The second function, log(1 − x), yields the following derivatives:
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At x = 0, the derivatives of the function f(x) = log(1 − x) are

	 f ′(0) = −1,  f ″(0) = −1,  f ″′(0) = −2,  f″″(0) = −6, . . .
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Therefore, the Taylor-series expansion for log(1 − x) about x = 0 is obtained from 
Equation 4.1 by setting xi = 0 as
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A calculator or a computer may be used to sum a finite number of terms in 
the two series given by Equations 4.12 and 4.13. A computer program may also 
be easily written for this purpose. Starting with the first term, additional terms can 
be included successively and the resulting sum determined. This process is then 
continued up to the sixth term, employing the various values of x given in the 
problem. For instance, a typical program in MATLAB® for ex could include the 
following commands;

x = 0.1;
s = 0;
b = 1;
for n = 1:6
sn = (x^(n – 1))/b;
s = s + sn;
b = b*n;
n,s
end
f = exp(x)

Appropriate input/output formats can be also included such as

>> fprintf('N = %1d: S = %.6f\n',n,s)
>> fprintf('EXACT VALUE= %.6f\n',f)

to obtain the results in a desired form. Similarly, a MATLAB program may be writ-
ten for the function log(1 − x).

The numerical results obtained from such a computer program are shown in 
Figure 4.2. The exact values of the functions at the various x values considered 
are also computed and printed, along with the numerical results for comparison. 
Note that, as expected, the accuracy of the numerical evaluation of the func-
tions from their respective Taylor-series expansions improves as the number of 
terms considered increases. Six terms are found to be quite adequate at smaller 
x values, although more terms should be employed for x equal to or larger than 
0.5 for better accuracy. The convergence is thus slower at larger x, as expected 
and as shown in most calculus textbooks. Also, the series for ex converges at 
all x, whereas that for log(l − x) converges only if |x| < 1. Therefore, at larger x, 
within the convergent space for the given function, additional terms should be 
included until the sum remains essentially unchanged with a further addition 
of terms.
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X = .1	 X = .1
N = 1 : S = 1	 N = 1 : S = −.l
N = 2 : S = 1.1	 N = 2 : S = −.105
N = 3 : S = 1.105	 N = 3 : S = −.105333
N = 4 : S = 1.105167	 N = 4 : S = −.105358
N = 5 : S = 1.105171	 N = 5 : S = −.105360
N = 6 : S = 1.105171	 N = 6 : S = −.105361
EXACT VALUE = 1.105171	 EXACT VALUE = −.105361

X = .2	 X = .2
N = 1 : S = 1	 N = 1 : S = −.2
N = 2 : S = 1.2	 N = 2 : S = −.22
N = 3 : S = 1.22	 N = 3 : S = −.222667
N = 4 : S = 1.221333	 N = 4 : S = −.223067
N = 5 : S = 1.2214	 N = 5 : S = −.223131
N = 6 : S = 1.221403	 N = 6 : S = −.223141
EXACT VALUE = 1.221403	 EXACT VALUE = −.223144

X = .3	 X = .3
N = 1 : S = 1	 N = 1 : S = −.3
N = 2 : S = 1.3	 N = 2 : S = −.345
N = 3 : S = 1.345	 N = 3 : S = −.354
N = 4 : S = 1.3495	 N = 4 : S = −.356025
N = 5 : S = 1.349837	 N = 5 : S = −.356511
N = 6 : S = 1.349858	 N = 6 : S = −.356632
EXACT VALUE = 1.349859 	 EXACT VALUE = −.356675

X = .4	 X = .4
N = 1 : S = 1	 N = 1 : S = −.4
N = 2 : S = 1.4	 N = 2 : S = −.48
N = 3 : S = 1.48	 N = 3 : S = −.501333
N = 4 : S = 1.490667	 N = 4 : S = −.507733
N = 5 : S = 1.491733	 N = 5 : S = −.509781
N = 6 : S = 1.491819	 N = 6 : S = −.510464
EXACT VALUE = 1.491825	 EXACT VALUE = −.510826

X = .5	 X = .5
N = 1 : S = 1	 N = 1 : S = −.5
N = 2 : S = 1.5	 N = 2 : S = −.625
N = 3 : S = 1.625	 N = 3 : S = −.666667
N = 4 : S = 1.645833	 N = 4 : S = −.682292
N = 5 : S = 1.648438	 N = 5 : S = −.688542
N = 6 : S = 1.648698	 N = 6 : S = −.691146
EXACT VALUE = 1.648721	 EXACT VALUE = −.693147

(a) f(x) = ex	 (b) f(x) = log (1 − x)

FIGURE 4.2  Numerical results on the summation of the Taylor series expansions for ex and 
log(1 − x) at various values of x, as given in Example 4.1a, along with the exact values of these 
functions.
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The given relation between p and T, Equation 4.11, may be written as follows:
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Therefore, a Taylor-series expansion for exp(−5301.4/T) is needed for computing 
the pressure p at temperatures close to T = 350 K, about which the expansion is to 
be carried out. We may write Equation 4.14 as
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The Taylor-series expansion for p is then given by
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where p350 refers to the pressure at 350 K, as calculated from Equation 4.14, and 
the quantity within the parentheses indicates the temperature T at which the eval-
uation is made. Now, f ′, f ″, f ′″, and so on, are obtained by differentiation as
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If T is replaced by 350 K in these expressions and substituted in Equation 4.16, the 
series for p is obtained.

The value of the pressure p350 at T = 350 is calculated from Equation 4.14 as 
57.5781 kPa. Using this value, we calculate the pressures at T = 351, 352, 355, 
360, and 370 K from the Taylor-series given by Equation 4.16. Again, a computer 
program similar to the ones for the preceding problem may be developed to 
sum the series. The numerical results obtained are shown in Figure 4.3. The 
sum of the series, considering one, two, and up to five terms, is given, along 
with the corresponding exact value from Equation 4.14. As expected, the accu-
racy of the numerical value for the pressure improves as the number of terms 
employed is increased. Five terms are found to be quite satisfactory, particularly 
for small temperature differences ΔT = T − 350. However, as (T − 350) increases 
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to larger values, additional terms will be needed for accurate results. Obviously, 
the numerical sum of the series is in considerable error if only one or two terms 
are retained, particularly at large ΔT.

The simple problems given in Example 4.1 illustrate practical applications of the 
Taylor-series expansions and also bring out the important aspects that one needs to 
bear in mind in summing the series. It is important to ensure that the numerical 
results converge to an essentially constant value as the number of terms is increased. 
If the results diverge as additional terms are included, the series is not convergent, and 
an alternative approach to obtain the desired numerical results must be employed. In 
some engineering problems, the function f(x) may be too complicated to be evaluated 
easily in the vicinity of the x value at which it is known. Then Taylor series may be 
used, as outlined above. The series is also sometimes employed for providing starting 
values in the solution of differential equations. However, the major interest in the 

TEMPERATURE = 35l
N = 1: P = 57.5781331	 N = 2: P = 60.0699267
N = 3: P = 60.1167256	 N = 4: P = 60.1172157
N = 5: P = 60.1172187
THE EXACT VALUE OF THE PRESSURE = 60.1172137

TEMPERATURE = 352
N = l: P = 57.5781331	 N = 2: P = 62.5617203
N = 3: P = 62.748916	 N = 4: P = 62.7528363
N = 5: P = 62.7528845
THE EXACT VALUE OF THE PRESSURE = 62.7528848

TEMPERATURE = 355
N = l: P = 57.5781331	 N = 2: P = 70.0371011
N = 3: P = 71.2070744	 N = 4: P = 71.2683794
N = 3: P = 71.2702111
THE EXACT VALUE OF THE PRESSURE = 71.2702421

TEMPERATURE = 360
N = 1: P = 57.5781331	 N = 2: P = 82.496069
N = 3: P = 87.1759625	 N = 4: P = 87.6660022
N = 5: P = 87.6961086
THE EXACT VALUE OF THE PRESSURE = 87.6971056

TEMPERATURE = 370
N = 1.: P = 57.5781331	 N = 2: P= 107.414005
N = 3: P = 126.133579	 N = 4 : P= 130.053896
N = 5: P = 130.535599
THE EXACT VALUE OF THE PRESSURE = 130.567704

FIGURE 4.3  Numerical values of the pressure p obtained from a summation of the Taylor 
series expansion for the function p(T), as given in Example 4.1b, for various values of the 
temperature T.
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Taylor series is because of the approximation to the derivatives obtained by the use of 
the series, as discussed in Section 4.4.

4.3  DIRECT APPROXIMATION OF DERIVATIVES

In many diverse engineering problems, the accurate determination of derivatives 
from the measured or calculated values of the function f(x) at a finite number of dis-
crete points is needed. Consider, for example, an engineer, on a test track, involved 
in the measurement of the location of a moving body, such as a car, as a function of 
time. The velocity and acceleration of the object are given by the computed values of 
the first and second derivatives of the displacement. Similarly, a chemical or civil 
engineer may measure the concentration of a pollutant in a water body as a function 
of location and time and then use this information to obtain the rate of spread of 
chemical pollution. Heat and mass transfer processes are also concerned with the 
rates of transport, and measurements of temperature and concentration are often 
employed for developing models for predicting transport rates in several practical 
circumstances. Thus, the approximation of derivatives is important in many practi-
cal problems and also in the solution of differential equations by the finite difference 
approach, as presented in Chapters 9 and 10.

A simple approach to the derivation of the finite difference approximation to the 
derivatives of a function f(x) is based on the replacement of infinitesimal differ-
ences by finite differences in the mathematical definition of differentiation. Finite 
differences are considered in the variation of the independent variable x, and the 
values of the function f(x) at discrete points are employed in deriving the approxi-
mation. Consider the variation of f(x) with x, as sketched in Figure 4.4. Three dis-
crete points, denoted by subscripts i – 1, i, and i + 1, are shown along the x-axis. 
We may approximate the derivatives of f(x), with respect to x, in terms of the cor-
responding discrete values.

The first derivative df/dx at x = xi can be approximated by Δf/Δx, where Δ denotes 
finite differences. Three approximations for (df/dx)i can be written by considering 
the differences between the values at the three discrete locations or nodes. These 
approximations are as follows:
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where the subscripts denote the nodal location, in x, where the quantity is evaluated. 
The first approximation is known as the two-point forward difference approxima-
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tion for (df/dx)i, since only two nodes are involved and the value of the function in 
the forward, or the increasing x, direction is employed. Similarly, the second 
approximation, Equation 4.18, is known as the two-point backward difference, 
and  the third approximation, Equation 4.19, as the three-point central difference 
approximation.

These approximations employ the slopes of the chords to the right of, to the left 
of, and centered on the node point at x = xi, as shown in Figure 4.4, to approximate 
the gradient of the function at x = xi. Since these are only approximations to the 
derivative (df/dx)i, an approximate equality sign (≅) is used. The central difference 
may be interpreted in either of the following two ways:

	

f f
x

f f
x

f f
x

i i i i i i+ − + −−
Δ

=
−
Δ

+
−
Δ

⎡

⎣⎢
⎤

⎦⎥
1 1 1 1

2
1
2 	

(4.20a)

or

	

f f
x x

f f f fi i
i i i i

+ −
+ −

−
Δ

=
Δ

+( ) − +( )⎡

⎣⎢
⎤

⎦⎥
1 1

1 12
1 1

2
1
2 	

(4.20b)

The first equation represents an average of the two one-sided differences, and the 
second the difference based on the average values of the function at (i + 1/2) and 
(i − 1/2). Because the central difference averages out the variations on either side of 

True derivative at x = xi
slope = f´(xi)

C

Forward 
difference 

B

A
f (xi–1)

f (xi+1)f (xi)

xi xi+1xi–1 x 

Δ x 

f (x)

Δ x 

Central 
difference Backward 

difference 

FIGURE 4.4  Graphical representation of the forward, backward, and central finite differ-
ence approximations of the first derivative of a function f(x).
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the node x = xi, it is expected to be a more accurate representation of the derivative. 
This is shown to be true on the basis of the Taylor-series approach presented in 
Section 4.4.

Similarly, the finite difference approximation for the second derivative d2f/dx2 at 
x = xi may be derived. Thus,
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Here, the difference in Δf/Δx is approximated by the difference between the slopes 
of the two chords, on either side of the node at x = xi. In fact, ( fi+1 – fi)/Δx represents 
the central difference approximation of the derivative at x = xi + (Δx/2), or i + 1/2, 
since it uses the values on either side of this location, with discrete differences of 
Δx/2 in x. Similarly ( fi – fi-1)/Δx represents the central difference approximation of 
the derivative at x = xi − (Δx/2), or i – 1/2. Therefore,
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The preceding finite difference approximation of the second derivative is known 
as the three-point central second difference approximation. Other approximations 
for the second derivative may also be obtained by employing other finite difference 
representations in the above derivation. However, the central second difference is the 
most frequently employed approximation. Similarly, finite difference approxima-
tions for higher-order derivatives may be derived. Again, several representations are 
usually possible, with central differences being more accurate than one-sided differ-
ences, if the same nodal points are used in the two cases.

The direct approximation of the derivatives thus allows one to derive the 
required finite difference representations. The approach is based on the mathe-
matical interpretation of differentiation, and, therefore, it provides a physical 
background for the formulation of finite differences. However, it does not give any 
information on the accuracy of a particular representation. For an estimation of 
the error involved, we must employ the Taylor-series approach as described in 
Section 4.4.
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4.4  TAYLOR-SERIES APPROACH AND ACCURACY

The Taylor-series expansions about a given nodal point x = xi may be employed to 
derive the finite difference approximations of the derivatives of a function f(x). 
Since the error resulting from the truncation of the series after a finite number of 
terms can be estimated from the remainder term, given by Equation 4.7, the errors 
associated with the various finite difference approximations of the derivatives, 
obtained by the Taylor-series approach, may also be estimated. Using this 
approach, one can derive one-sided, forward and backward, and central difference 
approximations.

4.4.1  Finite Difference Approximation of the First Derivative

Consider the variation of the function f(x) with x, as shown in Figure 4.4. If the func-
tion f(x) is sufficiently smooth, it can be expanded in a Taylor series in the neighbor-
hood of x = xi. Assuming that the points xi−1 and xi+1 lie within the region of convergence 
of the series, the function f(x) at these points is given by Equation 4.6 as
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where the subscripts again denote the nodal locations, in x, where the function is 
evaluated, and the primes denote differentiation with respect to x.

If Equation 4.23 is solved for the first derivative fi�, we obtain
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When the infinite series is replaced by the remainder term, this equation becomes
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This equation gives the forward difference approximation of the first derivative, 
given by Equation 4.17, along with the truncation error in the approximation.

Similarly, the two-point backward difference for the first derivative may be 
obtained by solving Equation 4.18 for fi� as follows:
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which gives
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The truncation error is of the same order as that in the forward difference approxi-
mation. Since the error terms are included in Equations 4.25 and 4.26, the approxi-
mate equality signs of Equations 4.17 and 4.18 are not needed here.

A more accurate finite difference approximation of the first derivative is obtained 
by subtracting Equation 4.24 from Equation 4.23, to yield
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The result is the three-point central difference approximation of the first derivative, 
as given earlier in Equation 4.19. The truncation error is on the order of (Δx)2, and, 
therefore, this representation is more accurate than the forward and backward differ-
ences. Graphically, this expression approximates the derivative of the function f(x) at 
xi as the slope of the line AC in Figure 4.4. The forward and backward differences 
approximate the derivative by the slopes of the chords BC and AB, respectively. Also 
note from the preceding expressions that if the step size Δx is halved, the truncation 
error is also approximately halved for the forward and backward differences, whereas 
the error becomes one-fourth for the central difference.

4.4.2  Second Derivative

A finite difference approximation for the second derivative fi� may be derived by 
adding Equations 4.23 and 4.24, yielding
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The result is the second central difference, which was derived in the preceding sec-
tion by the direct approximation approach. The truncation error is O[(Δx)2], and, 
therefore, this finite difference approximation is of second order. Graphically, this 
expression approximates the second derivative by dividing the difference in the 
slopes of the chords that approximate the first derivatives at xi+1/2 and xi−1/2 by Δx; see 
Figure 4.5. The slopes of these chords are approximated in the central difference 
formulation as follows:
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and
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Thus,

	

f
f f

x
O x

f f f
x

O x

i
i i

i i i

ʺ =
ʹ − ʹ

Δ
+ Δ⎡⎣ ⎤⎦

=
− +
Δ

+ Δ

+ −

+ −

1 2 1 2 2

1 1
2

22

/ / ( )

( )
( )⎡⎡⎣ ⎤⎦

	
(4.31)

Similarly, one-sided forward or one-sided backward differences may be derived 
for fI� by employing points on only one side of x = xi, rather than on both sides, as 
done for the central difference. Let us consider, for example, the three points at xi, 
xi+1, and xi+2, as shown in Figure 4.6. The Taylor-series expansion for f(xi+1) is given 
by Equation 4.23, and the expansion for f(xi+2) is
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FIGURE 4.5  Graphical depiction of the finite difference approximation of the second 
derivative.
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Now, the first derivative fi� may be eliminated from Equations 4.23 and 4.32 to yield 
an expression for fI�. Thus, multiplying Equation 4.23 by 2 and subtracting the 
resulting equation from Equation 4.32 gives
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This result is the forward difference approximation of the second derivative. This 
approximation is accurate to within an error of order Δx.

Similarly, the backward difference approximation may be obtained by employing 
the Taylor-series expansions for f(xi−1) and f(xi−2) as follows:
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Note again that the forward and backward difference approximations are less accu-
rate than the central difference approximation if the same number of nodal points is 
used in all three cases. Higher-order approximations may be derived by employing 
additional points, as shown later. Even though the one-sided differences are less 
accurate than the central difference, they are often employed for approximating the 
derivatives, particularly near the boundaries of a computational domain since nodal 
points may be available on only one side of the boundary.

4.4.3  Higher-Order Derivatives

The finite difference approximations of higher-order derivatives may be derived by the 
use of Taylor-series expansions, as outlined earlier for the first and second derivatives. 
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FIGURE 4.6  Distribution of the nodal points for deriving forward, backward, and central 
difference approximations for higher-order derivatives and also for higher-accuracy formulas.
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However, the derivation becomes more involved as one proceeds to successively 
higher derivatives since an increasingly larger number of simultaneous equations 
must be solved. The larger number of equations is obtained by employing expansions 
at a larger number of nodal points. Thus, the formulas for the third and fourth deriva-
tives may be obtained by employing the expansions for fi+1 and fi−1, given by Equations 
4.23 and 4.24, along with those for fi+2 and fi−2. The expansion for fi+2 is given by 
Equation 4.32, and that for fi−2 is
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Subtracting Equation 4.35 from Equation 4.32, we obtain
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The substitution of the finite difference expression for fi� from Equation 4.27 gives
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Similarly, the finite difference approximation for the fourth derivative fi�� may be 
derived by adding Equations 4.32 and 4.35 and then substituting the approximation 
for fI�. The resulting approximation is
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Thus, the five grid points shown in Figure 4.6 are involved in the finite difference 
expression for the fourth derivative fi��, with a truncation error of order (Δx)2. 
The corresponding expression for fiʺʹ also involves these points, except for fi 
which drops out in the derivation. By employing a still larger number of points, 
one may derive expressions for the fifth and sixth derivatives to the same accuracy. 
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However, these derivations are quite involved because of the large number of 
equations to be solved. Another method, which is based on difference and deriva-
tive operators, may often be employed more easily for the derivation of higher-
order derivatives. This approach is discussed by Salvadori and Baron (1961) and 
Hornbeck (1975).

Equations 4.36 and 4.37 give the central difference approximations of the third 
and fourth derivatives of f(x), respectively. Similarly, one-sided forward or one-sided 
backward differences may be derived. As mentioned earlier, one-sided differences 
are of interest in only a few cases, such as near the boundaries of the computational 
region. The central differences are much more important and are employed for the 
approximation of the derivatives in a wide variety of engineering problems. Several 
of the commonly used finite difference formulations are given in Figures 4.7 through 
4.9, including higher-accuracy formulas discussed in Section 4.4.4.

4.4.4  Higher-Accuracy Approximations

The Taylor-series approach for the derivation of finite difference formulas may be 
employed for obtaining approximations of higher accuracy, that is, smaller truncation 
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FIGURE 4.7  Forward finite difference formulas, along with the truncation errors.
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error than given thus far. All the finite difference representations derived earlier had 
a truncation error of order Δx or (Δx)2. Although an accuracy of O[(Δx)2] is adequate 
for most problems of practical interest, since we can choose smaller Δx to improve 
the accuracy, higher-accuracy formulas are often employed if a given circumstance 
demands very accurate numerical results. Such a requirement arises, for instance, in 
the determination of the displacement and velocity of a projectile or of a robotic 
arm.

Higher-accuracy formulas can be developed by including additional terms in the 
Taylor-series expansions. However, a larger number of grid points will be required to 
generate the additional equations needed for eliminating the higher-order derivatives 
that arise due to the retention of additional terms. Consider, for example, the forward 
difference expression for the first derivative fi�. As obtained earlier,
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If instead of truncating the series after the first term, as done earlier, we retain the 
term of order Δx and substitute the forward finite difference expression for fI�, we 
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FIGURE 4.8  Backward finite difference formulas, along with the truncation errors.
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will obtain a higher-accuracy forward difference expression for fi�. Thus, from 
Equation 4.33,
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Similarly, a backward difference expression of O[(Δx)2] may be obtained by retain-
ing an additional term in the backward difference expression for fi� and substituting 
the backward difference formula of O(Δx) for fI�.

Formulations of still higher accuracy can be obtained by retaining additional 
terms in the series. As seen in Equation 4.38, the value of the function at an addi-
tional grid point, xi+2, is brought in to obtain the higher accuracy. Similarly, finite 
difference expressions for fi� with truncation errors of order (Δx)3 and (Δx)4 are 
obtained as follows:
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Central Difference Approximations of O[(Δx)2]
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FIGURE 4.9  Central difference approximations, with the associated truncation errors.
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where ξ is within the range of the appropriate expansion. The first two equations are 
third- and fourth-order correct backward differences. The third equation is a fourth-
order accurate, five-point central difference approximation for the first derivative at 
x = xi. With these five points, a higher-order approximation for the second derivative is
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It is evident that finite difference approximations of desired accuracy may be 
derived by the use of Taylor-series expansions. As shown later in Chapters 9 and 10, 
most finite difference solutions of ODEs and PDEs are based on expressions of accu-
racy O[(Δx)2]. However, finite difference representations of higher accuracy are also 
employed, depending on the special needs of a given problem.

The accuracy of the numerical results may be improved either by employing a 
higher-accuracy formula or by reducing the grid spacing Δx. As discussed in Chapter 2, 
both of these approaches are employed in practice. Grid refinement, or reducing Δx, 
is generally carried out until the numerical results are essentially unaffected by a 
further reduction. At this stage, the numerical results are as accurate as can be obtained 
with the chosen finite difference expression. A continued reduction in grid spacing 
will lead to increasing round-off error and, thus, less accurate results. Then the accu-
racy of the results can be increased by using a higher-accuracy formulation.

An interesting point that may be observed from all the finite difference expres-
sions given here is that the sum of all the coefficients, which multiply the function 
values in the numerator, is always zero. This result arises because the derivatives 
must become zero if f(x) is a constant. Also, if Δx approaches zero, the numerator 
must also approach zero so that the limiting result obtained as Δx → 0 yields a finite 
value for an arbitrary continuous function f(x).

Example 4.2

An engineer involved in the design of automobiles uses an experimental system 
for studying the motion of a wide variety of vehicular devices in a full-scale labo-
ratory environment. One particular test involves an accurate measurement of the 
displacement x of the vehicle as a function of time t. This information is then used 
to determine velocity V, acceleration A, and rate of change of acceleration F as 
functions of time. In a given experiment, the displacement x was measured over 
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a time range of 0–10 s, at steps of 0.1 s. Some of the results obtained are given as 
follows:

From these data, compute V, A, and F at t = 0 s, employing forward differences, and 
at t = 0.3, employing central differences, with a step size Δt of 0.1 s. Repeat these 
calculations for t = 0 s and t = 0.6 s, with a step size Δt of 0.2 s.

SOLUTION

The velocity V, the acceleration A, and the rate of change of acceleration F are 
given in terms of the displacement x and time t by
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Since measurements are available only for t ≥ 0, the values at t = 0 s can be 
computed only by forward differences. At t = 0.3 s, central differences can be 
employed with a step size of 0.1 s, and at t = 0.6 s, central differences with a step 
size of 0.2 s can be employed, according to the data given.

Various orders of approximation may be considered. The formulas needed for 
forward differences of O(Δt) and O[(Δt)2] are given in Figure 4.7. In addition, for-
mulas of O[(Δt)2] and O[(Δt)4] may be obtained, where t is the independent vari-
able, instead of x, in Figures 4.7 through 4.9. For the first derivative, Equations 
4.39a and 4.39b give the formulas for backward differences. Similarly, for forward 
differences, the first derivative may be approximated, for a function f(t), by
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These two formulas are employed, in addition to those given in Figure 4.7, in 
order to demonstrate the effect of higher-order forward difference approxima-
tions on the numerical results for the velocity V. It is seen from Equation 4.42b 
that five points, including the one at which the derivative is sought, are needed 
in the forward direction to obtain an accuracy of O[(Δt)4]. For computing A and F 
by forward differences, only formulas of O(Δt) and O[(Δt)2] are used. The central 
differencing formulas of O[(Δt)2] and O[(Δt)4] are given in Figure 4.9. These may 
be employed for the computation of the first, second, and third derivatives needed 
in the present case.

A calculator may be used to carry out these calculations or a computer program 
may be written in MATLAB or Fortran for solving this problem. For example, the time 

t(s) 0.0 0.1 0.2 0.3 0.4 0.5
x(m) 0.0 0.8733 1.8224 2.8611 4.0032 5.2625

t(s) 0.6 0.8 1.0 1.2
x(m) 6.6528 9.8816 13.80 18.5184
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t at which the derivatives are to be computed can be entered in terms of the integer 
variable I, where I = 1 at t = 0 s. Then, I is taken as 4 at t = 0.3 s, with Δt = 0.1 s, and 
at t = 0.6 s, with Δt = 0.2 s. The step size Δt also can be entered interactively, as are 
the data values needed for the computations. For forward differences, the values of 
x at five points, I, I + 1, . . . ,  I + 4, are to be entered. Similarly, for central differences, 
the values of x at six points, I – 3, I − 2, . . . , I, . . . , I + 3, are needed. The program 
would first employ forward differencing to compute the derivatives and then central 
differencing.

Typical numerical results obtained from such a computer program are shown 
in Figures 4.10 and 4.11. Here, V, A, and F represent the velocity, acceleration, 
and rate of change of acceleration. The numbers after these variables indicate the 
order of the approximation and the numbers within the parentheses the index I 
that labels the time at which the quantity is computed. Also, T represents the time t 
and DT the time step Δt. First, consider forward difference results, shown in Figure 
4.10, note that the velocity V converges to 8.4 m/s as the order of the approxima-
tion is increased. A considerable error is observed for the first-order approxima-
tion, particularly for the larger Δt (0.2 s), as expected. However, the third-order 
approximation is adequate for this problem, since essentially no change is observed 
by going to the fourth-order approximation. The acceleration A is given as 6.2 m/
s2 by the second-order approximation at both the mesh sizes considered. Again, 
the first-order approximation is in considerable error, particularly at Δt = 0,2 s. The 
computed value of F is found to be 13.8 m/s3 at Δt = 0.2 s, although a variation is 
observed from the first-order to the second-order approximation at Δt = 0.1 s. In 
this problem, F is a constant at 13.8 m/s3, as illustrated by the remaining results, dis-
cussed below. Thus, a higher-order approximation will not improve the accuracy 

FORWARD DIFFERENCES
INPUT DATA:
ENTER THE VALUES OF I, T AND DT
0	 0.0	 0.1
ENTER THE MEASURED VALUES OF X(I) TO X(I + 4)
0.0	 0.8733	 1.8224	 2.8611	 4.0032
CALCULATED RESULTS:
TIME = 0.0000	 TIME STEP = 0.1000
Vl = 8.7330   V2 = 8.3540  V3 = 8.4000   V4 = 8.4000
Al = 7.5800  A2 = 6.2000   Fl = 13.7998  F2 = 13.7997

INPUT DATA:
ENTER THE VALUES OF I, T AND DT
0	 0.0	 0.2
ENTER THE MEASURED VALUES OF X(I) TO X(I + 4)
0.0	 1.8224	 4.0032	 6.6528	 9.8816
CALCULATED RESULTS:
TIME = 0.0000	 TIME STEP = 0.2000
V1 = 9.1120    V2 = 8.2160  V3 = 8.4000     V4 = 8.4000
 Al = 8.9600  A2 = 6.2000   Fl = 13.8001  F2 = 13.8001

FIGURE 4.10   ​Numerical results obtained by employing forward differences for the 
problem given in Example 4.2.
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if the function being considered is a polynomial of lower order. Of course, for an 
arbitrary function, accuracy is generally improved by employing a higher-order 
approximation.

The results from central differencing, shown in Figure 4.11, indicate only small 
changes from the second-order to the fourth-order approximations. Thus, the 
second-order formulas are adequate for this problem, as is often the case in most 
engineering problems. At t = 0.3 s, V, A, and F are obtained as 10.881 m/s, 10.34 m/
s2, and 13.8 m/s3, respectively. Similarly, at t = 0.6 s, V, A, and F are obtained 
as 14.604 m/s, 14.48 m/s2, and 13.8 m/s3, respectively. Again, the second-order 
approximations are found to be adequate.

Example 4.2 has illustrated the use of numerical differentiation in a practical cir-
cumstance. The displacement x can generally be measured very accurately as a func-
tion of time t, and finite difference formulas can then be employed to yield velocity, 
acceleration, and so on. Forward and backward differences are generally used only at 
the start and the termination of the measurements, central differences being appropri-
ate for other times. Although higher-order approximations may be used, second-order 
formulas often yield satisfactory accuracy in most problems of engineering interest.

4.5  POLYNOMIAL REPRESENTATION

Another frequently employed approach for the derivation of the finite difference 
approximations to the derivatives of a given function f(x) is based on a polynomial fit 
to the values at the given grid points. Depending on the order of the derivative whose 

CENTRAL DIFFERENCES
INPUT DATA:
ENTER THE VALUES OF I, T AND DT
4	 0.3	 0.1
ENTER THE VALUES OF X(I - 3) TO X(I + 3)
0.0	 0.8733	 1.8224	 2.8611	 4.0032	 5.2625	 6.6528
CALCULATED RESULTS:
TIME = 0.3000  TIME STEP = 0.1000
V2 = 10.9040  A2 = 10.3399  F2 = 13.8004
V4 = 10.8810    A4 = 10.3399  F4 = 13.8004

INPUT DATA:
ENTER THE VALUES OF I, T AND DT
4	 0.6	 0.2
ENTER THE VALUES OF X(I - 3) TO X(I + 3)
0.0	 1.8224	 4.0032	 6.6528	 9.8816	 13.8	 18.5184
CALCULATED RESULTS:
TIME = 0.6000  TIME STEP = 0.2000
V2 = 14 6960  A2 = 14.4800  F2 = 13.8000
V4 = 14.6040   A4 = 14.4799   F4 = 13.7999

FIGURE 4.11  Numerical results obtained by employing central differences for the problem 
given in Example 4.2.
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approximation has to be obtained and the desired accuracy, the order of the polyno-
mial may be chosen. For an nth-order polynomial, (n + 1) grid points are needed to 
evaluate all the coefficients that appear in the polynomial. Curve fitting is discussed 
in detail in Chapter 7, and only a few simple aspects are presented here in order to 
obtain the finite difference approximations.

By way of illustration, let us consider fitting a second-order polynomial to the 
three grid points shown in Figure 4.12. The function f(x) is taken as

	 f(x) = A0 + A1x + A2x2	 (4.43)

Fitting this parabola to the three points yields

	 fi = A0 + A1xi + A2xi
2	 (4.44a)

	 fi+1 = A0 + A1(xi + Δx) + A2(xi + Δx)2	 (4.44b)

	 fi+2 = A0 + A1(xi + 2Δx) + A2(xi + 2Δx)2	 (4.44c)

From these equations, the coefficients A0, A1, and A2 may be determined. The first 
and second derivatives of the function are given by

	 f A A xi iʹ = +1 22 	 (4.45)

	 f Aiʺ = 2 2 	 (4.46)

Since the finite difference expression should depend only on the relative positions 
of the grid points, that is, it should be independent of the absolute location of the 
points, any arbitrary value of xi may be taken. The algebra is simplified if xi is taken 

f i

f i+1

f i+2

xi xi+2xi+1 x

f (x)

Δ x Δ x 

FIGURE 4.12  Uniform one-sided distribution of grid points used for illustrating the deriva-
tion of the finite difference approximations of the first and second derivatives by means of a 
second-order polynomial representation of the function f(x).
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as 0 so that xi+1 = Δx and xi+2 = 2Δx. However, the resulting expressions for fi� and fi� 
are the same whatever the value of xi. These expressions are obtained from Equations 
4.44 through 4.46 as follows:
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The approximations are identical to those derived earlier from the Taylor series; 
see Equations 4.33 and 4.38. The first expression was shown to have a truncation 
error of O[(Δx)2] and the second one of O(Δx). Both the equations give forward 
difference approximations because of the chosen grid points, which are on one side 
of x = xi in the direction of increasing x. The error term is not explicitly given by 
this approach. For an accurate evaluation of the error, one must resort to the Taylor-
series approach.

The polynomial representation is particularly useful in the derivation of finite dif-
ference expressions for grid points that are located at nonuniform distances from 
each other. For instance, consider the distribution shown in Figure 4.13. Taking 
xi = 0, xi+1 = Δx, and xi+2 = 3 Δx, the parabola of Equation 4.43 gives

	 fi = A0	 (4.49a)

	 fi+1 = A0 + A1Δx + A2(Δx)2	 (4.49b)

	 fi+2 = A0 + A1(3Δx) + A2(3Δx)2	 (4.49c)

f i

f i+1

f i+2

xi xi+2xi+1 x

f (x)

Δ x 2Δ x 

FIGURE 4.13  Nonuniform distribution of grid points employed for illustrating the use of a 
polynomial representation of f(x) to derive the finite difference approximations of the 
derivatives.
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with

	 f ′(0) = A1  and  f ″(0) = 2A2	 (4.50)

From these equations, we obtain the finite difference expressions for fi� and fI� as 
follows:

	
f

f f f
xi

i i iʹ =
− + −+ +2 19 8

6Δ 	
(4.51)

and

	
f

f f f
xi

i i iʺ =
− +
Δ

+ +2 1
2

3 2
3( ) 	

(4.52)

Similarly, expressions for other arbitrary distributions of grid points may be 
derived. This approach is frequently employed for determining the derivatives from 
experimental data. Examples of such data are those pertaining to the variation of 
material properties and of physical quantities such as pressure and density with an 
independent variable, such as temperature. Such data are generally available at non-
uniformly distributed values of the independent variable, and the polynomial 
approach provides a simple method for computing the derivatives.

4.6  PARTIAL DERIVATIVES

In the preceding sections, we have considered the numerical differentiation of an 
arbitrary function f(x) that depends on a single independent variable x. The finite 
difference representations of the ordinary derivatives of the function were derived by 
considering the variation with x. However, in engineering problems, we frequently 
encounter circumstances where the dependent variable is a function of two or more 
independent variables. In such cases, partial derivatives arise, and the finite differ-
ence approximations of these derivatives are of interest. Since a partial derivative is 
defined in terms of the variation of the function with a given independent variable 
while the others are held constant, the finite difference approximations are analo-
gous to those for the ordinary derivatives.

Consider, for instance, a function f(x, y). Then the partial first derivatives of the 
function are (∂f/∂x) and (∂f/∂y), where y is kept constant in the first case and x in the 
second. The variables that are held constant for a particular differentiation are 
sometimes indicated by means of subscripts as, for instance, (∂f/∂x)y and (∂f/∂x)x. 
However, it is understood that for the partial differentiation ∂f/∂x, only the varia-
tion of f(x, y) with x is under consideration, y being kept unchanged. Since two 
independent variables, x and y, are involved, a location in the computational domain 
is represented by two subscripts, instead of only one needed for ordinary deriva-
tives. Thus, the value of the function f(x, y) at a grid point represented by indices 
(i, j) may be denoted as fi,j, where x = iΔx and y = jΔy, as shown in Figure 4.14. 
Such a grid is employed in the solution of PDEs by finite difference methods, as 
discussed in Chapter 10.
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Considering the variation of the function f(x, y) with x alone, we may write the 
finite difference approximations of the first and second derivatives, in a manner anal-
ogous to that outlined in Section 4.3:
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Therefore, the subscript j is not varied in these expressions. Its presence indicates 
that the function also depends on another independent variable.

Similarly, the partial derivatives with respect to y may be obtained. Thus, the 
central differences yield
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f i–1, j+1 f i+1, j+1

f i+1, j–1

f i+1, j

f i, j+1

f i–1, j–1
f i, j–1

f i, jf i–1, j

x Computational
domain

y

iΔ x
jΔ y

FIGURE 4.14  A two-dimensional grid indicating the finite number of locations at which the 
function f(x, y) is evaluated in the computational domain.
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In this case, the subscript i is not varied. Thus, all the expressions derived in the 
preceding sections may easily be extended to partial derivatives.

The derivation of the finite difference approximations for partial derivatives may, 
again, be based on direct approximation, the Taylor series, or polynomial representa-
tion. The Taylor-series expansions about the point (i,j) may be written as
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The remainder terms may also be obtained for truncation after a finite number of 
terms, as outlined earlier for ordinary derivatives. The remainder term for trunca-
tion after the term containing the mth power of Δx, that is, after (m + 1) terms in 
Equation 4.59 is
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Similarly, the remainder term Rm,y is obtained as O[(Δy)m+1] for truncation after 
(m + 1) terms in Equation 4.60. The total remainder term is the sum of Rm,x and Rm,y 
as discussed in Chapter 10.

Thus, the finite difference approximations may be derived from the Taylor-series 
expansions, as given earlier. Sometimes cross derivatives such as ∂2f/∂x∂y have to be 
evaluated. The corresponding finite difference representations may be derived by 
applying the approximation twice for the two differentiations with different indepen-
dent variables. A two-variable Taylor-series expansion for f(x, y) may also be employed 
for the purpose, as outlined by Jaluria and Torrance (2003).

Partial derivatives are of interest in many important engineering applications, 
such as those that involve fluid flow, heat and mass transfer, thermodynamics, chemi-
cal reactions, structural vibrations, and electrical fields. Obviously, these topics 
encompass a wide range of engineering problems, extending from aerospace and 
environmental problems to nuclear and chemical reactors and power plants. Partial 
differential equations, which are discussed in detail in Chapter 10, govern such phys-
ical phenomena. The finite difference approximations of the partial derivatives are 
then employed for developing the numerical procedure for solving these problems. 
An example on the evaluation of partial derivatives is given in the following.
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Example 4.3

Planck's law for blackbody radiation is given as
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where c1 = 3.7413 × 108 W μm4/m2, c2 = 1.4388 × 104 μm K, λ is wavelength 
in μm, and T is temperature in K. Ebλ is a function of λ and T, and is known 
as the monochromatic emissive power of a blackbody (see Figure 1.3). Thus, 
Ebλ is a  function of λ and T. Partial derivatives of Ebλ are of interest in areas 
such as physics and heat transfer. Numerically determine ∂Ebλ/∂λ and ∂Ebλ/∂T at 
λ = 4 μm and T = 1600 K. Repeat the calculation for λ = 2 μm and T = 1000 K. 
Use different values of Δλ and ΔT to ensure accuracy of your results, employ
ing the second-order formula for the derivative. Compare your results with ana-
lytical ones.

SOLUTION

Energy transfer by radiation is of importance in several areas of engineering and 
physical sciences. Planck's law is of considerable value in the calculations for 
energy transfer since it gives the characteristics and magnitude of energy lost 
through thermal radiation by an idealized surface, termed blackbody, as func-
tions of temperature T and wavelength λ. Our interest here lies in numerically 
evaluating the rate of change of the emissive power Ebλ with these two indepen-
dent variables. The results are to be obtained at the two sets of values given for λ 
and T. Also, the step sizes Δλ and ΔT are to be varied so that we may study their 
effect on the results and choose the most appropriate values, as outlined earlier 
in Section 2.5.

The problem is fairly straightforward, and a calculator may be used for the 
calculations or a simple computer program may be written for obtaining the 
required numerical results. In such a program, the function Ebλ(λ,T) needs to be 
defined and the constants c1 and c2 specified. The input values for λ and T, at 
which the gradients ∂Ebλ/∂λ and ∂Ebλ/∂T are to be determined, can be entered 
interactively. The starting values of the step sizes Δλ and ΔT can be taken as 
1 μm and 500 K. These can then be successively halved in the program, and 
the corresponding derivatives computed by the following central differencing 
formulas for a function f(x,y):
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Therefore, an appropriate computer program may be written as :

ebl = �inline('3.7413*10^8/((x^5)*(exp(1.4388*10^4/(x*t))…​

–1))'); x = 4;t = 1600;
fprintf('WAVELENGTH= %.2f TEMPERATURE= %.2f\n',x,t)
fprintf('DX DE/DX DT DE/DT\n')
for i = 0:12
dx = 1/(2^i);dt = 500/(2^i);
dxebl = (ebl(t,x + dx)-ebl(t,x-dx))/(2*dx);
dtebl = (ebl(t + dt,x)-ebl(t-dt,x))/(2*dt);
fprintf('%.5f %.2f %.3f %.2f\n',dx,dxebl,dt,dtebl)
end

where the given function is defined as ebl (t,x), the two independent variables, 
temperature t and wavelength x, being assigned alphabetically. The derivatives 
with respect to x and t are represented by dxebl and dtebl, respectively.

The numerical results obtained are presented in Figure 4.15. The wave-
length step size Δλ is varied from 1.0  to 0.00024 μm, and the temperature step 
size ΔT from 500 to 0.122 K. The step sizes are halved in each successive 
computation. Here, X and T refer to λ and T, respectively. DX refers to Δλ and 
DT to ΔT, while DE/DX and DE/DT refer to the derivatives ∂Ebλ/∂λ and ∂Ebλ/∂T, 
respectively. Note that ∂Ebλ/∂T approaches a constant value, as ΔT is reduced, 
much more rapidly than ∂Ebλ/∂λ, with reduction in Δλ. This indicates that the 
results are more sensitive to variations in λ, as is also evident from the λ5 
dependence in the denominator of the function Ebλ; see Equation 4.62. From 
the numerical results presented in Figure 4.15, the computed values of both 
∂Ebλ/∂T and ∂Ebλ/∂λ vary monotonically from the starting value of Δλ until 
they reache constant values at small Δλ. For still smaller Δλ, the values may 
oscillate due to the appearance of significant round-off error. Thus, ∂Ebλ/∂T is 
evaluated as 67.77 W/m2 μm K at λ = 4 μm and T = 1600 K and as 63.27W/
m2 μm K at λ = 2 μm and T = 1000 K. Similarly, ∂Ebλ/∂λ is evaluated as 
−26,813.97 W/m2 μm2 at λ = 4 μm and T = 1600 K and as 9664.07 W/m2 μm2 
at λ = 2 μm and T = 1000 K.

The corresponding analytical values may also be determined by using math-
ematics to differentiate Ebλ successively with respect to the two independent vari-
ables λ and T. The given sets of input values may then be substituted into the 
mathematical expressions obtained. The analytical results thus obtained are as 
follows:

∂Ebλ/∂λ ∂Ebλ/∂T

λ = 4, T = 1600 –26,813.970 67.765

λ = 2, T = 1000 9664.069 63.268

Therefore, the numerical results obtained are essentially identical to the analytical 
results at the chosen values of the step sizes. Obviously, at large values of the step 
sizes, the numerical results are in considerable error; see Figure 4.15. An appropri-
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ate reduction in step sizes is, therefore, needed until the change in the numerical 
results is small.

4.7  SUMMARY

In this chapter, we have considered the basic concepts underlying numerical differ-
entiation and finite difference calculus. Three different approaches, namely, direct 
approximation, Taylor series, and polynomial representation, are presented for the 
derivation of the finite difference approximations to the various derivatives of an 
arbitrary function f(x). The truncation error resulting from the retention of a finite 

WAVELENGTH = 4.00	 TEMPERATURE = 1600.00
	 DX	 DE/DX	 DT	 DE/DT
	 1.00000	 −28565.47	 500.000	 65.96
	 0.50000	 −27287.70	 250.000	 67.32
	 0.25000	 −26934.25	 125.000	 67.65
	 0.12500	 −26844.15	 62.500	 67.74
	 0.06250	 −26821.52	 31.250	 67.76
	 0.03125	 −26815.86	 15.625	 67.76
	 0.01562	 −26814.44	 7.812	 67.77
	 0.00781	 −26814.09	 3.906	 67.77
	 0.00391	 −26814.00	 1.953	 67.77
	 0.00195	 −26813.98	 0.977	 67.77
	 0.00098	 −26813.97	 0.488	 67.77
	 0.00049	 −26813.97	 0.244	 67.77
	 0.00024	 −26813.97	 0.122	 67.77

WAVELENGTH = 2.00	 TEMPERATURE = 1000.00
	 DX	 DE/DX	 DT	 DE/DT
	 1.00000	 6308.24	 500.000	 97.40
	 0.50000	 8804.91	 250.000	 72.68
	 0.25000	 9456.31	 125.000	 65.68
	 0.12500	 9612.72	 62.500	 63.87
	 0 06250	 9651.27	 31.250	 63.42
	 0.03125	 9660.87	 15.625	 63.31
	 0.01562	 9663.27	 7.812	 63.28
	 0 00781	 9663.87	 3.906	 63.27
	 0.00391	 9664.02	 1.953	 63.27
	 0.00195	 9664.06	 0.977	 63.27
	 0.00098	 9664.07	 0.488	 63.27
	 0.00049	 9664.07	 0.244	 63.27
	 0.00024	 9664.07	 0.122	 63.27

FIGURE 4.15  Numerical results obtained for Example 4.3, indicating the dependence of the 
computed derivatives on the step sizes Δλ and ΔT.



118	 Computer Methods for Engineering with MATLAB® Applications

number of terms in the Taylor series is considered in detail and is related to the accu-
racy of the various finite difference approximations. The general procedures for 
deriving finite difference expressions of higher accuracy and those for higher-order 
derivatives are outlined. The Taylor-series approach is the preferred one since it also 
yields the error, which the other two methods, although relatively simpler to employ, 
do not. In addition, the Taylor-series expansions may be successively applied to 
improve the accuracy of the finite difference approximation, if a higher level of accu-
racy is desired in a given application. The polynomial representation approach is 
particularly useful if a nonuniform distribution of grid points is employed. Finally, 
the chapter discusses partial derivatives and shows how the finite difference approxi-
mations may easily be obtained from those for ordinary derivatives.

PROBLEMS

	 4.1.	� Derive the Taylor-series expansions for sin x, (1 − x)−2,  and e−x,  about 
x = 0. Are there any constraints on |x| for the series to be convergent? 
Why does the series for log(l − x), derived in Example 4.1, converge 
only if |x| < 1?

	 4.2.	� Using the Taylor series for ex and sin x, obtain the series for ex sin x, about 
x = 0. Compute the value of e0.2 sin 0.2 by a summation of the series, 
retaining terms so that the first neglected term is O[(Δx)4]. Compare 
your result with the true value of the function ex sin x at x = 0.2.

	 4.3.	� Show that the Taylor-series expansion for x5 about x = 0 is x5 itself.
	 4.4.	� Calculate e0.3 by employing the Taylor series for ex. How many terms 

are needed if the error from the true value of the quantity e0.3 is to be 
less than 0.01%?

	 4.5.	� The pressure p of a gas is given by the expression log p = 21.6–2420/T, 
where T is the temperature in kelvins. Using the exact value of p from 
this expression, at T = 400 K, and the Taylor-series expansion for 
p(T), compute the pressures at 410, 420, and 450 K. Compare these 
values with the exact ones obtained from the given expression. Refer 
to Example 4.1b.

	 4.6.	� Compute the value of esin(x) at x = 0.25, employing the corresponding 
Taylor-series expansion, and compare the result with the exact value.

	 4.7.	� Consider the function f(x) = 2x1/2 + 3x. The derivatives of the function 
at x = 0 are all infinite, and therefore the Taylor-series expansion about 
x = 0 cannot be obtained. Instead, obtain the series about x = 0.1 and 
also about x = 0.2. Compare the two and comment on the difference.

	 4.8.	� Compute the first and second derivatives of sin x and ex at x = 0, employ-
ing forward and central differencing formulas of O[(Δx)2]. Consider 
three values, 0.2, 0.1, and 0.01, of the step size Δx. Compare the numeri-
cal results obtained with the exact, mathematical values of the deriva-
tives. Discuss the effect of Δx on the accuracy of the numerical results.

	 4.9.	� Calculate the numerical value of d[(sin ) ]x ex /dx at x = 1, using central 
difference approximations of O[(Δx)2]. Start with Δx = 0.2 and reduce 
it until the numerical result remains essentially unaffected by a further 
reduction in Δx.

	 4.10.	� Consider the expressions for computing the PW and FW of a series of 
equal monthly payments, given by Equations 2.4 and 2.5, respectively. 
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It is important for the economic planning of an engineering system to 
determine the effect of a change in the interest rate x on PW and FW. 
Compute the rate of change of these quantities with x, at x = 10%, for 
R = $1000 and m = 240 months. Also, refer to Example 2.2 for details 
on this problem. Employ an appropriate value of Δx, as discussed in 
Section 2.5.

	 4.11.	� In Problem 4.10, compute d(FW)/dm and d(PW)/dm, where m is the 
number of months, at x = 10%, m = 240, and R = $1000.

	 4.12.	� The measured temperature distribution in a solar energy heating system 
may be represented by the equation
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			�   where x is the distance away from the surface being heated and T is 
the temperature. Compute the temperature gradient dT/dx and the sec-
ond derivative d2T/dx2 at x = 0. The heat transfer rate is proportional 
to the temperature gradient at x = 0. The second derivative is related 
to energy lost or gained by radiative transport. Employ forward dif-
ferences to O[(Δx)2] and reduce Δx to obtain numerical results that are 
largely independent of the value of Δx chosen.

	 4.13.	� For the problem considered in Example 4.2, if, in addition to the data 
given, the displacements at t = 0.7 s and 0.9 s are given as 8.1879 m 
and 11.7477 m, respectively, compute the velocity and acceleration at 
t = 0.5 s, using forward, backward, and central differences of O[(Δx)2]. 
Employ a step size Δt of 0.1 s.

	 4.14.	� In a periodic mass transfer process in a chemical plant, the concentra-
tion C of the moisture is obtained from analysis as

	
C x t x= −⎡⎣ ⎤⎦ − −9 5 0 75 0 75 2. exp( . ) cos( . )

			�   where x is distance in meters, t is the time in seconds, and C is in 
kg/m3. The mass transfer rate is proportional to the gradient ∂C/∂x 
at x = 0. The second derivative is related to the rate of moisture addi-
tion per unit volume. Compute both ∂C/∂x and ∂2C/∂x2 at t = 1 s and 
x = 0, using forward differences. Start with Δx = 0.1 m and reduce it to 
0.01 m to see whether there is any significant effect on the numerical 
results.

	 4.15.	� In fluid mechanics, the stream function ψ, which is related to the flow 
rate, is frequently employed for analysis. The distribution of ψ for a 
particular problem is obtained as
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			�   The velocity V is given by dψ/dy, and the shear force generated by 
the flow is proportional to d2ψ/dy2. Compute both these derivatives 
at y = 0.5, with Δy = 0.2, 0.1, and 0.05. Employ second-order central 
differences.
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	 4.16.	� It is known from analysis that the distribution of Ebλ, given in Example 
4.3, has a maximum at λT = 2897.6 μm K. Confirm this by using 
numerical differentiation to obtain the first and second derivatives, 
with respect to λ, at T = 1000 K and λT = 2897.6 μm K. Remember 
that, at a maximum, the first derivative is zero and the second deriva-
tive is negative.

	 4.17.	� The hot-wire anemometer is an instrument used for measuring veloci-
ties or temperatures. If, during its calibration, the output signal E is 
measured as 0, 1.7, 3.3, and 5.6 V at velocities V of 0, 1, 1.5, and 2 m/s, 
obtain the gradient dE/dV at V = 0 m/s, using the polynomial repre-
sentation of the function E(V).

	 4.18.	� Obtain the finite difference approximation for df/dx, where f(x) is a 
given function of x, using four uniformly spaced grid points and the 
polynomial representation of f(x).
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5 Roots of Equations

5.1  INTRODUCTION

In a wide variety of engineering problems, there is a task of determining the values 
of the variable x that would satisfy a given algebraic equation, such as x3 − 4x2 + 5x = 2, 
or x tan x = 1. Depending on the problem, defined by the equation and the range of x 
under consideration, these values of x, which are termed as roots of the equation, 
may be real or complex and may be finite or infinite in number. Root solving is 
needed, for instance, in determining the terminal velocity of a falling body, the con-
centration of a chemical species at a surface subjected to mass transfer, the time 
needed to repay a loan at a given interest rate and monthly payment, and the natural 
frequencies of vibration of a beam.

The algebraic equation to be solved is represented by the general form

	 f x( ) = 0 	 (5.1)

where the function f(x) may designate a polynomial or a transcendental expression, 
such as x tan x – 1, from the equation given above. The problem of finding the roots 
of Equation 5.1, therefore, involves obtaining the values of x at which the function 
f(x) is zero. Consequently, the roots are also often referred to as zeros of the function. 
Although interest usually lies in determining the real roots of equations with real 
coefficients, we do encounter problems, such as periodic processes, in which com-
plex roots are of interest or in which the equation has complex coefficients. Therefore, 
the discussion in this chapter is initially directed at obtaining the real roots of equa-
tions with real coefficients, the other circumstances being considered later in 
Section 5.5.1.

There are several methods available for finding the roots of algebraic equations. 
Some of these are applicable only to polynomial equations, which are obtained when 
f(x) represents a polynomial to yield an equation of the form

	 f x x a x a x a x an n n
n n( ) = + + + + + =− −
−1

1
2

2
1 0� 	 (5.2)

where n is the degree of the polynomial equation and al, a2, . . ., an are real coeffi-
cients. This equation has n roots, which may be real or complex. Some of the real 
roots may be equal. Also, the complex roots occur in conjugate pairs, that is, a com-

plex root a + ib, where a and b are real and i = −1, will occur in conjunction with 
another root a – ib. For a linear equation, n = 1, the root may be found directly as 
x = −a1/a0 from the equation a1 + a0x = 0. For a quadratic equation, n = 2, the roots 
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may again be determined by using the following well-known expression for the two 
roots, α1 and α2:

	
α α1 2, =

− ± −b b ac
a

2 4
2 	

(5.3)

where f(x) = ax2 + bx + c = 0 is the quadratic equation. Depending on whether the 
determinant (b2 − 4ac) is positive, zero, or negative, the roots are, respectively, real 
and distinct, equal, or complex. In a few limited cases, such formulas are available 
for higher-order equations too. Although these formulas provide a direct analytical 
method for finding the exact solution, they are usually very restrictive in their appli-
cability and are also often quite complicated. Therefore, it is generally easier or 
necessary to use indirect, or iterative, methods to find the roots of a nonlinear equa-
tion, for which n ≠ 1, numerically. Transcendental equations, which involve trigono-
metric and other special functions such as exponentials and logarithms, also arise in 
engineering problems. These equations are also generally nonlinear, and the number 
of roots is often unknown. Several of the methods considered in this chapter are 
applicable to both polynomial and transcendental equations.

In many cases of practical interest, the approximate variation of the function f(x) 
with x, the nature of the roots, and the interval over which these are to be determined 
are known. For instance, if the surface temperature of a pond, resulting from the 
various heat transfer processes operating at the surface, is to be determined, the 
energy balance equation must be solved to yield a single, real, positive root in a given 
range of temperature. Similarly, if the terminal velocity of a particle moving under 
the action of various forces or the lowest natural frequency of vibration of a dynamic 
system were to be determined, one would search for real, positive roots of the cor-
responding equations over specified ranges.

Real, negative roots may also be obtained, for instance, when considering tem-
perature and concentration differences, account balances, weight changes, forces, or 
velocities that may be positive or negative depending on the direction of motion, and 
price changes. If no prior information is available on the function and on the roots, a 
rough plot of the variation of f(x) with x may be obtained numerically, for real roots, 
to determine the behavior of the function and the approximate location of the roots. 
This information may then be used in the choice of the method and the interval over 
which the roots are sought. In some engineering problems, such as those concerned 
with the stability of systems and with periodic processes, complex roots are of inter-
est. Some of the techniques discussed here may also be employed for finding com-
plex roots. Again, a prior knowledge of the approximate value and nature of the roots 
would be useful. Therefore, the basic nature of the problem, which gives rise to the 
equation whose roots are to be determined, is often important in the solution of the 
equation.

This chapter discusses several numerical methods for finding the real roots of 
polynomial and transcendental equations. These include the search method, the 
bisection method, the regula falsi method (also known as the method of linear inter-
polation), the secant method, Newton’s method, Newton’s second-order method, and 
the method of successive substitution. Some of these are also applicable to complex 
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roots, and the corresponding procedure is outlined. There are several other available 
methods, such as Muller’s method, Brent’s method, Graeffe’s root-squaring method, 
and Bairstow’s iterative factorization of polynomials. These are also briefly dis-
cussed. Since, in many engineering applications, information on the basic back-
ground of the problem may be used effectively in the choice of the method and of the 
interval of interest, several examples of engineering problems are taken in order to 
illustrate the importance of the characteristics of the problem in the solution of the 
equations. Different types of equations are considered in order to present the various 
methods considered here.

5.2  SEARCH METHOD FOR REAL ROOTS

The search method is a very simple method, which is based on the change in the sign 
of the function f(x) as x is incremented, starting with an initial value x0, to determine 
the zero crossings of the function, that is, the locations where the plot of the function 
f(x) crosses the x-axis, as shown in Figure 5.1. An increment Δx is chosen, and x is 
successively increased by this value. If the function f(x) changes sign between two 
successive values xi and xi+1, then [ f(xi) ⋅ f(xi+1)] < 0, and the presence of a real root in 
the interval between these values of x is indicated, as shown in Figure 5.1. This pro-
cess is repeated by starting with x = xi and taking a smaller increment to narrow the 
interval containing the root. Therefore, one can make the interval in which the root 
lies as small as desired by successively reducing the increment Δx to search for the 
zero crossing of the function. Generally, one starts with a large step size Δx and suc-
cessively reduces it to a small fraction, say, one-tenth of the previous value, for locat-
ing the root more accurately in the reduced interval obtained from a sign change of 
the function. If the initial increment is chosen as Δx and the subsequent reduced incre-
ments are Δx/n, Δx/n2, Δx/n3, and so on, where n is a constant, it is evident that the root 
may be obtained to the desired accuracy in only a few incremental searches.

f (x)

xxi 
0 

Δ x 

xi+1 

α1 α2 α3

FIGURE 5.1  Search method for the real roots of the equation f(x) = 0.
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When one root, x = α1, has been determined and if other roots are sought, the 
incremental search proceeds to larger values of x, taking x > α1; until another sign 
change in f(x) occurs and the preceding process is repeated. Generally, one takes the 
starting value x0 as the smallest value in the range of interest and proceeds to larger 
x until all the real roots in the given range are found. The method can be used to find 
positive or negative real roots of a given polynomial or transcendental equation, if 
the function f(x) crosses the x-axis. It will fail to find a zero resulting from the func-
tion being tangent to the x-axis, since no sign change occurs in this case.

This method, which is sometimes known as the incremental search method, is 
particularly suitable for obtaining the various intervals in which the real roots of the 
given equation f(x) = 0 are located. Once an interval containing a root has been 
found, various other, more efficient methods, discussed later, may be employed for a 
faster convergence to the root. Consequently, the incremental search method often 
precedes other methods and is thus employed in conjunction with them. Frequently, 
the starting point, x = x0, and the incremental step size Δx are chosen and f(x) is 
determined for successively incremented values of x over the entire range of interest, 
thus yielding the various intervals in which real roots are located. Such a search for 
roots over the entire range is often known as exhaustive search. This procedure also 
allows one to obtain a rough plot of f(x) versus x and thus determine the approximate 
behavior of the function. This information is useful in dealing with problem spots 
such as equal, or multiple, roots, obtained if f(x) does not cross the x-axis but is tan-
gent to it, and roots that are very close to each other in value. If no prior information 
is available on the nature of the roots and the behavior of the function, a small value 
of the increment Δx may be taken at the onset to ensure that no roots are missed in 
the search.

The incremental search method is frequently employed with an interactive com-
puter program so that one might choose the increment and the starting point as the 
interval containing the root is successively reduced, thus coupling one’s previous 
experience and knowledge with the program. The function f(x) may also be plotted, 
using available software for graphics, for a visual study of the behavior of the func-
tion and the approximate location of the roots. This is particularly convenient in 
MATLAB® due to the availability of plotting software. Search methods, such as the 
one outlined here, are frequently employed in optimization of systems, where one 
seeks to maximize or minimize a given function. The incremental search method 
can easily be extended to find the maxima or minima of a function by seeking the 
zeros of the derivative of the function instead of those of the function f(x).

As outlined here, the search method provides an iterative procedure for determin-
ing the roots of the given algebraic equation f(x) = 0. Iteration is terminated when the 
root has been determined to the desired accuracy level. A commonly employed 
criterion for convergence is specified as
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where x(n) and x(n−1) represent the approximations to the root, that is, the values of x at 
which the function changes sign, for the nth and the (n – l)th iterations, respectively, 
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and ε is a specified small quantity, often taken in the range 10−5–10−3. The preceding 
convergence criterion is thus based on the magnitude of the relative change in the 
approximation to the root from one iteration to the next. Another criterion, based on 
the increment Δx(n) for the nth iteration, is also frequently used. This criterion may be 
written as follows:
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The above conditions for convergence, therefore, imply that the fractional error in 
the computed root is less than or equal to ε. The first criterion, Equation 5.4a, does 
not explicitly indicate the accuracy of the root, and, therefore, the second one, which 
does give the accuracy, is preferable in most cases. The preceding criteria are also 
often replaced by

	 | |( ) ( )x xn n− ≤−1 ε 	 (5.5a)

or

	 | |( )Δ ≤x n ε 	 (5.5b)

where the actual values of the quantities are considered, instead of the relative mag-
nitudes. This form is particularly useful if the expected value of the root is equal to 
or close to zero, since, in this case, the forms in Equation 5.4 cannot be used because 
of the denominator becoming zero. The accuracy of the calculated root may be 
improved by taking it as the average of the two final x values, xi and xi+1, between 
which a sign change occurs, that is, α = (xi + xi+1)/2. The following example illus-
trates the use of the search method in finding the real roots of an algebraic 
equation.

Example 5.1

The surface of a furnace wall is exposed to radiative, convective, and conductive 
heat transfer, as shown in Figure 5.2. Under steady-state conditions, the surface 
temperature T is obtained from an energy balance, which yields the equation

	
εσ ( ) ( ) ( )T T h T T
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(5.6)

where the three terms, from the left, represent heat transfer by radiation, convec-
tion, and conduction, respectively. Here, Th is the temperature of the hot environ-
ment radiating to the surface, Ta is the air temperature, and T2 is the temperature 
at the outer surface of the wall. Also, h is known as the convective heat transfer 
coefficient, k is the thermal conductivity of the wall material, d is the wall thick-
ness, ε is the emissivity of the surface, and σ is the Stefan–Boltzmann constant, 
given as 5.67  ×  10−8 W/m2 K4. Find the wall temperature by the search method, 



126	 Computer Methods for Engineering with MATLAB® Applications

if Th =1000 K, Ta = 500 K, T2 = 300 K, h = 50 W/m2 K, k = 25 W/m K, ε = 0.8, and 
d = 0.15 m.

SOLUTION

The given problem reduces to finding the roots of the equation

	
f x x x x( ) . . [( ) ] ( )

.
( )= × × − − − − − =−0 8 5 67 10 1000 50 500

25
0 15

300 08 4 4

	

(5.7)

where x is the unknown temperature. Since this is a fourth-order polynomial, there 
are four roots that will satisfy the equation. However, a consideration of the physi-
cal problem, described here, indicates that a unique, positive value of the tem-
perature must be obtained in the range 300–1000 K, these being the two extreme 
temperatures in the problem. Therefore, we expect only one real and positive root 
to lie in this range. The others will be physically unacceptable, being negative, 
complex, or beyond the indicated range.

The general behavior of the function f(x) can be first studied by obtaining a 
rough plot of f(x) versus x. This plot may be obtained simply by incrementing 
x, starting with the lower limit of x = 300 K, and computing f(x) until the upper 
limit of x = 1000 K is reached. In MATLAB, the following commands will yield the 
desired graph, with a line at f(x) = 0 to indicate the sign change in f(x).

x = linspace(300,1000,20);
f1 = inline(' 0.*x ');
f = �inline(' (0.8*5.67*10^(−8))*(10^12- ... 

x.^4) − 50.*(x − 500)−(25/0.15).*(x−300)');
plot(x,f(x),'k-',x,f1(x),'k––')
xlabel('x (K)','fontsize',14);ylabel('f(x)','fontsize',14)

Figure 5.3 shows this plot, and a single, real, positive root is observed to lie between 
500 and 550 K.

We may now proceed with the incremental search method, starting with 
x = 300 K or with a value close to 500 K, and narrow in on the root. A maximum 
value of x = 1000 K may also be specified to avoid going beyond the range. In the 
present case, the function is well behaved and we do not expect to encounter 

d
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FIGURE 5.2  Heat transfer at the surface of the furnace wall considered in Example 5.1.
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any problems. A computer program in MATLAB is given in Appendix B.1. The 
corresponding program in Fortran is given in Appendix C.1 to show a comparison 
between the two. The logic is quite similar, but the commands to implement the 
algorithm are different, with MATLAB being more convenient to use. However, 
for more involved problems, Fortran, C++, or other high-level languages may be 
more efficient, as discussed earlier in Chapter 2. The program increments x, with 
a chosen increment of 50 K and an initial value of 300 K, until the function f(x) 
changes sign. The increment is reduced to one-tenth of the earlier value, and the 
initial value of x is now taken as the beginning of the step in which the sign change 
occurs. This process is repeated until the unknown temperature x is obtained to 
the desired accuracy level, given by the convergence parameter eps.

The numerical results from the MATLAB program at various values of the con-
vergence parameter eps, which is applied to Δx, as given by Equation 5.5b, are 
shown in Figure 5.4. These results demonstrate that, as expected, the number of 
iterations increases as eps, printed as EPS here, is decreased. Also, the value of 
the function f(x) at the estimated root decreases toward zero. Here, F1 and F2 
represent f(x) at the two ends of the subinterval. Note that a change only in the 
third decimal place occurs when EPS is reduced from 0.01 to 0.001, indicating that 
the first value will give adequate accuracy. The desired accuracy will generally be 
governed by the engineering application being considered. However, it is impor-
tant to vary the convergence criterion EPS to ensure that the numerical results are 
not significantly affected by the value chosen, as discussed in Section 2.5. The 
convergence criterion may also be applied to the function f(x), which represents 
the net energy gain at the surface. For further details on the physical problem 
considered here, books on heat transfer or on college physics, such as Young et al. 
(2000), may be consulted.
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FIGURE 5.3  A rough plot of f(x) versus x to determine the approximate value of the root in 
Example 5.1.
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EPS = 10.00000
X = 550.00000	 F1 = 9191.6667	 F2 = –2957.3902
X = 540.00000	 F1 = 727.2266	 F2 = –496.9862
TEMPERATURE = 535.50000	 F(X) = 727.2266

EPS = 1.00000
X = 550.00000	 F1 = 9191.6667	 F2 = –2957.3902
X = 540.00000	 F1 = 727.2266	 F2 = –496.9862
X = 538.00000	 F1 = 115.6117	 F2 = –6.8290
TEMPERATURE = 537.55000	 F(X) = 115.6117

EPS = 0.10000
X = 550.00000	 F1 = 9191.6667	 F2 = –2957.3902
X = 540.00000	 F1 = 727.2266	 F2 = –496.9862
X = 538.00000	 F1 = 115.6117	 F2 = –6.8290
X = 538.00000	 F1 = 5.4168	 F2 = –6.8290
TEMPERATURE = 537.95500	 F(X) = 5.4168

EPS = 0.01000
X = 550.00000	 F1 = 9191.6667	 F2 = –2957.3902
X = 540.00000	 F1 = 727.2266	 F2 = –496.9862
X = 538.00000	 F1 = 115.6117	 F2 = –6.8290
X = 538.00000	 F1 = 5.4168	 F2 = –6.8290
X = 537.97500	 F1 = 0.5186	 F2 = –0.7060
TEMPERATURE = 537.97050	 F(X) = 0.5186

EPS = 0.00100
X = 550.00000	 F1 = 9191.6667	 F2 = –2957.3902
X = 540.00000	 F1 = 727.2266	 F2 = –496.9862
X = 538.00000	 F1 = 115.6117	 F2 = –6.8290
X = 538.00000	 F1 = 5.4168	 F2 = –6.8290
X = 537.97500	 F1 = 0.5186	 F2 = –0.7060
X = 537.97250	 F1 = 0.0287	 F2 = –0.0937
TEMPERATURE = 537.97205	 F(X) = 0.0287

EPS = 0.00010
X = 550.00000	 F1 = 9191.6667	 F2 = –2957.3902
X = 540.00000	 F1 = 727.2266	 F2 = –496.9862
X = 538.00000	 F1 = 115.6117	 F2 = –6.8290
X = 538.00000	 F1 = 5.4168	 F2 = –6.8290
X = 537.97500	 F1 = 0.5186	 F2 = –0.7060
X = 537.97250	 F1 = 0.0287	 F2 = –0.0937
X = 537.97215	 F1 = 0.0042	 F2 = –0.0080
TEMPERATURE = 537.97210	 F(X) = 0.0042

FIGURE 5.4  Numerical results obtained from the MATLAB program for the search method 
in Example 5.1.
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As presented earlier in Chapter 3, the given problem can also be solved very eas-
ily by using the software available in MATLAB for finding the roots of polynomial 
equations. The given polynomial p is defined by specifying its coefficients and the 
roots(p) command is used to obtain all the roots of the equation. The coefficients are 
given in descending powers of the independent variable x. Since this is a fourth-order 
polynomial, four roots are obtained. For example, the following simple program can 
be used to specify the polynomial from Equation 5.7 in descending powers of x and 
obtain the roots.

format short e
a = 0.8*5.67*10^(-8);
b = 0;c = 0;
d = 50 + 25/0.15;
e = −0.8*5.67*10^(−8)*1000^(4)-50*500–25*300/0.15;
p = [a b c d e];
r = roots(p);
disp(r)

This program yields the results

  −1.8390e + 03
  6.5052e + 02 + 1.5030e + 03i
  6.5052e + 02 − 1.5030e + 03i
  5.3797e + 02

It is seen that only one root, 537.97, is positive and lies within the acceptable 
range of temperature. Two are complex and one is negative, making them unaccept-
able. Also, the root obtained is close to that obtained earlier by the search method.

Similarly, the fzero command, available in MATLAB, can be used to obtain the 
location, in x, where the graph of f(x) versus x crosses the x-axis. A search is carried 
out for the zero of the function close to a specified location or over a given range. The 
function may be defined by an inline statement as

f = inline('0.8*5.67*10^(−8)*(1000^4 − x^4) − 50* ...
(x − 500) − (25/0.15)*(x − 300)');

or a function file f.m may be created to define the function as

function z = f(x)
z = 0.8*5.67*10^(−8)*(1000^4 − x^4) − 50* ...

(x − 500) − (25/0.15)*(x − 300);

where the 3 periods indicate continuation of the command.
For the former case, the fzero command may be given, with a given x, as

>> root = fzero(f,300)
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or, with the given range specified, as

>> root = fzero(f,300,1000)

yielding the resulting root as

root =
537.9721

Similarly, for the second case, employing the f.m function file, the command is 
given as

>> fzero('f',300)

or

>> root = fzero('f',300,1000)

This gives the root as

root = 
537.9721

Thus, the root is close to that obtained earlier and may easily be determined by using 
the fzero command if the f(x) versus x graph crosses the x-axis, yielding a real root.

5.3  BISECTION METHOD

The bisection, or half-interval, method may be used for a rapid convergence to the 
root once the interval containing a real root has been determined by the incremental 
search method or by plotting f(x) versus x. Consider the function f(x), shown in 
Figure 5.5, which is known to have only one real root in the interval x1 ≤ x ≤ x2. The 
interval is bisected, and the function is computed at the midpoint x0, where
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FIGURE 5.5  Sketch illustrating the computational procedure for the bisection method.
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Now the product f(x0) ⋅ f(x1) is calculated. If f(x0) ⋅ f(x1) < 0, then the root lies in the 
interval x1 < x < x0, since the function has changed sign in this half-interval. If the 
product is positive, then the root must be in the other half-interval x0 < x < x2. The 
interval containing the root is, therefore, reduced by half, and the preceding procedure 
is next applied to the reduced interval. The process is repeated until the location of the 
root is obtained to the desired accuracy. Since the interval containing the root is halved 
in each bisection, the original interval is reduced by a factor of 2n after n bisections. 
The computed root is taken at the midpoint of the interval obtained after n bisections. 
Then, the maximum error in the calculated root equals half the size of this interval. 
Therefore, the error ε in the root is given by I0/2n+1, where I0 is the starting interval 
containing the root. The number of bisections needed to reduce the maximum error to 
ε is obtained by taking the logarithm of the equation ε = I0/2n+1 as follows:
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(5.9)

where log represents the natural logorithm. Therefore, if we wish to reduce the error 
to less than 0.1% of the original interval I0, that is, ε/I0 = 0.001, the above equation 
yields n = 8.97, implying that only nine bisections are needed to achieve this level of 
accuracy.

After each interval-halving operation, the new interval containing the root is 
determined, and the designation of the endpoints of the reduced interval is changed, 
with x0 replacing the appropriate endpoint x1 or x2. Figure 5.5 shows a few steps in 
the computational procedure, denoting the successive values of x1, x2, and x0 by 
means of primes. If, at any stage in the computation, the function f(x0) is found to be 
zero or close to it, within a specified error, the root of the equation is taken as the 
corresponding value of x0, and further computation is stopped. Otherwise, the com-
putation may be carried out for a specified number of bisections n or until the root is 
obtained to the desired accuracy, the location of the root being taken as the midpoint 
of the successively reducing interval. Frequently, the computation is terminated 
when the change in the root from one bisection to the next is less than a specified 
error tolerance ε. In most practical problems, the value of ε may be obtained from a 
consideration of the accuracy needed in the determination of the physical quantity 
represented by the root. For example, if the pressure of a given volume of gas is to be 
obtained by solving its equation of state, ε may be chosen as a small fraction of the 
acceptable error in the pressure.

The bisection method will always yield a root of the given equation f(x) = 0 if f(x) 
changes sign in the interval. However, if the interval contains more than one real 
root, one must determine the subintervals containing the roots before proceeding to 
bisection. An odd number of roots in the interval x1 < x < x2 will give f(x1) ⋅ f(x2) < 0. 
If there are no roots in the interval or if there are an even number of roots, then 
f(x1) ⋅ f(x2) > 0. Several bisections may be needed to obtain the subintervals in which 
f(x) changes sign, and the method may converge to the same root more than once. In 
such cases, the search method, exhaustive or incremental, may be employed effec-
tively to determine the approximate location of the roots and the subintervals where 
bisection may then be used. Similarly, bisection will not locate multiple roots that 



132	 Computer Methods for Engineering with MATLAB® Applications

arise due to the plot of the function f(x) being tangent to the x-axis, without crossing 
it, since a sign change does not occur at the root. Again, the approximate behavior of 
the function may be determined graphically or from search methods. If such multiple 
roots arise, other methods, discussed later in this chapter, will be needed. If the mul-
tiple root arises at a location where the function f(x) crosses the axis, bisection can be 
used to find the root. The numerical process will always converge if the interval 
containing a zero crossing of the function f(x) is known. The convergence is faster 
than that obtained by the search method.

A MATLAB program is given in Appendix B.2 in order to illustrate the algorithm 
discussed here. A similar program in Fortran is given in Appendix C.2 for finding the 
root of a given equation log10(x) + x2 − 6 = 0 to show the similarities and differences 
between the two. In both cases, the function f(x) in the equation f(x) = 0, whose roots 
are to be determined, can be employed to solve a given problem. If the MATLAB 
program shown is to be used for the problem of Example 5.1, the appropriate function 
f(x) has to be defined. It can be defined within the program as an inline statement, as 
done earlier in Appendix B.1, or a function file can be saved as f.m in the same subdi-
rectory as the main program. For the problem in Example 5.1, the function file was 
given earlier and is rewritten as

function z = f(x)
z = 0.8*5.67*10 (̂−8)*(1000^4 − x^4) − 50* ...

(x − 500) − (25/0.15)*(x − 300);
Then, if the given program is executed, the program asks for the end points of the 

interval and yields the approximations to the root as

Enter lowest value of interval, a = 300
Enter highest value of interval, b = 1000
Iteration converged
 650.0000
 475.0000
 562.5000
 518.7500
 540.6250
 529.6875
 535.1562
 537.8906
 539.2578
 538.5742
 538.2324
 538.0615
 537.9761
 537.9333
 537.9547
 537.9654
 537.9707
 537.9734
 537.9721
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Therefore, the root obtained as the same as that calculated earlier by the search 
method. The convergence criterion is based on the absolute value of the function f(x) 
at the approximation to the root, which is given by Equation 5.8, becoming less than 
the convergence parameter, which is taken as 0.02. Again, this parameter may be 
varied to ensure that the results are independent of the value chosen. The conver-
gence, though generally faster than the search method, is still seen to be quite slow 
and several methods with faster convergence are discussed in Sections 5.4 and 5.5.

5.4  REGULA FALSI AND SECANT METHODS

5.4.1  Regula Falsi Method

The regula falsi, or false-position, method is similar to the bisection method in that 
it will always yield a real root in the interval in which the function f(x) changes sign. 
However, the convergence to the root is generally more rapid. Let us again consider 
an interval x1 < x < x2 found graphically or from the search method to contain a real 
root of the equation f(x) = 0. Therefore, f(x1) and f(x2) are opposite in sign. A chord is 
drawn joining the two endpoints [x1, f(x1)] and [x2, f(x2)]. The intersection of the 
chord, which represents a linear approximation to the function f(x), with the x-axis, 
x = x3, is taken as the first estimation of the root of the given equation. From 
Figure 5.6, x3 may be obtained by using the geometrical relationship between the 
two triangles formed as follows:
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FIGURE 5.6  The regula falsi method for root solving.
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If f(x3) is zero or close to zero, within a specified convergence criterion, the pro-
cess is terminated, and the root is located at x = x3. If f(x3) has the same sign as f(x1), 
then f(x3) ⋅ f(x1) > 0, and the root lies between x2 and x3. Then x2 remains unchanged 
and x3 becomes the new value of x1, thus giving the reduced interval containing the 
root as x3 < x < x2. Similarly, if f(x3) ⋅ f(x1) < 0, then the root is located in the interval 
x1 < x < x3. In this case, x1 remains unaltered, and x3 becomes the new value of x2. 
Figure 5.6 shows a few steps in the computational process, denoting new values by 
primes.

The new values of x1 and x2 are employed in Equation 5.10 to yield an improved 
approximation to the root. The process is continued, successively reducing the inter-
val containing the root until |f(x3)| or the change in the root, which is approximated 
by x3, from one computational step to the next is less than a specified small quantity 
ε. The value of the error tolerance ε is chosen on the basis of the accuracy desired in 
the evaluation of the root. Since, at each step, a subinterval containing the root is 
considered, the method will always converge if a sign change in f(x) occurs in the 
initial interval. Multiple roots due to the plot of f(x) being tangent to the x-axis cannot 
be located by this method, which requires a sign change in f(x). The rate of conver-
gence to the root depends on the nature of the function f(x) and the initial interval. 
Although convergence is often faster than that obtained by the bisection method, 
examples can be found where such is not the case. The procedure outlined above is 
also sometimes known as the linear interpolation method.

5.4.2  Secant Method

The preceding methods always considered the subinterval that enclosed the root and 
will, therefore, always yield the solution if a sign change in f(x) occurs in the interval. 
The secant method is similar to the regula falsi, or false-position, method, but it does 
not always consider subintervals containing the root. This method is, therefore, not 
guaranteed to converge, unlike the enclosure methods discussed so far. However, 
when it does converge, it does so more rapidly than the previous methods. Instead of 
using the two values of x that bound a subinterval containing a real root, the method 
uses the two most recent values of x in the iterative procedure. Therefore, it employs 
both interpolation and extrapolation to approximate the root by the intersection of 
the line joining the two points [x1, f(x1)] and [x2, f(x2)] with the x-axis. Figure 5.7 
shows a few iterative steps for the secant method, using primes to denote the new 
values. As in the regula falsi method, a chord is drawn between the two endpoints of 
the initial interval, and the intersection with the x-axis is obtained from Equation 
5.10. However, in the next step, the interval containing the root is not considered and 
the two most recent values of x, x2 and x3, are taken. The former thus becomes x1 and 
the latter x2. These are again substituted in Equation 5.10 to yield the new intersec-
tion point, which is the next approximation to the root. Therefore, the general expres-
sion for iteration by the secant method may be written from Equation 5.10 as
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where the subscript represents the order of the iteration, starting with xi−1 = x1 and 
xi = x2 as the first two approximations to the root.

The above process is continued until |f(xi)| ≤ ε, where ε is the specified conver-
gence parameter. Since the method employs linear extrapolation for subintervals that 
do not contain the root, the process may not converge. Convergence depends on the 
nature of the function and on the limits of the initial interval. If the initial guesses x1 
and x2 are chosen sufficiently close to the root, x = α, convergence of the iterative 
process to the root can be expected. The method may diverge if the initial guesses are 
not well chosen. Therefore, this method is suitable if the interval containing the root 
is known to a fairly good approximation from a rough plot of the function or from the 
search method. Both the regula falsi and the secant methods may be employed for the 
real roots of polynomial as well as transcendental equations. The following examples 
illustrate the use of these methods for finding the roots of algebraic equations.

Example 5.2

A flat plate falling freely in air is subjected to a downward gravitational force and 
an upward frictional drag due to air. This drag force Df is given by the expression
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where V is the vertical velocity of the plate and log V is the natural logarithm of V. 
A terminal velocity is attained when this drag force equals the gravitational force. 
The net force F acting on the plate is given by

	 F D mg= −f 	 (5.13)

where m is the mass of the plate and g the magnitude of the gravitational accel-
eration. Find the terminal velocity by the regula falsi method if m = 1 kg and 
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FIGURE 5.7  The secant method for finding the real roots of an algebraic equation.
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g = 9.8 m/s2. Vary the convergence parameter ε, applied to F, from 1.0 to 10−4, 
and study the effect on the numerical value obtained for the terminal velocity.

SOLUTION

The terminal velocity is given by the root of the equation
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Since the expression for the drag force Df is valid for V ≥ 1 m/s, we may take the 
value of 1 m/s as the lower limit, x1, of the range in which the root is located. The 
upper limit, x2, may be taken as a large value, say, 500 m/s. If the root is not found 
within this range, a still larger value of x2 may be employed. A rough plot of F(V) 
versus V may also be obtained to guide the choice of the initial range of values. 
The root is expected to be real, positive, and unique.

A computer program may easily be written for solving this problem by the 
regula falsi method. The algorithm is very similar to that for the bisection method, 
discussed in the preceding section. The approximation to the root x3 is given by 
Equation 5.10, instead of Equation 5.8 which was used for the bisection method. 
As before, depending on the sign of f(x1) · f(x3), the new values of x1 and x2 are 
chosen. If f(x1) · f(x3) < 0, then the root lies between x1 and x3. Thus, x3 becomes 
the new x2, and the procedure is repeated. Similarly, if f(x1) · f(x3) > 0, x3 becomes 
the new x1. Iteration is terminated when |f(x3)| ≤ EPS, where EPS is the chosen 
convergence parameter. The numerical results obtained for various values of EPS 
are shown in Figure 5.8. A velocity V of 173.0431 m/s is obtained for EPS = 10−4, 
and a change of less than 0.003% is observed when EPS is varied from 10−3 to this 
value. The net force F on the plate is essentially zero, within the chosen conver-
gence criterion. Depending on the desired accuracy of the terminal velocity, the 
corresponding value of EPS may be chosen.

Example 5.3

Solve the problem of Example 5.2 by the secant method, and compare the results 
with those obtained by the regula falsi, or false-position, method.

SOLUTION

In this case, the two most recent values of the unknown x are employed, with 
interpolation and extrapolation, to find the root. Equation 5.11 is used instead of 

EPS = 1.00000 	 TERMINAL VELOCITY = 	167.1907	 FUN(X) = −0.7216
EPS = 0.10000	 TERMINAL VELOCITY = 	172.2868	 FUN(X) = −0.0948
EPS = 0.01000	 TERMINAL VELOCITY = 	172.9755	 FUN(X) = −0.0086
EPS = 0.00100	 TERMINAL VELOCITY = 	173.0377	 FUN(X) = −0.0008
EPS = 0.00010	 TERMINAL VELOCITY = 	173.0431	 FUN(X) = −0.0001

FIGURE 5.8  Computed results for various values of the convergence parameter EPS, using 
the regula falsi method for Example 5.2.
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Equation 5.10 to find the next approximation. Therefore, x1 and x2 are the first two 
approximations to the root, followed by x2 and x3 as the approximations in the 
next step. A MATLAB program for the secant method is given in Appendix B.3. 
The program is given as a function m-file, where the file, saved as secant.m, is 
given as function [p1,err,k] = secant(f,p0,p1,delta,max1). Thus, the function f(x) has 
to be stored separately as a function file f.m and specified as a string, such as ‘f,’ 
when calling the secant function m-file. Also, p0 and p1 are the starting values for 
the unknown x, delta is the convergence parameter and max1 is the given maxi-
mum number of iterations before the execution is stopped if convergence is not 
achieved. The results from this program will yield the resulting approximation to 
the roots after each iteration and the final result if convergence is obtained. If con-
vergence is not achieved, it will indicate that the maximum number of iterations 
has been reached. The print out commands may be suitably modified to obtain 
desired format for the results. Similarly, different starting values p0 and p1, as well 
as different convergence parameters may be used. The corresponding program in 
Fortran is given in Appendix C.3 for comparison.

The initial values of x1 and x2 may be taken as 150 m/s and 200 m/s, respectively. 
The function F(V) is well behaved, with no discontinuities or sharp changes, and 
convergence is obtained even with a much larger initial range. For example, with x1 
taken as 1 m/s and x2 as 500 m/s, convergence is again achieved and a smaller com-
puter (CPU) time than that needed for the regula falsi method is required. However, 
a narrower initial interval for the unknown root would generally be needed for the 
secant method, as compared to the regula falsi method, in order to obtain conver-
gence. The secant method is not guaranteed to converge since the interval being 
considered at any given stage does not necessarily contain the root.

The numerical results for the terminal velocity in the given problem at various 
values of the convergence criterion EPS are shown in Figure 5.9. It is interest-
ing to note that the value obtained, for x1 = 150 m/s and x2 = 200 m/s, does not 
change when EPS is varied from 10−2 to 10−4, for the four significant decimal places 
printed. The value itself is within 0.001% of that obtained in Example 5.2, and a 
relatively large value of EPS, 0.01 from the results shown, is found to be satisfac-
tory. Therefore, if the appropriate range or interval containing the root is known, a 
rapid convergence to the root may be obtained by the secant method. The results 

INITIAL X1 = 150.00              INITIAL X2 = 200.00
EPS = 1.00000	 TERMINAL VELOCITY = 171.1760	 FUN(X) = −0.2331
EPS = 0.10000	 TERMINAL VELOCITY = 172.9019	 FUN(X) = −0.0178
EPS = 0.01000	 TERMINAL VELOCITY = 173.0445	 FUN(X) = 0.0001
EPS = 0.00100	 TERMINAL VELOCITY = 173.0445	 FUN(X) = 0.0001
EPS = 0.00010	 TERMINAL VELOCITY = 173.0445	 FUN(X) = 0.0001

INITIAL X1 = 2.00                INITIAL X2 = 500.00
EPS = 1.00000	 TERMINAL VELOCITY = 170.7368	 FUN(X) = −0.2876
EPS = 0.10000	 TERMINAL VELOCITY = 173.1468	 FUN(X) = 0.0129
EPS = 0.01000	 TERMINAL VELOCITY = 173.0430	 FUN(X) = −0.0001
EPS = 0.00100	 TERMINAL VELOCITY = 173.0430	 FUN(X) = −0.0001
EPS = 0.00010	 TERMINAL VELOCITY = 173.0430	 FUN(X) = −0.0001

FIGURE 5.9  Computed results from the solution of the problem in Example 5.2 by the 
secant method.
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for the starting values of x1 and x2 taken as 2 and 500 m/s, respectively, are also 
shown in Figure 5.9. The results are very slightly different from those obtained 
when these are taken as 150 and 200 m/s, respectively, and are also very close to 
those obtained in Example 5.2.

5.5  �NEWTON–RAPHSON METHOD AND MODIFIED 
NEWTON’S METHOD

The Newton–Raphson method, or simply Newton’s method, for finding the roots of 
polynomial and transcendental equations is very widely used because of its versatil-
ity and generally rapid convergence. The method employs an initial approximation 
to the root of a given equation and iteratively improves the root until convergence to 
the desired accuracy is achieved. However, as in the secant method, convergence is 
not assured. The method is not based on the plot of the function f(x) crossing the 
x-axis, and therefore it may be used for complex and multiple roots as well. The 
modified Newton’s method is an extension of the conventional method and has cer-
tain important advantages, as discussed later in Section 5.5.2.

5.5.1  Newton–Raphson Method

If x = x1 is the first approximation to the root of the equation f(x) = 0, the function f(x) 
may be expanded in a Taylor series about x1, for x close to x1, as given in Chapter 4 
to yield
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where the primes denote the order of the differentiation with respect to x. In order to 
determine the root, x = α, we set f(x) equal to zero and then solve the resulting equa-
tion for the root. However, this gives a polynomial equation of order infinity. If only 
the first two terms are retained, the next approximation to the root, x2, may be 
obtained. Therefore, setting f(x) = 0, we get
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where x2 represents an improved estimate of the root. In the next iteration, x1 is 
replaced by this new approximation x2, and a further improved approximation to the 
root x3 is obtained. The general expression for iteration by Newton’s method is, 
therefore, written as follows:
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where xi and xi+1 are the values obtained after the ith and the (i + l)th iterations, 
respectively.

This iterative process is continued until the approximation to the root from one 
iteration to the next changes by less than a specified small quantity ε. As discussed 
for the previous methods, the convergence criterion ε is often chosen on the basis of 
the nature of the physical problem under consideration and may be applied to the 
approximate root or to the function f(x), as |f(xi)| ≤ ε. Note that Newton’s method is 
similar to the secant method, discussed in Section 5.4.2. In the secant method, the 
slope f ′(xi) is approximated by [ ( ) ( )] ( ).f x f x x xi i i i− −− −1 1  If this approximation is 
substituted in Equation 5.16, the formula for iteration by the secant method, Equation 
5.11, is obtained. Consequently, the convergence characteristics of the secant method 
and the Newton–Raphson method are quite similar.

The derivative f ′(xi) of the function is needed for using this method. In many 
cases, particularly for polynomial equations, the derivative may be obtained easily. 
However, there are problems, such as those involving transcendental functions, in 
which the differentiation of the function f(x) may be quite complicated. The derivative 
may then be computed numerically by a finite difference approximation, as outlined 
in Chapter 4. The iterative procedure converges very rapidly, as shown in terms of a 
few iterative steps in Figure 5.10. It is seen graphically that the intersection of the 
tangent, to the curve of f(x) versus x at a given approximation, with the x-axis, where 
f(x) = 0, gives the next approximation. From the figure, the slope f ′(xi) is given by 
f(xi)/(xi − xi+1), which yields the iterative formula for Newton’s method.

However, the method may not converge if the initial guess is too far from the root 
and also if the derivative is close to zero or varies substantially near the root. A few 
cases in which the iteration does not converge are shown in Figure 5.11. The com-
puter program should include this possibility so that, if the method diverges or if the 
root is not obtained in a specified number of iterations, a new initial guess is chosen 
and the numerical procedure for finding the root is carried out again. Any informa-
tion on the value and characteristics of the root, from the physical background of the 

f (x)

xα
x1x2x3

FIGURE 5.10  A graphical representation of the Newton–Raphson iterative procedure for 
solving an algebraic equation.
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problem, from the variation of the function f(x) with x, or from the search method, 
will be useful in the choice of the initial approximation, so that a rapid convergence 
to the root may be obtained.

Newton’s method may also be used for determining the complex roots of the 

equation f(z) = 0, where the complex variable z = x + iy, i being −1  and x and y real 
quantities. The function f(z) may be written as f z u x y v x y( ) ( , ) ( , )= + i , where u and 
v are the real and imaginary parts of the function. Then the iterative process for 
Newton’s method is given by the complex expression
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where zi represents the approximation to the root after the ith iteration. Therefore, if 
complex algebra is available on the computer, complex roots may be determined by 
the procedure outlined above for real roots. If complex variables cannot be used, the 
following procedure may be used. The real and imaginary parts on the two sides of 
the above equation may be equated to obtain the following (Carnahan et al., 1969):
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f (x)

x1 x

f (x)

x1
x

f (x)

x1 x

FIGURE 5.11  A few cases in which the Newton–Raphson method diverges.
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where ux and uy denote the partial derivatives ∂u/∂x and ∂u/∂y, respectively. The sub-
scripts xi, yi outside the parentheses indicate that the values are to be determined at 
x = xi and y = yi. For obtaining the above equations, the Cauchy–Riemann equations, 
ux = vy and uy = –vx, have been employed. Therefore, this method may be used for 
finding the zeros of complex functions whose real and imaginary parts can be sepa-
rated easily. In most computer systems, complex algebra is available, and Equation 
5.17 may be employed directly to determine the complex roots, as outlined in 
Example 5.5. In MATLAB, if the initial guess is given as a complex quantity, com-
plex algebra is automatically employed to yield the complex roots. Of course, if the 
roots(p) command is used for a polynomial equation, complex roots, if any, are given 
by the results. A similar treatment is applicable if the coefficients of the equation are 
not real but complex.

As mentioned earlier, complex functions arise in several engineering problems, 
such as those concerned with vibrations, stability of systems, electrical circuits with 
alternating current sources, periodic processes, wave phenomena, and flow fields 
that may be represented by a complex potential. For further details on complex alge-
bra, see any textbook on calculus, such as Thomas and Finney (1999). It may be 
mentioned that though z is used to denote an independent complex variable here for 
clarity, the independent variable x will, in general, be used in the following to denote 
a real or complex variable.

5.5.2  Modified Newton’s Method

The Newton–Raphson method can also be used for multiple roots corresponding to 
points where the function f(x) becomes tangent to the x-axis. However, since f ′(x) 
also goes to zero, as f(x) approaches zero at the root, the convergence is slow, and 
computational difficulties may arise. For such cases and for achieving a faster rate of 
convergence, the above procedure may be modified to obtain Newton’s second-order 
method, which employs the second derivative f ″(x) of the function in the computa-
tion of the root. If three terms are retained from the Taylor series given in Equation 
5.15, instead of the two used for the Newton–Raphson method, we obtain
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To avoid solving this quadratic equation for x2, one may substitute the approximation 
for (x2 – x1) from the Newton–Raphson method in the brackets above. The resulting 
linear equation may be solved to obtain the next approximation to the root. This 
method is often known as the modified Newton’s method. Therefore,
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This equation gives the general expression for iteration by this method as
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Newton’s second-order method, therefore, requires the value of the second deriv-
ative of the function. Similarly, higher-order modifications of the conventional 
Newton’s method may be derived for better convergence characteristics. However, 
the applicability of the method is limited by the computational difficulty in obtaining 
the derivatives. If they are obtained easily from the given function f(x), the method is 
advantageous to use. However, if the derivatives are not easy to obtain, one may need 
to compute the finite difference approximations of the derivatives, leading to a con-
siderable increase in the computational effort. In most problems of engineering 
interest, the Newton–Raphson method is employed, instead of its higher-order modi-
fications, because of the programming and computational simplicity of the method.

5.5.3  Convergence

As mentioned earlier, the Newton–Raphson method may not converge. But, if it does 
converge, it does so very rapidly. It can be shown that for nonzero f ′(α), where α is a 
real root, convergence is guaranteed if the starting value x1 is close enough to α 
(Carnahan et al., 1969). Also, once the approximation xi to the root is close to the 
exact value α, the error after the next iteration, xi+1 – α, can be shown to be propor-
tional to the square of the error in the present step, xi – α. The relationship between 
the two is obtained as follows (Carnahan et al., 1969; Atkinson, 1989)
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where in the limit i → ∞, xi → α. Therefore, the error, which is assumed to be small 
near the root α, reduces very rapidly with the number of iterations. The resulting 
convergence is termed quadratic, or second order, and is more rapid than that for the 
other methods discussed earlier in this chapter. Most of these methods have a linear 
convergence, that is, the error after a given iteration is proportional to that obtained 
after the preceding iteration. Thus, they have first-order convergence. The order of 
convergence for the secant method can similarly be shown to be 1.62, implying that 
its convergence is faster than methods like search and bisection, but not as fast as 
Newton’s method.

Because of its high rate of convergence, applicability to a variety of equations, 
and simplicity in programming, the Newton–Raphson method is used extensively in 
engineering applications. It is also used as a correction scheme in the solution of 
ODEs, for satisfying the boundary conditions, and in the iterative solution of a 
system of nonlinear equations. These applications are considered in Chapters 6 
and 9. The modified Newton’s method is generally employed if the derivative f ′(α) 
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goes to zero or becomes very small in the vicinity of the root. The following exam-
ples illustrate the use of these methods.

Example 5.4

The water mass flow rate w, in kg/s, in a heating equipment that transfers energy 
from condensing steam to water, is to be obtained from energy balance consider-
ations. If 250 kW of thermal energy are to be exchanged between the two fluids, 
the equation for the conservation of energy is given as
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Find the root of this equation by the Newton–Raphson method. The flow rate is 
known to be less than 5 kg/s.

SOLUTION

It is evident from the above outline of the physical problem under consideration 
that the root to be obtained is real and positive, being in the range 0 to 5 kg/s. The 
given equation may be written as
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where x is the unknown flow rate in kg/s. To apply the Newton–Raphson method, 
we need a starting guess for the unknown and the value of the derivative df/dx 
at each approximation to the root. Although the derivative may be obtained ana-
lytically in this case, there are several problems where the differentiation may be 
quite involved. In such cases, numerical differentiation may be employed, using 
finite-difference approximations of Chapter 4. Therefore, numerical differentiation 
is used here. The function f(x) is determined numerically at two values of x, which 
are close to each other and are represented by x and xN, with xN > x. Then the 
derivative of the function at x is approximated by
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Once the derivative f′(x) has been evaluated, we use Equation 5.16 to determine 
the next approximation to the root.

Appendix B.4 gives a MATLAB script m-file for the Newton–Raphson method. 
The difference between xN and x is taken arbitrarily as 0.001, considering the 
expected value of the root. A smaller value may be chosen for greater accuracy 
of the derivative. The initial guess for x is chosen as 0.1 kg/s. Various values of 
the convergence criterion EPS, as applied to the function f(x), are considered, 
and the results for EPS = 10−3 are shown in Figure 5.12. A rapid convergence to 
the root, which is obtained as 0.9987 kg/s, is observed. Convergence was found 
to occur if the starting value is taken in the range 0 to around 2.5, but divergence 
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of the scheme occurred at higher values. Therefore, a statement for terminat-
ing the computation is included in the program if the approximation to the root 
becomes very large, this being specified by its numerical value becoming greater 
than 1/EPS. If the iterations diverge, a new starting value is chosen and the compu-
tational scheme repeated. It was found that a smaller value of EPS gave essentially 
the same flow rate. A Fortran program is given in Appendix C.4 for comparison 
and it is seen that the logic is very similar in the two cases and may be used for 
other languages, such as C+ +, as well.

If the derivative can easily be obtained analytically, the scheme may be modi-
fied to evaluate the derivative directly, instead of using the numerical differentiation 
procedure given here. For instance, if the equation to be solved is exp(x) – x2 = 0, 
the derivative f’(x) = exp(x) – 2x and thus the finite-difference approximation is not 
needed and the calculated value of f’(x) for each iteration may be obtained from 
the preceding expression.

Example 5.5

Several fluid flow circumstances of interest in mechanical and civil engineering 
problems can be represented in terms of a complex variable x, known as the com-
plex potential. The complex potential x for a flow is governed by the polynomial 
equation

	 f x x x x x( ) = − + − + =4 3 24 7 6 2 0 	 (5.25)

Using the Newton–Raphson method, find the complex roots of this equation. The 
zeros of the polynomial represent certain locations of symmetry in the flow.

SOLUTION

The given polynomial equation is of fourth order and thus has four roots, which 
may be real or complex. The complex roots arise in conjugate pairs. A rough plot 
of the function f(x), shown in Figure 5.13, indicates the possibility of a multiple 
real root around x = 1, as confirmed later in Example 5.6. Therefore, a conjugate 
pair of complex roots is sought in the present problem. The mathematics for com-
plex variables available on the computer is employed, with the function f(x), the 

Enter the convergence parameter, eps = 0.001
EPS = 0.0010
Enter the initial guess, x(1) = 0.1
X = 0.1000  FUNCTION F(X) = –220.632656
X = 0.8529  FUNCTION F(X) = –28.191628
X = 0.9916  FUNCTION F(X) = –1.309440
X = 0.9987  FUNCTION F(X) = –0.002785
Iterations Converged
FLOW RATE X = 0.9987  FUNCTION F(X) = 0.000001

FIGURE 5.12  Numerical results by the Newton–Raphson method at EPS = 10−3 for the 
problem in Example 5.4.



Roots of Equations	 145

unknown x, the derivative, and the increment Δx, in x, for the next iteration being 
defined as complex. The derivative is obtained simply as
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The convergence criterion is applied to the magnitude of the function, given by 

u v2 2+ , where u and v are the real and imaginary parts of the function f(x). 
The real part represents the velocity potential, and the imaginary part the stream 
function which is related to the flow rate. The convergence criterion used ensures 
that, at convergence, the magnitudes of both of these are less than a given small 
quantity eps.

The MATLAB computer program given in Appendix B.4 may be used, with the 
definition of the appropriate function f(x) and the calculation of the derivative f ′(x) 
from Equation 5.26, for finding the complex roots of the given polynomial equa-
tion, Equation 5.25. If the starting value of x is taken as a complex number, such 
as 1.5 + 2.0i, where i = −1, the complex algebra in MATLAB is automatically 
employed. Equation 5.17 is then used to determine the next approximation to the 
root and the process is repeated until convergence is achieved. The results for the 
convergence parameter eps, which is printed as EPS here, of 10−3 are shown in 
Figure 5.14, indicating a complex root at (1 + i).

Therefore, the conjugate root is (1 – i). It must be noted that, depending on the 
initial guess, or starting value for the iteration, the scheme may diverge or con-
verge to another root. In this case, it could converge to the multiple real roots at 
x = 1.0, even if the initial guess is given as a complex number, or to the conjugate 
root (1 – i).

Again, the convergence to the root is quite rapid, although each iteration 
involves a larger computational effort as compared to that for real variables. The 
roots may also be found analytically in this case. The values are found to be identi-
cal to those obtained numerically. Similarly, the roots of the polynomial equation 
may simply be found by the following commands in MATLAB:

>> p = [1 −4 7 −6 2];
>> disp(roots(p);

1
0
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2
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2 x

FIGURE 5.13  A plot of the function f(x) versus x for the problem in Example 5.5.
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The results are printed as

1.0000 + 1.0000i
1.0000 − 1.0000i
1.0000 + 0.0000i
1.0000 − 0.0000i

indicating a multiple root at x = 1 and complex roots 1 + i and 1 – i.

Example 5.6

Find the real roots of the polynomial equation given in Equation 5.25 by the 
modified Newton’s method, and compare the convergence to the root with that 
obtained by the Newton–Raphson method.

SOLUTION

As seen from the rough plot of the given function, shown in Figure 5.13, a multiple 
root is expected in the neighborhood of x = 1. The second derivative of the func-
tion is obtained as
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An initial guess, say at x = 0.1, is taken. Then, the function and the first and sec-
ond derivatives are computed at this value of x. Equation 5.21 is then employed 
to obtain the next approximation to the root. The convergence parameter eps is 
applied to the function f(x) and is taken as 10−5, although only a small difference 
in the results was observed when eps was varied between 10−5 and about 10−3. 
The computer program given in Appendix B.4 for the Newton–Raphson method 
may be easily modified for applying the modified Newton’s method. The numeri-
cal results are shown in Figure 5.15. As mentioned earlier, the analytical solution 
yields a multiple root at x = 1, and the computed value is obtained as 0.998419. 

EPS = 0.0010
X 	 = 1.5000 + 2.0000i
X 	 = 1.3546 + 1.5644i
X 	 = 1.2366 + 1.2623i
X 	 = 1.1334 + 1.0732i
X 	 = 1.0427 + 0.9904i
X 	 = 0.9986 + 0.9952i
X 	 = 1.0000 + 1.0001i
THE SOLUTION IS X = 1.0000 + 1.0001i

FIGURE 5.14  The numerical results obtained at EPS = 10−3 for finding the complex roots of 
the polynomial equation of Example 5.5 by the Newton–Raphson method.
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Because the plot of the function is tangent to the x-axis at this value of x, both f(x) 
and f′(x) go to zero at the root, resulting in a slower convergence as compared to 
the case where the function crosses the x-axis.

The numerical results obtained by the application of the Newton–Raphson 
method to this problem are also shown in Figure 5.14. The values of the root obtained 
in the two cases are quite close, but the convergence for the Newton–Raphson 
method is much slower. The retention of the additional term, involving a nonzero 
f″(x), in the modified Newton’s method accelerates the convergence. Therefore, 
for multiple roots, arising due to the plot of the function f(x) being tangential to the 
x-axis, the modified Newton’s method gives a faster convergence to the root.

5.6  SUCCESSIVE SUBSTITUTION METHOD

The successive substitution, or fixed point, method is an important, but simple, 
approach to determine the roots of an equation. Any type of equation, such as poly-
nomial or transcendental, can be considered and the algorithm is quite straight
forward. However, the scheme may not converge and various strategies are often 

MODIFIED NEWTON’S METHOD
EPS	 =	 0.000010
X	 =	 0.100000	 FUNCTION	=	1.466100
X	 =	 0.606555	 FUNCTION	=	0.176761
X	 =	 0.863423	 FUNCTION	=	0.019002
X	 =	 0.954440	 FUNCTION	=	0.002081
X	 =	 0.984829	 FUNCTION	=	0.000231
X	 =	 0.994977	 FUNCTION	=	0.000026
X	 =	 0.996419	 FUNCTION	=	0.000003
THE SOLUTION IS X = 0.998419	 FUNCTION	=	0.000003

NEWTON-RAPHSON METHOD

EPS	 =	 0.000010
X	 =	 0.100000	 FUNCTION	=	1.466100
X	 =	 0.410876	 FUNCTION	=	0.467519
X	 =	 0.645094	 FUNCTION	=	0.141824
X	 =	 0.604693	 FUNCTION	=	0.039600
X	 =	 0.898886	 FUNCTION	=	0.010329
X	 =	 0.948940	 FUNCTION	=	0.002614
X	 =	 0.974405	 FUNCTION	=	0.000656
X	 =	 0.987205	 FUNCTION	=	0.000165
X	 =	 0.993650	 FUNCTION	=	0.000040
X	 =	 0.996804	 FUNCTION	=	0.000010
X	 =	 0.998446	 FUNCTION	=	0.000003
THE SOLUTION IS X = 0.998446	 FUNCTION	=	0.000003

FIGURE 5.15  The numerical results for Example 5.6 from the modified Newton’s method 
and the Newton–Raphson method.
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employed to obtain convergence. In this method, the equation f(x) = 0 is rewritten to 
obtain an equation for the independent variable x as

	 x g x= ( ) 	 (5.28)

so that α = g(α) if f(α) = 0, where α is a root of the original equation. Thus, if x1 is 
an initial approximation to a root, the successive approximations to the root may be 
obtained from the recursion relation

	 x g xi i+ =1 ( ) 	 (5.29)

Therefore, a successive substitution of the approximation xi to a root into the func-
tion g(x) yields a sequence of iterations that may converge to the root. The equation 
x = g(x) can be obtained from the original equation f(x) = 0 in an unlimited number of 
ways. In many cases, the equation may contain a linear expression in x. Consider, for 
instance, f(x) = x4 – 6.5x3 + 7x2 – 11.5x + 3 = 0. Then the equation for the successive 
substitution method may be obtained simply by isolating the linear expression to give 
x = g(x) = (x4 – 6.5x3 + 7x2 + 3)/11.5. Similarly, we may rewrite the equation as x = g(x) 
= (6.5x3 – 7x2 + 11.5x – 3)1/4. Convergence is often sensitive to the choice of g(x) and 
may not occur for a chosen form of the function. In  the preceding equation, for 
instance, the first formulation is appropriate if the root is less than 1.0, and the second 
formulation is better if the root is larger than 1.0, as seen in Example 5.7.

In order to modify the convergence characteristics of the method, we can also 
employ the following recursion equation:

	 x x g xi i i+ = − +1 1( ) ( )β β 	 (5.30)

where β is a constant and may be chosen to improve convergence. This equation is 
obtained from the consideration that if α = g(α), then α also satisfies the equation 
α = (1 – β)α + βg(α). The choices for g(x) and β are dependent on the behavior of the 
function f(x). Because of the arbitrariness in the choice of g(x) and the usual strong 
dependence of convergence on the function g(x), the method is not used as frequently 
for root solving as other methods like Newton–Raphson. However, in many practical 
circumstances, the method is employed for the solution of simultaneous, nonlinear 
algebraic equations governing the performance of engineering systems. The succes-
sive substitution method then provides a relatively simple computational technique 
for obtaining the values of the physical variables that satisfy the given system of 
equations, as discussed later in Chapter 6.

It can be shown that the successive substitution method will converge if for 
|x – α| < |x1 – α|, the function of g(x) possesses a derivative g′(x) such that |g′(x)| < 1. 
Here, x1 is the initial approximation to the root. This condition implies that the 
magnitude of the derivative is less than 1.0 in the computational region. When xi is 
close to the root α, the next approximation xi+1 can be shown to be given by the 
approximate relation

	 x g xi i+ − ≅ −1 α ʹ α α( )( ) 	 (5.31)
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Therefore, if |g′(α)| < 1, the method converges to the root in a region near the root. 
The derivative g′(α) is often termed the asymptotic convergence factor. The Newton–
Raphson method, discussed in Section 5.5.1, may also be considered in terms of the 
successive substitution method to obtain the convergence characteristics, as outlined 
by Carnahan et al. (1969).

The major problem with the successive substitution method is the frequent diver-
gence of the iteration for a given choice of the function g(α). The condition for con-
vergence given by Equation 5.31, |g′(x)| < 1, can sometimes be employed in the 
formulation of the function g(x), as indicated for the polynomial equation considered 
earlier. Frequently, convergence occurs over a very narrow range of the starting 
value, and one may need to try several values before the iteration converges. The 
method is very easy to program, and, as seen from Equation 5.31, a linear conver-
gence is obtained when xi is close to the root. The following example illustrates the 
use of the successive substitution method for finding the roots of an algebraic equa-
tion and also demonstrates the convergence characteristics of the method.

Example 5.7

The gas flow rate R, in m3/s, through a duct in a chemical reactor due to a fan is 
given in terms of the pressure P, in N/m2, by the equation

	 R P= − × ×−15 75 10 6 2
	 (5.32)

where

	 P R= +80 10 5 5 3. /
	 (5.33)

Employing the successive substitution method, find the gas flow rate at which the 
system operates.

SOLUTION

The problem involves finding the roots of the equation

	 R R= − × × +−15 75 10 80 10 56 5 3 2( . )/
	 (5.34)

Both the pressure P and the flow rate R are real and positive quantities. It is also 
obvious from Equation 5.32 that R must be less than 15 m3/s, since P is zero if 
R = 15 m3/s and imaginary if R is larger than this value. Thus, R lies between 0 and 
15 m3/s, the two extreme values being excluded, since nonzero values of R and P 
are expected.

Equation 5.34 is already in the form of Equation 5.28, and the successive sub-
stitution method may be applied to this equation. However, it is found that the 
method does not converge, mainly because of the large exponent of R on the 
right-hand side which makes even a small error in the numerical solution grow 
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from one iteration to the next. In fact, |g′(α)|, defined in Equation 5.31, is found to 
be larger than 1.0 for R larger than about 3.5. Consequently, the problem may be 
reformulated in terms of a smaller exponent of R as

	
R

P
P

R
=

−⎛
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⎜
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⎟ =

−
×

⎛

⎝
⎜

⎞

⎠
⎟−

80
10 5

15
75 10

3 5

6

1 2

.

/ /

where 
	

(5.35)

This gives the equation for R as
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(5.36)

The successive substitution method is now applied to this formulation of the 
problem. Since 0 < R < 15, the minimum and maximum values of the unknown 
may be suitably specified. A simple MATLAB program may be written for this 
problem as given in Appendix B.5. Here, z represents the function g(x) and the 
absolute value of (z – x) is used with a specified convergence parameter conv to 
check for convergence. A fixed number of iterations are specified. A condition 
for divergence may also be used for termination of the iterations if the scheme 
does not converge. Figure 5.16 shows the numerical results obtained from such 
a program for two starting values, 0.5 and 1.0, of the flow rate, denoted by X, for 
convergence parameter conv, denoted by CONV, of 10−3 and 10−4.

The flow rate is computed as 6.732 m3/s, this value being only slightly changed 
by a variation in the convergence parameter, CONV. A larger number of iterations 
are needed at the smaller value of CONV, as expected, and the starting value has 
a negligible effect on the converged solution. As shown by this example, conver-
gence may often be achieved in successive substitution by rewriting the algebraic 
equation in a different way, if the method diverges when applied to the given 
equation. It can be verified that |g′(α)| is indeed less than 1.0 near the root for the 
formulation given in Equation 5.36.

5.7  OTHER METHODS�

So far, we have discussed many important methods for root solving and have consid-
ered their applicability, limitations, convenience, and convergence characteristics. 
There are several other methods that are available for finding the roots of certain 
types of equations and that are sometimes preferred due to superior convergence, ease 
in programming or wider range of applicability. Some of these methods are based on 
the techniques and algorithms for the methods discussed earlier and try to improve 
the earlier methods. Others employ different approaches to root solving. Some of 
these methods are presented in this section.
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5.7.1  Müller’s Method

This method is based on the secant method, which employs the intersection of a line 
through two points on the graph of f(x) with the x-axis to approximate the root for the 
next iteration. Müller’s method uses three points, instead of two, obtains the parabola 
through these three points, and takes the intersection with the x-axis as the next 
approximation, as shown in Figure 5.17. If the three initial function values are f0, f1, 
and f2 corresponding to the x values of x0, x1, and x2, the parabola going through these 
points is determined and its intersection with the x-axis is obtained by solving the 
quadratic equation ax2 + bx + c = 0. Using the alternative form of the solution, 
we have

	
z

c

b b ac
=

−

± +

2

42
	

(5.37)

X = 0.50  CONV = 0.0010	 X = 1.00  CONV = 0.0010
X = 0.5000     Z	= 8.3339	 X = 1.0000     Z = 8.2271
X = 8.3339     Z	= 6.1733	 X = 8.2271     Z = 6.2136
X = 6.1733     Z	= 6.9075	 X = 6.2136     Z = 6.8951
X = 6.9075     Z	= 6.6752	 X = 6.8951     Z = 6.6792
X = 6.6752     Z	= 6.7504	 X = 6.6792     Z = 6.7491
X = 6.7504     Z	= 6.7262	 X = 6.7491     Z = 6.7266
X = 6.7262     Z	= 6.7340	 X = 6.7266     Z = 6.7338
X = 6.7340     Z	= 6.7315	 X = 6.7338     Z = 6.7315
X = 6.7315     Z	= 6.7323	 X = 6.7315     Z = 6.7323
THE REQUIRED ROOT IS X = 6.7315 	 THE REQUIRED ROOT IS X = 6.7315
X = 0.50  CONV = 0.0001	 X = 1.00  CONV = 0.0001
X = 0.5000     Z	= 8.3339	 X = 1.0000     Z = 8.2271
X = 8.3339     Z	= 6.1733	 X = 8.2271     Z = 6.2136
X = 6.1733     Z	= 6.9075	 X = 6.2136     Z = 6.8951
X = 6.9075     Z	= 6.6752	 X = 6.8951     Z = 6.6792
X = 6.6752     Z	= 6.7504	 X = 6.6792     Z = 6.7491
X = 6.7504     Z	= 6.7262	 X = 6.7491     Z = 6.7266
X = 6.7262     Z	= 6.7340	 X = 6.7266     Z = 6.7338
X = 6.7340     Z	= 6.7315	 X = 6.7338     Z = 6.7315
X = 6.7315     Z	= 6.7323	 X = 6.7315     Z = 6.7323
X = 6.7323     Z	= 6.7320	 X = 6.7323     Z = 6.7320
X = 6.7320     Z	= 6.7321	 X = 6.7320     Z = 6.7321
THE REQUIRED ROOT IS X = 6.7320 	 THE REQUIRED ROOT IS X = 6.7320

FIGURE 5.16  Computed results for the problem in Example 5.7 by the successive substitu-
tion method, for two values of the convergence parameter and two initial estimates of the 
unknown root.
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The derivation is simplified by assuming x = x2 to be the best approximation to the 
root and changing the independent variable to x – x2. Then, the next approximation 
to the root x3 is obtained as

	 x x z3 2= + 	 (5.39)

To ensure the stability of the method, the root with the smallest absolute value, that 
is, the one closest to x2 is chosen. Therefore, for b > 0, the positive sign is used, 
otherwise the negative sign is taken. The iterative process is continued till an appro-
priate convergence criterion applied to the root or the function is satisfied. Note that 
a particular approximation during the iteration can be complex, even if the previous 
values were all real. This is in contrast with other root-finding algorithms like the 
secant or Newton’s method, whose iterates will remain real if one starts with real 
numbers. Having complex iterates can be an advantage if one is looking for complex 
roots or a disadvantage if it is known that all roots are real.

The order of convergence of Müller’s method can be shown to be approximately 
1.84. This can be compared with 1.62 for the secant method and 2 for Newton’s 
method. So, the secant method makes less progress per iteration than Müller’s 
method and Newton’s method makes more progress. However, three starting approx-
imations to the root are needed to initiate the iterative scheme. After each iteration, 
the latest three approximations may be employed to generate the next value. Thus, 

y = f (x)

x0

x0, f0

x1, f1

x2, f2

x2 x3x1

FIGURE 5.17  A sketch showing the starting approximations x0, x1, and x2 to the root and the 
application of Müller’s method.
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the algorithm is quite similar to that for the secant method and the programs given 
earlier may be modified to obtain one for Müller’s method.

5.7.2  Iterative Factorization of Polynomials

Analytically, the roots of a polynomial equation can often be obtained by factoriza-
tion and equating each factor to zero. A similar approach may be employed for root 
solving by numerical methods. Several methods are based on the iterative factoriza-
tion of the given polynomial and can be used to obtain factors of arbitrary degree. 
Generally, linear or quadratic factors are determined so that the roots may be 
obtained directly from these factors. Let us first consider Bairstow’s method, which 
iteratively determines quadratic factors of the form x2 + bx + c, and so the roots are 
given by Equation 5.3 as

	
α α1 2

2 4
2

, =
− ± −b b c

The polynomial given in Equation 5.2 can be written as

	 f x x bx c d x d x d x d x dn n n
n n( ) ( )( )= + + + + + + + +− − −
− −

2
0

2
1

3
2

4
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		  (5.40)

where the d’s are functions of b and c and are obtained from a comparison with the 
original polynomial of Equation 5.2 as
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(5.41)

and the remainder is (x + b)dn–1 + dn.
To extract the quadratic factor from the polynomial, we must reduce the remainder 

to zero, within a specified error tolerance. We do so by iteratively reducing dn−1 and dn 
to zero. Since both of these are functions of b and c, we may use Taylor’s expansion 
for a function of two variables. If only the linear terms are retained, we obtain
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(5.42)
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where Δb and Δc are increments in b and c. We set the equations equal to zero in 
order to obtain the next approximation to b and c so that dn and dn−1 become zero.

The set of equations for the d’s may be differentiated to obtain a similar sequence 
of equations for their partial derivatives. The corresponding expressions are as 
follows:
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which give

	 e d e b e c i ni i i i= − − − = −− −1 2 2 3 1for , , ,( )…

Also,

	 e e b d0 1 11= − = −and

Therefore, the partial derivatives for the remainder terms may be obtained. From 
Equations 5.42,
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Solving these simultaneous linear equations, we find that Δb and Δc are given by
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To apply Bairstow’s method, initial guessed values of b and c are taken and the 
corresponding d’s and e’s are determined. The increments Δb and Δc are obtained for 
the next approximation of b and c. The recursion formula is

	 b b b c c ci i i i+ += + Δ = + Δ1 1and 	 (5.46)
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where i is the iteration number. The iterative process for the determination of b and c 
is continued until |Δb| and |Δc| are less than a specified convergence criterion. The 
quadratic factor thus obtained yields two roots of the equation. The reduced poly-
nomial of degree (n – 2) is next considered to obtain the remaining roots. The algo-
rithm is shown in terms of a flow chart in Figure 5.18.

Bairstow’s method can be used for finding real, equal, or complex roots of a poly-
nomial. Although the analysis appears to be complicated, the method may be pro-
grammed for the computer without too much difficulty. However, convergence cannot 
be guaranteed for an arbitrary choice of initial values. If there is some prior informa-
tion available on the roots or on the coefficients of a factor, the method may be used 
very effectively to improve the accuracy of the roots. Since divergence may occur with 
an arbitrary choice of the initial values of b and c, one may restrict the total number of 
iterations in the program and choose the starting values again if divergence occurs.

Several other methods have been developed based on the extraction of factors 
from polynomials. Synthetic division by a linear or quadratic factor allows one to 
obtain equations for the coefficients of the reduced polynomial and for the remain-
der, as discussed above. Bairstow’s method uses the Newton–Raphson method for 
the solution of simultaneous nonlinear equations to iteratively reduce the remainder 
to zero (see Equation 5.42). If the successive substitution method for simultaneous 
nonlinear equations is employed, instead of the Newton–Raphson method, to reduce 
the remainder to zero, the procedure is known as Lin’s method. This method 
provides a simpler, although less efficient, iterative procedure for obtaining the qua-
dratic factors of a polynomial of degree greater than two. The extraction of linear 
factors from the polynomial may also be carried out by using synthetic division. 
However, quadratic factors are the most desirable ones since they allow the direct 
determination of real and complex roots. The methods based on the iterative factor-
ization of polynomials also have the attractive feature of obtaining all the real, 
multiple, and complex roots. Therefore, despite their complexity, they are frequently 
used, particularly for problems of engineering interest in which the nature and mag-
nitude of the roots are not known. The following example illustrates the use of 
Bairstow’s method.

Example 5.8

Use Bairstow’s method for the iterative factorization of polynomials to find a qua-
dratic factor and the roots of the characteristic equation given as

	 λ λ λ λ4 3 210 35 50 24 0− + − + = 	 (5.47)

SOLUTION

The quadratic factor to be determined is taken as x2 + bx + c, where b and c are to 
be obtained from Bairstow’s method. Equations 5.41 and 5.43 give the coefficients 
of the remaining polynomial and the derivatives of these coefficients with respect 
to b and c. The iterative procedure given by Equations 5.45 and 5.46 is employed 
to converge to the desired values of the constants b and c, using a convergence 
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Start

Input data
coefficients ai

and ε

Store values
b1 = b; c1 = c

Stop

Enter initial
guesses for b, c

Output 
all factors and roots

Compute increments
Δb and Δc

Input calculated
coefficients of

remaining
polynomial

Calculate new
values for b, c

Calculate d’s
and the derivatives

e’s

Store calculated b, c
Determine coefficients

of remaining polynomial

Yes

No
Are

|b–b1| < ε
and

|c–c1| < ε
?

Determine roots
from second-
order factors

Yes

No
Is

remaining
polynomial

second
order?

FIGURE 5.18  Flow chart for the solution of a polynomial equation by Bairstow’s method.
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criterion of 10−3. A computer program may easily be written for this problem, 
using the earlier program for Newton’s method. The d’s and e’s are obtained and 
employed to determine the increments in b and c for the next iteration. The start-
ing values are taken as b = –2 and c = 1. The iterative process converges to b = –3 
and c = +2, which gives the quadratic factor as x2 – 3x + 2. The remaining poly-
nomial is x2 – 7x + 12; see Figure 5.19.

Therefore, the roots of the given equation, Equation 5.47, may be obtained by 
solving the two quadratic equations

THE INITIAL GUESS: B = –2.0000	 C = 1.0000
	 B = –2.776470	 C = 1.352941
	 B = –3.162417	 C = 1.922668
	 B = –2.825542	 C = 1.902719
	 B = –2.969001	 C = 1.973022
	 B = –2.999051	 C = 1.998892
	 B = –3.000000	 C = 1.999998
	 B = –3.000003	 C = 2.000003
THE QUADRATIC FACTOR:B = –3.000003	 C = 2.000003
REMAINING POLYNOMIAL:D1 = –7.000000	 D2 = 12.000000

THE INITIAL GUESS: B = 0.0000	 C = 5.0000
	 B = –1.120000	 C = 2.200001
	 B = –2.010739	 C = 1.453996
	 B = –2.633198	 C = 1.577660
	 B = –2.957543	 C = 1.885094
	 B = –3.005317	 C = 1.999321
	 B = –2.999916	 C = 1.999945
	 B = –2.999983	 C = 1.999984
THE QUADRATIC FACTOR:B = –2.999983	 C = 1.999984
REMAINING POLYNOMIAL:D1 = –7.000084	 D2 = 12.000400

THE INITIAL GUESS: B = 2.0000	 C = –2.0000
	 B = –1.967654	 C = –13.789750
	 B = –4.887068	 C = –14.755200
	 B = –4.943721	 C = –4.912420
	 B = –4.972162	 C = –0.009018
	 B = –4.986652	 C = 2.395084
	 B = –4.994331	 C = 3.505467
	 B = –4.998444	 C = 3.918154
	 B = –4.999864	 C = 3.996880
	 B = –4.999969	 C = 3.999967
	 B = –4.999969	 C = 3.999973
THE QUADRATIC FACTOR:B = –4.999969	 C = 3.999973
REMAINING POLYNOMIAL:D1 = –5.000042	 D2 = 6.000034

FIGURE 5.19  The numerical results for Example 5.8, employing three different starting 
values.
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	 x x x x2 23 2 0 7 12 0− + = − + =and 	 (5.48)

The four roots of the given equation are found to be 4, 3, 2, and 1. It is evident 
that the quadratic factor derived from the given polynomial equation will depend 
on the starting values of b and c. Six different quadratic factors are possible, since 
the first root may be combined with any one of the three remaining ones, the 
second root with two remaining ones, and the third with the fourth one, to yield a 
quadratic factor each. The convergence of the method is quite rapid, as shown in 
Figure 5.19. The convergence criterion must also be varied to ensure a negligible 
dependence of the results on the value chosen. Results are also shown for different 
sets of starting values and convergence to a different quadratic factor is observed 
in the last case.

5.7.3  Graeffe’s Method

Graeffe’s root-squaring method is suitable for polynomials and can be used to deter-
mine both real and complex roots, as well as multiple roots. It is based on obtaining 
a new polynomial, which is of the same degree as the original polynomial and whose 
roots are some large, even power of the roots of the original equation. The roots of 
the derived equation are first obtained, and these then yield the required roots of the 
given equation.

A given polynomial equation may be written as

	 f x x x x n( ) ( )( ) ( )= − − −α α α1 2 � 	 (5.49)

where α1, α2, α3, . . ., αn are the roots. A new function F(x) may be defined as

	 F x f x f xn( ) ( ) ( ) ( )= − −1 	 (5.50)

which gives

	 F x x x x n( ) ( )( ) ( )= − − −2
1
2 2

2
2 2 2α α α� 	 (5.51)

Therefore, F(x) contains only even powers of x, and a function f2(x) may be defined as

	 f x F x x x x n2 1
2

2
2 2( ) ( ) ( )( ) ( )= = − − −α α α� 	 (5.52)

Therefore, the roots of the derived equation f2(x) = 0 are squares of the roots of the 
original equation. The process may be repeated to obtain a sequence of polynomials 
f4, f6, f8, . . ., so that a derived polynomial fm(x) is obtained, where

	 f x x x xm
m m

n
m( ) ( )( ) ( )= − − − =α α α1 2 0� 	 (5.53)

The roots of the above equation are a large, even power m of the roots of the original 
equation. If |α1| > |α2| > . . . |αn|, then the ratios of the roots of the derived equation, 
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| |,| |, ,| |,α α α α α α2 1 3 2 1
m m m m

n
m

n
m… −  may be made as small as desired by making m large. 

The derived polynomial fm(x) may be written as follows:

	

f x x x xm
n m m n m m m m m m n

m

( ) ( ) ( )

(

= − + + + + +

−

− −α α α α α α α α

α α
1 2

1
1 2 1 3 2 3

2

1

� �

22 3 1 2 4
3

1 21m m m m m n n m m
n
mxα α α α α α α+ + + + −−� � …) ( ) 	 (5.54a)

or

	 f x x A x A x Am
n n n n

n( ) ( )= − + + + −− −
1

1
2

2 1� 	 (5.54b)

Then the magnitude of the roots may be approximated by

	
α α α1 1 2

2

1 1

m m
n
m n

n

A
A
A

A
A

≅ ≅ ≅
−

( ), , ,…
	

(5.55)

if only the leading, or dominant, terms within the parentheses in Equation 5.54a are 
retained. The values of the roots α1, α2, . . ., αn of the original equation may be 
obtained by taking the mth root of the above equations, that is,
α α1 1

1
2 2 1

1≅ ± ≅ ±A A Am m/ /, ( / ) , and so on. The signs of the roots are not determined 
and must be obtained by substitution in the original equation or from any previous 
information on the roots, based on the physical nature of the problem.

If the original polynomial equation has real and equal roots, the regular relation-
ship between the coefficients of successive polynomials, as mentioned above, is not 
obtained. Since the method does not determine the sign of the root, equal roots, in 
Graeffe’s method, are those that have the same absolute value. If the roots αi and 
αi+1 are taken as equal, it can be shown from the above analysis that the coefficient 
Ai of the polynomial fm(x) is essentially equal to half the square of the correspond-
ing coefficient in the polynomial fm–1(x) for large m. The other coefficients are 
squares of the corresponding preceding values if the remaining roots are real and 
distinct. If three equal roots are present, say, αi, αi+1, and αi+2, the coefficients Ai and 
Ai+1 become one-third of the corresponding preceding values. The corresponding 
relationship between the roots and the coefficients of the polynomial may be 
obtained from Equation 5.54.

Graeffe’s method may also be used for complex roots, which appear in conjugate 
pairs. The conjugate pair may be taken as (u + iv) and (u + iv), and the above analysis 
may be applied to such roots. It can be shown that, at large m, the real and distinct 
roots give rise to coefficients of the polynomial fm(x) that are essentially squares of 
the corresponding coefficients of fm−1(x). The presence of complex roots is indicated 
by a fluctuation in the sign of a coefficient, since a trigonometric function cos mθ, 
where m is a constant and the complex roots are written as Reiθ and Re−iθ, appears in 
the relationships. If the sign of the coefficient Ai fluctuates, the roots αi and αi+1 are a 
conjugate pair of complex roots. The magnitude R of the roots is determined from 
the coefficients Ai–1 and Ai+1 as before. If more than one conjugate pair of complex 
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roots is present, correspondingly more coefficients in the polynomial fm(x) fluctuate 
in sign.

Therefore, Graeffe’s method provides a means of determining all the roots of a 
polynomial equation, whether they are real, equal, or complex. However, despite 
this attractive feature of the method, it has not become very popular mainly because 
of the need to make decisions that considerably complicate the programming. The 
round-off error introduced at any stage of the process accumulates in the computa-
tion and affects the accuracy of the roots obtained. Also, the coefficients frequently 
exceed the floating-point range of the computer, particularly if there are two roots 
which are close to each other and which, therefore, require a large value of m for 
the separation of the roots. However, this last problem may be avoided by the scal-
ing of the polynomial, which involves dividing the roots by a scale factor. The 
roots of the modified equation yield the scaled roots, from which the desired roots 
are obtained.

Probably the best procedure for employing Graeffe’s method is to work interac-
tively with the computer. Such an interactive program would allow one to make 
decisions as the computation proceeds and make the necessary changes in the 
process. Although Graeffe’s method is not widely used, it does have the attractive 
aspect of evaluating all the roots of a polynomial equation. The method is dis-
cussed here since it indicates a different approach, as compared to the methods 
outlined earlier in this chapter, to root solving and may form the basis for solving 
certain complicated equations of engineering interest that cannot be solved by 
other methods. For further details on the method and examples illustrating its use, 
see Jaluria (1996).

5.7.4  Additional Methods

There are obviously many more methods available in the literature for root solving. 
Many of these are based on considerations and techniques quite similar to those 
discussed here. Among those that may be mentioned are Brent’s method, Laguerre’s 
method, Householder’s method, Horner’s method, Bernoulli’s method, and Ward’s 
method.

Brent’s method is a combination of the bisection method, the secant method and 
inverse quadratic interpolation. Before each iteration, the method decides which of 
these three is likely to perform the best, and proceeds by doing a step according to 
that method. This gives a robust and fast method, which, despite being complicated, 
enjoys considerable popularity. Laguerre’s method uses second-order derivatives and 
complex algebra to obtain cubic convergence for simple roots whenever the initial 
guess x0 is close enough to the root x. For a multiple root, the convergence is only 
linear. A major advantage of this method is that it is almost guaranteed to converge 
to a root of the polynomial. It may even converge to a complex root of the polyno-
mial. Since failure to converge is extremely rare, this method is a good candidate for 
a general purpose polynomial root finding algorithm. The algorithm is fairly simple 
to use and the speed at which the method converges implies that only a few iterations 
are generally needed to get high accuracy. However, theoretical understanding of the 
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algorithm is rather limited and this has made the method not as popular as one may 
expect.

Householder’s methods lead to a class of methods used for functions of one 
real variable with continuous derivatives up to some order m + 1, where m will 
then be the order of the Householder’s method, as well as the rate of convergence. 
The Householder’s method of order 1 is just Newton’s method and the method of 
order 2 yields another method, known as Halley’s method, which has a cubic 
order of convergence but involves more operations per iteration. Horner’s method 
can be used for finding the roots of a polynomial equation. It employs an iterative 
sequence of translations to place the root at the origin. The sum of these transla-
tions is the root of the original equation. Then, synthetic division is employed to 
reduce the equation by this root and search for the next root is carried out. The 
method becomes quite complicated if the degree of the polynomial equation is 
high or if complex roots arise. Similarly, Bernoulli’s method is applicable for 
polynomial algebraic equations and obtains the real root with the largest absolute 
value.

An important class of methods has been developed using minimization principles. 
Ward’s method uses these principles to find the roots of a complex polynomial equa-
tion f(z) = 0, where z is a complex variable and

	 f z u x y v x y z x y( ) ( , ) ( , )= + = +i and i 	 (5.56)

Ward’s method seeks to minimize the function p(x, y), where

	
p x y u x y v x y( , ) ( , ) ( , )= +

	 (5.57)

The method is iterative, and at each step the value of p(x, y) is compared with the 
values at (x + Δx, y), (x – Δx, y), (x, y + Δy), and (x, y – Δy), where Δx and Δy are 
increments in x and y. If a smaller value of P(x, y) is found at any of these four 
points, that point becomes the new (x, y) location. If the four points do not give a 
smaller value of p, Δx, and Δy may be reduced until they do. Otherwise, the mini-
mum has been reached. Therefore, the method simply moves in the direction of 
decreasing p(x, y). The root is obtained when u and v become zero, or smaller than 
a chosen convergence parameter. The search for a minimum value of p is, therefore, 
expected to lead to the root. However, convergence does not necessarily occur. 
Similarly, other functions, such as (u2 + v2), may be minimized. Other minimiza-
tion techniques are also available from mathematical procedures that have been 
developed for the optimization of systems. Search methods are frequently used in 
optimization, the above procedure being generally termed as lattice search 
(Stoecker, 1989; Jaluria, 2008). In engineering problems, one may encounter equa-
tions that are so complicated that the various methods discussed in this chapter may 
not be convenient to use. In such cases, one may resort to minimization methods to 
obtain the desired roots.
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5.8  SUMMARY

In this chapter, several methods for finding the roots of a nonlinear algebraic equa-
tion, including polynomial and transcendental equations, have been presented. The 
discussion considers some of the most important and widely used methods, outlin-
ing their limitations and advantages. The selection of the method for solving a 
given problem depends on the nature of the equation and of the roots. The physical 
characteristics of the problem, if known, are useful in choosing the method and in 
determining the interval over which the roots are sought. The incremental search 
method may be used to yield the approximate nature of the function f(x) and the 
approximate location of the roots. Once this information has been obtained, one 
may switch to a method, such as the Newton–Raphson method, that converges 
more rapidly. In most problems of practical interest, prior information on the nature 
and location of roots is available. This information should be built into the com-
puter program to obtain rapid convergence to the roots and to reject unacceptable 
values. MATLAB is particularly convenient to use for polynomial equations since 
the available software can be directly used to obtain all the real and complex roots 
of the equations.

The convergence criterion, the convergence parameter ε and the initial guess must 
be varied to ensure that the results obtained are not significantly affected by the 
values chosen. Several of these considerations, related to the computational proce-
dure, were also discussed earlier in Chapter 2 and may be employed in developing 
the computer program. Some of the methods presented here can also be extended to 
the solution of simultaneous equations, as discussed in the next chapter. Further 
details on the various methods considered in this chapter may be obtained from the 
discussions given by Traub (1964), Ostrowski (1966), Carnahan et  al. (1969), 
Householder (1970), Brent (1973), and Atkinson (1989). Ralston and Rabinowitz 
(1978), Rice (1983), and Gerald and Wheatley (2003) may also be consulted for the 
mathematical background of some of the methods outlined here.

PROBLEMS

	 5.1.	� We wish to find the cube root of 17, that is, 171/3, by root solving. Set up 
the equation to be solved, and outline a method to compute the desired 
value.

	 5.2.	 For the following equation, find the first two positive roots, which 
represent the lowest frequencies of natural vibration of a mechanical 
system:

	 tan tanhx x=

		�  Use the search method to obtain an accuracy of order 10−3 on the 
roots.

	 5.3.	� The root of an algebraic equation is known to be between 0 and 
800 m/s. This root is to be determined to an accuracy of ±0.1 m/s by 
the bisection method. Derive Equation 5.9 and use it to determine the 
number of bisections needed to achieve this accuracy.
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	 5.4.	� The voltage x at a given junction in an electrical circuit is given by the 
first positive root of the equation

	 f x x x( ) log= + − =10
2 6 0

		  Employ the bisection method, following the determination of the 
interval containing the root by the search method, to obtain the volt-
age. Also, use the fzero function in MATLAB to obtain the solution 
and compare the result with that obtained earlier.

	 5.5.	 The root of the following equation is to be determined.

	
x

x
1

10
1 4

1 0− −
+

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ − =exp

		  Write a function-m file for the secant root solving method. Then, 
write a script m-file to use the secant function file to calculate the 
root. Using these script files, obtain the results for 5 values of the con-
vergence parameter delta (delta = 1.0, 0.1, 0.01, 0.001, and 0.0001).

	 5.6.	 The equation that governs the frequency of vibration of a cantilever 
beam is of the form

	 cos coshx x = −1

		  Use the search method to obtain the approximate locations of the first 
two positive roots of this equation. Then use the regula falsi method 
to converge to the roots.

	 5.7.	 If the derivative f ′(xi) in Equation 5.16 is replaced by its backward 
finite-difference approximation, Equation 4.18, obtain the resulting 
recursive formula, and compare it with that for the secant method.

	 5.8.	 The roots of the equation

	
tan x

B
x

=

		  where B is a constant, are needed in a series representation of the tem-
perature field in a conduction heat transfer problem. Use the search 
method to obtain the approximate values of the first three positive 
roots of this equation, and then use the Newton–Raphson method to 
obtain these more accurately. Consider two values, 1.0 and 2.0, of B. 
Also use the successive substitution method, and compare the results 
with those obtained by Newton’s method.

	 5.9.	 For the physical problem discussed in Example 5.1, take the values of 
Th, h, and k as 1500 K, 10 W/m2 K, and 50 W/mK. Using the Newton–
Raphson method, find the resulting surface temperature. The temper-
ature is to be determined to an accuracy of 0.01 K.

	 5.10.	 Explain what is meant by the statement that the Newton–Raphson 
method has second-order convergence. Obtain the general form of 
the corresponding convergence formulas for search, bisection, and 
successive substitution methods. Compare these with that for the 
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Newton–Raphson method, and discuss the resulting difference in con-
vergent rate.

	 5.11.	 Use the Newton–Raphson method for root solving to find the nth root 
of a number N, that is, xn = N, in order to derive the formula

	 x
x
n

n
N
xi

i

i
n+ = − +

⎡

⎣
⎢

⎤

⎦
⎥1 1

	 5.12.	 The temperature of an electrically heated wire is to be determined 
from its energy balance. If the energy input per unit surface area into 
the wire due to the electric current is 1000 W/m2, the resulting equa-
tion is obtained as

	 1000 0 5 5 67 10 300 10 3008 4 4= × × × − + × −−. . [ ( ) ] ( )T T

		  Determine the temperature T of the wire by employing the search 
method. Since the equation is a fourth-order polynomial equation, 
there are four roots. How would you choose the correct solution? Also, 
use the fzero function in MATLAB to obtain the root and compare it 
with that obtained earlier.

	 5.13.	 In a manufacturing process, a spherical piece of metal is subjected to 
radiative and convective heat transfer, resulting in the energy balance 
equation

	 f T T T( ) . . [( ) ] ( )= × × × − − × − =−0 6 5 67 10 850 40 350 08 4 4

		  Obtain a rough plot of the function f(T) versus T, and use the secant 
method to find the real root in the range 350 < T < 850. Also, use the 
roots function in MATLAB to obtain all the roots and compare the 
results with the root obtained earlier. Comment on the choice of the 
correct root.

	 5.14.	 The Planck distribution for the emission of radiation from a blackbody 
is given by

	

E
c

c T
=

( ) −⎡⎣ ⎤⎦

1
5

2 1λ λexp /

		  where E is termed the monochromatic emissive power, λ is the wave-
length of radiation, T is the temperature, and c1 and c2 are constants. 
We wish to find the value of λ at which E is a maximum. Therefore, 
the first positive real root of the equation

	
d
d
E
λ
= 0

		  is to be determined. Find this value and compare it with the result 
given in the literature as λmax = 2897.6/T, where λ is in μm and T is in 
K. Take the constants c1 and c2 as 3.741 × 108 and 1.439 × 104 in the 
appropriate units.
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	 5.15.	 In the turbulent flow of a fluid through a smooth pipe, the frictional 
force on the fluid is represented in terms of a friction factor f which is 
positive and less than 0.1. The equation for f is

	

1
2 0 81 2 10

1 2

f
f/

/log (Re ) .= −

		  where Re is a constant, termed the Reynolds number, which varies with 
the fluid properties, flow rate, and tube diameter. Obtain the approxi-
mate value of the friction factor by the search method, and then use the 
Newton–Raphson method to converge to the root for Re = 104 and 106.

	 5.16.	 If the fluid, in the physical circumstance of the above problem, flows 
through a rough pipe, whose roughness is given by a parameter ε/D, 
where ε is the physical size of the surface protrusions and D is the pipe 
diameter, the friction factor is given by

	

1
2

2 51
1 2 10 1 2f

D
f/ /log
.

Re
= − +

⎛
⎝⎜

⎞
⎠⎟

ε/
3.7

		  Obtain the friction factor f for ε/D = 10−4 at Re = 106 and also for 
ε/D = 4 × 10−4 at Re = 107, using the search method. Also, use the 
fzero function in MATLAB to obtain the root and compare the result 
with that obtained earlier.

	 5.17.	 The equation of state for a gas is given by the van der Waals 
equation

	
P

a
v

v b RT+
⎛
⎝⎜

⎞
⎠⎟

− =2 ( )

		  where P is the pressure, v is the specific volume, T is the temperature, 
R is the gas constant, and a, b are constants that depend on the gas. For 
P = 70 atm, T = 200 K, R = 0.08205 liter atm/mole K, a = 3.59, and b =  
0.0427, the specific volume is given in liters/mole. Find this value using 
the Newton–Raphson method, after obtaining the approximate value 
by the search method. Also, use the roots function in MATLAB to 
obtain the solution and compare the result with that obtained earlier.

	 5.18.	 Use the Successive Substitution method to determine the variable v 
from the equation

	

v
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	 5.19.	 Use Newton’s method or the Secant method to solve the equation

	 exp(x) – x2 = 0

	 5.20.	 Use Newton’s method to find the real roots of the equation in Example 
5.5, given as

	 x4 – 4x3 + 7x2 – 6x + 2 = 0
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		  Also, use the roots function in MATLAB to obtain the roots and com-
pare these with those obtained earlier.

	 5.21.	 Solve the following nonlinear system by Newton’s method

	 X3 + 3Y2 = 21

	 X2 + 2Y + 2 = 0

		  Try to solve these equations by the successive substitution method as 
well.

	 5.22.	 (a)	�Using the Newton’s method, solve the following equation for the 
value of x, which is known to be positive,

	 x5 = [10 (10 – x)0.5 – 8]3

		  (b) �Plot the appropriate function f(x) versus x to get an approximate 
value of the root.

		  (c) �Compare the solution and the convergence of the numerical scheme 
for starting guesses of 1 and 2.0 for the root.

		  (d) �Can the bisection method be used for this problem? Explain your 
answer.

	 5.23.	 Use any suitable method to obtain all the roots of the following poly-
nomial equations:

	

x x x x

x x x x

4 3 2

4 3 2

10 35 50 24 0

5 5 5 6 0

− + − + =

− + + − =

		  Also use the search method for the real roots. Compare the values 
obtained by the two methods. Then, employing the roots function in 
MATLAB, obtain the roots of these equations and compare the results 
with those obtained earlier.

	 5.24.	 Solve the problem discussed in Example 5.4 by the regula falsi and 
secant methods. Compare the results obtained and the iterations 
needed for convergence with those for the Newton–Raphson method.

	 5.25.	  Solve the problem considered in Example 5.7 by the Newton–Raphson 
method, and compare the value of the root and the convergence char-
acteristics with those discussed for the successive substitution method. 
Comment on the observed differences.

	 5.26.	 A cylindrical probe of diameter D is placed in a stream of air, and the 
energy transfer from it is measured as 100 W. If the energy balance 
equation is obtained as
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50 1000 466
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D D. +
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⎥ =π

		  Find the diameter D of the probe using the bisection method. Also 
write the equation as f(D) = 0, draw an approximate plot of f(D) versus 
D, and discuss the behavior of the function as D increases from zero 
to 0.01 m. Also, use the fzero function in MATLAB to obtain the root 
and compare it with that obtained earlier.
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	 5.27.	 A loan of $5000 is taken from a bank that charges a nominal annual 
interest rate i, compounded monthly. A payment of $200 is made each 
month, starting at the end of the first month, toward the loan. If it takes 
36 months to pay off the loan, the rate of interest i may be determined 
from the following equation, which is obtained by summing the pres-
ent worth of the monthly payments (see Example 2.2):

	

1 12 1

12
1 12

200 5000
36
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× =

i
i

i

/

/

		  Find this interest rate, by any method of your choice. An accuracy of 
10−3 on i is adequate.

	 5.28.	 A bond of $1000 yields 8% interest annually and has 7 years to 
maturity. It is sold for $500 due to the prevailing higher interest 
rate i. If the buyer achieves the current interest rate on his investment, 
the equation governing the transaction is obtained by equating the 
monetary value of the bond before and after the sale (Stoecker, 1989) 
as follows:

	
1000 1000 0 08

1 1
500 1

7
7+ × ×

+ −
= × +.

( )
( )

i
i

i

		  Find the prevailing interest rate i from this equation, using any suit-
able method.

	 5.29.	 A function y(x) is given as

	
y x

x x
x

( )
log sin ( )

=
⋅ 2 25/

		  where log represents the natural logarithm. Determine the maximum 
value of y for x > 1.5, using the search method.

	 5.30.	 Use the Newton–Raphson and the second-order Newton’s methods for 
finding the nonzero real roots of the equations

	

f x x

f x x

x

x
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= − − =

= + − =−

e

e

5 0

1 0

2

2

		  Compare the results and the rate of convergence obtained by the two 
methods. Obtain the roots for two values of ε, 10−3 and 10−5, where ε is 
the convergence criterion applied to the two functions represented by 
f(x), and comment on the difference, if any.

	 5.31.	 Find all the roots of the polynomial obtained in Example 5.1 by 
Bairstow’s method, and show that only one is acceptable because of 
the physical considerations of the problem.



168	 Computer Methods for Engineering with MATLAB® Applications

	 5.32.	 Using any suitable method, obtain the four roots corresponding to the 
polynomial in Problem 5.12. Again, show that three of them are not 
acceptable.

	 5.33.	 For the following polynomial equations, use Bairstow’s method to 
determine all the roots:

	

x x x x

x x x

4 3 2

5 4

8 22 24 9 0

5 16 80 0

− + − + =

− − + =

		  Also, obtain the roots by employing the MATLAB function roots and 
compare the results with those obtained earlier.

	 5.34.	 Use the search method to determine the approximate location of the 
real roots and the behavior of the polynomial functions in the preced-
ing problem. Once this information has been obtained, how would 
you choose the method for finding the real roots more accurately?

	 5.35.	 Use the Newton–Raphson method for finding the real roots, in the 
range 0 < x < 1.5, of the following polynomial equation, which repre-
sents the variation of the force on a vertical structure with distance x:

	 f x x x x x( ) = − + + − =4 3 23 3 2 0

		  Also use the modified Newton’s method for the problem and compare 
the convergence in the two cases. Obtain a rough plot of f(x) versus x 
to guide the choice of the starting value.

	 5.36.	 Using Bairstow’s method, find all the roots of the following polyno-
mial equations:

	

x x x x x

x x x x x

x

7 6 5 2

5 4 3 2

6

3 2 32 96 64 0

15 85 225 274 120 0

21

− + − + − =

− + − + − =

− xx x x x x5 4 3 2175 735 1624 1764 720 0+ − + − + =

		  Also use the Newton–Raphson method to find the real roots in the 
range 0 < x < 1.5 in these three cases. Compare the convergence and 
the accuracy obtained by the two methods. The real roots give the 
frequencies of vibration of systems represented by these equations.

	 5.37.	 Use any two applicable methods for finding the first positive real root 
of the following transcendental equations:

	

cosh

sin cos

x x

x x

xx

=

=

+ − =

4

2 4 0

2

e

		  Compare the convergence of these methods to the root and the com-
putational effort involved.

	 5.38.	 The calibration curve for a temperature-measuring device is given by

	 T V V V V= + + + +15 3 5 0 6 0 5 0 12 3 4. . . .
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		  where T is the temperature in °C and V is the voltage signal. 
Determine the voltage output at T = 30°C and 60°C. Use any suit-
able method.

	 5.39.	 Obtain a rough plot of the function f(x) where

	 f x x xx( ) ( )/= − − −−e 3 4 2

		  and determine the real roots of f(x) = 0 by the bisection method. How 
many bisections are needed to locate the roots with a convergence cri-
terion of ε = 10−5, where ε is the change in the root from one iteration to 
the next?

	 5.40.	 Determine the effect of a variation in the convergence criterion ε on 
the value of the root obtained in Problem 5.9. Take ε varying from 1 
to 10−5.

	 5.41.	 The critical load for the buckling of a vertical column is governed by 
the transcendental equation

	 tan x x=

		  where x  represents the critical load. Solve this equation by the mod-
ified Newton’s method to obtain a real positive root, starting with an 
initial guess of x = 4.0. Also try to solve it by the successive substitu-
tion method. Discuss your results.

	 5.42.	 The real and complex roots of the following polynomial equation are 
related to the stability of a body subjected to a system of forces:

	 x x x x4 3 23 6 7 3 0+ + + + =

		  where x represents the complex amplification factor for the distur-
bance. Find these roots, using the Newton–Raphson method. Also use 
Newton’s second-order method for the real root, which is a multiple 
root at x = –1. Compare the convergence by the two methods.

	 5.43.	 The decomposition of carbon dioxide into oxygen and carbon monox-
ide is governed by the equation

	

P
E

x x2
31 3 2 0−

⎛
⎝⎜

⎞
⎠⎟

+ − =

		  where P is the pressure in atmospheres, E is the temperature-depen-
dent equilibrium constant, and x is the fractional decomposition of 
CO2. Using any suitable method, find x for P = 1 atm and E = 1.65.

	 5.44.	 The vapor pressure P of a material is given in terms of the temperature 
T as

	
log logP a

b
T

c T= + +

		  where log is the natural logarithm and a, b, and c are constants that 
depend on the material. If their values are given as 17.5, –2.2 × 104, 
and –0.9, respectively, find the temperatures at pressures of 0.01 and 
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0.1 atmospheres, using the search method to determine the approxi-
mate value of the root, followed by the Newton–Raphson method to 
converge to the root.

	 5.45.	 When water vapor is heated to very high temperatures, it dissociates 
to give oxygen and hydrogen. Then the mole fraction, x, of water that 
dissociates is given by the equation

	
S

x
x

P
x

=
− +1

2
2

		  where S is the equilibrium constant of the reaction and P is the pres-
sure of the mixture. If the pressure P is given as 3.2 atmospheres and 
S as 0.055, compute the value of x that satisfies the above equation, 
using any suitable method.

	 5.46.	 The current I in an electrical circuit containing resistances R1 and R2, 
inductance L, and voltage source E is given by the equation

	
I

E
R

R
R R

R L t= −
+

⎡

⎣
⎢

⎤

⎦
⎥

−

1

2

1 2
1 1e( / )

		  where t is the time. If R2 = 10 ohms, L = 10 henries, and E = 20 V, find 
the resistance R1 that gives a current of 1.4 amperes at t = 0.5 s.
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6 Numerical Solution of 
Simultaneous Algebraic 
Equations

6.1  ​INTRODUCTION

Systems of simultaneous algebraic equations are frequently encountered in 
engineering applications such as those concerned with electrical networks, structural 
analysis, heat transfer, fluid flow, optimization, vibrations, chemical reactions, and 
data analysis. The numerical solution of an ODE or a PDE also often reduces to the 
solution of a set of algebraic equations, as discussed later in Chapters 9 and 10. A 
system of n simultaneous equations, with x1, x2, . . ., xn as the n unknowns, may be 
written as

	

f x x x

f x x x

f x x x

n

n

n n

1 1 2

2 1 2

1 2

0

0

0

( , , , )

( , , , )

( , , , )

…
…

� �
…

=

=

= 	

(6.1)

where f1, f2, . . ., fn denote n different functions of the n independent variables. Various 
methods have been developed to solve this system of equations to obtain the values 
of the variables x1, x2, . . ., xn. The choice of a particular method for a given problem 
generally depends on the nature of the equations and the number of unknowns n.

In many circumstances, the equations are linear in the unknown variables. Such 
a system of linear equations has the general form

	

a x a x a x b

a x a x a x b

a x a x

n n

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =

+ + + =

+ +

�
�

� �
�� + =a x bnn n n 	

(6.2)

where the a’s represent n2 coefficients and the b’s similarly represent n constants. In 
matrix notation, this system may be written more concisely as

	 AX B= 	 (6.3)
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where A is a square matrix of the coefficients, X is a column matrix, or vector, of the 
unknowns, and B is a column matrix, or vector, of the constants that appear on the 
right-hand side of the equations. From Equation 6.2, aij represents an element of the 
matrix A and bi an element of the vector B. If the column matrix B is zero, that is, if 
the b’s are all zero, the set of equations is said to be homogeneous, and nontrivial 
solutions can be obtained only if all the equations are not independent, as discussed 
later in this chapter. If the b’s are not all zero, the set of equations is nonhomoge-
neous. In this case, all the equations must be independent in order to yield unique 
values of the unknowns.

A system of linear algebraic equations may be solved by employing Cramer’s rule 
which gives the unknown xi, as

	
x

A
Ai
i=

Det 
Det 	

(6.4)

where Ai is the matrix A with its ith column replaced by the column vector B and Det 
represents the determinant of the corresponding matrices. It can be shown that the 
number of basic arithmetic operations needed to solve for all the unknowns in a set 
of equations by Cramer’s rule, employing expansion by minors for obtaining the 
determinants, is (n + 1)! Therefore, this method is satisfactory only for a small num-
ber of equations, generally less than 5. For the large sets of equations generally 
encountered in engineering problems, the time required to solve the equations using 
Cramer’s rule is very large and the method is quite impractical, as compared to other 
methods discussed in this chapter. However, Equation 6.4 indicates some important 
points regarding the solution of linear simultaneous algebraic equations.

If Det A = 0, the matrix A is termed singular, and no unique solution can be 
obtained if the numerator is nonzero. However, if the column matrix B is also zero, 
then Det Ai = 0, since one entire column of the matrix Ai is zero. In this case, non-
trivial solutions can be obtained. This is the circumstance of homogeneous equa-
tions, which give rise to eigenvalue problems, as discussed later in this chapter. If 
Det A≠ 0, the equations are said to be all independent, and unique solutions may be 
obtained for nonhomogeneous equations. A brief outline of the matrix algebra 
needed for the following discussion is given here. For further details, textbooks on 
matrices such as Lancaster and Tismenetsky (1985) and Bronson and Costa (2008) 
may be consulted.

The solution to the set of linear equations given by Equation 6.3 may also be 
written as

	 X A B= −1 	 (6.5)

where A−1 is the inverse of the matrix A, which must be nonsingular for the inverse 
to exist. Then A−1 A = I, where I is the identity, or unit, matrix, which is a square 
matrix consisting of zeros everywhere except at the diagonal, where all the elements 
are unity. Several methods for the solution of simultaneous linear equations are 
based on obtaining A−1 as an intermediate step. This is particularly advantageous if 
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solutions are to be obtained for many systems of equations in which A is unchanged 
and only the column vector B varies. Also, many computer systems have available 
programs to invert a matrix. For example, matrix inversion is quite straightforward 
in MATLAB®. However, most methods, which are used for solving simultaneous 
algebraic equations, do not solve for A−1 as an intermediate step and solve only for X, 
unless there is a particular advantage in obtaining A−1, such as those mentioned 
above, or unless the information is needed to study the nature of the equations.

There are two different types of methods, direct and iterative, that may be adopted 
for solving Equation 6.3 for the unknown X. Direct methods solve the equations 
exactly, except for the computational round-off error, in a finite number of opera-
tions. The methods based on finding the inverse matrix A−1 to obtain the solution 
from Equation 6.5 fall under direct methods, as do several other methods discussed 
in this chapter. These direct techniques are particularly useful when the number of 
equations to be solved is typically less than 20. However, a few special methods have 
been developed for particular types of equations. These methods may be used advan-
tageously even for a much larger number of equations. Among these are the 
Tridiagonal Matrix Algorithm (TDMA), Fast Fourier Transform method, and the 
Cyclic Reduction method, all of which are particularly suited for the large number of 
algebraic equations obtained from finite difference approximations of PDEs. The 
second class of methods is based on iteration. Iterative methods are appropriate for 
large systems of algebraic equations, typically of the order of 100 or more equations, 
in which the sparseness of the unknowns in the equations often makes iterative com-
putation more efficient. Again, these methods are of particular interest in the finite 
difference and finite element solutions of PDEs.

In this chapter, both direct and iterative methods for the numerical solution of 
systems of linear algebraic equations are discussed. Most of the direct methods are 
based on matrix inversion or on elimination and reduction so that the given set of 
equations is obtained in a form that is amenable to a direct solution. Among those 
discussed here are the Gaussian elimination, Gauss–Jordan elimination, L U 
decomposition, Crout’s decomposition, and matrix inversion methods. The iterative 
methods discussed here include the Jacobi, Gauss–Seidel, and relaxation methods. 
The solution of homogeneous linear equations, which often result in eigenvalue 
problems, is also discussed. The methods outlined for obtaining the eigenvalues and 
the corresponding eigenvectors include the Gauss–Jordan method, the power 
method, the Jacobi method, and Householder’s method, used in conjunction with 
the LR, QR, and QL algorithms. Nonlinear algebraic equations are also of interest in 
many engineering applications, and the solution of these equations is outlined. In 
most cases, the equations are linearized in order to employ the methods applicable to 
linear equations. For small systems of nonlinear equations, methods based on those 
discussed in Chapter 5 for a single nonlinear algebraic equation, such as the Newton–
Raphson and the successive substitution methods, may be employed.

MATLAB is particularly useful for the solution of a system of algebraic equations 
because of the advantage it has regarding the definition and manipulation of matri-
ces. Matrix multiplication and inversion can be easily obtained by simple MATLAB 
commands. Similarly, the elements of a given matrix can be easily defined and aug-
mented matrices can easily be formed from given matrices and vectors, making it 
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easy to define the given system of equations and solve them to obtain the unknown 
variables. This advantage of MATLAB over other computational environments, 
particularly for direct methods, is clearly demonstrated in this chapter.

6.2  ​GAUSSIAN ELIMINATION

Gaussian elimination is a direct method for solving a system of linear algebraic 
equations and is frequently employed in a wide variety of engineering problems. By 
a process of elimination of the unknowns, the method reduces the given set of 
n equations to a triangular set, so that one of the equations has only one unknown. 
This unknown is determined and the remaining unknowns are obtained by the pro-
cess of back-substitution. This method is of particular interest since several other 
direct methods are based on it.

6.2.1  ​Basic Approach

Let us consider a general system of three linear equations, given as

	

a x a x a x b

a x a x a x b

a x a x a x

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3

+ + =

+ + =

+ + = bb3 	

(6.6)

As a first step, eliminate x1 from the second equation by adding it to the equation 
obtained by multiplying the first equation by − a21/a11. Similarly, multiply the first 
equation by −a31/a11 and add the third equation to it to eliminate x1 from the third 
equation as well. The resulting system of equations is

	

a x a x a x b

a x a x b

a x a

11 1 12 2 13 3 1

22
1

2 23
1

3 2
1

32
1

2 33
1

+ + =

+ =

+

( ) ( ) ( )

( ) ( )xx b3 3
1= ( )

	

(6.7)

where the superscripts indicate new values of the coefficients after the first step.
The first equation, which has been used to eliminate the unknown x1 from the 

equations that follow, is known as the pivot equation, and the coefficient a11 of the 
eliminated unknown is the pivot coefficient or pivot element. In the next step, multi-

ply the second equation by −a a32
1

22
1( ) ( )/  and add it to the third equation, in order to elimi-

nate x2 from the latter. The result is an upper triangular set, given by

	

a x a x a x b

a x a x b

a x b

11 1 12 2 13 3 1

22
1

2 23
1

3 2
1

33
2

3 3
2

+ + =

+ =

=

( ) ( ) ( )

( ) ( )

	

(6.8)

where a33
2( ) and b 3

2( ) arise from the second step in the elimination process. Now, x3 is 
directly obtained as b a3

2
33
2( ) ( )/  from the last equation. This value may be substituted in 
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the second equation to obtain x2, which, along with x3, is substituted in the first 
equation to obtain x1. This process, known as back-substitution, can be employed 
easily with a triangular set of equations to obtain the unknowns.

The preceding process can easily be extended to n equations, with n unknowns. 
Employing successive pivot equations, the elimination procedure, outlined here, is 
carried out until the original system of equations is reduced to an upper triangular 
set. Back-substitution then yields the unknowns. To illustrate the Gaussian elimina-
tion method, let us consider the following set of equations:

	

3 5 16

4 2 15

2 2 3 15

x y z

x y z

x y z

+ + =

+ + =

+ + = 	

(6.9)

where x, y, and z are the unknowns. With the first equation as the pivot equation, x is 
eliminated from the other two equations to obtain
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(6.10)

Now, we use the second equation as the pivot equation to eliminate y from the third 
equation. This results in the following triangular set of equations:
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y z

z

+ + =

+ =

=
	

(6.11)

The fractional coefficients in the resulting equations may be avoided by multiplying 
on both side by the largest denominator. The value of z is obtained as 3 from the third 
equation. Back-substitution then yields the values of the remaining unknowns. The 
result is

	 x y z= = =1 2 3, , 	 (6.12)

6.2.2  ​Computational Procedure

The Gaussian elimination method is very well suited for digital computation. The 
system of linear equations is written in matrix form as

	 AX B= 	 (6.3)
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We then consider an augmented matrix C of this set, defined as follows:
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where the (n + l)th column consists of the b’s, with a1,n+1 = b1, a1,n+2 = b2, and so on. 
The computational procedure is then concerned with reducing this matrix to the 
following upper triangular augmented matrix after (n − 1) elimination steps:
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(6.14)

To help with the visualization of these matrices, Figure 6.1 shows qualitatively a 
few special types of matrices that are of particular interest in the numerical solution 

(a)

(c)

(b)

Nonzero element

FIGURE 6.1  Sketch of a few special types of matrices that are of interest in the solution of 
simultaneous algebraic equations. (a) Upper triangular matrix, (b) tridiagonal matrix, and 
(c) lower triangular matrix.
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of linear systems. This includes the upper and lower triangular matrices and the 
tridiagonal matrix, which is discussed later.

The first step in the reduction of the matrix C to the augmented triangular matrix 
C(n−1) is obtained from a generalization of the procedure outlined earlier. Therefore, 
the elements a ij

( )1  of the matrix obtained after the first elimination step are given by

	
a a

a
a

a i n j nij ij
i

j
( ) ( ),1 1

11
1 2 1 1= − ≤ ≤ ≤ ≤ +where and

	
(6.15)

Here, aij are the elements of the original matrix C. The first row is the pivot row and 
a11 is the pivot element. Note that the first element of each row, except the first one, 
becomes zero after this computational step.

Similarly, the complete elimination procedure may be generalized by recognizing 
that the pivot row varies from the first to the (n − l)th row as elimination proceeds 
and that the pivot element for each step is arr, where r denotes the number of the pivot 
row. Therefore, the general procedure is written as

	
a a

a
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r ir
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1

1
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(6.16)

The superscripts within parentheses indicate the elimination step, with r varying 
from 1 to (n − 1). For r = 1, Equation 6.15 is obtained, with the superscript (0) simply 
denoting the coefficients of the original matrix. Again, note that the elements in the 
rth column of all the rows that follow the pivot row become zero. Therefore, an upper 
triangular matrix, augmented with the modified values of the b’s, which were initially 
the given constants on the right-hand side of the given system of equations, is obtained 
in the form represented by the matrix C(n−1) after successively applying the preceding 
procedure to all the pivot rows, going from the first to the (n − l)th row. Once this 
reduced matrix has been obtained, as shown in Figure 6.1a, the unknown xn is 
obtained from the elements of the matrix as

	
x

a
an
n n

nn

= +, 1

	
(6.17)

The other unknowns are obtained from back-substitution as
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(6.18)

Here the superscripts have been dropped for convenience. In a computer program, 
the old elements may be replaced by the new ones as elimination proceeds. No 
superscripts are needed if j is varied from (r + 1) to (n + 1) in Equation 6.16 and the 
elements in the rth column are simply replaced by zero. Back-substitution yields 



178	 Computer Methods for Engineering with MATLAB® Applications

the unknowns in the reverse order, starting with xn and ending with x1, as given by 
Equation 6.18.

Let us apply the generalized procedure outlined above to the example given ear-
lier, whose augmented matrix C is
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If Equation 6.16 is successively applied, with the first row as the pivot row in the first 
step and then the second row, the matrices obtained in the two steps are

	

3 5 1 16

0
7
3

5
3

29
3

0
4
3

7
3

13
3

3 5 1 16

0
7
3

5
3

29
3

0 0
69−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

and

221
207
21

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Therefore, Equation 6.17 yields x3 = 3, and back-substitution, given by Equation 
6.18, gives x2 = 2 and x1 = 1. The generalized procedure can easily be applied on the 
computer, as discussed in Example 6.1.

It may be mentioned here that the solution of n linear equations by Gaussian 
elimination can be shown to require about n3/3 arithmetic operations, as compared 
to n3 for the multiplication of two n × n matrices (Atkinson, 1989). The method can 
also be used for matrix inversion and for the evaluation of a determinant, as outlined 
in Section 6.2.4. We now proceed to a consideration of the accuracy of the results 
obtained by Gaussian elimination.

6.2.3  ​Solution Accuracy

In the preceding example, the Gaussian elimination method yielded the exact solu-
tion of the given system of linear equations, because the number of equations was 
small and only whole numbers and exact fractions were involved. On the computer, 
however, fractions are replaced by decimals, retaining a limited number of signifi-
cant places. As a consequence, a round-off error is introduced in dealing with quanti-
ties that have a larger number of significant decimal digits than those retained in the 
computation. The round-off error and its effect on accuracy and convergence were 
considered in detail in Chapter 2. Note from the earlier discussion that the round-off 
error may substantially affect the accuracy of the solution if a large number of equa-
tions are involved. Consequently, Gaussian elimination is generally used if the num-
ber of equations is typically less than 20 if most of the unknowns arise in each 
equation. Such a system gives rise to a dense coefficient matrix and, consequently, 
each element has to be considered at each elimination step. If, however, only a few 
unknowns are present in each equation, a sparse coefficient matrix is obtained. In 
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certain special cases, several elimination steps are avoided and a larger number of 
equations may be solved by Gaussian elimination, while obtaining an acceptable 
accuracy level. An important example of such a sparse system is the tridiagonal 
matrix, which has nonzero elements only at the diagonal and on either side of the 
diagonal; see Figure 6.1b. This system arises in the numerical solution of ODEs and 
PDEs and is discussed in greater detail in Example 6.2.

6.2.3.1  ​Ill-Conditioned Set
The accuracy of the solution is also substantially influenced by the conditioning of 
the given system of linear equations. The system is said to be ill-conditioned if a 
relatively small change in one of the coefficients results in a relatively large change 
in the solution. Similarly, if there are elements in the inverse A−1 of the matrix that 
are several orders of magnitude larger than those in the original matrix A, then the 
matrix is probably ill-conditioned. The main problem with ill-conditioning is that the 
round-off error may cause slight changes in the coefficients which may, in turn, result 
in a large variation in the solution. To test whether the round-off error is significant 
for a given problem, one may use the solution vector computed to determine the con-
stant vector B from the equation AX = B and compare it with the original column 
matrix. Also, A may be inverted twice and compared with A, or the product A−1 A may 
be compared with the identity matrix I to determine whether the round-off error is 
large for a given problem. An example of an ill-conditioned set of equations is

	

x y

x y

− =

− =

1 9999 0

1 9998 1 0

.

. . 	
(6.20)

for which the values of x and y are 19,999 and 104, respectively. A small change in the 
coefficients of y can result in a large effect on the solution. Since the round-off error 
can cause such a small change, the solution obtained may be quite inaccurate. To 
keep the error small, one may use double precision on the computer. Double precision 
reduces the speed of computation but is necessary for an ill-conditioned system.

6.2.3.2  ​Error Correction
We may also improve the accuracy of the solution obtained by applying an error cor-
rection. If X′ is the solution vector obtained from numerical computation, the con-
stant vector B′ may be found by the substitution of X′ into the given system of 
equations, as B′ = AX′. Since the solution obtained is not exact due to the round-off 
error, B′ will differ from the original constant matrix B. If X is the exact solution, the 
error vector E is defined as X − X′. Therefore, from the original system of equations, 
the following equations, known as error equations, are obtained:

	 A X X B B AE B B( )− ʹ = − ʹ = − ʹor 	 (6.21)

Thus, the error vector may be computed from this set, which differs from the origi-
nal system of equations only in the constant vector. For applying this error correc-
tion, Gaussian elimination is employed to solve the given system of equations in 
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order to obtain X′, from which B′ is computed. The multipliers in the elimination 
process are a air

r
rr
r( ) ( ).− −1 1/  We may retain these to solve other systems of equations with 

the same coefficient matrix A but a different constant vector B, by applying Equation 
6.16 to the (n + l)th column, which represents the new constant vector. Therefore, the 
error correction vector E may be obtained. Then a more accurate solution X  to the 
set of equations is obtained from

	 X X E= ʹ + 	 (6.22)

The process may be repeated with the improved solution to obtain a still greater 
accuracy. However, the exact solution is not obtained at any iterative stage because 
of the presence of round-off errors.

6.2.3.3  ​Pivoting
In the solution of a system of linear equations by Gaussian elimination, we may 
encounter steps for which the pivot element is zero, or close to zero. In some 
cases, the pivot element may theoretically be zero but may acquire a small, non-
zero value in the computational process due to the round-off error. The use of 
such a pivot element would lead to inaccurate results. In fact, the accuracy of the 
solution is considerably affected by the magnitude of the pivot element, which is 
employed in all the arithmetic operations for elimination in a given step. Greater 
accuracy is obtained if reduction is carried out with the row that contains the larg-
est pivot element. A process, known as partial pivoting, in which the rows are 
interchanged at each step, to employ the row with the largest pivot element as the 
pivot row, is very commonly employed for more accurate results, particularly for 
large systems of equations. This procedure also avoids the problem with a zero 
pivot element during the elimination process. It is, therefore, necessary to include 
partial pivoting in the computational scheme. It can be easily incorporated in the 
computer program, as demonstrated in Example 6.1, given at the end of this 
section. In some cases, complete pivoting, with both rows and columns being 
interchanged to obtain the largest pivot element, is employed, as outlined later for 
homogeneous equations.

6.2.4  ​Matrix Inversion and Determinant Evaluation

Gaussian elimination may also be employed to obtain the inverse of a matrix. The 
inverse A−1 is generally not needed in the solution of a set of linear equations. 
However, as discussed later, the matrix may be needed for studying the nature of the 
equations and for solving several systems of equations that have the same coefficient 
matrix A but different constant vector B. Finding A−1 is equivalent to solving the 
equation AX = I, where X is now an n × n unknown matrix. An augmented matrix C 
is formed with the elements of A and I, placing the elements of I on the right-hand 
side of matrix A, as those of vector B were placed earlier. By applying Gaussian 
elimination to A, the solution matrix can be determined, which is the required inverse 
A−1. The computation of the inverse by this method requires about (4/3)n3 arithmetic 
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operations, which is approximately four times the number of operations required for 
solving a set of linear equations (Atkinson, 1989). Other methods for calculating the 
inverse of a matrix are discussed in Section 6.5.

In some engineering problems, such as those that arise in vibrations and in stability 
analysis, it may be necessary to evaluate the determinant of a matrix. Although not 
needed for solving linear equations, since Cramer’s rule is rarely applied, the value 
of the determinant may be required for studying the nature of the equations and for 
determining whether the inverse of a matrix exists. Gaussian elimination may again 
be used for the evaluation of a determinant. The value of the determinant of a matrix 
of an upper triangular form is simply the product of the diagonal elements. Therefore, 
Gaussian elimination may be used, as discussed earlier for a matrix, to obtain a given 
determinant in this form. This method is applicable since the value of a determinant 
is not altered if a constant multiple of the elements of a row or column are added to 
or subtracted from the elements of another row or column. However, if any two rows 
or columns are interchanged, the sign of the determinant is changed. Therefore, if 
partial pivoting is used, to achieve greater accuracy or to avoid a zero pivot element, 
this change in sign must be taken into account.

Let us consider the determinant of the coefficient matrix of the system of equa-
tions given by Equation 6.9. Then the determinant is

	

3 5 1

1 4 2

2 2 3

We apply Gaussian elimination to this determinant by using Equation 6.16 with r = 1 
and then with r = 2 to obtain the upper triangular form

	

3 5 1

0
7
3

5
3

0 0
69
21

The value of this determinant is given by a product of the diagonal elements and is, 
therefore, obtained as

	
3

7
3

69
21

23× × =

6.2.5  ​Tridiagonal Systems

The direct solution of systems of linear equations that have tridiagonal, or banded, 
coefficient matrices, as shown in Figure 6.1b, is important in many practical problems, 
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particularly in the numerical solution of PDEs. The set of equations, in this case, may 
be written as
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(6.23)

Therefore, the matrix A is tridiagonal if only aii, ai,i−1, and ai,i+1 are nonzero. This 
implies that aij = 0 for |i − j| > 1. If Gaussian elimination is applied to this system, 
only one of the a’s is eliminated from the column containing the pivot element in 
each step, since the remaining elements below the diagonal are zero. Therefore, only 
one elimination process is employed at each step. The original zero elements are kept 
unchanged, and the resulting system, after completion of the elimination procedure, 
which is often known as the Thomas algorithm, is of the form
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where the primes indicate new values. From this system of equations, the unknowns 
may easily be obtained by back-substitution, since the last equation has only one 
unknown and the others have two, including one which is obtained by solving the 
equation below a given equation.

The recursion formulas for the above system may be written in terms of the ele-
ments ai, bi, and ci, where i denotes the row in the coefficient matrix. Therefore, the 
new elements are given by

	

ʹ = ʹ = −
ʹ

ʹ = ʹ = − ʹ
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−
−

a b b c
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(6.25)
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with the calculations being carried out for increasing values of i, from i = 2 to n. Once 
the reduced system, given by Equation 6.25, has been obtained, back-substitution 
may be applied as follows:

	
x

d
b

x
d c x

bn
n

n
i

i i i

i

=
ʹ
ʹ

=
ʹ− ʹ

ʹ
+, 1

	
(6.26)

On the computer, the new elements simply replace the old ones, and primes are not 
needed. The number of operations needed for solving a tridiagonal system is of order 
n, O(n), as compared to O(n3/3) for Gaussian elimination applied to a system with a 
dense coefficient matrix. Therefore, much smaller computing times and, consequently, 
much smaller round-off errors arise in the solution of such systems. Thus, large tridi-
agonal systems are generally solved by this method. Example 6.2 illustrates the use of 
Gaussian elimination for solving systems of equations of the tridiagonal form.

In MATLAB, the solution of a system of linear equations can easily be achieved 
by defining the matrices a and b and applying the backslash operator, \, described in 
Chapter 3. For instance, considering the simple problem given earlier, a and b are 
defined as

a = [3 5 1; 1 4 2; 2 2 3];
b = [16; 15; 15];

Then, the desired solution x is given by

x = a\b

which uses the internal logic of the \ operator in MATLAB to obtain the left division 
of a into b. It uses the Gaussian elimination approach to achieve this, without finding 
the inverse of (A). It requires fewer arithmetic operations compared to methods based 
on matrix inversion and thus requires less CPU time and has smaller round-off error. 
The results are obtained as x = [1.0; 2.0; 3.0], as before.

Example 6.1

The specific volume v of saturated steam in m3/kg is given at six dimensionless 
temperature T values of 1, 2, 3, 4, 5, and 6, where 1 represents 10°C in physical 
terms, as, respectively, 106.4, 57.79, 32.9, 19.52, 12.03, and 7.67 by Reynolds and 
Perkins (1977). Using the Gaussian elimination method, obtain a fifth-order poly-
nomial that passes through these data points.

SOLUTION

The required polynomial is of the form

	 v x x T x T x T x T x T= + + + + +1 2 3
2

4
3

5
4

6
5

	 (6.27)
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where T is the dimensionless temperature and x1,x2, . . ., x6 are the unknown 
coefficients to be determined. The following system of six equations is obtained if 
the given data are substituted in this equation:

	 x x x x x x1 2 3 4 5 6 106 4+ + + + + = .

	 x x x x x x1 2
2

3
3

4
4

5
5

62 2 2 2 2 57 79+ + + + + = .

	 x x x x x x1 2
2

3
3

4
4

5
5

63 3 3 3 3 32 9+ + + + + = .

	 x x x x x x1 2
2

3
3

4
4

5
5

64 4 4 4 4 19 52+ + + + + = .

	 x x x x x x1 2
2

3
3

4
4

5
5

65 5 5 5 5 12 03+ + + + + = .

	 x x x x x x1 2
2

3
3

4
4

5
5

66 6 6 6 6 7 67+ + + + + = .

This set of linear equations is to be solved to obtain the unknowns xi, where i = 1, 
2, . . ., 6. The augmented matrix consists of six rows and seven columns, where 
the seventh column contains the constants on the right-hand side of the equa-
tions. It may be mentioned here that the dimensionless temperature T is employed 
simply for convenience. The actual temperatures may also be used if so desired.

A computer program in Fortran is shown in Appendix C.5 to present the logic 
for solving this problem by the Gaussian elimination method. The problem is 
written for a system of up to 10 equations. The number of equations and the aug-
mented matrix are given as input data. At each elimination step, the row with the 
largest pivot element is found, considering the rows below and including the pivot 
row. If another row has a pivot element larger than that in the pivot row, it is inter-
changed with the pivot row, making it the pivot row for the next elimination step. 
This partial pivoting improves the accuracy of the solution and also avoids prob-
lems if a zero pivot element arises. Gaussian elimination is applied to reduce the 
given matrix to an upper triangular one. Then X(6), which represents the unknown 
x6, is computed directly from Equation 6.17. The other unknowns are determined 
by back-substitution, using Equation 6.18.

Figure 6.2 shows the computed results. The program also computes the con-
stants Bi, where i = 1,2, . . ., 6, using the equation B = AX, where X is the computed 
vector of the unknowns. These computed constants, denoted by B(I) in the pro-
gram, may be compared with the constants in the given equations to determine 
the accuracy of the numerical results. It is seen from the results presented that the 
computed values of the constants are close to the given values. In fact, they are 
identical if we retain the same number of significant figures as those in the given 
data. Therefore, a high level of accuracy in the computed results is indicated.

This problem can be solved in MATLAB by using the backslash operator, as dis-
cussed earlier. The matrix a and the vector b is defined from the given equations as

>>a = [�1.0 1.0 1.0 1.0 1.0 1.0;1.0 2.0 4.0 8.0 16.0 32.0;1.0 ... 
3.0 9.0 27.0 81.0 243.0;1.0 4.0 16.0 64.0 256.0 ... 
1024.0;1.0 5.0 25.0 125.0 625.0 3125.0;1.0 6.0 36.0 ... 
216.0 1296.0 7776.0];

>>b = [106.4;57.79;32.9;19.52;12.03;7.67];



Numerical Solution of Simultaneous Algebraic Equations	 185

Matrix a may also be defined by defining the six rows separately as, say, a1, 
a2, a3, a4, a5, and a6, and then specifying the matrix a as a = [ a1; a2; a3; a4; a5; a6]. 
Then the command

>>x = a\b

Yields the results as

x = 
201.2600
−128.8210
40.6742
−7.4229
0.7408
−0.0311

which are close to those obtained from the Fortran program earlier. But, clearly, 
this is a much simpler approach, which uses MATLAB advantageously by employ-
ing the built in backslash operator.

However, a MATLAB program may also be written using the computational 
scheme outlined here. Appendix B.6 gives the corresponding MATLAB program 
as a function m-file, gauss.m, which reduces the given matrix to an upper trian-
gular matrix and uses another function m-file, backsub.m, for back substitution. 
The two matrices a and b are given and the function file is invoked as gauss 
(a, b). This yields the desired results as identical to those given above from the 
backslash operator. The polynomial obtained for the specific volume v, as given 
by Equation 6.27, may also be plotted, along with the given data, to evaluate 
the accuracy of the numerical results obtained. Figure 6.3 shows the resulting 
graph and the given data, indicating the high level of accuracy achieved in the 
computed results.

THE SOLUTION TO THE EQUATIONS IS
X(1) = 201.26010
X(2) = −128.82130
X(3) = 40.67448
X(4) = −7.42302
X(5) = 0.74085
X(8) = −0.03108

THE CONSTANT VECTOR OF THE EQUATIONS IS
B(1) = 106.39990
B(2) = 57.79021
B(3) = 32.90009
B(4) = 19.52042
B(5) = 12.03053
B(6) = 7.67023

FIGURE 6.2  Numerical results obtained from the solution of the system of linear equations 
in Example 6.1 by the Gaussian elimination method.
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Example 6.2

The temperature T(x) that arises due to steady-state heat conduction in a bar 30 cm 
long is governed by the following ODE, if uniform temperature is assumed across 
any cross section:

	

d
d

2T
x

GT2 0− =
	

(6.28)

where T is the temperature difference from the ambient medium, which is at 20°C, 
x is the axial coordinate distance, and G is a constant that depends on the surface 
heat transfer rate. As discussed in greater detail in Chapter 9, this equation may be 
replaced by a finite difference approximation, using the second central difference 
given in Chapter 4, as

	

T T T
x

GTi i i
i

+ −− +
− =1 1

2

2
0

( )Δ 	
(6.29)

where x = i Δx. Considering 30 subdivisions of the length of the rod, with Δx = 1 cm, 
as shown in Figure 6.4, find the temperature differences Ti, where i = 1, 2, . . ., 29. 
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FIGURE 6.3  Graph of the polynomial given in Equation 6.27, as obtained from the 
computed results, along with the given data in Example 6.1.
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FIGURE 6.4  Physical problem considered in Example 6.2.
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The temperatures differences T0 and T30, at x = 0 and x = 30 cm, respectively, are 
given as 100°C, and the constant G as (0.071)2 cm−2. Use Gaussian elimination.

SOLUTION

The system of equations to be solved by Gaussian elimination is

	 T G x T Ti i i+ −− + + =1
2

12 0[ ( ) ]Δ 	 (6.30)

or

	 − + + − = =+ −T S T T ii i i1 12 0 1 2 29( ) , , ,for … 	 (6.31)

where

	 S G x= =( ) ( . ) ( . )Δ 2 2 20 071 1 0

The constants Fi on the right-hand side of Equation 6.31 are all zero except in the 
two equations corresponding to i = 1 and 29, where T0 and T30 appear and yield 
F1 = 100 and F29 = 100. A tridiagonal system is obtained, which may be written as 
follows:
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(6.32)

This tridiagonal system of equations can easily be solved by the Gaussian elimi-
nation method, as presented earlier. The three nonzero elements in each row 
are denoted by A(I), B(I), and C(I), where I = 1, 2, . . ., 29. The constants on the 
right-hand side are denoted by F(I). The coefficients and constants are given as 
input data. Gaussian elimination is used to eliminate the left-most element in 
each row in one traverse from the top row to the bottom row. The temperature 
difference T29 is then computed as F(29)/B(29), where both F and B are the new 
values after reduction. Back-substitution then yields the remaining temperature 
differences.

Appendix C.6 gives the Tridiagonal Matrix Algorithm (TDMA), also known as 
Thomas algorithm, as a subroutine in Fortran. Thus, the matrix coefficients and 
the constants Fi may be given, and the unknown temperature differences Ti com-
puted by this subroutine. Finally, the ambient temperature of 20°C is added to 
Ti to yield the physical temperatures Tp, where Tp = Ti + 20. It is evident that the 
program is much simpler than the corresponding program for a system that is not 
tridiagonal. Since tridiagonal systems arise frequently in the numerical solution of 
differential equations, the above algorithm is of considerable importance. Because 
of the associated small number of arithmetic operations, the Gaussian elimina-
tion method of solving a tridiagonal system results in smaller computer time and 
smaller round-off error than most of the other methods discussed in this chapter. 
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The computed temperature distribution is shown in Figure 6.5. The temperatures 
at the two ends of the rod, TP(0) and TP(30), are 120°C. The problem is symmetric 
about TP(15), and the computational procedure may be simplified by employing 
only 16 points and taking TP(16) = TP(14) from symmetry.

Similarly, the tridiagonal system may be solved using MATLAB. Again, the ele-
ments a, b, and c of the coefficient matrix, as well as the constant vector f, are 
given and the computational procedure outlined earlier for tridiagonal systems is 
applied to obtain the solution. Appendix B.7 gives this algorithm, for Example 6.2, 
in MATLAB as an m-file in (a) and as a function m-file in (b). The matrix and the 
constant vector are easily defined and element-by-element operations can be used 
advantageously to solve the problem. The results obtained are very close to those 
given in Figure 6.5. The resulting temperature distribution is also plotted using 
MATLAB plotting commands and is shown in Figure 6.6.

THE REQUIRED TEMPERATURES ARE
TP(1) = 114.6583
TP(2) = 109.7937
TP(3) = 105.3816
TP(4) = 101.3998
TP(5) = 97.8283
TP(6) = 94.6491
TP(7) = 91.8481
TP(8) = 89.4051
TP(9) = 87.3139
TP(10) = 85.5620
TP(11) = 84.1405
TP(12) = 83.0422
TP(13) = 82.2616
TP(14) = 81.7948
TP(15) = 81.6395
TP(16) = 81.7948
TP(17) = 82.2616
TP(18) = 83.0421
TP(19) = 84.1404
TP(20) = 85.5620
TP(21) = 87.3140
TP(22) = 89.4052
TP(23) = 91.8462
TP(24) = 94.6493
TP(25) = 97.8286
TP(26) = 101.4001
TP(27) = 105.3819
TP(28) = 109.7939
TP(29) = 114.6584

FIGURE 6.5  Computed temperatures obtained by solving the tridiagonal system of equa-
tions in Example 6.2.
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6.3  ​GAUSS–JORDAN ELIMINATION

In the Gauss–Jordan elimination method, which is a variation of Gaussian elimination, 
the original matrix A of the coefficients is reduced to an identity matrix I so that the 
unknowns x1, x2, . . ., xn are found directly, without back-substitution. At each step 
involved in the elimination of an unknown using a pivot equation, the unknown is 
eliminated from the equations above the pivot equation as well as from those below 
it. The pivot equation is normalized by dividing it throughout by the pivot element, 
so that the diagonal elements are finally obtained as unity, resulting in a reduced 
system of equations of the form IX = B′, where B′ now gives the solution vector. 
Since the procedure is similar to Gaussian elimination, partial or complete pivoting 
may be employed to improve the accuracy of the solution and to avoid the use of a 
pivot element, that is, zero, or close to it.

6.3.1  ​Mathematical Procedure

Let us consider the following set of linear equations for solving by the Gauss–Jordan 
elimination method:
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We normalize the first equation by dividing it by 2, which is the pivot element. Then 
we eliminate x from the other two equations by multiplying the normalized pivot 
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FIGURE 6.6  Temperature distribution from the calculated temperatures in Example 6.2.
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equation by the coefficients of x in the other equations and subtracting the equations 
thus obtained from the original equations, to yield
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y z

y z
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− − = −
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(6.34a)

We repeat the above step with the second equation as the pivot equation, which we 
first normalized by dividing it by the pivot element –11/2. Thus, y is eliminated from 
the first and third equations to give
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(6.34b)

In the final step, z is eliminated from the first two equations, to give
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(6.34c)

6.3.2  ​Computational Scheme

To implement this method on the computer, we follow the same procedure as that 
outlined earlier for Gaussian elimination. The augmented matrix C of a system of 
linear equations is given by Equation 6.13. The first row is the pivot equation for the 
first elimination step, and the elements of the matrix obtained after this step are

	
a

a
a

j nj
j

1
1 1

11

1 1( ) ,= ≤ ≤ +where
	

(6.35a)

	
a a a a j n i nij ij i j
( ) ( ) ,1

1 1
1 1 1 2= − ≤ ≤ + ≤ ≤where and

	
(6.35b)

We can easily generalize this procedure by noting that Equation 6.35b is not applied 
to the pivot row, in a given step, and that the columns to the left of the one containing 
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the pivot element are not affected. Therefore, if r denotes the pivot row and, hence, 
the elimination step, the Gauss–Jordan elimination method is given by the following 
recursion formulas:
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(6.36b)

In most computational schemes, the new elements simply replace the old ones as 
they are computed, to avoid additional storage. However, the j = r column must be 
stored separately at each step to provide the air

r( )−1  needed in Equation 6.36b. This 
situation may be avoided by varying j from right to left or from (r + 1) to (n + 1). In 
the latter case, the j = r column is not computed but may simply be inserted after the 
completion of the step, with 1 at the pivot element and zeros above and below it in the 
column. Then the storage required is the same as that for the original system. This 
approach is demonstrated in Example 6.3, using partial pivoting.

Let us now apply the above generalized procedure to the system of equations 
considered earlier, with the augmented matrix C given by
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Applying the recursion formulas of Equation 6.36, successively, for r = 1, 2, and 3, 
we find that the resulting matrices are, respectively,

	

1
1
2

3
2

9
2

0
11
2

1
2

13
2

0
7
2

5
2

3
2

1 0
16
11

43
11

0 1
1
1

− − −

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

11
13
11

0 0
31
11

62
11

1 0 0 1

0 1 0 1

0 0 1 2
− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Thus the required solution is x = 1, y = 1, and z = 2. As shown above, the columns to 
the left of the pivot element, at each step, are unaffected, and the elements above and 
below the pivot element, in the same column, become zero. The solution is given by 
the (n + 1)th column. No back-substitution is needed.

If several systems of equations with the same coefficient matrix A and different 
constant vector B are given, they can all be solved by application of the above 
procedure once. The various constant vectors are simply added as columns to the 
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augmented matrix, and the reduction process is carried out. At the completion of the 
elimination, the solutions for the different systems are given by the corresponding 
columns in the reduced matrix. It can be shown that the solution of a system of n 
linear equations by the Gauss–Jordan elimination method requires about n3/2 arith-
metic operations. Therefore, this method takes a somewhat larger computing time 
and has a larger round-off error than Gaussian elimination and is not preferred for 
solving linear systems. However, it can be used to develop a method for matrix inver-
sion  employing minimum storage. For inverting a matrix A, the equation to be 
solved is AX = I, where X becomes A−1 when Gauss–Jordan elimination transforms A 
into I. This procedure is discussed in greater detail in Section 6.5. Also, if several 
systems of equations with the same coefficient matrix A and different constant 
vector  B are to be solved, as is the case, for instance, in engineering problems 
where  the  boundary  conditions are varied while the governing equations remain 
unchanged, Gauss–Jordan elimination is more advantageous to use than Gaussian 
elimination.

Example 6.3

Consider the electrical network shown in Figure 6.7a and compute the electric cur-
rents I1, I2, . . ., I6 through the six resistances. Also, solve the problem, employing 
three loop currents I1, I2, and I3 in the three closed circuits shown in Figure 6.7b. 
Use Gauss–Jordan elimination for this problem.

SOLUTION

A system of six linear equations may be written for the six unknowns xi, where xi 
represents the current through a given resistance and i = 1, 2, . . ., 6. By Kirchhoff’s 
laws, the sum of the currents entering a node is equated to the sum of the currents 
leaving it. Thus,

	 x x x1 2 3 0+ − = 	 (6.38a)

	 x x x2 4 5 0− − = 	 (6.38b)

I1

I2 I3
8 V

5 Ω

8 Ω(b)

2 Ω 3 Ω

6 Ω4 Ω

(a)

I1

I2

I4

I5
I6I3

8 V10 V 10 V+
–

+
–

5 Ω

8 Ω

2 Ω 3 Ω

6 Ω4 Ω

FIGURE 6.7  Electrical network considered in Example 6.3.
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	 x x x1 5 6 0+ − = 	 (6.38c)

Also, the voltage change as one goes around each loop is equated to zero to 
yield

	 2 4 6 10 02 3 4x x x+ + − = 	 (6.38d)

	 − + + + =6 3 5 8 04 5 6x x x 	 (6.38e)

	 8 2 3 01 2 5x x x− − = 	 (6.38f)

Therefore, six independent linear equations are obtained for determining the six 
currents xi. If other nodes are considered, only linear combinations of the first 
three equations will be obtained; see, for instance, Young et al. (2000).

The Gauss–Jordan elimination method, with partial pivoting, is used for solv-
ing this system of equations. The computer program is quite similar to that for 
Gaussian elimination. However, in this case, the elements in the column contain-
ing the pivot element are reduced to zero in rows both above and below the pivot 
row. Also, at each step, the pivot row is taken as the row with the largest pivot 
element, considering the rows below the pivot row for the preceding step. The 
elements of this row are normalized by dividing throughout by the pivot element. 
Therefore, the reduced matrix is an identity matrix, instead of the upper triangular 
matrix obtained in Gaussian elimination. The augmented matrix, with the constant 
vector B taken as the last column, is supplied to the program as input data. This 
column vector becomes the solution after the Gauss–Jordan elimination process 
has been completed. Therefore, no back-substitution is necessary, and the last 
column yields the solution.

Appendix B.8 shows the MATLAB program for the Gauss–Jordan method as 
a function m-file, jordan.m. The given matrix a and constant vector b are given 
to form the augmented matrix aug = [a b]. The earlier function m-file, gauss.m, 
for the Gaussian elimination method is easily modified to obtain the function 
m-file for the Gauss–Jordan method. The back-substitution function m-file is not 
needed and the commands for generating an upper triangular matrix are modi-
fied to obtain an identity matrix instead. The last column then yields the solution. 
Similarly, Appendix C.7 shows the computer program in Fortran. Again, the pro-
gram given earlier for Gaussian elimination is modified to include division of the 
pivot row by the pivot element to obtain 1.0 at the diagonal and elimination of 
elements both above and below the pivot element to reduce the coefficient matrix 
to an identity matrix.

Figure 6.8 shows the results obtained in terms of the six currents, which are the 
unknowns xi, denoted here by X(I), where I = 1, 2, . . ., 6. Also shown is the reduced 
matrix achieved at the end of the calculations, indicating that, as expected, an 
identity matrix is obtained. As done, for Example 6.1, the constant vector B may 
also be computed from the obtained values of the currents and compared with 
the given values, in order to evaluate the accuracy of the solution. This method 
can also be applied to the problem given in Example 6.1 and the same computed 
results as before are obtained.
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If the loop currents of Figure 6.7b are considered instead, the voltage change 
around each loop may be equated to zero:

	 − + − − =2 12 6 10 01 2 3I I I 	 (6.39a)

	 − − + + =3 6 14 8 01 2 3I I I 	 (6.39b)

	 13 2 3 01 2 3I I I− − = 	 (6.39c)

This system may also be solved, using the algorithm discussed above. The result-
ing values of I1, I2, and I3 were obtained as 0.0514, 0.7149, and –0.2541 amperes, 
which are almost identical to the values of X(1), X(3), and X(6), as expected from 
the nomenclature of Figure 6.7. Once these currents have been obtained, the 
other currents and desired voltages may be computed from Kirchhoff’s laws.

6.4  ​COMPACT METHODS

6.4.1  ​Matrix Decomposition

There are several numerical methods for the solution of simultaneous linear equa-
tions that are based on the decomposition of the coefficient matrix A into an upper 
triangular matrix U and a lower triangular matrix L, as shown in Figure 6.1, such 
that

	 A LU= 	 (6.40)

THE SOLUTION TO THE EQUATIONS IS

X(1) = 0.05135
X(2) = 0.66351
X(3) = 0.71486
X(4) = 0.96892
X(5) = −0.30541
X(6) = −0.25405

THE REDUCED MATRIX IS

     1.000     0.000     0.000     0.000     0.000     0.000
     0.000     1.000     0.000     0.000     0.000     0.000
     0.000     0.000     1.000     0.000     0.000     0.000
     0.000     0.000     0.000     1.000     0.000     0.000
     0.000     0.000     0.000     0.000     1.000     0.000
     0.000     0.000     0.000     0.000     0.000     1.000

FIGURE 6.8  Computed results from the solution of the linear system of equations in 
Example 6.3 by the Gauss-Jordan elimination method.
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In Gaussian elimination, we obtain an upper triangular matrix U of the form
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(6.41)

In order to obtain the above form, we use Equation 6.16, with the multipliers mir at 
each elimination step being given by
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(6.42)

These multipliers, if stored, can be used for solving different systems of equations, 
AX = B, which have the same coefficient matrix A but a different constant vector B. 
Usually, these multipliers mij are stored in place of the zero elements below the 
diagonal of the matrix U, that is, in the space originally employed for aij for i > j.

Let us consider the lower triangular matrix L, defined as follows:
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We can show that A = LU, by using the preceding definitions of L and U and carrying 
out the matrix multiplication of Equation 6.40. Therefore, the coefficient matrix A 
may be decomposed into the two triangular matrices L and U. If the system of equa-
tions given by Equation 6.9 is considered, the multipliers mir may be retained to yield 
the matrices
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(6.44)

It can be easily verified that A = LU.
Recursive formulas for the elements of L and U may be obtained directly from 

Equation 6.40 and employed in the solution of a system of linear equations. If the 
above form for L, with all the diagonal elements equal to 1, is considered, the decom-
position is the one obtained from Gaussian elimination. For this circumstance, 
Doolittle’s method gives the corresponding explicit recursive formulas for the 
elements lij and uij and employs them in the solution of linear systems (Atkinson, 1989). 
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Another method, known as Crout’s method, employs a U matrix whose diagonal 
elements are all equal to 1. This method is discussed in some detail here, since it is 
widely used in many engineering problems. It is also generally more efficient than 
the other elimination methods discussed earlier. Consequently, it requires less 
computer time and generates smaller round-off error.

6.4.2  ​Matrix Decomposition in MATLAB®

In MATLAB, as mentioned in Chapter 3, the L U decomposition is easily obtained 
by the command

	
l u p lu a, , ( );[ ] = 	 (6.45a)

Here, p is the permutation matrix which stores the information on row exchanges for 
partial pivoting. Then the solution of the system of equations AX = B is obtained by 
the commands

	 y p b= l\( )* ; 	 (6.45b)

	 x u y= \ 	 (6.45c)

These commands can be employed for the problem in Example 6.3 as

>>a = [1 1 −1 0 0 0; 0 1 0 −1 −1 0; 1 0 0 0 1 −1;...
	 0 2 4 6 0 0;  0 0 0 −6 3 5;  8 −2 0 0 −3 0];
>>b = [0 0 0 10 −8 0]’;
>>[l,u,p] = lu(a);
>>y = l\(p*b);
>>x = u\y

This yields the results

x = 
  0.0514
  0.6635
  0.7149
  0.9689
  −0.3054
  −0.2541

which are identical to the results from the Gauss–Jordan method presented earlier. 
Similarly, three linear equations given by

>>a = [3 5 1;1 4 2;2 2 3];
>>b = [16;15;15];
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can be entered and the preceding L U decomposition used to obtain the solution as

x = 
  1.0000
  2.0000
  3.0000

6.4.3  ​Crout’s Method

In Crout’s method, Gaussian elimination is written in a more compact form, using 
the following decomposition. Then, the recursive relations for the matrix elements 
are obtained using matrix algebra.
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From the above decomposition, the product rule of the determinants may be 
employed to obtain

	 Det Det Det( ) ( ) ( )A L U= 	 (6.47)

For independent equations, the determinant of matrix A is nonzero, as discussed in 
Section 6.1. Therefore, the determinant of matrix L is also nonzero. Since L is a lower 
triangular matrix, its determinant is the product of its diagonal elements. This implies 
that if Det(L) is nonzero, all the diagonal elements lii of this matrix are nonzero. It is 
shown below that, if lii and a11 are nonzero, L and U matrices exist and their elements 
can be determined uniquely.

To solve a system of linear equations by Crout’s method, we write A and U as 
augmented matrices of the form
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Recursive formulas for lij and uij may be developed by application of matrix 
multiplication to the above equation. Therefore,

	
l a l u a l u a l u an n11 11 11 12 12 11 13 13 11 1 1 1 1= = = =+ +, , , , , ,…

which gives

	 l a i ni i1 1 1 2= =for , , ,… 	 (6.49a)
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(6.49b)

Similarly,

	 l u l a u l a21 12 22 22 31 12 32 32+ = + =,

or

	 l a l u l a l u22 22 21 12 32 32 31 12= − = −, 	 (6.49c)

Also,

	 l u l u a l u l u a21 13 22 23 23 21 14 22 24 24+ = + =,

or
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(6.49d)

Therefore, we may proceed as given above to obtain all the elements of the matri-
ces L and U. General equations may also be developed for lij and uij as follows:

	 l a i ni i1 1 1 2= =for , , ,… 	 (6.50a)
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We can easily verify that these general equations yield the elements of the two 
matrices, given by Equations 6.49, by employing the corresponding values of i and j. 
Also, note from the above relations that if a11 and lii are nonzero, the two matrices 
exist and can be uniquely determined. As shown earlier, the diagonal elements lii are 
all nonzero if matrix A is nonsingular.

It is evident from the recursive formulas given for lij and uij, in Equation 6.50, that 
the first column of L and the first row of U are determined first. Then the second 
column of L is determined from the third equation, and the second row of U from the 
fourth equation. We then proceed to the third column of L and the third row of U, and 
continue this process until both matrices are determined. The unknowns x1, x2, . . ., xn 
are determined by back-substitution, as before, from
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(6.51)

The main advantage of compact methods, such as Crout’s method outlined above, 
is that a smaller number of arithmetic operations are needed, as compared to those 
for the Gaussian and the Gauss–Jordan elimination methods. Besides requiring less 
computing time, it also results in smaller round-off error. The algebra for determin-
ing lij and uij may be carried out in double precision for greater accuracy and then 
rounded off to single precision to reduce computer storage. This limited use of dou-
ble precision is not possible in regular elimination methods, which would then 
require all operations and storage to be done in double precision. Since several ele-
ments in the L and U matrices are 1 or 0, considerable reduction in computer storage 
may be accomplished by storing both the matrices in the storage locations for the 
original augmented matrix. Then both lij and uij are termed aij, and the general equa-
tions may be suitably modified. The first equation, Equation 6.50a, is automatically 
satisfied. For the other elements, the old aij values are replaced by new ones, as com-
putation proceeds. Figure 6.9 shows the algorithm for Crout’s method, in terms of a 
flow chart.

Other methods based on matrix decomposition and factorization have been devel-
oped. For symmetric matrices, which often arise in many engineering problems such 
as those related to the analysis of structures, an important method for factorization is 
Cholesky’s method. This method is based on finding a lower triangular matrix L such 
that

	 A LL= T 	 (6.52)

where LT is the transpose of the matrix L. This factorization is possible for matrices 
that are symmetric and positive definite, a necessary and usually sufficient condition 
for which is that the eigenvalues of the matrix (Section 6.7) be positive. These prop-
erties of matrices are discussed in most books on matrices, such as Reiner (1971) and 
Bronson and Costa (2008). Once L has been determined, one obtains the solution xi 
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by computing the first unknown x1 directly from the resulting linear equation and the 
remaining by substitution of the computed values of the preceding unknowns into 
the reduced equations, with increasing i. The Cholesky decomposition requires about 
(l/6)n3 operations, instead of (l/3)n3 needed for the Gaussian elimination.

Thus, matrix decomposition methods for solving systems of linear equations are 
very efficient. However, the computer programming is generally much more involved 
than the elimination methods, such as Gaussian or Gauss–Jordan elimination. 
Consequently, engineers frequently use available programs in engineering applica-
tions, rather than develop the necessary software, for methods such as those 
discussed here. However, following the approach discussed earlier for elimination 

Start

Store coefficient
matrix A and

constant vector B

Stop

Enter coefficients
aij and bi

Input number of
Equations n

Output results
print X

Formulate augmented
matrix

Calculate elements
of L and U matrices
from Equation 6.50

Compute B from
AX and compare
with given values
to check accuracy

Use back substitution
to compute solution

vector X

FIGURE 6.9  Flow chart for the use of Crout’s method for solving a system of linear 
equations.
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methods, one may also write computer programs for these methods without too 
much difficulty. For further details on these methods, refer to Carnahan et al. (1969), 
James et al. (1985), and Atkinson (1989), listed among the references at the end of 
this book.

6.5  �NUMERICAL SOLUTION OF LINEAR SYSTEMS 
BY MATRIX INVERSION

In the methods discussed so far, we solved the system of linear equations, given by 
AX = B, by applying various elimination procedures directly to the given system, 
without finding the inverse A−1 of the coefficient matrix. However, if Det(A) ≠ 0, 
the  inverse A−1 exists, and the solution of the set of linear equations may be 
obtained as

	 X A B= −1 	 (6.5)

If a given set of equations is to be solved, it is generally advantageous to solve the 
system directly, without computing the inverse matrix A−1. However, as mentioned 
earlier, the matrix itself may be needed in the problem in order for us to study the 
behavior of the mathematical or physical system. Also, if several sets of equations 
with the same coefficient matrix A but different constant vectors B are to be solved, 
it is often more efficient to compute A−1 and to employ it with the different constant 
vectors B to obtain the corresponding solutions from Equation 6.5. Another impor-
tant consideration is that many computer systems have programs available for matrix 
inversion. These prepared programs may often be employed to solve systems of 
linear equations.

In MATLAB, the inverse of a given matrix a is obtained by the command

	 c a= inv( ) 	 (6.53a)

Then the solution to the given system of linear equations, ax = b is obtained by

	 x c b= * 	 (6.53b)

or, simply,

	 x a b= inv( )* 	 (6.53c)

Again, this approach may be applied to the examples presented earlier and results 
essentially identical to those presented earlier are obtained.
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6.5.1  ​Computational Procedure

In view of the preceding discussion, it is evident that matrix inversion, as an 
intermediate step in solving linear systems, may be desirable in some cases. To invert 
a square matrix, such as the coefficient matrix A, we use the following definition of 
the inverse A−1

	 AA I− =1 	 (6.54)

where I is the identity or unit matrix. Therefore, the inverse may be obtained by 
solving the equation

	 AX I= 	 (6.55)

where X assumes the role of the column vector of unknowns and I assumes that of 
the constant vector employed earlier. This equation may be solved by applying meth-
ods such as Gaussian elimination and Gauss–Jordan elimination. Then the matrix of 
the unknowns yields the inverse A−l. Matrix inversion requires about (4/3)n3 arithmetic 
operations, while only (l/3)n3 are needed for directly solving a set of linear equations 
by Gaussian elimination. Gauss–Jordan elimination is particularly suitable for matrix 
inversion, since it transforms the matrix A into the identity matrix I, which also con-
stitutes the right-hand side of Equation 6.54, and the inverse A−1 is obtained directly. 
This method is outlined below.

The augmented matrix C for Equation 6.55 is obtained as follows:
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(6.56)

Now, if Gauss–Jordan elimination is applied to this matrix, using Equation 6.36, 
until the a’s are replaced by the elements of an identity matrix, the identity matrix in 
the augmented matrix above is transformed into the inverse A−1. For illustration, let 
us consider the system of equations given by Equation 6.33. The augmented matrix 
C for matrix inversion is

	

C = −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 1 3 1 0 0

3 4 4 0 1 0

1 4 1 0 0 1

As before, the first row is divided by the pivot element, which is 2. Then it is multi-
plied by 3 and subtracted from the second row to yield the second row of the reduced 
matrix. The new third row is similarly obtained by subtraction of the normalized 
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first row from the third row. This process is continued, using Equation 6.36, to yield 
the following matrices during reduction:

	

1
1
2

3
2

1
2

0 0

0
11
2

1
2

3
2

1 0

0
7
2

5
2

1
2

0 1

1 0
16
11

4
1

− − −

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

,

11
1
11

0

0 1
1
11

3
11

2
11

0

0 0
31
11

16
11

7
11

1

1 0 0

−

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

,

and

−−

−

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

12
31

13
31

16
31

0 1 0
7
31

5
31

1
31

0 0 1
16
31

7
31

11
31
⎥⎥

As discussed before, we must employ partial pivoting, or row interchange, to avoid a 
zero pivot element or to increase the accuracy, by considering the pivot row and all 
the rows below it at each step and exchanging the rows to employ one with the largest 
pivot element as the pivot row for the elimination process.

Once the coefficient matrix has been transformed into I, the original identity 
matrix should become A−1. Therefore,

	

A− =

−

−

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1

12
31

13
31

16
31

7
31

5
31

1
31

16
31

7
31

11
31

We can easily verify that the above is true by multiplying the original matrix A by 
this matrix to obtain I.

	

2 1 3

3 4 4

1 4 1

12
31

13
31

16
31

7
31

5
31

1
31

16
31

7
31

11
31

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

− −

⎡

⎣⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

1 0 0

0 1 0

0 0 1

I

The solution vector X may now be obtained by applying Equation 6.5. Therefore,

	 X A B= =−1 1 1 2[ , , ]  
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Similarly, the solution of sets of equations with the same A but different B may be 
obtained easily once A−1 has been determined. For instance, if B is given as [11, 10, 
4], X is computed as

	 X A B= =−1 2 1 2[ , , ]  

6.5.2  ​Additional Considerations

Partial pivoting is generally incorporated in the program for matrix inversion. 
Besides avoiding problems with a zero or relatively small pivot element, it improves 
the accuracy of the computational results obtained. Complete pivoting, with both 
row and column interchanges, may also be employed to obtain the largest pivot ele-
ment at each step and thus increase the accuracy. Another improvement in matrix 
inversion by Gauss–Jordan elimination is obtained by storing the inverted matrix in 
the same location as the original matrix. The identity matrix is seldom stored, 
although its transformed columns, which finally give the inverse, are stored in place 
of the columns in the coefficient matrix, that have been reduced to the diagonal form 
by Gauss–Jordan elimination. Most commercially available computer programs for 
matrix inversion incorporate these features for accuracy and reduction in storage.

If the storage-saving feature, outlined above, is employed, the general equations 
for matrix inversion may be obtained from Equation 6.36. Since the transformed 
elements of the identity matrix are stored in place of the diagonalized columns, as 
the inversion proceeds, we obtain

	

ʹ = = ≠

ʹ = − ʹ
=

a
a
a

j n j m

a a a a
i

mj
mj

mm

ij ij mj im

for and

for 

1 2

1 2

, , ,

, , ,

…

… nn i m

j n i j m

a
a

a a a

mm
mm

im im mm

and

for each and

≠

= ≠

⎡

⎣
⎢

ʹ =

ʹ = − ʹ

1 2

1

, , ,…

ffor andi n i m= ≠1 2, , ,…
	

(6.57)

where the prime denotes the new elements which replace the old ones after each 
cycle. The first two equations are the same as those given earlier in Equation 6.36. 
The last two are obtained from the transformation of an appended identity matrix, 
whose elements are zero everywhere except at the diagonal, where they are unity. If 
partial pivoting is used, without storing the appended matrix, the matrix obtained 
after the reduction process must be reordered, in the same sequence as the row inter-
changes, in order to obtain the inverse of the original matrix. However, each row 
interchange during the inversion corresponds to a column interchange in the identity 
matrix. Therefore, in the reordering of the final matrix, column interchanges are 
performed corresponding to each row interchange in the computation process and in 
the reverse sequence, starting with the last row interchange; see James et al. (1985).



Numerical Solution of Simultaneous Algebraic Equations	 205

Example 6.4

Solve the equations obtained in Example 6.3 for the six currents in the electrical 
network of Figure 6.7a by matrix inversion.

SOLUTION

The Gauss–Jordan elimination method may be used for inverting the coefficient 
matrix A in the system of equations AX = B. Then the unknown X is obtained from 
the inverse of the matrix A−1 as X = A−1B. The augmented matrix consists of the 
coefficient matrix A with an identity matrix appended to it. Gauss–Jordan elimina-
tion is applied to the coefficient matrix so that it is reduced to an identity matrix. 
When this is accomplished, the original identity matrix is transformed into the 
inverse of the matrix A−1, since this amounts to solving the equation AY = I, where 
Y is the unknown matrix inverse.

The MATLAB function m-file given in Appendix B.8 for solving a system of 
equations by the Gauss–Jordan method may easily be modified to solve the 
given system by matrix inversion, as shown in Appendix B.9. The augmented 
matrix is formed from the given coefficient matrix a and the identity matrix I, 
and Gauss–Jordan elimination is performed on the augmented matrix to reduce 
the n × n coefficient matrix to an identity matrix, where n is the number of equa-
tions. The inverse of the matrix may be printed and the unknowns computed from 
the equation x = a−1b. In the function m-file, the matrix multiplication command 
in MATLAB is used, though commands may be written to achieve this as well 
without involving the multiplication software. The computed values, shown in 
Figure 6.10 are identical to those obtained in Example 6.3. The matrix a may be 
multiplied with its inverse to check whether the identity matrix is obtained. From 
the results obtained, it is found that A A−1 was very close to the identity matrix I. It 
can also be confirmed that the use of Equation 6.53c, in a MATLAB environment, 
yields the same results.

THE INVERSE OF THE MATRIX
    0.1243	 −0.0081	 0.1622	 0.0311	 0.0324	 0.0892
    0.3432	 0.3689	 0.1216	 0.0858	 0.0243	 −0.0581
−0.5324	 0.3608	 0.2838	 0.1169	 0.0568	 0.0311
    0.2405	 −0.3635	 −0.2297	 0.0601	 −0.0459	 −0.0014
    0.1027	 −0.2676	 0.3514	 0.0257	 0.0703	 −0.0568
    0.2270	 −0.2757	 −0.4865	 0.0568	 0.1027	 0.0324

THE SOLUTION TO THE EQUATIONS
    0.0514
    0.6635
    0.7149
    0.9689
−0.3054
−0.2541

FIGURE 6.10  Computed inverse of the coefficient matrix and the solution to the equations 
in Example 6.4, using matrix inversion.
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6.6  ​ITERATIVE METHODS

In the preceding sections, we have discussed direct methods for solving a set of simul-
taneous linear equations. These methods are appropriate for a small number of equa-
tions, typically fewer than 20, if the coefficient matrix A is dense. The main limitation 
arises from the round-off error, which is incurred in each computation and affects the 
overall accuracy of the solution. The tridiagonal system is a special case for which the 
computation effort involved is much smaller than that for a general matrix. Thus, for 
the tridiagonal case, many more equations may be solved while the desired accuracy 
level is preserved. Direct methods provide the solution in a finite number of steps, 
and, except for the round-off error, the solution is exact. As seen earlier, MATLAB is 
particularly convenient for the direct solution of linear systems. However, for a large 
number of equations, typically on the order of several hundred, iterative methods, 
which start with an assumed solution and iterate to the desired solution of the system 
of equations, within a specified convergence criterion, are often more efficient.

Large sets of linear equations are generally sparse, and iterative methods, which 
consider only the nonzero coefficients in the computation, use this sparseness advan-
tageously. Moreover, the round-off error after each iteration simply results in a less 
accurate input for the next iteration. Therefore, the resulting round-off error in the 
numerical solution is only what arises in the computation for the final iteration. The 
error does not accumulate as in direct methods. However, the solution is not exact but 
is obtained to an arbitrary, specified, convergence criterion.

6.6.1  ​Basic Approach

Let us consider the set of linear equations given by Equation 6.2. These equations 
may be rewritten, by solving for the unknowns xi; as follows:

	

x
b a x a x a x

a

x
b a x a x a x

a

x

n n

n n

1
1 12 2 13 3 1

11

2
2 21 1 23 3 2

22

=
− − − −

=
− − − −

�

�

�

nn
n n n n n n

nn

b a x a x a x
a

=
− − − − − −1 1 2 2 1 1� ,

	

(6.58)

This system may be written more concisely as

	
x

b a x

a
i ni

i ij j
j j i

n

ii

=
−

== ≠∑ 1 1 2, , , ,for …
	

(6.59)

We need initial guesses for the unknowns to start the iterative process in the 
above equations. If x x x xi n1

0
2
0 0 0( ) ( ) ( ) ( ), , , , ,… …  are taken as the initial values, the value 

of x1 after the first iteration, x1
1( ), is obtained from
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x

b a x a x a x
a

n n
1
1 1 12 2

0
13 3

0
1

0

11

( )
( ) ( ) ( )

=
− − − −�

Similarly,

	
x

b a x

a
i ni

i ij j
j j i

n

ii

( )

( )

, , , ,1

0

1 1 2=
−

== ≠∑
for …

	

(6.60)

The values obtained after the first iteration are then used for the next iteration. 
Thus, this iterative process may be written as

	
x

b a x

a
i ni

l
i ij j

l

j j i

n

ii

( )

( )

, , , ,+ = ≠=
−

=
∑

1 1 1 2for …
	

(6.61)

The superscript indicates the number of the iteration. This equation is also often 
written as

	 x F x x x x xi
l

i
l l

i
l

i
l

n
l( ) ( ) ( ) ( ) ( ) ( )[ , , , , , , ]+

− +=1
1 2 1 1… … 	 (6.62)

where the function Fi is obtained from Equation 6.61 and represents the relationship 
between an unknown xi and the other unknowns. The value of the unknown xi after 
l iterations, xi

l( ) , does not appear on the right-hand side for linear equations. However, 
a term containing xi

l( )  may be added in order to alter the convergence characteristics, 
as discussed in Section 6.6.5.

6.6.2  ​Jacobi and Gauss–Seidel Methods

The formulation for iteration given in Equation 6.62 is known as the Jacobi iterative 
method. To compute the values for a given iteration step, it employs the values from 
the previous iteration. Therefore, all the values are computed, using previous values, 
before any unknown is updated. This implies that computer storage is needed for the 
present iteration as well as for the previous one. For single-processor, or serial, com-
puters, a considerable improvement in the rate of convergence and in the storage 
requirements can be obtained by replacing the values from the previous iteration by 
new ones as soon as they are computed. Then only the values of the latest iteration 
are stored, and each iterative computation of the unknown employs the most recent 
values of the other unknowns. This computational scheme, known as the Gauss–
Seidel method, is used extensively for solving large systems of equations that fre-
quently arise in the numerical solution of differential equations.

Let us consider the use of the Gauss–Seidel method for computing the iterative 
values of the unknowns, starting with x1 and then successively obtaining x2, x3, . . ., xn.
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Then the second iteration for, say, x3, is obtained from

	
x

b a x a x a x a x
a

n n
3
2 3 31 1

2
32 2

2
34 4

1
3

1

33

( )
( ) ( ) ( ) ( )

=
− − − − −�

Here, the values of x1 and x2 are known after the second iteration, and the others are 
known only after the first iteration. Similarly, the (l + 1)th iteration for xi may be 
written as

	
x

b a x a x

a
ii

l
i ij j

l

j

i

ij j
l

j i

n

ii

( )

( ) ( )

, ,+

+

=

−
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(6.63)

or

	 x F x x x x xi
l

i
l l

i
l

i
l

n
l( ) ( ) ( ) ( ) ( ) ( )[ , , , , , , ]+ + +

−
+

+=1
1

1
2

1
1
1

1… … 	 (6.64)

This formulation, therefore, assumes that the computation of the unknowns xi starts 
with x1 and proceeds with increasing i until all the values are obtained for a given 
iteration. The Gauss–Seidel method repeatedly calculates the unknowns, replacing 
the values from the previous iteration by new ones and thus requiring only one com-
puter storage space for each unknown. Programming is also simplified since the 
most recent value of each unknown is always employed in the computations. This 
iterative process will converge to the solution vector if the equations have certain 
characteristics, as discussed below. A better initial guess of the unknowns will also 
lead to faster convergence, if the process is convergent.

6.6.3  ​Convergence

The iterative computation of the unknowns is terminated when a specified conver-
gence criterion is satisfied. Generally, if the change in the value of each unknown 
from one iteration to the next is less than a given small quantity ε, convergence is 
assumed to have been achieved. The convergence criterion ε may be applied to the 
physical value of the unknown or to its normalized value. Therefore, the condition 
for convergence may be written as

	 | − | ≤ =+x x i ni
l

i
l( ) ( ) , , ,1 1 2ε for … 	 (6.65a)

or

	

x x

x
i ni

l
i
l

i
l

( ) ( )

( ) , , ,
+ −

≤ =
1

1 2ε for …
	

(6.65b)

The second form of the convergence criterion is more appropriate if an estimate of the 
magnitude of the unknown xi is not available and none of the unknowns is expected to 
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be zero. The choice of ε is arbitrary and may be taken as around 10−4 for the second 
form of the criterion, (Equation 6.65b), which specifies the maximum fractional change 
in each unknown from one iteration to the next. However, as discussed in Chapter 2, 
the dependence of the solution on the convergence criterion must be studied by varying 
ε so that the numerical solution obtained is essentially independent of the value cho-
sen. The convergence criterion may also be applied to a few important unknowns, 
instead of all xi, in order to reduce the computing time. Similarly, it may be applied to 
the sum of the absolute values or of the squares of the changes in all the unknowns 
between two successive iterations. With large systems of equations, such alternative 
forms of the convergence criterion are often employed to save computer time.

The conditions for convergence of the iterative process have been analyzed for the 
Jacobi and the Gauss–Seidel methods and presented in terms of the nature of the 
coefficient matrix A. Both of these methods have good convergence characteristics 
for diagonally dominant systems, that is, for systems in which each diagonal element 
aii is larger, in absolute value, than the sum of the magnitudes of the other elements 
in the row. Thus, if

	

| | | |
= ≠
∑a aii ij

j j i

n

>
1, 	

(6.66)

the system is said to be diagonally dominant, and convergence is guaranteed for 
linear systems. However, convergence is often obtained with weaker diagonal domi-
nance. These methods are particularly useful in the solution of large systems of linear 
equations that arise in the numerical solution of PDEs by finite difference or finite 
element methods. The equations obtained in these cases usually have diagonal domi-
nance, or conditions close to it, and the above iterative methods are convergent. With 
some modifications, these methods may also be employed for nonlinear equations, as 
discussed in Section 6.8.

6.6.4  An Example

In order to illustrate the Gauss–Seidel method, let us consider the following set of 
linear equations:

	

5 2 17

3 8

2 6 23

x y z

x y z

x y z

+ + =

+ + =

+ + = 	

(6.67)

This system is diagonally dominant, since the dominant coefficient in each equation 
is the diagonal element, which is also larger than the sum of the absolute values of 
the other coefficients. Therefore, the Gauss–Seidel iteration is convergent for these 
equations. The above equations are rewritten as

	
x

y z
y

x z
z

x y
=

− −
=

− −
=

− −17 2
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8
3

23 2
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, ,
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For the Gauss–Seidel method, the most recent values of x, y, and z are to be used 
in the iteration. If the starting values are arbitrarily chosen as x = 1, y = 1, and z = 1, 
the values for the first iteration are computed, by rounding off to three decimal dig-
its, as follows:

	

x
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z
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Similarly, the next four iterations are obtained as
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The exact solution of the above system of equations is x = 2, y = 1, and z = 3. 
Therefore, the iterative procedure converges rapidly to yield a solution, that is, within 
0.2% of the exact solution in only four iterations. The process will terminate after 
four iterations if ε in Equation 6.65b is taken as 0.02, and after five iterations if it is 
chosen as 0.002. Additional iterations may be needed for a still smaller value of ε, 
since changes in the fourth and higher decimal places may occur from one iteration 
to the next. If the Jacobi method is applied to the above system, the rate of conver-
gence is much slower. Therefore, the Jacobi method is seldom used on traditional or 
single-processor computers and is considered largely in order to study the conver-
gence characteristics of other iterative methods in terms of those of the Jacobi method. 
However, for multiprocessor, or parallel, computers, the Jacobi method is often more 
convenient and has faster convergence since the previous iteration is used in the com-
putations and all the equations may be considered independent of the others.

6.6.5  ​Relaxation Methods

The convergence characteristics of the Gauss–Seidel method can often be consider-
ably improved by the use of point relaxation, which is given by

	 x x xi
l

i
l

i
l( ) ( ) ( )[ ] ( )+ += + −1 1 1ω ωGS 	 (6.68)

where ω is a constant in the range 0 < ω < 2 and [ ]( )xi
l+1

GS is the value of xi obtained 
for the (l + 1)th iteration by using the Gauss–Seidel iteration equation, Equation 6.63. 
For ω > 2, the process is divergent. If 0 < ω < 1, the iterative scheme is known as suc-
cessive under-relaxation (SUR), and if 1 < ω < 2, the scheme is termed successive 
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over-relaxation (SOR). In the former case, the value for the (l + 1)th iteration is a 
weighted average of the value from the previous iteration and that obtained by the 
use of the Gauss–Seidel method for the present iteration. In SOR, the change in xi 
from one iteration to the next, in the Gauss–Seidel scheme, is multiplied by a factor 
between 1.0 and 2.0 to accelerate convergence. At the optimum value of the relax-
ation factor, ωopt, the convergence is much faster than that for Gauss–Seidel. The 
relaxation method may be written, using Equation 6.63, as
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(6.69)

It is obvious that the Gauss–Seidel method is obtained for ω = 1. In this case, xi
l( )  

drops out from the right-hand side. SUR is generally used for nonlinear equations 
and for systems that result in a divergent Gauss–Seidel iteration. SOR is widely used 
for accelerating the convergence in linear systems. However, the determination of an 
optimum value of the relaxation factor ω is often difficult and is generally done by 
trial and error. For some systems, it may be available from earlier studies or from 
analysis. If several similar systems are to be solved, it is generally worthwhile to 
obtain the optimum value of ω by trying various values, over the given range, and 
then use it in the computations. For further details on the use of point relaxation in 
engineering applications, advanced books on the numerical solution of differential 
equations, such as Ferziger (1998) and Jaluria and Torrance (2003), may be con-
sulted. The following example illustrates the use of Gauss–Seidel and SOR methods 
for solving a system of linear equations.

Example 6.5

Solve the problem discussed in Example 6.2 by means of the Gauss–Seidel itera-
tive procedure. Then modify the computer program to solve the problem by the 
SOR method. Vary the relaxation factor ω to study the effect of its value on the 
number of iterations needed for convergence.

SOLUTION

The system of equations to be solved is

	 − + + Δ − = =+ −T G x T T ii i i1
2 2

12 0 1 2 29[ ( ) ] , , ,for …

with

	 T0 = T30 = 100

The given system is rewritten as

	 T
T T

S
ii
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+
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=+ −1 1

2
1 2 29for , , ,…
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where

	 S = G(Δx)2 = (0.071)2 (1.0)2

Since T0 and T30 are given as 100°C, the equations for T1 and T29 become

	 T
T

S
1

2 100
2

=
+
+

	 T
T
S

29
28100

2
=

+
+

Therefore, the resulting system of equations can be solved by the Gauss–Seidel 
method to obtain the required temperature distribution.

The initial guess, or starting temperature distribution, is taken as T(I) = 0, for 
I = 1, 2, . . ., 29, where T(I) denotes Ti. Using the preceding equations, the tem-
peratures for the next iteration are computed and compared with the previous 
values to check for convergence. It is demanded that the absolute value of the 
difference between the two be less than the convergence criterion ε, that is, for 
convergence,

	 | ( ) | , , ,TO T ii i− ≤ =ε for 1 2 29…

where T represents the new values and TO the previous ones. If this difference for 
any value of i is greater than ε, the iterative process is repeated, taking the computed 
new values as the starting values for the next iteration. Once convergence has been 
achieved, we obtain the physical temperature TP by adding the ambient tempera-
ture of 20°C to the temperature difference T. Appendix B.10 gives the MATLAB 
program for this example, with x(i) representing the unknowns, for i = 1, 2, . . ., 6, 
xold (i) the previous iterative values, tp the physical temperatures and k the itera-
tion number. This program can be used to solve a given system of linear equations 
by the Gauss–Seidel method. In the MATLAB environment, the programming is 
particularly simple since x, xold and tp are vectors representing the temperature 
differences, previous values and physical temperatures. Thus, algebra can be used 
directly on these vectors to apply the algorithm.

The resulting numerical results in terms of the physical temperatures are shown 
in Figure 6.11 for three values of ε, 10−3, 10−4,  and 10−5. Only small differences in 
the computed values are observed in going from the smallest to the largest value. 
The total number of iterations increases from 454 to 741. A comparison with the 
results obtained in Example 6.2 for this tridiagonal system also indicates a small 
difference in the temperatures for the smallest value of ε. Thus, a value of 10−3 for 
ε may be used for this problem.

The computer program for the Gauss–Seidel method is clearly much simpler 
than that for Gaussian elimination in Example 6.1. If the system is tridiagonal, 
Gaussian elimination is preferable, since it takes less computer time and is gener-
ally more accurate. However, the Gauss–Seidel method is advantageous to use 
when the coefficient matrix is sparse, although not tridiagonal. Appendix B.11 
gives a general MATLAB program for the Gauss–Seidel method as a function 
m-file. The inputs needed for invoking this function file are the coefficient matrix 
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a, the constant vector b, the initial guess vector p, the convergence parameter ep 
and the maximum number of iterations max1. Though this function can be used to 
solve a system of linear equations by applying the Gauss–Seidel method, it does 
not use the sparseness of the matrix a as effectively as the program in Appendix 
B.10, which specifies only the non-zero elements of the matrix.

ε = 10−3 ε = 10−4 ε = 10−5

No. of iterations = 454 No. of iterations = 598 No. of iterations = 741
The Solution is: The Solution is: The Solution is:
120.0000 120.0000 120.0000
114.6502 114.6567 114.6573
109.7778 109.7905 109.7918
105.3584 105.3771 105.3789
101.3696 101.3940 101.3964
97.7916 97.8213 97.8243
94.6063 94.6410 94.6445
91.7978 91.8370 91.8409
89.3520 89.3952 89.3995
87.2567 87.3034 87.3080
85.5013 85.5509 85.5558
84.0770 84.1289 84.1340
82.9767 83.0303 83.0356
82.1949 82.2495 82.2549
81.7275 81.7826 81.7881
81.5723 81.6273 81.6328
81.7285 81.7827 81.7881
82.1968 82.2497 82.2549
82.9795 83.0305 83.0356
84.0806 84.1292 84.1341
85.5055 85.5513 85.5558
87.2614 87.3038 87.3081
89.3571 89.3957 89.3996
91.8030 91.8375 91.8410
94.6115 94.6415 94.6445
97.7964 97.8218 97.8243

101.3740 101.3945 101.3965
105.3620 105.3774 105.3790
109.7805 109.7908 109.7918
114.6517 114.6568 114.6573
120.0000 120.0000 120.0000

FIGURE 6.11  Computed physical temperatures at three values, 10−3, 10−4, and 10−5, of the 
convergence parameter ε.
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The computer program given in Appendix B.10 can easily be modified to apply 
the SOR method. The relaxation factor ω must be entered as a parameter, and the 
recursion formula becomes

	 T
T T
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T ii

l i
l

i
l

i
l( )

( ) ( )
( )( ) , , ,+ + −

+

=
+
+

⎡

⎣
⎢

⎤

⎦
⎥ + − =1 1 1
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2
1 1 2ω ω for … 229 	 (6.70)

This equation replaces the one given earlier for the Gauss–Seidel scheme. The 
modified program was employed for ω varying from 1.0 to 2.0. Figure 6.12 shows 
the dependence of the number of iterations on the relaxation factor ω, at ε = 10−3 
and 10−4. Note that the number of iterations at the optimum value, ωopt, is almost 
one-tenth that for Gauss–Seidel iteration. Clearly, SOR is a very efficient method 
if the optimum value of the relaxation factor is known. Appendix C.8 gives the 
Fortran computer for employing the SOR method for solving the system of linear 
equations in this example. The similarity between the MATLAB and Fortran 
programs for this problem is evident, though the advantages of MATLAB in matri-
ces and arrays, as well as in plotting, make it much easier to work in a MATLAB 
environment. Also, the logic presented in these programs may be employed for 
other high-level languages and computational environments.

6.7  ​HOMOGENEOUS LINEAR EQUATIONS

In many problems of engineering interest, such as those encountered in vibrating sys-
tems, stability analysis, and electrical circuits with alternating currents, the constant 
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FIGURE 6.12  Variation of the number of iterations needed for convergence with the relax-
ation factor ω, in the solution of Example 6.5 by the SOR method.
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vector B in the system of linear equations is zero, giving rise to a set of equations of 
the form AX = 0. The system of equations is then said to be homogeneous. A trivial 
solution, X = 0, exists for this system. However, nontrivial solutions may be obtained 
only if the determinant of the coefficient matrix A is zero, that is, Det A = 0. This 
occurs when all the equations of the set are not linearly independent, and one or more 
equations may be obtained from a linear combination of the others.

In considering simultaneous nonhomogeneous linear equations, we noted from 
Cramer’s rule that unique solutions may be obtained only if the determinant, Det A, 
is nonzero. However, in simultaneous homogeneous equations, the numerators in the 
solution by Cramer’s rule, given in Equation 6.4, are all zero, since the constant 
vector B is 0. Therefore, nontrivial solutions may exist only if the denominator, which 
is Det A, is also zero. However, unique values of the unknowns x1, x2, . . ., xn are not 
obtained in this case, since the solution vector X when multiplied by an arbitrary 
constant will also satisfy the system of homogeneous equations, AX = 0. Therefore, 
the desired solution establishes relationships between the unknowns, and the number 
of dependent equations in the set gives the number of unknowns that must be 
arbitrarily chosen to obtain the rest.

6.7.1  ​The Eigenvalue Problem

An important class of problems involving homogeneous equations is the eigenvalue 
problem, which is of considerable interest in engineering applications. Such prob-
lems occur, for instance, in the analysis of structures for critical buckling loads, in 
stress analysis for determining the principal normal stresses, and in the natural 
vibration of systems to determine the frequencies and the vibrational modes. The 
matrix equation for an eigenvalue problem is

	 ( )A I X− =λ 0 	 (6.71)

or

	 AX X= λ 	 (6.72)

where A is a known n × n matrix, X is the solution vector, and λ is an unknown 
constant. Nontrivial solutions to the above system of equations are obtained only for 
certain values of λ. These values are known as eigenvalues of the coefficient 
matrix A, and the solution vectors X corresponding to these eigenvalues are called 
the eigenvectors, which can be determined only to within a multiplicative constant. 
In a vibrating system, consisting of masses and springs, as shown in Figure 6.13, 
the  eigenvalues are the squares of the natural frequencies of vibration, and the 
eigenvectors give the displacements of the masses. This problem is discussed in 
Example 6.6.

From Cramer’s rule, it is evident that nontrivial solutions may be obtained 
only if

	 Det ( )A I− =λ 0 	 (6.73)



216	 Computer Methods for Engineering with MATLAB® Applications

This may be written as
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(6.74)

Expansion of this determinant results in a polynomial of order n in λ. This polyno-
mial, which is known as the characteristic polynomial of matrix A, may be solved 
by the methods discussed in Chapter 5 to obtain the eigenvalues, see Example 5.8. 
Once the eigenvalues have been obtained, one can determine the eigenvector corre-
sponding to each value by substituting the value in the given equations. If there is 
only one linearly dependent equation in the set of equations, one must assume the 
value of one unknown to obtain the corresponding values of the remaining unknowns. 
Similarly, if there are two dependent equations, the values of two unknowns need to 
be assumed, and so on. In many engineering problems, only one dependent equation 
arises, and, therefore, the value of only one unknown must be chosen. Textbooks on 
linear algebra, such as Williams (2004) and Anton (2010), may be consulted for fur-
ther details on eigenvalue problems.

The preceding procedure of expanding the determinant to obtain the characteris-
tic polynomial, which may then be solved for the eigenvalues, is computationally 
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FIGURE 6.13  A vibrating system consisting of four masses, denoted by m1, . . ., m4, and of 
five springs, whose spring constants are denoted by k1, . . ., k5. The displacements are denoted 
by x1, x2, x3, and x4, giving a four-degrees-of-freedom system.
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practical only for a small number of equations, typically up to four, and for sparse 
matrices. For somewhat larger systems, generally of the order of ten equations, one 
may obtain the characteristic polynomial by using the methods developed by 
Leverrier and by Faddeev; see Carnahan et al. (1969).

Since a polynomial with all real coefficients can have complex roots, complex 
eigenvalues may be obtained. However, in many physical problems, the coefficient 
matrix A is symmetric. It can be shown that all the eigenvalues of a symmetric matrix 
are real, which substantially simplifies the computational procedure. The solution of 
the eigenvalue problem for symmetric matrices is of considerable interest in engi-
neering problems and is discussed in Section 6.7.3. It may be pointed out here that 
even though the characteristic polynomial may be generated, by the methods of 
Leverrier and Faddeev, for systems containing as many as 25 or 30 equations, the 
solution of the polynomial is generally very involved, and the other methods outlined 
here are preferred to the root solving procedures of Chapter 5.

The eigenvectors may be obtained by substitution of the eigenvalues, one at a 
time, into the given system of equations. The equations thus obtained may be solved 
by the use of the Gauss–Jordan method. The method is applied to the matrix (A − λI), 
as outlined in Section 6.3, and the process carried out until the reduced matrix is 
such that a further application of the method is not possible due to all possible pivot 
elements being zero. If the system contains only one dependent equation, then the 
process stops with only the last column left to be reduced. The other columns contain 
only zeros and one. At this stage, only the independent equations are left, and, if an 
arbitrary value is given to one unknown, the other unknowns may be computed from 
the resulting nonhomogeneous equations. Similarly, if two dependent equations are 
present in the given set, the Gauss–Jordan method yields two unreduced columns. 
This requires choosing arbitrary values for two unknowns to obtain two linearly 
independent eigenvectors. Column interchanges, besides row interchanges, are fre-
quently employed in the process to avoid taking a pivot element, that is, zero. If a 
column interchange is employed, the components of the eigenvector corresponding 
to these columns must also be interchanged. Example 6.6 discusses a physical prob-
lem and the use of Gauss–Jordan elimination for determining the eigenvectors.

Example 6.6

For the natural vibration of the three masses, m, 2m, and m, connected by the 
four springs shown in Figure 6.14, determine the characteristic polynomial, the 
eigenvalues, which correspond to the natural frequencies of vibration, and the 

Wall Wall
k 2k

m 2m
2k k

m

x1 x2 x3

FIGURE 6.14  The vibrating mass and spring system considered in Example 6.6.
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eigenvectors, which give the amplitudes of motion of the masses. The spring con-
stants for the four springs are k, 2k, 2k, and k. The displacements of the three 
masses are defined by the coordinates x1, x2, and x3, respectively, as shown. Take 
k/m = 1.0.

SOLUTION

The extension in the first spring, from the left, is x1 and that in the second spring is 
(x2 − x1). Since the inward directed force due to the extension is given by a product 
of the spring constant and the extension, the net force acting on the first mass in the 
positive x1 direction is [2k(x2 − x1) − kx1]. Therefore, from Newton’s second law,

	 mx k x x kx��
1 2 2 1 1= − −( )

	 mx kx k x x��
1 1 1 22 0+ + − =( ) 	 (6.75a)

where ��x1 is the second derivative of x1 with respect to time t and is, thus, the accel-
eration of the mass. Similarly, for the other masses,

	 2 2 2 02 2 1 2 3mx k x x k x x�� + − + − =( ) ( ) 	 (6.75b)

	 mx k x x kx��
3 2 03 2 3+ − + =( ) 	 (6.75c)

From the theory of vibrations, the solution to the above equations may be taken as
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(6.76)

where X1, X2, and X3 are the amplitudes of motion and ω is the natural frequency 
in radians/second. If these equations are substituted in the equations of motion, 
Equations 6.75, we obtain the following system of linear homogeneous equations 
for k/m = 1.0:
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(6.77)

This system may be written in matrix form as

	 AX X= λ 	 (6.78)

where

	 λ ω= 2
	 (6.79)
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and
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(6.80)

A nontrivial solution of Equation 6.77 can be obtained only if the determinant 
of the coefficient matrix (A − λ) is zero. Therefore,

	

Det( )A − =

− −

− − −

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=λ

λ

λ

λ

3 2 0

1 2 1

0 2 3

0

	

(6.81)

We obtain the characteristic polynomial for this eigenvalue problem by expanding 
this determinant as

	 λ λ λ3 28 17 6 0+ − + = 	 (6.82a)

The roots of this polynomial equation may be determined by the root-solving 
methods given in Chapter 5. Using the search method to obtain the approximate 
location of the roots, followed by the Newton–Raphson method, we determine 
the eigenvalues, in s−2, as follows:

	 λ λ λ1 2 30 43845 3 0 4 56155= = =. , . , . 	 (6.82b)

In MATLAB, the roots can be obtained simply by specifying the polynomial and 
invoking the roots command.

To determine the eigenvectors corresponding to these eigenvalues, we sub-
stitute each eigenvalue in Equation 6.77 and obtain the ratios of the amplitudes. 
Then, if one of the amplitudes is taken as 1.0, the others may be determined. From 
symmetry, X1 = X3 and both may be taken as 1.0. Then X2 is determined for the 
three eigenvalues given in Equation 6.82b as, respectively,

	 X X X2 2 21 28078 0 0 78078= = = −. , , . 	 (6.83)

The problem may also be solved by applying the Gauss–Jordan method. Let us 
again consider the equations obtained for this problem for the first eigenvalue as
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(6.84)
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If Gauss–Jordan elimination is applied to the coefficient matrix of these equations, 
we obtain, after the first two steps,
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Therefore, further application of the Gauss–Jordan method is not possible. At this 
stage, two independent algebraic equations, containing the unknowns X1, X2, and 
X3, are obtained from the first two rows of the reduced matrix. Therefore, if X1 is 
taken as 1.0, X3 is obtained as 1.0, and X2 as 1.28077.

In many engineering problems, the set of n homogeneous equations contains 
(n − 1) independent equations for determining the n components of the eigen-
vector. An application of Gauss–Jordan elimination, with partial and complete 
pivoting, if necessary, reduces the system to a set of independent equations at 
the stage where further reduction is not possible. If two dependent equations 
are present, one must assume two components in order to determine the rest, 
and so on. Therefore, small systems of equations may be solved by root-solving 
methods followed by Gauss–Jordan elimination to determine the eigenvectors. 
Example 6.6 also illustrates the solution of homogeneous ODEs, as considered 
again in Chapter 9.

6.7.2  ​The Power Method

The power method is a frequently employed iterative procedure for determining the 
eigenvalues and the corresponding eigenvectors, particularly if the largest or the 
smallest eigenvalue is of interest. Intermediate eigenvalues may also be determined 
by gradually eliminating the eigenvalues already found. However, the round-off 
errors accumulate, leading to lower accuracy, and the process becomes more 
involved as the intermediate eigenvalues are successively determined. Therefore, 
the method is well suited mainly for finding the largest and the smallest eigenval-
ues. It has the advantages of a simpler computational procedure, as compared to 
several other methods discussed in Section 6.7.3, and of providing the eigenvector 
along with the eigenvalue.

6.7.2.1  ​Largest Eigenvalue
Let us first consider the iterative power method for finding the largest eigenvalue of 
the system given by

	 AX X= λ 	 (6.72)

The method starts with an initial estimate of the eigenvector, denoted as X(0). 
Usually, all the elements of the initial vector are taken as 1 unless a better estimate 
is available. The vector X(0) is multiplied by the coefficient matrix A to obtain the 
vector AX(0). This resulting vector is normalized by dividing each of its elements by 
any one element, generally chosen as the largest element for accuracy or as the first 
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element for convenience. The normalized vector is denoted as X(1). If the difference 
between the new vector X(1) and the old one X(0) is less than a chosen convergence 
criterion, the process is terminated. Otherwise, X(1) becomes the starting vector for 
the next iteration, and the process is repeated. When convergence has been achieved, 
the normalizing factor is taken as the largest component of the vector X. Then this 
is the largest eigenvalue λ1 and the normalized vector is the corresponding eigen-
vector. The convergence of the method depends on the initial vector X(0) and on the 
ratio r of the two largest eigenvalues. Convergence is slower if the two are close to 
each other in magnitude, that is, if r is close to unity. The dominance ratio r is 
defined as

	
r =

λ

λ
2

1 	
(6.85)

where λ1 is the largest eigenvalue in magnitude and λ2 is the next largest. Although the 
power method is particularly suitable for symmetric matrices, since the eigenvalues 
are all real in this case, it can also be used for nonsymmetric matrices. The 
convergence of the method to the largest eigenvalue be proved mathematically for 
symmetric matrices.

6.7.2.2  ​Smallest Eigenvalue
In several engineering problems, the smallest eigenvalue is of particular interest. For 
instance, designers are interested in the lowest frequency of the natural vibration of 
civil engineering structures, such as buildings and bridges, so that they can design 
the structures to avoid certain externally induced vibrations. The power method may 
be used to determine the smallest eigenvalue and the corresponding eigenvector by 
pre-multiplication of the original system, Equation 6.72, by the inverse A−1 of the 
coefficient matrix. Therefore,

	 A− 1 AX = λ A−1 X

Now, A−lA = I, and if both sides are divided by λ, the result is

	
HX X=

1
λ 	

(6.86)

where the inverse matrix A−1 is denoted as H. Therefore, if the power method is 
applied to Equation 6.86, the largest eigenvalue obtained will be 1/λ, which arises 
from the matrix H. This largest value of 1/λ corresponds to the smallest eigenvalue 
in magnitude. However, one must determine the inverse H of the matrix A in order to 
apply this method. Therefore, the procedure may not be practical for very large 
matrices.
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6.7.2.3  ​Intermediate Eigenvalues
Several procedures are available for obtaining the intermediate eigenvalues, lying 
between the smallest and the largest eigenvalues. Most of these methods gradually 
remove the known eigenvalues from the problem so that the method converges to the 
next eigenvalue. However, this procedure, known as deflation, is suitable if only a 
few eigenvalues are needed, since the growth of round-off error often severely 
limits the accuracy of the results. If the largest eigenvalue λ1 and the corresponding 
eigenvector X1 have been found for the given matrix A, a new matrix A may be 
formed in terms of the transpose X1

T  of the matrix, as

	
A A

X X
X X1

1 1

1 1

= −
λ1

T

T

( )

	
(6.87)

It can be shown that X X1 1
T  is a scalar and equal to the sum of the squares of the 

components of the X1 eigenvector. The matrix X X1 1
T  is a symmetric matrix of the 

same dimension as A. It can also be shown that A1 has the same eigenvalues and 
eigenvectors as A, except for λ1 which is replaced by zero. Therefore, if the power 
method is applied to A1, it will converge to the second largest eigenvalue λ2 and the 
corresponding eigenvector X2-. Similarly, the next largest eigenvalue A3 and the asso-
ciated eigenvector X3 may be obtained by applying the power method to a matrix A2, 
given as

	
A A

X X
X X2 1

2 2

2 2

= −
λ2

T

T

( )

	
(6.88)

The power method can be applied quite easily on the computer, particularly if 
only the largest eigenvalue is desired. For other eigenvalues, the techniques outlined 
here may be applied, although the method is rarely used if more than a few eigen-
values are needed. The rate of convergence can sometimes be accelerated by the 
addition of a constant to each diagonal element of the matrix. This shifts all the 
eigenvalues by a constant value and may change the dominance ratio favorably to 
accelerate convergence. However, the suitable amount of shift must be obtained by 
trial and error.  Over-relaxation or under-relaxation, similar to that discussed in 
Section 6.6, may also be used to achieve faster convergence. Again, the optimum 
value of ω for the fastest convergence must often be obtained by trying several val-
ues. Example 6.7 discusses the solution of an eigenvalue problem by the power 
method.

Example 6.7

For the vibrating system considered in Example 6.6, obtain the largest eigenvalue 
and the corresponding eigenvector, using the iterative power method.
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SOLUTION

The given system of equations is written as

	 AX X= λ 	 (6.78)

where λ and A are given by Equations 6.79 and 6.80. To use the power method, 
an initial guess for the eigenvector is taken as (1, 1, 1), and the coefficient matrix 
A is multiplied with this vector, employing the formula for matrix multiplication. 
The resulting vector is normalized with the largest component, which gives the 
first approximation to the largest eigenvalue of the system. The new vector is com-
pared with the starting vector. If the absolute value of the difference is larger than 
the convergence criterion ε, the new vector is taken as the starting vector for the 
next iteration. The process is continued until

	 | − | ≤ =X XO ii i( ) , ,ε for 1 2 3 	 (6.89)

where Xt is the ith component of the eigenvector after the present iteration and 
(XO)i is that after the previous iteration. At convergence, the normalizing factor is 
the largest eigenvalue, and the computed vector the desired eigenvector.

Appendix B.12 gives the MATLAB m-file for the Power method. It is particu-
larly simple because of the ease of defining and multiplying matrices. The initial 
guess is given and the iterative process is carried out till convergence is achieved, 
as specified in terms of a given convergence criterion. The results then yield the 
largest eigenvalue and the corresponding eigenvector, as shown in Figure 6.15.

The convergence parameter is taken as 10−3 here. Smaller values of the param-
eter were also considered, and a negligible difference in the solution was obtained. 
Similarly, other starting values were tried, and convergence was found to occur 
with essentially the same results for different values close to (1, 1, 1). Convergence 
was not achieved if values very far from these were taken, as expected. The con-
verged results, shown in Figure 6.15 are very close to those obtained analytically 
in Example 6.6.

The program may easily be used for other such eigenvalue problems. For 
instance, a system of six equations was solved by this program as follows:

>>x = [1;1;1;1;1;1];
>>a = �[2 3 4 2 −1 1;1 2 5 −2 2 1;2 −2 −3 4 3 1;2 5 3 1 1 2; ... 

2 1 −3 −2 3 2;1 4 2 5 2 -1];

THE LARGEST EIGENVALUE IS = 4.5613
THE EIGENVECTOR IS
X(l) = 1.0000
X(2) = −0.7808
X(3) = 1.0000

FIGURE 6.15  Computed results for the largest eigenvalue and the corresponding eigenvec-
tor for the vibrating system of Example 6.6 by the power method.
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and the results obtained were

THE LARGEST EIGENVALUE IS = 8.5963
THE EIGENVECTOR IS

0.9498
0.4225
0.5418
1.0000
0.0994
0.9298

Clearly, it is a fairly simple approach to obtain the largest or the smallest eigen-
value and the corresponding eigenvector.

6.7.3  ​Other Methods

There are several other methods that are available for the solution of eigenvalue 
problems. A brief outline is given here for completeness. Among the most important 
of these is Householder’s method, used in conjunction with the QL algorithm. This 
approach is applicable only to symmetric matrices. Householder’s method is used to 
convert an n × n symmetric matrix into a symmetric tridiagonal matrix. This form is 
convenient for matrix decompositions and transformations, since the number of 
operations for each such manipulation varies as n, rather than as n3, which applies for 
the full matrix. Once the tridiagonal form has been obtained, several techniques are 
available for finding the eigenvalues. The LR algorithm of Rutishauser (1958) decom-
poses the original symmetric matrix into a product of lower triangular and upper 
triangular matrices. The QR algorithm of Francis (1962) decomposes the matrix into 
a product of an orthogonal matrix and an upper triangular matrix. Using similarity 
transformations, which preserve the eigenvalues of the original matrix, the first algo-
rithm converges to a lower triangular matrix, and the second to an upper triangular 
matrix, with the desired eigenvalues in decreasing order of magnitude on the main 
diagonal. The decomposition in the LR algorithm may be done very efficiently by the 
use of Choleski decomposition, outlined in Section 6.4, if the matrix A is positive 
definite, which requires that all the eigenvalues be positive. The QR algorithm is 
generally more stable than the LR method and is often preferred. See Carnahan et al. 
(1969) and Hornbeck (1982) for details.

The QL method decomposes the matrix into the product of an orthogonal matrix 
and a lower triangular matrix. The method is particularly suited for tridiagonal 
matrices, such as those produced by Householder’s method. The eventual result of 
decomposition and transformation is a diagonal matrix, with the eigenvalues on the 
diagonal. In some engineering problems, such as those concerned with the solution 
of the differential equations that govern the stresses in a structure, the matrix that 
arises is tridiagonal in form, and the above algorithms may be used efficiently, with-
out the need of transformation by Householder’s method.

Nonsymmetric matrices are also of interest in engineering problems, and the 
methods discussed in the preceding subsections may be employed for these. Also, 
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the above approach for symmetric matrices may be modified to obtain the eigenval-
ues of an unsymmetric matrix. The application of Householder’s method leads to an 
upper triangular form with an additional band of elements adjacent to the main diag-
onal. This form, known as the Hessenberg form, may also be obtained by elimina-
tion methods. The LR or the QR algorithms may then be employed to obtain the 
eigenvalues. As mentioned earlier, unsymmetric matrices may have complex eigen-
values. The power method can be modified to deal with complex eigenvalues. For 
further details, see the treatment of eigenvalue problems by Hornbeck (1982) and 
Wilkinson (1988).

Before leaving this section, we mention the Jacobi method, which is a classic, 
although inefficient, method for finding all the eigenvalues and eigenvectors of a 
symmetric matrix by the use of orthogonal transformations, which preserve the 
symmetry as well as the eigenvalues. If Q denotes an orthogonal matrix, we wish to 
use a transformation of the form QT AQ to reduce the elements in the ith row and 
the jth column of the matrix to zero. However, the reduction of one element to zero 
often introduces nonzero elements at positions that have been previously converted 
to zero. The process is, therefore, an infinite one, and the matrix eventually tends 
toward a diagonal form. At convergence, the eigenvalues are obtained from the 
diagonal elements. Eigenvectors may also be obtained along with the eigenvalues 
by application of the reduction procedure to an identity matrix along with the given 
matrix. The columns of the resulting modified matrix are then the desired eigenvec-
tors. Various modifications of the Jacobi method, such as the threshold method, 
which eliminates elements larger than a given threshold value, have been devel-
oped. The Jacobi method is not efficient in terms of computing time, but it is often 
available in computer libraries and is frequently used because it is applicable to a 
wide variety of eigenvalue problems.

6.8  ​SOLUTION OF SIMULTANEOUS NONLINEAR EQUATIONS

So far, we have discussed the solution of systems of linear equations, considering 
both homogeneous and nonhomogeneous equations. However, in engineering 
problems, we are frequently faced with nonlinear equations, for which no direct 
methods are available and iterative procedures must be used. The solution of single, 
nonlinear algebraic equations, in order to find the roots, was discussed in Chapter 5. 
We are concerned here with the solution of a system of nonlinear equations. Such 
systems arise in a wide variety of problems. Thermal radiation from a heated body, 
for instance, varies as T 4, where T is the surface temperature. Material properties 
often vary nonlinearly with temperature and pressure. The forces acting on a 
moving particle or in a flow often have a nonlinear relationship with velocity. The 
iterative methods outlined for linear equations are often modified and employed for 
nonlinear equations. However, the methods discussed in Chapter 5 may also be 
considered for solving a system of nonlinear equations. An important method, 
which is used extensively for solving small sets of equations, is the Newton–Raphson 
method.
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6.8.1  ​Newton–Raphson Method

The Newton–Raphson method is based on Taylor series expansions of the functions 
f1, f2, . . ., fn of Equation 6.1. The function f1 may be expanded in a Taylor series about 
(x1, x2, . . ., xn), which represents an approximation to the solution. If only the first-
order terms are retained and if the exact solution ( , , , )x x xn1 2 …  is substituted for the 
unknowns, we obtain the relationship
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where the partial derivatives are evaluated at (x1, x2, . . ., xn). The exact solution is not 
known, but Equation 6.90 provides a method for improving the approximation to the 
solution. If the other functions, f2, f3, . . ., fn are similarly expanded about (x1, x2, . . ., xn) 
and the exact solution is substituted for the unknowns, as seen in Equation 6.90, a set 
of linear equations is obtained. Since ( , , , )x x xn1 2 …  is the solution vector, the func-
tions f x x xi n( , , , ),1 2 …  for i = l, 2, . . ., n, are all zero. In this set of linear equations, the 
unknowns are the change in xi, Δxi, where Δ = ʹ − ʹx x x xi i i i,  being the next approxima-
tion. Then, Δxi may be computed from the following:
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The functions and the derivatives are all evaluated at the approximate solution 
(x1, x2, . . ., xn). The matrix containing the derivatives is known as the Jacobian and 
its determination may be quite time-consuming if the number of independent vari-
ables is high. Since only linear terms were retained in the Taylor series expansion, 
the exact solution is generally not obtained by solving this system of equations. 
However, the next approximation to the solution may be obtained as
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where the superscript (l) represents the values after a given iteration and (l + 1) those 
obtained by solving Equation 6.91 for the next iteration.

Equations 6.92 provide an iterative method for solving the system of nonlinear 
equations given by Equation 6.1. An initial, starting, guess of the unknowns is taken, 
and the functions f1, f2, . . ., fn and the derivatives, needed in Equation 6.91, are evalu-
ated at these x values, denoted as x x xn1

0
2
0 0( ) ( ) ( ), , , .…  The set of linear equations is 

solved to obtain Δxi, which is then used to obtain the next iteration xi
( )1  from 

Equation  6.92. The process is continued until all the f ’s are close to zero or the 
unknowns do not change from one iteration to the next, within a specified convergence 
criterion.

The method may diverge if the initial guess is too far off from the exact solution. 
In physical problems, some prior information is often available on the nature of the 
functions and on the expected solution. This information may be used advanta-
geously in choosing the initial values. However, if no information is available, several 
trials, with different starting values, may be needed before the process converges. 
The partial derivatives are generally computed numerically, since the functions may 
be quite involved. This method is extensively employed in the numerical simulation 
of engineering systems. It is also used as a correction scheme for the solution 
of  boundary-value problems in ODEs, as discussed in Chapter 9. Because of the 
computational effort required for the evaluation of the derivatives, the Newton–
Raphson method is generally used when the system consists of only a relatively small 
number of nonlinear equations, typically less than ten. Other iterative methods, such 
as those based on the Jacobi and the Gauss–Seidel methods, are more suitable for 
large systems and are discussed below.

6.8.2  ​Modified Jacobi and Gauss–Seidel Methods

The system of nonlinear equations may be considered to be of the form given by 
Equation 6.1. These equations are rewritten, by solving for the unknowns x1, x2, . . ., 
xn, as follows:

	 x F x x x x i ni i i n= =( , , , , , ) , , ,1 2 1 2… … …for 	 (6.93)

Therefore, the unknown xi is retained on the right-hand side for nonlinear equations, 
since it would not, in general, be possible to solve for xi in terms of just the other 
unknowns because of the nonlinearity in xi. The nonlinearity may arise because 
transcendental equations are involved, because products of the unknowns are pres-
ent in the equations, or because xi, appears as xi

n , where n ≠ 1. Also, if x x xn1 2, , ,…  
represent the solution of the given system of equations, a rearrangement of Equation 
6.1 gives, at the solution,

	 x F x x x x i ni i i n= =( , , , , , ) , , ,1 2 1 2… … …for 	 (6.94)
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We may now develop an iterative procedure for solving the given set of nonlinear 
equations. Similar to the Jacobi method for linear equations, the recursion relation 
may be written from Equation 6.93 as

	 x F x x x x i ni
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i
l l

i
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n
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1 2 1 2… … …for 	 (6.95)

where all the unknowns are computed for the (l + l)th iteration using the known 
values from the previous iteration. We may also replace the unknowns by the new 
values as soon as they are computed. This procedure is similar to the Gauss–Seidel 
method for linear equations and is given by
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where x l
1

1+( )  is computed first followed by x l
2

1+( ) , and so on for increasing i. Therefore, 
the most recently computed values of the unknowns are used for evaluating the 
function Fi. The formulation for this method is similar to that for the successive 
substitution method discussed in Chapter 5. Therefore, this method is also some-
times known as the successive substitution method for solving a system of nonlinear 
equations.

6.8.3  ​Convergence

The convergence characteristics of nonlinear equations are not as well established as 
those for linear equations. A general theory for the iterative solution of nonlinear 
equations is not available, although the behavior of certain special sets of equations 
has been studied in detail. The equations may also yield multiple solutions, and one 
would then need information on the physical aspects of the problem in order to 
choose the correct solution. However, the solution of equations that characterize a 
physical problem usually results in only one physically realistic solution, and this 
solution is the one that is obtained most easily. The other solutions may be physically 
unacceptable and are usually not readily obtained when the system of equations is 
solved by the above methods.

We may use relaxation to alter the convergence characteristics of the iterative 
process. However, it is often difficult to predict the resulting behavior. Over-relaxation 
may even slow the convergence in some cases for nonlinear equations and accelerate 
it in others. SUR is particularly useful in obtaining convergence for nonlinear sys-
tems. From Equation 6.96, the relaxation method may be written as
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where 0 < ω < 1 for under-relaxation. Similarly, relaxation may be applied to the 
modified Jacobi method, Equation 6.95. For highly nonlinear equations, such as 
equations where the unknowns appear in powers substantially different from linear, 
or 1, and transcendental equations, quite small values of ω, such as 0.1 or smaller, 
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may be needed to obtain convergence. Convergence is strongly dependent on the 
nature of the equations, and very often several trials, with different starting values, 
are needed before convergence is achieved. Also, the modified Jacobi method is 
particularly suitable for parallel computer systems, since each equation may be con-
sidered independently.

Example 6.8

In the ammonia production system shown in Figure 6.16, a mixture of 90 moles/s 
of nitrogen, 270 moles/s of hydrogen, and 0.9 moles/s of argon, which is present 
as an impurity, enters the chemical plant and is mixed with the residual mixture 
crossing a bleed valve. In the chemical reactor, a fraction of the entering mixture 
combines to give ammonia, which is removed by condensation. A bleed of 23.5 
moles/s of the mixture is employed to avoid a buildup of argon, which adversely 
affects the reaction. The conversion efficiency of the reactor is 0.57exp(−0.0155 F1), 
where F1 is the argon flow rate in moles/s. This efficiency represents the fraction of 
the mixture that is converted to ammonia (Stoecker, 1989). When mass conservation 
is applied to the process, the following equations are obtained:
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FIGURE 6.16  The ammonia production system considered in Example 6.8.
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where F1 is the flow rate of argon entering the reaction chamber, F2 is the flow 
rate of nitrogen, and B and P are parameters defined above. Solve this system of 
nonlinear equations by the successive substitution method to obtain the flow rates 
and the amount of ammonia produced.

SOLUTION

This example presents a typical case of systems of nonlinear equations that often 
arise in the analysis of chemical reactors. The successive substitution method is 
often applied to solve the problem. However, the convergence is dependent on 
the sequence of equations solved, as well as on the initial guessed values. One 
particular solution process is outlined here.

The four unknowns are taken as F1, P, F2, and B. The starting value of B is arbi-
trarily chosen as 0.1, and the other quantities are computed in the sequence given 
by Equations 6.98. The total flow rate of the mixture entering the plant is denoted 
by C, where C = F1 + 4F2, since the flow rate of nitrogen is F2 moles/s and that of 
hydrogen is 3F2 mol/s. The amount of ammonia produced is denoted by D and is 
given by

	 D F F= × −2 0 572
0 0155 1. .e 	 (6.99)

since each mole of nitrogen gives two moles of ammonia, as seen from the chemi-
cal equation

	 N H NH2 2 33 2+ = 	 (6.100)

The convergence criterion may be applied to the total flow rate C or to B as 
follows:

	 C CO B BO− − ≤≤ ε or ε 	 (6.101)

where CO and BO are the values after the previous iteration and ε is the conver-
gence parameter.

The physical problem discussed here is evidently quite involved. However, 
the computer program, shown in Appendix B.13, is quite simple. It is based on 
the successive substitution or the modified Gauss–Seidel method outlined ear-
lier. The convergence parameter ε is denoted by ep and is taken as 10−7. It was 
ascertained that a still smaller value of ε did not significantly affect the numerical 
results, though larger values slightly changed the converged results. The results 
obtained after each iteration, for the flow rate of argon, the total flow rate, and 
the amount of ammonia collected, in moles/s, are indicated in Figure 6.17. The 
convergence is slow, partly because of the nature of the equations and partly 
because of the first-order convergence of this method. Convergence was not 
obtained for values of B very far from the chosen starting value of 0.1. Also, a 
change in the sequence of the computations performed resulted in divergence 
in some cases. If convergence is not achieved, under relaxation can be used to 
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improve the convergence characteristics. Also, the sequence of equations and 
the initial guess may be varied to obtain convergence. Such variations are com-
monly used for solving sets of nonlinear equations. Despite these problems with 
convergence, the successive substitution method is a much simpler method than 
the Newton–Raphson method, for nonlinear equations, and is widely used in 
engineering applications.

Example 6.9

For the physical problem described in Example 5.7, employ the Newton–Raphson 
method to solve the system of nonlinear equations, given by Equations 5.32 and 
5.33, to obtain the flow rate R and the pressure P.

ARGON	 TOTAL FLOW 	 AMMONIA
	 1.0000	 377.5205	 105.6579
	 6.3653	 621.9412	 158.9564
	11.6436	 708.7917	 165.8785
	14.4396	 749.7037	 167.5278
	15.8801	 770.5167	 168.1452
	16.6299	 781.3446	 168.4220
	17.0234	 787.0322	 168.5568
	17.2309	 790.0337	 168.6252
	17.3406	 791.6215	 168.6606
	17.3987	 792.4624	 168.6792
	17.4295	 792.9081	 168.6890
	17.4458	 793.1444	 168.6942
	17.4545	 793.2697	 168.6969
	17.4591	 793.3361	 168.6984
	17.4615	 793.3713	 168.6991
	17.4628	 793.3900	 168.6995
	17.4635	 793.3999	 168.6998
	17.4638	 793.4052	 168.6999
	17.4640	 793.4080	 168.6999
	17.4641	 793.4095	 168.7000
	17.4642	 793.4102	 168.7000
	17.4642	 793.4107	 168.7000
	17.4642	 793.4109	 168.7000
	17.4642	 793.4110	 168.7000
	17.4643	 793.4111	 168.7000
Iteration has converged
Converged results are
ARGON = 17.4643    TOTAL FLOW = 793.4111    AMMONIA = 168.7000

FIGURE 6.17  Convergence of the computed results for the solution of the system of nonlin-
ear algebraic equations in Example 6.8 by the successive substitution method.
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SOLUTION

The system of equations that govern the flow through a duct due to a fan, as given 
in Example 5.7, are
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To use the Newton–Raphson method, we take the two functions that are to be 
reduced to zero as
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The initial guesses for R and P and the convergence criterion ε are inputs to the pro-
gram, which is shown for MATLAB in Appendix B.14. In order to consider both the 
functions R1 and P1, the convergence criterion is applied to a parameter B, where

	 B R P= +1
2

1
2
	 (6.104)

Other choices are obviously possible, including considering functions R1 and P1 
separately.

The four partial derivatives, ∂R1/∂R, ∂R1/∂P, ∂P1/∂R, and ∂P1/∂P, are computed 
at the starting, guessed, values of R and P, employing analytical differentiation of 
the functions R1 and P1. These derivatives are denoted by rr, rp, pr, and pp, respec-
tively, in the program. The increments in R and P, ΔR, and ΔP, which are denoted 
by dr and dp, respectively, in the program, for the next iteration are then obtained 
from Equation 6.91, which gives
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The new values of R and P are determined from Equation 6.92. The iterative process 
is repeated until convergence is achieved, as indicated by B < ε. Figure 6.18 shows 
the results for the starting values of R and P taken as 2 and 100, respectively, and ε, 
or ep, taken as 10−4. For the same convergence criterion, the flow rate was obtained 
as 6.7320 m3/s in Example 5.7, indicating a close agreement with the present results. 
For smaller values of ε, the converged results were not significantly affected. Also, 
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convergence to the same results was obtained for a fairly wide range of starting 
values. It can be seen that convergence is very rapid, despite the considerable 
difference between the starting and the converged values. The convergence was 
much slower with the successive substitution method, as illustrated by Example 5.7. 
Due to its superior convergence characteristics, the Newton–Raphson method is 
the preferred method if the number of equations is small.

It must be noted that the two equations, Equation 6.105, for the given problem 
are solved directly without resorting to methods available for linear systems. These 
methods are needed if the number of independent variable is larger, typically 4 
or higher. Then the matrix of the derivatives, Equation 6.91, is determined at each 
step and the increments in each of the independent variables are calculated to 
advance to the next iteration. For the problem considered here as well, the matrix 
may be formed and the increments determined by solving the matrix equation. 
For instance, after the derivatives of the functions are obtained, the matrix may be 
formulated and the backslash operator employed to obtain the increments as

a = [rr rp;pr pp];
b = [−r1; − p1];

Enter the value of parameter r, r = 2
Enter the value of parameter p, p = 100
Enter the value of convergence parameter ep, ep = 0.0001
R = 9.8736	 P = 290.2550
R = 6.8644	 P = 338.1764
R = 6.7326	 P = 332.0233
R = 6.7321	 P = 332.0223
THE REQUIRED SOLUTION IS
The flow rate R = 6.7321  The pressure P = 332.0223

Enter the value of parameter r, r = 1
Enter the value of parameter p, p = 200
Enter the value of convergence parameter ep, ep = 0.0001
R = 7.2408	 P = 335.7523
R = 6.7342	 P = 332.1454
R = 6.7321	 P = 332.0223
THE REQUIRED SOLUTION IS
The flow rate R = 6.7321  The pressure P = 332.0223

Enter the value of parameter r, r = 0
Enter the value of parameter p, p = 300
Enter the value of convergence parameter ep, ep = 0.0001
R = 6.9444	 P = 343.6930
R = 6.7337	 P = 332.0180
R = 6.7321	 P = 332.0223
THE REQUIRED SOLUTION IS
The flow rate R = 6.7321  The pressure P = 332.0223

FIGURE 6.18  Numerical results from the solution of the system of nonlinear equations of 
Example 6.9 by the Newton–Raphson method.
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dd = a\b;
dr = dd(1);
dp = dd(2);
r = r + dr;
p = p + dp;

This approach can thus be extended to cases where the number of indepen-
dent variables is larger than two.

6.9  ​SUMMARY

The solution of simultaneous linear and nonlinear algebraic equations is considered 
in this chapter. Several methods are discussed, and their advantages over other meth-
ods and their applicability to the various types and systems of equations that arise in 
engineering problems are indicated. The choice of the method for the solution of a 
given system depends on whether the equations are linear or nonlinear and on whether 
they are homogeneous or nonhomogeneous. It also depends on the number of equa-
tions to be solved and the nature of the equations, particularly the sparseness of the 
coefficient matrix. The selection of the method for a given situation is also often influ-
enced by the need to determine other quantities, such as the inverse or the determi-
nant of the coefficient matrix, besides the unknown vector X. Similarly, several 
systems of equations with the same coefficient matrix but different constant vectors 
may have to be solved. This additional consideration is often an important factor in 
the selection of the method. In several cases, the available software in the computer 
library may also make a given method more attractive than the others. MATLAB is 
particularly well suited for solving systems of equations because of its inherent advan-
tages in matrix algebra. Linear systems can be solved very easily by matrix inversion, 
decomposition and matrix manipulation in MATLAB. These approaches can also be 
used for simplifying the solution of nonlinear and homogeneous equations.

For linear, nonhomogeneous equations, the methods discussed here include 
Gaussian elimination, Gauss–Jordan elimination, Crout’s method, matrix inversion, 
and iterative methods. Gaussian elimination is the simplest direct method, in terms 
of computer programming, and is appropriate for a small number of equations, typi-
cally of the order of 20 or less, because of the round-off error. However, if the system 
is tridiagonal, this method may be used advantageously for several hundred equa-
tions without significant loss of accuracy due to round-off error. In the finite differ-
ence solution of ODEs and PDEs, tridiagonal systems are often obtained, and 
Gaussian elimination (TDMA) is the preferred method. If many systems that have 
the same coefficient matrix A but different constant vector B are to be solved, Gauss–
Jordan elimination may be used advantageously, since all systems are solved in one 
elimination process. Similarly, matrix inversion determines A−1, which is the same 
for all the systems, and the solution X is obtained simply by multiplication of the 
inverse with the constant vector, that is, X = A−1B. This approach is very easily 
applied in MATLAB to solve linear systems by using the available software.

Crout’s method and other compact methods based on decomposition of the matrix 
A are generally more efficient than elimination methods. The round-off error is also 
less since the number of operations is smaller than that for Gaussian elimination. 
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Computer programming is somewhat more involved. However, because of their 
advantage over elimination methods in computing time, compact methods have 
become quite popular in recent years. Again, matrix decomposition can be conve-
niently and efficiently applied in MATLAB by using the available software.

Iterative methods, such as Jacobi, Gauss–Seidel, and relaxation methods, are par-
ticularly suitable for large systems of equations, typically of order 100 or larger, and 
for sparse coefficient matrices. The round-off error in the solution is due only to the 
error that arises in the final iteration. If the optimum value of the relaxation factor ω 
is known, the SOR method generally requires less computing time than most direct 
methods. The optimum value ωoρt is usually not known, and several values may have 
to be tried to determine it numerically. The Jacobi method is seldom used, since it 
requires greater computer storage and computational effort, on traditional or single-
processor computers, than the Gauss–Seidel method, which remains a popular 
choice, along with SOR, for solving large systems of equations. These methods, with 
some modifications, are also suitable for nonlinear equations, which generally can-
not be solved by direct methods. Therefore, the successive substitution or the modi-
fied Gauss–Seidel method is frequently used. Relaxation may also be used in this 
case, but the effect of relaxation on convergence is often unpredictable in nonlinear 
equations. SUR is commonly used to achieve convergence in nonlinear equations. 
For a small number of equations, typically less than 10, the Newton–Raphson method 
is preferable since its convergence is more rapid.

The solution of linear, homogeneous equations requires methods quite different 
from those for nonhomogeneous equations. The eigenvalue problem is discussed in 
detail. For a small number of equations, the characteristic polynomial may be solved 
to obtain the eigenvalues, and the Gauss–Jordan method may be applied to deter-
mine the corresponding eigenvectors. The power method, which is an iterative 
method for determining the largest eigenvalue and the related eigenvector, may be 
used for moderately sized systems. The smallest eigenvalue can also be determined 
easily. However, intermediate eigenvalues can be obtained accurately if only a few of 
them are desired, since the round-off error accumulates as these are successively 
determined. The Jacobi method is a classical iterative method that yields all the 
eigenvalues and the eigenvectors of symmetric matrices by obtaining the matrix in a 
diagonal form. This method is frequently employed, even though it is quite ineffi-
cient, because the software is available on many computer systems. The most effi-
cient method for large matrices is Householder’s method used in conjunction with 
the QL algorithm. The former converts a symmetric matrix into a tridiagonal form. 
Various methods, such as the QL algorithm, are available for extracting the eigenval-
ues from a tridiagonal matrix by the use of decompositions and transformations.

PROBLEMS

	 6.1.	� Compare the Gaussian elimination and Gauss–Jordan elimination 
methods for solving a system of linear equations. Which one is more 
accurate? Which one is more efficient? Indicate the advantages, if any, 
of the latter method over the former.

	 6.2.	� Draw the flow chart for solving a system of linear equations by 
Gaussian elimination.
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	 6.3.	� Consider the electrical network shown and write down the algebraic 
equations for determining the four loop currents indicated. Solve this 
system of linear equations by Gaussian elimination. Check the results 
by also solving these equations employing the backslash operator in 
MATLAB.

I1 8 Ω6 Ω

5 Ω

10 Ω4 Ω

4 Ω3 Ω

12 V

6 V

12 V

I2

I3
I4

	 6.4.	 a.	� If the 3 Ω resistance in the network for Problem 6.3 is replaced by 
an open circuit, resulting in only three loops, compute the three 
loop currents by the Gaussian elimination method. 

			   b.	� If the currents through the remaining six resistances are denoted 
by I1, I2, . . ., I6, write down the six linear equations that govern 
these currents. Compute their values using Gaussian elimination, 
and compare the results with those for the loop currents in the first 
part of the problem.

	 6.5.	� A third-order polynomial of the form y = Ax3 + Bx2 + Cx + D is to be 
fitted to four time-velocity data points. At time x = 0, 1, 2, and 3 s, the 
velocity is measured as 7, 14, 29, and 58 m/s. Using Gauss–Jordan 
elimination, find the curve that passes through these points. Also, 
solve the problem by employing the backslash operator in MATLAB 
and compare the results with those obtained earlier.

	 6.6.	� A fourth-order polynomial passes through the five points for which 
the independent and dependent variables, x and y, respectively, are 
given as (−2, 37), (−1, 7), (0, 5), (1, 13), and (2, 61). Find the polyno-
mial by any suitable method. Here, x represents the spatial location 
and y the species concentration in a chemical reactor.

	 6.7.	� Six data points are obtained in the calibration of a velocity-measuring 
device. At velocities of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 m/s, the voltage 
signals from the instrument are obtained as, respectively, 1.2, 1.74, 
2.63, 3.99, 6.04, and 9.1 volts. Find the fifth-order polynomial that 
passes through these points. Also, solve the problem by employing the 
matrix inversion command in MATLAB and compare the results with 
those obtained earlier.

	 6.8.	� For the physical problem described in Example 6.2, take the tempera-
ture at the left face as 200°C and that at the right face as 20°C. Write 
down the resulting tridiagonal system of equations, and obtain the 
solution by Gaussian elimination.
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	 6.9.	� Derive the recursion formulas for solving a tridiagonal system of 
equations by Gaussian elimination.

	 6.10.	� Write a MATLAB script file to compute the magnitude of an n × n 
determinant by Gaussian elimination, where n can be up to 10. Using 
this program, compute the magnitudes of the determinants of the fol-
lowing matrices that arise in the dynamic analysis of structures:

	

1 2 1 0

3 2 1 0

2 1 1 3

0 1 2 0

2 0 3 1

3 1 2 2

1 0 2 4

3 2 1 2

−⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

− −

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

and

⎦⎦

⎥
⎥
⎥
⎥

	 6.11.	 A system of linear equations is given as follows:

	
x x x x

x x x x

x x x x

x x

1 2 3 4

1 2 3 4

1 2 3 4

1 2

2 2 3 5

5 3 5 13

3 4 6

2 3

− + + =

+ − − =

− + + − = −

+ − xx x3 42 18− =

			�   Determine whether all the equations in this set are independent, using 
a computer program as well as matrix methods in MATLAB.

	 6.12.	� Solve the following system of linear equations by the Gauss–Jordan 
method, to indicate the basic procedure involved:

	
2 2 3 15

3 10

3 2 7

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

+ + =

+ + =

− + =

	 6.13.	� Using the Gauss–Jordan method with partial pivoting, invert the 
matrices given in Problem 6.10. Also, multiply the inverse A−1 with 
the corresponding matrix A, for the two cases, and compare the values 
obtained with the identity matrix. Comment on the difference, if any, 
between the two. Also, use the inv(A) command in MATLAB to solve 
this problem and compare the results with those obtained earlier.

	 6.14.	� Find the currents in the three resistances located on the three sides of 
the triangle in the network shown. The voltages shown at the ends are 
the positive voltages imposed at these points. Use matrix inversion to 
solve this set of equations, using both a script file and the inv(A) com-
mand in MATLAB.

8 Ω

9 Ω

4 Ω

2 Ω

6 Ω

10 Ω

20 V

10 V

5 V
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	 6.15.	� For the electrical network shown, obtain the governing set of linear 
equations using the voltage drops across the resistances as unknowns. 
Use Crout’s method to solve this system of equations. Also solve the 
system by Gaussian elimination, and compare the accuracy obtained 
by the two methods.

4 Ω 4 Ω 2 Ω

2 Ω

5 Ω 3 Ω 6 Ω

2 Ω 1 Ω

25 V

	 6.16.	� Solve the following system of linear equations using Gaussian elimi-
nation and also Gauss–Jordan elimination, both being employed with 
and without partial pivoting:

	
x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

2 4 18

2 3 5 18

4 14

+ + =

+ − = −

− − = −

			�   Compare the results obtained with each other and with the analytical 
solution. Does pivoting improve the accuracy of the results?

	 6.17.	� An industrial organization produces four items, x1, x2, x3, and x4. A 
portion of the amount produced for each is used in the manufacture 
of other items, and the net product is sold. The balance between the 
output and the production rate, resulting from the various inputs, 
gives rise to the following four equations, corresponding to the four 
items:

	

2 0 6 64

5 2 0 0 37

0 7 2 2 66

0

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

x x x x

x x x x

+ + + =

+ + + =

+ + + =

.

. .

.

.. .x x x x1 2 3 40 8 9 104+ + + =

			�   Using Gauss–Jordan elimination, with pivoting, solve this set of equa-
tions. Also, use Crout’s method and compare the results obtained with 
those from the former method. Comment on the difference between 
the two methods. Check the results obtained by also solving the prob-
lem using the lu matrix decomposition command in MATLAB.

	 6.18.	� Compute the magnitude of the determinant of the coefficient matrix 
of the following system of equations to determine whether it is a sin-
gular matrix.

	
3 7 6 15

3 2 27

9 5 6 51

x y z

x y z

x y z

+ − = −

− + =

+ − =
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			�   What can you say about the given system on the basis of the computed 
value? How will you solve such a system?

	 6.19.	� Using the power method, determine the largest eigenvalue and the 
corresponding eigenvector of the following matrices.

	

8 4 5

6 10 3

8 6 20

10 5 8

5 40 6

8 10 20

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and

			�   Vary the convergence criterion ε, applied to the eigenvector, from 
10−4 to 10−1, and study the resulting effect on the number of iterations 
needed for convergence, starting with an initial guess of the eigenvec-
tor as (1, 1, 1).

	 6.20.	� Solve the following equations, giving at least three complete steps, by 
the Gauss–Seidel method:

	
2 8 3 27

3 5 22

6 2 14

x y z

x y z

x y z

+ + =

+ + =

+ + =

			�   Do you expect the numerical scheme to converge? Justify your answer.
	 6.21.	 Consider the following diagonally dominant system of equations:

	
8 2 29

9 34

2 3 7 48

x y z

x y z

x y z

+ + =

+ + =

+ + =

			�   Using the Jacobi method and also the Gauss–Seidel method, solve 
this system. Compare the number of iterations needed for convergence 
in the two cases, if the convergence criterion ε is taken as 10−3 and 
applied to the computed value of the unknowns.

	 6.22.	� Solve the system of equations in the preceding problem by the LU 
decomposition method, using the lu command in MATLAB. Print the 
solution from the LU decomposition method and also print the upper 
triangular matrix obtained. If the first and third equations were inter-
changed, would you expect the Gauss–Seidel iteration to converge?

	 6.23.	� Find the optimum value ωoρt for fastest convergence, if the SOR 
method is employed for the system of equations given in Problem 6.21. 
Plot the number of iterations to convergence against the relaxation 
factor ω and discuss your findings.

	 6.24.	� The temperature distribution in the square region shown is governed 
by the Laplace equation, discussed in Chapter 10. The finite difference 
approximation to this equation yields a system of algebraic equations 
given by

	 T
T T T T

i j
i j i j i j i j

,
, , , ,=
+ + ++ − + −1 1 1 1

4
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			�   where i is the number of the row and j is the column in which a grid 
point is located. For the nine points shown, obtain nine linear equa-
tions for determining the temperatures at these points. Solve this sys-
tem by the Gauss–Seidel method. Note that the temperatures at the 
boundaries are given and are used in the equations for all the tempera-
tures, except for the one at position number 5. Also, using the inv(A) 
command in MATLAB, solve this problem and compare the results 
with those obtained earlier.

21 3

54 6

87 9

20°C50°C

40°C

100°C

	 6.25.	� Solve the preceding problem if the bottom surface is at a temperature 
of 1.0, while the others are at 0.0.

	 6.26.	� Using the Gauss–Seidel iterative method, solve the following system 
of equations:

	

8 2 3 22

2 6 12

2 10 2 20

3 3

1 2 3 4

1 2 3 4

1 2 3 4

1 2

x x x x

x x x x

x x x x

x x

− − + =

+ − + =

+ + + =

− ++ + =2 9 323 4x x

			�   Calculate the results for three tolerance values, 0.1, 0.01, and 0.001. 
Discuss the effect of the tolerance on the number of iterations and on 
the numerical solution. Also, solve the equations by using MATLAB 
commands for matrices. Compare the results from the two methods.

	 6.27.	� Find the optimum value ωoρt of the relaxation factor for solving the 
system of equations in preceding problem by the SOR method, and 
compare the number of iterations to convergence with that for the 
Gauss–Seidel method.

	 6.28.	� The following three linear equations describe the mass balance of an 
engineering system, with X, Y, and Z as design variables.

	 X − 5.7Y + 4.2Z = 14.7
	 −11X + 1.1Y − 7.6Z = −81.2
	 −2.2X − Y + 10.7Z = 90.5

			�   Find X, Y, and Z using the Gaussian elimination method. Also, set up 
the equations for the Gauss–Seidel method and discuss if the scheme 
is expected to converge (Do not actually solve the problem by this 
method).
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	 6.29.	 A system of linear equations is given as

	 6x + 2y + z + 2p = 15.4
	 4y + 2z + p = 12.2
	 x + 5z + 3p = 17.6
	 2y + 3z + 8p = 26.6

			�   where x, y, z, and p are the unknowns. Write a script-m file to do the 
following:

		  a.	� Solve the system of equations by the Gauss–Seidel iterative 
method to obtain x, y, z, and p. Print the solution obtained.

		  b.	� Solve the system of equations by the LU decomposition method, 
using the lu command in MATLAB.

		  c.	� Print the solution from the LU decomposition method and also 
print the lower and upper triangular matrices obtained.

		  d.	 Give the value of the determinant of the coefficient matrix.
		  e.	� In Gauss–Seidel, what would you expect if the first equation is 

solved for z, instead of x, the second equation for p, third for x and 
fourth for y?

	 6.30.	� The mass balance for three items x, y, and z in a chemical reactor is 
governed by the following linear equations:

	 4.8x + y + 2.5z = –1.62
	 2.2x + 4.5y + 1.1z = 11.14
	 −2.1x − 3.1y + 10.1z = 15.57

			�   Solve this system of equations by the Gauss–Seidel iteration method to 
obtain the values of the three items. The initial guess may be taken as 
x = y = z = 0.0 or 1.0. Also, solve the equations by using the matrix com-
mands in MATLAB and compare the results with those obtained earlier.

	 6.31.	� Solve the following set of linear equations by the Gauss–Seidel itera-
tion method. The initial guess may be taken as 0.0 or 1.0.

	 5x + y + 2z = 17
	 x + 3y + z = 8
	 2x + y + 6z = 23

			�   Vary the convergence parameter to ensure that results are independent 
of the value chosen.

	 6.32.	� As done for Example 6.6, obtain the system of linear homogeneous 
equations that govern the vibration of the three-mass system shown. 
Using the power method, determine the largest eigenvalue and the 
corresponding eigenvector.
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k 3km m 6k = 1 N/kg·mm m
k

x1 x2 x3

	 6.33.	� Obtain the characteristic polynomial for Problem 6.32 and find all 
the eigenvalues by root solving. Determine the eigenvectors by the 
Gauss–Jordan method, as outlined in Example 6.6.

	 6.34.	� For the vibrating system shown, use the power method to obtain the 
largest and the smallest eigenvalues and the corresponding eigenvec-
tors. Neglect the effect of gravity.

k

2k

m

2m

3k

2k

k

k

3m

2m

m

= 5 N/kg·mm
k

	 6.35.	� The forces acting on a body give rise to stresses in the material. At a 
given point in the material, the state of stress is given by the matrix

	
8 3 6

5 10 2

6 7 20

106
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
× N/m2
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			�   The largest principal stress, which determines the failure of the mate-
rial, is the largest eigenvalue of the stress matrix. Using the iterative 
power method, find the largest eigenvalue and the corresponding 
eigenvector.

	 6.36.	 Obtain all the eigenvalues of the stress matrix

	
12 6 8

8 40 7

6 12 20

106
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
× N/m2

			�   and compare the largest value obtained with the elements of the given 
matrix. Is the result physically expected?

	 6.37.	� For the four-mass vibrating system shown, obtain the governing alge-
braic equations, neglecting gravitational effects. Determine the larg-
est eigenvalue and the corresponding eigenvector, using the power 
method. Also obtain the smallest eigenvalue and compare it with the 
computed largest eigenvalue. Comment on the physical significance 
of the difference.

k

2k

m

2m

3k

4k

3m

4m

= 2 N/kg·mm
k

	 6.38.	� Water flows through two parallel pipe networks, each of which con-
tains a pump to provide the necessary pressure difference Δp. The 
water flow rates through the two circuits are Q1 and Q2, the total flow 
rate being Q. Therefore,

	 Q Q Q= +1 2

			�   The characteristics of two pumps are given in terms of the relationship 
between the pressure difference and the flow rate as

	
Δ = −

= −

p Q

p Q

550 10

700 15
1
2

2
2Δ
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			�   Also, the pressure difference may be computed from changes in eleva-
tion and friction in the pipes to give

	 Δp Q= +68 8 2

			�   Using the successive substitution method, solve this system of nonlin-
ear equations to obtain the flow rates and the pressure difference.

	 6.39.	� Solve Problem 6.38 by the Newton–Raphson method, and discuss the 
difference in the convergence characteristics and in the programming 
from the successive substitution method.

	 6.40.	� Solve the following system of nonlinear equations by using Newton’s 
method:

	
x y

x y

3 2

2

3 21

2 2 0

+ =

+ + =

			   Show two complete cycles of iteration to locate the root for x > 0.
	 6.41.	� Consider the physical problem discussed in Example 5.4. The problem 

may be posed in terms of the single equation given earlier or in terms 
of the two equations, with θ and w as the two unknowns,

	 θ

θ

= − −
+

⎡

⎣
⎢

⎤

⎦
⎥

=

70 70
1000

21 5 20

250 4 2

exp
( )

.

w

w

			�   Solve this system of nonlinear equations by the Newton–Raphson 
method, and compare the results with those obtained earlier in 
Example 5.4.

	 6.42.	� Solve the following set of nonlinear equations, which govern the 
flow rates in a network of four pipes, by the Gauss–Seidel iterative 
method:

	

7 3 7

8 3 4 9

2 2 5 8 8

14 18 2

2

2

2

2

a b c d

a b c d

a b c d

a b c d

+ + + =

+ + − =

− + + =

− + + =

.

.

.

.

			�   Because of the physical nature of the problem considered, a, b, 
c, and d are all real and may be positive or negative. A negative 
value indicates flow in a direction opposite to that assumed in the 
analysis.

	 6.43.	� Solve the problem discussed in Example 6.9 by the successive sub-
stitution method, and compare the convergence characteristics with 
those for the Newton–Raphson method used in the given example.

	 6.44.	� Alternating current electrical circuits are generally solved by the use 
of complex variables, since the sinusoidal variation can be represented 
conveniently by complex quantities. The impedance for a resistor is 



Numerical Solution of Simultaneous Algebraic Equations	 245

simply its resistance, whereas the impedances for inductors and capac-
itors are functions of the frequency ω. For an inductor, the impedance 
is iωL, where i = −1, and for a capacitor it is–iωC, where L is the 
inductance in henries and C the capacitance in farads. For the circuit 
shown, the ac power source is 15 V with a frequency of ω. The phase 
angle is arbitrarily taken as zero. Considering the two loop currents I1 
and I2 and using Kirchhoff’s law, obtain two algebraic equations for 
the currents. Then taking the currents, voltages, and impedances as 
complex, separate the real and imaginary parts to obtain four linear 
equations. Solve these equations by using a MATLAB script file as 
well as by using the backslash operator in MATLAB to obtain the 
loop currents.

I1
8 Ω5 Ω

i6 Ω –i5 Ω

15 V
0°

+

Source

Inductance Capacitance

–
I2

	 6.45.	� Following the procedure outlined in Problem 6.44, obtain the lin-
ear equations, with complex coefficients, for the ac electrical circuit 
shown. Again, obtain the corresponding linear equations with real 
coefficients by separating the real and imaginary parts. Solve these 
equations to obtain the magnitude and phase angle of the currents.

I1

I2

6 Ω

4 Ω

–i8 Ω

i6 Ω20 V
0°

30 V
0°

Source

Inductance

Capacitance

+

–

–

+

	 6.46.	� Under what conditions would the use of under-relaxation in an itera-
tive scheme, such as Gauss–Seidel, be valuable in altering the conver-
gence characteristics of the method? Give examples.

	 6.47.	� What would be the result of using over-relaxation with the Jacobi 
method?

	 6.48.	� Discuss some physical circumstances for which the iterative meth-
ods will be more advantageous to use than the direct methods. Justify 
your answer.

	 6.49.	� Several simple matrix commands in MATLAB were discussed in this 
chapter. Using any system of equations from the preceding problems, 
obtain the solution by employing the backslash, inv(a) and lu commands. 
Comment on the results and computational procedures involved.
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7 Numerical Curve Fitting 
and Interpolation

7.1  INTRODUCTION

A problem of considerable interest in engineering applications is that of representing 
data at a set of discrete points by means of a smooth and continuous function. 
Experimental and numerical studies generally yield results at a finite number of data 
points. Such results are often tabulated. However, a much more useful representation 
of the data is by means of a smooth curve that passes through the data points or one 
that is as close as possible to these. This process is known as curve fitting and the 
equation of the curve can be employed to obtain values at intermediate points where 
tabulated results are not available. Also, in the numerical simulation of engineering 
processes and systems, it is more convenient to use a curve fit of the available data 
on the characteristics of the components, such as pumps and blowers, rather than 
tabulated results, to obtain the values needed.

Curve fitting is needed in a wide variety of engineering problems. The property 
data for materials are generally available at discrete values of the independent vari-
able, such as pressure, temperature, and concentration. Curve fitting yields a func-
tion f(x), where x is the independent variable and f(x) is a material property, such as 
density, specific heat, equilibrium constant for a chemical reaction, and electrical 
resistance. Then this function f(x) may be used to obtain the desired material prop-
erty at arbitrary values of the independent variable over a given range. Curve fitting 
of property data is needed in the simulation and study of many diverse engineering 
applications, such as power plants, refrigeration systems, chemical reactors, environ-
mental processes, electronic systems, and building structures. Similarly, experimen-
tal data on many processes of engineering interest, such as wind speed at various 
heights above the surface of a lake, velocity of a moving body as a function of time, 
the electrical current in an electronic circuit as a function of the input voltage, and 
the deflection of a structure under a changing load, are generally obtained in terms 
of a continuous function f(x), which can be subsequently employed in the analysis 
and design of relevant engineering processes and systems. The calibration curves for 
measuring devices, such as pressure transducers and flow meters, are similarly 
obtained from data taken at discrete points.

7.1.1  Exact and Best Fit

There are two basic approaches to curve fitting. The first one involves determining a 
curve that passes through every given data point and is known as an exact fit, see 
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Figure 7.1a. Therefore, at the given data points, the curve obtained yields values that 
are identical to the given data. An exact fit is appropriate if the data have a high level 
of accuracy, as is often the case for numerical simulations and for material property 
data. The number of parameters that must be determined for obtaining the approxi-
mating curve, which is often taken as a polynomial, must be equal to the number of 
data points. If the data set is large, the determination of the unknown parameters, 
which are also consequently large in number, becomes quite involved. Also, the 
curve obtained is not very convenient to use and is often ill-conditioned. Thus, if a 
large number of data points is available, the second approach, known as the best fit, 
is more appropriate. In this case, the curve does not pass through every data point. 
However, the difference between the values given by the approximating curve and 
the given data is minimized, so that the error in obtaining the values from the curve 
is small, see Figure 7.1b. The number of parameters in the curve is typically much 
smaller than the number of data points, and simple curves, such as linear and expo-
nential distributions, are frequently used for curve fitting. This approach is also suit-
able if the error in the data is significant, so that the fitted curve need not pass through 
each data point and a best fit is more appropriate.

y =
 f 
(x
)

x

(a)

(b)

y =
 f 
(x
)

x

FIGURE 7.1  Curve fitting to given sets of data points: (a) an exact fit and (b) a best fit.
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7.1.2  Interpolation and Extrapolation

Interpolation is employed to determine the dependent variable y = f(x) at intermedi-
ate values between the given data points, and extrapolation is used for finding f(x) 
outside the range of the given data. Both are extensively used in engineering applica-
tions and also in developing numerical procedures for differentiation, integration, 
root solving, and the solution of differential equations. The use of interpolation and 
extrapolation in numerical differentiation and in root solving was demonstrated in 
Chapters 4 and 5. The application to other problems in numerical analysis will be 
outlined in the following chapters. The basic approach involves fitting an exact curve 
to a finite number of discrete points and then applying the desired mathematical 
operation, such as differentiation or integration, to the smooth function obtained.

There are several numerical methods that may be employed for determining the 
interpolating curve from a given set of data points. Besides the direct evaluation of 
the parameters of an interpolating polynomial by substituting the given data and 
solving the resulting set of linear equations, as outlined in Chapter 6, interpolation 
with Lagrange polynomials and Newton’s divided-difference polynomials is also 
discussed here. Splines, which fit subsets of the data with lower-order polynomials, 
such as a cubic, are also important in interpolation and are presented in this 
chapter.

Caution is needed when extrapolation is employed to compute values beyond the 
range of the given data, since the variation of the dependent variable beyond the 
given range is not known. There may be substantial changes in the variation as we 
move outside the given domain of data points. However, extrapolation is frequently 
used to predict values and trends in order to plan and to take decisions. For example, 
companies routinely depend on consumer spending trends and predictions of infla-
tion, inventory, money supply and the stock market to plan for the future.

7.1.3  Basic Approach

The choice of the function f(x) to obtain a best fit to a given data set is also an impor-
tant consideration. Although polynomials, particularly straight lines which lead to 
linear regression, are very often employed for curve fitting, other forms, such as 
exponential and sinusoidal functions, are also used. As mentioned in Chapter 1, the 
physical nature of the given problem may often be employed to choose the appropri-
ate form of the function f(x) for a best fit. Periodic processes, such as those encoun-
tered in natural phenomena, are usually fitted with sinusoidal functions, as shown in 
Figure 1.5. Similarly, in chemical reactions where the rate of change of concentration 
is proportional to the concentration at any given time, the concentration varies expo-
nentially. Therefore, if measurements are taken in such processes, exponential func-
tions are employed for curve fitting. Calibration curves for devices, such as those for 
measuring pressure and velocity, are generally obtained as polynomials by using 
curve-fitting techniques for a best fit. A few examples of curve fitting are shown in 
Figure 7.2. The use of the physical background of the given problem or of any prior 
information on the variation of the dependent variable helps in the choice of the most 
appropriate form of the curve for a best fit. A proper choice of the function f(x) for 
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FIGURE 7.2  A few examples of curve fitting, employing different forms of the function f(x) 
for a best fit.
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curve fitting not only reduces the number of parameters to be determined but also 
yields the desired result in a simple and useful form.

There are several numerical methods for obtaining the best fit to a given data set. 
The most widely used technique is based on the minimization of the sum of the 
squares of the differences between the actual data and the values obtained from the 
best fit. This method, known as the least-squares fit, is discussed in detail and applied 
to different forms of the chosen function f(x) for curve fitting. Other methods are also 
outlined. Also considered is the circumstance where the dependent variable is a 
function of more than one independent variable, say, f(x, y). Such problems are of 
interest, for instance, in chemical reactors and power plants, where the fluid proper-
ties and system characteristics depend on two or more independent variables, for 
instance, pressure, temperature, and concentration.

7.1.4  Use of MATLAB® Commands

As briefly discussed in Chapter 3, MATLAB® has several commands that may be 
used easily and directly to obtain a best fit to given data and to obtain interpolated 
values. These include the polyfit command, which gives a best fit to the given data set 
using the specified order of the polynomial for curve fitting, such as 1 for linear, 2 for 
parabola, and 3 for cubic. Similarly, the interp1 command is useful in obtaining 
interpolated values from the given data set, using a specified interpolating polyno-
mial, such as linear, cubic, and spline, where the last one refers to a piecewise exact 
fit to the given data and is presented in detail later. The interp2 command is used for 
two-dimensional curve fitting and interp3 for three-dimensional. These commands 
are discussed in greater detail and employed for various examples here.

In this chapter, the numerical methods for obtaining an exact fit to tabulated data 
at discrete points are considered first. Various interpolation formulations and 
techniques are discussed. Interpolation with splines, particularly cubic splines, is 
outlined. The use of the least-squares method for obtaining a best fit with simple 
polynomials is then discussed in detail. Other forms of the curve for a best fit are also 
considered. Finally, functions of more than one independent variable are considered, 
and the corresponding numerical curve-fitting procedures are presented.

7.2  EXACT FIT AND INTERPOLATION

An exact fit of tabulated data is frequently obtained in engineering applications, 
using polynomials in most cases. One chooses a general form of the approximating 
polynomial and substitutes the given data into the equation for the polynomial in 
order to evaluate the parameters in the chosen curve. Therefore, the approximating 
polynomial passes through each data point and yields the exact value, as the given 
data, at these points. Since the polynomial is exact at the given data points, it is 
known as an exact fit. Once the approximating curve has been found, one can employ 
it to determine the values of the dependent variable y, which is a function f(x) of the 
independent variable x, at arbitrary values of x not included in the tabulated data. As 
mentioned earlier, if the chosen value of x lies within the range covered by the given 
data, the function f(x) is found at an intermediate value of x, and the process is 
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known as interpolation. If x lies beyond the range of the data, the process is called 
extrapolation.

Both interpolation and extrapolation are widely used in engineering and in 
numerical analysis. Extrapolation is employed less frequently than interpolation, 
since there are uncertainties associated with evaluating the function at x values 
beyond the range for which data are available. If the function is known to be well 
behaved beyond the range of data, extrapolation may be used. Otherwise, substantial 
error may arise in the extrapolated value. However, interpolation is routinely used for 
a wide variety of engineering problems. Measurements and numerical simulations 
are carried out at a finite number of discrete data points, and curve fitting is used to 
obtain values at intermediate points. Several examples of engineering problems 
where this approach is used were given in the preceding section. As mentioned ear-
lier, an exact fit is appropriate if the given data are very accurate and if the number 
of data points is relatively small, typically less than 10.

7.2.1  Exact Fit with an nth-Order Polynomial

A polynomial of degree n can be devised to exactly fit (n + 1) data points. The general 
form of the polynomial may be taken as

	 y = f (x) = a0 + a1x + a2x2 + . . . + an xn	 (7.1)

where y is the dependent variable, x is the independent variable, and the a’s are con-
stants. Two available data points are adequate to describe a first-degree, or linear, 
equation. Similarly, three data points are needed for a second-degree, or quadratic, 
equation and four points for a third-degree, or cubic, equation as shown in Figure 7.3. 
The available data may be denoted as (xi, yi) for i = 0, 1, 2, . . ., n, where yi is the value 
of the function y at x = xi. Then these values may be substituted into the chosen gen-
eral form of the polynomial, Equation 7.1, to yield

	 y a a x a x a x i ni i i n i
n= + + + + =0 1 2

2 0 1 2� …for , , , , 	 (7.2)

Since xi and yi are known for the given (n + 1) points, Equation 7.2 yields (n + 1) 
linear equations for the unknown constants a0 to an, as i is varied from 0 to n.

A numerical solution of this linear system, employing the methods given in the 
preceding chapter, will give these constants, and will thus determine the polynomial 
that exactly fits the given data points. Example 6.1 demonstrated the solution of such 
a linear system for determining a fifth-order polynomial that provides an exact fit to 
the given six data points on the specific volume of steam. The matrix equation that 
represents the system of equations yielded by Equation 7.2 is
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FIGURE 7.3  Exact fits to given data, using polynomials of first, second, or third order.
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The determinant of the above coefficient matrix is known as the Vandermond deter-
minant. It is nonzero unless a point is duplicated, that is, xi = xj for i ≠ j. Therefore, 
as shown in Chapter 6, a unique solution may be obtained for a0, a1, . . ., an from 
Equation 7.3, giving a unique polynomial that yields the exact value of the dependent 
variable at the given data points.

The approach outlined above is fairly simple and can be used for an arbitrary 
distribution of data points. However, as mentioned earlier, it is appropriate for rela-
tively small sets of data and for cases where the given data are very accurate. An 
exact fit with a single curve is generally employed if the number of data points is 
typically less than 10. For a larger number of points, higher-order polynomials are 
needed. The coefficients of the polynomial may then be quite small, particularly for 
the higher-order terms and if the independent variable attains large values. An exam-
ple of such a representation is the variation of a material property, such as electrical 
resistivity ρ with temperature T, given by the polynomial

	 ρ( )T a a T a T a T a T= + + + ⋅⋅⋅ + +0 1 2
2

19
19

20
20

where T could vary from, say, 20°C to 300°C. Then the value of the coefficients, 
particularly the higher-order ones such as al9 and a20, will be very small, giving rise 
to accuracy problems in interpolation. The polynomial may also be ill-conditioned, 
so that small changes in T result in large changes in ρ(T). Then even the round-off 
error is magnified to yield inaccurate results from the use of such a polynomial for 
interpolation.

One method of avoiding these problems is to use a polynomial of lower order, 
based on a corresponding smaller data set chosen from the given data. Sometimes, 
normalization of the independent variable, say, by defining a new variable �T  where 
�T T= / 20 in the above example, reduces the range of variation of the independent 

variable and thus avoids very small values of the coefficients. This approach was 
employed in Example 6.1. The normalizing characteristic quantity, such as 20°C in 
the above example or 10°C in Example 6.1, may often be chosen arbitrarily or on the 
basis of physical reasoning to reduce the range of the independent variable to a 
desired level.

Considering Example 6.1 again, six data points are given and a fifth-order poly-
nomial is to be determined for an exact fit. The matrices corresponding to Equation 
7.3 are obtained from the data and the constants a0, a1, . . ., an are determined. 
Appendix B.15 gives a MATLAB script file for this problem, using the backslash 
operator to solve the system of linear equations to obtain the a’s. The results obtained 
from this program are shown in Figure 7.4.

It is easy to see that the results obtained are close to those presented earlier in 
Example 6.1, in terms of the a’s and the curve fit obtained. The plot of the polyno-
mial obtained and the data points is essentially identical to that obtained earlier and 
shown in Figure 6.3. Once the polynomial is obtained, the values at an intermediate 
point may be determined. For instance, the value at x = 3.4 is determined here from 
the exact fit obtained. We may also use the command interp1, with specified curve fit 
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for interpolation, to obtain the value at an intermediate point. The value at x = 3.4 is 
obtained here by using a linear interpolation, as well as a spline interpolation. The 
corresponding MATLAB commands are given in Appendix B.15. It is seen that the 
two values are somewhat different, with the latter being closer to that from the poly-
nomial exact fit. Splines are discussed in Section 7.5.

7.2.2  Uniformly Spaced Independent Variable

In certain cases, the values of the function y are given at uniformly spaced values of the 
independent variable x. Such a circumstance arises, for instance, in numerical calcula-
tions and experimental studies where the values of x are taken as equally spaced for 
convenience. This is particularly true for tabulated data of material properties.

If the independent variable is uniformly spaced, as shown in Figure 7.5, the deter-
mination of the polynomial f(x) which exactly fits the given data can be simplified by 
choosing the following alternate form of the polynomial, instead of the general form 
given by Equation 7.1:
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(7.4)

where L is the range, xn –x0, of x, n is the order of the polynomial, and the a’s are the 
coefficients to be determined. Thus, the number of data points is (n + 1), with (x0, y0), 
(x1, yl), . . ., (xi, yi), . . ., (xn, yn) representing the given data that are to be numerically 
curve fitted with a polynomial. Here,

	

L
n

x x
x x x x

= − =
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=
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1 0
2 0 3 0

2 3
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Coefficients of the polynomial are

a =

   201.2600
 –128.8210
     40.6742
     –7.4229
       0.7408
     –0.0311

Current plot held
Interpolated value from exact fit y = 26.5890
Value from linear interpolation y = 27.5480
Value from spline interpolation y = 26.5999

FIGURE 7.4  Coefficients of the polynomial for an exact fit to the data in Example 6.1 
and interpolated values at x = 3.4 obtained from this fit, as well as from linear and spline 
interpolations.
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since the values of x are equally spaced. If the data points are successively substi-
tuted into Equation 7.4, we obtain the following in terms of the Δy’s shown in 
Figure 7.5:
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(7.5)

Equations 7.5 can be solved for a1, a2, . . ., an in terms of Δyl, Δy2, . . ., Δyn for cho-
sen values of n to obtain the constants for an nth-order polynomial. Table 7.1 gives 
the constants for polynomials of the first four degrees, that is, n = 1 through n = 4. 
Then, for a given set of (n + 1) data points, the degree of the polynomial is n, and the 
values of the constants are obtained simply by substituting the values of the differ-
ences Δy1, Δy2, . . ., Δyn into the expressions given in the table. If several data sets are 
to be considered, the expressions for the coefficients of the polynomials, such as 
those given in Table 7.1, may be stored in the computer and the constants computed 
as each data set is entered. If only one or two sets of data are to be curve fitted or if 
higher-order polynomials are to be used, it would generally be easier to simply solve 
Equation 7.5 for the constants, using the methods given in Chapter 6 for systems of 
linear algebraic equations, see Appendix B.15. However, programs based on this 
approach for curve fitting are frequently available on computers, and the expressions 
for the coefficients may already be stored, so that the given data, at uniformly spaced 
values of the independent variable, are entered and the program yields the constants 
of an approximating polynomial of the form given by Equation 7.4. Interpolated 
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FIGURE 7.5  Exact fit to uniformly spaced data.
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values are then obtained from the resulting polynomial, as shown in the following 
example.

Example 7.1

In a fluid flow system, which experimentally simulates the flow generated in a 
room due to a fire, the flow rate F is measured at several values of a governing 
parameter R, known as the Richardson number, where R depends on the heat 
input by the fire, room dimensions, and fluid properties. The data obtained are 
as follows:

R 0.025 0.05 0.1 0.2 0.3 0.4 0.5
F 1.4198 2.548 4.2 5.978 6.908 7.613 7.799

Employing the last five data points, obtain an exact fit and compute the inter-
polated values at R = 0.25 and 0.35. Also, obtain the flow rates at R = 0, 0.025, 
and 0.05 by extrapolation. Compare the last two extrapolated values with the 
given data.

SOLUTION

Since the five data points to be considered for an exact fit, with a fourth-order 
polynomial, are uniformly spaced, the approach given in Section 7.2.2 may be 
employed. The independent variable is R, and the dependent variable is F. Denoting 
the data points as (R0, F0) (R1, F1), . . ., (R4, F4), we may compute the ΔF’s as
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TABLE 7.1
Constants for Polynomials of the Form Given by Equation 7.4 for Data in 
Which the Independent Variable Is Uniformly Spaced
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where R0 = 0.1 and F0 = 4.2. Also, the uniform spacing is R1 – R0 = R2 – R1 = 
R3 – R2 = R4 – R3 = 0.1. The total range L is 0.4, and the degree n of the polynomial 
is 4. Therefore, from Equation 7.4, the polynomial to be determined may be written 
as follows:
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This equation gives

	 F = F0 + A1(R – R0) + A2 (R – R0)2 + A3(R – R0)3 + A4(R – R0)4	 (7.8)

where A1 = a1/0.l, A2 = a2/(0.1)2, and so on.
A simple computer program may be written to compute the differences from 

Equation 7.6 and the coefficients in Equation 7.7 from Table 7.1. These coefficients 
are then converted to the coefficients of Equation 7.8 for convenience in the appli-
cation of the polynomial for interpolation. Figure 7.6 presents the results from such 
a program. The data points are entered, and the coefficients of the polynomial in 
Equation 7.8 are computed. This polynomial is then employed to compute the 
interpolated or extrapolated values of the flow rate F at several values of R, entered 
interactively into the program.

Note from Figure 7.6 that the polynomial obtained yields the exact values at 
the given data points, as expected. The extrapolated values at R = 0.025 and 0.05 
are close to those obtained experimentally and given in the problem. The value 
at R = 0 is expected to be zero on physical grounds. However, the extrapolated 
value is nonzero, although it is fairly small, being equal to 0.034. Thus, over the 
range of R considered here, 0 < R < 0.5, the computed polynomial yields good 
accuracy. For values of R larger than 0.5, extrapolation does not give satisfactory 
results, since F is obtained as decreasing with increasing R, which is contrary to 
the behavior expected for the physical problem considered. However, interpola-
tion in the range 0.1 ≤ R ≤ 0.5 yields physically realistic results, being exact at the 
data points employed for deriving the polynomial.

7.3  LAGRANGE INTERPOLATION

A method that is widely used for obtaining an exact fit to a given data set is Lagrange 
interpolation. It is based on the use of a special form of the interpolating polynomial, 
known as the Lagrange polynomial. For a quadratic function, it is written as

	 y = f(x) = a0 (x − x1)(x − x2) + a1 (x − x0)(x − x2) + a2 (x − x0)(x − x1)	 (7.9)

where (x0, y0),(x1, y1), and (x2, y2) are the three given data points and a0, a1, and a2 are 
the constants to be determined from these points. It can easily be seen that Equation 
7.9 represents a second-order polynomial, which can also be rewritten in the form 
given by Equation 7.1. Substituting the given data points successively in Equation 7.9, 
we can easily determine the constants as follows:
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Similarly, if (n + 1) data points are given, an nth-order Lagrange polynomial may be 
written by taking n factors in each term, instead of two taken for the quadratic 
function of Equation 7.9. Thus, an nth-order Lagrange polynomial is written as

R0 = 0.1
F0 = 4.2
Fl = 5.978
F2 = 6.908
F3 = 7.613
F4 = 7.799

THE COEFFICIENTS OF THE POLYNOMIAL ARE
Al = 26.3892		  A2  = –115.5793
A3 = 333.0837		  A4  = –382.0837

ENTER THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R = 0.0
R = 0			     F = .034
ENTER THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R = 0.025
R = .025			    F = 1.4181
ENTER THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R = 0.05
R = .05			     F = 2.5476
ENTER THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R = 0.25
R = .25			     F = 6.4886
ENTER THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R = 0.35
R = .35			     F = 7.2855
ENTER. THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R = 0.4
R = .4			     F = 7.613
ENTER THE VALUE OF R AT WHICH INTERPOLATION IS DESIRED
R = 0.5
R = .5			     F = 7.799

FIGURE 7.6  Coefficients of the polynomial obtained for an exact fit in Example 7.1, along 
with the interpolated results for the dependent variable F at several values of the independent 
variable R.
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The coefficients ai, where i varies from 0 to n, can be determined by substitution of 
the (n + 1) data points into Equation 7.11 to obtain expressions such as those given by 
Equation 7.10. The resulting interpolating polynomial is
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where the product sign ∏ denotes multiplication of the n factors obtained by varying 
j from 0 to n, excluding j = i, for the quantity within the parentheses. Thus, for exam-
ple, a third-order Lagrange polynomial is obtained from Equation 7.12 as
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Lagrange interpolation is applicable to an arbitrary distribution of the independent 
variable x. The determination of the coefficients of the polynomial does not require 
the solution of a system of equations, as was the case for the methods discussed in 
the preceding section. The interpolating polynomial, Equation 7.12, can easily be 
entered and the necessary calculations performed on a computer for obtaining the 
desired exact fit to the given data. The programming is quite simple, as illustrated in 
Example 7.2. Because of the applicability of the method to arbitrary distributions of 
data points and the ease with which it may be applied, Lagrange interpolation is 
widely employed for engineering applications. Programs available on many computers 
for interpolation are also frequently based on this method.

Example 7.2

The deflection of a structure under loading is measured at five different values of 
the force applied X, in kilonewtons (kN). The deflection Y is in centimeters, and 
the data are given as follows:

Employing Lagrange interpolation, compute the deflection at the intermediate 
load values of 0.75, 1.25, 1.8, and 2.2 kN. Also obtain the extrapolated values at 0 
and 3.0 kN. Such problems are of interest in civil engineering, though many more 
data points are generally obtained, requiring higher-order polynomials for an exact fit 
or resorting to a best fit.

X (kN) 0.5 1.0 1.5 2.0 2.5
Y (cm) 3.0 3.9 5.2 7.3 10.5
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SOLUTION

The Lagrange polynomial to be computed is given by Equation 7.12. Since five 
data points are given, a fourth-order polynomial can be derived to exactly fit the 
given points. The coefficients ai of the polynomial in Equation 7.11 are given by 
the product

	 a
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X X
i
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i jj
j i

n
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where Xi and Yi are the values of the independent and dependent variables, respec-
tively, at the data points. The interpolated value of Y at a given X is then obtained 
from Equation 7.11.

We can easily write a computer program to calculate the coefficients of the 
polynomial and then to use these to determine the corresponding interpolated value 
of Y. Appendix C.9 shows the program in Fortran for Lagrange interpolation. The 
number of data points N is read, along with the given data. Also read is the num-
ber of intermediate points M at which interpolated or extrapolated values of the 
dependent variable are desired. The values of the independent variable at which 
interpolation/extrapolation is needed are denoted by XL and are read from the data 
entered. The coefficients, ai, or A(I) here, of the Lagrange polynomial are calculated 
from Equation 7.13, and then the interpolated/extrapolated value of the dependent 
variable, denoted by YL, is obtained from Equation 7.11. The values of XL are 
sequentially changed according to the given input, and the corresponding values 
of YL are computed. Finally, the calculated results are printed in tabular form, as 
shown in Figure 7.7, along with the coefficients A(I) of the Lagrange polynomial.

THE VALUES FROM LAGRANGE INTERPOLATION ARE
XL  =  0.0000		  YL  =  2.0000
XL  =  0.5000		  YL  =  3.0000
XL  =  0.7500		  YL  =  3.4289
XL  =  1.0000		  YL  =  3.9000
XL  =  1.2500		  YL  =  4.4727
XL  =  1.5000		  YL  =  5.2000
XL  =  1.8000		  YL  =  6.3426
XL  =  2.0000		  YL  =  7.3000
XL  =  2.2000		  YL  =  8.4346
XL  =  2.5000		  YL  =  10.5000
XL  =  3.0000		  YL  =  15.0000

COEFFICIENTS OF THE LAGRANGE POLYNOMIAL ARE
A(l)   =  2.0000
A(2)  =  −10.4000
A(3)  =  20.8000
A(4)  =  −19.4667
A(5)  =  7.0000

FIGURE 7.7  Computed interpolated and extrapolated values from Lagrange interpolation 
and coefficients of the Lagrange polynomial for Example 7.2.
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Note that, as expected, the calculated values of the dependent variable are 
exact at the data points employed for obtaining the Lagrange polynomial. The 
interpolated values at XL = 0.75, 1.25, 1.8, and 2.2 kN are found to be within the 
expected range. Also, a deflection of 2.0 cm is obtained at zero load, indicating 
the deflection due only to the weight of the structure. The extrapolated value 
at XL = 3.0 kN is 15.0 cm, which is qualitatively satisfactory, since the deflec-
tion increases with load. However, both values at XL = 0 and 3.0 are beyond 
the range of the given data and their accuracy is not known. Thus, these values 
must be used with caution, unless validation from further experimentation is 
obtained.

Appendix B.16 presents the script file in MATLAB for Lagrange interpolation. 
The logic is similar to that discussed above. However, the ease with which polyno-
mials may be specified and multiplied makes the program quite simple. Also, the 
general polynomial, such as Equation 7.1, in descending powers of x is obtained 
directly. This polynomial can then be employed to calculate the interpolated val-
ues at chosen values of x and also for plotting, if needed. The results obtained 
from this script file are given in Figure 7.8.

7.4  �NEWTON’S DIVIDED-DIFFERENCE INTERPOLATING 
POLYNOMIAL

An extensively used form of the polynomial for interpolation is Newton’s divided-
difference polynomial. It can be used for an arbitrary distribution of data points, 
although simplified formulas result for uniformly spaced points and form the basis 

Coefficients of the polynomial in descending powers of x are
   −0.0667
     0.8667
   −1.3833
    2.4833
    2.0000
Interpolated values:
xp = 0.0000     yp = 2.0000
xp = 0.5000     yp = 3.0000
xp = 0.7500     yp = 3.4289
xp = 1.0000     yp = 3.9000
xp = 1.2500     yp = 4.4727
xp = 1.5000     yp = 5.2000
xp = 1.8000     yp = 6.3426
xp = 2.0000     yp = 7.3000
xp = 2.2000     yp = 8.4346
xp = 2.5000     yp = 10.5000
xp = 3.0000    yp = 15.0000

FIGURE 7.8  Coefficients of the general polynomial in descending powers of x, as calculated 
by the use of the MATLAB script file in Appendix B.16 for Lagrange interpolation in Example 
7.2, along with computed interpolated values at various specified values of the independent 
variable.
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for several interpolation schemes, such as forward, backward, and central Newton–
Gregory formulas, as outlined later in this section.

7.4.1  General Formulas

First-order, or linear, interpolation is the simplest form of interpolation and is 
obtained by drawing a straight line connecting two data points, as sketched in 
Figure 7.8. The value of the function f(x) at a given value of the independent variable 
x can be obtained from the interpolating straight line. Thus, from geometry,
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where c0 and c1 are coefficients of the interpolating polynomial. Here, c1 represents 
a finite divided-difference approximation of the first derivative, as given by Equation 
4.17. Only two coefficients are needed here because the interpolating polynomial is 
a straight line.

In a similar way, a second-order, or quadratic, interpolation may be considered. 
On the basis of Equation 7.14, the general form of the polynomial is taken as

	 y = f(x) = c0 + c1 (x − x0) + c2 (x − x0)(x − x1)	 (7.15)

Three data points are needed to determine the coefficients c0, c1, and c2. Employing 
the first point, denoted by (x0, y0), we obtain c0 as

	 c0 = f(x0)	 (7.16)

Similarly, the second point, (x1, y1), yields
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We obtain the third coefficient c2 by substituting the third point, (x2, y2), in Equation 
7.15. Employing the results given by Equations 7.16 and 7.17, we obtain
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Therefore, from the preceding equations, c0 and c1 for quadratic interpolation are 
identical to those for linear interpolation. The third term on the right-hand side of 
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Equation 7.15 improves the interpolation by introducing curvature, as shown graphi-
cally in Figure 7.9. The coefficient c2 is similar to the finite difference representation 
of the second derivative; see Equation 4.21. The general form of the polynomial, 
Equation 7.15, is similar to the Taylor series expansion, presented in Section 4.2. 
Also, the first-order divided difference, Equation 7.17, can be used to determine the 
second-order divided difference, Equation 7.18. These features allow the develop-
ment of a recursive formula for determining the coefficients of Newton’s interpolat-
ing polynomials of arbitrary order.

From the above discussion, the general form for an nth-order Newton’s polyno-
mial may be written as follows:
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To determine the (n + 1) coefficients, c0, c1, . . ., cn, in the nth-order polynomial, we 
need (n + 1) data points. When these points, denoted by (x0, y0),(x1, y1), . . ., (xn, yn), 
are substituted in the general form of the polynomial, the coefficients are given by the 
equations
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f (x1)

f (x0)
f (x)

True curve for f (x) 

True
value

Value from linear
interpolation

Linear interpolation
Quadratic interpolation

f (x2)

f (x)

x1x x2x0 x

f (
x)

Value from quadratic
interpolation

FIGURE 7.9  Interpolation with a straight line and a second-order polynomial for the deriva-
tion of Newton’s divided-difference method.
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where the function F denotes finite divided differences. Therefore,
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Note from the above expressions that a recursive formula may be written to deter-
mine the coefficients. Therefore, the problem is well suited for digital computation. 
The higher-order differences are determined from the lower-order differences. 
Therefore, we evaluate the coefficients by starting with c0 and successively calculating 
c1, c2, c3, and so on, up to cn. Once the coefficients have been determined, the interpo-
lating polynomial is obtained from Equation 7.19, which may also be written as
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As mentioned above, the general form of Newton’s interpolating polynomial is 
similar to the Taylor-series expansion, since terms representing higher-order deriva-
tives are successively added to improve the accuracy of the representation. As given 
by Equation 4.7, the remainder term Rn in a Taylor-series expansion is
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The derivative is evaluated at a point ξ which lies in the interval from xi to xi+1. 
Similarly, for an nth-order Newton’s interpolating polynomial, the expression for the 
remainder and, thus, for the error is
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Since the function f(x) and its derivatives are not known, in general, the (n + l)th 
derivative may be replaced by the corresponding finite divided difference. Thus, Rn 
may be written as

	 Rn = [F(x, xn, xn−1,. . ., x1, x0)](x −x0)(x −x1). . .(x −xn)	 (7.24)

This expression can be used to estimate the error if an additional data point (xn+1, yn+1) 
is available as follows:

	 Rn = [F(xn+1, xn, . . ., x1, x0)](x −x0)(x −x1). . .(x −xn)	 (7.25)
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Since the additional data point is generally not available, the interpolating 
polynomial itself may be used to obtain an additional point, and the error determined 
from Equation 7.25. Example 7.3 illustrates the use of Newton’s method for 
interpolation.

7.4.2  Uniformly Spaced Data

Several simplified formulas can be derived from the above results if the data are 
given at equally spaced values of the independent variable x. If Δx is the interval 
between the data, the values of x are given by

	 xi = x0 + i Δx  for i = 1, 2, . . ., n	 (7.26)

Such uniformly spaced data are obtained, for instance, from numerical simulations 
of engineering systems, tables of material properties, and experimental studies in 
which the independent variable is taken at uniformly spaced intervals for conve-
nience. Then the coefficients c0, c1, and c2 are given by
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where Δf0 is known as the first forward difference and Δ2f0 as the second forward 
difference at x = x0. These constitute the numerator of the forward finite difference 
approximations of the first and second derivatives to 0(Δx), see Figure 4.7. Therefore, 
in general, the coefficient cn of the polynomial is given by
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From Equation 7.22, Newton’s interpolating polynomial can be written for equally 
spaced data as follows:
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where the remainder Rn is the same as that given by Equation 7.23. The above inter-
polating polynomial is known as the Newton–Gregory forward interpolation 
formula. One can generate a forward difference table by taking forward differences 
at each x, then taking differences of the differences, and so on. An example of such 
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a forward difference table is shown in Table 7.2a. The general formula for computing 
these differences at x = xi is

	 Δ Δ Δn
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Then these differences may be substituted into Equation 7.29 to yield the interpolating 
polynomial. The subscript gives the location, in x, where the difference is evaluated, 
and the superscript indicates the order of the difference. The lowest order differences 
Δfi are given by n = 1. Also, n = 0 corresponds to the values of the function fi.

In a similar way, a backward difference polynomial, known as the Newton–Gregory 
backward interpolation polynomial, may be derived. The backward differences at 
x = xn are denoted by ∇fn, ∇2 fn, and so on, and are obtained from Figure 4.8 or a back-
ward difference table generated in a manner analogous to that for forward differences, 
see Table 7.2b. The corresponding interpolating polynomial is written as follows:
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TABLE 7.2
Examples of Difference Tables for Computing the Interpolation Polynomials, 
Using Divided Differences, for Uniformly Spaced Data

(a) Forward Differences

X f(x) Δf Δ2f Δ3f Δ4f Δ5f Δ6f
1 –4 3 5 2 1 1 1

2 –1 8 7 3 2 2

3 7 15 10 5 4

4 22 25 15 9

5 47 40 24

6 87 64

7 151

(b) Backward Differences

X f(x) ∇f ∇2f ∇3f ∇4f ∇5f ∇6f
1 –4

2 –1 3

3 7 8 5

4 22 15 7 2

5 47 25 10 3 1

6 87 40 15 5 2 1

7 151 64 24 9 4 2 1
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where Δx = x0 − x1 = x2 − x1, and so on, and Rn is the remainder which can be derived 
in a manner similar to that given earlier for the forward difference formulation. Also, 
the general formula for the backward difference at x = xi is
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n
i

n
if f f1 1
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where the subscripts denote the value of x at which the difference is obtained and the 
superscript gives the order of the difference.

Thus, if the data are given at equally spaced values of the independent variable, 
the above simplified formulas may be employed. The corresponding forward, or 
backward differences are generated, using Equation 7.30 or Equation 7.32, and the 
desired value of the function f(x) is determined from the interpolating polynomial, 
for a given value of x. The choice of the formula, forward or backward, for interpola-
tion depends on the value of x, in relation to the given data points, at which f(x) is to 
be determined. Thus, if x is close to x0, the forward difference formula is more appro-
priate than the backward formula. Similarly, if x is close to xn, the backward differ-
ence form is used. Several central difference formulas have also been derived to 
accommodate interpolation in the region near the middle of the distribution of the 
data points. Consult Carnahan et  al. (1969) and Hornbeck (1982), listed in the 
References, for the relevant formulas.

7.4.3  Extrapolation

The process of estimating the function f(x) at a point x which lies beyond the range 
of the given data points is known as extrapolation. However, the most accurate esti-
mation for f(x) is generally obtained when x is close to the middle of the range. Also, 
the behavior of the function beyond the given data is not known. Thus, the estimated 
value of f(x) could be in considerable error. Because of the element of uncertainty 
involved, values of the function obtained by extrapolation must be treated with cau-
tion. If any information is available on the nature of the function, and on its behavior 
beyond the range of the given data, one must consider the extrapolated values in 
terms of this information to judge their validity and accuracy.

Extrapolation is frequently needed in engineering applications. We are all famil-
iar with predictions of weather, future trends in economic parameters, expected out-
put from engineering systems, demand for engineering products, and so on. 
Extrapolation is, therefore, necessary for future planning of engineering resources 
and output. It is also often needed for the control and design of systems and pro-
cesses. If the data are available at discrete, evenly spaced points, the Newton–Gregory 
forward or backward formula, as appropriate, may be used for extrapolation. 
Lagrange interpolation or Newton’s divided-difference polynomials may be 
employed for an arbitrary distribution of data points. The procedures for extrapola-
tion are similar to those for interpolation. However, since estimations are being made 
for points beyond the range of the given data, it must be reiterated that an element of 
uncertainty arises in the results, and extreme care must be exercised in the use of the 
values obtained.
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Example 7.3

Solve the problem given in Example 7.1 by Newton’s divided-difference inter-
polation, employing the data over the range 0.05 ≤ R ≤ 0.4. Use polynomials of 
increasing order and compute the remainder term in each case.

SOLUTION

The data points to be considered for deriving the interpolating polynomial are as 
follows:

where X is the independent variable and Y the dependent variable. We use differ-
ent symbols here, as compared to those in Example 6.1, in order to derive a gen-
eralized solution procedure, based on Newton’s divided-difference polynomials. 
Since five data points are employed for an exact fit, a fourth-order polynomial of 
the form given by Equation 7.19 may be derived.

Appendix B.17 gives the program in MATLAB for computing the interpolating 
polynomial. The number of data points and the corresponding data are entered 
in the program. We calculate the divided differences from the formulas given in 
Equation 7.21 and use them to determine the coefficients of the divided-difference 
polynomial. A matrix f(i, j) is used to store the divided differences. The first col-
umn of this matrix consists of the given values of y at the five data points, and 
the first row contains the coefficients of the polynomial. The value of x at which 
interpolation is desired is denoted by xp and is entered interactively by the user. 
The interpolated value is obtained by means of Equation 7.22. The remainder term 
R is also calculated, employing Equation 7.25 and the computed value of the cor-
responding higher-order divided difference. The various symbols used are defined 
in the program, and the important steps in the computation are indicated.

The numerical results obtained are presented in Figure 7.10. The number of 
data points employed n is printed, along with the computed values of the coef-
ficients c(i). The value xp of the independent variable at which interpolation is 
sought is entered interactively. The program computes the interpolated value of 
the dependent variable y, employing zeroth, first, second, third, and fourth-order 
approximations. These approximations refer to the first term, the first two terms, 
the first three terms, and so on, in Equation 7.22. Thus, the last, or fourth-order, 
approximation is the most accurate one. This is also shown by the presented results 
since the remainder term decreases as the order of the approximation increases. 
The remainder term for the last approximation involves an additional point and is 
thus not computed here. For the other approximations, we compute the remainder 
term from Equation 7.25 by simply using the next-order divided difference, which 
is known from earlier calculations.

Note again that the interpolating polynomial yields the exact value of the 
dependent variable at the given data points, as expected. Also, the interpolated 
values at x = 0.25 and 0.35 are close to those obtained earlier in Example 7.1. 
The extrapolated values at X = 0.025 and 0.5 agree closely with the experimental 
data, and the value at X = 0 with that obtained earlier. Thus, Newton’s method 
may be used as an alternative to the procedure outlined in Example 7.1. However, 
this method does not require uniformly spaced data points, as needed for the 

X 0.05 0.1 0.2 0.3 0.4

Y 2.548 4.2 5.978 6.908 7.613
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Enter the number of data points, n = 5
Enter values of the independent variable, x = [0.05 0.1 0.2 0.3 0.4];
Enter corresponding values of the dependent variable, y = [2.548 4.2 5.978 6.908 
  7.613];
Coefficients of the polynomial c0, c1, c2, ... are
c =
    2.5480
   33.0400
 –101.7333
  237.3333
 –381.4286

Enter x where interpolation is desired, xp =  0
xp =0.000
Interpolated value of y = 2.548
Remainder term = –1.652
Interpolated value of y = 0.896
Remainder term = –0.509
Interpolated value of y = 0.387
Remainder term = –0.237
Interpolated value of y = 0.150
Remainder term = –0.114
Interpolated value of y = 0.036

Enter x where interpolation is desired, xp = 0.025
xp = 0.025
Interpolated value of y = 2.548
Remainder term = –0.826
Interpolated value of y = 1.722
Remainder term = –0.191
Interpolated value of y = 1.531
Remainder term = –0.078
Interpolated value of y = 1.453
Remainder term = –0.034
Interpolated value of y = 1.419

Enter x where interpolation is desired, xp = 0.25
xp = 0.250
Interpolated value of y = 2.548
Remainder term = 6.608
Interpolated value of y = 9.156
Remainder term = –3.052

FIGURE 7.10  Numerical results obtained from Newton’s divided-difference method for the 
problem considered in Example 7.3.
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Interpolated value of y = 6.104
Remainder term = 0.356
Interpolated value of y = 6.460
Remainder term = 0.029
Interpolated value of y = 6.489

Enter x where interpolation is desired, xp = 0.35
xp = 0.350
Interpolated value of y = 2.548
Remainder term = 9.912
Interpolated value of y = 12.460
Remainder term = –7.630
Interpolated value of y = 4.830
Remainder term = 2.670
Interpolated value of y = 7.500
Remainder term = –0.215
Interpolated value of y = 7.285

Enter x where interpolation is desired, xp = 0.4
xp = 0.400
Interpolated value of y = 2.548
Remainder term = 11.564
Interpolated value of y = 14.112
Remainder term = –10.682
Interpolated value of y = 3.430
Remainder term = 4.984
Interpolated value of y = 8.414
Remainder term = –0.801
Interpolated value of y = 7.613

Enter x where interpolation is desired, xp = 0.5
xp = 0.500
Interpolated value of y = 2.548
Remainder term = 14.868
Interpolated value of y = 17.416
Remainder term = –18.312
Interpolated value of y = –0.896
Remainder term = 12.816
Interpolated value of y = 11.920
Remainder term = –4.119
Interpolated value of y = 7.801

FIGURE 7.10  Continued.
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method employed in Example 7.1. Also, the method yields the remainder term 
which reflects the increase in the accuracy of the interpolation as the order of the 
approximation is increased. The program is more involved than Lagrange interpola-
tion, as given in Example 7.2. However, this method has the important advantages 
of ease in employing varying orders of approximation and ease of evaluating the 
accuracy by means of the remainder term. Both Lagrange and Newton’s divided-
difference interpolation are widely used in engineering applications.

7.5  NUMERICAL INTERPOLATION WITH SPLINES

In the preceding sections, we considered several methods and forms of interpolating 
functions for an exact fit to a given data set. In many engineering problems, such as 
calibration of measuring and diagnostic instrumentation, numerical simulation of 
systems, and measurement of material properties, the available data points are rela-
tively few, the function f(x) is reasonably well behaved, and the accuracy level is very 
high, so that these techniques for an exact fit are appropriate. However, there are 
several cases where an alternative approach, which is based on curve fitting of small 
subsets of data points with lower-order polynomials, provides a better representation 
of the data. Such interpolating polynomials that are employed to yield a piecewise 
exact fit to the data are known as spline functions. The basic concept is based on the 
drafting technique of using a thin, flexible strip, known as a spline, to draw a smooth 
curve through a given distribution of points. Although the interpolating polynomial 
may be linear, quadratic, cubic, or of some other order, the cubic spline function is 
the most widely used one and is discussed here. Splines are advantageous to use 
when the conventional interpolation methods, such as those discussed in the previous 
sections, yield polynomials of higher order and the interpolating curve is of wiggly 
or oscillating character, as shown in Figure. 7.11. In such cases, spline interpolation 
often yields a better approximation. This approach is particularly valuable in the 
interpolation of accurate material property data over wide ranges of the independent 
variable such as temperature and pressure.

Let us consider two arbitrary points xi and xi+1 at which the function f(x) is given. 
The general form of the cubic that passes through these points and provides the inter-
polation function between the two may be taken as

	 fi (x) = a0 + a1x + a2x2 + a3x3  for xi ≤ x ≤ xi+1	 (7.33)

There are four unknown constants in this polynomial. Since the curve passes through 
the two points xi and xi+1, two conditions that must be used are

	 f x a a x a x a xi i i i i( ) = + + +0 1 2
2

3
3

	 (7.34a)

	 f x a a x a x a xi i i i i( )+ + + += + + +1 0 1 1 2 1
2

3 1
3

	 (7.34b)

The remaining two conditions may be chosen arbitrarily to obtain a smooth transi-
tion from one cubic distribution to the adjacent ones. An effective choice is the con-
tinuity of the first and second derivatives at the two points. Thus, the slope and 
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curvature of fi(x) match those of fi–1(x) at x = xi and those of fi+1(x) at x = xi+1. A special 
treatment will be needed at the end points of the given data.

Since the second derivative of a cubic is a straight line over each interval, as 
shown in Figure 7.12, a first-order Lagrange interpolation may be derived from 
Section 7.3 to represent the second derivative, over the interval xi ≤ x ≤ xi+1, as 
follows:
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Integrating this equation twice and applying Equations 7.34 to determine the 
constants that arise, we obtain the cubic fi (x) over xi ≤ x ≤ xi+1:

f (x)

x

(a)

f (x)

x

(b)

f (x)

x

(c)

FIGURE 7.11  Interpolation with single polynomials over the entire range and with piece-
wise cubic splines for a step change in the dependent variable. (a) Third-order polynomial fit, 
(b) seventh-order polynomial fit, and (c) cubic spline interpolation.
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Equation 7.36 yields the interpolating cubic distributions over each of the subinter-
vals in the range x0 ≤ x ≤ xn. We determine the second derivatives in Equation 7.36 
by using the matching condition for the first derivative, that is,

	 ʹ = −́f x f xi i i i( ) ( )1 	 (7.37)

Now, fi(x) may be differentiated and x set equal to xi to obtain the derivative at the 
left-hand limit of interval i. Similarly, fi−1 (x) is differentiated and x set equal to xi to 
yield the derivative at the right-hand limit of interval (i–1). The two results obtained 
are equated to give a set of linear simultaneous equations of the form
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(7.38)

Here, the fact that f ″(xi ) is the same when xi is approached from either side, as shown 
in Figure 7.12, has also been used. This condition may be stated as

	 f x f xi i i iʺ ( ) ( )= ʹ́−1 	 (7.39)

f ″
 (x

)

f ″ (xi–2)

f ″ (xi–1)
f ″ (xi)

f ″ (xi+1)

f ″ (xi+2) f ″ (xi+3)

xxi–2 xi–1 xi xi+1 xi+2 xi+3

FIGURE 7.12  Variation of the second derivative f ″(x) over the subintervals that constitute 
the given range of data for spline interpolation.
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For (n + 1) data points, represented by the values of the independent variable xi, 
where i = 0, 1, 2, . . ., n, the number of intervals is n. Therefore, n cubics are gener-
ated by Equation 7.36 for spline interpolation. However, there are (n + 1) unknown 
second derivatives in the equations for the n cubics. Equation 7.38, when written 
for all the interior points, that is, for i = 1, 2, 3, . . ., (n − 1), yields (n − 1) equations 
for the evaluation of the second derivative. Since only f ″(xi−1), f ″(xi) and f ″(xi+1) 
appear as unknowns in Equation 7.38, the system of equations is tridiagonal and 
may easily be solved by Gaussian elimination, as illustrated in Example 6.2. 
However, we still need two additional conditions at the end points of the data set, 
that is, for i = 0 and i = n, in order to determine f ″(x0) and f ″(xn). These conditions 
are usually taken as

	 ʹ́ = ʹ́ =f x f xn( ) ( )0 0 0and 	 (7.40)

Thus, the analogous elastic strip for drawing a curve through the given points is 
allowed to assume a natural, unconstrained straight line beyond the given range of 
data points. This spline, known as a natural cubic spline, is the one most frequently 
employed for an arbitrary data set.

Several other approximations for the end conditions have been employed for dif-
ferent types of data, see Ferziger (1998). For data that are expected to lie on a peri-
odic curve, the end conditions are often taken as f ″(x0) = f ″(xn−1) and f ″(x1) = f ″(xn), 
representing the repetitive nature of the curve. Another frequently used set of condi-
tions is f ″(x0) = f ″(x1) and f ″(xn−1) = f ″(xn), which makes f ″ constant in the intervals 
at the two ends. It also makes f(x) quadratic in these intervals. Other choices for the 
end conditions are also possible. However, the natural spline is the most commonly 
employed interpolating spline. Equation 7.36 gives the cubic equation for each inter-
val, and Equation 7.38, along with Equation 7.40 or one of the other end conditions 
chosen, gives the tridiagonal system for obtaining the (n + 1) second derivatives. For 
further details on splines, see Ahlberg et al. (1967). The following example illus-
trates the use of spline interpolation in a problem of practical interest.

Example 7.4

Thermocouple junctions of dissimilar metals and alloys are extensively used in 
engineering applications for temperature measurement. A voltage difference V 
is generated between two junctions at different temperatures. Calibration tables, 
which give the voltage V in millivolts (mV) for one junction at 0°C and the other at 
temperature T in °C, are available in the literature for several types of thermocou-
ple junctions. The values for a Chromel–Alumel thermocouple, which is generally 
known as type K thermocouple and consists of nickel–chromium and nickel–
aluminum alloys, are given as follows:

T (°C) 10 20 30 40 50 60 70 80 90
V (mV) 0.397 0.798 1.203 1.611 2.022 2.436 2.85 3.266 3.681

T (°C) 100 110 120 130 140 150
V (mV) 4.095 4.508 4.919 5.327 5.733 6.137
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Employing cubic spine interpolation, obtain the temperatures if the voltage output 
values are 1.0, 3.0, 4.343, 5.855, 6.0, and 6.097 mV. Compare the results obtained 
at 4.343, 5.855, and 6.097 mV with those given in the literature as 106°C, 143°C, 
and 149°C, respectively.

SOLUTION

This problem is well suited for spline interpolation, since the tabulated values are 
very accurate and since the large number of data points makes an exact fit with a 
single polynomial difficult to apply and also inaccurate, as discussed earlier. The 
voltage V is measured in engineering processes, and the temperature T is obtained 
by interpolation from the calibration data. Thus, V is taken as the independent 
variable and T as the independent variable.

Appendix C.10 presents the computer program in Fortran for spline inter-
polation. The number of data points is entered interactively by the user, and 
the program reads the relevant data from files V.DAT and T.DAT, for volt-
age and temperature, respectively, stored in the computer. Two subroutines, 
DERIVATIVE and SPLINE, are employed in the program. The former generates 
the tridiagonal matrix for the second derivative f ″(xi), denoted by T2 in the 
program. The elements of the matrix are obtained from Equations 7.38 and 
7.40. The Thomas algorithm, derived in Example 6.2, is employed to obtain the 
values of the second derivative needed for the cubic spline given by Equation 
7.36. The voltage at which interpolation is desired is denoted by VP and is 
entered into the main program by the user. The subroutine SPLINE determines 
the interval in which VP lies, derives the relevant cubic spline using Equation 
7.36, and computes the interpolated value TP of the temperature. The main 
program prints the results and inquires whether interpolation at another value 
of V is needed. Thus, interpolated results may be obtained at the desired values 
of the output voltage V.

The numerical results obtained are presented in Figure 7.13. The interpolated 
temperatures for V = 1.0, 3.0, and 6.0 mV are found to be physically realistic and to 
lie in the appropriate subintervals of the given data. Also, the values for V = 4.343, 
5.855, and 6.097 are very close to those given in the literature as 106°C, 143°C, 
and 149°C, respectively, lending strong support to the accuracy of the interpolated 
results obtained. In fact, several additional values of V were considered, and the 
results were found to be very accurate. Thus, cubic spline interpolation may be 
used satisfactorily for this problem and other similar ones, such as material prop-
erty data.

The algorithm presented in Appendix C.10 may be used to develop the cor-
responding MATLAB script m-file. However, the program is fairly involved and the 
interpolation commands discussed earlier may be used directly for spline inter-
polation. Thus, the command interp1 may be used effectively for this example to 
obtain the desired interpolated values. The command is given as

interp1(v,t,vp,'spline')
or as
yp = spline(v,t,vp)

where v and t are the two arrays of data for the independent and depen-
dent variables, respectively, and vp is the array of v values where interpolated 
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results are desired, using spline interpolation. Thus, a simple script file may be 
written as

v = [0.397 0.798 1.203 1.611 2.022 2.436 2.85 3.266 3.681 ... 
4.095 4.508 4.919 5.327 5.733 6.137];
t = [10 20 30 40 50 60 70 80 90 100 110 120 130 140 150];
vp = [1.0 3.0 4.343 5.855 6.0 6.097];
yp = spline(v,t,vp)

This yields the desired results as

yp =  24.9982 73.6091 106.0008 143.0141 146.6028 149.0074

		  ENTER THE NUMBER OF DATA POINTS
	 15
		  ENTER THE VALUE OF V FOR INTERPOLATION
	 1.0
			   VOLTAGE V = 1.00000	 TEMPERATURE T = 24.99982

		  IF YOU WANT ADDITIONAL INTERPOLATION , TYPE 1
	 1
		  ENTER THE VALUE OF V FOR INTERPOLATION
	 3.0
			   VOLTAGE V = 3.00000	 TEMPERATURE T = 73.60907

		  IF YOU WANT ADDITIONAL INTERPOLATION , TYPE 1
	 1
		  ENTER THE VALUE OF V FOR INTERPOLATION 4.343
			   VOLTAGE V = 4.34300	 TEMPERATURE T = 106.00078

		  IF YOU WANT ADDITIONAL INTERPOLATION , TYPE 1
	 1
		  ENTER THE VALUE OF V FOR INTERPOLATION 5.855
			   VOLTAGE V = 5.85500	 TEMPERATURE T = 143.01590

		  IF YOU WANT ADDITIONAL INTERPOLATION , TYPE 1
	 1
		  ENTER THE VALUE OF V FOR INTERPOLATION 6.0
			   VOLTAGE V = 6.00000	 TEMPERATURE T = l46.60565

		  IF YOU WANT ADDITIONAL INTERPOLATION , TYPE 1
	 1
		  ENTER THE VALUE OF V FOR INTERPOLATION 6.097
			   VOLTAGE V = 6.09700	 TEMPERATURE T = 149.00882

		  IF YOU WANT ADDITIONAL INTERPOLATION , TYPE 1
	 2

FIGURE 7.13  Computed results from spline interpolation for the problem considered in 
Example 7.4.
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Clearly, the results are very close to those obtained earlier by using the com-
puter program whose algorithm was discussed above.

7.6  METHOD OF LEAST SQUARES FOR A BEST FIT

In the preceding sections, we discussed interpolation with approximating functions 
that pass through each given data point. Such an exact fit is appropriate if the given 
data are of a high level of accuracy. If the number of points is relatively small, a 
single polynomial approximation may be employed for interpolation. If a large num-
ber of points are given, spline interpolation, which yields lower-order polynomials, 
such as cubics, to fit small subsets of the data, can be used to piecewise approximate 
the data for obtaining values of the dependent variable at intermediate points. 
However, the data obtained in many engineering applications have a significant 
amount of associated error. Experimental data, for instance, would generally have 
some noise, or error, whose magnitude would depend on the instrumentation and the 
arrangement employed for the measurements. In such cases, a polynomial interpola-
tion that demands that the approximating curve pass through each data point is not 
appropriate.

A better approach is to derive a function that provides a best fit to the given data 
by somehow minimizing the difference between the given values of the dependent 
variable and those obtained from the approximating curve. Figure 7.14 shows a few 
circumstances where a best fit will be much more satisfactory than an exact fit. 
Because of the error associated with the data, it is not necessary for the approximat-
ing curve to match each data point. A curve that adequately represents the general 
trend of the data, without necessarily passing through each point, will be useful in 
characterizing the data and deriving correlating equations for quantitatively describ-
ing the physical or chemical process under consideration. Such correlations are 
extremely important in engineering applications and are often the desired output 
from an experimental study. The measurements on the deflection of a building struc-
ture due to the flow of water, for instance, can be used to yield a best fit that then can 
be employed in the design of such structures for locating them in streams and in the 
sea. Similarly, measurements of the velocities of accelerating automobiles can be 
used to derive correlating equations that characterize the dependence of the accelera-
tion on various parameters, such as shape, weight, and fuel mixture. Heat and mass 
transfer from surfaces are often measured for different geometries and flow condi-
tions. The results obtained are then curve fitted to yield correlations that can be used 
for future analysis and design of similar processes and systems.

7.6.1  Basic Considerations

Several criteria can be used to derive the curve that best fits the data. If the approxi-
mating function is denoted by f(x) and the given data points by (xi, yi), where y is the 
dependent variable, x is the independent variable, and i = 1, 2, . . ., n, the error ei at 
x = xi is given by

	 ei = yi − f(xi)	 (7.41a)
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One method for obtaining a best fit to the data is to minimize the sum of these 
individual errors, that is, minimize ∑ =i

n
ie1 . However, this approach is not satisfactory 

since this criterion allows the errors to cancel out and thus does not yield a unique 
curve. Moreover, the curve may not represent the general trend of the data at all. If 
the sum of the absolute values of the errors, ∑ =i

n
ie1 | |, is minimized, the result is bet-

ter, but, again, a unique best fit is generally not obtained. Another approach that may 
be used is the minimax criterion, which minimizes the maximum error, (ei)max, for 
the data points. However, this method is heavily influenced by a single point that may 
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FIGURE 7.14  Data distributions for which a best fit is more appropriate than an exact fit.
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have large error. Although unsuitable for obtaining a best fit in most engineering 
problems, this approach is often appropriate for fitting a simple function to a much 
more complicated one, as outlined by Carnahan et al. (1969).

The most commonly used approach for a best fit is the method of least squares. In 
this method, the sum S of the squares of the errors is minimized. The expression 
for S is
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This approach generally yields a unique curve that provides a good representation of 
the given data, if the approximating function is properly chosen. As outlined in 
Section 1.4, one must employ the basic nature of the problem under consideration in 
choosing the form of the approximating function. Thus, for the measurements of the 
average daily temperature over the year, a sinusoidal function will yield a good best 
fit to the data, see Figure 1.5. Similarly, in most experimental studies of engineering 
systems and processes, the expected trends are known from the physical nature of 
the problem, allowing one to choose an appropriate function for curve fitting.

Let us consider, as an example, the measurement of a physical variable, which 
may be, say, the length, weight, or density of a given material. If n measurements are 
taken, the results will generally differ because of the experimental error involved. 
Let us denote these measurements as l1, l2, . . ., ln. If L denotes the desired best fit to 
these measurements, then

	 S = (l1 − L)2 + (l2 − L)2 + . . . + (ln − L)2	 (7.42)

To minimize this sum S of the squares of the differences, we differentiate S twice to 
obtain
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Since n is positive, the value of L for which dS/dL = 0 gives a minimum value of 
the sum S. From Equation 7.43, this value is obtained as
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(7.45)

Therefore, if the sum S is minimized, the value of the quantity L is simply the 
arithmetic mean of the measurements. One will expect this value to be the best 
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representation of the data if the measurements are all taken with equal care and are 
thus of comparable accuracy. This example provides a physical basis for the method 
of least squares and may easily be extended to a function f(x), using the consideration 
of a single unknown variable L given above.

7.6.2  Linear Regression

The procedure of obtaining a best fit to a given data set is often known as regression. 
Let us first consider fitting a straight line to a set of data points denoted by (x1, y1), 
(x2, y2), . . ., (xn, yn), where x is the independent variable and y the dependent variable. 
Although engineering applications usually lead to nonlinear functions, there are sev-
eral circumstances where a linear variation closely approximates the measurements. 
Moreover, exponential and power-law forms, which are very frequently encountered 
in practical problems, can often be reduced to linear variations, as illustrated later in 
this section. Consequently, linear regression is very important in a wide variety of 
engineering applications, particularly in the derivation of correlating equations from 
experimental data.

The equation of the straight line for curve fitting may be taken as

	 f(x) = a + bx	 (7.46)

where a and b are the coefficients that must be determined from the given set of n 
data points. Thus, a and b are to be chosen such that the sum S of the squares of the 
deviations of the data points from the values obtained from the equation of the 
straight line, Equation 7.46, is a minimum. This implies that
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The minimum occurs when the partial derivatives of S with respect to a and b are 
both zero. Thus,
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These equations may be simplified and expressed as
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which may be written for the unknowns a and b as

	
na b x yi i+ =∑ ∑ 	

(7.50)
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(7.51)

where the summations are all from i = 1 to i = n.
Equations 7.50 and 7.51 are linear in the unknowns and may be solved simultane-

ously to yield the desired values of a and b. Using Cramer’s rule, we obtain a and b 
in terms of the relevant determinants as follows:
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where the vertical bars indicate magnitude of the determinant. We may employ the 
given set of n data points to compute • • • •x y x x yi i i i i, , , .2 and  Then we use these 
values to calculate the determinants in Equations 7.52 and 7.53. These equations then 
yield the coefficients a and b for the straight line, Equation 7.46, that provides a best 
fit to the given data.

To quantify the accuracy with which the computed straight line fits the given data, 
we compute the sum of the squares of the deviations of the data from the mean to 
represent the spread before regression is applied. Denoting this sum by Sm and the 
mean by y , we have
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The spread in the data that remains after regression is indicated by S, where
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Therefore, the extent of improvement due to curve fitting by a straight line is indi-
cated by

	
r

S S
S
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(7.56)

where r is known as the correlation coefficient. A good correlation for linear regres-
sion is indicated by a high value of r, the maximum of which is 1.0. However, the 
given data should also be plotted along with the computed curve, in order to deter-
mine, qualitatively, how good a representation of the data is provided by the fit. 
Equation 7.56 can also be used for higher-order polynomials and nonpolynomial 
forms of the function for a best fit, as outlined later in this section. See Draper and 
Smith (1998) for further details on the application of regression analysis.

7.6.3  Best Fit with a Polynomial

Linear regression yields a straight line that provides a best fit to a given data set. It is 
simple to apply, since only two unknown coefficients, a and b in Equation 7.46, are 
to be determined. In many cases, particularly if the range of the independent variable 
is relatively small, a straight line provides a fairly good representation of the data. 
Also, as outlined in Section 7.6.4, certain nonlinear forms, such as exponentials, may 
be transformed to yield linear variations. However, the data may have a definite trend 
that is poorly represented by a straight line. An example of such a situation is shown 
in Figure 7.15, which illustrates that a straight line is not a satisfactory choice for 
curve fitting in this case. A polynomial, such as a parabola or a cubic, will be more 
appropriate.

In order to obtain a best fit to the given data, let us consider an mth-order poly
nomial, given as

	 f(x) = c0 + c1x + c2x2 + . . . + cm xm	 (7.57)

y =
 f 
(x
)

x

FIGURE 7.15  A polynomial best fit to given data.
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Then the sum S of the squares of the deviations of the data from the curve is given by
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We determine the coefficients c0, c1, . . ., cm by extending the procedure outlined in 
the preceding section for linear regression. Therefore, S is differentiated with respect 
to each of the coefficients, and the partial derivatives are set equal to zero in order to 
minimize S. This gives
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(7.59)

Equations 7.59 may be simplified and rearranged to yield the following system of 
(m + 1) linear equations for the (m + 1) unknowns c0, cl, . . ., cm:

	

nc c x c x c x y

c x c x c x c x

i i m i
m

i

i i i m

0 1 2
2

0 1
2

2
3

+ + + ⋅⋅⋅ + =

+ + + ⋅⋅⋅ +

∑ ∑ ∑ ∑
∑ ∑∑ ii

m
i i

i
m

i
m

i
m

m i
m

i
m

i

x y

c x c x c x c x x y

+

+ +

∑ ∑
∑ ∑∑ ∑ ∑

=

+ + + ⋅⋅⋅ + =

1

0 1
1

2
2 2

	

(7.60)

where all the summations are from i = 1 to i = n. It can easily be verified that the equa-
tions for linear regression, Equations 7.50 and 7.51, are obtained for a first-order poly-
nomial, m = 1. The methods given in Chapter 6 may be employed to solve the above 
system of equations, which are linear in the unknown coefficients c0, c1, . . ., cm.

Curve fitting with polynomials is generally restricted to small values of the order 
m of the polynomial, in order to avoid extensive calculations for the determination of 
the coefficients and to obtain simple correlating curves that approximate the general 
trends of the data. Typical values of m range from 1 to 4, the appropriate value being 
chosen on the basis of the accuracy and spread of the data, as well as the number of 
data points. For a relatively large spread of the data, a lower-order polynomial fit will 
generally be more appropriate. Computation is involved in evaluating the summa-
tions in Equation 7.60 and then solving this system of equations, which may be recast 
in matrix notation. For a second-order polynomial, for instance, we have
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(7.61)
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Various elimination and matrix inversion or decomposition methods, given in 
Chapter 6, may be employed for solving Equation 7.60 or 7.61 for the coefficients. 
Gaussian elimination is the most popular choice because of the small number of 
equations to be solved in most cases. The correlation coefficient r may again be 
determined from Equation 7.56 to evaluate how good a fit is given by the resulting 
polynomial.

The polyfit command in MATLAB can be used conveniently for polynomial 
regression. Linear regression is obtained if the order of the polynomial is given as 1, 
as discussed in Chapter 3. Linear regression can also be used for nonpolynomial 
forms, as discussed in the next section. Higher order polynomials can be determined 
for a best fit by specifying the order of the desired polynomial. The use of the polyfit 
command is illustrated in Example 7.5.

7.6.4  Nonpolynomial Forms

The method of least squares is not restricted to polynomials for curve fitting and may 
easily be applied to various other forms that contain constant coefficients. An exam-
ple of a physical situation where such a form is more appropriate than a polynomial 
is the periodic variation in ambient temperature considered in Chapter 1; see 
Figure 1.5. Equations 1.10 through 1.12 give some of the sinusoidal functions that 
may be employed for curve fitting. Considering the function given in Equation 1.11, 
for example, we obtain

	 f(x) = A sin ωx + B cos ωx	 (7.62)

and
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where the sum S is to be minimized for a best fit. Thus,
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This gives the equations

	
A x B x x y xi i i i i(sin ) (sin cos ) sinω ω ω ω2 + =∑ ∑ ∑ 	

(7.64)

	
A x x B x y xi i i i i(sin cos ) (cos ) cosω ω ω ω+ =∑ ∑ ∑2

	
(7.65)

which can be easily solved for A and B.
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Nonpolynomial forms are important in a wide variety of engineering problems. 
If the function chosen for curve fitting has constant coefficients, such as A and B in 
Equation 7.62, the method of least squares can be easily applied. However, if the 
constants do not appear as coefficients, for example, the constant a in Equation 
1.10, a straightforward application of the method is not possible. Therefore, the 
nonpolynomial forms employed for the curve fitting of various types of engineer-
ing data are chosen such that the constants to be determined appear only as 
coefficients.

Besides periodic processes, an example of which is considered above, several 
engineering applications involve power-law and exponential variations, some of 
which can be linearized as outlined below. The example given by Equations 1.1 and 
1.2, for instance, concerns an exponential variation. Similarly, processes that 
approach a constant magnitude at large values of the independent variable x can 
often be represented by polynomials with negative exponents, for example,

	 y = c0 + c1x−1 + c2x− 2	 (7.66)

Processes where such an equation may be applicable are the charging of a capacitor 
in an electrical circuit, the free fall of an object under gravity to attain a terminal 
velocity, and the dissolution of salt in a given amount of liquid until saturation occurs. 
However, unless the physical or chemical nature of the given data indicates the suit-
ability of a particular nonpolynomial form, curve fitting is first explored using a 
polynomial, with varying orders of the polynomial, to obtain a satisfactory represen-
tation of the data, see Example 7.5.

7.6.4.1  Linearization
In several cases, a nonlinear form chosen to curve fit the given data may be linear-
ized by suitable transformations so that linear regression may be applied. Consider, 
for example, the exponential variation that is commonly encountered in engineering 
problems, as shown in Figure 1.2. The general form of an exponential variation may 
be taken as

	 f(x) = c1ec2x	 (7.67)

where c1 and c2 are constants to be determined for a best fit. In engineering applica-
tions, c1 is generally positive, and c2 may be positive, as in the convective heating of 
a metal block, or negative, as in radioactive decay and discharge of a capacitor. If the 
natural logarithm of Equation 7.67 is taken, we obtain

	 log [ f(x)] = log c1 + c2x	 (7.68)

Thus, log[ f(x)] is a linear function of x, and linear regression may be applied using x 
as the independent variable and the natural logarithm of y, where y = f(x), as the 
dependent variable. Then yi in Equations 7.52 and 7.53 is replaced by log yi. Also, 
a = log c1 and b = c2, where a and b are the coefficients for linear regression, Equation 
7.46. This approach is frequently employed for obtaining correlating equations for 
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measured heat and mass transfer rates from bodies and surfaces under different 
physical and chemical conditions.

Similarly, the power-law variation given by the general form

	 f(x) = c1xc2	 (7.69)

is frequently employed for the representation of certain engineering processes. 
Again, a natural logarithm of the equation is taken to yield

	 log [ f(x)] = log c1 + c2 log x	 (7.70)

where the logarithm to base 10 may also be taken for convenience, instead of the 
natural logarithm. Again, linear regression may be applied, with log x and log [ f(x)] 
as the independent and dependent variables, respectively, to obtain the coefficients c1 
and c2.

Similarly, various other forms, such as
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may be linearized by taking the reciprocal of f(x), of x, or of both as the independent 
and dependent variables. Thus, these equations may be rewritten as
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	 y = c1 + c2 X	 (7.72b)
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where y = f(x), Y = l/f(x), and X = 1/x. Therefore, linear regression may be applied to 
these transformed equations to obtain the coefficients c1 and c2. These examples also 
indicate the importance of linear regression in the curve fitting of engineering data. 
Many processes of practical interest are governed by exponential, power law, and 
other forms given above, and linear regression is employed to determine the unknown 
coefficients. Example 7.5 illustrates the use of the method of least squares for obtain-
ing a best fit to a given data set.
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Example 7.5

	 a.	 In a chemical reaction, the effect of the concentration C of a catalyst on the 
rate R of the reaction is investigated experimentally. The measurements of C 
in g/m3 and of R in g/s yield the following:

C (g/m3)	 0.1	 0.2	 0.5	 1.0	 1.2	 1.8	 2.0	 2.6	 3.5	 4.0
R (g/s)	 1.85	 1.91	 2.07	 2.32	 2.40	 2.54	 2.56	 2.53	 2.03	 1.24

			   Using the method of least squares and considering polynomials up to the 
fifth order, obtain a best fit to these data.

	 b.	A small, heated metal block cools in air, and its temperature T is measured 
as a function of time t to give the following data:

t (s)	 1	 2	 5	 10	 15	 20	 25	 30
T (°C)	 109.58	 99.25	 73.78	 45.15	 26.78	 17.24	 9.85	 6.97

			   From physical considerations of the problem, the temperature is expected 
to decay exponentially, as Ae−at, where A and a are constants. Employing 
the program developed in Part (a), obtain a best fit to the given data and 
determine the constants A and a.

SOLUTION

	 a.	From the data presented, we can see that the reaction rate R increases with 
concentration C of the catalyst up to a point and then decreases. Thus, we 
expect that linear regression would not be satisfactory, and therefore we 
attempt curve fitting with polynomials. However, we can also obtain the 
results for linear regression from the numerical scheme by choosing the 
order of the polynomial as 1.

			   Denoting the independent variable by x and the dependent variable by y, 
for generality, we obtain a system of linear equations, as given by Equation 
7.60. Then we solve this system to obtain the coefficients ci of the polyno-
mial. Appendix B.18 presents the script m-file in MATLAB and Appendix 
C.11 presents the computer program in Fortran for the least-squares method 
for polynomial regression. In the latter, the data points are represented by 
X(I) and Y(I), and the coefficients of the polynomial by C(I). The order of 
the polynomial is denoted by MP, which gives the number of coefficients 
to be determined as N = MP + 1. The various other symbols employed are 
defined in the program.

			   In the given program, the input data and the chosen order of the poly-
nomial for curve fitting are read from an appended data set. The system of 
linear equations, given by Equation 7.60, is then generated. The correspond-
ing augmented matrix, with the constant vector on the right-hand side of 
Equation 7.60 being stored as the (N + l)th column, is obtained. Gaussian 
elimination is employed for the solution of this system of equations. A sub-
routine called GAUSS is employed. This subroutine applies the Gaussian 
elimination algorithm to the system of equations. Thus, the coefficient matrix 
is reduced to an upper triangular matrix, and back-substitution is employed 
to determine the coefficients C(I). The subroutine GAUSS is the same as that 
developed earlier for Example 6.1 and employs partial pivoting for accu-
racy and for avoiding a zero pivot element. The computed coefficients are 
printed and thus a polynomial of form given by Equation 7.57 is obtained for 
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a best fit. The values of the dependent variable Y(I) at the given data points 
X(I) are calculated using this polynomial. These values are then compared 
with the given data to estimate the accuracy of the best fit obtained.

			   Figure 7.16 shows the computed results for polynomials of order 1, 3, 
and 5. A comparison of the results with the given data shows that linear 
regression is in considerable error, as expected. The third-order polynomial 
fit is fairly accurate, although the fifth-order regression is more accurate. 
However, because of the smaller computational effort required and the ease 
in application to engineering problems, a third-order polynomial best fit is 
very frequently employed in practice, rather than higher-order polynomials. 
These trends are illustrated more clearly in Figure 7.17, where the given data 
points are plotted, along with some of the polynomials derived from the 
method of least squares. Again, note that a third-order polynomial yields a 
fairly accurate representation of the data.

			   Using a somewhat similar logic, the MATLAB script file in Appendix 
B.18 is developed. However, this program uses the convenience of matrix 
specification and algebra available in the MATLAB environment, yielding a 
fairly simple script file. The given data are entered and the desired order of 
the polynomial best fit is specified. The matrices for polynomial regression 
are obtained by appropriate summations of the data. The backslash operator 
is used to solve the system of linear equations to determine the coefficients 

THE ORDER OF THE POLYNOMIAL = 1
THE CONSTANTS OF THE POLYNOMIAL ARE

C(l)	 =	 2.25954
C(2)	=	 –0.06778

THE VALUES CALCULATED FROM THE BEST FIT ARE
X(1)	 =	0.1000	 Y(1)	 =	2.2528
X(2)	 =	0.2000	 Y(2)	 =	2.2460
X(3)	 =	0.5000	 Y(3)	 =	2.2257
X(4)	 =	1.0000	 Y(4)	 =	2.1918
X(5)	 =	1.2000	 Y(5)	 =	2.1782
X(6)	 =	1.8000	 Y(6)	 =	2.1375
X(7)	 =	2.0000	 Y(7)	 =	2.1240
X(8)	 =	2.6000	 Y(8)	 =	2.0833
X(9)	 =	3.5000	 Y(9)	 =	2.0223
X(10)	=	4.0000	 Y(10)	=	1.9884

THE ORDER OF THE POLYNOMIAL = 3
THE CONSTANTS OF THE POLYNOMIAL ARE

C(l)	 =	 1.82437
C(2)	 =	 0.43013
C(3)	 =	 0.09669
C(4)	 =	 –0.05961

FIGURE 7.16  Calculated results for Example 7.5(a), using polynomials of order 1, 3, and 5 
for a best fit.
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of the polynomial. The coefficients are printed for the form represented by 
Equation 7.57. These are then rearranged in descending powers of the inde-
pendent variable to use these with MATLAB functions, such as polyval, to 
obtain the desired values of the dependent variable from the best fit.

			   The results obtained from this script file for a third-order polynomial are:
		  The constants of the polynomial are

	 c = 
	 1.8244
	 0.4300
	 0.0968
	 –0.0596

THE VALUES CALCULATED FROM THE BEST FIT ARE

X(1)	 =	0.1000	 Y(1)	 =	1.8683
X(2)	 =	0.2000	 Y(2)	 =	1.9138
X(3)	 =	0.5000	 Y(3)	 =	2.0562
X(4)	 =	1.0000	 Y(4)	 =	2.2916
X(5)	 =	1.2000	 Y(5)	 =	2.3768
X(6)	 =	1.8000	 Y(6)	 =	2.5643
X(7)	 =	2.0000	 Y(7)	 =	2.5945
X(8)	 =	2.6000	 Y(8)	 =	2.5487 
X(9)	 =	3.5000	 Y(9)	 =	 l.9587
X(10)	=	4.0000	 Y(10)	=	1.2772

THE ORDER OF THE POLYNOMIAL = 5
THE CONSTANTS OF THE POLYNOMIAL ARE

C(1)	 =	 1.79686
C(2)	=	 0.52743
C(3)	=	 0.14705
C(4)	=	 –0.21183
C(5)	=	 0.06872
C(6)	=	 –0.00884

THE VALUES CALCULATED FROM THE BEST FIT ARE

X(1)	 =	0.1000	 Y(1)	=	1.8509
X(2)	 =	0.2000	 Y(2)	=	1.9066
X(3)	 =	0.5000	 Y(3)	=	2.0749
X(4)	 =	1.0000	 Y(4)	=	2.3194
X(5)	 =	1.2000	 Y(5)	=	2.3960
X(6)	 =	1.8000	 Y(6)	=	2.5416
X(7)	 =	2.0000	 Y(7)	=	2.5618
X(8)	 =	2.6000	 Y(8)	=	2.5288
X(9)	 =	3.5000	 Y(9)	=	2.0301
X(10)	=	4.0000	 Y(*)	=	1.2400

FIGURE 7.16  Continued.
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		  The values calculated from the best fit are

	 y = 1.8683
	 1.9138
	 2.0562
	 2.2916
	 2.3767
	 2.5643
	 2.5945
	 2.5487
	 1.9587
	 1.2772

		  Thus, the results obtained are very close to those presented earlier. Similarly, 
the results for other orders of the polynomial, as given by the specified value 
of np, may be obtained. For linear regression, np is set equal to 1, as seen 
in the following example.

	 b.	Consider regression with an exponential of the form

	 y = Ae−ax	 (7.73)

		  Taking natural logarithms of both sides, we obtain

	 log logy A ax

B ax

= −

= −
	 (7.74)

		  where B = log A is a constant. Thus, we may apply linear regression to 
the given data, employing log y as the dependent variable and x as the 
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FIGURE 7.17  Comparison between given data and the best-fit obtained, using polynomials 
of different order.
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independent variable. The results obtained are shown in Figure 7.18. The 
constants for the linear best fit are C(l) and C(2), which correspond to B and 
–a in Equation 7.74. Therefore, log A = B = C(1), which gives A = exp[C(1)] 
and a = –C(2). The resulting constants A and a are obtained from the pro-
gram as 119.1 and 0.09695, respectively. The term exponent in this figure 
refers to –a in Equation 7.73.

			   The values of the dependent variable Y(I) are also calculated from the 
best fit and are found to be close to the given data. The correlation coef-
ficient r for this problem is found to be 0.9998, which indicates a very 
good representation of the given data by the exponential function y = 119.1 
exp( –0.09695x). Similarly, the program given in Appendix C.11 may be 
employed for other nonpolynomial forms.

			   Similarly, the MATLAB script file given in Appendix B.18 may be used 
with np = 1 to obtain a linear best fit to the given data, with x as the inde-
pendent variable and log y as the dependent variable. The script file may be 
modified by employing the following after applying polynomial regression 
with np = 1:

	 disp('Constants of the linear regression are:')
	 c = a\b
	 Constant = exp(c(1))
	 Exponent = c(2)
	 plot(x1,y1,'*')
	 hold
	 x = linspace(0,40,40);
	 y = Constant*exp(Exponent.*x);
	 plot(x,y,'k-')
	 xlabel('x','Fontsize',14)
	 ylabel('y','Fontsize',14)

THE CONSTANTS OF THE POLYNOMIAL ARE

C(l)	 =	 4.78000
C(2)	=	 –0.09695

CONSTANT A = 119.10	 EXPONENT = –0.09695

THE VALUES CALCULATED FROM THE BEST FIT ARE

X(l)	 =	 1.0000	 Y(l)	 =	108.0993
X(2)	 =	 2.0000	 Y(2)	 =	98.1109
X(3)	 =	 5.0000	 Y(3)	 =	73.3503
X(4)	 =	 10.0000	 Y(4)	 =	45.1726
X(5)	 =	 15.0000	 Y(5)	 =	27.8195
X(6)	=	 20.0000	 Y(6)	 =	17.1326
X(7)	=	 25.0000	 Y(7)	 =	10.5510
X(8)	 =	 30.0000	 Y(8)	 =	6.4978

THE CORRELATION COEFFICIENT = 0.9998

FIGURE 7.18  Numerical results obtained with an exponential best fit for the problem 
considered in Example 7.5(b).
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The results obtained are
Constants of the linear regression are

   c = 
	 4.7800
	 −0.0970
   Constant = 119.1062
   Exponent = −0.0970

	 The results obtained also yield the graphical representation of Figure 7.19, 
which shows the given data and the best fit thus obtained, indicating the close 
approximation of the data by the exponential best fit. We can also directly use 
the polyfit command to obtain the best fit. For instance, we could use

	 x = [1 2 5 10 15 20 25 30];
	 y = [109.58 99.25 73.78 45.15 26.78 17.24 9.85 6.97];
	 y = log(y);
	 p1 = polyfit(x,y,1)

	 This would then yield the two coefficients as –0.0970 and 4.7800, arranging 
them in descending powers of x. Thus, from Equation 7.74, B = 4.7800 and 
a = –0.0970 and the results are the same as those given above. Thus, the polyfit 
function may be used conveniently to obtain the best fit to the given data using 
a polynomial of specified order.

7.7  FUNCTION OF TWO OR MORE INDEPENDENT VARIABLES

In the preceding sections, we considered curve fitting for dependent variables that 
are functions of only one independent variable. However, in engineering applications, 
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FIGURE 7.19  Given data and the exponential best-fit obtained in Example 7.5(b).
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we frequently encounter functions of two or more independent variables. In many 
cases, interest lies in representing the dependence of such functions on only one 
independent variable, while the others are held constant at given values. Then, an 
exact or a best fit, as appropriate, may be employed, as discussed earlier, to charac-
terize this variation. However, there are several circumstances where it is necessary 
to consider the variation of the dependent variable y with two or more independent 
variables, say, x1, x2, and so on. The pressure generated by a pump, for instance, 
depends on both the speed and the flow rate. Similarly, properties of gases, such as 
density, depend on the pressure as well as the temperature. Although curve fitting 
may be carried out with only one independent variable, taking the others at specified 
values and thus generating a number of curves that fit the data, it is often more con-
venient and desirable to seek a single function such as f(x1, x2) that represents the 
dependence on all the independent variables.

7.7.1  Exact Fit

Let us consider a variable y which is a function of two independent variables x1 and 
x2. Then if an exact fit with a second-order polynomial is sought, we may employ the 
general equation

	 y A Bx Cx= + +1 1
2

	 (7.75)

where the coefficients A, B, and C are functions of x2. Again, employing second-
order polynomials, we may write

	 A a a x a x= + +0 1 2 2 2
2

	 (7.76)

	 B b b x b x= + +0 1 2 2 2
2

	 (7.77)

	 C c c x c x= + +0 1 2 2 2
2

	 (7.78)

Equation 7.75 may be written at three different values of x2 as follows:

	 y A B x C x= + +1 1 1 1 1
2

	 (7.79)

	 y A B x C x= + +2 2 1 2 1
2

	 (7.80)

	 y A B x C x= + +3 3 1 3 1
2

	 (7.81)

where (A1, B1, C1) correspond to one value of x2, (A2, B2, C2) to another, and (A3, B3, 
C3) to a third value of x2.

The first step involves determining the coefficients in Equations 7.79 through 7.81 
by employing three data points, in terms of y and x1, at each value of x2. Thus, as 
shown in Figure 7.20, we need nine data points to evaluate these nine coefficients. 
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Each curve in Figure 7.20 is represented by a second-order polynomial, which is 
determined at the given value of x2 if three data points are available for this curve. 
Thus, a set of three equations is solved, as discussed in Section 7.2, to obtain the 
coefficients Al, Bl, and C1 in Equation 7.79. Similarly, the coefficients in Equations 
7.80 and 7.81 are determined. Thus, we now have the values A1, A2, and A3 for the 
variable A in Equation 7.76 at three values of x2. Using these values, we may deter-
mine the coefficients a0, a1, and a2. Similarly, we determine the coefficients in 
Equations 7.77 and 7.78 using the values B1, B2, B3, and Cl, C2, C3 at the three given 
values of x2. Thus, the procedure for an exact fit is applied twice to obtain all the 
relevant coefficients.

The coefficients obtained from the nine data points shown in Figure 7.20 yield an 
exact second-order polynomial fit to the given data. The resulting general equation is 
written as

	 y a a x a x b b x b x x c c x c x x= + + + + + + + +( ) ( ) ( )0 1 2 2 2
2

0 1 2 2 2
2

1 0 1 2 2 2
2

1
2

	 (7.82)

Thus, the functional dependence of y on x1 and x2 is represented by this equation. 
This approach may easily be extended to higher-order polynomials and functions of 
more than two variables. However, the solution becomes more involved because of 
the larger number of coefficients to be determined. For instance, if third-order poly-
nomials are employed instead of the parabolas in Equation 7.82, we must determine 
sixteen coefficients, employing four data points in terms of y and x1 at four different 
values of x2. Similarly, 25 data points are needed for fourth-order polynomials. 
Similar increase in the complexity of the solution and of the resulting polynomial fit 
arises if functions of more than two independent variables are considered. Other 

y =
 f 

(x
1,  

x 2
)

x1

x2 = D3

x2 = D2

x2 = D1

FIGURE 7.20  Sketch of a function, f(x1, x2), of two independent variables x1 and x2, showing 
the nine data points needed for an exact fit with second-order polynomials.



296	 Computer Methods for Engineering with MATLAB® Applications

forms of the function for the exact fit, besides that given in Equation 7.75, may also 
be considered.

7.7.2  Best Fit

A best fit is often more appropriate than an exact fit for functions of two or more 
independent variables. Experimental data with a significant amount of error, for 
example, are better represented by a best fit than by a curve that passes through each 
data point. These considerations have been discussed earlier in relation to functions 
of one independent variable and apply equally well to multiple variables.

Let us first consider multiple linear regression, assuming the dependent variable 
y to be a linear function of x1 and x2 as

	 y = f(x1,x2) = c0 + c1x1 + c2x2	 (7.83)

where c0, c1, and c2 are constants to be computed. Employing the procedure given 
earlier for linear regression, we determine the sum S to be minimized as follows:

	
S y c c x c xi i i

i

n

= − − −
=
∑ ( ), ,0 1 1 2 2

2

1 	
(7.84)

where the subscript i, which varies from 1 to n, is used to denote the n data points. 
Differentiating S with respect to the coefficients and setting the partial derivatives 
equal to zero yields the minimum value of S. Thus,
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where the summations are from i = 1 to i = n.
The above equations yield the following system of linear equations for the 

unknowns c0, c1, and c2:

	
nc c x c x yi i i0 1 1 2 2+ + =∑ ∑ ∑, , 	

(7.85)

	 c x c x c x x x yi i i i i i0 1 1 1
2

2 1 2 1, , , , ,( )+ + =∑ ∑ ∑ ∑ 	
(7.86)

	
c x c x x c x x yi i i i i i0 2 1 1 2 2 2

2
2, , , , ,( )+ + =∑ ∑ ∑ ∑ 	

(7.87)
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These simultaneous equations may be solved for c0, c1, and c2 to give the best fit, 
Equation 7.83. In this case, a regression plane is obtained instead of a line, since y 
varies with two independent variables x1 and x2. The correlation coefficient is again 
obtained from Equation 7.56, with appropriate change in the definition of Sm to take 
the dependence of y on both x1 and x2 into account.

By employing the following general form of the function for a best fit, we can 
extend the procedure outlined above for multiple regression to functions of more 
than two variables:

	 y = f(x1, x2, . . ., xm) = c0 + c1x1 + c2x2 + . . . + cmxm	 (7.88)

The system of linear equations for evaluating the coefficients c0, cl, . . ., cm may easily 
be derived as given above for the case of two independent variables. Similarly, mul-
tiple polynomial regression, with orders higher than linear, may be derived for intro-
ducing curvature into the best fit.

Also, linearization of nonlinear functions, such as exponentials and power-law vari-
ations, can often be carried out, as outlined earlier for functions of a single variable x. 
Then multiple linear regression may be applied. Thus, if y is of the general form

	 y c x x xc c
m
cm= ⋅⋅⋅0 1 2

1 2

	 (7.89)

the equation may be transformed by taking its natural logarithm to give

	 log y = log c0 + c1 log x1 + c2 log x2 + . . . + cm log xm	 (7.90)

Multiple linear regression may now be applied. Example 7.6 illustrates the use of this 
procedure for a practical circumstance.

Example 7.6

The flow of water in an open channel with a slight downward slope is an impor-
tant circumstance in civil engineering applications. The channel is specified in 
terms of its hydraulic radius R, which is the cross-sectional area divided by the 
wetted perimeter consisting of the sides and bottom of the channel, and the 
slope S. The slope is given as tan θ, where θ is the angle that the bottom makes 
with the horizontal, considered positive for downhill flow. The volume flow rate 
Q in m3/s is measured as a function of R and S for certain open channels to yield 
the following data:

It is expected, from theoretical considerations, that Q varies as ASbRc, where A, b, and c 
are constants. Obtain a best fit to the given data and determine these constants.

R (m) 0.5 1.0 1.5 2.0
S

1.5 × 10−3 1.91 3.10 4.11 5.03

5 × 10−3 3.48 6.66 7.51 9.19

9 × 10−3 4.67 7.59 10.08 12.33
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SOLUTION

Since the dependent variable Q is a function of two independent variables R and 
S, multiple regression, as outlined in Section 7.7.2, may be applied. The form of 
the function to be employed is

	 Q = ASb Rc	 (7.91)

Taking natural logarithms of both sides, we obtain

	 log Q = log A + b log S + c log R	 (7.92)

Thus, multiple linear regression may be used with log S and log R as the indepen-
dent variables and log Q as the dependent variables.

The dependent variable log Q is denoted by y, and log S and log R by x1 and 
x2, respectively. Then, the system of linear equations to be solved for the constants 
c0, c1, and c2, in the linear function y = c0 + c1x1 + c2x2, for a best fit is given by 
Equations 7.85 through 7.87. The coefficients of this system of equations may be 
obtained from the twelve data points given. Thus, n = 12, and the summations, 
such as ∑ x1,i and ∑ x1,i yi, are from i = 1 to i = 12. Employing a calculator or a 
simple program in MATLAB, we obtain the following system of equations:

	 12c0 − 66.045c1 + 1.216c2 = 20.575	 (7.93)

	  −66.045c0 + 370.164c1 − 6.695c2 = −109.871	 (7.94)

	 1.216c0 − 6.695c1 + 3.376c2 = 4.345	 (7.95)

The above system of linear equations can easily be solved by using matrix 
methods or the backslash operator in MATLAB to obtain the coefficients as

	 c0 = 4.4235, c1 = 0.505, c2 = 0.6945	 (7.96)

From Equation 7.92, c0 = log A, c1 = b, and c2 = c. This gives A = exp(c0) = exp 
(4.4235) = 83.387. Therefore, the best fit to the given data is obtained as

	 Q = 83.387S0.505 R0.6945	 (7.97)

A MATLAB script file may also be written to solve the preceding multiple 
regression problem. The given data are entered and the various summations are 
carried out. The matrices representing the equations, Equations 7.85 through 7.87, 
are formulated and the constants for multiple regression are calculated. The trans-
formations to the original variables are then made to yield the desired results. The 
following script file may thus be used for this problem.

s1 = 1.5e-3;s2 = 5e-3;s3 = 9e-3;
s(1:4) = s1;s(5:8) = s2;s(9:12) = s3;
r1 = [0.5 1.0 1.5 2.0];
r = [r1 r1 r1];
q = [�1.91 3.1 4.11 5.03 3.48 6.66 7.51 9.19 4.67 7.59 10.08 ... 
12.33];
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s = log(s);r = log(r);q = log(q);
n = length(q);
a = [n sum(s) sum(r);sum(s) sum(s.*s) sum(s.*r);...
	 sum(r) sum(s.*r) sum(r.*r)];
b = [sum(q) sum(s.*q) sum(r.*q)];
disp('Constants for multiple linear regression are:')
c = a\b'
A = exp(c(1));
b = c(2);
c = c(3);
fprintf('A = %.4f b = %.4f c = %.4f/n',A,b,c)

The results obtained from this program are
Constants for multiple linear regression are

c = 
	 4.4234
	 0.5050
	 0.6945

A = 83.3760 b = 0.5050 c = 0.6945

In a similar way, other power-law and exponential variations may be treated for 
functions of two or more independent variables. Multiple polynomial regression, 
with polynomials of order higher than linear, may also be employed for certain 
circumstances, using a similar, although more complicated, approach.

7.8  SUMMARY

This chapter presents numerical methods for the curve fitting of data given at dis-
crete points, considering both an exact fit and a best fit. In the former case, the 
approximating curve passes through each data point and is appropriate if the data 
have a high level of accuracy and a relatively small number of points are given. 
Various forms of the approximating function are considered, including the general 
equation of a polynomial, Lagrange polynomial, and Newton’s divided-difference 
polynomials. The use of these interpolating polynomials for evaluating the function 
at intermediate points, where data are not available, is discussed. Lagrange interpo-
lation is particularly useful for an arbitrary distribution of points and is widely used. 
If a large number of very accurate data points are given, spline interpolation, which 
provides a piecewise exact fit to the data, is more appropriate than a single curve, 
since polynomials of high order may be ill-conditioned and are also inconvenient to 
use in practical circumstances. The equations for cubic splines are derived. Examples 
are given to demonstrate the use of interpolation in engineering problems. MATLAB 
functions for interpolation using different forms of the interpolating curve, such as 
linear, cubic or spline, are presented.

A best fit, which minimizes the error between the data and the approximating 
curve without forcing it to pass through each given data point, is extensively employed 
for correlating engineering data. It is more suitable than an exact fit for data that have 
a significant amount of associated error. Experimental data generally do have some 
error, and a best fit is used for representing the observed trends. This approach is 
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generally used with lower-order polynomials, such as straight lines, parabolas, and 
cubics, to obtain a best fit to a large number of data points. The method of least 
squares is discussed in detail, considering linear regression, polynomial regression, 
and nonpolynomial forms. In several important engineering applications, special 
forms, such as exponential and power-law variations, are of interest. These forms 
may often be linearized by suitable transformations, and linear regression may be 
applied. Finally, functions of two or more variables are considered. A few simple 
procedures for an exact fit, as well as for a best fit, are outlined.

The choice of the form of the approximating function for curve fitting is an impor-
tant consideration. Frequently, the basic nature of the problem under consideration 
may be employed to determine the general nature of the variation and the function 
chosen appropriately. If no prior information is available on the expected trends, a 
rough plot of the data may be used to guide the choice of the function for curve fit-
ting. A best fit is much more extensively used in engineering problems than an exact 
fit, because of the presence of significant error in most available data and also because 
a large number of data points are often given. One may start with simple linear 
regression and then proceed to parabolas and cubics, in order to check whether a 
better representation is obtained with a higher-order function.

Lagrange interpolation is a very popular choice for an exact fit, since a system of 
linear equations does not have to be solved, as is the case for the general form of an 
nth-order polynomial. Newton’s method is particularly useful if the data points are 
evenly spaced. Extrapolation is also employed in some cases to compute the value of 
the function at a point beyond the range of the given data. However, one should exer-
cise extreme care while using extrapolated values, since the behavior of the function 
beyond the given range is often not known. There are also several special interpolat-
ing functions, such as Chebyshev polynomials, that are employed in the analysis of 
engineering systems and processes, see Hornbeck (1982). Also, there are other meth-
ods for deriving the interpolating function. One such method is Hermite interpola-
tion which uses both the function and its derivative at a given number of data points, 
as outlined by Ferziger (1998).

PROBLEMS

	 7.1.	� Consider a second-order Lagrange polynomial and show that it may 
be recast in the general form of a second-order polynomial given by 
Equation 7.1. Obtain the relationship between the coefficients of the 
two polynomials.

	 7.2.	� Show that Lagrange interpolation is a more efficient method for inter-
polation than that obtained by using the general form of an nth order 
polynomial, as demonstrated in Example 6.1.

	 7.3.	� Compare the Lagrange and Newton’s divided-difference interpolation 
methods, indicating their respective advantages over the other. Which 
one is expected to require less computer time for interpolation with an 
arbitrary distribution of data points?

	 7.4.	� The specific heat C of pure copper is given at 100, 200, 400, 600, and 
800 K as 252, 356, 397, 417, and 433 J/kg K. Employ Lagrange inter-
polation to compute the values at 300 K and 500 K. Also, compute 
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the extrapolated value at 1000 K and compare it with the value of 451 
given in the literature.

	 7.5.	� The density of air at 200, 300, 400, and 500 K is obtained as 1.7458, 
1.1614, 0.8711, and 0.6964 kg/m3, respectively, from tabulated prop-
erty data in the literature. For this uniformly spaced data, obtain a 
third-order interpolating polynomial.

	 7.6.	� A car showroom has 100 cars at the beginning of a week, and the 
number left after each day is tabulated as follows:

			�   We wish to extrapolate these results to predict the cars left at the end 
of the week. Using an exact fit, predict the number of cars left in the 
showroom after seven days. Comment on the result obtained.

	 7.7.	� Use a second-order and also a third-order polynomial regression for 
Problem 7.6. Compare the results obtained with that obtained ear-
lier with an exact fit, and comment on the difference. Which method 
would you expect to yield a more dependable prediction? Discuss.

	 7.8.	� The force F on a structure due to winds is measured as a function of wind 
speed V. The results at speeds of 5, 10, 15, 20, and 25 m/s are obtained as 
36.2, 52.5, 85.6, 150.0, and 210.9 newtons. Obtain a fourth-order inter-
polating polynomial that provides an exact fit to these data points.

	 7.9.	� The future worth (FW) of a given sum of money R after n years is 
R(1 + x)n, where x is the interest rate per unit amount, say $1.00, com-
pounded annually. Therefore, the FW ratio, FW/R gives the FW per 
unit deposit and may be determined at interest rates of 8%, 10%, 12%, 
and 15% for 15 years as 3.172, 4.177, 5.474, and 8.137. Employing 
Newton’s divided-difference interpolation method, compute the 
corresponding values at 9% and 12.5% interest rates. Also give the 
resulting FW for a deposit of $5000 at these rates. Using the interp1 
command in MATLAB, obtain the interpolated values and compare 
with those obtained earlier.

	 7.10.	� The voltage ν applied across an electrical circuit is varied, and the 
resulting current i measured. For ν values of 1, 2, 3.5, 5, and 6 V, the 
current is 1.5, 1.8, 2.6, 3.0, and 3.5 amperes. Use Newton’s divided-
difference method to obtain the electrical current at ν = 4 and 5.5 V.

	 7.11.	� An important fluid property is the kinematic viscosity which deter-
mines the viscous, or frictional, forces acting in a flow. The kinematic 
viscosity of air multiplied by 106 is given at 350, 450, 500, 550, and 
650 K as 20.92, 32.39, 38.79, 45.57, and 60.21 m2/s, respectively. Using 
any suitable interpolation method, compute the intermediate values at 
400 and 600 K. Compare the results obtained with the values given in 
the literature as 26.41 × 10−6 m2/s and 52.69 × 10−6 m2/s, respectively. 
Also, solve the problem using the interp1 command in MATLAB, and 
compare the results with those obtained earlier.

	 7.12.	� From the data given in Problem 7.9, determine the interest rate if the 
FW ratio FW/K is 6.5.

	 7.13.	� The calibration table for a copper-constantan thermocouple which is 
employed for temperature measurement gives the temperature T in °C 

Time (days) 0 1 2 3 4 5 6
Cars left (N) 100 75 65 52 46 39 34
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for different values of the voltage output V in millivolts (mV). Using 
interpolation with a cubic spline for the following data, compute 
the temperatures corresponding to thermocouple outputs of 0.9 and 
1.75 mV:

			�   Also, solve the problem using the interp1 command in MATLAB for 
a spline exact fit and compare the results with those obtained earlier.

	 7.14.	� Using the data in Problem 7.13 with Lagrange interpolation, calculate 
the voltage output at T = 65°C. Employ a fourth-order polynomial and 
choose appropriate data points.

	 7.15.	� The transport rate m
.
 of a chemical species at a porous surface is mea-

sured as a function of the difference in concentration ΔC between the 
surface and the ambient medium. The results obtained are as follows:

		�  A power-law variation of the form m A C a.
( )= Δ  is expected to govern 

this mass transfer process. Obtain a best fit to the given data by the 
method of least squares and determine the constants A and a. Also, 
use the polyfit command in MATLAB to solve this problem and com-
pare the results with those obtained earlier.

	 7.16.	� Experimental runs are performed on a compressor to determine the 
relationship between the volume flow rate Q and the pressure differ-
ence P. It is expected that Q will be proportional to Pb, where b is a 
constant. The measurements yield the mass flow rate Q for different 
pressure differences P as

			�   It is known that there is some error in the data. Will you use a best or 
an exact fit? Use the appropriate fit to these data and determine the 
coefficients. Is the equation obtained by you a good fit?

	 7.17.	� Tests are performed on a nuclear power system to ensure safe shutdown 
in case of an accident. The measurements yield the power output P 
versus time t in hours as

			�   From theoretical considerations, the power is expected to vary as 
a + b/t, where a and b are constants. It is also known that there is 
significant error in the data. What curve fitting will you use? Use an 
appropriate fit to these data points and determine the relevant con-
stants. Is it a good curve fit? Briefly explain your answer.

T (°C) 10 20 30 40 50 60 70 80
V (mV) 0.391 0.789 1.196 1.611 2.035 2.467 2.908 3.357

ΔC (kg/m3) 0.1 0.3 0.4 0.5 0.7 0.9 1.0

m
.
( )kg/s 2.53 3.33 3.58 3.78 4.12 4.38 4.5

P (atm) 5.0 10.0 15.0 20.0 25.0 30.0
Q (m3/h) 7.4 13.3 16.5 19.0 20.6 24.3

t (h) 1 3 5 9 10 12
P (MW) 13.0 7.0 5.4 4.7 4.5 4.2
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	 7.18.	� Experiments are carried out on a plastic extrusion die to determine the 
relationship between the mass flow rate m and the pressure difference 
P. We expect the relationship to be of the form m = APn, where A and 
n are constants. The measurements yield the mass flow rate m for dif-
ferent pressure differences P as

			�   Obtain a best fit to these data, using MATLAB commands, and deter-
mine the coefficients A and n. Plot the results from your best or exact 
fit, along with the data to see if it is a good fit.

	 7.19.	 A set of four data points is given as:
			   x =   0.5  1.0  1.5  2.0
			   y =   3.0  3.9  5.2  7.3
			�   where x is the independent variable and y is the dependent variable. 

Write a script-m file to do the following:
		  a.	 Obtain the polynomial that passes through all these four points.
		  b.	 Use this polynomial to find the value at x = 1.7 by interpolation.
		  c.	� Obtain a linear least-squares best fit (linear regression) to these 

data points.
		  d.	 Use the linear regression to obtain the value at x = 1.7.
		  e.	 Plot the data points and the linear best fit on a x–y plot.
	 7.20.	� The concentration of salt decreases in a container because of mass 

transfer at the surface. The concentration C is measured as a function 
of time t to yield

			�   An exponential variation of the form C = Be−bt is expected on physi-
cal grounds. Obtain a best fit to the data using a MATLAB script file, 
and determine the constants B and b. Also, solve the problem using 
the polyfit function in MATLAB and compare the results with those 
obtained earlier.

	 7.21.	� The temperature T, pressure p (in kilopascals), and specific volume 
ν, which is inverse of density, for saturated steam are obtained from 
tabulated data in the literature as follows:

			�   Obtain a best fit, with a third-order polynomial, to the T–ν data. Using 
the polynomial obtained, compute the specific volumes at 55°C and 
75°C. Also calculate the value at 100°C, and compare it with the 
given value of 1.673 m3/kg. Also, using the polyfit command in 
MATLAB, obtain the best fit polynomial and compare with that 
obtained earlier.

	 7.22.	� Using the data given in the preceding problem, obtain a best fit to the 
specific volume dependence on pressure. Consider both second- and 

m (kg/h) 12.8 15.5 17.5 19.8 22.0
P (atm) 10.0 15.0 20.0 25.0 30.0

t (s) 0.1 0.2 0.3 0.5 1.0 2.0 4.0 4.5 5.0
C (kg/m3) 83.3 81.7 80.0 76.9 69.6 57.0 38.2 34.6 31.3

T (°C) 10 20 30 40 50 60 70 80 90
P (k Pa) 1.23 2.34 4.25 7.38 12.35 19.94 31.19 47.39 70.13

ν (m3/kg) 106.4 57.79 32.90 19.52 12.03 7.67 5.04 3.41 2.36
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third-order polynomials. Using the polynomials obtained, calculate 
the specific volumes at 5.0 and 25.0 kPa.

	 7.23.	� The pressure-temperature relationship for saturated steam is suggested 
to be of the form log p = C + D/T, where C and D are constants and log 
represents the natural logarithm. Using linear regression with the data 
in Problem 7.21, determine the values of these constants. Is the given 
functional dependence of p on T a satisfactory representation?

	 7.24.	� The acceleration of certain objects is studied in an experimental test 
track for automobiles. The distance traveled by an object L is mea-
sured as a function of time t to yield the following:

			�   Obtain a best fit to this data, considering first-, second, and third-or-
der polynomials. Using these polynomials, calculate the values of the 
dependent variable L at the time intervals employed for the given data 
to evaluate the accuracy of the polynomial representations. Discuss 
the results obtained.

	 7.25.	� In the preceding problem, calculate the correlation coefficient to esti-
mate the improvement in the representation of the data by means of 
curve fitting.

	 7.26.	� For the experimental data given in Example 7.1, obtain a best fit, using 
second- and third-order polynomials. Compare the interpolated val-
ues obtained by the exact fit in Example 7.1 with those obtained from 
the best fit. Comment on the difference.

	 7.27.	� Solve the problem given in Example 7.2 by Newton’s divided-dif-
ference method, and compare the interpolated results obtained with 
those given earlier.

	 7.28.	� The temperature T of a small copper sphere cooling in air is measured 
as a function of time t to yield the following:

			�   An exponential temperature decrease is expected from theoretical 
considerations. Using linear regression, obtain the exponent c and the 
constant C, where T = Ce−ct represents the variation. Also, solve this 
problem using the polyfit function in MATLAB.

	 7.29.	� The temperature of a furnace wall is expected to vary sinusoidally 
with a time period of one day, because of the daily start-up and shut-
down. The measured temperatures at several time intervals t, where t 
is measured from midnight, are given as follows:

			�   Obtain a best fit to these data, using the method of least 
squares and assuming a sinusoidal variation of the form 
A t B t Csin( ) cos( )2 24 2 24π π/ /+ + , where A, B, and C are constants 
that are to be determined.

t (s) 0.1 0.2 0.5 1.0 1.5   1.8   2.0   3.0
L (m) 0.26 0.55 1.56 3.90 7.41 10.28 12.6 30.9

t (s) 0.2 0.6 1.0 1.8 2.0 3.0 5.0 6.0 8.0
T (°C) 146.0 129.5 114.8 90.3 85.1 63.0 34.6 25.6 14.1

t (h) 2 3 5 8 10 15 18 22 24
T (°C) 86.5 97.7 104.0 101.7 92.5 62.3 55.0 67.5 80.0
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	 7.30.	� Calculate the correlation coefficients for the various polynomials con-
sidered for least-squares best fit in Example 7.5, and discuss the trends 
indicated by the results obtained.

	 7.31.	� Derive an expression for the correlation coefficient corresponding to a 
third-order polynomial best fit to a data set represented by (xi, yi), from 
i = 1 to in = n. Discuss the physical implications of this coefficient. 
Can the correlation coefficient be related to the accuracy of the best fit 
obtained?

	 7.32.	� Consider an equation of the form y ax Axb= +sin( ) ,π  where A, a, and 
b are constants. Can the method of least squares be applied to this 
equation for a given set of data points? Discuss.

	 7.33.	� Outline a procedure for obtaining a best fit with a power-law function 
of the form y = z + bxn, where a, b, and n are constants.

	 7.34.	� Consider a functional dependence of y on the independent variable 
x of the form given by Equation 7.66. Using this equation, outline a 
procedure for deriving a best fit to given data.

	 7.35. 	�Use polyfit in MATLAB to get the best fit to the following data, 
using first, second, and third order polynomials. Then plot the data 
as well as the three best fit curves obtained. Which is the best fit? 
Discuss.

	 7.36. 	The flow rate F is given at various values of the pressure P as

			�   Use the last five points to get an exact fit. Use extrapolation with 
this fit to obtain values at 0.025 and 0.05. Compare with given data. 
Comment on the results.

	 7.37. 	� Obtain the first, second, and third order best fits to the data in the 
preceding problem. Plot all the three curves and the data to determine 
the best curve to use.

	 7.38.	� Six data points generated by a polynomial are given. Outline a method 
for finding the order of the polynomial. Also apply your method to y 
values of 3.61, 5.38, 11.0, 18.34, 28.63, and 35.0 corresponding to x 
values of 0.2, 0.5, 1.0, 1.4, 1.8, and 2.0, respectively, where x is the 
independent variable and y the dependent variable.

	 7.39.	� Five data points are given, with one of them in considerable error. How 
will you find this point, using the interpolation methods discussed in 
the text? Consider, as an example, the following data set:

			   where x is the independent variable and y the dependent variable.
	 7.40.	� The decay of the electrical current I in an electronic circuit is mea-

sured as a function of time t, following the opening of a switch. The 
data obtained are given as follows:

x: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8   1.0   1.2
y: 0 0.87 1.82 2.86 4.0 5.26 6.65 9.88 13.8 18.52

P 0.02 0.05 0.1 0.2 0.3 0.4 0.5
F 1.7 2.9 5.6 6.6 7.8 8.7 9.3

X 0.25 0.75 1.25 2.5 3.0
Y 2.80 4.60 5.75 7.94 6.5
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			�   From theoretical considerations, the current is expected to follow a 
variation of the form At−a, where A and a are constants. Obtain a best 
fit to the given data, and determine the values of these constants.

	 7.41.	� The flow rate Q in circular pipes is measured as a function of the pres-
sure difference Δp and diameter D. The resulting data for the flow rate 
in m3/s are given as follows:

			�   Using the method of least squares, obtain a best fit for the flow rate as 
a function of the two independent variables D and Δp. It is expected 
that Q varies as BDa Δpb, where B, a, and b are constants to be 
determined.

	 7.42.	� Repeat the preceding problem if the values of the pipe diameter were 
given as 0.5, 0.8, 1.4, and 1.9, instead, with the remaining values 
unchanged. Similarly, solve the problem again if all the values were 
unchanged but the pressure difference values Δp were given as 0.7, 
1.2, 1.5 and 2.1, instead.

t (s) 0.5 1.0 1.5 2.5 3.5 5.0 6.5 9.0 9.5
I (amperes) 13.2 10.1 8.7 6.9 6.3 5.1 4.7 4.2 4.0

Δp(atm) D (m) 0.3 0.5 1.0 1.4

0.5 0.13 0.43 2.1 4.55
0.9 0.25 0.81 4.0 8.69
1.2 0.34 1.12 5.5 11.92
1.8 0.54 1.74 8.59 18.63
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8 Numerical Integration

8.1  INTRODUCTION

A problem that frequently arises in engineering applications is that of integration of 
a given function f(x) over a specified range of the independent variable x. In many 
cases, the function f(x) is continuous, finite, and well behaved over the range of inte-
gration a ≤ x ≤ b, where a and b are constants. Then, the integral I where

	

I f x x
a

b

= ( )∫ d

	

(8.1)

may often be determined by using available mathematical or analytical techniques. 
The results for common elementary functions such as sin x, cos x, ex, x2, 1/x, and so 
on, are well known, and those for many more complicated functions are given in 
integral tables. Symbolic algebra available in MATLAB®, Mathematica, Maple, and 
other such environments may also be used in many cases to obtain the integral ana-
lytically. Analytical, or closed-form, expressions for integrals, whenever available, 
are of considerable value since they are exact, that is, without the errors that inevita-
bly arise in numerical methods. Moreover, they are generally applicable over given 
domains without any limitations, so that the effect of varying the physical parame-
ters, associated with the problem, on the integral may easily be investigated. In addi-
tion, analytical results can be employed in the validation of a numerical integration 
scheme and for estimating the accuracy of the results.

In engineering problems, the function f(x) is often too complicated to be inte-
grated analytically. One or both limits of integration may be infinite, and the func-
tion f(x) itself may be discontinuous or infinite at some point. Also, the function may 
be available only at certain discrete points, say, from an experimental study or from 
the numerical solution of a differential equation. In this last circumstance, curve fit-
ting, as discussed in the preceding chapter, may sometimes be employed to yield a 
function f(x) that can be integrated analytically. Otherwise, numerical integration is 
necessary. Similarly, for the various other circumstances mentioned above, analyti-
cal methods may be unavailable, may be time consuming, or may be too difficult to 
apply, making it essential to use numerical integration.

Integration, which is also often called quadrature, basically refers to the area 
between the curve of f(x) versus x and the x axis, from x = a to x = b, as shown 
graphically in Figure 8.1. As expected, the integral I is positive if the area above the 
x axis is larger than that below it. This graphical representation of the integral 
I f x xa

b
= ∫ ( )d  will frequently be referred to in the development of formulas for 

numerical integration.
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In this chapter, various methods for the numerical integration of a continuous or 
discretized function f(x) are presented. The most common approach is based on 
replacing the function f(x) or the tabulated data with a simple polynomial that can be 
easily integrated. This approach gives rise to the Newton–Cotes formulas, the sim-
plest one being obtained when the function f(x) is taken as constant over the various 
segments into which the given range a ≤ x ≤ b is divided. The most commonly used 
Newton–Cotes formulas are the trapezoidal, Simpson’s one-third, and Simpson’s 
three-eighths rules, which are based, respectively, on linear, parabolic, and cubic, or 
third-order, polynomial approximations. Although these formulas are derived for 
continuous functions, their application to evenly and unevenly spaced data is also 
discussed, since experimental and numerical results are generally available at such 
discrete values of the independent variable x.

The truncation errors (TEs) in these formulas are determined to evaluate the 
resulting accuracy. As the number of segments n into which the region is divided is 
increased, or the segment or step size Δx is reduced, the TE decreases, so that the 
numerical value of the integral approaches the exact value. However, as Δx is reduced 
to very small values, the computational effort and the round-off error increase sub-
stantially, as discussed in Section 2.3, resulting in an increase in the total error with 
a further reduction in Δx. Thus, even though the mathematical definition of integra-
tion demands that Δx → 0, a lower limit on Δx is imposed by the round-off error in 
numerical integration. These considerations are again discussed later in this chapter.

In many engineering applications, an accuracy higher than that provided by the 
relatively simple trapezoidal and Simpson’s rules is demanded from numerical inte-
gration. Various methods for improving the accuracy, such as Richardson’s extra
polation and higher-order integration formulas, are discussed. Romberg integration, 
which provides very high accuracy, without an associated substantial increase in the 
computational effort and the round-off error, as encountered at very small segment 
size Δx, is of particular importance in such applications and is discussed in detail.

Also considered in this chapter is Gauss quadrature, which is particularly suit-
able for cases where the evaluation of the integrand f(x) is involved and is thus time 

f (x)

xa b

f (x)

xa

Positive

Negative

b

FIGURE 8.1  Graphical representation of the integral of a function f(x) over x, between the 
limits x = a and x = b, as the area between the curve and the x-axis.



Numerical Integration	 309

consuming. Adaptive methods, which increase the accuracy of the computation by 
focusing on intervals in which the inaccuracy is larger than that in other intervals, 
are also outlined. Finally, improper integrals, in which the integrand becomes infi-
nite at some point or the limits of integration are infinite, are discussed, and some of 
the techniques that may be employed for computing the integral are presented.

8.1.1  Engineering Examples

Before proceeding to the various methods for numerical integration, let us consider 
a few examples of engineering interest in which numerical integration is needed, in 
order to provide a physical background for the discussion to follow. In electrical 
engineering, the root mean square (RMS) value of an electrical current I(t), which 
varies periodically with time t, is given by

	

I
t

I t t

t

RMS
c

d
c

= ∫
1 2

0

( )

	

(8.2)

where tc is the time for one cycle. Numerical integration is generally needed for an 
arbitrary periodic variation of I(t). Periodic processes are also encountered in natural 
phenomena, such as the daily and yearly variations of environmental temperatures, 
and numerical integration is employed to compute the resulting transport of mass 
and energy, say, from the surface of a lake. The integral of the current I(t) entering a 
capacitor, ≡0

t
I t t( ) ,d  gives the stored charge Q(t). Thus, the voltage V(t) across the 

capacitor, due to the current in a given electrical circuit containing the capacitor, of 
capacitance C, may be determined, since V=Q/C. A similar integral arises in civil 
engineering for water storage in a reservoir due to the inflow minus the outflow, both 
of which are time dependent. The variation with time is often very complicated, or 
the values are known only at certain discrete data points, making it necessary to use 
numerical integration.

Integration is very important in radiation heat transfer where integrals over sur-
faces, volumes, wavelength interval of the radiation, and total angle of the incident 
radiation are needed to compute the energy transport rates. In most practical cases, 
these integrals are too complicated to be obtained by analytical methods. The integral 
of the emissive power of a blackbody, Equation 4.62, over wavelength ranging from 
zero to infinity is one such example. The mass or energy transfer from a surface is 
frequently obtained from an integral of the transport rate, given as a time-dependent 
mass or heat transfer flux, per unit area and time. Although some simple problems 
may be solved analytically, most practical circumstances require numerical integra-
tion. Such problems often arise in chemical reactors and manufacturing processes.

The volume flow rate in a circular tube, Q, is obtained by an integral of the veloc-
ity distribution V(r) as follows:

	

Q V r r r
R

= ( )∫ 2
0

π d

	

(8.3)
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where R is the radius of the tube and r the radial distance from the axis. In most 
practical cases, V(r) is a complicated function or is available only at discrete data 
points, thus requiring numerical integration for the computation of Q. In dynamic 
systems, the work done W is related to the force F(x) and distance x as

	

W F x x
x

x

= ( )∫ d
1

2

	

(8.4)

where x1 and x2 are the initial and final positions. Again, for an arbitrary functional 
dependence F(x), numerical integration is needed.

The few examples outlined here indicate the importance of numerical integration 
in many diverse engineering fields. Some relatively simple integral expressions are 
also given. However, many more complicated forms are often encountered in engi-
neering. For example, multiple integrals commonly arise in radiation due to integra-
tion over several independent variables. Improper integrals, due to the integrand 
becoming singular or the integration limits becoming infinite, are also often of interest. 
Many of these cases are considered in this chapter. We now proceed to the derivation 
of some of the commonly used formulas for numerical integration.

8.2  �RECTANGULAR AND TRAPEZOIDAL RULES 
FOR INTEGRATION

The most commonly used schemes for numerical integration are the Newton–Cotes 
formulas, which are based on the approximation of a complicated function f(x), or of 
tabulated data, with a simple polynomial that can be integrated easily. Thus, the 
integral I is written as

	

I f x x P x xm

a

b

a

b

= ≅ ∫∫ ( ) ( )d d

	

(8.5)

where Pm(x) is an mth order polynomial of the form

	
P x p p x p x p xm m

m( ) = + + + +0 1 2
2 �

	 (8.6)

The p’s are constants that are determined by choosing an interpolating polynomial 
that yields the same values of the dependent variable as the given function f(x) at a 
finite number of points, as done in Section 7.2.1. However, the replacement of f(x) by 
Pm(x) is done piecewise over each of the n intervals into which the total range of x is 
subdivided. The general approach to the derivation of the Newton–Cotes formulas is 
based on Lagrange interpolation, which was discussed in the preceding chapter. 
However, the first few approximations may be derived by simple direct methods, 
which are based on the graphical interpretation of integration.

The first step in the numerical integration of a function f(x) is the division of the 
integration range a ≤ x ≤ b into a finite number n of intervals or strips, as shown in 
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Figure 8.2. If Δx is the width of each interval, then Δx = (b − a)/n. The largest value 
of Δx is (b–a), which is obtained when the entire range of integration is taken as a 
single interval. The independent variable x varies from x = a to x = b in steps of Δx, 
so that x may be written as

	
x a x i n ni = + = −( )iΔ , , , , , ,where  0 1 2 1…

	 (8.7)

Thus, x0 = a, xn = b, and xi represents the value at an intermediate grid point, as shown 
in Figure 8.2. The corresponding ordinates are denoted by f0, f1, f2, . . .,  fi . . .,  fn. The 
interpolating polynomial, Equation 8.6, is now applied piecewise to the function or 
data over these intervals of constant width. Each segment has two end points that can 
be used to determine a polynomial of order 1, that is, a straight line, m = 1. However, 
for higher order polynomials, more than one segment will be needed in order to pro-
vide the necessary number of points for the determination of all the coefficients of 
the interpolating polynomial.

8.2.1  The Rectangular Rule

The simplest approximation to the function f(x) is a zeroth-order polynomial, that is, 
a constant value over each interval. Then the function f(x) is approximated as a con-
stant, at fi or fi+1, over the interval xi ≤ x ≤ xi+1. Thus, the area under the curve in this 
interval is taken as fiΔx, or fi+1Δx. For an increasing function, as sketched in Figure 8.2, 
the approximation of the function as fi over the interval underestimates the actual 
area under the curve, and the approximation as fi+1 overestimates the integral. 
Similarly, for a decreasing function, the former approximation provides an upper 
bound for the integral, and the latter approximation a lower bound.

f (x)

f (x) 

Equation 8.9

f0 

f1 

f2 

fi–1 

fi+1 

fn–1 

fn 

fi 

Δ x Δ x 
x a 0 b 

Equation 8.8

FIGURE 8.2  Approximation of an integral by a finite number of rectangular strips or 
segments.
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Therefore, the given integral I is approximated, in the rectangular numerical 
integration scheme, by

	

I f x x f xi

i

n
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b

= ≅
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(8.8)

or

	

I f x x f xi
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(8.9)

The first formulation sums the ordinates at the beginning of each interval and multi-
plies the sum with the step size Δx, to give the numerical approximation to the inte-
gral. The second formulation sums the ordinates at the end of each interval and 
approximates the integral by the product of this sum with Δx. As shown in Figure 8.2 
and as mentioned above, the two formulations provide the upper and lower bounds 
for the given integral if the function f(x) is a monotonically increasing or decreasing 
function of x. It must also be noted that the difference between the integrals from the 
two formulations is simply |fn − f0|Δx, that is, the product of Δx and the difference 
between the two end ordinates.

The rectangular rule yields the exact value of the integral only if f(x) is a constant. 
For an arbitrary function, the TE is generally very large and the method is seldom 
used. However, this discussion serves to illustrate the basic concepts involved in 
numerical integration.

8.2.2  The Trapezoidal Rule

The next order approximation of the function f(x) is by means of a first-order poly-
nomial, which implies that the function is replaced by a straight line over each inter-
val, as sketched in Figure 8.3. Then the area under the curve in each element or 
interval is replaced by that of a trapezoid. If the areas of these trapezoids are denoted 
by I1, I2, . . ., In, as indicated in Figure 8.3, then
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Therefore, the integral I may be approximated by

	

I f x x
x
f f f f f
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It can easily be shown that the result obtained by this method is simply the average 
of the results from the two formulations of the rectangular rule, given by Equations 8.8 
and 8.9.

The trapezoidal rule for numerical integration is extensively used in engineering 
applications. It is fairly simple to program and it also imposes no constraints on the 
choice of the number of intervals n. Simpson’s one-third rule, which is discussed 
later in this chapter, for instance, requires n to be even. Since each interval can be 
treated separately by the trapezoidal rule, as given in Equation 8.10, the method can 
easily be extended to numerical integration with intervals of unequal width. This is 
of particular importance in the integration of a function that is given at a finite num-
ber of data points, as is the case in several engineering applications.

8.2.3  Truncation Error

In order to derive the TEs associated with the rectangular and trapezoidal rules for 
numerical integration, let us define a function y(x) as

	

y x f x x
a

x

( ) = ( )∫ d

	

(8.12)

so that y(x) is the integral of the function f(x) from x = a to x, as shown graphically in 
Figure 8.4. Also, from Equation 8.12 and from basic calculus,

	
ʹ ( ) = ( ) ʹ́ ( ) = ʹ ( ) ʹ́ ʹ ( ) = ʹ́ ( )y x f x y x f x y x f x, , …

	 (8.13)

f (x)

xi–1 xi+1

Ii+1 =
fi+1 + fi

2

fi+1

xi

fi–1

Linear
approximationfi

Δ x Δ x

Δ x

x

Ii =
fi–1 + fi

2
Δ x

FIGURE 8.3  Approximation of the given function by straight lines over each of the segments, 
in which the integration domain is subdivided, for the trapezoidal rule.
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Since y(x) represents the integral of the function, the exact integral over the range 
xi ≤ x ≤ xi+1 is y(xi+1) – y(xi). With y(xi) denoted by yi, the exact area under the curve in 
the given interval is, therefore, yi+1 – yi.

Assuming both y(x) and f(x) to be continuous and smooth over the interval 
xi ≤ x ≤ xi+1, we may expand yi+1 and fi+1 in Taylor series about x = xi. Thus, if the 
derivatives are denoted by primes, the expansion for yi+1 is given by
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Using the relations in Equation 8.13, this formula gives the exact integral over the 
interval xi ≤ x ≤ xi+1 as
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Rectangular
rule, Equation 8.9

Trapezoidal
rule,  Equation 8.10

Rectangular
rule,  Equation 8.8

f (x) = dy
dx fi+1 

fi 

xi+1 

yi+1 

yi 

xi 

Δ x 
x

I = y(x) 

x

yi+1 – yi 

FIGURE 8.4  Sketch of a function and its integral for the estimation of TE in numerical 
integration by the rectangular and trapezoidal rules.
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Similarly, yi may be expanded in a Taylor series about x = xi+1 as follows:
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Thus, the exact integral over the interval xi ≤ x ≤ xi+1 is given by
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8.2.3.1  Rectangular Rule
In the rectangular rule, the integral over the interval xi ≤ x ≤ xi+1 is approximated by 
fi Δx in the first formulation, Equation 8.8, and by fi+1 Δx in the second formulation, 
Equation 8.9. The exact integral is yi+1 – yi. Therefore, from Equation 8.14, the TE in 
the first formulation of the rectangular rule is
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This implies that the leading term of the TE associated with this step is [( ) /2]2Δx fi .́ 
Similarly, from Equation 8.15, the TE in the second formulation of the rectangular 
rule is obtained as follows:
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Using the remainder theorem, discussed in Chapter 4, we write the error per step in 
the two formulations, respectively, as follows:
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8.2.3.2  Trapezoidal Rule
Expanding the function f(x) in a Taylor series about x = xi, we obtain
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Therefore,
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This formula is simply the forward difference approximation for �fi , along with the 
associated TE, as derived in Chapter 4. Substituting this expression into Equation 8.14, 
we obtain
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Since (yi+1 – yi) is the exact area under the curve and Δx( fi+1 + fi)/2 the trapezoidal 
area in the interval considered, the TE per step is the difference between the two, 
that is,
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Again, using the remainder theorem, we write the TE for integration over the inter-
val xi ≤ x ≤ xi+1 as
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This expression gives the TE in the (i + l)th strip, or subinterval, see Figure 8.2. 
Therefore, the TE per step in the trapezoidal rule is O[(Δx)3]. Since the error is zero 
if f ″ = 0, the method is exact only for a linear function.

8.2.3.3  Total Error
The total error in integrating the function f(x) over the entire interval a ≤ x ≤ b is 
obtained by the summation of the errors over n subintervals. Therefore, the total 
truncation error E for the trapezoidal rule is

	

E x f x xi

i

n

i i i= − ( ) ʹ́ ( )⎡

⎣
⎢

⎤

⎦
⎥ < <

=

−

+∑ 1
12

3

0

1

1Δ ξ ξ, where

	

(8.20)

The maximum total error may be estimated from this expression by employing the 
largest value of f ″ in each subinterval. However, the second derivative f ″ may not be 
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easy to evaluate in many practical circumstances. A more useful alternative expres-
sion for the total error is obtained by defining an arithmetic mean ��fav  of the values 
of f ″(ξi) in the n strips. Then

	

ʹ́ ( ) = ʹ́
=

−

∑ f nfi

i

n

ξ
0

1

av

	
(8.21)

Therefore, the total truncation error E may be expressed in terms of ��fav  as follows:
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Assuming ��fav  to remain essentially constant as the step size Δx is varied, we write 
the total TE as

	 E S x O x≅ =T ( ) [( ) ]Δ Δ2 2

	 (8.23)

where S b a fT av= − −( ) ʹ́ 12  and is assumed to be a constant, as indicated by the 
approximation (≅) sign. Thus, the trapezoidal rule is a second-order method.

Proceeding in a similar manner for the rectangular rule, we can show that the 
total TEs, for the two formulations of Equations 8.8 and 8.9, are, respectively,

	
E

x
b a f

x
b a f= −( ) ʹ − −( ) ʹ

Δ Δ
2 2av avand

	
(8.24)

where �fav is the average of the f ′(ξi) values in the n strips. This expression may again 
be written as

	 E S x O x≅ =R ( ) ( )Δ Δ 	 (8.25)

where S b a fR av /= −( ) ʹ 12 and is again assumed to be essentially a constant. Therefore, 
the rectangular rule is a first-order method. Both the trapezoidal and the rectangular 
rules for numerical integration are quite simple to program. The difference between 
the two lies only in the incorporation of the ordinates at the ends of the total range in 
the summation of the ordinates for the numerical scheme. The rectangular rule uses 
only the ordinate at x = a in the first formulation and at x = b in the second formula-
tion, whereas the trapezoidal rule uses the average of the two. The ordinates in the 
interior region are summed in all three cases, see Equations 8.8, 8.9, and 8.11. Since 
the trapezoidal rule is more accurate than the rectangular rule, there is no reason to 
use the latter. In fact, the trapezoidal rule is among the most widely used schemes for 
numerical integration in problems of engineering interest because of its simplicity.
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8.2.3.4  Accuracy
As shown in the expressions for the TEs in the rectangular and trapezoidal integra-
tion methods, the error decreases as the step size Δx is decreased, that is, as the 
number of segments n is increased. This behavior is expected, as discussed in Section 
2.3. Thus, the accuracy of the numerical results can be improved by decreasing Δx, 
a process generally known as grid refinement. However, as Δx is decreased, the 
number of segments increases and so does the computational effort. This results in 
an increase in the round-off error. Therefore, the total error, which includes the TE 
and round-off errors, is reduced by decreasing Δx to a certain point, beyond which 
the round-off error becomes substantial and the total error increases with decreasing 
Δx, see Figure 2.12. All of these considerations were discussed in Section 2.3 and are 
repeated here to emphasize the importance of numerical errors and the need to vary 
the grid size, Δx, keeping it larger than the constraint imposed by the round-off error, 
to ensure that the numerical solution is essentially independent of the value chosen. 
Figure 8.5 shows a typical variation of the numerical value of the integral I with the 
segment size Δx. Then the largest grid size at which the solution becomes essentially 
independent of Δx, so that a further reduction in the segment size does not signifi-
cantly affect the results, is chosen, as shown in the figure.

Example 8.1

A capacitor in an electrical circuit is initially at zero charge. At time t of 1 s, a switch 
is closed, and a time-dependent electric current I(t) charges up the capacitor. The 
current is given as

	 I t t t( ) ( ) ( ). . ( )= − −− − − −4 1 10 5 0 5 1e e e 	 (8.26)

Using the trapezoidal rule for numerical integration, compute the charge Q and 
the voltage V across the capacitor as functions of time up to t = 20 s. The capaci-
tance C of the capacitor is 0.025 farad.
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FIGURE 8.5  Dependence of the numerical value of the integral I on the segment size Δx 
and a suitable choice of Δx for further computations.



Numerical Integration	 319

SOLUTION

The charge Q stored by the capacitor is given by the integral

	 Q t I t t
t

( ) ( ’) ’= ∫ d
0

	 (8.27)

where t is the time at which the charge is to be determined and t′ is simply a 
dummy variable. The voltage across the capacitor is given by

	 V t
Q t
C

( )
( )

= 	 (8.28)

Here, it is assumed that the charge and thus the voltage across the capacitor are 
zero at t = 1 s, as given in the problem. Therefore, this problem requires the appli-
cation of the trapezoidal rule for evaluating the integral

	 Q t tt t

t

( ) ( ) ( ) ’. . ( ’ ) ’= − −− − − −∫ 4 1 10 5 0 5 1

1

e e e d 	 (8.29)

Appendix B.19 presents a MATLAB function-m file for solving this problem. 
The current I(t) is the function to be integrated and is entered as a string. Thus, a 
function file f81.m, as given below, is defined for this problem and the function f 
in the function m-file in Appendix B.19 is entered as ‘f81’.

function z = f81(x)
z = 4*(1−exp(−0.5)).*exp(−0.5*(x−1)).*(1−exp(−x));
end

Note that .* is used instead of * for multiplication in order to allow x to be speci-
fied as an array, if needed.

The lower limit of the integral is a and the upper limit is b. The number of subin-
tervals m is specified, so that the segment size h is given by h = (b – a)/m. Therefore, 
the function m-file given in Appendix B.19 is invoked as trap(‘f81’, 1, 2, 8); for 1 
as the lower limit, 2 as the upper limit, and 8 as the number of segments, yielding 
h = 0.125. The upper limit is varied in increments of 2 each to study its effect on 
the integral. For the given problem, b is thus varied from 2 to 20 s. The sum of 
the ordinates in the interior region of the integration domain is computed, and the 
trapezoidal rule is applied to yield the numerical value of the integral in Equation 
8.29. This gives the electrical charge Q at time t. From the computed value of 
Q, the voltage V is determined from Equation 8.28. An alternative, more com-
pact, implementation of the algorithm for the trapezoidal rule is also shown in 
Appendix B.19. Here, x is employed as an array, for which the function definition 
given above is needed. Obviously, there are different ways of applying the formu-
las to obtain the integral.

Figure 8.6 presents some of the numerical results obtained, with the upper limit 
of the integral b being varied from 2 to 20 s. The number of segments and thus 
the step size h was also varied, starting with 2 s and then successively halving it. 
The results remain essentially unchanged as h is decreased from 0.125 to 0.0625 s, 
indicating the former to be adequate for this computation. The results at h = 2 s 
were found to be in considerable error. The effect of the segment size h is shown 
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more clearly in Figure 8.7 by a plot of the charge Q at t = 2, 4, and 8 s versus h. 
Clearly, the accuracy is improved as h is decreased, over the range considered, 
due to the decrease in the TE. Also, the effect of h on the results is smaller at large 
values of t. This behavior is expected from the function being integrated, since the 
integrand approaches zero at large time, giving a constant value of the integral as 
t becomes large.

Step size = 2.0000
Time =  2    	 Charge = 1.8203    	 Voltage = 72.8117
Time =  4    	 Charge = 1.3396    	 Voltage = 53.5851
Time =  6    	 Charge = 2.2241    	 Voltage = 88.9637
Time =  8   	 Charge = 2.5659    	 Voltage = 102.6346
Time = 10    	 Charge = 2.6924    	 Voltage = 107.6964
Time = 12    	 Charge = 2.7390    	 Voltage = 109.5602
Time = 14    	 Charge = 2.7561    	 Voltage = 110.2460
Time = 16    	 Charge = 2.7625    	 Voltage = 110.4982
Time = 18    	 Charge = 2.7648    	 Voltage = 110.5910
Time = 20    	 Charge = 2.7656    	 Voltage = 110.6252

Step size = 1.0000
Time =  2    	 Charge = 0.9101    	 Voltage = 36.4059
Time =  4    	 Charge = 2.0454    	 Voltage = 81.8159
Time =  6    	 Charge = 2.4938    	 Voltage = 99.7509
Time =  8    	 Charge = 2.6603    	 Voltage = 106.4101
Time = 10    	 Charge = 2.7216    	 Voltage = 108.8629
Time = 12    	 Charge = 2.7441    	 Voltage = 109.7654
Time = 14    	 Charge = 2.7524    	 Voltage = 110.0974
Time = 16    	 Charge = 2.7555    	 Voltage = 110.2195
Time = 18    	 Charge = 2.7566    	 Voltage = 110.2644
Time = 20    	 Charge = 2.7570    	 Voltage = 110.2810

Step size = 0.2500
Time =  2    	 Charge = 0.9368    	 Voltage = 37.4712
Time =  4    	 Charge = 2.0624    	 Voltage = 82.4962
Time =  6    	 Charge = 2.5028    	 Voltage = 100.1135
Time =  8    	 Charge = 2.6662    	 Voltage = 106.6470
Time = 10    	 Charge = 2.7263    	 Voltage = 109.0531
Time = 12    	 Charge = 2.7485    	 Voltage = 109.9384
Time = 14    	 Charge = 2.7566    	 Voltage = 110.2641
Time = 16    	 Charge = 2.7596    	 Voltage = 110.3839
Time = 18    	 Charge = 2.7607    	 Voltage = 110.4280
Time = 20    	 Charge = 2.7611    	 Voltage = 110.4442

Step size = 0.1250
Time =  2    	 Charge = 0.9382    	 Voltage = 37.5280
Time =  4    	 Charge = 2.0634    	 Voltage = 82.5346
Time =  6    	 Charge = 2.5034    	 Voltage = 100.1359
Time =  8    	 Charge = 2.6666    	 Voltage = 106.6631
Time = 10    	 Charge = 2.7267    	 Voltage = 109.0669
Time = 12    	 Charge = 2.7488    	 Voltage = 109.9513
Time = 14    	 Charge = 2.7569    	 Voltage = 110.2767
Time = 16    	 Charge = 2.7599    	 Voltage = 110.3964
Time = 18    	 Charge = 2.7610    	 Voltage = 110.4404
Time = 20    	 Charge = 2.7614    	 Voltage = 110.4566

FIGURE 8.6  Numerical results obtained for the charge Q and the voltage V, as functions of 
time t, in Example 8.1, at several values of the step size h.



Numerical Integration	 321

The results show that the charge Q approaches a constant value of around 2.76 
coulombs as time increases beyond about 18 s. This indicates that the capacitor 
is fully charged by this time. A constant voltage difference of 110.46 V across the 
capacitor is also attained. The electrical current asymptotically approaches zero, 
as expected from the form of the given function I(t). Thus, as t → ∞, the charge Q 
and voltage V approach constant values, indicating a finite constant value of the 
integral as the upper integration limit approaches infinity. The integral for t → ∞ 
may also be evaluated analytically to yield Q as 2.76176, which agrees closely with 
the numerical result obtained. Appendix C.12 gives the corresponding program in 
Fortran for this problem and a similar logic is employed to implement the algo-
rithm for the trapezoidal rule.
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FIGURE 8.7  Variation of the computed capacitor charge Q, at t = 2, 4, and 8 s, with the time 
step h.

Step size = 0.0625
Time =  2    	 Charge = 0.9386    	 Voltage = 37.5422
Time =  4    	 Charge = 2.0636    	 Voltage = 82.5442
Time =  6    	 Charge = 2.5035    	 Voltage = 100.1416
Time =  8    	 Charge = 2.6667    	 Voltage = 106.6672
Time = 10    	 Charge = 2.7268    	 Voltage = 109.0704
Time = 12    	 Charge = 2.7489    	 Voltage = 109.9546
Time = 14    	 Charge = 2.7570    	 Voltage = 110.2799
Time = 16    	 Charge = 2.7600    	 Voltage = 110.3996
Time = 18    	 Charge = 2.7611    	 Voltage = 110.4436
Time = 20    	 Charge = 2.7615    	 Voltage = 110.4598

FIGURE 8.6  Continued.
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8.3  SIMPSON’S RULES FOR NUMERICAL INTEGRATION

One can improve the accuracy with which an integral is computed by increasing the 
number of segments n into which the range of integration is divided, constrained by 
the round-off error which becomes significant as the step size Δx is reduced to very 
small values, or by employing higher-order polynomials Pm(x) to approximate the 
function f(x). The trapezoidal rule uses a straight line to approximate the function 
over each segment. Simpson’s one-third rule, usually referred to as simply Simpson’s 
rule, uses second-order polynomials, that is, parabolas, to approximate the function. 
One connects successive groups of three points on the f(x) versus x curve with 
parabolas to determine the area under the curve over the interval defined by these 
points. Similarly, a third-order polynomial, m = 3, requires four points on the curve 
for the approximation of the function and leads to what is known as Simpson’s three-
eighths rule. Since each segment of the integration domain is associated with only 
two points on the curve, as shown in Figure 8.2, Simpson’s one-third rule requires a 
minimum of two segments and an even number of segments n into which the total 
range of integration is subdivided. Simpson’s three-eighths rule requires a minimum 
of three segments, and, if it is used in conjunction with the one-third rule, n may be 
odd or even.

8.3.1  Simpson’s One-Third Rule

The function f(x) in the integral

	

I f x x
a

b

= ( )∫ d

	

(8.1)

is replaced by a second-order polynomial, or a parabola, for numerical integration by 
Simpson’s rule. Three points on the curve of f(x) versus x are needed to determine 
this parabola. Consider the three points (xi−1, fi−1), (xi, fi), and (xi+1, fi+1), as shown in 
Figure 8.8. A parabola that passes through these three points may be found and the 
area under the curve of f(x) approximated by that under the parabola. Two segments, 
each of width Δx, are involved in this computation, since three points are needed to 
define the parabola.

We may employ the various methods of interpolation discussed in Chapter 7 to 
determine the parabola passing through the three given points. Lagrange 
interpolation provides the general method for deriving Newton–Cotes formulas. 
However, because only a second-order polynomial, m = 2, is under consideration 
here, we may simply employ the general form of the equation for a parabola and 
determine the coefficients by substituting the coordinates for the three points into 
this equation, as done in Section 7.2.1. Therefore, the second-order polynomial may 
be taken as

	 P x Ax Bx C2
2( ) = + + 	 (8.30)
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Since this parabola passes through the three points being considered, as shown in 
Figure 8.8, the constants A, B, and C can be determined from
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where xi has been taken at the origin, x = 0, to simplify the calculation. Such a choice 
does not affect the generality of the derivation. From the above equations,
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The area under the polynomial of Equation 8.30 is denoted by Ip and is given by
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Therefore, the area under the curve in the two segments is approximated by
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(8.31)

where the expressions for A and C, given above, have been substituted. This formula 
is known as Simpson’s rule, or as Simpson’s one-third rule, because the step size 
Δx  is divided by 3 in the formula. The use of the one-third in the terminology 
distinguishes this method from a similar one, derived later, in which Δx is multiplied 
by 3/8, instead of 1/3, and which is known as Simpson’s three-eighths rule.

f (x)

xi–1 xi+1 

fi+1 

xi 

fi–1 
Parabola

P2(x) = Ax2 + Bx + C

Function 
f (x) 

fi 

Δ x Δ x 
x 

FIGURE 8.8  Replacement of the function f(x) over the width of two segments by a parabola 
for the derivation of Simpson’s one-third rule.
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We may use the expression in Equation 8.31 for the integral over two segments 
to  determine the integral over the entire range a ≤ x ≤ b, which is divided into n 
segments of equal width Δx. Here, n must be even in order to consider groups of two 
segments for the application of Equation 8.31, see Figure 8.9. Then the total integral 
I is approximated by the following:
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where (Ip)j is the integral given by Equation 8.31 for the jth group of two segments. 
Thus, i in Equation 8.31 is given by i = 2j − 1. Therefore,
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It is shown later in this section that the TE per step in numerical integration by 
Simpson’s rule is O[(Δx)5], which results in a total error of O[(Δx)4]. Therefore, this 
is a fourth-order method and is much more accurate than the trapezoidal rule for an 
arbitrary function f(x). If the function being integrated is a polynomial of order zero, 
one, two, or three, Simpson’s rule is exact, that is, there is no TE. This is because the 
leading term in the TE contains only the fourth derivative f ″″, all terms containing 
the lower derivatives having canceled out. Computer programming for Simpson’s 
rule is more involved than that for the trapezoidal rule. However, because of its much 
higher accuracy level, Simpson’s rule is widely used in engineering applications, 
where accuracy is usually important. Example 8.2 demonstrates the use of this 
method in a problem of practical interest.

8.3.2  Simpson’s Three-Eighths Rule

If a third-order polynomial, m = 3, is employed to approximate the integrand f(x) by 
requiring that it pass through four points on the curve of f(x), Simpson’s three-eighths 
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fn–2 
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Δ x Δ x 
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FIGURE 8.9  Application of Simpson’s rule, with an even number of strips, for the numeri-
cal integration of a function f(x) over the range x = a to x = b.
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rule is obtained. A minimum of three segments are needed in order to provide the 
four points for the determination of the polynomial, as shown in Figure 8.10. The 
general equation for the polynomial is taken as

	
P x Ax Bx Cx D3

3 2( ) = + + +
	 (8.33)

In a manner similar to that given in the preceding for the derivation of the one-third 
rule, the polynomial is determined by substitution of the coordinates of the four points 
through which it passes. The integral over the three segments is approximated by the 
corresponding integral Ip of the polynomial P3(x). The resulting expression for Ip is
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(8.34)

For application of this method over the entire range of integration, n must be a 
multiple of 3. Then the integral I is approximated by
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where (Ip)j is the integral for the jth group of three segments, giving i in Equation 
8.34 as i = 3j − 2. Thus,
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It is shown below that the TE in numerical integration by Simpson’s three-eighths 
rule is of the same order as that for the one-third rule. Because of this and the require-
ment that the number of segments n must be a multiple of 3, the three-eighths rule is 
seldom used by itself. Simpson’s one-third rule is easier to program, and the constraint 
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P3(x) = Ax3 + Bx2 + Cx + D

Function
f (x)

fi

Δ x Δ x Δ x
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FIGURE 8.10  Replacement of the function f(x) over the width of three segments by a third-
order polynomial for the derivation of Simpson’s three-eighths rule.
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on n is only that it must be even. However, if the two methods are used together, no such 
constraint on n is needed. If n is even, Simpson’s one-third rule is employed for numeri-
cal integration over the entire region. If n is odd, one can use Simpson’s three-eighths 
rule, for instance, to compute the area under the curve in the first three segments and 
the one-third rule for the remaining even number of segments. Thus, a combination of 
the two methods provides fourth-order accuracy in the numerical results, without 
restricting the number of segments that may be employed, except that n ≥ 2.

8.3.3  Truncation Errors

The derivation of the TEs associated with the two Simpson’s rules for numerical 
integration follows the procedure presented for the trapezoidal rule. Thus, y(x) repre-
sents the integral ≡a

x f x x( ) ,d  and y′(x) = f(x), y″(x) = f ′(x), and so on. The exact area 
under the curve of f(x) over the two segments shown in Figure 8.11 is yi+1 – yi−1. 
Expanding yi+1 and yi−1 in Taylor series about yi, we obtain
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(8.36)

where the relationships between y(x) and f(x), from Equation 8.13, have been used. The 
finite difference approximation for fi� is needed to obtain the expression for Simpson’s 
one-third rule on the right-hand side of Equation 8.36. From Section 4.4.2,
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Substituting this expression for ��fi  into Equation 8.36, we obtain the resulting 
equation:
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From the remainder theorem, the truncation error per step (TE/step) of Simpson’s 
one-third rule for numerical integration is
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Therefore, the error will be zero if f ″″ = 0. This implies that the method is exact for 
polynomials up to third-order. We obtain the total error E by summing the errors in 
all the steps:
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Again, defining an arithmetic mean fav�� of the values of f ″″ in the n/2 subintervals, 
each of width 2Δx, we may write the total TE as
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(8.38)

f (x) = dy
dx

fi+1 

fi–1 

fi 

xi+1 xi–1 

yi+1 
yi 

xi 

Δ x Δ x 
x

I = y(x) 

x

yi+1 – yi–1 

yi–1 

FIGURE 8.11  Sketch of a function y′(x) and its integral y(x) for the estimation of TE in 
Simpson’s rule for numerical integration.
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If fav�� is assumed to remain essentially unchanged as Δx is varied, the total error E 
may be expressed as

	 E S x O x≅ =s ( ) [( ) ]Δ Δ4 4

	 (8.39)

where S b a fs av= − −( ) ʺʺ 180 and is assumed to be a constant. This indicates that 
Simpson’s one-third rule is fourth-order accurate. On the basis of this expression for 
the TE, higher-order accuracy may be obtained by the use of Richardson extrapola-
tion, as discussed in the next section.

The TE for Simpson’s three-eighths rule may be derived in a similar way. It can 
be shown that the TE per step in the expression given by Equation 8.34 is

	

TE
step

where= − ( ) ( ) < <− +

3
80

5

1 2Δx f x xi iʺʺ ξ ξ,

Proceeding as before, we can show that the total error E is

	
E x b a f S x= − − ≅

1
80

4 4( ) ( ) ( )Δ Δav STʺʺ
	

(8.40)

where fav�� is the arithmetic mean of the values of f ″″ in the n/3 subintervals, each of 
width 3Δx. Therefore, the method is also fourth-order accurate, and the total error is 
somewhat larger than that for the one-third rule for a given step size Δx. However, if 
the total integration region is divided into three segments for the application of the 
three-eighths rule and into two segments for the one-third rule, the former yields 
more accurate results, because the step size is (b – a)/3 in the first case and (b – a)/2 
in the second case. The smaller step size for the application of the three-eighths rule 
then yields a smaller total TE.

Example 8.2

The velocity profile in the turbulent flow of a fluid in a smooth circular pipe may 
be represented by the empirical power-law equation

	 U x
x
R

( ) = −
⎛
⎝⎜

⎞
⎠⎟

5 1
17

	 (8.41)

where U(x) is the axial velocity in the pipe, in m/s, x is the radial distance from the 
axis, in meters, and R is the radius of the pipe. The total volume flow rate in the 
pipe is then given by the integral ∫ ( )0 2R U x x xπ d . Using Simpson’s one-third rule, 
compute this integral as accurately as possible for R = 0.1 m. Also determine the 
average velocity.

SOLUTION

The integral to be evaluated numerically is

	 I
x

x x= −
⎛
⎝⎜

⎞
⎠⎟∫ 5 1

0 1
2

0

0 1 17.

.
π d 	 (8.42)
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Since x and R are in meters and the velocity U is in m/s, this integral will yield the 
volume flow rate in m3/s. We obtain the average velocity Vav by dividing the flow 
rate by the area of cross section of the pipe. Therefore,

	 V
I
R

I
av m s= =

( )π π
2 2

0 1.
	 (8.43)

Appendix B.20 presents the computer program in MATLAB as a function 
m-file for the numerical integration of a given function by Simpson’s one-third 
rule. The function file is simp(f,a,b,n), where f is the function to be integrated, a 
and b are the lower and upper limits of integration, respectively, and n is the total 
number of segments. In employing this function file, the function to be integrated 
is defined separately as another function file, f82.m, given as

function z = f82(x)
z = 5*((1−x/0.1).^(1/7))*2*pi.*x;
end

Again. .* and .^ are employed so that x can be treated as an array. Then, the 
function m-file for Simpson’s rule is invoked by the command simp(‘f82’,0,0.1,10);, 
where the given function to be integrated is entered as a string, the limits of inte-
gration a and b are 0 and 0.1 here and the number of segments n is entered as 10. 
The integral I is computed by Simpson’s one-third rule to yield the resulting flow 
rate. Then, the average velocity is obtained by the use of Equation 8.43. As given 
earlier for the trapezoidal rule, an alternative, more compact, implementation of 
the algorithm for the Simpson’s one-third rule is also shown in Appendix B.20.

The numerical results obtained from the numerical scheme are presented in 
Figure 8.12. The computed flow rate and the average velocity are shown for the 
number of subdivisions n ranging from 10 to 5120. Note that n = 320 is quite 
adequate for this problem. Again, at much larger values of n, the round-off error 
is expected to become significant and to increase the total error, acting against 
the decrease in the TE, as n is increased. Although n is successively doubled a 
chosen number of times in this program, a better approach would be to continu-
ously monitor the effect of increasing n on the numerical value of the integral. If 
the change in I from one value of n to the next higher value is smaller than a cho-
sen convergence criterion, then the computation may be terminated. In the given 
function m-file, n is increased to values much larger than necessary, in order to 

n =     10	 Flow rate = 0.1230	 Avg. vel. = 3.9165
n =     20	 Flow rate = 0.1259	 Avg. vel. = 4.0079
n =     40	 Flow rate = 0.1272	 Avg. vel. = 4.0492
n =     80	 Flow rate = 0.1278	 Avg. vel. = 4.0679
n =   160	 Flow rate = 0.1281	 Avg. vel. = 4.0763
n =   320	 Flow rate = 0.1282	 Avg. vel. = 4.0802
n =   640	 Flow rate = 0.1282	 Avg. vel. = 4.0819
n = 1280	 Flow rate = 0.1283	 Avg. vel. = 4.0827
n = 2560	 Flow rate = 0.1283	 Avg. vel. = 4.0830
n = 5120	 Flow rate = 0.1283	 Avg. vel. = 4.0832

FIGURE 8.12  Numerical results on the flow rate and the average velocity, obtained in 
Example 8.2, for various values of the number of subdivisions n.



330	 Computer Methods for Engineering with MATLAB® Applications

determine if the effect of round-off error becomes significant at the larger values. 
The results shown indicate that the trends are pretty much as expected, and the 
round-off error is small over the range of n considered.

The ratio of the average velocity Vav to the velocity Vmax at the axis can be 
shown analytically to be given by the expression

	
V n

n n
av

maxV
=

+( ) +( )
2
1 2 1

2

	 (8.44)

where 1/n is the exponent in Equation 8.41. In the present case, n = 7 and Vmax = 
5 m/s, being the velocity at the axis, x = 0. This gives Vav = 0.8167Vmax = 0.40835 m/s. 
This analytical value agrees closely with the numerical result obtained, lending 
support to the accuracy of the numerical scheme.

8.3.4  Use of MATLAB® Integration Commands

We have discussed some of the commonly used methods for numerical integration. 
The basic formulas and the algorithms have been presented, along with MATLAB 
and Fortran programs. However, there are several commands for numerical integra-
tion that are available in the MATLAB environment and that can be used quite 
effectively in many cases. Among the most common commands is quad, which is 
invoked to obtain the integral s as

s = quad('f',a,b)

where f is a function file, which defines the function to be integrated, a is the lower limit 
of integration and b the upper limit. The command numerically obtains an approxima-
tion to the integral of scalar-valued function f from a to b to within an error of 1.e–6 
using recursive adaptive Simpson quadrature. The adaptive scheme allows it to use finer 
subdivisions in regions with accuracy lower than the desired value, as discussed later. 
An inline definition of the function f can also be used. Then the command used is

s = quad(f,a,b)

As an example, if the speed v is given as a function of time t as v = 2 + 3t + 2t2 + t3. 
Then the integral ≡0

t
v t t( )d  gives the total distance traveled. This integral can be 

obtained by using the quad command as

>> v = inline('2 + 3*t + 2*t.^2 + t.^3');
>> dist = quad(v,0,2)

This gives the result as

dist = 
19.3333

Similarly, the function may be defined as

function z = fn(t)
z = 2 + 3*t + 2*t.^2 + t.^3;
end
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Then the quad command is invoked as

>> dist = quad('fn',0,2)

yielding the result as

dist = 
19.3333

Other limits may be easily employed as

>> dist = quad('fn',0,4)
dist = 
138.6667

>> dist = quad('fn',0,1)
dist = 
4.4167

There are several other such commands, including quad2d for numerically evalu-
ating a double integral over a planar region, triplequad for numerically evaluating 
a  triple integral, and trapz, which computes the integral using the trapezoidal 
method. All these commands, along with the quad command discussed above, may 
be employed instead of the various methods for integration given here to simplify the 
programming or to verify the results. For instance, Examples 8.1 and 8.2 may be 
solved by using the quad command as

>> int = quad('f81',1,6)
int = 
2.5036

>> int = quad('f82',0,0.1)
int = 
0.1283

where the given function files f81.m and f82.m are used and the limits of integration 
are specified. Clearly, it is easier to use the available commands for integration. 
However, greater flexibility and control, particularly on the numerical parameters, is 
obtained by algorithms and programs developed by the user.

As mentioned earlier, symbolic algebra can also be used in MATLAB to obtain 
analytical expressions for the integral in many cases. We first need to construct sym-
bolic numbers, variables and objects. The command x = sym('x') creates the sym-
bolic variable with name x and stores the result in x. The symbolic integration 
function is given by the command int. Thus, we could use

>> t = sym('t');
>> s = int(2 + 3*t + 2*t^2 + t^3)

which yields the result

s = 
t^4/4 + (2*t^3)/3 + (3*t^2)/2 + 2*t
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Similarly, the integral ∫ −e x2 dx  is obtained by

>> x = sym('x');
>> s = int(exp(−x^2))
s = 
(pi^(1/2)*erf(x))/2

where erf is the error function.
A few other examples may thus be given as

>> int(x^2)
ans = 
x^3/3
>> int(sin(x))
ans = 
-cos(x)
>> int(exp(−x))
ans = 
−1/exp(x)
>> int(log(x))
ans = 
x*(log(x)−1)
>> int(1/x)
ans = 
log(x)

8.4  HIGHER-ACCURACY METHODS

Accuracy is particularly important in engineering applications. In the dynamics of 
bodies, for instance, the integration of the force over distance gives the energy, an 
accurate determination of which is necessary to study the damping and accelerating 
characteristics of the body for a suitable control system. Similarly, the integral of 
mass transfer rate over time yields the total mass transfer from a chemical reactor. 
An accurate evaluation of this integral is needed for supplying the required inflow of 
material into the system. Because of the high level of accuracy generally needed in 
engineering problems, methods have been developed for improving the accuracy of 
the numerical results obtained from integration formulas such as those discussed in 
the preceding sections. Higher-order Newton–Cotes formulas may also be employed 
for obtaining greater accuracy in numerical integration. This section discusses sev-
eral of these higher-accuracy methods.

8.4.1  Richardson Extrapolation

Richardson extrapolation, which is also called deferred approach to the limit, is 
a  numerical method for improving the accuracy of the results obtained from a 
given  numerical scheme, provided an estimate of the total discretization error is 
available.
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Although the technique is applied to numerical integration here, it can be used for 
a wide variety of numerical problems, such as the solution of differential equations 
by finite difference methods. Let us first consider integration by the trapezoidal rule. 
The total TE is given by Equation 8.23 as E S xT≅ ( )Δ 2 . Then, if I is the exact inte-
gral, and I1 and I2 are the numerical values of the integral obtained with step sizes 
Δx1 and Δx2, we may write, using TE to represent the total discretization error,

	 I I S x≅ +1 1
2

T ( )Δ 	 (8.45a)

and

	 I I S x≅ +2 2
2

T ( )Δ 	 (8.45b)

From these equations, the constant ST may be estimated as follows:

	
S

I I
x xT ≅

−
−

2 1

1
2

2
2( ) ( )Δ Δ 	

(8.46)

Then, from Equation 8.45b,

	
I I

I I
x x

≅ +
−

−2
2 1

1 2
2 1( )Δ Δ/ 	

(8.47)

Equation 8.47 does not yield the exact value of the integral I, since the expression 
for the TE is only an approximate one and since TE is employed instead of the total 
discretization error. However, an improved estimate for I is obtained from Equation 
8.47. The second term in this equation represents the TE for integration with a step 
size of Δx2. If Δx2 is taken as half of Δx1, that is, Δx1/Δx2 = 2, then

	
I I

I I I I
≅ +

−
=

−
2

2 1 2 1

3
4

3 	
(8.48)

It can be easily shown that this expression for the integral is identical to that obtained 
from Simpson’s one-third rule with a step size of Δx2. Therefore, the integral is 
obtained to fourth-order accuracy.

Similarly, if Simpson’s one-third rule is considered, the total TE from Equation 
8.39 is Ss(Δx)4. As before, we may write

	 I I S x≅ +1 1
4

s ( )Δ 	 (8.49a)

and

	 I I S x≅ +2 2
4

s ( )Δ 	 (8.49b)
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where, again, I is the exact integral and I1 and I2 are the numerical values from 
Simpson’s rule for step sizes Δx1 and Δx2, respectively. Then

	
S

I I
x xs ≅

−
−

2 1

1
4

2
4( ) ( )Δ Δ 	

(8.50)

and

	
I I

I I
x x

≅ +
−

−2
2 1

1 2
4 1( )Δ Δ/ 	

(8.51)

Equation 8.51 yields an improved estimate of the integral. Thus, TE of O[(Δx)4] has 
been eliminated. Then, this expression gives the results to a sixth-order accuracy, 
since the next term in the TE for Simpson’s rule is O[(Δx)6]. If Δx2 = Δx1/2, a more 
accurate approximation to the integral is obtained from

	
I I

I I I I
≅ +

−
=

−
2

2 1 2 1

15
16

15 	
(8.52)

Therefore, the accuracy of the numerical results obtained from the trapezoidal 
rule or from Simpson’s rule can be substantially improved by computing the integral 
twice, with two different step sizes, and using Equation 8.47 or 8.51. Generally, 
numerical integration is carried out with a chosen step size, which is then halved to 
yield the second estimate I2 of the integral. Then Equation 8.48 or 8.52 yields the 
improved estimate. This method does not require any major change in the computer 
program since the numerical scheme is simply applied twice. The computational 
effort is essentially doubled. However, because of the considerable improvement in 
accuracy and the simplicity of its application, Richardson extrapolation is frequently 
used.

8.4.2  Romberg Integration

Richardson extrapolation substantially improves the accuracy of the numerical 
results by eliminating the leading term in the TE. Thus, one may obtain fourth-
order accuracy by applying the trapezoidal rule twice, with different step sizes, and 
using Richardson extrapolation to determine the improved value of the integral, 
as  given above. One may apply this technique in succession to eliminate still 
higher-order terms in the TE. This leads to an efficient method, known as Romberg 
integration, which is widely used for obtaining numerical results of high 
accuracy.

The TE in the trapezoidal rule for numerical integration was obtained in terms of 
the dominant term by the use of the remainder theorem. However, it can be shown 
(Ralston, 1965; Davis and Rabinowitz, 1967; Ralston and Rabinowitz, 1978) that if 
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the higher-order terms are included, the error E in the trapezoidal rule may be 
written as

	
E A x A x A x A x= ( ) + ( ) + ( ) + ( ) +1

2

2

4

3

6

4

8
Δ Δ Δ Δ �

	
(8.53)

where the A’s are constants. The leading term, of order (Δx)2, was eliminated by the 
application of Richardson extrapolation in the preceding section. It the integral com-
puted by the trapezoidal rule, with n segments, is denoted as I0,n and the improved 
value of the integral by Richardson extrapolation as I1,n, then, from Equation 8.48,

	
I

I I
n

n n
1

0 0 2
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4

4 1,
, ,=
−

− 	
(8.54)

where the two integrals by the trapezoidal rule are obtained with n/2 and n intervals, 
corresponding to step sizes Δx and Δx/2, respectively.

Similarly, we eliminate the second term in the series representing the total TE, 
Equation 8.53, by applying Richardson extrapolation again. Since this term is of 
fourth order, the next extrapolation will be of sixth-order accuracy. Denoting this 
second extrapolation as I2,n, we obtain
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I I
n
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4 1,
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(8.55)

The process may be continued indefinitely, improving the value of the integral by 
successively eliminating the higher-order terms in the error. The general formula for 
the kth-order extrapolation is obtained as follows:

	
I

I I
k n

k
k n k n

k,
, ,=
−

−
− −4
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(8.56)

Thus, the value of the integral may be improved to the desired level of accuracy.
Figure 8.13 shows a schematic of Romberg integration. First, I0,1 and I0,2 are deter-

mined from the trapezoidal rule, with one and two elements, respectively. These 
yield the first extrapolation I0,2. Similarly, I0,4 used with I0,2 gives I1,4. The second 
extrapolation, I2,4, is computed from I1,2 and I1,4. This computation of the integrals by 
the trapezoidal rule and of the improved values by Richardson extrapolation contin-
ues until the results remain essentially unchanged from one order of extrapolation to 
the next. Thus, if |I2,4–I1,4| is less than a chosen convergence criterion ε, the process 
is terminated there. If not, we employ eight elements for the trapezoidal rule to deter-
mine the improved values of the integral for eight elements. Then, we compare I3,8 
with I2,8 for convergence. Thus, the criterion for convergence may be written as

	
I In nλ λ ε, ,− ≤−1 	

(8.57)



336	 Computer Methods for Engineering with MATLAB® Applications

where λ represents the highest order of extrapolation that can be obtained with n 
elements.

Romberg integration can, therefore, be used to obtain results of arbitrary accu-
racy, as far as TE is concerned. However, the round-off error, as always, imposes a 
limitation on the accuracy that may be achieved in practice. Example 8.3 demon-
strates the use of Romberg integration in the accurate evaluation of an integral.

8.4.3  Higher-Order Newton–Cotes Formulas

So far, we have considered only the zeroth-, first-, second-, and third-order Newton–
Cotes formulas. In general, these formulas are quite adequate for most engineering 
applications. The trapezoidal and Simpson’s one-third rules are extensively used. 
The three-eighths rule is generally used in conjunction with the one-third rule if an 
odd number of segments is to be employed. We derived the formulas for these cases 
simply by taking the general form of the polynomial, whose coefficients were deter-
mined by making this curve pass through the required number of points on the plot 
of f(x) versus x. However, the general approach for the derivation of Newton–Cotes 
formulas is based on the use of Lagrange interpolation, presented in Chapter 7. Since 
the segments are of uniform width, the points employed in the determination of the 
interpolating polynomial are uniformly distributed.

Closed Newton–Cotes formulas are those for which the data points at the two 
ends of the integration interval are known. Thus, the rectangular, trapezoidal, and 
Simpson’s rules are all closed formulas. Open Newton–Cotes formulas are based on 
integration limits that lie beyond the range of available data. Although seldom used 
for numerical integration, open formulas are of interest in the solution of ODEs. 
Table 8.1 gives the formulas and the TEs per step for several Newton–Cotes closed 
integration schemes. Note that the accuracy improves substantially as the order of 
the polynomial increases from zero to two. The error for Simpson’s three-eighths 

I4,16I3,16 I2,16 I1,16 I0,16 

I0,8 

I0,4 

I0,2 

I0,1 

I1,2 

I1,8 I2,8 I3,8 

I2,4 I1,4 

FIGURE 8.13  A schematic of Romberg integration, indicating the various levels of 
extrapolation.
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rule is of the same order as that for the one-third rule. In fact, the former is somewhat 
larger in magnitude for the same segment size.

The accuracy again increases substantially as the order of the polynomial 
changes from two or three to four, the formula for which is often known as Boole’s 
rule. The next-order polynomial is found to yield an accuracy of the same order as 
Boole’s law, as observed for the two Simpson’s rules. Because of the constraints 
imposed on the minimum number of points and, therefore, on the minimum and 
total number of segments that must be used for higher-order formulas, these are 
generally more difficult to program and are less versatile. As a consequence, the 
trapezoidal and Simpson’s rules are the most extensively employed methods for 
numerical integration in engineering problems. However, Richardson extrapolation 
is frequently used, as in Romberg integration, to improve the accuracy of the 
numerical results.

Example 8.3

A mathematical function frequently encountered in the analysis of several engi-
neering problems is the Gaussian error function, erf z, which is defined as

	 erf e dz xx

z

= −∫
2 2

0
π

	 (8.58)

Using Romberg integration, compute the value of the error function at z = 0.5, 1.0, 
1.5, and 2.0, with a convergence criterion parameter ε in Equation 8.57 of 10−5.

SOLUTION

The recursion formula for computing the various orders of extrapolation in 
Romberg integration is given by Equation 8.56. For convenience, the first-order 
approximation, or extrapolation, is taken as the trapezoidal rule, with Richardson 
extrapolation being the second-order extrapolation. Then I1,m represents the inte-
gral by the trapezoidal rule with m segments. With this change, the recursion 
formula for the kth-order extrapolation becomes

	 I
I I

k n

k
k n k n
k,
, ,=
−
−

−
− − −
−

4
4 1

1
1 1 1

1 	 (8.59)

where Ik−1,n represents the more accurate extrapolation of (k–l)th order, and Ik−1,n−1 
the less accurate one, that is, at half the number of segments as the former. The 
recursion formula given by Equation 8.59 is more convenient to use than that 
given earlier by Equation 8.56, since we start with the first-order extrapolation, 
which is simply the trapezoidal rule, and we can successively double the number 
of segments, starting with 1 and keeping track of increasing accuracy by means 
of the subscript n.

The computer program for solving this problem is presented in Appendix C.13 for 
Fortran and Appendix B.21 for MATLAB. The given function f x x( ) ( ) exp( )= −2 2/ π , 
which is to be integrated, is defined, the input variables, such as the convergence 
criterion ε, are entered, and the value of z at which the error function erf z is to 
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be computed is given. Integration by the trapezoidal rule is carried out with one 
segment, over the range x = 0 to x = z. The segment size is successively halved, 
making maximum use of the segment areas already calculated. The program then 
computes the higher-order extrapolations, using Equation 8.59. At each iterative 
step, corresponding to a given number of subdivisions, the difference between 
the two highest possible extrapolations Iλ,n and Iλ−1,n, as defined in Equation 8.57, 
is determined. Using Equation 8.57, if this difference is less than or equal to ε, the 
program is terminated; otherwise, the segment size is halved and the computa-
tion continued. After convergence has been achieved for a given value of z, other 
values of z, as given in the problem, are successively entered until all the required 
numerical values have been obtained.

The numerical results obtained from the given computer program are shown in 
Figure 8.14. The number of iterative steps needed in each case are shown, along 
with the computed value of the error function. The number of iterations needed 
are found to increase with z, over the range considered. The value of the error 
function is listed in most books on mathematical functions, and the values cor-
responding to z = 0.5, 1.0, 1.5, and 2.0 are given, respectively, as 0.5205, 0.8427, 
0.9661, and 0.9953. Clearly, these values given in the literature are very close 
to those obtained from the present computation. Since the number of segments 
needed for four iterative steps is eight, the results indicate the rapid increase in 
accuracy as the segment width is halved. As mentioned earlier, Romberg integra-
tion is an extremely efficient and accurate method. Consequently, it is widely 
employed in engineering problems.

Enter the value of z = 0.5
No. of iterations =  1    	 Erf(z) = 0.501790
No. of iterations =  2    	 Erf(z) = 0.520602
No. of iterations =  3    	 Erf(z) = 0.520500

Enter the value of z = 1.0
No. of iterations =  1    	 Erf(z) = 0.771743
No. of iterations =  2    	 Erf(z) = 0.843103
No. of iterations =  3    	 Erf(z) = 0.842712
No. of iterations =  4    	 Erf(z) = 0.842701

Enter the value of z = 1.5
No. of iterations =  1    	 Erf(z) = 0.935482
No. of iterations =  2    	 Erf(z) = 0.954758
No. of iterations =  3    	 Erf(z) = 0.966707
No. of iterations =  4    	 Erf(z) = 0.966097

Enter the value of z = 2.0
No. of iterations =  1    	 Erf(z) = 1.149046
No. of iterations =  2    	 Erf(z) = 0.936492
No. of iterations =  3    	 Erf(z) = 0.998921
No. of iterations =  4    	 Erf(z) = 0.995266
No. of iterations =  5    	 Erf(z) = 0.995322

FIGURE 8.14  Numerical results obtained for Example 8.3, indicating the number of itera-
tive steps needed for Romberg integration and the computed values of the error function.
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8.5  INTEGRATION WITH SEGMENTS OF UNEQUAL WIDTH

All of the formulas for numerical integration presented so far were based on segments 
of equal width. This implies that the points, on the curve of the function f(x), that 
were used for determining the interpolating polynomial were equally spaced. 
However, this procedure is not necessarily the most efficient one. In regions where 
the function varies very gradually or where its value is small, the number of points 
for function evaluation may be reduced without significantly affecting the accuracy 
of the results. The optimum distribution of points for the numerical integration of a 
given function may also be derived to obtain maximum accuracy with a given num-
ber of function evaluations. In these cases, the segments into which the range of 
integration is subdivided are not of equal width. Similarly, experimental or numeri-
cal data may be available at only specified points which may be unevenly distributed. 
Procedures for the numerical integration of such data are needed. This section con-
siders various methods for improving the efficiency of numerical integration by 
using unequal segments and also the methods that may be employed for integrating 
a function whose value is given at unevenly spaced data points.

8.5.1  Unequally Spaced Data

Experimental results are often obtained at unevenly spaced values of the indepen-
dent variable. In an experimental study of the displacement of a moving body such 
as a car as a function of time, for instance, more frequent measurements are gener-
ally taken at small times, just after the onset of motion, than at large times. Similarly, 
the pressure loading on a building due to the wind is measured only at discrete loca-
tions, which may not be evenly spaced. Numerical solutions may also yield results at 
unequally spaced data points. Thus, we are faced with the problem of integrating a 
function f(x) which is available simply as data at arbitrary, unevenly spaced values of 
the independent variable.

One approach for solving this problem is to employ the curve-fitting techniques 
given in the preceding chapter, in order to obtain a continuous function f(x). Then the 
range of integration may be subdivided into segments of equal width, and numerical 
integration may be carried out by, say, the Newton–Cotes formulas, using the 
ordinates obtained from the function f(x) derived from curve fitting. This approach 
is often employed in engineering problems, since experimental and numerical data 
are often curve fitted for using the results in other computations, as discussed in 
Chapter 7.

The second approach employs the data as given and simply obtains the integral in 
each segment. The trapezoidal rule may be applied to each segment and the results 
summed to yield the integral I as follows:
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(8.60)

where Δx1; Δx2, . . ., Δxn are the widths of the n segments that correspond to (n + 1) 
data points, xi represents the value of the independent variable at a given point, and fi 
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is the corresponding value of the function. Here, Δx1 Δx2, . . ., Δxn are not equal, as 
was assumed for deriving Equation 8.11. A computer program can be easily written 
to compute the integral I, using Equation 8.60 for unequal segment widths.

If two adjacent segments are of equal width, Simpson’s one-third rule may be 
used to obtain the integral over these segments. Thus, if Δxi−1 and Δxi are equal, the 
integral Is for these two subdivisions is given by

	
I

f f f
xi i i
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(8.61)

Similarly, if three segments are of equal width, Simpson’s three-eighths rule, 
Equation 8.34, may be employed. Since Simpson’s rules are more accurate than the 
trapezoidal rule, an implementation of Simpson’s rule in the numerical integration, 
wherever possible, will increase the accuracy of the results. Thus, a program may be 
developed that checks the widths of adjacent segments before applying numerical 
integration to the data. If two consecutive segments are of equal width, Simpson’s 
one-third rule is employed, and if three segments are of equal width, Simpson’s 
three-eighths rule is used. If the widths of two adjacent segments are different, the 
trapezoidal rule is employed. Example 8.4 demonstrates an application of this proce-
dure to unevenly spaced experimental data.

8.5.2  Adaptive Quadrature

One can employ Romberg integration to obtain numerical results to any desired 
accuracy, within the constraints imposed by the round-off error. However, since 
segments of equal width are employed, the entire range of integration is treated uni-
formly. This approach is not the most efficient one if the function is slowly varying 
or small in magnitude in certain regions, where fewer points can be taken. Adaptive 
quadrature enables one to increase the number of points in regions where the 
accuracy is not at the desired level, while keeping fewer points in regions where 
satisfactory accuracy has been attained.

Several methods have been developed to achieve such an uneven distribution of 
points. The main idea is to focus on regions where the error is larger than the desired 
value. Suppose the integral

	

I f x x
a

b

= ( )∫ d

	

(8.1)

is to be computed with total error less than ε. Then the error in each subinterval of 
width Δx must be less than ε Δx/(b – a), so that the total error is less than ε. We start 
by dividing the range of integration into equal segments of width Δx. The integral 
over each segment is determined by use of, say, the trapezoidal rule. Then each seg-
ment is subdivided into two subintervals of width Δx/2, and the integral is computed. 
From Richardson’s extrapolation, Equation 8.46, an estimate of the error in these 
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segments of width Δx/2 is (I2 – I1)/3, where I2 is the integral with two segments of 
width Δx/2 each and Il is the integral over the segment of width Δx. If this error is 
less than ε(Δx/2)/(b – a), no further subdivision of the corresponding segments is 
needed, and the estimate of the integral over the segments is taken for the computation 
of the total integral over the entire region. If the error is larger than ε (Δx/2)/(b – a), in 
certain segments, these segments are halved and the above procedure is repeated until 
the specified accuracy has been attained in these.

This method, therefore, allows one to systematically reduce the error in regions 
where it is too large, while keeping regions where satisfactory accuracy has been 
attained unaffected. Simpson’s rule may also be used instead of the trapezoidal rule. 
However, since the final accuracy is prescribed, the trapezoidal rule is more appro-
priate because it is simpler to use. Adaptive quadrature is particularly useful for 
complicated functions that have a large variation over certain regions and a small 
variation over others. In the integration of exp(–50x2) over 0 ≤ x ≤ 1, for instance, 
many more subintervals are needed at small x than at large x to attain uniform accu-
racy over the entire region. Adaptive quadrature is a valuable method in such cases. 
For further details, see Forsythe et  al. (1977), Ferziger (1998), and Gerald and 
Wheatley (2003).

Example 8.4

In an experiment on the motion of accelerating bodies, the velocity V, in m/s, of 
a body is measured at several time intervals t, in seconds. The data obtained are 
tabulated for time ranging from 0 to 2.0 s as follows:

t 0.0 0.1 0.2 0.3 0.5 0.7 0.8 1.0
V 9.50 10.00 10.57 11.24 12.97 15.38 16.93 20.9

t 1.1 1.3 1.5 1.6 1.7 1.8 2.0
V 23.41 29.74 38.17 43.33 49.21 55.88 71.90

Compute the distance traveled by the body x as a function of time t.

SOLUTION

The experimental data are given at unevenly distributed values of the independent 
variable t. The distance traveled x is given by the integral

	 x V t t
x

= ∫ ( ’) ’d
0

	 (8.62)

where t′ is a dummy variable. We shall employ the procedure outlined in Section 
8.5.1 for numerical integration to obtain x(t). As discussed earlier, Simpson’s three-
eighths rule is employed when three adjacent segments are of equal width, and 
Simpson’s one-third rule when only two adjacent segments are of equal width. If 
the size of a given subdivision is different from that of the next subdivision, the 
trapezoidal rule must be used.

The MATLAB computer program used to evaluate the integral in Equation 8.62, 
employing the unevenly spaced data given in the problem is given in Appendix B.22. 
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The given data are entered, along with an arbitrary small quantity eps. The widths 
of three adjacent subdivisions, starting with t = 0 and proceeding in the direction 
of increasing time, are determined. The small allowable difference eps is employed 
to determine whether the segment widths are equal. Here, eps is taken as 10−6, 
which is an arbitrary small quantity and will not affect the numerical results for 
the given data set. Obviously, eps is used to avoid problems caused by round-off 
error, because of which two equal segment widths may be indicated as differ-
ent due to differences in round-off error. If the first two segments are of different 
width, the trapezoidal rule is employed. If the widths are equal, the third segment 
is also considered, and if all three are equal in width, Simpson’s three-eighths 
rule is used. Otherwise, Simpson’s one-third rule is employed. Thus, it is a fairly 
straight forward application of the integration formulas.

The numerical results obtained are shown in Figure 8.15. The data point up 
to which the given integral is computed, the corresponding time, the velocity, 
and the total distance x traveled up to this point are given. The method used 
for numerical integration in the preceding subdivision(s) is also indicated. Thus, 
the three-eighths rule is employed first, followed by Simpson’s one-third rule, then 
the trapezoidal rule, and so on. The velocity V is printed in order to ensure that the 
input data have been correctly read. At the end of 2 s, the total distance traveled 
is obtained as 54.69 m. This program is quite flexible and can be used for a wide 
variety of unevenly spaced data.

8.5.3  Gauss Quadrature

In many engineering problems, the evaluation of the integrand f(x) is very involved 
and time-consuming. Gauss quadrature is based on a variety of interpolating func-
tions and gives maximum accuracy for a given number of function evaluations. 

Simpson three-eighths rule
I = 4   Time = 0.3000	 Velocity = 11.2400	 Distance = 3.0919

Simpson one-third rule
I = 6   Time = 0.7000	 Velocity = 15.3800	 Distance = 8.3252

Trapezoidal rule
I = 7   Time = 0.8000	 Velocity = 16.9300	 Distance = 9.9407

Trapezoidal rule
I = 8   Time = 1.0000	 Velocity = 20.9000	 Distance = 13.7237

Trapezoidal rule
I = 9   Time = 1.1000	 Velocity = 23.4100	 Distance = 15.9392

Simpson one-third rule
I = 11   Time = 1.5000	 Velocity = 38.1700	 Distance = 27.9752

Simpson three-eighths rule
I = 14   Time = 1.8000	 Velocity = 55.8800	 Distance = 41.9128

Trapezoidal rule
I = 15   Time = 2.0000	 Velocity = 71.9000	 Distance = 54.6908

FIGURE 8.15  Computed distance traveled x as a function of time t from the velocity data 
given in Example 8.4. The various integration schemes employed over different regions of the 
given data are also indicated.
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However, the x locations where the function f(x) is to be evaluated are adjustable. 
Thus, for a two-point formula, the integral

	

I f x x= ( )
−
∫ d
1

1

	

(7.63a)

is approximated by

	 I A f x A f x≅ +1 1 2 2( ) ( ) 	 (8.63b)

where A1, A2, x1, and x2 are all unknowns. The integration limits are taken as −1 
and 1. The integral between the finite limits a and b can be transformed into the 
limits ±1 by means of the transformation

	
ξ =

− +( )
−

2x a b
b a 	

(8.64)

Thus, the integral may be taken over the limits − 1 to 1 without loss of generality. 
This simplifies the computation and generalizes the formulation. Example 8.5 illus-
trates how this transformation is carried out in practice.

Now, if we require that Equation 8.63b yield the integrals for constant, linear, 
parabolic, and cubic functions exactly, the four coefficients in the equation can be 
determined. Thus, employing 1, x, x2, and x3 as the functions, and substituting these 
for f(x1) and f(x2), we have
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which is known as the two-point Gauss–Legendre formula. This integral estimate is 
exact for polynomials up to the third order, that is, cubics, and is, therefore, of the 
same order of accuracy as Simpson’s rule. It is interesting to note that this accuracy 
is achieved on the basis of only two function evaluations, at x = ±1 3.

The above discussion indicates the general features and the power of Gauss 
quadrature. The general formula for this method may now be written as follows:

	 I A f x A f x A f x A f xn n≅ + + + +1 1 2 2 3 3( ) ( ) ( ) ( )� 	 (8.66)

where n is the number of points in the range −1 ≤ x ≤ 1 at which the function f(x) is 
calculated. The integral under consideration is ∫−1

1
f x x( )d , which is obtained from 

the integral ≡a
b f x x( )d  by means of the transformation given by Equation 8.64. The 

derivation of higher-order formulas for Gauss quadrature is quite involved. Basically, 
orthogonal polynomials, such as Legendre, Chebyshev, Hermite, and Laguerre 
polynomials, are taken to represent the function over the range −1 ≤ x ≤ 1. These 
polynomials are generally discussed in books on advanced calculus. The locations 
where the function is to be evaluated are actually the n zeros of an nth-degree 
Legendre polynomial. Table 8.2 gives the n locations, along with the corresponding 
weights A1, A2, . . ., An, for the Gauss–Legendre formulas, considering n up to 24, 
which should be adequate for most practical problems. Other commonly employed 
quadrature formulas are the Gauss–Chebyshev, Gauss–Laguerre, and Gauss–Hermite 
integration formulas, given by Abramowitz and Stegun (1964) and Stroud and 
Secrest (1966). Although the derivation of these formulas is complicated, the appli-
cation to numerical integration is not, as illustrated in Example 8.5.

The error E in Gauss–Legendre quadrature, which is usually referred to simply as 
Gauss quadrature, is obtained for an n-point formula as
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Therefore, a polynomial of degree (2n − 1) is integrated exactly, since the (2n)th 
derivative, f (2n), is zero in this case, resulting in zero error. This implies that if n 
points are employed in Gauss quadrature, the accuracy obtained is of the same order 
as that obtained with a polynomial of order (2n − 1) in Newton–Cotes formulas. 
Therefore, Gauss quadrature is a powerful method that is frequently used in engi-
neering applications. However, a systematic reduction in error, as achieved by 
Romberg integration, is not possible in Gauss quadrature, and one must repeat the 
entire integration scheme with higher-order formulas if a greater accuracy is needed. 
Gauss quadrature maximizes the accuracy for a given number of function evalua-
tions and is particularly suitable for complicated functions. However, the method is 
not applicable to problems where tabulated data are given at arbitrary locations, 
since function evaluations at definite points are needed. In some cases, it may be 
possible to take the data at the points specified by the quadrature formula and, thus, 
use Gauss quadrature for numerical integration.
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TABLE 8.2
Weighting Factors A and the Values of the Independent 
Variable x at Which the Function f(x) Must Be Evaluated 
for the Gauss–Legendre Formulas, Considering up to the 
24-Point Approximation

n ±xi Ai

2 0.5773502692 1.0000000000

3 0.0000000000

0.7745966692

0.8888888889

0.5555555556

4 0.3399810436

0.8611363116

0.6521451549

0.3478548451

5 0.0000000000

0.5384693101

0.9061798459

0.5688888889

0.4786286705

0.2369268850

6 0.2386191861

0.6612093865

0.9324695142

0.4679139346

0.3607615730

0.1713244924

7 0.0000000000

0.4058451514

0.7415311856

0.9491079123

0.4179591837

0.3818300505

0.2797053915

0.1294849662

8 0.1834346425

0.5255324099

0.7966664774

0.9602898565

0.3626837834

0.3137066459

0.2223810345

0.1012285363

9 0.0000000000

0.3242534234

0.6133714327

0.8360311073

0.9681602395

0.3302393550

0.3123470770

0.2606106964

0.1806481607

0.0812743884

10 0.1488743390

0.4333953941

0.6794095683

0.8650633667

0.9739065285

0.2955242247

0.2692667193

0.2190863625

0.1494513492

0.0666713443

12

16

0.1252334085

0.3678314990

0.5873179543

0.7699026742

0.9041172564

0.9815606342

0.0950125098

0.2816035508

0.4580167777

0.6178762444

0.2491470458

0.2334925365

0.2031674267

0.1600783285

0.1069393260

0.0471753364

0.1894506105

0.1826034150

0.1691565194

0.1495959888
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Example 8.5

In a civil engineering application, a vertical plate 1 m high and 1.2 m wide is 
positioned in a stream of flowing water in a channel. The pressure p exerted on 
the plate due to the flow is measured at several vertical locations x, where x = 0 
represents the top edge of the plate. Curve fitting is employed to obtain p as a 
function of x. The resulting expression for pressure in Newtons/(meters squared) 
and x in meters is

	 p x x x x x x( ) . . . . .= + − + − +10 4 6 16 2 8 9 41 3 22 62 3 4 3 	 (8.68)

TABLE 8.2  (continued)
Weighting Factors A and the Values of the Independent 
Variable x at Which the Function f(x) Must Be Evaluated 
for the Gauss–Legendre Formulas, Considering up to the 
24-Point Approximation

n ±xi Ai

16 0.7554044084

0.8656312024

0.9445750231

0.9894009350

0.1246289713

0.0951585117

0.0622535239

0.0271524594

20 0.0765265211

0.2277858511

0.3737060887

0.5108670020

0.6360536807

0.7463319065

0.8391169718

0.9122344283

0.9639719273

0.9931285992

0.1527533871

0.1491729865

0.1420961093

0.1316886384

0.1181945320

0.1019301198

0.0832767416

0.0626720483

0.0406014298

0.0176140071

24 0.0640568929

0.1911188675

0.3150426797

0.4337935076

0.5454214714

0.6480936519

0.7401241916

0.8200019860

0.8864155270

0.9382745520

0.9747285560

0.9951872200

0.1279381953

0.1258374563

0.1216704729

0.1155056681

0.1074442701

0.0976186521

0.0861901615

0.0733464814

0.0592985849

0.0442774388

0.0285313886

0.0123412298
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Using Gauss quadrature with two as well as four function evaluations, compute 
the total force exerted on the plate due to the flow.

SOLUTION

The resulting force on the plate F is given by the equation

	

F p x x

p x x
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(8.69)

where 1.2dx represents the area of a differential surface element at a vertical loca-
tion given by x. Since p(x) is a fifth-order polynomial in x, the above integral can 
easily be evaluated analytically to yield 4.631667, giving the force F as 5.558 N. 
However, let us apply Gauss quadrature to this problem in order to demonstrate 
the use of this method for numerical integration.

We must first change the limits of the integration to −1 and 1 by employing 
Equation 8.64. Thus, since a = 0 and b = 1, ξ is given by

	 ξ =
− +( )

= −
2 0 1

1
2 1

x
x

or

	 x = +0 5 0 5. .ξ 	 (8.70)

which gives

	 d dx = 0 5. ξ 	 (8.71)

Therefore, the expression for the total force F on the plate becomes

 
F = + +( ) − +( )⎡
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(8.72)

or,

	 F f= ( )
−
∫1 2
1

1

. ξ ξd 	 (8.73)

where f(ξ) is the function to be integrated, as given above.



Numerical Integration	 349

Using the two-point Gauss–Legendre formula, F is given by
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Similarly, for the four-point Gauss–Legendre formula,

	 F Af x A f x A f x A f x= ( ) + ( ) + ( ) + ( )⎡⎣ ⎤⎦1 2 1 1 2 2 3 3 4 4. 	 (8.75)

where the required x’s and A’s are given in Table 8.2. Two function evaluations 
are involved in the former case, and four in the latter. Thus, for the two-point 
formula,
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which gives

	 F = 1.2 (4.547223) = 5.456668 Newtons

Similarly, for the four-point formula,

	 F = 1.2[Af(−C) + Bf(−D) + Bf(D) + Af(C)]

where A = 0.347854845, B = 0.652145155, C = 0.861136312, and  D = 0.339981044. 
This gives F = 5.558 N. Thus, the four-point formula gives a very high level of 
accuracy with only four evaluations of the function f(ξ). Even for the two-point for-
mula, with only two function evaluations, the error is only 1.82%. This error figure 
indicates the efficiency of this method and its considerable value for complicated 
functions frequently encountered in engineering applications.

8.6  NUMERICAL INTEGRATION OF IMPROPER INTEGRALS

In the preceding sections, the limits of integration a and b in the integral ≡a
b
f x x( )d  

were taken as finite, and the integrand f(x) was assumed to be continuous and finite 
over the range a ≤ x ≤ b. However, in engineering computations, we are often faced 
with integrals in which either the limits of integration are infinite or the integrand is 
singular at some point in the range of integration. Such integrals are known as 
improper integrals, and special procedures are often required for their evaluation. 
Some of these integrals are discussed here. It is assumed that the integral exists and 
is finite. This assumption is often based on the nature of the physical quantity repre-
sented by the integral. For instance, if the integral represents the total energy lost by 
a given body, the integral is expected to be finite. Similarly, if an integral over time 
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yields the total distance traveled by a body that is decelerating due to an applied 
force, the integral must approach a finite value as the upper limit of integration 
approaches infinity. The analytical methods for proving that an integral exists and is 
finite are generally given in most advanced calculus books.

8.6.1  Integrals with Infinite Limits

In problems of engineering interest, we often encounter integrals of the form 
∫
∞

a f x x( ) ,d  ∫−∞
b
f x x( )d  or ∫−∞

∞
f x x( ) ,d  where either one or both of the limits of integra-

tion are infinite. In the example of the retarding body, outlined above, the lower limit 
is finite, say, time t = 0, and the upper limit is infinite. The mass transfer from an 
infinite surface, which approximates, say, the surface of a large lake, would involve 
an integral over the range −∞ ≤ x ≤ ∞. Similarly, flow rates in jets and plumes often 
require integration from −∞ to ∞, since no walls, which limit the extent of the flow, 
are assumed to be present. Statistical distributions, like Gaussian and Poisson distri-
butions, also generally involve infinite limits of integration.

There are several methods by which such integrals may be evaluated. The most 
common and often convenient approach is to write a given integral of the form 
∫
∞

a f x x( )d  as ≡a
b
f x x( )d  and to evaluate the integral with increasing values of b, until 

any further increase in b results in a negligible change in the integral. This approach 
was demonstrated in Example 8.1, where the charge Q in the capacitor was computed 
by the integral ∫ ʹ ʹ0

t I t t( ) ,d  I(t) being the current, t the time, and t′ simply a dummy 
variable. Thus as t → ∞, the charge attains a finite value. We obtained this result by 
increasing the upper limit of integration until the charge Q remained unchanged as t 
was increased further. Similarly, for integrals of the form ∫−∞

b f x x( )d  or ∫−∞
∞
f x x( ) ,d  

this approach may be used, suitably decreasing the lower limit and/or increasing the 
upper limit.

The integrand f(x) may approach zero in an asymptotic manner as x → ∞. In some 
cases, the dominant terms at large x can be employed to simplify the function and 
integrate it analytically. Thus, the given integral is written as

	
f x x f x x f x x

a a

s

s

( ) = ( ) + ( )
∞ ∞

∫ ∫ ∫d d d�

	

(8.76)

where s is chosen to be sufficiently large so that the function f(x) may be replaced by 
a simpler asymptotic approximation �f x( ) for x ≥ s. Then the first integral on the 
right-hand side of Equation 8.76 is evaluated numerically and the second integral 
analytically. Examples of functions for which this approach may be employed are 
f(x) = 1/(ex + e− 2x + 3x− 2) and f(x) = 1/(e5x + 2x3 + 1). At large x, the first function may 
be approximated as e−x, and the second as e−5x, both of which may be integrated ana-
lytically over s ≤ x < ∞ to yield e−s and e−5s/5, respectively. Again, s may be varied 
until the numerical value of the total integral ∫

∞

a f x x( )d  shows a negligible change 
with a further increase in s. This procedure, wherever applicable, is more efficient 
than replacing the upper limit by a large number b and computing the integral for 
increasing values of b, as outlined earlier.
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In some cases, a transformation of the independent variable may be employed to 
change the infinite limit of integration into a finite one. Commonly used transforma-
tions are y = x−n and y = e−x, both of which give zero for the new variable y as x goes 
to infinity. For instance, consider the following two integrals:
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We can transform the first integral into one with finite limits by using the transfor-
mation y = 1/x. This gives dx = −dy/y2, and the integral becomes
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Similarly, we transform the integral in Equation 8.77b by employing y = e−x as 
follows:
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Thus, integrals over infinite regions may be transformed into integrals over finite 
regions. However, in some cases, the transformed integrand may be singular at one of 
the limits. Then the problem with an infinite limit is replaced by one involving a sin-
gular integrand, discussed in the following subsection. In general, it is easier to handle 
an infinite limit of integration than an integrand that becomes singular. Therefore, one 
must consider whether or not a given transformation simplifies the problem.

8.6.2  Singular Integrand

Another class of improper integrals is the one in which the limits of integration are 
finite but the integrand is singular in the range of integration, generally at one or both 
limits. However, the singularity is assumed to be gentle enough for the integral to 
exist and be finite. Examples of such integrals are
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In all of these cases, the integrand becomes singular at the lower or the upper limit 
of integration, and the integral can be shown to exist.

There are several methods for dealing with such improper integrals. Among these 
are integrating by parts, subtracting out the singularity, using a power series to 
approximate the integral near the point of singularity, and transforming the vari-
ables. Obviously, the appropriate method depends on the nature of the singularity, 
and all of these techniques may be considered to determine if one of them would 
work. Let us illustrate the use of some of these strategies to eliminate the singularity 
by means of examples.

The integral

	

e
d
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x
x

0
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(8.79a)

can be integrated by parts to yield
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The first term on the right-hand side can easily be evaluated, and the second term is 
an integral that is not singular. This remaining integral can thus be computed ana-
lytically or by means of the various numerical methods presented in this chapter. 
The singularity in this integral can also be subtracted out as follows:
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(8.80)

The first integral on the right-hand side is singular, but it can easily be integrated 

analytically. The second integral is nonsingular, since ex x−( )1 /  can be shown to 
approach zero at the lower limit of integration.

The singularity in the integral
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can be eliminated by use of the transformation x = sin y. Then 1 2− =x ycos , and 
dx = cos y dy. The integral becomes
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The resulting integral is nonsingular and can be integrated by any numerical 
method.

Another strategy that is sometimes applicable is the expansion of the integrand in 
a power series about the singular point and retention of a few leading terms that can 
be integrated by standard methods. Gauss quadrature is also particularly suitable for 
certain types of singularities, since formulas are sometimes available that have 
already accounted for the singularity in the choice of the weighting function.

A frequently used procedure, if the above strategies do not work, is to replace the 
integration limit where the singularity exists by a quantity close to this limit, but not 

equal to it. Thus, ≡a
b f x x( )d  is replaced by ∫ +a

b f x xε ( ) ,d  where ε is a small quantity, if 
f(x) is singular at x = a. Then numerical integration is carried out over the range 
a + ε ≤ x ≤ b, and ε is made smaller, starting with a chosen small value, until the 
computed integral is not significantly affected by a further reduction in ε. This 
method is not very efficient, particularly if equally wide intervals are used. However, 
the range of integration may be broken down into a region close to the point of singu-
larity and others farther away, so that a finer mesh may be used near the singularity. 
For example, the following integrals may be written as
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with ε being reduced toward zero till the integrals do not vary significantly with a 
further reduction in ε. The upper limit in the second integral in Equation 
8.82b  is  infinity and can be treated by the methods given in Section 8.6.1. The 
integration  region ε ≤ x ≤ 0.01 may be further subdivided as ε ≤ x ≤ 0.001 and 
0.001 ≤ x ≤ 0.01, if necessary. Adaptive quadrature can also be used advantageously 
for this problem.

Example 8.6

Many physical measurements follow the symmetrical, bell-shaped curve of the 
Gaussian, or normal, frequency distribution, sketched in Figure 8.16. Repeated 
measurements of the fluid velocity in a hydraulic control system are found to 
closely approximate the Gaussian distribution

	 f x
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where f(x) is the height of the frequency curve corresponding to a given velocity 
x, μ is the mean value, and σ is known as the standard deviation. For the given 
circumstance, μ = 10 m/s and σ = 5 m/s. Compute the fraction of the measure-
ments for which the velocity is larger than or equal to 0, 5.0, 10.0, and 15.0 m/s, 
respectively.

SOLUTION

The normal distribution extends from x = −∞ to x = + ∞ and is symmetrical about 
the mean μ. The area under the curve from, say, x = x1 to x = x2, gives the fraction 
of the total measurements for which the velocity lies between x1 and x2. Therefore, 
the integral to be computed is

	 I f x x
x

= ( )
∞

∫ d
min

	 (8.84)

where xmin is the minimum value of velocity considered. For the given problem, 
xmin = 0, 5.0, 10.0, and 15.0 m/s, respectively. Since ∫−∞

∞ f x x( ) d  covers the entire 
range of measurements, this integral equals 1.0. Similarly, ∫ =

∞
μ f x x( ) . ,d 0 5  since it 

represents half of the measurements taken.
The given problem involves the evaluation of an improper integral, since the 

upper limit is infinity. Thus, following the approach given in the preceding section 
for such problems, we may compute the integral

	 ˆ

min

max

I f x x
x

x

= ( )∫ d 	 (8.85)

by any standard method for numerical integration, such as Simpson’s rule, and 
increase xmax until the value of the integral remains essentially unchanged as xmax 
is increased further. This approach is followed in the computer program for this 
problem. As given in Appendix B.23, the function m-file for Simpson’s method, 
given in Appendix B.20, is easily modified for this problem. The segment width h 
is chosen, and the four given values for xmin are successively entered. The upper 

f (x) 

μ x 0 

FIGURE 8.16  Sketch of the Gaussian, or normal, frequency distribution, with μ as the mean 
value.
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limit of integration xmax is varied until the integral varies by less than a convergence 
parameter ε, taken as 10−5 here, with a further increase in xmax. The segment size h 
and the convergence parameter must be varied to ensure that the results obtained 
are not significantly dependent on the values chosen.

The numerical results obtained are shown in Figure 8.17, in terms of the inte-
gral at various values of xmax, for each of the four given values of xmln. It is found 
that an xmax of 40.0 m/s is adequate for the approximation of infinity, which is the 
upper limit of integration in Equation 8.84. The convergence parameter ε and 
the segment width h were also varied. The values chosen were found to be quite 
satisfactory. Thus, from the results obtained, 97.725% of the measurements, or 
0.97725 in fractional notation, yield a positive fluid velocity, that is, x ≥ 0. Similarly, 
84.135% of the measurements give a velocity larger than or equal to 5 m/s, and so 
on. Tabulated results for the integration of the normal distribution curve are avail-
able in the literature. For the four cases considered here, the values given in the 
literature are 97.72, 84.13, 50.0, and 15.87%, respectively. Clearly, these values 
are very close to those obtained from the given computer program. Further details 
on this problem and tabulated results on the area under the frequency distribution 
curve may be obtained from any statistics textbook.

xmin = 0.0000
Integral = 0.47725	 xmax = 10.0000
Integral = 0.818595	 xmax = 15.0000
Integral = 0.9545	 xmax = 20.0000
Integral = 0.9759	 xmax = 25.0000
Integral = 0.977218	 xmax = 30.0000
Integral = 0.97725	 xmax = 35.0000
Integral = 0.97725	 xmax = 40.0000

xmin = 5.0000
Integral = 0.682689	 xmax = 15.0000
Integral = 0.818595	 xmax = 20.0000
Integral = 0.839995	 xmax = 25.0000
Integral = 0.841313	 xmax = 30.0000
Integral = 0.841344	 xmax = 35.0000
Integral = 0.841345	 xmax = 40.0000

xmin = 10.0000
Integral = 0.47725	 xmax = 20.0000
Integral = 0.49865	 xmax = 25.0000
Integral = 0.499968	 xmax = 30.0000
Integral = 0.5	 xmax = 35.0000
Integral = 0.5	 xmax = 40.0000

xmin = 15.0000
Integral = 0.157305	 xmax = 25.0000
Integral = 0.158624	 xmax = 30.0000
Integral = 0.158655	 xmax = 35.0000
Integral = 0.158655	 xmax = 40.0000

FIGURE 8.17  Numerical results obtained from the integration of the Gaussian distribution 
from x = xmin to x = ∞, for Example 8.6, at several values of xmin.
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8.6.3  Multiple Integrals

There are a few other forms of integrals that have not been discussed thus far. Among 
these are multiple integrals, which arise for functions that depend on more than one 
independent variable. Integrals over the surface area, for example, to compute the 
evaporation from a pond, or over the volume of a body involve multiple integrals. 
Similarly, the work done in the two-dimensional motion of a particle on a flat surface 
and the total force acting on a vertical surface, such as a building, require double 
integrals of the form

	

I f x y y x
a

b

x

h x

= ( )∫ ∫
( )

( )

, d d
g 	

(8.86)

We evaluate such multiple integrals by twice applying the numerical methods 
discussed in this chapter, first for the inner integral over y and then for the outer 
integral over x. If the range of integration a ≤ x ≤ b is divided into n segments, so that 
xi = a + iΔx, then we may define a function F(x) as

	

F x f x y yi i
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h x
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(8.87)

so that x is held constant at xi. This integral may be computed as a one-dimensional 
integral on y. Thus, (n + 1) ordinates, corresponding to F(xi), with i = 0, 1, . . ., n, are 
generated. Since these ordinates are at evenly spaced points, we can employ 
Simpson’s one-third rule to evaluate the integral I, provided n is even. Similarly, 
other numerical methods may be employed.

8.7  SUMMARY

This chapter presents several available methods for the numerical integration of a given 
continuous function f(x) over a finite range of the independent variable x. These meth-
ods, which include the rectangular, trapezoidal, Simpson’s one-third, and Simpson’s 
three-eighths rules for numerical integration, form the first four orders of the 
Newton–Cotes formulas. They are discussed in detail in this chapter, particularly the 
trapezoidal and Simpson’s one-third rules, because of their wide usage. The TEs 
associated with these formulas are also derived. Simpson’s one-third rule is a very 
popular choice in engineering problems, since it is fourth-order accurate, as compared 
to the trapezoidal rule which is second-order accurate. Also, when it is used in con-
junction with the three-eighths rule, it imposes no constraints on the choice of the 
number n of the segments, or subintervals, of the integration region, except that n be 
two or larger. The trapezoidal rule is also widely used because of its simplicity. 
Higher-order Newton–Cotes formulas are also presented, although they are used 
only if a very high level of accuracy is needed. The accuracy of the numerical results 
can also be improved by a reduction in the step size Δx. However, at very small 
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values of Δx, the round-off error may become significant. Higher-order formulas can 
then be employed more advantageously. MATLAB integration commands that may 
be used directly are also presented.

Various methods for the successive improvement in accuracy are also discussed, 
including Richardson’s extrapolation, which is applicable to several other numerical 
procedures as well, and Romberg integration, which is a very efficient method for 
achieving any desired accuracy level. Romberg integration is based on the trapezoi-
dal rule and uses a procedure similar to Richardson’s extrapolation to successively 
eliminate the higher-order terms in the TE. It is presently one of the most widely 
used methods for the numerical integration of well-behaved functions.

Gauss quadrature uses the minimum number of function evaluations for comput-
ing the integral and is therefore particularly suitable for very complicated functions. 
Different formulas can be derived for a wide variety of functions and integration 
limits so that the results are very accurate and the number of function evaluations is 
minimized. Singularities can also be effectively dealt with in several cases. However, 
the tables of the weight factors and the zeros must be stored or computed. The pro-
gramming is more involved and less versatile than that for, say, Simpson’s rule. Also, 
this method is generally not applicable for data available at arbitrarily spaced values 
of the independent variable.

For unevenly spaced data points, one can use the trapezoidal and Simpson’s rules, 
using the latter if two or three adjacent segments are of the same width and the trap-
ezoidal rule if the widths of adjacent segments are unequal. It is also possible to use 
curve fitting to obtain a continuous function to represent the data. Then the standard 
methods for numerical integration may be used. By focusing on regions where the 
accuracy is less than that in others and retaining fewer points in regions where the 
desired accuracy level has been attained, one can effectively use the method of adap-
tive quadrature for functions that are small in magnitude or slowly varying in certain 
regions.

This chapter also discusses the various methods for treating improper integrals, 
which exist and are finite although either the integrand blows up within the range of 
integration or the integration limits are infinite. Analytical procedures, such as trans-
formation of the independent variable and integration by parts, can often be employed 
to eliminate the singularity. However, the most common approach is to replace the 
integration limit that is infinite or where the integrand is singular by a quantity that 
is large or close to, but not equal to, the limit. Numerical integration is then carried 
out and this quantity is varied until the numerical results are not significantly affected 
by a further variation. Although inefficient, this approach is applicable to most engi-
neering problems involving improper integrals. Gauss quadrature can also be used 
advantageously for certain types of functions.

PROBLEMS

	 8.1.	� Consider the integral ≡0
3 f x x( )d  for the linear function f(x) = 3 + 5x. 

Show that the numerical results obtained by use of the trapezoidal 
and Simpson’s one-third rules for this integral are exactly equal to the 
analytical value, except for the round-off error. Employ two and then 
four subdivisions of the integration domain.
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	 8.2.	� For the parabola f(x) = 3 + 2x + 3x2, show that the numerical integra-
tion ≡1

3 f x x( )d  by Simpson’s rule yields the exact analytical value, 
except for the round-off error. What effect would you expect an 
increase in the number of subdivisions to have on the accuracy of the 
numerical results? Explain.

	 8.3.	� Consider the integral ≡0
2 f x x( ) ,d  where f(x) = 3 + 5x + 2x2 + x3. 

Estimate the total TE and the maximum TE per step for evaluating 
this integral by the rectangular and trapezoidal rules. Consider the 
three segment sizes Δx = 0.1, 0.2, and 0.5.

	 8.4.	� Calculate the TE per step at x = 0.5 and x = 1.0 for the integral 
∫ + + + + +0
1 5 5 4 3 22 4 2 6. ( ),x x x x x  taking Δx = 0.1, 0.25, and 0.5. 

Consider the trapezoidal rule and both Simpson’s rules for numerical 
integration. Discuss the effect, on the error, of a reduction in segment 
size and also of the numerical method employed.

	 8.5.	� The TE in the numerical evaluation of the integral I f x xa
b= ∫ ( )d  by 

the trapezoidal rule is given by Equation 8.22. If ��fav  is approximated 
as [ f ′(b) − f ′( a)/( b − a), obtain the resulting estimate of the error, and 
add it to the formula for numerical integration by the trapezoidal rule 
to obtain a more accurate scheme known as the trapezoidal rule with 
end correction.

	 8.6.	� Apply the procedure outlined in Problem 8.5 to the rectangular rule, 
and compare the resulting formula with that for the trapezoidal rule.

	 8.7.	� Show that if Richardson’s extrapolation is applied to the trapezoidal 
rule, the formula obtained is the same as that for Simpson’s one-third 
rule. Also apply Richardson’s extrapolation to the rectangular rule, 
and discuss the resulting formula for numerical integration.

	 8.8.	� The temperature T at the wall of a furnace varies periodically over the 
day as

	 T t t( ) sin ( )= + −125 50
2
24

6
π

			�  where t is the time in hours measured from midnight and T is in °C. 
The ambient temperature Ta is 25°C, and the surface area A of the 
wall is 10 m2. If the heat transfer coefficient h is given as 20 W/m2°C, 
the heat transfer from the wall is given by ∫ −[ ( ) ]T t T hA ta d . Using the 
trapezoidal rule, compute this integral as accurately as possible for the 
time interval t = 6 to t = 12. Also evaluate the integral analytically and 
compare the result with the computed value. Use the quad function in 
MATLAB to verify the results obtained.

	 8.9.	� In chemical engineering, we frequently need to evaluate the amount 
of heat required to raise the temperature of a given material from a 
value T1 to T2. If C(T) is the specific heat of the material, the amount 
of energy needed is ≡T

T mC T T
1

2 ( ) ,d  where m is the mass of the material, 
since the specific heat is the energy required to raise the temperature 
of unit mass of the material by unit temperature. The average spe-
cific heat Cav is given by [ ]( ) ( )∫ −T

T C T T T T
1

2
2 1d . The specific heat of a 

material is given, in J/kg K, as follows:

	 C T
T
T

T
T

T
T( ) = + +

⎛
⎝⎜

⎞
⎠⎟
+

⎛
⎝⎜

⎞
⎠⎟

200 7 5 2 8 0 42
0 0

2

0

3

. . .



Numerical Integration	 359

			�   where T0 is the reference temperature of 100 K. For 1 kg of the 
material, compute the total energy, in joules, needed to raise the tem-
perature from 100 to 1000 K. Also determine the average specific heat 
over this temperature range. Use the trapezoidal rule, and reduce the 
segment size, starting with 100 K, until the results remain essentially 
unchanged with further reduction.

	 8.10.	� The pressure p on a 10 m high structure due to the wind is given by the 
expression

	 p x
x
x( ) =

+
150
1 e

			�   where x is measured in meters from the bottom of the structure and 
the pressure is in N/m2. If the structure is 2 m wide, the total force due 
to wind is given by the integral
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			�   Compute this integral as accurately as possible by the trapezoidal rule. 
Also, use the quad function in MATLAB and compare the result with 
that obtained earlier.

	 8.11.	 Consider the Gaussian error function erf z defined in Example 8.3.
			   Write a script-m file to do the following:
			   a.	� Calculate the integral using the trapezoidal rule with 20 sub-

divisions of the integration domain. You may use the available 
function-m file for the trapezoidal rule.

			   b.	� Vary z from 1 to 2. Use a For . . . End loop to calculate the integral 
with z = 1, 1.1, 1.2, . . .,  2.0.

			   c.	 Output the values of the integral for z = 1.0 and 2.0.
			   d.	� Using the values of the integral calculated in Part b, plot the inte-

gral versus z.
	 8.12.	� Consider the expression for blackbody radiation given by Equation 

4.62. The integral of this expression over all wavelengths, that is, 
∫
∞
0 Eb,λ λd , gives the total energy radiated by a blackbody per unit area 

and time. Using Simpson’s rule, compute this integral at T = 1000 K 
as accurately as possible. The analytical result is given in the literature 
as σT4, where σ is known as the Stefan-Boltzmann constant and has a 
value of 5.67 × 10−8 W/m2 K4. Compare your numerical result with the 
analytical value at 1000 K.

	 8.13.	� Using Simpson’s rule, repeat the problem given in Example 8.1, and 
compare the results obtained with those given in the example. Discuss 
the observed differences between the trapezoidal and Simpson’s rules 
for this problem.

	 8.14.	� Using Simpson’s three-eighths rule, compute the total momentum 
flow in the problem outlined in Example 8.2. The momentum flow is 
given by the integral ∫o

R U x x xρ π[ ( )] ,22 d  where ρ is the fluid density, 
given as 1 kg/m3 for the fluid considered. Also, calculate the integral 
using the quad function and compare the result with that obtained 
earlier.
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	 8.15.	� The RMS value of an electric current I(t), where I varies periodically 
with time t, is given by the expression

	 I
t

I t

t

RMS
c

d
c

= ∫ ⋅
1 2

0

			�   where tc is the time period for one cycle in the variation of I(t). If I(t) 
is given as 5e−t sin 4πt, with tc = 0.5 s, compute the RMS value, using 
Simpson’s rule.

	 8.16.	� The force F(x) exerted per centimeter on a vertical plate immersed in 
flowing water is given by the expression

	 F(x) = 1.5x3e−x

			�   where x is measured from the top of the plate and F(x) is in N/cm. If 
the plate is 10 cm high, the total force FT, in Newtons, on the plate is 
given by

	 F F x xT d= ∫ ( )

0

10

			�   Employing Romberg integration, compute FT to a convergence crite-
rion of 10−4.

	 8.17.	 For the preceding problem, write a script-m file to do the following:
			   a.	� Calculate the integral using the trapezoidal rule with 1, 2, 4, 8, 16, 

32, 64, 128, and 256 subdivisions of the integration domain, in 
sequence. You may use the available function-m file for the trap-
ezoidal rule.

			   b.	 Print the results for the nine cases.
			   c.	 Richardson extrapolation gives

	 S h
T h T h

( )
( ) ( )

=
−4 2
3

				�    where T(h) is the integral from the trapezoidal rule for step size h 
and T(2h) that for step size 2h and S is the result from Simpson’s 
rule. Using this equation and results from Part a, calculate the 
Simpson’s rule results for the different subdivisions considered.

			   d.	 Print the results obtained.
			   e.	� From the results, how many subdivisions are satisfactory for the 

trapezoidal and Simpson’s rules?
	 8.18.	� The meniscus of a liquid film supported by surface tension can often 

be represented as

	 h x A a x( ) = −e
2 2

			�   where h(x) is the height as a function of horizontal distance x and A 
and a are constants. The total volume of liquid supported by surface 
tension is then given by the integral W h x xL≡0 ( ) ,d  where W is the width 
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of the meniscus and L is its length. If W, L, h, and x are all in centime-
ters, compute this volume for A = 0.8, a = 2.0, W = 1, and L = 1 cm, 
using Romberg integration.

	 8.19.	� Calculate the integral in the preceding problem using Simpson’s rule. 
Also use the quad command in MATLAB to get the integral and com-
pare the results. Do you expect the two-point Gauss–Legendre method 
to give accurate results for this problem? Explain your answer.

	 8.20.	� The velocity v(t) of a moving particle is given as v t t( ) ( )/= − −5 1 10e . 
Using Romberg integration, compute the total distance S traveled by 
the particle from t = 10 s to t = 20 s. Note that the distance traveled 
between t = t1 and t = t2 is simply given by the integral ≡t

t
v t t

1

2 ( )d .
	 8.21.	� We wish to evaluate the integral ∫0

6 2π sin dx  by means of Romberg 
integration. Are any difficulties encountered in the application of 
Romberg integration to this problem? If so, suggest methods to over-
come them.

	 8.22.	� Using Romberg integration, repeat the problem given in Example 8.2. 
Compare the results obtained with those given in the example, and 
comment on the numerical accuracy and the computational effort 
involved in the two methods used for this problem.

	 8.23.	� The velocity v of a moving body is measured at several time intervals 
t and is tabulated as follows:

t (s) 0 1 2 3 5 7 8 10
v (m/s) 10 11.5 14.8 21.1 47.5 100.3 139.6 250.0

			�   Using this uneven distribution of data points, compute the distance 
traveled x as a function of time t, and find the total distance traveled 
by the body in 10 s.

	 8.24.	� The pressure p in a gas being compressed by a moving piston is mea-
sured at various positions x of the piston, where x is measured from 
the starting position of the piston. The data are tabulated as follows:

x (m) 0 0.1 0.2 0.4 0.5 0.8 0.9 1.0
p (N/m2) 4.0 4.23 4.53 5.34 5.88 8.03 8.96 10.0

			�   The total work done over this distance of 1 m by the piston is given 
by the integral A p x x≡0

1 ( ) ,d  where A is the cross-sectional area of the 
piston. Compute this integral, taking A = 0.5 m2.

	 8.25.	� The fluid velocity V is measured at several radial locations r for flow 
in a circular pipe of radius 1 cm. The velocities in cm/s are tabulated 
as follows:

r (cm) 0 0.2 0.5 0.6 0.8 0.9 1.0
V (cm/s) 1.0 0.96 0.75 0.64 0.36 0.19 0.0

			�   The volume flow in the pipe is given by the integral ∫0 2RV r r r( ) ,π d  where 
R is the radius of the pipe. Using the data given, compute this integral.

	 8.26.	� The turbulent flow in a pipe of diameter 0.2 m is given by the velocity 
distribution

	 V U
r
R

= −
⎛
⎝⎜

⎞
⎠⎟

1
1 6
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			�   where U is the velocity at the axis, r is the radial distance from the 
axis, and R is the radius of the pipe. Using the four-point Gauss–
Legendre integration formula, compute the volume flow rate in the 
pipe. Take U = 2 m/s. Verify the result obtained by using the quad 
function. Also, see if an analytical result can be obtained by using 
symbolic algebra in MATLAB.

	 8.27.	� Using the two-point, as well as the four-point, Gauss–Legendre inte-
gration scheme, solve Problem 8.18. Then compare the results obtained 
and the computational effort involved for the two methods, Romberg 
integration and Gauss quadrature, considered for this problem.

	 8.28.	� Using the trapezoidal rule, compute the value of the improper integral

	
7 5

1
0

. dx

x x+( )

∞

∫
			   as accurately as possible.
	 8.29.	 Using Simpson’s rule, compute the improper integral

	
2

1 2

0

d
e

x
xx+ +−

∞

∫
			   as accurately as possible.
	 8.30.	 Using any convenient integration scheme, determine the integral

	
d

e e
x

x x+ −

∞

∫
0

			�   and compare the numerical value obtained with the analytical result 
of π/4.

	 8.31.	� An integral commonly encountered in the estimation of the moisture 
lost at the surface of a wet body, such as paper or cloth, is of the form 
∫ −
0
1 1 4x xd , which is singular at x = 0. Compute this integral by varying 

the lower limit, starting with 0.1, and then reducing it to values as small as 
needed to make the neglected area under the curve negligible. Compare 
the numerical result obtained with the analytical value obtained by 
using mathematics as well as symbolic algebra in MATLAB.

	 8.32.	 Determine the integral

	
5 1 2

0 2

0

1
( )

.

+
∫

x
x

xd

			�   which arises in a mass transfer calculation for a chemical engineering 
process. Employ any suitable method.

	 8.33.	� The work done W by a force F(x, y) in a two-dimensional dynamics 
problem is given by the integral

	 W x xy xy y y x= − + +( )∫∫ 2 2 3

0

2

0

1

2 3 d d
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			�   Using the trapezoidal rule as outlined in Equations 8.86 and 8.87, cal-
culate this integral.

	 8.34.	 The area A enclosed by a curve on a plane is given by the integral

	 A x y x y

y

y

= +( )∫∫ 2 2

2

0

2

d d

			   Using the trapezoidal rule, compute this integral.
	 8.35.	� Calculate the integral ≡0

1 e dx x  by using four important methods for 
numerical integration, namely, the trapezoidal rule, Simpson’s one-
third rule, Romberg integration, and Gauss quadrature, as well as the 
quad function. Compare the results obtained and the computational 
efforts involved in all of these methods. Comment on the conclusions 
that may be drawn from such a comparison.
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9 Numerical Solution 
of Ordinary Differential 
Equations

9.1  INTRODUCTION

Ordinary differential equations, or ODEs, which are equations that consist of func-
tions of a single independent variable and their derivatives, arise in many diverse 
engineering problems. Several physical laws, such as those concerned with the 
transport of mass, momentum, and energy, are expressed in terms of differential 
equations. In many cases, only one independent variable, such as time or distance, 
exists in the problem, because of the nature of the problem or because of simplifica-
tions and approximations made with respect to the other variables. Also, in a few 
circumstances, the functional dependence on two or more independent variables 
can be expressed, by suitable transformations, in terms of a single variable. 
Therefore, many problems of engineering interest are described by ODEs. These 
equations arise, for instance, in heat and mass transfer, dynamics of particles, vibra-
tions of systems, electrical circuitry, and chemical kinetics. Although analytical 
methods may be employed for the solution of some ODEs, numerical techniques are 
generally needed for most of the equations that arise in engineering applications.

A general ODE may be written in terms of the independent variable x and the 
dependent function y(x) as
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(9.1)

where the highest derivative is of order n. Then the equation is known as an nth-
order ODE. The highest-order derivative is often separated, to obtain the preceding 
equation as
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(9.2)

A function y(x) that satisfies this equation is said to be a solution of the equation. 
There may be many functions y(x) that satisfy a given differential equation. To obtain 
a unique solution, which is obviously needed in a physical problem, n conditions on 
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y(x) and/or on its derivatives must be given at specified values of x. These conditions 
must be independent, that is, one condition may not be derived from a combination 
of the others.

9.1.1  Initial and Boundary Value Problems

If all of the n conditions are specified at the same value of x, say, x = x1, then the 
problem represented by the ODE and the given conditions is termed an initial-value 
problem. If the conditions are specified at more than one value of the independent 
variable x, the problem is termed as boundary-value problem (BVP). In the former 
case, there is a definite starting point, and one can obtain the solution by varying x in 
order to move outward from this starting point. An example of an initial-value 
problem was given by Equation 1.1, which is of the form dy/dx = Ay + B, where A and 
B are constants, and by the initial condition y = y0 at x = x0. This equation governs, 
for instance, the temperature of a small, heated metal sphere being cooled by a 
stream of cold air and the charge in the capacitor which forms part of the electrical 
circuit shown in Figure 1.2. Boundary value problems (BVPs) are more involved, 
since conditions specified at different values of x are to be satisfied. Because at least 
two conditions are needed for specification at different x values, the ODE must be at 
least of second order for a BVP. Several of the methods employed for BVPs are based 
on those for initial-value problems, often employing the root-solving procedures of 
Chapter 5 to satisfy the given boundary conditions.

9.1.2  Reduction of Higher-Order Equations to First-Order Equations

The nth-order equation, given by Equation 9.2, can be reduced to a system of n 
first-order equations by defining (n–1) new variables Yi, where i = 1, 2, . . ., (n–1), as 
follows:
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Then, the given ODE may be written as the following n first-order equations:
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As an example of the above procedure, consider the following third-order, 
nonlinear, equation that governs the flow over a two-dimensional wedge:
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(9.5)

where x is the dimensionless distance from the wedge surface, f is the nondimen-
sional stream function, which is related to the velocity field, and β is a constant 
that gives the wedge angle βπ in radians. Figure 9.1 gives a graphical represen
tation of this physical problem. Equation 9.5, which is typical of several fluid flow 
circumstances encountered in aeronautical, chemical, and mechanical engineer-
ing, may be written as three first-order equations by defining two variables, Ft 
and F2, as
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FIGURE 9.1  Graphical representation of the physical problem governed by Equation 9.5. 
(a) Sketch of the flow over a two-dimensional wedge; (b) qualitative sketch of the variation of 
the functions f and f ′ with x.
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to yield
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The velocity component parallel to the wedge surfaces is given by F1 = df/dx. 
Figure 9.1b shows, qualitatively, the distributions of f and F1. This problem is consid-
ered again in greater detail later. Therefore, a given nth-order ODE can generally be 
reduced to a system of n first-order equations and we can focus our attention on the 
solution of first-order equations.

A first-order ODE may be written in the form

	

d
d
y
x

F x y= ( ),
	

(9.8)

The methods used for solving a system of first-order equations are based on those for 
a single equation, and, since most higher-order equations can generally be reduced 
to a system of first-order equations, most of the available methods are directed at 
solving a single first-order equation, given by Equation 9.8. In many problems of 
engineering interest, the differential equations obtained are nonlinear, with the 
dependent variable and its derivatives appearing as nonlinear functions in the equa-
tion. Equation 9.5 is an example of a nonlinear ODE. However, if the equation can 
be written in the form given by Equation 9.2, the solution procedure is essentially the 
same for linear and nonlinear equations. Still, nonlinear problems generally involve 
a greater computational effort and, in BVPs, may lead to convergence difficulties. 
For linear equations, one can often use the superposition of solutions to simplify the 
computational scheme. Linear, homogeneous, BVPs  arise  in some engineering 
applications, such as the natural vibration of systems. These situations lead to 
eigenvalue problems which often require special solution techniques.

In view of the above discussion, ODEs may be classified as first-order or higher-
order, single equation or system of equations, initial-value or boundary-value, linear 
or nonlinear, and homogeneous or inhomogeneous. Although there are often large 
differences in the analytical solution of these different types of equations, the appli-
cable numerical procedures are quite similar. However, the classification of the prob-
lem as initial-value or boundary-value is important, since different techniques for 
solving the equation or for satisfying the boundary conditions are generally needed. 
The solution of a single first-order equation is particularly important since it forms 
the basis for solving other types of equations.

Analytical solutions of ODEs may be obtained in a few simple cases, particularly 
for linear equations. As discussed in Chapter 1, analytical results, whenever available, 
are useful in the validation and testing of the numerical scheme, which may be first 
employed for the simple problem whose analytical solution is known. Once the 
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procedure has been tested for correctness and accuracy, one may proceed to the 
solution of more involved problems that cannot be solved analytically. If no relevant 
analytical results are available, one considers the numerical results obtained in terms 
of the physical or basic nature of the problem to determine whether the results follow 
expected trends. In several engineering problems, some experimental data may be 
available on the problem being solved numerically and may be employed for the 
validation of the method and the numerical results.

9.1.3  Solution Methods

Several methods are available for the solution of ODEs. Although each method has 
its particular advantages over other methods, and also certain disadvantages, many 
numerical methods are generally applicable to a given problem, and the choice of the 
method frequently becomes a matter of personal preference. Generally, one solves 
higher-order equations by reducing them to a system of first-order equations, as 
outlined above. BVPs are often solved by shooting methods, which are based on the 
methods applicable for initial-value problems. Consider, for example, the problem 
shown in Figure 9.1 and governed by Equation 9.5. This is a BVP, with the boundary 
conditions given as follows:
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Therefore, the conditions are specified at two values of the independent variable x. 
If F2, or d2f/dx2, is given at x = 0 instead of the third condition, an initial-value prob-
lem will be obtained. Therefore, F2 at x = 0 may be guessed, the equation solved as an 
initial-value problem, and a correction scheme employed to iteratively vary the 
guessed value of F2 until the third condition in Equation 9.9 is satisfied to a desired 
tolerance level. Such an approach is known as a shooting method and is frequently 
employed. Therefore, much of the discussion in this chapter is directed at the first-order 
initial-value problem, followed by a consideration of other problems and techniques, 
particularly the finite difference methods that can be used to solve BVPs directly.

There are mainly two types of methods available for solving the first-order 
initial-value problem given by Equation 9.8. In the first case, the desired solution at 
a given value of x is obtained in terms of the function F(x, y) evaluated at various x 
values between x and x–Δx, where Δx is the chosen increment in x. The values for 
x < x–Δx are not needed, and the methods are, therefore, self-starting, since only the 
initial condition is needed to obtain the solution at the next step, x = Δx. Euler’s 
method and the Runge–Kutta methods fall in this category. The methods that consti-
tute the second category require information at values of x less than x–Δx and are not 
self-starting. These are known as multistep methods and require other methods to 
yield the solution for the first few steps beyond the initial condition. Included in this 
category are Adams multistep formulas and the predictor–corrector methods, such 
as Hamming’s and Milne’s methods. The multistep methods are among the most 
efficient numerical techniques available for solving ODEs.
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This chapter discusses various methods that may be employed for solving 
first-order initial-value problems, outlining the important advantages and limitations 
of each method. The solution of a system of ODEs is considered next. The solution 
of BVPs is considered in terms of shooting methods, using the techniques for 
initial-value problems, and in terms of finite difference methods. The techniques 
applicable for eigenvalue problems are also discussed.

9.2  EULER’S METHOD

Let us consider the solution of the first-order ODE

	

d
d
y
x

F x y= ( ),
	

(9.8)

with the initial condition

	
y x y0 0( ) = 	 (9.10)

where y0 is the value of y(x) at a given value of the independent variable, x = x0. 
A numerical solution of this differential equation involves obtaining the numerical 
values of the function y(x) at discrete values of x, termed node points, for x > x0. If 
Δx represents a uniform step size, that is, a constant difference between successive 
values of x at which the numerical solution is to be obtained, the node points xi 
are defined by

	 x x x ii = + =0 iΔ , where 0,1,2,… 	 (9.11)

The numerical values of the solution at these points may be denoted by y0, y1, . . ., 
yn, . . . . Therefore, the numerical scheme must provide a means of evaluating yi+1 
from the given or computed solution at the preceding grid points. If interest lies in 
determining the solution for x < x0, instead of x > x0, xi may be taken as xi = x0 – iΔx, 
or a simple transformation of the independent variable may be employed to yield a 
new variable that increases as x decreases. Therefore, we shall consider only the case 
of increasing x here.

9.2.1  �Computational Formula and Physical Interpretation 
of the Method

Euler’s method is one of the simplest methods available for solving ODEs. However, 
it is very seldom used since several more efficient methods are available. The main 
reason for studying this method is that it is simple and allows a consideration of 
many of the basic features of the numerical solution of ODEs without the additional 
complexity of other methods. The computational formula for solving Equation 9.8 by 
Euler’s method is

	 y y x F x y ii i i i+ = + Δ ( ) =1 0 1 2    with , , , ,… 	 (9.12)
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Therefore, the solution can be obtained for increasing x, starting with x = x0. 
This implies that the method is self-starting. Figure 9.2 shows the geometric 
interpretation of Euler’s method. The exact solution is denoted by y(x), and a 
qualitative comparison between the computed results and the exact solution is 
shown. The tangent to the curve at x = xi has a slope of F(xi, yi) and approximates 
the true curve for xi ≤ x ≤ xi+1. At the initial point, x = x0, the line tangent to the 
graph of y(x), as shown, approximates the numerical solution for 0 < x < Δx. As x 
increases, the numerical results increasingly deviate from the exact solution, due to 
accumulation of error.

There are several other ways of interpreting Euler’s method. If the function y(x) is 
assumed to be analytic near xi, it may be expanded in a Taylor series, using Equation 
4.2, as follows:
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FIGURE 9.2  Graphical interpretation of Euler’s method. (a) Numerical solution and error 
after the first step; (b) accumulation of error with increasing independent variable x.
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Euler’s method is obtained if the last term, which then becomes the TE for this com-
putational step, is dropped. Therefore, this formulation for deriving Euler’s method 
allows a determination of the error, as discussed in detail later in this section.

We may also use numerical differentiation, with a forward difference approxima-
tion for the derivative, to represent Equation 9.8 as
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This equation also gives the formula for Euler’s method. Similarly, numerical inte-
gration may be applied to the given differential equation to give
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Therefore, the change in y is represented by the area under the F(x, y) curve. One can 
obtain an approximation to the integral by taking F(x, y) as constant over the inter-
val. This is the rectangular rule for numerical integration, as discussed in the preced-
ing chapter. Thus,
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which gives

	
y y x F x yi i i i+ = + ( )1 Δ  ,

	 (9.12)

Figure 9.3 shows a few steps of this numerical integration to obtain the function y(x).
Both the Taylor-series formulation and the numerical integration procedure can 

be employed to generate more accurate methods. The former leads to single-step 
methods such as the Runge–Kutta formulas, and the latter to multistep methods, 
particularly the predictor–corrector methods. Euler’s method does not yield a high 
level of accuracy in the solution and is, therefore, rarely used. However, because the 
method is so simple, it is used in some engineering applications to obtain an initial 
estimate of the physical variables, by solving the governing differential equations 
with a relatively small step size Δx. The method also serves to illustrate the basic 
considerations that arise in the numerical solution of ODEs.

9.2.2  Solution of a System of Equations

Euler’s method may easily be extended to yield a solution of a system of first-order 
equations. Consider the following system of three equations:
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where Y1, Y2, and Y3 are three dependent variables whose values are given at x = x0. 
We obtain the numerical solution of these equations from Euler’s method by 
employing the computational formulas
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FIGURE 9.3  Sketch of a few steps in the numerical integration of the differential equation 
by Euler’s method to yield the numerical solution y(x).
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Thus, we obtain the numerical solution by proceeding in the direction of increasing x, 
starting with the initial conditions at x = x0, and successively calculating the three 
independent variables Y1, Y2, and Y3 at each step.

9.2.3  Errors, Convergence, and Stability

It is important to examine the errors associated with the numerical solution of a 
differential equation in order to determine the accuracy of the results obtained. As 
discussed in Chapter 2, several types of errors arise in numerical computation. 
Among the most important of these are the round-off and TEs. The round-off error 
arises due to the retention of a finite number of significant figures by the computer. 
The round-off error is, therefore, a function of the computer and may be reduced by 
the use of double precision in the computation. The TE arises due to the approxima-
tion of a function by a finite number of terms in the infinite series that represents the 
function. The series is generally truncated after a few terms to develop the scheme 
for the numerical solution of the differential equation. Therefore, the dropping of the 
remaining terms leads to the TE. A very important aspect in the error analysis of 
numerical methods is the growth or accumulation of errors as computation progresses, 
since this consideration is related to the stability of the scheme, as discussed below.

To find the TE in Euler’s method, let us assume that the exact solution to the 
differential equation, y(xi), is known at xi and is employed in Equation 9.12 to compute 
the solution at xi+1. Then

	
y y x x F x y xi i i i+ = ( ) + ( )⎡⎣ ⎤⎦1 Δ  ,

	
(9.18)

If the exact solution is analytic near xi, we may represent it by a Taylor series as 
follows:
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From Equations 9.18 and 9.19,
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since ( ) [ , ( )].d /d  y x F x y xx i ii
=  Here, y(xi + Δx)–yi+i is the TE from xi to xi+1, starting 

with the exact solution at xi. The leading term of the error is of the order of (Δx)2 and 
may be denoted as O[(Δx)2].

Equation 9.20 gives the TE per step in Euler’s formula. However, this is not the 
total error in the numerical solution at xi+1, since the exact solution y(xi) is not known 
at xi, except for the first step where the initial condition is given as exact. The value 
of yi obtained by Euler’s method contains the error accumulated in previous steps. 
The total error at a given value of xi will be the product of the error per step and the 
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number of steps. Since the number of steps is xi+1/Δx, the total error is proportional 
to Δx and may, therefore, be denoted as O(Δx) for Euler’s method. For a detailed deri-
vation of the total error, see Hornbeck (1982). Because the total error is of the first 
order in Δx, Euler’s method is a first-order method.

In the above discussion, we have not considered the round-off error, which is 
inevitably present in any numerical solution. We can reduce the TE by making the 
step size Δx smaller. As illustrated above, this error decreases linearly with Δx. 
However, a reduction in Δx also results in an increase in the number of steps to 
obtain the solution over a given range in x. This results in an increase in the computing 
time and the round-off error, as shown qualitatively in Figure 9.4. An optimum value 
of Δx at which the error is minimum is, therefore, expected. Because of the round-off 
error, the numerical solution will always differ from the exact solution of the 
differential equation. However, neglecting the round-off error, if the numerical solu-
tion approaches the exact solution, as the step size Δx approaches zero, the numerical 
method applied to a given differential equation is said to be convergent. The 
numerical techniques discussed in this chapter are convergent when applied to most 
differential equations, and, therefore, the convergence of the scheme is generally 
assumed. This definition of convergence is different from that employed in earlier 
chapters to indicate a negligible change in the solution from one step to the next 
during an iterative computational scheme. To distinguish between these two 
definitions, we shall refer to an iterative process as being iteratively convergent.

A very important consideration in the numerical solution of differential equations 
is that of stability of the numerical method. Although several definitions of stability 
are used in the literature, the most commonly employed definition simply considers 
a numerical method to be unstable if it yields an unbounded solution when the exact 
solution is bounded. Instability arises due to the amplification of the error, and, under 

Er
ro

r

Total error Round-off
error

Truncation error

Number of steps, N∝
1

Δ x

FIGURE 9.4  Qualitative representation of the variation of the truncation, round-off, and 
total errors, in the numerical solution of an ODE, with the total number of steps N, which 
varies inversely as the step size Δx.
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certain conditions, an unbounded growth may arise. The stability of a numerical 
scheme depends on both the method and the differential equation. For instance, as 
discussed in detail by Ferziger (1998), if Euler’s method is applied to the differential 
equation dy/dx = – αy, where α is a positive constant, the scheme is conditionally 
stable. If |1–αΔx| > 1, Euler’s method gives rise to an increasing solution, whereas a 
decaying solution is given by analysis. Therefore, the scheme is stable only for a 
certain range of values of α Δx. Oscillations that increase in amplitude with increasing 
x are observed, indicating the presence of instability (see Section 2.3.4). Numerical 
schemes, which are stable for any value of the step size and other governing para
meters, are said to be unconditionally stable. Similarly, there are unconditionally 
unstable schemes that are unstable for all values. However, the computational scheme 
can be analyzed in only a few cases to determine its stability characteristics. A com-
mon approach employed in practice is to obtain the numerical solutions with two 
significantly different step sizes. If the two results are substantially different, 
numerical instability may be assumed to be present. If the two solutions are close to 
each other, then the scheme is probably stable.

In the numerical solution of a differential equation, it is important to consider the 
questions of accuracy, convergence, and stability, as outlined above. The exact solution 
is generally available only for a few simple cases. However, a comparison between the 
numerical solution for these cases and the exact solution will yield important information 
on the accuracy and correctness of the numerical results. It is also important to vary 
the step size Δx after the corresponding numerical solution has been obtained. By 
varying the step size, one can often determine whether the scheme is convergent and 
stable. The numerical results should be essentially independent of the step size. This 
process of grid refinement to ensure that the results do not depend on the grid and on 
other numerical parameters chosen by the user is often known as verification (Roache, 
2010). Similarly, comparison of the numerical results obtained with experimental data, 
analytical results and other available results, as well as consideration of the basic nature 
of the problem, to ensure that the mathematical and numerical model satisfactorily 
represents the process or system is known as validation. Several of these considerations 
were also discussed earlier in Chapter 2. The following example illustrates the use of 
Euler’s method in solving a first-order initial-value problem.

Example 9.1

An electrical circuit consists of an inductance L, a resistance R, and an emf 
source E, as shown in Figure 9.5. Initially, the switch is open and there is no 
current in the circuit. At time t = 0, the switch is closed and the current builds 
up. After 0.5 s, the switch is again opened and the current decreases with time 
to zero. Using Euler’s method, solve this problem to obtain the variation of the 
current with time for (a) E = 20 V, L = 5 henries, and R = 10 Ω, and (b) E = 20 V, 
L = 10 henries, and R = 5 Ω.

SOLUTION

We obtain the differential equation that governs the current I for the first part of 
the problem, when the switch is closed, by adding the voltage changes around 
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the circuit and setting the sum equal to zero. The voltage across the inductance 
is L(dI/dt), and that across the resistance is RI. For the analysis of such electrical 
circuits, see, for instance, Halliday et al. (2010) and Ogata (2003). Thus,

	
L

I
t

RI E
d
d

+ − = 0
	

(9.21)
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where t is the time, in seconds, elapsed following the closing of the switch. We 
obtain the equation that applies for the second phase when the switch is reopened 
by setting E = 0:
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The initial condition for this equation is the current I1 at t = 0.5, where I1 is obtained 
from the numerical solution of Equation 9.22.

Therefore, the problem involves the solution of two first-order ODEs. We must 
first solve Equation 9.22 to obtain the current I from t = 0 to t = 0.5 s. Then we 
solve Equation 9.23 to obtain the current until it becomes essentially zero. The 
problem is a simple one and can be solved analytically. Here, we will consider 
its solution by the simple one-step, self-starting, Euler’s method and compare the 
numerical results with the analytical solution.

For the two sets of data given for this problem, the equations are obtained as
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FIGURE 9.5  Electrical circuit considered in Example 9.1.
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and
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The computational formula for Euler’s method is given by

	 I I tF t I ii i i i+ = + =1 0Δ ( , ) , , ,...with 1 2 	 (9.26)

where the subscript i represents the computed values after the ith step, and 
subscript (i + 1) those after the (i + l)th step. Here, F represents the function on the 
right-hand side of the equations. In the present case, F depends only on I, which 
in turn is a function of time t. Also, t = i Δt, where Δt is the time step and I0 is the 
current at t = 0.

Appendix B.24 gives the computer programs in MATLAB® for this problem. 
Two algorithms are shown, the first as a function m-file and the other as a script 
m-file. In the former case, the function F, taken as f in the program, is given as 
a string, along with the beginning and end points, a and b, of the time range to 
be considered. The number of steps, n, is also given, so that the step size can be 
computed. The initial condition y0 is also specified. Then, Euler’s method is used 
to yield the values of the dependent variable y at various values of the independent 
variable t. In order to use this function file for the given problem, the two functions 
F(t, I) are defined as

function z = fe1(x,y)
z = 4–2 * y;
end

function z = fe2(x,y)
z = -2 * y;
end

Then, the function file euler.m is employed as

s1 = euler('fe1',0,0.5,0,50);
s2 = euler('fe2',0.5,8,s1(51,2),750);
plot(s1(:,1),s1(:,2))
hold on
plot(s2(:,1),s2(:,2))

This solves the two ODEs by the Euler’s method and plots the results, discussed 
later.

The second MATLAB program solves the first ODE, followed by the second 
one, as given in the problem and as discussed in the preceding. The various 
symbols employed are defined in the program. The given parameters, E, L, 
and R, the time step, dt, and the total time for the computation are entered. 
The initial condition I(0) = 0 is employed to start the computational scheme. 
Equation 9.24a or 9.25a is solved until t = 0.5. At this point, the computed 
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value of the current is employed as the initial condition for Equation 9.24b or 
9.25b, and the computation is continued until the total time is reached. A con-
vergence criterion may also be employed to terminate the computation when I 
does not change significantly with time, as given by a convergence parameter. 
The time step dt and the convergence parameter must be varied to ensure that 
the results obtained are essentially independent of the values chosen. The time 
step was varied from 10−1 to 10−4 and a value of 10−2 was found to be adequate, 
since decreasing dt further did not significantly affect the results.

Figure 9.6 shows the numerical results obtained for the two sets of data given 
in the problem. In both cases, the current I rises sharply from zero as the switch is 
closed. The maximum value of the current is obtained at t = 0.5 s, beyond which 
the current decreases because of the reopening of the switch. A larger maximum 
value of the current will be obtained if the switch is kept closed for a longer period 
of time. The second set of parameters results in a slower increase in the current, 
following the closing of the switch, and also a slower decrease after the switch 
has been reopened, as compared to the results for the first set. This behavior is 
expected since the derivative dI/dt, in the governing equations, is smaller in the 
second case.

Equation 9.21 can be solved analytically to give
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Similarly, Equation 9.23 may be solved to give
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where t1 is the time at which the switch is reopened. The numerical results are 
found to agree quite well with the analytical solution. The current at t = 0.5 is 
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FIGURE 9.6  The computed variation of the current I with time t for the two cases consid-
ered in Example 9.1. The time step Δt is taken as 0.01 s for these results.
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obtained from Equation 9.27 for the two cases as 1.264 and 0.885 A, respectively. 
These values are close to those obtained numerically, see Figure 9.6.

Appendix C.14 shows the program in Fortran for solving the same problem, 
as that given in Appendix B.24(b). As illustrated in the examples given in earlier 
chapters, the two programs are very similar in form. The basic logic employed 
is the same. The program in MATLAB is simpler because of the several features 
that allow considerable ease in input/output, control and plotting. As mentioned 
earlier, Fortran is often more appropriate for complicated circumstances. The two 
programs also illustrate the ease with which one may switch from one programming 
language to the other.

9.3  IMPROVEMENTS IN EULER’S METHOD

9.3.1  Heun’s Method

There are several numerical schemes that are based on modifications of Euler’s 
method and that can be used for solving ODEs. One of the most important is the 
improved Euler’s method or Heun’s method. In Euler’s method, the function F(x, y), 
which represents the derivative dy/dx of the dependent variable y, is taken as constant 
over the interval Δx at the value computed at the start of the interval. However, the 
derivative usually changes as x increases over the interval, and the accuracy of the 
solution can be improved if a better approximation is used for the derivative. Using 
Heun’s method, one achieves this improvement by first calculating yi+1 from Euler’s 
method, denoting this intermediate value as yi+1

*  and then using this value to obtain 
a better approximation to the derivative. Considering the first-order initial-value 
problem of Equation 9.8, Heun’s method is given by

	
y y x F x yi i i i+ = + ( )1

* ,Δ  
	 (9.29a)
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Therefore, Euler’s method is employed twice in succession, and the average of the 
approximations to the derivative at the two ends of the interval is used to give a more 
accurate value of yi+1. Since yi+1 is unknown, the derivative at xi+1 is approximated by 
F x yi i( , )*

+ +1 1 . The method is self-starting since only the conditions at xi are needed to 
obtain yi+1.

The preceding procedure gives one of the simplest forms of the predictor–corrector 
methods, which are discussed in detail later in this chapter. Equation 9.29a is a pre-
dictor equation for the first approximation to yi+1, and Equation 9.29b is a corrector 
equation to yield an improved estimate of yi+1. Figure 9.7 shows a graphical represen-
tation of this method. The improvement in the estimate of yi+1 is seen in terms of a 
better approximation to the slope of the graph of y(x). Also shown is the integration 
of F(x, y), as given by Equation 9.15, using the trapezoidal rule to obtain yi+1.
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One can also use Equation 9.29b iteratively by substituting the value of yi+1, 
obtained after the first computation in place of yi+1

* , to obtain the next, improved, 
approximation to yi+l. A sequence of corrected values of yi+1 may thus be gener-
ated. The iterative process is terminated when the change in yi+1 from one iteration 
to the next is smaller than a prescribed convergence parameter. However, greater 
accuracy, as compared to that obtained with Euler’s method, is expected in the 
solution even if Equations 9.29a and 9.29b are used only once, without iteration.

From the Taylor-series expansion for y(x), as given by Equation 9.19, greater accuracy 
is expected in the evaluation of yi+1, if the terms of order (Δx)2 are also retained. However, 
since the second derivative d2y/dx2 is not known, it may be approximated by
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where the prime denotes the first derivative with respect to x. When this expression 
is substituted in the truncated Taylor series, using yi+

∗
1 for yi+1, which is not known, 

we obtain
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where the derivative at xi+1 has been approximated by F x yi i+ +( )1 1, *  and the interme-
diate value yi+1

*  is obtained from Equation 9.29a. Therefore, the method retains the 
second-order terms. The TE at each step is O[(Δx)3], and the total, or global, error is 
O[(Δx)2]. The method is, therefore, a second-order method. An improved accuracy is 
obtained if iteration is employed with Equation 9.29b. Also, higher-order formulas 
may be derived by retaining additional terms in the Taylor-series expansion, as done 
for the Runge–Kutta methods, which are discussed in the next section. However, to 
achieve this increased accuracy, we need a larger computational effort for the deter-
mination of the intermediate approximations to the derivative.

The improved Euler’s method may also be obtained by the application of the trap-
ezoidal integration formula to the differential equation, Equation 9.8, instead of the 
rectangular rule which yielded Euler’s method, as shown in Figure 9.7. Integrating 
the differential equation, we obtain
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Again, yi+1 in the parentheses on the right is replaced by yi+1
*  which is obtained from 

Equation 9.29a. Then, Equation 9.29b is obtained. The TE per step for the trapezoi-
dal rule was given in Chapter 8 as
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where y′″(ξ) is the third derivative of y with respect to x at a point ξ which lies 
between xi and xi+1. If y′″ is assumed to be constant over this step size, it may be 
evaluated at xi to yield an estimate of the TE per step as
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This expression for the error applies if Equation 9.30 is solved by iteration for yi+1 and 
not if the approximation given by Equation 9.29b is employed.

If the unknown yi+1 appearing on the right-hand side of Equation 9.30, is not 
approximated as yi+1

* , we cannot solve for yi+1 directly, except for extremely simple 
cases. A nonlinear algebraic equation would generally be involved, and the iterative 
methods of Chapter 5 may be employed to determine yi+1 from this equation. Such 
methods, which require the solution of a nonlinear algebraic equation to obtain the 
new value of the function y, are known as implicit. Another implicit method that can 
be derived by the application of the backward difference formula to the differential 
equation, Equation 9.8, gives

	
y y x F x yi i i i+ + +− = ( )1 1 1Δ  ,

	 (9.32)

This method, known as the implicit Euler or the backward Euler method, is first-order 
accurate.

Implicit methods involve more computation per step, as compared to the explicit 
methods discussed earlier. However, these methods generally have better numerical 
stability and are often unconditionally stable, as is the backward Euler method 
given above. In explicit methods, stability considerations may sometimes restrict 
the step size to a small value. In such cases, implicit methods may be preferable 
because of weaker restrictions on step size. However, it must be noted that the 
stability of a numerical scheme does not indicate the accuracy of the results. In fact, 
the TE in the implicit Euler method is equal in magnitude, but opposite in sign, to 
that in Euler’s method.

9.3.2  Modified Euler’s Method

We can obtain another modification of Euler’s method by employing the midpoint, 
xi + (Δx/2) in a given step for the evaluation of the derivative F(x, y). This method, 
often known as the modified Euler’s method or the improved polygon method, is 
given by
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Euler’s method is employed twice, first to obtain an approximation yi+1/2 at the mid-
point and second to evaluate yi+1 from the derivative approximated at the midpoint. 
This method is self-starting, since the computation is based on the known conditions 
at x = xi. It is second-order accurate and is also known as the second-order Runge–
Kutta method, as discussed in the next section. The geometrical interpretation of the 
method is shown in Figure 9.8, indicating the use of the midway point in determining 
yi+1. Also, compare this figure with Figure 9.2 to see the difference between this 
scheme and Euler’s method.
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Both Heun’s method and the modified Euler’s method are employed for engineering 
applications where a very high level of accuracy is not necessary and a simple compu-
tational scheme is desired. The former method is a simple form of the predictor–
corrector methods, which are discussed in greater detail later in this chapter. The latter 
method is a second-order Runge–Kutta scheme and is thus a relatively less accurate 
version of a class of methods extensively used for practical problems. More accurate 
formulas, particularly the fourth-order methods, are much more important for engi-
neering problems. The flow charts for both of these methods are shown in Figure 9.9. 
A MATLAB program for Heun’s method, without iteration, is given in Appendix B.25 
as a function m-file. It can be seen that the algorithm is quite similar to that for Euler’s 
method and can easily be used to solve ODEs. This Appendix also gives the function 
definitions for solving the equations given in Example 9.1 and a simple script file to use 
the function file to obtain the desired solution, as presented earlier for Euler’s method.

Several other modifications of Euler’s method are available in the literature. We have 
considered only self-starting methods here. Some of the modifications of Euler’s method 
are not self-starting, and one of the self-starting methods is needed to obtain the first few 
steps. Similarly, other implicit and explicit modifications of Euler’s method may be 
derived. The accuracy of these methods may be improved by Richardson’s deferred 
approach to the limit, discussed in Section 8.4.1 and also later in this chapter.

9.4  RUNGE–KUTTA METHODS

An important class of self-starting methods for the numerical solution of ODEs is 
based on retaining higher-order terms in the Taylor-series expansion of the depen-
dent variable y(x) and employing the computed values of the function F(x, y), which 
represents the derivative of y(x), at several values of x in the interval xi ≤ x ≤ xi+1. The 
resulting schemes, known as the Runge–Kutta methods, are widely used for the solu-
tion of various types of ODEs. In recent years, there has been an increase in the use 

Slope=F(xi+       , yi+½)

yi+1yi+½

Slope=F(xi , yi)

Δ x/2Δ x/2

y

yi

xi xi+1xi +
xΔ x

2

Δ x
2

FIGURE 9.8  The modified Euler’s method, also known as the improved polygon method or 
as the second-order Runge–Kutta method.
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of other methods, such as the predictor–corrector methods, which are often more 
efficient. However, the Runge–Kutta methods are usually employed to start these 
latter methods, which are not self-starting. The Runge–Kutta methods have several 
important advantages over other methods, besides being self-starting. They are easy 
to program, they have good numerical stability, and the step size can be changed 
easily to improve accuracy. However, for comparable accuracy, they often require 
more computer time than the more efficient methods. Also, the local error is not 
estimated easily. Nevertheless, the Runge–Kutta methods are probably the most 
widely used technique for solving ODEs that arise in engineering applications.

Start

Choose
Δx, ε, xmax

Initialize
xi = x0, yi = y0

Input
x0, y0, F(x, y)

Predictor
y*i+1 = yi + Δx F(xi, yi)

Corrector
yi+1 = yi + Δx [F(xi, yi) +F(xi+1, y*i+1)]

Stop

Output
print xi+1, yi+1

xi+1 = xi + Δx

Yes

Is
|yi+1 – y*i+1|

≤ ε?
xi = xi+1, yi = yi+1

Yes

No

No

Is
xi+1 ≥ xmax?

2

y*i+1 = yi+1

(a)

FIGURE 9.9  Flow charts for the solution of a first-order ODE by (a) Heun’s method with 
iteration and (b) modified Euler’s, or impoved polygon, method.
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9.4.1  Computational Formulas

Runge–Kutta formulas involve a weighted average of the derivative calculated at vari-
ous locations within a step size Δx. Let us consider the first-order ODE given by

	

d
d
y
x

F x y= ( ),
	

(9.8)

with

	
y x y0 0( ) = 	 (9.10)

If F(x, y) is evaluated at two values of x within the interval xi ≤ x ≤ xi+1, we obtain 
the second-order Runge–Kutta method, which has the same accuracy as that obtained 
by retaining terms up to order (Δx)2 in a Taylor-series expansion for y(x). If F(x, y) is 
evaluated at only one point, x = xi, we obtain the first-order Euler’s method. Similarly, 
F(x, y) is evaluated at three locations in the interval for the third-order method and 
so on. Since the locations at which the function F(x, y) is computed and the weighting 
factors to be used can be chosen in several ways, a family of formulas can be obtained 
for solving the given differential equation. The derivation of these formulas is quite 

Start

Choose Δx, ε, xmax
Initialize: xi = x0, yi = y0

Input
x0, y0, F(x, y)

Stop

Output
Print xi+1, yi+1

xi+1 = xi + Δxxi = xi+1, yi = yi+1

Yes

No Is
xi+1 ≥ xmax?

Apply modified Euler’s method
yi+½ = yi + Δx F(xi, yi)

yi+1= yi + Δx F(xi+ Δx , yi+½)
2

2

(b)

FIGURE 9.9  Continued.
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involved and is based on a comparison between the terms of the Taylor-series expan-
sion for y(x), about xi, and those of the expansion for the approximations to the change 
in the dependent variable over the given step. For instance, the second-order method 
may be expressed as follows:

	 y y C K C Ki i+ = + +1 1 1 2 2 	 (9.34a)

where

	
K x F x yi i1 = ( )Δ  ,

	 (9.34b)

	
K x F x p x y p Ki i2 1 2 1= + +( )Δ Δ ,

	 (9.34c)

Thus, the K’s approximate the change in y over the computational step.
The constants C1, C2, p1, and p2 are to be determined for an accurate evaluation of 

yi+1. As discussed in detail by Ralston (1965), Ralston and Rabinowitz (1978), and 
Carnahan et  al. (1969), one can find the relationships among these constants by 
comparing the expansions for y(x) and K2. One of the constants may be chosen 
arbitrarily. If C2 is taken as 1/2, then it is found that C1 = 1/2 and p1 = p2 = 1. This 
choice, therefore, leads to Heun’s method, given in the preceding section. If C2 is 
chosen as 1, then C1 = 0 and p1 = p2 = 1/2, resulting in the modified Euler’s method. 
Similarly, other second-order formulas may be obtained. The first-order Runge–Kutta 
method is simply Euler’s method. One derives higher-order methods similarly by 
employing Taylor’s expansions of y(x) and retaining terms up to order (Δx)3 for the 
third-order formulas and up to (Δx)4 for the fourth-order. Still higher-order formulas 
have also been developed but are rarely used because of the large amount of 
computation involved at each step, see Butcher (1964) and Shanks (1966) for details.

The third-order method obtained by Kutta is given by

	
y y

K K K
i i+ = +

+ +
1

1 2 34
6 	

(9.35a)
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(9.35c)

	
K x F x x y K Ki i3 2 12= + + −( )Δ Δ ,

	 (9.35d)

The fourth-order Runge–Kutta formulas are of the general form

	
y y C K C K C K C Ki i+ = + + + +( )1 1 1 2 2 3 3 4 4 	 (9.36)
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where the C’s are constants. Depending on the choice of the locations where the K’s 
are determined and of the appropriate parameters that arise, several fourth-order 
formulas have been developed. The most widely employed formula is the classical 
Runge–Kutta method given by
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(9.37a)

where

	
K x F x yi i1 = ( )Δ  ,
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(9.37d)

	
K x F x x y Ki i4 3= + +( )Δ Δ ,

	 (9.37e)

Therefore, four evaluations of the derivative function are made within the interval 
xi ≤ x ≤ xi+1 in order to obtain approximations to the change in y over this step, and a 
suitable weighted average is employed. The TE per step is of order (Δx)5, since terms 
up to order (Δx)4 are retained in the expansions.

Several other fourth-order formulas are available, see Carnahan et  al. (1969). 
A formula that was quite widely used in the past is the one developed by Gill (1951). 
This method minimizes the round-off error and also reduces the computer storage 
requirements in the solution of a system of equations. The formula was, therefore, 
particularly useful for small computers. It is given by
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The fourth-order Runge–Kutta method, given by Equations 9.37, continues to be 
a popular choice for the solution of ODEs. It is also frequently employed for BVPs by 
incorporating a root-solving scheme, such as the secant or the Newton–Raphson 
method, for satisfying the boundary conditions. The main attractive features of this 
method are, as mentioned earlier, high accuracy level, good stability characteristics, 
ease in programming, applicability to a wide variety of problems, self-starting 
computational scheme, and ease with which the step size may be changed to improve 
accuracy. All of these features are common to all fourth-order Runge–Kutta formulas. 
The classical method is the most widely used one mainly because it has been the 
standard method for many years and because it is available in most computer librar-
ies. In engineering applications, where a simple method that yields reasonably accu-
rate results is particularly attractive, the Runge–Kutta methods are commonly 
employed, despite the availability of more efficient methods. However, for applications 
that involve a substantial computational effort, the Runge–Kutta methods are gener-
ally used only to start the scheme, and other methods, such as the predictor–corrector 
methods, are employed after the first few steps to obtain the solution.

As briefly discussed in Chapter 3, MATLAB functions ode23 and ode45 can eas-
ily be used to solve ODEs. Both are based on Runge–Kutta methods. The function 
ode23 is a lower order method and is employed as

[tout, yout] = ode23('f',trange,y0)

where f is the function F(x, y) representing the right-hand of a first-order ODE, 
Equation 9.8, and entered as a string, trange is range of the independent variable t 
from the initial value t0 to the end point tfinal and y0 is the initial condition y = y0 
at t = t0. The output is given in terms of t values tout and corresponding values of 
the dependent variable yout. Similarly, ode45 is a higher order method for solving a 
first-order ODE and the command to use it is similar to that for ode23, given above. 
Both these methods can be used for higher order ODEs by converting these into a 
system of first-order equations, as discussed earlier. The application to higher order 
ODEs is demonstrated in an example later in the chapter. Considerable flexibility is 
available in employing these functions and other such methods are available in the 
MATLAB environment.

9.4.2  Truncation Error and Accuracy

One of the major problems with the Runge–Kutta methods is that a quantitative esti-
mate of the local TE is usually difficult to obtain. Therefore, it is often difficult to 
determine whether the step size is small enough to yield numerical results of desired 
accuracy. A common procedure is to run the computational scheme for different step 
sizes and to compare the results obtained. The step size is then chosen such that 
a  further reduction in size does not significantly affect the results. However, this 
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process is very time-consuming, and other methods for estimating the error and for 
improving the accuracy of the results have been developed.

The truncation error per step, TE, for a nth-order Runge–Kutta method may be 
written as

	
TE A x O x

n n
= ( ) + ( )⎡

⎣
⎤
⎦

+ +
Δ Δ

1 2

	
(9.39)

where A is a constant that depends on the function F(x, y) and its higher-order par-
tial derivatives. If Δx is small, the error is determined largely by the first term, and 
the bounds for A may be determined, as discussed by Ralston and Rabinowitz 
(1978). One method of estimating the TE is to obtain the two solutions yi+l and �yi+1  
corresponding to step sizes Δx and Δx/2, respectively, by integrating between the 
two x values xi and xi+1. lf Yi+1 is the exact solution, an estimate of the TE and an 
improvement in the accuracy of the numerical solution may be obtained from the 
above expression for TE, considering only the dominant term. This approach, 
known as Richardson’s extrapolation and discussed earlier in Chapter 8, gives
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which gives a more accurate approximation to the solution. Also,
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Therefore, for the fourth-order Runge–Kutta method, TE is obtained as

	
TE y yi i= −( )+ +

16
15 1 1�

	
(9.42)

One can use this estimate of the TE to adjust the step size and thus maintain the 
desired accuracy level. However, if this estimation were done at each step, the 
number of calculations performed would rise to approximately three times that for 
the Runge–Kutta method. Therefore, the error may be computed once every m 
steps, where m is chosen arbitrarily. Collatz (1966) gave another procedure for con-
trolling the error, based on the calculation of the absolute value |(K3 − K2)/(K2 − K1)| 
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from Equation 9.37 after each step. If this quantity becomes larger than a few hun-
dredths, then the error is too large and the step size should be reduced. Several 
other similar procedures have been given in the literature for limiting the error in 
Runge–Kutta methods.

Note from the preceding discussion that we can decrease the TE by reducing the 
step size Δx. However, a reduction in Δx also results in an increase in the number of 
steps needed for the integration of the equation over a given interval. This, in turn, 
increases the round-off error, which depends on the number of arithmetic operations 
performed. The total TE may be estimated as a product of the error per step and the 
number of steps. Since the latter varies inversely with the step size, the accumulated 
TE for the nth-order Runge–Kutta method is of order (Δx)n. Therefore, as Δx is 
reduced, the TE is decreased while the accumulated round-off error increases. An 
estimate for the total error due to truncation and round-off is usually difficult to 
obtain. However, if analytical results are available for some simple cases, a compari-
son between the analytical and numerical results allows one to determine the overall 
accuracy of the numerical scheme.

The stability characteristics of the Runge–Kutta methods are generally good. 
Of particular interest in any numerical scheme is its partial instability, which 
may arise even when the equation being solved is not inherently unstable and 
which is dependent largely on the step size. If ∂F(x, y)/∂y is positive, then the 
error may increase without bound as x increases. On the other hand, if it is nega-
tive, then the error remains bounded for small Δx, see Fox (1962) and Ferziger 
(1998). An important parameter is the step factor Δx ∂F/∂y, which affects the 
propagation of the error. The stability of various formulas has been considered, 
and the criteria for choosing the step factor have been given. A practical approach 
in most cases is to solve the problem for different step sizes, and, if close agree-
ment is obtained between the corresponding results, the scheme may be assumed 
to be stable.

9.4.3  System of Equations

The Runge–Kutta methods can also be employed for solving a system of first-order 
ODEs and, therefore, for solving an nth-order differential equation, since it can usu-
ally be reduced to n first-order equations, as outlined earlier.

Let us consider the two simultaneous first-order equations
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with

	 y y z z x x= = =0 0 0and at 	 (9.45)
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Then the classical fourth-order Runge–Kutta method for this problem is given by
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where

	

K x F x y z K x G x y z

K x F x
x
y

K
z

i i i i i i

i i i

1 1

2
1

2 2

= ( ) ʹ = ( )

= + +

Δ Δ

Δ
Δ

  

 

, , , ,

, , ++
ʹ⎛

⎝
⎜

⎞

⎠
⎟ ʹ = + + +

ʹ⎛

⎝
⎜

⎞

⎠
⎟

= +

K
K x G x

x
y

K
z

K

K x F x

i i i

i

1
2

1 1

3

2 2 2 2
Δ

Δ

Δ
Δ

 

 

, ,

xx
y

K
z

K
K x G x

x
y

K
z

K
i i i i i2 2 2 2 2 2

2 2
3

2 2, , , ,+ +
ʹ⎛

⎝⎜
⎞
⎠⎟

ʹ = + + +
ʹ⎛

⎝⎜
⎞
⎠

Δ
Δ

 ⎟⎟

= + + + ʹ( ) ʹ = + + + ʹ( )K x F x x y K z K K x G x x y K z Ki i i i i i4 3 3 4 3 3Δ Δ Δ Δ  , , , , 		
		  (9.46c)

The computation must be carried out in the sequence given above, since �K1  is 
needed for calculating K2, K2 for calculating �K3, and so on.

To illustrate the application of the above formulas to a higher-order ODE, let us 
consider the following equation, which governs the vibration of a mass connected to 
two boundaries through a spring and a damper:
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(9.47)

Here, m is the mass of the vibrating body, B the viscous friction coefficient of the 
damper, k the spring constant, P an external force, x the displacement of the mass, 
and t the time. The system is illustrated in Figure 9.10. We can reduce it to two 
first-order equations by defining a new variable y as
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The two first-order equations, Equations 9.48 and 9.49, may now be solved by the 
Runge–Kutta method given above.

The recursion formulas for advancing from t, to ti+ι are obtained as follows:
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Here, Δt is the step size in time t, and y represents the rate of change of the 
displacement x with time, that is, the velocity of the mass m. Note that the initial 
values of x and y are needed for starting the computation. These may be specified as 
follows:
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t x x y
x
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(9.51)
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FIGURE 9.10  A vibrating system consisting of a vibrating mass m, a spring of stiffness k, a 
damper of friction coefficient B, and an external force P.
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Similarly, we can use the method to solve third-, fourth-, or still higher-order 
equations by reducing them to a system of first-order equations. Considerations of 
error, accuracy, and stability are similar to those discussed for first-order equations, 
although these concerns become more involved for a system of equations. The 
following example illustrates the use of Runge–Kutta methods for solving ODEs.

Example 9.2

A projectile of mass m is shot vertically upward at a velocity of 100 m/s. The frictional 
force acting on the projectile due to its motion in air is given as m(AV + BV2), where 
A and B are constants and V is the velocity at any given time t. Using the fourth-
order Runge–Kutta method, compute the vertical position x and the velocity V of the 
projectile as functions of time for (a) A = 0.01 s−1, B = 0.001m−1, and (b) A = 0.1 s−1, 
B = 0.01 m−1. Solve for the vertical motion until the velocity becomes zero.

SOLUTION

The projectile is subjected to retardation due to the gravitational force of magnitude, 
mg, where g is the magnitude of the gravitational acceleration, and the frictional 
force due to the motion in air. We obtain the governing differential equation for the 
vertical displacement x by writing the force balance, from Newton’s Second Law, as
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Here, d2x/dt2 is the acceleration of the projectile, taken as positive in the verti-
cally upward direction. The gravitational force is negative since it acts downward. 
The frictional force is also negative since it acts in a direction opposite to that of 
the motion. Therefore, the equation to be solved is
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(9.53)

This equation is solved until the velocity drops to zero and the projectile 
reaches its maximum height, before starting the downward motion. The initial 
conditions for Equation 9.53 are as follows:
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Since SI units are being used, g = 9.8 m/s2. Also, x, t, and V are in m, s, and m/s, 
respectively.

The second-order equation, given above, may be broken down into two 
first-order equations as
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Then the initial conditions for starting the Runge–Kutta scheme are as follows:

	 At and 1t x V= = =0 0 00: 	 (9.55c)

Appendix B.26 presents the MATLAB script file and Appendix C.15 the 
corresponding Fortran program for this problem. The various symbols employed 
are defined in the program. The function F(x,t) = dV/dt = −g − (AV + BV2) is defined 
and input parameters are entered. The fourth-order Runge–Kutta scheme is written, 
using the formulas given in Equations 9.46. Then, in terms of the nomenclature 
used here, the recursion formulas are as follows:
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Therefore, the displacement x and the velocity V at the next time step, denoted by 
the subscript (i + 1), are obtained in terms of the values at the present time step, 
denoted by subscript i. The computation is carried out, starting with the initial 
conditions, until the velocity becomes less than or equal to zero. The exact point 
where it becomes zero may be obtained by interpolation.

Figures 9.11 and 9.12 show the numerical results obtained for the two sets of 
input data given. The time step Δt can be taken as larger in the first case, since the 
variation with time is slower due to the smaller frictional force. However, Δt must 
be varied to ensure that the numerical results are not significantly altered if Δt is 
made smaller. For the two cases shown, Δt values of 0.05 s and 0.01 s are taken, 
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FIGURE 9.11  Computed variation of the velocity V and the displacement x with time t for 
Example 9.2, for A = 0.01 s−1, B = 0.001 m−1, and Δt = 0.05 s.
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respectively, and found to be satisfactory, since a further reduction in Δt resulted in 
a negligible change in the results. As expected, the maximum height, or displace-
ment, is found to be larger when A and B are smaller. Also, the time taken to reach 
this height is larger. The problem may easily be solved analytically for A = B = 0 
(that is, no frictional drag) to obtain the maximum height as 510.2 m, and the time 
taken to reach it as 10.2 s. These values compare well with the results shown.

The program is quite simple because of the self-starting feature of the method. 
The program, written for the present initial-value problem, may be used to obtain 
results for arbitrary values of the input parameters. It may be modified to solve 
other second-order initial-value problems. The use of this method for BVPs 
requires a correction scheme, as discussed later in this chapter.

As discussed earlier, MATLAB functions ode23 and ode45 can be easily 
employed to solve this problem. The two dependent variables are x and V. A vec-
tor y is used with these two as components to specify the two ODEs and the initial 
conditions. The commands used are

y0 = [0;100];
[t,v] = ode45('rhs',10,y0);
n = length(t);
for i = 1:n
	 if v(i,2) < 0
	 	 break
	 else
	 	 t1(i) = t(i);v1(i,1) = v(i,1);v1(i,2) = v(i,2);
end
end
plot(t1,v1(:,1),'-',t1,v1(:,2))

where y0 represents the initial value of the dependent vector y, t is the independent 
variable and v is the solution matrix. Then, the first column of v represents x and 
the second column represents V. The results are plotted for x and V versus t. The 
function rhs.m is given as

function dydt = rhs(t,y)
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FIGURE 9.12  Computed results for A = 0.1 s−1 and B = 0.01 m−1 in Example 9.2, with 
Δt = 0.01s.
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a = 0.01;b = 0.001;
dydt = [y(2); -9.8 -(a*y(2) + b*y(2)^2)];
end

where the constants in the problem A and B are given as a and b and the right-hand 
sides of Equation 9.55 are given. The constants a and b may be changed for 
the second part of the problem. Additional commands are needed to stop the 
computation when V becomes negative. The results obtained are essentially 
identical to those obtained earlier.

9.5  MULTISTEP METHODS

In the methods considered so far for the solution of Equation 9.8, we computed the 
value of yi+l by using the known conditions at xi and the approximations to the 
derivative at various other points in the interval xi ≤ x ≤ xi+1. However, a large number 
of function evaluations are needed for each step, where this number is equal to the 
order of the method. Therefore, interest lies in methods that give comparable accu-
racy with a smaller number of function evaluations per step. The multistep methods 
form an important class of efficient methods that use the information at mesh points 
preceding xi, along with that at xi, to yield yi+1. Several multistep formulas have been 
derived. Formulas in which yi+i is given explicitly in terms of known values of the 
dependent variable y and of the function F(x, y) at xi, xi-1, and so on, are termed open 
formulas. Similarly, finite difference formulas that include unknown values of y and 
F usually require iteration to solve for yi+1. Such formulas are termed implicit or 
closed.

If the formula requires the values of F at mesh points preceding xi, the method is 
not self-starting, since at the initial condition, x = x0, the only known condition is the 
given value y0 of the variable y, from which the function F(x, y) may be evaluated at 
this point. The conditions prior to xi are not known. Therefore, a self-starting method, 
such as a Runge–Kutta formula with the same order of accuracy as that of the 
multistep formula under consideration, must be employed in the first few steps, until 
the information needed to proceed with the given multistep method is obtained.

9.5.1  Adams Multistep Methods

The multistep formulas may easily be derived from the Taylor-series expansion of 
the dependent variable y, written as
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where the primes denote differentiation with respect to x. We obtain this expansion 
from Equation 9.19 by noting that
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and so on. If the series in Equation 9.57 is truncated after the second term, Euler’s 
method is obtained. This may be considered as the first open multistep formula. We 
can generate a series of higher-order formulas from Equation 9.57 by replacing the 
derivatives by their finite difference approximations from Chapter 4. If backward 
differences are used, the formulas obtained are known as Adams–Bashforth or 
Adams open formulas. Therefore, if Fi� is approximated as
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the equation for yi+l becomes
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(9.59)

Therefore, a second-order formula, known as the second open Adams formula, 
is obtained. If F ′′ is taken as constant over the interval xi ≤ x ≤ xi+1, the TE per step 
in Equation 9.58 may be approximated as ΔxFi /̋ ,2  which leads to a TE of 5 123( )Δx Fiʺ/  
in Equation 9.59. The total error is O[(Δx)2], as discussed later. The method is thus a 
second-order method because of the order of the total TE.

Similarly, we can derive the third-order formula by employing the following 
backward difference approximations for ��Fi  and �Fi :
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which leads to the equation
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Again, if F ′′′ is assumed to be constant over the given step Δx, the error incurred 
in Equation 9.60a may be written as ΔxFi ʹ́ ʹ , and that in Equation 9.60b as ( ) ;Δx Fi

2 3ʹ́ʹ  
see Chapter 4. Then these expressions for Fi� and Fi� may be used in Equation 9.61 to 
yield a TE of 3 84( )Δx Fi ʹ́ ʹ .
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The general formula for the Adams–Bashforth method may be written as
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Thus, the TE per step is O[(Δx)n+1]. The order of the method is n, since the number of 
steps needed to solve Equation 9.8 up to a given value of x varies as 1/Δx, leading to 
a total TE of order (Δx)n. In Equation 9.62, n may be varied to obtain Adams–
Bashforth methods of different order. Table 9.1 gives the corresponding values of 
the β’s, which are the coefficients for these explicit methods, for n up to 6. One can 
determine the TE for higher-order formulas by retaining the error terms in the finite 
difference approximations for the derivatives, as outlined above. Note that these 
methods are explicit and, thus, no iteration is needed for computing yi+1.

We derive the Adams-Moulton or Adams closed formulas by employing a 
backward Taylor-series expansion of y(x), obtained as
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If the series is truncated after the second term, an implicit formula for yi+1 is 
obtained as follows:
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The TE in this equation can easily be shown to be –(Δx)2F ′/2. Again, if the derivatives 
of F in the preceding series are replaced by backward difference approximations, 

TABLE 9.1
The Values of the Coefficient βnm for the Adams–Bashforth Method, 
for n up to 6

n b m = 1 2 3 4 5 6

1 β1m 1

2 2 β2m 3 –1

3 12 β3m 23 –16 5

4 24 β4m 55 –59 37 –9

5 720 β5m 1901 –2774 2616 –1274 251

6 1440 β6m 4277 –7923 9982 –7298 2877 –475
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higher-order formulas are obtained. Therefore, we derive the second-order formula 
by employing
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This formula is the same as the trapezoidal rule for integration discussed in 
Chapter 8, and, therefore, as shown before, the TE per step is–(Δx)3F ′′/12. Note that 
since Fi+1 is involved in Equations 9.64 and 9.65, these formulas are implicit and 
iteration is needed to solve for yi+1.

Both the first-order and the second-order Adams-Moulton formulas are self-
starting, since Fi–1, Fi–2, and so on, are not involved. However, the third- and higher-
order formulas are not self-starting and need a self-starting method, such as Runge–
Kutta, to solve for the first few steps. The general expression for the Adams closed 
formulas is
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where n is the order of the method. Table 9.2 gives the coefficients βnm
*  for various 

values of n up to 6.
The Adams open and closed formulas are an important class of multistep formulas. 

Although they are rarely used separately, combinations of the two sets of formulas 

TABLE 9.2

The Values of the Coefficient bnm*  for the Adams–Moulton Formulas, 
for n up to 6

n β* m = 0 1 2 3 4 5

1 β1m
* 1

2 2 2β m
* 1 1

3 12 3β m
* 5 8 –1

4 24 4β m
* 9 19 –5 1

5 720 5β m
* 251 646 –264 106 –19

6 1440 6β m
* 475 1427 –798 482 –173 27
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yield some of the most efficient predictor–corrector methods for solving ODEs, as 
discussed in the next section. One can also derive the Adams formulas by applying 
numerical integration to the differential equation, see Carnahan et al. (1969). The TE 
can be obtained quite easily for these methods. A smaller number of computations of 
the function F are needed in these formulas, as compared to those in the corresponding 
Runge–Kutta method, since the values of F at the preceding points are obtained 
from calculations performed for the earlier steps. The closed formulas are solved by 
iteration and the resulting error can be shown to be much less than that in an open 
formula of the same order. Also, the implicit methods generally possess better 
stability characteristics; see Ferziger (1998).

9.5.2  Additional Considerations

Several other multistep methods have been developed. A simple method that is often 
considered in studying the stability of multistep methods is the midpoint method, 
discussed in detail by Atkinson (1989) and given by

	
y y x F x yi i i i+ −= + ( )1 1 2Δ  ,

	 (9.67)

This method is second-order accurate and is not self-starting, since yi–1 is involved. 
A feature common to the various multistep methods is the existence of multiple solu-
tions to the difference equation. For a convergent method, one of the solutions closely 
approximates the exact solution and is known as the fundamental solution. The other 
solutions, known as parasitic solutions, are not related to the exact solution of the 
differential equation. If these parasitic solutions grow with each computational step, 
instability arises in the numerical scheme. The growth of the parasitic solution is 
often exponential and oscillatory, leading to a rapid overpowering of the fundamen-
tal solution. In a stable scheme, the parasitic solution remains small compared to the 
fundamental solution. In practice, the numerical solution is obtained at two signifi-
cantly different step sizes, and stability is assumed if the results are in reasonably 
close agreement. A reduction in step size also often leads to stability in a previously 
unstable solution.

The Runge–Kutta methods are often more stable than the corresponding multistep 
methods. Also, the starting method for computing the first few steps in multistep 
methods can substantially affect the final results. Therefore, it is important to vary 
the starting method to ensure that the results are essentially independent of the 
method used. Despite these disadvantages, multistep methods are frequently 
employed, particularly as predictor–corrector methods, and have, in many cases, 
replaced the Runge–Kutta scheme, which was the standard solution procedure for 
many years.

9.6  PREDICTOR–CORRECTOR METHODS

The predictor–corrector methods combine the advantages of accuracy and stability 
of the implicit formulas with the simplicity of the explicit formulas. The main 
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problem with the implicit equations is the time-consuming iterative procedure nec-
essary for obtaining the solution. However, if a first estimate yi+1

*  of the new value of 
the dependent variable is provided by the application of an explicit method at each 
step, the number of iterations needed for convergence to the solution by the use of the 
implicit method may be minimized. Therefore, an explicit formula is taken as the 
“predictor” to give a first estimate of the solution, followed by the use of an implicit 
formula as the “corrector” to obtain a better approximation to the solution.

9.6.1  Basic Features

The predictor–corrector methods are generally more efficient than the Runge–Kutta 
methods of the same order. The fourth-order Runge–Kutta method requires four 
function evaluations for advancing the solution by one step. The corresponding 
predictor–corrector method requires only one function evaluation for the predic-
tor, since the other values are available from earlier computations, and, if fewer 
than three iterations are needed for the corrector, this method will require less 
computer time than the Runge–Kutta formulas of the same order. A detailed com-
parison between these two families of methods for solving ODEs is given by Hall 
et al. (1972). Another important advantage of the predictor–corrector methods is 
the ability to estimate the TE at each step. This ability allows one to choose a suit-
able step size for achieving the desired accuracy level and also to estimate the 
accuracy of the converged solution. Because of these advantages, the predictor–
corrector methods are among the most popular ones at the present time. However, 
the problem of starting the scheme is usually present, since most schemes are 
based on multistep formulas such as those discussed in Section 9.5 and are not self-
starting.

The improved Euler’s method, given by Equations 9.29, is one of the simplest 
predictor–corrector methods. Euler’s method is used as the predictor to give the first 
estimate yi+1

*  of the dependent variable as
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The trapezoidal rule for numerical integration is then used as the corrector to give
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This method is self-starting, unlike most other predictor–corrector methods, and 
is commonly employed in problems of engineering interest. As mentioned before, 
the method is also known as Heun’s predictor–corrector method. The TE per step 
for the predictor is
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For the corrector, the error is

	
−
( )Δx y
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when the corrector is taken as Equation 9.30 and is solved by iteration. The error is 
larger if Equation 9.29b is employed, without iteration.

We apply iteration to Equation 9.30 by substituting the computed value obtained 
into the right-hand side of the equation to obtain an improved value of yi+l. The process 
is repeated until a specified convergence criterion is satisfied. The above corrector 
equation may also be employed with other multistep formulas as the predictor. A 
commonly employed nonself-starting scheme is obtained by the use of the midpoint 
method, given in Equation 9.67, with Equation 9.29b as the corrector. Note from the 
above expressions for the TEs that the use of the corrector considerably improves the 
accuracy of the solution.

Several other predictor–corrector methods are employed in the solution of ODEs. 
The basic characteristics of these methods are the same as those outlined above. 
A predictor is employed to yield a first estimate of the dependent variable yi+l at 
the next step, and this value is used to start the iterative solution of the corrector 
for an improved value of yt+l. Among the most important and widely used predictor–
corrector methods are the Adams method, Milne’s method, and Hamming’s method. 
None of these methods is self-starting, and generally a Runge–Kutta scheme, of the 
same order as the given predictor–corrector method, is employed for the first few 
steps. One can also use a Taylor-series expansion of the variable y(x) to obtain the 
values of y1, y2, y3, and so on, needed to start the method. For instance, yi may be 
written as
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The values of the function F and its derivatives are obtained from the given 
differential equation, Equation 9.8. The number of terms retained in the series should 
be chosen to yield an error of the same order as that obtained by the given predictor–
corrector method. However, the higher-order derivatives of the given differential 
equation may be quite involved. In such cases, the Runge–Kutta method is preferable 
for obtaining the starting values.

9.6.2  Adams Method

We can obtain a family of predictor–corrector methods by employing the Adams–
Bashforth formulas as the predictor and the Adams-Moulton methods of same order 
as the corrector (see Tables 9.1 and 9.2). If the fourth-order formulas are chosen, the 
predictor equation is
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and the corresponding corrector formula is
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The superscript (0) indicates the predicted value that forms the first estimate for 
the corrector. The values of y and F for the first three steps of Δx, beyond the initial 
condition, are needed for starting this method. A fourth-order Runge–Kutta method 
may be employed to generate these values. Then the predictor gives an estimate for 
the next value of y, and, using this value as the first estimate, one iterates the corrector 
until convergence, in terms of a specified criterion, has been achieved. Similarly, the 
Adams formulas of different orders may be used to generate other predictor–correc-
tor methods. The TEs associated with this method are discussed later.

9.6.3  Milne’s Method

This method is based on integrating the differential equation, Equation 9.8, to 
obtain
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The integral may be viewed as area under the curve from xi–3 to xi+1, as shown in 
Figure 9.13. If F[x, y(x)] is approximated by the quadratic expression ax2 + bx + c, 
where a, b, and c are constants, we can determine the constants by employing the 

dy
dx

F(x,y)=

xi–3 xi–2 xi–1 xi+1xi

Fi–3 Fi–2 Fi–1 Fi+1Fi

x

ax2+bx+c

FIGURE 9.13  Sketch of the numerical integration used for the derivation of the predictor 
equation in Milne’s method.
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value of the function Fi at xi, the value Fi–1 at xi−1, and so on. If the above integral is 
then carried out, we obtain
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This is the predictor equation for Milne’s method. The corrector is simply obtained 
from Simpson’s integration rule, given by Equation 8.31, as
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This is a fourth-order method since the total TE is O[(Δx)4], as shown later. Higher-
order schemes have also been developed; see Carnahan et al. (1969) for the sixth-
order Milne’s method.

9.6.4  Hamming’s Method

Hamming’s method is based on the use of a general class of corrector equations 
represented by
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where the a’s and b’s are constants. This equation includes the correctors employed 
for the fourth-order Adams and Milne’s predictor–corrector methods. We can deter-
mine the constants by employing Taylor-series expansions for all the variables and 
functions that appear in the above equation. Terms are retained up to O[(Δx)4], and 
the coefficients of similar terms on both sides of the equation are set equal. This 
results in the number of unknowns being larger than the relationships between them 
so that a few constants must be chosen arbitrarily. Hamming (1959) studied the sta-
bility of this corrector and chose the parameters to obtain better stability character-
istics than those of the corrector used in Milne’s method. The resulting equation is

	
y y y x F F Fi i i i i i+ − + −= −( ) + + −( )1 2 1 1

1
8

9
3
8

2Δ
	

(9.74)

The method employs the same predictor as that used in the fourth-order Milne’s 
predictor–corrector method. A modifier equation is also used in order to reduce the 
error in the predicted value of yi+i. The computational formulas for Hamming’s 
method are, therefore, given in the order in which they are used as follows:
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The superscript (0) refers to the initial estimate that may be employed for starting 
the iteration process in the corrector equation. The estimate from the predictor is 

employed in the modifier, which provides the first estimate yi+1
0( )  for computing Fi+1 

on the right-hand side of the corrector for the first iteration. In practice, the step size 
is chosen so that only one or two iterations are needed for convergence. In fact, the 
method is generally used without iteration.

9.6.5  Accuracy and Stability of Predictor–Corrector Methods

We have given the general formulas employed in several important predictor–
corrector methods. The basic characteristics of all the methods are quite similar, 
and any one of these can generally be employed for a given ODE. The choice of a 
particular method is frequently made on the basis of personal preference, since the 
difference in the computational procedure and in the numerical results is generally 
small. However, the TEs associated with each formula are different from those that 
arise in other formulas. Similarly, the stability and convergence characteristics are 
different. These differences are sometimes important in the choice of the method for 
solving a given problem and are discussed here.

9.6.5.1  Truncation Errors
Let us first consider the TE at each step in the application of the formulas discussed 
above. Proceeding as outlined earlier for the second- and third-order Adams–
Bashforth methods, we obtain the error that arises in the fourth-order formula as

	
E x F x xi P i i+ − +( ) = ( ) ( )1

5

3 1

251
720

Δ ʺʺ ξ ξ,   < 
	

(9.76)

where (Ei+1)p is the estimate of the TE in the predictor for the (i + l)th step. The cor-
responding error (Ei+1)c in the corrector, which is the fourth-order Adams–Moulton 
formula, is

	
E x F x xi c i i+ − +( ) = − ( ) ( )1
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2 1
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720
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(9.77)

Note that the error in the corrector is much smaller than that in the predictor.
If we assume the value at xi to be exact and if the round-off errors in the calcula-

tions for the (i + l)th step are taken as negligible, as done before for estimating the TE 
per step, the exact solution at xi+1 may be written as

	
y x y x Fi i i+ +( ) = + ( )1 1

0 5251
720

( ) Δ ʺʺ
	

(9.78)
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or as

	
y x y x Fi i i+ +( ) = − ( )1 1

519
720

Δ ʺʺ
	

(9.79)

where yi+1
0( ) is the predicted value from the predictor, and yi+l is the converged value 

from the corrector. From these equations, we obtain the estimate of the truncation 
error per step, after the application of the corrector equation, by determining 
( )Δx Fi

5 ʺʺ and then using Equation 9.77 as follows:

	
E y yi i i+ + +≅ − −⎡⎣ ⎤⎦1 1 1

019
270

( )

	
(9.80)

In addition to the assumptions given above, this estimate is based on the assump-
tions that F″″ is essentially constant over the interval xi−3 ≤ x ≤ xi+1 and that the TEs 
per step in the predictor and the corrector are given by Equations 9.76 and 9.77, 
respectively. This estimate of the error may be used for determining whether the 
desired accuracy level is being maintained in the computation.

Similar estimates may be obtained for Milne’s method and for Hamming’s method. 
We can obtain the TE in the predictor of Milne’s method by considering the approxi-
mation employed for the function F in the integral of Equation 9.70. The corrector is 
based on Simpson’s rule, the error for which was obtained in Chapter 8. The result-
ing TEs per step are thus obtained as

	
E x F x xi P i i+ − +( ) = ( ) ( )1
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(9.81)

and

	
E x F x xi c i i+ − +( ) = − ( ) ( )  1
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(9.82)

Following the above procedure, the estimate for the TE per step, after convergence 
of the corrector equation, is given by

	
E y yi i i+ + +≅ − −⎡⎣ ⎤⎦1 1 1
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(9.83)

The same approach may be applied to Hamming’s method. Then the TEs are 
obtained (Carnahan et al., 1969) as follows:

	
E x F x xi P i i+ − +( ) = Δ( ) ( )1
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(9.84)
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and

	
E x F x xi c i i+ − +( ) = − ( ) ( )1
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2 1

1
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(9.85)

This results in the estimate for the TE per step as

	
E y yi i i+ + +≅ − −⎡⎣ ⎤⎦1 1 1

09
121

( )

	
(9.86)

Note from the above expressions that the TE per step in the corrector is the 
smallest for Milne’s method, followed by that in Hamming’s method and that in the 
fourth-order Adams predictor–corrector method. The errors in the last two methods 
are close to each other and more than twice that in Milne’s method. However, these 
methods have better stability characteristics than Milne’s method, as discussed 
below. The TE may be estimated at each step to ensure that the numerical results 
have the desired accuracy. The step size can, therefore, be reduced if the error is too 
large, or it can be increased, to save computer time, if the error is too small. This abil-
ity to estimate the TE at each step is one of the important advantages of predictor–
corrector methods over Runge–Kutta methods. However, a change in the step size 
is much more involved in predictor–corrector methods, since values of the deriva-
tive function F are needed at evenly spaced x values preceding xi.

9.6.5.2  Step Size
An approach frequently adopted in changing the step size in predictor–corrector 
methods is simply to restart the computation scheme, with the last computed value 
of y as the initial condition for the new step size. Therefore, the starting method 
will again be needed for generating the values for the first few steps, and then the 
predictor–corrector method may be employed. Another approach is to use interpo-
lation to obtain F values at the new spacing for x ≤ xi, using the computed values 
for the previous step size. A polynomial fit, as discussed in Chapter 7, may be 
employed to obtain a curve that passes through the available F values at the previ-
ous spacing. The required F values at the new spacing may then simply be obtained 
by interpolation, as shown qualitatively in Figure 9.14. The estimate of the TE per 
step may be employed in the subsequent calculations to determine whether a 
change in the step size is again needed.

In predictor–corrector methods, the step size should be small enough to ensure 
convergence of the corrector equation in only one or two iterations. This is neces-
sary in order to maintain the advantage of these methods, over one-step methods of 
comparable accuracy. However, a larger step size is desirable for reducing the com-
putation for a given range of the independent variable x and, therefore, also for 
reducing the round-off error. The step size may be changed on the basis of the TE, 
as outlined above, or if more than two iterations are needed for the convergence of 
the corrector.
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9.6.5.3  Stability
The stability characteristics of the various predictor–corrector methods discussed 
here have been studied in the literature, as considered in detail by Carnahan et al. 
(1969), Ralston and Rabinowitz (1978), and Atkinson (1989). If the corrector is iter-
ated to convergence, then the stability of the predictor is not of much concern since it 
simply provides a first estimate. In fact, most predictors do not possess good stability 
characteristics. The stability of the corrector is, however, important, and the growth 
of error is studied to determine the overall stability of the scheme. If the corrector is 
not iterated but is employed only once, the stability of both the predictor and the cor-
rector equations must be studied.

The corrector equations for the Adams method and Hamming’s method have 
good stability characteristics. These methods are, therefore, often preferred over 
Milne’s method, whose corrector equation is unstable for some differential equa-
tions. The stability analysis of multistep methods involves a consideration of the 
growth of the parasitic solutions, mentioned earlier. Milne’s method is stable if the 
exact solution of the differential equation decays with increasing x and is generally 
known as a marginally stable method.

Most of the stability analyses consider simple linear equations, and the results 
obtained are often extended to more involved equations, particularly nonlinear 
equations. However, such an extension of the conclusions of the simple stability 
analyses may not be applicable in many cases. A practical approach employed in 
most engineering applications is to obtain the results for different step sizes. If the 
computed values do not differ significantly from each other, then the computa-
tional scheme is assumed to be stable. Also, analytical solutions may be available 
for a few simple circumstances. Then one can use a comparison of the numerical 
results with these solutions to study the accuracy of the results obtained and the 
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FIGURE 9.14  Interpolation of the preceding numerical results in order to vary the step size 
in predictor–corrector methods.
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stability characteristics of the method. Also, a reduction in step size usually results 
in an improvement in the stability of the numerical scheme.

9.6.6  Simultaneous Equations

It must be pointed out that, although the multistep and the predictor–corrector 
methods have been discussed for the first-order initial-value problem given by 
Equations 9.8 and 9.10, these methods may easily be extended to a system of simul-
taneous first-order equations. Since higher-order equations may be reduced to a 
system of first-order equations, as outlined in Section 9.1.2, these methods may be 
used for solving higher-order equations as well. A starting method, such as the 
Runge–Kutta method, is used to generate the required values for the first few steps, 
for each of the n dependent variables Yj, where j = 1, 2, . . ., n. The appropriate 
formulas are then applied to each equation in sequence at each step to obtain the 
values (Yj)i+1 at xi+l. At each step, the stored function values from the preceding steps 
are employed to compute the new values, which are then stored for use in the next 
step. The procedure is a simple extension of the method for solving a single first-
order equation.

There are several engineering problems that involve a wide range of scale, say, in 
length or time. In fluid flow and heat transfer, for instance, a small length scale may 
often be important in a given region, while a much larger length scale characterizes 
the remaining region. Similarly, in process control and chemical kinetics, a wide 
range of time or rate constants may arise. A system of equations that is associated 
with widely different time constants or eigenvalues is known as stiff, and special 
techniques are often needed to solve such a system. The step size must be small 
enough to treat the smallest scale or the fastest component of the process. An nth-
order differential equation will, in general, have n scales. Employing an extremely 
small step size to take into account the smallest scale, although the other components 
can be treated with much larger step sizes, is obviously inefficient. A very small step 
size will result in large computer time and also large round-off errors. A major prob-
lem lies in maintaining a smooth behavior of the solution at large values of the inde-
pendent variable, since this can lead to instability in this region. The problem of 
stiffness is similar to that of ill-conditioning encountered in matrices, discussed in 
Chapter 6. Several special techniques have been developed to solve stiff problems. 
The most popular among these is Gear’s method. For further details, see Gear (1971), 
Hall and Watt (1976), and Ferziger (1998).

9.6.7  Concluding Remarks on Predictor–Corrector Methods

The preceding discussion indicates that the predictor–corrector methods are among 
the most efficient methods available for the solution of ODEs. In addition, the TE at 
each step is determined during the computation and may be employed for maintaining 
the desired accuracy level by changing the step size whenever the error is excessive. 
However, these methods are more involved than the self-starting methods, such as 
Runge–Kutta formulas, which continue to be a very popular choice for the solution 
of the ODEs that arise in engineering problems.
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The choice of a predictor–corrector method, from among those considered here, 
is often not an easy one, since the Adams method, Milne’s method, and Hamming’s 
method are all quite comparable in terms of efficiency and accuracy. Hamming’s 
method avoids the instability problems of Milne’s method and is, therefore, often 
preferred. Also, it very seldom requires iteration and is generally used without itera-
tion, making it a relatively more efficient method to use. However, if stability prob-
lems do not arise, Milne’s method is superior because of its higher accuracy level. In 
general, personal preference and prior experience with the method are strong criteria 
for choosing it. Otherwise, Hamming’s method may be chosen, despite the slight 
additional complexity in programming. The second-order predictor–corrector meth-
ods, although somewhat simpler to program, are rarely used because of the resulting 
lower accuracy in the results. MATLAB has several functions based on multistep 
methods available for the solution of ODEs. These include ode113, which is a multi-
step Adams–Bashforth–Moulton solver of varying order, and ode15s, which is an 
implicit multistep numerical solver of varying order. The latter one is often employed 
if ode45 is too inefficient or fails to yield the solution.

Example 9.3

A metal block of volume V and surface area a is initially at temperature Ti. At the 
surface, a constant energy input q, per unit area and time, is imposed at time t = 0 
by thermal radiation, while the surface also loses energy by convection to air at 
temperature Ta surrounding the block. If the temperature in the block is assumed 
to be uniform at any given time and is denoted by T(t), energy balance leads to the 
following governing equation for the temperature:

	
ρCV

T
t

q h T T
d
d

a a= − −a ( )
	

(9.87a)

where ρ and C are the density and specific heat, respectively, of the metal. The 
parameter h is termed the convective heat transfer coefficient, and its value 
depends on the flow of air around the block and the temperatures involved. If 
the temperature difference (T–Ta) is taken as the dependent variable θ, the above 
equation may be written as
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(9.87b)

where A and B are parameters defined as A = qa/ρCV and B = ha/ρCV. Using the 
fourth-order Adams predictor–corrector method, solve this problem to obtain θ(t) 
if θ at t = 0 is given as 100°C. Consider two circumstances, given as (a) A = 10°C/s, 
B = 0.05 s−1 and (b) A = 2°C/s, B = 0.03 s−1.

SOLUTION

The given problem involves solving the following one-dimensional ODEs:

	
d
d
θ

θ
t
= −10 0 05.

	
(9.88)
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d
d
θ

θ
t
= −2 0 03.

	
(9.89)

with the initial condition

	 θ = =1 C for o00 0t 	
(9.90)

The given equations are quite simple and may be solved analytically. However, 
they may be used to demonstrate the application of the Adams predictor–corrector 
method to ODEs. Then we can compare the numerical results with the analytical 
solution to evaluate the accuracy of the numerical scheme. However, in actual 
practice, A and B are usually not constants but vary with θ and t, resulting in 
much more complicated problems for which the analytical solution may not be 
available.

The formulas for the fourth-order Adams predictor–corrector method are 
given by Equations 9.69. A starting method is needed to generate the θ values at 
the three time steps, Δt, 2 Δt, and 3 Δt, so that Equation 9.69a can be employed 
to obtain the predicted value at t = 4 Δt, where Δt is the time step. The fourth-
order Runge–Kutta scheme, given by Equations 9.37, is employed to obtain these 
starting values. The value at t = 0 is, of course, the initial condition θ(0) = 100. 
The predicted value is corrected iteratively, using Equation 9.69b, until a speci-
fied convergence criterion has been satisfied. Thus, the value of θ at the next 
time step, denoted by i + 1, is obtained from the known values at the previous 
four time steps. Using this new computed value, the computation proceeds to 
the next time step. Thus, θ(t) is obtained with increasing time, starting with the 
initial condition. The computation is carried out until the temperature θ does not 
change significantly from one time step to the next, indicating the attainment of 
steady-state conditions.

Appendix B.27 shows the MATLAB script file for solving the first-order ODEs in 
this problem by the Adams predictor–corrector method. The fourth-order Runge–
Kutta method is used for the first three steps. Then these three values, along with 
the initial condition, are employed to compute the intermediate value from the 
predictor. This value is then used to start the iteration of the corrector. This itera-
tion is terminated when the dependent variable y changes less than a specified 
convergence parameter ep1 from one iteration to the next. A time step Δt of 0.05 
s is taken. For this value of Δt, only one or two iterations were needed for the con-
vergence of the corrector. Another convergence parameter ep is used to terminate 
the overall computation, for which the criterion used is
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(9.91)

where ε is a chosen convergence criterion for determining steady state. A value of 
10−4 was employed for ε, or ep. A value of 10−5 was used for ep1. These values, as 
well as Δt, were varied to ensure a negligible effect of the chosen values, on the 
numerical results.

Figure 9.15 shows the computed variation of temperature θ with time t for the 
two cases. The initial temperature difference (T–Ta) is 100°C. In the first case, for 
which A = 10°C/s and B = 0.05 s−1, the energy input is larger than the convective 
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energy loss at t = 0. Thus, dθ/dt = 5 at t = 0 from Equation 9.88. This positive initial 
value of the slope results in a temperature increase with time. Finally, a constant 
value of θ = 200°C is attained at steady state. In the second case, the energy 
input is less than the loss, and the metal block cools down to a temperature of 
θ = 67°C at steady state. The steady-state temperatures can easily be obtained 
analytically from Equations 9.88 and 9.89. At steady state, θ stops changing with 
time, and, therefore, dθ/dt = 0. If dθ/dt is set equal to zero in these equations, 
we obtain θ = 200°C and 66.67°C in the two cases. These values agree closely 
with the numerical results obtained. The computed variation of θ with t was also 
compared with the analytical solution, and a close agreement between the two 
was obtained. For further details on the physical aspects of this problem and other 
similar ones, see Incropera et al. (2006).

Example 9.4

A metal piece of mass m is released at zero velocity in a liquid and allowed 
to fall freely under gravity. The frictional force, or drag, acting on the piece is 
m(AV + BV2), where A and B are constants and V is the downward velocity. Briefly 
discuss the methods that can be used to solve this problem. Then, using any 
appropriate method, compute the velocity V as a function of time t for B = 0.1 m−1 
at two values of A given as A = 2 and 4 s−1.

SOLUTION

The governing ODE for this problem may be derived on the basis of the discussion 
in Example 9.2 as
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(9.92)
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FIGURE 9.15  Variation of temperature θ with time t for the two cases of Example 9.3, 
computed using the fourth-order Adam’s predictor–corrector method. The results are obtained 
with ε = 10−4 and Δt = 0.05 s.
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with the following initial condition:

	 At :  t V= =0 0 	 (9.93)

Here, g is the magnitude of acceleration due to gravity and is equal to 9.8 m/s2 
in SI units. Therefore, the equations to be solved for the two cases are
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(9.94)

and
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d
V
t

V V F t V= − + =9 8 4 0 1 2. ( . ) ( , )
	

(9.95)

Therefore, these are first-order ODEs, with the initial condition given by Equation 
9.93. They can be solved by all the methods discussed so far. The fourth-order 
Runge–Kutta method is particularly convenient since it is accurate and self starting. 
The MATLAB functions ode23 and ode45 can also be used conveniently. The 
Adam’s predictor–corrector method, demonstrated in the previous example, can 
also be employed. Details on these methods and examples have been given earlier. 
Let us use Hamming’s method, employing the predictor, modifier and corrector 
in sequence only once for each step, to demonstrate the use of the predictor–
corrector approach without iteration.

The numerical scheme is similar to that for the Adams predictor–corrector 
method, outlined in Example 9.3. We use the fourth-order Runge–Kutta method 
to obtain the values of the velocity at the first three time steps, the value at t = 0 
being given by the initial condition. Once the values at time steps 0, Δt, 2 Δt, and 
3 Δt have been computed, the predicted value at t = 4 Δt is obtained from Equation 
9.75a, written for the present problem as
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(9.96a)

As this equation shows, to compute the predicted value of V at a given time 
step, we must know the values of the function F at the previous four steps. This 
predicted value is used in the modifier, to obtain an improved estimate Vi+10( )  as

	
V V V Vi i i i+
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The step size Δt was chosen as 0.05 s, and iteration is not used. The corrector is 
given by
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where Fi+10( ) is F x Vi i( , )( )
+ +1 1

0 . The two values Vi+10( ) and Vi+l were found to be very close 
for this value of Δt. If a larger time step is chosen, iteration may be needed to 
satisfy a specified convergence criterion.

Appendix B.28 gives the MATLAB script file for the solution of this problem. 
The computation is terminated when the velocity V stops changing, indicating the 
attainment of the terminal velocity. This condition is determined by the conver-
gence criterion

	 V Vi i+ − ≤1 ε 	 (9.97)

where ε is a chosen small quantity. It was taken as 10−4 and reduced to smaller 
values to ensure that the numerical results remain essentially unchanged. Figure 
9.16 shows the computed velocity variation with time for the two cases. The 
velocity starts at zero, as given by the initial condition, rises sharply, and then 
gradually approaches the terminal velocity. The terminal velocity is attained when 
the net force on the body is zero, resulting in dV/dt becoming zero. Therefore, 
from Equation 9.94, the terminal velocity for the first case is given by the root of 
the equation

	
9 8 2 0 1 02. .− +( ) =V V

	
(9.98)

which gives V as 4.07 m/s. Similarly, the value for the second case is obtained as 
2.31 m/s. The numerical results agree closely with these values.

A comparison of the programs for the Adams method and Hamming’s method 
shows that the two are fairly similar in the general approach. Both need a start-
ing method. However, Hamming’s method is generally used without iteration, as 
presented here. The error may be monitored to ensure that the step size is not 
too large. Hamming’s method is popular for problems that require a high level of 
accuracy. As mentioned earlier, it is generally more efficient than a Runge–Kutta 
scheme of the same order.
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FIGURE 9.16  Variation of velocity V with time t computed using Hamming’s method with-
out iteration of the corrector for B = 0.1 m−1 and A = 2 and 4 s−1, as given in Example 9.4.
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9.7  BOUNDARY-VALUE PROBLEMS

So far, we have considered the solution of initial-value problems, in which all the 
conditions to be satisfied by the solution are specified at one value of the independent 
variable x. Integration of the ODE is started at this point, which is often specified as 
x = 0. Also, if the conditions are all specified at a given nonzero value of x, say, x = a, 
a change of variable x to x , where x x a= −  can be employed to impose the condi-
tions at zero value of the transformed independent variable x . However, in engineer-
ing applications, we are frequently concerned with problems in which the conditions 
are imposed at two, or more, different values of the independent variable. Such prob-
lems, known as boundary value problems, arise, for instance, in mass diffusion 
through a porous plate, conduction heat transfer in extended surfaces, vibration of 
strings, fluid flow over a surface, and deflection of a beam under a given loading. 
Since at least two conditions, specified at two different values of the independent 
variable, are necessary for a BVP, we are concerned with differential equations of 
second or higher order.

A simple example of a two-point BVP is the second-order equation

	

d
d

2y
x

F x y y2 = ʹ( ), ,
	

(9.99)

with the boundary conditions

	 y a A y b B( ) ( )= =and 	 (9.100)

Here, y is the dependent variable, and y′ the first derivative. Two conditions on y 
are specified at two values, a and b, of the independent variable x. Therefore, the 
solution must satisfy the given boundary conditions at x = a and x = b. We cannot 
start at an initial point and march, with increasing x, to obtain the desired solution, 
since the derivative y′ is not known at x = a or x = b.

There are two main approaches to the numerical solution of such BVPs. The first 
approach reduces the problem to an initial-value problem and uses trial and error to 
satisfy the boundary conditions. Methods based on this approach are known as 
shooting methods, since the adjustment of initial conditions to satisfy the conditions 
at the other location is similar to shooting at a target. In this case, the previously 
discussed methods for solving initial-value problems are employed, with a root-
solving method from Chapter 5, to satisfy the given boundary conditions. The sec-
ond approach is based on obtaining a finite difference approximation to the differential 
equations and the boundary conditions and then solving the resulting algebraic equa-
tions by the methods discussed in Chapter 6. Both approaches have their advantages 
and disadvantages, and the choice is often made on the basis of accuracy needed, 
available software and personal preference. MATLAB also has built-in functions for 
the solution of BVPs. A particularly useful one is the function bvp4c, which is a BVP 
solver and can be used with bvpinit to form the initial solution guess and bvpval to 
evaluate/interpolate the solution obtained. Let us first consider shooting methods, 
employing the discussion given in the preceding sections of this chapter.
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9.7.1  Shooting Methods

The basic approach is to convert a BVP into an equivalent initial-value problem, by 
applying all the conditions at one value of the independent variable x and using 
guessed values for those that are unknown. For instance, the problem given in 
Equations 9.99 and 9.100 can be reduced to the following initial-value problem:
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d
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F x y y2 = ʹ( ), ,
	

(9.101)

	 y a A y a P( ) ( )= ʹ =and 	 (9.102)

where P is an unknown that must be determined so that the condition y(b) = B is 
satisfied in order to yield the solution to the given BVP. Once a value of P is chosen, 
the initial-value problem, given by Equations 9.101 and 9.102, may be solved by any 
of the methods discussed earlier in this chapter. However, the value of y(b) will not, 
in general, be equal to the value B demanded by the boundary condition at x = b. An 
iterative adjustment of the initial slope P is, therefore, needed to satisfy the boundary 
condition y(b) = B within a specified convergence criterion Figure 9.17 illustrates 
this process of correcting the initial slope until the solution of the equivalent initial-
value problem satisfies the given boundary condition at x = b.

From the above treatment, the BVP reduces to the solution of an equivalent 
initial-value problem, with the initial slope P being obtained by iteratively solving 
the equation

	 y P B f P y P Bb b( ) ( ) ( )= = − =or 0 	 (9.103)
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y=B
Target
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θ

x=b x
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FIGURE 9.17  Sketch of the iterations to the converged solution, employing a shooting 
method for solving a BVP.
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where yb is the value of the dependent variable at x = b, and the parentheses indicate 
its dependence on P. This is a problem in root solving and a suitable method may 
be obtained from the various methods discussed in Chapter 5. The secant method, 
which was found to converge very rapidly in most cases, and the bisection method, 
which always converges if the interval containing the root is known, are both quite 
suitable for this application. Considering the secant method, if two solutions of the 
initial-value problem are obtained using Pi−1 and Pi as two estimates of the initial 
slope, yielding the corresponding values of y at x = b as yb(Pi–1) and yb(Pi), then the 
next approximation to the root of Equation 9.103 is obtained by recognizing that P 
replaces x in Equation 5.11 as
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P y P P y P P P B
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i b i i b i i i

b i b i
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−
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( ) − ( ) + −( )
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1 1 1
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(9.104)

The initial-value problem is then solved with Pi+1 as the initial slope, and yb(Pi+l) is 
obtained. If the convergence criterion, specified as, say, |yb(Pi+1)–B| ≤ ε, where ε is a 
specified small quantity, is not satisfied, a new approximation to the root is obtained 
from Equation 9.104. The iterative process is continued until the specified conver-
gence criterion is met.

The Newton–Raphson method can also be used if one numerically determines 
the derivative d[yb(P)]/dP by solving the initial-value problem for two estimates, Pi 
and Pi + ΔP, of the initial slope, where ΔP is a small change in P. This procedure was 
demonstrated in Example 5.4. Once the derivative has been determined, the next 
estimate Pi+1 of the root is given by
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(9.105)

This technique is frequently employed in shooting methods because of the good 
convergence characteristics of the Newton–Raphson method. Also, this method 
applies for complex solutions and also if f(P) is tangent to the P-axis, resulting in 
multiple roots, as discussed in Section 5.5.

Shooting methods may employ efficient methods, such as the predictor–corrector 
methods, for solving the initial-value problem, since several iterations may be needed 
before convergence is achieved. However, Runge–Kutta methods are often preferred 
because of their self-starting feature. Automatic step changes, on the basis of error 
estimates, are generally not used since the solution is needed at exactly x = b. 
Therefore, a fixed step size Δx is preferred. However, the step size may be changed 
from one solution of the initial-value problem to the next, ensuring that x = b is 
exactly attained, in order to improve the accuracy of the results or to reduce the 
computer time. Although we have considered a simple second-order BVP here, the 
technique is applicable to higher-order equations and to more involved problems. 
Both linear and nonlinear differential equations can be solved by this approach. 
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However, superposition can be used for linear equations, making shooting particularly 
simple in this case.

9.7.1.1  Linear Equations
Consider a linear second-order differential equation of the form
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(9.106)

with boundary conditions

	 y a A y b B( ) ( )= = and 	 (9.107)

Again, we can recast this problem as an initial-value problem by taking y′(a) = P, 
instead of the condition at y = b. We obtain two solutions to this initial-value problem 
by taking the initial slope as P1 and P2. With these solutions denoted as Y1(x) and 
Y2(x), respectively, a linear combination of these solutions is also a solution to the 
differential equation. Therefore,

	 y x c Y x c Y x( ) ( ) ( )= +1 1 2 2 	 (9.108)

is also a solution, which satisfies the initial condition y(a) = A. The relationship 
between c1 and c2 may be found by substituting Equation 9.108 into the differential 
equation, Equation 9.106, to give
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Since both Y1(x) and Y2(x) independently satisfy the differential equation, the quanti-
ties within the parentheses are both g3(x). Therefore,

	 c c1 2 1+ = 	 (9.110)

The value of y(x) at x = b is obtained as

	 y b c Y b c Y b( ) ( ) ( )= +1 1 2 2

This equation may be set equal to B, to satisfy the given boundary condition. Then 
c1 and c2 may be obtained from Equation 9.110 and the following equation:

	 c Y b c Y b B1 1 2 2( ) ( )+ = 	 (9.111)
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We obtain the desired solution y(x) by substituting the computed values of c1 and c2 
into Equation 9.108. Thus,
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Therefore, this solution satisfies the given differential equation and both bound-
ary conditions. Iteration is not needed. This technique can also be used for higher-
order, linear BVPs. If the number of unknown conditions at the initial point, x = a, 
were n, we would need to obtain (n + 1) solutions and to take a linear combination of 
these numerical solutions to obtain the required solution to the ODE.

9.7.2  Finite Difference Methods

In this approach, one reduces the solution of an ODE to the solution of a system of 
algebraic equations by obtaining a finite difference approximation to the differential 
equation at a number of mesh points. The interval a ≤ x ≤ b, over which the numerical 
solution is to be obtained, is divided into n equally spaced subintervals of length Δx, 
as shown in Figure 9.18. Then the values of x at the mesh, or node, points are denoted 
by xi where

	 x a i x i ni = + =Δ    for 0 1 2, , , ,… 	 (9.113)

Also,

	 x a n x b x an = + = =Δ    and   0 	 (9.114)

Therefore,

	
Δx

b a
n

=
−

	
(9.115)

We wish to obtain the solution yi at these node points. The given boundary condi-
tions are employed to compute y0 and yn or to obtain algebraic equations from which 
these may be determined. The differential equation is replaced by its finite difference 
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Δ 
x

FIGURE 9.18  Subdivision of a given interval into a finite number of subintervals for 
employing finite difference methods to solve an ODE.
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approximation at the interior mesh points, resulting in (n–1) algebraic equations. One 
can solve this resulting set of simultaneous algebraic equations by employing the 
methods discussed in Chapter 6 to obtain the dependent variable y at the mesh points. 
The finite difference methods for solving ODEs are often of lower accuracy than the 
shooting methods, discussed earlier, though the programming is simpler for linear 
equations. The solution is more involved for nonlinear equations. Consequently, 
shooting methods are more frequently employed, and finite difference methods are 
used as an alternative technique in case problems are encountered with shooting.

As discussed in Chapter 4, there are several finite difference approximations to 
the first- and higher-order derivatives of the dependent variable y. If central differ-
ences are employed, the first and second derivatives of y at the ith mesh point are 
approximated by
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and
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Therefore, the second-order differential equation, given by Equation 9.99, is approxi-
mated at the ith node by
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(9.118)

When this approximation is applied at all the interior points, (n–1) equations in (n–1) 
unknowns are obtained. The boundary conditions yield

	 y A y Bn0 = =  and  	 (9.119)

These relationships are used in the system of equations generated by Equation 9.118, 
wherever y0 and yn appear.

If the differential equation is linear, the algebraic equations obtained are also 
linear. Similarly, a nonlinear differential equation results in nonlinear algebraic 
equations and a homogeneous differential equation in a homogeneous system. These 
different types of systems were considered in Chapter 6, and the corresponding 
direct and iterative methods were discussed. The same may be used for solving the 
resulting simultaneous algebraic equations.

If the given ODE is linear, the finite difference equations obtained from Equation 
9.118 are linear and tridiagonal, since the ith equation contains only yi−1, yi, and yi+i. 
Such a system can easily be solved by a direct method such as Gaussian elimination, 
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and several efficient algorithms have been developed for the purpose, see Example 
6.2. Because the resulting system of equations is tridiagonal, the computation of the 
unknowns can be carried out efficiently and with a small round-off error. The com-
puter program is also very simple. As a consequence of these advantages, the finite 
difference methods are frequently employed for solving linear BVP in ODEs. 
Nonlinear algebraic equations, arising from a nonlinear ODE, are generally linear-
ized. This is done by using the values from the previous iteration for the nonlinear 
terms, as shown in Section 6.8.2. The result is a linearized tridiagonal system of 
equations, which is solved with iteration, to yield the solution yi at the nodal points. 
The Newton–Raphson method may also be used if the number of nodes is small. 
However, shooting methods are generally easier to use for nonlinear ODEs than 
finite difference methods.

In many cases, the boundary conditions are more complicated than the simple 
ones considered above. Frequently, a relationship between the derivative y′ and the 
function y is given as, say,

	 a y a y a x a x b1 2 3ʹ + = = = at  or 	 (9.120)

Then, one approach is to use one-sided forward or one-sided backward finite dif-
ference approximations at the two boundaries for the derivative. At x = a, y ′ may be 
approximated by
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−
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Δ 	
(9.121)

where y0 is the value of y at x = a, or x0, and y1 that at the adjacent nodal point. When 
substituted in Equation 9.120, this equation gives the relationship between y0 and y1 
as
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However, the TE in the approximation of Equation 9.121 is O(Δx), whereas the 
error in the finite difference equations for the interior points is O[(Δx)2]. To improve 
the accuracy of the finite difference equation for the boundary point, a fictitious 
point x−1 can be taken outside the computational region, as shown in Figure 9.19. 
Then y′ is approximated by central differences to an accuracy of O[(Δx)2] as 
follows:
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Therefore, the finite difference equation for the boundary point at x = a, or x0, is
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The finite difference equation, Equation 9.118, is applied at x = a, and the unknown 
y−1 is eliminated between the equation thus obtained and the above equation, result-
ing in a relationship of accuracy O[(Δx)2] between y0 and y1.

The above finite difference formulation has a TE of order (Δx)2. Higher accuracy 
in the numerical results can be achieved by the use of smaller step size or higher-
order methods. Richardson extrapolation, Equation 9.40, may also be used to improve 
the accuracy. However, higher-order methods involve more than one point on either 
side of the ith grid point. Therefore, a tridiagonal system is not obtained, and the 
treatment of the boundary conditions also becomes more involved, see Ferziger 
(1998) and Jaluria and Torrance (2003) for details.

The finite difference approximation to the differential equation can be obtained 
in many ways, leading to different sets of algebraic equations. The given equation 
may also be reduced to a system of first-order equations and the finite difference 
approximations applied to these (Keller, 1968). Equations of order higher than two 
can be reduced to an equivalent system of first- or second-order equations. A tridi-
agonal system is obtained if a system of second-order equations is employed with 
finite difference approximations of O[(Δx)2]. In circumstances where the tridiagonal 
system is not obtained, the Gauss–Seidel and SOR iterative methods may be used. 
Similarly, iterative methods are used for nonlinear equations, as discussed in 
Section 6.8.

9.7.3  Eigenvalue Problems

Homogeneous ODEs, which give rise to eigenvalue problems, are frequently 
encountered in elasticity theory, vibrations, stability analysis, and mechanics of 
materials. In this case, the solution can be obtained only for certain values of the 
parameters of the system. These values, examples of which are the natural frequen-
cies of vibration of a given structure, are related to the characteristic quantities, 
known as eigenvalues, of the problem. The eigenvalue problem for homogeneous 
algebraic equations was discussed in Chapter 6. One generally solves the differen-
tial equation by reducing it to an equivalent system of algebraic equations, using 
finite difference approximations.

x–1 x0

Boundary

Computational
domain

x1 x2 x3 x4 x

FIGURE 9.19  Use of a fictitious point x−1 outside the computational region for approximating 
a gradient condition at the boundary.
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Consider, for example, the following equation, which arises in the natural vibration 
of beams:
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where a is a constant and L is the length of the beam. If the second-order central 
difference approximation, Equation 9.117, is used for the second derivative, the 
finite difference equation is
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where n is the number of subintervals and y0 = yn = 0. This system of equations may 
be written in matrix form as follows:

	
A I y−( ) =λ 0

	 (9.127)

where A is a tridiagonal coefficient matrix, λ is the eigenvalue, I is an identity matrix, 
and y is the unknown vector of the values at the nodal points.

The above system of homogeneous equations may be solved to obtain the eigen-
values and the corresponding eigenvectors. The analytical solution gives the eigen-
values as λn = −(nπ/L)2, where n = 1, 2, . . ., and the eigenvectors as sin nπx. A good 
approximation to the lowest eigenvalue is generally obtained by taking only a few 
grid points, typically around 10. However, a much larger number of subintervals is 
needed to accurately determine the higher eigenvalues. The power method discussed 
in Chapter 6 is particularly suitable for determining the smallest eigenvalue and the 
corresponding eigenvector. Larger eigenvalues may also be obtained in ascending 
order, as outlined earlier. Other methods, such as the QL algorithm, may also be used 
very efficiently, since the finite difference approximation leads to symmetric tridi-
agonal matrices in many cases.

Example 9.5

The flow of a fluid over a two-dimensional wedge, as shown in Figure 9.1, is gov-
erned by the third-order ODE
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where x is the dimensionless distance away from the wedge in a direction normal 
to either edge as shown, f is known as the dimensionless stream function, so that 
df/dx is the dimensionless velocity in the direction parallel to either side of the 
wedge, and β is a constant related to the wedge angle. Thus, β = 0 gives the flow 
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over a flat plate. Also, the stream function f lies between 0 and 1.0. The boundary 
conditions for this problem are as follows:
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Note that the boundary conditions are given in terms of both f and its 
derivative.

Despite the complexity of the physical phenomenon involved, this problem 
is chosen because it presents a third-order, nonlinear, boundary-value, ODE sys-
tem. Thus, it permits the illustration of several important concepts in the solution 
of BVPs. Furthermore, such equations are frequently encountered in fluid flow 
phenomena of interest to several engineering disciplines. Using the fourth-order 
Runge–Kutta method, with the shooting technique, solve this problem for β = 0 
and β = 0.5.

SOLUTION

The given equation may be broken down into a system of three first-order equa-
tions as outlined in Equation 9.7. Therefore, the three equations are written as
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where u and v are the first and second derivatives of f, respectively. The two con-
ditions in Equation 9.129 are given at x = 0. However, the third condition, given 
by Equation 9.130, is u → 1 as x → ∞, making the system a BVP. An initial-value 
problem is obtained if the value of v = d2f/dx2 is guessed at x = 0. The Runge–Kutta 
method may then be applied to the first-order equations in Equation 9.131 with the 
following boundary conditions:

	 At x f u v s= = = =0 0 0: 	 (9.132)

where s is a guessed value which must be adjusted by means of a correction 
scheme until the condition given by Equation 9.130 is satisfied.

Appendix B.29 presents the computer program in MATLAB for this problem. 
The ode45 function is used for solving the three coupled first-order ODEs. The 
three dependent variables are f, u, and v. A vector y is used to represent these 
three scalars as components, so that the right-hand sides of Equation 9.131 and 
the initial conditions are specified in terms of y. The initial-value problem is first 
solved with a chosen value of v(0) = s and then with an incremented value s + Δs, 
with Δs taken as 0.001 here. A quantity edge is chosen as 6.0 to represent x → ∞. 



426	 Computer Methods for Engineering with MATLAB® Applications

The value of u = df/dx at edge is then determined for s and s + Δs. This allows us to 
compute the derivative du∞(A)/dA, where u∞ represents the value of u for x → ∞. 
The desired value of u∞ is 1.0 and the Newton–Raphson correction scheme, given 
by Equation 9.105 is employed. This gives an improved value sim of the guessed 
boundary condition v(0) as
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The improved value of s is now taken and the above procedure repeated. This pro-
cess is carried out until the value of u∞ becomes 1, within a specified convergence 
parameter ep, that is,

	 u ep∞ − ≤1 	 (9.134)

The various symbols used are defined in the program. The right-hand sides 
of the three equations are defined by the function rhs1.m, which is also given in 
Appendix B.29. Thus, b = β and the initial conditions are given by the vector y0. 
As mentioned above, the three dependent variables f, u, and v are represented by 
the vector y. The parameters such as ep, edge, and Δs, chosen by the user, must be 
varied to ensure that the results are independent of the values chosen. It was found 
that an ep value of 10−3, edge larger than 6.0 and Δs of 10−3 were quite adequate.

The numerical results obtained are shown in Figures 9.20 and 9.21, in terms 
of the variation of f, u, and v with the independent variable x. Physically, u versus 
x represents the velocity distribution, which goes from zero at the wedge surface 
to 1.0 far away from the wedge. The dimensionless velocity gradient v is related 
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FIGURE 9.20  Computed variation of the functions f, u = (df/dx), and v = (du/dx), in Example 
9.5, with the independent variable x, at β = 0. Here, edge is taken as 10 and ep as 10−3.
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to the frictional force due to the fluid. At β = 0, from Equation 9.128, d3f/dx3 = 0 
at x = 0, since f = 0 at x = 0. This is reflected in the zero gradient, at x = 0, of 
the curve of v versus x. The results are shown for edge = 10 and ep = 10−3. The 
choice of the value of edge is an important consideration. Since the boundary 
condition is given for x → ∞, a large value of x is needed for satisfying this con-
dition. The initial choice of edge may be based on results available from earlier 
computations. Otherwise, an arbitrary value is taken and gradually varied until 
the results are not affected by a further variation. It is also important to vary the 
initial guessed value of s to ensure that the results do not depend on the starting 
guess. Figure 9.22 shows the variation of s with the number of iterations, as the 
correction scheme proceeds. It is seen that the convergence is quite rapid and 
that the result is independent of the starting value of s over a fairly wide range. If 
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FIGURE 9.21  Computed results at β = 0.5 for Example 9.5.
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the scheme does not converge after a large number of iterations, the initial guess 
should be changed and the calculation repeated.

This problem can also be solved by using the various methods and algorithms 
discussed earlier. The function ode45 is chosen here in order to demonstrate the 
ease and versatility of using this function for higher-order ODEs. The problem con-
sidered here is a complicated one, but it can be seen that root solving can easily 
be applied with methods for solving initial-value problems to obtain the desired 
solution. Fortran may also be employed for the solution of this problem using a 
similar approach. However, the programming is more complicated, as given by 
Jaluria (1996).

Example 9.6

A rod of length L has its two ends at temperatures T1 and T2. It loses energy by 
convection at the lateral surface, as shown in Figure 9.23. If the temperature is 
assumed to be uniform over any given cross section, the temperature T in the rod 
is a function only of x, the distance from one end. Then the governing equation 
for T(x) is
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where k is a property known as thermal conductivity of the rod material, A is the 
area of cross section of the rod, p is its circumferential perimeter, h is the convec-
tive heat transfer coefficient and Ta is the ambient air temperature. The equation 
may be nondimensionalized by the use of dimensionless temperature θ and dis-
tance X, defined as follows:
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The governing equation then becomes
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FIGURE 9.23  Conduction heat transfer in a rod, as considered in Example 9.6.
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Here P is a dimensionless parameter that characterizes the problem. Solve this 
equation by the finite difference method for (T2–Ta)/(T1–Ta) = 0.5 and P = 0, 0.5, 
1.0, 5.0, and 25.0.

SOLUTION

By nondimensionalizing the governing equation, we can apply the numerical 
results obtained to a wide range of physical parameters, given here as k, A, L, h, p, 
and Ta. The equation to be solved is
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with the following boundary conditions:
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These conditions follow from the definitions of θ and X and from the given tem-
perature ratio (T2–Ta)/(T1–Ta).

In order to use the finite difference approach for this problem, we take N 
nodal points over the interval, as shown in Figure 9.24. Therefore, the interval 
0 ≤ X ≤ 1 is divided into (N–1) equal subintervals of length ΔX. Then the value of 
X at the node points is denoted by Xi, where Xi = (i–1)ΔX, for i = 1, 2, . . ., N. Also, 
ΔX = 1/(N–1), since the total dimensionless length is 1.0. The finite difference 
equation is
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or
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12 0Δ θ θ
	

(9.141)

This equation is applied at each interior nodal point, to give rise to (N–2) equations 
which form a tridiagonal system. Also, θ = 1.0 for i = 1, and θ = 0.5 for i = N.

1 2 3 4 5 N

Δx

FIGURE 9.24  Subdivision of the rod in Example 9.6 for employing the finite difference 
approach.
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Appendix B.30 gives the computer program in MATLAB and Appendix C.16 
the corresponding one in Fortran for solving this second-order ODE. The symbols 
employed in the programs are indicated at the beginning. The parameter P and 
the number of grid points N are chosen by the user. The boundary conditions are 
employed to set the values at the two extreme grid points. Equation 9.141 is used 
to generate the tridiagonal matrix, whose three terms in each row are denoted 
by A(I), B(I), and C(I), respectively. The boundary conditions give θ(1) and θ(N), 
which yield the constants on the right-hand side of the first and last equations of 
the set. In the Fortran program, subroutine TRIDIAG is used to solve this system 
of equations and give the temperatures at the nodal points. In MATLAB, the script 
file given earlier for Example 6.2 is used. The algorithm and the computer program 
were discussed in detail earlier and are not repeated here.

Figure 9.25 shows the computed temperature distributions. The number of grid 
points N is taken as 51 for these results. At P = 0, the distribution is linear. This 
result is expected, as seen from Equation 9.137, which gives d2θ/dX2 = 0 for P = 0 
and, thus a linear variation for this case. As P becomes larger, the distribution devi-
ates from the linear variation. At P = 25.0, the temperature θ is found to be zero, 
or T = Ta, over a substantial portion of the rod. This indicates that the heat inputs 
at the two ends of the rod are lost in short distances near these ends, resulting in 
uniform temperature at Ta over much of the rod. These results were also compared 
with the analytical solution of Equation 9.137, and a good agreement between the 
two was obtained. For further details on the physical aspects of this problem and 
other similar ones, see Incropera et al. (2006). Such problems commonly arise in 
heat and mass transfer processes of interest in chemical and mechanical engineer-
ing systems.

9.8  SUMMARY

The solution of ODEs is discussed in this chapter. The methods for solving the first-
order equation are presented in detail since higher-order equations and boundary 
value problems are generally solved by reducing them to an equivalent system of 
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FIGURE 9.25  Computed temperature distributions for Example 9.6, with the number of 
grid points N taken as 51.
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first-order equations, which are then solved by these methods. The methods consid-
ered include Euler’s method and its modifications, Runge–Kutta methods, multistep 
methods, and predictor–corrector methods. Euler’s method is an inaccurate, although 
simple, method and is rarely used. It is considered here mainly because of its sim-
plicity which allows the presentation of the basic concepts involved in solving ODEs. 
The modified Euler’s method and the improved Euler’s method, which is also known 
as Heun’s method, are second-order accurate and are often used in engineering 
applications if a very high level of accuracy is not needed.

The Runge–Kutta methods are among the most popular numerical schemes for 
solving ODEs. Although usually less efficient than the corresponding predictor–
corrector methods, they have the advantages of being self-starting and simpler to 
program. The Runge–Kutta methods are very widely used in engineering problems, 
particularly if the problem is to be solved only a few times with different parametric 
values. MATLAB functions ode23 and ode45 use these methods to generate lower 
and higher accuracy schemes, respectively, for solving initial-value problems.

If a substantial computational effort is involved, the predictor–corrector methods 
will be more appropriate, since these methods are more efficient and allow a simpler 
estimation of the TE, per step, which can be employed for a better control on the 
accuracy of the numerical results. The multistep methods, such as the Adams–
Bashforth and Adams–Moulton methods, are seldom used by themselves, since a com-
bination of the open and closed formulas leads to the predictor–corrector methods 
which have the advantages of both formulas. However, multistep and predictor–cor-
rector methods are generally not self-starting, and a Taylor-series expansion of the 
dependent variable or a Runge–Kutta formula of the same order must be employed 
to compute the first few steps. Among the predictor–corrector methods discussed 
here are Adams method, Milne’s method, and Hamming’s method. All three meth-
ods are comparable in accuracy, although Milne’s method has the smallest TE. 
However, it is unstable for certain equations. Hamming’s method uses a modifier 
based on the TE to improve the estimate of the dependent variable obtained from the 
predictor and, therefore, generally requires no iteration or only one iteration for con-
vergence of the corrector. It also has very good stability characteristics. The choice 
of a predictor–corrector formula for a given application is often a matter of personal 
preference, since all three methods are quite comparable in accuracy and efficiency.

BVPs are frequently solved by converting them into equivalent initial-value prob-
lems. Some of the conditions needed at the initial point are guessed, the differential 
equation is solved, and the guessed values are adjusted until the boundary conditions 
specified at other values of the independent variable are satisfied. Methods based on 
this approach are termed shooting methods, and the predictor–corrector methods are 
particularly suitable for such a solution, since several iterations may be involved and 
an efficient scheme is desirable. Finite difference methods may also be used for solv-
ing BVPs. These methods reduce the differential equation to a system of algebraic 
equations, which can be solved by the standard methods discussed in Chapter 6. 
Generally, finite differencing results in a tridiagonal system which can easily be 
solved by Gaussian elimination. This approach is particularly suitable for linear dif-
ferential equations which give rise to linear algebraic equations. Nonlinear differential 
equations lead to nonlinear systems which must be solved iteratively. Homogeneous 
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equations arise if the differential equation is homogeneous, and the corresponding 
eigenvalue problem may be solved by employing the methods given in Chapter 6.

Higher-order initial-value problems are solved by reducing them to a system of 
first-order equations, which are then solved by the various methods discussed here. 
The solution of a system of simultaneous differential equations is a simple extension 
of the procedure for a single equation. Accuracy and stability of the numerical 
scheme are important considerations in the solution of a given problem. The step size 
may initially be chosen on the basis of an estimate of the TE, if available. However, 
it is important to vary the step size in order to ensure a negligible dependence of the 
results obtained on the chosen value. If the results for two significantly different step 
sizes are close, the numerical scheme is probably stable. In some cases, the available 
estimate of the error and the constraints for stability may be employed for the choice 
of the method and the step size.

Whenever possible, the numerical results must be compared with the analytical 
results available for simpler cases in order to check the accuracy and correctness of 
the computational procedure. Richardson’s extrapolation may also be used for 
improving the accuracy of the results. It is usually better to go to a higher-order for-
mula for greater accuracy than continue to reduce the step size, since the round-off 
error and the computer time increase as the step size is reduced. Several methods 
have been developed in recent years to attain a high level of accuracy while retaining 
the efficiency of predictor–corrector methods, see Gear (1971), Lambert (1973), 
Shampine and Gordon (1975), and Ferziger (1998) for details.

PROBLEMS

	 9.1.	 The differential equation dy/dx = F(x, y), with y = 0 at x = 0, is to be 
solved by Euler’s method. If the function F(x, y) is zero or infinite 
at x = 0, how would you start the computation? Is this approach also 
applicable to the fourth-order Runge–Kutta scheme?

	 9.2.	 A stone is thrown vertically upward in air at a velocity of 50 m/s. A 
frictional drag AV2, where A is a constant and V is the velocity, acts 
on the stone in the direction opposite to that of the motion. The stone 
rises until the velocity becomes zero and then accelerates downward 
to the ground. Its velocity is governed by the following equations, 
while going upward and while coming down, respectively:

	

d
d
d
d

V
t

g AV

V
t

g AV

= − −

= −

2

2

		  where t is time and g is the gravitational acceleration, given as 9.8 m/s2. 
If A is given as 10−3 m−l, solve the first equation to obtain the time 
when velocity becomes zero. Using this as the initial condition for the 
second equation, find the velocity attained by the falling stone in the 
time taken for the upward motion. Use Euler’s method and vary the 
time step Δt to ensure that the results are not significantly affected by 
the step size chosen.
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	 9.3.	 Problem 9.2 may also be formulated in terms of the vertical distance x by 
noting that V = dx/dt. The resulting equation for the upward motion is

	
d
d

d
d

2x
t

g A
x
t2

2

= − −
⎛
⎝⎜

⎞
⎠⎟

		  The following initial conditions are given

	 At    and
d
d

 m/st x
x
t

= = =0 0 20:

		  Using Euler’s method, solve this problem to find the maximum height 
to which the stone rises. Also, solve the problem by using the ode45 
function in MATLAB and compare the results with those obtained 
earlier.

	 9.4.	 Repeat Problem 9.2 with A = 0, and compare the numerical results 
obtained with the corresponding values from the exact, analytical 
solution of the differential equation and with those obtained earlier 
for A = 10−3 m−1.

	 9.5.	 A stone is dropped at zero velocity from the top of a building at time 
t = 0. The differential equation that yields the displacement x from the 
top of the building is (with x = 0 at t = 0)

	
d
d

2x
t

g V2 5= −

		  where g is the magnitude of gravitational acceleration, given as 9.8 m/s2, 
and V is the downward velocity dx/dt. Using Euler’s method and also 
the ode23 function, calculate the displacement x and velocity V as 
functions of time, taking the time step as 0.5 s.

	 9.6.	 A stone is thrown vertically upward in air at a velocity of 30 m/s. Due 
to gravity and air friction, the governing ODE, for the velocity V as a 
function of time t, is obtained as

	
d
d
V
t

g AV= − − 1 7.

		  where g = 9.8 m/s2 and A = 0.002 m−1. Solve this equation by Heun’s 
method till V becomes zero or negative, using two step sizes Δx = 0.01 
and 0.1 and compare the results. Plot the results obtained. Also use the 
ode23 command in MATLAB to get the solution and compare with 
your earlier results.

	 9.7.	 A copper sphere of diameter 5 cm is initially at temperature 200°C. 
It cools in air by convection and radiation. The temperature T of the 
sphere is governed by the equation

	 ρ εσCV
T
t

T T h T T A0
4 4d

d
= − − + −⎡⎣ ⎤⎦∞ ∞( ) ( )

		  where ρ is the density of copper, C its specific heat, V0 the volume of 
the sphere, t the time, ε a property of the surface known as emissivity, 



434	 Computer Methods for Engineering with MATLAB® Applications

σ a constant known as the Stefan–Boltzmann constant, T∞ the ambient 
temperature, A the surface area of the sphere, and h the convective 
heat transfer coefficient. The initial condition is as follows:

	 At Ct I= = °0 200:

		  Using Heun’s method, without iteration, solve this differential equa-
tion to find the temperature variation with time, until the temperature 
drops below 50°C. Use the following values:

	

ρ ε

σ

= = =

= × −
∞

9000

5 67 10 8 4

 kg/m    400 J/kg K   0.5

W/m  K    

3

2

C

T. == ° =25 15C    W/m  K2h

		  Employ time steps of 0.5 and 1.0 min, and compare the results obtained 
in the two cases.

	 9.8.	 In the preceding problem, if the surface emissivity ε is low and 
the convective heat transfer coefficient h is high, radiation may be 
neglected to obtain the governing equation as

	
ρCV

T
t

hA T T0
d
d

= − − ∞( )

		  Using the modified Euler’s (second-order Runge–Kutta) method with 
a time step of 1 s, solve this problem for h = 100 W/m2 K. Also solve 
this equation mathematically, and compare the numerical results 
with the analytical solution. Comment on the error in the numerical 
solution.

	 9.9.	 A first-order ODE is given as

	

d
d
y
t

y= −0 5.

		  The initial condition is given as y(0) = 5.0. Write a script-m file to do 
the following:

		  a.	� Solve the differential equation by Heun’s method to obtain y values 
from t = 0 to t = 10.

		  b.	� Use three step sizes: h = 2.0, h = 1.0, and h = 0.1.
		  c.	� Plot the results obtained for the three h values on one figure, using 

a different color or symbol for each case.
		  d.	� The exact (mathematical) solution to the problem is y = 5 exp(–0.5t). 

Plot the exact solution also on the same figure as the numerical 
results.

		  e.	� From these results, what is the most appropriate step size?
	 9.10.	 Apply Richardson’s extrapolation to Euler’s method, and obtain 

expressions for the error and for an improved numerical solution.
	 9.11.	 Solve the nonlinear ODE

	

d
d

   with  
y
x

y x y= + =2 2 0 1( )
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		  by Euler’s method, using step size Δx values of 0.1, 10−2, 10−3, and 10−4. 
Compare the results obtained, and discuss the effect of decreasing the 
step size on the resulting error.

	 9.12.
		

		  A rod of length L is attached at one end to a horizontal support and 
swings about this support, as shown in the figure. The motion of this 
pendulum is governed by

	

d
d

 
2φ
t

g
L2 0+ =sin φ

		  where ϕ is the angle that the rod makes with the vertical at any given 
time t and g is the gravitational acceleration. The initial conditions are 
given as follows:

	
At   and

d
d

t
t

= = =0
6

0: φ
π φ

		  If L is given as 0.2 m and g is 9.8 m/s2, obtain the numerical solution over 
twice the period of oscillation, using Heun’s method, with iteration, to 
solve the corrector equation. The frequency f of the rod is given by

	
f

L
=

g
4 2π

	 9.13.	 A fourth-order predictor–corrector method is used to solve a differ-
ential equation from x = 0 to x = B, with a step size Δx. However, at 
x = B, the error per step is found to be too large, and it is decided to 
reduce the step size to Δx/2. Using extrapolation of the computed val-
ues, outline how this change may be carried out.

	 9.14.	 The height H of water in a tank, whose cross-sectional area is A, is a 
function of time t due to an inflow qin and an outflow qout. The governing 
differential equation arises from a mass balance as

	
A

H
t

q q
d
d in out= −

Mass
m

L
θ
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		  where qin and qout are the volume flow rates, and the density of water is 
taken as constant. The initial height, at t = 0, is zero. Compute the time 
taken for the height to rise to 2 m. The area A is given as 0.03 m2, and 

qin = 6 × 10−4 m3/s. The outflow is given by q Hout m /s= × −3 10 4 3 .  
Solve this problem by the fourth-order Runge–Kutta method. What is 
the height attained at steady state, and how long does it take to reach 
this value?

	 9.15.	 Solve the preceding problem numerically with an initial height of 4 
m and qin = 0. Determine the time taken for the height to drop to 2 m. 
Also solve the equation mathematically, and compare this computed 
value of the time with the analytical result.

	 9.16.	 The temperature of a metal block being heated in an oven is governed 
by the equation

	

d
d
T
t

T= −10 5 0 06. .

		  Solve this equation by Euler’s and Heun’s methods to get T as a func-
tion of time t. Take the initial temperature as 100°C at t = 0.

	 9.17.	 A projectile of mass 0.2 kg is initially at rest. It is accelerated by the 
application of a constant vertical thrust of 10 N for a period of 5 s. 
The frictional drag on the projectile is given as AV 2.5, where A = 10−2 
m−1 and V is the velocity. The gravitational acceleration is 9.8 m/s2. 
Following the discussion in Problem 9.2, obtain the differential equa-
tions for the upward motion. Solve these equations by the use of a 
fourth-order predictor–corrector method to obtain the velocity and 
height as functions of time t, till the projectile returns to the ground.

	 9.18.	

		  A vibrating system consists of a body of mass m attached to a wall 
through a spring, of spring constant k, and a damper, of damping coef-
ficient C, as shown. The displacement x of the mass from its static-
equilibrium position is governed by the equation

	 mx Cx kx�� �+ + = 0

		  where ��x is the second derivative of x with respect to time t, and �x is 
the first derivative. If the initial displacement x(0) is given as 0.1 m 
and the initial velocity �x(0) as zero, use Milne’s method to compute 
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Mass
m

Damper

x

k
C
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the displacement x as a function of time for 0 ≤ t ≤ 2 s. Take m = 5 g, 
C = 20 Ns/m, and k = 500 N/m.

	 9.19.	 Solve the preceding problem with the damper absent, that is, C = 0, 
and compare the results with those obtained earlier, with the damper 
present.

	 9.20.	 The flow of a fluid over a flat plate, aligned with the flow, is governed 
by the equation

	 2 0ʹ́ ʹ + ʹ́ =f ff

		  where the primes represent differentiation with respect to an indepen-
dent variable η, that is, f ″ = d2f/dη2. The dimensionless velocity in the 
direction along the plate is given by f ′, which is to be computed. The 
dimensionless quantity f is termed the stream function. The boundary 
conditions for this problem are as follows:

	

At       
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η

η

= = ʹ =
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:
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f f
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		  Employing the fourth-order Runge–Kutta method, solve this BVP. For 
the application of the second boundary condition, take η = 8 as being 
large enough to represent infinity (see also Example 9.5).

	 9.21.	 If the flat plate in the preceding problem is heated, the temperature in 
the flow adjacent to the plate is governed by

	
θ θʺ ʹ+ =

Pr
2

0f

		  where θ is the dimensionless temperature, f is the stream function 
from Problem 9.20, and Pr is a parameter, known as Prandtl number, 
which is a characteristic of the fluid. The boundary conditions are as 
follows:
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= ∞ =

η

η
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:

:

θ

θ

		  Using the fourth-order Runge–Kutta method, solve this problem to 
obtain θ as a function of η for Pr = 1.0.

	 9.22.	 Use the finite difference approach to solve Problem 9.20. Would you 
expect this method to be more efficient, in computer time, than the 
shooting methods? Also, which method is expected to be more accu-
rate? Discuss.

	 9.23.	
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		  The conduction heat transfer in an extended surface, known as a fin, 
yields the following equation for the temperature T, if the temperature 
distribution is assumed to be one-dimensional in x, where x is the 
distance from the base of the fin, as shown in the figure:

	

d
d

2

2 0
T
x

hp
kA

T T− −( ) =∞

		  Here, p is the perimeter of the fin, being 2πR for a cylindrical fin 
of radius R; A is the cross-sectional area, being πR2 for a cylindrical 
fin; k is the thermal conductivity of the material; T∞ is the ambient 
fluid temperature; and h is the convective heat transfer coefficient. The 
boundary conditions are as follows:
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d
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x T T
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T
x
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= =

0
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:

		  where L is the length of the fin. Solve this equation to obtain T(x) for 
R  = 1 cm, h = 20 W/m2 K, k = 15 W/m K, L = 25 cm, T0 = 80°C, and 
T∞ = 20°C. Use a predictor–corrector method.

	 9.24.	 Solve the preceding problem with the following conditions, which 
make it an initial-value problem:

	
At      

d
d

K/mx T T
T
x

= = = −0 100
4: ,

	 9.25.	

		  A block of wood, resting on a horizontal surface, is attached to a wall 
through a spring, as shown. The displacement x of the block from its 
equilibrium position is governed by

	

d
d

2x
t

k
m
x g

2
= − ± μ

		  where t is time, k the spring constant, m the mass of the block, μ the 
coefficient of friction, and g the gravitational acceleration. The frictional 
force is positive if the velocity dx/dt is negative, and vice-versa. Taking 
m = 2 kg, k = 200 N/m, g = 9.8 m/s2, and μ = 0.4, compute x as a function 
of time, for time t up to 3 s. The initial conditions are as follows:

	
At    and

d
d

t x m
x
t

= = =0 0 1 0: .

Spring Mass
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		  Employ the fourth-order Runge–Kutta method. Also, solve it by using 
the ode45 function and compare the results with those obtained earlier.

	 9.26.	 Solve the following initial-value problem by Hamming’s method, and 
compare the predicted and corrected values for x up to 4.0:
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d
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= = =:

		  Take Δx = 0.1 and study the effect of the chosen convergence crite-
rion on the number of iterations needed for the corrector. Compare 
the converged results with those obtained from the corrector without 
iteration. Discuss the implications of these comparisons.

	 9.27.	 Solve the following linear differential equation by the method of 
superposition:

	

d
d
At     

At    
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x

y

x y

x y

2 2 6
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10 5

+ =

= =

= =

:

:

	 9.28.	
		

		  In the electrical circuit shown, the switch is open and a current I exists, 
where I = E/(Rl + R2). At time t = 0, the switch is closed. The current 
I(t) is then governed by the equation

	
L

I
t

R I E I
E

R R
d
d

   with   + = =
+1

1 2
0( )

		  where L is the inductance in the circuit. Solve this equation by a 
Runge–Kutta formula to obtain I as a function of time, until the cur-
rent is close to steady state. Compare the numerical results obtained 
with the analytical solution:
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		  Take E = 10 V, R1 = R2 = 5 Ω, and L = 1 henry.
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E R2

L

I

R1
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	 9.29.	

		  The capacitor C, in the electrical circuit shown, has an initial charge 
of q0, and at time t = 0, the switch is closed. The governing equation 
for charge q(t) is

	
L

q
t C

q q q
q
t

d
d

  with   and 
d
d

2

2 0
1

0 0 0 0+ = = =( ) ( )

		  Using a Runge–Kutta formula, solve this equation for q0 = 0.1 cou-
lomb, C = 10−4 farad, and L = 0.01 henry. The frequency of oscillation 

of this circuit is given by 1/LC . Obtain q(t) over a few cycles.

	 9.30.	

		  The temperature T(x) in a moving rod, shown in the figure, which loses 
energy to the environment, at temperature T∞, is given by the equation
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1 2
0− − −( ) =∞α

		  where x is the distance from a die out of which the material emerges 
at temperature T0, U is the velocity of the material, h is the convective 
heat transfer coefficient, R is the radius of the material, and α and 
k are material properties known as thermal diffusivity and thermal 
conductivity, respectively. The boundary conditions are as follows:
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		  Employing any shooting method, compute T(x). Take U = 1 mm/s, 
h = 20W/m2 K, α = 10−4 m2/s, k = 100W/m K, T0 = 600K, T∞ = 300 K, 
and R = 0.02 m. For the second boundary condition, start with a large 
value of x, say, 1 m, to represent ∞, and then vary this value until the 
results are not significantly affected by a further increase.

	 9.31.	 Solve the following BVP by a shooting method:
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:

	 9.32.	 Formulate the preceding problem for solution by the finite difference 
method, and outline the numerical scheme that may be adopted to 
solve the resulting algebraic equations.

	 9.33.	

		  The deflection y of a beam, shown in the figure and loaded axially 
with force P, is governed by

	

d
d

   with 
2y
x

P
EI

y y y L2 0 0 0+ = = =( ) ( )

		  where E is the modulus of elasticity of the material, I is known as its 
area moment of inertia, L is the length of the rod, and x is the distance 
from one end. We are interested in finding the smallest value of P for 
this eigenvalue problem, since this gives the first failure mode of the 
rod. Taking P/(EI) as λ, solve this problem by the power method, taking 
five subdivisions of the rod, to obtain the smallest eigenvalue. Find the 
corresponding critical load P, if EI = 1.5 × 106 N m2 and L = 1 m.

	 9.34.	 If a heated vertical plate is placed in a quiescent ambient medium, a 
flow is generated adjacent to the plate because the fluid becomes buoy-
ant due to heating. The dimensionless stream function f, which gives 
the velocity as f ′, and temperature θ in this flow are governed by the 
coupled system of equations
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		  with the boundary conditions

	 f f f( ) ( ) ( ) ( )0 0 1 0 0= ʹ = − = ∞ = ∞ =θ θ( )

		  where the quantity within the parentheses represents the location, 
in the independent variable η, where the condition is applied. The 
primes indicate differentiation with respect to η, and Pr is a param-
eter that depends on the fluid (see Problem 9.21). Solve this system of 
equations by converting it into five first-order equations and employ-
ing the fourth-order Runge–Kutta method, with shooting. Obtain the 
velocity and temperature distributions, f ′(η) and θ(η), respectively, for 
Pr = 1.0. Take η = 8 as being sufficiently large to apply the conditions 
at infinity.

	 9.35.	 In a radiating fin (see Problem 9.23), the temperature T(x) is gov
erned by
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		  with the following boundary conditions:
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		  Here, ε is a property of the surface known as emissivity, and σ is a 
constant (see Problem 9.7). Employing the finite difference method, 
solve this problem for the parametric values given in Problem 9.23, 
with ε given as 0.5 and σ = 5.67 × 10−8 W/m2 K4.

	 9.36. � Solve Problem 9.33 by taking two, three, or four subdivisions of the 
rod for generating the finite difference equations and obtaining the 
polynomial from its characteristic determinant. Compare the com-
puted value of the smallest eigenvalue λmin with the analytical result 
π2/L2.

	 9.37.	 Using the finite difference method, repeat Problem 9.30. Discuss the 
accuracy given by the two approaches. When would the finite differ-
ence approach be the preferred one for such problems?

	 9.38.	 Study the stability of the second-order Runge–Kutta method by con-
sidering the differential equation dy/dx = – ay, where a is a constant. 
Also determine the TE.

	 9.39.	 Outline a numerical scheme for solving the differential equation 
dy/dx = Ax−1/2, where A is a constant and y = 0 at x = 0, without using 
the analytical solution.

	 9.40.	 Consider the differential equation d2y/dx2 = ay, which is to be solved 
by finite difference methods. Discuss the nature of the resulting alge-
braic equations and put them in matrix form. Outline the numerical 
scheme for solving this set of equations and give reasons for your 
choice.
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	 9.41.	 Show that the modified Euler’s method is second-order accurate.
	 9.42.	 Solve the problem of Example 9.2 by Milne’s predictor–corrector 

method, and compare the results with those obtained earlier by the 
Runge–Kutta method. Comment on the difference between the com-
putational effort involved in the two methods.

	 9.43.	 Consider a third-order ODE of the form d3y/dx3 = F(x, y, dy/dx). 
Develop a finite difference scheme for solving this equation if y = A at 
x = a; y = B at x = b; and dy/dx = C at x = a. Assume that F is a linear 
function in the dependent variable y.

	 9.44.	 Consider a nonlinear second-order ODE of the form d2y/dx2 = 
		  F(x, y, dy/dx), where F is nonlinear in y. Using the finite difference 

approach, obtain a numerical scheme for solving this equation. 
Assume the problem to be a boundary-value one with y = A at x = a 
and y = B at x = b.
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10 Numerical Solution of 
Partial Differential 
Equations

10.1  INTRODUCTION

In the preceding chapter, the numerical solution of ODEs, which involve a single 
independent variable, was discussed. However, for a wide variety of problems in 
science and engineering, the dependent variables are functions of two or more 
independent variables, such as time and the spatial coordinate distances. Consequently, 
the differential equations that govern such problems involve partial derivatives and 
are known as partial differential equations (PDEs). These equations arise in almost 
all areas of engineering, for instance, in fluid mechanics, elasticity, heat transfer, 
energy systems, environmental flows, hydraulics, neutron diffusion in nuclear reac-
tors, and structural analysis. The numerical solution of PDEs is generally more 
involved than that of ODEs because of the presence of several independent vari-
ables, each with its own initial and boundary conditions. Therefore, effort is often 
made, whenever possible, by the use of simplifying approximations and transforma-
tions, to reduce the governing PDE to an ODE. However, this simplification is pos-
sible in only a limited number of cases. Because of the complicated nature of PDEs, 
analytical solutions are rarely obtained, and numerical methods are necessary for 
most problems of practical interest.

10.1.1  Classification

Many of the classifications outlined in Chapter 9 for ODEs also apply for PDEs. 
Therefore, the equations may be linear or nonlinear, homogeneous or inhomo
geneous, of first or higher order, and may involve a single equation or a system of 
equations. The initial and boundary conditions are specified in terms of the vari-
ous independent variables, making it possible for the problem to be an initial-value 
problem in relation to one independent variable and a boundary value problem in 
relation to another variable. However, the suitable initial and boundary conditions 
that may be imposed for a given equation are determined by the type of the equa-
tion. Each type demands a particular set of initial and boundary conditions that 
must be specified to obtain a well-posed problem that is amenable to an analytical 
or a numerical solution.
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Let us consider the general form of a second-order PDE in two independent vari-
ables, given as
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(10.1)

where A, B, and C may also be functions of the two independent variables x and y and 
of the dependent variable ϕ and its first-order derivatives. If ϕ appears in the first 
power throughout, the equation is said to be linear. This requires that A, B, and C be 
functions of only x and y and that D contain only linear functions of ϕ and its first-
order derivatives. We shall concern ourselves mainly with linear PDEs in this chapter. 
Nonlinear equations are also frequently encountered, for example, in fluid flow. 
However, the solution of nonlinear equations is usually much more involved than 
linear equations, and only a brief outline of the applicable numerical techniques is 
given later in the chapter.

The classification of the above PDE is based on the sign of B2 – 4AC. The equa-
tion is said to be elliptic when B2 – 4AC < 0, parabolic when B2 – 4AC = 0, and 
hyperbolic when B2 – 4AC > 0. This classification is related to the nature of 
characteristics, which are lines or surfaces along with a disturbance or information 
can propagate. A PDE in two dimensions, as given by Equation 10.1, reduces to 
an  ODE along a characteristic. A hyperbolic equation has two real and distinct 
characteristics, which are often employed to obtain the solution. In this case, a dis-
turbance propagates at finite speed over a finite region, bounded by the two families 
of characteristics. For parabolic equations, the two families of characteristics 
merge, giving rise to an infinite propagation speed and information flow in one direc-
tion. Therefore, in a parabolic equation, the solution at a given point depends only on 
the results obtained along this direction up to the point and not on  results in the 
region beyond it. For time as an independent variable, this implies that the solution 
is affected by the occurrences in the past, but not by those in the future. For elliptic 
equations, complex characteristics are obtained, and, therefore, no directional restric-
tions arise and a disturbance propagates in all directions. The solution at a given 
point is affected by disturbances at every other point in the region where the elliptic 
equation applies. There are no preferred directions, and the solution must be obtained 
over the entire region simultaneously. Therefore, the mathematical character of the 
equation is indicated by its classification, which also determines the suitable bound-
ary conditions and the solution procedure.

10.1.2  Examples

A few examples of the three types of PDEs are considered here for illustration of the 
preceding discussion. A very common parabolic equation is the one-dimensional, 
unsteady, heat conduction equation, which is given as
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where T(x, t) is the temperature, x is a spatial coordinate, t is the time, and α is a 
constant, known as the thermal diffusivity of the material. This equation requires 
the specification of an initial condition, in time, and two boundary conditions, in x. 
Another important parabolic equation is the transient convective–diffusive 
transport equation, which may be written for a one-dimensional problem as
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where ϕ(x, t) is the dependent variable, such as temperature, concentration, or den-
sity, and C and D are constants. Again, an initial condition in time and two bound-
ary conditions in x are needed. This equation applies for practical problems such 
as material movement in chemical reactors, extrusion of plastics, and transport of 
discharged effluents in a water stream.

Two elliptic equations that are frequently encountered in engineering problems 
are Laplace’s and Poisson’s equations, written, respectively, as follows:
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where ϕ(x, y) is the dependent variable and β may be a constant or a function of x and 
y. These equations arise in several areas such as fluid mechanics, electrostatics, elas-
ticity, and conduction heat transfer. In conduction, the dependent variable becomes 
the temperature T and β is a distributed heat source. Boundary conditions are needed 
at all the edges of the solution domain. Frequently, these are specified as the value of 
ϕ, of its derivative, or of a linear combination of the two, at the boundaries.

A common hyperbolic equation is the wave equation, written as
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where c is the propagation velocity of the wave and ϕ(x, t) is the physical dependent 
variable, such as the displacement of a string. Two initial conditions are needed, and 
the spatial domain may or may not be bounded. If bounded, boundary conditions are 
needed at the two boundaries of the region. This equation governs the vibration of a 
string as well as the behavior of waves in a given medium. Another simple hyper-
bolic equation is the first-order convection equation, given as
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where the physical quantity ϕ(x, t) is convected at constant velocity c. The character-
istics are straight lines, given by x – ct = constant, for this equation, which may be 
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differentiated with respect to x or t to obtain a second-order PDE of the form given 
by Equation 10.1.

10.1.3  Basic Considerations

The preceding discussion illustrates that one must determine the type of the given 
PDE before proceeding to its numerical solution. If more than two independent vari-
ables are to be considered, the equation retains the characteristics of the three types 
of equations discussed above, as determined by the highest derivatives in each of the 
independent variables. Unsteady, two-dimensional, mass diffusion, for instance, is 
governed by the equation

	

∂
∂

=
∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

C
t

D
C
x

C
y

2

2

2

2

	
(10.8)

where C is the concentration of a diffusing chemical species and D is known as the 
mass diffusivity. The problem retains the parabolic nature with respect to its time 
dependence and the elliptic behavior with respect to the spatial coordinates. 
Therefore, one marches in time, to obtain the concentration distribution at each time 
interval, using the distribution at the preceding interval. The concentration distribu-
tion at a specified time, which is generally taken as zero, is needed as the initial 
condition. Also, conditions involving the concentration and/or its derivatives must be 
specified at all the boundaries of the region.

The classification of PDEs is discussed here in terms of second-order equations, 
which are the most frequently encountered equations in engineering applications. 
However, higher-order equations are also of interest in many problems. Fourth-order 
equations arise, for instance, in fluid flow and in solid mechanics. These equations 
can usually be solved by the methods applicable to the second-order elliptic equa-
tions, although the finite difference equations are obviously more involved. In fact, a 
fourth-order PDE may often be broken down into two second-order equations, which 
are solved simultaneously. First-order equations also occur in a few cases. Very 
often, these equations have real characteristics and can be solved by the methods 
employed for the hyperbolic equation of second order.

The main approach to the solution of a PDE is based on the reduction of the equa-
tion to a system of algebraic equations, which are then solved by direct or iterative 
methods to yield the value of the dependent variable at a finite number of mesh 
points. Two techniques that are commonly employed for generating the governing 
system of algebraic equations are the finite difference and the finite element methods. 
Finite difference methods apply the approximations to the PDE at a finite number of 
grid points in the computational domain. Finite element methods divide the region 
into a finite number of subdivisions. The integral form of the PDE is then applied to 
each element, and the integrals are minimized or the integral statement satisfied, 
using interpolation functions that contain adjustable parameters, in order to satisfy 
the conservation principles. In both cases, a system of algebraic equations is obtained 
from the application of the method at the boundaries and in the interior region.
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The finite element method has become very important in recent years because of 
its versatility in treating a wide variety of boundary conditions, material property 
variations, and complicated geometries. However, it is generally more involved than 
the finite difference method and is advantageous to use only when some of the 
complications mentioned above are present. We shall restrict our discussion in this 
chapter to relatively simple problems and largely to the finite difference methods of 
solving them. A brief discussion of the finite element approach is also given later in 
the chapter, including a comparison with the finite difference technique. Also, there 
are other methods available for solving PDEs, such as boundary element, control 
volume, and spectral methods. In most cases, the PDE is reduced to a system of 
algebraic equations, which are solved by the methods given in Chapter 6.

In this chapter, the three types of PDEs mentioned above are considered, and an 
introductory treatment of their solution is given. The subject is an extensive one, and 
various complexities arise in diverse engineering applications; see, for instance, the 
book by Jaluria and Torrance (2003) on the numerical solution of heat transfer 
problems. Here, we are interested mainly in a consideration of the basic approach to 
the numerical solution of these different types of equations. Therefore, a few simple 
equations are taken and their solution is discussed. The parabolic equations are treated 
first since the methods for solving them are similar to those used for ODEs and since 
they also form the basis for some of the methods used for elliptic equations.

10.2  PARABOLIC PDEs

The solution domain in parabolic equations stretches outward indefinitely in one 
coordinate direction, say, z, from the given initial values, as shown in Figure 10.1. 
The equation is solved for the dependent variable ϕ by advancing, or marching, in the 
direction of increasing or decreasing value of the independent variable z, depending 

x

z = 0
Initial conditions

Computational domain

Direction of solution
advancing

Boundary
conditions

Boundary
conditions

z

FIGURE 10.1  Solution domain for a parabolic PDE, along with the necessary boundary and 
initial conditions.
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on the problem and starting with the initial conditions at z = 0. The solution must 
satisfy the prescribed boundary conditions, in the other independent variable x, as 
the solution advances in z. For results obtained with increasing z, the solution at any 
z depends on the values of ϕ at smaller z but is independent of those at larger z. This 
implies a definite direction for disturbance propagation. A physical analogy to this 
circumstance is a fast-flowing river in which a disturbance at a given location travels 
downstream but does not affect the flow upstream. The solution procedures for 
parabolic equations are, therefore, based on marching outward from the initial 
conditions in one of the independent variables, while satisfying the given boundary 
conditions in the other.

10.2.1  Numerical Solution with an Explicit Scheme

Let us consider the one-dimensional transient heat conduction problem, given by 
Equation 10.2, as an example of a parabolic PDE. Therefore, the dependent variable 
is the temperature T(x, t), which is governed by the equation
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Since the equation contains the second derivative in x and only the first derivative in 
time t, two boundary conditions are needed in x and a single initial condition in t. 
These may be prescribed in terms of T(x, t) as
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where x = a and x = b represents the boundaries of the region and T0 is the initial 
condition. In general, T0 may be a function of x, and A and B may be functions of 
time. However, for simplicity these are taken as constants here. The problem, as 
given above, is properly posed for obtaining the solution for t > 0.

The above parabolic PDE may be solved numerically by finite difference 
methods. A space-time grid, with Δx and Δt denoting the corresponding mesh sizes, 
is taken, as shown in Figure 10.2. Then, the finite difference approximations to the 
derivatives are applied to the given equation at each grid point. Several finite differ-
ence approximations can be obtained, depending on the representations used for the 
derivatives, as discussed in Chapter 4. For instance, a forward difference representa-
tion may be used for the partial derivative in time to obtain

	

∂T
t

T T

t
i j i j

∂
=

−+1, ,

Δ 	
(10.10)



Numerical Solution of Partial Differential Equations	 451

where the subscript (i + 1) denotes the values at time (t + Δt), and i those at time t. 
The spatial location is given by j. For the mesh shown in Figure 10.2, x = jΔx and 
t = iΔt. The TE is O(Δt), as obtained in Chapter 4.

A central difference approximation may be employed for the second derivative to 
obtain the approximation at time t and location x as
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with a TE of O[(Δx)2]. In this expression, the second derivative in x is approximated 
at time t. If the above finite difference representations are substituted into Equation 
10.2, the resulting equation may be written as
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where the TE is O(Δt) + O[(Δx)2]. Therefore,
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FIGURE 10.2  Space-time grid for the solution of a parabolic PDE by finite difference 
methods.
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where F is a constant known as the grid Fourier number and is given by
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Equation 10.13 gives the temperature at time (t + Δt) at the grid point whose 
spatial coordinate is x = jΔx, in terms of the temperatures at time t at the grid points 
with coordinates (x – Δx), x, and (x + Δx). The temperatures at x = a and x = b remain 
constant at A and B, respectively, because of the given boundary conditions. The 
initial condition gives the temperatures at the grid points at time t = 0 as T0, where T0 
may be given as a constant or as a function of x. Using Equation 10.13, the temperature 
distribution at time t = Δt may be determined from the given temperatures at t = 0. 
Similarly, the distribution at the second time step t = 2Δt is obtained, employing the 
computed values at the first time step. Therefore, the solution is obtained at increasing 
values of time t. This time marching may be continued indefinitely. However, the 
process is generally terminated when a specified time tmax has been attained or when 
the steady state, as given by a negligible change in the solution with increasing time, 
is reached. In most cases, a steady-state circumstance is attained at large time, and a 
convergence criterion may be applied to the solution in order to terminate the 
computation when the solution is sufficiently close to the steady state. A convergence 
criterion is generally needed since the solution may approach the steady state 
asymptotically, thus taking infinite time, theoretically, to reach it exactly. The choice 
of the convergence criterion, therefore, affects the computational time taken to obtain 
the solution. Also, as discussed in Chapter 2, the convergence criterion must be 
varied to ensure a negligible dependence of the numerical results on the chosen 
parameter.

If F is chosen as 1/2, Equation 10.13 becomes
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which implies that the new temperature at a grid point is the average of the old 
temperatures at the two adjacent grid points. A graphical method, known as the 
Schmidt–Binder method, has been developed on the basis of this equation. A uni-
form distribution of grid points is taken, and the temperature at a point, for the next 
time step, is simply given by the intersection of the normal to the x-axis at this point 
with the line joining the graphical points representing the present temperatures at the 
two adjacent grid points, as shown in Figure 10.3. Therefore, the solution to the dif-
ferential equation, Equation 10.2, may be obtained graphically over a desired time 
interval, starting with the initial conditions.

The computational scheme of Equation 10.13 gives the temperatures at time 
(t + Δt) in terms of known temperatures at time t. Therefore, the temperatures at a 
given time step may be determined explicitly from known values at the previous 
time step. This method is known as the explicit Euler method and is also referred 
to as the  forward time central space (FTCS) method, because of the finite 
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difference approximations used. It provides the simplest computational procedure 
for computing the time-dependent temperature distribution, starting with the initial 
conditions.

10.2.2  Stability of Euler’s (FTCS) Method

The above method becomes unstable at large values of F, and stability is assured 
only if
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Therefore, an amplification of the round-off and TEs arises if F > 1/2 and may lead to 
an unbounded growth in the solution as the computation advances in time, resulting in 
overflow. This condition for numerical stability is obtained by stability analysis, consid-
ering the growth of errors introduced into the solution; see, for instance, Roache (1976), 
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FIGURE 10.3  Graphical solution of transient heat conduction in a wall, with F = 1/2 
(Schmidt–Binder method).



454	 Computer Methods for Engineering with MATLAB® Applications

Ferziger (1998), and Jaluria and Torrance (2003). A physical explanation may also be 
given in terms of Equation 10.13. If F > 1/2, the coefficient of Ti,j on the right-hand 
side of Equation 10.13 is negative. This implies that a larger value of the temperature 
Ti,j at time t gives rise to a smaller value of the temperature Ti+1,j at the same location 
at the next time step. Similarly, a smaller value of Ti,j at time t results in a larger value 
of Ti+1,j at (t + Δt). The result is an oscillatory and unstable solution. Figure 10.4 
shows the nature of this instability in terms of the computed results for transient 
conduction in a plate of thickness L at different values of F (from Jaluria and Torrance, 
2003). The temperature distributions are obtained by solving Equation 10.2 with 
A = B = Ts, where Ts is a constant temperature. The results are shown in terms of 
dimensionless coordinate distance x/L and temperature θ = (T – Ts)/(T0 – Ts). Only 
half the conduction region is shown because of symmetry. Clearly, instability arises 
as F increases beyond 0.5.

The major problem with the stability criterion given by Equation 10.16 is the 
constraint that it imposes on the allowable time step for a given grid spacing Δx, 
which is generally chosen as small to keep the TE small. For a given value of the 
thermal diffusivity α, the maximum permissible time step Δt is given by the stability 
constraint as
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A small value of Δt is desirable for keeping the TE, which is of order Δt in this for-
mulation, down to a desired level. However, the stability criterion generally limits 
the time step to a value that is much smaller than that needed for maintaining the 
accuracy of the solution. Therefore, the explicit method often severely constrains the 
time step and results in excessive computational time. Consequently, other methods 
have been developed which, although often more involved than the FTCS method, 
have better stability characteristics.

10.2.3  Implicit Methods

In the FTCS explicit method, the finite difference approximation for the second spa-
tial derivative, ∂2T/∂x2, is written, in Equation 10.11, at time t. A family of implicit 
methods may be obtained by approximating this derivative at a different time, 
between t and t + Δt. The resulting finite difference equation is
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where γ is a parameter that lies between 0 and 1. Therefore, the second derivative is 
written as a weighted average of the finite difference approximations corresponding 
to time levels t and t + Δt.
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If γ = 0, the FTCS explicit method, given in Section 10.2.1, is obtained. For 
γ = 1/2, the second derivative is evaluated midway between the two time levels, and 
the TE can be shown to become O[(Δt)2] + O[(Δx)2]. This method, known as the 
Crank–Nicolson method, is very popular for the solution of parabolic equations. If 
γ = 1, the second derivative is evaluated at time t + Δt, and the formulation is known 
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FIGURE 10.4  Time-dependent temperature distributions for one-dimensional conduction 
in a plate, governed by Equation 10.2, at various values of the grid Fourier number F, with 
time t in seconds. (Adapted from Jaluria, Y. and Torrance, K.E., Computational Heat Transfer, 
2nd edn, Taylor & Francis, New York, NY, 2003.)
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as the fully implicit or the Laasonen method. The TE is the same as that for the 
FTCS explicit method. From Equation 10.18, the finite difference equations for the 
Crank–Nicolson and the fully implicit methods are, respectively,

	
− + + − = + − ++ + + + − +FT F T FT FT F T FTi j i j i j i j i j i j1 1 1 1 1 12 1 2 1, , , , , ,( ) ( ) −−1 	 (10.19)

	
− + + − =+ + + + −FT F T FT Ti j i j i j i j1 1 1 1 11 2, , , ,( )

	 (10.20)

As seen from Equation 10.18, a set of simultaneous linear algebraic equations 
must be solved for implicit methods to obtain the temperature distribution at time 
t + Δt. A tridiagonal system arises which is conveniently solved at each time step by 
Gaussian elimination, as discussed in Chapter 6, to obtain the time-dependent tem-
perature distribution. The solution marches in time, starting with the known initial 
values, until steady state or a specified time tmax is reached. The numerical proce-
dure is more involved than the FTCS explicit method. However, the implicit meth-
ods generally have much better stability characteristics. The Crank–Nicolson 
implicit method is unconditionally stable, and much larger time steps can be taken 
as compared to the FTCS explicit method. The only constraint on the time step is 
generally because of accuracy considerations. However, oscillations that generally 
remain bounded do arise in the solution for certain problems at large values of F 
and may lead to a restriction on Δt, although at much larger values than that given 
by Equation 10.17.

The FTCS method, on the other hand, often restricts the time step to much 
smaller values than those demanded by the desired accuracy of the results. The 
Crank–Nicolson method also has a lower TE in time, O[(Δt)2], as mentioned above, 
allowing a larger time step for given accuracy. This arises because the finite differ-
ence approximation for the time derivative is in effect obtained midway between 
the two time levels t and t + Δt, making it a central difference approximation with 
TE of O[(Δt)2]. Therefore, this method yields numerical results of greater accuracy 
than those from the FTCS method with a smaller computational cost. Even for non-
linear equations, which require iteration for solving the resulting set of algebraic 
equations, the Crank–Nicolson method is generally superior because only a few 
iterations are often needed for the linearized tridiagonal set. The numerical proce-
dure may be graphically represented in terms of a computational molecule, which 
illustrates the grid points involved in the computation. Figure 10.5 shows the com-
putational molecules for the FTCS, Crank–Nicolson, and fully implicit methods. 
These indicate the relationships between the values at the neighboring grid points. 
Examples 10.1 and 10.2  demonstrate the application of the FTCS and Crank–
Nicolson methods, respectively.

10.2.4  Other Methods and Considerations

The major advantage of implicit methods over the explicit methods is the numerical 
stability, which allows much larger time steps in the computation. This consideration 
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is particularly important in regions where the solution varies slowly with time, for 
example, near the steady state. Because the resulting algebraic equations are in the 
tridiagonal form, the number of arithmetic operations needed to solve the set for 
each time step is only O(n), n being the number of grid points where the tempera-
tures are to be computed. This is of the same order as the number of arithmetic 
operations necessary for taking one time step using the explicit method. Generally, 
the computer time taken by the implicit methods per time step is around twice that 
for the FTCS method. Since, in many cases, the time step Δt for the implicit methods 
may be taken as large as 10 to 100 times that allowed by the explicit method, due to 
stability considerations, a substantial reduction in computer time may be obtained 
by the use of implicit methods. The explicit method has the advantage of simpler 
programing.

Since the computation for the explicit method requires only the known values 
from the previous time step, the method can be used for solving nonlinear equations 
without much difficulty, whereas the solution of the simultaneous nonlinear equa-
tions that arise in the implicit methods requires iteration. Nonlinear equations arise 
in many physical problems, for instance, in the one-dimensional transient conduc-
tion problem if the material properties are not constant but vary with the tempera-
ture. Explicit methods are also advantageous to use if the boundary conditions are 
time-dependent.

Because of this advantage of an explicit procedure over implicit methods, for 
nonlinear problems, for time-dependent boundary conditions, and for other com-
plexities in the problem, several other explicit methods with better stability charac-
teristics than the FTCS method have been developed. Two explicit methods that are 
unconditionally stable for the problem under consideration are the Saul’yev and 
Dufort–Frankel methods. The corresponding finite difference equations for these 
methods, for the one-dimensional unsteady conduction problem, are
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FIGURE 10.5  Computational molecules for the explicit Euler (FTCS), Crank–Nicolson, 
and fully implicit methods.
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and
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In the first case, two equations are used, with the computation in the first one 
proceeding in the positive x direction for the (n + 1)th time interval and in the second 
one in the negative x direction for the (n + 2)th time interval. The two equations are 
used consecutively to advance by two time steps. In each equation, the right-hand 
side is explicitly known from previous calculations, one obtained with increasing j 
and the other with j decreasing. In the second method, a central difference approxi-
mation is used for the derivative in time, giving a TE of O[(Δt)2], and the temperature 
at the jth grid point is split into the values at two time steps t and t + Δt. Although this 
method is unconditionally stable, it is not self-starting because values at t – Δt are 
needed for computing those at t + Δt. Thus, it requires another method to start the 
computation. Also, it can behave poorly under certain conditions and is not widely 
used. Various other explicit and implicit methods are given by Carnahan et al. (1969), 
Smith (1978), and Ferziger (1998).

10.2.5  Multidimensional Problems

The methods discussed here for solving the one-dimensional transient problem can 
easily be extended to multidimensional problems. Two-dimensional, unsteady diffu-
sion processes are governed by Equation 10.8 for mass transfer and the following 
equation for heat conduction:
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Using the FTCS explicit formulation, we obtain the finite difference equation as 
follows:
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where the first subscript refers to time, the second subscript to the location in the x 
direction, and the third subscript to the location in the y direction. The correspond-
ing step sizes are Δt, Δx, and Δy, respectively. Therefore, the temperature distribution 
at the next time step, t + Δt, may be obtained in terms of the known values at time t. 
Two grid Fourier numbers F1 and F2 arise, where
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Also, the finite difference equation is

  
T F F T F T T F Ti j k i j k i j k i j k i j k+ + −= − − + + +1 1 2 1 1 1 21 2 2, , , , , , , , , ,( ) ( ) ( ++ −+1 1Ti j k, , ) 	 (10.25b)

Stability considerations, similar to those for the one-dimensional problem, arise, 
and the implicit methods may be employed advantageously. If Δx = Δy, the grid 
Fourier number F (= 2F1 = 2F2) ≤ 1/4 for numerical stability in the explicit FTCS 
method. From Equation 10.25b, stability requires that 1 – 2F1 – 2F2 ≥ 1. As men-
tioned earlier, the equation retains the characteristics of a parabolic equation in time 
and those of an elliptic equation in the spatial coordinates. Therefore, the solution is 
obtained by marching in time, while satisfying the boundary conditions at the 
boundaries of the region. Similarly, the three-dimensional transient conduction 
problem may be solved. The constraint on F, for Δx = Δy = Δz, where z is the third 
coordinate, is obtained as F ≤ 1/6 from stability considerations. For further details, 
see Smith (1978), Carnahan et al. (1969), and Jaluria and Torrance (2003).

The numerical solution of parabolic differential equations has been discussed 
here in terms of the transient heat conduction problem, since it is an important 
problem and also because several other parabolic equations of engineering interest 
are of similar form. For instance, the equation that governs the motion of fluid due to 
a plate being suddenly set into motion, from rest, in an infinite medium is
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where u is the velocity in the direction of motion x, and ν is a property of the fluid known 
as kinematic viscosity. The treatment given here may easily be applied to this equation 
and also extended to other forms of parabolic equations. In several cases, there is no 
time dependence, and the equation is parabolic in one of the spatial coordinates. An 
example of such a circumstance is the boundary-layer flow over a surface. In this case, 
the variation with time is replaced by a variation with x, the direction in which the main 
flow occurs; see Figure 10.6. Information travels downstream to larger x from a given 
point, but is assumed not to travel upstream to smaller x, similar to the time-dependent 
problem. However, this problem is nonlinear, as are several problems of practical inter-
est, and explicit methods are often easier to use in such cases.
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distribution

Edge of the boundary
layer

Solid surface

Fluid stream

yU∞

U=U∞
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FIGURE 10.6  Sketch of the boundary-layer flow over a flat surface. This flow is governed 
by a parabolic PDE.
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Several methods that employ the useful features of both implicit and explicit 
methods have also been developed and are among the most popular techniques for 
solving parabolic PDEs in two or more dimensions. One such method is the alternating 
direction implicit (ADI) method, discussed in the next section. This method employs 
the implicit formulation in one direction and treats the other direction explicitly, 
the two directions being interchanged from one step to the next. The result is a 
tridiagonal system at each step. The ADI method is the most important method in 
a class of methods known as splitting methods, several of which are available in 
the literature.

The imposition of the boundary conditions for parabolic PDEs has been consid-
ered here simply in terms of the value of the dependent variable, such as T, being 
specified at the boundaries. However, in practical problems, several other boundary 
conditions arise, particularly those related to the gradient of the dependent variable. 
Such boundary conditions and the relevant finite difference formulations are 
considered later and also in Example 10.2.

Example 10.1

In a chemical manufacturing system, a process involves the diffusion of salt into a 
layer of water. The layer is of thickness L and initially has a uniform salt concen-
tration C0. At time t = 0, the layer is brought into contact with saline solution at 
one surface, and the concentration at this surface is raised to Cs, while the other 
surface is maintained at concentration C0. The mass diffusivity, also known as the 
diffusion coefficient, of salt in water is denoted by D. The governing PDE for the 
concentration C(x, t) in the water layer, where x is the coordinate distance mea-
sured from the surface whose concentration is raised to Cs, is
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(10.27)

Figure 10.7 illustrates this problem. The corresponding initial and boundary condi-
tions are as follows:

For t ≤ 0 : C = C0 at all x	

	 For :  at and at st C C x C C x L> = = = =0 0 0 	 (10.28)

Using the FTCS explicit method, solve this one-dimensional transient diffusion 
problem to obtain the time-dependent concentration distribution in the material.

SOLUTION

In the problem, the numerical values of the physical quantities, such as concen-
tration and the water layer thickness, are not given, so that the problem may be 
solved in generalized terms. Thus, the governing equation and the boundary con-
ditions may be nondimensionalized to obtain a general solution that can be used 
for different sets of physical quantities.
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We start by defining the following dimensionless quantities:
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where X, t , and θ are the dimensionless distance, time, and concentration, respec-
tively. We can formulate the given problem in terms of these quantities by using 
the above definitions to replace the physical variables by dimensionless ones. 
Then the governing equation is obtained as

	

∂
∂

=
∂
∂

2

2

θ θ
X t 	

(10.30)

The initial and boundary conditions become

	 θ θ θ( , ) , ( , ) , ( , )X t t0 0 0 1 1 0= = = 	 (10.31)

Therefore, the above dimensionless, parabolic, PDE may be solved to obtain 
θ( , )X t . If the concentrations at the boundaries, mass diffusivity, and thickness of 

x

t
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L

C0

Cs

Steady-state concentration
distribution

x

FIGURE 10.7  The physical problem, the coordinate system, and the expected transient 
behavior of the concentration distribution for Example 10.1.
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the layer are given, the physical concentration distributions can be also determined 
from Equation 10.29. This implies that the problem must be solved only once in 
dimensionless terms, instead of separately for each set of physical parameters. For 
this reason, the equations are often nondimensionalized and results are obtained in 
generalized terms, as outlined here.

For the FTCS explicit method, the forward difference approximation is used for 
the first derivative in time, and central difference for the second derivative in the 
spatial coordinate x. This yields

	 θ θ θ θi j i j i j i jF F+ + −= − + +1 1 11 2, , , ,( ) ( ) 	 (10.32)

where
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Here, the subscript i represents the time step, and j the spatial grid point. Therefore, 
t i t= Δ  and X = jΔX. Appendix B.31 gives the MATLAB® script file and Appendix 
C.17 gives the Fortran computer program for solving this problem by the explicit 
method. An interactive program is written so that the number of grid points, or grid 
size, and the initial concentration may be given as inputs. The time step is taken as 
the largest value from Equation 10.17 to avoid numerical instability. For the chosen 
total number of grid points, the mesh length is determined so as to obtain a total 
dimensionless distance of 1.0. The output is printed at specified time intervals, 
given by a chosen number of time steps, and the computation is carried out until 
a specified time is attained. A convergence criterion may also be employed to 
stop the computation when steady-state conditions are reached, as indicated by 
a concentration distribution that does not vary with time. The computed results 
may be stored, printed, or plotted. The variable names employed in the program 
are defined at the beginning of the program, and the various important steps in the 
computation are indicated.

Figures 10.8 and 10.9 present the numerical results obtained with F = 0.5, 
which gives the maximum time step for a stable numerical scheme. The initial 
dimensionless concentration θ is zero throughout the plate, and the steady-state 
distribution is a linear variation from 1.0 at one surface to 0.0 at the other. We 
can easily obtain the steady-state result by setting the transient term in Equation 
10.30 equal to zero and solving the ODE d2θ/dX2 = 0, to obtain θ = 1 – X as the 
steady-state distribution. Figure 10.8 shows the concentration distribution at vari-
ous time intervals. Note that the steady-state distribution is attained by t = 0 5. . 
Figure 10.9 shows the variation of the dimensionless concentration θ with time t  
at several locations within the plate. Note that the temperatures increase sharply 
from the initial value of 0.0, as time t  increases. The final approach to the 
steady-state value is a gradual one. Also, the concentration starts changing from 
zero at a later time for points which are farther away from the surface x = 0, 
where the step change in concentration occurs. This indicates a finite speed 
for the propagation of the mass diffusion effects in the FTCS method. At each 
time step, only the next grid point is affected, as seen from Equation 10.32 and 
Figure 10.3. For details on the physical aspects of this problem and other similar 
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ones in heat and mass transfer, standard textbooks in the area, such as Incropera 
et al. (2006), may be consulted.

Example 10.2

A flat plate of thickness L is initially at a uniform temperature T0. At time t = 0, 
the temperature at one surface is raised to Ts, while the other surface is kept 
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FIGURE 10.8  Computed concentration distribution at various time intervals for Example 10.1. 
The dimensionless time step �t  and the grid size ΔX are taken as 0.01 and 0.1, respectively.
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perfectly insulated. The thermal diffusivity of the material is denoted by α. Solve 
this problem by the Crank–Nicolson method.

SOLUTION

This problem is very similar to the one discussed in Example 10.1. The governing 
equation is Equation 10.2. The given initial and boundary conditions may be writ-
ten for this problem as follows:

For t ≤ 0: T = T0  at all x

	
 For :  at and att T T x

T
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x Ls> = =
∂
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= =0 0 0
	

(10.34)

The last condition implies a perfectly insulated surface. The heat transfer 
at the surface is proportional to ∂T/∂x and is zero if the temperature gradient is 
zero. Dimensionless quantities similar to those defined in Equation 10.29 may be 
employed to obtain the governing dimensionless equation. Thus, the nondimen-
sionalization employed here is
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and the governing equation is
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The initial and boundary conditions become
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The governing equation, with the above initial and boundary conditions, is 
solved by the Crank–Nicolson iterative scheme. The finite difference equation for 
this method is obtained for Equation 10.36 as

	 − + + − = + − ++ + + + − +F F F F F Fi j i j i j i j i j i jθ θ θ θ θ θ1 1 1 1 1 121 21, , , , , ,( ) ( ) −−1 	 (10.38)

where F t X= Δ Δ/( )2, i represents the time step, and j is the spatial grid location. 
This equation may be written more concisely as

	 A B C Rj j jθ θ θ− ++ + =1 1 	 (10.39)

where the θ values are at the next time step, i + 1, and R is the expression on 
the right-hand side of Equation 10.38. Therefore, R is a function of the θ values 
at the present time step i and is thus known. The constants A, B, and C are the 
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coefficients on the left-hand side of Equation 10.38 and depend on the value 
of F chosen. No constraints arise in this problem due to stability considerations, 
and the time step and the grid size are chosen on the basis of desired accuracy. 
However, as mentioned earlier, bounded oscillations may arise in this method for 
some problems at large values of F. In most cases, accuracy is the main consider-
ation in the choice of the grid size and the time step.

The MATLAB script file for this problem is given in Appendix B.32 and the 
corresponding Fortran computer program is given in Appendix C.18. An interac-
tive program is written to allow the user to enter the input parameters, such as 
time step, initial conditions and the number of grid points. A tridiagonal matrix is 
generated from Equation 10.38, which is divided by 2 to simplify the computation. 
The form of the equation is given by Equation 10.39. The appropriate boundary 
conditions, given by Equation 10.37, are also incorporated to obtain the tridiagonal 
matrix, as discussed earlier in Example 6.2. The total number of grid points n is 
given, the left boundary being i = 1 and the right one being i = n. For the right 
boundary, X = 1, the second-order backward difference approximation, given in 
Figure 4.8, is used so that the error is O[(Δx)2]. Thus,
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where j is replaced by n for the right boundary. A tridiagonal matrix, with rows 
from 2 to n – 1, corresponding to the interior points in the computational domain, 
is obtained. This tridiagonal matrix is solved to obtain the time-dependent tem-
perature distribution, which then serves as the input for the computation of the 
distribution at the next time step. The boundary temperatures are obtained using 
the equations given above. This process is repeated until a specified time limit, 
or the steady-state circumstance, is attained. Results are obtained and plotted at 
specified time intervals.

Figure 10.10 shows the computed temperature distributions at different time 
intervals. The initial temperature is zero throughout the plate, and then at time 
t = 0, the temperature θ at the left surface, X = 0, is raised to 1.0 and held at this 
value. The right surface, X = 1, is insulated. Steady-state conditions are obtained 
when θ = 1.0 throughout the plate, within the chosen convergence criterion. This 
figure shows that the temperature distributions approach the steady-state distribu-
tion as time elapses. Steady state is attained when time t  reaches a value of around 
4.5. This is much larger than the time taken to reach steady state in Example 10.1; 
see Figure 10.9. However, in the previous example, one surface was maintained 
at θ = 0, whereas in this example, the entire plate is heated or cooled. This implies 
a greater transfer of energy in the present case, as compared to the mass transfer 
in Example 10.1. Figure 10.11 shows the variation of the temperature at several 
locations in the plate with time. The temperatures are found to rise sharply from 
the initial value of 0 and to approach the steady-state value of 1.0 gradually as 
time increases.
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In both Examples 10.1 and 10.2, we have considered one-dimensional transient 
mass and heat diffusion problems in order to relate the computational procedure 
to the physical aspects of such problems. However, the numerical schemes dis-
cussed here can easily be extended to other physical circumstances that are gov-
erned by parabolic PDEs. Such problems arise, for instance, in fluid flow as given 
by Equation 10.26, diffusion of moisture in porous media, neutron diffusion in 
nuclear reactors, and water seepage into the ground.
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FIGURE 10.11  Variation of the temperature at several locations in the plate with dimen-
sionless time t  for Example 10.2. The approach to steady state is again seen at large time.
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10.3  ELLIPTIC PDEs

In an elliptic PDE, a disturbance at a given point propagates in all directions, in 
contrast to a parabolic PDE in which there is a definite direction for the flow of 
information. Therefore, the solution domain in an elliptic PDE is an enclosed one, 
with boundary conditions specified everywhere along the edges of this domain, as 
shown in Figure 10.12. The solution at each point is influenced by the solution at 
every other point in the region where the elliptic PDE applies. Therefore, the numeri-
cal solution at the finite number of grid points taken in the region must be obtained 
simultaneously. This characteristic of elliptic PDEs generally makes the numerical 
solution more involved than that for parabolic PDEs, in which a marching procedure 
may be adopted to advance the solution in a particular direction, say, in the direction 
of increasing time, starting with the initial conditions. Because of the advantages of 
such a marching scheme, particularly in numerical stability and convergence 
characteristics, elliptic equations are often formulated as time-dependent parabolic 
equations, which are solved by time marching to yield the desired solution to the 
elliptic equations at steady state.

10.3.1  Finite Difference Approach

Several important physical processes are governed by elliptic PDEs. These include 
conductive and convective heat transfer, mass transfer, the diffusion of neutrons in a 
nuclear reactor, deflection of a membrane or a plate, interaction of electromagnetic 
fields, and fluid flow. In order to discuss the numerical techniques for solving elliptic 
PDEs, let us consider a specific physical problem, namely, that of the two-dimensional 
steady-state heat conduction in the rectangular region shown in Figure 10.13. In the 
absence of heat sources in the region, the temperature T(x, y) is governed by Laplace’s 
equation
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FIGURE 10.12  Solution domain for an elliptic PDE, along with the necessary boundary 
conditions.
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where x and y are the coordinate axis, as indicated in Figure 10.13. The boundary 
conditions are given in terms of specified values of the temperatures. Such a problem 
in which the value of the unknown variable, being temperature in this case, is given 
at the boundaries is known as a Dirichlet problem, and the conditions as Dirichlet 
boundary conditions. If the gradient of the variable is specified instead at the given 
boundary, the condition is known as Neumann boundary condition, considered in 
Example 10.2 and also later in this section. If a relationship between the gradient and 
the value of the variable is given at the boundary, the condition is known as mixed 
boundary condition. The following discussion of the numerical methods for the solu-
tion of elliptic PDEs is directed at the above elliptic equation with Dirichlet bound-
ary conditions. However, most of the methods considered are applicable to other 
boundary conditions and other elliptic equations as well.

We wish to determine the temperature T(x, y) in the interior of the region shown 
in Figure 10.13 by solving the governing elliptic PDE, Equation 10.42. The boundary 
conditions, shown in Figure 10.13, may be written as follows:
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Therefore, the value of the dependent variable T(x, y) is completely specified on the 
boundaries of the region in which Equation 10.42 applies. To obtain a numerical 
solution of the given elliptic equation by finite difference methods, we impose a grid 
with a mesh size of Δx by Δy on the region, as shown in Figure 10.14. Then the 
numerical solution consists of determining the temperatures at the finite number of 
grid points in the solution domain. As done earlier for parabolic PDEs, the tempera-
ture T(x, y) at a grid point (i, j) is denoted by Ti,j, where

	 x i x y j y= =Δ Δ   and   	 (10.44)

x

T(x, y)T1 T2

T4
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FIGURE 10.13  Coordinate system and boundary conditions for steady-state heat conduc-
tion in a rectangular region.
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Similarly, the temperatures at other grid points are labeled, as shown in Figure 10.14. 
If the length L in the x direction is divided into m equal subdivisions, and the height 
H in the y direction into n equal subdivisions, then
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(10.45)

Thus, i varies from 0 to m and j from 0 to n.
We may now proceed to obtain a finite difference approximation to the given 

elliptic PDE. The second partial derivatives at the grid point (i, j) may be approxi-
mated, in central difference form and in terms of the temperatures at the neighboring 
grid points, as follows:
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FIGURE 10.14  Subdivision of the computational region by means of a grid with a mesh size 
of Δx by Δy in the two directions x and y. The nomenclature for the labeling of the tempera-
tures at the grid, or mesh, points is also indicated.
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where the TE in Equation 10.46 is O[(Δx)2] and that in Equation 10.47 is O[(Δy)2], as 
obtained in Chapter 4. Substituting these finite difference approximations into 
Equation 10.42, we obtain
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The above finite difference equation can be written at each of the interior points 
in the computational domain. Therefore, a system of [(m – 1) (n – 1)] simultaneous 
linear equations is obtained. These equations may be solved by the methods discussed 
in Chapter 6 to obtain the [(m – l) (n – 1)] unknown temperatures at the interior grid 
points. Frequently, a square mesh, with Δx = Δy, is employed. In this case, Equation 
10.48 may be written as
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which implies that the temperature at a given grid point is simply an average of the 
temperatures at the four adjacent grid points. The computational molecule, which 
indicates the effect of the values at the neighboring grid points on that at a given 
node, is shown in Figure 10.15a for this second-order approximation of Laplace’s 

(a) (b)

Δx
Δy

Δx
Δy

(c)

Δx
Δy

FIGURE 10.15  Computational molecules for various finite difference schemes for solving 
Laplace’s equation: (a) second-order approximation; (b) and (c) two different fourth-order 
approximations.
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equation. We can also obtain higher-order approximations by using a larger number 
of points in the neighborhood of the grid point being considered; see Figure 4.9. 
Figures 10.15b and c show, for instance, the computational molecules for fourth-
order approximations of Laplace’s equation. The accuracy of the numerical results 
can be improved by the use of a higher-order difference method or by a reduction of 
the mesh size. However, the first approach has problems near the boundaries because 
of the large number of neighboring points needed for the approximation at a given 
nodal point. Therefore, grid refinement, with the spacing between the grid points 
being reduced until the numerical results are essentially independent of the mesh 
size, is often preferred for improving the accuracy.

As shown by Equation 10.48, we are faced with the task of solving a large set of 
linear algebraic equations. If the number of points at which the numerical solution is 
to be obtained is M in the x direction and N in the y direction, where M = m – 1 and 
N = n – 1 for the problem considered above, the number of unknowns is MN. The set 
of equations to be solved for this problem may be written as

	 AT B= 	 (10.50)

where the coefficient matrix A is of size MN × MN and B is a vector whose elements 
are all zero except for those that arise from the boundary conditions. The unknown 
temperatures constitute a vector T whose elements are T1,1, T1,2, . . . , T1,N, T2,1, . . .,  
TM,N. Then the coefficient matrix A from Equation 10.49 is of the following form:
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where only the elements at the diagonal, on either side of it, and in the two distant 
bands shown are nonzero.

Therefore, the coefficient matrix is not tridiagonal but has two additional bands, 
which are one element wide and are far removed from the main diagonal. In fact, the 
last nonzero element in the first row and the lowest nonzero element in the first 
column are both at the (N + l)th position. Since the coefficient matrix is very sparse, 
although not tridiagonal, iterative methods can be employed advantageously as 
compared to direct methods for solving this system of equations. The number of 
equations is generally large, since even for a coarse grid with M = N = 20, we have 
400 equations. We shall first consider iterative methods for solving the system of 
linear equations obtained from the finite difference formulation, followed by a dis-
cussion of some direct methods that have been developed in recent years.
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10.3.2  Numerical Solution by Iterative and Direct Methods

Several iterative methods for solving simultaneous linear equations were discussed 
in Chapter 6. These included the Jacobi, the Gauss–Seidel, and the SOR or SUR 
methods. It was indicated that diagonal dominance is needed for the convergence of 
these methods. The finite difference equation, Equation 10.48, can be written for 
each grid point. Then the coefficient of Ti,j is the largest one in magnitude and its 
absolute value is equal to the sum of the coefficients of the other terms. The system 
of equations can be arranged so that the dominant terms appear along the diagonal. 
As discussed in Section 6.6, the absolute value of the diagonal coefficient must be 
larger than the sum of the absolute values of the remaining coefficients in each row 
of the matrix for a diagonally dominant system that is guaranteed to converge. 
However, the present system of equations, where the absolute value of the diagonal 
coefficient is equal to the sum of the absolute values of the remaining coefficients in 
each row, has adequate diagonal dominance to converge in most cases. Therefore, for 
the application of iterative methods, Equation 10.48 is solved for Ti,j, which consti-
tutes the diagonally dominant term, to give
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This equation yields Equation 10.49 if Δx = Δy.
In the Jacobi iteration method, we start with initial, assumed values of the depen-

dent variable at all the grid points in the computational domain. Using this assumed 
initial distribution, we obtain the next approximation to the solution from Equation 
10.52 and compare it with the starting solution. If a specified convergence criterion is 
not satisfied, the computed results are used in Equation 10.52 to obtain the next 
iteration. This process is repeated until the given convergence criterion is satisfied. 
Generally, the convergence criterion demands that the change in the value of the 
dependent variable from one iteration to the next be less than a prescribed small quan-
tity ε, at each grid point. The computed results from two successive iterations are, 
therefore, stored, and the values are updated only after the completion of the computa-
tion for a given iteration. This numerical scheme is given by the recursive formula
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where the superscript l or l + 1 refers to the number of the iteration. The starting 
values are denoted by the superscript (0). As discussed in Chapter 6, this method is 
inefficient for conventional, or single-processor, computers, since the old values of 
the unknown are replaced by the new ones only after all the values for a given itera-
tion have been computed and since both of the iterative solution vectors must be 
stored.
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A considerable improvement in the computational procedure for single-processor 
machines, such as PCs and workstations, is obtained by the Gauss–Seidel method, 
which employs the most recent values of the unknowns in the computation. Generally, 
a systematic traverse is used, for instance, by increasing i at a given value of j, which 
is itself increased by 1 after each traverse in the x direction. Then Ti – 1,j and Ti,j – 1 are 
calculated before Ti,j for a given iteration. Therefore, the iterative scheme for the 
Gauss–Seidel method is given by
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The previous value of an unknown is replaced by the new value as soon as it is 
obtained, and, therefore, only one value of each unknown needs to be stored. The 
programming is also simplified, since we must deal with only one iterative value 
of the temperature at a given grid point. The method converges if the system is 
diagonally dominant, which is adequately achieved in the problem being consid-
ered. Convergence is generally obtained with even weaker diagonal dominance. 
The systems of linear equations obtained from the finite difference approxima-
tion of the differential equations that arise in common engineering problems gen-
erally have sufficient diagonal dominance for the iterative methods to be employed 
satisfactorily.

The convergence of the iterative scheme is given in terms of the change in the 
computed values from one iteration to the next. If the magnitude of this change, at 
each grid point, is less than a specified small number ε, which is known as the con-
vergence parameter, the scheme is assumed to have converged. This convergence 
criterion may be given in terms of the absolute or the normalized value of the change 
in the temperatures. Therefore, the iterative process is terminated if
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or
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The value of ε is taken as small, say, 10−4 for the second convergence criterion, and 
is varied over a few orders of magnitude to ensure that the computed results are 
independent of the value chosen.



474	 Computer Methods for Engineering with MATLAB® Applications

10.3.2.1  Point Relaxation
The Gauss–Seidel method converges about twice as fast as the Jacobi method, on 
conventional computing machines with a single CPU, for a given convergence crite-
rion. The rate of convergence can be improved considerably by the use of the SOR 
method, discussed in Chapter 6. This method is given by the formula
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where ω is a constant, known as the relaxation factor, and [ ],
( )Ti j
l+1

GS is the value 
obtained from the Gauss–Seidel iteration formula, such as Equation 10.54. For SOR, 
ω lies between 1 and 2. The method diverges for ω > 2; the Gauss–Seidel scheme is 
obtained for ω = 1; and SUR is obtained if 0 < ω < 1. Substituting Equation 10.54 
into Equation 10.56, we can write the recursion formula for the SOR method for the 
problem under consideration as
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There is an optimum value of the relaxation factor, ωopt, at which convergence 
is the fastest. For a square region, with n = m, the Gauss–Seidel method converges 
about twice as fast as the Jacobi method and the SOR method, at the optimum 
value of the relaxation factor, six and 19 times faster, respectively, than the Gauss–
Seidel method for n = 10 and n = 30 (Jaluria and Torrance, 2003). Therefore, if 
ωορt  is known, the SOR method is very efficient. However, ωορt varies with the 
PDE, the boundary conditions, the grid spacing, the geometry of the computa-
tional domain, and so on. It is not known in most cases, and the analytical deter-
mination of its value is quite involved. Therefore, one generally determines it by 
solving the problem at different values of ω to obtain the optimum or by employing 
the information available on other similar problems. If several problems of a par-
ticular type are to be solved, it would be worthwhile to spend the effort and time 
to determine ωορt.

The rate of convergence is quite sensitive to the value of ω and, for a value far 
from the optimum value, the convergence rate is close to that for the Gauss–Seidel 
method. For some simple cases, ωορt may be obtained analytically. For Laplace’s 
equation in a rectangular region with Dirichlet conditions (see Figure 10.13), the 
optimum value is given by

	
ωopt = + −

2
1 1 2 1 2( ) /a 	

(10.58a)



Numerical Solution of Partial Differential Equations	 475
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Therefore, for m = n = 20, ωορt = 1.7295; and for m = n = 30, it is 1.8107, with Δx = Δy 
in these cases. Figure 10.16 shows the dependence of the number of iterations, for 
convergence, on ω for a rectangular region. The need to employ a value close to the 
optimum is clear. It may also be mentioned here that SUR is generally used to 
improve the convergence characteristics of the iterative process, particularly for 
nonlinear equations which may diverge when Gauss–Seidel iteration is applied. 
Though we have discussed only point relaxation here, several other similar relaxation 
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FIGURE 10.16  Variation of the number of iterations, normalized by the number at the opti-
mum, for convergence of the second-order finite difference scheme for Laplace’s equation in a 
square region, with the relaxation factor ω, for the SOR method. Note the strong dependence 
on ω and the considerable reduction in number of iterations as ω varies from 1.0 (Gauss–
Seidel) to the optimum value ωopt. Here, the number of subdivisions in either direction is 20.
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methods have been developed to employ blocks of unknowns, rather than a single 
unknown, in order to increase the efficiency of the method. Such methods, known as 
block relaxation are commonly used in the solution of elliptic PDEs, as discussed in 
greater detail by Jaluria and Torrance (2003).

10.3.2.2  Direct Methods
Several direct methods, based on elimination, were discussed in Chapter 6. Among 
the most important of these are the Gaussian elimination and the matrix decomposi-
tion methods. Many other methods, such as Gauss–Jordan and matrix inversion 
methods, are based on Gaussian elimination. For a tridiagonal matrix system, 
Gaussian elimination may be used very effectively, as demonstrated in Example 6.2. 
In this case, the number of arithmetic operations required are of order n, instead of 
n3 for a general system of n equations. In the triangular decomposition method, such 
as Crout’s method, the coefficient matrix A is factored into lower and upper triangular 
matrices, each of which may be solved by forward and backward substitution. 
However, except for tridiagonal systems, these direct methods are often not as 
efficient as the iterative methods, such as the optimized SOR method, and also give 
rise to larger round-off errors. Therefore, iterative methods are frequently used for 
solving the large systems of algebraic equations obtained from the finite difference 
approximation of elliptic PDEs. Nonlinear algebraic equations are obtained if the 
elliptic PDE is nonlinear. In such cases, iteration is generally necessary for the solu-
tion of the equations, and iterative methods, such as the Gauss–Seidel and relaxation 
methods, are particularly appropriate.

Recently, specialized direct methods for solving finite difference approximations 
of the Poisson and Laplace equations in simple geometries have been developed. 
These methods include the cyclic reduction and the fast Fourier transform methods, 
which are among the most efficient means for solving these equations in simple, 
two-dimensional regions for Dirichlet or Neumann boundary conditions. A discus-
sion of these methods is beyond the scope of this book. Further details and refer-
ences may be obtained from Ferziger (1998) and Jaluria and Torrance (2003). 
Generally, available computer software is used for the application of these methods, 
since the algorithms tend to be very involved.

10.3.3  Other Methods

An efficient iterative method for solving elliptic PDEs is the ADI method, which 
gives rise to a tridiagonal set in each iterative step. The method employs the unknown 
values of the dependent variable from the current iteration along one direction and 
known values from the previous iteration along the other direction. In the next step, 
these directions are reversed. An acceleration parameter �ω, similar to that in the 
SOR method, is used to improve the rate of convergence. The recursion formulas for 
two iterative steps are
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These two steps are considered together to constitute one complete iteration. The 
tridiagonal sets obtained are solved by Gaussian elimination, and the iteration is 
repeated until convergence is attained. This method, developed by Peaceman and 
Rachford (1955), is used extensively for two-dimensional steady-state diffusion prob-
lems, governed by elliptic equations, and transient problems, as outlined below.

In several cases, particularly for nonlinear problems, the elliptic PDE is solved by 
considering an equivalent time-dependent problem, which is parabolic in time. 
Laplace’s equation may, for instance, be solved by obtaining the transient solution of 
the equation
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where the steady-state solution at large time is the required solution of the elliptic 
PDE. One could use time marching to solve this problem, using the various tech-
niques outlined in the preceding section. The ADI method may be employed without 
iteration for this problem and is one of the most efficient methods for such two-
dimensional transient problems. The corresponding finite difference equations, with 
the superscripts denoting the time step, are as follows:
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The two equations are employed together consecutively to advance by two time 
steps. Tridiagonal systems are obtained in both cases. This approach for solving an 
elliptic PDE is frequently employed for nonlinear equations, such as those encoun-
tered in fluid mechanics and in heat transfer. The main advantage is that time march-
ing generally yields better stability and convergence characteristics.

10.3.4  Other Geometries and Boundary Conditions

We have considered simple rectangular regions and Dirichlet boundary conditions in 
the above discussion. However, there are many complexities that arise due to irregu-
larly shaped regions and more involved boundary conditions. Since these consider-
ations are particularly important in real physical problems, a brief discussion of these 
aspects is included here.
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Consider a boundary at x = 0, as shown in Figure 10.17 with a distribution of grid 
points. If the boundary condition is of Neumann type, that is ∂T/∂x = B, where B is a 
constant, the value T0,j at the boundary is not known and must be obtained from a 
finite difference approximation of the derivative in terms of the neighboring grid 
points. The simplest formulation is
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which employs a forward difference in x and is accurate only to order Δx. We can 
derive a more accurate approximation of the derivative by employing the Taylor-
series expansions for the three points adjacent to the boundary, as discussed in 
Chapter 4. This gives
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This formulation has a TE of order (Δx)2 and may be written for all the points on the 
boundary. Therefore, an equation for T0,j, in terms of the values at the neighboring 
grid points, is obtained. Similar equations may be written at other boundaries.

Another approach is to employ a fictitious point T−1,j outside the boundary, as shown 
in Figure 10.17, and write ∂T/∂x in the central difference approximation; that is,
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Then T−1,j is eliminated between this equation and the finite difference equation of 
the given PDE, written for the grid point (0, j) at the boundary. This also gives an 
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FIGURE 10.17  Distribution of grid points at a boundary, showing the fictitious point T−1, j 
outside the region.
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error of O[(Δx)2]. However, a row of unknowns at points outside the boundary is 
introduced, increasing the computational effort. Similarly, other, more involved, 
boundary conditions may be treated. The resulting equations for the surface grid 
points are used along with the equations for the interior region to obtain the 
solution.

An approach frequently employed in fluid flow and in heat and mass transfer is 
based on the mass, momentum, and energy balance equations for the finite regions 
represented by the surface grid point. For instance, a rectangular region of dimensions 
Δy × (Δx/2) may be placed symmetrically surrounding the grid point with tempera-
ture T0,j. Then finite difference equations are written to balance the mass, momen-
tum, and energy transported across the boundaries of this finite region against those 
stored in the region. This approach gives an accurate and physically representative 
equation for the dependent variable at the surface node. The equation will also be 
consistent with basic physical or chemical laws governing the transport processes 
under consideration. This approach is the preferred one for many transport phe-
nomena of interest in engineering applications. For further details, see Jaluria and 
Torrance (2003).

Frequently, we are faced with an irregular region, and it becomes necessary to 
obtain an equation applicable to an interior grid point that lies near such a boundary. 
Consider a point C in a square mesh, as shown in Figure 10.18, with points A and B 
at the boundary. Since these points A and B are at distances β1Δx and β2Δy, respec-
tively, away from C, where β1 and β2 are constants that are both less than 1.0, the 
finite difference equation, such as Equation 10.49, derived for the interior region 
does not apply at C. One method of determining the value at C is to use interpolation 
between the points A and 3, or B and 4. An average of these interpolations may also 
be employed to represent the value at C.

Another method is to employ Taylor series expansions to derive the finite differ-
ence approximations for the derivatives at the point C in terms of the values at the 
points A, B, C, 3, and 4. These are then substituted in the given PDE to yield the 
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FIGURE 10.18  Grid points of a rectangular mesh near an irregular boundary.
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equation that applies at C. For instance, the finite difference approximation for 
Laplace’s equation at point C is obtained by this method as follows:

	

2
1

2
1

2
1

2
1

2 2
0

1 1 2 2

3

1

4

2 1 2

T T T T
TA B
Cβ β β β β β β β( ) ( )+

+
+

+
+

+
+

− +
⎛
⎝⎜

⎞
⎠⎟

=
	

(10.65)

Therefore, TC may be obtained in terms of the values at the boundary and the interior 
points. This applies for Dirichlet conditions. For further details and for other boundary 
conditions, see Forsythe and Wasow (1960) and Smith (1978).

We conclude this discussion on the finite difference solution of elliptic PDEs by 
repeating that a finite difference approximation is obtained for the given PDE, employ-
ing a chosen grid in the computational region, to yield a system of algebraic equations. 
For Dirichlet conditions, the values at the boundary grid points are known. For other 
boundary conditions, algebraic equations are obtained that relate the values at the 
boundaries with those at the interior grid points. The resulting system of equations 
may be solved by direct or iterative methods to yield the desired solution. Iterative 
methods are more frequently used because of the large number of equations that arise 
and the simplicity in programming. Iteration is usually necessary for nonlinear equa-
tions. Time marching may be employed in some cases, and specialized direct methods 
are also available for some simple problems. Examples 10.3 and 10.4 discuss the 
Gauss–Seidel and the SOR methods, respectively, for solving elliptic PDEs.

10.3.5  Finite Element and Other Solution Methods

In the preceding sections, we considered the solution of parabolic and elliptic PDEs 
by means of finite difference approximations, which are applied to the governing 
differential equations. However, in recent years, the finite element method has gained 
in popularity for practical problems in engineering. Finite difference methods are 
simpler to comprehend, and it is easier to develop computer programs for them. They 
are still widely used for engineering problems because of this ease in programming, 
and, therefore, we discussed them in detail here. However, practical circumstances 
often involve complexities, such as complicated geometries, boundary conditions, 
and material property variations. In such cases, the finite element approach provides 
a very versatile method that can be employed for a wide range of engineering prob-
lems. Frequently, available software is used, since the development of the computer 
program is generally involved and time-consuming.

The finite element method is based on the integral formulation of the conservation 
principles. The computational region is divided into a number of finite elements, sev-
eral forms and types of which are available for different geometries and governing 
equations. Triangular elements for two-dimensional problems and tetrahedral elements 
for three-dimensional problems are commonly employed, as shown in Figure 10.19. 
The variation of the dependent variable is generally taken in terms of simple polynomi-
als and frequently as linear within the elements. Integral equations that apply for each 
element are derived, and the conservation postulates are satisfied by minimization of 
the integrals or by reducing their weighted residuals to zero. The latter gives rise to a 
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commonly used method known as Galerkin’s method. Thus, the distribution of the 
dependent variable within the elements, and then in the entire region, is obtained. As 
mentioned above, the method is particularly suitable for irregular boundaries and com-
plicated boundary conditions. Consequently, it is widely used for practical problems in 
engineering. For details on finite element methods, see the books by Mitchell and Wait 
(1977), Huebner et al. (1995), and Reddy and Gartling (2010).

Two other approaches have gained in importance in recent years. These are the 
boundary element method and the control volume approach. The former is similar to the 
finite element method, except that the integral formulation for the computational domain 
is transformed to one that applies for the bounding surface. Although somewhat limited 
in its applicability, this method is finding much interest for many problems of practical 
interest, particularly for those where the phenomena at the surface are of main concern. 
The method has the advantage, over finite element methods, of a smaller number of ele-
ments and unknowns. See the books by Brebbia (1977), Banerjee and Butterfield (1981), 
and Beer et al. (2010) on the background and application of this method.

The control volume approach is also based on the integral formulation. The physical 
region is divided into a set of nonoverlapping control volumes, such as those obtained 
by drawing lines parallel to the coordinate axes midway between the nodes; see the 
dashed lines in Figure 10.14. The integral conservation statement is applied to each 
control volume, using interpolation between the node points to approximate the inte-
grands. Thus, the volume and surface integrals are approximated, using values at the 
nodes. The resulting algebraic equations are similar to those obtained from the finite 
difference approach, which is based on the differential equations. However, the finite 
volume method satisfies the conservation principles more accurately and is particu-
larly valuable for the numerical formulation of the boundary conditions. Greater 
flexibility and versatility is obtained as compared to the finite difference methods 
and the programming is generally much simpler than that for the finite and boundary 
element methods. See Patankar (1980) and Jaluria and Torrance (2003) for details on 
this method.

FIGURE 10.19  Finite element discretization, employing triangular elements.
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Example 10.3

The transverse deflection ϕ of a flexible membrane, which cannot resist any bending, 
is governed by the Poisson equation
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where p is the pressure on the membrane and T is the tension per unit length 
at the edges. For small deflections, T may be assumed to be constant. A square 
membrane, of 1.0 m side, is fixed at its boundaries and is subjected to a pressure 
of 4 × 107 N/m2; see Figure 10.20. The tension T is 108 N/m. Employing the Gauss–
Seidel method, compute the variation of the deflection ϕ across the membrane. 
Take Δx = Δy = 0.1 m.

SOLUTION

The elliptic PDE to be solved numerically is
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with the boundary conditions
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FIGURE 10.20  Coordinate system for computing the deflection ϕ(x, y) of a square mem-
brane, as considered in Example 10.3.
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where ϕ is also in meters. The origin is taken at the lower left corner of the 
membrane and x and y are along two sides of the square, as shown in Figure 
10.20. Taking the grid spacing to be equal in both directions, that is, Δx = Δy, we 
obtain the finite difference approximation of the governing equation as follows:
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where x = iΔx and y = iΔy, as shown in Figure 10.14. Also, for Δx = 0.1, the last term 
becomes 0.001.

The iterative scheme for the Gauss–Seidel method is obtained from Equation 
10.54 for this problem as follows:
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where n is the number of subdivisions in each of the two directions. Appendix 
B.33 gives the MATLAB script file for this problem. An initially uniform ϕ distribu-
tion is assumed in the computational domain, and Equation 10.70 is employed 
to compute the values for the next iteration. Only the most recent value of ϕ at 
any given grid point is stored, so that the values are updated as soon as they are 
computed. The program allows an interactive input of parameters such as num-
ber of grid points in each direction, initial uniform value of ϕ in the domain, and 
convergence parameter. The grid size and the number of grid points in the x and y 
directions may be taken as different, if the computational domain is not a square 
or if the boundary conditions are nonsymmetric. Note that the constant 0.001 
in Equation 10.70 must be replaced, in the program, by 0.4/[2/(Δx)2 + 2/(Δy)2] for 
arbitrary Δx and Δy.

The computation is terminated if the number of iterations exceeds a specified 
limit or if the following convergence criterion is satisfied:
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where ε is the convergence parameter, denoted by ep in the program. Figure 
10.21 shows the variation of ϕ with x at different values of y. Because of the 
symmetry of the given problem, a similar plot of ϕ versus y is obtained at the 
corresponding values of x. Note in this figure that, as imposed by the bound-
ary conditions, ϕ is zero at the boundaries and is maximum midway between 
the boundaries. Thus, the maximum deflection is at the center of the square 
region and is around 2.9 cm for the given values of the physical variables. The 
deflection ϕ increases as y increases from 0 at the boundary to 0.5 m at the 
midway point and then decreases toward the far boundary at y = 1.0 m. Because 
of symmetry, one could also consider only one-fourth of the membrane, 
employing the zero slope conditions of ∂ϕ/∂x = 0 at x = 0.5 m and ∂ϕ/∂y = 0 at 
y = 0.5 m.
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Example 10.4

	 a.	The temperature in a long bar of square cross section is governed by the 
Laplace equation. The temperature at one surface is T1, while the other three 
surfaces are maintained at temperature T2, see Figure 10.22. Using the SOR 
method, compute the temperature distribution in the bar. Also determine 
the optimum value of the relaxation factor ω.

	 b.	Using the program developed in Part (a), solve the equation ∇2ψ = 0, with 
the boundary conditions shown in Figure 10.23. This equation governs the 
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FIGURE 10.22  Physical problem considered in Example 10.4(a), along with the coordinate 
system.
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FIGURE 10.21  Computed distributions of the deflection ϕ(x, y) at various values of the 
coordinate distance y, for Example 10.3. The grid spacing Δx = Δy = 0.1 m.
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flow of a fluid in the absence of viscous, or frictional, and rotational effects. 
Here, ψ is known as the dimensionless stream function. It is related to the 
flow rate and, hence, to the flow field. Compute the ψ distribution in the 
flow region due to the inflow and outflow as shown in Figure 10.23, and 
obtain streamlines, or contours of constant ψ, corresponding to ψ = 0, 0.05, 
0.1, 0.25, 0.5, 0.75, and 1.0.

SOLUTION

	 a.	We can formulate the given problem in dimensionless terms by defining the 
nondimensional temperature ϕ and coordinate distances X and Y as
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		  where T(x, y) is the temperature at an arbitrary location, given by the coor-
dinates x and y in the computational domain, and L is the length or width of 
the region, as shown in Figure 10.22. The governing equation is obtained as
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		  with the following boundary conditions:
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FIGURE 10.23  Flow problem governed by Laplace’s equation, as considered in Example 
10.4(b).
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If a rectangular region of length L and width W is considered instead, 
the above nondimensionalization may again be used, so that the governing 
equation remains unchanged. However, L/W will appear as a parameter in 
the boundary conditions in that case.

For the SOR method, the iterative scheme is obtained from Equation 
10.57 as follows:
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		  where the grid spacings Δx and Δy are taken as equal and n is the number 
of subdivisions in each direction, as shown in Figure 10.14 for a rectangular 
region.

For SOR, ω lies between 1 and 2. We need to solve the problem for 
several values of ω to determine the optimum value. The Gauss–Seidel 
method is obtained for ω = 1. Appendix B.34 gives the MATLAB script file 
and Appendix C.19 the computer program in Fortran for the SOR method. 
The program allows one to choose the number of grid points in the two 
directions, from which the grid sizes are determined. The initial, guessed 
distribution of ϕ is taken as uniform throughout the computational domain. 
The value of this initial guess may be specified. A convergence criterion on 
ϕi,j is employed to check for convergence, see Equation 10.71. We can also 
specify the maximum number of iterations in order to terminate the com-
putation if convergence is not attained. The convergence parameter and 
the grid size, or number of grid points, are varied to ensure that the results 
obtained are not significantly dependent on the values chosen. A subroutine 
is used in the Fortran program to specify the boundary conditions.

Figure 10.24 shows the variation of the number of iterations for con-
vergence with the relaxation factor ω. The optimum value is found to be 
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FIGURE 10.24  Variation of the number of iterations, for convergence in Example 10.4(a), 
with the relaxation factor ω, employing ΔX = ΔY = 0.1.
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around 1.55. Note that the number of iterations increases sharply as ω is 
varied away from the optimum value. Therefore, the SOR method is advan-
tageous to use if the value of ω is close to the optimum. Also, see Figure 
6.12, which illustrates the application of the SOR method to a system of lin-
ear equations. Figures 10.25 and 10.26 show the temperature distributions 
in the region. Three surfaces are at temperature ϕ = 0, and the fourth one 
is at ϕ = 1.0. The temperatures decrease as one moves away from the hot 
surface. The distributions are symmetric about X = 0.5, as expected.

	 b.	The ψ(X, Y) distribution in the flow region is governed by Equation 10.73 
with ϕ replaced by ψ. The problem, as presented in Figure 10.23, is given 
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FIGURE 10.25  Computed temperature distributions in Example 10.4(a), with ω = 1.6.
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in nondimensional terms, so that ψ varies from 0 to 1, as do the coordinate 
distances X and Y. The boundary conditions are written as follows:
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		  These equations imply that ψ = 0 on three sides of the enclosure and that it 
varies linearly to 1.0 at the inflow/outflow channels. Although more involved 
than Equation 10.74, these conditions can easily be incorporated into the 
program by a suitable modification of the subroutine BCOND in the Fortran 
program given earlier, or by modifying the conditions in the MATLAB pro-
gram. One can then employ the main program to obtain the results for 
chosen values of the grid spacing ΔX and ΔY.

Figure 10.27 shows the contours of constant ψ, or streamlines, at ψ values 
of 0, 0.05, 0.1, 0.25, 0.5, 0.75, and 1.0. The computed ψ values at the nodal 
points are used with a simple linear interpolation scheme to determine the 
X, Y locations where these ψ values are attained. Using graphical proce-
dures, similar to those for Part (a), we draw the contours by joining the vari-
ous locations on the X – Y plane where a given value of ψ is obtained. The 
grid spacing ΔX = ΔY was taken as 0.025 at the start and reduced to 0.01 to 
confirm that the results were not significantly dependent on the value cho-
sen. A convergence parameter ε of 10−5 was employed in Equation 10.71, 
with ϕ replaced by ψ. Again, ε was varied to ensure a negligible effect of the 
value chosen on the numerical results.
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FIGURE 10.27  Computed contours of constant stream function ψ for Example 10.4(b).
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This problem represents an important circumstance encountered in 
several engineering applications, particularly in mechanical and civil engi-
neering. The problem concerns the flow field generated in an enclosed 
region due to the inflow and outflow of a fluid, assuming the viscous and 
rotational effects to be absent. If rotational effects are present, with viscous 
effects still negligible, the Poisson equation is obtained and may be solved 
in a similar way.

10.4  HYPERBOLIC PDEs

10.4.1  Basic Aspects

Hyperbolic PDEs arise in several problems of engineering interest, such as vibration of 
rods and strings, transmission of sound in air, and supersonic flow. As discussed ear-
lier, hyperbolic PDEs have two real and distinct characteristics. Information travels at 
finite speed in regions defined by these characteristics, as shown in Figure 10.28. An 
observer at point 0 in Figure 10.28a is affected by disturbances only in the region of 
dependence of the point 0, and a disturbance at 0 can be felt only in the region of 
influence, where both of these regions are marked by the two families of character-
istics. The movement of an object in a stationary fluid or flow of the fluid past a 
stationary object at speeds greater than the speed of sound in that fluid is known as 
supersonic flow and is also governed by a hyperbolic PDE. Figure 10.28b shows the 
supersonic flow of air over an airplane, and the region of influence is given by the 
two characteristic lines shown. A disturbance at 0 is, therefore, felt only in the 
region of influence, and an observer outside this region is not affected by the pres-
ence of the airplane. For this reason, the sound of a supersonic airplane is heard 
only after it has passed overhead. In this figure, the angle θ is given by sin θ = a/V, 
where a is the speed of sound in air and V is the speed of the air flow, with V > a for 
supersonic flow. If V/a = 2, for instance, the angle θ, which is known as the angle of 
the Mach cone, is 30°. This flow circumstance is analogous to that of an airplane 
moving at speed V in quiescent air.

10.4.2  Method of Characteristics

An important numerical technique for solving hyperbolic PDEs is the method of 
characteristics. In this method, the computational domain is divided into finite 
regions by the two families of characteristics, taking the grid points at the intersec-
tions of these lines, as shown in Figure 10.28a. The properties of characteristics are 
used to reduce the problem to a system of ODEs, which are solved by methods simi-
lar to those discussed in Chapter 9 for ODEs. The main advantage of this method is 
that the important properties of the exact solution are preserved in the numerical 
solution. Discontinuities, such as shock waves in supersonic flow, can easily be 
treated, since discontinuities can occur only along characteristics. However, this 
method is difficult to use in complicated geometries, because of the problem of keep-
ing track of the characteristics, and in problems where an elliptic or parabolic PDE 
may apply in one portion of the computational domain and a hyperbolic PDE in the 
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other. For further details on the methods based on characteristics for solving hyper-
bolic PDEs, see Smith (1978) and Ferziger (1998).

10.4.3  Finite Difference Methods

Much of the recent work on hyperbolic PDEs has been based on finite difference 
methods, which are quite similar to those discussed earlier for parabolic and elliptic 
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FIGURE 10.28  Characteristics associated with a hyperbolic PDE. (a) Information travel as 
limited by characteristics in the computational region; (b) supersonic flow of air over an 
airplane, indicating the zones of action and silence.
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equations. Some of these methods are outlined here. Two important hyperbolic 
equations that we considered earlier are the first-order convection equation
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and the second-order wave equation
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where c is the convection velocity in the former case and the propagation velocity of 
the wave in the latter. Also, ϕ is a dependent variable such as temperature in the first 
case and deflection of a string in the second.

The initial and boundary conditions for the wave equation may be written as 
follows:
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where α1 and α2 are given constants, or functions of x, and β1 and β2 are constants. It 
may be pointed out that Equation 10.7 yields Equation 10.6, on differentiation, as 
follows:
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Therefore, the methods for solving the first-order equation may also be used for 
solving the second-order equation.

The solution domain for the wave equation is shown in Figure 10.29. The bound-
ary conditions are specified at two values of the spatial coordinate x, and the initial 
conditions are given at t = 0. The dependent variable ϕ is to be computed at all of the 
grid points over a given time interval. Starting with the known values at t = 0, the 
numerical solution progresses in the direction of increasing time, or increasing i, 
with the boundary conditions being satisfied at each time step. If central difference 
approximations for the second derivatives are substituted into the wave equation, we 
obtain the finite difference equation
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which gives
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This equation is an explicit representation since the values to be computed at a 
given time step are obtained directly from known values at earlier time steps. 
The initial conditions are given in terms of the function ϕ and its derivative ∂ϕ/∂t. 
The condition on the derivative provides a relation between ϕ1, j and ϕ0, j, and, there-
fore, the values of ϕ1,j for starting the computational scheme may be determined. 
The stability of the above representation may be considered in terms of our ear-
lier  discussion on the stability of the explicit schemes for parabolic equations. 
Then  we would expect the numerical scheme to become unstable when the 
coefficient of ϕi,j becomes negative. Therefore, the method would be expected to be 
stable if
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This stability condition is frequently known as the Courant condition, and the 
dimensionless parameter cΔt/Δx as the Courant number. A more detailed stability 
analysis of the method also yields the above stability constraint. Example 10.5 dem-
onstrates the solution of the wave equation by this explicit method.

Solution
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conditions
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t

i

i = 0
j = 0 j = m

j x

ϕi+1, j

ϕi–1, j

ϕi, j ϕi, j+1ϕi, j–1

Δt
Δx

FIGURE 10.29  Solution domain for the wave equation, indicating the initial and boundary 
conditions needed and the mesh employed.



Numerical Solution of Partial Differential Equations	 493

Similarly, the finite difference approximation for Equation 10.7 may be written as
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Backward differences are used so that the solution depends only on the domain of 
dependence, as shown in Figure 10.30. This method is known as the backward or 
upwind difference method. The formulation is, therefore, of accuracy [O(Δt), O(Δx)]. 
Again, the necessary condition for stability is Equation 10.81. This condition basi-
cally ensures that the solution at a given location at a given time is affected only by 
the values at the grid points in its domain of dependence. Example 10.6 discusses the 
numerical solution of this equation, along with the stability considerations.

A more accurate explicit method is the Lax–Wendroff method, which is second-
order accurate in both time and space. It is also stable for Courant numbers less than 
unity and is frequently employed for linear hyperbolic equations. When applied to 
the first-order convection equation, the finite difference form of this method is 
obtained as follows:
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We can also apply the method to the second-order wave equation by breaking the 
equation down into two coupled first-order equations as
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FIGURE 10.30  Domains of dependence and influence for the first-order convection equa-
tion, which is a hyperbolic PDE.
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The stability constraint is given by Equation 10.81. It can be shown that the results 
are theoretically exact when the Courant number is 1.0 and that the accuracy of the 
solution decreases as the Courant number decreases below 1.0. Therefore, the value 
of this parameter is generally chosen to be around unity.

Several other explicit and implicit methods, similar to those for parabolic PDEs, 
have been developed for hyperbolic PDEs. These methods include the uncondition-
ally stable Crank–Nicolson method, which yields a tridiagonal system of equations for 
the one-dimensional problem. For two or three space dimensions, splitting methods 
similar to the ADI method, outlined earlier, are employed. These methods are also 
unconditionally stable and give rise to tridiagonal systems, which are easily solved 
by Gaussian elimination. Many such methods have been developed and applied to 
aerodynamic applications. For further details, see Ferziger (1998).

Example 10.5

Consider the vibration of a string, 1 m in length, stretched between two supports 
with an initial tension of 40 N. The mass of the string is 0.04 kg/m. The string is 
displaced from its equilibrium position, as shown in Figure 10.31, held at rest in 
this configuration, and then released. Compute the variation of the displacement 
at various points along the string with time. For approximately one period of vibra-
tion, following the release of the string from rest, determine the configuration of 
the string at various intermediate time intervals. Also consider the case when the 
string is plucked in the middle, instead of at the one-fourth point, and obtain the 
string configuration as a function of time.

SOLUTION

The governing equation for this problem is the wave equation, written as
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where u is the vertical displacement at a point on the string, indicated by coor-
dinate distance x, t is the time following the release of the string from rest, and 
c2 is a constant. For a vibrating string, it can be shown from the derivation of the 
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FIGURE 10.31  Physical circumstance of a vibrating string, considered in Example 10.5.
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governing equation that c2 = T/m, where T is the tension and m is the mass per unit 
length of the string. Therefore, in the given problem,
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We now select the value of Δx as 0.05 m, giving 21 grid points along the string. 
We must consider the Courant number C = cΔt/Δx to select a suitable time step. 
As discussed in Section 10.4, C ≤ 1 for numerical stability, and a greater accuracy 
is obtained if C is close to 1.0, that is,
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This gives the value of Δt as 1.58 × 10−3 s. Therefore, Δt is chosen as 0.0015 s for 
convenience.

The initial conditions, on u(x, t) in meters, for the string plucked at the one-
fourth point, are as follows:
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The boundary conditions are

	 u t u t( , ) ( , )0 1 0= = 	 (10.90)

Similarly, the initial conditions for plucking the string in the middle may be 
written.

The given problem may be solved by finite difference methods. If central 
differences are used, the finite difference equation is Equation 10.80, which may 
be written for the present case as
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where C2 = (T/m)(Δt)2/(Δx)2. The initial condition given by Equation 10.89 is written, 
using central differencing, as
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where u0,j is the value at a fictitious point one time step before the initial condi-
tion, i = 1. Thus,

	 u uj j2 0, ,= 	 (10.93)
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Substituting this relationship into Equation 10.91 for i = 1, we obtain
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Equation 10.94 is used for advancing from the initial configuration to the first 
time interval, t = Δt. Beyond that, Equation 10.91 is employed. A first-order approxi-
mation may also be used for Equation 10.89, giving u2,j = u1,j. The boundary condi-
tions give the displacement at grid points 1 and 21 as zero. For the remaining points, 
we compute the displacement for the next time step, using the values at the adjacent 
points corresponding to the previous time steps. Since the values of the displace-
ments for only the last two time steps are needed to advance the solution, only three 
arrays corresponding to time intervals t, t + Δt, and t + 2Δt need to be considered, 
where the values at t + 2Δt are obtained in terms of the other two arrays.

Appendix B.35 shows the MATLAB script file and Appendix C.20 the Fortran 
computer program for solving this problem. The various symbols employed are 
defined in the programs. Arrays u, u1, and u2 contain the displacements at time t, 
t + Δt, and t + 2Δt. The input values are entered and the maximum number of 
time steps, as well as the time intervals after which the output is obtained, may be 
specified. As indicated above, Δx = 0.05 m, Δt = 0.0015 s, and n = 21, where n is 
the total number of grid points. The initial distribution is entered and the boundary 
conditions are given to proceed with the computations.

The displacements at various locations along the string are computed as time 
elapses. Figure 10.32 shows the variation of the displacement at four locations 
with time. A periodic behavior is clearly seen, as expected. Also, the time period is 
found to be about 0.2 s. Figure 10.33 shows the configuration of the string at vari-
ous time intervals. The string starts at its initial distribution, given in Figure 10.31, 
and, as time elapses, the displacement at each point undergoes a periodic process. 
At different time intervals, different displacements exist at the various grid points, 
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FIGURE 10.32  Computed displacements at four locations along the string as functions of 
time in Example 10.5.
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giving rise to different configurations of the string. Initially, the displacements are 
all positive, that is, on one side of the equilibrium position. Then, with time, the 
displacements become negative over portions of the string. Figure 10.34 shows 
the corresponding results for the case when the string is plucked in the middle. An 
expected symmetry arises in the displacement.

Example 10.6

Consider the first-order convection equation
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intervals, when it is plucked at the one-fourth point, as shown in Figure 10.31.
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which governs the transport of a physical or chemical quantity P(x, t) by convection. 
Here, x is the spatial coordinate distance, t is time, and P represents a convected 
quantity such as concentration or temperature. Using Euler’s method, the back-
ward or upwind differencing method, and the Lax–Wendroff method, solve this 
hyperbolic equation. The initial and boundary conditions are given as follows:
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Take the convection velocity c as 2.5 m/s. Solve for x up to 5.0 m, taking the grid 
size Δx as 0.5 m. Compute the results up to time t = 2.0 s, taking the step size Δt 
as 0.05, 0.1, and 0.2 s.

SOLUTION

Several important transport problems in fluid flow and heat transfer are governed 
by first-order hyperbolic equations such as the one given here. For instance, wave 
propagation in a shallow water body is governed by a nonlinear first-order hyper-
bolic equation. The solution to the problem given here is simply the movement of 
the step change, at x = 0 and t = 0, downstream, with no change in amplitude and 
at the convection velocity c. Thus, we can use this analytical result to evaluate the 
solution of the given equation by the three methods considered.

The finite difference equation for the solution of Equation 10.95 by Euler’s 
method is
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where the first subscript refers to the time step and the second to the spatial location. 
Thus, this method uses forward difference for the derivative with respect to time 
and second-order central difference for the spatial derivative. The finite difference 
equations for the backward difference method and the Lax–Wendroff method are 
obtained from Equations 10.82 and 10.83 as
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Thus, all three methods are explicit, and the only parameter that arises is the 
Courant number C, given by
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For the values given in the problem, C = 0.25, 0.5, and 1.0. As pointed out earlier, 
the last two methods are unstable for C > 1.0.

A computer program in MATLAB is written for solving the given problem, as 
shown in Appendix B.36. The input quantities and the initial and boundary condi-
tions are entered. The numerical method for solving the problem is chosen inter-
actively by the user. Computations for the three values of the time step Δt are 
then carried out up to time t = 2.0 s at each step size. The computed results are 
printed at five locations in x, corresponding to x = 1, 2, 3, 4, and 5 m. The various 
symbols employed are defined in the program. Here, p and pn are used to denote 
values at the previous and present time steps, respectively, and i denotes the spa-
tial location. Calculations are needed for the ten grid points corresponding to i = 2 
to i = 11. However, both Euler’s method and the Lax–Wendroff method need the 
value at (i + 1) to calculate the value at i. One approach to avoiding the problem 
that arises at i = 11 is to compute the value at i = 11 using the backward difference 
method which does not require the value at i = 12. This is done in the program, 
and the computed results are obtained for all three methods.

The results are shown in Figure 10.35 in terms of the computed variation of 
P at a few locations as a function of time. Interestingly, the numerical solution is 
exact for both the upwind differencing and the Lax–Wendroff methods at Courant 
number C = 1.0. Generally, accuracy is expected to increase as Δt is decreased, 
at a given value of Δx, because of smaller TE in time. However, for this particular 
problem, C = 1.0 yields the exact solution. In fact, as mentioned earlier, C is gen-
erally taken as close to 1.0 for greater accuracy. The results from both of these 
methods at C = 0.5 and C = 0.25 are unable to capture the expected step variation 
in P. However, that is not surprising since any numerical method will introduce 
computational errors.

The Lax–Wendroff method is expected to be more accurate due to second-
order accuracy in space. Euler’s method is found to be unstable. The solution 
oscillates at low values of C, and these oscillations grow without bound as time 
increases. This instability was found to be worse at large C, as expected. As shown 
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by Ferziger (1998), this method is unconditionally unstable for this problem, and, 
therefore, instability arises in all cases as time elapses. For C > 1.0, the other two 
methods were also found to indicate numerical instability.

This problem is a fairly simple example of a hyperbolic equation. However, it 
has been chosen to demonstrate the use of three numerical techniques for solving 
hyperbolic equations and the constraints imposed by numerical instability.

10.5  SUMMARY

This chapter gives a brief discussion on the numerical solution of PDEs. The solution 
procedure is dependent on the type of the PDE: parabolic, elliptic, or hyperbolic. 
Employing simple examples of these three types of PDEs, various important numerical 
methods for solving them are outlined. Only linear equations are considered to illus-
trate the methods, since nonlinear PDEs, although important in many engineering 
applications, are beyond the scope of this book. However, in several cases, a nonlin-
ear PDE may be linearized and then solved by the methods discussed in this chapter. 
Still, the nonlinear problem is generally much more involved than the linear one. 
Frequently, the stability and the convergence characteristics of the numerical scheme 
are not known for nonlinear equations, and numerical experimentation is needed to 
ensure the accuracy and correctness of the solution.

The main approach to the solution of PDEs, considered in this chapter, is by 
means of finite difference methods, which give rise to a system of algebraic equations. 
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FIGURE 10.35  Numerical results in terms of the computed variation of the dependent 
variable P with time t for Example 10.6.
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A solution of this system of equations yields the value of the dependent variable at a 
finite number of grid points in the computational domain. Parabolic equations are 
solved by marching in one coordinate direction. Explicit methods allow the compu-
tation of values at a given step from the known values at earlier steps. However, the 
step size is generally constrained in explicit methods due to considerations of numer-
ical stability. Implicit methods have better stability characteristics, but they require 
the solution of a system of simultaneous algebraic equations. Direct methods are 
usually employed if the system is tridiagonal. Otherwise, iterative methods, such as 
the Gauss–Seidel and the SOR methods, are used. A tridiagonal system is obtained 
in one-dimensional problems, and Gaussian elimination is used for these. For multi-
dimensional problems, splitting methods, which treat one direction as implicit and 
alternate between the various directions, are frequently employed, since these meth-
ods also give rise to tridiagonal systems.

Elliptic PDEs are often solved by iterative methods. Direct methods are applicable 
in a few special cases. Splitting methods, such as the ADI method, can also be used, 
with an acceleration parameter to obtain a faster convergence. In some cases, a 
pseudotransient term is added to the elliptic PDE. Then the resulting equation is 
parabolic in time and may be solved by time-marching techniques, giving the 
required solution at large time.

Hyperbolic PDEs are solved by methods similar to those for parabolic PDEs. A 
specialized method, known as the method of characteristics, is also an important 
method for hyperbolic equations, since it allows the treatment of discontinuities 
which frequently arise in these equations. In recent years, finite difference methods 
have become very popular for the solution of hyperbolic PDEs, and several very 
efficient schemes have been developed.

Another approach to the solution of PDEs is the finite element method. In this 
method, the solution domain is subdivided into finite regions, and the PDE is inte-
grated over each region, employing weight functions with the equation. The solution 
and the weight functions are taken as polynomials, and the integrals or the weighted 
residuals are minimized, or reduced to zero, to yield a system of algebraic equations 
that is solved by the usual methods. Although more complicated in implementation, 
the finite element methods have become very popular in recent years because of their 
advantages in the treatment of irregular boundaries and complex boundary condi-
tions. A brief outline of the finite element, the boundary element, and the control 
volume methods for solving PDEs is included in this chapter.

Several programs are given here in both MATLAB and in Fortran to solve linear 
PDEs, such as the common two-dimensional elliptic equation and the well-known 
parabolic and hyperbolic equations. A function pdepe is also available to solve ini-
tial-BVP for parabolic–elliptic PDEs in 1-D for small systems of parabolic and ellip-
tic PDEs in one space variable x and time t to modest accuracy. The function pdeval 
is then used to evaluate/interpolate the solution obtained. However, for more compli-
cated problems, particularly nonlinear equations, the use of the PDE Toolbox in 
MATLAB is probably the best approach. Different algorithms are available and 
complicated geometries and boundary conditions can be handled by employing the 
commands available in this toolbox. Various plotting routines are also available to 
obtain the computed results in appropriate graphical forms, such as contour plots.
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PROBLEMS

	 10.1.	 Consider the governing PDE for the dependent variable ϕ(x, y), given as
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		  where A and B are constants. Determine the nature of this equation, 
and give a set of boundary conditions that may be applied to it.

	 10.2.	 The temperature T(x, y) in a steady, two-dimensional flow with heat 
transfer is governed by the equation
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		  where u(x, y) and v(x, y) are the two velocity components, α is a 
constant known as thermal diffusivity, and Q(x, y) is a function that 
gives the energy generation per unit volume in the fluid. Determine 
the nature of this equation, and specify suitable boundary conditions. 
Also, for each of the three special circumstances of (a) u = v = 0, (b) 
α = 0, and (c) ∂2T/∂x2 = 0, classify the resulting reduced equations, 
and give the relevant boundary conditions.

	 10.3.	 In a one-dimensional diffusion problem, the governing equation 
is ∂ϕ/∂t = C ∂2ϕ/∂x2, where ϕ(x, t) is the dependent variable, C is 
a constant, x is the spatial coordinate, and t is time. The boundary 
condition at x = 0 is given as ∂ϕ/∂x = B, where B is a constant. The 
condition at the other boundary, at x = L, is given as ϕ = 0. Obtain 
the finite difference equation for solving this problem by the Crank–
Nicolson method. Write the gradient boundary condition in terms of 
forward differences, using both the first-order and the second-order 
approximations. Is the resulting system of equations tridiagonal? If 
not, can it be obtained in tridiagonal form by simple elimination?

	 10.4.	 For the numerical solution of a one-dimensional transient diffusion 
problem, governed by
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		  the explicit Euler method is to be used. If the grid size Δx is taken as 
0.1 m, find the maximum time step that may be employed for a stable 
numerical scheme, if A = 10−6 m2/s. Also find the limitation on the 
time step if the grid size is reduced to 0.01 m.

	 10.5.	 A long bar of rectangular cross section is initially at a uniform tem-
perature T0. At time t = 0, the temperature at the outer surface is raised 
to Ts and held at this value. Write down the governing PDE and obtain 
the finite difference equations for solving this problem by the explicit 
FTCS and the Crank–Nicolson methods. Also give the equations for 
the relevant boundary and initial conditions. Indicate the constraints, 
if any, on the time step, due to stability considerations, for chosen 
values of Δx and Δy. What method would you employ for solving 
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the system of algebraic equations obtained in the Crank–Nicolson 
method? Justify your choice.

	 10.6.	 Consider the one-dimensional conduction heat transfer in a plate of 
thickness 3 cm. The plate is initially at 1000°C. At time t = 0, the 
temperature at two surfaces is dropped to 0°C and maintained at this 
value. The thermal diffusivity is given as 5 × 10−6 m2/s. Employing 
Δx = 0.3 cm, solve this problem numerically to obtain the time-depen-
dent temperature distributions for F = 1/6, 0.5, 0.52, and 0.6. Does 
numerical instability arise for F > 0.5? Discuss.

	 10.7.	 Solve the preceding problem graphically, by the Schmidt–Binder 
method, for F = 0.5.

	 10.8.	 If a plate in a stationary fluid is suddenly set into motion, at a veloc-
ity U, the governing equation is ∂u/∂t = v ∂2u/∂x2, where u is the local 
velocity, v is a constant known as kinematic viscosity of the fluid, t 
is time, and x is the distance out from the plate, which is at x = 0, 
as shown in the figure. The boundary conditions are, therefore, as 
follows:

	
At forx u U t

as x u

= = >

→∞ →

0 0

0

:

:

		  The initial condition is the following:

	 For fort u x≤ = ≥0 0 0:

		  This problem is to be solved by the explicit FTCS method. The values 
of u are computed, at each time step, outward from the plate until u is 
zero. Taking U = 1 m/s, v = 10−5 m2/s, and Δx = 0.01 m, find the maxi-
mum time step that may be employed if numerical instability is to be 
avoided. Using this maximum time step, solve this problem.

U

Plate
U

u(x, t)

x

	 10.9.	 For specifying the boundary condition ∂ϕ/∂x = B in Problem 10.3, 
a fictitious grid point is taken outside the computational domain, as 
shown. The boundary condition is then written in central difference 
form, using this point. The finite difference equation for the PDE is 
also written for a point at the boundary, again employing this fictitious 
point. The unknown value of ϕ at this grid point outside the region is 
eliminated by using the two equations thus obtained. The resulting 
equation gives the finite difference equation for the boundary condi-
tion. Compare this result with that given in Equation 10.63.
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Fictitious
grid point

ϕ0, jϕ–1, j ϕ1, j ϕ2, j

x

	 10.10.	 We wish to solve the following equation for ϕ(x, y)
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		  This equation is nonlinear because of the presence of the function f(ϕ). 
Formulate a simple numerical scheme, based on the discussion in the 
text, for solving this problem.

	 10.11.	 One-dimensional conduction in a rod of length L is governed by the 
equation

	
1 2

2α α
∂
∂

=
∂
∂

− −
T
t

T
x

H T T( )

		  where x is the distance from one end, as shown, t is time, Ta is the ambi-
ent temperature, and H is a heat loss parameter. For time t < 0, the tem-
perature throughout the rod is Ta. At t = 0, the temperatures at the two 
ends, at x = 0 and x = L, are raised to 100°C and held at this value for 
t > 0. Using any suitable numerical method, solve this problem. Take 
Ta = 15°C, α = 10–6 m2/s, L = 0.4 m, Δx = 0.04 m, and H = 100 m−2.

L

Heat loss

100°C x = 0 T(x,t)

x

H, Ta

x = L
100°C

	 10.12.	 The one-dimensional diffusion of water in a porous medium is gov-
erned by the equation D ∂2C/∂x2 = ∂C/∂t, where C is the concentration 
of water in kg/m3 and D is the mass diffusivity in m2/s. A long, hollow 
cylinder of outer diameter 0.2 m and inner diameter 0.1 m is initially 
dry; that is, water concentration is zero. Then, at time t = 0, the outer 
surface is brought in contact with water, raising the concentration 
there to 1000 kg/m3, while the concentration at the inner surface is 
held at zero. If D = 10−4 m2/s, obtain the time-dependent concentra-
tion profiles in the cylinder, taking ten grid points across the annular 
region. Neglect the effect of curvature in the problem and treat the 
region as a slab.
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	 10.13.	 Consider the problem discussed in Example 10.1. Study the effect of 
varying the grid size on the numerical results, by solving the prob-
lem with Δx half and also twice the value taken in the example. Take 
Δx = Δy. Compare the results obtained with the earlier results pre-
sented in Example 10.1, and discuss the dependence on grid size.

	 10.14.	 Steady-state mass diffusion in an enclosed region is governed by 
Laplace’s equation for the concentration C. Consider the diffusion 
in a rectangular region of length 0.3 m and width 0.1 m. The third 
dimension is given as large. For this two-dimensional mass diffusion 
problem, the concentration, in nondimensional terms, is given as 1.0 
at one surface and as 0.0 at the remaining three surfaces. Compute 
the concentration distribution in the region by the SOR method, and 
determine the optimum value of the relaxation factor. Compare this 
value with that obtained from the analytical expression, Equation 
10.58, given in the text.

	 10.15.	 A rectangular trampoline may be considered as a rubber membrane, 
of length L and width W, fastened securely at the boundary. As given 
in Example 10.3, the vertical deflection f is governed by the equation

	 ∂
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		  where p is the pressure and T the tension. Solve this problem by 
the Gauss–Seidel method, taking p/T = 1.0 m−1, L = 2.0 m, and 
W = 1.0 m.

	 10.16.	 If fluid friction, or viscosity, is taken as negligible in a flow, the flow 
is termed inviscid. In the absence of rotational effects, the flow is then 
governed by the equation ∇2ψ = 0, where ψ is the stream function. 
A line of constant ψ is known as a streamline, and the velocity field 
may be obtained from a given ψ distribution. Consider the flow in a 
channel whose cross-sectional area varies as shown. The boundary 
conditions on ψ are also given, as linear distributions at the inflow 
and outflow. Compute the ψ distribution in the channel, and obtain 
the streamlines, or contours of constant ψ, corresponding to ψ = 0, 
0.2, 0.4, 0.6, 0.8, and 1.0. Use the Gauss–Seidel iterative scheme. See 
also Example 10.4(b).

x

y10 cm
5 cm

30 cm

Outflow
Inflow

Linear
distribution

in ψ
Linear

distribution
in ψ

ψ = 1

ψ = 1

ψ = 0

	 10.17.	 A solid cylinder of diameter D and length L has its two ends at tem-
perature Tr, and the curved, lateral surface at temperature Ts. The 
temperature distribution may be assumed to be independent of the 
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angular position. Thus, the problem becomes two-dimensional, or 
axisymmetric. Write the governing PDE and obtain the relevant finite 
difference equation for solving this problem by the SOR method. Use 
polar coordinates.

	 10.18.	 The flow of a very viscous fluid in a circular tube, as shown, is gov-
erned by the equation

	
∇ =2 1
u

p
zμ

d
d

		  where the vector operator ∇2 may be written in polar coordinates, 
u(x, y) is the velocity in the axial direction z, μ is the coefficient of 
viscosity, and dp/dz is the constant pressure drop along the flow. The 
velocity is zero at the boundary. Formulate this problem for a numeri-
cal solution by the Gauss–Seidel method. Give the governing equation 
and the relevant boundary conditions in finite difference form, and 
outline the numerical procedure.

u(x, y)
z

z
x

y0

	 10.19.	 We are interested in the steady-state temperature distribution in a 
hollow cylinder of length L and inner and outer diameters Di and 
Do, respectively. The inner and outer surfaces are at temperature 
Ts, and the ends at T0. Formulate this problem as a two-dimensional 
transient heat conduction problem whose solution yields the steady-
state results at large time. Also give the finite difference equations 
for solution by the ADI method. What is the order of the TE in this 
formulation?

	 10.20.	 A rectangular finite difference mesh is used for solving Laplace’s 
equation in a circular region. Consider the grid points near the cir-
cular boundary, and derive the applicable finite difference equation, 
as done in the text, taking a uniform grid distribution along both 
directions.

	 10.21.	 A long rod of rectangular, 10 cm × 5 cm, cross section has all the 
surfaces maintained at 100°C. Due to nuclear reaction, energy is gen-
erated within the material at a uniform rate �Q of 5 × 107 W/m3. The 
thermal conductivity k of the material is 50 W/m K. The temperature 
distribution in steady-state conduction with energy generation is gov-
erned by the Poisson equation

	 ∂
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		  Using the Gauss–Seidel iterative method, solve this problem to obtain 
the temperature distribution. Plot the temperature variation along the 
two axes of the rectangular region.
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	 10.22.	 Consider the one-dimensional convection equation
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		  Determine the nature of this equation and give a set of relevant bound-
ary conditions. Also obtain the finite difference equation for solving it 
by the Crank–Nicolson method.

	 10.23.	 In Example 10.5, if the initial deflection of the string results from 
being plucked at the one-third point instead of at the one-fourth point, 
compute the time-dependent displacements at various locations on the 
string after the string has been released.

	 10.24.	 The longitudinal vibration of a beam is governed by the equation
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		  where x is the coordinate along the axis, t is time, u is the longitudinal 
displacement, ρ is the material density, and E is a constant known as 
the elastic modulus for the material. The two ends of the beam, at 
x = 0 and x = L, are fixed. A deflection u0 is given at the midpoint of 
the beam and then released from rest. Using the explicit method, for-
mulate this problem for a numerical solution. Give the relevant finite 
difference equations and outline the numerical procedure.

	 10.25.	 A string is fixed at its two ends. The initial deflection u is given as

	

u x x

u x x

u

= − < ≤
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at all other vvalues of in the range 0 and 1.0x

		  Also, the time derivative of u is zero, that is,

	 ∂
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u
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x( , )0 0

		  Using the explicit method, solve this equation with the constant c in 
the governing wave equation given as 1.0. Take Δx = 0.1 and Courant 
number = 0.5 and 1.0. Compute the results up to t = 2.0. Discuss the 
observed trends in terms of the nature of hyperbolic equations.

	 10.26.	 Determine the nature of the following equation which governs the 
propagation of waves in a nonuniform medium:
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		  where u represents the displacement and c2 varies with location. 
Outline a numerical method for solving this problem.

	 10.27.	 If the problem discussed in Example 10.5 is to be solved by the Crank–
Nicolson method, give the resulting finite difference equations. Also 
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outline the numerical method that may be adopted for solving these 
equations.

	 10.28.	 If in Example 10.5, the initial rate of change of displacement 
		  ∂u/∂t(x, 0) is given as 0.1 m/s for 0 < x < 1, compute the resulting dis-

placement as a function of time at four points on the string.
	 10.29.	 If in Example 10.6, P = 0 for t ≤ 0 and e−t at x = 0 for t > 0, solve the 

given hyperbolic PDE.
	 10.30.	 In a rectangular region of length L and width W, with L/W = 2, the 

Laplace equation governs the electric field ϕ. The value of ϕ is zero on 
three sides and is given as sin(πx/L) on the fourth side y = W. Compute 
the ϕ distribution in the region.

	 10.31.	 The dimensionless concentration C of a diffusing species in a square 
region is governed by
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		  Starting with an initial value of C as zero in the entire region, calculate 
the transient and steady-state distributions, using the FTCS method. C 
is given as zero on two opposite sides of the region and as 1.0 on the 
other two. Both X and Y vary from 0 to 1.0. Determine if the initial 
conditions affect the steady-state distribution.
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Appendix A: Some Common 
Commands in MATLAB®

FOR MATRICES a AND b

a.*b  a./b  a.\b Element by element arithmetic; a and b must have 
identical rows and columns

a*b  a/b  a\b Matrix algebra; a and b must have appropriate rows and 
columns to perform these operations

rand(n) Generates random numbers between 0 and 1 for a n × n 
matrix

b = 26*rand(3)–10 Generates 3 × 3 matrix of random numbers between –10 
and 16

max(a) Gives maximum element in one-dimensional array a
min(a) Gives minimum element in array a
max(max(a)) Gives maximum element in matrix a
min(min(a)) Gives minimum element in matrix a

[i,j] = find(a == max(max(a))) Gives row and column where maximum element is 
located

FOR SYSTEM OF EQUATIONS ax = b

inv(a) Gives inverse a−1 of the matrix a

aa−1 = I Identity matrix I

x = a−1b Yields the solution x; b is column vector

x = inv(a)*b Yields the solution vector x

x = a\b Backslash operator; also gives the solution x

[l,u,p] = lu(a) Decomposition of matrix a into upper and lower 
triangular matrices; p is permutation matrix

y = l\(p*b); x = u\y Yields the solution x

OUTPUT
>> a = 2.0;
>> b = 4.5;
>> s = ['The number that is obtained is', num2str(a)]

yields

The number that is obtained is 2.0

>> s = sprintf('The number %.5g is modified to %.5g.',a,b)

yields

The number 2.0 is modified to 4.5.
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Another command is fprintf, which is similar to sprintf and displays data to the 
formatted string in the command window, whereas sprintf creates a character string 
which can be displayed or modified like a character array.

Similarly, try other formats: %.0g gives integers; %.3f is used for fixed-point num-
bers, with three places after the decimal; %8.4f gives the width of characters as 8 and 
4 places after the decimal; g gives the best of fixed or floating point formats; bank gives 
fixed format for dollars and cents, that is, 2 decimal digits; e is the exponent format.

Use of a semi-colon at the end of a statement suppresses printing of the given or 
calculated number. Similarly, disp(s) suppresses the printing of s = and simply gives 
the specified or calculated value.

POLYNOMIALS

Specification of Polynomials

>> p = [1 –4 7 –6 2]

represents

x4 − 4x3 + 7x2 − 6x + 2

Coefficients are arranged in descending powers of the independent variable.

ROOTS

>> r = roots(p)

gives the roots of the polynomial as

1.00 + 1.00 i
1.00 – 1.00 i
1.00
1.00

>> pp = poly(r)
pp =
1.00 –4.00 7.00 –6.00 2.00

gives the polynomial with the array r as the roots.

ALGEBRA OF POLYNOMIALS

>> a = [1 2 3 4];
>> b = [1 4 9 16];

>> c = conv(a,b)    % convolution (multiplication) of polynomials
c =
1 6 20 50 75 84 64
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>> d = a + b	 	 % addition
d =
2 6 12 20

>> d = b – a	 	 % subtraction
d =
0 2 6 12

>> [q,r] = deconv(c,b)	 % division
q =
1 2 3 4	 	 	 % quotient polynomial
r =
0 0 0 0	 	 	 % remainder polynomial

>> g = [1 6 20 48 69 72 44];
>> h = polyder(g)	 	 % �differentiation of a polynomial 

with coefficients given by vector g
h =
6 30 80 144 138 72

CURVE FITTING, PLOTTING

For the following data:

>> x = [0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0];
>> y = [–.45 1.98 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];

Curve fitting is obtained by

>> n = 2;	 	 	 % �specify order of the polynomial 
for best fit

>> p = polyfit(x,y,n)	 % gives best fit with nth order 
	 	 	     polynomial
p =	 	 	 % Coefficients arranged in 
–9.8147 20.1338 –0.0327	     descending powers of x

>> xi = linspace(0, 1, 100);	 % 100 evenly spaced points between 
	 	 	    0 and 1
>> yi = polyval(p, xi);	 % �values of given polynomial at x 

values of xi
>> �plot (x,y,'g*',xi,yi,'b–')	% �plotting with given symbols, 

color, labels and title
>> xlabel('x'), ylabel('y = f(x)')
>> title('Second Order Curve Fitting')

DEFINITION OF A FUNCTION

A function may be defined inline or as part of a script file, as, for example,



512	 Appendix A: Some Common Commands in MATLAB®

f = inline('x.^3 + 3*x.^2 – 4*x + 2')
g = inline('x.*exp(x)–x.^0.5 + 3')

where .* and .̂  are used to allow x to be a vector, or array.
The function may also be defined by a function file f.m and g.m as

function z = f(x)
z = x.^3 + 3*x.^2 – 4*x + 2;
end

and

function z = g(x)
z = x.*exp(x)–x.^0.5 + 3;
end

Then, the value of the function at given x, where x may be scalar or vector, is 
obtained by

feval(f,x) or feval ('f',x)

where the former is used for the function defined inline and the latter for the function 
defined by a function file.
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Appendix B: Computer 
Programs in MATLAB®

B.1:	 Search method for finding the roots of an algebraic equation
B.2:	 Bisection method for finding the roots of an algebraic equation
B.3:	 Secant method for root solving
B.4:	 Newton’s method for root solving
B.5:	 Successive substitution method for root solving
B.6:	 Gaussian elimination method for solving a system of linear equations
B.7:	 a.  Gaussian elimination method for a tridiagonal coefficient matrix

b.  Tridiagonal matrix algorithm
B.8:	 Gauss–Jordan method for solving a system of linear equations
B.9:	 Solving a system of linear equations by matrix inversion
B.10:	� Solving the system of linear equations in Example 6.5 by the Gauss–Seidel 

method
B.11:	 Gauss–Seidel method for solving a system of linear equations
B.12:	 Power method for solving an eigenvalue problem
B.13:	� Successive substitution method for solving a system of nonlinear algebraic 

equations
B.14:	 Newton’s method for solving a system of nonlinear algebraic equations
B.15:	 Interpolation with an exact fit
B.16:	 Lagrange interpolation
B.17:	 Newton’s divided difference method for interpolation
B.18:	 Polynomial regression
B.19:	 a.  Numerical integration by trapezoidal rule
	 b.  Alternative implementation of algorithm
B.20:	 a.  Numerical integration by Simpsons’s rule

b.  Alternative implementation of algorithm
B.21:	 Romberg integration
B.22:	 Integration with segments of unequal width
B.23:	 Numerical integration of an improper integral by Simpsons’s one-third rule
B.24:	 a.  Euler’s method for solving a first-order ODE
	 b.  Solution of ODEs in Example 9.1 by Euler’s method
B.25:	 Heun’s method for solving a first-order ODE
B.26:	 Fourth-order Runge–Kutta method
B.27:	 Adam’s predictor–corrector method
B.28:	 Hamming’s predictor–corrector method
B.29:	 a. � Solution of a third-order boundary value problem by Runge–Kutta method 

with shooting technique
b.  Defining the three ODEs in Example 9.5
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B.30:	 Finite difference method for solving second-order ODE
B.31:	 Forward time central space (FTCS) method
B.32:	 Crank–Nicolson method
B.33:	 Gauss–Seidel method for an elliptic PDE
B.34:	 SOR method for an elliptic PDE
B.35:	 Solution of the wave equation
B.36:	 Solution of first-order convection (hyperbolic) equation

B.1

% 	 �SEARCH METHOD FOR FINDING THE ROOTS OF AN ALGEBRAIC 
EQUATION

%
% 	 �This program finds the real roots of the equation 
%	 f(x) = 0 by the incremental search method
%
% 	 �Here, eps is the convergence parameter, dx the 
%	 increment in x, dx1 the increment at sign change of 
%	 f(x), and f1 and f2 the values of the function f(x) at 
%	 two consecutive x values
%
% 	 Define function f(x)
%
f = inline('0.8*5.67*10^(-8)*(1000^4-x^4)-50*(x-500)- ...
  (25/0.15)*(x-300)');
%
% 	 Enter starting values
%
eps = 10.0;
for i = 1:6
x = 300;dx = 50;
dx1 = dx;
a = f(x)*f(x);
fprintf('EPS = %.5f\n',eps)
%
% 	 Check for convergence to the root
%
	 while dx1 > eps
%
% 	 Check for sign change in f(x)
%
while a > 0
f1 = f(x);
x = x + dx;
f2 = f(x);
a = f1*f2;
end
fprintf('X = %.5f        F1 = %10.4f        F2 = %10.4f\n',x,f1,f2)
%
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% 	 Reduce increment size
%
dx1 = dx;
	 x = x-dx;
	 dx = dx/10;
f1 = f(x);
x = x + dx;
f2 = f(x);
a = f1*f2;
end
%
% 	 Print numerical results
%
      fprintf('TEMPERATURE = %.5f        F(X) = %.4f\n\n',x,f1)
%
% 	 Vary convergence parameter
%
      eps = eps/10;
end

B.2

%	 �BISECTION METHOD FOR FINDING THE ROOTS OF AN ALGEBRAIC
%	 EQUATION
%
% 	 �This program finds the real roots of the equation 
%	 f(x) = 0 by the Bisection method
%
%	 �eps is the convergence parameter; fa, fb and fc are 
%	 values of the function f(x) at the two ends, a and b, 
%	 of the domain containing the root and at the mid point, 
%	 respectively.
%
format short
eps = 0.02;
%
% 	 Enter limits of the domain
%
a = input('Enter lowest value of interval, a = ');
b = input('Enter highest value of interval, b = ');
%
% 	 Apply Bisection method
%
for i = 1:40
fa = f(a);
fb = f(b);
c(i) = (a + b)/2;
fc = f(c(i));
%
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%	 Check for convergence
%
if(abs(fc) <=  eps)
	 disp(sprintf('Iteration converged'))
break
end
%
% 	 Next iteration
%
if(fa*fc < 0)
	 b = c(i);
	 else
a = c(i);
end
end
c = c';
%
%	 Print results
%
disp(c)

B.3

% 	 SECANT METHOD FOR ROOT SOLVING
%
function [p1,err,k] = secant(f,p0,p1,delta,max1)
%
%	 �f is the function in the equation f(x) = 0 entered as a 
%	 string, p0 and p1 are the two ends of the domain, given  
%	 as inputs in the function call, delta is the convergence 
%	 parameter and max1 is the specified maximum number of 
%	 iterations
%
% 	 Apply Secant method
%
for k = 1:max1
p2 = p1 - feval(f,p1)*(p1-p0)/(feval(f,p1)-feval(f,p0));
fprintf('Approximation to the root = %.4f\n',p2);
%
% 	 Calculate error
%
err = abs(p2-p1);
%
% 	 Update values
%
p0 = p1;
p1 = p2;
%
% 	 Apply convergence condition



Appendix B: Computer Programs in MATLAB®	 517

%
if (k > 2)&(err < delta)
fprintf('The root is = %8.4f\n’,p1);
break
end
end
%
% 	 Stop if convergence not achieved
%
if(k == max1)
            disp('Max number of iterations reached')
end

B.4

% NEWTON–RAPHSON METHOD FOR ROOT SOLVING
%
% Given equation: f(x) = 0
%
%	 �eps is the convergence parameter, fd is the derivative 
%	 of the function at the present approximation x(i), and 
%	 the next approximation to the root is x(i + 1)
%
f = inline('294*w*(1 - exp(-1000/(21*(5 + 20*w)))) - 250');
%
% 	 Enter convergence parameter
%
eps = input('Enter the convergence parameter, eps = ');
fprintf('EPS= %.4f\n',eps);
%
% 	 Enter starting value of the root
%
x(1) = input('Enter the initial guess, x(1) = ');
%
% 	 Apply Newton-Raphson method
%
for i = 1:20
fprintf('X= %.4f      FUNCTION F(X)= %0.6f\n',x(i),f(x(i)));
fd = (f(x(i) + 0.001)-f(x(i)))/0.001;
x(i + 1) = x(i) - f(x(i))/fd;
%
% 	 Check for convergence and print results
%
if(abs(x(i + 1)-x(i)) <=  eps)
           fprintf('FLOW RATE X= %.4f       FUNCTION F(X)= ... 
%.6f\n',x(i + 1),f(x(i + 1)));
break
end
end
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B.5

% 	 SUCCESSIVE SUBSTITUTION METHOD FOR ROOT SOLVING
%
% 	 Given equation: f(x) = 0, rewritten as x = z = g(x)
%
%	 conv is the convergence parameter, x is the present
%	 �approximation to the root and z the next approximation
%
% 	 �Enter initial guess for the root and convergence parameter
%
x = input('Enter the value of x, x = ');
conv = input('Enter the value of Convergence Parameter, conv = ');
fprintf('X= %.2f        CONV= %.4f\n',x,conv);
%
%	 Apply successive substitution
%
for i = 1:20
z = (((((15-x)/(7.5*10^-5))^ .5)-80)/10.5)^ .6;
fprintf('X = %.4f         Z = %.4f\n',x,z);
%
%	 Check for divergence of scheme
%
if abs(z-x) > 1/conv
disp('Convergence not achieved');
break
end
%
%	 Check for convergence
%
if abs(z-x) < conv
%
% 	 Print results
%
fprintf('THE REQUIRED ROOT IS X = %.4f\n',x);
break
elseif abs(z-x) > =conv
x = z;
end
end

B.6

(a)

% 	 GAUSSIAN ELIMINATION METHOD FOR SOLVING
%	 A SYSTEM OF LINEAR EQUATIONS
%
%	 �a is the coefficient matrix, b the constant vector, x 
%	 the vector of unknowns and tr the transformed upper 
%	 triangular matrix
%
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% 	 Input data
%
function [x,tr] = gauss(a,b)
[n n] = size(a);
x = zeros(n,1);
c = zeros(1,n + 1);
%
%	 Form the augmented matrix
%
aug = [a b];
%
%	 Partial pivoting
%
for p = 1:n-1
  [y,j] = max(abs(aug(p:n,p)));
  c = aug(p,:);
  aug(p,:) = aug(j + p-1,:);
  aug(j + p-1,:) = c;
%
%	 Check if matrix is singular
%
if aug(p,p) = =0
  'a was singular. No unique solution'
  break
end
%
%	 Obtain upper triangular matrix
%
  for k = p + 1:n
      m = aug(k,p)/aug(p,p);
      aug(k,p:n + 1) = aug(k,p:n + 1)-m*aug(p,p:n + 1);
  end
end
%
%	 Apply back-substitution
%
tr = aug(1:n,1:n);
x = backsub(aug(1:n,1:n),aug(1:n,n + 1));
%

(b)

% 	 Back Substitution
%
function x = backsub(a,b)
n = length(b);
x = zeros(n,1);
x(n) = b(n)/a(n,n);
for k = n-1:-1:1
 x(k) = (b(k)-a(k,k + 1:n)*x(k + 1:n))/a(k,k);
end
end
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B.7

(a)

% 	 �GAUSSIAN ELIMINATION METHOD FOR A TRIDIAGONAL
% 	 COEFFICIENT MATRIX
%
%	 �n is the number of unknowns, s is a parameter from the 
%	 problem being solved, a, b and c are coefficients in 
%	 the tridiagonal matrix, f is the constant vector and tp 
%	 is the physical temperature
%
% 	 Enter input data
%
s = 0.071^2;
n = 29;
f(1) = 100;f(29) = 100;
f(2:28) = 0;
a(2:n) = -1;b(1:n) = 2 + s;c(1:n-1) = -1;
%
% 	 Apply tridiagonal matrix algorithm
%
for i = 2:n;
d = a(i)./b(i-1);
b(i) = b(i)-c(i-1).*d;
f(i) = f(i)-f(i-1).*d;
end
%
% 	 Apply back-substitution
%
t(n) = f(n)./b(n);
for i = 1:n-1;
j = n-i;
t(j) = (f(j)-c(j).*t(j + 1))./b(j);
end
%
% 	 Plot the results obtained
%
tp(2:30) = t(1:29) + 20;
tp(1) = 120;tp(31) = 120;
x = linspace(0,30,31);
plot(x,tp,'k')
xlabel('Distance x (cm)', 'Fontsize', 14)
ylabel( 'Physical Temperature Tp (Degrees C)', 'Fontsize', 14)

(b) TRIDIAGONAL MATRIX ALGORITHM

function t = tdma( a,b,c,f,n)
for i = 2:n;
d = a(i)./b(i-1);
b(i) = b(i)-c(i-1).*d;
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f(i) = f(i)-f(i-1).*d;
end
%
%	 Apply back-substitution
%
t(n) = f(n)./b(n);
for i = 1:n-1;
j = n-i;
t(j) = (f(j)-c(j).*t(j + 1))./b(j);
end

B.8

% 	 GAUSS–JORDAN METHOD FOR SOLVING
% 	 A SYSTEM OF LINEAR EQUATIONS
%
%	 �a is the coefficient matrix, b is the constant vector, 
%	 x is the vector of the n unknowns and tr is the 
%	 transformed matrix which should be an identity matrix
%
function [x,tr] = jordan(a,b)
%
% 	 Enter input data
%
[n n] = size(a);
x = zeros(n,1);
c = zeros(1,n + 1);
aug = [a b];
%
% 	 Partial pivoting
%
for p = 1:n
  [y,j] = max(abs(aug(p:n,p)));
  c = aug(p,:);
  aug(p,:) = aug(j + p-1,:);
  aug(j + p-1,:) = c;
%
% 	 Check if coefficient matrix is singular
%
  if aug(p,p) = =0
     'a was singular. No unique solution'
     break
  end
%
%	 Apply Gauss–Jordan method
%
  for k = p + 1:n + 1
      aug(p,k) = aug(p,k)/aug(p,p);
  end
  aug(p,p) = 1;
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  for i = 1:n
       if i ~ =p
           for j = p + 1:n + 1
           aug(i,j) = aug(i,j)-aug(i,p)*aug(p,j);
           end
           aug(i,p) = 0;
       end
  end
end
%
% 	 Output solution
%
tr = aug(1:n,1:n);
x = aug(:,n + 1)

B.9

% 	 SOLVING A SYSTEM OF LINEAR EQUATIONS
% 	 BY MATRIX INVERSION
%
%	 a is the coefficient matrix, b is the constant vector, 
%	 x is the vector of the n unknowns, d is the calculated 
%	 inverse of the matrix a and tr is the transformed 
%	 matrix which should be an identity matrix
%
function [x,tr] = matinv(a,b)
%
% 	 Enter input data
%
[n n] = size(a);
x = zeros(n,1);
c = zeros(1,n + 1);
d = eye(n);
%
% 	 Form augmented matrix
%
aug = [a d];
%
% 	 Partial pivoting
%
for p = 1:n
  [y,j] = max(abs(aug(p:n,p)));
  c = aug(p,:);
  aug(p,:) = aug(j + p-1,:);
  aug(j + p-1,:) = c;
%
% 	 Check if coefficient matrix is singular
%
  if aug(p,p) = =0
      'a was singular. No unique solution'
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      break
  end
%
% 	 Apply Gauss–Jordan method
%
  for k = p + 1:2*n
       aug(p,k) = aug(p,k)/aug(p,p);
  end
  aug(p,p) = 1;
  for i = 1:n
       if i ~= p
           for j = p + 1:2*n
           aug(i,j) = aug(i,j)-aug(i,p)*aug(p,j);
           end
           aug(i,p) = 0;
       end
  end
end
%
%	 Output results
%
tr = aug(1:n,1:n);
d = aug(1:n,n + 1:2*n);
disp(d);
x = d*b;
disp(x);

B.10

% 	 SOLVING THE SYSTEM OF LINEAR EQUATIONS
%	 IN EXAMPLE 6.5 BY THE GAUSS–SEIDEL METHOD
%
%	 �s is a parameter in the problem, eps is the convergence
%	 parameter, tp is the physical temperature
%
%	 Input given data
%
s = 0.071^2;
eps = 0.001;
%
%	 Enter initial guess
%
x = zeros(1,31)
x(1) = 100;
x(31) = 100;
%
%	 Gauss–Seidel iteration
%
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for k = 1:1000
%
%	 Store old values
%
xold = x;
%
%	 Calculate new values
%
for i = 2:30
x(i) = (x(i + 1) + x(i-1))/(2 + s);
end
%
%	 Check for convergence
%
if abs(x-xold) <= eps
fprintf('No. of iterations = %g\n',k);
fprintf('The Solution is:\n');
tp = x + 20;
disp(tp');
break
end
end
for j = 1:31;
     y(j) = (j-1)*1.0;
end
plot(y,tp)

B.11

% 	 GAUSS–SEIDEL METHOD FOR SOLVING
%	 A SYSTEM OF LINEAR EQUATIONS
%
function x = gseid(a,b,p,ep,max1)
%
%	 �a is the coefficient matrix, b is the constant vector, 
%	 x is the vector of the n unknowns, p is the initial 
%	 guess for the vector of unknowns, ep is the convergence 
%	 parameter, and max1 is the specified maximum number of 
%	 iterations
%
% 	 Determine number of unknowns
%
n = length(b);
%
% 	 Apply Gauss–Seidel iteration
%
for k = 1:max1
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for j = 1:n
if j == 1
x(1) = (b(1)-a(1,2:n)*p(2:n))/a(1,1);
elseif j == n
	 x(n) = (b(n)-a(n,1:n-1)*(x(1:n-1))')/a(n,n);
else
x(j) = (b(j)-a(j,1:j-1)*(x(1:j-1))'- ... 
  a(j,j + 1:n)*p(j + 1:n))/a(j,j);
end
end
%
% 	 Calculate error and apply convergence criterion
%
err = abs(norm(x'-p));
p = x';
if(err < ep)
break
end
end
x = x';

B.12

% 	 POWER METHOD FOR SOLVING AN EIGENVALUE PROBLEM
%
% 	 x is the eigenvector, xo is the eigenvector at the 
%	 previous iteration, a is the coefficient matrix, eps is 
%	 the convergence parameter, and c is the largest 
%	 eigenvalue
%
% 	 Enter initial guess
%
x = input('Initial guess of unknown eigenvector = ');
a = input('Coefficient matrix a = ');
eps = 0.0001;
%
% 	 Apply Power method
%
for i = 1:30
xo = x;
x = a*x;
c = max(x);
x = x/c;
%
% 	 Check for convergence
%
if (abs(x-xo)) < eps
%
% 	 Print results
%
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c,x
break
end
end

B.13

% 	 SUCCESSIVE SUBSTITUTION METHOD FOR SOLVING
%	 A SYSTEM OF NONLINEAR ALGEBRAIC EQUATIONS
%
%	 ep is the convergence parameter, b, p, f1, f2 are 
%	 parameters in the problem, and c is the total flow rate 
%	 of the mixture entering the plant
%
ep = 0.0000001;
b = 0.1;
c = 180.0;
bo = b;
	 disp('ARGON              TOTAL FLOW         AMMONIA')
for i = 1:50
     f1 = 0.9/(1.0-b);
     p = 1.0-0.57*exp(-0.0155*f1);
     f2 = 90.0/(1.0-b*p);
     b = 1.0-23.5/(4.0*f2*p + f1);
     c = f1 + 4.0*f2;
     d = 0.57*exp(-0.0155*f1)*2.0*f2;
	 fprintf('%.4f            %.4f               %.4f\n',f1,c,d)
     if (abs(b-bo)) < ep
	 disp('Iteration has converged')
	 disp('Converged results are')
	 �fprintf('ARGON = %.4f    TOTAL FLOW= %.4f ...
	   AMMONIA= %.4f\n',f1,c,d)
	 break
     end
     bo = b;
end

B.14

% 	 NEWTON'S METHOD FOR SOLVING A SYSTEM
%	 OF NONLINEAR ALGEBRAIC EQUATIONS
%
%	 �r and p are parameters in the problem, ep is the 
%	 convergence parameter and dr, dp are the increments in 
%	 r and p, respectively
%
%	 Enter starting values
%
r = input('Enter the value of parameter r, r =');
p = input('Enter the value of parameter p, p =');
ep = input('Enter the value of convergence parameter ...
  ep, ep =');
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for i = 1:10
     r1 = ((p-80)/10.5)^0.6-r;
     p1 = ((15-r)*(10^6)/75)^0.5-p;
     b = r1^2 + p1^2;
%
%	 Check for convergence
%
	     if b < ep
	 	 disp('THE REQUIRED SOLUTION IS:')
     fprintf('The flow rate R = %.4f The pressure ...
       P = %.4f\n',r,p)
     break
	     end
%
%	 Calculate partial derivatives
%
     rr = -1;
     rp = 3/(5*(10.5^0.6)*((p-80)^0.4));
     pr = -1/(2*((7.5*10^-5)^0.5)*((15-r)^0.5));
     pp = -1;
     d = rr*pp-rp*pr;
%
%	 Determine increments for the next iteration
%
     dr = (-r1*pp + p1*rp)/d;
     dp = (-p1*rr + r1*pr)/d;
%
%	 Calculate values of r and p for the next iteration
%
     r = r + dr;
     p = p + dp;
%
%	 Print results
%
     fprintf('R =%.4f           P =%.4f\n',r,p)
end

B.15

% 	 INTERPOLATION WITH AN EXACT FIT
%
% 	 Fifth order polynomial, y = f(x)
%
%	 �c is the coefficient matrix, a is the vector 
%	 representing the constants of the polynomial in 
%	 ascending powers of x, and p is the vector of constants 
%	 of the polynomial in descending powers of x
%
% 	 Enter given data
x = [1 2 3 4 5 6];
y = [106.4 57.79 32.9 19.52 12.03 7.67]';
%
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% 	 Form Matrix
%
c = [x.^0;x;x.^2;x.^3;x.^4;x.^5]';
%
% 	 Find coefficients of polynomial
%
disp('Coefficients of the polynomial are:')
a = c\y
plot(x,y,'*')
hold
%
% 	 Find value at x = 3.4
%
p = a(6:-1:1);
x1 = 3.4;
y1 = polyval(p,x1);
fprintf('Interpolated value from exact fit y = %.4f\n',y1)
%
% 	 Use of Matlab functions
%
y2 = interp1(x,y',x1,'linear');
y3 = interp1(x,y',x1,'spline');
fprintf('Value from linear interpolation y = %.4f\n',y2)
fprintf('Value from spline interpolation y = %.4f\n',y3)
x = linspace(1,6,20);
y = polyval(p,x);
plot(x,y,'-g')
xlabel('x','Fontsize',14);ylabel('y','Fontsize',14)

B.16

% 	 LAGRANGE INTERPOLATION
%
%	 w is the number of data points and c is the vector of 
%	 constants of the polynomial in descending powers of x
%
% 	 Enter given data
x = [0.5 1.0 1.5 2.0 2.5];
y = [3.0 3.9 5.2 7.3 10.5];
%
% 	 Get number of data points or unknowns
%
w = length(x);
n = w-1;
l = zeros(w,w);
%
% 	 Calculate coefficients of the general polynomial
%
for k = 1:n + 1
v = 1;
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for j = 1:n + 1
if k ~= j
v = conv(v,poly(x(j)))/(x(k)-x(j));
end
end
l(k,:) = v;
end
c = y*l;
%
%	 Print coefficients of the polynomial
%
disp('Coefficients of the polynomial in descending powers of x ...
  are:')
disp(c')
%
% 	 Check accuracy of polynomial
%
xp = [0 0.5 0.75 1.0 1.25 1.5 1.8 2.0 2.2 2.5 3.0];
yp = polyval(c,xp);
disp('Interpolated values:')
for k = 1:11
fprintf('xp = %.4f         yp = %.4f\n',xp(k),yp(k))
end

B.17

% 	 �NEWTON'S DIVIDED DIFFERENCE METHOD FOR INTERPOLATION
%
%	 �c is the vector of the coefficients of the polynomial 
%	 for Newton's divided differences
%
% 	 Enter input data
%
n = input('Enter the number of data points, n = ');
x = input('Enter values of the independent variable, x = ');
y = input('Enter corresponding values of the dependent ...
    variable, y = ');
%
f(1:5,1)= y;
%
% 	 Apply Newton's Divided Difference method
%
for k = 1:(n-1)
l = k + 1;
for m = 1:(n-k)
f(m,l) = (f(m + 1,k)-f(m,k))/(x(m + k)-x(m));
end
end
disp('Coefficients of the polynomial c0, c1, c2 ... are:')
c = f(1,1:n)'
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%
% 	 Enter value of independent variable for interpolation
%
for i = 1:6
    xp = input ('\nEnter x where interpolation is desired, ...
      xp = ');
    fprintf('xp =%.3f\n',xp)
%
% 	 Calculate interpolated results and remainder
%
b = 1;z = 0;
for i = 1:n
z = z + f(1,i)*b;
fprintf('Interpolated value of y =%.3f\n',z)
b = b*(xp-x(i));
if i < n
r = b*f(1,i + 1);
fprintf('Remainder term =%.3f\n',r)
end
end
end

B.18

% 	 POLYNOMIAL REGRESSION
%
%	 �n is the number of data points, c is the vector 
%	 representing the constants of the polynomial in 
%	 ascending powers of x, and p is the vector of constants 
%	 of the polynomial in descending powers of x
%
% 	 Input given data
%
x = input('Enter values of the independent variable, x = ');
y = input('Enter values of the dependent variable, y = ');
np = input('Enter order of polynomial for best fit, np = ');
%
n = length(x);
m = np + 1;
%
% 	 Initialize matrices
%
a = zeros(m,m);
b = zeros(m,1);
%
% 	 Apply polynomial regression
%
for i = 1:m
for j = 1:m
n1 = i + j-2;
for k = 1:n
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     a(i,j) = a(i,j) + x(k)^n1;
end
end
for k = 1:n
     b(i) = b(i) + y(k)*x(k)^(i-1);
end
end
%
%	 �Print polynomial constants and values calculated from 
%	 best fit
%
disp('The constants of the polynomial are:')
c = a\b
p = c(m:-1:1);
disp('The values calculated from the best fit are:')
s = polyval(p,x);
y = s'

B.19

(a)

% 	 NUMERICAL INTEGRATION BY TRAPEZOIDAL RULE
%
function s = trap(f,a,b,m)
%
% 	 �f is the function, entered as a string, a and b are the 
%	 limits of integration, m is the number of subintervals, 
%	 and s the sum or quadrature
%
% 	 Calculate step or segment size
%
h = (b-a)/m;
fprintf('Step Size = %.4f\n',h)
for i = 1:10
%
% 	 Apply Trapezoidal rule
%
s = 0;
for k = 1:m-1
x = a + h*k;
s = s + feval(f,x);
end
s = h*(feval(f,a) + feval(f,b))/2 + h*s;
%
% 	 Print results
%
fprintf('Time = %2g        Charge = %.4f        Voltage =  ...
%.4f\n',b,s,s/0.025);
%
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% 	 Vary upper limit for integration
%
b = 2 + b;m = (b-a)/h;
end

(b)

%	 ALTERNATIVE IMPLEMENTATION OF ALGORITHM
%
% 	 Apply Trapezoidal rule
%
x = a:h:b;
f = feval('f81',x);
s = h*(0.5*f(1) + sum(f(2:n-1)) + 0.5*f(n));
%

B.20

(a)
% 	 NUMERICAL INTEGRATION BY SIMPSONS'S RULE
%
function s = simp2(f,a,b,n)
%
% 	 �f is the function, entered as a string, a and b are the 
%	 limits of integration, n is the number of subintervals, 
%	 m is the number of two-segment intervals and s the sum 
%	 or quadrature
%
for i = 1:10
%
% 	 �Calculate segment size h and number of two-segment 
%	 sections m
%
h = (b-a)/n;
m = n/2;
%
% 	 Apply Simpson's rule
%
s1 = 0;
s2 = 0;
for k = 1:m
x = a + h*(2*k-1);
s1 = s1 + feval(f,x);
end
for k = 1:(m-1)
x = a + h*2*k;
s2 = s2 + feval(f,x);
end
s = h*(feval(f,a) + feval(f,b) + 4*s1 + 2*s2)/3;
%
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% 	 Print results
%
fprintf('n = %4g     Flow Rate = %.4f     Avg. Vel. = %.4f\n',n,s,...
 s/(pi*0.01));
%
% 	 Vary number of segments n
%
n = 2*n;
end

(b)

%	 ALTERNATIVE IMPLEMENTATION OF ALGORITHM
%
% 	 Apply Simpson's rule
%
  x = a:h:b;
  f = feval('f82',x);
  s = (h/3)*(f(1) + 4*sum(f(2:2:n)) + ... 
     2*sum(f(3:2:n-1)) + f(n + 1));
%

B.21

% 	 ROMBERG INTEGRATION
%
% 	 �This program obtains the integral of a given function 
%	 f(x) over specified lower limit xmin and upper limit 
%	 xmax by using Romberg integration with a convergence 
%	 parameter ep; h is the step size
%
% 	 Define the function to be integrated
%
f = inline('(2.0/sqrt(pi))*exp(-x^2)');
%
% 	 Enter input values
%
ep = 0.00001;
dif = 1.0;
xmin = 0.0;
xmax = input('Enter the value of z =');
h = xmax-xmin;
%
% 	 �Carry out first order (Trapezoidal rule) calculations
%
n = 1;
y(1,1) = 0.5*h*(f(xmin) + f(xmax));
fprintf('No. of iterations = %2g      Erf(z) = %.6f\n',n,y(1,1));
%
% 	 Apply convergence criterion
%
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while dif > ep
%
% 	 Calculate higher order extrapolations
%
m = 2^(n-1);
h = h/2.0;
n = n + 1;
y(1,n) = 0.5*y(1,n-1);
for k = 1:m
     x = xmin + (2*k-1)*h;
     y(1,n) = y(1,n) + h*f(x);
end
for k = 2:n
	 y(k,n) = (4^(k-1)*y(k-1,n)-y(k-1,n-1))/(4^(k-1)-1);
end
dif = abs(y(n,n)-y(n-1,n));
%
%	 Print results
%
fprintf('No. of iterations = %2g      Erf(z) = %.6f\n',n,y(n,n));
end

B.22

% 	 INTEGRATION WITH SEGMENTS OF UNEQUAL WIDTH
%
% 	 �This program calculates the integral from experimental 
% 	 data on the dependent variable v given at unevenly 
% 	 distributed values of the independent variable t; eps is 
% 	 a specified small number and s is the sum or 
% 	 quadrature
%
% 	 Enter given data
%
t = [0 .1 .2 .3 .5 .7 .8 1 1.1 1.3 1.5 1.6 1.7 1.8 2.0];
v = [9.5 10 10.57 11.24 12.97 15.38 16.93 20.9 23.41...
    29.74 38.17 43.33 49.21 55.88 71.9];
%
% 	 Specify small quantity eps to compare segment widths
%
eps = 1.0e-6;
%
% 	 Starting values
%
m = length(t);
i = 1;
s = 0;
%
% 	 Compare adjacent segment widths dt1, dt2 and dt3
%
while i < m
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    dt = t(i + 1)-t(i);
    if i = =m-1
	 dt1 = dt;dt2 = 0;dt3 = 0;
    elseif i = =m-2
	 dt1 = dt;dt2 = t(i + 2)-t(i + 1);dt3 = 0;
    else
        dt1 = dt;dt2 = t(i + 2)-t(i + 1);dt3 = t(i + 3)-t(i + 2);
    end
%
% 	 Apply Trapezoidal rule
%
if abs(dt2-dt1) > eps
    s = s + (v(i + 1) + v(i))*dt/2;
    i = i + 1;
    disp('Trapezoidal rule')
%
% 	 Apply Simpson's one-third rule
%
elseif abs(dt3-dt2) > eps
	 s = s + (v(i) + 4.0*v(i + 1) + v(i + 2))*dt/3.0;
	 i = i + 2;
	 disp('Simpson one-third rule')
%
% 	 Apply Simpson's three-eighths rule
%
    else
	 s = s + (v(i) + 3.0*v(i + 1) + 3.0*v(i + 2)...
	 +  v(i + 3))*dt*3.0/8.0;
	 i = i + 3;
	 disp('Simpson three-eighths rule')
    end
%
% 	 Print results
%
	 fprintf('I = %2g    Time = %.4f    Velocity = %.4f ...
Distance = %.4f\n',i,t(i),v(i),s)
end

B.23

% 	 NUMERICAL INTEGRATION OF AN IMPROPER
%	 INTEGRAL BY SIMPSONS'S ONE-THIRD RULE
%
function s = simpimp(f,a,b,h)
%
% 	 �f is the function, entered as a string, a and b are the 
% 	 limits of integration, h is the width of each 
% 	 subinterval, and s the sum or quadrature
%
%	 Define starting parameters
%
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for i = 1:4
     xmin = a;
     se = 0.0;
     fprintf('xmin = %.4f\n',xmin);
     for j = 1:8
	   xmax = b;
%
% 	 �Calculate number of sub-intervals n and number of 
%	 two-segment sections m
%
n = (b-a)/h;
m = n/2;
%
% 	 Apply Simpson's rule
%
s1 = 0;
s2 = 0;
for k = 1:m
x = a + h*(2*k-1);
s1 = s1 + feval(f,x);
end
for k = 1:(m-1)
x = a + h*2*k;
s2 = s2 + feval(f,x);
end
s = h*(feval(f,a) + feval(f,b) + 4*s1 + 2*s2)/3;
%
% 	 Print results
%
fprintf('Integral = %4g               xmax = %.4f\n',s,b);
%
% 	 Vary number of segments n
%
if abs(s-se) > 0.00001
b = b + 5.0;
se = s;
else
	 break
end
	 end
a = a + 5.0;
b = a + 10.0;
end

B.24

(a)

%	 EULER'S METHOD FOR SOLVING A FIRST-ORDER ODE
%
function e = euler(f,a,b,y0,n)
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%
%	 f is the function entered as a string 'f'
%	 a and b are the starting and end points
%	 y0 is the initial condition y(1)
%	 n is the number of steps
%	 �e[t' y'] is the output where t is the vector of 
%	 independent variable and y is the vector of dependent 
%	 variable
%
h = (b-a)/n;
t = zeros(1,n + 1);
y = zeros(1,n + 1);
t = a:h:b;
y(1) = y0;
for j = 1:n
     y(j + 1) = y(j) + h*feval(f,t(j),y(j));
end
e = [y' t'];

(b)

%	 SOLUTION OF ODES IN EXAMPLE 8.1 BY EULER'S METHOD
%
%
% 	 Given ODE: dy/dt = f(t,y)
%
%	 �dt is step size, tn is total range of t, y0 is initial
%	 value of y, and n is total number of t values
%
% 	 Enter given ODE
%
dydt = inline('2-0.5*y','t','y');
%
% 	 Choose step size and total time
%
dt = 0.01;
tn = 800*dt;
%
% 	 Enter initial conditions and starting values
%
y0 = 0;
n1 = 51;
t = (0:dt:tn)';
n = length(t);
y = y0*ones(n,1);
%
% 	 Apply Euler's Method
%
for j = 2:n1;
     y(j) = y(j-1) + dt*dydt(t(j-1),y(j-1));
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end
%
%	 Second ODE
%
dydt = inline('-0.5*y','t','y');
for j = n1 + 1:n;
     y(j) = y(j-1) + dt*dydt(t(j-1),y(j-1));
end
%
%	 Plot results
%
  plot(t,y,'-g')

B.25

(a)

%	 HEUN'S METHOD FOR SOLVING A FIRST-ORDER ODE
%
function s = heun(f,a,b,ya,h)
%
%	 f is the function entered as a string 'f'
%	 a and b are the starting and end points
%	 ya is the initial condition y(1)
%	 h is the step size
%	 �s[t' y'] is the output where t is the vector of 
%	 �independent variable and y is the vector of dependent 
%	 variable
%
m = (b-a)/h;
t = zeros(1,m + 1);
y = zeros(1,m + 1);
t = a:h:b;
y(1) = ya;
for j = 1:m
k1 = feval(f,t(j),y(j));
k2 = feval(f,t(j + 1),y(j) + h*k1);
y(j + 1) = y(j) + (h/2)*(k1 + k2);
end
s = [t' y']

(b)
function z = fe1( x,y )
z = 4-2*y;
end

(c)
function z = fe2( x,y )
z = -2*y;
end
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(d)
s1 = heun('fe1',0,0.5,0,0.01);
s2 = heun('fe2',0.5,8,s1(51,2),0.01);
plot(s1(:,1),s1(:,2))
hold
plot(s2(:,1),s2(:,2))

B.26

% 	 FOURTH-ORDER RUNGE–KUTTA METHOD
%
% 	 Enter the function f for the ODE dv/dt = f(t,v)
%
f = inline('-9.8-(0.01*v + 0.001*v^2)');
%
% 	 Choose time step and enter initial conditions
%
dt = input('Step size dt =');
t = 0;
x = 0;
v = 100.0;
i = 1;
%
while v >= 0
%
% 	 Initialize variables
%
	 q = x;z = v;
	 tp(i) = t;xp(i) = x;vp(i) = v;
%
% 	 Apply 4th order Runge-Kutta formulas
%
rk1x = dt*z;
rk1v = dt*f(z);
rk2x = dt*(z + rk1v/2);
rk2v = dt*f(z + rk1v/2);
rk3x = dt*(z + rk2v/2);
rk3v = dt*f(z + rk2v/2);
rk4x = dt*(z + rk3v);
rk4v = dt*f(z + rk3v);
x = q + (rk1x + 2*rk2x + 2*rk3x + rk4x)/6;
v = z + (rk1v + 2*rk2v + 2*rk3v + rk4v)/6;
%
% 	 Advance to next time step
%
t = t + dt;
i = i + 1;
end
%
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% 	 Plot results
%
plot(tp,xp,'-',tp,vp,'––')

B.27

% 	 ADAM'S PREDICTOR–CORRECTOR METHOD
%
%	 �dt is time step, ep is the convergence parameter for 
%	 steady state and ep1 is the convergence parameter for 
%	 the corrector
%
% 	 Enter function f(y) in ODE dy/dt = f(y)
%
f = inline('10-0.05*y');
%
% 	 Enter initial conditions
%
t(1) = 0;
y(1) = 100;
%
ep = 0.0001;
ep1 = 0.00001;
%
% 	 Choose time step
%
dt = input('Time step dt = ');
for i = 1:3
%
% 	 Apply Runge-Kutta for first 3 steps
%
    rk1 = dt*f(y(i));
    rk2 = dt*f(y(i) + rk1/2);
    rk3 = dt*f(y(i) + rk2/2);
    rk4 = dt*f(y(i) + rk3);
    y(i + 1) = y(i) + (rk1 + 2*rk2 + 2*rk3 + rk4)/6;
    t(i + 1) = t(i) + dt;
end
s = abs((y(i + 1)-y(i))/(y(i)*dt));
%
% 	 Apply convergence criterion
%
while s >= ep
    i = i + 1;
%
%	 Apply predictor
%
  �  y(i + 1) = y(i) + dt*(55*f(y(i))-59*f(y(i-1))...
              + 37*f(y(i-2))-9*f(y(i-3)))/24;
    yp(i + 1) = y(i + 1);
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    dy = abs(y(i + 1)-y(i));
%
% 	 Apply corrector with iteration
%
    while dy > =ep1
  �  y(i + 1) = y(i) + dt*(9*f(y(i + 1)) + 19*f(y(i))...
              -5*f(y(i-1)) + f(y(i-2)))/24;
    dy = abs(y(i + 1)-yp(i + 1));
    end
    t(i + 1) = t(i) + dt;
    s = abs((y(i + 1)-y(i))/(y(i)*dt));
end
%
% 	 Plot results
%
plot(t,y,'-')

B.28

% 	 HAMMING'S PREDICTOR–CORRECTOR METHOD
%
% 	 Define function f(x,y) in dy/dx = f(x,y)
%
%	 �dt is time step and ep is convergence parameter for
%	 steady state
%
f = inline('9.8-(2*y + 0.1*y^2)');
%
% 	 Enter initial conditions
%
t(1) = 0;
y(1) = 0;
%
ep = 0.0001;
%
% 	 Choose step size dt
%
dt = input('Time step dt = ');
%
% 	 Apply Runge-Kutta method for the first three steps
%
for i = 1:3
     rk1 = dt*f(y(i));
     rk2 = dt*f(y(i) + rk1/2);
     rk3 = dt*f(y(i) + rk2/2);
     rk4 = dt*f(y(i) + rk3);
     y(i + 1) = y(i) + (rk1 + 2*rk2 + 2*rk3 + rk4)/6;
     t(i + 1) = t(i) + dt;
end
yp(i + 1) = y(i + 1);ym(i + 1) = yp(i + 1);yc(i + 1) = yp(i + 1);



542	 Appendix B: Computer Programs in MATLAB®

s = abs((y(i + 1)-y(i))/(y(i)*dt));
%
% 	 Apply convergence criterion
%
while s >= ep
	 i = i + 1;
%
% 	 Apply Predictor
%
	 �yp(i + 1) = y(i-3) + dt*(4/3)*(2*f(y(i))-f(y(i-1))...
	             + 2*f(y(i-2)));
%
% 	 Apply Modifier
%
	 ym(i + 1) = yp(i + 1)-(112/121)*(yp(i)-y(i));
%
% 	 Apply Corrector
%
	 yc(i + 1) = (1/8)*(9*y(i)-y(i-2)) + (3/8)*dt*...
	             (f(ym(i + 1)) + 2*f(y(i))-f(y(i-1)));
%
% 	 Update results
%
	 y(i + 1) = yc(i + 1);
	 t(i + 1) = t(i) + dt;
	 s = abs((y(i + 1)-y(i))/(y(i)*dt));
end
%
% 	 Plot results
%
plot(t,y,'-')

B.29

(a)
%  	 SOLUTION OF A THIRD-ORDER BOUNDARY-VALUE PROBLEM BY
%	 RUNGE–KUTTA METHOD WITH SHOOTING TECHNIQUE
%
% 	 �t is the independent variable, v represents the three 
% 	 dependent variables, ep is the convergence parameter, 
% 	 er is the difference between two values of variable 
% 	 v(2), or velocity, at the second boundary, y0 
% 	 represents the initial conditions, s is the unknown
% 	 variable v(3) to be determined at t = 0
%
% 	 Enter convergence parameter and starting values
%
ep = 0.001;
s = 0.5;
edge = 6.0;
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e1 = 0;
%
for i = 1:20;
%
% 	 Apply convergence criterion
%
    if abs(e1-1) < ep
	 break
    end
%
% 	 Apply ode45 to solve the ODEs
%
y0 = [0;0;s];
[t,v] = ode45('rhs1',edge,y0);
e1 = v(length(v),2);
%
% 	 Compute the derivative for Newton-Raphson
%
y0 = [0;0;s + 0.001];
[t,v] = ode45('rhs1',edge,y0);
e2 = v(length(v),2);
er = e2-e1;
der = (er)/0.001;
%
% 	 Apply Newton-Raphson method
%
s = s-(e1-1)/der;
end
%
% 	 Plot the results
%
plot(t,v(:,1),'–',t,v(:,2),'––',t,v(:,3),'–⋅')

(b)

%	 Defining the three ODEs in Example 8.5
%
function dydt = rhs1(t,y)
b = 0.5;
dydt = [y(2);y(3);-y(1)*y(3)-b*(1-y(2)^2)];
end

B.30

% 	 �FINITE DIFFERENCE METHOD FOR SOLVING SECOND-ORDER ODE
%
%
%	 �s, p are parameters in the problem, nt is the total 
%	 number of grid points, a, b and c are coefficients in 
%	 the tridiagonal matrix, f is the constant vector, t is 
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%	 the dimensionless temperature and tp is the physical 
%	 temperature
%
% 	 Enter input data
%
p = input('Parameter P = ');
nt = input('Total number of grid points = ');
n = nt-2;
s = 2 + (p^2)*((1.0/(nt-1))^2);
%
%	 �Enter boundary conditions and form tridiagonal matrix
%
f(1) = 1;f(n) = 0.5;
f(2:n-1) = 0;
a(2:n) = -1;b(1:n) = s;c(1:n-1) = -1;
%
%	 Apply tridiagonal matrix algorithm
%
for i = 2:n;
d = a(i)./b(i-1);
b(i) = b(i)-c(i-1).*d;
f(i) = f(i)-f(i-1).*d;
end
%
%	 Apply back-substitution
%
t(n) = f(n)./b(n);
for i = 1:n-1;
j = n-i;
t(j) = (f(j)-c(j).*t(j + 1))./b(j);
end
%
%	 Calculate resulting temperature distribution
%
tp(2:nt-1) = t(1:n);
tp(1) = 1;tp(nt) = 0.5;
%
%	 Plot the results obtained
%
x = linspace(0,1,51);
plot(x,tp,'k')
xlabel('Distance X', 'Fontsize', 14)
ylabel( 'Temperature T', 'Fontsize', 14)

B.31

% 	 FORWARD TIME CENTRAL SPACE (FTCS) METHOD
%
% 	 �th is the unknown theta, or dimensionless 
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% 	 concentration, tint is the initial value of th taken as 
% 	 uniform, kmax is the maximum number of time steps, 
% 	 kprint the steps after which results are printed or 
% 	 plotted,dx is the grid size, dt the time step, n the 
% 	 number of grid points, k represents the time step and i 
% 	 the spatial grid point
%
% 	 Enter starting values
%
tint = input('Enter the initial condition tint = ');
n = input('Enter number of grid points n = ');
kmax = input('Enter maximum number of time steps kmax = ');
kprint = input('Time steps after which results are plotted ...
  kprint = ');
%
% 	 Specify boundary conditions
%
th(1,2:n) = tint;
th(1:kmax,1) = 1.0;
dx = 1/(n-1);
%
% 	 �Calculate maximum time step to avoid numerical instability
%
dt = (dx^2)/2;
     for k = 2:kmax;
%
%       Apply FTCS method
%
           for i = 2:n-1;
      �     th(k,i) = th(k-1,i) + dt*(th(k-1,i + 1)-2*th ...
                      (k-1,i) + th(k-1,i-1))/(dx^2);
           end
        end
%
% 	 Store results for plotting
%
    for j = 1:10;
         m = kprint*j + 1;
         time = (m-1)*dt;
         fprintf('Time = %.4f\n',time)
         tp(j,1:n) = th(m,1:n);
    end
%
% 	 Plot results
%
x = linspace(0,1,n);
plot(x,tp)
xlabel('X');ylabel('Dimensionless concentration, \theta');
title('Concentration Versus Distance at Different Times')
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B.32

% 	 CRANK–NICOLSON METHOD
%
% 	 �t is the unknown dimensionless temperature, tint is the 
% 	 initial value of t taken as uniform, kmax is the maximum 
% 	 number of time steps, kprint the steps after which 
% 	 results are printed or plotted, dx is the grid size, dt 
% 	 the time step, n the number of grid points, k 
% 	 represents the time step and i the spatial grid point, 
% 	 and a, b, c and f are the parameters of the tridiagonal 
% 	 system
%
% 	 Enter starting values
%
tint = input('Enter the initial condition tint = ');
n = input('Enter number of grid points n = ');
dt = input('Enter the time step dt = ');
kmax = input('Enter maximum number of time steps kmax = ');
kprint = input('Time steps after which results are plotted ...
    kprint = ');
%
% 	 Specify boundary conditions
%
t(1,2:n) = tint;
t(1:kmax,1) = 1.0;
dx = 1/(n-1);
%
% 	 Calculate the parameters of the tridiagonal system
%
for k = 2:kmax;
     a(1:n-2) = -dt/(2*dx^2);
     b(1:n-2) = 1 + dt/(dx^2);
     c(1:n-2) = -dt/(2*dx^2);
     for i = 2:n-1;
     �     f(i-1) = t(k-1,i) + dt*(t(k-1,i + 1)-2*t ...
           �         (k-1,i) + t(k-1,i-1))/(2*dx^2);
     end
     f(1) = f(1)-a(1)*t(k,1);
     a(n-2) = a(n-2)-c(n-2)/3;
     b(n-2) = b(n-2) + 4*c(n-2)/3;
%
% 	 �Use the TDMA function file to obtain temperatures at
% 	 the next time step
%
     t(k,2:n-1) = tdma(a,b,c,f,n-2);
%
% 	 Apply boundary condition at the right boundary
%
     t(k,n) = 4*t(k,n-1)/3-t(k,n-2)/3;
end
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%
%	 Store results for plotting
%
    for j = 1:10;
         m = kprint*j + 1;
         time = (m-1)*dt;
         fprintf('Time = %.4f\n',time)
         tp(j,1:n) = t(m,1:n);
    end
%
% 	 Plot results
%
x = linspace(0,1,n);
plot(x,tp)
xlabel('X');ylabel('Dimensionless Temperature, \theta');
title('Temperature Versus Distance at Different Times')

B.33

% 	 GAUSS–SEIDEL METHOD FOR AN ELLIPTIC PDE
%
% 	 �m and n are grid points in x and y directions, imax is 
% 	 maximum number of iterations, phi is the unknown 
% 	 dependent variable, phiol the value of phi at the 
% 	 previous iteration, and ep the convergence parameter
%
% 	 Input given data
%
m = input('Enter number of grid points in x direction m = ');
n = input('Enter number of grid points in y direction n = ');
phint = input('Enter initial guess for phi taken as uniform ...
   phint = ');
imax = input('Enter maximum number of iterations imax = ');
ep = input('Enter convergence parameter ep = ');
%
% 	 Calculate grid or mesh lengths
%
dx = 1/m;
dy = 1/n;
%
% 	 Apply boundary conditions
%
phi(2:m-1,2:n-1) = phint;
phi(1,1:n) = 0;
phi(m,1:n) = 0;
phi(1:m,1) = 0;
phi(1:m,n) = 0;
%
% 	 Apply Gauss–Seidel iterative scheme
%
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for i = 1:imax;
     phiol(1:m,1:n) = phi(1:m,1:n);
     for j = 2:m-1;
          for k = 2:n-1;
               phi(j,k) = ((phi(j + 1,k) + phi(j-1,k))/...
        �       (dx^2) + (phi(j,k + 1) + phi(j,k-1))/(dy^2))/(2/...

(dx^2) + 2/(dy^2)) + 0.001;
          end
     end
%
% 	 Check for convergence
%
     if abs(phi-phiol) < ep
	  break
     end
end
%
% 	 Plot results
%
xp = linspace(0,1,m);
nn = (n + 1)/2;
plot(xp,phi(1:m,nn-4),xp,phi(1:m,nn-3),xp,phi(1:m,nn-2),...
xp,phi(1:m,nn-1),xp,phi(1:m,nn))

B.34

% 	 SOR METHOD FOR AN ELLIPTIC PDE
%
% 	 �m and n are grid points in x and y directions,
% 	 respectively, imax is maximum number of iterations, phi 
% 	 is the unknown dependent variable,phiol the value of 
% 	 phi at the previous iteration, and ep the convergence 
% 	 parameter
%
% 	 Input given data
%
m = input('Enter number of grid points in x direction m = ');
n = input('Enter number of grid points in y direction n = ');
phint = input('Enter initial guess for phi taken as uniform ...
  phint = ');
imax = input('Enter maximum number of iterations imax = ');
ep = input('Enter convergence parameter ep = ');
%
% 	 Calculate grid or mesh lengths
%
dx = 1/m;
dy = 1/n;
%
% 	 Specify relaxation parameter w
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%
w = 0.5;
for ni = 1:14;
%
% 	 Apply boundary conditions
%
phi(2:m-1,2:n-1) = phint;
phi(1,1:n) = 0;
phi(m,1:n) = 0;
phi(1:m,1) = 0;
phi(1:m,n) = 1;
%
% 	 Apply SOR iterative scheme
%
for i = 1:imax;
     phiol(1:m,1:n) = phi(1:m,1:n);
     for j = 2:m-1;
          for k = 2:n-1;
        �       phi(j,k) = w*((phi(j + 1,k) + phi(j-1,k))/...
                           (dx^2) + (phi(j,k + 1) + phi(j,k-1))/(dy^2))/...
                          (2/(dx^2) + 2/(dy^2)) + (1-w)*phiol(j,k);
          end
     end
%
% 	 Check for convergence
%
     if abs(phi-phiol) < ep
         break
     end
end
%
% 	 Plot results
%
s(ni) = i;
w = w + 0.1;
end
rf = linspace(0.5,1.9,14);
plot(rf,s)

B.35

% 	 SOLUTION OF THE WAVE EQUATION
%
% 	 �This script file solves a second-order hyperbolic 
% 	 partial differential equation by the finite difference 
% 	 method. dx is grid size, dt is time step, n is number 
% 	 of grid points, c is the Courant number, being taken close 
% 	 to 1.0, u is the dependent variable, with u, u1 and u2 
% 	 representing values at time t, t + dt and t + 2dt, nlim is 
% 	 the maximum number of time steps, and nprint is number 
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% 	 of steps after which results are displayed
%
% 	 Enter input quantities
%
dx = input('Grid size dx = ');
dt = input('Time step = ');
nlim = input('Maximum number of time steps nlim = ');
nprint = input('Time steps after which results are displayed ...
  nprint = ');
c = 1000*(dt^2)/(dx^2);
m = 1;
j = 0;
%
% 	 Set the boundary conditions
%
n = (1/dx) + 1;
nn = (0.25/dx) + 1;
u1(1:nn) = linspace(0,0.004,nn);
u1(nn:n) = linspace(0.004,0,(n + 1-nn));
u2(1:n) = 0;
%
% 	 Initialize the variables
%
for i = 2:n-1;
     u2(i) = u1(i) + c*(u1(i + 1)-2*u1(i) + u1(i-1))/2;
end
time = 0;
t = dt;
time = t;
while t < nlim*dt
	 	     m = m + 1;
%
% 	 Save previous values
%
      u(1:n) = u1(1:n);
      u1(1:n) = u2(1:n);
%
% 	 Obtain results for next time step
%
      t = t + dt;
      time = t;
          for i = 2:n-1;
	        u2(i) = 2*u1(i)-u(i) + c*(u1(i + 1)-...
	                2*u1(i) + u1(i-1));
          end
%
% 	 Store results for display
%
	       if m == nprint;
	 	   j = j + 1;
	 	   up(j,1:n) = u2(1:n);
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	 	   m = 0;
	 	   fprintf('Time = %.4f\n',time)
	       else
	       end
end
%
% 	 Plot results
%
x = linspace(0,1,n);
plot(x,up)

B.36

% 	 SOLUTION OF FIRST-ORDER CONVECTION (HYPERBOLIC) PDE
%
% 	 �x is the coordinate distance, t is the time, p(i) 
%	 represents the values of the dependent variable p at 
%	 previous time and pn(i) those at the present time step, 
%	 n is number of spatial grid points, c is convection 
%	 velocity, co is the Courant number, dx is the step 
%	 size, dt is the time step, tmax is the maximum time for 
%	 the computation and t is the time
%
% 	 Enter input quantities
%
dx = input('Enter grid size dx = ');
dt = input('Enter time step dt = ');
c = 2.5;
n = 5/dx + 1;
tmax = 2.0;
%
% 	 �Choose solution method: 1 for backward difference, 2 
%	 for Euler's and 3 for Lax-Wendroff method
%
m = input('Choose solution method m = ');
%
% 	 Input initial and boundary conditions
%
p(2:n) = 0;
pn(2:n) = 0;
p(1) = 1.0;
pn(1) = 1;
t = 0;
j = 1;
p1(1) = 0;p2(1) = 0;p3(1) = 0;p4(1) = 0;
co = c*dt/dx;
%
% 	 Compute results for next time step
%
while t < tmax-eps;
     t = t + dt;
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     j = j + 1;
for i = 2:n;
     if (i-n + 1)|m == 1
%
%      Backward or upwind difference method
%
	   pn(i) = (1-co)*p(i) + co*p(i-1);
     elseif m = =2
%
%      Euler's method
%
	   pn(i) = p(i)-co*(p(i + 1)-p(i-1))/2;
     else m = =3
%
%   Lax-Wendroff method
%
	 pn(i) = p(i)-co*(p(i + 1)-p(i-1))/2 + (co^2)*...
                 (p(i + 1)-2*p(i) + p(i-1))/2;
     end
end
%
% 	 �Store results for display and update previous values
%
p1(j) = pn(3);p2(j) = pn(5);p3(j) = pn(7);p4(j) = pn(9);
p(2:n) = pn(2:n);
end
%
% 	 Plot results
%
ts = linspace(0,2,(2/dt + 1));
plot(ts,p1,ts,p2,ts,p3,ts,p4)
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Appendix C: Computer 
Programs in FORTRAN
C.1:	 Search method for finding the roots of an algebraic equation
C.2:	 Root solving with the bisection method
C.3:	 Root solving with the secant method
C.4:	 Newton–Raphson method for finding the roots of an algebraic equation
C.5:	 Gaussian elimination method for a system of linear equations
C.6:	 Tridiagonal matrix algorithm
C.7:	 The Gauss–Jordan elimination method
C.8:	 SOR method for solving a system of linear equations
C.9:	 Lagrange interpolation
C.10:	 Spline interpolation
C.11:	 Least-squares method for polynomial regression
C.12:	 Trapezoidal rule for numerical integration
C.13:	 Romberg integration
C.14:	 Euler’s method for solving an ODE
C.15:	 Runge–Kutta method for solving a second-order ODE
C.16:	 Finite difference method for a second order-ODE
C.17:	 Forward time central space (FTCS) method for a parabolic PDE
C.18:	 Crank–Nicolson method for a parabolic PDE
C.19:	 SOR method for an elliptic PDE
C.20:	 Solution of the wave equation

C.1

C	 SEARCH METHOD FOR FINDING THE ROOTS OF AN ALGEBRAIC 
C	 EQUATION
C
C	 �THIS PROGRAM FINDS THE REAL ROOTS OF THE EQUATION 
C	 F(X) = 0
C	 BY THE SEARCH METHOD
C
C	 HERE X IS THE UNKNOWN, XMAX IS THE MAXIMUM VALUE OF X,
C	 F1,F2 ARE THE VALUES OF THE FUNCTION F(X) AT TWO 
C	 CONSECUTIVE X VALUES, DX IS THE INCREMENT IN X, AND
C	 EPS IS THE CONVERGENCE CRITERION ON X
C
C	  DEFINE GIVEN FUNCTION F(X)
C
	 � F(X) = 0.8*5.67E–8*(1000.0**4.0–X**4.0)–50.0*(X–500.0)
C    $	–(25.0/0.15)*(X–300.0)
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C
C	 SPECIFY INITIAL PARAMETERS
C
	 EPS = 10.0
	 DO 14 I = 1,6
	 XMAX = 1000.0
	 X = 300.0
	 DX = 50.0
	 WRITE(6,16)EPS
	 16	 FORMAT(2X,'EPS = ',F10.5/)
	 F1 = F(X)
	  4	 X = X + DX
	 F2 = F(X)
	 A = F1*F2
C
C	 CHECK FOR CHANGE IN SIGN OF F(X)
C
	 IF(A .LT. 0.0)THEN
	 WRITE(6,15)X,F1,F2
C
C	 CHECK FOR CONVERGENCE TO THE ROOT
C
	 IF(DX .LT. EPS) GO TO 7
	 X = X – DX
	 DX = DX/10.0
	 GO TO 4
	 ELSE IF(A .EQ. 0.0) THEN
	  7	 WRITE(6,10)X,F1
	 15	 FORMAT(2X,'X = ',F10.4,4X,'F1 = ',F10.4,4X,'F2 = ',F10.4)
	 10    FORMAT(/2X,'TEMPERATURE =',F10.4,4X,'F(X) = ',F10.4//)
	 ELSE
	 IF(X .GT. XMAX) STOP
	 F1 = F2
	 GO TO 4
	 END IF
C
C       VARY CONVERGENGE CRITERION
C
	 14	 EPS = EPS/10.0
	 12	 STOP
	 END

C.2

C	 ROOT SOLVING WITH THE BISECTION METHOD
C
C	 X IS THE INDEPENDENT VARIABLE, FUN(X) IS THE GIVEN
C	 FUNCTION, X1 AND X2 ARE THE TWO EXTREME VALUES OF X 
C	 BOUNDING THE REGION WHICH CONTAINS THE ROOT AT A 
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C	 GIVEN ITERATION, X3 IS THE APPROXIMATION TO THE ROOT, 
C	 F1, F2 AND F3 ARE THE CORRESPONDING VALUES OF THE 
C	 FUNCTION, AND EPS IS THE CONVERGENCE CRITERION
C
C
C	 DEFINE THE GIVEN FUNCTION
C
	  FUN(X) = ALOG10(X) + X*X – 6.0
	  EPS = 1.0
	  DO 4 I = 1,5
	  X1 = 2.0
	  X2 = 5.0
	  1	  F1 = FUN(X1)
	  F2 = FUN(X2)
C
C	 COMPUTE APPROXIMATION TO THE ROOT
C
	  X3 = (X1 + X2)/2.0
	  F3 = FUN(X3)
C
C	 CHECK FOR CONVERGENCE
C	
	  IF (ABS(F3) .LE. EPS) GO TO 2
	  IF ((F1*F3) .GE. 0.0) THEN
	  X1 = X3
	  GO TO 1
	  ELSE
	  X2 = X3
	  GO TO 1
	  END IF
	  2    WRITE(6,3)EPS,X3,F3
	  3  �  FORMAT(2X,'EPS = ',F8.5,4X,'TERMINAL VELOCITY = ',F10.4,4X,
      $ 'FUN(X) = ',F8.4)
C
C	 VARY CONVERGENCE CRITERION
C
	  4	  EPS = EPS/10
	  STOP
	  END

C.3

C	 ROOT SOLVING WITH THE SECANT METHOD
C
C	 X IS THE INDEPENDENT VARIABLE, FUN(X) IS THE GIVEN 
C	 FUNCTION, X1 AND X2 ARE THE X VALUES FROM THE TWO 
C	 PREVIOUS ITERATIONS, STARTING WITH THE TWO POINTS 
C	 BOUNDING THE REGION, X3 IS THE APPROXIMATION TO THE 
C	 ROOT, F1, F2 AND F3 ARE THE CORRESPONDING VALUES OF 
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C	 THE FUNCTION, AND EPS IS THE CONVERGENCE CRITERION
C
C
C
C	 DEFINE FUNCTION
C
	 FUN(X) = 0.2275*X*X/(465.9 + ALOG(X)**2.58)–0.017*X – 9.8
	 X1 = 150.0
	 X2 = 200.0
	 WRITE(6,12)X1,X2
	 12	 FORMAT(/10X,'INITIAL X1 = ',F7.2,10X,'INITIAL X2 = ',F7.2//)
	 EPS = 1.0
	 DO 2 I = 1,5
	  1	 F1 = FUN(X1)
	 F2 = FUN(X2)
C
C	 COMPUTE THE APPROXIMATION TO THE ROOT
C
	 X3 = (X1*F2 – X2*F1)/(F2 – F1)
	 F3 = FUN(X3)
C
C	 CHECK FOR CONVERGENCE
C
	 IF (ABS(F3) .GT. EPS) THEN
	 X1 = X2
	 X2 = X3
	 GO TO 1
	 ELSE
	 11	 WRITE(6,13)EPS,X3,F3
	 13	 FORMAT(2X,'EPS = ',F8.5,4X,'TERMINAL VELOCITY = ',F10.4,4X,
      $	'FUN(X) = ',F8.4)
	 END IF
C
C	 VARY CONVERGENCE CRITERION
C
	  2	 EPS = EPS/10
	 STOP
	 END

C.4

C	 �NEWTON–RAPHSON METHOD FOR FINDING THE ROOTS OF AN 
C	 ALGEBRAIC EQUATION
C
C	 �THIS PROGRAM FINDS THE REAL ROOTS OF AN EQUATION 
C	 F(X) = 0 BY THE NEWTON-RAPHSON METHOD
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C
C
C
C	 �HERE X IS THE INDEPENDENT VARIABLE, Y1 THE VALUE OF THE
C	 �FUNCTION AT X, Y2 THE FUNCTION AT X + 0.001, YD THE 
C	 DERIVATIVE, DX THE INCREMENT IN X FOR THE NEXT 
C	 ITERATION, EPS THE CONVERGENCE CRITERION ON THE 
C	 FUNCTION AND XMAX THE MAXIMUM VALUE OF X
C
C
C	 DEFINE FUNCTION AND SPECIFY INPUT PARAMETERS
C
	 Y(X) = 294.0*X*(1.0 – EXP(–1000.0/(21.0*(5.0 + 20.0*X))))–250.0
	 EPS = 0.001
	 WRITE(6,15)EPS
	 15	 FORMAT(2X,'EPS = ',F8.4/)
	 X = 0.1
	 XMAX = 5.0
	  1	 Y1 = Y(X)
	 WRITE(6,10) X,Y1
C
C	 CHECK FOR CONVERGENCE
C
	 IF(ABS(Y1) .GT. EPS) THEN
	 XN = X + 0.001
	 Y2 = Y(XN)
	 YD = (Y2 – Y1)/0.001
C
C       CHECK IF RESULTS DIVERGE
C
	   IF(YD .GE. (1.0/EPS))GO TO 20
C
C	 COMPUTE NEW APPROXIMATION TO THE ROOT
C
	 DX = –Y1/YD
	 X = X + DX
	 IF(X .GE. XMAX)GO TO 20
	 GO TO 1
	 ELSE
	  5	 WRITE(6,12) X,Y1
	 12	 FORMAT(/2X,'FLOW RATE X = ',F8.4,4X,'FUNCTION
      $  F(X) = ',F12.6)
	 10	 FORMAT(2X,'X = ',F8.4,4X,'FUNCTION F(X) = ',F12.6)
	 END IF
	 20	 STOP
	 END
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C.5

C	 �GAUSSIAN ELIMINATION METHOD FOR A SYSTEM OF LINEAR 
C	 EQUATIONS
C
C	 A(I,J) REPRESENTS THE ELEMENTS OF THE AUGMENTED MATRIX 
C	 BEING REDUCED BY THE GAUSSIAN ELIMINATION METHOD, 
C	 A1(I,J) ARE THE ELEMENTS OF THE ORIGINAL AUGMENTED 
C	 MATRIX, X(I) ARE THE UNKNOWN VARIABLES, N IS THE 
C	 NUMBER OF EQUATIONS, M IS THE NUMBER OF COLUMNS IN 
C	 THE AUGMENTED MATRIX, K REPRESENTS THE NUMBER OF THE 
C	 PIVOT ROW AND B(I) REPRESENTS THE CONSTANTS ON THE 
C	 RIGHT-HAND SIDE OF THE GIVEN SYSTEM OF EQUATIONS
C
C
	 PARAMETER (IN = 10)
	 DIMENSION A(IN,IN + 1),A1(IN,IN + 1),X(IN)
	 PRINT *, 'NUMBER OF EQUATIONS ARE :'
	 READ(5,*)N
	 M = N + 1
C
C	 ENTER THE COEFFICIENT MATRIX
C
	   PRINT *, 'THE ELEMENTS OF THE ORIGINAL AUGMENTED MATRIX
      $    ARE :'
	   READ(5,*)((A(I,J),J = 1,M),I = 1,N)
	   DO 101 J = 1,N
	 DO 1 I = 1,M
	 A1(I,J) = A(I,J)
	  1	 CONTINUE
	101	   CONTINUE
C
C	 CALL SUBROUTINE TO SOLVE THE SYSTEM OF EQUATIONS
C
	   CALL GAUSS(N,A,X)
	   WRITE(6,9)
	  9	   �FORMAT(2X,'THE SOLUTION TO THE EQUATIONS IS:'//)
	 	   DO 10 I = 1,N
	 WRITE(6,11)I,X(I)
	 10	   CONTINUE
	 11	   FORMAT(2X,'X(',I1,') = ',F12.5)
	   WRITE(6,12)
	 12	   FORMAT(//2X,'THE CONSTANT VECTOR OF THE EQUATIONS 
      $    IS:'//)
C
C	 CALCULATE THE CONSTANT VECTOR B USING THE SOLUTION
C	 OBTAINED TO CHECK THE ACCURACY OF THE RESULTS
C
	   DO 13 I = 1,N
	 Y = 0.0
	 DO 14 J = 1,N
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	 	         Y = Y + X(J)*A1(I,J)
	 14	 CONTINUE
	 	 WRITE(6,15)I,Y
	 15	 FORMAT(2X,'B(',I1,') = ',F12.5)
	 13	 CONTINUE
	 	 STOP
	 	 END
C
C
	 SUBROUTINE GAUSS(N,A,X)
	 DIMENSION A(10,11),X(10)
	 N1 = N − 1
	 M = N + 1
C
C	 FIND THE ROW WITH THE LARGEST PIVOT ELEMENT
C
	 DO 2 K = 1,N1
	 K1 = K + 1
	 K2 = K
	 B0 = ABS(A(K,K))
	 DO 3 I = K1,N
	 	         B1 = ABS(A(I,K))
	 	         IF((B0 − B1) .LT. 0.0) THEN
	 	                   B0 = B1
	 	                   K2 = I
	 	          END IF
	  3	 CONTINUE
	 IF((K2 − K) .NE. 0) THEN
C
C	 �INTERCHANGE ROWS TO OBTAIN THE LARGEST PIVOT ELEMENT
C
	 	 DO 5 J = K,M
	 	 	 C = A(K2,J)
	 	 	 A(K2,J) = A(K,J)
	  5	 	 A(K,J) = C
	         END IF
	         DO 2 I = K1,N
C
C	 APPLY THE GAUSSIAN ELIMINATION ALGORITHM
C
	 	 DO 6 J = K1,M
	 	 	 A(I,J) = A(I,J)−A(I,K)*A(K,J)/A(K,K)
	  6	 	 CONTINUE
	 	 A(I,K) = 0.0
	  2	      CONTINUE
C
C	 APPLY BACK SUBSTITUTION
C
	      X(N) = A(N,M)/A(N,N)
	      DO 7 I1 = 1,N1
	 	   I = N−I1
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	 	 S = 0.0
	 	 J1 = I + 1
	 	 DO 8 J = J1,N
	  8	 	 	 S = S + A(I,J)*X(J)
	  7	 	 X(I) = (A(I,M)−S)/A(I,I)
	    RETURN
	    END

C.6

C	 TRIDIAGONAL MATRIX ALGORITHM
C
	    SUBROUTINE TDMA(A,B,C,F,N,T)
C
C	 �A, B AND C ARE THE THREE ELEMENTS IN EACH ROW, WITH B
C	 �AT THE DIAGONAL, F IS THE CONSTANT ON THE RIGHT-HAND 
C	 SIDE OF EACH EQUATION, N IS THE NUMBER OF EQUATIONS 
C	 AND T IS THE VARIABLE TO BE COMPUTED
C
	 	 DIMENSION A(N),B(N),C(N),F(N),T(N)
C
C	 �REDUCE THE A'S TO ZERO BY GAUSSIAN ELIMINATION AND 
C	 DETERMINE THE NEW COEFFICIENTS
C
	    NN = N−1
	    DO 5 I = 2,N
	 	 D = A(I)/B(I − 1)
	 	 B(I) = B(I)−C(I − 1)*D
	  5	 	 F(I) = F(I)−F(I − 1)*D
C
C	 APPLY BACK SUBSTITUTION
C
	    T(N) = F(N)/B(N)
	    DO 6 I = 1,NN
	 	 J = N − I
	  6	 	 T(J) = (F(J)−C(J)*T(J + 1))/B(J)
	 RETURN
	 END

C.7

C	 THE GAUSS–JORDAN ELIMINATION METHOD
C
C
C	 �A(I,J) REPRESENTS THE ELEMENTS OF THE AUGMENTED MATRIX,
C	 �X(I) DENOTES THE UNKNOWN VARIABLES, K IS THE NUMBER OF
C	 �THE PIVOT ROW, N IS THE NUMBER OF EQUATIONS, AND M IS 
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C	 N + 1.
C
	    DIMENSION A(10,11),X(10)
	    PRINT *, 'NUMBER OF EQUATIONS N IS: '
	    READ(5,*)N
	    M = N + 1
C
C	 READ COEFFICIENTS OF THE AUGMENTED MATRIX
C
	   � PRINT *, 'THE ELEMENTS OF THE AUGMENTED MATRIX ARE: '
	    READ(5,*)((A(I,J),J = 1,M),I = 1,N)
	    N1 = N − 1
	    DO 6 K = 1,N
	    K1 = K + 1
	    K2 = K
C
C	 SEARCH FOR ROW WITH LARGEST PIVOT ELEMENT
C
	    B0 = ABS(A(K,K))
	    DO 1 I = K,N
	    B1 = ABS(A(I,K))
	    IF((B0 − B1) .LT. 0.0)THEN
	    B0 = B1
	    K2 = I
	    END IF
	  1	    CONTINUE
C
C	 �DECIDE IF ROW INTERCHANGE IS NEEDED FOR MAXIMUM PIVOT 
C	 ELEMENT
C
	    IF((K2 − K) .NE. 0)THEN
C
C	 �INTERCHANGE ROW FOR OBTAINING LARGEST PIVOT ELEMENT
C
	    DO 2 J = K,M
	    C = A(K2,J)
	    A(K2,J) = A(K,J)
	  2	    A(K,J) = C
	    END IF
C
C	 APPLY GAUSS JORDAN ELIMINATION
C
	  3	    DO 4 J = K1,M
	  4	    A(K,J) = A(K,J)/A(K,K)
	    A(K,K) = 1.0
	    DO 6 I = 1,N
	    IF (I .NE. K) THEN
	    DO 5 J = K1,M
	  5	    A(I,J) = A(I,J)−A(I,K)*A(K,J)
	    A(I,K) = 0.0
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	    END IF
	  6	    CONTINUE
C
C	 DETERMINE THE UNKNOWNS
C
	    DO 7 I = 1,N
	  7	    X(I) = A(I,M)
	    WRITE(6,8)
	  8	    FORMAT(2X,'THE SOLUTION TO THE EQUATIONS IS:'//)
	    DO 9 I = 1,N
	  9	    WRITE(6,10)I,X(I)
	 10	    FORMAT(2X,'X(',I1,') = ',F12.5)
	    WRITE(6,11)
	 11	    FORMAT(//2X,'THE REDUCED MATRIX IS'//)
	    DO 13 I = 1,N
	    WRITE(6,12)(A(I,J),J = 1,N)
	 12	    FORMAT(10F10.3)
	 13	    CONTINUE
	    STOP
	    END

C.8

C	 SOR METHOD FOR SOLVING A SYSTEM OF LINEAR EQUATIONS
C
C
C	 �T(I) REPRESENTS THE TEMPERATURE DIFFERENCES FROM THE 
C	 AMBIENT TEMPERATURE, TO(I) DENOTES THE TEMPERATURE 
C	 DIFFERENCES AFTER THE PREVIOUS ITERATION, TP IS THE 
C	 ACTUAL TEMPERATURE,S IS A CONSTANT DEFINED IN THE 
C	 PROBLEM AND N IS THE NUMBER OF EQUATIONS
C
C
C	 ENTER VALUES OF RELEVANT PARAMETERS
C
	    DIMENSION T(31),TO(31)
	    S = (0.071**2)*(1.0**2) + 2.0
	    W = 1.8
	    N = 29
	    NN = N−1
	    EPS = 0.0001
	    T(0) = 100.0
	    T(30) = 100.0
C
C	 INPUT STARTING VALUES
C
	    J = 0
	    DO 1 I = 1,N
	  1	    T(I) = 0.0
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C
C	 STORE COMPUTED VALUES AFTER EACH ITERATION
C
	  2	    DO 3 I = 1,N
	  3	    TO(I) = T(I)
C
C	 COMPUTE THE END VALUES T(1) AND T(N)
C
	    T(1) = (T(2) + 100.0)/S
	    T(N) = (100.0 + T(N − 1))/S
C
C	 COMPUTE INTERMEDIATE VALUES
C
	    DO 4 I = 2,NN
	  4	    T(I) = W*(T(I + 1) + T(I − 1))/S + (1.0 − W)*T(I)
C
C	 CHECK FOR CONVERGENCE
C
	    J = J + 1
	    DO 5 I = 1,N
	    IF(ABS(TO(I) − T(I)) .GT. EPS) GO TO 2
	  5	    CONTINUE
	    WRITE(6,6)EPS
	  6	    FORMAT(//2X,'EPS = ',F10.5)
	    WRITE(6,7)J
	  7	    FORMAT(/2X,'NUMBER OF ITERATIONS = ',I4/)
C
C	 COMPUTE ACTUAL TEMPERATURES
C
	    DO 8 I = 0,N + 1
	    TP = T(I) + 20.0
	  8	    WRITE(6,9)I,TP
	  9	    FORMAT(2X,'TP(',I2,') = ',F12.4)
	    STOP
	    END

C.9

C	 LAGRANGE INTERPOLATION
C
C
C	 �X IS THE INDEPENDENT VARIABLE AND Y THE DEPENDENT 
C	 VARIABLE, WITH X(I) AND Y(I) REPRESENTING THE GIVEN 
C	 DATA POINTS. N IS THE NUMBER OF DATA POINTS, XL THE 
C	 VALUE OF X AT WHICH INTERPOLATION IS DESIRED AND YL THE 
C	 CORRESPONDING COMPUTED VALUE OF Y AT X = XL. A(I) 
C	 REPRESENTS THE COEFFICIENTS OF THE LAGRANGE POLYNOMIAL 
C	 AND M IS THE NUMBER OF POINTS
C	 AT WHICH INTERPOLATED VALUES ARE NEEDED.
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C
C
	    DIMENSION X(10),Y(10),A(10)
C
C	 ENTER THE GIVEN DATA
C
	    READ(5,*)N
	    READ(5,*)M
	    READ(5,*)(X(I),I = 1,N)
	    READ(5,*)(Y(I),I = 1,N)
	    WRITE(6,10)
	 10	 �   FORMAT(2X,'THE VALUES FROM LAGRANGE INTERPOLATION 
      $    ARE:'//)
	    DO 6 K = 1,M
	    READ(5,*)XL
C
C	 COMPUTE THE COEFFICIENTS OF THE LAGRANGE POLYNOMIAL
C
	    DO 2 J = 1,N
	    A(J) = Y(J)
	    DO 1 I = 1,N
	    IF(I .NE. J) THEN
	    A(J) = A(J)/(X(J) − X(I))
	    END IF
	  1	    CONTINUE
	  2	    CONTINUE
C
C	 �CALCULATE THE INTERPOLATED VALUE OF THE DEPENDENT 
C	 VARIABLE
C
	    YL = 0.0
	    DO 4 J = 1,N
	    S = 1.0
	    DO 3 I = 1,N
	    IF(I .NE. J) THEN
	    S = S*(XL – X(I))
	    END IF
	  3	    CONTINUE
	  4	    YL = YL + S*A(J)
C
C	 PRINT THE CALCULATED RESULTS
C
	    WRITE(6,5)XL,YL
	  5	    FORMAT(2X,'XL = ',F9.4,4X,'YL = ',F9.4)
	  6	    CONTINUE
	    WRITE(6,7)
	  7	 �   FORMAT(//2X,'COEFFICIENTS OF THE LAGRANGE POLYNOMIAL
      $   ARE:')
	    DO 9 I = 1,N
	    WRITE(6,8)I,A(I)
	  8	    FORMAT(/4X,'A(',I1,') = ',F9.4)
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	  9	    CONTINUE
	    STOP
	    END

C.10

C	 SPLINE INTERPOLATION
C
C	 �V IS THE INDEPENDENT VARIABLE, T THE DEPENDENT 
C	 VARIABLE, M THE NUMBER OF DATA POINTS, T2 THE SECOND 
C	 DERIVATIVE OF THE DEPENDENT VARIABLE, VP THE VALUE OF V 
C	 AT WHICH THE INTERPOLATED VALUE TP IS DESIRED AND 
C	 V(I),T(I) REPRESENT THE VALUES AT THE DATA POINTS.
C
C
	    DIMENSION V(15),T(15),T2(15)
C
C	 ENTER INPUT VARIABLES AND DATA
C
	    PRINT *,'ENTER THE NUMBER OF DATA POINTS'
	    READ *,M
	    OPEN(UNIT = 11,FILE = 'V.DAT')
	    OPEN(UNIT = 12,FILE = 'T.DAT')
	    READ (11,*) (V(I),I = 1,M)
	    READ (12,*) (T(I),I = 1,M)
	    CLOSE(UNIT = 11)
	    CLOSE(UNIT = 12)
C
C	 CALL SUBROUTINE TO COMPUTE THE SECOND DERIVATIVE T2
C
	    CALL DERIVATIVE(M,V,T,T2)
C
C	 SPECIFY VALUE OF V FOR INTERPOLATION
C
	  2	    PRINT *,'ENTER THE VALUE OF V FOR INTERPOLATION'
	    READ *,VP
C
C	 CALL SUBROUTINE TO USE SPLINE INTERPOLATION
C
	    CALL SPLINE(M,V,T,T2,VP,TP)
C
C	 OUTPUT RESULTS
C
	    WRITE(6,4)VP,TP
	  4	 �   FORMAT(2X,'VOLTAGE V = ',F9.5,4X,'TEMPERATURE 
      $     T = ',F9.5//)
	    PRINT *,'IF YOU WANT ADDITIONAL INTERPOLATION, TYPE 1'
	    READ *,MORE
	    IF (MORE .EQ. 1) GO TO 2
	    STOP
	    END
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C
C
C	 SUBROUTINE DERIVATIVE
C
C	 �THIS SUBROUTINE CALCULATES THE SECOND DERIVATIVE VALUES 
C	 �T2 NEEDED FOR A CUBIC SPLINE INTERPOLATION. A,B AND C 
C	 ARE THE ELEMENTS IN EACH ROW OF THE TRIDIAGONAL MATRIX 
C	 AND D REPRESENTS THE CONSTANTS ON THE RIGHT-HAND SIDE 
C	 OF THE EQUATIONS THAT YIELD THE T2 VALUES.
C
C
	    SUBROUTINE DERIVATIVE(M,V,T,T2)
	   � DIMENSION V(15),T(15),T2(15),A(15),B(15),C(15),D(15)
C
C	 COMPUTE THE ELEMENTS OF THE TRIDIAGONAL MATRIX
C
	    C(1) = V(2)− V(1)
	    DO 1 I = 2,M − 1
	    A(I) = V(I) − V(I − 1)
	    B(I) = 2.0*(V(I + 1)− V(I − 1))
	    C(I) = V(I + 1)− V(I)
	  1	   � D(I) = 6.0*((T(I + 1)− T(I))/C(I) − (T(I) − T(I − 1))/A(I))
C
C	 �SOLVE THE TRIDIAGONAL SYSTEM FOR THE SECOND DERIVATIVE
C
	    DO 2 I = 3,M − 1
	    B(I) = B(I) − A(I)*C(I − 1)/B(I − 1)
	  2	    D(I) = D(I) − A(I)*D(I − 1)/B(I − 1)
	    T2(1) = 0.0
	    T2(M) = 0.0
	    T2(M − 1) = D(M − 1)/B(M − 1)
	    DO 3 I = 2,M − 2
	    IN = M − I
	  3	    T2(IN) = (D(IN)− C(IN)*T2(IN + 1))/B(IN)
	    RETURN
	    END
C
C
C	 SUBROUTINE SPLINE
C
C	 �THIS SUBROUTINE OBTAINS THE RELEVANT CUBIC SPLINE AND 
C	 COMPUTES THE DESIRED INTERPOLATED VALUE OF THE
C	 DEPENDENT VARIABLE
C
	    SUBROUTINE SPLINE(M,V,T,T2,VP,TP)
	    DIMENSION V(15),T(15),T2(15)
C
C	 DETERMINE THE INTERVAL IN WHICH VP LIES
C
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	 DO 1 I = 1,M – 1
	 IF (VP .LE. V(I + 1)) THEN
	 S1 = V(I + 1)–V(I)
	 S2 = VP – V(I)
	 S3 = V(I + 1)–VP
C
C	 �COMPUTE THE INTERPOLATED VALUE FROM THE CUBIC SPLINE
C
	    TP = T2(I)*S3*(S3**2/S1 – S1)/6.0 + T2(I + 1)*S2
      $	         *(S2**2/S1 – S1)/6.0 + T(I)*S3/S1 + T(I + 1)*S2/S1
	    GO TO 2
	    END IF
	  1	    CONTINUE
	  2	    RETURN
	    END

C.11

C	 LEAST-SQUARES METHOD FOR POLYNOMIAL REGRESSION
C
C
	    DIMENSION A(10,11),C(10),X(25),Y(25)
C
C	 ENTER THE INPUT DATA
C
	    OPEN(UNIT = 15,FILE = 'REGRES.DAT')
	    READ(15,*)MP
	    READ(15,*)ND
	    READ(15,*)(X(I),I = 1,ND)
	    READ(15,*)(Y(I),I = 1,ND)
	    N = MP + 1
	    M = N + 1
C
C	 INITIALIZE THE COEFFICIENT MATRIX
C
	    DO 1 I = 1,N
	    DO 1 J = 1,M
	  1	    A(I,J) = 0.0
C
C	 COMPUTE ELEMENTS OF THE AUGMENTED MATRIX
C
	    DO 5 I = 1,N
	    DO 3 J = 1,N
	    L = I + J – 2
	    DO 2 K = 1,ND
	  2	    A(I,J) = A(I,J) + X(K)**L
	  3	    CONTINUE
	    DO 4 K = 1,ND
	  4	    A(I,M) = A(I,M) + Y(K)*X(K)**(I – 1)
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	  5	    CONTINUE
C
C	 CALL SUBROUTINE TO SOLVE THE SYSTEM OF EQUATIONS
C
	    CALL GAUSS(N,A,C)
	    WRITE(6,12)MP
	 12	    FORMAT(2X,'THE ORDER OF THE POLYNOMIAL = ',I2/)
	    WRITE(6,9)
	  9	    FORMAT(2X,'THE CONSTANTS OF THE POLYNOMIAL ARE:'/)
	    DO 10 I = 1,N
	 10	    WRITE(6,11)I,C(I)
	 11	    FORMAT(2X,'C(',I1,') = ',F12.5)
C
C	 �CALCULATE THE VALUES OBTAINED FROM THE POLYNOMIAL IN 
C	 ORDER TO CHECK THE ACCURACY OF THE RESULTING BEST FIT
C
	    WRITE(6,13)
	 13	   � FORMAT(/2X,'THE VALUES CALCULATED FROM THE BEST FIT 
      $    ARE:'/)
	    DO 7 I = 1,ND
	    Y(I) = 0.0
	    DO 6 J = 1,N
	  6	    Y(I) = Y(I) + C(J)*X(I)**(J – 1)
	  7	    WRITE(6,8)I,X(I),I,Y(I)
	  8	    FORMAT(2X,'X(',I2,') = ',F10.4,5X,'Y(',I1,') = ',
      $    F10.4)
	    CLOSE(UNIT = 15)
	    STOP
	    END
C
C
	    SUBROUTINE GAUSS(N,A,C)
	    DIMENSION A(10,11),C(10)
	    N1 = N – 1
	    M = N + 1
C
C	 FIND THE ROW WITH THE LARGEST PIVOT ELEMENT
C
	    DO 2 K = 1,N1
	    K1 = K + 1
	    K2 = K
	    B0 = ABS(A(K,K))
	    DO 3 I = K1,N
	    B1 = ABS(A(I,K))
	    IF((B0 – B1) .LT. 0.0) THEN
	    B0 = B1
	    K2 = I
	    END IF
	  3	    CONTINUE
	    IF((K2 – K) .NE. 0) THEN
C
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C	 �INTERCHANGE ROWS TO OBTAIN THE LARGEST PIVOT ELEMENT
C
	    DO 5 J = K,M
	    D = A(K2,J)
	    A(K2,J) = A(K,J)
	  5	    A(K,J) = D
	    END IF
	    DO 2 I = K1,N
C
C	 APPLY THE GAUSSIAN ELIMINATION ALGORITHM
C
	    DO 6 J = K1,M
	  6	    A(I,J) = A(I,J)– A(I,K)*A(K,J)/A(K,K)
	  2	    A(I,K) = 0.0
C
C	 APPLY BACK SUBSTITUTION
C
	    C(N) = A(N,M)/A(N,N)
	    DO 7 I1 = 1,N1
	    I = N – I1
	    S = 0.0
	    J1 = I + 1
	    DO 8 J = J1,N
	  8	    S = S + A(I,J)*C(J)
	  7	    C(I) = (A(I,M) – S)/A(I,I)
	    RETURN
	    END

C.12

C	 TRAPEZOIDAL RULE FOR NUMERICAL INTEGRATION
C
C	 �F(X) IS THE FUNCTION TO BE INTEGRATED AND REPRESENTS 
C	 THE ELECTRIC CURRENT AS A FUNCTION OF TIME T IN 
C	 SECONDS, V IS THE VOLTAGE, Q IS THE ELECTRICAL CHARGE 
C	 IN COULOMBS, C IS THE CAPACITANCE IN FARADS, DT IS THE 
C	 TIME STEP, N IS THE NUMBER OF SUBDIVISIONS, AND TMIN 
C	 AND TMAX ARE THE MINIMUM AND MAXIMUM VALUES OF T.
C
	    IMPLICIT REAL (A – H,O – Z)
C
C	 DEFINE FUNCTION TO BE INTEGRATED
C
	    F(X) = 4.0*(1.0 – EXP(–0.5))*(EXP(–0.5* (X – 1.0)))
      $          *(1.0 – EXP(–X))
C
C	 ENTER INPUT VALUES
C
	    TMIN = 1.0
	    C = 0.025
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	    PRINT *,'ENTER THE STEP SIZE DT'
	    READ *,DT
	    DO 6 J = 1,6
	    WRITE(6,7)DT
	  7	    FORMAT(//5X,'STEP SIZE DT = ',F7.5)
	    WRITE(6,1)
	  1	    FORMAT(/6X,'TIME T',19X,'CHARGE Q',17X,'VOLTAGE V')
	    WRITE(6,2)
	  2	    FORMAT(5X,8('–'),17X,10('–'),15X,11('–')/)
C
C	 VARY TIME AT WHICH CHARGE IS TO BE COMPUTED
C
	    DO 3 TMAX = 2.0,20.0,2.0
	    N = (TMAX – TMIN)/DT
C
C	 �COMPUTE SUM OF INTERIOR ORDINATES FOR TRAPEZOIDAL RULE
C
	    SUM = 0.0
	    T = TMIN + DT
	    DO 4 I = 1,N – 1
	    SUM = SUM + F(T)
	    T = T + DT
	  4	    CONTINUE
C
C	 APPLY TRAPEZOIDAL RULE
C
	    Q = (DT/2.0)*(F(TMIN) + 2.0*SUM + F(TMAX))
	    V = Q/C
	    WRITE(6,5)TMAX,Q,V
	  5	    FORMAT(5X,F5.2,21X,E9.4,16X,E9.4)
	  3	    CONTINUE
	  6	    DT = DT/2
	    STOP
	    END

C.13

C	 ROMBERG INTEGRATION
C
C	 �F(X) IS THE FUNCTION TO BE INTEGRATED, X THE 
C	 INDEPENDENT VARIABLE, XMIN AND XMAX THE MINIMUM AND 
C	 MAXIMUM VALUES OF X, DX THE SEGMENT WIDTH, ERF(Z) THE 
C	 ERROR FUNCTION AT Z, EPS THE CONVERGENCE CRITERION, Y 
C	 THE VALUE OF THE INTEGRAL CORRESPONDING TO AN 
C	 EXTRAPOLATION, M THE NUMBER OF SEGMENTS,
C	 �AND DIF THE DIFFERENCE BETWEEN THE RESULTS FOR THE TWO 
C	 HIGHEST ORDERS OF EXTRAPOLATION AT A GIVEN NUMBER OF 
C	 SEGMENTS.
C
	    DIMENSION Y(8,8)
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C	 DEFINE FUNCTION TO BE INTEGRATED
C
	    F(X) = (2.0/SQRT(3.14159))*EXP(–X**2)
C
C	 ENTER INPUT VALUES
C
	    EPS = 0.00001
	    XMIN = 0.0
	    DO 7 J = 1,4
	        PRINT *,'ENTER THE VALUE OF Z'
	        READ *,XMAX
	        DX = XMAX – XMIN
C
C	 FIRST ORDER (TRAPEZOIDAL RULE) CALCULATION
C
	        N = 1
	        Y(1,1) = 0.5*DX*(F(XMIN) + F(XMAX))
	        WRITE(6,1)N,Y(1,1)
	  1	     �   FORMAT(2X, 'NO. OF ITERATIONS = ', I2, 5X, 'ERF(Z) 
      $ =', F9. 6)
	  2	    M = 2**(N – 1)
	    DX = DX/2.0
	    N = N + 1
	    Y(1,N) = 0.5*Y(1,N – 1)
	    DO 3 K = 1,M
	 	 X = XMIN + (2*K – 1)*DX
	  3	    Y(1,N) = Y(1,N) + DX*F(X)
C
C	 COMPUTE HIGHER ORDER EXTRAPOLATIONS
C
	    DO 4 K = 2,N
	  4	    Y(K,N) = (4.0**(K – 1)*Y(K – 1,N) – Y(K – 1,N – 1))
      $	 	      /(4.0**(K – 1) – 1.0)
	    DIF = ABS(Y(N,N) – Y(N – 1,N))
	    WRITE(6,5)N,Y(N,N)
	  5	   � FORMAT(2X,'NO. OF ITERATIONS = ',I2,5X,
      $	     'ERF(Z) = ',F9.6)
C
C	 APPLY CONVERGENCE CRITERION
C
	    IF(DIF .GT. EPS)THEN
	        IF(N .LT. 8)THEN
	           GO TO 2
	        ELSE
	           PRINT *,'MORE THAN 8 ITERATIONS'
	        END IF
	    ELSE
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	        WRITE(6,6)XMAX,Y(N,N)
	  6	    FORMAT(/4X,'VALUE OF Z = ',F5.3,5X,'ERF(Z) = ',
      $      F9.6//)
	    END IF
	  7	    CONTINUE
	    STOP
	    END

C.14

C	 EULER'S METHOD FOR SOLVING AN ODE
C
C	 �THIS PROGRAM NUMERICALLY SOLVES A FIRST ORDER 
C	 DIFFERENTIAL EQUATION USING EULER’S METHOD
C
C	
C
C
C	 IN THE FOLLOWING PROGRAM
C
C	 �T STANDS FOR TIME T     EE STANDS FOR E.M.F. OF THE 
      $  BATTERY
C
C	 EI STANDS FOR CURRENT   ER STANDS FOR RESISTANCE
C
C	 EPS IS THE CONVERGENCE CRITERION
C
C	 DT IS STEP SIZE IN T    EL STANDS FOR INDUCTANCE
C
C
	    IMPLICIT REAL (A – H,O – Z)
	    OPEN(UNIT = 10,FILE = 'ET')
	    OPEN(UNIT = 11,FILE = 'EI')
C
C	 FILE 'ET' CONTAINS VALUES OF TIME T
C	 FILE 'EI' CONTAINS VALUES OF EI AT CORRESPONDING T
C
C	    INPUT PARAMETERS
	    PRINT*,'INPUT PARAMETERS'
	    PRINT*,'EE = ','ER = ','EL ='
	    READ*,EE,ER,EL
	    PRINT*,'STEP SIZE DT ='
	    READ*,DT
	    PRINT*,'CONVERGENCE CRITERION EPS ='
	    READ*,EPS
C
C	 SET INITIAL CONDITIONS:
C
	    T = 0.0
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	    EI = 0.
	    WRITE(10,*)T
	    WRITE(11,*)EI
C
C	 �CALCULATIONS FOR THE NEXT STEP USING EULER'S METHOD
C
	 11	    T = T + DT
	    EI = EI + DT*(EE/EL − ER*EI/EL)
C
C	 �AT T = 0.5 SEC. THE E.M.F. IS REMOVED FROM THE CIRCUIT
C
	    IF(T.GT.0.5)GO TO 99
C
	    WRITE(10,*)T
	    WRITE(11,*)EI
	    GO TO 11
	 99	    PRINT*,'T = ',T,'EI = ',EI
	   � PRINT*,'AT THIS STAGE E.M.F. IS REMOVED FROM THE 
      $   CIRCUIT'
	 100	   EI = EI + DT*(–ER*EI/EL)
	    IF(EI.LE.EPS) GO TO 199
	    WRITE(10,*)T
	    WRITE(11,*)EI
	    T = T + DT
	    GO TO 100
	 199	   PRINT*,'TOTAL TIME FOR EI TO BECOME LESS THAN 
      $   EPS= ',T,' SEC.'
	    PRINT*,'THE VALUES OF TIME T ARE IN THE FILE ET'
	    PRINT*,'THE VALUES OF CURRENT EI ARE IN THE FILE EI'
	    PRINT*,'**************'
	    CLOSE(10)
	    CLOSE(11)
	    STOP
	    END

C.15

C	 RUNGE–KUTTA METHOD FOR A SECOND-ORDER ODE
C
C	 �THIS PROGRAM NUMERICALLY SOLVES A SECOND ORDER 
C	 �DIFFERENTIAL EQUATION USING THE 4TH ORDER RUNGE-KUTTA 
C	 METHOD
C
C	 IN THE FOLLOWING PROGRAM
C
C	    T STANDS FOR TIME           DT STANDS FOR STEP SIZE IN T
C
C	    X STANDS FOR DISPLACEMENT  V STANDS FOR VELOCITY
C



574	 Appendix C: Computer Programs in FORTRAN

C	   �  A AND B ARE THE CONSTANTS APPEARING IN THE 
C	     DIFFERENTIAL EQUATION
C
C	     G IS THE ACCELERATION DUE TO GRAVITY = 9.8 M/(SEC**2)
C
	      IMPLICIT REAL (A – H,O – Z)
	      OPEN(UNIT = 14,FILE = 'RT')
	      OPEN(UNIT = 15,FILE = 'RX')
	      OPEN(UNIT = 16,FILE = 'RV')
C
C	 VALUES OF T ARE WRITTEN IN FILE RT
C	 VALUES OF X ARE WRITTEN IN FILE RX
C	 VALUES OF V ARE WRITTEN IN FILE RV
C
C
C	 INPUT PARAMETERS
	      PRINT*,'INPUT PARAMETERS'
	      PRINT*,'A= ','B= '
	      READ*,A,B
	      PRINT*,'DT= '
	      READ*,DT
	      G = 9.8
C
C	 SET INITIAL CONDITIONS
C
	      T = 0.
	      X = 0.
	      V = 100.
	      WRITE(14,*)T
	      WRITE(15,*)X
	      WRITE(16,*)V
C
C	 NEXT TIME STEP
C
	 11	      Q = X
	      Z = V
C
C	 �Q AND Z ARE VALUES OF X AND V RESPECTIVELY, AT PREVIOUS 
C	 TIME STEP
C
C	 �CALCULATIONS FOR THE NEXT STEP USING 4TH ORDER 
C	 RUNGE-KUTTA METHOD
C
	      RK1X = DT*Z
	      RK1V = DT*(–G –A*Z –B*(Z**2))
	      RK2X = DT*(Z + RK1V/2.)
	      RK2V = DT*(–G –A*(Z + RK1V/2.) –B*(Z + RK1V/2.)**2)
	      RK3X = DT*(Z + RK2V/2.)
	      RK3V = DT*(–G –A*(Z + RK2V/2.) –B*(Z + RK2V/2.)**2)
	      RK4X = DT*(Z + RK3V)
	      RK4V = DT*(–G –A*(Z + RK3V) –B*(Z +RK3V)**2)
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	    X = Q +(RK1X +2.*RK2X + 2.*RK3X + RK4X)/6.
	    V = Z +(RK1V + 2.*RK2V + 2.*RK3V + RK4V)/6.
	    T = T + DT
C
C	 CALCULATIONS ARE STOPPED WHEN V BECOMES ZERO.
C
	    IF(V.GT.0.) THEN
	    WRITE(14,*)T
	    WRITE(15,*)X
	    WRITE(16,*)V
	    GO TO 11
	    END IF
C
C	 OUTPUT RESULTS
C
	    PRINT*,'THE VELOCITY HAS BECOME ZERO OR NEGATIVE'
	   � PRINT*,'TOTAL TIME TAKEN TO REACH MAXIMUM HEIGHT =',
      $   T,'SEC'
	    PRINT*,'TOTAL HEIGHT REACHED BY THE 
	       PROJECTILE = ',X,'METERS'
	    CLOSE(UNIT = 14)
	    CLOSE(UNIT = 15)
	    CLOSE(UNIT = 16)
	    STOP
	    END

C.16

C	 FINITE DIFFERENCE METHOD FOR A SECOND-ORDER ODE
C
C	 �THIS PROGRAM SOLVES A SECOND ORDER ORDINARY 
C	 DIFFERENTIAL EQUATION
C
C	 USING THE FINITE DIFFERENCE METHOD
C
C	 NOMENCLATURE:
C
C	 X: DIMENSIONLESS X COORDINATE
C	 TH : ARRAY FOR TEMPERATURE (DIMENSIONLESS)
C	 P : �CONSTANT APPEARING IN THE DIFFERENTIAL EQUATION
C	 A : LOWER DIAGONAL OF THE TRIDIAGONAL MATRIX
C	 B : MAIN DAIGONAL OF THE TRIDIAGONAL MATRIX
C	 C : UPPER DIAGONAL OF THE TRIDIAGONAL MATRIX
C	 D : ARRAY FOR RIGHT HAND SIDE COLUMN MATRIX
C	 T : �ARRAY CONTAINING SOLUTIONS OF THE TRIDIAGONAL 
C	      SYSTEM
C	 N : NUMBER OF GRID POINTS
C	 DX : GRID SIZE
C



576	 Appendix C: Computer Programs in FORTRAN

C	 EQUATION SOLVED: (TH)'' = (P*P)*(TH) FIN PROBLEM
C
	    IMPLICIT REAL (A – H,O – Z)
	    PARAMETER(N = 51)
	    DIMENSION A(N – 2),B(N – 2),C(N – 2),D(N – 2),T(N – 2),TH(N)
	    OPEN(UNIT = 50,FILE = 'IX')
	    OPEN(UNIT = 51,FILE = 'ITH')
C
C	 FILE IX CONTAINS VALUES OF X
C	 FILE ITH CONTAINS VALUES OF TEMPERATURE, TH
C
C	 INPUT PARAMETERS
C
	    PRINT*,'P = '
	    READ*,P
	    DX = 1./(N – 1)
	    PRINT*,'DX = ',DX
C
C	 �VALUE OF N CAN BE CHANGED. THE DIMENSION STATEMENT 
C	 SHOULD BE MODIFIED ACCORDINGLY.
C
C	 SUBROUTINE 'BC' PROVIDES THE BOUNDARY CONDITIONS
C
	    CALL BC(TH,N)
C
C	 �'FMTDM' FORMS THE TRIDIAGONAL MATRIX AND THE RIGHT HAND 
C	 SIDE COLUMN MATRIX
C
	    CALL FMTDM(DX,P,N,TH,A,B,C,D)
C
C	 �THE TRIAGINAL MATRIX THUS GENERATED IS OF DIMENSION N – 2
C
C	 �THE SUBROUTINE 'TRIDIAG' SOLVES THE TRIDIAGONAL SYSTEM.
C	 THE SOLUTIONS ARE RETRIEVED IN THE ARRAY 'T'.
C
	    CALL TRIDIAG(A,B,C,D,T,N – 2)
C
C	 BACK SUBSTITUTION FROM MATRIX 'T' TO 'TH'
C
	    DO 5 I = 2,N – 1
	       TH(I) = T(I – 1)
	  5	    CONTINUE
C
C	 CALCULATIONS OVER
C
	    X = –DX
	    DO 6 I = 1,N
	       X = X + DX
	       WRITE(50,*)X
	       WRITE(51,*)TH(I)
	  6	    CONTINUE
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	    PRINT *,'THE VALUES OF X ARE STORED IN FILE IX'
	    PRINT *, 'THE VALUES OF TEMPERATURE ARE STORED IN FILE 
      $   ITH'
	    STOP
	    END
C
C	 �THE FOLLOWING SUBROUTINE FORMS THE TRIDIAGONAL MATRIX 
C	 OF THE FORM
C
C	 A*T(I – 1) + B*T(I) + C*T(I + 1) = R
C
C
	    SUBROUTINE FMTDM(P,DX,N,T,A,B,C,R)
	    DIMENSION T(N),A(N),B(N),C(N),R(N)
	    A(1) = 0.0
	    DO 1 I = 2,N – 2
	       A(I) = 1.0
	  1	    CONTINUE
	    DO 2 I = 1,N – 3
	       C(I) = 1.0
	  2	    CONTINUE
	    C(N – 2) = 0.0
	    DO 3 I = 1,N – 2
	       B(I)= –(2.0 +(P**2)*(DX**2))
	  3	    CONTINUE
	    R(1)= –T(1)
	    R(N – 2)= –T(N)
	    DO 4 I = 2,N – 3
	       R(I) = 0.0
	  4	    CONTINUE
	    RETURN
	    END
C
C	 �THE FOLLOWING SUBROUTINE SOLVES THE TRIDIAGONAL SYSTEM 
C	 USING THE THOMAS ALGORITHM
C
C	 �A,B,C ARE THE DIAGONALS AS MENTIONED IN THE MAIN 
C	 PROGRAM.
C	 �F CONTAINS THE RIGHT HAND SIDE. T CONTAINS SOLUTIONS.
C
	 SUBROUTINE TRIDIAG(A,B,C,F,T,M)
	 DIMENSION A(M),B(M),C(M),F(M),T(M)
	 PRINT*,'SOLVING TRIDIAG'
C
	    DO 2 I = 2,M
	       D = A(I)/B(I – 1)
	       B(I)= B(I) –C(I – 1)*D
	       F(I) = F(I)–F(I – 1)*D
	  2	    CONTINUE
	    T(M) = F(M)/B(M)
	    DO 3 I = 1,M – 1
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	       J = M – I
	       T(J) = (F(J)  –  C(J)*T(J + 1))/B(J)
	  3	    CONTINUE
	    RETURN
	    END
C
C	 SET THE BOUNDARY CONDITIONS
C
	    SUBROUTINE BC(T,IL)
	    DIMENSION T(IL)
	    T(1) = 1.0
	    T(IL) = 0.5
	    RETURN
	    END

C.17

C	 �FORWARD TIME CENTRAL SPACE (FTCS) METHOD FOR A 
C	 PARABOLIC PDE
C
C	 �THIS PROGRAM SOLVES A PARABOLIC EQUATION BY THE FTCS 
C	 METHOD
C
C	 �WHEN THE PROGRAM IS RUN, IT PROMPTS FOR THE INPUT 
C	 VALUES REQUIRED. TYPE IN THE INPUT VALUES AND THE 
C	 OUTPUT WILL BE STORED IN A FILE CALLED 'FTCS.DAT'.
C
C
C	 DESCRIPTION OF THE INPUT PARAMETERS:
C
C	 IL     IS THE NUMBER OF GRID POINTS.
C	 DX     IS THE GRID SIZE.
C	 �TINIT IS THE INITIAL VALUE OF THE SOLUTION VECTOR, 
C	        THETA, TAKEN AS UNIFORM OVER THE WHOLE DOMAIN.
C	 �NLIM IS THE MAXIMUM NUMBER OF TIME STEPS BEFORE 
C	        STOPPING.
C	 �NSTEP IS THE NUMBER OF TIME STEPS AFTER WHICH PRINTOUT 
C	        OCCURS.
C
C
C	 DESCRIPTION OF OTHER VARIABLES USED:
C
C	 T       IS THE SOLUTION, THETA, AT THE NTH TIME STEP.
C	 TOL    IS THE SOLUTION, THETA, AT THE (N – 1)TH TIME STEP.
C	 �DT     IS THE TIME STEP USED. THE PROGRAM USES THE 
C	         MAXIMUM TIME STEP ALLOWED FROM STABILITY
C	        CONSIDERATIONS.
C
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C	 ENTER INPUT PARAMETERS
C
	    IMPLICIT REAL*8(A – H,O – Z)
	    DIMENSION T(50),TOL(50)
	    PRINT*,'ENTER NO. OF GRID POINTS, IL = '
	    READ(5,*)IL
	    PRINT*,'ENTER GRID SIZE, DX = '
	    READ(5,*)DX
	   � PRINT*,'ENTER INITIAL VALUE OF CONCENTRATION TAKEN AS'
	    PRINT*,'UNIFORM OVER THE WHOLE DOMAIN'
	    READ(5,*)TINT
	   � PRINT*,'ENTER MAXIMUM NO. OF TIME STEPS BEFORE 
      $   STOPPING'
	    READ(5,*)NLIM
	   � PRINT*,'ENTER NO. OF TIME STEPS AFTER WHICH PRINTOUT 
      $   OCCURS'
	    READ(5,*)NSTEP
	    ISTEP1 = 0
	    ISTEP2 = 0
	    TIME = 0.
C
C	 OPEN FILES FOR STORING NUMERICAL RESULTS
C
	    OPEN(UNIT = 10,FILE = 'FTCS.DAT')
C
C	 SET THE INITIAL CONDITIONS
C
	    DO 10 I = 1,IL
	    T(I) = TINT
	    TOL(I) = TINT
	 10	    CONTINUE
C
C	 �CALCULATE THE MAXIMUM POSSIBLE TIME STEP TO AVOID 
C	 INSTABILITY
C
	    DT = DX**2/2.
	    PRINT*,'TIME STEP = ',DT
	    WRITE(10,120)DX,DT
	    WRITE(10,130)IL
	    WRITE(10,140)TIME
	    WRITE(10,150)(T(I),I = 1,IL)
C
C	 �INCREMENT THE ITERATION COUNTER AND CHECK IF THE CHOSEN
C	 MAXIMUM NUMBER OF ITERATIONS IS EXCEEDED.
C
	 15	    ISTEP1 = ISTEP1 + 1
	    ISTEP2 = ISTEP2 + 1
	    TIME = TIME + DT
	    IF(ISTEP1.GT.NLIM)GO TO 50
C
C	 SAVE THE SOLUTION AT THE PREVIOUS TIME STEP



580	 Appendix C: Computer Programs in FORTRAN

C
	    DO 20 I = 1,IL
	    TOL(I) = T(I)
	 20	    CONTINUE
C
C	 APPLY FTCS SCHEME AT INTERIOR POINTS
C
	    DO 30 I = 2,IL – 1
	   � T(I) = TOL(I) + DT*(TOL(I + 1)– 2.*TOL(I) + TOL(I – 1))/DX**2
	 30	    CONTINUE
C
C	 APPLY BOUNDARY CONDITIONS
C
	    T(1) = 1.
	    T(IL) = 0.
C
C	 OUTPUT THE RESULTS
C
	    IF(ISTEP2.EQ.NSTEP)THEN
	    WRITE(10,140)TIME
	    WRITE(10,150)(T(I),I = 1,IL)
	    ISTEP2 = 0
	    GO TO 15
	    END IF
	    GO TO 15
	 120	    FORMAT(/,4X,'DX = ',F4.2,4X,'DT = ',F4.2)
	 130	    FORMAT(//,4X,'IL = ',I3)
	 140	    FORMAT(/,1X,'AT T = ',F7.3,1X,'CONCENTRATION FIELD IS:')
	 150	    FORMAT(1X,20(F8.4,2X))
	 50	    CLOSE(UNIT = 10)
	    STOP
	    END

C.18

C	 CRANK–NICOLSON METHOD FOR A PARABOLIC PDE
C
C
C	 �THIS PROGRAM SOLVES 1D, UNSTEADY HEAT EQUATION BY 
C	 EMPLOYING IMPLICIT CRANK-NICOLSON SCHEME. EQUATION 
C	 SOLVED IS THE ONE IN EXAMPLE 10.2.
C
C	 THE OUTPUT WILL BE IN CN.DAT
C
C	 SUBROUTINE 'FMTDIG' FORMS THE TRIDIAGONAL MATRIX. 
C	 �'TDIG'INVERTS THE MATRIX AND SOLVES FOR TEMPERATURE.
C
C
C	 DESCRIPTION OF INPUT PARAMETERS:
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C
C	 IL    NUMBER OF GRID POINTS.
C	 DX    DIMENSIONLESS GRID SIZE.
C	 DT    DIMENSIONLESS TIME STEP.
C	 TINT  THE INITIAL CONDITIONS TAKEN AS UNIFORM OVER THE
C	        WHOLE DOMAIN.
C	 �NLIM  THE MAXIMUM NUMBER OF TIME STEPS TAKEN BEFORE 
	        STOPPING.
C	 �NSTEP  THE NUMBER OF TIME STEPS AFTER WHICH PRINTOUT 
	        OCCURS.
C
C
C	 DESCRIPTION OF OTHER VARIABLES USED:
C
C	 T      THE DIMENSIONLESS SOLUTION AT NTH TIME STEP.
C	 TOL    THE DIMENSIONLESS SOLUTION AT (N – 1)TH TIME STEP.
C
C
	    PARAMETER (IN = 50)
	    DIMENSION T(IN),TOL(IN)
	    DIMENSION A(IN),B(IN),C(IN),R(IN),SOLN(IN)
	    PRINT*,'ENTER NUMBER OF GRID POINTS, IL = '
	    READ(5,*)IL
	    PRINT*,'ENTER GRID SIZE, DX = '
	    READ(5,*)DX
	    PRINT*,'ENTER TIME STEP,DT = '
	    READ(5,*)DT
	   � PRINT*,'ENTER INITIAL CONDITIONS, TAKEN AS UNIFORM' 
	    PRINT*,'OVER THE WHOLE DOMAIN'
	    READ(5,*)TINT
	   � PRINT*,'ENTER MAXIMUM NO. OF TIME STEPS BEFORE 
      $   STOPPING'
	    READ(5,*)NLIM
	   � PRINT*,'ENTER NO. OF TIME STEPS AFTER WHICH PRINTOUT 
      $   OCCURS'
	    READ(5,*)NSTEP
C
C	 OPEN THE OUTPUT FILE
C
	    OPEN(UNIT = 10,FILE = 'CN.DAT')
	    WRITE(10,100)DX,DT
	 100	   FORMAT(/,4X,'DX = ',F4.2,2X,'DT = ',F4.2)
	    WRITE(10,110)IL
	 110	   FORMAT(/,4X,'IL = ',I3,//)
	    ISTEP1 = 0
	    ISTEP2 = 0
	    TIME = 0.
C
C	 SET THE INITIAL CONDITION
C
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	    DO 10 I = 1,IL
	      T(I) = TINT
	      TOL(I) = TINT
	 10	    CONTINUE
C
C	 SET THE BOUNDARY CONDITIONS
C
	    CALL BCOND(T,DX,DT,IL)
	    WRITE(10,120)TIME
	    WRITE(10,130)(T(I),I = 1,IL)
C
C	 �SOLVE FOR T ON INTERIOR POINTS AT NTH TIME STEP
C
C	 INCREMENT THE ITERATION COUNTERS AND CHECK FOR THE
C	 MAXIMUM LIMIT OF ITERATIONS
C
	 20	    ISTEP1 = ISTEP1 + 1
	    ISTEP2 = ISTEP2 + 1
	    TIME = TIME + DT
	    IF(ISTEP1.GT.NLIM)GO TO 40
C
C	 FORM THE TRIDIAGONAL SYSTEM OF EQUATIONS
C
	    CALL FMTDIG(DX,DT,IL,T,TOL,A,B,C,R)
	    N = IL – 1
C
C	 SOLVE THE TRIDIAGONAL SYSTEM OF EQUATIONS
C
	    CALL TDIG(A,B,C,R,SOLN,N)
C
C	 OBTAIN DESIRED SOLUTION
C
	    DO 26 I = 2,IL
	      T(I) = SOLN(I)
	 26	        CONTINUE
C
C	 IMPOSE THE BOUNDARY CONDITIONS
C
	    CALL BCOND(T,DX,DT,IL)
C
C	    SAVE SOLUTION FOR NEXT TIME STEP
	    DO 25 I = 1,IL
	      TOL(I) = T(I)
	 25	        CONTINUE
C
C	 OUTPUT THE RESULTS
C
	    IF(ISTEP2.EQ.NSTEP)THEN
	       WRITE(10,120)TIME
	 120	        FORMAT(/,1X,'AT T = ',F7.3,1X,'TEMPERATURE FIELD IS:')
	       WRITE(10,130)(T(I),I = 1,IL)
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	 130	       FORMAT(1X,20(F8.4,2X))
	       ISTEP2 = 0
	       GO TO 20
	    END IF
	    GO TO 20
	 40	    CLOSE(UNIT = 10)
	    STOP
	    END
C*************************************************************
	    SUBROUTINE FMTDIG(DX,DT,IL,T,TOL,A,B,C,R)
C
C	 �THIS SUBROUTINE FORMS THE TRIDIAGONAL MATRIX FOR THE
C	 �CRANK-NICOLSON METHOD. THE GENERIC FORM OF THE EQUATION 
C	 IS:
C
C	 A*T(I – 1) + B*T(I) + C*T(I + 1) = R
C
C
	    DIMENSION T(IL),TOL(IL),A(IL),B(IL),C(IL),R(IL)
	    DO 10 I = 2,IL – 1
	      A(I – 1) = –DT/(2.*DX**2)
	      C(I – 1) = –DT/(2.*DX**2)
	 10	    CONTINUE
	    DO 20 I = 2,IL – 1
	      B(I – 1) = 1. + DT/DX**2
	   �   R(I – 1) = TOL(I) + DT*(TOL(I + 1) – 2.*TOL(I) + TOL(I – 1))
      $               /(2.*DX**2)
C
C	 INCORPORATE THE APPROPRIATE BOUNDARY CONDITIONS:
C
C	 LEFT BOUNDARY:
C
	    IF(I.EQ.2) R(I – 1) = R(I – 1) – A(I – 1)*T(I – 1)
	    IF(I.EQ.IL – 1)THEN
	    A(I) = – DT/DX**2
	    B(I) = (1. + DT/DX**2)
	    R(I) = (1. – DT/DX**2)*TOL(IL) + (DT/DX**2)*TOL(IL – 1)
	    END IF
C
C
	 20	    CONTINUE
	    RETURN
	    END
C*************************************************************
	    SUBROUTINE TDIG(A,B,C,R,SOLN,N)
C
C	 �THIS SUBROUTINE INVERTS A TRIDIAGONAL MATRIX BY THOMAS
C	 ALGORITHM.
C
C	 SOLUTION IS RETURNED IN THE ARRAY CALLED 'SOLN'.
C
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	    DIMENSION A(N),B(N),C(N),R(N),SOLN(N)
	    DO 20 I = 2,N
	      D = A(I)/B(I – 1)
	      B(I) = B(I)–C(I – 1)*D
	      R(I) = R(I) – R(I – 1)*D
	 20	    CONTINUE
	    SOLN(N + 1) = R(N)/B(N)
	    DO 30 I = 1,N – 1
	      J = N – I
	      SOLN(J + 1) = (R(J) – C(J)*SOLN(J + 2))/B(J)
	 30	    CONTINUE
	    RETURN
	    END
C*********************************************************
	    SUBROUTINE BCOND(T,DX,DT,IL)
C
C	 �THIS SUBROUTINE IMPLEMENTS THE APPROPRIATE BOUNDARY 
C	 CONDITIONS
C
	    DIMENSION T(IL)
C
C	 LEFT BOUNDARY:
C	 ISOTHERMAL; DIMENSIONLESS TEMPERATURE FIXED AT 1.0
C
	      T(1) = 1.
C
C	 RIGHT BOUNDARY:
C	 �ADIABATIC
C	
C	 T(IL) = 4.* T(IL-1)/3.- T(IL-2)/3.
C
	    RETURN
	    END

C.19

C	 �SUCCESSIVE OVER RELAXATION (SOR) METHOD FOR AN ELLIPTIC 
C	 PDE
C
C	 �THIS PROGRAM SOLVES THE LAPLACE EQUATION BY EMPLOYING
C	 �THE SUCCESSIVE OVER RELAXATION (SOR) ITERATION METHOD.
C
C	 �WHEN THE PROGRAM IS RUN IT PROMPTS FOR THE INPUT VALUES 
C	 REQUIRED.
C	 �ENTER THE INPUT VALUES AND THE OUTPUT WILL BE IN A FILE 
C	 CALLED 'SOR.DAT'
C
C
C	 DESCRIPTION OF INPUT PARAMETERS:
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C
C	 �IL      IS THE NUMBER OF GRID POINTS IN THE X DIRECTION.
C	 �JL      IS THE NUMBER OF GRID POINTS IN THE Y DIRECTION.
C	 DX      IS THE GRID SIZE IN X DIRECTION.
C	 DY      IS THE GRID SIZE IN Y DIRECTION.
C	 OMEGA   IS THE RELAXATION PARAMETER
C	 �PHIINT IS THE INITIAL GUESS FOR PHI TAKEN UNIFORM OVER 
	 	  THE WHOLE DOMAIN.
C	 �ITMAX   IS THE NUMBER OF MAXIMUM ITERATIONS BEFORE 
	 	  STOPPING.
C	 EPSI    IS THE CONVERGENCE CRITERION.
C
C
C	 DESCRIPTION OF OTHER VARIABLES:
C
C	 PHI     IS THE SOLUTION VARIABLE AT NTH TIME STEP.
C	 PHIOL   IS THE SOLUTION VARIABLE AT N – 1TH TIME STEP.
C
C
	    CHARACTER*2 XFILE(5)
	    CHARACTER*2 YFILE(5)
	    DIMENSION PHI(21,21),PHIOL(21,21)
	   � PRINT*,'ENTER INITIAL GUESS FOR PHI TAKEN UNIFORM' 
	    PRINT*,'OVER THE WHOLE DOMAIN'
	    READ(5,*)PHIINT
	    PRINT*,'ENTER GRID SIZE DX = , DY = '
	    READ(5,*)DX,DY
	    PRINT *,'ENTER NO. OF GRID POINTS IL = , JL= '
	   � PRINT*,' MAXIMUM POSSIBLE IS 21 FOR BOTH IL AND JL,'
	    PRINT*,'UNLESS DIMENSION STATEMENTS ARE CHANGED.'
	    READ(5,*)IL,JL
	    PRINT *,'ENTER THE RELAXATION PARAMETER'
	    READ(5,*)OMEGA
	   � PRINT*,'ENTER MAXIMUM NO. OF ITERATIONS ALLOWED BEFORE 
      $   STOPPING'
	    READ(5,*)ITMAX
	    PRINT *,'ENTER CONVERGENCE CRITERION'
	    READ(5,*)EPSI
	    PRINT*,'THE INPUT VALUES ARE:'
	    PRINT*,'INITIAL GUESS FOR PHI = ',PHIINT
	    PRINT*,'DX = ',DX,'DY = ',DY
	    PRINT*,'IL = ',IL,'JL = ',JL
	    PRINT*,'MAX NO. OF ITERATIONS = ',ITMAX
	    PRINT*,'CONVERGENCE CRITERION = ',EPSI
	    ITERATION = 0
C
C	 SET INITIAL DISTRIBUTION OF PHI
C
	    DO 51 I = 1,IL
	      DO 5 J = 1,JL
	        PHI(I,J) = PHIINT
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	  5	      CONTINUE
	 51	    CONTINUE
C
C	 START SOLVING FOR PHI.
C
	 15	    ITERATION = ITERATION + 1
	    IF(ITERATION.GE.ITMAX)GO TO 40
C
C	 SAVE THE FIELD AT PREVIOUS TIME STEP.
C
	    DO 101 I = 1,IL
	      DO 10 J = 1,JL
	        PHIOL(I,J) = PHI(I,J)
	 10	      CONTINUE
	 101	    CONTINUE
C
C	 �EMPLOY SOR ITERATIVE METHOD FOR PHI AT INTERIOR POINTS.
C
	    DO 20 J = 2,JL – 1
	      DO 20 I = 2,IL – 1
	         PHIGS = (PHI(I + 1,J) + PHI(I – 1,J))/DX**2 + 
      $             (PHI(I,J + 1) + PHI(I,J – 1))/DY**2
	         PHIGS = PHIGS/(2./DX**2 + 2./DY**2)
	         PHI(I,J) = OMEGA*PHIGS + (1.–OMEGA)*PHIOL(I,J)
	 20	      CONTINUE
C
C	 IMPOSE THE BOUNDARY CONDITIONS
C
	    CALL BCOND(PHI,IL,JL)
C
C	 CHECK FOR CONVERGENCE
C
	    DO 35 I = 1,IL
	      DO 35 J = 1,JL
	        IF(ABS(PHI(I,J) – PHIOL(I,J)).GE.EPSI)GO TO 15
	 35	      CONTINUE
	    GO TO 50
	 40	   � PRINT*,'SOLN. DOES NOT CONVERGE 
      $   IN',ITMAX,'ITERATIONS'
	 50	    OPEN(UNIT = 10,FILE = 'SOR.DAT')
	    WRITE(10,110)EPSI
	 110	    FORMAT(1X,'CONVERGENCE CRITERION ='1X,E9.1)
	    WRITE(10,115)OMEGA
	115	    FORMAT(//,1X,'RELAXATION PARAMETER =',F5.2)
	    WRITE(10,120)ITERATION
	 120	   � FORMAT(//,1X,'NO. OF ITERATIONS TO 
      $   CONVERGE = ',1X,I4,//)
	    WRITE(10,130)
	 130	    FORMAT(1X,'PHI DISTRIBUTION IS:',//)
	    WRITE(10,140)(I,I = 1,IL)
	 140	    FORMAT(1X,'I = ',8X,11(I2,8X))
	    DO 60 J = 1,JL
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	      WRITE(10,100)J,(PHI(I,J),I = 1,IL)
	 60	    CONTINUE
	 100	    FORMAT(1X,'J = ',I2,3X,11(F8.5,2X))
	    STOP
	    END
C*******************************************************
	    SUBROUTINE BCOND(PHI,IL,JL)
C
C	 �THIS SUBROUTINE IMPLEMENTS APPROPRIATE BOUNDARY 
C	 CONDITIONS.
C
	    DIMENSION PHI(IL,JL)
C
C	 SET THE CONDITIONS ON I = 1 AND I = IL SURFACES.
C
	    DO 25 J = 1,JL
	      PHI(1,J) = 0.
	      PHI(IL,J) = 0.
	 25	    CONTINUE
C
C	 SET THE CONDITIONS ON J = 1 AND J = JL SURFACES
C
	    DO 30 I = 1,IL
	      PHI(I,1) = 0.
	      PHI(I,JL) = 1.
	 30	    CONTINUE
	    RETURN
	    END

C.20

C	 SOLUTION OF THE WAVE EQUATION 
C
C	 �THIS PROGRAM SOLVES A SECOND-ORDER HYPERBOLIC PARTIAL
C	 �DIFFERENTIAL EQUATION BY THE FINITE DIFFERENCE METHOD.
C
C	 �SUBROUTINE INPUT PROVIDES THE INPUT DATA NECESSARY TO
C	 RUN THE PROGRAM
C
C	 DESCRIPTION OF VARIABLES:
C
C	 DX IS THE GRID SIZE.
C	 IL IS THE NUMBER OF GRID POINTS.
C	 DT IS THE TIME STEP.
C	 �C IS THE COURANT NUMBER. CHOOSE DX AND DT SUCH THAT C 
C	 IS APPROXIMATELY 1.0.
C	 �U, U1, U2 CONTAIN THE U FIELD AT THE THREE TIME STEPS T,
C	 �T + DT AND T + 2DT, WHERE U IS THE DEPENDENT VARIABLE.



588	 Appendix C: Computer Programs in FORTRAN

C	 �NLIM = MAXIMUM NUMBER OF TIME STEPS BEFORE TERMINATION
C	 OF THE CALCULATION.
C	 �NSTEP = NUMBER OF TIME STEPS AFTER WHICH PRINTOUT 

OCCURS.
C
C
	    DIMENSION U(25),U1(25),U2(25)
C
C	 ENTER THE INPUT VALUES
C
	    CALL INPUT(DX,DT,IL,U1,NLIM,NSTEP,ASQR)
C
	    OPEN(UNIT = 10,FILE = 'HPB.DAT')
	    C = ASQR*DT**2/DX**2
C
C	 SET THE BOUNDARY CONDITIONS
C
	    CALL BCOND(U2,IL)
C
C	 INITIALIZE THE VARIABLES
C
	    DO 10 I = 2,IL – 1
	    U2(I) = U1(I) + C*(U1(I + 1) – 2.*U1(I) + U1(I – 1))/2.
	 10	    CONTINUE
C
	    ISTEP1 = 1
	    ISTEP2 = 1
	    T = DT
C
C	 SOLVE FOR U AT SUCCESSIVE TIME STEPS
C	 AND SAVE THE PREVIOUS VALUES
C
	 30	    DO 20 I = 1,IL
	    U(I) = U1(I)
	    U1(I) = U2(I)
	 20	    CONTINUE
C
C	 INCREMENT THE TIME
C
	    T = T + DT
	    ISTEP1 = ISTEP1 + 1
	    IF(ISTEP1.GT.NLIM)GO TO 50
	    ISTEP2 = ISTEP2 + 1
C
C	 CALCULATE NEW 'U2'
C
	    DO 40 I = 2,IL – 1
	    U2(I) = 2.*U1(I) – U(I) + C*(U1(I + 1) – 2.*U1(I) + U1(I – 1))
	 40	    CONTINUE
C
C	 OUTPUT THE RESULTS
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C
	    IF(ISTEP2.EQ.NSTEP)THEN
	    WRITE(10,100)T
	100	    FORMAT(//,1X,'AT TIME = ',F8.4,1X,'U FIELD IS')
	    WRITE(10,110)(U2(I),I = 1,IL)
	110	    FORMAT(/,1X,20(F8.4,2X))
	    ISTEP2 = 0
	    GO TO 30
	    END IF
	    GO TO 30
	 50	    STOP
	    END
C*************************************************************
	    SUBROUTINE INPUT(DX,DT,IL,U1,NLIM,NSTEP,ASQR)
C
C	 �THIS SUBROUTINE PROVIDES THE INPUT VALUES TO THE MAIN 
C	 PROGRAM.
C
C	 DESCRIPTION OF THE VARIABLES:
C
C	 DX = GRID SIZE.
C	 DT = TIME STEP.
C	 IL = NUMBER OF GRID POINTS.
C	 NLIM = MAXIMUM NUMBER OF TIME STEPS TO BE COMPUTED.
C	 �NSTEP = NUMBER OF TIME STEPS AFTER WHICH PRINTOUT 

OCCURS.
C	 ASQR = CONSTANT IN THE DIFFERENTIAL EQUATION.
C	 �U1 CONTAINS THE INITIAL DISTRIBUTION OF THE DEPENDENT
C	 VARIABLE.
C
	    DIMENSION U1(25)
	    DX = 0.05
	    DT = 0.0015
	    ASQR = 1000.
	    IL = 21
	    �PRINT*,'ENTER MAXIMUM NUMBER OF TIME STEPS ALLOWED'
	    READ(1,*)NLIM
	    �PRINT*,'ENTER NO. OF TIME STEPS AFTER WHICH OUTPUT 
      $   OCCURS'
	    READ(1,*)NSTEP
C
C	 INITIAL DISTRIBUTION OF U1
C
	    DO 10 I = 1,IL
	    IF(I.LE.6)U1(I) = FLOAT(I – 1)*DX*0.0016
	    IF(I.GT.6)U1(I) = –0.004*(FLOAT(I – 1)*DX – 1.)/0.75.
	    PRINT*,U1(I)
	 10	    CONTINUE
	    RETURN
	    END
C*********************************************************
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	    SUBROUTINE BCOND(U2,IL)
C
C	 THIS SUBROUTINE IMPOSES THE BOUNDARY CONDITIONS
C
	    DIMENSION U2(25)
	    U2(1) = 0.
	    U2(IL) = 0.
	    RETURN
	    END
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