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Preface

The widespread application of transport phenomena of fluid-particle systems and
fluidization in industry demands an increase in efficiency and the development of
predictive numerical simulations of industrial processes for design and scale-up
purposes. In spite of today’s advances in computational capability, considerable
challenges remain due to the complexity of processes based on fluid-particle flow
that require mass, momentum, and energy analyses at the molecular, particle, and
process scales. This book is intended to address some of these issues and provide
fundamental knowledge and needed design and scale-up tools for graduate students
in different branches of science and engineering (i.e., chemical, biological, mechan-
ical, and environmental engineers, etc.) and scientists and engineers already work-
ing in areas related to fluid-particle flow systems.

Prior to 1978, research in fluid-particle systems was mainly focused on the
development of overall flow measurements and empirical correlation for the main
flow parameters. However, during the last three decades, extraordinary advances
have been made in the multiphase approach to fluid-particle flow systems that have
significantly impacted our approach in the design and scale-up of processes based
on fluid-particle transport phenomena. The first attempts in developing Eulerian/
Eulerian modeling of fluid-particle systems and fluidization began in the 1960s by
J. Davidson, R. Jackson, and S.L. Soo. During the 1980s, several attempts were
made in the literature by Illinois Institute of Technology (IIT) researchers and
others to obtain a numerical solution for a one-dimensional flow equation and to
simulate flow in a vertical pneumatic conveying system. Later, IIT researchers
considered each particle size as a separate phase, developed an experimentally
verified particle-particle collision theory, introduced it in one-dimensional equa-
tions, and successfully compared the calculated flow parameters with experimental
data for flow in dilute gas-particle systems. This probably motivated several
investigators to develop a theory of particle interaction and collision based on the
Chapman and Cowling kinetic theory approach. The kinetic theory approach, which
is based on the oscillation of the particles, uses a granular temperature equation to
determine the turbulent kinetic energy of the particles, assumes a distribution
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function for instantaneous particle velocity, and defines a constitutive equation
based on particle collision, interaction, and fluctuation. In fact, the kinetic theory
approach for granular flow allows the determination of, for example, particle phase
stress, pressure, and viscosity in place of the empirical equations. After this
developmental stage of granular theory, there have been several modifications to
the constitutive equations such as extension of the kinetic theory for granular flow
for mixtures of multi-type particles. However, in a more concentrated fluid-particle
flow system, not only should the flow be characterized by a two- or three-
dimensional flow equation, but also the formation of large structures such as
clusters should be included in modeling of transport phenomena of such flow
systems. To solve these microscopic two-fluid model equations, very small grid
sizes of less than a few particle diameter are needed. For most processes of practical
interest, such fine spatial grids and small time steps require significant computa-
tional time. Thus, the effect of the large-scale structures using coarse grids must be
accounted for by using approaches such as filtering equations or energy minimiza-
tion multi-scale (EMMS).

To account for continuous variation in particle property distribution due to
phenomena such as chemical reaction, agglomeration, breakage, attrition, and
growth at significantly less required computational time, a new approach to solve
population balance equations (PBEs) linked with computational fluid dynamics
(CFD) is needed. The PBE is a balance equation based on the number density
function that accounts for the spatial and temporal evolutions of the particulate
phase internal variable distribution function in a single control volume. This
equation is an integro-differential equation that involves both integrals and deriv-
atives of the distribution function. The most promising method of solution at the
present time to solve CFD-PBE is the method of moments, which is based on
solving the distribution function transport equation in terms of its lower-order
moments. Some of the variables in PBE need to be calculated from the CFD
model, and, in turn, solution of the PBE gives some of the phase properties needed
in the CFD model. Therefore, PBE and CFD need to cross-talk via a two-way
coupling.

Another approach to simulate a gas-particle flow system is the distinct element
method (DEM), which is based on an equation of motion for each individual
particle. Thus, in principle, individual particle size, shape, and density can be
introduced directly into the governing equations. However, this approach requires
huge computational time in simulating commercial-scale processes, which is not
the focus of this book.

This book provides a comprehensive approach to address the abovementioned
challenges and issues and presents fundamental knowledge and needed design and
scale-up tools for gas-solid flows at different flow regimes.

Chapter 1 deals with the derivation of the basic governing equations for conser-
vation of mass, momentum, and energy for multiphase systems.

Chapter 2 provides continuity and momentum conservation equations and con-
stitutive and boundary conditions for fluid-particle flow systems. The conservation
equations and constitutive relations are general and can be applied to all regimes of
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fluid-particle flow, from a very dilute particle volume fraction to the packed bed
regime. The fundamentals of the kinetic theory approach for derivation of consti-
tutive equations for the regimes when particle collision is dominant and the
frictional behavior of particles based on soil mechanics principles for dense particle
flow are discussed. In addition, the kinetic theory approach has been extended to
multi-type particulate flows. Finally, the generalized forms of governing equations
and constitutive relations for all particle phase flow regimes are presented in
Tables 2.1 and 2.2.

Chapter 3 deals with the effects of the presence of particle clusters in fluid-
particle flow modeling and numerical simulation. This chapter also introduces key
concepts and the fundamental derivations of two approaches for considering the
presence of clusters and large structures that have gained significant attention in the
literature: the filtering or subgrid model and the energy minimization multi-scale
(EMMS) model. Using these approaches results in simulations that require a
manageable computational time.

Chapter 4 provides an introduction to the concept of polydispersity in multiphase
systems and the numerical solution of coupled CFD and PBE. Solutions based on
the different method of moments (MOM) are also presented, and the finite size
domain complete set of trial functions method of moments (FCMOM) and the
implementation of FCMOM in a CFD code are discussed in more detail. Finally,
the application of FCMOM for three processes of linear growth, homogeneous
aggregation, and non-homogeneous aggregation in emulsion flow is presented.

Chapter 5 presents three case studies. Case 1 is CFD modeling and simulation of
a pharmaceutical bubbling bed drying process. Case 2 is CFD modeling and
simulation of a reactive gas-solid system in the riser section of a circulating
fluidized bed (CFB) reactor representing a CO, capture process using solid sor-
bents. Case 3 is similar to Case 2, but with one difference: the density distribution of
the solid phase is changing due to chemical reactions.

The authors greatly appreciate several individuals who contributed in different
ways to the completion of this book. In particular, the authors would like to
acknowledge the original contributions of the following: Professor Matteo
Strumendo of Universita degli Studi di Padova in development of FCMOM for
solution of PBE, Dr. Hadjira Iddir of Universal Oil Products (UOP) for the
development of modeling of multi-type particle flow using the kinetic theory
approach, Dr. Emad Ghadirian of Gamma Technologies for his contribution in
the energy minimization multi-scale (EMMS) approach and formulation of fric-
tional pressure and viscosity for dense particle flow, Dr. Sofiane Benyahia of
National Energy Technology Laboratory (NETL) for his contribution to the simu-
lation of gas-solid flows, Dr. Jungkee Jang for the development of the modeling and
numerical simulation for the drying process, and Dr. Javad Abbasian for his
contribution in the development of rate of reaction for CO, sorption.

The research conducted by the authors that is presented in this book is mainly
funded by the US Department of Energy. The support and use of the computational
facilities of Wanger Institute for Sustainable Energy Research (WISER) of Illinois
Institute of Technology (IIT) significantly contributed to the success of the
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simulation results presented in this book. The authors would like to thank and
greatly appreciate Ms. Margaret M. Murphy, IIT WISER assistant director and
program outreach manager, for editing this book.

Chicago, IL, USA Hamid Arastoopour
Chicago, IL, USA Dimitri Gidaspow
Des Plaines, IL, USA Emad Abbasi
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Chapter 1
Conservation Laws for Multiphase Flow

1.1 Introduction

Based on the continuum theory, conservation laws for mass, momentum, and
energy for disperse multiphase flow can be derived using the Reynolds transport
theorem, as illustrated by Gidaspow (1994). For multiphase flow systems, the only
new concept in this approach is the introduction of phasic volume fraction, &;. For a
single-phase system, € = I, these equations must reduce themselves to the equations
found in standard transport phenomena books, such as those of Bird et al. (2007).
Here, we briefly show how these equations are derived, using a Lagrangian
representation.

Assume that a system of constant mass goes through temporal and spatial
changes as presented in Fig. 1.1.

The point (x°, y°, z°) represents the spatial coordinates of the particle at some
fixed time t°. Then, the spatial coordinates of the particle at any time are given by
functions of

x:x(t7x07y()’zo) y:y(t)x()’y())zo) Z:Z(t7‘x0’y07zo)

In space, we define a property per unit volume J(z,x), where ¢ is time and x is the
position vector such that (Aris 1962)

F(r) = ” 36, x)dV (1.1)

V(r)

F(t) is the system variable quantity that can change with time. The balance made on
F(t) gives the Reynolds transport theorem (Aris 1962)

© Springer International Publishing AG 2017 1
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V()

(x,y,z)

Fig. 1.1 Motion of a system of constant mass
d 07
— t,x)dV = —+ V- Jy; |dV 1.2
[ e =[] (G -) 12
V() V()
In multiphase flow, the volume occupied by phase i cannot be occupied by other
phases at the same position in the space at the same time. This distinction introduces

the concept of the volume fraction of phase i, €;. The volume of phase i, V;, in a
system of volume V, is (Gidaspow 1977, 1994)

Vi= ”J g;dV where ng =1 (1.3)
i=1

40

1.2 Conservation of Mass

The mass of phase i can be written as

mi = ” epdV (1.4)

V(o)

For the mass m;, moving with the velocity v;, the following balance is valid

s

Application of the Reynolds transport theorem results in the well-known continuity
equation for phase 7,




1.3 Conservation of Momentum 3

a(fiﬂi)
ot

+ V- (eipvi) = m (1.6)

where m; is the rate of production of phase i, by mass transfer or chemical reaction.
Conservation of mass requires that (Gidaspow 1994)

zn:mf =0 (1.7)
Py

If the fluid is incompressible and there are no phase changes, V;, the volume of
phase i remains constant. Then, application of the Reynolds transport theorem
results in the following incompressible continuity equation in multiphase flow

88,' .
E—f—v . (8,‘\/1') =0 (18)

1.3 Conservation of Momentum

The rate of change in the momentum of a multiphase system moving with the
velocity v; equals the sum of the forces acting on the system including the forces of
interaction between the phases. Other forces acting on the system are surface forces,
external forces, and momentum exchange due to phase change. Therefore, the
momentum balance for phase i can be written as (Bowen 1976; Gidaspow 1994)

J \
0 m pviedV = §b Tida + JH piFiedV + m KidV + m mvidV  (1.9)
V(r) 5@ V(r)

Application of the Reynolds transport theorem on the right-hand side of the
above balance followed by the application of the divergence theorem where,

%}Tida = J” V- TidV (1.10)

on the left-hand side, gives the three momentum balances for each phase i, as
follows

O(pievi)

3 + V- (pigvi @vi) =V - Ti + pieiFi + K; 4+ my; (1.11)
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By differentiating and using the continuity equation for phase i, it is easy to show
that the momentum balance for phase i can be expressed as

dV,‘

E = VTI + piS,'F,' + K,-—l—m;v,- (112)

Pi€i

The term on the left-hand side accounts for acceleration of phase i. The terms on the
right-hand side are momentum in-flow due to surface forces, body forces, and
interaction forces, respectively.

Therefore, by expressing interaction forces K; in terms of a friction coefficient f
for solid—fluid interaction, the momentum equation for phase k becomes

O (expivi)

3 + Vo egpvivi =V T + epiFre + Zﬁj(vj — vk) +mve (1.13)
J

The sum of the interaction forces K; is clearly zero
n
> Ki=0 (1.14)
i—1
The stress tensor T; for phase i is given by
T T,
Ti=|Tix Tiy Tiy (1.15)
T T T

where the elements, say, T}y,, are the ith force in the x direction per unit area of the
yth face.

The simplest expression for the stress in an inviscid flow, analogous to the
single-phase potential flow theory, is through the definition of a phase pressure p;,
via the identity I

T, = —P;1 (1.16)

For incompressible viscous flows, where there are frictional forces due to
differences in phase velocities, the traction T is a function of the symmetric gradient
of the velocity. The driving force for the transfer of shear is the symmetric gradient
of velocity rather than the ordinary gradient because of the need to satisfy invari-
ance under a change of frame of reference under rotation, called objectivity in
continuum mechanics, or the Galileo relativity principle. To meet the requirement
of objectivity, let
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Ty =T (Vi) (1.17)

Linearization of the T} gives
T = Al + B (Viv) (1.18)
For incompressible fluids, A is chosen to be the negative of the pressure of fluid &,

and the derivative of the traction with respect to the symmetric gradient is the
viscosity of fluid k, as shown below,

A= —P; (1.19)
and
0Ty

Using the tensor identity, k-phase stress tensor can be expressed as
Tk = —Pk[—f—Z/lkaVk (121)

For a constant phase viscosity y, the incompressible k-phase (&0, = constant and
consequently div(v;) = 0) Navier—Stokes equation can be rewritten as

a(gkpkvk)

3 + V- apvivie = expiFr + Zﬁj(vj - vk) + mvi — VP +ukv2vk
J

(1.22)

For a more general case of compressible viscous flow with negligible phase
change, A; is

Ay = =Pl + 4N v (123)
Therefore, the traction for phase k£ becomes
T, =—Pil + 2/,¢kVSvk + /lkIV * Vi (124)

where the first term represents the k-phase pressure, the second term represents the
k-phase viscous shear, and the third term represents the compression or expansion
acting on k-phase by j-phase by deforming the k-velocity field,

with

2y 434 =0 (1.25)
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Then, for compressible k-phase in a multiphase system, the Navier—Stokes equation
in convective form is given as

dv s 2
gkpkd_t: = epiFr + Zﬂj(vj — vk) - VP, +V <2M/<v‘ Ve — g,uklv . vk) + my v
J

(1.26)

1.4 Conservation of Energy

Consider an open system of mass, m;, that gains mass and thus energy at a rate %.

The energy balance moving with phase i becomes (Gidaspow 1977, 1994)

dU,  dQ; dav; dm;
L — ! _P,— +D; "1 Pt pl - 1.2
di dt " di +Diss + (U] + PI/p]) dfi (1.27)
where
Ui = JJ SipiU,‘dV (128)

V(t)

and where the rate of heat transfer is related to the flux ¢; by relations such as those
used by Ishii (1975)

_d9i _ ﬁ qeida = H (V -&q;)dv (1.29)
dt Al o

where A(t) is the area enclosing the volume of the system at any instant of time. The
differential element of surface area of system i was taken to be simply ¢;da, thus
making no distinction between area and volume fraction.

The energy dissipation by means of friction is shown as the dissipation term D

Djs; = m u,dV (1.30)

V(r)

Now, by applying the Reynolds transport theorem to our original energy balance,
we obtain
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d(eip,U; Oc;
(ggtl )+V - (&ipvilU;) = _v'fiCIi_Pia_i_va ~evi + h'mi +u} (1.31)

where ;" is defined as the net enthalpy per unit mass entering system i at possibly
nonequilibrium conditions

b = Ui+ Pijp, (1.32)
The above energy balance could be written in terms of enthalpy as

dh; dP;
epi—=—V &g+ ei—+mi(h]') + mU; + u; (1.33)
dr dr
Furthermore, the entropy form of the energy equation can be obtained by using
the fact that the internal energy of phase i depends upon the entropy of phase i and
upon the specific volume of phase i, as the following:

0(&ip;Si) Oe;

T,‘ a[ + T,V . (Sjinij) = —V . Eiqi — P,E-F (hin — T,S,)mf + M; (134)

The second law of thermodynamics states that the entropy production for the
mixture is zero for reversible processes and is positive for real irreversible pro-
cesses. The energy equations in entropy form can be added to produce the entropy
production for the mixture of i phases. As shown by Gidaspow (1994), some of the
early multiphase energy equations violate the second law. Hence, it is necessary to
check whether the equations programmed into the commercial computational fluid
dynamics (CFD) codes satisfy the second law.

Expressions for entropy production are also needed for the design of energy
efficient processes. For example, distillation column design is routinely done using
availability analysis (Fitzmorris and Mah 1980), and vapor compression
air-conditioning systems (ASHRAE 1977) are routinely designed by minimizing
the entropy production for the vapor compression.

1.5 Nomenclature

Cyq  Drag coefficient

Dis  Energy dissipation by means of friction, kj/s
dp Particle diameter, m

F Body force, N

h Enthalpy per unit mass, J/kg

K Interaction force, N

I Identity matrix

m Mass, kg
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Pressure, N/m?

Heat transfer, J

Entropy, J/K°

Stress tensor

Time, s

System volume, m’

Mean velocity vector, m/s
Overall system energy, J/kg

=T N Oo Y

Greek Symbols

Phase volume fraction

Interphase friction coefficient
Viscosity, kg/m-s

Bulk viscosity, kg/m-s

Density kg/m®

General property per unit volume

QN >T T ™
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Chapter 2
Conservation and Constitutive Equations
for Fluid—Particle Flow Systems

2.1 Introduction

A major computational advance in the calculation of multiphase flow regimes made
in the 1980s was the use of computational codes based on the Navier—Stokes
equation for solving the governing equations presented in Chap. 1.
The basic momentum balances for the fluid and particulate phases are as follows:
Fluid momentum balance

0 (prervy
% + V. (pfefvaf) = ¢&prg — gVP+V g1y +ﬁ(vs - vf) (2.1)
Solid momentum balance

0(p,esvs
%—i— V- (psesvsvs) = €p8 —€sVP — NV P+ V - &1 +ﬁ(vf — vs) (2.2)
where p is density, ¢ is volume fraction, ¢ is time, v is velocity vector, P is pressure,
g is gravity acceleration, 7 is stress tensor, and f is the interface momentum
exchange coefficient.

The summation of volume fractions for all phases is equal to one

g +e =1 (2.3)

In order to close the conservation equations for the momentum, one needs to
calculate the stress tensors and consequently the solid-phase viscosity. Two types of
models were used to close the coupled Navier—Stokes equations for both the fluid
and disperse particles. The first group of models requires an empirical input of
particulate viscosity and gradient of the disperse pressure. The second group of
models is based on the kinetic theory of granular flow. These models compute the
particulate viscosity and the gradient of the solid pressure as a function of the

© Springer International Publishing AG 2017 9
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granular temperature (Arastoopour 2001; Gidaspow 1994; Gidaspow and Jiradilok
2009). The granular temperature is a measure of the random particle kinetic energy
per unit mass. It is produced due to “viscous-type dissipation” and consumed due to
inelastic collisions. The random granular temperature equation for the particle
phase can be expressed as

0 (ps&50)

— 5 + V- (pyestvg) | = (=PI +15) : Vg + V- (V) — 7 + @y

3
2
(2.4)

Accumulation + net outflow = production + conduction — dissipation
+ granular energy exchange between phases

where 0 is granular temperature (which is defined as the mean of the squares of
particle velocity fluctuation), k, is granular conductivity, y is the collisional energy
dissipation, and @, is the granular energy exchange between phases which is
defined as @, = —3f,,0 for laminar flows (Gidaspow et al. 1991) and @, = S,

(\/%\/@ — 2kf) for disperse turbulent flows (Sinclair and Mallo 1998). In the
latter case, Ky is the turbulent kinetic energy of the fluid and S, is the gas—solid
exchange coefficient.

The stress tensor for each phase is given by a Newtonian-type viscous approx-
imation, as

2
r = Sfﬂf(VVf + va) - g(‘;’fﬂfV . VfI (25)

2
7y = e (Vs + Vo)) + g (gs - gﬂs> AR | (2.6)

Particle pressure, Pg; shear viscosity, u,; and bulk viscosity, &, are expressed as a
function of granular temperature based on the kinetic theory model (Gidaspow
1994).

The constitutive equation for the shear viscosity p, consists of three sources,
namely, kinetic, collision, and friction, which could be written either in an additive
manner or a continuous form as (see Sect. 2.7 for more details)

Hs = Hiin + HKeol + :ufr (27)

The first two parts are calculated based on the kinetic theory. In dense granular
flows, in addition to the kinetic and collisional stresses (described by the kinetic
theory), the model should account for the frictional stresses as well, which is
dominant in flow regimes denser than the bubbling regime. The frictional behavior
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of granular matters is discussed in this chapter based on soil mechanics principles
(see Sect. 2.7).

This chapter starts with the derivation of the conservation equation for mass,
momentum, and granular temperature based on the kinetic theory approach for
uniform and multi-type particles.

2.2 Background on the Kinetic Theory

Originally, the kinetic theory was developed by Chapman and Cowling (1970) for
gases to predict the behavior of mass point molecules whose interaction energies
are conserved. Nearly three decades ago, this theory was extended to particulate
flow where the interactions between particles are not conserved. Savage and Jeffrey
(1981) were probably the first to apply the kinetic theory to rapidly deforming
material in a form of smooth hard spherical particles to develop the particle phase
constitutive equation. In their derivation, to calculate the stress tensor arising from
interparticle collisions, they assumed that the collisions between particles were
purely elastic.

Although in some granular flows the restitution coefficient is restrained to values
close to unity, its deviation from unity results in a significant variation in the
properties of granular flow. This was shown first by Jenkins and Savage (1983).
They extended the kinetic theory of an idealized granular mixture to predict the
rapid deformation of granular material by including energy dissipation during
collision for nearly inelastic particles. Later, Lun et al. (1984) developed a theory
that predicts the simple shear flow behavior for a wide range of the restitution
coefficient.

Many models for granular flow were then developed based on the kinetic theory
approach (Jenkins and Richman 1985; Gidaspow 1994). In addition, the kinetic
theory has been extended to cohesive and multi-property particle flow (Kim and
Arastoopour 2002; Iddir and Arastoopour 2005).

In the particle phase, the frequency distribution of velocities of particles, f, is a
function of position, r, and the instantaneous velocity, ¢, as well as time, ¢:

f=7f(tr,c) (2.8)

The six coordinates, the position, r, and the velocity, ¢, are sufficient to determine
the location of a particle, because Newton’s second law has six integration con-
stants. The velocity distribution, f, of the particles is often close to the normal
distribution, called the Maxwellian distribution in the kinetic theory of gases. For a
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Maxwellian distribution, the kinetic viscosity is zero. Particle viscosity is nonzero
due to particle interaction and a non-Maxwellian distribution.

The number of particles per unit volume, n, is the integral over the velocity
space, c:

n= dec (2.9)

The mean value of a quantity ¢, such as mass, momentum, energy, and stress, is
defined to be

i) = | arde (2.10)

Hence, the hydrodynamic velocity, v, is the integral over all the velocity space, as
shown below

V:%ch(c)dc (2.11)

The transport of a quantity ¢, such as heat, must be invariant under a change of
frame. Hence, it cannot be a function of the velocity, c¢. Otherwise, it will have
different values in different frames of reference. But c—v is independent of the
frame of reference. Hence, we define C as the difference between the instantaneous
and the hydrodynamic velocities

C=c—v (2.12)

In kinetic theory (Chapman and Cowling 1970), this difference is called the
peculiar velocity. Its mean is zero, as shown below, since the mean of ¢ is equal
tov:

<C> = <c—v> =v=—v =0 (2.13)

This property is the same as that of the turbulent velocity, v, defined as
the instantaneous minus the average velocity. The flux vector of ¢ is defined
as n < C¢(C) >. For example, if ¢ = E, the internal energy, then the conduc-
tion flux, ¢, becomes g =n<EC>.

Since momentum is the mass, m, times the velocity, C, the kinetic stress tensor,
P, is as follows:

Pr=n<CmC> =p<CC> (2.14)

The hydrostatic pressure, p, is the mean of the sum of the normal components of the
stress tensor, p,
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P=1/3(p.+ py+p..) (2.15)

In the kinetic theory of gases, the thermal temperature, T, is defined as the
average of the random kinetic energy, with the conversion factor of the Boltzmann
constant from Joules to degrees Kelvin, as shown,

keT = 1/3m < C* 4+ C* + C*, > (2.16)

where the subscript of the peculiar velocity, C, indicates the component of C in the
X, y, and z directions, respectively. The Boltzmann constant has the value

kg = 1.3805 x 1072 J/K (2.17)

The ideal gas law constant equals the very small Boltzmann constant, due to the
small mass of the molecule, m, times the large value of the Avogadro’s number,
6.023 x 10?, the number of molecules per mole. Converting from Joules to calories
gives the gas law constant of 1.987 cal/g-mole-deg K.

Elimination of the squares of the peculiar velocities in

P =1/3mm <C*> (2.18)

and in the definition of temperature (Eq. 2.16) gives the ideal gas law equation of
state

P = nkgT = (N/V)RT (2.19)

where N is the number of moles, V is the volume, and R is the universal gas
constant.

The granular temperature is defined as the random kinetic energy of the particles
without the conversion of Joules to degrees. Equation (2.16) suggests that it can be
defined in two ways: similar to Eq. (2.16) or as kinetic energy per unit mass. Let 6
be the granular temperature for uniform size particles, the random kinetic energy
per unit mass. Then,

0 =1/3(C?) = 1/(3n) T T T (cﬁ +C2 C_f)ddeCydCz (2.20)

in three dimensions. In two dimensions, we would have only two random velocities,
and we would divide < C? > by two. In one dimension, we have only one random
velocity, and the granular temperature is then simply the variance of the measured
instantaneous velocities. However, this behavior is not the same as the three-
dimensional granular temperature shown in Eq. (2.20). The units of the granular
temperature are (m/sec)z.



14 2 Conservation and Constitutive Equations for Fluid—Particle Flow Systems

The equation of state for particles can be obtained by eliminating < C? >
between Egs. (2.18) and (2.19). This gives

Dy = nmé (2.21)

where the subscript, s, was added to emphasize that it is the solid pressure. The
variable nm is the bulk density. In terms of the volume fraction of solids, &; and the
solid density, p, the ideal equation of state for particles becomes

Py = &ps0 (2.22)

The more complete equation of state for particles, containing the collisional
contribution, has been verified experimentally by Gidaspow and Huilin (1998).

2.2.1 Boltzmann Integral-Differential Equation

The Boltzmann equation for the frequency distribution, f (Gidaspow 1994), can be
written as

of of o _
E+C§+Fa— (E)COU (223)

where ¢ and r were regarded as independent coordinates and where Newton’s law
of motion was

Force _ dc

T F== 2.24
Unit mass dt ( )

For binary collisions of rigid particles, the right-hand side of the Boltzmann
equation (2.23) assumes the form

(?) _ J J (fa)c/l L k—fPc, . k) dydkde, (2.25)
t coll binary

where the primes indicate the quantities after particle interaction—collision and /@
is the product of the respective single-particle distributions. Hence, the Boltzmann
equation is an integral-differential equation. Because of its nonlinearity, it must be
solved by iteration. For the first approximation, one takes the Maxwellian distribu-
tion. The second approximation, as shown in detail in Chapman and Cowling
(1970), will give rise to a Navier—Stokes-type equation. This is done efficiently
using an altered form of the Boltzmann operator, as presented below,
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C=c-v(,r) (2.26)

Changing the coordinates from ¢ to C,
ft,r,e) =f(t,r,C) (2.27)

Applying chain rule to Egs. (2.25-2.27), the Boltzmann equation can be expressed
as

Df af Dv\ of Of ., Ov _ [(Of
E"_Ca (F_E>%—%C a— <E>60” (228)

A transport equation for a quantity w can be obtained starting with the
Boltzmann equation by multiplying it by y (Eq. 2.29) and integrating over

¢ (Eq. 2.30),
of of of B of
Jy/(§+ 8_+F a—)d JW<E)M,,dc (2.29)
On{y) 0 % % % of
s+t (50) + (o 50+ 7 (o) = [ (30),
(2.30)

Now, we need to find the single-particle distribution function f{r, ¢, t) and the
pair distribution function f(z)(rl, cy; Ia, ¢ t). Here, we take the Maxwellian
velocity distribution function as the single-particle distribution (Savage and Jeffrey
1981; Jenkins and Savage 1983; Ding and Gidaspow 1990)

. on (c —v)?
f(r,c,t)mexpl— T, 1 (2.31)

and the Enskog assumption for the pair distribution function is used next (Chapman
and Cowling 1970; Lun et al. 1984; Ding and Gidaspow 1990). That is,

FA(rn, ep5 1, 3 t) = goles)fy (r — Yad k. 13 0)f5 (r + Yod, ko e231)  (2.32)
where g, is the equilibrium radial distribution function (Savage and Jeffrey 1981).

Detailed derivation of the equations can be found elsewhere (Ding and
Gidaspow 1990; Gidaspow 1994).
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2.3 Conservation Laws with No Particle Interaction
and Collisions

By substituting for y mass, momentum, and energy, the corresponding conserva-
tion laws are easily obtained from Maxwell’s equation (2.30). For a case with no
particle interaction/collisional contribution,

a"at” + Vnlye) — nF<aa—"c’> - (2.33)

2.3.1 Conservation of Mass
Let w = m, since nm = g;p, = p

)
a_t(gsps) + V- (E‘Ypsvs) =0 (234)

2.3.2 Conservation of Momentum
Let w = mc

n(ew) = nm(ce) = p((C + v)(C + v)) = pJ [CC + 2Cv + v2]fde =P, + pvy
Since Py = p(CC) and (C) =0

0
PP (esp,Vs) + V (Py + &5p,V5Vy) = ep,F (2.33)

2.3.3 Conservation of Solid-Phase Fluctuating Energy

Let y = 1mc?

nley) ="2e%e) = p((CC+2Cv +v) (€ +v)

(2.36)
_ ”’J [C2C + (v? + € +2CC)v]fde

N —

Note: q; = %pJ C>Cfe = Lnm(C*C)
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and since 6 = % <C2>

1 30
n{we) = q; + V(Esz + Tﬂ) +Pyv (2.37)
0(30p + 3pv* 3.1
% + V. [qk —+ V(EGp + Epvz> + ka} = pFv (2.38)

It is easy to derive the conservation equation for the fluctuating energy from
Eq. (2.38) as

% {%(espse) + v.(é‘spsve)] =-V- q; — P Vv (239)

where P, = p(CC).

Similarly, we can obtain the equations for the stress tensor (CC). This equation
is similar to the Reynolds stress equations in single-phase turbulent flow. However,
in the Reynolds stress equation, the average is over a time interval. Here, the
averaging is over the velocity space. These averages are not equal as experimentally
shown by Tartan and Gidaspow (2004). If we include rotation (Goldshtein and
Shapiro 1995) in addition to the translation presented here, we can obtain a balance
for the rotational temperature, as in single-phase fluids (Condiff et al. 1965).

2.4 Conservation Laws with Particle Interaction
and Collisions

In the previous section, we presented the inviscid conservation equations by
neglecting the collisional part of Eq. (2.16). In order to derive the equations that
include the solid viscosity and solid stresses, we use the approach of Ding and
Gidaspow (1990) and start with the Boltzmann equation (Eq. 2.16), with a nonzero
source term, considering only binary collisions between hard and smooth but
inelastic particles. In this case, the right-hand side of the Boltzmann equation is
similar to Eq. (2.18) that gives the collisional rate of change of the mean of .

By defining the external forces, F, as the sum of the gravity, the aerodynamic
drag, and the buoyancy (which appears through the pressure gradient in Eq. (2.40)
(Ding and Gidaspow 1990),
F=g+g(vg—vs) —lvp (240)

S

where D is the drag force coefficient, and, by combining Egs. (2.25 and 2.30), one
can derive the momentum equation (y = mc),
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0
3 (&5p,V5) + V(epyVsVs) = —&,Vp + €pg + B(ve — V5) + V.(tk +7c) (2.41)

In Eq. (2.41),

D
B= e (2.42)
m

7, and 7. are the kinetic part and collisional part of the total stress tensor, g,
respectively.

Similarly, we can derive the equation for the fluctuating energy of the solid
phase (granular temperature) using the momentum equation and taking y = lmc?
and 0 = 1(C?),

3[0
E a_t(espxa) + v'(esvaa) =Ts: % Vs — = q-—v7 +ﬂ<cgici - CiCi> (243)

On the right-hand side of Eq. (2.43), the first term represents the energy production
due to the deformation work, the second term is the energy transfer, y is the
collisional energy dissipation due to inelastic collisions, and the last term is the
net rate of transfer of fluctuation energy between the two phases. The correlation
between the gas-phase fluctuation velocity and the solid-phase fluctuation velocity
@45 1s negligible when the particle response time, 7, = m/D, is much larger than the
timescale characteristic of the mean fluid motion (Ding and Gidaspow 1990). This
assumption is valid when the particles are heavy and large. Therefore, the equation
for the fluctuating energy of the solid phase becomes

30
2 E(gspsa) + v-(espsV‘g) =7,:V.-vy=V.q—7y (2~44)

To close the conservation equations for the momentum and the granular tempera-
ture, we need to calculate the 7 7.y, ¢ that are functions of the collisional integral
(Eq. 2.25).

As shown earlier, the stress tensor for each phase is given by a Newtonian-type
viscous approximation

2
T = sfuf(Vv_f + va) - gsfyfv | (2.45)

7y = et (Vs + V!l ) + & <§S - iﬂs> AVARRYS | (2.46)

Particle pressure, Pg; shear viscosity, u,; and bulk viscosity, &, are expressed as a
function of granular temperature (Gidaspow 1994). Here, we show only how to
obtain the viscosity of the particulate phase in a dilute system.



2.4 Conservation Laws with Particle Interaction and Collisions

Let the momentum flux be
0 = pv(v)

(Momentum/volume x average of oscillating velocity)
Then, for a constant density p, the change in momentum flux is

dv

40 = Ip(v)—

The viscosity for fully developed incompressible flow is defined by
dv

Shear = ,ua
The momentum transport AQ equals the force per unit area

AQ = Shear
Therefore, the viscosity assumes the form

u=1Ip(v)

From Eq. (2.51), it can be seen that

u=pD

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

as in the kinetic theory of gases. Therefore, an equation for the collisional viscosity

may be expressed as

(s

Kinematic viscosity = mean free path x fluctuating velocity
For smooth rigid spherical molecules of diameter d,,,

5 (kgmT\'"?
M= T6a2 \ x

_ 73
where m = p,zd,
To convert T to granular temperature 6, let ’;,—’j = 1. Thus,
57

DILUTE  pt, =5 = ppdy0'?

(2.53)

(2.54)

(2.55)
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The interpretation is as follows:

5 d
DILUTE p, = %’_{. (ppes) - (") -0'/? (2.56)
Es

VISCOSITY = constant x bulk density X mean free path x oscillation velocity

Detailed derivation for the rest of the constitutive equation in a dense system for the
particle pressure, P; shear viscosity, ug; and bulk viscosity, &, as a function of
granular temperature, can be found elsewhere (Ding and Gidaspow 1990;
Gidaspow 1994) and are

P, = ep,0 +2p,(1 + e)e’gy0 (2.57)
4 o\'?*  10p,d,\0n 4 2
=~ eyp,dyg,(1 Z T VIE ] 4 Zgpey(1 2.58
w=sendan(i+o(2) 4ol 1S v @y
4 0\ '/
o =Sendt +0(?) (259)

where d,, is the diameter of particle, e is the restitution coefficient, and g is the
radial distribution function. The radial distribution function expressing the statistics
of the spatial arrangement of the particles is given by a geometric approximation,
the Bagnold’s equation,

e \ 13 -1
8 = [1 — (8 2 ) ‘| (2.60)
5, max

The granular conductivity, k, consists of the kinetic part due to the elastic
particles derived from dilute kinetic theory of gases (Chapman and Cowling
1970) and the collisional part due to the inelastic collision of particles as reviewed
by Gidaspow (1994):

 150p,d,\/0x {

6 2 \/5
=PI 4 e o (1 2p.€%d,(1 s 2.61
= 1 S 0| 2o/t 2o

The energy dissipation due to inelastic collision of particles, first evaluated by
Savage and his colleagues, is

12(1 — ¢%)gg

_ 293/2
= &0 2.62
4 dy /7 PsEs ( )

In this analysis, it is assumed that the interaction force between fluid and particles is
due only to drag. Discussion of the drag models will be presented in Chap. 3.
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2.5 Boundary Conditions

At the inlet and outlet, all properties should be defined based on the specific physics
and assumption of the problem. For the gas phase, no-slip and non-penetrating wall
conditions may be considered. For the solid phase, the slip boundary condition is
the recommended boundary condition (Johnson and Jackson 1987):

T Eg N
Ty =—2V3¢p — /’sgo\/égvs,para (2.63)

6 €5, max

where ¥, . is the particle slip velocity parallel to the wall. ¢ is the specularity
coefficient between the particle and the wall, which is defined as the average
fraction of relative tangential momentum transferred between the particle and the
wall during a collision. The specularity coefficient varies from zero (smooth walls)
to one (rough walls). A proper value based on the particles and wall properties
should be assumed. For a specularity coefficient tending toward zero, a free slip
boundary condition for the solids tangential velocity is imposed at a smooth wall
boundary as explained by Benyahia et al. (2005).

Johnson and Jackson (1987) proposed the following wall boundary condition for
the total granular heat flux as

T Eg . N T Eg
qs = =/ 3¢ — P80 \/g_svx,para * Vs,para — \/§ (1 - efw)psgogi/z (264)

6 €5, max 4 €g, max

The dissipation of solids turbulent kinetic energy by collisions with the wall is
specified by the particle—wall restitution coefficient, e,,,. A high value of specularity
coefficient implies high production at the wall, and a value of ey, close to unity
implies low dissipation of granular energy at the wall. It is expected that the
specularity coefficient and the particle—wall restitution coefficient need to be
calibrated for a given gas/particle flow system because the specularity coefficient
cannot be measured and ey, can be measured only with some difficulty (Benyahia
et al. 2005). Equations (2.63) and (2.64) could be written as

6ﬂs5x,max avs, w

Vo = — 2.65
’ V3rgpsecggV/0  0x (269
. _g 50m \/gﬂqopsesv?,xlingHS/z (2 66)
v Yw 0x 6€s,max}/w '
where
3n(1 - €2,)ep,ge0°">
_ V3n(l - &, e (2.67)

48&, max
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2.6 Modeling of Multi-Type Particle Flow Using
the Kinetic Theory Approach

Fluid—particle systems are composed of particles of different properties, in which
segregation by size or density may occur during the flow, as was shown by
Arastoopour et al. (1982). The researchers developed a hydrodynamic model for
a mixture of gas and a multisize solid phase. They applied it to simulate
one-dimensional flow in a vertical pneumatic conveying line. They showed that
the particle size has a great effect on the pressure drop and choking velocity and that
particles segregate along the vertical transport line.

The experiment of Savage and Sayed (1984) showed the stresses in shear cell for
a mono-size mixture of polystyrenes beads were about five times higher than those
for a binary mixture. Jenkins and Mancini (1987) extended the kinetic theory of
dense gases to a binary mixture of idealized granular material for the low dissipa-
tion case. Jenkins and Mancini (1989) presented an extension of the kinetic theory
for a binary mixture of smooth nearly elastic spheres. Alam et al. (2002) and Alam
and Luding (2003) generalized the model of Willits and Arnarson (1999) for a
mixture of particles having different mass and size. However, the model proposed
by Alam et al. (2002) was limited to energy non-equipartition. Zamankhan (1995)
concluded that energy non-equipartition must be included in mixtures with different
particle properties. Wildman and Parker (2002) and Feitosa and Menon (2002)
experimentally confirmed the coexistence of two granular temperatures when the
binary mixture was exposed to external vibrations. Huilin et al. (2000) developed a
model for two-size particles with different granular temperatures; however, they
used an approach that takes the arithmetic average of the particle properties in the
collisional operator and the momentum source vanished. Garzé and Dufty (2002)
solved the kinetic equation for systems away from equilibrium. This approach
could capture not only the energy non-equipartition but also the flow behavior for
a wide range of restitution coefficients. Such a model is restricted to dilute systems
where the radial distribution function is close to unity. Iddir and Arastoopour (2005)
and Iddir et al. (2005) extended the kinetic theory to a multi-type (size and/or
density) mixture, assuming a non-Maxwellian velocity distribution and energy
non-equipartition. Each particle type is represented by a phase, with an average
velocity and a fluctuating energy or granular temperature. This means that the
interaction between the different type particle phases is at the interface. They
assumed that the deviation from the Maxwellian velocity distribution is in each
individual particulate phase; however, they assumed Maxwellian velocity distribu-
tion at the interface. Then they solved the Boltzmann’s equation for each particulate
phase using the Chapman—Enskog procedure by adding a perturbation to the
Maxwellian velocity distribution function. In a similar analysis, Willits and
Arnarson (1999) solved the Boltzmann’s equation based on Maxwellian reference
state and the revised Enskog equation. Although the range of applicability of Iddir
and Arastoopour’s work and Willits and Arnarson’s work is the same, the major
differences between the two studies are non-equipartition and unequal particle size
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properties considered in the Iddir and Arastoopour model. Willits and Arnarson
assumed a multicomponent mixture where all the particles fluctuate about the same
mass average velocity and having the same granular temperature. Iddir and
Arastoopour (2005) considered a multiphase granular flow where each phase is
represented by particles having different properties, velocities, and granular tem-
peratures. The following is the model developed by Iddir and Arastoopour (2005)
that has been incorporated in the MFIX computer code (Benyahia 2008).

2.6.1 Model Development

The present model has been obtained by considering a mixture of N solid phases
(N is the number of solid phases); each phase is composed of smooth inelastic hard
spheres, and it was also assumed the collision of particles is the dominant interac-
tion force between two particles. The assumption of hard spheres suggests that the
collisions are almost instantaneous, so that binary collisions may safely be
assumed. Each particulate phase i contains particles of mass m; and diameter d;
that collide with each other in the phase i. The collisions/interaction between
particle i and other particles of different phases occurs at the interface between
phase i and the other particulate phases. Each particle in the phase i moving with
instantaneous velocity ¢; is subject to an external force F iexr- At any time ¢, the
probable number of particles per unit of volume, d7, with velocity varying between
¢ and & + dc;, is the product of the single velocity distribution function f! (¢, 7, £)
and the variation of the velocity d¢c;

7o) = (@ 7o (2.68)
Hence, the mean value of any property of phase i, w;(¢;) is defined as
Ul
<y; >= P wi(6)f; (6, 7, 0)dd; (2.69)

Thus, the equation of change for the particle property of phase i may be expressed
as

0 .
Do < Wl > =5 <y )+ V- (< wid >)
p=1

== > (2.70)
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N

Z (w.) ] p 1is defined as the difference between the postcollisional and the
p=1

precollisional properties of particle i due to all possible collisions with all the
particles in the mixture. The collision of particle i with the other particles in the
same phase results in the constitutive relation for each phase, and the interaction of
phase i with other phases results in interfacial forces between particulates phases.

N
The average of Z (W) | p is defined as

p=1

N N ,
Z<(‘//ci)|p>:2<‘/’i*’//i>|p

p=l1 p=l1
N
o / 2 (= =2 - 2 — 7 7 - 3=
B ZJJJ (Wl - Wi)fip(’i, Cis I'ps Cp>dip(cip . kfp)dkipdcidcp
p=1
(2.71)

fi = ffI,(Z’i, Fi; Cpy 7,,) is the complete pair distribution function defined as the
probability of finding, at time t, two particles i and p, such that they are centered on
7; and 7, and have velocities within the range ¢;, ¢; + d¢; and &, ¢, +d¢,

Following Jenkins and Savage (1983), the assumption of chaos along with the
consideration of the correlation function allows us to write the pair distribution
function as the product of the single velocity distributions, /! and f[l, weighted by the
spatial pair distribution function at contact g;,(g;, €,),

o oo dpp o o d L o dpo S o d;
i(ci, -k Cp,r+2”> =g, (e,6) - f] (Ch r—;k> £ (Cp,r+2”>
(2.72)

where
dr‘rdr,
2
kip is the unit vector connecting the centers of the two particles, located at 7; and 7,

Cip = C; — Cp is the relative instantaneous velocity and d;, =

respectively, and directed from i to p. In the remaining text, we consider l?,p = .

N
The collisional rate of production per unit of volume, Z << l//;- —y; >> p» Was

p=1
evaluated by Jenkins and Mancini (1989) as a sum of a symmetric (y.;) and
antisymmetric (y.;,) terms

N N
Z < l//; -y > ’P = Z (_v ')(cip + ycip) (273)

p=1 p=1
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where

d; , o dp L dy - S
e = _TPHJ (l,,l. _ y/,)fi,(c,-, F—SLEG,. T +7”> k(c,p k)dkdc,—dcp

(2.74)

! dl - - d, - b LN -
Ve = dfpm (w,. - wi)fi, (a-, PG T+ 7”) (ci,, : k)dkdc,dcp (2.75)

Here y.;, and y.;, are the collisional fluxes and sources, respectively. Substituting
Egs. (2.74) and (2.75) into the equation of change, Eq. (2.71), the continuity,
momentum, and fluctuating energy equations were obtained for y,; equal to m;,

m;c;, and 4 m,C respectively.

2.6.2 Continuity Equation

The continuity equation for the solid-phase i can be written as

Oeip;

3 + V- (eip;Vi) =0 (2.76)

&ip; = n;m; is the mass of phase i per unit volume of mixture, ¢; is its solid volume
fraction, and p; is density of phase i. Here vV, =< & > is the mean velocity of the
particle i. The instantaneous velocity ¢; is defined as the sum of the average

velocity, V;, and peculiar velocity, 6‘,»,
a’: Vj+6iWith< 5,‘ >=0

2.6.3 Momentum Equation

The momentum equation for phase i may be expressed as

D Eip; = N .
SipiD Vl + V- (Zpup +Pk1> _%Fiext = Z FDip (277>

p=1
D . N
with D 18 the material derivative (2.78)

P =piei < C;C; > is the kinetic pressure tensor (2.79)
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Peip = X¢ip(m; ;) is the collisional pressure tensor (2.80)

Fpip = Yeip(miC;) is the collisional momentum source (2.81)

2.6.4 Fluctuating Energy Equation
The fluctuating energy equation for solid-phase i can be expressed as

3&ip; DO; v.|z X = = N U N L =
2w Di qki+p;qw‘p - Pki+;Pcip ~ Vi_;(Nip_vi'FDiP)

(2.82)

where

1 L
0, = gm,‘ <Ci-Ci >, (283)

0, is the granular temperature or the fluctuating granular energy of the solid-phase I,

Gu = piei < CiC? > is the kinetic heat flux, (2.84)
Geip = Xeip(mic?) is the collisional energy flux, (2.85)
Nip = Yeip (mjc}) is the collisional energy dissipation flux. (2.86)

In the above governing equations, the relevant variables describing the flow field
are the average velocities, the solid volume fractions, and the granular temperatures
evaluated at location 7 of the center of the particle at time t.

2.6.5 Kinetic Equation

The kinetic equations that characterize the flow of a multiphase system are

0 Fiox

— 4. V4+ ™ v.|fl =
oroetoc),

N 2

dil’ 22T iz 2ael(2 =, 7

> {gip<r, F ot kdi,,/z)f,. (G, 7,00 (G P + Kdip )2, r)
p=1
_ gip(f, 7 /E’d,»,,/z)f;(z,,l, 7, z)fpl(z-,,z, P+ Kdyp)2, z)] (a,, . z)dz,,d/?

(2.87)
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where g;, (7) is the spatial-pair radial distribution function when the particles i and p
are in contact. A solution of Eq. (2.87) near the equilibrium was obtained using the
Chapman-Enskog method (Ferziger and Kaper 1972; Chapman and Cowling
1970),

fi=fl+9) (2.88)

where f ? is the Maxwellian velocity distribution

3/2 2
0 m; m;C;
0 _ . _ 2.
fi=n <2m9,-> exP{ 20, } (2:89)

and ¢; is a perturbation to the Maxwellian velocity distribution. It is a linear
function of the first derivative of n;, 8;, and V;. Note that ¢; is function of the
phase mean velocity, V;, and not the total flow velocity, because, as mentioned in
the introduction, each kind of particle is treated as a separate phase and the
interaction is at the interface. The radial distribution function g;,(e;, €,) describes
a multisized mixture of hard spheres at contact. Iddir and Arastoopour (2005)
modified the Lebowitz (1964) radial distribution function. This approach is in
agreement with the results of molecular dynamics (MD) simulation obtained by
Alder and Wainwright (1967) at both lower and higher solid volume fractions. This
equation can be written as

dpg;i (€ir €p) + digyy (€ir €p)
8 (€ ep) = [ 2d, v } (2.90)

1 3di g~

_l’_
(1— (e +&)/em) 2 = dp

where  g;(ei,¢€)) = (2.91)

The expression of g,,,(¢;, £,) is obtained by simply interchanging the indices i and p.
For a more detailed explanation for constitutive relation expressions for all solid
phases, see Iddir and Arastoopour (2005).

2.6.6 Example: Numerical Simulation of Simple Shear Flow

A binary solid mixture (1 and 2) with the same density was sheared between two
infinite parallel plates set to move with relative velocities £V /2. The motion of the
granular mixture was in only the x-direction and was considered fully developed so
that all the flow parameters are only a function of y. In this study, x and y are the
axes parallel and perpendicular to the plates, respectively, as shown in Fig. 2.1. In
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this example, the steady-state regime was considered, where the thermal equilib-
rium may be reached when the viscous effect due to continuous shearing is
balanced by the dissipation due to collisions.

Simple shear flow is characterized by a linear profile of the velocity field (the
shear rate, dv/dy, is constant). In this situation, the external forces are neglected, and
the particles in the mixture move with the same center of mass average velocity, v
This means that the granular temperatures, solid volume fractions, and gradient of
the velocities are all uniform throughout the flow zone. Therefore, fluctuating
energy equations for phases 1 and 2 reduce to the following nonlinear algebraic

equations
an (1 1\]/[dv\*
— — =+ — ] =N N 2.92
[ﬂll+ 2 (9 +9 ﬂ (d)’) e ( )

pan(L (Y (2.93)
H22 2 \o, " 6, dy = N2 21 .

5 4 2 4dy (1 + e)e%pgn my 0,
= 1+-=(1 2.94
o [md%gu( F3l1+ er) + U O gy

5 4 2 4dr(1 + e)espgy | [mabs
= 1+-=(1 2.95
M2 ll6d§g22 ( + 5( + 6)82252> + Sty V" (2.95)

\/.d4 momy [(mpmp 3/2(1+ )2 1R (296)
a2 = 128123 m2 \ 06 e)p 82815 1 .
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3 m,\ > 1
N; = Zdl-zp(e + 1)gi,€i8p (m,m,,) ﬁ {Bi,, “Rs + (e — l)nﬁg.Rl} (2.97)

9[917 mo mo
mo = my + ny (298)
m,-m,, (6,, — 9,)

b=t 2.99

P 2my0,0, (2.99)

R ! + o5, 308, (2.100)

1= + .
APDY AYDY 24]°D3
1 5B2 148}
Rs ! P (2.101)

A)’D}, " Al*D, i A)PD3,

The system of Eqgs. (2.92) and (2.93) was solved numerically for 8, and 6,, for
the same flow parameters used by Galvin et al. (2005). The large particle mass, m;
is 1. The ratio of the plate spacing to the large particle diameter H/d, is 4.45 or 9.8,
depending on the total solid volume fraction and the solid volume fraction ratio.
The ratio of H/d; was chosen in the MD simulation to avoid cluster formation
(Hopkins and Louge 1991; Liss and Glasser 2001; Clelland and Hrenya 2002; Alam
et al. 2002). Furthermore, the shear rate was set to a constant value of
Vo/H=y=1.

The calculated granular temperatures for different diameter ratios using the Iddir
and Arastoopour (2005) model were compared with the Jenkins and Mancini (1987)
theoretical results and the MD simulation results of Galvin et al. (2005).

Figure 2.2 shows the variation of the fluctuating temperature ratio with the
particle size ratio at different restitution coefficients for &;/e; = 0.5. The Iddir
and Arastoopour model predicts well the non-equipartition of energy of the two
interacting particles for inelastic collisions. As observed by several investigations
in the literature (e.g., Clelland and Hrenya 2002), the fluctuating granular temper-
ature of the large particles increases relative to that of the small particles with an
increase in large to small diameter ratio.

In the range of parameters investigated, equipartition was observed in two cases:
first, when the restitution coefficient is higher than 0.99 and, second, when the two
particles have the same mechanical properties (p; = p, and d; = d,). We noticed
that the restitution coefficient is the most important parameter responsible for
non-equipartition. The effect of the restitution coefficient on the deviation of the
granular temperature of two particles from each other is enhanced by the size
disparity. For example, for e = 0.99, the ratio 6,/0, increases very slowly with
the size ratio; however, for ¢ = 0.8, a strong increase was observed for higher
particle diameter ratios. Figure 2.3 shows the comparison between the calculated
fluctuating energy ratio as a function of the diameter ratio based on the Iddir and
Arastoopour (2005) model with the MD simulation and the theoretical results of
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12 ;
114 |—e—e=0.8
104 |—2—e=09
91 |-~—e=0.95
81 |[-e—e=0.99
~ 7 1
€ 61 :
(] 5 i
4 -
3 4
2 4
1
04 : : : . .
1 15 2 25 3 35 4
dild,

Fig. 2.2 Variation of the granular energy ratio with the diameter ratio for different restitution
coefficients. p1/py =1, er=0.5, and €,/e, =0.5 . The subscripts 1 and 2 stand for large and small
particles, respectively (This figure was originally published in AIChE Journal 51, 2005 and has
been reused with permission)
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Fig. 2.3 Variation of the granular energy with the diameter ratio for e =0.95, e7=0.5, and
€1/e, =0.5. Comparison of Iddir and Arastoopour model (2005) (solid line) with the theory of
Jenkins and Mancini (1987) (dashed line) and the MD simulation results of Galvin et al.
(2005) (squares) (This figure was originally published in AIChE Journal 51 (2005) and has
been reused with permission)

Jenkins and Mancini (1987) ater = 0.5, /¢, = 0.5, and a restitution coefficient of
0.95. Results given by the Iddir and Arastoopour (2005) model compared very well
with the MD simulation results compared to those obtained by Jenkins and Mancini
(1987). The deviation of the Jenkins and Mancini theory from the MD simulation
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and the Iddir and Arastoopour results is more pronounced for low restitution
coefficients and high diameter ratios. At a diameter ratio less than 1.5, both theories
exhibit a good agreement with the MD simulation results.

2.7 Frictional Behavior of Granular Matters

Many industrially important gas—solid systems often include slow and dense solid
flows, which is dominated by sustained frictional contacts between the particles.
For simulations of these dense flows, in addition to the kinetic and collisional
stresses (i.e., kinetic theory), the model should account for the frictional stresses
as well, which could be calculated based on soil mechanics principles.

Makkawi and Ocone (2005) have reviewed the modeling approaches to include
the frictional effects. The most common approach to consider the effect of frictional
stresses is the kinetic frictional model based on the addition of stress from the two
limiting regimes at a critical solid volume fraction (e.,) (Johnson and Jackson 1987;
Syamlal et al. 1993; Ocone et al. 1993)

Ts = Thinetics—Collision + Tfriction
where

Thriction = 0 for & < e, (2102)

Hs = Hkinetics—Collision + ﬂfriction
where
/’tfriction =0 for e < Eer (2103)

or switching between the two limiting regimes (Laux 1998; Makkawi and Ocone
2005) at a critical solid volume fraction as

,o— ) max (Thinetics—Coltision Tiriction) @ € > &
=
Tkinetics—Collision Qe< Ecr

This approach is based on the assumptions of Savage (1998) that consider the
solid stress comes from the kinetic, collisional, and frictional contributions in an
additive manner, where the frictional contributions appear only at higher solid
volume fractions (i.e., greater than 0.5). Although, this approach lacks a strong
physical justification and the hypothetical assumption of the critical solid volume
fraction remains without experimental proof (Makkawi and Ocone 2005), the
theory has been shown to capture the qualitative features of slow dense solid
flows (Srivastava and Sundaresan 2003).
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Most of the reported frictional stress models in the literature (Makkawi and
Ocone 2005) and CFD codes such as Ansys and MFIX are based on the critical state
theory of soil mechanics, where the shear stress 75 is described in terms of a
frictional viscosity based on the work of Schaeffer (1987). Under a normal stress,
a well-compacted granular material will shear only when the shear stress attains a
critical magnitude. This is described by a Mohr—Coulomb law based on the laws of
sliding friction. However, the Mohr—Coulomb law does not provide any informa-
tion on how the granular material deforms and flows; rather, it describes the onset of
yielding (Dartevelle 2003).

Schaeffer (1987) derived the following expression for the frictional stress, by
assuming the system to be perfectly rigid-plastic, incompressible, non-cohesive,
Coulomb powder with a yield surface of von Mises type, and the eigenvectors of the
strain rate and stress tensors are parallel, as

o
T = ‘f”rSTmQ’S (2.104)

or equivalently

_ pcsing

bir = /il

where ¢ is the angle of internal friction, /I, is the second invariant of the deviatoric
stress tensor S, and p,. is the critical state pressure. According to Srivastava and
Sundaresan (2003), p. increases monotonically with € and is expected to become
very large (i.e., diverge) as e approaches random close packing ¢,,,,. Various
expressions have been proposed for the functional dependence of p. on € in the
literature (Srivastava and Sundaresan 2003; Atkinson and Bransby 1978; Schaeffer
1987; Tardos 1997; Johnson and Jackson 1987; Savage 1998; Prakash and Rao
1988; Syamlal et al. 1993).

Johnson and Jackson (1987) proposed a critical state solid frictional pressure that
allows for a slight compressibility with very limited particle concentration change
(Makkawi and Ocone 2005). The Johnson and Jackson correlation for frictional
pressure can be written as

(2.105)

0 elsewhere
Pr=rc=A g (65— €min)?  Emin=05<¢ <émx =063, ¢g=2,p=3
’ (Smax - gx)p
(2.106)

where Fr is a coefficient with different values reported in the literature from 0.05 to
5 (Johnson and Jackson 1987; O’Brien et al. 2010). The coefficient Fr was modified
by others (Nikolopoulos et al. 2013; Abbasi 2013) assuming to be a function of the
volume fraction as Fr = 0.1¢; while limiting the solid volume fraction to values less
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than 0.629 to prevent divergence. Note that p,. is the critical state frictional pressure
and many studies assumed the critical state frictional pressure is equal to solid
frictional pressure p; (Nikolopoulos et al. 2012; Abbasi and Arastoopour 2011;
Tsuo and Gidaspow 1990), although clearly it is not an accurate assumption.
Srivastava and Sundaresan (2003) modified the Schaeffer expression for the
frictional stress and also the Johnson and Jackson (1987) expression for the
frictional pressure (see Eq. 2.108), to approximately account for strain rate fluctu-
ations and slow relaxation of the assembly to the yield surface following Savage’s
(1998) argument of existence of fluctuations in the strain rate, even in purely quasi-
static flow. The standard deviation ¢ of the fluctuations is related to the granular
temperature of the powder 6 (taken from the rapid granular flow regime) and the

1
particle diameter d,,, as 6 = bZ_Z’ where b is a constant of order unity.
Laux (1998) suggested a correlation of the following form:

— [7/'
3 éfYV Usg — !:_\

65sin @
. 2.107
K 2310p (9 ~ sin 24)) (2.107)

where py is calculated based on the following Srivastava and Sundaresan (2003)
equation:

- 1 V.i,
br_ ! (2.108)

Pe nvV2sin g /S:SJF(H/dpz)

The angle of repose and, in turn, frictional forces for solid particles are signif-
icantly affected by the value of the compactness factor (n). The value for compact-
ness factor (n) may be determined by comparing the experimental angle of repose
with the calculated values for solid packing (Ghadirian 2016). Based on the above
equation, if the granular material dilates as it deforms, V.u; > 0, then p; < p, if it

compacts as it deforms, V.u; > 0, then Py > De and when it deforms at constant
volume, V.u, = 0, which is the critical state, Pr="c- This behavior is in line with
the experimental measurements (see Das 1997). The value of n (the compactness
factor) is different in the dilation and compaction parts of the system. Srivastava

and Sundaresan (2003) suggested a value of \/Ti sing for the dilation branch, to
ensure that the granular assembly is not required to sustain tensile stress on the yield
surface. They also pointed out that n for the compaction branch can be any value
marginally greater than one. They suggested that a value of 1.03 be used when no
additional information is available. This value is measured for glass beads by
Jyotsna and Rao (1997). It is worth mentioning that decreasing the value of n in
the compactness branch will cause more deviation from the critical state frictional
pressure. In other words, n may be an indicator for nonlinearity of the z-¢ relation.
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With such a formulation, numerical singularity is avoided in regions where S:S is
zero as long as the granular temperature 6 is nonzero. If, however, the physical
system does contain regions where both S:S and 6 are zero (e.g., in a bin discharge
problem, the stagnant shoulders at the bottom corners of the bin), the model will fail
(Srivastava and Sundaresan 2003). However, their model captures four qualitative
behaviors of a dense granular flow: (1) the height-independent rate of discharge of
particles from a bin, (2) the dilation of particle assembly near the exit orifice, (3) the
significant effect of the interstitial air on the discharge behavior of fine particles,
and (4) the occurrence of pressure deficit above the orifice. In addition, in a
bubbling fluidized bed, the model captured the significant effect of frictional
stresses on the bubble shape.

Tardos et al. (2003) proposed another approach for intermediate granular flows,
which smoothly merges the slow—intermediate regime with the rapid dilute flow
(i.e., nonadditive approach). The continuous function may be written as
(Nikolopoulos et al. 2012)

Hs = Hiin + Heol + /’tfri(' (2 109)

The basic assumption of this model is that the stress during particle flow is not
constant but fluctuates around an average value. The model is restricted to the
simple geometry of the Couette device and to an incompressible material:

VK
7, = p, sin ¢.tanh <2”> (2.110)

where p; is the solid pressure and is calculated from the kinetic theory. ¢ is the angle
of internal friction, and K is a parameter defined in terms of the average strain rate

2
(S) and its standard deviation, o, such that K = {%} . As concluded by Makkawi

and Ocone (2005), by comparing various approaches, the superiority of these
approaches is a matter of open debate and subject to further experimental
validations.

Up to this point, all of the discussed approaches were based on the von Mises/
Mohr—Coulomb law that, as mentioned earlier, does not provide any information on
how the granular material deforms and flows. Although these models can properly
simulate dilatancy, they do not capture consolidation (Dartevelle 2003). Therefore,
the standard von Mises/Coulomb yield criterion cannot model the effect of com-
pressibility phenomena (i.e., changes of bulk density) occurring in the returning
system of circulating fluidized bed units and subsequently results in severe under-
estimation of the exerted frictional viscous forces (Nikolopoulos et al. 2013).

To overcome the shortcomings of the von Mises/Coulomb yield criterion,
several modifications are proposed in the literature (Dartevelle 2003), such as the
Gray yield criterion (Gray et al. 1991). The Gray yield criterion can be written as
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f(o, 7) =1, : 7, — (sing)* [(pp — AV -, — 0-)2 - 62:| =0 (2.111)

It should be mentioned that the Gray criterion reduces to the von Mises/Coulomb
criterion if (pp — AV -u, — a) =0 and ¢ = p, (in other words, these two yield
criteria are the same if and only if V - u, = 0, which is the case only at the critical
state of the soil mechanics where solids deform without volume changes). The Gray
yield criterion is based on the approximation that normal stresses in the particulate
phase are caused not only by the pressure but also by the viscous normal stresses.

According to Dartevelle (2003), the plastic potential theory combined with the
critical state approach can successfully describe the phenomenon of dilatancy,
consolidation, and independence between the rate-of-strain tensor and the stress
tensor. Using this approach assuming a slightly compressible, dry, non-cohesive,
and perfectly rigid-plastic system, the expression for the frictional viscosity may be
written

)
Dy sSin“g
Hyr = : = - (2.112)
85\/4 sin2@.1lp + (V. 1)
and solid-phase bulk viscosity as
£ Ps (2.113)

85\/4 sin pr.[IQD + (VL'ZS)Z

Equation (2.113) reduces to Eq. (2.105) if, V.#; = 0, corresponds to the critical
state of soil mechanics and linear z-o relation. A detailed discussion and derivation
of the models can be found in Dartevelle (2003).

Nikolopoulos et al. (2012)) have pointed out that the numerical results indicate
that the values calculated by the Laux (Eq. 2.107) and Dartevelle (Eq. 2.112)
expressions are of the same order of magnitude for values of solid volume fractions
lower than 0.5. However, the Laux expression predicts higher solid frictional
viscosity compared to the Dartevelle model for solid volume fractions higher
than 0.55. Nikolopoulos et al. (2012) also showed that the results of simulations
using the Dartevelle (2003) model are less accurate compared to the results of
simulations using the Laux model in calculating the angle of repose.

2.8 Mass, Momentum, and Constitutive Equations

Tables 2.1 and 2.2 summarize the governing equations and constitutive equations
for different regimes of fluid—particle flow.
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Table 2.1 Two-fluid model governing equations

Conservation of mass
Gas phase

0 - .
5(é:gpg)+V.(ggpgvg) =m,

Solid phase

e +Vep.) =,
Py s PV, s
&, e, =1

Conservation of momentum
Gas phase

g(ggpgﬁg)+V~(ggpgﬁgﬁg):—ggVP+V-1g +£gpgg—ﬂgs(\7g —175)

Solid phase

%(&psi )+ V- (e,0,5,3,)=-6,VP+V 7, ~Vp, +e,p,g+ B, -7.)

Conservation of species
Gas phase

0 -
E(ggpgyj)"'v'(ggpgvgyj):Rj

Solid phase:
a —
a(gsp.syi) + V~(5l§.pAVSyl.) = Rj

Conservation of solid phase fluctuating energy

%[W+V'(Pﬁﬁvﬁ)}=(—Rl+f.y)1VV.s- +V-(kV0)-7+4,

(T-D)

(T-2)

(T-3)

(T-4)

(T-5)

(T-6)

(T-7)

(T-8)




2.8 Mass, Momentum, and Constitutive Equations

Table 2.2 Two-fluid model constitutive equations

37

Gas phase stress

- -yl 2 -
7, =€g#g[VVg+(VVg)I]—§5g#g(V~Vg)1 (T-9)
Solid phase stress
- T 2 -
T =& U, [Vvs +(Vvs) ]—es &, —Eys V-v 1 (T-10)
Collisional dissipation of solid fluctuating energy
4 |0
=3(1-e?)? H—F T-11
}/: ( )6‘5 psgo [dp T ( )
Radial distribution function
137!
ET
8o =[1_( ] ] (T-12)
gr.max
Solid phase pressure
Dy = Prineiic T Peotiision = €950, +2p (1 + e, )53gngs &g <& 4 (T-13)
Py = Prineiic + P cotision + p/ncrmn g,&' 2 g,&',/r (T'14)
— q
Poiica = FT M >
(Emax —,)" (T-15)
Enn =05<¢ <¢ =063, Fr=01ls, g¢g=2,p=3
1/n-1
piction Vii
Ppeton |11 s (T-16)
Periica nV2sing \[S:S+(0/d,*)
Solid phase shear viscosity
Hs = Hkin + Heol + Au/r (T'17)
4 %
Mgy =< 6,p,d 801+ e)\p (T-18)
5 T
10p,d 70 4 ?
He = Aip[l +-go8, (1+ @)} (T-19)
96(1+e)g,¢, 5
3 vii, - L sing
&, sin
M, = - - Laux (1998) (T-20)
! 2,311, [9—sm2¢]

(continued)
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Table 2.2 (continued)

Solid phase bulk viscosity

& =—e,pd, g (1+ e)\f £ <e,, Lunetal (1984) (T-21)
g = Ly >
s S — & 2¢,,  Dartevelle (2003) (T-22)

£ \/4 sin® ¢.11,,, + (Vi)
Conductivity of the fluctuating energy

150p,d,\0x 6 2 \/5

2 - 1+e)| +2p,e2d (1+ - T-23

=g 1+ 22 g 16)| +20.620, 1+ 2 (1-23)
where
q=xV0 (T-24)

Granular energy exchange between phases

Laminar flow o, =-3pB,0 Gidaspow et al. (1992) (T-25)
Disperse turbulent flow ¢, = 8, (/2k, 30 -2k 5 Sinclair and Mallo (1998)  (T-26)

ky is the turbulent kinetic energy of the gas phase.

Johnson and Jackson (1987) boundary condition for particles

OUE o DV (T27)
T e -
" Bagpego ox

p _ K030, N37hpevis,gd"

T-28
e = (T-28)

5,max YV

2 3/2
_Brli-el e p0 (T-29)

Y 4e

§,max

(continued)
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Table 2.2 (continued)

Interphase exchange (drag) coefficient

Modified Wen and Yu model (1966) for concentrated or non-homogeneous solid phase:

_3 (I-¢,)e,
Po=3"

P

Palve =V,[Cpo-H,y (T-30)

where Hgqis the heterogeneity factor (see Chapter 3 for more details)

24
Re,<1000;  Cp :§(1+0.15Ref;“7) (T-31)
»
Re,21000;  Cpy=0.44 (T-32)
PE NV, =V |d
Re, = M (T-33)
He

Syamlal and O’Brien drag model (Syamlal et al. 1993) for very dilute or homogeneous solid
phase:

Re »
) (T-34)
vV

ts

7é(lfgg)eg

bo=ya Cou

Pl =,

where vy, is the particle terminal velocity,
v, =0.5(4-0.06Re ,+ \/(0.06 Rep)2 +0.12Re (2B - 4) + A%) (T-35)

with 4 and B having a form of
A=¢g" and

(T-36)

a and bare the adjustable parameters.
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2.9 Nomenclature

A Avogadro’s number

c Velocity space, m/s

Cs Instantaneous particle velocity in i direction, m/s

C, Peculiar particle velocity, m/s

di,=(d;+d,)/2  Average diameter of particles i and p, m

ds ana, d, Diameter of particle, m

E Internal energy, J

e Restitution coefficient

Csw Particle—wall restitution coefficient frequency distribution of
velocities of particles

Fp i Momentum source (drag between solid phases), N

f? Maxwellian velocity distribution function

f} Single velocity distribution function

i) Pair velocity distribution function

g Gravity acceleration, m/s*

8o Radial distribution function

gip Radial distribution function at contact between particles i and p

s Radial distribution function at contact between particles of the
same phase

H Gap between two plates, m

I Identity tensor

kg The Boltzmann constant (1.3805 x 10~>* J/K)

k= /}'l.p Unit vector connecting the centers of the two particles

K Turbulent kinetic energy of fluid, m?/s

ky Granular conductivity, kg/m-s

M Molecular weight, kg/kmol

my Mass of particle of phase s, kg

my = m; +m,  Total mass of two colliding particles, kg

N Number of moles

n Compact factor

ng Number density of phase s
Ny, Energy dissipation

P, Collisional pressure tensor, N/m?>
P, Kinetic pressure tensor, N/m?
De Critical state pressure, N/m?
2 Frictional pressure, N/m?

0 Momentum flux, N/m?>

q. Collisional flux, J/s'm?

G Kinetic flux, J/s'm>

R; Rate of heterogeneous reaction between phases, mol/m?s
Re,, Particle Reynolds number
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(S) Average strain rate

r Position

S Deviatoric stress tensor

T Average of random kinetic energy
v Hydrodynamic velocity, m/s

v Center of mass mean velocity, m/s
Vs Mean velocity of phase s, m/s

Vo Velocity of plates, m/s

Vs, para Particle slip velocity parallel to wall, m/s
Vig Solid particle terminal velocity, m/s
Vi Species mass fraction

Subscripts

1 Large

2 Small

cr Critical

fr Frictional

g Gas phase

col  Collisional

kin  Kinetic

max  Maximum

T Total

s Solid phase

w Wall

Greek Symbols

Xip
Es

ér

Collisional flux, J/s'm2

Solid volume fraction of phase s

Total solid volume fraction

Perturbation to Maxwellian distribution function
Collisional source of granular temperature, J/m>-s
Viscosity, kg/m. s

Granular viscosity of phase s, kg/m. s

Mixture granular viscosity, kg/m. s

Solid density of phase s, kg/m’

Fluctuating granular energy m*/s

Mixture fluctuating granular energy, m?/s’
Mixture normal stress, N/m?

Solid-phase shear stress, N/m?>

Mixture shear stress, N/m?

Property of particle

Granular temperature (random kinetic energy per unit mass), m>/s>
Specularity coefficient
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@ Angle of internal friction

@es  Granular energy exchange between phases

p Bulk density, kg/m?

I Volume fraction of solids

ps  Solid density, kg/m’

II,p,  Second invariant of the deviatoric stress tensor

y Shear rate, 1/s

p Interface momentum exchange coefficient
y Collisional energy dissipation, J/m>-s

£ Solid-phase bulk viscosity, kg/m-s
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Chapter 3
Homogeneous and Nonhomogeneous Flow
of the Particle Phase

3.1 Introduction

For simulation, design, and scale-up of commercial fluidized bed and gas—particle
flow systems, a computationally feasible approach may be obtained from the
averaged continuum equations of motion for both fluid and particles, which is
often called the two-fluid model (TFM) (Arastoopour and Gidaspow 1979b, c;
Gidaspow 1994; Arastoopour 2001). The continuum approach generally relies on
closures for the solids stresses that most often are derived from granular kinetic
theory in the kinetic—collisional regime and from soil mechanics in the dense—
frictional regime. The averaging process leading to the TFM equations erases the
details of flow at the level of individual particles; but their consequences appear in
the averaged equations through terms such as drag force, for which one must
develop constitutive relations (Gidaspow 1994; Arastoopour 2001; Sinclair and
Jackson 1989). For example, in the momentum balance equations, constitutive
relations are needed for the gas—particle interaction forces. Gas—particle flows in
fluidized beds and riser reactors are inherently oscillatory, and they manifest in
nonhomogeneous structures over a wide range of length and timescales. Thus, if
one sets out to solve the microscopic TFM for gas—particle flows, grid sizes of the
order of 10-particle diameter or smaller become essential (Igci et al. 2008;
Benyahia 2012b). Moreover, such fine spatial resolution reduces the time steps
required, further increasing the needed computational time. For most devices of
practical (commercial) interest, it is nearly impossible to resolve all heterogeneous
flow structures in large-scale industrial risers using a computational grid size of the
order of a few particle diameters. In addition, such extremely fine spatial grids and
small time steps are unaffordable and require significant computational time and
use of significant computational facilities.

Gas—particle flows in large fluidized beds and risers often are simulated by
solving discretized versions of the TFM equations over a coarse spatial grid.
Such coarse grid simulations do not resolve the small-scale (i.e., subgrid scale)
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spatial structures (Igci et al. 2008; Milioli et al. 2013). The effect of the large-scale
structures using coarse grids must be accounted for through appropriate modifica-
tions to the closures.

One of the major sources of numerical inaccuracy for the TFM originates from
the models used for the calculation of drag force (Nikolopoulos et al. 2013; Abbasi
and Arastoopour 2011; Jang et al. 2010). The homogeneous drag models
(Arastoopour et al. 1990; Syamlal and O’Brien 2003; Gidaspow 1994; Wen and
Yu 1966) assume a homogeneous structure inside the control volumes, which is not
valid due to the formation of clusters (dense phase) in the concentrated particulate
phase (e.g., €,>2 %). The effective drag coefficient in the coarse grid simulations
will be lower than that in the homogeneous TFM to reflect the tendency of the gas to
flow more easily around the clusters (bypass the clusters) than through a homoge-
neous distribution of the particles (Igci et al. 2011; Benyahia 2009; Sarkar et al.
2014; Ghadirian and Arastoopour 2016).

Qualitatively, this is equivalent to an effectively larger apparent size for the
particles. Therefore, any coarse grid continuum simulation of gas—solid flows
should include subgrid corrections to the homogeneous drag force acting on the
particles. As a matter of fact, the overprediction of drag force by the homogeneous
models is significant and can lead to overprediction of solid circulation rates and
underestimation of pressure drops in circulating fluidized beds (CFB) and overpre-
diction of bed expansion in bubbling fluidized beds (BFB).

Arastoopour and Gidaspow (1979a) were the first to include the effect of clusters
in the drag force between phases in gas—solid systems by assuming an effective
particle diameter larger than the actual particle diameter and therefore reducing the
drag force between phases. Recently, several approaches have been proposed to
account for the effect of the small unresolved scales on the interphase momentum
exchange when using the TFMs on coarse computational grids. Among them, two
approaches have gained significant attention in the literature: filtered or subgrid and
energy minimization multi-scale (EMMS).

Igci et al. (2008) and Milioli et al. (2013) derive residual correlations from
filtering fully resolved simulations on a two-dimensional (2d) periodic domain with
several average particle volume fractions. Igci et al. (2011) showed that the filtered
TFM approach has shown promise to be a tool to simulate gas—particle flows of
fluid catalytic cracking (FCC) particles in the industrial-scale riser of a CFB.
Benyahia and Sundaresan (2012) also showed that the subgrid models for coarse
grid simulations of continuum models may also be used for coarse grid simulations
of discrete particle models.

The EMMS approach (Li and Kwauk 1994; Wang and Li 2007; Benyahia 2012a;
Li et al. 2012; Ghadirian and Arastoopour 2016), on the other hand, is based on the
assumption that heterogeneous structures (i.e., clusters) with different sizes form
and contribute to the drag reduction between the gas and particulate phases. The
resulting underdetermined set of equations is then solved by minimizing a function,
called the stability condition. Physically, the stability criterion is the net energy
exchange between phases to suspend and transport the solids.
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3.2 Filtered or Subgrid Model

The TFM equations are coarse-grained through a filtering operation that amounts to
spatial averaging over some chosen filter length scale. In these filtered (coarse-
grained) equations, the consequences of the flow structures occurring on a scale
smaller than a chosen filter size appear through residual correlations for which one
must derive or postulate constitutive models (Igci et al. 2008). If constructed
properly, and if the several assumptions innate to the filtering methodology hold
true, the filtered equations should produce a solution with the same macroscopic
features as the finely resolved kinetic theory model solution; however, obtaining
this solution should come at less computational cost.

According to Igci et al. (2008), if & (y, t) denotes the particle volume fraction at
location y and time ¢ is obtained by solving the microscopic TFM, the filtered
particle volume fraction & (x, f) can be defined as

g(x, 1) = JG(x, y)es(y, t)dy (3.1)
v

where G(x,y) is a weight function that depends on x and y and V denotes the region
over which the gas—particle flow occurs. The weight function satisfies [G(x,y)
dy=1. By choosing how rapidly G(x,y) decays with distance measured from x,
one can change the filter size. Igci et al. (2008) defined the fluctuation in particle
volume fraction as

g =&, — & (3.2)

For example, the filtered phase velocities are defined according to

E(x, Hvs(x, 1) = JG(x, v)es(y, t)vs(y, 1)dy (3.3)
1%

£ (x, )T (x, 1) = jc:(x, $)eay. ey, 1)y (3.4)
\%

v, and v, denote local gas- and particle-phase velocities appearing in the
microscopic TFM.

Igci et al. (2008) then derived filtered continuity and momentum equations along
with constitutive relations. For example, filtered gas—particle interaction force
includes a filtered gas—particle drag force and a term representing correlated
fluctuations in particle volume fraction and the (microscopic TFM) gas-phase stress
gradient as

ﬂfil (Vg - VS) = ﬁmi(rro (857 ’Vg - V5|) (Vg - VS) - 8s/v ' TA{ (35)
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where S, 1 the drag coefficient in the microscopic TFM. Igci et al. (2008) also
provided an algebraic form for the filtered drag coefficient as

32 Fri? + 63.02Fr; " + 129

= - 3.6
Pri Fr;3 +133.6Fr;2 + 66.61Fr; ' + 129 micro (36)
Frsis the Froude number based on the filter size and is defined as
2
v
Frp=—L 3.7)
Y (

where v, is the terminal settling velocity and A4s the filter size.

For further discussions on dependence of the residual correlations on the filter
size, filtered particle volume fraction, and filtered slip velocity, all of which serve as
a marker for the extent of subfilter-scale in-homogeneity, see Igci et al. (2008) and
Milioli et al. (2013).

3.3 Energy Minimization Multi-Scale (EMMS) Approach

The energy minimization multi-scale (EMMS) approach was first proposed by Li
and Kwauk (1994) based on the coexistence of both dense and dilute regions in a
CFB reactor. The model parameters are found by minimization of the mass-specific
energy consumption for suspending and transporting the particles as the stability
criteria for flow structure inside the reactor (Benyahia 2012a).

The EMMS model is able to account for heterogeneous solid structures and
cluster formation in the system. Benyahia (2012a) concluded that use of the
EMMS-based drag model is accurate and necessary for the prediction of the
averaged solid mass and pressure profile along the fully developed flow region of
the riser.

Equations (T-1) through (T-9) in Table 3.1 show the EMMS drag model based
on Wang et al. (2008) and Nikolopoulos et al. (2010). In this approach, the Wen and
Yu (1966) drag model is multiplied by a heterogeneity factor, H,,, that is calculated
by solving Egs. (T-1) through (T-9) for minimization of Eq. (T-10). This is a
nonlinear optimization problem that should be solved for any combination of u,,
us, and &,. Finally, the heterogeneity factor is calculated by Eq. (T-12) and is
implemented in the computational fluid dynamics (CFD) code. Then the drag
expression can be expressed as

(1 —eg)e

3 g
B =1 7, Pe|ve — vs|Cpo-Ha (3.8)

Table 3.2 presents the closure terms for the EMMS equations.
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Table 3.1 EMMS governing equations
Force balance for clusters in unit volume of suspension:
3 f(l )
ZCd = pgvsclvscl +- Cdl der pgvSlleL| - f(l - Ec)(ps pg)(g + ac) (T'l)
Force balance for dilute phase in unit volume of suspension:
3 A-N0A-¢p)
ZCd a4, L pg”sf|”sf| f(l - Sf)(ps - pg)(g + ar) (T-2)
Pressure drop balance between clusters and dilute phase:
(1 c) f Cai
Cqc - PgV. Vsl Use| = a-n dd ngSleSll + Cdf 4, ngsf|vsf| (T-3)
Mass conservation for fluid:
ve(1 = ) +vf =148 (T-4)
Mass conservation for particles:
vpf(l -+ Vpef = Upgp (T-5)
Definition of mean voidage:
g=f8c+(1_f)€f (T-6)
Definition of voidage inside clusters:
£ = &g — NG N =2 (T-7)
Dense phase voidage standard deviation:
_ (1-gp)*
%a = ap\’ 1+4ep+ael—4ed+ep (T-8)
Mean cluster diameter:
de = dy +(0.027 — 10d,, ), + 3268 (T-9)
Stability condition:
Ngr = m [mfFfvf + m.Fv. + miFvp(1 = f) ‘ - min (T-10)
Effective drag force:
Fegmms = eg[f(l - ec)(g + ac) + (1 - f)(l - ef)(g + gf)](ps - (T-11)
Hy(eg) = 22015 (T-12)

Fwengyu
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Table 3.2 Closure terms for the EMMS model

Dense phase Dilute phase Interphase
Effective drag | C,. = cdocg;“‘ﬁs Cygr = Cd0f€f4'65 Cai = cani(1 —f)74'65
coefficient
Standard drag 24 3.6 24 3.6 24 3.6
coefficient Caoe = Re, + Re?-3_13 Caor = ﬁ T Re03 Re ;”13 Caoi = Re; Re T Red313
Reynolds Pad, pade
nur};lber Rec == vy| Rep = Ly |V5f| Re; =22 “’if|
He He He
Slip velocity _ ., _ EVpe _ &V EFVpe
e = Ve = 1 v v = (1=f) (v -
Drag force d Py ad*p ad’p
Cdc ) Vsc|Vsc| Ff = Cdf Tpigvsfh’sfl Fi= CdiTlingi|Vsi|
Number of " :M m»—(l Nl —¢) _f
particles in ¢ dy = d, by
cluster 6 6 6
1 - - T
slip velocity = 0.5 m/s
= -« =slip velocity = 1 m/s P
0.8 = === 8lip velocity =2 mV/s -
- -
< |
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Fig 3.1 Heterogeneity factor (Hy) as a function of voidage at different slip velocities (This figure
was originally published in Powder Technol 288, 2016 and has been reused with permission)

Ghadirian and Arastoopour (2016) calculated the heterogeneity factor H,; (the
ratio of drag force for nonhomogeneous solid-phase flow using the EMMS
approach to drag force calculated using the Wen and Yu drag expression for a
homogeneous solid-phase flow system) as a function of voidage at different specific
slip velocities for flow of gas and particles with 185 pm diameter and 2500 kg/m>
density. Figure 3.1 shows the calculated heterogeneity factor H,, at slip velocities of
0.5, 1, and 2 m/s. As this figure shows, in very dilute regions of the system, the solid
flow pattern approaches toward homogeneous flow. At regions with a solid volume
fraction of less than 0.1, H, initially decreases sharply, and then, for a wide range of
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solid volume fraction greater than 0.15, it levels off at a value of about 0.02 for slip
velocities between 0.5 and 2 m/s. This makes the EMMS calculated drag force for
the nonhomogeneous solid phase significantly lower than the prediction of any
homogeneous drag model. The sudden decrease in H, is because of the presence of
clusters that allow the gas to bypass the solids and therefore results in a considerable
decrease in the drag force between phases. This figure also suggests that variations
in H; with respect to the solid volume fraction are more significant than H,
variations with respect to the slip velocity. Therefore, we may neglect the effect
of slip velocity variation in most of the gas—solid flow systems.

Ghadirian and Arastoopour (2016) simulated bed expansion using 2D TFM CFD
equations for both homogeneous and nonhomogeneous particle phases. They con-
cluded that using a nonhomogeneous drag expression, such as EMMS, predicts the
bed expansion with noticeably higher accuracy (20 % or less), while homogeneous
models used in their study continued to overpredict the bed expansion by up to
about 70 % in comparison with the correlation developed based on the experimental
data of Krishna (2013).

Figure 3.2 shows the bed expansion factor (final bed height/initial bed height) for
the EMMS (developed for 185 pm and 2500 kg/m® density particles) and two
homogeneous models as well as the experimentally based correlation of Krishna
(2013). To demonstrate the effect of particle type (particle size and density) on the
heterogeneity of the system, the results of another set of simulations using the
EMMS approach derived for FCC particles (Lu et al. 2009) are also shown in this

—@— Krishna experimental correlation (70-190 microns and 1190-3150 kg/m3)
----- EMMS developed for CCS particles (185 microns and 2500kg/m3)
— @ — EMMS developed for FCC particles by Lu (75 microns and 1500kg/m3)
A  Homogeneous (Syamlal O'Brien) model (185 microns and 2500kg/m3)
X Homogeneous (Wen & Yu) model (185 microns and 2500kg/m3)

2.2
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Fig. 3.2 Comparison of bed expansion factor as a function of inlet gas velocity using different
drag models with experimental data (This figure was originally published in Powder Technol
288, 2016 and has been reused with permission)
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figure. In the latter case, the EMMS approach was derived by Lu et al. (2009) for
FCC particles (75 pm and 1500 kg/m?), but the resulting heterogeneity factor is
used to simulate 185 pm bed expansion and 2500 kg/m’ particle density.

Figure 3.2 also shows that the homogeneous models predict a very high value for
bed expansion with about 70 % deviation from the experimental correlation. Using
the EMMS model, the bed expansion factor shows only less than 10 % deviation
from the experimental values that could be within the experimental error. This
graph also shows that the bed expansion calculated based on the EMMS approach
derived for FCC particles improves the bed expansion predictions compared to the
homogeneous model. It predicts experimental values within a 20 % deviation.

3.4 Nomenclature

a. Acceleration of particles in dense phase, m/s”

ar Acceleration of particles in dilute phase, m/s®

Cp. Effective drag coefficient in dense phase

Cpy Effective drag coefficient in dilute phase

Cp; Effective drag coefficient in interphase

d, Particle diameter, m

d.,;  Cluster diameter, m

f Clusters volume fraction (m? of clusters/m® in control volume)
F Drag force, N

Fr  Froude number

g Gravitational acceleration, m/s>

G Weight function in filtered model

H,;  Heterogeneity index

m,.  Number of particles inside clusters per unit volume
my;  Number of particles in dilute phase per unit volume
m;  Number of cluster in control volume per unit volume
n Constant in the equation of &

Ny,  Energy interchanged between flow phases, W/kg

Vg Real gas velocity of gas in control volume, m/s
Vg Real particle velocity in control volume, m/s
Ve Superficial gas velocity in dense phase, m/s

vy Superficial gas velocity in dilute phase, m/s

ve.  Superficial slip velocity in dense phase, m/s

vg¢  Superficial slip velocity in dilute phase, m/s

Vi Superficial slip velocity in interphase, m/s

vpe  Superficial particle velocity in dense phase, m/s
vy Superficial particle velocity in dilute phase, m/s
v, Terminal settling velocity, m/s
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Greek Symbols

s Momentum exchange coefficient, kg/m> s
Pmicro  Drag coefficient in microscopic two-fluid model
P Filtered drag coefficient

He Gas dynamic viscosity, kg/m. s

Peg Gas density, kg/m’

Ds Particle density, kg/m’

£, Voidage, m® of gas/m? in control volume

& Volume fraction of particles, m® of particles/m” in control volume
& Voidage in dense volume, m® of gas/m® of dense phase
&f Voidage in dilute volume, m> of gas/m® of dilute phase
Emf Voidage at minimum fluidization

& Filtered particle volume fraction

& Fluctuation in particle volume fraction

£, Filtered gas volume fraction

eg’ Fluctuation in gas volume fraction

Af Filter size, m

Cq Dense phase voidage standard deviation
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Chapter 4
Polydispersity and the Population
Balance Model

4.1 Introduction to Polydisperse Systems and the Method
of Moments Solution Technique

In fluid—particle flow systems, when the disperse-phase (e.g., particle phase) prop-
erty distribution is wide or changing due to the particulate processes (such as
changes in size distribution due to breakage, agglomeration, attrition, or growth
or changes in disperse-phase density due to heterogeneous chemical reactions), use
of average values for disperse-phase properties is no longer accurate. Successful
computational fluid dynamics (CFD) simulations of polydisperse flows must
include the distribution of particulate phase properties and its variation caused by
the particulate processes.

One method to account for polydispersity in the system is using a multi-fluid
model by dividing the disperse phase into different classes based on the desired
property by assigning one fluid for each class. As discussed in Chap. 2, Iddir and
Arastoopour (2005) extended the kinetic theory to granular mixtures of different
mechanical properties (size, density, and/or restitution coefficient) for multi-type
particle systems where each particle group was considered as a separate phase
with different average velocity and granular energy. An alternative method to
account for polydispersity of the particulate phase is based on the population
balance approach. This approach is expected to be computationally more attrac-
tive and is also able to account for changes in the disperse-phase property
distributions.

The population balance equation (PBE) is a balance equation based on the
number density function and accounts for the spatial and temporal evolutions of
the particulate phase internal variable distribution function in a single control
volume. This equation is an integrodifferential equation and involves both integrals
and derivatives of the distribution function.

Ramkrishna (2000) and Vanni (2000) provided a comprehensive review of the
subject of PBE in terms of formulation of PBE, solution techniques, applications,
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and theoretical considerations. Solution methods of PBE include method of suc-
cessive approximations, method of Laplace transform, method of moments
(MOM), method of weighted residuals (MWR), discrete formulations for the
solution, and the Monte Carlo method. Among them, MOM is widely accepted as
a computationally attractive method and has gained significant attention.

MOM is based on solving the distribution function transport equation in terms of
its lower-order moments. For fluid—particle flow systems, some of the variables in
PBE need to be calculated from the CFD model, and, in turn, solution of PBE gives
some of the phase properties needed in the CFD model. Therefore, PBE and CFD
need to communicate via a two-way coupling. However, in its original form, this
method is capable of modeling only very simple particulate processes due to some
mathematical limitations (e.g., closure problem) (Strumendo and Arastoopour
2008). To overcome these limitations, different solution methods have been pro-
posed by many researchers. The various forms of MOM can be expressed in four
categories:

4.1.1 Classical Method of Moments (MOM)

In this approach, the functional form of the property (i.e., size) distribution function
is assumed, while the unknown parameters in the distribution function are inde-
pendent of the internal variables and can be computed as a function of the moments
(Barrett and Webb 1998). Although in some cases these methods can provide good
results and at the same time are not computationally intensive, the obvious draw-
backs are that they are not general and they require that the functional form of the
distribution function does not change during the process (Strumendo and
Arastoopour 2008).

4.1.2 Quadrature Method of Moments (QMOM)

In this approach, no explicit assumption is made regarding the form of the size
distribution function, and the integrals appearing in the moment equations are
computed numerically by means of quadrature formulas. This technique was first
presented by McGraw (1997) and later applied to different processes by others
(Barrett and Webb 1998; Marchisio et al. 2003a, b). Using this approach, McGraw
computed the evolution of the moment equations correctly and efficiently (from a
computational point of view). Different from the methods of the first category, this
method can be considered general because no explicit assumption is made regard-
ing the functional form of the distribution function. On the other hand, in QMOM,
the solution is given in terms of the moments, while the size distribution function
disappears from the governing equations. The reconstruction of the distribution
function from the moments (Diemer and Olson 2002a, b), if possible, can be rather
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complex (Strumendo and Arastoopour 2008). In QMOM, reconstruction of the
distribution function is achieved using the moment-inversion algorithm through
approximation of the distribution function by Dirac delta functions. However, the
positivity of the number density function cannot be guaranteed by QMOM (Yuan
2013). To overcome this problem, the conditional quadrature method of moments
(CQMOM) has been proposed by Yuan and Fox (2011). In CQMOM, the moment-
inversion algorithm is based on one-dimensional (1D) adaptive quadrature of
conditional velocity moments and is shown to always yield realizable distribution
functions (i.e., nonnegative quadrature weights). CQMOM can be used to compute
exact N-point quadratures for multi-valued solutions (also known as the multivar-
iate truncated moment problem) and provides optimal approximations of continu-
ous distributions. In order to control numerical errors arising in volume averaging
and spatial transport, an adaptive 1D quadrature algorithm is formulated for use
with CQMOM (Yuan and Fox 2011). However, one drawback still exists with
CQMOM, which is the inability of the method to provide explicit values for the
density function.

To overcome this problem, Yuan et al. (2012) proposed a method called
extended quadrature method of moments (EQMOM) by generalizing the quadra-
ture formula with kernel density functions with finite or infinite support param-
eters. The parameter value is determined by fixing one additional moment. The
advantage of this method over the QMOM is that, with one additional moment, it
is possible to reconstruct a smooth and nonnegative distribution function that
closely reproduces the moment set (Marchisio and Fox 2013). Compared to
CQMOVM, it uses explicit values for the distribution function. For details of this
method, see Yuan (2013).

4.1.3 Direct Quadrature Method of Moments (DQMOM)

This is another version of the quadrature-based methods that has been proposed by
Marchisio and Fox (Marchisio and Fox 2005) to overcome some disadvantages of
QMOM when dealing with (1) multivariate distributions and (2) systems with a
strong dependency of the disperse-phase velocity on the internal variables
(Strumendo and Arastoopour 2008). DQMOM differs from QMOM because the
abscissas and the weights of the quadrature approximation are tracked directly
(rather than the moments, as in QMOM). Furthermore, an explicit expression for
the particle distribution function is given in terms of a summation of Dirac delta
functions. However, this method also suffers from the previously mentioned draw-
backs of QMOM and CQMOM due to the use of Dirac delta function
approximation.
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4.1.4 Finite Size Domain Complete set of Trial Functions
Method of Moments (FCMOM)

Strumendo and Arastoopour (Strumendo and Arastoopour 2008, 2010) introduced a
new version of method of moments called Finite size domain Complete set of trial
functions Method of Moments (FCMOM), which can be regarded as the fourth
category of these methods. The method has unique advantages including fast
convergence to the exact solution and provision of the solution of PBE in terms
of the moments of the distribution and the reconstructed distribution function itself,
which makes it distinct from other available approaches. The method has been
validated against available analytical solutions or self-similar solutions for the
growth, aggregation, dissolution, and simultaneous growth and aggregation cases
in both univariate and bivariate homogeneous flows. In addition, FCMOM has been
formulated for inhomogeneous systems without breakage or aggregation, and its
performance was excellent in all of the cases (Strumendo and Arastoopour 2008,
2010). The applicability of the method in simulations of a complex system (e.g.,
inhomogeneous with particulate processes) using the multiphase CFD approach
was recently studied by Abbasi and Arastoopour (2013). In this chapter, we will
discuss the fundamentals of PBE and FCMOM and the coupling of FCMOM with
the two-fluid model (TFM).

4.2 Population Balance Equation

The population balance equation (PBE) is a balance equation based on the number
density function f (&; X, t), where £ and x are internal and external coordinates,
respectively. PBE accounts for the spatial and temporal evolutions of the number
density function in a single control volume. Depending on the system of interest,
the number density function f{£; X, t) may have only one internal coordinate (i.e.,
particle size) or multiple coordinates, such as particle size and surface area (March-
isio et al. 2003a). Here we consider only a univariate system with the particle size
(&) being the only internal coordinate.

For an inhomogeneous particulate system, the general governing equation
becomes

of(&x,1) 0O 2%
%—F@—x{ Vo (& X, 0f (&x,1)] + B {a;f(éé X, I)] @1)
0 i X, |
— a_x, Dpt(é%xat)f(%;t)] = h(&x,1)

The terms on the left-hand side are the accumulation term, convective term with
respect to the external coordinate, convective term with respect to the internal
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coordinate, and diffusive term, respectively. In the third term, % is the flux in &-space
(Marchisio et al. 2003a) or, in other words, the growth rate of the internal variable &
(e.g., size). v, and D,, are particle-phase velocity and turbulent diffusivity, respec-
tively, which generally are functions of time, location, and internal coordinates.
The source term h(&; x,t) on the right-hand side accounts for the net rate of
introduction of new particles into the system. It assumes that aggregation/coalescence
and breakage are the only mechanisms causing birth and death of particles or droplets
in the system. The aggregation/coalescence source term could be written in the form
of the right-hand side of the classical Smoluchowski equation (Smoluchowski 1917):

;
@ _ %Jﬁ(g — ) f (E=n; x,1) f (n; %, D)dln
J (4.2)

—f<s;x,r>.jﬂ(:, n) f s,
0

On the right-hand side of Eq. (4.2), the first term accounts for birth of particles with
size £ due to aggregation or coalescence of two smaller particles with size & — and
n; the second term represents the death of particles with size £ due to aggregation or
coalescence with particles of all other sizes. f§ is the aggregation kernel, which gives
the frequency that particles of size £ — 5 and 7 collide to form particles of size &.
Aggregation/coalescence usually depends on particle-particle interactions, local
shear rate, and fluid-particle properties.

Similarly, the net rate of introduction of new particles of size £ into the system
due to breakage can be defined as

a(n).b(&ln) f (n;x, t)dn — a(§)f (&%, 1) (4.3)

df(Ex1) T
dr
13

where a is the breakage kernel which gives the rate of breakage of a particle of a
certain size and b(¢ /i) is the daughter-size distribution function on breakage of
particles of size A (Marchisio et al. 2003a; Marchisio and Fox 2005).

4.3 Finite Size Domain Complete set of Trial Functions
Method of Moments (FCMOM) Approach

In all of the solution methods based on the method of moments (MOM), the key is
writing the transport equation (PBE) in terms of the lower-order moments of the
number density function, f, in a closed form (Marchisio et al. 2003a). The i
moment of the number density function is defined as
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oo

i = J £ f(&x,1)dé (4.4)
0

Using FCMOM, the solution of PBE is sought in the finite interval between the
minimum and maximum values of the particle property (e.g., size), instead of in the
[0,00] range (Strumendo and Arastoopour 2008). In general form, the evolution of
the number density function is tracked by imposing moving boundary conditions.
After reformulating PBE in the standard interval [—1, +1] by a coordinate trans-
formation as Strumendo and Arastoopour (2008),

2 &= Ean(®) + & (01/2} 5
R N EER D fe[-1, +1] (4.5)

where the dimensionless (divided by an appropriate scale factor) size distribution
function j_f(zf, X, t) is represented as a series expansion by a complete system of

orthonormal functions (e.g., Legendre polynomials). Writing the distribution func-
tion in terms of a series expansion of Legendre polynomials gives

X

f(f;x,t) ~ cn(t,X).¢, (E) (4.6)

n

Il
o

where the coefficient ¢, e can be expressed in terms of the moments

o 2n+1i n v (2\/)! 1
o \/T22;< ) '[(2v_n)!]'{[(n—v)q.[(vm}'”zv" (4.7)

and where the terms with negative moments order (2v —n <() are omitted
(Strumendo and Arastoopour 2008).
The orthonormal functions, ¢, (E) associated with the Legendre polynomials

P, (E) are

- 2
¢n (5) = n;— !

Pu(€) (4.8)

Therefore, a set of transport equations for the moments of the distribution function,
f, could be derived from the general PBE (4.1) in the interval of [—1, +1], as
presented in Eq. (4.9):

OH; Ouj 0

—— 4+ Vpjm——=—
ot an an

+1 ajW =
[ d
[ 25 4 (4.9)

= —(MB + MBcony + MBpigr1 + MBpyz + MBpygs + IG) + S

On the right-hand side of the moments evolution, Eq. (4.9), the first five terms are
due to the coordinate transformation, /G is due to the Integration of the Growth
term, and S is the source term due to the aggregation and breakage. These terms are:
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In the above terms, the subscripts of —1 and +1 refer to the value of that term at the
minimum and maximum limits of the range [—1, +1], respectively.
In the derivation of Eq. (4.9), it has been assumed that the particulate phase is

incompressible, i.e., a(-;’” = 0, where v,, is the particulate phase velocity. Moreover,
Xj

it is assumed that the particles are convected with an average phase velocity v,(X,t),
which means the particle velocity is independent of the internal property (e.g., size).
In this case, the need for a spatial diffusion term would arise (Mazzei 2013). Mazzei
(2011, 2013) has investigated the importance of diffusion when dealing with
segregation dynamics of polydisperse systems and has shown that either a size-
dependent velocity or a spatial diffusion term is necessary to model the segregation
in polydisperse systems. He proposed a method to replace the average phase
velocity v,(x,t) with a size-conditioned velocity field. In this case, he showed
that, because the advective term features a size-dependent velocity field, the
equation presents no diffusive flux in physical space. Having that in mind and for
the sake of brevity, the diffusive term was omitted from the governing equation,
that reduces Eqgs. (4.9-4.17):

ou, ou,
iy, i _(MB + MBeow +1G) + S (4.17)
ot an
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S is the source term and accounts for the introduction of new particles into the
system, which we assume is due only to the aggregation as defined by Eq. (4.2). To
handle this term using FCMOM, it is necessary to define a finite version of the
Smoluchowski equation as proposed by Strumendo and Arastoopour (2008):

E—Cmin

HEx0) = SHE = 2mn) | P& ) (G SO
Emin - (4. 18)
= ) H (s~ i) — &) | E0) 0.0
Emin

In the finite version of the Smoluchowski equation, a minimum and maximum
size, &min and &ax, are set, and aggregations leading to particles larger than &, are
neglected by using &, — & as the upper limit of integration in the second term on
the right-hand side of Eq. (4.13), by introducing the Heaviside step function H. By
choosing values of &, large enough and setting &;, = 0, the solution of the finite
version of the Smoluchowski equation converges to the solution of its classical
version (Eq. 4.2).

Therefore, the dimensionless form of the source term, S, becomes

M—-1M-1 M—-1M-1
S = gmax §m1n Z Z Can i — gmax émm Z Z Can i (4 19)
n=0 m=0 n=0 m=

E,..; and F,,; are coefficients that can be pre-calculated as a function of &,;, and
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where
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In general, moments evolution equations must be coupled with the moving
boundary conditions providing the governing equations for &,i,(¢, X) and &,.x(#,X).
The moments evolution equations and the moving boundary conditions form a set of
partial differential equations when the variables are the moments of the distribution
function p(t, x), and two moving boundaries, &,,;,(t,X) and &.,.«(#, X). The initial
conditions for the moments are computed from the initial property (e.g., size)
distribution function. However, in the case of pure aggregation in which &.,;, and
Emax are set initially to constant values, the problem is no longer a moving boundary
problem, and the terms MB and MB,,,, will become zero. In this case, the final form
of the moment transport equation is

aﬂ f é M—1M-1 § 5 M—1M-1
a i + V. (/"1 p) Smax " Smin Z CCr Emm _ Smax — Smin Z Cmanmni
n=0 m=0 n=0 m=0

(4.23)

A detailed explanation of the FCMOM method and derivation of the governing
equation can be found in two papers by Strumendo and Arastoopour (2008, 2010).

4.4 CFD-PBE Coupling for Gas—Particle Flow Systems

To develop a coupled CFD-PBE model, it is necessary to implement and solve PBE
in CFD codes. Therefore, a set of transport equations based on the moments of the
property distribution function may be added to any CFD code. Here, the ANSYS
Fluent commercial code was selected.

ANSYS Fluent is a finite-volume-based solver that solves the differential equa-
tions for the conservation of mass and momentum and other appropriate scalars on a
discretized domain using a computational grid. The solver integrates the governing
equations on the individual control volumes to construct algebraic equations for the
discrete-dependent variables (‘“unknowns”) such as velocities, pressure, volume
fractions, and conserved scalars. After that, it linearizes the discretized equations
and solution of the resultant linear equation system to yield updated values of the
dependent variables. Fluent solves this linear system using a point-implicit (Gauss—
Seidel) linear equation solver in conjunction with an algebraic multigrid (AMG)
method.

In ANSYS Fluent, it is possible to add and solve additional transport equations
for any user-defined scalars (UDS). The equation for a generic scalar qb‘f; associated

to the disperse-phase p is

aepppqﬁf’ ‘
4V (erpprotl — eDp VL) =S5, (4.24)

where ¢,, p,, and v, are volume fraction, physical density, and velocity of the
disperse phase, respectively.
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Fig. 4.1 CFD-PBE coupling algorithm (This figure was originally published in Chemical Engi-
neering Science 102, 2013 and has been reused with permission)

By omitting the diffusive term and defining each scalar as
oF = u; (4.25)

where y; is the ith moment of the size distribution function and multiplying the
source by &,p,, it is possible to obtain the moment transport equation (PBE)
reported in Eq. (4.23) in the generic form of Eq. (4.24). The source terms for the
different moment equations are calculated and returned by a proper user-defined
function (UDF). Figure 4.1 describes the CFD-PBE algorithm developed by Abbasi
and Arastoopour (2013). The CFD multiphase model essentially provides phasic
velocities and volume fractions in every iteration. This information is passed to the
UDS transport equations through a UDF to calculate the source terms based on the
FCMOM method using different models for particulate processes (e.g., aggrega-
tion) or possible chemical reactions (Abbasi and Arastoopour 2013).

The population balance model block consists of a set of UDS transport equations
being solved and provides the size distribution function and the moments in each
computational cell for each iteration. The moments of the distribution function
provide the mean particle size at each computational cell that is reported back to the
CFD model to be used in calculations of interphase exchange properties (e.g., drag).
The mean diameter, which is changing temporally and spatially, represents the
different sizes of the particles in the disperse phase.
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4.5 Verification and Validation of FCMOM

To numerically validate the proposed implementation procedure, three cases have
been studied. The first case is a linear growth problem when the growth rate of the
particle size is proportional to the size itself. This kind of behavior is typical in
particle growth processes due to volumetric chemical reactions as studied by
McMurry and Wilson (1983) and Strumendo and Arastoopour (2008). The second
case is a homogeneous aggregation problem when the aggregation kernel is pro-
portional to the summation of the sizes of the two aggregating particles.

For the first two cases, there are analytical solutions provided by McGraw (1997)
and Scott (1968), respectively. Therefore, comparison of the numerical results with
the analytical solutions is possible, which ensures appropriate implementation of
the source terms and correct numerical integration of the differential equations.

The third case is the application of FCMOM in CFD simulations of an oil-water
emulsion flow in a backward-facing step geometry including the aggregation/
coalescence process as proposed by Silva et al. (2008). In this case, treatment of
the convective term was studied and results were verified against the solution
obtained by the QMOM method for the same case.

4.5.1 Linear Growth

McGraw (1997) has shown that a homogeneous growth problem with linear growth
rate can be shown as

Gt

= =K (4.26)

and in transformed form

_ d_E - K fmin + gmax + gmax B gmin E

I = . 4.2
G dt 2 2 (4.27)

For any initial distribution function JF(E7 0), there is an exact analytical solution
given by

7'(&1) =1 (£,0).e 7K (4.28)

Substituting Eq. (4.27) in Eq. (4.11) and combining with Eq. (4.8) gives the
following set of ordinary differential moment equations that are closed regardless
of the solution method (e.g., method of moments):

OH;i
ot

= Ky i=0,1,2 (4.29)
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with an initial size distribution function in the finite domain [£,in(7), Emax (D],

—u 5 - émin(o) 1 émax(o) - 5 P
f(§7 0) - |:§max(0) - gmin(o):| ' |:§max(0) - fmin(o):| (430)

. o . . a . .
And by scaling the distribution function with respect to e the dimensionless

form of the function becomes

fE0) =01+8"(1-8" (4.31)

Then, a set of equations resulting from Eq. (4.29) was implemented in ANSYS
Fluent in the form of Eq. (4.24). The value of K used in this simulation was 0.05 s,
while ¢ =2 and p = 8. It is essential to multiply the source term by the flow density
pp because of the format of the UDS equations in the solver:

Opph;
apt =— (ppK.y,-) (4.32)

The equations were discretized using a second-order time discretization scheme
with a fully implicit integration formula. The advantage of the fully implicit scheme
is that it is unconditionally stable with respect to time-step size.

The simulation results are shown in Figs. 4.2 and 4.3. Figure 4.2 shows the initial
dimensionless particle size distribution along with the comparison between
the numerical simulation, obtained using the first eight moments (i =0-7), and
the exact solution at = /0 s. It shows that the numerical solution closely represents
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-1 -0.5 0 0.5 1

Particle size (Dimensionless)

Fig. 4.2 Particle size distribution at =170 s computed using eight moments (This figure was
originally published in Chemical Engineering Science 102, 2013 and has been reused with
permission)
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Fig. 4.3 Particle size distribution at r=70 s computed using ten moments (This figure was
originally published in Chemical Engineering Science 102, 2013 and has been reused with
permission)

the exact solution; however, it poses some negative values in the tails of the size
distribution curve that are not physically possible. Figure 4.3 indicates that the final
size distribution can be accurately predicted by increasing the number of moments
from 8 to 10. The same conclusion has been made by Strumendo and Arastoopour
(2008) as they showed the convergence of FCMOM for various particle growth
processes.

4.5.2 Homogeneous Aggregation

Convergence and accuracy of FCMOM for different homogeneous aggregations
has been studied by Strumendo and Arastoopour (2008). For a homogeneous
aggregation/coalescence case starting from a Gaussian-like distribution,

fNa(U‘*‘l)UH &\’ ~£(ot1)
fe.0) =" s (5) ot (4.33)

where N, and &, are initial number of droplets and initial average droplet size,
respectively, and the aggregation/coalescence process is governed by the sum
aggregation kernel

B =Po(&+n) (4.34)

where f, is the aggregation constant.
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Scott (1968) has provided an analytical solution for Eq. (4.2) giving the dimen-
sionless size distribution function at any time:

kg Hh(0+2) (U + 1)(k+])(1)+] )

F(E,7) = (1 — 7). SEtotD) i
f(&7)=010~-7 ; (k+ DIC[(k+ 1) (v + 1)]

(4.35)
The aggregation kernel defines the net rate of aggregation/coalescence and depends
on:

1. Frequency of collisions between droplets of size £ and droplets of size i
2. Efficiency of aggregation (i.e., the probability of a droplet of size £ coalescing
with a particle of size 7)

In Eq. (4.35), & is dimensionless droplet size defined as £/£,, and f is dimen-

sionless size distribution function defined asZ). 7 is related to dimensionless time,

No/&o
T, by,
t=1-e" (4.36)
and T is defined
T =pB,Ny&,t (4.37)

For this case, an approach similar to that described in Sect. 4.5.1 was utilized to
implement the governing equations [i.e., Eq. (4.18) without the convective term]
for the finite Smoluchowski equation. Initial moments were calculated from
Eq. (4.33), while the model parameters were adopted from Scott (1968) with
&, =4189 x 107 5m’, v=1, N,=10"/4.189 particle/m*, p, = 1.53x
10 1/s, and &y, Was set to 13£,,.

Figure 4.4 shows that the simulation results obtained using 12 moments at
t=450 s (z = 0.5) are in excellent agreement with the analytical solution.

4.5.3 Nonhomogeneous Aggregation in Emulsion Flow

Silva et al. (2008) proposed a two-dimensional test case to evaluate the perfor-
mance of the direct quadrature method of moments (DQMOM) (Marchisio and Fox
2005) implemented in CFD codes, ANSYS CFX, and OpenFoam. They defined a
fictitious problem of water in oil emulsion laminar flow through a backward-facing
step. The same case was adopted for this study.

Figure 4.5 shows the backward-facing step geometry and dimensions. Analysis
of the results is shown on the two dashed lines shown in Fig. 4.5, referred to as
horizontal and vertical lines. Water in oil emulsion (i.e., dispersed water droplets in
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Fig. 4.4 Particle size distribution at =450 s computed using 12 moments (This figure was
originally published in Chemical Engineering Science 102, 2013 and has been reused with
permission)
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Fig. 4.5 Backward-facing step geometry (This figure was originally published in Chemical
Engineering Science 102, 2013 and has been reused with permission)

continuous oil flow) enters the domain with a predefined initial droplet size
distribution. The droplet size distribution evolves inside the domain as a result of
convection and coalescence of the droplets.

Laminar flow in backward-facing step possesses unique features including
presence of circulation zones with strong gradients in the laminar regime that
makes it suitable for our purpose without bringing other uncertainties such as
turbulence modeling into the picture. It is well known that there is a primary
circulation zone behind the step in which its length (reattachment length) increases
by increasing the Reynolds number. As shown in Fig. 4.6, at higher Reynolds
numbers (~300), a secondary circulation zone will form at the channel upper wall
due to the adverse pressure gradient coming from sudden expansion at the edge of
the step (Biswas et al. 2004).

Existence of circulation zones means longer residence time of the disperse phase
in those regions; therefore, a higher degree of coalescence is expected in these
zones.
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Fig. 4.6 Circulation zones in a laminar backward-facing step flow at different Reynolds number
(This figure was originally published in Chemical Engineering Science 102, 2013 and has been
reused with permission)

Table 4.1 . Inlet con@ition Property Value

and emulsion properties Water density (kg m) 1000
0il density (kg/m) 900
Water viscosity (kg/m-s) 0.001
Oil viscosity (kg/m-s) 0.01
Reynolds number 500
Average water droplet size, d;o (pm) 12.5
Water content (vol %) 5
Aggregation/coalescence constant, B, (m>/s) 1

Dimensionless initial size distribution of water droplets was defined by
Eq. (4.33), and it is assumed that coalescence is the only process that changes the
droplet size distribution according to the sum aggregation kernel (Eq. 4.34). A set of
governing transport equations for the moments of the droplet size distribution was
derived based on Eq. (4.23). In this equation, it is assumed that all of the droplets
share the same velocity regardless of their size. Mean droplet diameter, d;,, was
defined as the ratio of the first-order moment (j1;) to the zeroth-order moment ().

The quadrature method of moments, QMOM (Marchisio et al. 2003a, b), which
is a built-in population balance solution method in ANSYS Fluent code and
FCMOM, was used to generate results using two different numerical techniques.
This could consider a verification of one numerical technique versus another.
Baseline simulations were performed using 4, 6, and 8 moments based on
QMOM to study the sensitivity of the solution to the number of moments and to
compare the results obtained by FCMOM and QMOM.

Moreover, the effect of the mesh resolution was studied using both the FCMOM
and QMOM methods having 4 moments and using three different uniform
hexahedral meshes, referred to as coarse, medium, and fine meshes with 8400,
33,600 and 134,400 cells, respectively. Table 4.1 shows the inlet conditions and
flow properties used in the simulations.
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Spatial discretization of the governing equations was performed using a first-
order upwind scheme along with a first-order and implicit temporal discretization.
Pressure—velocity coupling was accomplished using the Phase Coupled SIMPLE
algorithm. The time step of 107 s ensures convergence within 50 iterations per
time step. In addition, the higher-order spatial discretization schemes were
employed for discretization of the transport equations of both QMOM (Mazzei
et al. 2012) and FCMOM and both resulted in moment corruption. Moment
corruption means that a certain set of moments are non-realizable; hence, they no
longer represent a valid distribution function. For FCMOM, the moments are
calculated in the [—1, 1] interval, which results in negative odd and positive even
moments. Therefore, moment corruption was observed when moments changed
their sign (i.e., an odd moment became positive or an even moment became
negative) (Abbasi and Arastoopour 2013).

The same behavior was reported by many other authors. Vikas et al. (2011) and
Desjardins et al. (2008) showed that realizability is guaranteed only with the first-
order finite volume schemes in spite of the numerical diffusion associated with
these schemes. Mazzei et al. (2012) reported that the second-order upwind scheme
for a volume-density-function-based QMOM significantly affects the stability of
the solution and eventually causes moment corruption. Therefore, the first-order
upwind scheme was used for the method of moments techniques. Figures 4.7 and
4.8 show the mean droplet size along the vertical line for different mesh resolutions,
using 4 moments in QMOM and FCMOM, respectively. Both graphs show similar
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Fig. 4.7 Mean droplet size along the vertical line for different mesh resolutions with QMOM and
four moments at t=1 s (This figure was originally published in Chemical Engineering Science
102, 2013 and has been reused with permission)
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Fig. 4.8 Mean droplet size along the vertical line for different mesh resolutions with FCMOM and
four moments at t=1 s (This figure was originally published in Chemical Engineering Science
102, 2013 and has been reused with permission)

behaviors, having larger droplet size in the circulation region because of the longer
residence time in this region; however, FCMOM appears to be slightly less sensi-
tive to mesh resolution. Based on the grid independence study, the mesh with
medium resolution was chosen for further simulations.

Figure 4.9 shows the mean droplet size along the vertical line for different
number of moments calculated by QMOM. In the absence of exact solution and
knowing that the error of the QMOM method decreases by increasing the number of
moments, QMOM-8 was used as the basis for comparison of all results. The
average error for d;o calculated by QMOM-4 and QMOM-6 with respect to
QMOM-8 was 0.3 % and 0.03 %, respectively.

Figure 4.10 shows the mean droplet size along the vertical line calculated by
FCMOM using 4 and 6 moments. Although d;( shows the same behavior along the
vertical line, it has larger values of average error that reveal greater sensitivity of
FCMOM to the number of moments compared to QMOM. The average error for d;q
calculated by FCMOM-4 and FCMOM-6 with respect to QMOM-8 was 1 % and
0.9 %, respectively. Comparison between the calculated mean droplet sizes using
FCMOM-6 and QMOM-8 along the horizontal line is shown in Fig. 4.11.

The mean droplet diameter contours calculated by FCMOM-6 at t=1 s are
presented in Fig. 4.12, which are essentially very close to those of QMOM. The
disperse phase enters the domain with a 12.5 pm mean droplet diameter. The values
of dyo continuously evolve because of the coalescence of droplets. As expected,
larger droplets form in the lower and upper circulation zones mainly because of the
longer residence time of the dispersed phase in those regions. Therefore, the d;q
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Fig. 4.9 Mean droplet size along the vertical line for different number of moments with QMOM
att=1s (This figure was originally published in Chemical Engineering Science 102,2013 and has
been reused with permission)
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Fig. 4.10 Mean droplet size along the vertical line for different number of moments with

FCMOM compared to QMOM-8 at t=1 s (This figure was originally published in Chemical
Engineering Science 102, 2013 and has been reused with permission)

profile directly depends on the path-line and velocity field calculated by the code.
The velocity field calculations are the same for both the QMOM and FCMOM
method; however, the d;o contours are slightly different because of the possible
inaccuracy in the calculation of moments.



4.5 Verification and Validation of FCMOM 75

0.0018
AA A

0.0017 A

0.0016

0.0015

d10 (cm)

0.0014

4 FCMOM-B

0.0013 QMoM

0.0012
0 1 2 3 4 5

Distance from the inlet (cm)
Fig. 4.11 Mean droplet size along the horizontal line for FCMOM-6 compared to QMOM-8 at

t=1s (This figure was originally published in Chemical Engineering Science 102, 2013 and has
been reused with permission)

1.36e-03 1.48e-03 1.59e-03 1.70e-03 1.81e-03 1.93e-03 2.00e-03

Fig. 4.12 Mean droplet diameter d; contours calculated by FCMOMS-6 (contour levels are in cm)
att=1 s (This figure was originally published in Chemical Engineering Science 102,2013 and has
been reused with permission)

A difference between FCMOM and QMOM techniques is that FCMOM con-
verges faster in comparison to QMOM. Figure 4.13 compares the CPU time
requirement as a function of the number of grid cells for FCMOM and QMOM in
an inhomogeneous aggregation problem using 4 moments. Simulations were
performed using a 3.33 GHz Intel Xenon CPU on 6 parallel cores for 50 time
steps with the time step size of 10~ s. The comparison of the results clearly shows
the better performance of FCMOM over QMOM, especially for a higher number of
grid cells. For the finest grid with 134,000 grid cells, the CPU time of FCMOM is
about half of that for QMOM (Abbasi and Arastoopour 2013).

Strumendo and Arastoopour (2008) have shown that increasing the number of
moments increases the accuracy of FCMOM in homogeneous cases. However,
Abbasi and Arastoopour (2013) were not able to reach a converged solution by
increasing the number of moments to eight. In fact, tracking higher-order moments
has the same effect as using a second-order discretization scheme. In other words,
higher-order moments are less stable and will form non-realizable moment sets
much faster than lower-order moments. In the earlier stages of the simulation, when
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Fig. 4.13 Comparison of the CPU time as a function of the number of grid cells for QMOM and
FCMOM (This figure was originally published in Chemical Engineering Science 102, 2013 and
has been reused with permission)

the disperse phase reached the circulation zone where sharp gradients exist,
moment corruption started and the error propagated into the domain that eventually
leads to instabilities and divergence of the solution. To make sure that this phe-
nomenon is not due to other factors, Abbasi and Arastoopour (2013) performed
various simulations utilizing four times finer mesh, three orders of magnitude
smaller time steps, and significantly smaller convergence criteria. In all cases,
divergence occurred at the same flow time. Mazzei et al. (2012) also reported that
quadrature nodes of the distribution become negative and corrupt the moment set
when the number of moments is increased to eight or, as mentioned before, when
second-order schemes were used for spatial discretization of moment transport
equations, which confirms our observations. McGraw (2006), Wright (2007), and
Kah et al. (2012) described this issue as an inherent problem of finite volume
convective schemes as each moment is convected correctly but with independent
equations. Therefore, the overall transport algorithm does not preserve the moment
space and corrupts the relations among the moments.

A remedy proposed in the literature (McGraw 2006; Mazzei et al. 2012) is using
moment-correction algorithms to force the moment set to always be valid (i.e.,
nonnegative Hankel-Hadamard determinants). The algorithm makes the least pos-
sible change to the corrupted (invalid) moments in a way that the new moment set
meets the validity criteria (i.e., Hankel-Hadamard determinants become nonnega-
tive). An alternative approach can be the use of high-order finite volume schemes
similar to those proposed by Vikas et al. (2011) and Kah et al. (2012) that naturally
preserve the moment space with very limited numerical diffusion. Such methods
guarantee nonnegative distribution functions through an advective transport. How-
ever, before moving toward using higher-order finite-volume methods, it should be
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noted again that there is an inherent problem associated with these techniques such
as FCMOM which approximates the distribution function with a finite number of
terms in series expansion of orthogonal functions (e.g., Legendre polynomials). In
this case, even with a valid set of moments, particle size distribution (PSD) gains
negative values at some points on the internal coordinate, known as the Gibbs
phenomenon (Gottlieb and Shu 1997; Arias-Zugasti 2012). Therefore, it seems that
the first step toward mitigation is to eliminate, or at least minimize, the effect of the
Gibbs phenomenon. There is a rich history of using Gegenbauer (i.e., Legendre,
Chebyshev, etc.) polynomials in other engineering fields such as image processing
in addition to strategies to overcome the Gibbs phenomenon (Silver et al. 1996; Shu
et al. 2010; Yap et al. 2001). For instance, the use of well-developed noise-filtering
techniques such as the kernel polynomial method (KPM) (Silver et al. 1996) seems
promising in our application of interest.

4.6 Summary and Conclusion

In this chapter, we discussed some of the numerical challenges that arise when
dealing with polydisperse systems. Although the PBE method is considered to be
one of the most efficient approaches in modeling polydispersity, finding an efficient
method to solve it is not trivial. Among many solution methods for PBE, MOM
stands out due to its efficiency and suitability for implementation in numerical codes.

The QMOM approach was among the first methods that were introduced to solve
the closure problem in the formulation of standard MOM. Later, the method was
improved through different versions of DQMOM and other enhanced versions of
QMOM such as CQMOM and EQMOM. These methods were aimed to solve
different shortcomings of previous methods in dealing with multivariate distribu-
tion functions, size-dependent velocity of the particulate phase, reconstruction of
the distribution function, and instability of numerical solutions arising in volume
averaging and spatial transport in CFD codes.

FCMOM as a computationally efficient solution method for PBE has unique
advantages over other methods in its category, such as QMOM. It converges very
fast to the exact solution of PBE and provides the solution in terms of both the
moments of the distribution and the reconstructed distribution function. FCMOM
implementation in ANSYS code and a detailed analysis of the results along with
recommendations to improve its performance were provided in this chapter.

4.7 Nomenclature

Cp  Drag coefficient
Cn Coefficients in size distribution function series expansion

D,  Diffusivity, m’/s
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Particle diameter, m

Coefficients in moment equations for FSE

Function in drag model

Number density function

Dimensionless number density function

Coefficients in moment equations for FSE

Growth rate, kg/m>:s

Net rate of introduction of new particles in PBE
Moment order

Constant in growth rate law

Number of terms in truncated series expansion approximating particle size
distribution and number of moments in simulation
Initial number of particles in Gaussian-like distribution
Legendre polynomials

Reynolds number

Particle Reynolds number

Source term in PBE

Dimensionless time

Time, s

Vi k-phase velocity, m/s

Vp Particulate phase velocity, m/s

X External coordinate vector in PBE

Greek Symbols

p  Aggregation kernel

Po  Aggregation constant

Pr; Drag coefficient between k phase and j phase

€.  Volume fraction of k phase

u;  ith moment of number density function

Ui k-phase viscosity, kg/m. s

n Second internal coordinate in Smoluchowski equation
3 Internal coordinate in PBE

¢  Dimensionless internal coordinate in PBE

£, Initial average particle size in Gaussian-like distribution, m
I'  Gamma function

pr  k-phase density, kg/m’

v Model parameter Gaussian-like distribution

7r  k-phase stress tensor, N/m?

7, Particle relaxation time, s

Trial function associated with Legendre polynomials
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Chapter 5
Case Studies

5.1 CFD Simulation of a Pharmaceutical Bubbling Bed
Drying Process

Drying is one of the major unit operations in the manufacturing of solid pharma-
ceuticals. In many pharmaceutical processes, the optimum design of the drying
process will significantly enhance the rate and reliability of the production and, in
turn, decrease the cost of the pharmaceutical products. Consider a cone-shaped
batch fluidized bed drying process with bottom (inlet) and top (outlet) diameters of
0.08 m and 0.19 m, respectively. Pharmaceutical granulated spherical particles with
1200 kg/m® density, 287 pm diameter, and 0.0417 kg water/kg dried solid initial
moisture content were placed initially in the bed. To remove water from the
particles, a stream of high temperature air with 5 m*h flow rate and 50 °C
temperature was introduced. The fluidized bed is operating in a bubbling regime.
The critical moisture content (X.,) that separates the two drying rate periods
(namely, the constant rate period and the falling rate period) was estimated to be
0.012 kg water/kg dry solid.

5.1.1 Problem

Develop continuity, momentum, energy, and water species equations and boundary
conditions capable of describing this process and calculate the outlet air tempera-
ture and moisture content of the particles as a function of time for 10 min of the
drying process.
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5.1.2 Solution

In addition to the conservation equations (i.e., mass, momentum, and species) and
the constitutive equations presented in Tables 2.1 and 2.2, the following conserva-
tion of energy equations for both phases were also solved. It is assumed that the
particulate phase is homogeneous and the Syamlal et al. (1993) drag model was
used as the drag force between phases (Jang and Arastoopour 2014).

5.1.3 Conservation of Energy

The conservation of energy equation for each phase can be written as
o <8gpg e ) 5 g, =
T + V- (é‘gpg vghg) = —é‘gw + 7,

1 ViV =V G, + Qg + 1 AH (5.1)

a(espshs)

op, -
V - (ep.Vihy) = —,—— + T,
al + (gépsvbhb) Es al +TA

VT =V G+ Qp — tigAH,y,  (5.2)

where £ is the specific enthalpy, 4 is the heat flux, and Q,, is the rate of heat transfer
between the gas and solid phases. The specific enthalpy (%) and the heat flux (g) in
each phase are expressed as

h = JC,,dT and §=kVT (5.3)

where k is the thermal conductivity and C,, is the heat capacity

6
0y = —0, = fasg (T, —T.) (5.4)

The gas—particle heat transfer coefficient oz was obtained from the Khotari (1967)
expression:

Nu = %o
k&’

= 0.03Re,!/? (5.5)

where Nu is the Nusselt number, d,, is particle diameter, and k, is thermal conduc-
tivity of the gas phase.
The latent heat due to vaporization of moisture is expressed as (Palancz 1983)
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AH,,, = 3168 — 2.4364 - T, (5.6)

The above equation assumes no effect of the solid moisture on the heat of
vaporization.

5.1.4 Species Balance Equation for Water

In order to simulate moisture transfer from the solid phase to the gas phase, the
following water species transport equations for each phase are considered:

0 (egng\,) ) |
—EEL 4 (e Tl) = Ve (Dugpie V) i (57)
0(esp X B |
% + V- (gspsVsXs) =V. (Dv‘spsgsvxx) —m (58)

where Y, is the moisture content of the gas phase, X is the moisture content of the
solid phase, D, , and D, ; are the moisture diffusion coefficient in the gas and the
solid phases, respectively, and »i- is the moisture mass transfer rate between the gas
and the solid phase.

5.1.5 Drying Rate Model (Calculation of m)

The drying rate is controlled by two mechanisms: the constant drying rate period
and the falling rate period. The surface moisture on the particle and the water in the
large pores of the particle predominantly influence the constant drying rate period.
The moisture trapped or bound within the porous structure of the particles controls
the falling rate period.

The expression for the mass transfer rate per unit volume for the constant rate
period can be expressed as

M =Kg.p,-6/dy,- (Y; —Y,) (5.9)

where Y7 is the moisture content of the saturated drying gas at the surface of the wet
particles and Y, is the moisture content of the gas phase. The mass transfer
coefficient K, can be expressed by the Gunn (1978) equation
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where Sch is the Sherwood number, Sc is the Schmidt number, and A; is the overall
external particle surface area to unit volume ratio.

When the moisture content of the solid particles (X;) reaches a critical value of
(X,,), the falling rate period begins. This means that the moisture transfer of the gas
and the solid phase at the external surface is significantly decreased so that the
diffusion process controls the rate of drying.

The mass transfer rate per unit volume for the falling rate period can be
expressed by

. Dvx ) 77:2
m = d2
p

pe (X = Xp) (5.13)

Dv, is assumed to have a typical value of 2 x 10~'> m?/s. Xs is the volume-averaged
moisture content of the particles, and X, is the final volume-averaged moisture
content or volume-averaged equilibrium moisture content of the particles.

For more details regarding governing and constitutive equations, see Jang and
Arastoopour (2014).

5.1.6 Boundary Conditions

Initially, the gas velocity was set at zero throughout the entire bed. A uniform
velocity profile for the gas phase was applied as an inlet condition. A value for the
pressure was specified at the outlet of the fluidized bed. For the gas phase, no-slip
and non-penetrating wall conditions were considered. For the solid phase, the slip
(Johnson and Jackson 1987) according to Table 2.2,

Ty = _% \/g

€ —
— Py 80 V05V, (5.14)

85, max

where V pq is the particle slip velocity parallel to the wall and 6 is the granular
temperature. € is the specularity coefficient between the particle and the wall, which
is defined as the average fraction of relative tangential momentum transferred
between the particle and the wall collision. A value for a specularity coefficient
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of 0.2 was assumed. The Johnson and Jackson (1987) wall boundary condition for
granular temperature was also considered:

/4 Es . N T Es
6= 2 V30—, 8o VO T, Vo =5 V3 (1= ) py gy 63

s, Max €, max

(5.15)

A value of restitution coefficient ey, of 0.2 between the particle and the wall and a
value of restitution coefficient ey, of 0.9 between particles were assumed (see Jang
and Arastoopour 2014 for a more detailed explanation).

5.1.7 Numerical Solution

The control-volume-based code FLUENT was used to carry out the two-dimen-
sional (2D) computational simulations in this study. The governing equations were
then spatially discretized using a second-order upwind scheme. To avoid solution
divergence, small time steps on the order of 1 x 104 were chosen, except for
energy and species balance for which convergence was set to occur when the
residuals fell below 1 x 10-6. To obtain numerical solutions independent of the
grid size, 2550 grids were used. Figure 5.1 shows the calculated air temperature
exiting from the fluidized bed dryer as a function of time.

Figure 5.2 shows the average water content in the particles in the bed as a
function of time. This figure clearly shows that, during the constant rate period, the
moisture content is almost linearly decreasing at a higher rate toward the critical
moisture content (0.012 kgw/kgs or water content of 1.2 %). After the moisture
content of the particles in the bed reached the critical moisture content level, the
remaining moisture inside the particles was removed by the diffusion process
(falling rate period) at a lower rate. About 70 % of the initial moisture was on the
surface of the particles and in large surface pores (removed during the constant
drying rate period). The remaining 20 % of the moisture was in the porous structure
of the particles (mainly removed during the falling drying rate period). The rest of
the 10 % moisture remained as the equilibrium moisture content.

5.2 CFD Simulation of a CO, Capture Process in a CFB
Reactor

Carbon capture from combustion and utilization of carbon-based fuel, such as fossil
fuel, plays a critical role in solving the urgent climate change problem created by
CO,; emission (Extavour and Bunje 2016). In addition, circulating fluidized bed
(CFB) reactors have the potential to be among the most important devices in the
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Fig. 5.1 Air temperature exiting from the fluidized bed dryer as a function of time (This figure
was originally published in Powder Techol 263, 2014 and has been reused with permission)
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Fig. 5.2 The average water content in the particles in the bed as a function of time (This figure
was originally published in Powder Technol 263, 2014 and has been reused with permission)

chemical and energy industries. CFB reactors currently are used in fluid catalytic
cracking (FCC) applications, with more than seven decades of history and more
than 400 units in operation worldwide today (Chen 2011). Furthermore, gasification
of coal and biomass, synthesis of olefin from methanol, and chemical looping are
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among the relatively new applications of CFB reactors (Sundaresan 2011). Thus,
the CFB reactor ensures a continuous carbon dioxide removal process in a relatively
compact unit using solid particles. The basic configuration of a CFB reactor
consists of a riser where the particles are transported by the gas flow, a cyclone to
separate gas and solid at the top of the riser, a standpipe (downcomer) to return the
separated solid to the riser inlet, and a flow controlling device (e.g., L-valve) to
control the solid flow. In processes that include a regenerable sorbent or catalyst, a
second fluidized bed reactor can be added between the downcomer and the L-valve
to serve as a regenerator reactor.

5.2.1 Problem

Consider a bench-scale CO, capture unit using a solid sorbent to separate CO, from
a gas stream as shown in Fig. 5.3.

Coal gas enters the bottom of the adsorber and mixes with fresh sorbent.
Particles have 185 pm mean diameter and 2480 kg/m> density. The sorbent particles
mix with the coal gases adsorbing CO, into the particle through chemical reaction.
The CO,-laden particles flow up the riser, turn, and flow into the cyclone. CO,-free
gas is separated from particles in the cyclone and exit the system, and the CO,-
laden particles pass through a loop seal and enter the regenerator where CO, is
released from the sorbent particles by heating up the spent sorbent. The CO,-lean
gas exits the carbon capture unit (C2U) system, and the regenerated sorbent
particles continue through the loop to the next loop seal (Shadle et al. 2010). The
fresh sorbent particles pass through the loop seal to the adsorber, and the process
continues. To maintain gas—particle flow in a CO, capture loop, gases need to be
injected around the system to keep particles fluidized.

Develop governing equations (continuity, species, and momentum) and numer-
ical simulation, and obtain the outlet CO, concentration for the carbonation process
in the adsorber and riser sections. In this example, the focus is on the simulation of
the reactive gas—solid flow in the adsorber and riser sections. The riser and adsorber
have a 3.35 m combined height and 5 cm and 15 cm diameter, respectively.

5.2.2 Solution

The conservation equations (i.e., mass, momentum, and species) and constitutive
equation presented in Tables 2.1 and 2.2, for both phases, were solved on a three-
dimensional (3D) Cartesian domain. It is assumed that the process is isothermal and
particle size is constant and uniform. The Syamlal et al. (1993) drag model was used
as the drag force between phases (Abbasi et al. 2015). The Syamlal-O’Brien drag
expression contains adjustable parameters that can be used to tune the drag to match
the theoretical minimum fluidization velocity to experimentally observed values. It
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Fig. 5.3 NETL carbon
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Table 5.1 Summary of simulation cases

Case Inlet gas velocity (m/s) Solid circulation rate (g/s)
Baseline 0.15 44
Case 1 0.15 220
Case 2 0.15 440
Case 3 0.1125 220
Case 4 0.0975 220

should be noted that the original drag correlation was derived for homogeneous
gas—solid flows and the adjustment reduces the drag to partially account for the
heterogeneous gas—solid structure in the fluidized bed.

A summary of all of the simulations performed at different solid circulation rates
and gas inlet velocities is presented in Table 5.1. These variables were varied within
a range that ensures the fast fluidization regime in the riser. To study the effect of
the solid circulation rate, the inlet solid mass flow rate was increased by factors of
5 and 10, while the inlet gas velocity was kept constant at the baseline value.
Furthermore, at the inlet solid mass flow rate of 220 g/s (Case 1), the inlet gas
velocity was decreased by 25 % and 35 % (Case 3 and Case 4, respectively) to
investigate the effect of gas residence time on CO, removal. In these simulations, a
50/50 (mole fraction) mixture of CO, and N, was used as the inlet gas.
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Fig. 5.4 Schematic of the
reacting particle (This
figure was originally
published in Powder
Technol 286, 2015 and has
been reused with
permission)

5.2.3 Reaction Kinetic Model

To describe the heterogeneous reaction between the sorbent and CO,, it was
assumed that the particles can be described (see Fig. 5.4) by two distinct zones
representing the outer product layer and the inner core (fresh sorbent).

The heterogeneous kinetic model for the reaction between CO, and the sorbent
based on a two-zone variable diffusivity shrinking core model is described by
Abbasi et al. (2013) as

3 _k _ — 2
dX - Tp Nl;g() (Cb Ce)(l X)3 Where k _
= s =

d 1 +1§_;"p(1 _X)’%<1 - \3/ 171X7+XXZ)

ky for ri>r.
ky for ri <r,.

(5.16)

C,, is the CO, concentration in the bulk gas, C, is the equilibrium CO, concentra-
tion, D, is the product layer diffusivity of CO,, r,, is the radius of the particle, k; is
the surface reaction constant rate at each zone, and N°\40 is the initial number of
moles of MgO per unit volume. In the above model, the dependence of the gas
diffusion coefficient D,, through the porous product layer with respect to conver-
sion, was assumed to follow an exponential decay function (Abbasi et al. 2013).
The rate of the carbonation reaction can be calculated from the rate of the sorbent
conversion obtained from the two-zone variable diffusivity shrinking core model
which gives the dX/dt in the following correlation:

R o yMgO dX

= — 5.17
M Wsorbenr dt ( )
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5.2.4 Numerical Solution

The operating and inlet conditions were set using the values presented in Table 5.1
and the pressure boundary condition was used at the outlet. Furthermore, at the
wall, a no-slip condition for the gas phase and a partial slip condition for the solid
phase, based on Johnson and Jackson (1987), with a specularity coefficient of 0.2,
were used (see Table 2.2). The restitution coefficient of particle—particle was set to
0.9. The 3D computational domain consists of approximately 87,000 cells.

Figure 5.5 shows the contours of the instantaneous solid volume fraction, CO,
mole fraction, and reaction rate at = 20 s for a solid circulation rate of 220 g/s. The
solid volume fraction contours show a very dense and well-mixed solid phase in the
carbonator and a dilute region in the riser. Reaction rate contours also show that
most of the CO, capture takes place in the carbonator with very little reaction in the
riser.

Solid volume fraction CO, mole fraction Reaction rate (kg-mole/m®.s

Fig. 5.5 Contours of instantaneous solid volume fraction, CO, mole fraction, and reaction rate at
t=20 s, for solid circulation rate of 220 g/s (This figure was originally published in Powder
Technol 286, 2015 and has been reused with permission)
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Fig. 5.6 Effect of solid circulation rate on CO, removal (This figure was originally published in
Powder Technol 286, 2015 and has been reused with permission)

The effect of the solids circulation rate on the removal of CO, from the 50/50
(mole fraction) mixture of CO, and N is presented in Fig. 5.6. It can be seen that, as
the solid mass flow rate is increased, the CO, exit mole fraction decreases. At the
baseline condition (44 g/s), a 30 % CO, removal was achieved. At a 5 times higher
solid mass flow rate (Case 1), the removal increased to 40 % and, after that, even
with a 10 times higher solid mass flow rate (Case 2), no increase in CO, removal
was observed. Since there is no difference in CO, removal by further increasing the
solid inlet mass flow rate, it suggests that the process is controlled by the reaction
rate and an improvement is expected by decreasing the gas residence time.

The effect of gas residence time was studied by changing the inlet gas velocity
and keeping the solid circulation rate constant at 220 g/s. Three cases with inlet gas
velocities of baseline (0.15 m/s), and 25 % and 35 % lower gas velocities (0.1125 m/
s and 0.0975 m/s) were investigated. As expected and is shown in Fig. 5.7, CO,
removal increases with increasing gas residence time, providing the gas and solid a
longer contact time and a more efficient process. Decreasing the inlet gas velocity
by 35 % leads to an additional 20 % CO, removal, reaching to 60 % CO, removal.
The improving effect of longer gas residence time is evident by comparing the
concentrations of CO, at the exit, which decreases by reducing the inlet gas velocity
and higher gas residence time in the reactor. However, even at the lowest inlet gas
velocity (0.0975 m/s), the outlet CO, concentration is far from the equilibrium limit
that is the lowest achievable concentration at this operating condition. Further
decreasing the inlet gas velocity is not possible due to the change in the behavior
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Fig. 5.7 Effect of inlet gas velocity on CO, removal (This figure was originally published in
Powder Technol 286, 2015 and has been reused with permission)

of the fluidized bed, not being at a turbulent/fast fluidization regime. The CFD
model can be used to find the optimum reactor design, specifically the geometry of
the carbonator, to maximize the gas—solid contact and, hence, CO, removal.

5.3 CFD-PBE Simulation of a CO, Capture Process Using
Solid Sorbents

Experimental data in the literature (Yi et al. 2007) on fresh, carbonated, and
regenerated sorbent particles in the CO, capture process using solid sorbents have
shown that the sorbent particle size distribution essentially remains constant during
the carbonation and regeneration processes. However, the mass of the sorbent
particle changes during both the sorption (mass gain) and regeneration processes
(mass loss), which leads to the changes in the density of the particles. Consequently,
the particles go through a structural change (e.g., change in porosity distribution).

5.3.1 Problem

Consider the example provided in Case 2, and assume that the solid sorbent entering
the reactor has a unimodal density distribution representing a partially regenerated
sorbent as shown in Fig. 5.8 in dimensionless form. The probability density
function spans between a minimum density (i.e., 2480 kg/m®) corresponding to
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Fig. 5.8 Particle density distribution function at the inlet (This figure was originally published in
Powder Technol 286, 2015 and has been reused with permission)

the fresh sorbent and a maximum density (i.e., 2830 kg/m?) corresponding to the
fully reacted sorbent. The mean density value at the solid inlet is 2569 kg/m>.
Develop a CFD-based model and numerical solution to calculate the variation in
particle density during this carbonation process.

5.3.2 Solution

In this section, the CFD model of Case 2 is coupled with a FCMOM-based
population balance equation (PBE) through the two-way coupling algorithm
presented in Chap. 4 to account for the temporal and spatial evolution of the sorbent
density distribution inside the reactor. In formulation of the PBE, for an inhomo-
geneous and univariate particulate system, with the particle density being the only
internal coordinate, Eq. (4.1) becomes

Of(E:x, 0 0 [0
7]((%:( t) +a_xl [VP(th)f(é;Xa t)] +a_§j [a_;f(é;xvz)] = h(é’ X, t) (518)

In the above equation, it is assumed that the system is nondiffusive (i.e., no
diffusion term).

Since, in the FCMOM approach, the solution of the PBE is sought in the finite
interval between the minimum and maximum values [£,,;,, &) Of the particle
density, &,,;, and &,,,, can be considered as the density of the fresh sorbent and the
density of the sorbent with complete conversion, respectively.
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The final form of the moments transport equations (Eq. 4.9) for this specific case
becomes
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The moments evolution equation, Eq. (5.19), must be coupled with the moving
boundary conditions providing the governing equations for &,,;,(¢, x). There is also a
source term due to the reaction, and &,,;,(¢, x) is convected because of the convective
particle movement in the presence of spatially inhomogeneous conditions. The
definition of the moving boundary conditions for &,;,(¢,x) is based on the evalua-
tion of (a) the spatial derivatives of £nin(#,x) and (b) the velocity v, min(f, X) of the
particles whose densities are equal to &, (2, X).
The moving boundary condition for &.,;,(¢, x) is then given by

a gmm
ot

+ V. min-Emin = (5.20)

where G is the growth rate of the particle density due to the reaction defined as
(Abbasi et al. 2015)

o ox
G=S=(G-8)5 (521)

& is the density of the product layer (which is higher density), and &; is the density

of the inner core fresh sorbent (which is lower density) as shown in Fig. 5.4. The

partial derivative % is provided by the heterogeneous reaction kinetic model

between CO, and the sorbent based on a two-zone variable diffusivity shrinking
core model, as described by Eq. (5.16).

The mean density value was calculated based on the ratio of the second moment
of the distribution function (Fig. 5.8) to the first moment of the distribution function

(p1po)-
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Fig. 5.9 Contours of the
time-averaged minimum
and mean density of the
solid phase at t =20 s (This
figure was originally
published in Powder
Technol 286, 2015 and has
been reused with
permission)
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Figure 5.9 shows contours of the time-averaged minimum and mean solid
density in the reactor. The minimum density contours of the solid provide valuable
information about the location of the fresh sorbent front. Based on Eq. (5.20), the
minimum density boundary (fresh sorbent front) moves with the reaction rate, and,
because the reaction rate is significantly higher in the lower part of the reactor, the
minimum density values rise faster in this region. However, the mean density
values, calculated based on the moments of the distribution, are increasing along
the height of the reactor.

Although in this specific case the change in the density of the sorbent is not
significant and has a very small effect on the hydrodynamics of the system, it can
become important in the cases where the sorbent has a significantly higher reaction
rate or a higher residence time in a different reactor design.

In addition, the coupled CFD-PBE model is a valuable tool for design and
optimization of the reactor and can be useful in the calculation of the regeneration
rate and the rate of sorbent make-up to the system. Another application of such a
model is studying the effect of particle size distribution on the reactor performance
and in the cases in which particle attrition and particle breakage exist.
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5.4 Nomenclature

Ag Overall external particle surface area to unit volume ratio, m!
Cp Heat capacity, J/kg'K

C, CO, concentration in gas, mol/m>

C, Equilibrium CO, concentration, mol/m>

C; Concentration at reaction interface, mol/m>

D, Product layer diffusivity, m?/s

d, Particle diameter, m

D,, Moisture diffusivity of gas phase, m?/s

D Moisture diffusivity of solid phase, m?/s

ey Particle restitution coefficient

Csw Restitution coefficient between solid and wall

f Number density function

f Dimensionless number density function

g0 Radial distribution function at contact during binary collision
he Enthalpy of gas phase per unit mass, J/kg

hy Enthalpy of solid phase per unit mass, J/kg

H,qp Heat of vaporization per unit mass, J/kg

kg Reaction rate constant, m/s

K, Mass transfer coefficient, m/s

Mg Mass transfer rate, kg/m3-s

MW Molecular weight, kg/kmol

N°yq0  Initial number of moles of MgO, mol/m>

Nu Nusselt number

P, Vapor pressure, N/m?

q Rate of heat flux, W/K

Ose Rate of heat transfer per volume between gas and solid, W/m?>
R Rate of carbonation reaction, kmol/kg:s

Re,, Particle Reynolds number

p Radius of sorbent particle, m

e Radius of unreacted core of sorbent particle, m

Sc Schmidt number

Sh Sherwood number

T Temperature, K

Vg Gas-phase velocity, m/s

Vp Particle-phase velocity, m/s

Vg Solid-phase velocity, m/s

Vi para  Particle slip velocity parallel to the wall, m/s

X Sorbent conversion

X, Critical moisture content, kKgy.er/KEso0lid

Xy Final volume-averaged moisture content, Kgyaer/Ksolid

X Volume-averaged moisture content of the solid phase, kgyaer/KEsolid
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Y, Moisture fraction in gas phase
Y; Moisture fraction of saturated drying gas at surface of wet particles

Greek Symbols

¢ Specularity coefficient between the particle and the wall
u;  ith moments of density distribution function

ags  Gas—particle heat transfer coefficient, W/m*K

&, kth phase volume fraction

0 Granular temperature, m?/s?
'3 Sorbent density, kg/m®

pr  kth phase density, kg/m’

T kth phase stress tensor, N/m2
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