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Preface

The widespread application of transport phenomena of fluid-particle systems and

fluidization in industry demands an increase in efficiency and the development of

predictive numerical simulations of industrial processes for design and scale-up

purposes. In spite of today’s advances in computational capability, considerable

challenges remain due to the complexity of processes based on fluid-particle flow

that require mass, momentum, and energy analyses at the molecular, particle, and

process scales. This book is intended to address some of these issues and provide

fundamental knowledge and needed design and scale-up tools for graduate students

in different branches of science and engineering (i.e., chemical, biological, mechan-

ical, and environmental engineers, etc.) and scientists and engineers already work-

ing in areas related to fluid-particle flow systems.

Prior to 1978, research in fluid-particle systems was mainly focused on the

development of overall flow measurements and empirical correlation for the main

flow parameters. However, during the last three decades, extraordinary advances

have been made in the multiphase approach to fluid-particle flow systems that have

significantly impacted our approach in the design and scale-up of processes based

on fluid-particle transport phenomena. The first attempts in developing Eulerian/

Eulerian modeling of fluid-particle systems and fluidization began in the 1960s by

J. Davidson, R. Jackson, and S.L. Soo. During the 1980s, several attempts were

made in the literature by Illinois Institute of Technology (IIT) researchers and

others to obtain a numerical solution for a one-dimensional flow equation and to

simulate flow in a vertical pneumatic conveying system. Later, IIT researchers

considered each particle size as a separate phase, developed an experimentally

verified particle-particle collision theory, introduced it in one-dimensional equa-

tions, and successfully compared the calculated flow parameters with experimental

data for flow in dilute gas-particle systems. This probably motivated several

investigators to develop a theory of particle interaction and collision based on the

Chapman and Cowling kinetic theory approach. The kinetic theory approach, which

is based on the oscillation of the particles, uses a granular temperature equation to

determine the turbulent kinetic energy of the particles, assumes a distribution
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function for instantaneous particle velocity, and defines a constitutive equation

based on particle collision, interaction, and fluctuation. In fact, the kinetic theory

approach for granular flow allows the determination of, for example, particle phase

stress, pressure, and viscosity in place of the empirical equations. After this

developmental stage of granular theory, there have been several modifications to

the constitutive equations such as extension of the kinetic theory for granular flow

for mixtures of multi-type particles. However, in a more concentrated fluid-particle

flow system, not only should the flow be characterized by a two- or three-

dimensional flow equation, but also the formation of large structures such as

clusters should be included in modeling of transport phenomena of such flow

systems. To solve these microscopic two-fluid model equations, very small grid

sizes of less than a few particle diameter are needed. For most processes of practical

interest, such fine spatial grids and small time steps require significant computa-

tional time. Thus, the effect of the large-scale structures using coarse grids must be

accounted for by using approaches such as filtering equations or energy minimiza-

tion multi-scale (EMMS).

To account for continuous variation in particle property distribution due to

phenomena such as chemical reaction, agglomeration, breakage, attrition, and

growth at significantly less required computational time, a new approach to solve

population balance equations (PBEs) linked with computational fluid dynamics

(CFD) is needed. The PBE is a balance equation based on the number density

function that accounts for the spatial and temporal evolutions of the particulate

phase internal variable distribution function in a single control volume. This

equation is an integro-differential equation that involves both integrals and deriv-

atives of the distribution function. The most promising method of solution at the

present time to solve CFD-PBE is the method of moments, which is based on

solving the distribution function transport equation in terms of its lower-order

moments. Some of the variables in PBE need to be calculated from the CFD

model, and, in turn, solution of the PBE gives some of the phase properties needed

in the CFD model. Therefore, PBE and CFD need to cross-talk via a two-way

coupling.

Another approach to simulate a gas-particle flow system is the distinct element

method (DEM), which is based on an equation of motion for each individual

particle. Thus, in principle, individual particle size, shape, and density can be

introduced directly into the governing equations. However, this approach requires

huge computational time in simulating commercial-scale processes, which is not

the focus of this book.

This book provides a comprehensive approach to address the abovementioned

challenges and issues and presents fundamental knowledge and needed design and

scale-up tools for gas-solid flows at different flow regimes.

Chapter 1 deals with the derivation of the basic governing equations for conser-

vation of mass, momentum, and energy for multiphase systems.

Chapter 2 provides continuity and momentum conservation equations and con-

stitutive and boundary conditions for fluid-particle flow systems. The conservation

equations and constitutive relations are general and can be applied to all regimes of
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fluid-particle flow, from a very dilute particle volume fraction to the packed bed

regime. The fundamentals of the kinetic theory approach for derivation of consti-

tutive equations for the regimes when particle collision is dominant and the

frictional behavior of particles based on soil mechanics principles for dense particle

flow are discussed. In addition, the kinetic theory approach has been extended to

multi-type particulate flows. Finally, the generalized forms of governing equations

and constitutive relations for all particle phase flow regimes are presented in

Tables 2.1 and 2.2.

Chapter 3 deals with the effects of the presence of particle clusters in fluid-

particle flow modeling and numerical simulation. This chapter also introduces key

concepts and the fundamental derivations of two approaches for considering the

presence of clusters and large structures that have gained significant attention in the

literature: the filtering or subgrid model and the energy minimization multi-scale

(EMMS) model. Using these approaches results in simulations that require a

manageable computational time.

Chapter 4 provides an introduction to the concept of polydispersity in multiphase

systems and the numerical solution of coupled CFD and PBE. Solutions based on

the different method of moments (MOM) are also presented, and the finite size

domain complete set of trial functions method of moments (FCMOM) and the

implementation of FCMOM in a CFD code are discussed in more detail. Finally,

the application of FCMOM for three processes of linear growth, homogeneous

aggregation, and non-homogeneous aggregation in emulsion flow is presented.

Chapter 5 presents three case studies. Case 1 is CFD modeling and simulation of

a pharmaceutical bubbling bed drying process. Case 2 is CFD modeling and

simulation of a reactive gas-solid system in the riser section of a circulating

fluidized bed (CFB) reactor representing a CO2 capture process using solid sor-

bents. Case 3 is similar to Case 2, but with one difference: the density distribution of

the solid phase is changing due to chemical reactions.

The authors greatly appreciate several individuals who contributed in different

ways to the completion of this book. In particular, the authors would like to

acknowledge the original contributions of the following: Professor Matteo

Strumendo of Universit�a degli Studi di Padova in development of FCMOM for

solution of PBE, Dr. Hadjira Iddir of Universal Oil Products (UOP) for the

development of modeling of multi-type particle flow using the kinetic theory

approach, Dr. Emad Ghadirian of Gamma Technologies for his contribution in

the energy minimization multi-scale (EMMS) approach and formulation of fric-

tional pressure and viscosity for dense particle flow, Dr. Sofiane Benyahia of

National Energy Technology Laboratory (NETL) for his contribution to the simu-

lation of gas-solid flows, Dr. Jungkee Jang for the development of the modeling and

numerical simulation for the drying process, and Dr. Javad Abbasian for his

contribution in the development of rate of reaction for CO2 sorption.

The research conducted by the authors that is presented in this book is mainly

funded by the US Department of Energy. The support and use of the computational

facilities of Wanger Institute for Sustainable Energy Research (WISER) of Illinois

Institute of Technology (IIT) significantly contributed to the success of the
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simulation results presented in this book. The authors would like to thank and

greatly appreciate Ms. Margaret M. Murphy, IIT WISER assistant director and

program outreach manager, for editing this book.

Chicago, IL, USA Hamid Arastoopour

Chicago, IL, USA Dimitri Gidaspow

Des Plaines, IL, USA Emad Abbasi

viii Preface



Contents

1 Conservation Laws for Multiphase Flow . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Conservation and Constitutive Equations for Fluid–Particle

Flow Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Background on the Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Boltzmann Integral–Differential Equation . . . . . . . . . . . . . . 14

2.3 Conservation Laws with No Particle Interaction

and Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Conservation of Solid-Phase Fluctuating Energy . . . . . . . . . 16

2.4 Conservation Laws with Particle Interaction and Collisions . . . . . . 17

2.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Modeling of Multi-Type Particle Flow Using

the Kinetic Theory Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.2 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.3 Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.4 Fluctuating Energy Equation . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.5 Kinetic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.6 Example: Numerical Simulation of Simple

Shear Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Frictional Behavior of Granular Matters . . . . . . . . . . . . . . . . . . . . 31

ix



2.8 Mass, Momentum, and Constitutive Equations . . . . . . . . . . . . . . . . 35

2.9 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Homogeneous and Nonhomogeneous Flow
of the Particle Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Filtered or Subgrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Energy Minimization Multi-Scale (EMMS) Approach . . . . . . . . . . 48

3.4 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Polydispersity and the Population Balance Model . . . . . . . . . . . . . . . 55

4.1 Introduction to Polydisperse Systems

and the Method of Moments Solution Technique . . . . . . . . . . . . . . 55

4.1.1 Classical Method of Moments (MOM) . . . . . . . . . . . . . . . . 56

4.1.2 Quadrature Method of Moments (QMOM) . . . . . . . . . . . . . 56

4.1.3 Direct Quadrature Method of Moments (DQMOM) . . . . . . . 57

4.1.4 Finite Size Domain Complete set of Trial

Functions Method of Moments (FCMOM) . . . . . . . . . . . . . 58

4.2 Population Balance Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Finite Size Domain Complete set of Trial Functions

Method of Moments (FCMOM) Approach . . . . . . . . . . . . . . . . . . . 59

4.4 CFD-PBE Coupling for Gas–Particle Flow Systems . . . . . . . . . . . . 64

4.5 Verification and Validation of FCMOM . . . . . . . . . . . . . . . . . . . . . 66

4.5.1 Linear Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.2 Homogeneous Aggregation . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.3 Nonhomogeneous Aggregation in Emulsion Flow . . . . . . . . 69

4.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 CFD Simulation of a Pharmaceutical Bubbling

Bed Drying Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.3 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.4 Species Balance Equation for Water . . . . . . . . . . . . . . . . . . 83

5.1.5 Drying Rate Model (Calculation of _mÞ . . . . . . . . . . . . . . . . 83

5.1.6 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.7 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 CFD Simulation of a CO2 Capture Process

in a CFB Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

x Contents



5.2.3 Reaction Kinetic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.4 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 CFD-PBE Simulation of a CO2 Capture Process

Using Solid Sorbents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Contents xi



Chapter 1

Conservation Laws for Multiphase Flow

1.1 Introduction

Based on the continuum theory, conservation laws for mass, momentum, and

energy for disperse multiphase flow can be derived using the Reynolds transport

theorem, as illustrated by Gidaspow (1994). For multiphase flow systems, the only

new concept in this approach is the introduction of phasic volume fraction, εi. For a
single-phase system, ε¼ 1, these equations must reduce themselves to the equations

found in standard transport phenomena books, such as those of Bird et al. (2007).

Here, we briefly show how these equations are derived, using a Lagrangian

representation.

Assume that a system of constant mass goes through temporal and spatial

changes as presented in Fig. 1.1.

The point (x0, y0, z0) represents the spatial coordinates of the particle at some

fixed time t0. Then, the spatial coordinates of the particle at any time are given by

functions of

x ¼ x t; xo; yo; zoð Þ y ¼ y t; xo; yo; zoð Þ z ¼ z t; xo; yo; zoð Þ

In space, we define a property per unit volume ℑ(t,x), where t is time and x is the

position vector such that (Aris 1962)

F tð Þ ¼
ððð
V tð Þ

ℑ t; xð ÞdV ð1:1Þ

F(t) is the system variable quantity that can change with time. The balance made on

F(t) gives the Reynolds transport theorem (Aris 1962)

© Springer International Publishing AG 2017
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d

dt

ððð
V tð Þ

ℑ t; xð ÞdV ¼
ððð
V tð Þ

∂ℑ
∂t

þ∇ � ℑvi
� �

dV ð1:2Þ

In multiphase flow, the volume occupied by phase i cannot be occupied by other

phases at the same position in the space at the same time. This distinction introduces

the concept of the volume fraction of phase i, εi. The volume of phase i, Vi, in a

system of volume V, is (Gidaspow 1977, 1994)

Vi ¼
ððð
V tð Þ

εidV where
Xn
i¼1

εi ¼ 1 ð1:3Þ

1.2 Conservation of Mass

The mass of phase i can be written as

mi ¼
ððð
V tð Þ

εiρidV ð1:4Þ

For the mass mi, moving with the velocity vi, the following balance is valid

dmi

dti
¼ d

dti

ððð
εiρidV ¼

ððð
m0

idV ð1:5Þ

Application of the Reynolds transport theorem results in the well-known continuity

equation for phase i,

Fig. 1.1 Motion of a system of constant mass

2 1 Conservation Laws for Multiphase Flow



∂ εiρið Þ
∂t

þ∇ � εiρivið Þ ¼ m0
i ð1:6Þ

where m
0
i is the rate of production of phase i, by mass transfer or chemical reaction.

Conservation of mass requires that (Gidaspow 1994)

Xn
i¼1

m0
i ¼ 0 ð1:7Þ

If the fluid is incompressible and there are no phase changes, Vi, the volume of

phase i remains constant. Then, application of the Reynolds transport theorem

results in the following incompressible continuity equation in multiphase flow

∂εi
∂t

þ∇ � εivið Þ ¼ 0 ð1:8Þ

1.3 Conservation of Momentum

The rate of change in the momentum of a multiphase system moving with the

velocity vi equals the sum of the forces acting on the system including the forces of

interaction between the phases. Other forces acting on the system are surface forces,

external forces, and momentum exchange due to phase change. Therefore, the

momentum balance for phase i can be written as (Bowen 1976; Gidaspow 1994)

d

dt

ððð
V tð Þ

ρiviεidV ¼ ∯
S tð Þ

Tidaþ
ððð
V tð Þ

ρiFiεidV þ
ððð

KidV þ
ððð

m0
ividV ð1:9Þ

Application of the Reynolds transport theorem on the right-hand side of the

above balance followed by the application of the divergence theorem where,

∯
a
Tida ¼

ððð
V

∇ � TidV ð1:10Þ

on the left-hand side, gives the three momentum balances for each phase i, as
follows

∂ ρiεivið Þ
∂t

þ∇ � ρiεivi � við Þ ¼ ∇ � Ti þ ρiεiFi þ Ki þ m0
ivi ð1:11Þ

1.3 Conservation of Momentum 3



By differentiating and using the continuity equation for phase i, it is easy to show

that the momentum balance for phase i can be expressed as

ρiεi
dvi
dti

¼ ∇ � Ti þ ρiεiFi þ Ki þ m0
ivi ð1:12Þ

The term on the left-hand side accounts for acceleration of phase i. The terms on the

right-hand side are momentum in-flow due to surface forces, body forces, and

interaction forces, respectively.

Therefore, by expressing interaction forces Ki in terms of a friction coefficient β
for solid–fluid interaction, the momentum equation for phase k becomes

∂ εkρkvkð Þ
∂t

þ∇ � εkρkvkvk ¼ ∇ � Tk þ εkρkFk þ
X
j

βj vj � vk
� �þ m0

kvk ð1:13Þ

The sum of the interaction forces Ki is clearly zero

Xn
i¼1

Ki ¼ 0 ð1:14Þ

The stress tensor Ti for phase i is given by

Ti ¼
Tixx Tixy Tixz

Tiyx Tiyy Tiyz

Tizx Tizy Tizz

0
@

1
A ð1:15Þ

where the elements, say, Tixy, are the ith force in the x direction per unit area of the
yth face.

The simplest expression for the stress in an inviscid flow, analogous to the

single-phase potential flow theory, is through the definition of a phase pressure pi,
via the identity I

Ti ¼ �PiI ð1:16Þ

For incompressible viscous flows, where there are frictional forces due to

differences in phase velocities, the traction T is a function of the symmetric gradient

of the velocity. The driving force for the transfer of shear is the symmetric gradient

of velocity rather than the ordinary gradient because of the need to satisfy invari-

ance under a change of frame of reference under rotation, called objectivity in

continuum mechanics, or the Galileo relativity principle. To meet the requirement

of objectivity, let
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Tk ¼ Tk ∇svkð Þ ð1:17Þ

Linearization of the Tk gives

Tk ¼ AkI þ Bk ∇svkð Þ ð1:18Þ

For incompressible fluids, Ak is chosen to be the negative of the pressure of fluid k,
and the derivative of the traction with respect to the symmetric gradient is the

viscosity of fluid k, as shown below,

Ak ¼ �Pk ð1:19Þ

and

Bk ¼ 2μk ¼
∂Tk

∂∇svk
ð1:20Þ

Using the tensor identity, k-phase stress tensor can be expressed as

Tk ¼ �PkI þ 2μk∇
svk ð1:21Þ

For a constant phase viscosity μk, the incompressible k-phase (εkρk¼ constant and

consequently div(νk)¼ 0) Navier–Stokes equation can be rewritten as

∂ εkρkvkð Þ
∂t

þ∇ � εkρkvkvk ¼ εkρkFk þ
X
j

βj vj � vk
� �þ m0

kvk �∇Pk þ μk∇
2vk

ð1:22Þ

For a more general case of compressible viscous flow with negligible phase

change, Ak is

Ak ¼ �PkI þ λk∇ � vk ð1:23Þ

Therefore, the traction for phase k becomes

Tk ¼ �PkI þ 2μk∇
svk þ λkI∇ � vk ð1:24Þ

where the first term represents the k-phase pressure, the second term represents the

k-phase viscous shear, and the third term represents the compression or expansion

acting on k-phase by j-phase by deforming the k-velocity field,

with

2μk þ 3λk ¼ 0 ð1:25Þ

1.3 Conservation of Momentum 5



Then, for compressible k-phase in a multiphase system, the Navier–Stokes equation

in convective form is given as

εkρk
dvk
dtk

¼ εkρkFk þ
X
j

βj vj � vk
� ��∇Pk þ∇ 2μk∇

svk � 2

3
μkI∇ � vk

� �
þ m0

kvk

ð1:26Þ

1.4 Conservation of Energy

Consider an open system of mass, mi, that gains mass and thus energy at a rate dmi

dti .

The energy balance moving with phase i becomes (Gidaspow 1977, 1994)

dU0
i

dti
¼ dQi

dt
� Pi

dVi

dti
þ Diss þ Un

i þ Pn
i =ρ

n
i

� � dmi

dti
ð1:27Þ

where

U0
i ¼

ððð
V tð Þ

εiρiUidV ð1:28Þ

and where the rate of heat transfer is related to the flux qi by relations such as those

used by Ishii (1975)

� dQi

dt
¼ ∯

A tð Þ
qiεida ¼

ððð
V tð Þ

∇ � εiqið ÞdV ð1:29Þ

where A(t) is the area enclosing the volume of the system at any instant of time. The

differential element of surface area of system i was taken to be simply εida, thus
making no distinction between area and volume fraction.

The energy dissipation by means of friction is shown as the dissipation term Diss

Diss ¼
ððð
V tð Þ

u
0
idV ð1:30Þ

Now, by applying the Reynolds transport theorem to our original energy balance,

we obtain
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∂ εiρiUið Þ
∂t

þ∇ � εiρiviUið Þ ¼ �∇ � εiqi � Pi
∂εi
∂t

� Pi∇ � εivi þ hn
i m

0
i þ u0i ð1:31Þ

where hi
n is defined as the net enthalpy per unit mass entering system i at possibly

nonequilibrium conditions

hi ¼ Ui þ Pi=ρi ð1:32Þ

The above energy balance could be written in terms of enthalpy as

εiρi
dhi
dti

¼ �∇ � εiqi þ εi
dPi

dti
þ m0

i h
n
i

� �þ m0
iUi þ u0i ð1:33Þ

Furthermore, the entropy form of the energy equation can be obtained by using

the fact that the internal energy of phase i depends upon the entropy of phase i and
upon the specific volume of phase i, as the following:

Ti
∂ εiρiSið Þ

∂t
þ Ti∇ � εiρiviSið Þ ¼ �∇ � εiqi � Pi

∂εi
∂t

þ hn
i � TiSi

� �
m0

i þ u0i ð1:34Þ

The second law of thermodynamics states that the entropy production for the

mixture is zero for reversible processes and is positive for real irreversible pro-

cesses. The energy equations in entropy form can be added to produce the entropy

production for the mixture of i phases. As shown by Gidaspow (1994), some of the

early multiphase energy equations violate the second law. Hence, it is necessary to

check whether the equations programmed into the commercial computational fluid

dynamics (CFD) codes satisfy the second law.

Expressions for entropy production are also needed for the design of energy

efficient processes. For example, distillation column design is routinely done using

availability analysis (Fitzmorris and Mah 1980), and vapor compression

air-conditioning systems (ASHRAE 1977) are routinely designed by minimizing

the entropy production for the vapor compression.

1.5 Nomenclature

Cd Drag coefficient

Diss Energy dissipation by means of friction, kj/s

dp Particle diameter, m

F Body force, N

h Enthalpy per unit mass, J/kg

K Interaction force, N

I Identity matrix

m Mass, kg
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P Pressure, N/m2

Q Heat transfer, J

S Entropy, J/K0

T Stress tensor

t Time, s

V System volume, m3

~v Mean velocity vector, m/s

U Overall system energy, J/kg

Greek Symbols

ε Phase volume fraction

β Interphase friction coefficient

μ Viscosity, kg/m∙s
λ Bulk viscosity, kg/m∙s
ρ Density kg/m3

ℑ General property per unit volume
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Chapter 2

Conservation and Constitutive Equations
for Fluid–Particle Flow Systems

2.1 Introduction

Amajor computational advance in the calculation of multiphase flow regimes made

in the 1980s was the use of computational codes based on the Navier–Stokes

equation for solving the governing equations presented in Chap. 1.

The basic momentum balances for the fluid and particulate phases are as follows:

Fluid momentum balance

∂ ρf εf vf
� �
∂t

þ∇ � ρf εf vf vf
� � ¼ εf ρf g� εf∇Pþ∇ � εf τf þ β vs � vf

� � ð2:1Þ

Solid momentum balance

∂ ρsεsvsð Þ
∂t

þ∇ � ρsεsvsvsð Þ¼ εsρsg� εs∇P�∇Psþ∇ � εsτsþβ vf � vs
� � ð2:2Þ

where ρ is density, ε is volume fraction, t is time, v is velocity vector, P is pressure,

g is gravity acceleration, τ is stress tensor, and β is the interface momentum

exchange coefficient.

The summation of volume fractions for all phases is equal to one

εf þ εs ¼ 1 ð2:3Þ

In order to close the conservation equations for the momentum, one needs to

calculate the stress tensors and consequently the solid-phase viscosity. Two types of

models were used to close the coupled Navier–Stokes equations for both the fluid

and disperse particles. The first group of models requires an empirical input of

particulate viscosity and gradient of the disperse pressure. The second group of

models is based on the kinetic theory of granular flow. These models compute the

particulate viscosity and the gradient of the solid pressure as a function of the
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granular temperature (Arastoopour 2001; Gidaspow 1994; Gidaspow and Jiradilok

2009). The granular temperature is a measure of the random particle kinetic energy

per unit mass. It is produced due to “viscous-type dissipation” and consumed due to

inelastic collisions. The random granular temperature equation for the particle

phase can be expressed as

3

2

∂ ρsεsθð Þ
∂t

þ∇ � ρsεsθvsð Þ
� �

¼ �PsIþ τsð Þ : ∇vs þ∇ � ks∇θð Þ � γ þ φgs

ð2:4Þ
Accumulation þ net outflow ¼ production þ conduction � dissipation

þ granular energy exchange between phases

where θ is granular temperature (which is defined as the mean of the squares of

particle velocity fluctuation), ks is granular conductivity, γ is the collisional energy
dissipation, and φgs is the granular energy exchange between phases which is

defined as φgs ¼ �3βgsθ for laminar flows (Gidaspow et al. 1991) and φgs ¼ βgsffiffiffiffiffiffiffi
2kf

p ffiffiffiffiffi
3θ

p � 2kf
� �

for disperse turbulent flows (Sinclair and Mallo 1998). In the

latter case, Kf is the turbulent kinetic energy of the fluid and βgs is the gas–solid

exchange coefficient.

The stress tensor for each phase is given by a Newtonian-type viscous approx-

imation, as

τf ¼ εfμf ∇vf þ∇vTf

� �
� 2

3
εfμf∇ � vf I ð2:5Þ

τs ¼ εsμs ∇vs þ∇vTs
� �þ εs ξs �

2

3
μs

	 

∇ � vsI ð2:6Þ

Particle pressure, Ps; shear viscosity, μs; and bulk viscosity, ξs, are expressed as a

function of granular temperature based on the kinetic theory model (Gidaspow

1994).

The constitutive equation for the shear viscosity μs consists of three sources,

namely, kinetic, collision, and friction, which could be written either in an additive

manner or a continuous form as (see Sect. 2.7 for more details)

μs ¼ μkin þ μcol þ μf r ð2:7Þ

The first two parts are calculated based on the kinetic theory. In dense granular

flows, in addition to the kinetic and collisional stresses (described by the kinetic

theory), the model should account for the frictional stresses as well, which is

dominant in flow regimes denser than the bubbling regime. The frictional behavior
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of granular matters is discussed in this chapter based on soil mechanics principles

(see Sect. 2.7).

This chapter starts with the derivation of the conservation equation for mass,

momentum, and granular temperature based on the kinetic theory approach for

uniform and multi-type particles.

2.2 Background on the Kinetic Theory

Originally, the kinetic theory was developed by Chapman and Cowling (1970) for

gases to predict the behavior of mass point molecules whose interaction energies

are conserved. Nearly three decades ago, this theory was extended to particulate

flow where the interactions between particles are not conserved. Savage and Jeffrey

(1981) were probably the first to apply the kinetic theory to rapidly deforming

material in a form of smooth hard spherical particles to develop the particle phase

constitutive equation. In their derivation, to calculate the stress tensor arising from

interparticle collisions, they assumed that the collisions between particles were

purely elastic.

Although in some granular flows the restitution coefficient is restrained to values

close to unity, its deviation from unity results in a significant variation in the

properties of granular flow. This was shown first by Jenkins and Savage (1983).

They extended the kinetic theory of an idealized granular mixture to predict the

rapid deformation of granular material by including energy dissipation during

collision for nearly inelastic particles. Later, Lun et al. (1984) developed a theory

that predicts the simple shear flow behavior for a wide range of the restitution

coefficient.

Many models for granular flow were then developed based on the kinetic theory

approach (Jenkins and Richman 1985; Gidaspow 1994). In addition, the kinetic

theory has been extended to cohesive and multi-property particle flow (Kim and

Arastoopour 2002; Iddir and Arastoopour 2005).

In the particle phase, the frequency distribution of velocities of particles, f, is a
function of position, r, and the instantaneous velocity, c, as well as time, t:

f ¼ f t, r , cð Þ ð2:8Þ

The six coordinates, the position, r, and the velocity, c, are sufficient to determine

the location of a particle, because Newton’s second law has six integration con-

stants. The velocity distribution, f, of the particles is often close to the normal

distribution, called the Maxwellian distribution in the kinetic theory of gases. For a
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Maxwellian distribution, the kinetic viscosity is zero. Particle viscosity is nonzero

due to particle interaction and a non-Maxwellian distribution.

The number of particles per unit volume, n, is the integral over the velocity

space, c:

n ¼
ð
f dc ð2:9Þ

The mean value of a quantity ϕ, such as mass, momentum, energy, and stress, is

defined to be

n φh i ¼
ð
φf dc ð2:10Þ

Hence, the hydrodynamic velocity, v, is the integral over all the velocity space, as

shown below

v ¼ 1

n

ð
cf cð Þdc ð2:11Þ

The transport of a quantity ϕ, such as heat, must be invariant under a change of

frame. Hence, it cannot be a function of the velocity, c. Otherwise, it will have
different values in different frames of reference. But c–v is independent of the

frame of reference. Hence, we define C as the difference between the instantaneous

and the hydrodynamic velocities

C ¼ c� v ð2:12Þ

In kinetic theory (Chapman and Cowling 1970), this difference is called the

peculiar velocity. Its mean is zero, as shown below, since the mean of c is equal

to v:

< C > ¼ < c� v > ¼ v� v ¼ 0 ð2:13Þ

This property is the same as that of the turbulent velocity, v, defined as

the instantaneous minus the average velocity. The flux vector of ϕ is defined

as n < Cϕ Cð Þ >. For example, if ϕ ¼ E, the internal energy, then the conduc-

tion flux, q, becomes q¼ n<EC>.
Since momentum is the mass, m, times the velocity, C, the kinetic stress tensor,

Pk is as follows:

Pk ¼ n < CmC > ¼ ρ < CC > ð2:14Þ

The hydrostatic pressure, p, is the mean of the sum of the normal components of the

stress tensor, p,
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p ¼ 1=3 pxx þ pyy þ pzz
� � ð2:15Þ

In the kinetic theory of gases, the thermal temperature, T, is defined as the

average of the random kinetic energy, with the conversion factor of the Boltzmann

constant from Joules to degrees Kelvin, as shown,

kBT ¼ 1=3 m < C2
x þ C2

y þ C2
z > ð2:16Þ

where the subscript of the peculiar velocity, C, indicates the component of C in the

x, y, and z directions, respectively. The Boltzmann constant has the value

kB ¼ 1:3805� 10�23 J=K ð2:17Þ

The ideal gas law constant equals the very small Boltzmann constant, due to the

small mass of the molecule, m, times the large value of the Avogadro’s number,

6.023� 1023, the number of molecules per mole. Converting from Joules to calories

gives the gas law constant of 1.987 cal/g-mole-deg K.

Elimination of the squares of the peculiar velocities in

P ¼ 1= 3 nm < C2 > ð2:18Þ

and in the definition of temperature (Eq. 2.16) gives the ideal gas law equation of

state

P ¼ n kB T ¼ N=Vð Þ RT ð2:19Þ

where N is the number of moles, V is the volume, and R is the universal gas

constant.

The granular temperature is defined as the random kinetic energy of the particles

without the conversion of Joules to degrees. Equation (2.16) suggests that it can be

defined in two ways: similar to Eq. (2.16) or as kinetic energy per unit mass. Let θ
be the granular temperature for uniform size particles, the random kinetic energy

per unit mass. Then,

θ ¼ 1=3 C2
� � ¼ 1= 3nð Þ

ð1
�1

ð1
�1

ð1
�1

C2
x þ C2

y þ C2
z

� �
dCxdCydCz ð2:20Þ

in three dimensions. In two dimensions, we would have only two random velocities,

and we would divide < C2 > by two. In one dimension, we have only one random

velocity, and the granular temperature is then simply the variance of the measured

instantaneous velocities. However, this behavior is not the same as the three-

dimensional granular temperature shown in Eq. (2.20). The units of the granular

temperature are (m/sec)2.
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The equation of state for particles can be obtained by eliminating < C2 >
between Eqs. (2.18) and (2.19). This gives

ps ¼ nmθ ð2:21Þ

where the subscript, s, was added to emphasize that it is the solid pressure. The

variable nm is the bulk density. In terms of the volume fraction of solids, εs and the
solid density, ρs the ideal equation of state for particles becomes

ps ¼ εsρsθ ð2:22Þ

The more complete equation of state for particles, containing the collisional

contribution, has been verified experimentally by Gidaspow and Huilin (1998).

2.2.1 Boltzmann Integral–Differential Equation

The Boltzmann equation for the frequency distribution, f (Gidaspow 1994), can be

written as

∂f
∂t

þ c � ∂f
∂r

þ F
∂f
∂c

¼ ∂f
∂t

	 

coll

ð2:23Þ

where c and r were regarded as independent coordinates and where Newton’s law

of motion was

Force

Unit mass
F ¼ dc

dt
ð2:24Þ

For binary collisions of rigid particles, the right-hand side of the Boltzmann

equation (2.23) assumes the form

∂f
∂t

	 

coll binary

¼
ðð

f 2ð Þc012 � k� f 2ð Þc12 � k
� �

d212dkdc1 ð2:25Þ

where the primes indicate the quantities after particle interaction–collision and f(2)

is the product of the respective single-particle distributions. Hence, the Boltzmann

equation is an integral–differential equation. Because of its nonlinearity, it must be

solved by iteration. For the first approximation, one takes the Maxwellian distribu-

tion. The second approximation, as shown in detail in Chapman and Cowling

(1970), will give rise to a Navier–Stokes-type equation. This is done efficiently

using an altered form of the Boltzmann operator, as presented below,
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C ¼ c� v t; rð Þ ð2:26Þ

Changing the coordinates from c to C,

f t; r; cð Þ ¼ f C t; r;Cð Þ ð2:27Þ

Applying chain rule to Eqs. (2.25–2.27), the Boltzmann equation can be expressed

as

Df

Dt
þ C

∂f
∂r

þ F� Dv

Dt

	 

∂f
∂C

� ∂f
∂C

C :
∂v
∂r

¼ ∂f
∂t

	 

coll

ð2:28Þ

A transport equation for a quantity ψ can be obtained starting with the

Boltzmann equation by multiplying it by ψ (Eq. 2.29) and integrating over

c (Eq. 2.30),

ð
ψ

∂f
∂t

þ c � ∂f
∂r

þ F � ∂f
∂c

	 

dc ¼

ð
ψ

∂f
∂t

	 

coll

dc ð2:29Þ

∂n ψh i
∂t

þ ∂
∂r

� n ψch i � n
∂ψ
∂t


 �
þ c � ∂ψ

∂r


 �
þ F � ∂ψ

∂c


 �� �
¼
ð
ψ

∂f
∂t

	 

coll

dc

ð2:30Þ

Now, we need to find the single-particle distribution function f(r, c, t) and the

pair distribution function f (2)(r1, c1; r2, c2; t). Here, we take the Maxwellian

velocity distribution function as the single-particle distribution (Savage and Jeffrey

1981; Jenkins and Savage 1983; Ding and Gidaspow 1990)

f r; c; tð Þ ¼ n

2πθð Þ32
exp � c� vð Þ2

2θ

" #
ð2:31Þ

and the Enskog assumption for the pair distribution function is used next (Chapman

and Cowling 1970; Lun et al. 1984; Ding and Gidaspow 1990). That is,

f 2ð Þ r1, c1; r2, c2; tð Þ ¼ g0 εsð Þf 1 r� ½dpk, c1; t
� �

f 2 rþ ½dpk, c2; t
� � ð2:32Þ

where go is the equilibrium radial distribution function (Savage and Jeffrey 1981).

Detailed derivation of the equations can be found elsewhere (Ding and

Gidaspow 1990; Gidaspow 1994).
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2.3 Conservation Laws with No Particle Interaction
and Collisions

By substituting for ψ mass, momentum, and energy, the corresponding conserva-

tion laws are easily obtained from Maxwell’s equation (2.30). For a case with no

particle interaction/collisional contribution,

∂n ψh i
∂t

þ∇n ψch i � nF
∂ψ
∂c


 �
¼ 0 ð2:33Þ

2.3.1 Conservation of Mass

Let ψ ¼ m, since nm ¼ εsρs ¼ ρ

∂
∂t

εsρsð Þ þ∇ � εsρsvsð Þ ¼ 0 ð2:34Þ

2.3.2 Conservation of Momentum

Let ψ ¼ mc

n cψh i ¼ nm cch i ¼ ρ Cþ vð Þ Cþ vð Þh i ¼ ρ

ð
CCþ 2Cvþ v2
� �

f dc ¼Pk þ ρvv

Since Pk ¼ ρ CCh i and Ch i ¼ 0

∂
∂t

εsρsvsð Þ þ∇ Pk þ εsρsvsvsð Þ ¼ εsρsFs ð2:35Þ

2.3.3 Conservation of Solid-Phase Fluctuating Energy

Let ψ ¼ 1
2
mc2

n cψh i ¼ nm

2
c2c
� � ¼ 1

2
ρ CCþ 2Cvþ v2
� �

Cþ vð Þ� �
¼ 1

2
ρ

ð
C2Cþ v2 þ C2 þ 2CC

� �
v

� �
f dc

ð2:36Þ

Note: qk ¼ 1
2
ρ

ð
C2Cf c ¼ 1

2
nm C2C
� �
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and since θ ¼ 1
3
C2
� �

n ψch i ¼ qk þ v
1

2
ρv2 þ 3θρ

2

	 

þ Pkv ð2:37Þ

∂ 3
2
θρþ 1

2
ρv2

� �
∂t

þ∇ � qk þ v
3

2
θρþ 1

2
ρv2

	 

þ Pkv

� �
¼ ρFv ð2:38Þ

It is easy to derive the conservation equation for the fluctuating energy from

Eq. (2.38) as

3

2

∂
∂t

εsρsθð Þ þ∇: εsρsvθð Þ
� �

¼ �∇ � qk � Pk : ∇ � v ð2:39Þ

where Pk ¼ ρ CCh i.
Similarly, we can obtain the equations for the stress tensor hCCi. This equation

is similar to the Reynolds stress equations in single-phase turbulent flow. However,

in the Reynolds stress equation, the average is over a time interval. Here, the

averaging is over the velocity space. These averages are not equal as experimentally

shown by Tartan and Gidaspow (2004). If we include rotation (Goldshtein and

Shapiro 1995) in addition to the translation presented here, we can obtain a balance

for the rotational temperature, as in single-phase fluids (Condiff et al. 1965).

2.4 Conservation Laws with Particle Interaction
and Collisions

In the previous section, we presented the inviscid conservation equations by

neglecting the collisional part of Eq. (2.16). In order to derive the equations that

include the solid viscosity and solid stresses, we use the approach of Ding and

Gidaspow (1990) and start with the Boltzmann equation (Eq. 2.16), with a nonzero

source term, considering only binary collisions between hard and smooth but

inelastic particles. In this case, the right-hand side of the Boltzmann equation is

similar to Eq. (2.18) that gives the collisional rate of change of the mean of ψ.
By defining the external forces, F, as the sum of the gravity, the aerodynamic

drag, and the buoyancy (which appears through the pressure gradient in Eq. (2.40)

(Ding and Gidaspow 1990),

F ¼ gþ D

m
vg � vs
� �� 1

ρs
∇p ð2:40Þ

where D is the drag force coefficient, and, by combining Eqs. (2.25 and 2.30), one

can derive the momentum equation ψ ¼ mcð Þ;
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∂
∂t

εsρsvsð Þ þ∇ εsρsvsvsð Þ ¼ �εs∇pþ εsρsgþ β vg � vs
� �þ∇: τk þ τcð Þ ð2:41Þ

In Eq. (2.41),

β ¼ εsρs
D

m
ð2:42Þ

τk and τc are the kinetic part and collisional part of the total stress tensor, τs,
respectively.

Similarly, we can derive the equation for the fluctuating energy of the solid

phase (granular temperature) using the momentum equation and taking ψ ¼ 1
2
mc2

and θ ¼ 1
3
C2
� �

;

3

2

∂
∂t

εsρsθð Þ þ∇: εsρsvθð Þ
� �

¼ τs : ∇ � vs �∇ � q� γ þ β CgiCi � CiCi

� � ð2:43Þ

On the right-hand side of Eq. (2.43), the first term represents the energy production

due to the deformation work, the second term is the energy transfer, γ is the

collisional energy dissipation due to inelastic collisions, and the last term is the

net rate of transfer of fluctuation energy between the two phases. The correlation

between the gas-phase fluctuation velocity and the solid-phase fluctuation velocity

φgs is negligible when the particle response time, τp¼m/D, is much larger than the

timescale characteristic of the mean fluid motion (Ding and Gidaspow 1990). This

assumption is valid when the particles are heavy and large. Therefore, the equation

for the fluctuating energy of the solid phase becomes

3

2

∂
∂t

εsρsθð Þ þ∇: εsρsvθð Þ
� �

¼ τs : ∇ � vs �∇ � q� γ ð2:44Þ

To close the conservation equations for the momentum and the granular tempera-

ture, we need to calculate the τk, τc,γ, q that are functions of the collisional integral

(Eq. 2.25).

As shown earlier, the stress tensor for each phase is given by a Newtonian-type

viscous approximation

τf ¼ εfμf ∇vf þ∇vTf

� �
� 2

3
εfμf∇ � vf I ð2:45Þ

τs ¼ εsμs ∇vs þ∇vTs
� �þ εs ξs �

2

3
μs

	 

∇ � vsI ð2:46Þ

Particle pressure, Ps; shear viscosity, μs; and bulk viscosity, ξs, are expressed as a

function of granular temperature (Gidaspow 1994). Here, we show only how to

obtain the viscosity of the particulate phase in a dilute system.
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Let the momentum flux be

Q ¼ ρv vh i ð2:47Þ

(Momentum/volume� average of oscillating velocity)

Then, for a constant density ρ, the change in momentum flux is

ΔQ ¼ lρ vh i dv
dx

ð2:48Þ

The viscosity for fully developed incompressible flow is defined by

Shear ¼ μ
dv

dx
ð2:49Þ

The momentum transport ΔQ equals the force per unit area

ΔQ ¼ Shear ð2:50Þ

Therefore, the viscosity assumes the form

μ ¼ lρ vh i ð2:51Þ

From Eq. (2.51), it can be seen that

μ ¼ ρD ð2:52Þ

as in the kinetic theory of gases. Therefore, an equation for the collisional viscosity

may be expressed as

μ ¼ 1

3
ffiffiffi
π

p
	 


ρpdp
ffiffiffi
θ

p
ð2:53Þ

Kinematic viscosity¼mean free path� fluctuating velocity

For smooth rigid spherical molecules of diameter dp,

μl ¼
5

16d2p

kBmT

π

	 
1=2

ð2:54Þ

where m ¼ ρp
π
6
d3p

To convert T to granular temperature θ, let kB
m ¼ 1. Thus,

DILUTE μs ¼
5
ffiffiffi
π

p
96

ρpdpθ
1=2 ð2:55Þ
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The interpretation is as follows:

DILUTE μs ¼
5
ffiffiffi
π

p
96

� ρpεs
� � � dp

εs

	 

� θ1=2 ð2:56Þ

VISCOSITY ¼ constant� bulk density�mean free path� oscillation velocity

Detailed derivation for the rest of the constitutive equation in a dense system for the

particle pressure, Ps; shear viscosity, μs; and bulk viscosity, ξs, as a function of

granular temperature, can be found elsewhere (Ding and Gidaspow 1990;

Gidaspow 1994) and are

Ps ¼ εsρsθ þ 2ρs 1þ eð Þε2s g0θ ð2:57Þ

μs ¼
4

5
εsρsdpg0 1þ eð Þ θ

π

	 
1=2

þ 10ρsdp
ffiffiffiffiffi
θπ

p

96εs 1þ eð Þg0
1þ 4

5
g0εs 1þ eð Þ

� �2
ð2:58Þ

ζs ¼
4

3
εsρsdpg0 1þ eð Þ θ

π

	 
1=2

ð2:59Þ

where dp is the diameter of particle, e is the restitution coefficient, and g0 is the

radial distribution function. The radial distribution function expressing the statistics

of the spatial arrangement of the particles is given by a geometric approximation,

the Bagnold’s equation,

g0 ¼ 1� εs
εs,max

	 
1=3
" #�1

ð2:60Þ

The granular conductivity, ks consists of the kinetic part due to the elastic

particles derived from dilute kinetic theory of gases (Chapman and Cowling

1970) and the collisional part due to the inelastic collision of particles as reviewed

by Gidaspow (1994):

ks ¼ 150ρsdp
ffiffiffiffiffi
θπ

p

384 1þ eð Þg0
1þ 6

5
εsg0 1þ eð Þ

� �2
þ 2ρsε

2
s dp 1þ eð Þg0

ffiffiffi
θ

π

r
ð2:61Þ

The energy dissipation due to inelastic collision of particles, first evaluated by

Savage and his colleagues, is

γ ¼ 12 1� e2ð Þg0
dp

ffiffiffi
π

p ρsε
2
sθ

3=2 ð2:62Þ

In this analysis, it is assumed that the interaction force between fluid and particles is

due only to drag. Discussion of the drag models will be presented in Chap. 3.
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2.5 Boundary Conditions

At the inlet and outlet, all properties should be defined based on the specific physics

and assumption of the problem. For the gas phase, no-slip and non-penetrating wall

conditions may be considered. For the solid phase, the slip boundary condition is

the recommended boundary condition (Johnson and Jackson 1987):

τs ¼ �π

6

ffiffiffiffiffiffi
3ϕ

p εs
εs,max

ρsg0
ffiffiffiffi
θs

p
~vs,para ð2:63Þ

where ~vs,para is the particle slip velocity parallel to the wall. ϕ is the specularity

coefficient between the particle and the wall, which is defined as the average

fraction of relative tangential momentum transferred between the particle and the

wall during a collision. The specularity coefficient varies from zero (smooth walls)

to one (rough walls). A proper value based on the particles and wall properties

should be assumed. For a specularity coefficient tending toward zero, a free slip

boundary condition for the solids tangential velocity is imposed at a smooth wall

boundary as explained by Benyahia et al. (2005).

Johnson and Jackson (1987) proposed the following wall boundary condition for

the total granular heat flux as

qs ¼
π

6

ffiffiffiffiffiffi
3ϕ

p εs
εs,max

ρsg0
ffiffiffiffi
θs

p
~vs,para �~vs,para � π

4

ffiffiffi
3

p εs
εs,max

1� e2sw
� �

ρsg0θ
3=2
s ð2:64Þ

The dissipation of solids turbulent kinetic energy by collisions with the wall is

specified by the particle–wall restitution coefficient, esw. A high value of specularity

coefficient implies high production at the wall, and a value of esw close to unity

implies low dissipation of granular energy at the wall. It is expected that the

specularity coefficient and the particle–wall restitution coefficient need to be

calibrated for a given gas/particle flow system because the specularity coefficient

cannot be measured and esw can be measured only with some difficulty (Benyahia

et al. 2005). Equations (2.63) and (2.64) could be written as

vs,w ¼ � 6μsεs,maxffiffiffi
3

p
πφρsεsg0

ffiffiffi
θ

p ∂vs,w
∂x

ð2:65Þ

θw ¼ � κθ

γw

∂θw
∂x

þ
ffiffiffi
3

p
πφρsεsv

2
s, slipg0θ

3=2

6εs,maxγw
ð2:66Þ

where

γw ¼
ffiffiffi
3

p
π 1� e2sw
� �

εsρsg0θ
3=2

4εs,max

ð2:67Þ
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2.6 Modeling of Multi-Type Particle Flow Using
the Kinetic Theory Approach

Fluid–particle systems are composed of particles of different properties, in which

segregation by size or density may occur during the flow, as was shown by

Arastoopour et al. (1982). The researchers developed a hydrodynamic model for

a mixture of gas and a multisize solid phase. They applied it to simulate

one-dimensional flow in a vertical pneumatic conveying line. They showed that

the particle size has a great effect on the pressure drop and choking velocity and that

particles segregate along the vertical transport line.

The experiment of Savage and Sayed (1984) showed the stresses in shear cell for

a mono-size mixture of polystyrenes beads were about five times higher than those

for a binary mixture. Jenkins and Mancini (1987) extended the kinetic theory of

dense gases to a binary mixture of idealized granular material for the low dissipa-

tion case. Jenkins and Mancini (1989) presented an extension of the kinetic theory

for a binary mixture of smooth nearly elastic spheres. Alam et al. (2002) and Alam

and Luding (2003) generalized the model of Willits and Arnarson (1999) for a

mixture of particles having different mass and size. However, the model proposed

by Alam et al. (2002) was limited to energy non-equipartition. Zamankhan (1995)

concluded that energy non-equipartition must be included in mixtures with different

particle properties. Wildman and Parker (2002) and Feitosa and Menon (2002)

experimentally confirmed the coexistence of two granular temperatures when the

binary mixture was exposed to external vibrations. Huilin et al. (2000) developed a

model for two-size particles with different granular temperatures; however, they

used an approach that takes the arithmetic average of the particle properties in the

collisional operator and the momentum source vanished. Garzó and Dufty (2002)

solved the kinetic equation for systems away from equilibrium. This approach

could capture not only the energy non-equipartition but also the flow behavior for

a wide range of restitution coefficients. Such a model is restricted to dilute systems

where the radial distribution function is close to unity. Iddir and Arastoopour (2005)

and Iddir et al. (2005) extended the kinetic theory to a multi-type (size and/or

density) mixture, assuming a non-Maxwellian velocity distribution and energy

non-equipartition. Each particle type is represented by a phase, with an average

velocity and a fluctuating energy or granular temperature. This means that the

interaction between the different type particle phases is at the interface. They

assumed that the deviation from the Maxwellian velocity distribution is in each

individual particulate phase; however, they assumed Maxwellian velocity distribu-

tion at the interface. Then they solved the Boltzmann’s equation for each particulate

phase using the Chapman–Enskog procedure by adding a perturbation to the

Maxwellian velocity distribution function. In a similar analysis, Willits and

Arnarson (1999) solved the Boltzmann’s equation based on Maxwellian reference

state and the revised Enskog equation. Although the range of applicability of Iddir

and Arastoopour’s work and Willits and Arnarson’s work is the same, the major

differences between the two studies are non-equipartition and unequal particle size
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properties considered in the Iddir and Arastoopour model. Willits and Arnarson

assumed a multicomponent mixture where all the particles fluctuate about the same

mass average velocity and having the same granular temperature. Iddir and

Arastoopour (2005) considered a multiphase granular flow where each phase is

represented by particles having different properties, velocities, and granular tem-

peratures. The following is the model developed by Iddir and Arastoopour (2005)

that has been incorporated in the MFIX computer code (Benyahia 2008).

2.6.1 Model Development

The present model has been obtained by considering a mixture of N solid phases

(N is the number of solid phases); each phase is composed of smooth inelastic hard

spheres, and it was also assumed the collision of particles is the dominant interac-

tion force between two particles. The assumption of hard spheres suggests that the

collisions are almost instantaneous, so that binary collisions may safely be

assumed. Each particulate phase i contains particles of mass mi and diameter di
that collide with each other in the phase i. The collisions/interaction between

particle i and other particles of different phases occurs at the interface between

phase i and the other particulate phases. Each particle in the phase i moving with

instantaneous velocity ~ci is subject to an external force ~Fiext. At any time t, the
probable number of particles per unit of volume, d~r, with velocity varying between

~ci and~ci þ d~ci, is the product of the single velocity distribution function f 1i ~c;~r; tð Þ
and the variation of the velocity d~ci

ni ~r; tð Þ ¼
ð
f 1i ~ci;~r; tð Þd~ci ð2:68Þ

Hence, the mean value of any property of phase i, ψ i ~cið Þ is defined as

< ψ i >¼ 1

ni

ð
ψ i ~cið Þf 1i ~ci;~r; tð Þd~ci ð2:69Þ

Thus, the equation of change for the particle property of phase i may be expressed

as

XN
p¼1

< ψ cið Þ��p > ¼ ∂
∂t

ni < ψ i >ð Þ þ∇ � ni < ψ i~ci >ð Þ

� ni
mi

< ~Fiext � ∂ψ i

∂~ci
> ð2:70Þ
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XN
p¼1

ψ cið Þ��p is defined as the difference between the postcollisional and the

precollisional properties of particle i due to all possible collisions with all the

particles in the mixture. The collision of particle i with the other particles in the

same phase results in the constitutive relation for each phase, and the interaction of

phase i with other phases results in interfacial forces between particulates phases.

The average of
XN
p¼1

ψ cið Þ��p is defined as

XN
p¼1

< ψ cið Þ��p > ¼
XN
p¼1

< ψ
0
i � ψ i >

��
p

¼
XN
p¼1

ððð
ψ

0
i � ψ i

� �
f 2ip
�
~ri,~ci;~rp,~cp

�
d2ip ~cip �~kip
� �

d~kipd~cid~cp

ð2:71Þ

f 2ip ¼ f 2ip ~ci;~ri;~cp;~rp
� �

is the complete pair distribution function defined as the

probability of finding, at time t, two particles i and p, such that they are centered on
~ri and ~rp and have velocities within the range ~ci, ~ci þ d~ci and ~cp, ~cp þ d~cp

Following Jenkins and Savage (1983), the assumption of chaos along with the

consideration of the correlation function allows us to write the pair distribution

function as the product of the single velocity distributions, f1i and f
1
p, weighted by the

spatial pair distribution function at contact gip(εi, εp),

f 2ip ~ci,~r � dip
2
~k;~cp,~r þ dip

2

	 

¼ gip εi; εp

� � � f 1i ~ci,~r � dip
2
~k

	 

� f 1p ~cp,~r þ dip

2

	 

ð2:72Þ

where

~cip ¼ ~ci �~cp is the relative instantaneous velocity and dip ¼ diþdp
2

~kip is the unit vector connecting the centers of the two particles, located at~ri and~rp,

respectively, and directed from i to p. In the remaining text, we consider~kip ¼ ~k.

The collisional rate of production per unit of volume,
XN
p¼1

< ψ
0
i � ψ i >

� ���
p, was

evaluated by Jenkins and Mancini (1989) as a sum of a symmetric (γcip) and

antisymmetric (χcip) terms

XN
p¼1

< ψ
0
i � ψ i >

��
p ¼

XN
p¼1

�∇ � χcip þ γcip
� � ð2:73Þ
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where

χcip ¼ � d3ip
2

ððð
ψ

0
i � ψ i

� �
f 2ip ~ci,~r � dip

2
~k;~cp,~r þ dip

2

	 

~k ~cip �~k
� �

d~kd~cid~cp

ð2:74Þ

γcip ¼ d2ip

ððð
ψ

0
i � ψ i

� �
f 2ip ~ci,~r � dip

2
~k;~cp,~r þ dip

2

	 

~cip �~k
� �

d~kd~cid~cp ð2:75Þ

Here χcip and γcip are the collisional fluxes and sources, respectively. Substituting

Eqs. (2.74) and (2.75) into the equation of change, Eq. (2.71), the continuity,

momentum, and fluctuating energy equations were obtained for ψ i equal to mi,

mi~ci, and
1
2
miC

2
i , respectively.

2.6.2 Continuity Equation

The continuity equation for the solid-phase i can be written as

∂εiρi
∂t

þ∇ � εiρi~við Þ ¼ 0 ð2:76Þ

εiρi ¼ nimi is the mass of phase i per unit volume of mixture, εi is its solid volume

fraction, and ρi is density of phase i. Here ~vi ¼< ~ci > is the mean velocity of the

particle i. The instantaneous velocity ~ci is defined as the sum of the average

velocity, ~vi, and peculiar velocity, ~Ci,

~ci ¼ ~vi þ ~Ci with < ~Ci >¼ 0

2.6.3 Momentum Equation

The momentum equation for phase i may be expressed as

εiρi
D

Dt
~við Þ þ∇ �

XN
p¼1

Pcip þ Pki

 !
� εiρi

mi

~Fiext ¼
XN
p¼1

~FDip ð2:77Þ

with
D

Dt
is the material derivative ð2:78Þ

Pki ¼ ρiεi < ~Ci
~Ci > is the kinetic pressure tensor ð2:79Þ
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Pcip ¼ χcip mi~cið Þ is the collisional pressure tensor ð2:80Þ

~FDip ¼ γcip mi~cið Þ is the collisional momentum source ð2:81Þ

2.6.4 Fluctuating Energy Equation

The fluctuating energy equation for solid-phase i can be expressed as

3

2

εiρi
mi

Dθi
Dt

þ∇ � ~qkiþ
XN
p¼1

~qcip

 !
� Pkiþ

XN
p¼1

Pcip

 !
:∇~vi ¼

XN
p¼1

�
Nip�~vi �~FDip

�
ð2:82Þ

where

θi ¼ 1

3
mi < ~Ci � ~Ci > ; ð2:83Þ

θi is the granular temperature or the fluctuating granular energy of the solid-phase I,

~qki ¼ ρiεi < ~CiC
2
i > is the kinetic heat flux; ð2:84Þ

~qcip ¼ χcip mic
2
i

� �
is the collisional energy flux; ð2:85Þ

Nip ¼ γcip mic
2
i

� �
is the collisional energy dissipation flux: ð2:86Þ

In the above governing equations, the relevant variables describing the flow field

are the average velocities, the solid volume fractions, and the granular temperatures

evaluated at location ~r of the center of the particle at time t.

2.6.5 Kinetic Equation

The kinetic equations that characterize the flow of a multiphase system are

∂
∂t

þ~c �∇þ
~Fiext

mi
�∇~c

 !
f 1i ¼

XN
p¼1

d2ip
4

ðð
gip ~r,~r þ~kdip=2
� �

f 1i ~ci1;~r; tð Þf 1i
�
~ci2,~r þ~kdip=2, t

h �

� gip ~r,~r �~kdip=2
� �

f 1p ~cp1;~r; t
� �

f 1p ~cp2,~r þ~kdip=2, t
� ��

~cip �~k
� �

d~cpd~k

ð2:87Þ
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where gip ~rð Þ is the spatial-pair radial distribution function when the particles i and p
are in contact. A solution of Eq. (2.87) near the equilibrium was obtained using the

Chapman–Enskog method (Ferziger and Kaper 1972; Chapman and Cowling

1970),

f 1i ¼ f 0i 1þ φið Þ ð2:88Þ

where f 0i is the Maxwellian velocity distribution

f 0i ¼ ni
mi

2πθi

	 
3=2

exp �miCi
2

2θi

� �
ð2:89Þ

and φi is a perturbation to the Maxwellian velocity distribution. It is a linear

function of the first derivative of ni, θi, and ~vi. Note that φi is function of the

phase mean velocity, ~vi, and not the total flow velocity, because, as mentioned in

the introduction, each kind of particle is treated as a separate phase and the

interaction is at the interface. The radial distribution function gip(εi, εp) describes
a multisized mixture of hard spheres at contact. Iddir and Arastoopour (2005)

modified the Lebowitz (1964) radial distribution function. This approach is in

agreement with the results of molecular dynamics (MD) simulation obtained by

Alder and Wainwright (1967) at both lower and higher solid volume fractions. This

equation can be written as

gip εi; εp
� � ¼ dpgii εi; εp

� �þ digpp εi; εp
� �h i

2dip
ð2:90Þ

where gii εi; εp
� � ¼ 1

1� εi þ εp
� �

=εmax

� �þ 3di
2

XN
p¼1

εp
dp

ð2:91Þ

The expression of gpp(εi, εp) is obtained by simply interchanging the indices i and p.
For a more detailed explanation for constitutive relation expressions for all solid

phases, see Iddir and Arastoopour (2005).

2.6.6 Example: Numerical Simulation of Simple Shear Flow

A binary solid mixture (1 and 2) with the same density was sheared between two

infinite parallel plates set to move with relative velocities�V0=2. The motion of the

granular mixture was in only the x-direction and was considered fully developed so

that all the flow parameters are only a function of y. In this study, x and y are the

axes parallel and perpendicular to the plates, respectively, as shown in Fig. 2.1. In

2.6 Modeling of Multi-Type Particle Flow Using the Kinetic Theory Approach 27



this example, the steady-state regime was considered, where the thermal equilib-

rium may be reached when the viscous effect due to continuous shearing is

balanced by the dissipation due to collisions.

Simple shear flow is characterized by a linear profile of the velocity field (the

shear rate, dv/dy, is constant). In this situation, the external forces are neglected, and
the particles in the mixture move with the same center of mass average velocity,~v.
This means that the granular temperatures, solid volume fractions, and gradient of

the velocities are all uniform throughout the flow zone. Therefore, fluctuating

energy equations for phases 1 and 2 reduce to the following nonlinear algebraic

equations

� μ11 þ
α12
2

1

θ1
þ 1

θ2

	 
� �
dv

dy

	 
2

¼ N11 þ N12 ð2:92Þ

� μ22 þ
α12
2

1

θ1
þ 1

θ2

	 
� �
dv

dy

	 
2

¼ N22 þ N21 ð2:93Þ

where

μ11 ¼
5

16d21g11
1þ 4

5
1þ eð Þg11ε1

	 
2

þ 4d1 1þ eð Þε21ρg11
5m1

" # ffiffiffiffiffiffiffiffiffiffi
m1θ1
π

r
ð2:94Þ

μ22 ¼
5

16d22g22
1þ 4

5
1þ eð Þg22ε2

	 
2

þ 4d2 1þ eð Þε22ρg22
5m2

" # ffiffiffiffiffiffiffiffiffiffi
m2θ2
π

r
ð2:95Þ

α12 ¼
ffiffiffi
π

p
48

d412g12
m2m1

m2
0

m1m2

θ1θ2

	 
3=2

1þ eð Þρ2ε2ε11
5
R1 ð2:96Þ

Fig. 2.1 Simple shear flow

of a binary mixture (This

figure was originally

published in AIChE Journal
51, 2005 and has been

reused with permission)
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Nip ¼ 3

4
d2ip eþ 1ð Þgipεiεp

mimp

θiθp

	 
3=2 ffiffiffi
π

p
m0

� Bip � R5 þ e� 1ð Þmp

m0

1

6
� R1

� �
ð2:97Þ

m0 ¼ m1 þ m2 ð2:98Þ

Bip ¼
mimp θp � θi

� �
2m0θiθp

ð2:99Þ

R1 ¼ 1

A
3=2
ip D3

ip

þ 9B2
ip

A
5=2
ip D4

ip

þ 30B4
ip

2A
7=2
ip D5

ip

þ � � � ð2:100Þ

R5 ¼ 1

A
5=2
ip D3

ip

þ 5B2
ip

A
7=2
ip D4

ip

þ 14B4
ip

A
9=2
ip D5

ip

þ � � � ð2:101Þ

The system of Eqs. (2.92) and (2.93) was solved numerically for θ1 and θ2, for
the same flow parameters used by Galvin et al. (2005). The large particle mass, m1

is 1. The ratio of the plate spacing to the large particle diameter H/d1 is 4.45 or 9.8,
depending on the total solid volume fraction and the solid volume fraction ratio.

The ratio of H/d1 was chosen in the MD simulation to avoid cluster formation

(Hopkins and Louge 1991; Liss and Glasser 2001; Clelland and Hrenya 2002; Alam

et al. 2002). Furthermore, the shear rate was set to a constant value of

V0=H ¼ γ ¼ 1.

The calculated granular temperatures for different diameter ratios using the Iddir

and Arastoopour (2005) model were compared with the Jenkins andMancini (1987)

theoretical results and the MD simulation results of Galvin et al. (2005).

Figure 2.2 shows the variation of the fluctuating temperature ratio with the

particle size ratio at different restitution coefficients for ε1=ε2 ¼ 0:5. The Iddir

and Arastoopour model predicts well the non-equipartition of energy of the two

interacting particles for inelastic collisions. As observed by several investigations

in the literature (e.g., Clelland and Hrenya 2002), the fluctuating granular temper-

ature of the large particles increases relative to that of the small particles with an

increase in large to small diameter ratio.

In the range of parameters investigated, equipartition was observed in two cases:

first, when the restitution coefficient is higher than 0.99 and, second, when the two

particles have the same mechanical properties (ρ1 ¼ ρ2 and d1 ¼ d2). We noticed

that the restitution coefficient is the most important parameter responsible for

non-equipartition. The effect of the restitution coefficient on the deviation of the

granular temperature of two particles from each other is enhanced by the size

disparity. For example, for e ¼ 0:99, the ratio θ1/θ2 increases very slowly with

the size ratio; however, for e ¼ 0:8, a strong increase was observed for higher

particle diameter ratios. Figure 2.3 shows the comparison between the calculated

fluctuating energy ratio as a function of the diameter ratio based on the Iddir and

Arastoopour (2005) model with the MD simulation and the theoretical results of
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Jenkins and Mancini (1987) at εT ¼ 0:5, ε1=ε2 ¼ 0:5, and a restitution coefficient of
0.95. Results given by the Iddir and Arastoopour (2005) model compared very well

with the MD simulation results compared to those obtained by Jenkins and Mancini

(1987). The deviation of the Jenkins and Mancini theory from the MD simulation

Fig. 2.2 Variation of the granular energy ratio with the diameter ratio for different restitution

coefficients. ρ1/ρ2¼ 1, εT¼ 0.5, and ε1/ε2¼ 0.5 . The subscripts 1 and 2 stand for large and small

particles, respectively (This figure was originally published in AIChE Journal 51, 2005 and has

been reused with permission)

Fig. 2.3 Variation of the granular energy with the diameter ratio for e¼ 0.95, εT¼ 0.5, and
ε1/ε2¼ 0.5. Comparison of Iddir and Arastoopour model (2005) (solid line) with the theory of
Jenkins and Mancini (1987) (dashed line) and the MD simulation results of Galvin et al.

(2005) (squares) (This figure was originally published in AIChE Journal 51 (2005) and has

been reused with permission)
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and the Iddir and Arastoopour results is more pronounced for low restitution

coefficients and high diameter ratios. At a diameter ratio less than 1.5, both theories

exhibit a good agreement with the MD simulation results.

2.7 Frictional Behavior of Granular Matters

Many industrially important gas–solid systems often include slow and dense solid

flows, which is dominated by sustained frictional contacts between the particles.

For simulations of these dense flows, in addition to the kinetic and collisional

stresses (i.e., kinetic theory), the model should account for the frictional stresses

as well, which could be calculated based on soil mechanics principles.

Makkawi and Ocone (2005) have reviewed the modeling approaches to include

the frictional effects. The most common approach to consider the effect of frictional

stresses is the kinetic frictional model based on the addition of stress from the two

limiting regimes at a critical solid volume fraction (εcr) (Johnson and Jackson 1987;
Syamlal et al. 1993; Ocone et al. 1993)

τs ¼ τkinetics�Collision þ τfriction

where

τfriction ¼ 0 for ε < εcr ð2:102Þ
μs ¼ μkinetics�Collision þ μfriction

where

μfriction ¼ 0 for ε < εcr ð2:103Þ

or switching between the two limiting regimes (Laux 1998; Makkawi and Ocone

2005) at a critical solid volume fraction as

τs ¼ max τkinetics�Collision; τfriction
� �

@ ε > εcr
τkinetics�Collision @ ε < εcr

�

This approach is based on the assumptions of Savage (1998) that consider the

solid stress comes from the kinetic, collisional, and frictional contributions in an

additive manner, where the frictional contributions appear only at higher solid

volume fractions (i.e., greater than 0.5). Although, this approach lacks a strong

physical justification and the hypothetical assumption of the critical solid volume

fraction remains without experimental proof (Makkawi and Ocone 2005), the

theory has been shown to capture the qualitative features of slow dense solid

flows (Srivastava and Sundaresan 2003).
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Most of the reported frictional stress models in the literature (Makkawi and

Ocone 2005) and CFD codes such as Ansys and MFIX are based on the critical state

theory of soil mechanics, where the shear stress τfr is described in terms of a

frictional viscosity based on the work of Schaeffer (1987). Under a normal stress,

a well-compacted granular material will shear only when the shear stress attains a

critical magnitude. This is described by a Mohr–Coulomb law based on the laws of

sliding friction. However, the Mohr–Coulomb law does not provide any informa-

tion on how the granular material deforms and flows; rather, it describes the onset of

yielding (Dartevelle 2003).

Schaeffer (1987) derived the following expression for the frictional stress, by

assuming the system to be perfectly rigid-plastic, incompressible, non-cohesive,

Coulomb powder with a yield surface of von Mises type, and the eigenvectors of the

strain rate and stress tensors are parallel, as

τf r ¼
ffiffiffi
2

p
pc sinφ

Sj j S ð2:104Þ

or equivalently

μf r ¼
pc sinφffiffiffiffiffiffiffiffiffiffiffi
4II2D

p ð2:105Þ

where φ is the angle of internal friction, II2D is the second invariant of the deviatoric

stress tensor S, and pc is the critical state pressure. According to Srivastava and

Sundaresan (2003), pc increases monotonically with ε and is expected to become

very large (i.e., diverge) as ε approaches random close packing εmax. Various
expressions have been proposed for the functional dependence of pc on ε in the

literature (Srivastava and Sundaresan 2003; Atkinson and Bransby 1978; Schaeffer

1987; Tardos 1997; Johnson and Jackson 1987; Savage 1998; Prakash and Rao

1988; Syamlal et al. 1993).

Johnson and Jackson (1987) proposed a critical state solid frictional pressure that

allows for a slight compressibility with very limited particle concentration change

(Makkawi and Ocone 2005). The Johnson and Jackson correlation for frictional

pressure can be written as

pf ¼ pc ¼
0 elsewhere

Fr:
εs � εminð Þq
εmax � εsð Þp

εmin ¼ 0:5 � εs � εmax ¼ 0:63, q ¼ 2, p ¼ 3

8<
:

ð2:106Þ

where Fr is a coefficient with different values reported in the literature from 0.05 to

5 (Johnson and Jackson 1987; O’Brien et al. 2010). The coefficient Frwas modified

by others (Nikolopoulos et al. 2013; Abbasi 2013) assuming to be a function of the

volume fraction asFr ¼ 0:1εswhile limiting the solid volume fraction to values less
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than 0.629 to prevent divergence. Note that pc is the critical state frictional pressure
and many studies assumed the critical state frictional pressure is equal to solid

frictional pressure pf (Nikolopoulos et al. 2012; Abbasi and Arastoopour 2011;

Tsuo and Gidaspow 1990), although clearly it is not an accurate assumption.

Srivastava and Sundaresan (2003) modified the Schaeffer expression for the

frictional stress and also the Johnson and Jackson (1987) expression for the

frictional pressure (see Eq. 2.108), to approximately account for strain rate fluctu-

ations and slow relaxation of the assembly to the yield surface following Savage’s

(1998) argument of existence of fluctuations in the strain rate, even in purely quasi-

static flow. The standard deviation σ of the fluctuations is related to the granular

temperature of the powder θ (taken from the rapid granular flow regime) and the

particle diameter dp, as σ ¼ bθ
1
2

dp
, where b is a constant of order unity.

Laux (1998) suggested a correlation of the following form:

μf r ¼
3 ξs∇:~us � pf

εs

��� ���
2
ffiffiffiffiffiffiffiffiffiffiffiffi
3:II2D

p
2
4

3
5 6 sinφ

9� sin 2φ

	 

ð2:107Þ

where pf is calculated based on the following Srivastava and Sundaresan (2003)

equation:

pf
pc

¼ 1� 1

n
ffiffiffi
2

p
sinφ

∇:~usffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S : Sþ �θ=dp2q �

0
B@

1
CA

1
n�1

ð2:108Þ

The angle of repose and, in turn, frictional forces for solid particles are signif-

icantly affected by the value of the compactness factor (n). The value for compact-

ness factor (n) may be determined by comparing the experimental angle of repose

with the calculated values for solid packing (Ghadirian 2016). Based on the above

equation, if the granular material dilates as it deforms, ∇:us > 0, then pf < pc if it

compacts as it deforms, ∇:us > 0, then pf > pc and when it deforms at constant

volume,∇:us ¼ 0, which is the critical state, pf ¼ pc . This behavior is in line with

the experimental measurements (see Das 1997). The value of n (the compactness

factor) is different in the dilation and compaction parts of the system. Srivastava

and Sundaresan (2003) suggested a value of
ffiffi
3

p
2
sinφ for the dilation branch, to

ensure that the granular assembly is not required to sustain tensile stress on the yield

surface. They also pointed out that n for the compaction branch can be any value

marginally greater than one. They suggested that a value of 1.03 be used when no

additional information is available. This value is measured for glass beads by

Jyotsna and Rao (1997). It is worth mentioning that decreasing the value of n in

the compactness branch will cause more deviation from the critical state frictional

pressure. In other words, n may be an indicator for nonlinearity of the τ-σ relation.
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With such a formulation, numerical singularity is avoided in regions where S:S is
zero as long as the granular temperature θ is nonzero. If, however, the physical

system does contain regions where both S:S and θ are zero (e.g., in a bin discharge

problem, the stagnant shoulders at the bottom corners of the bin), the model will fail

(Srivastava and Sundaresan 2003). However, their model captures four qualitative

behaviors of a dense granular flow: (1) the height-independent rate of discharge of

particles from a bin, (2) the dilation of particle assembly near the exit orifice, (3) the

significant effect of the interstitial air on the discharge behavior of fine particles,

and (4) the occurrence of pressure deficit above the orifice. In addition, in a

bubbling fluidized bed, the model captured the significant effect of frictional

stresses on the bubble shape.

Tardos et al. (2003) proposed another approach for intermediate granular flows,

which smoothly merges the slow–intermediate regime with the rapid dilute flow

(i.e., nonadditive approach). The continuous function may be written as

(Nikolopoulos et al. 2012)

μs ¼ μkin þ μcol þ μfric ð2:109Þ

The basic assumption of this model is that the stress during particle flow is not

constant but fluctuates around an average value. The model is restricted to the

simple geometry of the Couette device and to an incompressible material:

τs ¼ ps sinφ:tanh

ffiffiffiffiffiffiffi
Kπ

p

2

	 

ð2:110Þ

where ps is the solid pressure and is calculated from the kinetic theory. φ is the angle

of internal friction, and K is a parameter defined in terms of the average strain rate

hSi and its standard deviation, σ, such that K ¼ Sh i
2σ

h i2
. As concluded by Makkawi

and Ocone (2005), by comparing various approaches, the superiority of these

approaches is a matter of open debate and subject to further experimental

validations.

Up to this point, all of the discussed approaches were based on the von Mises/

Mohr–Coulomb law that, as mentioned earlier, does not provide any information on

how the granular material deforms and flows. Although these models can properly

simulate dilatancy, they do not capture consolidation (Dartevelle 2003). Therefore,

the standard von Mises/Coulomb yield criterion cannot model the effect of com-

pressibility phenomena (i.e., changes of bulk density) occurring in the returning

system of circulating fluidized bed units and subsequently results in severe under-

estimation of the exerted frictional viscous forces (Nikolopoulos et al. 2013).

To overcome the shortcomings of the von Mises/Coulomb yield criterion,

several modifications are proposed in the literature (Dartevelle 2003), such as the

Gray yield criterion (Gray et al. 1991). The Gray yield criterion can be written as
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f σ, τð Þ ¼ τp : τp � sinφð Þ2 pp � λ∇ � μs � σ
� �2 � σ2
h i

¼ 0 ð2:111Þ

It should be mentioned that the Gray criterion reduces to the von Mises/Coulomb

criterion if ρp � λ∇ � μs � σ
� � ¼ 0 and σ ¼ pp (in other words, these two yield

criteria are the same if and only if ∇ � μs ¼ 0, which is the case only at the critical

state of the soil mechanics where solids deform without volume changes). The Gray

yield criterion is based on the approximation that normal stresses in the particulate

phase are caused not only by the pressure but also by the viscous normal stresses.

According to Dartevelle (2003), the plastic potential theory combined with the

critical state approach can successfully describe the phenomenon of dilatancy,

consolidation, and independence between the rate-of-strain tensor and the stress

tensor. Using this approach assuming a slightly compressible, dry, non-cohesive,

and perfectly rigid-plastic system, the expression for the frictional viscosity may be

written

μf r ¼
ps sin

2φ

εs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 sin 2φ:II2D þ ∇:~usð Þ2

q ð2:112Þ

and solid-phase bulk viscosity as

ξs ¼
ps

εs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 sin 2φ:II2D þ ∇:~usð Þ2

q ð2:113Þ

Equation (2.113) reduces to Eq. (2.105) if, ∇:~us ¼ 0, corresponds to the critical

state of soil mechanics and linear τ-σ relation. A detailed discussion and derivation

of the models can be found in Dartevelle (2003).

Nikolopoulos et al. (2012)) have pointed out that the numerical results indicate

that the values calculated by the Laux (Eq. 2.107) and Dartevelle (Eq. 2.112)

expressions are of the same order of magnitude for values of solid volume fractions

lower than 0.5. However, the Laux expression predicts higher solid frictional

viscosity compared to the Dartevelle model for solid volume fractions higher

than 0.55. Nikolopoulos et al. (2012) also showed that the results of simulations

using the Dartevelle (2003) model are less accurate compared to the results of

simulations using the Laux model in calculating the angle of repose.

2.8 Mass, Momentum, and Constitutive Equations

Tables 2.1 and 2.2 summarize the governing equations and constitutive equations

for different regimes of fluid–particle flow.
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Table 2.1 Two-fluid model governing equations

Conservation of mass
Gas phase

gggggg mv
t

��
=Ñ+

¶
¶ ).()( rere (T-1)

Solid phase

ssssss mv
t

��
=Ñ+

¶
¶ ).()( rere (T-2)

(T-3)

Conservation of momentum
Gas phase

(T-4)

Solid phase

(T-5)

Conservation of species
Gas phase

( ) ( ) jjgggjgg Ryvy
t

=×Ñ+
¶
¶ �rere

(T-6)

Solid phase:

jisssiss Ryvy
t

=Ñ+
¶
¶ ).()( �rere

(T-7)

Conservation of solid phase fluctuating energy
( ) ( ) ( ) ( ) gssssssss

ss kvPv
t

fgqtqerqer
+-Ñ×Ñ+Ñ+-=úû

ù
êë
é ×Ñ+

¶
¶ :

2
3 I (T-8)

1=+ sg ee

( ) ( ) ( )sggsggggggggggg vvgPvvv
t

�����
--+×Ñ+Ñ-=×Ñ+

¶
¶ breterere

( ) ( ) ( )sggsssssssssssss vvgpPvvv
t

�����
-++Ñ-×Ñ+Ñ-=×Ñ+

¶
¶ breterere
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Table 2.2 Two-fluid model constitutive equations

Gas phase stress

(T-9)

Solid phase stress

( )[ ] Ivvv ssss
T

sssss
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×Ñ÷

ø
ö

ç
è
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3
2
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Collisional dissipation of solid fluctuating energy
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÷
ø

ö
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æ
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p
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p
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22 (T-11)

Radial distribution function

(T-12)

Solid phase pressure

sossssssscollisionkinetics geppp qerqre 2)1(2 ++=+= frss ,ee < (T-13)

frictioncollisionkinetics pppp ++= frss ,ee ³ (T-14)
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Solid phase shear viscosity
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Table 2.2 (continued)

Solid phase bulk viscosity

frss ,ee < Lun et al. (1984) (T-21)

( )2
2

2 ..sin4 sDs

s
s

uII

p
�

Ñ+
=

fe
x

frss ,ee ³ Dartevelle (2003) (T-22) 

Conductivity of the fluctuating energy

( ) ( ) ( )
p
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k 0
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where 

qk Ñ= sq (T-24)

p
qrex )1(

3
4

0 egd psss +=

Granular energy exchange between phases

Laminar flow                      qb gsgs 3j

j

-= Gidaspow et al. (1992)      (T-25)

Disperse turbulent flow  )232( ffgsgs kk -= qb Sinclair and Mallo (1998)   (T-26)

kf is the turbulent kinetic energy of the gas phase.  

Johnson and Jackson (1987) boundary condition for particles 
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-29)

38 2 Conservation and Constitutive Equations for Fluid–Particle Flow Systems



Table 2.2 (continued)

Interphase exchange (drag) coefficient 

Modified Wen and Yu model (1966) for concentrated or non-homogeneous solid phase:

dDsgg
p

gg
gs HCvv

d
.

)1(
4
3

0-
-

= r
ee

b (T-30)

where Hd is the heterogeneity factor (see Chapter 3 for more details)   

Rep < 1000; ( )687.0
0 Re15.01
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Rep ³ 1000; 44.00 =DC (T-32)
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Syamlal and O’Brien drag model (Syamlal et al. 1993) for very dilute or homogeneous solid 
phase:
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where vts is the particle terminal velocity,
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a and bare the adjustable parameters.
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2.9 Nomenclature

A Avogadro’s number

c Velocity space, m/s

~cs Instantaneous particle velocity in i direction, m/s
~Cs

Peculiar particle velocity, m/s

dip¼ (di + dp)/2 Average diameter of particles i and p, m

ds and, dp Diameter of particle, m

E Internal energy, J

e Restitution coefficient

esw Particle–wall restitution coefficient frequency distribution of

velocities of particles
~FDip Momentum source (drag between solid phases), N

f0s Maxwellian velocity distribution function

f1s Single velocity distribution function

f2ip Pair velocity distribution function

g Gravity acceleration, m/s2

g0 Radial distribution function

gip Radial distribution function at contact between particles i and p

gss Radial distribution function at contact between particles of the

same phase

H Gap between two plates, m

Ī Identity tensor

kB The Boltzmann constant (1.3805� 10�23 J/K)
~k ¼ ~kip Unit vector connecting the centers of the two particles

Kf Turbulent kinetic energy of fluid, m2/s2

ks Granular conductivity, kg/m∙s
M Molecular weight, kg/kmol

ms Mass of particle of phase s, kg

m0 ¼ mi þ mp Total mass of two colliding particles, kg

N Number of moles

n Compact factor

ns Number density of phase s

Nip Energy dissipation

Pc Collisional pressure tensor, N/m2

Pk Kinetic pressure tensor, N/m2

pc Critical state pressure, N/m2

pf Frictional pressure, N/m2

Q Momentum flux, N/m2

~qc Collisional flux, J/s∙m2

~qk Kinetic flux, J/s∙m2

Rj Rate of heterogeneous reaction between phases, mol/m2∙s
Rep Particle Reynolds number
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hSi Average strain rate

r Position

S Deviatoric stress tensor

T Average of random kinetic energy

v Hydrodynamic velocity, m/s

~v Center of mass mean velocity, m/s

~vs Mean velocity of phase s, m/s
~V0

Velocity of plates, m/s

~vs,para Particle slip velocity parallel to wall, m/s

vts Solid particle terminal velocity, m/s

yi Species mass fraction

Subscripts

1 Large

2 Small

cr Critical

fr Frictional

g Gas phase

col Collisional

kin Kinetic

max Maximum

T Total

s Solid phase

w Wall

Greek Symbols

χip Collisional flux, J/s∙m2

εs Solid volume fraction of phase s

εT Total solid volume fraction

φs Perturbation to Maxwellian distribution function

γip Collisional source of granular temperature, J/m2∙s
μ Viscosity, kg/m. s

μss Granular viscosity of phase s, kg/m. s

μip Mixture granular viscosity, kg/m. s

ρs Solid density of phase s, kg/m3

θs Fluctuating granular energy m2/s2

θm Mixture fluctuating granular energy, m2/s2

τN Mixture normal stress, N/m2

τs Solid-phase shear stress, N/m2

τt Mixture shear stress, N/m2

ψ s Property of particle

θ Granular temperature (random kinetic energy per unit mass), m2/s2

ϕ Specularity coefficient
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φ Angle of internal friction

φgs Granular energy exchange between phases

ρ Bulk density, kg/m3

εs Volume fraction of solids

ρs Solid density, kg/m3

II2D Second invariant of the deviatoric stress tensor

γ Shear rate, 1/s

β Interface momentum exchange coefficient

γ Collisional energy dissipation, J/m3∙s
ξ Solid-phase bulk viscosity, kg/m∙s
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Chapter 3

Homogeneous and Nonhomogeneous Flow
of the Particle Phase

3.1 Introduction

For simulation, design, and scale-up of commercial fluidized bed and gas–particle

flow systems, a computationally feasible approach may be obtained from the

averaged continuum equations of motion for both fluid and particles, which is

often called the two-fluid model (TFM) (Arastoopour and Gidaspow 1979b, c;

Gidaspow 1994; Arastoopour 2001). The continuum approach generally relies on

closures for the solids stresses that most often are derived from granular kinetic

theory in the kinetic–collisional regime and from soil mechanics in the dense–

frictional regime. The averaging process leading to the TFM equations erases the

details of flow at the level of individual particles; but their consequences appear in

the averaged equations through terms such as drag force, for which one must

develop constitutive relations (Gidaspow 1994; Arastoopour 2001; Sinclair and

Jackson 1989). For example, in the momentum balance equations, constitutive

relations are needed for the gas–particle interaction forces. Gas–particle flows in

fluidized beds and riser reactors are inherently oscillatory, and they manifest in

nonhomogeneous structures over a wide range of length and timescales. Thus, if

one sets out to solve the microscopic TFM for gas–particle flows, grid sizes of the

order of 10-particle diameter or smaller become essential (Igci et al. 2008;

Benyahia 2012b). Moreover, such fine spatial resolution reduces the time steps

required, further increasing the needed computational time. For most devices of

practical (commercial) interest, it is nearly impossible to resolve all heterogeneous

flow structures in large-scale industrial risers using a computational grid size of the

order of a few particle diameters. In addition, such extremely fine spatial grids and

small time steps are unaffordable and require significant computational time and

use of significant computational facilities.

Gas–particle flows in large fluidized beds and risers often are simulated by

solving discretized versions of the TFM equations over a coarse spatial grid.

Such coarse grid simulations do not resolve the small-scale (i.e., subgrid scale)
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spatial structures (Igci et al. 2008; Milioli et al. 2013). The effect of the large-scale

structures using coarse grids must be accounted for through appropriate modifica-

tions to the closures.

One of the major sources of numerical inaccuracy for the TFM originates from

the models used for the calculation of drag force (Nikolopoulos et al. 2013; Abbasi

and Arastoopour 2011; Jang et al. 2010). The homogeneous drag models

(Arastoopour et al. 1990; Syamlal and O’Brien 2003; Gidaspow 1994; Wen and

Yu 1966) assume a homogeneous structure inside the control volumes, which is not

valid due to the formation of clusters (dense phase) in the concentrated particulate

phase (e.g., Es> 2%). The effective drag coefficient in the coarse grid simulations

will be lower than that in the homogeneous TFM to reflect the tendency of the gas to

flow more easily around the clusters (bypass the clusters) than through a homoge-

neous distribution of the particles (Igci et al. 2011; Benyahia 2009; Sarkar et al.

2014; Ghadirian and Arastoopour 2016).

Qualitatively, this is equivalent to an effectively larger apparent size for the

particles. Therefore, any coarse grid continuum simulation of gas–solid flows

should include subgrid corrections to the homogeneous drag force acting on the

particles. As a matter of fact, the overprediction of drag force by the homogeneous

models is significant and can lead to overprediction of solid circulation rates and

underestimation of pressure drops in circulating fluidized beds (CFB) and overpre-

diction of bed expansion in bubbling fluidized beds (BFB).

Arastoopour and Gidaspow (1979a) were the first to include the effect of clusters

in the drag force between phases in gas–solid systems by assuming an effective

particle diameter larger than the actual particle diameter and therefore reducing the

drag force between phases. Recently, several approaches have been proposed to

account for the effect of the small unresolved scales on the interphase momentum

exchange when using the TFMs on coarse computational grids. Among them, two

approaches have gained significant attention in the literature: filtered or subgrid and

energy minimization multi-scale (EMMS).

Igci et al. (2008) and Milioli et al. (2013) derive residual correlations from

filtering fully resolved simulations on a two-dimensional (2d) periodic domain with

several average particle volume fractions. Igci et al. (2011) showed that the filtered

TFM approach has shown promise to be a tool to simulate gas–particle flows of

fluid catalytic cracking (FCC) particles in the industrial-scale riser of a CFB.

Benyahia and Sundaresan (2012) also showed that the subgrid models for coarse

grid simulations of continuum models may also be used for coarse grid simulations

of discrete particle models.

The EMMS approach (Li and Kwauk 1994; Wang and Li 2007; Benyahia 2012a;

Li et al. 2012; Ghadirian and Arastoopour 2016), on the other hand, is based on the

assumption that heterogeneous structures (i.e., clusters) with different sizes form

and contribute to the drag reduction between the gas and particulate phases. The

resulting underdetermined set of equations is then solved by minimizing a function,

called the stability condition. Physically, the stability criterion is the net energy

exchange between phases to suspend and transport the solids.
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3.2 Filtered or Subgrid Model

The TFM equations are coarse-grained through a filtering operation that amounts to

spatial averaging over some chosen filter length scale. In these filtered (coarse-

grained) equations, the consequences of the flow structures occurring on a scale

smaller than a chosen filter size appear through residual correlations for which one

must derive or postulate constitutive models (Igci et al. 2008). If constructed

properly, and if the several assumptions innate to the filtering methodology hold

true, the filtered equations should produce a solution with the same macroscopic

features as the finely resolved kinetic theory model solution; however, obtaining

this solution should come at less computational cost.

According to Igci et al. (2008), if εs (y, t) denotes the particle volume fraction at

location y and time t is obtained by solving the microscopic TFM, the filtered

particle volume fraction εs x; tð Þ can be defined as

εs x, tð Þ ¼
ð
V

G x, yð Þεs y, tð Þdy ð3:1Þ

where G(x,y) is a weight function that depends on x and y and V denotes the region

over which the gas–particle flow occurs. The weight function satisfies
R
G(x,y)

dy¼ 1. By choosing how rapidly G(x,y) decays with distance measured from x,
one can change the filter size. Igci et al. (2008) defined the fluctuation in particle

volume fraction as

εs
0 ¼ εs � εs ð3:2Þ

For example, the filtered phase velocities are defined according to

εs x, tð Þvs x, tð Þ ¼
ð
V

G x, yð Þεs y, tð Þvs y, tð Þdy ð3:3Þ

εg x, tð Þvg x, tð Þ ¼
ð
V

G x, yð Þεg y, tð Þvg y, tð Þdy ð3:4Þ

vg and vs denote local gas- and particle-phase velocities appearing in the

microscopic TFM.

Igci et al. (2008) then derived filtered continuity and momentum equations along

with constitutive relations. For example, filtered gas–particle interaction force

includes a filtered gas–particle drag force and a term representing correlated

fluctuations in particle volume fraction and the (microscopic TFM) gas-phase stress

gradient as

βf il evg � evs� � ¼ βmicro εs; vg � vs
�� ��� �

vg � vs
� �� ε 0s∇ � τ 0s ð3:5Þ
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where βmicro is the drag coefficient in the microscopic TFM. Igci et al. (2008) also

provided an algebraic form for the filtered drag coefficient as

βf il ¼
32 Fr�2

f þ 63:02Fr�1
f þ 129

Fr�3
f þ 133:6Fr�2

f þ 66:61Fr�1
f þ 129

βmicro ð3:6Þ

Frf is the Froude number based on the filter size and is defined as

Frf ¼ v2t
gΔf

ð3:7Þ

where vt is the terminal settling velocity and Δfis the filter size.

For further discussions on dependence of the residual correlations on the filter

size, filtered particle volume fraction, and filtered slip velocity, all of which serve as

a marker for the extent of subfilter-scale in-homogeneity, see Igci et al. (2008) and

Milioli et al. (2013).

3.3 Energy Minimization Multi-Scale (EMMS) Approach

The energy minimization multi-scale (EMMS) approach was first proposed by Li

and Kwauk (1994) based on the coexistence of both dense and dilute regions in a

CFB reactor. The model parameters are found by minimization of the mass-specific

energy consumption for suspending and transporting the particles as the stability

criteria for flow structure inside the reactor (Benyahia 2012a).

The EMMS model is able to account for heterogeneous solid structures and

cluster formation in the system. Benyahia (2012a) concluded that use of the

EMMS-based drag model is accurate and necessary for the prediction of the

averaged solid mass and pressure profile along the fully developed flow region of

the riser.

Equations (T-1) through (T-9) in Table 3.1 show the EMMS drag model based

onWang et al. (2008) and Nikolopoulos et al. (2010). In this approach, the Wen and

Yu (1966) drag model is multiplied by a heterogeneity factor, Hd, that is calculated

by solving Eqs. (T-1) through (T-9) for minimization of Eq. (T-10). This is a

nonlinear optimization problem that should be solved for any combination of ug,
us, and εg. Finally, the heterogeneity factor is calculated by Eq. (T-12) and is

implemented in the computational fluid dynamics (CFD) code. Then the drag

expression can be expressed as

βgs ¼
3

4

1� εg
� �

εg
dp

ρg vg � vsjCD0

�� :Hd ð3:8Þ

Table 3.2 presents the closure terms for the EMMS equations.
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Table 3.1 EMMS governing equations
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Ghadirian and Arastoopour (2016) calculated the heterogeneity factor Hd (the

ratio of drag force for nonhomogeneous solid-phase flow using the EMMS

approach to drag force calculated using the Wen and Yu drag expression for a

homogeneous solid-phase flow system) as a function of voidage at different specific

slip velocities for flow of gas and particles with 185 μm diameter and 2500 kg/m3

density. Figure 3.1 shows the calculated heterogeneity factor Hd at slip velocities of

0.5, 1, and 2 m/s. As this figure shows, in very dilute regions of the system, the solid

flow pattern approaches toward homogeneous flow. At regions with a solid volume

fraction of less than 0.1,Hd initially decreases sharply, and then, for a wide range of

Table 3.2 Closure terms for the EMMS model

Dense phase Dilute phase Interphase

Effective drag

coefficient
Cdc ¼ cd0cε�4:65

c Cdf ¼ cd0f ε�4:65
f Cdi ¼ cd0i 1� fð Þ�4:65

Standard drag

coefficient
Cd0c ¼ 24

Rec
þ 3:6

Re0:313c

Cd0f ¼ 24

Ref
þ 3:6

Re0:313f

Cd0i ¼ 24

Rei
þ 3:6

Re0:313i

Reynolds

number
Rec ¼ ρddp

μg
vscj j Ref ¼ ρddp

μg
vsf
�� �� Rei ¼ ρddcl

μg
vif
�� ��

Slip velocity vsc ¼ vc � εcvpc
1� εc

vsf ¼ vf � εf vpf
1� εf vsi ¼ 1� fð Þ vf � εf vpc

1� εc

� �

Drag force
Fc ¼ Cdc

πd2p
4

ρg
2
vsc vscj j Ff ¼ Cdf

πd2p
4

ρg
2
vsf vsf

�� �� Fi ¼ Cdi

πd2p
4

ρg
2
vsi vsij j

Number of

particles in

cluster

mc ¼ f 1� εcð Þ
πd3p
6

mf ¼
1� fð Þ 1� εf

� �
πd3p
6

mi ¼ f
πd3cl
6

Fig 3.1 Heterogeneity factor (Hd) as a function of voidage at different slip velocities (This figure

was originally published in Powder Technol 288, 2016 and has been reused with permission)
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solid volume fraction greater than 0.15, it levels off at a value of about 0.02 for slip

velocities between 0.5 and 2 m/s. This makes the EMMS calculated drag force for

the nonhomogeneous solid phase significantly lower than the prediction of any

homogeneous drag model. The sudden decrease in Hd is because of the presence of

clusters that allow the gas to bypass the solids and therefore results in a considerable

decrease in the drag force between phases. This figure also suggests that variations

in Hd with respect to the solid volume fraction are more significant than Hd

variations with respect to the slip velocity. Therefore, we may neglect the effect

of slip velocity variation in most of the gas–solid flow systems.

Ghadirian and Arastoopour (2016) simulated bed expansion using 2D TFM CFD

equations for both homogeneous and nonhomogeneous particle phases. They con-

cluded that using a nonhomogeneous drag expression, such as EMMS, predicts the

bed expansion with noticeably higher accuracy (20% or less), while homogeneous

models used in their study continued to overpredict the bed expansion by up to

about 70% in comparison with the correlation developed based on the experimental

data of Krishna (2013).

Figure 3.2 shows the bed expansion factor (final bed height/initial bed height) for

the EMMS (developed for 185 μm and 2500 kg/m3 density particles) and two

homogeneous models as well as the experimentally based correlation of Krishna

(2013). To demonstrate the effect of particle type (particle size and density) on the

heterogeneity of the system, the results of another set of simulations using the

EMMS approach derived for FCC particles (Lu et al. 2009) are also shown in this

Fig. 3.2 Comparison of bed expansion factor as a function of inlet gas velocity using different

drag models with experimental data (This figure was originally published in Powder Technol
288, 2016 and has been reused with permission)
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figure. In the latter case, the EMMS approach was derived by Lu et al. (2009) for

FCC particles (75 μm and 1500 kg/m3), but the resulting heterogeneity factor is

used to simulate 185 μm bed expansion and 2500 kg/m3 particle density.

Figure 3.2 also shows that the homogeneous models predict a very high value for

bed expansion with about 70% deviation from the experimental correlation. Using

the EMMS model, the bed expansion factor shows only less than 10% deviation

from the experimental values that could be within the experimental error. This

graph also shows that the bed expansion calculated based on the EMMS approach

derived for FCC particles improves the bed expansion predictions compared to the

homogeneous model. It predicts experimental values within a 20% deviation.

3.4 Nomenclature

ac Acceleration of particles in dense phase, m/s2

af Acceleration of particles in dilute phase, m/s2

CDc Effective drag coefficient in dense phase

CDf Effective drag coefficient in dilute phase

CDi Effective drag coefficient in interphase

dp Particle diameter, m

dcl Cluster diameter, m

f Clusters volume fraction (m3 of clusters/m3 in control volume)

F Drag force, N

Fr Froude number

g Gravitational acceleration, m/s2

G Weight function in filtered model

Hd Heterogeneity index

mc Number of particles inside clusters per unit volume

mf Number of particles in dilute phase per unit volume

mi Number of cluster in control volume per unit volume

n Constant in the equation of εc
Nst Energy interchanged between flow phases, W/kg

vg Real gas velocity of gas in control volume, m/s

vs Real particle velocity in control volume, m/s

vc Superficial gas velocity in dense phase, m/s

vf Superficial gas velocity in dilute phase, m/s

vsc Superficial slip velocity in dense phase, m/s

vsf Superficial slip velocity in dilute phase, m/s

vsi Superficial slip velocity in interphase, m/s

vpc Superficial particle velocity in dense phase, m/s

vpf Superficial particle velocity in dilute phase, m/s

vt Terminal settling velocity, m/s
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Greek Symbols

β Momentum exchange coefficient, kg/m3 s

βmicro Drag coefficient in microscopic two-fluid model

βfil Filtered drag coefficient

μg Gas dynamic viscosity, kg/m. s

ρg Gas density, kg/m3

ρs Particle density, kg/m3

εg Voidage, m3 of gas/m3 in control volume

εs Volume fraction of particles, m3 of particles/m3 in control volume

εc Voidage in dense volume, m3 of gas/m3 of dense phase

εf Voidage in dilute volume, m3 of gas/m3 of dilute phase

εmf Voidage at minimum fluidization

εs Filtered particle volume fraction

εs
’ Fluctuation in particle volume fraction

εg Filtered gas volume fraction

εg
’ Fluctuation in gas volume fraction

Δf Filter size, m

σα Dense phase voidage standard deviation
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Chapter 4

Polydispersity and the Population
Balance Model

4.1 Introduction to Polydisperse Systems and the Method
of Moments Solution Technique

In fluid–particle flow systems, when the disperse-phase (e.g., particle phase) prop-

erty distribution is wide or changing due to the particulate processes (such as

changes in size distribution due to breakage, agglomeration, attrition, or growth

or changes in disperse-phase density due to heterogeneous chemical reactions), use

of average values for disperse-phase properties is no longer accurate. Successful

computational fluid dynamics (CFD) simulations of polydisperse flows must

include the distribution of particulate phase properties and its variation caused by

the particulate processes.

One method to account for polydispersity in the system is using a multi-fluid

model by dividing the disperse phase into different classes based on the desired

property by assigning one fluid for each class. As discussed in Chap. 2, Iddir and

Arastoopour (2005) extended the kinetic theory to granular mixtures of different

mechanical properties (size, density, and/or restitution coefficient) for multi-type

particle systems where each particle group was considered as a separate phase

with different average velocity and granular energy. An alternative method to

account for polydispersity of the particulate phase is based on the population

balance approach. This approach is expected to be computationally more attrac-

tive and is also able to account for changes in the disperse-phase property

distributions.

The population balance equation (PBE) is a balance equation based on the

number density function and accounts for the spatial and temporal evolutions of

the particulate phase internal variable distribution function in a single control

volume. This equation is an integrodifferential equation and involves both integrals

and derivatives of the distribution function.

Ramkrishna (2000) and Vanni (2000) provided a comprehensive review of the

subject of PBE in terms of formulation of PBE, solution techniques, applications,
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and theoretical considerations. Solution methods of PBE include method of suc-

cessive approximations, method of Laplace transform, method of moments

(MOM), method of weighted residuals (MWR), discrete formulations for the

solution, and the Monte Carlo method. Among them, MOM is widely accepted as

a computationally attractive method and has gained significant attention.

MOM is based on solving the distribution function transport equation in terms of

its lower-order moments. For fluid–particle flow systems, some of the variables in

PBE need to be calculated from the CFD model, and, in turn, solution of PBE gives

some of the phase properties needed in the CFD model. Therefore, PBE and CFD

need to communicate via a two-way coupling. However, in its original form, this

method is capable of modeling only very simple particulate processes due to some

mathematical limitations (e.g., closure problem) (Strumendo and Arastoopour

2008). To overcome these limitations, different solution methods have been pro-

posed by many researchers. The various forms of MOM can be expressed in four

categories:

4.1.1 Classical Method of Moments (MOM)

In this approach, the functional form of the property (i.e., size) distribution function

is assumed, while the unknown parameters in the distribution function are inde-

pendent of the internal variables and can be computed as a function of the moments

(Barrett and Webb 1998). Although in some cases these methods can provide good

results and at the same time are not computationally intensive, the obvious draw-

backs are that they are not general and they require that the functional form of the

distribution function does not change during the process (Strumendo and

Arastoopour 2008).

4.1.2 Quadrature Method of Moments (QMOM)

In this approach, no explicit assumption is made regarding the form of the size

distribution function, and the integrals appearing in the moment equations are

computed numerically by means of quadrature formulas. This technique was first

presented by McGraw (1997) and later applied to different processes by others

(Barrett and Webb 1998; Marchisio et al. 2003a, b). Using this approach, McGraw

computed the evolution of the moment equations correctly and efficiently (from a

computational point of view). Different from the methods of the first category, this

method can be considered general because no explicit assumption is made regard-

ing the functional form of the distribution function. On the other hand, in QMOM,

the solution is given in terms of the moments, while the size distribution function

disappears from the governing equations. The reconstruction of the distribution

function from the moments (Diemer and Olson 2002a, b), if possible, can be rather
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complex (Strumendo and Arastoopour 2008). In QMOM, reconstruction of the

distribution function is achieved using the moment-inversion algorithm through

approximation of the distribution function by Dirac delta functions. However, the

positivity of the number density function cannot be guaranteed by QMOM (Yuan

2013). To overcome this problem, the conditional quadrature method of moments

(CQMOM) has been proposed by Yuan and Fox (2011). In CQMOM, the moment-

inversion algorithm is based on one-dimensional (1D) adaptive quadrature of

conditional velocity moments and is shown to always yield realizable distribution

functions (i.e., nonnegative quadrature weights). CQMOM can be used to compute

exact N-point quadratures for multi-valued solutions (also known as the multivar-

iate truncated moment problem) and provides optimal approximations of continu-

ous distributions. In order to control numerical errors arising in volume averaging

and spatial transport, an adaptive 1D quadrature algorithm is formulated for use

with CQMOM (Yuan and Fox 2011). However, one drawback still exists with

CQMOM, which is the inability of the method to provide explicit values for the

density function.

To overcome this problem, Yuan et al. (2012) proposed a method called

extended quadrature method of moments (EQMOM) by generalizing the quadra-

ture formula with kernel density functions with finite or infinite support param-

eters. The parameter value is determined by fixing one additional moment. The

advantage of this method over the QMOM is that, with one additional moment, it

is possible to reconstruct a smooth and nonnegative distribution function that

closely reproduces the moment set (Marchisio and Fox 2013). Compared to

CQMOM, it uses explicit values for the distribution function. For details of this

method, see Yuan (2013).

4.1.3 Direct Quadrature Method of Moments (DQMOM)

This is another version of the quadrature-based methods that has been proposed by

Marchisio and Fox (Marchisio and Fox 2005) to overcome some disadvantages of

QMOM when dealing with (1) multivariate distributions and (2) systems with a

strong dependency of the disperse-phase velocity on the internal variables

(Strumendo and Arastoopour 2008). DQMOM differs from QMOM because the

abscissas and the weights of the quadrature approximation are tracked directly

(rather than the moments, as in QMOM). Furthermore, an explicit expression for

the particle distribution function is given in terms of a summation of Dirac delta

functions. However, this method also suffers from the previously mentioned draw-

backs of QMOM and CQMOM due to the use of Dirac delta function

approximation.
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4.1.4 Finite Size Domain Complete set of Trial Functions
Method of Moments (FCMOM)

Strumendo and Arastoopour (Strumendo and Arastoopour 2008, 2010) introduced a

new version of method of moments called Finite size domain Complete set of trial

functions Method of Moments (FCMOM), which can be regarded as the fourth

category of these methods. The method has unique advantages including fast

convergence to the exact solution and provision of the solution of PBE in terms

of the moments of the distribution and the reconstructed distribution function itself,

which makes it distinct from other available approaches. The method has been

validated against available analytical solutions or self-similar solutions for the

growth, aggregation, dissolution, and simultaneous growth and aggregation cases

in both univariate and bivariate homogeneous flows. In addition, FCMOM has been

formulated for inhomogeneous systems without breakage or aggregation, and its

performance was excellent in all of the cases (Strumendo and Arastoopour 2008,

2010). The applicability of the method in simulations of a complex system (e.g.,

inhomogeneous with particulate processes) using the multiphase CFD approach

was recently studied by Abbasi and Arastoopour (2013). In this chapter, we will

discuss the fundamentals of PBE and FCMOM and the coupling of FCMOM with

the two-fluid model (TFM).

4.2 Population Balance Equation

The population balance equation (PBE) is a balance equation based on the number

density function f (ξ; x, t), where ξ and x are internal and external coordinates,

respectively. PBE accounts for the spatial and temporal evolutions of the number

density function in a single control volume. Depending on the system of interest,

the number density function f(ξ; x, t) may have only one internal coordinate (i.e.,

particle size) or multiple coordinates, such as particle size and surface area (March-

isio et al. 2003a). Here we consider only a univariate system with the particle size

(ξ) being the only internal coordinate.

For an inhomogeneous particulate system, the general governing equation

becomes

∂f ξ; x; tð Þ
∂t

þ ∂
∂xi

vp ξ; x; tð Þf ξ; x; tð Þ� �þ ∂
∂ξj

∂ξj
∂t

f ξ; x; tð Þ
� �

� ∂
∂xi

Dpt ξ; x; tð Þ f ξ; x; tð Þ
∂xi

� �
¼ h ξ; x; tð Þ

ð4:1Þ

The terms on the left-hand side are the accumulation term, convective term with

respect to the external coordinate, convective term with respect to the internal
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coordinate, and diffusive term, respectively. In the third term,
∂ξj
∂t is the flux in ξ-space

(Marchisio et al. 2003a) or, in other words, the growth rate of the internal variable ξ
(e.g., size). vp and Dpt are particle-phase velocity and turbulent diffusivity, respec-

tively, which generally are functions of time, location, and internal coordinates.

The source term h(ξ; x, t) on the right-hand side accounts for the net rate of

introduction of new particles into the system. It assumes that aggregation/coalescence

and breakage are the only mechanisms causing birth and death of particles or droplets

in the system. The aggregation/coalescence source term could be written in the form

of the right-hand side of the classical Smoluchowski equation (Smoluchowski 1917):

df ξ; x; tð Þ
dt

¼ 1

2

ðξ
0

β ξ� η, ηð Þ:f �ξ�η; x, t
�
:f η; x; tð Þdη

� f ξ; x; tð Þ:
ð1
0

β ξ; ηð Þ:f η; x; tð Þdη
ð4:2Þ

On the right-hand side of Eq. (4.2), the first term accounts for birth of particles with

size ξ due to aggregation or coalescence of two smaller particles with size ξ� η and
η; the second term represents the death of particles with size ξ due to aggregation or
coalescence with particles of all other sizes. β is the aggregation kernel, which gives
the frequency that particles of size ξ� η and η collide to form particles of size ξ.
Aggregation/coalescence usually depends on particle-particle interactions, local

shear rate, and fluid-particle properties.

Similarly, the net rate of introduction of new particles of size ξ into the system

due to breakage can be defined as

df ξ; x; tð Þ
dt

¼
ð1
ξ

a ηð Þ:b�ξjη�:f η; x; tð Þdη� a ξð Þf ξ; x; tð Þ ð4:3Þ

where a is the breakage kernel which gives the rate of breakage of a particle of a

certain size and b(ξ |η) is the daughter-size distribution function on breakage of

particles of size λ (Marchisio et al. 2003a; Marchisio and Fox 2005).

4.3 Finite Size Domain Complete set of Trial Functions
Method of Moments (FCMOM) Approach

In all of the solution methods based on the method of moments (MOM), the key is

writing the transport equation (PBE) in terms of the lower-order moments of the

number density function, f, in a closed form (Marchisio et al. 2003a). The ith

moment of the number density function is defined as
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μi ¼
ð1
0

ξi:f ξ; x; tð Þdξ ð4:4Þ

Using FCMOM, the solution of PBE is sought in the finite interval between the

minimum and maximum values of the particle property (e.g., size), instead of in the

[0,1] range (Strumendo and Arastoopour 2008). In general form, the evolution of

the number density function is tracked by imposing moving boundary conditions.

After reformulating PBE in the standard interval [�1, +1] by a coordinate trans-

formation as Strumendo and Arastoopour (2008),

ξ ¼ ξ� ξmin tð Þ þ ξmax tð Þ½ �=2f g
ξmin tð Þ þ ξmax tð Þ½ �=2 and ξ2 �1, þ 1½ � ð4:5Þ

where the dimensionless (divided by an appropriate scale factor) size distribution

function f ξ; x; t
� �

is represented as a series expansion by a complete system of

orthonormal functions (e.g., Legendre polynomials). Writing the distribution func-

tion in terms of a series expansion of Legendre polynomials gives

f ξ; x; t
� � �XM�1

n¼0

cn t; xð Þ:ϕn ξ
� � ð4:6Þ

where the coefficient cn e can be expressed in terms of the moments

cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

2

r
:
1

2n
:
Xn
v¼0

�1ð Þn�v:
2vð Þ!

2v� nð Þ!½ � :
1

n� vð Þ!�:� vð Þ!� �
( )

:μ2v�n ð4:7Þ

and where the terms with negative moments order (2v� n< 0) are omitted

(Strumendo and Arastoopour 2008).

The orthonormal functions,ϕn ξ
� �

, associated with the Legendre polynomials

Pn ξ
� �

are

ϕn ξ
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

2

r
:Pn ξ
� � ð4:8Þ

Therefore, a set of transport equations for the moments of the distribution function,

f, could be derived from the general PBE (4.1) in the interval of [�1, +1], as
presented in Eq. (4.9):

∂μi
∂t

þ vp, j
∂μi
∂xj

� ∂
∂xj

ðþ1

�1

D0
pt

∂f 0

∂xj
ξ
� �i

dξ

" #

¼ � MBþMBConv þMBDiff 1 þMBDiff2 þMBDiff3 þ IG
� �þ S

ð4:9Þ

On the right-hand side of the moments evolution, Eq. (4.9), the first five terms are

due to the coordinate transformation, IG is due to the Integration of the Growth

term, and S is the source term due to the aggregation and breakage. These terms are:
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MB ¼ � f 0þ1 � �1ð Þi:f 0�1

h i
� i:μi�1

n o
:

1

ξmax � ξminð Þ:
dξmin

dt
þ dξmax

dt

	 


� f 0þ1 � �1ð Þiþ1:f 0�1

h i
� iþ 1ð Þ:μi

n o
:

1

ξmax � ξminð Þ: � dξmin

dt
þ dξmax

dt

	 

ð4:10Þ

MBConv ¼ � f 0þ1 � �1ð Þi:f 0�1

h i
� i:μi�1

n o
:

vp, j
ξmax � ξminð Þ:

∂ξmin

∂xj
þ ∂ξmax

∂xj

	 


� f 0þ1 � �1ð Þiþ1:f 0�1

h i
� iþ 1ð Þ:μi

n o
:

vp, j
ξmax � ξminð Þ: �∂ξmin

∂xj
þ ∂ξmax

∂xj

	 

ð4:11Þ

MBDiff1 ¼ 1

ξmax � ξminð Þ
∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
ðþ1

�1

∂D0
pt

∂xj

∂f 0

∂ξ
ξ
� �i

dξ

þ 1

ξmax � ξminð Þ �∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
ðþ1

�1

∂D0
pt

∂xj

∂f 0

∂ξ
ξ
� �iþ1

dξ

ð4:12Þ

MBDiff2 ¼ 2

ξmax � ξminð Þ
∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
ðþ1

�1

D0
pt

∂2
f 0

∂xj∂ξ
ξ
� �i

dξ

þ 2

ξmax � ξminð Þ �∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
ðþ1

�1

D0
pt

∂2
f 0

∂xj∂ξ
ξ
� �iþ1

dξ

� 1

ξmax � ξminð Þ2
∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
� �2ðþ1

�1

D0
pt

∂2
f 0

∂ξ
2

ξ
� �i

dξ

� 1

ξmax � ξminð Þ2:2:
∂ξmin

∂xj
þ ∂ξmax

∂xj

	 

�∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
ðþ1

�1

D0
pt

∂2
f 0

∂ξ
2

ξ
� �iþ1

dξ

� 1

ξmax � ξminð Þ2 �∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
2ðþ1

�1

D0
pt

∂2
f 0

∂ξ
2

ξ
� �iþ2

dξ

� 2

ξmax � ξminð Þ2 �∂ξmin

∂xj
þ ∂ξmax

∂xj

	 

∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
ðþ1

�1

D0
pt

∂f 0

∂ξ
ξ
� �i

dξ

þ 1

ξmax � ξminð Þ
∂2ξmin

∂xj2
þ ∂2ξmax

∂xj2

 !ðþ1

�1

D0
pt

∂f 0

∂ξ
ξ
� �i

dξ

� 1

ξmax � ξminð Þ:
∂2ξmin

∂xj2
� ∂2ξmax

∂xj2

 !
þ 2

ξmax � ξminð Þ �∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
2
" #

�
ðþ1

�1

D0
pt

∂f 0

∂ξ
ξ
� �iþ1

dξ

ð4:13Þ
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MBDiff3 ¼ 1

ξmax � ξminð Þ
∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
ðþ1

�1

∂D0
pt

∂ξ

∂f 0

∂xj
ξ
� �i

dξ

þ 1

ξmax � ξminð Þ �∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
ðþ1

�1

∂D0
pt

∂ξ

∂f 0

∂xj
ξ
� �iþ1

dξ

� 1

ξmax � ξminð Þ2
∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
� �2ðþ1

�1

∂D0
pt

∂ξ

∂f 0

∂ξ
ξ
� �i

dξ

� 1

ξmax � ξminð Þ2:2:
∂ξmin

∂xj
þ ∂ξmax

∂xj

	 

�∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
ðþ1

�1

∂D0
pt

∂ξ

∂f 0

∂ξ
ξ
� �iþ1

dξ

� 1

ξmax � ξminð Þ2 �∂ξmin

∂xj
þ ∂ξmax

∂xj

	 
2ðþ1

�1

∂D0
pt

∂ξ

∂f 0

∂ξ
ξ
� �iþ2

dξ

ð4:14Þ

and

IG ¼ 2

ξmax � ξminð Þ : G0
þ1f

0
þ1 � �1ð Þi:G0

�1f
0
�1

h i
� i:

ð1
�1

G0f 0 : ξ
� �i�1

:dξ

� �
ð4:15Þ

where

G0 ¼ dξ

dt
ð4:16Þ

In the above terms, the subscripts of�1 and +1 refer to the value of that term at the

minimum and maximum limits of the range [�1, +1], respectively.

In the derivation of Eq. (4.9), it has been assumed that the particulate phase is

incompressible, i.e.,
∂vp, j
∂xj

¼ 0, where vp is the particulate phase velocity. Moreover,

it is assumed that the particles are convected with an average phase velocity vp(x,t),
which means the particle velocity is independent of the internal property (e.g., size).

In this case, the need for a spatial diffusion term would arise (Mazzei 2013). Mazzei

(2011, 2013) has investigated the importance of diffusion when dealing with

segregation dynamics of polydisperse systems and has shown that either a size-

dependent velocity or a spatial diffusion term is necessary to model the segregation

in polydisperse systems. He proposed a method to replace the average phase

velocity vp(x,t) with a size-conditioned velocity field. In this case, he showed

that, because the advective term features a size-dependent velocity field, the

equation presents no diffusive flux in physical space. Having that in mind and for

the sake of brevity, the diffusive term was omitted from the governing equation,

that reduces Eqs. (4.9–4.17):

∂μi
∂t

þ vp, j
∂μi
∂xj

¼ � MBþMBConv þ IGð Þ þ S ð4:17Þ
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S is the source term and accounts for the introduction of new particles into the

system, which we assume is due only to the aggregation as defined by Eq. (4.2). To

handle this term using FCMOM, it is necessary to define a finite version of the

Smoluchowski equation as proposed by Strumendo and Arastoopour (2008):

h ξ; x; tð Þ ¼ 1

2
H ξ� 2ξminð Þ

ðξ�ξmin

ξmin

β ξ� η, ηð Þ:f �ξ�η, t
�
:f η; tð Þdη

� f ξ; tð Þ:H ξmax � ξminð Þ � ξ½ �:
ðξmax�ξ

ξmin

β ξ; ηð Þ:f η; tð Þdη
ð4:18Þ

In the finite version of the Smoluchowski equation, a minimum and maximum

size, ξmin and ξmax, are set, and aggregations leading to particles larger than ξmax are

neglected by using ξmax � ξ as the upper limit of integration in the second term on

the right-hand side of Eq. (4.13), by introducing the Heaviside step function H. By
choosing values of ξmax large enough and setting ξmin ¼ 0, the solution of the finite

version of the Smoluchowski equation converges to the solution of its classical

version (Eq. 4.2).

Therefore, the dimensionless form of the source term, S, becomes

S ¼ ξmax � ξmin

4

XM�1

n¼0

XM�1

m¼0

cmcnEmni � ξmax � ξmin

2

XM�1

n¼0

XM�1

m¼0

cmcnFmni ð4:19Þ

Emni and Fmni are coefficients that can be pre-calculated as a function of ξmin and

ξmax:

Emni ¼
ð1

�2þξr

ðξþ1�ξr

�1

ξ
i
β

ξmax � ξmin

4
: ξ� η
� �

,
ξmax � ξmin

4
: η� vrð Þ

� �

:ϕm ξ� η� vr
� �

ϕn ηð Þ dηdξ

ð4:20Þ

Fmni ¼
ð2�ξr

�2þξr

ð1�ξ�ξr

�1

ξ
i
ϕm ξ
� �

: β
ξmax � ξmin

4
: ξþ ξr
� �

,
ξmax � ξmin

4
: ηþ ξrð Þ

� �

:ϕn ηð Þ dηdξ
ð4:21Þ

where

ξr ¼
ξmax þ ξmin

ξmax � ξmin

ð4:22Þ
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In general, moments evolution equations must be coupled with the moving

boundary conditions providing the governing equations for ξmin(t, x) and ξmax(t,x).
The moments evolution equations and the moving boundary conditions form a set of

partial differential equations when the variables are the moments of the distribution

function μi(t, x), and two moving boundaries, ξmin(t,x) and ξmax(t, x). The initial

conditions for the moments are computed from the initial property (e.g., size)

distribution function. However, in the case of pure aggregation in which ξmin and

ξmax are set initially to constant values, the problem is no longer a moving boundary

problem, and the termsMB andMBConv will become zero. In this case, the final form

of the moment transport equation is

∂μi
∂t

þ∇: μi:vp
� � ¼ ξmax � ξmin

4

XM�1

n¼0

XM�1

m¼0

cmcnEmni � ξmax � ξmin

2

XM�1

n¼0

XM�1

m¼0

cmcnFmni

ð4:23Þ

A detailed explanation of the FCMOM method and derivation of the governing

equation can be found in two papers by Strumendo and Arastoopour (2008, 2010).

4.4 CFD-PBE Coupling for Gas–Particle Flow Systems

To develop a coupled CFD-PBE model, it is necessary to implement and solve PBE

in CFD codes. Therefore, a set of transport equations based on the moments of the

property distribution function may be added to any CFD code. Here, the ANSYS

Fluent commercial code was selected.

ANSYS Fluent is a finite-volume-based solver that solves the differential equa-

tions for the conservation of mass and momentum and other appropriate scalars on a

discretized domain using a computational grid. The solver integrates the governing

equations on the individual control volumes to construct algebraic equations for the

discrete-dependent variables (“unknowns”) such as velocities, pressure, volume

fractions, and conserved scalars. After that, it linearizes the discretized equations

and solution of the resultant linear equation system to yield updated values of the

dependent variables. Fluent solves this linear system using a point-implicit (Gauss–

Seidel) linear equation solver in conjunction with an algebraic multigrid (AMG)

method.

In ANSYS Fluent, it is possible to add and solve additional transport equations

for any user-defined scalars (UDS). The equation for a generic scalar ϕk
p associated

to the disperse-phase p is

∂εpρpϕ
p
i

∂t
þ∇: εpρpvpϕ

p
i � εpD

k
p∇ϕp

i


 �
¼ Sp

ϕ i ð4:24Þ

where εp, ρp, and vp are volume fraction, physical density, and velocity of the

disperse phase, respectively.
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By omitting the diffusive term and defining each scalar as

ϕp
i ¼ μi ð4:25Þ

where μi is the ith moment of the size distribution function and multiplying the

source by εpρp, it is possible to obtain the moment transport equation (PBE)

reported in Eq. (4.23) in the generic form of Eq. (4.24). The source terms for the

different moment equations are calculated and returned by a proper user-defined

function (UDF). Figure 4.1 describes the CFD-PBE algorithm developed by Abbasi

and Arastoopour (2013). The CFD multiphase model essentially provides phasic

velocities and volume fractions in every iteration. This information is passed to the

UDS transport equations through a UDF to calculate the source terms based on the

FCMOM method using different models for particulate processes (e.g., aggrega-

tion) or possible chemical reactions (Abbasi and Arastoopour 2013).

The population balance model block consists of a set of UDS transport equations

being solved and provides the size distribution function and the moments in each

computational cell for each iteration. The moments of the distribution function

provide the mean particle size at each computational cell that is reported back to the

CFDmodel to be used in calculations of interphase exchange properties (e.g., drag).

The mean diameter, which is changing temporally and spatially, represents the

different sizes of the particles in the disperse phase.

Fig. 4.1 CFD-PBE coupling algorithm (This figure was originally published in Chemical Engi-
neering Science 102, 2013 and has been reused with permission)
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4.5 Verification and Validation of FCMOM

To numerically validate the proposed implementation procedure, three cases have

been studied. The first case is a linear growth problem when the growth rate of the

particle size is proportional to the size itself. This kind of behavior is typical in

particle growth processes due to volumetric chemical reactions as studied by

McMurry and Wilson (1983) and Strumendo and Arastoopour (2008). The second

case is a homogeneous aggregation problem when the aggregation kernel is pro-

portional to the summation of the sizes of the two aggregating particles.

For the first two cases, there are analytical solutions provided byMcGraw (1997)

and Scott (1968), respectively. Therefore, comparison of the numerical results with

the analytical solutions is possible, which ensures appropriate implementation of

the source terms and correct numerical integration of the differential equations.

The third case is the application of FCMOM in CFD simulations of an oil–water

emulsion flow in a backward-facing step geometry including the aggregation/

coalescence process as proposed by Silva et al. (2008). In this case, treatment of

the convective term was studied and results were verified against the solution

obtained by the QMOM method for the same case.

4.5.1 Linear Growth

McGraw (1997) has shown that a homogeneous growth problem with linear growth

rate can be shown as

G ¼ dξ

dt
¼ K:ξ ð4:26Þ

and in transformed form

G0 ¼ dξ

dt
¼ K:

ξmin þ ξmax

2
þ ξmax � ξmin

2
:ξ

� �
ð4:27Þ

For any initial distribution function f 0 ξ; 0
� �

, there is an exact analytical solution

given by

f 0 ξ; t
� � ¼ f 0 ξ; 0

� �
:e�K:t ð4:28Þ

Substituting Eq. (4.27) in Eq. (4.11) and combining with Eq. (4.8) gives the

following set of ordinary differential moment equations that are closed regardless

of the solution method (e.g., method of moments):

∂μi
∂t

¼ �K:μi ; i ¼ 0, 1, 2� � � ð4:29Þ
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with an initial size distribution function in the finite domain [ξmin(t), ξmax(t)],

f ξ; 0ð Þ ¼ a:
ξ� ξmin 0ð Þ

ξmax 0ð Þ � ξmin 0ð Þ
� �q

:
ξmax 0ð Þ � ξ

ξmax 0ð Þ � ξmin 0ð Þ
� �p

ð4:30Þ

And by scaling the distribution function with respect to
a

2pþq, the dimensionless

form of the function becomes

f ξ; 0
� � ¼ 1þ ξ

� �q
: 1� ξ
� �p ð4:31Þ

Then, a set of equations resulting from Eq. (4.29) was implemented in ANSYS

Fluent in the form of Eq. (4.24). The value of K used in this simulation was 0.05 s�1,

while q¼ 2 and p¼ 8. It is essential to multiply the source term by the flow density

ρp because of the format of the UDS equations in the solver:

∂ρpμi
∂t

¼ � ρpK:μi
� � ð4:32Þ

The equations were discretized using a second-order time discretization scheme

with a fully implicit integration formula. The advantage of the fully implicit scheme

is that it is unconditionally stable with respect to time-step size.

The simulation results are shown in Figs. 4.2 and 4.3. Figure 4.2 shows the initial

dimensionless particle size distribution along with the comparison between

the numerical simulation, obtained using the first eight moments (i¼ 0–7), and
the exact solution at t¼ 10 s. It shows that the numerical solution closely represents

Fig. 4.2 Particle size distribution at t¼ 10 s computed using eight moments (This figure was

originally published in Chemical Engineering Science 102, 2013 and has been reused with

permission)
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the exact solution; however, it poses some negative values in the tails of the size

distribution curve that are not physically possible. Figure 4.3 indicates that the final

size distribution can be accurately predicted by increasing the number of moments

from 8 to 10. The same conclusion has been made by Strumendo and Arastoopour

(2008) as they showed the convergence of FCMOM for various particle growth

processes.

4.5.2 Homogeneous Aggregation

Convergence and accuracy of FCMOM for different homogeneous aggregations

has been studied by Strumendo and Arastoopour (2008). For a homogeneous

aggregation/coalescence case starting from a Gaussian-like distribution,

f ξ; 0ð Þ ¼ No υþ 1ð Þυþ1

ξoΓ υþ 1ð Þ
ξ

ξo

	 
υ

e�
ξ
ξo

υþ1ð Þ ð4:33Þ

where No and ξo are initial number of droplets and initial average droplet size,

respectively, and the aggregation/coalescence process is governed by the sum

aggregation kernel

β ¼ βo ξþ ηð Þ ð4:34Þ

where βo is the aggregation constant.

Fig. 4.3 Particle size distribution at t¼ 10 s computed using ten moments (This figure was

originally published in Chemical Engineering Science 102, 2013 and has been reused with

permission)
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Scott (1968) has provided an analytical solution for Eq. (4.2) giving the dimen-

sionless size distribution function at any time:

f ξ; τ
� � ¼ 1� τð Þ:e�ξ τþυþ1ð ÞX1

k¼0

τkξ
υþk υþ2ð Þ

υþ 1ð Þ kþ1ð Þ υþ1ð Þ

k þ 1ð Þ!Γ k þ 1ð Þ υþ 1ð Þ½ � ð4:35Þ

The aggregation kernel defines the net rate of aggregation/coalescence and depends

on:

1. Frequency of collisions between droplets of size ξ and droplets of size η
2. Efficiency of aggregation (i.e., the probability of a droplet of size ξ coalescing

with a particle of size η)

In Eq. (4.35), ξ is dimensionless droplet size defined as ξ/ξo, and f is dimen-

sionless size distribution function defined as
f ξ;tð Þ
No=ξo

. τ is related to dimensionless time,

T, by,

τ ¼ 1� e�T ð4:36Þ

and T is defined

T ¼ βoNoξot ð4:37Þ

For this case, an approach similar to that described in Sect. 4.5.1 was utilized to

implement the governing equations [i.e., Eq. (4.18) without the convective term]

for the finite Smoluchowski equation. Initial moments were calculated from

Eq. (4.33), while the model parameters were adopted from Scott (1968) with

ξo ¼ 4:189� 10�15m3, υ ¼ 1, No ¼ 109=4:189 particle=m3, βo ¼ 1:53�
103 1=s, and ξmax was set to 13ξo.

Figure 4.4 shows that the simulation results obtained using 12 moments at

t¼ 450 s τ ¼ 0:5ð Þ are in excellent agreement with the analytical solution.

4.5.3 Nonhomogeneous Aggregation in Emulsion Flow

Silva et al. (2008) proposed a two-dimensional test case to evaluate the perfor-

mance of the direct quadrature method of moments (DQMOM) (Marchisio and Fox

2005) implemented in CFD codes, ANSYS CFX, and OpenFoam. They defined a

fictitious problem of water in oil emulsion laminar flow through a backward-facing

step. The same case was adopted for this study.

Figure 4.5 shows the backward-facing step geometry and dimensions. Analysis

of the results is shown on the two dashed lines shown in Fig. 4.5, referred to as

horizontal and vertical lines. Water in oil emulsion (i.e., dispersed water droplets in
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continuous oil flow) enters the domain with a predefined initial droplet size

distribution. The droplet size distribution evolves inside the domain as a result of

convection and coalescence of the droplets.

Laminar flow in backward-facing step possesses unique features including

presence of circulation zones with strong gradients in the laminar regime that

makes it suitable for our purpose without bringing other uncertainties such as

turbulence modeling into the picture. It is well known that there is a primary

circulation zone behind the step in which its length (reattachment length) increases

by increasing the Reynolds number. As shown in Fig. 4.6, at higher Reynolds

numbers (~300), a secondary circulation zone will form at the channel upper wall

due to the adverse pressure gradient coming from sudden expansion at the edge of

the step (Biswas et al. 2004).

Existence of circulation zones means longer residence time of the disperse phase

in those regions; therefore, a higher degree of coalescence is expected in these

zones.

Fig. 4.4 Particle size distribution at t¼ 450 s computed using 12 moments (This figure was

originally published in Chemical Engineering Science 102, 2013 and has been reused with

permission)

Fig. 4.5 Backward-facing step geometry (This figure was originally published in Chemical
Engineering Science 102, 2013 and has been reused with permission)
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Dimensionless initial size distribution of water droplets was defined by

Eq. (4.33), and it is assumed that coalescence is the only process that changes the

droplet size distribution according to the sum aggregation kernel (Eq. 4.34). A set of

governing transport equations for the moments of the droplet size distribution was

derived based on Eq. (4.23). In this equation, it is assumed that all of the droplets

share the same velocity regardless of their size. Mean droplet diameter, d10, was

defined as the ratio of the first-order moment (μ1) to the zeroth-order moment (μ0).
The quadrature method of moments, QMOM (Marchisio et al. 2003a, b), which

is a built-in population balance solution method in ANSYS Fluent code and

FCMOM, was used to generate results using two different numerical techniques.

This could consider a verification of one numerical technique versus another.

Baseline simulations were performed using 4, 6, and 8 moments based on

QMOM to study the sensitivity of the solution to the number of moments and to

compare the results obtained by FCMOM and QMOM.

Moreover, the effect of the mesh resolution was studied using both the FCMOM

and QMOM methods having 4 moments and using three different uniform

hexahedral meshes, referred to as coarse, medium, and fine meshes with 8400,

33,600 and 134,400 cells, respectively. Table 4.1 shows the inlet conditions and

flow properties used in the simulations.

Fig. 4.6 Circulation zones in a laminar backward-facing step flow at different Reynolds number

(This figure was originally published in Chemical Engineering Science 102, 2013 and has been

reused with permission)

Table 4.1 Inlet condition

and emulsion properties
Property Value

Water density (kg/m3) 1000

Oil density (kg/m3) 900

Water viscosity (kg/m-s) 0.001

Oil viscosity (kg/m-s) 0.01

Reynolds number 500

Average water droplet size, d10 (μm) 12.5

Water content (vol%) 5

Aggregation/coalescence constant, βo, (m3/s) 1
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Spatial discretization of the governing equations was performed using a first-

order upwind scheme along with a first-order and implicit temporal discretization.

Pressure–velocity coupling was accomplished using the Phase Coupled SIMPLE

algorithm. The time step of 10�3 s ensures convergence within 50 iterations per

time step. In addition, the higher-order spatial discretization schemes were

employed for discretization of the transport equations of both QMOM (Mazzei

et al. 2012) and FCMOM and both resulted in moment corruption. Moment

corruption means that a certain set of moments are non-realizable; hence, they no

longer represent a valid distribution function. For FCMOM, the moments are

calculated in the [�1, 1] interval, which results in negative odd and positive even

moments. Therefore, moment corruption was observed when moments changed

their sign (i.e., an odd moment became positive or an even moment became

negative) (Abbasi and Arastoopour 2013).

The same behavior was reported by many other authors. Vikas et al. (2011) and

Desjardins et al. (2008) showed that realizability is guaranteed only with the first-

order finite volume schemes in spite of the numerical diffusion associated with

these schemes. Mazzei et al. (2012) reported that the second-order upwind scheme

for a volume-density-function-based QMOM significantly affects the stability of

the solution and eventually causes moment corruption. Therefore, the first-order

upwind scheme was used for the method of moments techniques. Figures 4.7 and

4.8 show the mean droplet size along the vertical line for different mesh resolutions,

using 4 moments in QMOM and FCMOM, respectively. Both graphs show similar

Fig. 4.7 Mean droplet size along the vertical line for different mesh resolutions with QMOM and

four moments at t¼ 1 s (This figure was originally published in Chemical Engineering Science
102, 2013 and has been reused with permission)
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behaviors, having larger droplet size in the circulation region because of the longer

residence time in this region; however, FCMOM appears to be slightly less sensi-

tive to mesh resolution. Based on the grid independence study, the mesh with

medium resolution was chosen for further simulations.

Figure 4.9 shows the mean droplet size along the vertical line for different

number of moments calculated by QMOM. In the absence of exact solution and

knowing that the error of the QMOMmethod decreases by increasing the number of

moments, QMOM-8 was used as the basis for comparison of all results. The

average error for d10 calculated by QMOM-4 and QMOM-6 with respect to

QMOM-8 was 0.3% and 0.03%, respectively.

Figure 4.10 shows the mean droplet size along the vertical line calculated by

FCMOM using 4 and 6 moments. Although d10 shows the same behavior along the

vertical line, it has larger values of average error that reveal greater sensitivity of

FCMOM to the number of moments compared to QMOM. The average error for d10
calculated by FCMOM-4 and FCMOM-6 with respect to QMOM-8 was 1% and

0.9%, respectively. Comparison between the calculated mean droplet sizes using

FCMOM-6 and QMOM-8 along the horizontal line is shown in Fig. 4.11.

The mean droplet diameter contours calculated by FCMOM-6 at t¼ 1 s are

presented in Fig. 4.12, which are essentially very close to those of QMOM. The

disperse phase enters the domain with a 12.5 μmmean droplet diameter. The values

of d10 continuously evolve because of the coalescence of droplets. As expected,

larger droplets form in the lower and upper circulation zones mainly because of the

longer residence time of the dispersed phase in those regions. Therefore, the d10

Fig. 4.8 Mean droplet size along the vertical line for different mesh resolutions with FCMOM and

four moments at t¼ 1 s (This figure was originally published in Chemical Engineering Science
102, 2013 and has been reused with permission)
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profile directly depends on the path-line and velocity field calculated by the code.

The velocity field calculations are the same for both the QMOM and FCMOM

method; however, the d10 contours are slightly different because of the possible

inaccuracy in the calculation of moments.

Fig. 4.9 Mean droplet size along the vertical line for different number of moments with QMOM

at t¼ 1 s (This figure was originally published in Chemical Engineering Science 102, 2013 and has
been reused with permission)

Fig. 4.10 Mean droplet size along the vertical line for different number of moments with

FCMOM compared to QMOM-8 at t¼ 1 s (This figure was originally published in Chemical
Engineering Science 102, 2013 and has been reused with permission)
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A difference between FCMOM and QMOM techniques is that FCMOM con-

verges faster in comparison to QMOM. Figure 4.13 compares the CPU time

requirement as a function of the number of grid cells for FCMOM and QMOM in

an inhomogeneous aggregation problem using 4 moments. Simulations were

performed using a 3.33 GHz Intel Xenon CPU on 6 parallel cores for 50 time

steps with the time step size of 10�3 s. The comparison of the results clearly shows

the better performance of FCMOM over QMOM, especially for a higher number of

grid cells. For the finest grid with 134,000 grid cells, the CPU time of FCMOM is

about half of that for QMOM (Abbasi and Arastoopour 2013).

Strumendo and Arastoopour (2008) have shown that increasing the number of

moments increases the accuracy of FCMOM in homogeneous cases. However,

Abbasi and Arastoopour (2013) were not able to reach a converged solution by

increasing the number of moments to eight. In fact, tracking higher-order moments

has the same effect as using a second-order discretization scheme. In other words,

higher-order moments are less stable and will form non-realizable moment sets

much faster than lower-order moments. In the earlier stages of the simulation, when

Fig. 4.11 Mean droplet size along the horizontal line for FCMOM-6 compared to QMOM-8 at

t¼ 1 s (This figure was originally published in Chemical Engineering Science 102, 2013 and has

been reused with permission)

1.25e-03 1.36e-03 1.48e-03 1.59e-03 1.70e-03 1.81e-03 1.93e-03 2.00e-03

Fig. 4.12 Mean droplet diameter d10 contours calculated by FCMOM-6 (contour levels are in cm)

at t¼ 1 s (This figure was originally published in Chemical Engineering Science 102, 2013 and has
been reused with permission)
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the disperse phase reached the circulation zone where sharp gradients exist,

moment corruption started and the error propagated into the domain that eventually

leads to instabilities and divergence of the solution. To make sure that this phe-

nomenon is not due to other factors, Abbasi and Arastoopour (2013) performed

various simulations utilizing four times finer mesh, three orders of magnitude

smaller time steps, and significantly smaller convergence criteria. In all cases,

divergence occurred at the same flow time. Mazzei et al. (2012) also reported that

quadrature nodes of the distribution become negative and corrupt the moment set

when the number of moments is increased to eight or, as mentioned before, when

second-order schemes were used for spatial discretization of moment transport

equations, which confirms our observations. McGraw (2006), Wright (2007), and

Kah et al. (2012) described this issue as an inherent problem of finite volume

convective schemes as each moment is convected correctly but with independent

equations. Therefore, the overall transport algorithm does not preserve the moment

space and corrupts the relations among the moments.

A remedy proposed in the literature (McGraw 2006; Mazzei et al. 2012) is using

moment-correction algorithms to force the moment set to always be valid (i.e.,

nonnegative Hankel–Hadamard determinants). The algorithm makes the least pos-

sible change to the corrupted (invalid) moments in a way that the new moment set

meets the validity criteria (i.e., Hankel–Hadamard determinants become nonnega-

tive). An alternative approach can be the use of high-order finite volume schemes

similar to those proposed by Vikas et al. (2011) and Kah et al. (2012) that naturally

preserve the moment space with very limited numerical diffusion. Such methods

guarantee nonnegative distribution functions through an advective transport. How-

ever, before moving toward using higher-order finite-volume methods, it should be

Fig. 4.13 Comparison of the CPU time as a function of the number of grid cells for QMOM and

FCMOM (This figure was originally published in Chemical Engineering Science 102, 2013 and

has been reused with permission)
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noted again that there is an inherent problem associated with these techniques such

as FCMOM which approximates the distribution function with a finite number of

terms in series expansion of orthogonal functions (e.g., Legendre polynomials). In
this case, even with a valid set of moments, particle size distribution (PSD) gains

negative values at some points on the internal coordinate, known as the Gibbs

phenomenon (Gottlieb and Shu 1997; Arias-Zugasti 2012). Therefore, it seems that

the first step toward mitigation is to eliminate, or at least minimize, the effect of the

Gibbs phenomenon. There is a rich history of using Gegenbauer (i.e., Legendre,

Chebyshev, etc.) polynomials in other engineering fields such as image processing

in addition to strategies to overcome the Gibbs phenomenon (Silver et al. 1996; Shu

et al. 2010; Yap et al. 2001). For instance, the use of well-developed noise-filtering

techniques such as the kernel polynomial method (KPM) (Silver et al. 1996) seems

promising in our application of interest.

4.6 Summary and Conclusion

In this chapter, we discussed some of the numerical challenges that arise when

dealing with polydisperse systems. Although the PBE method is considered to be

one of the most efficient approaches in modeling polydispersity, finding an efficient

method to solve it is not trivial. Among many solution methods for PBE, MOM

stands out due to its efficiency and suitability for implementation in numerical codes.

The QMOM approach was among the first methods that were introduced to solve

the closure problem in the formulation of standard MOM. Later, the method was

improved through different versions of DQMOM and other enhanced versions of

QMOM such as CQMOM and EQMOM. These methods were aimed to solve

different shortcomings of previous methods in dealing with multivariate distribu-

tion functions, size-dependent velocity of the particulate phase, reconstruction of

the distribution function, and instability of numerical solutions arising in volume

averaging and spatial transport in CFD codes.

FCMOM as a computationally efficient solution method for PBE has unique

advantages over other methods in its category, such as QMOM. It converges very

fast to the exact solution of PBE and provides the solution in terms of both the

moments of the distribution and the reconstructed distribution function. FCMOM

implementation in ANSYS code and a detailed analysis of the results along with

recommendations to improve its performance were provided in this chapter.

4.7 Nomenclature

CD Drag coefficient

cn Coefficients in size distribution function series expansion

Dp Diffusivity, m2/s
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dp Particle diameter, m

Emni Coefficients in moment equations for FSE

F Function in drag model

f Number density function

f Dimensionless number density function

Fmni Coefficients in moment equations for FSE

G Growth rate, kg/m3∙s
h Net rate of introduction of new particles in PBE

i Moment order

K Constant in growth rate law

M Number of terms in truncated series expansion approximating particle size

distribution and number of moments in simulation

No Initial number of particles in Gaussian-like distribution

P Legendre polynomials

Re Reynolds number

Rep Particle Reynolds number

S Source term in PBE

T Dimensionless time

t Time, s

vk k-phase velocity, m/s

vp Particulate phase velocity, m/s

x External coordinate vector in PBE

Greek Symbols

β Aggregation kernel

β0 Aggregation constant

βkj Drag coefficient between k phase and j phase
εk Volume fraction of k phase
μi ith moment of number density function

μk k-phase viscosity, kg/m. s

η Second internal coordinate in Smoluchowski equation

ξ Internal coordinate in PBE

ξ Dimensionless internal coordinate in PBE

ξo Initial average particle size in Gaussian-like distribution, m

Γ Gamma function

ρk k-phase density, kg/m3

υ Model parameter Gaussian-like distribution

τk k-phase stress tensor, N/m2

τp Particle relaxation time, s

ϕn Trial function associated with Legendre polynomials
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Chapter 5

Case Studies

5.1 CFD Simulation of a Pharmaceutical Bubbling Bed
Drying Process

Drying is one of the major unit operations in the manufacturing of solid pharma-

ceuticals. In many pharmaceutical processes, the optimum design of the drying

process will significantly enhance the rate and reliability of the production and, in

turn, decrease the cost of the pharmaceutical products. Consider a cone-shaped

batch fluidized bed drying process with bottom (inlet) and top (outlet) diameters of

0.08 m and 0.19 m, respectively. Pharmaceutical granulated spherical particles with

1200 kg/m3 density, 287 μm diameter, and 0.0417 kg water/kg dried solid initial

moisture content were placed initially in the bed. To remove water from the

particles, a stream of high temperature air with 5 m3/h flow rate and 50 �C
temperature was introduced. The fluidized bed is operating in a bubbling regime.

The critical moisture content (Xcr) that separates the two drying rate periods

(namely, the constant rate period and the falling rate period) was estimated to be

0.012 kg water/kg dry solid.

5.1.1 Problem

Develop continuity, momentum, energy, and water species equations and boundary

conditions capable of describing this process and calculate the outlet air tempera-

ture and moisture content of the particles as a function of time for 10 min of the

drying process.
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5.1.2 Solution

In addition to the conservation equations (i.e., mass, momentum, and species) and

the constitutive equations presented in Tables 2.1 and 2.2, the following conserva-

tion of energy equations for both phases were also solved. It is assumed that the

particulate phase is homogeneous and the Syamlal et al. (1993) drag model was

used as the drag force between phases (Jang and Arastoopour 2014).

5.1.3 Conservation of Energy

The conservation of energy equation for each phase can be written as

∂ εgρghg
� �

∂t
þ∇ � εgρg~vghg

� �
¼ �εg

∂pg
∂t

þ τg

: ∇~vg �∇ � ~qg þ Qsg þ _m sgΔHvap ð5:1Þ
∂ εsρshsð Þ

∂t
þ∇ � εsρs~vshsð Þ ¼ �εs

∂ps
∂t

þ τs

: ∇~vs �∇ � ~qs þ Qgs � _m sgΔHvap ð5:2Þ

where h is the specific enthalpy,~q is the heat flux, and Qsg is the rate of heat transfer

between the gas and solid phases. The specific enthalpy (h) and the heat flux (~q) in
each phase are expressed as

h ¼
ð
CpdT and ~q ¼ k∇T ð5:3Þ

where k is the thermal conductivity and Cp is the heat capacity

Qsg ¼ �Qgs ¼
6εs
ds

αsg Tg � Ts

� � ð5:4Þ

The gas–particle heat transfer coefficient αgs was obtained from the Khotari (1967)

expression:

Nu ¼ αgsdp
kg

¼ 0:03Rep
1=3 ð5:5Þ

where Nu is the Nusselt number, dp is particle diameter, and kg is thermal conduc-

tivity of the gas phase.

The latent heat due to vaporization of moisture is expressed as (Palancz 1983)
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ΔHvap ¼ 3168� 2:4364 � Tg ð5:6Þ

The above equation assumes no effect of the solid moisture on the heat of

vaporization.

5.1.4 Species Balance Equation for Water

In order to simulate moisture transfer from the solid phase to the gas phase, the

following water species transport equations for each phase are considered:

∂ εgρgYv

� �
∂t

þ∇ � εgρg~vgYv

� �
¼ ∇ � Dv,gρvεg∇Yv

� �þ _m: ð5:7Þ
∂ εsρsXsð Þ

∂t
þ∇ � εsρs~vsXsð Þ ¼ ∇ � Dv, sρsεs∇Xsð Þ � _m: ð5:8Þ

where Yv is the moisture content of the gas phase, Xs is the moisture content of the

solid phase, Dv,g and Dv,s are the moisture diffusion coefficient in the gas and the

solid phases, respectively, and _m: is the moisture mass transfer rate between the gas

and the solid phase.

5.1.5 Drying Rate Model (Calculation of _m)

The drying rate is controlled by two mechanisms: the constant drying rate period

and the falling rate period. The surface moisture on the particle and the water in the

large pores of the particle predominantly influence the constant drying rate period.

The moisture trapped or bound within the porous structure of the particles controls

the falling rate period.

The expression for the mass transfer rate per unit volume for the constant rate

period can be expressed as

_m ¼ Ksg:ρg � 6=dp � Y*
i � Yv

� � ð5:9Þ

where Y�i is the moisture content of the saturated drying gas at the surface of the wet

particles and Yv is the moisture content of the gas phase. The mass transfer

coefficient Ksg can be expressed by the Gunn (1978) equation
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Sch¼Ksgds
Dvg

¼ 7�10εgþ5ε2g

� �
1þ0:7Res

0:2Sc1=3
� �

þ 1:33�2:4εgþ1:2ε2g

� �
Res

0:7Sc1=3

ð5:10Þ

Sc ¼ μg
ρgDvg

and Dvg ¼ 2:60 � 10�5 � Ts

Tref

� �3=2

ð5:11Þ

Y*
i ¼ 0:622

pv
760� pv

and pv ¼ 133:3� exp 13:869� 5173

Ts

� �
ð5:12Þ

where Sch is the Sherwood number, Sc is the Schmidt number, and As is the overall

external particle surface area to unit volume ratio.

When the moisture content of the solid particles (Xi) reaches a critical value of

(Xcr), the falling rate period begins. This means that the moisture transfer of the gas

and the solid phase at the external surface is significantly decreased so that the

diffusion process controls the rate of drying.

The mass transfer rate per unit volume for the falling rate period can be

expressed by

_m ¼ Dvs � π2
d2p

� ρs � Xs � Xf

� � ð5:13Þ

Dvs is assumed to have a typical value of 2� 10�12 m2/s. Xs is the volume-averaged

moisture content of the particles, and Xf is the final volume-averaged moisture

content or volume-averaged equilibrium moisture content of the particles.

For more details regarding governing and constitutive equations, see Jang and

Arastoopour (2014).

5.1.6 Boundary Conditions

Initially, the gas velocity was set at zero throughout the entire bed. A uniform

velocity profile for the gas phase was applied as an inlet condition. A value for the

pressure was specified at the outlet of the fluidized bed. For the gas phase, no-slip

and non-penetrating wall conditions were considered. For the solid phase, the slip

(Johnson and Jackson 1987) according to Table 2.2,

τs ¼ �π

6

ffiffiffiffiffiffi
3ϕ

p εs
ε
s,max

ρs g0
ffiffiffiffiffi
θs

p
~v

s, para ð5:14Þ

where ~vs,para is the particle slip velocity parallel to the wall and θ is the granular

temperature. θ is the specularity coefficient between the particle and the wall, which
is defined as the average fraction of relative tangential momentum transferred

between the particle and the wall collision. A value for a specularity coefficient
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of 0.2 was assumed. The Johnson and Jackson (1987) wall boundary condition for

granular temperature was also considered:

qs ¼
π

6

ffiffiffiffiffiffi
3ϕ

p εs
ε
s,max

ρs g0
ffiffiffiffiffi
θs

p
~v

s, para �~vs, para �
π

4

ffiffiffi
3

p εs
ε
s,max

1� e2
sw

� �
ρs g0 θ

3=2
s

ð5:15Þ

A value of restitution coefficient esw of 0.2 between the particle and the wall and a

value of restitution coefficient ess of 0.9 between particles were assumed (see Jang

and Arastoopour 2014 for a more detailed explanation).

5.1.7 Numerical Solution

The control-volume-based code FLUENT was used to carry out the two-dimen-

sional (2D) computational simulations in this study. The governing equations were

then spatially discretized using a second-order upwind scheme. To avoid solution

divergence, small time steps on the order of 1� 10–4 were chosen, except for

energy and species balance for which convergence was set to occur when the

residuals fell below 1� 10–6. To obtain numerical solutions independent of the

grid size, 2550 grids were used. Figure 5.1 shows the calculated air temperature

exiting from the fluidized bed dryer as a function of time.

Figure 5.2 shows the average water content in the particles in the bed as a

function of time. This figure clearly shows that, during the constant rate period, the

moisture content is almost linearly decreasing at a higher rate toward the critical

moisture content (0.012 kgw/kgs or water content of 1.2%). After the moisture

content of the particles in the bed reached the critical moisture content level, the

remaining moisture inside the particles was removed by the diffusion process

(falling rate period) at a lower rate. About 70% of the initial moisture was on the

surface of the particles and in large surface pores (removed during the constant

drying rate period). The remaining 20% of the moisture was in the porous structure

of the particles (mainly removed during the falling drying rate period). The rest of

the 10% moisture remained as the equilibrium moisture content.

5.2 CFD Simulation of a CO2 Capture Process in a CFB
Reactor

Carbon capture from combustion and utilization of carbon-based fuel, such as fossil

fuel, plays a critical role in solving the urgent climate change problem created by

CO2 emission (Extavour and Bunje 2016). In addition, circulating fluidized bed

(CFB) reactors have the potential to be among the most important devices in the
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chemical and energy industries. CFB reactors currently are used in fluid catalytic

cracking (FCC) applications, with more than seven decades of history and more

than 400 units in operation worldwide today (Chen 2011). Furthermore, gasification

of coal and biomass, synthesis of olefin from methanol, and chemical looping are
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Fig. 5.1 Air temperature exiting from the fluidized bed dryer as a function of time (This figure

was originally published in Powder Techol 263, 2014 and has been reused with permission)
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among the relatively new applications of CFB reactors (Sundaresan 2011). Thus,

the CFB reactor ensures a continuous carbon dioxide removal process in a relatively

compact unit using solid particles. The basic configuration of a CFB reactor

consists of a riser where the particles are transported by the gas flow, a cyclone to

separate gas and solid at the top of the riser, a standpipe (downcomer) to return the

separated solid to the riser inlet, and a flow controlling device (e.g., L-valve) to

control the solid flow. In processes that include a regenerable sorbent or catalyst, a

second fluidized bed reactor can be added between the downcomer and the L-valve

to serve as a regenerator reactor.

5.2.1 Problem

Consider a bench-scale CO2 capture unit using a solid sorbent to separate CO2 from

a gas stream as shown in Fig. 5.3.

Coal gas enters the bottom of the adsorber and mixes with fresh sorbent.

Particles have 185 μmmean diameter and 2480 kg/m3 density. The sorbent particles

mix with the coal gases adsorbing CO2 into the particle through chemical reaction.

The CO2-laden particles flow up the riser, turn, and flow into the cyclone. CO2-free

gas is separated from particles in the cyclone and exit the system, and the CO2-

laden particles pass through a loop seal and enter the regenerator where CO2 is

released from the sorbent particles by heating up the spent sorbent. The CO2-lean

gas exits the carbon capture unit (C2U) system, and the regenerated sorbent

particles continue through the loop to the next loop seal (Shadle et al. 2010). The

fresh sorbent particles pass through the loop seal to the adsorber, and the process

continues. To maintain gas–particle flow in a CO2 capture loop, gases need to be

injected around the system to keep particles fluidized.

Develop governing equations (continuity, species, and momentum) and numer-

ical simulation, and obtain the outlet CO2 concentration for the carbonation process

in the adsorber and riser sections. In this example, the focus is on the simulation of

the reactive gas–solid flow in the adsorber and riser sections. The riser and adsorber

have a 3.35 m combined height and 5 cm and 15 cm diameter, respectively.

5.2.2 Solution

The conservation equations (i.e., mass, momentum, and species) and constitutive

equation presented in Tables 2.1 and 2.2, for both phases, were solved on a three-

dimensional (3D) Cartesian domain. It is assumed that the process is isothermal and

particle size is constant and uniform. The Syamlal et al. (1993) drag model was used

as the drag force between phases (Abbasi et al. 2015). The Syamlal-O’Brien drag

expression contains adjustable parameters that can be used to tune the drag to match

the theoretical minimum fluidization velocity to experimentally observed values. It
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should be noted that the original drag correlation was derived for homogeneous

gas–solid flows and the adjustment reduces the drag to partially account for the

heterogeneous gas–solid structure in the fluidized bed.

A summary of all of the simulations performed at different solid circulation rates

and gas inlet velocities is presented in Table 5.1. These variables were varied within

a range that ensures the fast fluidization regime in the riser. To study the effect of

the solid circulation rate, the inlet solid mass flow rate was increased by factors of

5 and 10, while the inlet gas velocity was kept constant at the baseline value.

Furthermore, at the inlet solid mass flow rate of 220 g/s (Case 1), the inlet gas

velocity was decreased by 25% and 35% (Case 3 and Case 4, respectively) to

investigate the effect of gas residence time on CO2 removal. In these simulations, a

50/50 (mole fraction) mixture of CO2 and N2 was used as the inlet gas.

Fig. 5.3 NETL carbon

capture unit (C2U)

experimental setup (Source:

Shadle et al. 2010)

Table 5.1 Summary of simulation cases

Case Inlet gas velocity (m/s) Solid circulation rate (g/s)

Baseline 0.15 44

Case 1 0.15 220

Case 2 0.15 440

Case 3 0.1125 220

Case 4 0.0975 220
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5.2.3 Reaction Kinetic Model

To describe the heterogeneous reaction between the sorbent and CO2, it was

assumed that the particles can be described (see Fig. 5.4) by two distinct zones

representing the outer product layer and the inner core (fresh sorbent).

The heterogeneous kinetic model for the reaction between CO2 and the sorbent

based on a two-zone variable diffusivity shrinking core model is described by

Abbasi et al. (2013) as

dX

dt
¼ �

3
rp

ks
N o
MgO

Cb � Ceð Þ 1� Xð Þ2
3

1þ ks
Dg
rp 1� Xð Þ13 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�X

1�XþXZ
3

q� � where ks ¼
k1 f or ri � rc

k2 f or ri < rc

				
ð5:16Þ

Cb is the CO2 concentration in the bulk gas, Ce is the equilibrium CO2 concentra-

tion, Dg is the product layer diffusivity of CO2, rp is the radius of the particle, ks is
the surface reaction constant rate at each zone, and No

MgO is the initial number of

moles of MgO per unit volume. In the above model, the dependence of the gas

diffusion coefficient Dg, through the porous product layer with respect to conver-

sion, was assumed to follow an exponential decay function (Abbasi et al. 2013).

The rate of the carbonation reaction can be calculated from the rate of the sorbent

conversion obtained from the two-zone variable diffusivity shrinking core model

which gives the dX/dt in the following correlation:

_R ¼ yMgO

MWsorbent

dX

dt
ð5:17Þ

rp , k1

rc, k2

Fig. 5.4 Schematic of the

reacting particle (This

figure was originally

published in Powder
Technol 286, 2015 and has

been reused with

permission)
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5.2.4 Numerical Solution

The operating and inlet conditions were set using the values presented in Table 5.1

and the pressure boundary condition was used at the outlet. Furthermore, at the

wall, a no-slip condition for the gas phase and a partial slip condition for the solid

phase, based on Johnson and Jackson (1987), with a specularity coefficient of 0.2,

were used (see Table 2.2). The restitution coefficient of particle–particle was set to

0.9. The 3D computational domain consists of approximately 87,000 cells.

Figure 5.5 shows the contours of the instantaneous solid volume fraction, CO2

mole fraction, and reaction rate at t¼ 20 s for a solid circulation rate of 220 g/s. The

solid volume fraction contours show a very dense and well-mixed solid phase in the

carbonator and a dilute region in the riser. Reaction rate contours also show that

most of the CO2 capture takes place in the carbonator with very little reaction in the

riser.
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Fig. 5.5 Contours of instantaneous solid volume fraction, CO2 mole fraction, and reaction rate at

t¼ 20 s, for solid circulation rate of 220 g/s (This figure was originally published in Powder
Technol 286, 2015 and has been reused with permission)
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The effect of the solids circulation rate on the removal of CO2 from the 50/50

(mole fraction) mixture of CO2 and N2 is presented in Fig. 5.6. It can be seen that, as

the solid mass flow rate is increased, the CO2 exit mole fraction decreases. At the

baseline condition (44 g/s), a 30% CO2 removal was achieved. At a 5 times higher

solid mass flow rate (Case 1), the removal increased to 40% and, after that, even

with a 10 times higher solid mass flow rate (Case 2), no increase in CO2 removal

was observed. Since there is no difference in CO2 removal by further increasing the

solid inlet mass flow rate, it suggests that the process is controlled by the reaction

rate and an improvement is expected by decreasing the gas residence time.

The effect of gas residence time was studied by changing the inlet gas velocity

and keeping the solid circulation rate constant at 220 g/s. Three cases with inlet gas

velocities of baseline (0.15 m/s), and 25% and 35% lower gas velocities (0.1125 m/

s and 0.0975 m/s) were investigated. As expected and is shown in Fig. 5.7, CO2

removal increases with increasing gas residence time, providing the gas and solid a

longer contact time and a more efficient process. Decreasing the inlet gas velocity

by 35% leads to an additional 20% CO2 removal, reaching to 60% CO2 removal.

The improving effect of longer gas residence time is evident by comparing the

concentrations of CO2 at the exit, which decreases by reducing the inlet gas velocity

and higher gas residence time in the reactor. However, even at the lowest inlet gas

velocity (0.0975 m/s), the outlet CO2 concentration is far from the equilibrium limit

that is the lowest achievable concentration at this operating condition. Further

decreasing the inlet gas velocity is not possible due to the change in the behavior

Fig. 5.6 Effect of solid circulation rate on CO2 removal (This figure was originally published in

Powder Technol 286, 2015 and has been reused with permission)
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of the fluidized bed, not being at a turbulent/fast fluidization regime. The CFD

model can be used to find the optimum reactor design, specifically the geometry of

the carbonator, to maximize the gas–solid contact and, hence, CO2 removal.

5.3 CFD-PBE Simulation of a CO2 Capture Process Using
Solid Sorbents

Experimental data in the literature (Yi et al. 2007) on fresh, carbonated, and

regenerated sorbent particles in the CO2 capture process using solid sorbents have

shown that the sorbent particle size distribution essentially remains constant during

the carbonation and regeneration processes. However, the mass of the sorbent

particle changes during both the sorption (mass gain) and regeneration processes

(mass loss), which leads to the changes in the density of the particles. Consequently,

the particles go through a structural change (e.g., change in porosity distribution).

5.3.1 Problem

Consider the example provided in Case 2, and assume that the solid sorbent entering

the reactor has a unimodal density distribution representing a partially regenerated

sorbent as shown in Fig. 5.8 in dimensionless form. The probability density

function spans between a minimum density (i.e., 2480 kg/m3) corresponding to

Fig. 5.7 Effect of inlet gas velocity on CO2 removal (This figure was originally published in

Powder Technol 286, 2015 and has been reused with permission)
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the fresh sorbent and a maximum density (i.e., 2830 kg/m3) corresponding to the

fully reacted sorbent. The mean density value at the solid inlet is 2569 kg/m3.

Develop a CFD-based model and numerical solution to calculate the variation in

particle density during this carbonation process.

5.3.2 Solution

In this section, the CFD model of Case 2 is coupled with a FCMOM-based

population balance equation (PBE) through the two-way coupling algorithm

presented in Chap. 4 to account for the temporal and spatial evolution of the sorbent

density distribution inside the reactor. In formulation of the PBE, for an inhomo-

geneous and univariate particulate system, with the particle density being the only

internal coordinate, Eq. (4.1) becomes

∂f ξ; x; tð Þ
∂t

þ ∂
∂xi

vp x; tð Þf ξ; x; tð Þ
 �þ ∂
∂ξj

∂ξj
∂t

f ξ; x; tð Þ
� 


¼ h ξ; x; tð Þ ð5:18Þ

In the above equation, it is assumed that the system is nondiffusive (i.e., no

diffusion term).

Since, in the FCMOM approach, the solution of the PBE is sought in the finite

interval between the minimum and maximum values [ξmin, ξmax] of the particle

density, ξmin and ξmax can be considered as the density of the fresh sorbent and the

density of the sorbent with complete conversion, respectively.

Fig. 5.8 Particle density distribution function at the inlet (This figure was originally published in

Powder Technol 286, 2015 and has been reused with permission)
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The final form of the moments transport equations (Eq. 4.9) for this specific case

becomes

∂μi
∂t

þ ∂
∂xj

vp, jμi

 � ¼ � 2

ξmax � ξminð Þ: G0
þ1f

0
þ1 � �1ð Þi:G0

�1f
0
�1

h i
� i:

ð1
�1

G0f 0 : ξ
� �i�1

:dξ

� �

�f 0þ1 � �1ð Þi:f 0�1

h i
� i:μi�1

n o
:

1

ξmax � ξminð Þ:
dξmin

dt

� �

�f 0þ1 � �1ð Þiþ1:f 0�1

h i
� iþ 1ð Þ:μi

n o
:

1

ξmax � ξminð Þ: � dξmin

dt

� �

�f 0þ1 � �1ð Þi:f 0�1

h i
� i:μi�1

n o
:

vp, j
ξmax � ξminð Þ:

∂ξmin

∂xj

� �

�f 0þ1 � �1ð Þiþ1:f 0�1

h i
� iþ 1ð Þ:μi

n o
:

vp, j
ξmax � ξminð Þ: �∂ξmin

∂xj

� �

ð5:19Þ

The moments evolution equation, Eq. (5.19), must be coupled with the moving

boundary conditions providing the governing equations for ξmin(t, x). There is also a
source term due to the reaction, and ξmin(t, x) is convected because of the convective
particle movement in the presence of spatially inhomogeneous conditions. The

definition of the moving boundary conditions for ξmin(t, x) is based on the evalua-

tion of (a) the spatial derivatives of ξmin(t, x) and (b) the velocity vp,min(t, x) of the
particles whose densities are equal to ξmin(t, x).

The moving boundary condition for ξmin(t, x) is then given by

∂ξmin

∂t
þ∇:vp,min:ξmin ¼ G ð5:20Þ

where G is the growth rate of the particle density due to the reaction defined as

(Abbasi et al. 2015)

G ¼ ∂ξ
∂t

¼ ξ2 � ξ1ð Þ∂X
∂t

ð5:21Þ

ξ2 is the density of the product layer (which is higher density), and ξ1 is the density
of the inner core fresh sorbent (which is lower density) as shown in Fig. 5.4. The

partial derivative ∂X
∂t is provided by the heterogeneous reaction kinetic model

between CO2 and the sorbent based on a two-zone variable diffusivity shrinking

core model, as described by Eq. (5.16).

The mean density value was calculated based on the ratio of the second moment

of the distribution function (Fig. 5.8) to the first moment of the distribution function

(μ1/μ0).
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Figure 5.9 shows contours of the time-averaged minimum and mean solid

density in the reactor. The minimum density contours of the solid provide valuable

information about the location of the fresh sorbent front. Based on Eq. (5.20), the

minimum density boundary (fresh sorbent front) moves with the reaction rate, and,

because the reaction rate is significantly higher in the lower part of the reactor, the

minimum density values rise faster in this region. However, the mean density

values, calculated based on the moments of the distribution, are increasing along

the height of the reactor.

Although in this specific case the change in the density of the sorbent is not

significant and has a very small effect on the hydrodynamics of the system, it can

become important in the cases where the sorbent has a significantly higher reaction

rate or a higher residence time in a different reactor design.

In addition, the coupled CFD-PBE model is a valuable tool for design and

optimization of the reactor and can be useful in the calculation of the regeneration

rate and the rate of sorbent make-up to the system. Another application of such a

model is studying the effect of particle size distribution on the reactor performance

and in the cases in which particle attrition and particle breakage exist.

Fig. 5.9 Contours of the

time-averaged minimum

and mean density of the

solid phase at t¼ 20 s (This

figure was originally

published in Powder
Technol 286, 2015 and has

been reused with

permission)
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5.4 Nomenclature

As Overall external particle surface area to unit volume ratio, m�1

Cp Heat capacity, J/kg∙K
Cb CO2 concentration in gas, mol/m3

Ce Equilibrium CO2 concentration, mol/m3

Ci Concentration at reaction interface, mol/m3

Dg Product layer diffusivity, m2/s

dp Particle diameter, m

Dvg Moisture diffusivity of gas phase, m2/s

Dvs Moisture diffusivity of solid phase, m2/s

ess Particle restitution coefficient

esw Restitution coefficient between solid and wall

f Number density function

f Dimensionless number density function

g0 Radial distribution function at contact during binary collision

hg Enthalpy of gas phase per unit mass, J/kg

hs Enthalpy of solid phase per unit mass, J/kg

Hvap Heat of vaporization per unit mass, J/kg

ks Reaction rate constant, m/s

Ksg Mass transfer coefficient, m/s

msg Mass transfer rate, kg/m3∙s
MW Molecular weight, kg/kmol

No
MgO Initial number of moles of MgO, mol/m3

Nu Nusselt number

Pv Vapor pressure, N/m2

q Rate of heat flux, W/K

Qsg Rate of heat transfer per volume between gas and solid, W/m3

_R: Rate of carbonation reaction, kmol/kg∙s
Rep Particle Reynolds number

rp Radius of sorbent particle, m

rc Radius of unreacted core of sorbent particle, m

Sc Schmidt number

Sh Sherwood number

T Temperature, K

vg Gas-phase velocity, m/s

vp Particle-phase velocity, m/s

vs Solid-phase velocity, m/s

~vs,para Particle slip velocity parallel to the wall, m/s

X Sorbent conversion

Xcr Critical moisture content, kgwater/kgsolid
Xf Final volume-averaged moisture content, kgwater/kgsolid
Xs Volume-averaged moisture content of the solid phase, kgwater/kgsolid
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Yv Moisture fraction in gas phase

Y�i Moisture fraction of saturated drying gas at surface of wet particles

Greek Symbols

ϕ Specularity coefficient between the particle and the wall

μi ith moments of density distribution function

αgs Gas–particle heat transfer coefficient, W/m2∙K
εk kth phase volume fraction

θ Granular temperature, m2/s2

ξ Sorbent density, kg/m3

ρk kth phase density, kg/m3

τk kth phase stress tensor, N/m2
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