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Preface

At the time this book is published, the world is experiencing the most spectacular
rate of technological developments ever seen in history. This scenario demands a
continuous enhancement of engineering materials in order to obtain improved or
new mechanical, electrical or, in a more comprehensive sense, thermo-physical
properties. Technological achievements usually rely on previous scientific devel-
opments and give support to engineering needs. Thus, we can talk of engineering
tailored materials (ETM) or advanced engineering materials (AEM), which include
the former.

This book presents 14 chapters centered in AEMs, covering subjects such as new
manufacturing processes or aspects of their computational modeling, optimization
procedures aimed at the obtainment of tailored properties, and computational
modeling of constitutive behavior. In particular, the book is divided into four
different parts: Part I—Micro and Nanoscale Modeling (3 chapters), Part II—
Biological Tissues (4 chapters), Part III—Porous and Multiphase Materials (4
chapters) and Part IV—Polymers (3 chapters). The contributions belong to
researchers from nine countries: Argentina, Australia, Brazil, Canada, Chile,
Colombia, Germany, Poland, and Spain.

I would like to express my gratitude to all the people who contributed to the
elaboration of this compendium. The list is long and I cannot mention them all, I
apologize for that. Notwithstanding, in addition to all the authors, I feel indebted to
André Kühl, André J. Torii, Carla T.M. Anflor, Carlos A. dos Santos, Clovis S. de
Barcellos, Edgar N. Mamiya, Eduardo Bittencourt, Eduardo L. Cardoso, José A.M.
Carrer, Jun S.O. Fonseca†, Júlio M. Pureza, Lucival Malcher, Miguel Vaz Jr.,
Roberto D. Machado, Rodnny J. Mendoza Fakhye, Severino P.C. Marques, and
Thiago A. Carniel.

Finally, I wish to dedicate this book to the memory of Prof. Domingos Boechat
Alves, from the Federal University of Santa Catarina and Prof. Jun Sérgio Ono
Fonseca, from the Federal University of Rio Grande do Sul, both in Brazil. Their
decease in 2015 was a great loss to the Brazilian computational mechanics
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community. They were engineering researchers of the highest level, who conducted
their lives in the most ethical way both in academy and as individuals. They
inspired generations of young researchers in Brazil and will be remembered for the
legacy they left.

February 2016 Pablo Andrés Muñoz-Rojas
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Part I
Micro and Nanoscale Modeling



On the Variational Analysis of Vibrations
of Prestressed Six-Parameter Shells

Holm Altenbach and Victor A. Eremeyev

Abstract We discuss the variational statements of the theory of linear vibrations of

prestressed six-parameter shells. Initial or residual stresses can significantly influ-

ence buckling and oscillations of thin-walled structures. Within the six-parameter

theory of shells a shell is modeled as a deformed material each point of it has six

degrees f freedom, that is three translational and three rotational ones. Starting with

the governing equations of the six-parameter shell theory the constitutive equations

are analyzed. The linearization of the boundary-value problem is realized. After a

brief discussion of the eigen-vibrations of the prestressed six-parameter shells the

Rayleigh principle is introduced and discussed.

1 Introduction

Residual or initial stresses play an important role in engineering because such

stresses can change the behavior of solids and structures. It is well-known that resid-

ual stresses result in failures even if they are much smaller in comparison with

applied stresses. In addition, residual stresses can significantly influence buckling

and oscillations of thin-walled structures, such as plates and shells. Investigations of

prestressed solids are discussed, for example, in [36, 37, 39, 48, 55, 62]. Mechani-

cal models of thin prestressed structures are studied in [2, 7, 10, 38, 40, 41, 44, 63,

68, 69] within the framework of various theories of plates and shells.
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4 H. Altenbach and V.A. Eremeyev

Here we consider the eigen-oscillations of prestressed shells using the non-linear

micropolar shell theory. This variant of the shell theory which is called also six-

parameter theory of shells is presented in [18, 20, 27–29, 31, 32, 45–47, 58, 61,

70] among others, see also the reviews [4, 5] and the references therein. Similar

models of shells are discussed in [52–54]. Within the micropolar shell theory the

kinematics of the shell is determined by two kinematically independent fields of

translations and rotations. Each point of the micropolar shell base surface has six

degrees of freedom as in rigid body dynamics. This means that the drilling moment

is taken in account. The surface stress and couple stress tensors are introduced in the

theory. The advantage of the 6-parameter shell model is the correct description of

multifolded shells, of interaction of a shell with a rigid body, etc., see [43, 60] and

the references therein. The full micropolar kinematics may be important for proper

modeling of piezoelectric or piezomagnetic shells since electromagnetic fields pro-

duce forces and moments including the drilling ones, see [34, 49]. In addition, this

gives the possibility of description of the contact interaction of shells with distrib-

uted on its surface nano-objects [24, 33] or sensors, actuators, absorbers, etc., see

[1, 6, 14, 15, 22, 23, 42, 50, 67].

Using certain constraints one can reduce the micropolar shell theory to Kirchhoff-

Love-type or Reissner-Mindlin-type shell models. Mathematical studies of linear

boundary-value problems of statics, dynamics and eigen-oscillations are performed

in [26] within the framework of the functional analysis methods and the theory of

Sobolev’s spaces. First existence results for statics of nonlinear micropolar shells

have been given in [11–13, 52] based on direct methods of the calculus of variations.

The chapter is based on the recent publications [3, 25]. It is organized as fol-

lows. In Sect. 2 we introduce briefly the basic equations of micropolar shells. Then

in Sect. 3 we derive linearized boundary-value problems. In Sect. 4 we formulate

boundary-value problems for eigen-oscillations. Finally, in Sect. 5 we give the vari-

ational statement of the problems using the Rayleigh variational principle. Let us

also note that the Rayleigh principle allows us to optimize the form and change the

distribution of shell properties to find in an extremal way the least or higher eigenfre-

quencies, see, e.g., [8]. We introduce the Rayleigh quotient for the shell with initial

stresses and compare it with the Rayleigh quotient of the shell without initial stresses.

This gives the possibility to analyze the influence of initial stresses. We show that

the eigen-frequencies of the prestressed shells change by two reasons:

1. by changes of the elastic moduli tensors and

2. by terms depending on the initial stresses only.

The last reason is more important in the case of flexible thin structures for which

instability may occur.
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2 Dynamics and Statics of Micropolar Plates and Shells

Within the framework of the direct approach the micropolar shell is represented as

a deformable material surface in each point of which three orthogonal unit vectors

called directors are attached. The deformation of the micropolar shell is described

by mapping from one state called the reference configuration to another one called

the actual configuration. Let Σ be a base surface of the shell in the reference

configuration 𝜘. The position vector of Σ is 𝐏(q1, q2), where q𝛼 , 𝛼 = 1, 2, are

Gaussian coordinates onΣ. The actual configuration 𝜒 describes the state of the shell

at instant of time t. In 𝜒 the base surface of the shell is denoted by σ and described

by the position vector ρ(q1, q2, t). In the reference and actual configurations we also

introduce directors 𝐃k(q1, q2) and 𝐝k(q1, q2, t), k = 1, 2, 3. These two sets of vectors

describe the orientation of shell material points in the reference and actual configu-

rations, respectively. Then the relative change of the orientation of the shell is deter-

mined by the proper orthogonal tensor 𝐐 = 𝐝k ⊗ 𝐃k. Hence, the micropolar shell is

described by two kinematically independent fields

ρ = ρ(q1, q2, t) and 𝐐 = 𝐐(q1, q2, t). (1)

Let us introduce for the micropolar hyper-elastic shell the strain energy density

W. According to the local action principle [66], W takes the form

W = W(ρ,∇∇∇
𝜘
ρ,𝐐,∇∇∇

𝜘
𝐐),

where

∇∇∇
𝜘

△
= 𝐏𝛼

𝜕

𝜕q𝛼
(𝛼, β = 1, 2), 𝐏𝛼 ⋅𝐏β = 𝛿

𝛼

β
, 𝐏𝛼 ⋅𝐍 = 0, 𝐏β = 𝜕𝐏

𝜕qβ
.

Here vectors 𝐏β and 𝐏𝛼

denote the natural and reciprocal bases on Σ, respectively, 𝐍
is the unit normal to Σ and 𝛿

𝛼

β
is the Kronecker symbol.

From the principle of material frame-indifference [66] it follows that W depends

on two surface strain measures 𝐄 and 𝐊:

W = W(𝐄,𝐊), (2)

where

𝐄 = 𝐅 ⋅𝐐⊤ − 𝐀, 𝐊 = 1
2
𝐏𝛼

⊗

(
𝜕𝐐
𝜕q𝛼

⋅𝐐⊤

)
×
. (3)

Here 𝐅 = ∇∇∇
𝜘
ρ is the surface deformation gradient, and 𝐀 ≜ 𝐈 − 𝐍⊗ 𝐍, 𝐈 is the unit

3D tensor, 𝐓× is the vectorial invariant of the second-order tensor 𝐓 defined by

𝐓× = (⊤𝗆𝗇𝐢𝗆 ⊗ 𝐢𝗇)× = ⊤

𝗆𝗇𝐢𝗆 × 𝐢𝗇
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for any base 𝐢𝗆, × denotes the vector product, see e.g. [45].

Introducing the translation vector 𝐮 = ρ − 𝐏, which is also named displacement

vector, and the finite rotation vector θ = 2𝐞 tanϕ ∕2 we can express 𝐐, 𝐄 and 𝐊 as

follows (see [59] for details)

𝐐 = 1
(4 + θ2)

[
(4 − θ

2)𝐈 + 2θ ⊗ θ − 4𝐈 × θ
]
, (4)

𝐄 = (𝐀 +∇∇∇
𝜘
𝐮) ⋅𝐐⊤ − 𝐀, 𝐊 = 4

4 + θ2
∇∇∇

𝜘
θ ⋅

(
𝐈 + 1

2
𝐈 × θ

)
, (5)

where θ2 = θ ⋅ θ. 𝐐 describes the rotation about the axis with the unit vector 𝐞 trough

an angle ϕ.

The Lagrangian equations of motion of the micropolar shell are (cf. for example

[18, 31, 47])

∇∇∇
𝜘
⋅𝐓

𝜘
+ 𝐟 = ρ

𝜘

d𝐊1
dt

, (6)

∇∇∇
𝜘
⋅𝐌

𝜘
+
[
𝐅⊤ ⋅𝐓

𝜘

]
× +𝐦 = ρ

𝜘

(
d𝐊2
dt

+ 𝐯 ×𝚯⊤

1 ⋅ω
)
, (7)

where

𝐓
𝜘
= 𝐒1 ⋅𝐐, 𝐌

𝜘
= 𝐒2 ⋅𝐐, (8)

𝐒1 =
𝜕W
𝜕𝐄

, 𝐒2 =
𝜕W
𝜕𝐊

, (9)

𝐊1=
𝜕K

𝜕𝐯
= 𝐯 +𝚯⊤

1 ⋅ω, 𝐊2 =
𝜕K

𝜕ω
= 𝚯1 ⋅ 𝐯 +𝚯2 ⋅ω, (10)

K(𝐯,ω) = 1
2
𝐯 ⋅ 𝐯 + ω ⋅𝚯1 ⋅ 𝐯 +

1
2
ω ⋅𝚯2 ⋅ω. (11)

Here 𝐓
𝜘

and 𝐌
𝜘

are the surface stress and couple stress tensors of the first Piola-

Kirchhoff type while the stress measures 𝐒1 and 𝐒2 are the referential stress and

couple stress tensors, respectively, 𝐟 and 𝐦 are the surface force and couple densities

distributed on Σ,

𝐯 = dρ
dt

, ω = 1
2

(
𝐐⊤ ⋅

d𝐐
dt

)
×

are the linear and angular velocities, respectively, ρ
𝜘

is the surface mass density in

the reference configuration, ρ
𝜘

K is the surface density of the kinetic energy, and

ρ
𝜘
𝚯1, ρ

𝜘
𝚯2 are the rotatory inertia tensors, 𝚯2 = 𝚯⊤

2 .

In what follows we use the simplest relations for 𝚯1 and 𝚯2, see [58],
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𝚯1 = 𝟎, 𝚯2 = γ 𝐈, (12)

where γ is a scalar measure of the rotatory inertia. With Eqs. (12) the equations of

motion (6) and (7) take more simple form

∇∇∇
𝜘
⋅𝐓

𝜘
+ 𝐟 = ρ

𝜘

d𝐯
dt

, (13)

∇∇∇
𝜘
⋅𝐌

𝜘
+
[
𝐅⊤ ⋅𝐓

𝜘

]
× +𝐦 = ρ

𝜘
γ
dω
dt

. (14)

Equations (6) and (7) or (13) and (14) are supplemented by following boundary

conditions:

on ω1 ∶ ρ = 𝐫0(s), on ω2 ∶ 𝝂 ⋅𝐓
𝜘
= 𝐭(s),

on ω3 ∶ 𝐐 = 𝐡(s), on ω4 ∶ 𝝂 ⋅𝐌
𝜘
= μ(s). (15)

Here 𝐫0(s), 𝐡(s) are given vector and tensor functions, 𝐡 ⋅ 𝐡⊤ = 𝐈, and 𝝂 is the external

unit normal to the boundary contour ω = 𝜕Σ, 𝝂 ⋅𝐍 = 0, 𝐭 and μ are the linear densi-

ties of forces and couples distributed along corresponding parts of the shell contour

ω, respectively. The contour ω is divided into two parts in such a way that

ω = ω1 ∪ ω2 = ω3 ∪ ω4.

The corresponding initial conditions are

ρ||t=0 = ρ◦
, 𝐯||t=0 = 𝐯◦, 𝐐||t=0 = 𝐐◦

, ω||t=0 = ω◦
(16)

with given initial values ρ◦
, 𝐯◦, 𝐐◦

, ω◦
.

Following [18, 28, 31] let us consider the model of physically linear isotropic

shells, whose strain energy density is given by the quadratic form

2W = 𝛼1tr
2𝐄∥ + 𝛼2tr𝐄2

∥ + 𝛼3tr

(
𝐄∥ ⋅𝐄⊤

∥

)
+ 𝛼4𝐍 ⋅𝐄⊤ ⋅𝐄 ⋅𝐍

+ β1 tr
2𝐊∥ + β2 tr𝐊2

∥ + β3 tr

(
𝐊∥ ⋅𝐊⊤

∥

)
+ β4𝐍 ⋅𝐊⊤ ⋅𝐊 ⋅𝐍,

(17)

𝐄∥ ≜ 𝐄 ⋅𝐀, 𝐊∥ ≜ 𝐊 ⋅𝐀.

Equation (17) contains 8 elastic stiffness parameters, 𝛼k, βk, k = 1, 2, 3, 4. With

respect to Eq. (17) 𝐒1 and 𝐒2 have the form

𝐒1 = 𝛼1(tr𝐄∥)𝐀 + 𝛼2𝐄⊤

∥ + 𝛼3𝐄∥ + 𝛼4(𝐄 ⋅ 𝐍)⊗ 𝐍, (18)

𝐒2 = β1(tr𝐊∥)𝐀 + β2𝐊⊤

∥ + β3𝐊∥ + β4(𝐊 ⋅ 𝐍)⊗ 𝐍. (19)

Introducing the fourth-order tensors 𝐂1 and 𝐂2 by the formulae



8 H. Altenbach and V.A. Eremeyev

𝐂1 = 𝛼1𝐀⊗ 𝐀 + 𝛼2𝐏𝛼

⊗ 𝐀⊗ 𝐏𝛼 + 𝛼4𝐏𝛼

⊗ 𝐍⊗ 𝐏𝛼

⊗ 𝐍,
𝐂2 = β1𝐀⊗ 𝐀 + β2𝐏𝛼

⊗ 𝐀⊗ 𝐏𝛼𝐏β + β4𝐏𝛼

⊗ 𝐍⊗ 𝐏𝛼

⊗ 𝐍,

we re-write (18) and (19) in a more compact form

𝐒1 = 𝐂1 ∶ 𝐄, 𝐒2 = 𝐂2 ∶ 𝐊, (20)

where “∶” denotes the inner product in the space of second-order tensors, for example

(𝐚⊗ 𝐛⊗ 𝐜⊗ 𝐝) ∶ (𝐱⊗ 𝐲) = (𝐜 ⋅ 𝐱)(𝐝 ⋅ 𝐲)𝐚⊗ 𝐛.

For parameters 𝛼
k
, β

k
the following values are proposed in [18]

𝛼1 = C𝜈, 𝛼2 = 0, 𝛼3 = C(1 − 𝜈), 𝛼4 = 𝛼sC(1 − 𝜈),
β1 = D𝜈, β2 = 0, β3 = D(1 − 𝜈), β4 = 𝛼tD(1 − 𝜈),

where

C = 𝖤𝗁

1 − 𝜈
2 , D = 𝖤𝗁3

12(1 − 𝜈
2)
.

Here E, 𝜈 are the Young’s modulus and the Poisson’s ratio of the bulk material, h
is the shell thickness. 𝛼s is an analogy to the shear correction factor introduced in

[64, 65] where the value 𝛼s = 5∕6 is used or in [51] with 𝛼s = 𝜋

2∕12. In [56, 57]

𝛼t = 0.7 is suggested, see also [19]. Extensive numerical analysis of the influence of

𝛼s and 𝛼t on the solutions’ behavior is presented in [18].

The boundary-value problem (6), (7), (15), and (16) supplemented by the consti-

tutive equation (17) describes finite deformations of the isotropic micropolar shell.

Numerical solutions of few examples are presented in [16–19] among others.

The equations of motion (6) and (7) can be transformed to the Eulerian form

∇∇∇
𝜒

⋅𝐓 + J
−1𝐟 = ρ

d𝐊1
dt

, (21)

∇∇∇
𝜒

⋅𝐌 + 𝐓× + J
−1𝐦 = ρ

(
d𝐊2
dt

+ 𝐯 ×𝚯⊤

1 ⋅ω
)
, (22)

where

∇∇∇
𝜒

=ρ𝛼
𝜕

𝜕q𝛼
, ρ𝛼 ⋅ρβ = 𝛿

𝛼

β
, ρ𝛼 ⋅𝐧 = 0, ρ

β = 𝜕ρ

𝜕qβ
,

𝐓 = J
−1𝐅𝖳 ⋅𝐓

𝜘
, 𝐌 = J

−1𝐅𝖳 ⋅𝐌
𝜘
, (23)

J = J(𝐅) =
√

1
2

{[
tr (𝐅 ⋅𝐅𝖳)

]2 − tr

[
(𝐅 ⋅𝐅𝖳)2

]}
.
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Here 𝐓 and 𝐌 are Cauchy-type surface stress and couple stress tensors, ρ is the

surface mass density in the actual configuration, ∇∇∇
𝜒

is the surface nabla operator on

σ related with ∇∇∇
𝜘

by the formula ∇∇∇
𝜘
= 𝐅 ⋅∇∇∇

𝜒

, and 𝐧 is the unit normal to σ.

3 Linearized Boundary-Value Problems

Let ρ0 and 𝐐0 are the known static solution of (6), (7), and (15). The corresponding

state of the shell we will call the basic actual configuration and denote it by 𝜒0. In

addition, let us consider the actual configuration 𝜒∗, which differs from 𝜒0 by infin-

itesimal deformation, and derive the linearized boundary-value problem. Denoting

quantities related to 𝜒∗ by the lower index ∗ we have

ρ∗ = ρ0 + 𝛿ρ, 𝐐∗ = 𝐐0 + 𝛿𝐐,

where we use the symbol 𝛿 for infinitesimal increments of corresponding quantities.

Since 𝐐 is an orthogonal tensor, the tensor 𝐐⊤ ⋅ 𝛿𝐐 is a skew-symmetric tensor and

can be represented as follows

𝐐⊤ ⋅ 𝛿𝐐 = −𝐈 × ψ,

where ψ is the infinitesimal rotation vector. It can be expressed by the increment of

the finite rotation vector as follows

ψ = 4
4 + θ2

(
𝛿θ + 1

2θ × 𝛿θ

)
.

The increments of the strain measures are given by the formulae [31]

𝛿𝐄 =(∇∇∇
𝜘
𝛿ρ) ⋅𝐐⊤

0 + 𝐅0 ⋅ 𝛿𝐐⊤ = 𝐅0 ⋅ ε ⋅𝐐⊤

0 , (24)

𝛿𝐊 =(∇∇∇
𝜘
ψ) ⋅𝐐⊤ = 𝐅0 ⋅ 𝝒 ⋅𝐐⊤

0 , (25)

where ε and 𝝒 are the linear strain measures given by

ε = ∇∇∇
𝜒

𝐰 + 𝐀 × ψ, 𝝒 = ∇∇∇
𝜒

ψ, (26)

𝐰 = 𝛿ρ and 𝐅0 = ∇∇∇
𝜘
ρ0.

Assuming that 𝛿𝐟 = 𝟎 and 𝛿𝐦 = 𝟎 the linearization of Eqs. (13) and (14) leads to

the Lagrangian linearized equations of motion
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∇∇∇
𝜘
⋅ 𝛿𝐓

𝜘
= ρ

𝜘

d2𝐰
dt2

, (27)

∇∇∇
𝜘
⋅ 𝛿𝐌

𝜘
+
[
(∇∇∇

𝜘
𝐰)⊤ ⋅𝐓

𝜘
+ 𝐅⊤

0 ⋅ 𝛿𝐓𝜘

]
× = ρ

𝜘
γ
d2ψ
dt2

. (28)

The increments of the stress and couple stress tensors are calculated by the relations

𝛿𝐓
𝜘
= 𝛿𝐒1 ⋅𝐐0 + 𝐒1 ⋅ 𝛿𝐐 = 𝛿𝐒1 ⋅𝐐0 − 𝐓

𝜘
× ψ, (29)

𝛿𝐌
𝜘
= 𝛿𝐒2 ⋅𝐐0 + 𝐒2 ⋅ 𝛿𝐐 = 𝛿𝐒2 ⋅𝐐0 −𝐌

𝜘
× ψ, (30)

𝛿𝐒1 =
𝜕W
𝜕𝐄𝜕𝐄

∶ 𝛿𝐄 + 𝜕W
𝜕𝐄𝜕𝐊

∶ 𝛿𝐊, (31)

𝛿𝐒2 =
𝜕W

𝜕𝐊𝜕𝐄
∶ 𝛿𝐄 + 𝜕W

𝜕𝐊𝜕𝐊
∶ 𝛿𝐊. (32)

Using (20) for the physically linear shell we have

𝛿𝐒1 = 𝐂1 ∶ 𝛿𝐄 = 𝐃1 ∶ ε, 𝛿𝐒2 = 𝐂2 ∶ 𝛿𝐊 = 𝐃2 ∶ 𝝒,

where 𝐃1 and 𝐃2 are fourth-order tensors given by

𝐃1 = 𝛼1𝐀⊗ 𝐅⊤

0 ⋅ 𝐏
𝛼

⊗𝐐⊤

0 ⋅ 𝐏𝛼 + 𝛼2𝐏𝛼

⊗ 𝐏β ⊗ 𝐅⊤

0 ⋅ 𝐏β
⊗𝐐⊤

0 ⋅ 𝐏𝛼

+ 𝛼3𝐏𝛼

⊗ 𝐏β ⊗ 𝐅⊤

0 ⋅ 𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐏β + 𝛼4𝐏𝛼

⊗ 𝐍⊗ 𝐅⊤

0 ⋅ 𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐍,
𝐃2 = β1𝐀⊗ 𝐅⊤

0 ⋅ 𝐏
𝛼

⊗𝐐⊤

0 ⋅ 𝐏𝛼 + β2𝐏𝛼

⊗ 𝐏β ⊗ 𝐅⊤

0 ⋅ 𝐏β
⊗𝐐⊤

0 ⋅ 𝐏𝛼

+ β3𝐏𝛼

⊗ 𝐏β ⊗ 𝐅⊤

0 ⋅ 𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐏β + β4𝐏𝛼

⊗ 𝐍⊗ 𝐅⊤

0 ⋅ 𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐍.

Assuming that 𝛿𝐭 = 𝟎, 𝛿μ = 𝟎, 𝛿𝐫0 = 𝟎, and 𝛿𝐡 = 𝟎, we obtain the linearized

boundary conditions

on ω1 ∶ 𝐰 = 𝟎, on ω2 ∶ 𝝂 ⋅ 𝛿𝐓
𝜘
= 𝟎,

on ω3 ∶ ψ = 𝟎, on ω4 ∶ 𝝂 ⋅ 𝛿𝐌
𝜘
= 𝟎. (33)

Introducing the tensors

𝚽1 = J−10 𝐅⊤

0 ⋅ 𝛿𝐓𝜘
, 𝚽2 = J−10 𝐅⊤

0 ⋅ 𝛿𝐌𝜘
, (34)

where J0 = J(𝐅0), we transform Eqs. (27) and (28) into the linearized equations of

motion in the actual configuration 𝜒0

∇∇∇
𝜒

⋅𝚽1 = ρ
d2𝐰
dt2

, (35)

∇∇∇
𝜒

⋅𝚽2 +
[
(∇∇∇

𝜒

𝐰)⊤ ⋅𝐓 +𝚽1
]
× = ρ γ

d2ψ
dt2

. (36)
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For the physically linear isotropic micropolar shell𝚽1 and𝚽2 are given by relations

𝚽1 = 𝐇1 ∶ ε − 𝐓 × ψ, 𝚽1 = 𝐇2 ∶ 𝝒 −𝐌 × ψ,

𝐇1 = J
−1
0 𝐅⊤

0 ⋅
̃𝐃1, 𝐇2 = J

−1
0 𝐅⊤

0 ⋅
̃𝐃2,

where

̃𝐃1 = 𝛼1𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐏𝛼

⊗ 𝐅⊤

0 ⋅ 𝐏β ⊗𝐐⊤

0 ⋅ 𝐏β + 𝛼2𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐏β ⊗ 𝐅⊤

0 ⋅ 𝐏β
⊗𝐐⊤

0 ⋅ 𝐏𝛼

+ 𝛼3𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐏β ⊗ 𝐅⊤

0 ⋅ 𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐏β + 𝛼4𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐍⊗ 𝐅⊤

0 ⋅ 𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐍,
̃𝐃2 = β1𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐏𝛼

⊗ 𝐅⊤

0 ⋅ 𝐏β ⊗𝐐⊤

0 ⋅ 𝐏β + β2𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐏β ⊗ 𝐅⊤

0 ⋅ 𝐏β
⊗𝐐⊤

0 ⋅ 𝐏𝛼

+ β3𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐏β ⊗ 𝐅⊤

0 ⋅ 𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐏β + β4𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐍⊗ 𝐅⊤

0 ⋅ 𝐏𝛼

⊗𝐐⊤

0 ⋅ 𝐍.

The fourth-order tensors 𝐇1 and 𝐇2 are tangent stiffness tensors in the non-linear

theory of shells which have the same properties as in the three-dimensional non-

linear elasticity [35, 36, 48, 55], see also [2]. The components of 𝐇1 and 𝐇2 depend

on initial deformations and, as a result, have symmetry properties which are different

from ones of 𝐂1 and 𝐂2, in general.

The linearized Eulerian boundary conditions are

on 𝓁1 ∶ 𝐰 = 𝟎, on 𝓁2 ∶ η ⋅𝚽1 = 𝟎, on 𝓁3 ∶ ψ = 𝟎, on 𝓁4 ∶ η ⋅𝚽2 = 𝟎.
(37)

Here η is the unit vector normal to the shell contour

𝓁 = 𝜕 σ, η ⋅𝐧 = 0, 𝓁 = 𝓁1 ∪ 𝓁2 = 𝓁3 ∪ 𝓁4,

𝓁1, 𝓁2, 𝓁3, and 𝓁4 are the parts of the shell contour in the actual configuration cor-

responding to ω1, ω2, ω3, and ω4, respectively.

The boundary-value problems (27), (28), (33), and (35)–(37) describe the motion

of the prestressed micropolar shell. For 𝜒0 = 𝜘 we have

𝐅0 = 𝐀, 𝐐0 = 𝐈.

Assuming in addition the absence of initial stresses

𝐓 = 𝐌 = 𝟎

the linearized boundary-value problems coincide with the equations of motion of

linear isotropic micropolar shells discussed in [18, 26, 31, 45].
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4 Eigen-Vibrations of Prestressed Micropolar Shells

Let us consider eigen-vibrations of a prestressed shell. By linearity, eigen-solutions

are proportional to eiΩt :

𝐰 = 𝐖(q1, q2)eiΩt , ψ = 𝚵(q1, q2)eiΩt .

Substituting the latter relations into (35) and (37) we obtain the boundary-value

problem for the physically linear isotropic prestressed micropolar shell

∇∇∇
𝜒

⋅𝚽1 = − ρΩ2𝐖, (38)

∇∇∇
𝜒

⋅𝚽2 +
[
(∇∇∇

𝜒

𝐰)⊤ ⋅𝐓 +𝚽1
]
× = − ρ γΩ2𝚵, (39)

on 𝓁1 ∶ 𝐖 = 𝟎, on 𝓁2 ∶ η ⋅𝚽1 = 𝟎, on 𝓁3 ∶ 𝚵 = 𝟎, on 𝓁4 ∶ η ⋅𝚽2 = 𝟎,
(40)

where

𝚽1 =𝐇1 ∶ ε − 𝐓 × 𝚵, 𝚽2 = 𝐇2 ∶ 𝝒 −𝐌 × 𝚵,
ε = ∇∇∇

𝜒

𝐖 + 𝐀 × 𝚵, 𝝒 = ∇∇∇
𝜒

𝚵. (41)

Additionally we consider the linear boundary-value problem of the micropolar

shell without initial deformation, that is when 𝜒0 = 𝜘, which is given by

∇∇∇
𝜒

⋅𝚽0
1 = − ρΩ2𝐖, ∇∇∇

𝜒

⋅𝚽0
2 +𝚽0

1× = − ρ γΩ2𝚵, (42)

on 𝓁1 ∶ 𝐖 = 𝟎, on 𝓁2 ∶ η ⋅𝚽0
1 = 𝟎, on 𝓁3 ∶ 𝚵 = 𝟎, on 𝓁4 ∶ η ⋅𝚽0

2 = 𝟎,
(43)

𝚽0
1 = 𝐂1 ∶ ε, 𝚽0

2 = 𝐂2 ∶ 𝝒. (44)

The comparison of 𝚽0
1 and 𝚽1, 𝚽0

2 and 𝚽2 shows that difference between these

boundary-value problems consists of

1. the difference between the elastic moduli tensors 𝐂
𝛼

and 𝐇
𝛼

, 𝛼 = 1, 2, and

2. the existence of initial stress tensors 𝐓 and 𝐌 in 𝚽1 and 𝚽2.

In what follows we show the influence on eigen-frequencies of the prestressed shell

using the variational approach.

5 Rayleigh Principle

In the linear and linearized shell theories presented above there is a variational prin-

ciple for eigen-vibrations called the Rayleigh variational principle. To formulate it
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we consider the second variation of the functional of the total energy of the microp-

olar shell. Suppose that 𝐦 = μ = 𝟎 and the external forces are “dead”. This means

that 𝐟 and 𝐭 do not depend on 𝐮 and 𝐐. Thus the functional of the total potential

energy of the shell is

Π =
∬

Σ

W dΣ −
∬

Σ

𝐟 ⋅𝐮 dΣ −
∫

ω2

𝐭 ⋅𝐮 ds.

The first variation of Π is given by

𝛿Π =
∬

Σ

[
tr
(
𝐓⊤

𝜘
⋅∇∇∇

𝜘
𝐰
)
+ tr

(
𝐓⊤

𝜘
⋅𝐅0 × ψ

)
+ tr

(
𝐌⊤

𝜘
⋅∇∇∇

𝜘
ψ
)]

dΣ

−
∬

Σ

𝐟 ⋅𝐰 dΣ −
∫

ω2

𝐭 ⋅𝐰 ds.

(45)

Since ρ0 and 𝐐0 are assumed to satisfy equilibrium equations and boundary condi-

tions (15), the first variation of the energy vanishes

𝛿Π = 0.

The second variation of the energy takes the form

𝛿

2Π =
∬

Σ

{
tr
(
𝛿𝐓

𝜘

⊤ ⋅∇∇∇
𝜘
𝐰
)
+ tr

(
𝛿𝐓

𝜘

⊤ ⋅ 𝐅0 × ψ
)
+ tr

[
𝐓⊤

𝜘
⋅ (∇∇∇

𝜘
𝐰) × ψ

]

+ tr
(
𝛿𝐌

𝜘

⊤ ⋅∇∇∇
𝜘
ψ
)}

dΣ.

Using identities ∇∇∇
𝜒

= 𝐅 ⋅∇∇∇
𝜘
, d σ = J dΣ, and Eq. (34), we transform 𝛿

2Π to

𝛿

2Π =
∬

σ

{
𝚽1 ∶

(
∇∇∇

𝜒

𝐰 + 𝐀 × ψ
)
+𝚽1 ∶ ∇∇∇𝜒

ψ + tr
[
𝐓⊤ ⋅ (∇∇∇

𝜒

𝐰) × ψ
]}

d σ

=
∬

σ

{
𝚽1 ∶ ε +𝚽2 ∶ 𝝒 + tr

[
𝐓⊤ ⋅ (∇∇∇

𝜒

𝐰) × ψ
]}

d σ .

Finally, with Eqs. (41), the second energy variation takes the form

𝛿

2Π = 2
∬

σ

w d σ, w = w1 + w2, (46)

where
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w1(ε,𝝒) = 1
2
ε ∶ 𝐇1 ∶ ε + 1

2
𝝒 ∶ 𝐇2 ∶ 𝝒,

w2(ψ, ε,𝝒) = tr
(
ψ × 𝐓⊤ ⋅ ε

)
− 1

2
tr
(
ψ × 𝐓⊤ × ψ

)
+ 1

2
tr
(
ψ ×𝐌⊤ ⋅𝝒

)
.

(47)

Let us note that w is the increment of the elastic energy density of the initially

prestressed shell under additional infinitesimal deformations. By Eqs. (46) and (47),

w splits into two terms. The first term, w1, is similar to the strain energy density of

the linear shell. w1 is the quadratic form of ε and 𝝒 with the elastic moduli tensors

𝐇1 and 𝐇2. w2 is also a quadratic form but depending on ψ, ε and 𝝒. The coefficients

in the quadratic form w2 are expressed in terms of the initial stress and couple stress

tensors only, they do not depend on the properties of shell material.

If 𝜒0 = 𝜘, that is 𝐓 = 𝐌 = 𝟎, then the energy density w is a quadratic form of

tensors ε and 𝝒 having the form

w = w0 ≡
1
2
ε ∶ 𝐂1 ∶ ε + 1

2
𝝒 ∶ 𝐂2 ∶ 𝝒.

Here w0 is the strain energy density of an isotropic linear micropolar shell under

infinitesimal deformations, see [18, 26, 31, 32].

Now the Rayleigh variational principle can be formulated as follows. The modes

of shell eigen-oscillations are stationary points of the energy functional

[𝐖,𝚵] =
∬

σ

[w1(ε,𝝒) + w2(𝚵, ε,𝝒)] d σ, (48)

where

ε = ∇∇∇
𝜒

𝐖 + 𝐀 × 𝚵, 𝝒 = ∇∇∇
𝜒

𝚵,

on the set of functions that satisfy the kinematic boundary conditions

on 𝓁1 ∶ 𝐖 = 𝟎 and on 𝓁3 ∶ 𝚵 = 𝟎 (49)

and the restriction

(𝐖,𝚵) ≡ 1
2 ∬

σ

ρ (𝐖 ⋅𝐖 + γ𝚵 ⋅ 𝚵) d σ = 1. (50)

Here the functions 𝐖, 𝚵 are the oscillation amplitudes for the translations and rota-

tions, respectively.

The Rayleigh variational principle is equivalent to the stationary principle for the

Rayleigh quotient

[𝐖,𝚵] = [𝐖,𝚵]
(𝐖,𝚵)

, (51)
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that is defined on kinematically admissible functions 𝐖, 𝚵.

The proof of the principle in the case of a prestressed shell is standard and mimics

one which can be found, for example, in [9] or in the case of the micropolar shell

theory in [26]. For comparison purposes we introduce the Rayleigh quotient of the

shell without initial stresses

0[𝐖,𝚵] =
0[𝐖,𝚵]
(𝐖,𝚵)

, 0[𝐖,𝚵] =
∬

σ

w0(ε,𝝒) d σ . (52)

Note that the least squared eigenfrequencies of the shell correspond to the minimal

values of  and 0

Ω2
min = inf [𝐖,𝚵], Ω0

2
min = inf 0[𝐖,𝚵]

on 𝐖, 𝚵 that satisfy (49). By the Courant minimax principle [21], the Rayleigh quo-

tient (51) allows us to estimate the values of higher eigen-frequencies. For this we

should consider  on the set of functions that are orthogonal to the previous modes

of eigen-oscillations in some functional energy space.

To analyze the influence of initial (residual) stresses we compare the functionals

 and 0 that is equivalent to comparison of  and 0. It is obvious that the differ-

ence between  and 0 consist of two terms: the difference in elastic moduli, that is

the difference between 𝐂1 and 𝐇1, 𝐂2 and 𝐇2, and the term w2 depending on initial

stress and couple stress tensors.

Let us consider first w1 and w0. In the linear theory of shell it is assumed that w0
is a positive definite quadratic form of ε and 𝝒. We also assume that w1(ε,𝝒) is a

positive definite quadratic form. This means that w1 satisfies the following inequality

w1(ε,𝝒) ≥ c1‖ε‖2 + c2‖𝝒‖2
with positive constants c1 and c2 depending on the shell geometry. This restriction

plays the same role as the generalized Coleman-Noll inequality used in the non-linear

elasticity, see [30]. This case is similar to the dependence of the eigen-frequency

of a spring on its stiffness: the increase of stiffness leads to the increase of eigen-

frequency.

To analyze the influence of w2 let us assume that 𝐂1 = 𝐇1, 𝐂2 = 𝐇2. This means

that we neglect the influence of initial strains on the elastic moduli of the shell. Here

we have w − w0 = w2. It is obvious that w2 is not a positive definite function, in

general. Indeed, let us consider as an example the uniform stretching of the shell

with 𝐓 = ⊤𝐀, 𝐌 = 𝟎, ⊤ is the uniform tension. We have
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w2(𝚵, ε,𝝒) = ⊤ tr (𝚵 × 𝐀 ⋅ ε) − ⊤

2
tr (𝚵 × 𝐀 × 𝚵)

= ⊤ tr
(
𝚵 ×∇∇∇

𝜒

𝐖
)
+ ⊤

2
tr (𝚵 × 𝐀 × 𝚵)

= ⊤ tr
(
𝚵 ×∇∇∇

𝜒

𝐖
)
+ ⊤

2
[
𝚵 ⋅ 𝚵 + (𝚵 ⋅ 𝐍)2

]
.

Assuming ∇∇∇
𝜒

𝐖 = 𝟎 we obtain

w2 =
⊤

2
[
𝚵 ⋅ 𝚵 + (𝚵 ⋅ 𝐍)2

]
.

Thus, the sign of w2 coincides with the sign of T . As a result we have

[𝟎,𝚵] − 0[𝟎,𝚵] =
⊤

2 ∬

σ

[𝚵 ⋅ 𝚵 + (𝚵 ⋅ 𝐍)2] d σ .

Positive values of ⊤ leads to an increase of Ω. This case is similar to the depen-

dence of eigen-frequency of a string on tension [21]: stretching (⊤ > 0) leads to the

increase while compression (⊤ < 0) leads to the decrease of the eigen-frequencies

in comparison with the unstressed shell. Moreover, since initial stresses and couple

stresses may lead to instability of the shell that is when 𝛿

2Π becomes non-positive

their influence on eigen-oscillations is more important than the change of elastic

moduli tensors.

Few examples showing the influence of initial stresses on the least eigenfrequen-

cies of a prestressed six-parameter shell are given in [3].

6 Conclusions

We presented the variational formulation of boundary-value problems described

eigen-oscillations of the prestressed six-parameter shells. The Rayleigh quotient is

introduced and the Rayleigh variational principle is formulated. Using the Rayleigh

variational principle we analyzed the influence of initial stresses on eigen-frequen-

cies. It is determined by changes of elastic moduli tensors due to deformations and

by terms depending on initial stress and couple stress tensors only which may play

more important role in the case of flexible thin shells with initial stresses.
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Multi-objective Topology Optimization
Design of Micro-structures

Sebastián Miguel Giusti and Antonio André Novotny

Abstract This contribution proposes a methodology for the multi-objective synthe-

sis and/or topology optimization of microstructures based on the topological deriv-

ative concept. The macroscopic properties are estimated by a standard multi-scale

constitutive theory where the macroscopic responses are volume averages of their

microscopic counterparts over a Representative Volume Element (RVE). We intro-

duce a macroscopic cost functional that combines the mechanical and thermal effects

in a single expression, allowing to design an RVE satisfying a specific thermo-

mechanical macroscopic behavior. The algorithm is of simple computational imple-

mentation and relies in a level-set domain representation method. The effectiveness

of the proposed methodology is illustrated by a set of finite element-based numerical

examples.

1 Introduction

The accurate prediction of macroscopic thermal and mechanical properties of mate-

rials from the knowledge of their underlying microstructures has long been a subject

of great interest in applied mechanics. The increasing understanding of the micro-

scopic mechanisms responsible for the macroscopic response, allied to the indus-

trial demand for more accurate predictive tools, led to the development and use

of so-called multiscale constitutive theories. Such theories are currently a subject
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of intensive research in applied mathematics and computational mechanics, whose

mathematical roots can be traced back to the pioneers works [8, 13, 19, 20, 32].

Early applications were concerned with the description of relatively simple

microscale phenomena often treated by analytical or semi-analytical methods [6,

7, 18, 27, 30]. More recent applications rely often on finite element-based compu-

tational simulations and are frequently applied to more complex material behavior

[9, 25, 26, 31, 34].

One interesting branching of such developments is the study of the sensitivity of

the macroscopic response to changes in the underlying microstructure. The sensitiv-

ity information becomes essential in the analysis and potential purpose-design and

optimization of heterogeneous media. In the present work we adopt an approach that

relies on exact formulae for the sensitivities of the macroscopic elastic and thermal

responses to topological changes of the microscopic domain. These formulae have

been derived in [16, 17]; and rely on the concepts of topological asymptotic analy-

sis and topological derivative [33]—which provide the correct mathematical frame-

work for the calculation of sensitivities under singular topological changes typical

of microstructural optimization problems. The obtained sensitivities are given by a

symmetric tensor field, of the same order that the constitutive operator, over the Rep-

resentative Volume Element (RVE) that measures how the macroscopic constitutive

parameters estimated within the multiscale framework changes when a small disk is

introduced at the microscale. The final format of the proposed analytical formulae

are strikingly simple and has been successfully applied to synthesis and optimization

of elastic microstructures in [4, 10, 15].

In this work we introduce a macroscopic cost functional that combines the

mechanical and thermal effects in a single expression. The associated topological

derivative of each term of the cost functional has been respectively derived in [16,

17]. These results are used together with a level-set domain representation method in

the synthesis and/or topology optimization of the RVE to achieve a specific thermo-

mechanical macroscopic behavior. We claim however that the thermal-expansion

effect is neglected, so that the resulting thermo-mechanical model is uncoupled.

The work is organized as follows. The multi-scale constitutive theories used in

the estimation of the elastic and thermal macroscopic constitutive response is briefly

described in Sect. 2. In Sect. 3 an overview of the topological derivative concept is

given and the formulae for the topological derivatives of the macroscopic elasticity

and thermal constitutive tensors relevant to the present context are presented. The

topology optimization algorithm together with the numerical examples are presented

in Sect. 4. Finally, some concluding remarks are made in Sect. 5.

2 Multi-objective Problem Formulation

Let 𝛺
𝜇

⊂ ℜ2
be an open and bounded domain defining a local Representative Vol-

ume Element (RVE) of the material. The domain of the sought optimal structure

will be a subset of the hold-all domain 𝛺
𝜇

. Therefore, given a RVE domain 𝛺
𝜇

,
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a general procedure for the topological design of multifunctional micro-structures

consists in finding a subdomain 𝜔
𝜇

⊂ 𝛺
𝜇

(the optimal structure domain) that solves

the following constrained minimization problem:

{
Minimize

𝜔
𝜇

⊂𝛺
𝜇

J (𝛺
𝜇

) = 𝛽 z(ℂ) + (1 − 𝛽)h(𝐊),

Subjected to |𝜔
𝜇

| = V∗
,

(1)

where the functional J (𝛺
𝜇

) is defined in the domain 𝛺
𝜇

of the RVE. In the above

definition, h(𝐊) and z(ℂ) are scalar functions depending on the constitutive thermal

𝐊 and elastic ℂ response tensors; and 𝛽 ∈ [0, 1] is the weighting coefficient for the

multi-objective cost functional, which allows to control the contributions between

the functions h(𝐊) and z(ℂ) on the objective function. By changing the weighting

coefficient value from 0 through 1, we obtain a Pareto optimal set if it is convex.

Finally, the required volume of the optimal domain at the end of the optimization

process is denoted as V∗
. The constitutive responses 𝐊 and ℂ are obtained from a

variational approach in a constitutive multi-scale model. In the following sections,

we briefly describe the adopted model to obtain these constitutive responses by a

standard homogenization procedure.

2.1 Preliminaries in the Multi-scale Modeling

In this section we briefly describe the main concepts for a multi-scale constitutive

analysis which allows to estimate the macroscopic constitutive tensors by using a

homogenization-based variational framework with the complete description of a

local RVE of the material. This constitutive modeling approach follows closely the

strategy presented by [13, 25, 26], and whose variational structure is described in

detail in the works [11, 12]. In this context, the main concept is the assumption that

any point x of the macroscopic continuum 𝛺 ⊂ ℜ2
(refer to Fig. 1) is associated to

a local RVE whose domain 𝛺
𝜇

, with boundary 𝜕𝛺
𝜇

, has characteristic length L
𝜇

,

much smaller than the characteristic length L of the macro-continuum domain. For

Fig. 1 Macroscopic continuum with a locally attached microstructure
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simplicity, we consider that the RVE domain consist of a matrix 𝛺

m
𝜇

, containing

inclusions of different materials occupying a domain 𝛺

i
𝜇

(see Fig. 1), but the formu-

lation is completely analogous to the one presented here if the RVE contains voids

instead. The total volume of the RVE is denoted as V
𝜇

and contains the volume of all

elements presented in the RVE, such as, solids phases and voids. Hereafter, symbols

(⋅)
𝜇

denote quantities associated to the microscale.

2.2 The Homogenized Conductivity Tensor

In the context of the previous section we consider that at any arbitrary point x ∈ 𝛺

the macroscopic temperature gradient ∇𝜃 is the volume average of the microscopic

temperature gradient ∇𝜃
𝜇

:

∇𝜃 = 1
V
𝜇

∫
𝛺

𝜇

∇𝜃
𝜇

(2)

where 𝜃 and 𝜃
𝜇

denote, respectively, the macroscopic and microscopic absolute tem-

perature fields. As stated before, since we are in a thermomechanics setting in which

the temperature itself has a physical relevance for the mechanical problem, we also

consider the following homogenization formula for the temperature

𝜃 = 1
V
𝜇

∫
𝛺

𝜇

𝜃
𝜇

. (3)

By making use of Green’s theorem, we can promptly establish that the averaging

relation (2) is equivalent to the following constraint on the temperature fields of the

RVE:

∫
𝜕𝛺

𝜇

𝜃
𝜇

n = V
𝜇

∇𝜃 , (4)

where n is the unit outward vector to 𝜕𝛺
𝜇

. Now, without loss of generality, the micro-

scopic temperature field 𝜃
𝜇

can be split into a sum

𝜃
𝜇

(y) = 𝜃 + 𝜃
𝜇

(y) + ̃
𝜃
𝜇

(y), (5)

of a constant temperature field (coinciding with the macrosopic temperature 𝜃(x)), a

homogeneous gradient temperature field, 𝜃
𝜇

(y) ∶= ∇𝜃 ⋅ (y − yo), and a temperature

fluctuation field, ̃𝜃
𝜇

(y). In the definition of the field 𝜃
𝜇

(y), yo is given by:

yo =
1
V
𝜇

∫
𝛺

𝜇

y . (6)
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Introducing the above splitting in (3) we obtain the following constraint for the

microscopic temperature fluctuation field:

∫
𝛺

𝜇

̃
𝜃
𝜇

= 0 . (7)

In view of the splitting (5), and taking into account constraints (2) and (3) we

define the minimally constrained space of the admissible microscopic temperature

fluctuation fields at the RVE as:

𝛩
𝜇

∶=

{
v ∈ H1(𝛺

𝜇

) ∶
∫
𝛺

𝜇

v = 0,
∫
𝜕𝛺

𝜇

v n = 0

}
. (8)

Therefore, the resulting space of admissible variations of the microscopic tem-

perature field at the RVE is also 𝛩
𝜇

.

Following the split (5), the microscopic temperature gradient can be expressed as

a sum

∇𝜃
𝜇

= ∇𝜃 + ∇̃
𝜃
𝜇

, (9)

of a homogeneous gradient (uniform over the RVE) coinciding with the macroscopic

temperature gradient and a field ∇̃
𝜃
𝜇

corresponding to a fluctuation of the micro-

scopic temperature gradient about the homogenized value.

Another fundamental concept underlying multiscale models of the present type is

the Hill-Mandel Principle of Macro-homogeneity. Here, we shall assume the analo-

gous relation for the thermal case [13, 17]

q ⋅ ∇ ̂
𝜃 = 1

V
𝜇

∫
𝛺

𝜇

q
𝜇

(𝜃
𝜇

) ⋅ ∇ ̂
𝜃
𝜇

∀(∇ ̂
𝜃,

̂
𝜃
𝜇

) kinematically admissible (10)

where q
𝜇

(𝜃
𝜇

) denotes the microscopic heat flux associated to the microscopic tem-

perature 𝜃
𝜇

and q is its macroscopic counterpart.

Equation (10) plays a crucial role in the formulation of thermal constitutive

models within the present framework since it provides the variational principle that

governs the scale bridging for the thermal problem. The main consequences of the

application of that principles are:

∙ Micro-thermal equilibrium problem: given the macroscopic temperature 𝜃 and

the macroscopic temperature gradient ∇𝜃, find the temperature fluctuation field

̃
𝜃
𝜇

∈ 𝛩
𝜇

such that

∫
𝛺

𝜇

q
𝜇

(𝜃
𝜇

) ⋅ ∇𝜂 = 0 ∀𝜂 ∈ 𝛩
𝜇

. (11)

∙ Characterization of the macroscopic heat flux: given the macroscopic temperature

𝜃, its gradient ∇𝜃, and 𝜃
𝜇

—the solution of problem (11), compute q as
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q = 1
V
𝜇

∫
𝛺

𝜇

q
𝜇

(𝜃
𝜇

). (12)

In the present analysis, we shall assume the materials of the RVE matrix and

inclusions to satisfy the classical Fourier constitutive law:

q
𝜇

(𝜉) = −𝐊
𝜇

∇𝜉 , (13)

where 𝐊
𝜇

is the thermal conductivity tensor defined at the RVE level. The isotropic

representation of this tensor is given by

𝐊
𝜇

= k
𝜇

I , (14)

being I used to denote the second order identity tensors and k
𝜇

the thermal con-

ductivity parameter (scalar value). The linearity of (13) together with the additive

decomposition (5), allows the microscopic thermal flux field to be split as

q
𝜇

(𝜃
𝜇

) = −𝐊
𝜇

∇𝜃 −𝐊
𝜇

∇̃
𝜃
𝜇

. (15)

By introducing decomposition (15) into the thermal equilibrium equation (11),

we obtain the closed form of the microscopic thermal equilibrium problem: given

∇𝜃, find ̃
𝜃
𝜇

∈ 𝛩
𝜇

such that

∫
𝛺

𝜇

𝐊
𝜇

∇̃
𝜃
𝜇

⋅ ∇𝜂 = −
∫
𝛺

𝜇

𝐊
𝜇

∇𝜃 ⋅ ∇𝜂 ∀𝜂 ∈ 𝛩
𝜇

. (16)

Crucial to the developments of the multi-scale model for the thermal problem, is

the derivation of formulae for the macroscopic thermal conductivity tensor. This is

addressed in the following.

From the additive split of the microscopic temperature field (5) and by using the

homogenization procedure, we have that the macroscopic thermal conductivity ten-

sor can be obtained as a sum

𝐊 = 𝐊 + ̃𝐊, (17)

of a homogenized (volume average) macroscopic thermal conductivity tensor 𝐊,

given by,

𝐊 = 1
V
𝜇

∫
𝛺

𝜇

𝐊
𝜇

, (18)

and a contribution ̃𝐊 associated to the solution of the problem (16), defined as:

̃𝐊 ∶=

[
1
V
𝜇

∫
𝛺

𝜇

(q
𝜇

(̃𝜃
𝜇j
))i

]
ei ⊗ ej , (19)
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where (q
𝜇

(̃𝜃
𝜇j
))i is the ith component of the microscopic fluctuation flux field asso-

ciated with the temperature fluctuation field ̃
𝜃
𝜇j

; being the scalar fields ̃𝜃
𝜇j
∈ V

𝜇

the

solutions of the linear variational equations

∫
𝛺

𝜇

q
𝜇

(̃𝜃
𝜇j
) ⋅ ∇𝜂 = −

∫
𝛺

𝜇

𝐊
𝜇

ej ⋅ ∇𝜂 ∀𝜂 ∈ V
𝜇

. (20)

for j = 1, 2 (in the two-dimensional case). For a more detailed description on the

derivation of the above expressions, we refer the reader to [17, 25].

2.3 The Homogenized Elasticity Tensor

Using the concept of homogenization we define the macroscopic strain tensor 𝜀 at

a point x of the macroscopic continuum as the volume average of its microscopic

counterpart 𝜀
𝜇

over the domain of the RVE. For this work, we consider that the

microscopic strain field 𝜀
𝜇

is given by the symmetric part of the gradient of the

microscopic displacement field u
𝜇

. Then, the macroscopic strain tensor is written

as:

𝜀 ∶= 1
V
𝜇

∫
𝛺

𝜇

∇su
𝜇

. (21)

Tacking into account the Green formula in the above definition we obtain the

following equivalent expression for the homogenized (macroscopic) strain tensor 𝜀

𝜀 = 1
V
𝜇

∫
𝜕𝛺

𝜇

u
𝜇

⊗s n , (22)

where n is the outward unit normal to the boundary 𝜕𝛺
𝜇

and ⊗s denotes the symmet-

ric tensor product of vectors. Note that, the above expression imposes a kinematical

constraint over the admissible displacement fields over the RVE such that the kine-

matical homogenization principle (21) is satisfied. Now, without loss of generality,

it is possible split u
𝜇

into a sum

u
𝜇

(y) = u + u
𝜇

(y) + ũ
𝜇

(y) , (23)

of a constant (rigid) RVE displacement coinciding with the macro displacement u(x),
a field u

𝜇

(y) ∶= 𝜀(y − yo) and a fluctuation displacement field ũ
𝜇

(y) (See Fig. 2).

With the above split, the microscopic strain field can be written as a sum

∇su
𝜇

= 𝜀 + ∇sũ
𝜇

, (24)
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Homogeneously
Deformed RVE

Fig. 2 Additive splitting of the microscopic displacement field

of a homogeneous strain (uniform over the RVE) coinciding with the macroscopic

strain and a field ∇sũ
𝜇

corresponding to a fluctuation of the microscopic strain about

the homogenized (average) value. We also assume the following constraint on the

microscopic displacement field u
𝜇

u = 1
V
𝜇

∫
𝜕𝛺

𝜇

u
𝜇

. (25)

By introducing the additive splitting for the microscopic displacement field u
𝜇

into the above constraint, we obtain the following expression for the microscopic

displacement fluctuation field

∫
𝜕𝛺

𝜇

ũ
𝜇

= 0 . (26)

In this sense, the kinematical homogenization procedure introduced in (21)

induces the minimally constrained space of admissible microscopic displacement
fluctuation fields at the RVE

U
𝜇

∶=

{
v ∈ H1(𝛺

𝜇

,ℜn) ∶
∫
𝛺

𝜇

v = 0,
∫
𝜕𝛺

𝜇

v⊗s n = 0

}
. (27)

Hence, the space of kinematically admissible variations of the microscopic displace-

ment field at the RVE is U
𝜇

as well.

As in the thermal case, the physical bridging between macro and micro scales is

provided by the Hill-Mandel Principle of Macro-homogeneity [20, 24], which is
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𝜎 ⋅ 𝜀̂ ∶= 1
V
𝜇

∫
𝛺

𝜇

𝜎
𝜇

(u
𝜇

) ⋅ ∇sû
𝜇

, ∀(û
𝜇

, 𝜀̂) kinematically admissible. (28)

where 𝜎
𝜇

(u
𝜇

) denotes the microscopic stress associated to the microscopic displace-

ment u
𝜇

and 𝜎 is its macroscopic counterpart.

As before, using standard variational arguments, the Hill-Mandel principle pro-

vides two consequences: the microscopic mechanical equilibrium problem and the

homogenization formula for the Cauchy stress.

∙ Micro-mechanical equilibrium problem: given the macroscopic strain 𝜀, find the

microscopic displacement fluctuation field ũ
𝜇

∈ U
𝜇

such that

∫
𝛺

𝜇

𝜎
𝜇

(u
𝜇

) ⋅ ∇s
𝜂 = 0 ∀𝜂 ∈ U

𝜇

. (29)

∙ Characterization of the macroscopic stress: given the macroscopic strain 𝜀, and

ũ
𝜇

—the solution of problem (29)—, compute 𝜎 as

𝜎 ∶= 1
V
𝜇

∫
𝛺

𝜇

𝜎
𝜇

(u
𝜇

) . (30)

For this work, materials that satisfy the classical linear elastic constitutive law

will be used to describe the behavior of the RVE matrix and inclusions. That is, the

microscopic stress tensor field 𝜎
𝜇

(𝜉) satisfies

𝜎
𝜇

(𝜉) = ℂ
𝜇

∇s
𝜉 , (31)

where ℂ
𝜇

is the classical fourth order elasticity tensor. In addition, we assume that

the matrix and the inclusion are isotropic and homogeneous materials, thus ℂ
𝜇

is

defined as:

ℂ
𝜇

=
E
𝜇

1 − 𝜈
2
𝜇

[(
1 − 𝜈

𝜇

)
𝕀 + 𝜈

𝜇

(I ⊗ I)
]
, (32)

with E
𝜇

and 𝜈
𝜇

denoting, respectively, the Young’s moduli and the Poisson’s ratio of

the domain 𝛺
𝜇

. Moreover, in (32) we use 𝕀 to denote the fourth order identity tensor.

The linearity of (31) together with the additive decomposition (24), allows the

microscopic stress field to be split as

𝜎
𝜇

(u
𝜇

) = 𝜎
𝜇

(u
𝜇

) + 𝜎
𝜇

(ũ
𝜇

) , (33)

where 𝜎
𝜇

(u
𝜇

) is the stress field associated with the uniform strain induced by u (y)
and 𝜎

𝜇

(ũ
𝜇

) is the stress fluctuation field associated with ũ
𝜇

(y).
In view of expressions (29)–(33), we have that the RVE mechanical equilibrium

problem consists of finding, for a given macroscopic strain 𝜀, an admissible micro-

scopic displacement fluctuation field ũ
𝜇

∈ U
𝜇

, such that
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∫
𝛺

𝜇

𝜎
𝜇

(ũ
𝜇

) ⋅ ∇s
𝜂 = −

∫
𝛺

𝜇

𝜎
𝜇

(u
𝜇

) ⋅ ∇s
𝜂 ∀𝜂 ∈ U

𝜇

. (34)

In the constitutive multi-scale model previously introduced, was presented how

to use the macroscopic information (strain tensor 𝜀) to obtain the microscopic dis-

placement field u
𝜇

. In this context, by using the same concepts it is possible to obtain

a closed form of the macroscopic constitutive response, in our case, the homoge-

nized elasticity tensorℂ. This methodology, suggested by [25], is based on re-writing

the problem (34) as a superposition of linear problems associated with the individ-

ual Cartesian components of the macroscopic strain tensor. Then, the macroscopic

(homogenized) tensor ℂ can be written as a sum

ℂ = ℂ + ̃ℂ , (35)

of an homogenized (volume average) macroscopic elasticity tensor ℂ, given by

ℂ = 1
V
𝜇

∫
𝛺

𝜇

ℂ
𝜇

, (36)

and a contribution ̃ℂ associated to the choice of space U
𝜇

, defined as:

̃ℂ ∶=

[
1
V
𝜇

∫
𝛺

𝜇

(𝜎
𝜇

(ũ
𝜇kl
))ij

](
ei ⊗ ej ⊗ ek ⊗ el

)
, (37)

where (𝜎
𝜇

(ũ
𝜇kl
))ij is the ijth component of the fluctuation stress field associated with

the fluctuation displacement field ũ
𝜇kl

; being the vector fields ũ
𝜇kl

∈ U
𝜇

the solutions

of the linear variational equations

∫
𝛺

𝜇

𝜎
𝜇

(ũ
𝜇kl
) ⋅ ∇s

𝜂 = −
∫
𝛺

𝜇

ℂ
𝜇

(ek ⊗ el) ⋅ ∇s
𝜂 ∀𝜂 ∈ U

𝜇

, (38)

for k, l = 1, 2 (in the two-dimensional case). After solving the set of variational prob-

lems (38), the full microscopic displacement field u
𝜇kl

can be obtained using the eq.

(23) for each canonical direction
{
ek, el

}
. For a more detailed description on the

derivation of expressions (35)–(38) we refer the reader to [12, 16, 25].

3 Topological Derivative

In this section we present the topological derivative concept used to devise a topology

design algorithm of micro-structures, within the multi-scale framework introduced

in the previous section. The concept of topological sensitivity analysis, rigorously
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introduced by Sokołowski and Żochowsky in 1999 [33], allows to obtain asymp-

totic expansions of shape functionals defined over a given domain, when a singular

perturbation is introduced in an arbitrary point changing the topology of the (origi-

nal) domain. The notion of topological derivative has proved extremely useful in the

treatment of a wide range of problems in mechanics, optimization, inverse analy-

sis and image processing and has become a subject of intensive research in the last

years, see for instance, the works [1, 5, 15, 16, 21, 22, 35] and the book [29].

Now, let𝜓 be a functional that depends on a given domain and let it have sufficient

regularity so that the following expansion is possible

𝜓 (𝜌) = 𝜓 (0) + f (𝜌)TD𝜓 + o (f (𝜌)) , (39)

where 𝜓(0) is the functional evaluated in the original domain and 𝜓(𝜌) denotes the

functional for the topologically perturbed domain. The parameter 𝜌 defines the size

of the topological perturbation, so that the original domain is retrieved when 𝜌=0.

In addition, f (𝜌) is a function such that f (𝜌) → 0 with 𝜌 → 0+ and o (f (𝜌)) contains

all terms of higher order in f (𝜌). The term TD𝜓 of (39) is defined as the topological
derivative of 𝜓 at the unperturbed (original) RVE domain. Thus, the topological

derivative can be seen as a first order correction factor over 𝜓 (0) to approximate

𝜓 (𝜌). In fact, rearranging (39) and taking the limit 𝜌 → 0+, we have the definition

of the topological derivative

TD𝜓 (̂x) = lim
𝜌→0+

𝜓(𝜌(̂x)) − 𝜓(0)
f (𝜌)

. (40)

In this work we will use a closed formula for the sensitivity of the homogenized

constitutive response (17) and (35) to the introduction of a circular inclusion centered

at an arbitrary point of the RVE domain. To present this formula it is appropriate to

define the topologically perturbed RVE by a small inclusion of radius 𝜌 represented

by B
𝜌

. More precisely, the perturbed domain is obtained when a circular hole B
𝜌

of radius 𝜌 is introduced at an arbitrary point ŷ ∈ 𝛺
𝜇

. Next, this region is replaced

with the circular inclusion with different material property (refer to Fig. 3). In the

presence of the perturbation described above, the microscopic constitutive tensors

are given by

ℂ𝜌

𝜇

=
{

ℂ
𝜇

in 𝛺
𝜇

⧵B
𝜌

𝛾ℂ
𝜇

in B
𝜌

and 𝐊𝜌

𝜇

=
{

𝐊
𝜇

in 𝛺
𝜇

⧵B
𝜌

𝛾𝐊
𝜇

in B
𝜌

, (41)

Fig. 3 Topological

perturbation at the

microscopic level
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where the scalar parameter 𝛾 ∈ ℜ+
is defined as the contrast parameter between the

constitutive responses of the domains 𝛺
𝜇

⧵B
𝜌

and B
𝜌

.

In view of the previous description of the topologically perturbed RVE domain,

we can state the following results:

Theorem 1 The topological asymptotic expansion of the macroscopic elasticity ten-
sor associated to the topologically perturbed RVE domain, namely ℂ𝜌, is written as

ℂ𝜌 = ℂ + 𝜋𝜌

2

V
𝜇

TDℂ + o(𝜌2) , (42)

where the fourth order topological derivative tensor TDℂ is given by

TDℂ = ℍ
𝜇

𝜎
𝜇

(u
𝜇ij
) ⋅ 𝜎

𝜇

(u
𝜇kl
) (ei ⊗ ej ⊗ ek ⊗ el) . (43)

Some terms in the above formula require explanation. The canonical stress tensors
𝜎
𝜇

(u
𝜇ij
) are given by

𝜎
𝜇

(u
𝜇ij
) = ℂ

𝜇

(ei ⊗ ej) + 𝜎
𝜇

(ũ
𝜇ij
) (44)

where ũ
𝜇ij
are the solutions to the set of canonical variational problems presented in

(38). In addition, the isotropic fourth order tensor ℍ
𝜇

is defined as

ℍ
𝜇

= − 1
E
𝜇

(
1 − 𝛾

1 + a𝛾

)[
4𝕀 − 1 − 𝛾(a − 2b)

1 + b𝛾
(I⊗ I)

]
, (45)

with the parameters a and b given by

a =
1 + 𝜈

𝜇

1 − 𝜈
𝜇

and b =
3 − 𝜈

𝜇

1 + 𝜈
𝜇

. (46)

Proof The reader interested in the proof of this theorem may refer to [4, 16].

Theorem 2 The topological asymptotic expansion of the macroscopic thermal con-
ductivity tensor associated to the topologically perturbed RVE domain, namely 𝐊𝜌,
is written as

𝐊𝜌 = 𝐊 + 𝜋𝜌

2

V
𝜇

TD𝐊 + o(𝜌2) , (47)

where the second order topological derivative tensor TD𝐊 is given by

TD𝐊 = −2k
𝜇

1 − 𝛾

1 + 𝛾

∇𝜃
𝜇i
⋅ ∇𝜃

𝜇j
(ei ⊗ ej) , (48)
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being ∇𝜃
𝜇i
the canonical microscopic temperature gradient fields given by

∇𝜃
𝜇i
= ∇𝜃 ⋅ ei + ̃

𝜃
𝜇i
, (49)

with the scalars ̃
𝜃
𝜇i
representing the solutions of the set of canonical variational

problems (20).

Proof The reader interested in the proof of this theorem may refer to [17].

Remark 1 The topological derivatives TDℂ and TD𝐊, presented in Eqs. (43) and

(48), exactly measures the sensitivity of the constitutive operators ℂ and 𝐊 when

a new material (characterized by a singular perturbation) is introduced at an arbi-

trary point of the RVE domain. This information is of paramount importance for the

designer in order to produce a material-by-design for an specific application.

The optimization procedure presented in (1) can be alternatively written as the

following unconstrained minimization problem:

Minimize
𝜔
𝜇

⊂𝛺
𝜇

J(𝛺
𝜇

) = 𝛽 z(ℂ) + (1 − 𝛽)h(𝐊) + 𝜆

|||𝜔𝜇

|||
V
𝜇

, (50)

where 𝜆 is a fixed Lagrange multiplier associated to a volume constraint over 𝜔
𝜇

.

Since the topological sensitivity is a derivative with respect to the volume fraction of

the perturbation, then, we can apply directly the rules of differential calculus. Thus,

according to the topological asymptotic expansion of the homogenized constitutive

response given by Eqs. (42) and (47), the topological derivative of the cost function

J(𝛺
𝜇

) can be obtained by using the chain rule. Therefore, it comes

TDJ = 𝛽 ⟨Dz(ℂ),TD(ℂ)⟩ + (1 − 𝛽) ⟨Dh(𝐊),TD(𝐊)⟩ + 𝜆 . (51)

where the term ⟨Dh(𝐊),TD(𝐊)⟩ and ⟨Dz(ℂ),TD(ℂ)⟩ should be understood as the deriv-

atives of the functions h(𝐊) and z(ℂ)with respect to the tensor𝐊 orℂ in the direction

of TD𝐊 or TDℂ, respectively. Also, note that the brackets ⟨⋅, ⋅⟩ denotes the appropriate

product between the derivatives of any function h(𝐊) or z(ℂ) and the corresponding

topological derivative TD𝐊 or TDℂ.

We use this simple idea to devise a topology algorithm for the synthesis and opti-

mization of multi-purpose micro-structures based on the minimization/maximization

of cost functions defined in terms of homogenized properties. In order to fix theses

ideas, let us present four examples concerning the topological derivatives of given

functions h(𝐊) and z(ℂ). For Let 𝜑1, 𝜑2 ∈ ℝn ×ℝn
be any pair of second order ten-

sors, and 𝜙1, 𝜙2 ∈ ℝn
be any pair of vectors. Then we obtain the following results:

Example 1 We consider a function h(𝐊) of the form

h(𝐊) ∶= 𝐊𝜙1 ⋅ 𝜙2 . (52)
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Therefore, by performing the derivation as indicated previously, its topological

derivative is given by

⟨Dh(𝐊),TD(𝐊)⟩ = TD(𝐊)𝜙1 ⋅ 𝜙2 . (53)

If we set 𝜙1 = ei and 𝜙2 = ej, for instance, we get h(𝐊) = (𝐊)ij and its topological

derivative is given by (TD(𝐊))ij. It means that the product ⟨Dh(𝐊),TD(𝐊)⟩ actually

represents the topological derivative of the component (𝐊)ij of the homogenized

thermal conductivity tensor 𝐊.

Example 2 Now, we consider an objective function h(𝐊) of the form

h(𝐊) ∶= 𝐊−1
𝜙1 ⋅ 𝜙2 . (54)

In order to perform the derivative, note that we can differentiate the relation 𝐊𝐊−1 =
𝐈 with respect to the volume fraction of the perturbation in the RVE, namely

TD(𝐊)𝐊−1 +𝐊TD(𝐊−1) = 0 . (55)

After multiplying to the left by 𝐊−1
we get

𝐊−1TD(𝐊)𝐊−1 + TD(𝐊−1) = 0 , (56)

which leads to

TD(𝐊−1) = −𝐊−1TD(𝐊)𝐊−1
. (57)

Thus, the topological derivative of h(𝐊) is given by

⟨Dh(𝐊),TD(𝐊)⟩ = −(𝐊−1TD(𝐊)𝐊−1)𝜙1 ⋅ 𝜙2 . (58)

Note that by setting tensors 𝜙1 and 𝜙2 properly, we can obtain the topological deriva-

tive in its explicit form of any component of the inverse of the homogenized elasticity

tensor 𝐊−1
.

Example 3 Let us consider an objective function h(𝐊) of the form

h(𝐊) ∶= 1
2
𝐊−1 ⋅ 𝐈 . (59)

By taking into account the result previously obtained, the topological derivative of

h(𝐊) is given by

⟨Dh(𝐊),TD(𝐊)⟩ = −1
2
(𝐊−1TD(𝐊)𝐊−1) ⋅ 𝐈 . (60)



Multi-objective Topology Optimization Design of Micro-structures 35

Example 4 Finally, we consider a function z(ℂ) of the form

z(ℂ) ∶= ℂ−1
𝜑1 ⋅ 𝜑2 . (61)

By using the same methodology as the previous example, the corresponding topo-

logical derivative can be written as

⟨Dz(ℂ),TD(ℂ)⟩ = −(ℂ−1TD(ℂ)ℂ−1)𝜑1 ⋅ 𝜑2 . (62)

Again, note that by setting tensors 𝜑1 and 𝜑2 properly, we can obtain the topological

derivative in its explicit form of any component of the inverse of the homogenized

elasticity tensor ℂ−1
.

In the next section, the optimization problem stated in (50) is solved by using

the level-set-based algorithm devised in [3], which was also successfully applied in

the context of microstructure topology optimization in the works [4, 10]. It relies

on a level-set domain representation and the topological derivative (51) is used as

a feasible descent direction. As cost functions for the multi-objective optimization

problem will be used a combinations of the functions presented above. For other type

of cost function in this context see the works [4, 10, 28].

4 Numerical Results

The numerical solution of the minimization problem (50) is undertaken here by the

algorithm proposed in [3] in conjunction with the finite element approximation of the

multiscale boundary value problems (20) and (38) proposed in [14]. The algorithm

relies essentially on an optimality criterion based on the topological derivative of

the objective function and on a level-set representation of the structure domain. For

completeness, the algorithm is outlined in the following. For further details we refer

to the works [3, 5].

With the level-set representation, the current optimized domain 𝜔
𝜇

is character-

ized by a level-set function 𝜓 ∈ L2(𝛺
𝜇

) as

𝜔
𝜇

= {x ∈ 𝛺
𝜇

, 𝜓(x) < 0} , (63)

and its complement as

𝛺
𝜇

⧵𝜔
𝜇

= {x ∈ 𝛺
𝜇

, 𝜓(x) > 0} . (64)

To devise a level-set-based algorithm whose aim is to produce a optimal topology

that satisfies (50) it is convenient to define the function
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g(x) =
{

−TDJ(x) if 𝜓(x) < 0
TDJ(x) if 𝜓(x) > 0 . (65)

Here it should be noted that a negative (positive) value of the topological deriva-

tive TDJ(x) at a point x ∈ 𝛺
𝜇

indicates that the introduction of an infinitesimal inclu-

sion centered at that point of the RVE produces a perturbed domain whose objective

functional value is smaller (greater) than that of the original domain. Then, according

to [3], a sufficient condition of local optimality in this context is that

TDJ(x) > 0 ∀x ∈ 𝛺
𝜇

. (66)

That is, no infinitesimal inclusion in 𝛺
𝜇

can cause a reduction in the value of the

objective functional.

The present algorithm relies on the fact that, in view of definition (65), a sufficient

condition for (66) to holds is

∃ 𝜏 > 0 s.t g = 𝜏 𝜓 , (67)

or, equivalently,

𝜃 ∶= arccos

[ ⟨g, 𝜓⟩L2(𝛺
𝜇

)

‖g‖L2(𝛺
𝜇

) ‖𝜓‖L2(𝛺
𝜇

)

]
= 0 , (68)

where 𝜃 is the angle between the vectors g and 𝜓 in L2(𝛺
𝜇

). The algorithm itself

aims to generate a sequence {𝜓i} of level set functions (a sequence of microstructural

domains {𝜔
𝜇i
}) that will produce for some iteration n a domain 𝜔

𝜇n
such that (68) is

satisfied to within a given small numerical tolerance 𝜀
𝜃

> 0:

𝜃n = arccos

[ ⟨gn, 𝜓n⟩L2(𝛺
𝜇

)

‖gn‖L2(𝛺
𝜇

) ‖𝜓n‖L2(𝛺
𝜇

)

]
≤ 𝜀

𝜃

. (69)

The procedure starts with the choice of an initial guess for the optimal domain,

i.e. with the choice of a starting level-set function 𝜓0 ∈ L2(𝛺
𝜇

). With S denoting

the unit sphere in L2(𝛺
𝜇

), the algorithm is explicitly given by

𝜓0 ∈ S ,

𝜓i+1 =
1

sin 𝜃i

[
sin((1 − 𝜅i)𝜃i)Ψi + sin(𝜅i𝜃i)

gi‖gi‖L2(𝛺
𝜇

)

]
,

(70)

where i denotes a generic iteration number and 𝜅i ∈ [0, 1] is a step size determined

by a line-search in order to decrease the value of the objective function TDJ. The

iterative process is stopped when for some iteration the step size 𝜅i is smaller than a

given numerical tolerance 𝜀
𝜅

> 0:
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𝜅i < 𝜀
𝜅

. (71)

That is, when the topology is effectively no longer changing with the iterations. If,

at this stage, the optimality condition (69) is not satisfied to the desired degree of

accuracy, i.e. if

𝜃i > 𝜀
𝜃

, (72)

then a uniform mesh refinement of the hold-all RVE domain 𝛺
𝜇

is carried out and

the iterative procedure is continued.

In the computation of TDJ according to expression (50) the topological derivatives

are first computed within the finite elements (at Gauss points) and then extrapolated

to nodes. The final discretized version of the field TDJ used in the iterations is gen-

erated by the finite element shape functions with smoothed nodal values obtained

in a standard fashion. The level-set functions 𝜓 and the discretized field TDJ are

generated by the same shape functions used in the finite element approximation of

the boundary value problems (20) and (38). The material properties are assigned to

nodes of the mesh depending on whether they are at points with 𝜓 < 0 or 𝜓 > 0.

In this way, elements crossed by the interface (defined by 𝜓 = 0) will have material

properties obtained by a standard interpolation of the nodal values of these properties

using the element shape functions. Obviously, according to the above procedure, the

resolution of the optimal RVE domain depends directly on the fineness of the adopted

mesh.

The effectiveness of the algorithm described above is demonstrated in the next

numerical examples. These examples are related to the synthesis of microstructures

in order to meet a specified macroscopic behavior. The optimization procedure is

conducted by considering the RVE constituted in a bi-material fashion, i.e. the matrix

part and the voids.

We start by fixing the RVE geometry, which is represented by the unity square

𝛺
𝜇

= (0, 1) × (0, 1). The level-set initialization is given by a circular disc, with radius

r = 0.25, centered in the RVE at point (0.5, 0.5)—with the origin of the Cartesian

coordinate system located at the bottom left hand corner of the RVE, see Fig. 4.

For the conduction cases, the thermal conductivity associated to the microstruc-

ture is given by k
𝜇

= 1. The constitutive properties for the elasticity case are Young’s

modulus E
𝜇

= 1 and Poisson ratio 𝜈
𝜇

= 0.3. For both cases, the parameter 𝛾 is the

same and equal to 0.01. The inclusion with constitutive properties given by 𝛾k
𝜇

and

𝛾E
𝜇

is used in the topology design to mimic the void part of the RVE. To solve

the multi-scale variational problems (20) and (38) we consider periodic boundary

condition [32].

In all cases, the initial mesh is structured as shown in Fig. 4, with 3281 nodes

and 6400 three-noded triangular elements. Although the algorithm converges on the

initial mesh in each case to the prescribed accuracy of 𝜀
𝜃

= 1◦, we perform some

uniform refinements in order to improve the final result. The final mesh contains

205441 nodes and 409600 elements. In all figures presented in this section, the black

color represent the matrix part of the RVE optimal domain 𝜔
𝜇

and the white color

is used to mimic the void part of the domain.
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Fig. 4 Initial guess (left)
and initial mesh (right)

4.1 Example 1. Bulk Modulus and Horizontal Conductivity
Maximization

In this first example, we wish to maximize the macroscopic thermal conductivity in

the direction e1 (horizontal direction) and the bulk modulus simultaneously. Accord-

ingly we use the objective function h(𝐊) and z(ℂ) defined by Eqs. (54) and (61),

respectively. For this case we choose 𝜙1 = 𝜙2 = e1 and 𝜑1 = 𝜑2 = 𝐈. The Lagrange

multiplier is taken as 𝜆 = 10.0. The resulting optimized topologies for three values

of parameter 𝛽 are shown in Fig. 5. The obtained RVEs have a volume of 40% of the

initial volume. The macroscopic constitutive properties of the results are presented

in Table 1.

Fig. 5 Example 1. Bulk modulus and horizontal conductivity maximization. a 𝛽 = 0.25, b 𝛽 =
0.50, c 𝛽 = 0.75

Table 1 Example 1

𝛽 0.25 0.50 0.75

Bulk modulus (K) 0.115 0.131 0.140

Conductivity k11 0.273 0.273 0.268

Conductivity k22 0.143 0.204 0.242

Effective properties
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From the previous results, the influence of the weighting parameter 𝛽 is evident.

When this parameter decreases, the microstructure tends to promote the thermal

conductivity in the direction of e1 maintaining the bulk modulus in a low value.

Moreover, for low values of 𝛽 the differences between the conductivities k11 and k22
increases. The topology obtained for the higher values of 𝛽 are very similar to the

one analyzed by Hashin and Shtrikman [19]. These authors obtained microstructures

known as coated spheres assemblages or Hashin-Shtrikman micro-structures that

provide lower and upper bounds for the elastic properties of bi-material composites.

4.2 Example 2. Bulk Modulus and Orthogonal Conductivity
Maximization

The aim of this example is to show the topology of the RVE that maximize the bulk

modulus and the conductivity in two orthogonal directions (coinciding with e1 and

e2). Therefore, we define the objective function J(𝛺
𝜇

) by using the functions h(𝐊)
and z(ℂ) defined by Eqs. (59) and (61), respectively. For this case we choose again

𝜑1 = 𝜑2 = 𝐈. For a Lagrange multiplier 𝜆 = 10.0, the resulting optimized topologies

for three value of parameter 𝛽 are shown in Fig. 6. The effective (or macroscopic)

properties are presented in Table 2.

The obtained RVEs have a volume of 40% of the initial volume. Due to the def-

inition of the objective functional h(𝐊), the RVEs are completely symmetric with

Fig. 6 Example 2. Bulk modulus and orthogonal conductivity maximization. a 𝛽 = 0.25, b 𝛽 =
0.50, c 𝛽 = 0.75

Table 2 Example 2

𝛽 0.25 0.50 0.75

Bulk modulus (K) 0.129 0.131 0.137

Conductivity k11 0.236 0.239 0.250

Conductivity k22 0.236 0.239 0.250

Effective properties
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respect the two axis parallel to e1 and e2; and the conductivities in these directions

have the same value (for each 𝛽). As in the previous example, the Bulk modulus of

the microstructure increases with the values of the parameter 𝛽. The conductivities

shown the same trend as the bulk modulus K. This behavior can be explained as fol-

lowing. The maximization of the bulk modulus implies in obtaining of a microstruc-

ture whose internal structure is aligned in two orthogonal directions. On the other

hand, the maximization of the conductivity implies in the same kind of RVE. There-

fore, these two goals of the optimization procedure involve the same type of internal

arrangement of the microstructural elements in the RVE. Similar to the previous

examples, the topology obtained for 𝛽 = 0.75 are very similar to the one analyzed

by Hashin and Shtrikman [19]. They consist of disks of the most compliant material

coated with rings of stiffer material (bi-material composites).

4.3 Example 3. Poisson’s Ratio and Horizontal Conductivity
Maximization

The goal of the optimization procedure for this example is obtain a microstructure

whose macroscopic the Poisson’s ratio and conductivity in the direction of e1 are

maximums. To this ends, we use the objective function h(𝐊) and z(ℂ) defined by

Eqs. (54) and (61), respectively. Here, we choose 𝜙1 = 𝜙2 = e1 and 𝜑1 = e1 ⊗ e1
and 𝜑2 = e2 ⊗ e2. The Lagrange multiplier is taken as 𝜆 = 1.0. The results of the

optimization procedure for three value of parameter 𝛽 are shown in Fig. 7, and the

macroscopic constitutive properties are presented in Table 3.

The obtained RVEs have a volume of around of the 20% of the initial volume. The

higher value of Poisson’s ratio was obtained for the lower value of parameter 𝛽 and in

the same direction as the higher conductivity. This effect is due to the contribution

of the function h(𝐊) to the mechanical part in the objective function J(𝛺
𝜇

). We

observe here that for the three value of the weighting coefficient 𝛽, the synthesized

microstructure exhibit at the end of the optimization procedure has a pantograph-like

Fig. 7 Example 3. Poisson ratio and horizontal conductivity maximization. a 𝛽 = 0.25, b 𝛽 = 0.50,

c 𝛽 = 0.75
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Table 3 Example 3

𝛽 0.25 0.50 0.75

Poisson ratio 𝜈12 0.803 0.810 0.789

Poisson ratio 𝜈21 0.841 0.811 0.787

Conductivity k11 0.112 0.095 0.082

Conductivity k22 0.104 0.092 0.081

Effective properties

topology. This type of microstructure allows a maximum transfer of strain energy

from one direction to the direction orthogonal to it.

4.4 Example 4. Poisson’s Ratio Minimization and Horizontal
Conductivity Maximization

In this example, we wish to promote the macroscopic conductivity in the direction

of e1 and minimize the Poisson’s ratio. Accordingly we use the objective function

h(𝐊) and z(ℂ) defined by Eqs. (54) and (61), respectively. For this case where we

choose𝜙1 = 𝜙2 = e1 and𝜑1 = e1 ⊗ e1 and𝜑2 = −e2 ⊗ e2. The Lagrange multiplier

is taken as 𝜆 = 1.0 and the resulting optimized topologies for three value of parame-

ter 𝛽 are shown in Fig. 8. The macroscopic constitutive properties are presented in

Table 4.

The obtained final volume of the topologies presented in Fig. 8 are of around of

the 45% of the initial volume. For all cases, and as consequence of the optimization

procedure, the obtained microstructures exhibit negative values for the macroscopic

Poisson’s ratio. In the following we present the homogenized fourth-order elasticity

tensors for the topologies of Fig. 8.

Fig. 8 Example 4. Poisson ratio minimization and horizontal conductivity maximization. a 𝛽 =
0.25, b 𝛽 = 0.50, c 𝛽 = 0.75
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Table 4 Example 4

𝛽 0.25 0.50 0.75

Poisson ratio 𝜈12 −0.289 −0.376 −0.439
Poisson ratio 𝜈21 −0.511 −0.482 −0.475
Conductivity k11 0.265 0.214 0.139

Conductivity k22 0.111 0.141 0.128

Effective properties

ℂ|
𝛽=0.25 =

⎛⎜⎜⎝
0.1256 −0.0364 0.0

−0.0364 0.0713 0.0
0.0 0.0 0.0096

⎞⎟⎟⎠
,

ℂ|
𝛽=0.50 =

⎛⎜⎜⎝
0.1064 −0.0401 0.0

−0.0401 0.0830 0.0
0.0 0.0 0.0105

⎞⎟⎟⎠
, (73)

ℂ|
𝛽=0.75 =

⎛⎜⎜⎝
0.0788 −0.0346 0.0

−0.0346 0.0728 0.0
0.0 0.0 0.0075

⎞⎟⎟⎠
.

When the value of 𝛽 decreases the differences in the behavior in the two orthogo-

nal direction are more evident. This effect as been analyzed in the previous examples

and the conclusion presented there remain valid here as well.

The best value for a negative Poisson’s ratio was obtained for a parameter 𝛽 = 0.25
for the same direction where the conductivity is maximized. Also, for the same value

of 𝛽 the internal arrangement of the microstructure is more complex than higher val-

ues of the parameter. The results show that, regardless of the particular values of

𝛽 used in the objective functional J(𝛺
𝜇

), the optimized microstructure features the

auxetic behavior of the star-shaped encapsulated inclusions analyzed, among oth-

ers, in [2, 23]. This type of micro-cell is known as nonconvex-shaped or re-entrant
corner microstructures.

4.5 Example 5. Poisson Ratio Minimization and Orthogonal
Conductivity Maximization

Similar to the previous example, here the goal is to minimize the macroscopic Pois-

son’s ratio and the conductivity in two orthogonal directions (coinciding with e1
and e2). Therefore, in the definition of the objective function J(𝛺

𝜇

) we consider the

functions h(𝐊) and z(ℂ) given by Eqs. (59) and (61), respectively. Again we choose

𝜑1 = e1 ⊗ e1 and 𝜑2 = −e2 ⊗ e2. For the optimization procedure, a Lagrange mul-

tiplier 𝜆 = 1.0 is used. The resulting optimized topologies for several values of
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Fig. 9 Example 5. Poisson ratio minimization and orthogonal conductivity maximization. a 𝛽 =
0.25, b 𝛽 = 0.50, c 𝛽 = 0.75

Table 5 Example 5

𝛽 0.25 0.50 0.75

Poisson ratio 𝜈12 −0.403 −0.421 −0.425
Poisson ratio 𝜈21 −0.403 −0.421 −0.425
Conductivity k11 0.195 0.169 0.138

Conductivity k22 0.195 0.169 0.138

Effective properties

parameter 𝛽 are shown in Fig. 9 and the effective constitutive properties are pre-

sented in Table 5.

The obtained final volume of the topologies presented in Fig. 9 are of around of

the 50% of the initial volume. As in the previous example, the obtained microstruc-

tures exhibit negative values for the macroscopic Poisson’s ratio. For this case, the

value of the Poisson’s ratio in the two orthogonal directions are the same. This behav-

ior is due to the symmetry imposed to the results by the objective functional h(𝐊).
In the following we present the homogenized fourth-order elasticity tensors for the

topologies of Fig. 9.

ℂ|
𝛽=0.25 =

⎛⎜⎜⎝
0.0983 −0.0397 0.0

−0.0397 0.0983 0.0
0.0 0.0 0.0215

⎞⎟⎟⎠
,

ℂ|
𝛽=0.50 =

⎛⎜⎜⎝
0.0939 −0.0396 0.0

−0.0396 0.0939 0.0
0.0 0.0 0.0163

⎞⎟⎟⎠
, (74)

ℂ|
𝛽=0.75 =

⎛⎜⎜⎝
0.0795 −0.0338 0.0

−0.0338 0.0795 0.0
0.0 0.0 0.0099

⎞⎟⎟⎠
.
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The value of the Poisson’s ratios decreases (more negative) when the weighting

coefficient 𝛽 is higher. In fact, when the contribution of the functional z(ℂ) is higher,

the objective functional J(𝛺
𝜇

) tends to promote a mechanical response instead of a

conductivity. Here, the results also show that the optimized microstructure features

the auxetic behavior analyzed, among others, in [2, 23]. This type of micro-cell is

known as nonconvex-shaped or re-entrant corner microstructures.

4.6 Example 6. Shear Modulus and Horizontal Conductivity
Maximization

For this last example, the aim is to show the topology of the RVE that maximize the

macroscopic conductivity in the direction e1 and the Shear modulus simultaneously.

Therefore, the definition of the objective functions h(𝐊) and z(ℂ) given by Eqs. (54)

and (61), respectively, will be used. For the complete definition of the functions h(𝐊)
and z(ℂ), we choose𝜙1 = 𝜙2 = e1 and𝜑1 = 𝜑2 = e1 ⊗ e2 + e2 ⊗ e1. The minimiza-

tion of the present function z(ℂ) corresponds to the maximization of the effective

shear modulus G. The Lagrange multiplier is taken as 𝜆 = 5.0. The resulting opti-

mized topologies for three value of parameter 𝛽 are shown in Fig. 10 and the effective

constitutive properties are presented in Table 6.

The obtained final volume of the topologies presented in Fig. 10 are of around

of the 40% of the initial volume. Notice that the highest values of the macroscopic

Fig. 10 Example 6. Shear modulus and horizontal conductivity maximization. a 𝛽 = 0.25, b 𝛽 =
0.50, c 𝛽 = 0.75

Table 6 Example 6

𝛽 0.25 0.50 0.75

Shear modulus G 0.084 0.109 0.117

Conductivity k11 0.362 0.339 0.280

Conductivity k22 0.160 0.227 0.262

Effective properties
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shear modulus G is obtained when the parameter 𝛽 increases. Independently of the

parameter 𝛽, the main structure of the RVE is composed by four bars in a rhomboidal

arrangement. To promote the conductivity in the direction e1, for lower values of 𝛽,

the microstructure develop bars in that direction, see Fig. 10a, b. With this arrange-

ment the conductivity in the direction of e1 increases.

5 Concluding Remarks

A multi-objective topology design of periodic microstructures procedure has been

proposed. This procedure is based on the concept of topological derivative and a

level-set domain representation method. For the optimization problem, a cost func-

tional was constructed in order to archive simultaneously a specific macroscopic

elastic and thermal behavior. The homogenized elasticity and conductivity tensors

are estimated by a well-established multi-scale constitutive theory in which the

macroscopic response are obtained as the volume averages of their microscopic

counterparts over a RVE. The analytical topological derivatives of the constitutive

responses are tensor fields of the same order that the constitutive tensors. To deal

with a specific macroscopic behavior, scalar functions depending on the elasticity

and thermal tensors were defined. The topological derivative of these functions are

obtained through the direct application of conventional rules of differential calcu-

lus. These features have been explored in the minimization/maximization of cost

functions defined in terms of homogenized properties. The proposed procedure was

successfully and efficiently used in several numerical examples of optimum topol-

ogy design of microstructures. We remark that the methodology presented here is of

simple implementation in a material-by-design engineering or industrial application.
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Sensitivity Analysis of Micro Models
for Solidification of Pure Metals

B. Mochnacki and R. Szopa

Abstract Theoretical aspects and examples of the application of sensitivity anal-
ysis in the thermal theory of foundry processes are presented. In particular, the
so-called second generation models of solidification (micro models) are considered.
The sensitivity information can be applied for different purposes, among which it is
possible to use the results obtained for a given set of input data to obtain the
solution for different input data. The sensitivity coefficients are also necessary for
the numerical solution of inverse problems using gradient methods. The application
examples concern the sensitivity of the temperature field of a casting-mould system
with respect to perturbations of parameters appearing in the micro/macro model of
solidification. Numerical computations are performed using the finite difference
method.

1 Introduction

In this chapter, micro/macro models for the solidification of pure metals are dis-
cussed. According to the classification proposed by Stefanescu [1] the approach
presented belongs to the family of the so-called second generation models.

The first generation models include problems connected with the analysis of
metals and alloys solidification at the macro-scale. In this group, two of the most
popular and most frequently used models are the ones that solve the Stefan problem
(e.g. [2]) or the one domain method (e.g. [3]). The classical Stefan model is based on
a system of two parabolic equations (molten metal and solid body) supplemented by
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the condition given on the moving boundary (the Stefan boundary condition), the
boundary conditions given on the external surface of the system and the initial
conditions. The model of solidification and cooling processes based on the one
domain method is created by the energy equation concerning the whole, conven-
tionally homogeneous, metal domain, while the evolution of latent heat is taken into
account by the introduction of a parameter called substitute thermal capacity [4, 5].
It is also possible to rebuild the basic mathematical model using the enthalpy con-
vention or the Kirchhoff transformation [3].

The second generation models including the one presented in this paper, allow to
determine the transient temperature field in the macro domain of solidifying and
cooling metals, but the crystallization process is considered at the micro scale. For
example, changes of the local values of solid state fraction result from the course of
nucleation and nuclei growth [6–9].

The third generation models concern the modeling of heat transfer processes
proceeding at the micro-scale (for example heating and melting of a thin metal film
subjected to a strong laser pulse). In such a case an other approach should be used
for modeling the micro-scale heat transfer. Because of extremely short duration,
extreme temperature gradients and very small geometrical dimensions of the
domain considered, the generalized form of the Fourier law should be taken into
account. The generalized forms of the Fourier law result from the introduction of a
lag time (with respect to temperature gradient) for the heat flux. This is called the
relaxation or the lag time concerning both the heat flux and the temperature gradient
(relaxation and thermalization times). The first generalization leads to the governing
equation called the Cattaneo-Vernotte equation [10], while the second generaliza-
tion leads to the dual phase lag model [11, 12]. This equation contains a second
order time derivative and higher order mixed derivatives in both time and space.
Additionally, the boundary conditions supplementing the basic equation should be
adequately reconstructed. The micro-scale heat transfer problems can be also
described using the two temperature parabolic or hyperbolic models, e.g. [13, 14].

The sensitivity model determining the changes of transient temperature field due
to perturbations of parameters appearing in the energy equations and boundary-
initial conditions can be found by the differentiation of successive equations and
conditions with respect to the parameter considered (direct approach) [15, 16]. In
the case of micro models (mainly due to the complicated form of source function)
the equations creating the sensitivity model are very complex for mathematical
manipulations and also for numerical modeling. A very detailed description of these
problems can be found in [17, 18].

In the present study a simpler approach to obtain the sensitivity functions is
proposed. The local and temporary values of the sensitivity expressions defined as
partial derivatives of the temperature with respect to the parameter considered (for
example the volumetric latent heat), are found using an approximation based on the
differential quotients. So, the boundary initial problem describing the process dis-
cussed should be solved twice, the first solution corresponds to the basic input data
(set of parameters p1, p2, … pk, … pn), while the second one corresponds to the
input data containing the disturbed parameter pk ± Δpk. Next the temporary local
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values of sensitivity function (ΔT/Δpk) can be found. The testing computations
show that this method gives results very close to the ones obtained using the
numerical solution corresponding to the direct variant of sensitivity analysis [18].

2 Governing Equations

The following energy equation is considered

cðTÞ ∂Tðx, tÞ
∂t

=∇ λðTÞ∇Tðx, tÞ½ �+L
∂fSðx, tÞ

∂t
ð1Þ

where c(T) is the volumetric specific heat of the material, λ(T) is the thermal
conductivity, L is the volumetric latent heat, T = T(x, t) and fS = fS(x, t) denote the
temperature and the local volumetric solid state fraction, x = {x1, x2, x3} and t are
the geometrical co-ordinates and time. One can see, that only heat conduction in a
casting domain is considered. According to [3, 5] Eq. (1) can be applied in both
macro and the micro/macro modeling. The differences appear at the stage of
computing the solidification rate ∂fS/∂t and when the micro/macro approach is
considered. Then the changes of fS result from the crystallization laws at the
micro-scale (nucleation and nuclei growth).

In literature one can find two basic models determining the mutual connections
between fS and temporary density and volume of grains. In particular, the following
function is introduced

ω ðx, tÞ=Nðx, tÞ Vðx, tÞ ð2Þ

where N is a nuclei density [nuclei/m3], V is a single grain volume. Equation (2)
becomes more complicated when the volumes of different grains are considered.
Then the integral form for determining ω(x, t) should be introduced.

The acceptance of the assumption

fSðx, tÞ=ωðx, tÞ ð3Þ

leads to the so-called linear model of crystallization, which yields

∂fSðx, tÞ
∂t

=
∂ωðx, tÞ

∂t
ð4Þ

The linear model determines the geometrical volume (volume fraction) and is the
correct assumption at the first stages of crystallization [19].

To take into account the geometrical limitations of growth in the final stages of
the process (collisions between growing grains) the following modification of
Eq. (4) is introduced [20, 21]
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∂fSðx, tÞ
∂t

=
∂ωðx, tÞ

∂t
1− fSðx, tÞ½ � ð5Þ

and then

dfSðωÞ
1− fSðωÞ =dω ð6Þ

The solution of this simple differential equation is of the form

fSðωÞ=1+C expð−ωÞ ð7Þ

Because for ω = 0 ⇒ fS = 0, it comes out that C = −1, and finally

fSðωÞ=1− expð−ωÞ ð8Þ

The last equation corresponds to the exponential model (the Kolmogoroff
formula).

The following modification of Eq. (5) can be also taken into account [22]

∂fSðx, tÞ
∂t

=
∂ωðx, tÞ

∂t
1− fSðx, tÞ½ �n ð9Þ

where n ≥ 0.
Then

dfSðωÞ
1− fSðωÞ½ �n =dω ð10Þ

The solution fulfilling the condition ω = 0: fS = 0 is of the form

fSðωÞ=1− ðn− 1Þω+1½ � 1
1− n ð11Þ

One can see that the last power-type formula constitutes the generalization of
linear and exponential models. For n = 0 one obtains the linear model, while for
n = 1 one has

lim
n→ 1

1− ðn− 1Þω+1½ � 1
1− n =1− expð−ωÞ ð12Þ

At the end of this part of considerations one can see that for small values of ω,
the linear and exponential models lead to the same results. This comes from the fact
that exp(−ω) ⇒ 1 − ω and 1 − exp(−ω) ⇒ ω. During the final stages of solidifi-
cation the linear and exponential models give different results.
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Summing up, the source term in the energy equation results from the equation

L
∂fSðx, tÞ

∂t
= L

dfSðωÞ
dω

∂ωðx, tÞ
∂t

ð13Þ

The external derivative in Eq. (13) can be determined analytically, the internal
one can be found using numerical methods. For example, if Eq. (11) is accepted,
then

L
∂ fSðx, tÞ

∂ t
≈L ½ðn− 1Þω+1� n

1− n
Δω
Δ t

ð14Þ

Equation (1) concerning the casting domain, must be supplemented by a similar
equation determining the course of thermal processes in a mould sub-domain,
namely

cmðTÞ ∂Tmðx, tÞ
∂t

=∇ λm ðTÞ∇Tmðx, tÞ½ � ð15Þ

where cm and λm denote the mould volumetric specific heat and mould thermal
conductivity.

On the external surface of the mould, the boundary condition in a general form

Φ Tmðx, tÞ, ∂Tmðx, tÞ
∂n

� �
=0 ð16Þ

is accepted (∂/∂n denotes a normal derivative). As a rule, the condition (16) is
assumed in the form of a Robin boundary condition.

On the contact surface between casting and mould the continuity condition is
given by

− λ
∂Tðx, tÞ

∂n
=

Tðx, tÞ− Tmðx, tÞ
Rðx, tÞ = − λm

∂Tmðx, tÞ
∂n

ð17Þ

where R is the thermal resistance. The value of R depends primarily on the radiative
heat transfer through the air gap between casting and mould. The condition (17) is
used in the case of casting production in the metal mould. Considering the system
casting—sand mix mould (as in this work) one can assume R = 0 (an ideal contact)
and then

− λ ∂Tðx, tÞ
∂n = − λm

∂Tmðx, tÞ
∂n

Tðx, tÞ=Tmðx, tÞ
�

ð18Þ

The initial temperature for t = 0 is also known.
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3 Nucleation and Nuclei Growth

The driving force for nucleation and nuclei growth is an undercooling below
solidification point T*, defined as ΔTðx, tÞ=T* −Tðx, tÞ, where T(x, t) is the
temporary temperature at the point x. According to literature, e.g. [23] one can
assume that a local and temporary number of nuclei (nuclei density) is proportional
to the second power of undercooling below the temperature T*

Nðx, tÞ= ηΔTðx, tÞ2 = η T* − Tðx, tÞ� �2 ð19Þ

where η is the nucleation coefficient. The nucleation stops when ΔT(x, t + Δt) < ΔT
(x, t). Additionally for T(x, t) > T* one has that: N(x, t) = 0. This is illustrated in
Fig. 1.

The rate of solid phase growth (equiaxial grains) is determined by

dRðx, tÞ
dt

= μΔTðx, tÞm ð20Þ

where μ is the growth coefficient, R is grain radius and m∈ ½1, 2�. In literature one
can also find the following equation

dRðx, tÞ
dt

= μ1ΔTðx, tÞ2 + μ2ΔTðx, tÞ3 ð21Þ

where μ1, μ2 are growth coefficients. It should be pointed out that the coefficients
η, μ, μ1, μ2 are assumed to be constant values. Modeling of a solidification process
can be done in several ways. So, because the problem considered is non-steady, a
time grid defined as follows

Fig. 1 Temperature history at
the point x from casting
domain
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0= t0 < t1 < t1 <⋯< ts− 1 < ts <⋯< tS, Δt= ts − ts− 1 ð23Þ

should be introduced. At the same time the casting domain is divided into m control
volumes.

Let us consider a control volume ΔVi from the domain considered. During a
certain interval of time the temperature at the central point of ΔVi decreases below
the solidification point and the crystallization process starts.

In this place, different numerical procedures can be taken into account. The first
procedure considered is based on the assumption that the nuclei density is a con-
stant value, e.g. N = 1010 [nuclei/m3]. In other words, Eq. (19) is neglected and
changes in the function ω result only from the nuclei growth, given by Eq. (20) (see
Fig. 2). The second (more complex) procedure considered consists in the averaging
of nuclei dimensions at each time step, as shown in Fig. 3. The most complicated
model studied corresponds to the observation of the growth of successive grain
families (see Fig. 4). The first value of ω in the domain of a control volume ΔVi for
which Ts− 1

i > T*, TS
i < T* equals

ωð1Þ
i =

4
3
π vNð1Þ

i ΔRð1Þ
i . ð24Þ

Fig. 2 Constant number of
nuclei

Fig. 3 Averaging procedure
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At the same time, for spherical grains v=1, while for the other types of crys-
tallization (e.g. dendritic growth) v<1. A very clear geometrical interpretation of
coefficient v can be found in [7]. The value resulting from (24) is introduced into the
source function for the transition corresponding to the next time interval.

For modeling the second stage of the crystallization process one can find the
quantity Ni using Eq. (19), which is employed to estimate the size of the second
generation (this means Ni

(2) = Ni − Ni
(1)). It is also possible to find the new incre-

ment of the grains radii ΔRi
(2), now employing Eq. (20). It should be pointed out

that the current radii of the first generation are equal to ΔRi
(1) + ΔRi

(2), while for the
second generation the radii are ΔRi

(2) (see Fig. 4). The new value of the function ω
is determined by

ωð2Þ
i =

4
3
π v Nð1Þ

i ΔRð1Þ
i +ΔRð2Þ

i

� �3
+Nð2Þ

i ΔRð2Þ3
i

� �
. ð25Þ

On the basis of Eqs. (24) and (25) one can find the approximate value of the
derivative ∂ω ðx, tÞ

∂ t in the control volume ΔVi for time ts+1 using the differential
quotients. The next stages of algorithm result from the simple generalization of the
step described above.

In Figs. 2, 3 and 4 the different versions of nucleation and nuclei growth
modeling are presented.

Fig. 4 Grains families

Fig. 5 Domain considered
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As a numerical example consider an aluminum 1D plate (G = 0.02 [m]) pro-
duced in a typical sand mould, as shown in Fig. 5 [9]. Taking into account the
mould dimensions, the non-flux condition on its outer surface has been taken into
account. Some additional properties are: growth coefficient μ = 3 × 10−6 [m/sK2],
nucleation coefficient η = 1010 [m−3K−2] (this parameter is redundant in the case of
the model concerning the constant number of nuclei). The Kolmogoroff model has
been adopted and the grains shape coefficient has been considered as v=1
(spherical grains). Initial temperature of metal equals T0 = 700 °C, solidification
point: T* = 660 °C, initial mould temperature: TM0 = 20 °C. The values of casting
thermophysical parameters can be found in Mochnacki and Suchy [3]. Additionally
λM = 0.5 [W/mK], cM = 1.75 [MJ/m3K].

Hence, the following boundary-initial problem has been considered

0< x<G ̸ 2:
∂T x, tð Þ

∂t
= a

∂
2T x, tð Þ
∂x2

+
L
c

n− 1ð Þω x, tð Þ+1½ � n
1− n

∂ω x, tð Þ
∂t

G ̸ 2< x<2G:
∂TM x, tð Þ

∂ t
= aM

∂
2TM x, tð Þ
∂x2

ð26Þ

where a = λ/c, aM = λM/cM, λM is the mould thermal conductivity and cM is the
volumetric specific heat of the mould. Equation (26) are supplemented by the
boundary conditions.

In particular:

• axis of symmetry

x=0: q x, tð Þ= − λ
∂T x, tð Þ

∂x
=0 ð27Þ

• external surface of mould

x=2G: qM x, tð Þ= − λM
∂TM x, tð Þ

∂x
=0 ð28Þ

• casting-mould contact surface

x=G ̸ 2:
− λ

∂T x, tð Þ
∂x

= − λM
∂TM x, tð Þ

∂x

T x, tð Þ=TM x, tð Þ

8<
: ð29Þ

The initial conditions are also given

t=0: T x, tð Þ= T0 >T*, TM x, tð Þ= TM0 ð30Þ

At the stage of numerical simulation, the explicit scheme of the finite difference
method (FDM) detailed in [3] has been used.
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The computations have been performed both for the case of a constant number of
nuclei and also taking into account the nucleation process. In Fig. 6 the cooling
curves at the points corresponding to the axis of symmetry (x = 0) are shown. The
triangular and square symbols correspond to the averaging procedure and grains
families, respectively. A very essential conclusion results from the observation of
the results obtained, namely the solution found using the averaging of grains
dimensions is practically the same as the solution concerning the grains generations.
Noteworthy, the first model is clearly simpler for computational implementation.
Figure 7 shows the changes of global solid stage fraction in the casting domain.

Fig. 6 Temperature history

Fig. 7 Solid state fraction in
the casting domain
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4 Sensitivity Analysis

The changes of the transient temperature field due to the perturbations of process
parameters are defined in the following way

Ukðx, tÞ= lim
Δpk → 0

Tðx, t, p1 . . . pk +Δpk, . . . pnÞ− Tðx, t, p1 . . . pk, . . . pnÞ
Δpk

=
∂Tðx , tÞ

∂pk
ð31Þ

where Uk (x, t) is the sensitivity function. So, the sensitivity model can be created
by the differentiation of energy equations and boundary-initial conditions with
respect to the parameter considered (a direct approach—e.g. [15, 16]). The
knowledge of the sensitivity distribution can be used for a variety of aims. In
particular, the basic solution can be rebuilt into another solution corresponding to
perturbed parameters (it results from the Taylor formula—e.g. [24]), the sensitivity
methods can be used for finding the optimal location for measurement sensors—e.g.
[25] and finally for the solution of inverse problems using gradient methods—e.g.
[17].

The source term (13) under the assumption that the nuclei density N is a constant
value and when the exponential crystallization model is taken into account has the
form

qV =L
∂ fS
∂ t

=4πNLνμTm
Z t

0

μTmdτ

0
@

1
A

2

exp −
4
3
πνN

Z t

0

μTmdτ

0
@

1
A

32
4

3
5 =F1F2F3

ð32Þ

As previously, for spherical grains v=1, while for other types of crystallization
(e.g. dendritic growth) v<1. The sensitivity model with respect to the parameter v
is discussed below.

The source function (32) is the product of three factors

F1 = 4NLνμTm ð33Þ

F2 =
Z t

0

μTmdτ

0
@

1
A

2

ð34Þ

F3 = exp −
4
3
πνN

Z t

0

μTmdτ

0
@

1
A

32
4

3
5 ð35Þ

Functions (33), (34) and (35) should be differentiated with respect to the
parameter v
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∂F1

∂ν 1
= 4πNLμ ΔTm − νmΔTm− 1U

	 
 ð36Þ

∂F2

∂ν
= − 2

Z t

0

μTmdτ
Z t

0

μmΔTm− 1Udτ ð37Þ

∂F3

∂ν
= exp −

4
3
πνN

Z t

0

μTmdτ

0
@

1
A

32
4

3
5 ⋅

−
4
3
πN

Z t

0

μTmdτ

0
@

1
A

32
4

3
5+4πνN

Z t

0

μTmdτ

0
@

1
A

2Z t

0

μmΔTm− 1Udτ

ð38Þ

where U = ∂T
∂ν is the sensitivity function. Denoting

rS =
Z t

0

μ Tmdτ, ρS =
Z t

0

μmTm− 1Udτ ð39Þ

and after some mathematical manipulations, one obtains

qVU =
∂qV
∂ν

=4π LNμ rS exp −
4
3
πνNr3S

� �
⋅

ΔTm rS − 2νρS −
4
3
πNνr4S +4πNν2r3SρS

� �
− νmΔTm− 1rSU

� � ð40Þ

Summing up, the sensitivity model corresponding to Eqs. (1) and (15), boundary
condition (18) on the contact surface and the well known Robin condition on the
external surface of the system, supplemented by the initial conditions (30) (under
the assumption that the volumetric specific heats and the thermal conductivities of
sub-domains are constant values), takes the form

x∈Ω : c
∂Uðx, tÞ

∂t
= λ∇2Uðx, tÞ+ qVU

x∈ΩM : cM
∂UMðx, tÞ

∂t
= λM∇2UMðx, tÞ

x∈ΓM : − λ
∂U x, tð Þ

∂x
= − λM

∂UM x, tð Þ
∂x

U x, tð Þ=UM x, tð Þ

8<
:

x∈Γ : − λ
∂U x, tð Þ

∂x
= αUðx, tÞ

t=0 : Uðx, 0Þ=UMðx, 0Þ=0

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð41Þ
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From the mathematical point of view, the basic model and the sensitivity one are
very similar, but the source function qVU is more complicated than qV . For
numerical modeling, the same procedures can be used both in the case of the basic
problem and the sensitivity one. Additionally, the sensitivity model is coupled with
the basic one (see the equation determining the source function) and the knowledge
of the basic solution is necessary.

In the paper presented by Mochnacki and Szopa [9], an aluminum plate of
thickness L = 0.01 [m] has been considered (1D problem), the influence of the
mould has been taken into account by the introduction of an artificial Robin
condition on the external surface of the plate. The following input data are assumed:
thermal conductivity λ = 150 W/mK, volumetric specific heat c = 2.875 MJ/m3K,
volumetric latent heat L = 975 MJ/m3, solidification point T * = 660 °C, exponent
m = 2 (Eq. (20)), number of nuclei N = 1010 nucl/m3, growth coefficient
μ = 3 × 10−6 m/sK2, initial temperature T0 = 670 °C, substitute heat transfer
coefficient α = 100 W/m2K, ambient temperature Ta = 30 °C, shape coefficient
v = 0.8. The crystallization process is described by the exponential model.

As previously mentioned, one of the advantages of modeling the sensitivity
problems is the possibility of reconstruction of the basic solution for a practically
infinite number of different solutions corresponding to other values of the process
parameters. This results from the application of Taylor’s expansion truncated at first
order terms

Tðx, t, p1 . . . pk ±Δpk, . . . pnÞ≈ Tðx, t, p1 . . . pk, . . . pnÞ±Ukðx, tÞΔpk. ð42Þ

In Fig. 8 the cooling curves at the axis of symmetry and at the boundary are
shown. In particular, the region of undercooling process is presented. The suc-
cessive curves correspond to the basic solution (central lines) and the solutions
obtained on the basis of sensitivity analysis under the assumption that Δv = ±0.2.
One can see, that the differences appear at the stage of crystallization process.

Figure 9 shows the change of temperature at the axis and on the boundary due to
a change in the parameter v (Δv = ±0.2). In other words, the differences between
the basic and border solutions are marked. The assumed change of the shape
parameter (the border values determine the spherical grains and dendritic ones)
causes the change of the local temperature less than 1 K. So, from the numerical
point of view the value of v is not very essential for the course of thermal processes
in the solidifying metal domain.

The examples presented have been solved using the direct variant of sensitivity
analysis. For the present chapter the authors carried out the computations of sen-
sitivity functions using differential quotients (in particular the central differential
quotients have been used). Such an approach requires the solution of two basic
problems with parameters analyzed equal to pk − 0.5Δpk, pk +0.5Δpk . A disad-
vantage of this approach is the lack of knowledge of the sensitivity model and the
numerical algorithm operates on the principle of the ‘black box’.
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Comparison of the results presented above with the results obtained using dif-
ferential quotients confirms that the application of differential quotients can give
very good effects. The differences between numerical solutions are negligible and
the results shown in Figs. 8 and 9 are practically the same both in the case of exact
and approximate approaches. Nevertheless, caution must be taken with issues such
as the size of the perturbation and computational costs.

Fig. 9 Temperature
differences

Fig. 8 Cooling/heating
curves close to the
undercooling region
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5 Final Remarks

This Chapter presents a review work and includes mainly the results of own
research. The first part is devoted to the mathematical description of pure metal
solidification using the micro/macro approach. Among others, the generalization of
the well known linear and exponential models of crystallization is presented. From
the mathematical point of view, the crystallization model is correct but the proper
choice of the exponent n requires additional experimental investigations. Its value is
likely to be dependent on the technological process conditions and also on the type
of material. In Sect. 3 the numerical procedures concerning the numerical modeling
of nucleation and nuclei growth are discussed. The nucleation (nuclei density) is the
effect of undercooling below the solidification point, but the position of nuclei in
the control volume domain ΔVi is unknown, of course. It seems that the procedure
of averaging of nuclei dimensions at each time step is sufficiently exact and rather
simple in numerical execution. The sensitivity analysis of the changes of the
transient temperature field due to perturbations of process parameters is presented in
Sect. 4. At the same time, the direct approach is taken into account. In spite that the
sensitivity model discussed concerns the shape coefficient v, any other parameters
can be considered. The crystallization model has a very complicated form for the
source function, which is present in the equation concerning the casting domain.
Thus, numerical rather than analytical procedures are preferred to solve the asso-
ciated direct and sensitivity problems. A more effective algorithm can be con-
structed using a differential approximation of the sensitivity function Uk(x, t). The
example presented in this chapter shows the applications of the sensitivity analysis
to estimate changes of a transient temperature field due to assumed changes of a
given parameter.
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Part II
Biological Tissues



Variational Constituive Models for Soft
Biological Tissues

Jakson Manfredini Vassoler and Eduardo Alberto Fancello

Abstract Biological soft tissues are heterogeneous composite materials made of

cells and molecules of the extracellular matrix. These tissues are frequently clas-

sified into four basic categories: muscle, epithelial, nervous and connective, each

one with its own mechanical and functional properties. Their mechanical response

to external forces (excluding those mechanisms associated with time scales typical

of tissue remodeling), are characterized by anisotropy, high nonlinearity, strain rate

dependency, permanent deformation and eventually, damage. Despite a wide set of

constitutive models that have already been proposed in the specialized literature to

represent the macroscopic behavior of these materials, this work focuses attention

on a particular group, coined as variational in the sense that the incremental internal

variable updates are found as minimizers of a pseudo strain-energy potential, called

Incremental Potential evaluated at each time-step. General cases of models for vis-

coelastic, viscoplastic and fiber reinforced soft materials are discussed with the aid

of numerical examples exploring the features of the corresponding approach.

1 Background

Biological tissues are heterogeneous composite materials made of cells and mole-

cules of the extracellular matrix. These tissues are frequently classified into four

basic categories: muscle, epithelial, nervous and connective, each one with its own

characteristic and functional importance [1]. Muscle tissue is composed of elongated

cells responsible for movement with a moderate amount of extracellular matrix.

Epithelial tissue is composed of polyhedral cells that have strong adhesion and form
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cellular sheets that cover the surface of body organs and have a small amount of extra-

cellular matrix. Nervous tissue is composed mostly by cells with few extracellular

matrix and it is responsible for transmission of nervous impulses. Connective tis-

sues have the main function of providing mechanical support and protection to the

body. They are composed mainly by extracelullar matrix (cells, fibers and ground

substance), forming a wide variety of structures with remarkable mechanical per-

formance. Fibers, such as elastin and collagen, are extracellular material produced

by their tissue cells, which polymerize into highly organized structures providing

the main structural characteristics of the tissue. Elastin is comprised of long flexible

molecules that form three-dimensional networks by cross-linking and is responsible

for the elasticity of the tissues. Collagen is the most important structural element of

soft and hard tissues. These molecules can be aggregated to form different structures

depending on the tissue. The particular arrangement of the collagen proteins—three

left-handed helices twisted together into a right-handed triple helix—provides this

structure with a high stretch resistance to traction [2].

Connective tissues such as ligaments and tendons have a pronounced anisotropic

mechanical behavior due to their regular parallel arrangement of collagen fibers [2].

Arteries are organized mainly in biaxial layers of fibers and cartilages into complex

triaxial structures. The skin presents a three-dimensional network of collagen, but

due to its internal structure, it allows large strains without stretching of the individual

fibers that are in a wavy form when undeformed.

Important mechanical responses are experimentally observed on most (soft

fibered) biological tissues: nonlinear stress-strain relationship, large deformation,

viscous phenomena, anisotropy and mechanical damage of fibers [3–5]. The numer-

ical characterization of the mechanical behavior of such materials have attracted

much attention of the scientific community due to the possibility to perform realis-

tic mechanical simulations of biological systems. As example, surgical robot control

systems [6], prediction of the mechanical response of a human Anterior Cruciate

Ligament (ACL) under multiaxial loading [7], vascular surgery and design of endo-

prostheses [8], among others applications.

Different constitutive models have been proposed to perform this task, e.g. [9–

14]. In this chapter a particular unified mathematical framework for the develop-

ment of constitutive equations of nonlinear dissipative materials is presented. This

framework, based on variational principles, is specialized to account for different

dissipative phenomena observed in the mechanical response of soft biological tis-

sues.

2 Variational Framework

A general framework for a set of inelastic materials is proposed in [15, 16]. Based

on variational (extremization) principles, it is able to accommodate a wide set of

constitutive models, depending on the choice of certain potential functions.
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This approach was specialized in [17] to the case of nonlinear finite strain vis-

cous behavior applicable, for example, to the case of soft brain tissue [18]. The same

approach was extended in [19] to include permanent viscous deformations coupled

with arbitrary hyperelastic behaviors. Typical anisotropy introduced by fibers was

taken into account in [20]. These applications demonstrate the capability of this

variational constitutive family to incorporate inelastic mechanical behaviors, such

as those observed experimentally in biological tissues.

The principles that form the basis of variational models used here are founded on

the laws of continuum thermodynamics with internal variables. The first and second

principles of thermodynamics may be expressed by the Clausius-Planck inequality

[21]. If the thermal effects are ignored, the inequality is reduced to

Dint = 𝐏 ∶ ̇𝐅 − ̇W ≥ 0 (1)

where 𝐏 is the first Piola Kirchhoff stress tensor, 𝐅 is the deformation gradient and

W is the free energy function. The inequality (1) represents the non-negativeness of

the internal dissipation Dint, where the first term is the rate of internal mechanical

work (wint = 𝐏 ∶ ̇𝐅) per unit reference volume and the second term is the material

time derivative of the free energy.

The thermodynamics approach with internal variables postulates that the state of

a material point p at instant t of a thermodynamical process is defined by the value

of a finite set of state variables, disregarding their rates or history [22]. This set of

state variables is usually composed of external (observable) and internal variables.

The latter associated, in general, with internal irreversible mechanisms.

Let 𝜉 = {𝐅,𝐐} be a set of state variables necessary to define the thermodynamical

state of a material point, where 𝐅 represents the total deformation gradient, and 𝐐
a subset of (scalar, vector, tensor) internal state variables. With this choice, the free

energy W (other state variable) is given as a function of the set 𝜉

W = W (𝐅,𝐐) (2)

By using the well known procedure of Coleman-Noll it is possible to obtain the

set 𝜉
∗ = {𝐏𝐜

,𝐘} of state variables energetically conjugate to the corresponding vari-

ables of 𝜉

𝐏𝐜 =W
,𝐅 (𝐅,𝐐) , 𝐘 = −W

,𝐐 (𝐅,𝐐) (3)

where, 𝐏𝐜
is the conservative part of the first Piola Kirchhoff stress tensor and 𝐘 is

the conjugate force of 𝐐. In order to account for irreversible mechanisms, laws for

the evolution of the internal variables are needed. This is frequently accomplished

by assuming the existence of a dissipative pseudo-potential 𝜓(𝜉∗), convex and null

at the origin such that

̇𝐐 = 𝜓
,𝐘(𝜉∗) (4)

which ensures automatically the satisfaction of inequality (1). Convexity properties

of 𝜓 guarantees the existence of a dual pseudo-potential 𝜓
∗ ( ̇𝐐; 𝜉

)
such that
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𝐘 = 𝜓

∗
,
̇𝐐(

̇𝐐; 𝜉) (5)

In this way the evolution of the internal variables is defined by the equation

W
,𝐐 (𝜉) + 𝜓

∗
,
̇𝐐(

̇𝐐; 𝜉) = 𝟎 (6)

It is shown in [15, 16] that this equation can be alternatively obtained as the extrem-

ization condition of a rate potential

𝛯eff
(
̇𝐅
)
= min

̇𝐐

{
̇W + 𝜓

∗ (
̇𝐐
)}

(7)

Moreover, this extremization defines a rate potential 𝛯eff for 𝐏c

𝐏c =
𝜕𝛯eff

(
̇𝐅
)

𝜕
̇𝐅

(8)

Aiming for discrete temporal expressions (time integration) an equivalent incremen-

tal potential consistent with (7) is also proposed with the form

𝛹 = min
𝐐n+1

{
Wn+1 − Wn + 𝛥t𝜓∗

(𝐐n+1 −𝐐n

𝛥t
;𝐐n+𝛼

)}
(9)

where 𝐐n+𝛼 is the value of the internal variables at an intermediate time between n
and n + 1. It also shown that this expression provides a potential for the updated value

of the First Piola Kirchhoff stress, that is analogous to the case of an hyperelastic

material

𝐏c
n+1 =

𝜕𝛹

(
𝐅n+1; 𝜉n

)
𝜕𝐅n+1

, (10)

If in addition to conservative part of the stress, the material behaves producing a dis-

sipative (out of equilibrium) term, a new dissipative pseudo-potential may be defined

as a function of the rate ̇𝐅 such that

𝐏n+1 = 𝐏c
n+1 + 𝐏d

n+1 =
𝜕𝛹

(
𝐅n+1; 𝜉n

)
𝜕𝐅n+1

+ 𝛥t
𝜕Φ
(
(𝐅n+1 − 𝐅n)∕𝛥t; 𝜉n

)
𝜕𝐅n+1

(11)

This mathematical structure allows the mechanical representation of different dis-

sipative materials by tailoring the appropriate mathematical expressions for the free

energy and dissipation potentials. In the next section, a set of variational models that

make use of the advantages of this mathematical framework is presented.
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3 A Set of Variational Inelastic Models

The set of models described here share the common decomposition of the strain

energy into volumetric and isochoric contributions. To this aim, the total gradient of

deformation 𝐅 is multiplicatively decomposed into isochoric and volumetric parts:

̂𝐅 = J−
1
3𝐅; J = det(𝐅) (12)

The isochoric tensor ̂𝐅 is also multiplicatively decomposed into elastic ̂𝐅e
and

inelastic ̂𝐅i
contributions

̂𝐅 = ̂𝐅e
̂𝐅i; ̂𝐂 = ̂𝐅𝖳

̂𝐅; ̂𝐂e = ̂𝐅e𝖳
̂𝐅e

(13)

where ̂𝐂 and ̂𝐂e
are, respectively, the total and elastic isochoric right Cauchy-Green

strain tensors. Moreover, these deformation tensors can be decomposed in terms of

spectral quantities

̂𝐂 =
3∑

i=1
ci𝐄i; ̂𝐂e =

3∑
i=1

ce
i𝐄

e
i ; (14)

where ci , ce
i are eigenvalues and 𝐄i , 𝐄e

i the corresponding eigenprojections.

The free energy W is assumed to have a separable dependence of the already

defined kinematical variables

W(𝐅, ̂𝐅i
,𝐐) = 𝜑( ̂𝐂) + 𝜑

e( ̂𝐂e) + 𝜑

i( ̂𝐅i
,𝐐) + U(J) (15)

Elastic potentials 𝜑 and 𝜑

e
are functions of the total deformation ̂𝐂 and elastic defor-

mation ̂𝐂e
respectively. The inelastic potential 𝜑

i
is a function of the internal vari-

ables and it accounts for internal inelastic phenomena such as hardening or softening.

Assuming that the volumetric behavior of the modeled materials is reversible (elas-

tic), the same common expression for the volumetric strain energy U is used in all

models presented here

U(J) = K
2
(J − 1)2 (16)

This expression may be used to emulate incompressibility in finite element analyses

when the material parameter K is taken as a penalty factor (K → ∞).
Finally, the dissipative pseudo-potential 𝜓

∗
is now explicitly dependent on the

new internal variable rate
̇
̂𝐅i

, i.e., 𝜓
∗( ̇̂𝐅i

,
̇𝐐).

This general framework is schematically represented by the rheological mechan-

ical model of Fig. 1.



72 J.M. Vassoler and E.A. Fancello

Fig. 1 Generalized mechanical rheological model with three nonlinear elastic springs and one

inelastic mechanical component, to be defined depending on the inelastic mechanical behavior of

the material

3.1 A Viscoelastic Model for Isotropic Soft Materials

Some soft biological tissues, like brain matter, are considered isotropic viscoelas-

tic materials that can be subject to finite strains [18]. Let the nonlinear viscoelastic

model be as proposed in [17], phenomenologically based on the rheological repre-

sentation of Fig. 2.

In this model, the free energy W given by (15) specializes to

W(𝐅,𝐅v
,𝐐) = U(J) + 𝜑( ̂𝐂) + 𝜑

e( ̂𝐂e) (17)

The elastic potential 𝜑 is the isochoric contribution of elastic energy. It may be

expressed by the eigenvalues ci of ̂𝐂

𝜑( ̂𝐂) = 𝜑(c1, c2, c3) (18)

The Maxwell branch in the Fig. 2 is based on a multiplicative split of the total

isochoric gradient of deformation ̂𝐅 into an isochoric elastic ̂𝐅e
and an isochoric

viscous part ̂𝐅v
(inelastic part), such as

̂𝐅 = ̂𝐅e
̂𝐅v ⇒ ̂𝐅e = ̂𝐅 ̂𝐅v−𝟣; ̂𝐅v = ̂𝐅e−𝟣

̂𝐅 (19)

̂𝐂v = ̂𝐅v𝖳
̂𝐅v

(20)

Fig. 2 Generalized

Maxwell model for isotropic

viscoelastic response
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where ̂𝐂v
is the viscous isochoric right Cauchy-Green tensor. The evolution of the

internal variable ̂𝐅v
depends on the viscous stretching tensor 𝐃v

𝐃v = sym
(
̇
̂𝐅v
̂𝐅v−𝟣
)
=

3∑
i=1

dv
i 𝐌

v
i (21)

being dv
i and𝐌v

i the eigenvalues and eigenprojections of𝐃v
. Since the viscous flow is

assumed to be isochoric, the spectral decomposition of𝐃v
is subject to the constrains

dv
j ∈ Kv

Q = {pj ∈ ℝ ⇒ p1 + p2 + p3 = 0} (22)

𝐌v
j ∈ KM = {𝐍j ∈ sym ⇒ 𝐍j ⋅ 𝐍j = 1,𝐍i ⋅ 𝐍j = 0, i ≠ j} (23)

where the set Kv
Q enforces the traceless form of the tensor and KM the orthonormal

properties.

Potentials 𝜑
e

and 𝜓 of the Maxwell branch are isotropic functions of the elastic

tensor ̂𝐂e
and viscous stretching 𝐃v

and thus dependent on their respective eigenval-

ues

𝜑

e( ̂𝐂e) = 𝜑(ce
1, c

e
2, c

e
3) (24)

𝜓( ̂𝐃v) = 𝜓(dv
1, d

v
2, d

v
3) (25)

Using the classical exponential mapping [23], the viscous deformations 𝐃v
is

approximated by an incremental expression of 𝛥𝐂v

𝐅v
n+1𝐅

v−1
n = exp[𝛥t𝐃v] ⇒ 𝐃v = 1

2𝛥t
ln (𝛥𝐂v) (26)

Finally, with these definitions, the minimizing variables 𝐐 and ̂𝐅i
in (9) are

replaced by new internal variables dv
i and 𝐌v

i , and the incremental potential is

given by

𝛹iso = 𝛥U(Jn+1) + 𝛥𝜑( ̂𝐂n+1) + min
dv

i ,𝐌
v
i

{
𝛥𝜑

e( ̂𝐂e
n+1) + 𝛥t𝜓∗(𝐃v)

}
(27)

where

𝛥𝜑( ̂𝐂n+1) = 𝜑( ̂𝐂n+1) − 𝜑( ̂𝐂n)
𝛥𝜑

e( ̂𝐂e
n+1) = 𝜑

e( ̂𝐂e
n+1) − 𝜑

e( ̂𝐂e
n) (28)

𝛥U(Jn+1) = U(Jn+1) − U(Jn)
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such that

dv
j ∈ KQ = {pj ∈ ℝ ⇒ p1 + p2 + p3 = 0} (29)

𝐌v
j ∈ KM = {𝐍j ∈ sym ⇒ 𝐍j ⋅ 𝐍j = 1,𝐍i ⋅ 𝐍j = 0, i ≠ j} (30)

The optimality condition of (27) with respect to 𝐌v
i results in ̂𝐂e

n+1 and𝐃v
sharing

the same eigenprojections 𝐄e
i = 𝐌v

i respectively. The minimization with respect to

dv
i results in the following set of nonlinear equations [17]

𝜕𝜑

e

𝜕𝜀

e
j
− 𝜕𝜓

𝜕dv
i
+ 𝜆 = 0 i = 1, 2, 3

dv
1 + dv

2 + dv
3 = 0 (31)

where 𝜆 is the Lagrangian multiplier associated with the constraint (29) and 𝜀

e
j =

1
2
ln(ce

j ). The four nonlinear equations (31) can be solved by the Newton method.

Once the minimizers 𝛥qv
j are obtained, the first Piola-Kirchhoff stress tensor is cal-

culated from (10)

𝐏n+1 = 2𝐅n+1
𝜕𝛹iso(𝐂n+1; 𝜉n)

𝜕𝐂n+1

= 𝐅n+1

[
2J−2∕3n+1 DEV

(
𝜕 (𝜑 + 𝜑

e)
𝜕
̂𝐂n+1

)
+ 𝜕U

𝜕Jn+1
Jn+1𝐂−1

n+1

]
(32)

where DEV(⋅) = (⋅) − 1∕3[(⋅) ∶ 𝐂]𝐂−1
. Detailed information regarding these oper-

ations is found in [17].

3.2 A Viscoelastic Model for Fiber-Reinforced Soft Materials

Biological tissues, like tendons, ligaments and arterial walls, are strongly anisotropic

materials due to the presence of fibers. Usually referred to as a fiber-reinforced mate-

rial [20], these biological tissues are modeled as composites formed by fibers embed-

ded in a isotropic matrix represented by the ground substance.

In the present case the same variational structure of the isotropic case is used

to incorporate the mechanical behavior of fibers. This inclusion is performed in the

simplest way of adding the (uncoupled) contribution of the fibers 𝛹f on the isotropic

incremental potential 𝛹iso (27) to obtain the incremental potential of the composite

material

𝛹ani = 𝛹iso + 𝛹f (33)

The rheological model that represent this approach is shown in Fig. 3.
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Fig. 3 Rheological

mechanical model of the

fiber contribution

Since fibers introduce anisotropy related to their directions, the incremental poten-

tial depends explicitly on both, the right Cauchy-Green tensor ̂𝐂 and the structural

tensor 𝐀f = 𝐚f ⊗ 𝐚f , being 𝐚f the fiber direction

𝛹f = 𝛹f

(
̂𝐂,𝐀f

)
(34)

This dependence can be related to the pseudo-invariant I4 [21]

I4
(
̂𝐂,𝐀f

)
= 𝐀f ∶ ̂𝐂 = 𝜆

2
f (35)

that allows to obtain a simpler expression dependent only on the fiber stretch 𝜆f
obtained from projection (35).

The free energy associated with both springs of the rheological scheme in Fig. 3

depends on the elastic stretch values 𝜆f and 𝜆

e
f , the latter obtained from the multi-

plicative decomposition of 𝜆f into a elastic and a viscous stretch 𝜆

v

𝜆f = 𝜆

e
f 𝜆

v
f (36)

Wf

(
̂𝐂,𝐀f

)
= 𝜑f (𝜆f ) + 𝜑

e
f (𝜆

e
f ) (37)

The dissipative potential 𝜓f = 𝜓(dv
f ) depends on the viscous stretching dv

f

𝜆

v
f = 𝜆f𝜆

e
f
−1 dv

f = ̇
𝜆

v
f 𝜆

v
f
−1

(38)

Using the exponential mapping [23], it is possible to write

𝜆

v
f n+1𝜆

v
f n

−1 = exp[𝛥tdv
f ] ⇒ dv

f =
1
𝛥t

ln

(
𝜆

v
fn+1

𝜆

v
fn

)
(39)

Finally, the fiber incremental potential is defined as

𝛹f = 𝛥𝜑f (𝜆fn+1) + min
dv

f

{
𝛥𝜑

e(𝜆e
f n+1) + 𝛥t𝜓f (dv

f )
}

(40)
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where

𝛥𝜑(𝜆f n+1) = 𝜑(𝜆f n+1) − 𝜑(𝜆f n)
𝛥𝜑

e(𝜆e
f n+1) = 𝜑

e(𝜆e
f n+1) − 𝜑

e(𝜆e
f n)

The optimality condition of (40) with respect to dv
i results in the following equa-

tions

r =
𝜕𝜑

e
f (𝜆

e
fn+1

)

𝜕𝜆

v
fn+1

+ 𝛥t
𝜓f

(
dv

fn+1

)
𝜕𝜆

v
fn+1

=
𝜕𝜑

e
f

𝜕𝜆

e
fn+1

(
−

𝜆fn+1

𝜆

v
fn+1

2

)
+

𝜓f

𝜕dv
fn+1

1
𝜆

v
fn+1

= 0 (41)

that can be solved by the Newton method. Once the internal variable dv
fn+1

is found,

the first Piola-Kirchhoff stress tensor of the viscoelastic model for fiber-reinforced

materials is calculated by the hyperelastic-like expression

𝐏n+1 = 2𝐅n+1
𝜕𝛹ani(𝐂n+1; 𝜉n)

𝜕𝐂n+1

= 2𝐅n+1

⎡⎢⎢⎢⎣
J−2∕3n+1 DEV

⎛⎜⎜⎜⎝
𝜕

(
𝜑 + 𝜑

e + 𝜑f + 𝜑

e
f

)

𝜕
̂𝐂n+1

⎞⎟⎟⎟⎠
+ 1

2
𝜕U
𝜕Jn+1

Jn+1𝐂−1
n+1

⎤⎥⎥⎥⎦
= 2𝐅n+1

[
J−2∕3n+1 DEV

(
𝜕 (𝜑 + 𝜑

e)
𝜕
̂𝐂n+1

)
+ 1

2
𝜕U
𝜕Jn+1

Jn+1𝐂−1
n+1

]
+

+ 2𝐅n+1

⎡⎢⎢⎢⎣
J−2∕3n+1 DEV

⎛⎜⎜⎜⎝
𝜕

(
𝜑f + 𝜑

e
f

)

𝜕
̂𝐂n+1

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
= 2𝐅n+1

𝜕𝛹iso(𝐂n+1; 𝜉n)
𝜕𝐂n+1

+ 2𝐅n+1
𝜕𝛹f (𝐂n+1; 𝜉n)

𝜕𝐂n+1
= 𝐏iso + 𝐏f (42)

where 𝐏iso is the first Piola-Kirchhoff stress tensor of the isotropic viscoelastic model

(32) and 𝐏f is the first Piola-Kirchhoff stress contribution due to the existence of the

fiber-reinforcement. Further details regarding these operations are found in [20].
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3.3 A Viscoplastic Model for Isotropic Soft Materials
Undergoing Permanent Deformations

In order to include the presence of permanent deformations it is possible to use a

internal variable with the same features of plasticity models. Thus, new restrictions

and laws related to the evolution of this internal variable should be introduced. In this

framework, it is achieved by means of the construction of the inelastic and dissipative

potentials [19]. The rheological mechanical model that represent such behavior is

shown in Fig. 4.

The free energy W is now composed of the following terms

W(𝐅,𝐅p
,𝐐) = U(J) + 𝜑

e( ̂𝐂e) + 𝜑

p( ̂𝐂p
,𝐐) (43)

To account for the behavior of the Maxwell branch, the gradient of deformation

̂𝐅 is decomposed multiplicatively into elastic and inelastic (viscoplastic) terms

̂𝐅 = ̂𝐅e
̂𝐅p ⇒ ̂𝐅e = ̂𝐅 ̂𝐅p−𝟣; ̂𝐅p = ̂𝐅e−𝟣

̂𝐅 (44)

where ̂𝐅p
is the permanent isochoric right Cauchy-Green tensor. The evolution of

the internal variable ̂𝐅p
is related to the plastic stretching tensor 𝐃p

̇
̂𝐅p = 𝐋p

̂𝐅p = 𝐃p
̂𝐅p

(45)

expression obtained by assuming null plastic spin (𝐖p = skew(𝐋p) = 0).

This plastic spin is conveniently parameterized as [19]

𝐃p = q̇
3∑

i=1
qi𝐌

p
i (46)

q̇ ∈ ℝ; qi ∈ Kp
Q =

{
pi ∈ ℝ ⇒

3∑
i=1

pi = 0;
3∑

i=1
p2

i = 3
2
;

}
(47)

𝐌p
j ∈ KM = {𝐍j ∈ sym ⇒ 𝐍j ⋅ 𝐍j = 1,𝐍i ⋅ 𝐍j = 0, i ≠ j} (48)

Fig. 4 Generalized

Maxwell model for isotropic

viscoelastic response
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where the set Kp
Q enforces traceless property and limited norm to the tensor. In this

parametrization, q̇ accounts for the amplitude of 𝐃p
while qi and 𝐌p

j for its direction.

Using the exponential mapping [23], the update value of 𝐅p
is approximated by

𝐅p
n+1 = exp[𝛥t𝐃p]𝐅p

n = exp[𝛥q
3∑

i=1
qi𝐌

p
i ]𝐅

p
n (49)

The free energy associated to hardening/softening effects was here simplified to

be isotropic and consequently depending on the accumulated plastic amplitude q

𝜑

p( ̂𝐂p
,𝐐) = 𝜑

p(q) (50)

q(t) =
∫

t

0
q̇dt = qn + 𝛥q (51)

The dissipative potential 𝜓
p

is defined to be function of q̇ and provides penaliza-

tion for negative values

𝜓

p(𝐃p) = 𝜓

p(q̇) = 𝜓

p
(
𝛥q
𝛥t

)
=
{

𝜓̄

p(q̇) if q̇ ≥ 0
0 if q̇ < 0 (52)

where 𝜓̄

p(q̇) can be defined by different expressions.

The minimizing variables 𝐐 and 𝐅i in (9) are replaced by the set of internal vari-

ables 𝛥q, qi and 𝐌p
i , and the incremental potential is represented by

𝛹ep = 𝛥U(Jn+1) + min
𝛥q,qi,𝐌

p
i

{
𝛥𝜑

e( ̂𝐂e
n+1) + 𝛥𝜑

p( ̂𝐅p
n+1,𝐐n+1) + 𝛥t𝜓∗(𝐃v)

}
(53)

= 𝛥U(Jn+1) + min
𝛥q,qi,𝐌

p
i

{
𝛥𝜑

e( ̂𝐂e
n+1) + 𝛥𝜑

p(𝛥q) + 𝛥t𝜓∗
(
𝛥q
𝛥t

)}
(54)

where

𝛥𝜑

e( ̂𝐂e
n+1) = 𝜑

e(𝐂̂e
n+1) − 𝜑

e( ̂𝐂e
n) (55)

𝛥𝜑

p(𝛥q) = 𝜑

p(𝛥q) − 𝜑

p(qn) (56)

such that

qi ∈ Kp
Q =

{
pi ∈ ℝ ⇒

3∑
i=1

pi = 0;
3∑

i=1
p2

i = 3
2
;

}
(57)

𝐌p
j ∈ KM = {𝐍j ∈ sym ⇒ 𝐍j ⋅ 𝐍j = 1,𝐍i ⋅ 𝐍j = 0, i ≠ j} (58)

𝛥q ≥ 0 (59)



Variational Constituive Models for Soft Biological Tissues 79

The first order optimality condition of the incremental potential (54) with respect

to 𝐌p
i results in ̂𝐂e

n+1 and 𝐃p
sharing the same eigenvectors 𝐄e

i = 𝐌v
i respectively.

The minimization with respect to the other internal variables 𝛥q, qi results in six

nonlinear equations [19]

− 𝜕𝜑

e

𝜕𝜀

e
1
𝛥q + 𝜆 + 2𝛽q1 = 0

− 𝜕𝜑

e

𝜕𝜀

e
2
𝛥q + 𝜆 + 2𝛽q2 = 0

− 𝜕𝜑

e

𝜕𝜀

e
3
𝛥q + 𝜆 + 2𝛽q3 = 0

−
(

𝜕𝜑

e

𝜕𝜀

e
1
q1 +

𝜕𝜑

e

𝜕𝜀

e
2
q2 +

𝜕𝜑

e

𝜕𝜀

e
3
q3
)
+ 𝜕𝜑

p

𝜕𝛥q
+ 𝜕𝜓

p

𝜕q̇
= 0

q1 + q2 + q3 = 0
q21 + q22 + q23 =

3
2

(60)

where 𝜆 and 𝛽 are Lagrange multipliers used to introduce the restrictions (58).

The nonlinear equations (60) can be solved by the Newton method. The first Piola-

Kirchhoff stress tensor is calculated by (10)

𝐏n+1 = 2𝐅n+1
𝜕𝛹ep(𝐂n+1; 𝜉n)

𝜕𝐂n+1

= 𝐅n+1

[
2J−2∕3n+1 DEV

(
𝜕𝜑

e

𝜕
̂𝐂n+1

)
+ 𝜕U

𝜕Jn+1
Jn+1𝐂−1

n+1

]
(61)

where DEV(⋅) = (⋅) − 1∕3[(⋅) ∶ 𝐂]𝐂−1
.

Detailed information regarding this model and the minimizing strategy used to

identify the begin of the plastic flow are found in [19].

3.4 Material Models

A consequence of the provided mathematical structure is that different functions

describing specific materials may be combined to obtain a desired behavior. The

spectral decomposition considered in the representation of tensorial quantities allows

the use of classical expressions commonly used by hyperelastic models.
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3.4.1 Hencky Model

The Hencky-type strain energy is a quadratic expression of the logarithmic strain 𝜖.

In the present context, a similar structure can be used for the other defined potentials

𝜑 =
3∑

j=1
𝜇(𝜖j)2 𝜑

e =
3∑

j=1
𝜇

e(𝜖e
j )

2
𝜓

∗ =
3∑

j=1
𝜂

v(dv
j )

2
(62)

where 𝜇, 𝜇
e

and 𝜂 are material parameters.

3.4.2 Ogden Model

The Ogden model is usually chosen due to its flexibility to represent polymeric mate-

rials. Originally based on the principal stretches representation, this strain-energy

function can be written as a function of the logarithmic strains using the relation

𝜆j =
(
exp(𝜖e

j ) − 1
)

𝜑 =
3∑

j=1

N∑
p=1

𝜇p

𝛼p

([
exp(𝜖j)

]
𝛼p − 1

)
(63)

where 𝛼p and 𝜇p are material parameters. The following expressions can be used for

the elastic strain-energy function and the dissipative potential

𝜑

e =
3∑

j=1

N∑
p=1

𝜇

e
p

𝛼
e
p

([
exp(𝜖e

j )
]
𝛼

e
p − 1
)

(64)

𝜓

∗ =
3∑

j=1

N∑
p=1

𝜂

v
p

𝛼
v
p

([
exp(dv

j )
]
𝛼

v
p − 1
)

(65)

where 𝛼

e
p, 𝜇

e
p, 𝛼

v
p and 𝜂

v
p are material parameters.

3.4.3 Holzapfel Model

The strain-energy function of the Holzapfel model is based on the scalar pseudo-

invariant I4. It was proposed in [24] to model the fiber contribution of fibrous medium

(collagen/elastine) and it is suitable to be used on the fiber contribution of the fiber-

reinforced model. Its general form is given by

𝜑f =
k1
2k2

exp{[k2(I4 − 1)2] − 1} (66)
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where k1 and k2 are material parameters. The same expression can be used for the

elastic potential

𝜑

e
f =

ke
1

2ke
2
exp{[k2(Ie

4 − 1)2] − 1} (67)

where ke
1 and ke

2 are material parameters.

3.4.4 Hardening Model

A simple but effective expression used for metallic hardening, that results in a linear

hardening, is given by

𝜑

p = 𝜎0q + 1
2

Hq2 (68)

where 𝜎0 and H are material parameters. The parameter 𝜎0 represents the equiva-

lent permanent flow stress (yield stress in plasticity problems). If the tissue is loaded

at stress levels higher than 𝜎0, then evolution of permanent strains takes place. The

parameter H is related with the stiffness of the material during the evolution of the

permanent strain. Other more flexible functions can be used. For instance, it is possi-

ble to obtain a saturating hardening behavior at stress 𝜎u by considering the expres-

sion

𝜑

p = 𝜎0q + (𝜎u − 𝜎0)
(

q + 1
𝛽p

exp(−𝛽pq)
)

(69)

where 𝜎u and 𝛽p are material parameters.

3.4.5 Perzina Model

The Perzina rate-dependent law, commonly used to model viscoplastic metallic

materials, can be written explicitly as a function of q̇ by

𝜓

p =
m𝜎pq̇0
m + 1

(
q̇
q̇0

) m+1
m

(70)

where m, 𝜎p and q̇0 are material parameters.

3.5 Tangent Moduli

The numerical implementation of material models depends on the determination of

the exact expressions for the tangent tensor, consistent with the constitutive incre-

mental update algorithm. The contribution to the tangent moduli from geometric

terms is similar to any strain-energy-based model and follows the same procedure
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applied to hyperelastic models. The presented models are based on an additive

decomposition of energy into volumetric and isochoric contributions (15), in which

the internal mechanical aspects are related to the isochoric contribution ( ̂𝐂) alone.

Thus, the focus here is on the expression

C = d
d ̂𝐂n+1

(
d𝛹

d ̂𝐂n+1

)
(71)

The tangent matrix for each model is obtained analytically according to the defi-

nition of the incremental potential 𝛹 , which depends on W. Since W is decomposed

additively in terms of energy potentials, the tangent matrix can be obtained likewise.

3.5.1 Isotropic Viscoelastic Model

Isotropic contribution on the isochoric part

Ciso = d
d ̂𝐂n+1

(
d𝛹iso

d ̂𝐂n+1

)
= d

d ̂𝐂n+1

(
𝜕𝜑

𝜕
̂𝐂n+1

)
+ d

d ̂𝐂n+1

(
𝜕𝜑

e

𝜕
̂𝐂n+1

)
(72)

3.5.2 Viscoelastic Fiber-Reinforced Model

Fiber contribution on the isochoric part

Cf =
d

d ̂𝐂n+1

(
d𝛹f

d ̂𝐂n+1

)
= d

d ̂𝐂n+1

(
𝜕𝜑f

𝜕
̂𝐂n+1

)
+ d

d ̂𝐂n+1

(
𝜕𝜑

e
f

𝜕
̂𝐂n+1

)
(73)

3.5.3 Elasto-Plastic Model

Elasto-plastic contribution on the isochoric part

Cep = d
d ̂𝐂n+1

(
d𝛹ep

d ̂𝐂n+1

)
= d

d ̂𝐂n+1

(
𝜕𝜑

e

𝜕
̂𝐂n+1

)
(74)

4 Numerical Examples

In this section a set of numerical examples were selected in order to illustrate the

capability of these models to reproduce some of the typical inelastic behaviors

observed in soft biological tissues.
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Table 1 Combinations of material models

Case 𝜑 𝜑

e
𝜓

1 Ogden Ogden Ogden

2 Hencky Hencky Hencky

Table 2 Material parameters for cyclic shear test

Potential Ogden Hencky

𝜑 𝜇1 = 10 𝜇2 = −4 𝜇3 = 2 𝜇 = 22.5
𝜑

e
𝜇

e
1 = 40 𝜇

e
2 = −16 𝜇

e
3 = 8 𝜇

e = 90
𝜓 𝜂

v
1 = 240 𝜂

v
2 = −96 𝜂

v
3 = 48 𝜂

v = 540

4.1 Isotropic Viscoelastic Case

Two cyclic simple shear cases are presented for a incompressible element of uni-

tary dimensions. The element is subject to lateral displacement following a sinu-

soidal function ux = Ux sin(t) and tested for the material model combinations shown

in Table 1. Ogden and Hencky models were used for 𝜑,𝜑
e

and 𝜓 for two different

amplitudes: Ux = 0.001 and Ux = 1, during three load cycles.

The parameters considered in these tests are presented in the Table 2. For Ogden

models is used three terms (N = 3). Also, the Ogden exponents 𝛼1 = 2 ; 𝛼2 = −2 ;
𝛼3 = 7 are the same for the potentials 𝜑,𝜑

e
and 𝜓 .

The results for the amplitude that correspond to small strains (Ux = 0.001) are

shown in Fig. 5. Both cases give identical results. The results for a larger amplitude

(Ux = 1) are presented in Fig. 6 and are quite different. This behavior is due to the

fact that the Hencky model used in the Maxwell branch provides a contribution in

stress much lower than a corresponding Ogden model for large strains. Also, the vis-

cous potential modifies the minimization condition and, thus, the amount of viscous

deformation [17].

4.2 Viscoelastic Fiber-Reinforced Case

Two uniaxial tests are presented here, where controlled stretching cycles are applied

in the fiber direction. The parameters of the fiber potential used in these examples

are presented in Table 3. The applied stretching history and the results are shown

in Figs. 7 and 8. Both figures show the mechanical behavior expected from a fiber,

where the material presents stiffness only for positive strains.



84 J.M. Vassoler and E.A. Fancello

Fig. 5 Cyclic shear test.

Shear amplitude Ux = 0.001
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Fig. 6 Cyclic shear test.

Shear amplitude Ux = 1
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Table 3 Material parameters the fiber contribution

Potential Fiber

Model Parameters

𝜑 Holzapfel k1 = 1; k2 = 5
𝜑

e
Holzapfel k1 = 1; k2 = 20

𝜓 Hencky 𝜂

v = 100
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Fig. 7 Stress response for

the first tensile loading
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Fig. 8 Stress response for

the first compressive loading
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4.3 Elasto-Vicoplastic Model

This section focuses on a simple numerical test illustrating the mechanical behavior

obtained in a case of a traction test of a element of unitary dimensions, submitted to

a constant natural strain rate. Two material models were tested with different elastic

strain energy 𝜑

e
: Hencky and Ogden models. The parameters used in these tests

are shown in Table 4. For both cases, the functions of linear hardening (68) and the

Perzina (70) were used, respectively, for the plastic potential 𝜑
p

and the dissipative

potential 𝜓
p
. The material parameters are the same: 𝜎p = 2, H = 10, m = 1, 𝜎0 = 40

and q̇0 = 0.1. Both specimens were elongated up to 𝜀 = ln 𝜆 = 1.2 with constant

strain rates of 1s−1, 0.5s−1 and 0.1s−1 and unloaded at the same strain rate. The results

for the Hencky model are shown in Fig. 9 where the expected linear dependence
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Table 4 Material parameters of the elastic strain-energy 𝜑

e

Potential Ogden Hencky

𝜇i −120 156 42 𝜇 = 50
𝛼i 3.0 1.4 4.0

Fig. 9 Uniaxial traction

test. Hencky model
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test. Ogden model

Natural Strain

0 0.2 0.4 0.6 0.8 1 1.2

C
au

ch
y 

S
tr

es
s

-30

-20

-10

0

10

20

30

40

50

60

70
0.1 s-1

0.5 s-1

1.0 s-1

of the natural strain (logarithm strain) in the elastic region is obtained. The results

for the Ogden model are shown in Fig. 10, where the classical Ogden-type elastic

response is obtained. In both cases, the expected dependence of the strain rate in the

plastic region is observed.
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5 Concluding Remarks

Biological tissues show a complex, history dependent, mechanical response to finite

strains. The ability of reproducing these macroscopic behaviors in numerical simu-

lations certainly provide improved support for implant design as well as for surgical

decisions. The variational framework presented here provides a consistent unified

basis to design a number of specific material models appropriate for the representa-

tion of soft biological tissues. Due to its sound thermodynamical basis, all proposed

models satisfy a priori the positive dissipation inequality. The main task is reduced

to choose the appropriate free energy and dissipative potential expressions to tailor a

specific material phenomenon. From a numerical point of view, the constitutive pro-

cedure recasts into a convex minimization problem that in most cases has a numerical

cost equivalent to that of classical predictor/corrector schemes.
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Sensitivity Analysis of Temperature Field
and Parameter Identification in Burned
and Healthy Skin Tissue
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Abstract In the chapter, problems connected with the numerical modeling of
bioheat transfer processes are presented. In particular the non-homogeneous system
of a burn wound and healthy tissue is considered. The heat exchange between
sub-domains and environment is described by a system of partial differential
equations (the Pennes equations) supplemented by adequate boundary conditions.
The first goal of the research is the estimation of the changes of temperature fields
due to perturbations in thermal parameters using the direct method of sensitivity
analysis. Both the basic problem and additional ones concerning the sensitivity with
respect to selected parameters are solved using the boundary element method. The
second goal is the problem of burn wound shape identification. The additional
information necessary to solve such a task results from the knowledge of temper-
ature distribution on the external surface of skin tissue. At the stage of solving the
inverse problem, a gradient method has been used. In the final part of the chapter
the results of computations are shown.

Keywords Bioheat transfer ⋅ Sensitivity analysis ⋅ Boundary element
method ⋅ Burn wounds ⋅ Parameter identification ⋅ Gradient method

E. Majchrzak (✉) ⋅ M. Paruch ⋅ M. Dziewoński
Institute of Computational Mechanics and Engineering, Silesian University
of Technology, Gliwice, Poland
e-mail: ewa.majchrzak@polsl.pl

S. Freus ⋅ K. Freus
Institute of Mathematics, Czestochowa University of Technology, Częstochowa, Poland

© Springer International Publishing Switzerland 2016
P.A. Muñoz-Rojas (ed.), Computational Modeling, Optimization
and Manufacturing Simulation of Advanced Engineering Materials,
Advanced Structured Materials 49, DOI 10.1007/978-3-319-04265-7_5

89



1 Introduction

A very important problem in burn therapy is the estimation of the temperature field
in the injured and surrounding healthy tissue [1–4]. The information concerning the
skin surface temperature allows one to observe the process of burn wounds healing.

In the chapter the heterogeneous domain, constituted of the composition of
burned and healthy layers of skin tissue, is considered. The temperature distribution
in the domains is described by a system of two Pennes equations [5–7] with
different thermophysical parameters. In the healthy layer, the metabolic and per-
fusion heat sources are taken into account, while the burned layer is dead and the
blood perfusion and metabolic do not occur in this region. On the surface between
burned and healthy layers, ideal contact is assumed (continuity of heat flux and
temperature field), whereas on the internal surface limiting the system, the body
temperature is known. Heat transfer between skin surface and environment is
described by the well known Robin boundary condition (ambient temperature and
heat transfer coefficient are given).

Thermophysical parameters occurring in the presented mathematical model
differ significantly because they are individual features of each person. Thus, the
aim of the research presented is to estimate the temperature changes due to changes
in these parameters. Here the direct approach of sensitivity analysis [8–11] is used.
So, the governing equations are differentiated with respect to the parameters con-
sidered. In this way, additional problems are formulated, whose number corre-
sponds to the number of the parameters analyzed.

To solve the basic problem and additional ones the classical boundary element
method for burned sub-domain [12, 13] and multiple reciprocity boundary element
method [14, 15] for healthy tissue sub-domain are used. These methods are coupled
by the boundary condition given on the contact surface between sub-domains
considered. This approach allows one to avoid the discretization of the domain
interior (inside the healthy tissue sub-domain, the volumetric internal heat sources
must be taken into account).

Another aim of the study is to identify the depth of burn on the basis of the
temperature distribution on the skin surface [1, 4]. Formulated in this way the
inverse problem is solved using a gradient method [16]. The inverse problem is
defined by the minimization of an objective function that measures the norm of the
error between a numerical solution and experimental data. The sensitivity coeffi-
cients are necessary to evaluate the gradients of the objective function. To deter-
mine these coefficients the implicit differentiation method is applied [17].

In the final part of the chapter the results of computations are shown.
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2 Governing Equations

The domain of healthy tissue and burn wound is considered. In the case of 2D
problem it is a rectangular domain of dimensions 2L × L (Fig. 1), while in the case
of 3D problem it is a cuboid of dimensions 2L × L × 2L (Fig. 2).

The steady temperature field in domain of healthy tissue is described by the
Pennes equation [5–7]

x∈Ω1: λ1∇2T1ðxÞ+GB cB TB −T1ðxÞ½ �+Qmet =0 ð1Þ

where T1(x) is the tissue temperature, λ1 is the tissue thermal conductivity, GB is the
blood perfusion rate, cB is the specific heat of blood, TB is the arterial blood
temperature, Qmet is the metabolic heat source, x = {x1, x2, x3} for 3D problems and
x = {x1, x2} for 2D problems.

In the domain of burned tissue, blood perfusion and metabolic heat generation
are equal to zero, because the tissue is dead. So, the Pennes equation takes the form

x∈Ω2: λ2∇2T2ðxÞ=0 ð2Þ

where λ2 is the thermal conductivity of burned tissue.

Fig. 1 Domain considered
(2D problem)

Fig. 2 Domain considered
(3D problem)
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On the surface between sub-domains the continuity condition is assumed

x∈Γc:
− λ1 ∂T1ðxÞ

∂n = − λ2 ∂T2ðxÞ
∂n

T1ðxÞ=T2ðxÞ
�

ð3Þ

where ∂Te/∂n, e = 1, 2, denotes the normal derivative and n = [cosα1, cosα2, cosα3]
for 3D problems or n = [cosα1, cosα2] for 2D problems is the normal outward
vector.

In the contact between the skin surface and the environment, the Robin condition
is taken into account; it reads

x∈Γexe : − λe
∂TeðxÞ
∂n

= α TeðxÞ−Ta½ �, e=1, 2 ð4Þ

where α is the heat transfer coefficient, Ta is the ambient temperature and
Γex =Γex1 ∪Γex2 ,Γex1 is the healthy skin surface, Γex2 is the burned skin surface.

On the internal surface the body core temperature is known

x∈Γin: T1ðxÞ=Tb ð5Þ

For the other boundaries zero heat flux is assumed

x∈Γ∞: q1ðxÞ= − λ1
∂T1ðxÞ
∂n

=0 ð6Þ

3 Sensitivity Analysis

In this chapter the sensitivity analysis of the process discussed with respect to the
thermophysical parameters appearing in the mathematical model described by
Eqs. (1)–(6), is presented. The direct approach [8–11], which depends on the dif-
ferentiation of Pennes equations and boundary conditions with respect to the
parameter considered, is applied. In this way, additional problems connected with
these parameters are formulated.

Let p1 = λ1, p2 = λ2, p3 = GB and p4 = Qmet. Equations (1), (2) are differentiated
with respect to the parameter ps, s = 1, 2, 3, 4. So

∂λ1
∂ps

∇2T1ðxÞ+ λ1∇2 ∂T1ðxÞ
∂ps

� �
+

∂GB

∂ps
cB TB −T1ðxÞ½ �−GBcB

∂T1ðxÞ
∂ps

+
∂Qmet

∂ps
=0

ð7Þ

and
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∂λ2ðxÞ
∂ps

∇2T2ðxÞ+ λ2∇2 ∂T2ðxÞ
∂ps

� �
=0 ð8Þ

Information resulting from Eqs. (1), (2) is of the form

∇2T1ðxÞ= −
1
λ1

GB cB TB −T1ðxÞ½ �+Qmet½ � ð9Þ

and

∇2T2ðxÞ=0 ð10Þ

After introducing (9) into Eq. (7) and (10) into Eq. (8) one has

λ1∇2U1sðxÞ−GB cBU1sðxÞ+R1sðxÞ=0 ð11Þ

and

λ2∇2U2sðxÞ=0 ð12Þ

where Ues (x) = ∂Te (x)/ ∂ps, e = 1, 2, are the sensitivity functions, and

R1s ðxÞ= −
∂λ1
∂ps

1
λ1

GBcB TB −T1ðxÞ½ �+Qmet½ �+ ∂GB

∂ps
cB TB − T1ðxÞ½ �+ ∂Qmet

∂ps
ð13Þ

Next, the boundary condition (3) is differentiated with respect to ps

x∈Γc:
− ∂λ1

∂ps
∂T1ðxÞ
∂n − λ1 ∂

∂n
∂T1ðxÞ
∂ps

h i
= ∂λ2

∂ps
∂T2ðxÞ
∂n + λ2 ∂

∂n
∂T2ðxÞ
∂ps

h i
∂T1ðxÞ
∂ps

= ∂T2ðxÞ
∂ps

8<
: ð14Þ

or

x∈Γc:
− ∂λ1

∂ps
∂T1ðxÞ
∂n − λ1 ∂U1sðxÞ

∂n = ∂λ2
∂ps

∂T2ðxÞ
∂n + λ2 ∂U2sðxÞ

∂n
U1sðxÞ=U2sðxÞ

�
ð15Þ

Boundary conditions (4), (5) and (6) are also differentiated, namely

x∈Γin: U1sðxÞ= ∂Tb
∂ps

=0 ð16Þ

x∈Γexe : −
∂λe
∂ps

∂TeðxÞ
∂n

− λe
∂UesðxÞ

∂n
= αUesðxÞ, e=1, 2 ð17Þ
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x∈Γ∞: −
∂λ1
∂ps

∂T1 ðxÞ
∂n

− λ1
∂U1sðxÞ

∂n
=0 ð18Þ

Equations (15), (17), (18) can be written in the form

x∈Γc:
1
λ1

∂λ1
∂ps

q1ðxÞ+W1sðxÞ= − 1
λ2

∂λ2
∂ps

q2ðxÞ−W2sðxÞ
U1sðxÞ=U2sðxÞ

�
ð19Þ

x∈Γexe : WesðxÞ= αUesðxÞ− 1
λe

∂λe
∂ps

qeðxÞ ð20Þ

x∈Γ∞: W1sðxÞ= −
1
λ1

∂λ1
∂ps

q1ðxÞ ð21Þ

where Wes (x) = −λe ∂Ues (x)/ ∂n, e = 1, 2.
In this way, the Eqs. (11), (12) supplemented by boundary conditions (16), (19),

(20), (21) create additional problems associated with sensitivity analysis with
respect to the successive parameters ps. It should be pointed out that the number of
additional problems is equal to the number of analyzed parameters. To solve the
additional problems the temperature distribution in the domain considered should
be known because the sensitivity problems are coupled with the basic task.

4 Boundary Element Method

The basic problem and additional ones connected with the sensitivity analysis have
been solved using the boundary element method [12, 13].

From a mathematical point of view, Eq. (1) is the Poisson equation in which the
source function is the sum of the temperature-dependent component and a constant
value

x∈Ω1: λ1∇2T1ðxÞ−GB cBT1ðxÞ+Q=0 ð22Þ

while Q=GB cBTB +Qmet.
The boundary integral equation corresponding to the Eq. (22) can be expressed

as follows [13]

B ξð ÞT1 ξð Þ+ R
ΓI

q1 xð ÞT*
1 ξ, xð ÞdΓI =

R
ΓI

T1 xð Þq*1 ξ, xð ÞdΓI +
R
Ω1

T*
1 ξ, xð ÞQ xð ÞdΩ1 ð23Þ

where q1 xð Þ= − λ1 ∂T1 xð Þ ∂̸n and ΓI =Γex1 ∪Γ∞ ∪Γin ∪Γc. In Eq. (23) ξ is the
observation point, the coefficient B(ξ) depends on the location of source point ξ,
T *
1 ðξ, xÞ is the fundamental solution, q*1ðξ, xÞ= − λ1∂T*

1 ðξ, xÞ ∂̸n.
The fundamental solution is of the form

94 E. Majchrzak et al.



T*
1 ξ, xð Þ=

1
2πλ1 K0 r

ffiffiffiffiffiffiffiffi
GB cB
λ1

q� �
for 2D problem

1
4πλ1 r exp − r

ffiffiffiffiffiffiffiffi
GB cB
λ1

q� �
for 3D problem

8<
: ð24Þ

where K0 ⋅ð Þ is the modified Bessel’s function of second kind, zero order [13], r is
the distance between the source point ξ and the field point x

r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i=1
ðxi − ξiÞ2

s
ð25Þ

while m is the dimension of the problem.
To solve the Eq. (23), not only the boundary but also the interior of the domain

considered must be discretized. This variant of the BEM has been used, among
others, in [6].

It should be pointed out that in the case of solving the inverse problem connected
with the burn depth identification (Sect. 5), it is more convenient to use such a
method which does not require the interior domain discretization. One of them is
the multiple reciprocity boundary element method (MRBEM) [14, 15]. In this case,
the following integral equation is considered [15]

BðξÞT1ðξÞ+ ∑
∞

l=0

GBcB
λ1

� 	lZ
ΓI

q1ðxÞV*
l ðξ, xÞdΓI

= ∑
∞

l=0

GBcB
λ1

� 	l Z
ΓI

T1ðxÞZ*
l ðξ, xÞdΓI −

Q
λ1

∑
∞

l=1

GBcB
λ1

� 	l− 1 Z
ΓI

Z*
l ðξ, xÞdΓI

ð26Þ

where the functions V*
l ξ, xð Þ for 2D and 3D problems are defined as follows [14,

15]

V*
l ξ, xð Þ=

1
2πλ1 r

2l Al ln 1
r +Bl


 �
for 2D problem

1
4πλ1 r

2l− 1Cl for 3D problem

(
ð27Þ

while

A0 = 1, Al = Al− 1
4l2 , l=1, 2, 3, . . .

B0 = 0, Bl = 1
4l2

Al− 1
l +Bl− 1


 �
, l=1, 2, 3, . . .

ð28Þ

and

C0 = 1, C1 = 1
2 , C2 = 1

24 , Cl = 1
2l− 1ð Þ 2l− 3ð ÞCl− 1, l=3, 4, 5, . . . ð29Þ
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The heat fluxes Z*
l ξ, xð Þ= − λ1 ∂V *

l ξ, xð Þ ∂̸n resulting from the fundamental
solutions (27) can be calculated analytically and then

Z*
l ξ, xð Þ=

d
2π r

2l− 2 Al − 2l Al ln 1
r +Bl


 �� 

for 2D problem

− d
4π 2l− 1ð Þr2l− 3Cl for 3D problem

�
ð30Þ

where

d= ∑
m

i=1
ðxi − ξiÞ cos αi ð31Þ

The boundary integral equation corresponding to the Eq. (2) is the following

B ξð ÞT2 ξð Þ+
Z
ΓII

q2 xð ÞT*
2 ξ, xð ÞdΓII =

Z
ΓII

T2 xð Þq*2 ξ, xð ÞdΓII ð32Þ

where ξ is the observation point, the coefficient B(ξ) depends on the location of
source point ξ, T *

2 ðξ, xÞ is the fundamental solution, q*2ðξ, xÞ= − λ2∂T*
2 ðξ, xÞ ∂̸n is

the heat flux resulting from fundamental solution, q2ðxÞ= − λ2∂T2ðxÞ ∂̸n is the heat
flux and ΓII =Γc ∪Γex2 .

Fundamental solution of the problem discussed is of the form

T*
2 ξ, xð Þ=

1
2πλ2 ln

1
r for 2D problem

1
4π λ2r for 3D problem

(
ð33Þ

and then

q*2 ξ, xð Þ=
d

2πr2 for 2D problem
d

4πr3 for 3D problem

�
ð34Þ

To solve the Eqs. (26) and (32) the boundary is divided into N elements Γj = 1,
2, …, N and the integrals in the Eqs. (26), (32) can be replaced by the sums of
integrals over these elements. So

BðξÞT1ðξÞ+ ∑
∞

l=0

GBcB
λ1

� 	l

∑
N1

j=1

Z
Γj

q1ðxÞV*
l ðξ, xÞdΓj

= ∑
∞

l=0

GBcB
λ1

� 	l

∑
N1

j=1

Z
Γj

T1ðxÞZ*
l ðξ, xÞdΓj−

Q
λ1

∑
∞

l=1

GBcB
λ1

� 	l− 1

∑
N1

j=1

Z
Γj

Z*
l ðξ, xÞdΓj

ð35Þ
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and

BðξÞT2ðξÞ+ ∑
N

j=N1 + 1

Z
Γj

q2ðxÞT*
2 ðξ, xÞdΓj= ∑

N

j=N1 + 1

Z
Γj

T2ðxÞq*2ðξ, xÞdΓj ð36Þ

where N1 is the number of elements on the boundary limiting domain Ω1.
It should be pointed out that different types of boundary elements can be used,

namely constant elements, linear or parabolic ones [12, 13]. Here the linear
boundary elements are applied. The singular and weakly singular integrals occur-
ring in the BEM Eqs. (35), (36) are calculated analytically using the expressions
presented, among others, in [13].

After the mathematical manipulations one obtains the following system of
algebraic equations corresponding to the healthy tissue

∑
K1

k=1
G1

i k q
1
k = ∑

K1

k=1
H1

i k T
1
k +Pi, i=1, 2, . . . ,K1 ð37Þ

and the system of equations corresponding to the burned tissue

∑
K

k=K1 + 1
G2

i k q
2
k = ∑

K

k=K1 + 1
H2

i k T
2
k , i=K1 + 1,K1 + 2, . . . ,K ð38Þ

where K1 is the number of boundary nodes located on the boundary limiting
sub-domain Ω1, K − K1 is the number of boundary nodes located on the boundary
limiting sub-domain Ω2.

It should be pointed out that taking into account the boundary conditions, on the
contact surface between sub-domains Ω1 and Ω2 (Fig. 2) the double numbering of
boundary nodes should be introduced.

The systems of Eqs. (37), (38) can be written in the matrix form

G1 q1 =H1 T1 +P ð39Þ

and

G2 q2 =H2 T2 ð40Þ

The way of calculation of matrices G1, H1, G2, H2, P elements is described in
details in [14, 15].

For the needs of further considerations concerning the temperature field mod-
eling, the following denotations are introduced (c.f. Figs. 1 and 2)
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• Tex1
1 , T∞

1 , T
in
1 , q

ex1
1 , q∞1 , q

in
1 are the vectors of functions T and q at the boundary

Γex1 ∪Γ∞ ∪Γin of domain Ω1,
• Tc1, Tc2, qc1, qc2 are the vectors of functions T and q on the contact surface Γc

between sub-domains Ω1 and Ω2,
• Tex2

2 , qex22 are the vectors of functions T and q at the boundary Γex2 of domain Ω2.

Using above designations one obtains the following systems of equations

• for the healthy tissue domain

Gex1
1 G∞

1 Gin
1 Gc1

� 
 qex11
q∞1
qin1
qc1

2
664

3
775= Hex1

1 H∞
1 Hin

1 Hc1
� 
 Tex1

1
T∞
1

Tin
1

Tc1

2
664

3
775+P ð41Þ

• for the burned region

Gc2 Gex2
2½ � qc2

qex22

� �
= Hc2 Hex2

2½ � Tc2

Tex2
2

� �
ð42Þ

The condition (3) written in the form

qc1 = −qc2 = q
Tc1 =Tc2 =T

�
ð43Þ

should be introduced to the Eqs. (41), (42). Therefore

Gex1
1 G∞

1 Gin
1 −Hc1 Gc1

� 

qex11
q∞1
qin1
T
q

2
66664

3
77775= Hex1

1 H∞
1 Hin

1

� 
 Tex1
1

T∞
1

Tin
1

2
4

3
5+P ð44Þ

and

− Hc2 −Gc2 Gex2
2½ �

T
q
qex22

2
4

3
5=Hex2

2 Tex2
2 ð45Þ
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Coupling of these systems of equations gives

Gex1
1 G∞

1 Gin
1 −Hc1 Gc1 0

0 0 0 −Hc2 −Gc2 Gex2
2

" #
qex11

q∞1
qin1
T
q
qex22

2
666666664

3
777777775

=
Hex1

1 H∞
1 Hin

1 0
0 0 0 Hex2

2

" # Tex1
1

T∞
1

Tin
1

Tex2
2

2
6664

3
7775+

P
0

� �

ð46Þ

The remaining boundary conditions (4), (5), (6) should be also taken into
account and then

αGex1
1 −Hex1

1 −H∞
1 Gin

1 −Hc1 Gc1 0
0 0 0 −Hc2 −Gc2 αGex2

2 −Hex2
2

� �
Tex1
1

T∞
1

qin1
T
q

Tex2
2

2
6666664

3
7777775

= αGex1
1 Gin

1 0
0 0 αGex2

2

� � Ta
Tb
Ta

2
4

3
5+

P
0

� �
ð47Þ

or

AY=B ð48Þ

where A is the main matrix of the system of Eq. (47), Y is the vector of unknowns
and B is the free terms vector.

The system of Eq. (48) allows one to find the “missing” boundary values.
Knowledge of boundary temperatures and heat fluxes at all nodes constitutes a basis
for computations of internal temperatures at the optional points selected from the
domain of burned region and at the internal points distinguished in the healthy
tissue [14, 15].

In the case of additional problems solution (associated with the sensitivity
analysis) the procedure is similar but slightly more difficult. Boundary integral
equations corresponding to Eqs. (11), (12) have the following form
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B ξð ÞU1sðξÞ+
R
ΓI

W1sðxÞ ∑
∞

l=0

GBcB
λ1

� �l
V*
l ðξ, xÞ dΓ=

R
ΓI

U1sðxÞ ∑
∞

l=0

GBcB
λ1

� �l
Z*
l ðξ, xÞ dΓ

− ∂λ1
∂ps

GBcB
λ1 − ∂GB

∂ps
cB

� �
1
λ1

R
ΓI

T1ðxÞ ∑
∞

l=1
l GBcB

λ1

� �l− 1
Z*
l ðξ, xÞ dΓ

+ ∂λ1
∂ps

GBcB
λ1 − ∂GB

∂ps
cB

� �
1
λ1

R
ΓI

q1ðxÞ ∑
∞

l=1
l GBcB

λ1

� �l− 1
V*
l ðξ, xÞdΓ

− − ∂λ1
∂ps

1
λ1 Q+ ∂GB

∂ps
cBTB + ∂Qmet

∂ps

� �
1
λ1

R
ΓI

∑
∞

l=1

GBcB
λ1

� �l− 1
Z*
l ðξ, xÞdΓ

+ ∂λ1
∂ps

GBcB
λ1 − ∂GB

∂ps
cB

� �
Q
λ21

R
ΓI

∑
∞

l=1
l− 1ð Þ GBcB

λ1

� �l− 2
Z*
l ðξ, xÞ dΓ

ð49Þ

and

B ξð ÞU2s ξð Þ+
Z
ΓII

W2s xð ÞT *
2 ξ, xð ÞdΓII =

Z
ΓII

U2s xð Þq*2 ξ, xð ÞdΓII ð50Þ

After discretization, the following systems of equations are obtained

• for the healthy tissue domain

G1W1s =H1U1s +Z1s ð51Þ

• for the burned region

G2W2s =H2U2s ð52Þ

or

Gex1
1 G∞

1 Gin
1 Gc1

� 
 Wex1
1s

W∞
1s

Win
1s

Wc1s

2
664

3
775= Hex1

1 H∞
1 Hin

1 Hc1
� 
 Uex1

1s
U∞

1s
Uin

1s
Uc1s

2
664

3
775+Z1s

ð53Þ

and

Gc2 Gex2
2½ � Wc2s

Wex2
2s

� �
= Hc2 Hex2

2½ � Uc2s

Uex2
2s

� �
ð54Þ
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Taking into account the depencence (43), the boundary condition (19) can be
written as follows

x∈Γc:
Wc2s = −Wc1s + 1

λ2
∂λ2
∂ps

− 1
λ1

∂λ1
∂ps

� �
q

Uc1s =Uc2s =Us

(
ð55Þ

Introducing (55) into the Eqs. (53), (54) one obtains

Gex1
1 G∞

1 Gin
1 −Hc1 Gc1

� 

Wex1

1s
W∞

1s
Win

1s
Us

Wc1s

2
66664

3
77775= Hex1

1 H∞
1 Hin

1

� 
 Uex1
1s

U∞
1s

Uin
1s

2
4

3
5+Z1s

ð56Þ

and

− Hc2 −Gc2 Gex2
2½ �

Us

Wc1s

Wex2
2s

2
4

3
5=

1
λ1

∂λ1
∂ ps

−
1
λ2

∂λ2
∂ ps

� 	
Gc2q+Hex2

2 Uex2
2s ð57Þ

The coupling of Eqs. (56), (57) gives

Gex1
1 G∞

1 Gin
1 −Hc1 Gc1 0

0 0 0 −Hc2 −Gc2 Gex2
2

" #
Wex1

1s

W∞
1s

Win
1s

Us

Wc1s

Wex2
2s

2
666666664

3
777777775

=
Hex1

1 H∞
1 0

0 0 Hex2
2

� � Uex1
1s

U∞
1s

Uex2
2s

2
64

3
75+

Z1s

1
λ1

∂λ1
∂ps

− 1
λ2

∂λ2
∂ps

� �
Gc2q

" #
ð58Þ

The remaining boundary conditions (16), (20), (21) should be also taken into
account and then
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αGex1
1 −Hex1

1 −H∞
1 Gin

1 −Hc1 Gc1 0
0 0 0 −Hc2 −Gc2 αGex2

2 −Hex2
2

" #
Uex1

1s

W∞
1s

U∞
1s

Us

Wc1s

Uex2
2s

2
666666664

3
777777775

=
1
λ1

∂λ1
∂ps

Gex1
1 0 0

0 1
λ1

∂λ1
∂ps

− 1
λ2

∂ λ2
∂ps

� �
Gc2

1
λ2

∂λ2
∂ps

Gex2
2

2
4

3
5

qex11

q
qex22

2
64

3
75+

Z1s

0

� �

ð59Þ

It should be pointed out that the main matrix of the system of Eq. (59) associated
with the sensitivity functions is the same as in the case of the basic problem solution
(c.f. Eq. (47)).

5 Inverse Problem

The inverse problem considered here is based on the assumption that the temper-
ature distribution at the boundary Γex is known (e.g. thermograms), while the
position of Γc is unknown. The ‘measured’ temperatures on the skin surface are
denoted by Tdi, i = 1, 2, … M, where M is the number of sensors.

It is assumed that in the case of a 3D problem the surface Γc is defined by the
rotational paraboloid (x2 ≤ L)

x2 = b+
4 L− bð Þ

L2
x1 −Lð Þ2 + x23

h i
ð60Þ

where the point (L, b, 0) corresponds to the paraboloid vertex. The section x3 = 0
gives the line (parabolic function) described the boundary Γc

x2 = b+
4 L− bð Þ

L2
x1 −Lð Þ2 ð61Þ

where (L, b) is the parabolic vertex.
The inverse problem consists in the identification of value b which determines

maximum burn depth in the domain considered.
The criterion which should be minimized is of the form [16]

SðbÞ= 1
M

∑
M

i=1
ðTi − Td iÞ2 ð62Þ
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where Ti are the calculated temperatures. These temperatures are obtained from the
direct problem solution with an estimate for unknown value of b.

Using the necessary condition of minimum, one obtains

∑
M

i=1
ðTi − TdiÞUk

i =0 ð63Þ

where

Uk
i =

∂ Ti
∂ b

����
b = bk

ð64Þ

are the sensitivity coefficients, k is the number of iterations; for k = 0, b0 is the
arbitrary assumed value of parameter b, while bk for k > 0 results from the previous
iteration.

Function Ti is expanded in the Taylor series about the known value of bk, that is:

T i = T k
i +Uk

i ðbk+1 − bkÞ ð65Þ

Introducing (65) into (63) one obtains

∑
M

i=1
Tk
i +Uk

i ðbk+1 − bkÞ−Tdi
� 


Uk
i =0 ð66Þ

or

bk+1 = bk +
∑
M

i=1
Td i −Tk

i


 �
Uk

i


 �

∑
M

i=1
Uk

ið Þ2
, k=0, 1, 2, . . . ,K ð67Þ

where K is the assumed number of iterations.
It should be pointed out that in order to determine the coefficients (64) the shape

sensitivity analysis [17–19] is used.

6 Shape Sensitivity Analysis

In literature one can find two basic approaches to sensitivity analysis using the
boundary element method: the continuous approach and the discretized one [17,
20]. In the case of the continuous approach (explicit differentiation method) the
mathematical model of sensitivity is formulated and the solution is found numer-
ically using the BEM. The implicit differentiation method, which belongs to the
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discretized approach, is based on the differentiation of algebraic boundary element
matrix equations.

Here the implicit differentiation method is applied. Let us assume that b is the
shape parameter. The system of Eq. (48) should be differentiated with respect to
parameter b and then

∂A
∂b

Y+A
∂Y
∂b

=
∂B
∂b

ð68Þ

or

A
∂Y
∂b

=
∂B
∂b

−
∂A
∂b

Y ð69Þ

It should be pointed out that the derivatives of the boundary element matrices are
calculated analytically [17]. The additional problem defined by the system of
Eq. (69) has been solved using the BEM (c.f. Sect. 4). The main matrix of the
systems of Eqs. (48) and (69) is the same.

7 Results of Computations

At first, the direct problem is considered. In the case of the 2D problem the domain
of dimensions 2L × L, where L = 0.02 m, is analyzed; in the case of the 3D problem
the domain of dimensions 2L × L × 2L is taken into account. The parameter b (c.f.
Eqs. (60), (61)) is equal to 0.012 m. The following input data are assumed: thermal
conductivity of healthy tissue λ1 = 0.2 W/(mK), thermal conductivity of burned
tissue λ2 = 0.1 W/(mK), blood perfusion rate GB = 0.5 kg/(m3s), specific heat of
blood cB = 4200 J/(kgK), arterial blood temperature TB = 37 °C, metabolic heat
source Qmet = 200 W/m3, heat transfer coefficient α = 10 W/(m2K), ambient
temperature Ta = 20 °C [1]. The discretization of the boundaries of healthy and
burned tissue sub-domains using linear boundary elements is shown in Figs. 3 and
4, while Figs. 5 and 6 illustrate the temperature distribution in the domains
considered.

In Figs. 7, 8, 9 and 10 the distributions of sensitivity functions with respect to the
successive parameters are presented (2D problem).

Knowledge of the sensitivity functions allows one to estimate the changes of
temperatures due to the perturbations of the parameters considered. The influence of
change of a single parameter on the temperature distribution can be analyzed using
the formulas

Δ1T =U1Δλ1, Δ2T =U2Δλ2, Δ3T =U3ΔGB , Δ4T =U4ΔQmet ð70Þ
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Fig. 3 Discretization of boundaries (2D problem)

Fig. 4 Discretization of boundaries (3D problem)

Fig. 5 Temperature
distribution (2D problem)
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where Δλ1, Δ λ2, ΔGB and ΔQmet are the assumed perturbations of parameters (e.g.
Δλ1 = 0.1λ1). In expressions (70) the indexes associated with the sub-domains Ω1

and Ω2 are neglected.
In Fig. 11 the changes of temperature on the skin surface corresponding to

perturbations equal to 10 % of the adopted values of the parameters are shown.

Fig. 6 Temperature
distribution (3D problem)

Fig. 7 Distribution of
sensitivity function with
respect to the parameter
p1 = λ1

Fig. 8 Distribution of
sensitivity function with
respect to the parameter
p2 = λ2
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It is seen that the metabolic heat source capacity has a little influence in the
temperature distribution, while the perturbations in the other parameters induce
comparable changes in maximum temperatures of skin surface (0.15−0.28 °C).

Fig. 9 Distribution of
sensitivity function with
respect to the parameter
p3 = GB

Fig. 10 Distribution of
sensitivity function with
respect to the parameter
p4 = Qmet

Fig. 11 Changes of
temperature on the skin
surface due to the 10 %
perturbations of successive
parameters (1 – λ1, 2 – λ2, 3 –

GB, 4 – Qmet)
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It is also possible to estimate the changes of temperature due to the simultaneous
perturbations of all parameters, namely

ΔT =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1Δλ1ð Þ2 + U2Δλ2ð Þ2 + U3ΔGBð Þ2 + U4ΔQmetð Þ2

q
ð71Þ

In the above case, the maximum change in temperature of the skin surface
caused by perturbations of all parameters is equal to 0.3 °C and corresponds to the
maximum depth of burn (x1 = 0.02 m), as shown in Fig. 12.

The next task is the determination of the surface position between the healthy
tissue and burned region under the assumption that the temperature distribution on
the skin surface is known.

In Fig. 13 the temperature distribution for different values of maximum burn
depth (parameter b in Eq. (61), c.f. Fig. 3) is shown (2D problem). Using the values
of temperatures at the skin surface (nodes 1–6, 50–55, 78–88) the parameter b has
been estimated iteratively (Eq. (67)). In Figs. 14, 15 the results of inverse problems
solution are shown. These Figures illustrate the values of parameter b for successive
iterations and the curves correspond to the different initial values of parameter b0. In
all cases presented the iteration process was convergent and the exact value of b has
been obtained after the several iterations.

In the case of the 3D problem, in order to identify the parameter b (c.f. Eq. (60)),
the temperature distribution on the skin surface shown in Fig. 16 is used. The
obtained results concerning the burn depth both in the case of the 2D solution and
the 3D one are very close.

As mentioned earlier, basing on the knowledge of temperature on the skin
surface, the shape of burn wound can be assessed. Using the method presented in
this paper, the surface between the healthy tissue and burned region containing
the unknown geometrical parameter b has been found (c.f. Eqs. (60) or (61)).

Fig. 12 Change of
temperature on the skin
surface due to the 10 %
perturbations of all parameters
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The others forms of equations determining the position of border surface Γc can be
considered. For example (in the case of 2D problem) the surface Γc is defined using
the following function

x2 =L− b exp −
4 x1 − Lð Þ2

L2

" #
ð72Þ

On the basis of the temperature distribution on the skin surface (as shown in
Fig. 17), the parameter b has been estimated as b = 0.01 m. In Fig. 18 the identified
shape of burn wound is presented.

Fig. 13 Temperature
distribution on the skin
surface: 1 – b = 0.012 m,
2 – b = 0.018 m

Fig. 14 Results of
identification for different
initial values of b0

(breal = 0.012 m)
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Fig. 15 Results of
identification for different
initial values of b0

(breal = 0.018 m)

Fig. 16 Temperature
distribution on the skin
surface (3D problem)

Fig. 17 Temperature
distribution on the skin
surface (example 2)
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8 Conclusions

The application of sensitivity analysis methods in the scope of bioheat transfer
problems gives essential information concerning the influence of thermophysical
parameters perturbations on the changes of temperature field in the homogeneous or
heterogeneous tissue domain. In this way one can estimate which parameter sig-
nificantly affects the final result and which one is rather insignificant.

The possibilities of burn shape estimation on the basis of knowledge of skin
surface temperature are also shown. To this end the mathematical model based on
the system of two Pennes equations for burned and healthy tissue has been for-
mulated and least square criterion has been applied. The inverse problem has been
solved using the gradient method coupled with the BEM. In future, the real values
of skin temperatures obtained from the experiments (thermograms) [21] will be
applied.

Acknowledgements The article and research are financed within the project N R13 0124 10
sponsored by Polish National Centre for Research and Development.

References

1. Romero Mendez, R., Jimenez-Lozano, J.N., Sen, M., Gonzalez, F.J.: Analytical solution of a
Pennes equation for burn-depth determination from infrared thermographs. Math. Med. Biol.
27, 21–38 (2010). doi:10.1093/imammb/dqp010

2. Srinivas, S.M., de Boer, J.F., et al.: Determination of burn depth by polarization-sensitive
optical coherence tomography, J. Biomed. Opt. 9(1), 207–212 (2004)

3. Riordan, C.L., et al.: Noncontact laser doppler imaging in burn depth analysis of the
extremities. J. Burn Care Rehabil. 177–186 (2003)

4. Rumiński, J., Kaczmarek, M., Renkielska, A., Nowakowski, A.: Thermal parametric imaging
in the evaluation of skin burn depth. IEEE Trans. Biomed. Eng. 54(2), 303–312 (2007)

5. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm.
J. Appl. Physiol. 1, 93–122 (1948)

6. Majchrzak, E., Dziatkiewicz, G., Paruch, M.: The modelling of heating a tissue subjected to
external electromagnetic field. Acta Bioeng. Biomech. 10(2), 29–37 (2008)

Fig. 18 Identified shape of
burn wound

Sensitivity Analysis of Temperature Field and Parameter … 111

http://dx.doi.org/10.1093/imammb/dqp010


7. Majchrzak, E., Paruch, M.: Identification of electromagnetic field parameters assuring the
cancer destruction during hyperthermia treatment. Inverse Probl. Sci. Eng. 19(1), 45–58
(2011)

8. Kleiber, M.: Parameter Sensitivity. Wiley, Chichester (1997)
9. Dems, K., Rousselet, B.: Sensitivity analysis for transient heat conduction in a solid body.

Struct. Optim. 17, 36–45 (1999)
10. Jasiński, M.: Sensitivity analysis of transient bioheat transfer with perfusion rate dependent on

tissue injury. Comput. Assist. Mech. Eng. Sci. 16, 267–277 (2009)
11. Jasiński, M.: Investigation of tissue thermal damage process with application of direct

sensitivity method. Mol. Cell. Biomech 10(3), 201–232 (2013)
12. Brebbia, C.A., Dominguez, J.: Boundary Elements, An Introductory Course, CMP,

McGraw-Hill Book Company, London (1992)
13. Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques. Springer, Berlin

(1984)
14. Nowak, A.J.: Chapter 3: Solving linear heat conduction problems by the multiple reciprocity

boundary element method. In: Wrobel, L.C., Brebbia, C.A. (eds.) Boundary Element Methods
In Heat Transfer, pp. 63–132. Computational Mechanics Publications, Southampton, Boston
(1992)

15. Paruch, M., Majchrzak, E.: Identification of tumor region parameters using evolutionary
algorithm and multiple reciprocity boundary element method. Eng. Appl. Artif. Intell. 20,
647–655 (2007)

16. Kurpisz, K., Nowak, A.J.: Inverse Thermal Problems, pp. 259–298. Computational Mechanics
Publications, Southampton-Boston (1995)

17. Burczyński, T.: Sensitivity analysis, optimization and inverse problems. In: Beskos, D., Maier,
G. (eds.) Boundary Element Advances in Solid Mechanics, pp. 245–307. Springer, New York
(2003)

18. Tortorelli, D.A., Zixian, W.: A systematic approach to shape sensitivity analysis. Int. J. Solids
Struct. 1181–1212 (1993)

19. Sokołowski, J., Zolesio, J.-P.: Introduction to Shape Optimization. Shape Sensitivity Analysis,
Springer Series in Computational Mathematics, Springer (1992)

20. Mochnacki, B., Majchrzak, E.: Application of the shape sensitivity analysis in numerical
modelling of solidification process. In: THERMEC’2006, Pts 1–5 Book Series: Materials
Science Forum, vol. 539–543, pp. 2524–2529 (2006)

21. Ciesielski, M., Dziewonski, M., Freus, S.:Scanning method of temperature distribution of
human body by device registering encircling images. In: Desing and Computation of Modern
Engineering Materials. Advanced Structured Materials, vol. 54, pp. 97–106 (2014)

112 E. Majchrzak et al.



Application of the hp-FEM for Hyperelastic
Problems with Isotropic Damage

Jorge L. Suzuki and Marco L. Bittencourt

Abstract This work presents a damage formulation applied to hyperelastic mate-

rials in order to capture the Mullins effect, observed in rubber-like materials and

biological tissues. A mixed (u/p) formulation with a pressure projection procedure

is used with the hp-FEM to overcome the volumetric locking. The isotropic damage

model uses a scalar variable that evolves coupled with the maximum attained equiv-

alent strain. This damage variable defines a stress reduction factor, which describes

the softening behavior. Cyclic loading tests were performed to reproduce the Mullins

effect. Convergence analyses were made for compressible and nearly-incompressible

materials imposing smooth solutions. The results presented a spectral convergence

rate for the p-refinement. In the case of near-incompressibility, the material showed

locking-free characteristics.

1 Introduction

A considerable number of engineering applications involve the use of rubber-like

materials, which are usually modeled with the use of hyperelastic material mod-

els. In this sense, several phenomenological and mechanistic hyperelastic models

were established to describe the material response. Among the first ones were the

Neo-Hookean and Mooney-Rivlin models, which use strain energy density functions

based on the deformation tensor invariants [27]. The Ogden model was developed

in the decade of 1980s, and based on the principal strain directions [24]. A more

recent contribution is the Fung material [13], developed in the decade of 1990s, and

widely used to model biological tissues. Despite the application for engineering rub-

ber materials, the modeling of soft tissues is of increasing interest, and these material

models provide a satisfactory mechanical response [4, 25].
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Hyperelastic formulations are not able to predict the Mullins effect, which is char-

acterized by the strain induced loss of stiffness observed in experimental tests [10,

23]. This behavior is achieved with the use of damage models. The first continuum

damage formulation developed for hyperelasticity was the one-dimensional Gurtin-

Francis model [15]. A generalization of this model for three dimensions was later

introduced by [10]. Another model, based on the principle of equivalent stress [26],

was developed for hyperelasticity and extended to viscoelastic models in a fully

three-dimensional context.

Compressible formulations are of simple implementation and stable. However,

they are inaccurate when close to incompressible behavior. For this purpose, nearly-

incompressible formulations are used. However, they suffer volumetric locking

without proper treatment in the FEM. For Poisson ration 𝜈 → 0.5, only very small

volumetric deformations are allowed [19]. That yields, for conventional low order

FEM, small, moderate or very high errors for the displacements. Additionally, due

to the high bulk modulus K, the errors for the stresses become very high [2, 16].

Several solution strategies were proposed to overcome the volumetric locking

phenomenon. The most known are the Selective Reduced Integration [12], B-bar

method [19] and F-bar method [9]. The methodology used in this work is a mixed

(u/p) formulation with a pressure projection procedure introduced by [7]. The strain

energy density is separated into deviatoric and volumetric parts, the pressure is kine-

matically coupled to the displacements in a weak sense, and volumetric strains are

limited with the enforcement of a high bulk modulus, which acts as a penalty factor.

A projection is performed in a least squares sense at the element level onto an appro-

priate pressure field. The pressure variable is assumed discontinuous between the

element boundaries, and thus there is no need to solve it globally [7, 29]. Another

advantage relies on the fact that the local treatment for the pressure makes the

methodology simpler to implement in a displacement only FE code.

The high-order FEM is a version that uses high-order polynomials to interpo-

late the variables. In this context, the p-FEM version considers only the increase of

polynomial order, keeping the element size. The hp-FEM considers the combination

of higher order polynomials with the increase of the number of elements. The high-

order FEM provides a locking-free behavior for nearly-incompressible problems [16,

29], and shows spectral convergence rate for smooth solutions [11, 21]. It also per-

mits the use of elements with higher/lower aspect ratio. Some recent applications of

the high-order FEM include transient problems [11], fluid dynamics [21], structural

analysis [28], powder metallurgy [17], plasticity [14] and contact [22].

In this work we used the hp-version for treating nearly-incompressible hyperelas-

tic problems with damage. The volumetric locking is avoided with the use of high-

order polynomials and the mixed method [7]. The damage is introduced as a scalar

variable, following the works of [18, 26] to reproduce the Mullins Effect. Then we

investigate the coupled effect of near-incompressibility and damage over the approx-

imate solution when increasing the interpolation order.

This work is organized as follows: in Sect. 2 we present the compressible Neo-

Hookean and nearly-incompressible hyperelastic Mooney-Rivlin materials with the

deviatoric/volumetric separation, followed by the principle of virtual power, pres-
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sure projection procedure and discretization [7, 29]. Section 3 presents the dam-

age model, the modified stress and the resulting constitutive relations [18, 26]. The

obtained results are reported in Sect. 4, where three convergence tests are analyzed.

The first validates the nearly-incompressible formulation for small and large strains.

The second focuses the reproduction of the Mullins effect followed by a convergence

analysis for the compressible Neo-Hookean material. The third studies the conver-

gence of the nearly-incompressible Mooney-Rivlin material with damage, where we

impose a high bulk modulus and analyze the errors for the displacements, stresses

and damage.

2 Hyperelasticity

In isotropic hyperelasticity, we can define a strain energy functionW, which is depen-

dent on the right Cauchy-Green deformation tensor𝐂 (when using a total Lagrangian

description), in terms of its invariants I1, I2, I3. Moreover, considering material

homogeneity, W is independent of material points 𝐗, and thus [5]

W(𝐂) = W(I1, I2, I3). (1)

The second Piola-Kirchhoff stress tensor can be obtained from the following expres-

sion

𝐒 = 2𝜕W
𝜕𝐂

= 𝜕W
𝜕𝐄

, (2)

where 𝐄 is the Green-Lagrange strain tensor. The fourth-order constitutive tensor is

defined as

 = 2 𝜕𝐒
𝜕𝐂

= 𝜕𝐒
𝜕𝐄

. (3)

The above equations will be used in the next sections to define the constitutive terms

for the compressible and nearly-incompressible formulations, where the latter will

have a special treatment for the deviatoric and volumetric parts.

2.1 Compressible Neo-Hookean Material

The Neo-Hookean material is an extension of Hooke’s law for large strains [3]. The

associated strain energy function for compressible behavior is

W(𝐂) = 𝜆

2
(lnJ)2 − 𝜇lnJ + 1

2
𝜇(tr𝐂 − 3), (4)
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where 𝜆 and 𝜇 are the Lamé parameters and J = det 𝐅, where 𝐅 is the deformation

gradient tensor. We use Eq. 2 to obtain the second Piola-Kirchhoff stress tensor as [5]

𝐒 = 𝜆lnJ𝐂−1 + 𝜇

(
𝐈 − 𝐂−1)

. (5)

Using Eq. 3 we obtain the fourth order constitutive tensor

 = 𝜆𝐂−1
⊗ 𝐂−1 + 2 (𝜇 − 𝜆lnJ), (6)

where  is the fourth-order tensor given by

 = −𝜕𝐂−1

𝜕𝐂
= −𝐂−1

⊗ 𝐂−1
. (7)

Substituting Eq. 7 into Eq. 6 and rearranging the terms, we obtain

 = [2𝜇 + 𝜆 (1 − lnJ)]𝐂−1
⊗ 𝐂−1

. (8)

The constitutive Eq. (8) can be used directly in a pure-displacement nonlinear FEM

code to describe compressible behavior. However, unrealistic results are obtained

if the Poisson ratio gets close to 0.5. To model materials close to the incompress-

ible limit we need special treatment for the hydrostatic pressure. We define initially

the strain energy potential from the purely incompressible state and introduce a small

amount of compressibility, making the formulation nearly-incompressible. This pro-

cedure will be considered in the next section.

2.2 Nearly-Incompressible Mooney-Rivlin Material

For the purely incompressible state (J = 1), the strain energy function of the Mooney-

Rivlin material is given by [27]

W
(
I1, I2
)
= A10

(
I1 − 3
)
+ A01

(
I2 − 3
)
, (9)

with the material parameters A10 and A01, which are related with the shear modulus

G for small strain in the following way:

G = 2
(
A10 + A01

)
. (10)

A small amount of compressibility can be considered, allowing us to rewrite Eq. 9

in the nearly-incompressible form [27]:

W
(
I1, I2, J

)
= ̄W
(
I1, I2
)
+ ̃W (J) , (11)
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where the terms

̄W
(
I1, I2
)
= A10

(
I1J−2∕3 − 3

)
+ A01

(
I2J−4∕3 − 3

)
, (12)

̃W (J) = K
2
(J − 1)2 , (13)

respectively represent the deviatoric and volumetric strain energy functions. The

above regularization introduces the bulk modulus K to the volumetric part, and

makes the strain energy dependent on the three invariants of 𝐂. Notice that when

J = 1, there is no volume change and perfect incompressibility is recovered. In lin-

ear elasticity, the following relation is valid [19]:

K
G

= 2 (1 + 𝜈)
3 (1 − 2𝜈)

. (14)

When 𝜈 → 0.5, we obtain K∕G → ∞ (see Fig. 1), which indicates greater tendency

to deviatoric rather than volumetric strains. The hydrostatic pressure is kinematically

coupled to the displacements as

p = 𝜕
̃W

𝜕J
, (15)

which yields the following linear relationship

p = K(J − 1). (16)

Applying the deviatoric/volumetric split, the second Piola-Kirchhoff stress tensor is

represented by

𝐒 = ̄𝐒 + ̃𝐒, (17)

Fig. 1 Ratio K/G in terms

of the Poisson ratio. Notice

the sudden increase when the

Poisson ratio goes to 0.5.
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where the deviatoric ̄𝐒 and volumetric ̃𝐒 stress tensors are given by

̄𝐒 = 2A10J−2∕3𝐈 + 4A01J−4∕3
(
I1𝐈 − 𝐂

)
+
(
−2
3
A10I1J−2∕3 −

4
3
A01I2J−4∕3

)
𝐂−1

, (18)

̃𝐒 = Jp𝐂−1
. (19)

The fourth-order constitutive tensor is obtained from Eq. 3, where we split the devi-

atoric and volumetric terms in the following way:

 = ̄
 + ̃

. (20)

The term ̃
 is obtained by applying the product rule when taking the directional

derivative of Eq. 19:

̃
 = ̃


𝟏 + ̃


𝟐 = 2

𝜕

(
J𝐂−1)
𝜕𝐂

p + 2J𝐂−1
⊗

𝜕p
𝜕𝐂

, (21)

with

̃


𝟏 = 2
𝜕

(
J𝐂−1)
𝜕𝐂

p = −pJ𝐂−1
⊗ 𝐂−1

(22)

̃


𝟐 = 2J𝐂−1
⊗

𝜕p
𝜕𝐂

=
(
J𝐂−1)

⊗

(
KJ𝐂−1)

. (23)

In the above equations, we wrote the second volumetric part ̃


2
with the separate

Jacobian terms in the tensor product for convenience, as will be presented in the

next section, where we apply the Principle of Virtual Power (PVP) and linearize it

using directional derivative.

2.3 Principle of Virtual Power (PVP)

After the definition of the material constitutive tensors, we write the total power by

unit of volume in a total Lagrangian formulation as [7]

̇W = ̇Wint − ̇Wext =
∫

𝛺

̄Wintd𝛺 +
∫

𝛺

̃Wintd𝛺 − ̇Wext , (24)

where ̇Wext is the external power. The internal power ̇Wint is split in the deviatoric

and volumetric parts. Applying the Principle of Virtual Power, there is an equilibrium

state 𝜙 with kinematically admissible virtual velocities 𝛿𝐯, where
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𝛿
̇W (𝜙, 𝛿𝐯) = 𝛿

̇Wint − 𝛿
̇Wext = 0. (25)

The internal power 𝛿 ̇Wint is

𝛿
̇Wint =

∫

𝛺

̄𝐒 ∶ 𝛿
̇𝐄d𝛺 +

∫

𝛺

̃𝐒 ∶ 𝛿
̇𝐄d𝛺, (26)

and 𝛿
̇Wext is given by

𝛿
̇Wext =

∫

𝛺

𝐟 ⋅ 𝛿𝐯d𝛺 +
∫

𝛤

𝐭 ⋅ 𝛿𝐯d𝛤 , (27)

with 𝐟 and 𝐭 respectively the body and surface forces. To treat the near-incompressi

bility and define the mixed method, the power functional of Eq. 24 is perturbed in

the following way [5]:

̇W1 = ̇Wint − ̇Wext − ̇WK =
∫

𝛺

̄Wintd𝛺 +
∫

𝛺

̃Wintd𝛺 −Wext −
∫

𝛺

1
2K

p2 d𝛺, (28)

where the bulk modulus K acts as a penalty factor, so that ̇W1 → ̇W when K → ∞.

The directional derivative of the perturbed functional relative to the admissible vir-

tual pressures 𝛿p is given by [5, 29]

∫

𝛺

(J − 1)𝛿pd𝛺 = 1
K ∫

𝛺

p𝛿pd𝛺, ∀ 𝛿p ∈ L2, (29)

with L2 being the Hilbert space with square integrable functions. Notice that in

Eq. 29, as K approaches sufficiently high values, the condition J ≈ 1 is enforced,

reducing the volumetric strain as much as possible and thus defining the nearly-

incompressible behavior. Therefore, the inclusion of the above constraint completes

the mixed formulation.

2.4 Linearization of the Weak Form

In this section, we obtain the linearized form of the PVP, which will be later dis-

cretized to obtain the FE stiffness matrices. To linearize the equations, we apply the

directional derivative on Eq. 25 for an increment 𝛥𝐮 [5], that is,

𝛿
̇W (𝜙, 𝛿𝐯) [𝛥𝐮] = 𝛿

̇Wint (𝜙, 𝛿𝐯) [𝛥𝐮] −𝛿
̇Wext (𝜙, 𝛿𝐯) [𝛥𝐮] . (30)
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As we are not treating follower loads in this formulation, the virtual external power

is assumed to be strain-independent, and thus

𝛿
̇Wext (𝜙, 𝛿𝐯) [𝛥𝐮] = 0. (31)

The internal power of Eq. 30 is split into deviatoric and volumetric contributions by

means of the stress tensor as

𝛿
̇Wint (𝜙, 𝛿𝐯) [𝛥𝐮] =

∫

𝛺



(
̄𝐒 ∶ 𝛿

̇𝐄
)
[𝛥𝐮] d𝛺 +

∫

𝛺



(
̃𝐒 ∶ 𝛿

̇𝐄
)
[𝛥𝐮] d𝛺,

(32)

where 𝛿 ̇𝐄 is the Green-Lagrange strain rate tensor, which is a function of the virtual

velocities 𝛿𝐯 and configuration 𝜙, and is given by

𝛿
̇𝐄 (𝜙, 𝛿𝐯) = 1

2
(
𝛿
̇𝐅T𝐅 + 𝐅T

𝛿
̇𝐅
)
, (33)

with the rate of the deformation gradient

𝛿
̇𝐅 (𝛿𝐯) = 𝛁0𝛿𝐯. (34)

Substituting Eq. 34 into Eq. 33, we obtain

𝛿
̇𝐄 (𝜙, 𝛿𝐯) = 1

2

[(
𝛁0𝛿𝐯
)T 𝐅 + 𝐅T (𝛁0𝛿𝐯

)]
, (35)

We first focus on the first term of the right-hand side of Eq. 32, which represents the

deviatoric part. Using the product rule, we obtain

∫

𝛺



(
̄𝐒 ∶ 𝛿

̇𝐄
)
[𝛥𝐮] d𝛺 =

∫

𝛺

𝛿
̇𝐄 ∶ 

̄𝐒 [𝛥𝐮] d𝛺 +
∫

𝛺

̄𝐒 ∶ 𝛿
̇𝐄 [𝛥𝐮] d𝛺. (36)

We substitute the derivative 
̄𝐒 [𝛥𝐮] in the above equation by the constitutive rela-

tion ̄𝐒 = ̄
 ∶ 𝐄 to obtain

∫

𝛺



(
̄𝐒 ∶ 𝛿

̇𝐄
)
[𝛥𝐮] d𝛺 =

∫

𝛺

𝛿
̇𝐄 ∶ ̄

 ∶ 𝐄 [𝛥𝐮] d𝛺 +
∫

𝛺

̄𝐒 ∶ 𝛿
̇𝐄 [𝛥𝐮] d𝛺,

(37)

where the linearized Green-Lagrange strain tensor is given by

𝐄 [𝛥𝐮] = 1
2
(
𝐅T

𝐅 [𝛥𝐮] +𝐅T [𝛥𝐮]𝐅
)
. (38)
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The term 𝐅 [𝛥𝐮] is the linearized deformation gradient with respect to the initial

configuration [5]:

𝐅 [𝛥𝐮] = 𝛁0𝛥𝐮. (39)

Substituting Eq. 39 into Eq. 38, we obtain

𝐄 [𝛥𝐮] = 1
2

[
𝐅T (𝛁0𝛥𝐮

)
+
(
𝛁0𝛥𝐮
)T 𝐅] . (40)

The linearized Green-Lagrange strain rate 𝛿
̇𝐄 [𝛥𝐮] is obtained by taking the direc-

tional derivative of Eq. 35:

𝛿
̇𝐄 [𝛥𝐮] = 1

2

[(
𝛁0𝛿𝐯
)T (𝛁0𝛥𝐮

)
+
(
𝛁0𝛥𝐮
)T (𝛁0𝛿𝐯

)]
. (41)

Notice that the gradient of the virtual velocities 𝛁0𝛿𝐯 is independent of the configu-

ration 𝜙, and thus we can rewrite the above equation as [5]

𝛿
̇𝐄 [𝛥𝐮] =

(
𝛁0𝛥𝐮
)T (𝛁0𝛿𝐯

)
. (42)

Substituting Eqs. 40 and 42 into Eq. 37, we obtain the linearized form of the devia-

toric part of the PVP,

∫

𝛺



(
̄𝐒 ∶ 𝛿

̇𝐄
)
[𝛥𝐮] d𝛺 =

∫

𝛺

̄𝐒 ∶
[(
𝛁0𝛥𝐮
)T (𝛁0𝛿𝐯

)]
d𝛺 (43)

+
∫

𝛺

1
2

[(
𝛁0𝛿𝐯
)T 𝐅 + 𝐅T (𝛁0𝛿𝐯

)]
∶ ̄
 ∶ 1

2

[(
𝛁0𝛥𝐮
)T 𝐅 + 𝐅T (𝛁0𝛥𝐮

)]
d𝛺.

The linearization of the volumetric part can be obtained by just exchanging ̄𝐒 by ̃𝐒
and ̄

 by ̃
 to obtain

∫

𝛺



(
̃𝐒 ∶ 𝛿

̇𝐄
)
[𝛥𝐮] d𝛺 =

∫

𝛺

̃𝐒 ∶
[(
𝛁0𝛥𝐮
)T (𝛁0𝛿𝐯

)]
d𝛺 (44)

+
∫

𝛺

1
2

[(
𝛁0𝛿𝐯
)T 𝐅 + 𝐅T (𝛁0𝛿𝐯

)]
∶
(
̃


1 + ̃


2
)

∶ 1
2

[(
𝛁0𝛥𝐮
)T 𝐅 + 𝐅T (𝛁0𝛥𝐮

)]
d𝛺. (45)

The total linearized internal work is obtained by substituting Eqs. 43 and 44 into

Eq. 32:

𝛿W (𝜙, 𝛿𝐯) [𝛥𝐮] =
∫

𝛺

(
̄𝐒 + ̃𝐒
)
∶
[(
𝛁0𝛥𝐮
)T 𝛁0𝛿𝐯

]
d𝛺 (46)
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+
∫

𝛺

1
2

[
𝐅T (𝛁0𝛿𝐯

)
+ 𝐅
(
𝛁0𝛿𝐯
)T] ∶ ( ̄ + ̃



1 + ̃


2
)

∶ 1
2

[
𝐅T (𝛁0𝛥𝐮

)
+ 𝐅
(
𝛁0𝛥𝐮
)T] d𝛺. (47)

We can substitute the volumetric term ̃


2
from Eq. 23 into the above equation and

rewrite it in the following way:

𝛿W (𝜙, 𝛿𝐯) [𝛥𝐮] =
∫

𝛺

(
̄𝐒 + ̃𝐒
)
∶
[(
𝛁0𝛥𝐮
)T 𝛁0𝛿𝐯

]
d𝛺 (48)

+
∫

𝛺

1
2

[
𝐅T (𝛁0𝛿𝐯

)
+ 𝐅
(
𝛁0𝛿𝐯
)T] ∶ ( ̄ + ̃


1
)

∶ 1
2

[
𝐅T (𝛁0𝛥𝐮

)
+ 𝐅
(
𝛁0𝛥𝐮
)T] d𝛺

+
∫

𝛺

1
2

[
𝐅T (𝛁0𝛿𝐯

)
+ 𝐅
(
𝛁0𝛿𝐯
)T] ∶ J𝐂−1

𝛥p d𝛺.

The term 𝛥p is the pressure increment defined by

𝛥p = 1
2
KJ𝐂−1 ∶

[
𝐅T (𝛁0𝛥𝐮

)
+ 𝐅
(
𝛁0𝛥𝐮
)T]

. (49)

The above pressure increment will be part of the pressure projection procedure,

which will be performed in Sect. 2.7. The third integral in the right-hand side of

Eq. 48 will represent, after the pressure projection and FE discretization, the sym-

metric pressure stiffness matrix.

2.5 High-Order Shape Functions

We use Lagrange polynomials hi(𝜉) to construct the shape functionsNa (𝜉) to interpo-

late the kinematic variables. The pressure interpolation will be presented in Sect. 2.7,

and the shape functions for pressure are indicated as Qa (𝜉) for convenience. We use

Gauss-Lobatto-Legendre collocation points for the nodal coordinates, which pro-

vides an efficient expansion for high-order polynomials, without the oscillations and

ill-conditioning observed when using equally-spaced points [21].

Let −1 ≤ 𝜉 ≤ 1 be the local coordinate system and P a given polynomial order.

Thus we have n = P + 1 nodal coordinates 𝜉b (0 ≤ b ≤ P). The expression for the

Lagrange polynomials for a node a is

NP
a (𝜉) = hPa (𝜉) =

𝛱

n
b=0,b≠a(𝜉 − 𝜉b)

𝛱

n
b=0,b≠a(𝜉a − 𝜉b)

. (50)
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For instance, the shape functions for n = (P + 1)3 nodes of the hexahedrical ele-

ment are given by the following tensor product

Na(𝜉, 𝜂, 𝜁 ) = hPi (𝜉)h
P
j (𝜂)h

P
k (𝜁 ), a = 1,… , n. (51)

In the next section, we apply the above shape functions to the FE discretization.

2.6 Local Finite Element Discretization

Using isoparametric elements, the discretization of the material coordinates 𝐗 rep-

resenting the undeformed configuration is given by

𝐗 =
n∑

a=1
Na (𝜉, 𝜂, 𝜁 )𝐗a or 𝐗 = 𝐍T

a𝐗a, (52)

where n is the number of element nodes and 𝐗a are the nodal coordinates in the

undeformed state. The nodal displacements 𝐮a are interpolated analogously

𝐮 =
n∑

a=1
Na (𝜉, 𝜂, 𝜁 ) 𝐮a or 𝐮 = 𝐍T

a𝐮a (53)

The interpolated nodal virtual velocities are

𝛿𝐯 =
n∑

a=1
Na (𝜉, 𝜂, 𝜁 ) 𝛿𝐯a or 𝛿𝐯 = 𝐍T

a 𝛿𝐯a, (54)

where 𝛿𝐯a are the nodal virtual velocities. The interpolated displacement increments

are:

𝛥𝐮 =
n∑

a=1
Na (𝜉, 𝜂, 𝜁 )𝛥𝐮a or 𝛥𝐮 = 𝐍T

a𝛥𝐮a, (55)

where 𝛥𝐮a are the nodal displacement increments. The above discretized variables

will be substituted in the linearized equations defined in Sect. 2.4 and in the incre-

mental pressure to be defined in the next section, in order to obtain the element

stiffness matrices.

2.7 Local Pressure Projection

The pressure projection procedure is performed at the element level, and thus the

variables are accompanied by the subscript
e
. The projected variables are represented
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by the subscript
∗
. Also, the shape functions used to interpolate the displacements

are denoted by 𝐍, with interpolation order Ou. In the case of pressure, we denote the

shape functions as 𝐐 and the interpolation order as Op.

Consider the approximation of pe (𝐗) denoted here in the undeformed configura-

tion, in a least squares sense using a linear combination of functions 𝐐 =
{
Q1 (𝐗) ,

Q2 (𝐗) , … , Qn (𝐗)
}

in L2. Hence, we should find the pressure coefficients 𝐩e =[
pe1, p

e
2, … , pen

]
that minimize [7]:

𝜙 (𝐩e) = ||pe −𝐐𝐩e||2L2(𝛺e). (56)

The term pe −𝐐𝐩e is the pressure residual defined by

R = pe −𝐐𝐩e. (57)

Applying the least squares method, we obtain the following projection problem:

𝜕||R||2
𝜕𝐩e

=
∫

𝛺
e

𝜕R2

𝜕𝐩e
d𝛺e = 0. (58)

Substituting the pressure residual of Eq. 57 into Eq. 58, and taking the derivative, we

obtain

2
∫

𝛺
e

(
−𝐐Tpe +𝐐T𝐐𝐩e

)
d𝛺e = 0, (59)

which implies that the integrand must be zero to satisfy the equality. Therefore, we

obtain the following linear system:

𝐌e𝐩e = 𝐅e
, (60)

where 𝐌e
is a projection matrix and 𝐅e

is the right hand side vector containing the

pressure

𝐌e =
∫

𝛺
e

𝐐T𝐐 d𝛺e
, (61)

𝐅e =
∫

𝛺
e

𝐐Tpe d𝛺e
. (62)

The element projection matrix [𝐌e], also known as the mass matrix [21], has rank

Ne
p × Ne

p:

[
𝐌e

p

]
=
⎡⎢⎢⎣
m11 ⋯ m1Ne

p

⋮ ⋱ ⋮
mNe

p1
⋯ mNe

pNe
p

⎤⎥⎥⎦
, mij =

∫

𝛺
e

QiQj d𝛺e
. (63)
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The force vector {𝐅e} has dimension Ne
p, and is given by

{𝐅e} =

[
∫

𝛺
e

Q1pe d𝛺e
,

∫

𝛺
e

Q2pe d𝛺e
,… ,

∫

𝛺
e

QNe
p
pe d𝛺e

]T

= K

[
∫

𝛺
e

Q1(J − 1) d𝛺e
,

∫

𝛺
e

Q2(J − 1) d𝛺e
,… ,

∫

𝛺
e

QNe
p
(J − 1) d𝛺e

]T
.

(64)

Therefore, the projected hydrostatic pressure at the element level is

pe∗ = 𝐐𝐩e = 𝐐 (𝐌e)−1 𝐅e
. (65)

The hydrostatic pressure increment 𝛥p defined in Eq. 49 is also projected for algo-

rithmic consistency. Thus, we should minimize

𝜙 (𝛥𝐩e) = ||𝛥pe −𝐐𝛥𝐩e||2L2(𝛺e). (66)

Applying the projection problem of Eq. 58 for 𝛥𝐩e, and recalling Eqs. 49 and 55, we

obtain

2
∫

𝛺
e

(
−1
2
KJ𝐐T𝐂−1 ∶

[
𝐅T (𝛁0𝐍T

a
)
+ 𝐅
(
𝛁0𝐍T

a
)T]

𝛥𝐮a +𝐐T𝐐𝛥𝐩e
)

d𝛺e = 0, (67)

which results in the following matrix system:

− K𝐊e
p𝛥𝐮a +𝐌e

𝛥𝐩e = 0. (68)

Equating the above system for 𝛥𝐩e, we obtain

𝛥𝐩e = K (𝐌e)−1 𝐊e
p𝛥𝐮a, (69)

where 𝐊e
p is the mixed matrix given by

𝐊e
p =

∫

𝛺
e

J𝐐T𝐠𝐁NL d𝛺e
. (70)

The term 𝐁NL is the nonlinear Green deformation tensor given by

𝐁NL = 1
2

[
𝐅T (𝛁0𝛥𝐮

)
+ 𝐅
(
𝛁0𝛥𝐮
)T]

. (71)

For a general stress state, the term 𝐁NL written in Voigt notation has 6 rows and

3 × Ne
u columns, according to the number of shape functions for the displacement

interpolation. For a given shape function a, we have the following matrix form
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[
𝐁e
NL
]
a =

⎡⎢⎢⎢⎢⎢⎢⎣

Na,X1
F11 Na,X1

F21 Na,X1
F31

Na,X2
F12 Na,X2

F22 Na,X2
F32

Na,X3
F13 Na,X3

F23 Na,X3
F33

Na,X2
F11 + Na,X1

F12 Na,X2
F21 + Na,X1

F22 Na,X2
F31 + Na,X1

F32
Na,X3

F11 + Na,X1
F13 Na,X3

F21 + Na,X1
F23 Na,X3

F31 + Na,X1
F33

Na,X3
F12 + Na,X2

F13 Na,X3
F22 + Na,X2

F23 Na,X3
F32 + Na,X2

F33

⎤⎥⎥⎥⎥⎥⎥⎦

, (72)

where Na,Xi
denotes the derivative of Na in direction Xi. The term 𝐠 in Eq. 70 is the

inverse of the Cauchy-Green tensor written in the following vector form:

{𝐠} =
[
C−1
11 , C

−1
22 , C

−1
33 , C

−1
12 , C

−1
13 , C

−1
23
]T

. (73)

For a general stress state, the mixed matrix

[
𝐊e

p

]
has rank 3Ne

u × Ne
p, and is com-

posed of Ne
u × Ne

p blocks, being each block a 3 × 1 matrix (Ke
p)ij(i = 1,… ,Ne

u, j =
1,… ,Ne

p):

[
𝐊e

p

]
=
⎡⎢⎢⎣
(Ke

p)1,1 ⋯ (Ke
p)1,Ne

p

⋮ ⋱ ⋮
(Ke

p)3Ne
u ,1

⋯ (Ke
p)3Ne

u ,Ne
p

⎤⎥⎥⎦
, (74)

in index notation,

(𝐊e
p)ij,m =

3∑
k,l=1

∫

𝛺
e

JQj𝐂−1
kl
1
2
(
Ni,Xk

𝐅ml + 𝐅mkNi,Xl

)
d𝛺e

, m = 1, 2, 3. (75)

The final expression for the projected pressure increment at the element level is

obtained as

𝛥pe∗ = K𝐐 (𝐌e)−1
(
𝐊e

p

)T
𝛥𝐮e. (76)

Algorithm 1 describes the pressure projection procedure at the integration points.

This procedure is performed before the main loop to integrate the element stiffness

matrix.

Algorithm 1 Pressure projection procedure.

1. Calculate the displacement based hydrostatic pressure pe (16) for all integration points;

2. Calculate the element projection matrix 𝐌e
, using the pressure order Op (store this matrix for

later calculation on algorithm 2);

3. Calculate the right-hand side vector {𝐅e} with order Op;

4. Solve the linear system (60) to find the pressure coefficients 𝐩e;
5. Compute the product 𝐐𝐩e to find the projected pressure pe∗.
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Notice that the pressure increment 𝛥pe∗ is not considered in the above algorithm,

because in the next section we will substitute it in Eq. 48 after discretization to obtain

the pressure stiffness matrix.

2.8 Discretization of the Equilibrium Equation

In this section we apply the discretization to the equilibrium equation, which will

result in the final equations for the element internal and external forces. Recalling

Eq. 25, which represents the total virtual power done by a residual force 𝐑, we have

𝛿
̇W(𝜙, 𝛿𝐯) =

∫

𝛺

𝐒 ∶ 𝛿
̇𝐄 d𝛺 −

∫

𝛺

𝐟 ⋅ 𝛿𝐯 d𝛺 −
∫

𝛤

𝐭 ⋅ 𝛿𝐯 d𝛤 . (77)

Introducing the finite element discretization defined in Sect. 2.6, we can rewrite

Eq. 77 for an element e as

𝛿
̇W(𝜙,𝐍𝛿𝐯a) = 𝛿𝐯Ta

(
𝐟 eint − 𝐟 eext

)
= 0. (78)

As the PVP equation must be satisfied for any nodal virtual velocity 𝛿𝐯a, the dis-

cretized equilibrium terms are expressed by an element residual force 𝐑e
given by

𝐑e = 𝐟 eint − 𝐟 eext . (79)

where 𝐟 eint and 𝐟 eext respectively are the discretized internal and external forces at the

element,

𝐟 eint =
∫

𝛺
e

𝐁T
NL
(
̄𝐒v + ̃𝐒v

)
d𝛺e

, (80)

𝐟 eext =
∫

𝛺
e

𝐍𝐟d𝛺e +
∫

𝛤
e

𝐍𝐭d𝛤 e
. (81)

The terms ̄𝐒v and ̃𝐒v are the vector forms of the deviatoric and volumetric stress

tensor, respectively given by

{ ̄𝐒v} =
[
̄S11 ̄S22 ̄S33 ̄S12 ̄S13 ̄S23

]T
, (82)

{ ̃𝐒v} =
[
̃S11 ̃S22 ̃S33 ̃S12 ̃S13 ̃S23

]T
. (83)
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2.9 Discretization of the Linearized Equilibrium Equation

Having the discretized element residual force, now we apply the same procedure to

the linearized equilibrium equation in order to obtain the element tangent stiffness

matrix. Therefore, applying the finite element discretization on Eq. 48, we obtain

𝛿
̇We (

𝜙,𝐍𝛿𝐯a
) [

𝐍𝛥𝐮a
]
= 𝛿𝐯Ta𝐊

e
t𝛥𝐮a, (84)

with 𝐊e
t as the element tangent stiffness matrix [7], which is given by

𝐊e
t = ̄𝐊e + ̃𝐊e + ̃𝐊e∗

, (85)

with

̄𝐊e =
∫

𝛺
e

(
𝐁T
𝜎

̄𝐓𝐁
𝜎

+ 𝐁T
NL

̄𝐃𝐁NL
)
d𝛺e

, (86)

̃𝐊e =
∫

𝛺
e

(
𝐁
𝜎

T
̃𝐓𝐁

𝜎

+ 𝐁NL
T
̃𝐃1𝐁NL

)
d𝛺e

, (87)

̃𝐊e∗ = K
(
𝐊e

p

)T
(𝐌e)−1

(
𝐊e

p

)
. (88)

Matrix ̃𝐊e∗
is symmetric, with rank 3Ne

u × 3Ne
u for general stress. It is obtained by

substituting Eq. 76 in the third term of the right-hand side of Eq. 48. The terms ̄𝐃 and

̃𝐃1
represent the matrix forms of ̄

 and ̃


1
, respectively. These matrices represented

in Voigt notation for a general stress state are

[𝐃] =

⎡⎢⎢⎢⎢⎢⎢⎣

1111 1122 1133 1112 1113 1123
1122 2222 2233 2212 2213 2223
1133 2233 3333 3312 3313 3323
1112 2212 3312 1212 1213 1223
1113 2213 3313 1213 1313 1323
1123 2223 3323 1223 1323 2323

⎤⎥⎥⎥⎥⎥⎥⎦

. (89)

The term 𝐁
𝜎

is the initial stress matrix with rank 9 × 3Ne
u, which operates the geo-

metric stiffness contribution. It has the following form for a given node a:

[
𝐁
𝜎

]
a =
⎡⎢⎢⎣
Na,X1

Na,X2
Na,X3

0 0 0 0 0 0
0 0 0 Na,X1

Na,X2
Na,X3

0 0 0
0 0 0 0 0 0 Na,X1

Na,X2
Na,X3

⎤⎥⎥⎦

T

. (90)
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The terms ̄𝐓 and ̃𝐓 are the stress matrices composed by the Kronecker product

between the stress and identity matrices as

̄𝐓 = ̄𝐒⊗ 𝐈, (91)

̃𝐓 = ̃𝐒⊗ 𝐈, (92)

which in general stress have rank 9 × 9.

2.10 Global Newton-Raphson Equation

After the definition of the element matrices, an assembly procedure is performed to

obtain the global matrices. Considering a test solution 𝜙k [5], the global Newton-

Raphson equation is given by

𝛿
̇W
(
𝜙k, 𝛿𝐯

)
[𝛥𝐮] = −𝛿 ̇W

(
𝜙k, 𝛿𝐯

)
. (93)

The discrete form of the above equation is

𝛿𝐯Tg𝐊
t
g𝛥𝐮g = −𝛿𝐯Tg𝐑g. (94)

The global virtual velocities 𝛿𝐯g are arbitrary, and thus we obtain the final incremen-

tal form

𝐊t
g𝛥𝐮g = −𝐑g, (95)

where 𝐊t
g is the global tangent stiffness matrix, 𝐑g is the global residual force vector

and 𝛥𝐮g are the global displacement increments.

The Newton-Raphson method is used to solve the incremental form of Eq. 95

for the global displacements. According to [5], it is usually possible to obtain

the solution by applying the external load directly, especially when treating near-

incompressibility, because the internal forces increase dramatically as we increase

the bulk modulus K, leading to a hard convergence of the residual. However, when

treating large displacements, there may be some convergence issues. Thus, it is con-

venient to consider the following incremental external force:

𝐟ext =
l∑

i=1
𝛥𝐟 iext , (96)

where 𝛥𝐟ext is an external force increment, and l the total number of load increments.

The steps for solving the Newton-Raphson procedure are described by Algorithm 2.
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Algorithm 2 Newton Raphson procedure

1. Given 𝐮 for iteration k, compute the kinematic variables and perform the pressure projection

described by Algorithm 1;

2. Begin for over the integration points
Update the stresses ̃𝐒 and the volumetric part of the elasticity tensor ̃



1
with the projected

pressure 𝐩𝐞∗;

Calculate ̄𝐊e
and ̃𝐊e

(Eqs. 86 and 87), 𝐊e
p (Eq. 70) and 𝐟 eint (Eq. 80);

End for
3. Calculate the pressure stiffness matrix ̃𝐊e∗

(Eq. 88);

4. Assemble the global matrices and solve Eq. 95 for 𝛥𝐮kg, using a linear solver;

5. Update the displacements: 𝐮k+1g = 𝐮kg + 𝛥𝐮kg;

6. Check the convergence criterion. If satisfied, go to the next load step. Or else, go to step 1.

3 Hyperelastic Damage

In this section we introduce the Mullins effect, followed by the hyperelastic damage

formulation, where the evolution law is applied to the constitutive relation. The tan-

gent modulus is also presented for consistency. At the end we present the damage

equations in algorithmic form for the consistent update of stresses and tangent mod-

ulus. The model adopted here is phenomenological based on the work by [26]. Other

relevant details about this formulation can be found in [18], and an extensive review

of continuum damage models for hyperelastic materials can be found in [6].

3.1 Mullins Effect in Hyperelastic Materials

Some idealized hyperelastic materials, such as elastomers, present a softening behav-

ior when subjected to cyclic loading called Mullins effect [18]. Figure 2 illustrates a

stress-strain curve for a uniaxial cyclic test. The process initiates at the undeformed

configuration 0, and follows path A, reaching point 1. The body is then unloaded,

following path B and returning to point 0.
1

The area between curves A and B repre-

sents the dissipated energy. When applying a second loading cycle, the curve follows

path B-D, reaching point 2, where more internal material degradation occurs and so

on.

Notice from Fig. 2 that the stress levels for curves B and C are lower than the

primary loading curve A-D for a constant strain value. The Mullins effect is char-

acterized by the stiffness reduction (or softening) of the material in a strain-driven

process, with this reduction being only dependent of the maximum attained strain

[18]. After several loading cycles, the increasing softening tends to saturate, and the

1
In practical cases, there are small residual stresses, characterizing hysteresis. However, idealized

models do not account for these stresses, as well as temperature and viscosity effects.
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Fig. 2 Stress-strain diagram

illustrating the characteristic

softening (Mullins effect)

observed in hyperelastic

materials [18]

material becomes “conditioned” [13], that is, subsequent loading cycles yield stress

curves over the same loading path, without further softening.

3.2 Damage Variable and Thermodynamic Aspects

Consider a given material with deviatoric strain energy density ̄WD (𝐄), which is

subjected to a strain-driven process with damage. The starting point consists in the

definition of a modified strain energy density function [26],

̄WD (𝐄,D) = (1 − D) ̄W (𝐄) , (97)

applied on ̄W, because the damage is assumed to be of deviatoric nature.
2

The term

(1 − D) is the energy reduction parameter introduced by [20], and the scalar isotropic

damage parameter D is defined in the range

0 ≤ D ≤ 1. (98)

When D = 0 the material is undamaged, and when D = 1, the maximum damage

value is attained, characterizing an idealized failure. The maximum value for D
results in zero strain energy ̄WD = 0. Notice that D = 1 is not necessarily the critical

damage value Dc. Such critical value is an experimental rupture estimation, and is

different for several materials and different continuum damage models. This damage

model has the following characteristics:

∙ The damage evolution is isotropic and only function of the maximum attained

strain until the current time;

∙ The damage evolution is an irreversible process and independent of the loading

direction (there is no crack-closure effect). Therefore, compressive and tractive

loads have the same effect;

2
For compressible materials with damage, the reduction factor (1 − D) of Eq. 97 is applied to W,

rather than ̄W.
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∙ The evolution function to be presented has an asymptotic behavior, and thus the

damage reaches a value characterizing saturation. Close to the saturation threshold

a critical value Dc is achieved, characterizing material failure.

Consider the first law of thermodynamics written in the following form

𝜌ė = 𝐒 ∶ ̇𝐄, (99)

which means that the internal energy rate ė by unit volume should be equal to the

power due to stresses. The second law of thermodynamics postulates the irreversibil-

ity of entropy (s), given by the following inequation

𝜌ṡ ≥ 0. (100)

A Helmholz free energy term 𝜓 is introduced, which relates the internal energy with

entropy in the following way:

𝜓 = e − 𝜃s, (101)

where 𝜃 is the temperature. The strain energy and the free Helmholz energy are

related as

̄WD = 𝜌𝜓, (102)

taking the time derivative of Eqs. (101–102), and recalling Eqs. (99–100), we obtain

the Clausius-Duhem inequality

̇
̄𝐒D ∶ ̇𝐄 − ̇WD

≥ 0, (103)

where
̇
̄𝐒D is the damaged deviatoric stress rate. The left-hand side of the above

inequality represents the dissipated energy by unit volume. The deviatoric damaged

internal strain rate is obtained with the application of the time derivative on Eq. 97:

̇
̄WD = 𝜕

̄WD (D,𝐄)
𝜕D

̇D + 𝜕
̄WD (D,𝐄)
𝜕𝐄

∶ ̇𝐄. (104)

Substituting (104) in (103), we obtain

− 𝜕
̄WD (𝐄,D)
𝜕D

̇D ≡ ̄W (𝐄) ̇D ≥ 0, (105)

̄𝐒D = (1 − D) 𝜕
̄W(𝐄)
𝜕𝐄

. (106)

Eq. 105 defines the dissipative nature of damage, and ̄W(𝐄) is thermodinamically

conjugate to ̇D, because 𝜕
̄WD∕𝜕D ≡ − ̄W(𝐄). Equation 106 is the damaged stress,

and is based on the equivalent stress concept, first introduced by [20].



Application of the hp-FEM for Hyperelastic Problems with Isotropic Damage 133

3.3 Damage Criterion

An equivalent strain 𝜁s is defined, which is related with the strain energy density in

the following way

𝜁s =
√

2 ̄W (𝐄 (t)), (107)

where 𝐄 (t) is the Green-Lagrange strain tensor for a given pseudo-time interval t
of the strain-driven process. We define the maximum equivalent strain 𝜁

m
t as the

maximum value of 𝜁s until time t, that is,

𝜁

m
t = maxt∈(−∞,t]

√
2 ̄W (𝐄 (t)). (108)

The damage is calculated using the following function

𝜒

(
𝐄 (t) , 𝜁mt

)
=
√

2 ̄W (𝐄 (t)) − 𝜁

m
t ≤ 0, (109)

which defines the damage surface in the strain space illustrated in Fig. 3. This surface

has an isotropic growth with the strains. The time derivative of the damage surface

(109) is

𝜒̇ =
𝜕𝜒

𝜕𝐄
∶ ̇𝐄 = 𝐍 ∶ ̇𝐄, (110)

where 𝐍 is the normal tensor to the damage surface. For a given strain state, we have

four possible situations:

∙ The strain state is not the maximum attained, and inequality 𝜒 < 0 is automatically

satisfied (no damage evolution);

∙ The strain state is the maximum attained (𝜒 = 0) but in an unloading path from a

damaged state (𝐍 ∶ ̇𝐄 < 0);

∙ The strain state is maximum (𝜒 = 0) and in a neutral direction (𝐍 ∶ ̇𝐄 = 0);

∙ The strain state is maximum (𝜒 = 0) and the direction points to a new damaged

state (𝐍 ∶ ̇𝐄 > 0), so that the damage surface grows.

Fig. 3 Damage surface in

the strain space [18]
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The first three cases correspond to situations with no damage evolution for the given

strain state. On the other hand, the last case attains a new maximum strain state, such

that the damage parameter must increase. Therefore, if 𝜒 > 0, the strain state is out

of the damage surface, and is not defined by Eqs. 109 and 110. That means that the

damage is evolving and the surface should be updated in a consistent way to satisfy

𝜒 = 0 from Eq. 109.

3.4 Damage Evolution Law

Having the criterion for damage evolution defined, the evolution law in terms of the

equivalent strain is defined:

̇D =

{
̄h (𝜁 ) ̇

𝜁 if 𝜒 = 0 and 𝐍 ∶ ̇𝐄 > 0,
0 else

(111)

where ̄h (𝜁 ) = −dḡ (𝜁 ) ∕d𝜁 is the derivative of function ḡ (𝜁 ) with exponential behav-

ior, initially introduced by [26] for highly-filled polymers, given by

ḡ (𝜁 ) = 𝛽 + (1 − 𝛽) 1 − e−𝜁∕𝛼
𝜁∕𝛼

, (112)

with 𝛽 ∈ [0, 1] e 𝛼 ∈ [0,∞) being the damage material parameters. The plot of ḡ
is illustrated in Fig. 4, with the variation of parameters 𝛼 and 𝛽. Notice that lower

values for 𝛼 characterize a faster decrease for the function (left), while parameter

𝛽 defines the asymptotic value (characterizing a damage saturation limit) for the
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function (right). Figure 5 (left) shows that 𝛼 influences the rate of the function until

the asymptotic value. We also see from Fig. 5 (right) that 𝛽 has a small effect on the

derivative. In general, the higher the value of 𝛽, the higher the saturation limit value

and the greater the softening for the strain range under consideration. The smaller

the value of 𝛼, the higher the growth rate of ḡ.

3.5 Constitutive Relations

The evolution function is applied as a reduction factor over the stresses as

̄𝐒D (t) = ḡ(𝜁mt )
𝜕
̄W(𝐄)
𝜕𝐄

. (113)

Considering Eq. 106, we relate the stress reduction factor with the damage evolution

function in the following way

(1 − D) = ḡ(𝜁mt ). (114)

Applying the time derivative to Eq. 113, we obtain

̇𝐒D = 𝜕
̄𝐒D
𝜕𝐄

∶ ̇𝐄. (115)

Applying the product rule in the above equation, we obtain

̇𝐒D =
(
ḡ(𝜁mt )

𝜕

2
̄W(𝐄)
𝜕𝐄2 +

𝜕ḡ(𝜁mt )
𝜕𝜁

m
t

𝜕𝜁

m
t

𝜕𝐄
⊗

𝜕
̄W(𝐄)
𝜕𝐄

)
∶ ̇𝐄, (116)
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and therefore we have the constitutive relation for a nearly-incompressible hypere-

lastic material with damage:

̇𝐒D(t) =
{[

ḡ(𝜁mt ) ̄ + ḡ′(𝜁mt )
(𝜁mt )

̄𝐒⊗
̄𝐒
]
∶ ̇𝐄, if 𝜒 = 0 and 𝐍 ∶ ̇𝐄 > 0

ḡ(𝜁mt ) ̄ ∶ ̇𝐄, else.
(117)

with

ḡ′(𝜁 ) = (1 − 𝛽)
[
e−𝜁∕𝛼
𝜁

− 𝛼

𝜁
2

(
1 − e−𝜁∕𝛼

)]
. (118)

Notice the following from Eq. 117: If there is no damage evolution, the reduction

function ḡ(𝜁mt ) is applied to the deviatoric part of the constitutive tensor ̄
. Other-

wise, an additional contribution of the derivative applied to the Kroenecker product

of the stress tensor deviator must be considered for consistency.

3.6 Damage Algorithm

A damage algorithm with the consistent update of equations is necessary to ensure

the stress and damage prediction, as well as a consistent tangent modulus for the

Newton-Raphson method.

The damage coupled equations are described for a time interval [tn, tn+1], and we

consider a monotonic loading/unloading for this time interval. The equations are also

valid for compressible materials. However, the algorithmic terms are not separated

in deviatoric/volumetric form, but fully calculated.

∙ Deviatoric right Cauchy-Green tensor

̄𝐂n+1 = det F−2∕3
n+1 𝐂n+1. (119)

∙ Invariants of ̄𝐂n+1

̄I1,n+1 = J−2∕3I1,n+1, ̄I2,n+1 = J−4∕3I2,n+1. (120)

∙ Equivalent strain

𝜁n+1 =
√

2 ̄Wn+1. (121)

∙ Damage surface

𝜒n+1 = 𝜁n+1 − 𝜁

m
n ≤ 0. (122)
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∙ Damage evolution function and derivative

ḡn+1
(
𝜁n+1
)
= 𝛽 + (1 − 𝛽) 1 − e−𝜁n+1∕𝛼

𝜁n+1∕𝛼
, (123)

ḡ′n+1(𝜁n+1) = (1 − 𝛽)

[
e−𝜁n+1∕𝛼
𝜁n+1

− 𝛼

𝜁

2
n+1

(
1 − e−𝜁n+1∕𝛼

)]
. (124)

∙ Damage variable in terms of the damage evolution function

Dn+1 = 1 − ḡn+1. (125)

∙ Second Piola-Kirchhoff stress tensor

̄𝐒Dn+1 = ḡn+1 ̄𝐒n+1. (126)

∙ Tangent modulus without damage evolution

̄𝐃ed
n+1 = ḡn+1 ̄𝐃n+1. (127)

∙ Tangent modulus with damage evolution

̄𝐃ed
n+1 = ḡn+1 ̄𝐃n+1 +

ḡ′n+1
(𝜁mt )

̄𝐒n+1 ⊗ ̄𝐒n+1. (128)

Algorithm 3 presents the steps for the stress and tangent modulus update procedure.

Algorithm 3 Update procedure for the stress tensor and tangent modulus with dam-

age.

1. Given 𝐅n+1, 𝜁
m
t , ḡn e Dn (initial state or last converged iteration), calculate ̄𝐂n+1 and their invari-

ants.

2. Calculate the deviatoric strain energy density ̄Wn+1;

3. Calculate the equivalent strain 𝜁n+1 and damage surface 𝜒n+1.

If 𝜒n+1 ≤ 0 then

Step without damage evolution:
ḡn+1 = ḡn
̄𝐃ed
n+1 = ḡn+1 ̄𝐃n+1

Else

𝜁

t
n+1 = 𝜁n+1

Calculate ḡn+1, ḡ′n+1, ̄𝐒n+1 and ̄𝐃ed
n+1

4. Update the stresses ̄𝐒Dn+1
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4 Convergence Tests

The formulation presented in Sects. 2 and 3 was implemented in the high-order FEM

code (hp)2FEM, developed by our research group in C++ using the object-oriented

paradigm [8]. We perform three validation tests with the imposition of analytical

solutions. These solutions are constructed from the linear momentum equation (with-

out dynamic considerations)

div 𝝈 + 𝜌𝐟 = 0, (129)

where 𝝈 is the Cauchy stress tensor and 𝜌 is the density. Imposing a displacement

field 𝐮, it is possible to obtain the strain measures, and making use of the constitutive

equation, we calculate the analytical stress. Using Eq. 129, we obtain the body forces

𝐟 and traction forces 𝐭.
The first test validates the nearly-incompressible behavior for the Mooney-Rivlin

material for small and large strains. In tests 2 and 3 we capture the Mullins effect and

respectively study the convergence behavior of the compressible Neo-Hookean and

the nearly-incompressible Mooney-Rivlin materials with damage. We used Lagrange

shape functions, with Gauss-Legendre quadrature and Gauss-Lobatto-Legendre col-

location points for all tests.

We used the hexahedrical domain illustrated in Fig. 6, with the face at X = 0
clamped. The geometry is discretized with several hexahedrical elements, illus-

trated in Fig. 7. For the p-refinement, we used a single element mesh. For near-

incompressibility, the h-refinement is performed with displacement interpolation

orders Ou = 2 and 3. In the compressible problems, the h-refinement is performed

with Ou = 1.

For the tests involving near-incompressibility, we used the following interpolation

scheme for the primary variables [29]

Op = Ou − 1, (130)

where Ou and Op respectively are the interpolation orders for the displacements and

pressure. The above relation yields more algorithmic stability, independent of the

displacement interpolation order [29].

Fig. 6 Hexahedrical

geometry used for all

convergence tests, defined in

0 < X,Y ,Z < 1m

0

1 0

1

0

1

Y[m]X[m]

Z
[m

]
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Fig. 7 Hexahedrical element meshes used for the convergence tests. a 8 elements, b 27 elements,

c 64 elements, d 125 elements

4.1 Test 1—Nearly-Incompressible Mooney-Rivlin Material

For this test, we use the following smooth solution:

u1 = 0,
u2 = A sin (BX), (131)

u3 = 0.

The material properties are A10 = A01 = 1.0Pa and K = 1.0 × 103 Pa. The relation

between the material properties yields the Poisson’s ratio of approximately 0.4996.

From the chosen displacement field, we calculate the strain measure, and using the

constitutive equation, we determine 𝝈. Substituting 𝝈 in Eq. 129, we find the body

forces ⎧⎪⎨⎪⎩
f1 = −2A2B3 sin(2BX)(2A01+A10)

3
f2 = 2AB2 sin(BX)

(
A01 + A10

)
.

f3 = 0
(132)
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Substituting 𝝈 in the expression for the boundary conditions in terms of the stress

vector 𝐭 = 𝝈𝐧, we determine the corresponding surface tractions, that is,

⎧⎪⎪⎨⎪⎪⎩

t1 = n1
[
2A2B2 cos(BX)2(2A01+A10)

3

]
− n2
[
2AB cos(BX)

(
A01 + A10

)]
t2 = n2

[
2A2B2 cos(BX)2(2A01+A10)

3

]
− n1 AB cos(BX)

[
2
(
A01 + A10

)
+
(

2A2B2 cos(BX)2(2A01+A10)
3

)]
t3 = 0,

(133)

The first step is to validate the formulation for small displacements with the choice

A = 0.0001m, B = 1m
−1

, which yields u2 ≈ 0.000084m at X = 1m. To check the

convergence with the p refinement, we used interpolation orders Ou = 2 − 9 and

Op = 1 − 8. We calculate the L2- and L∞- error norms for the entire domain as

EL2 =
√√√√

∫

𝛺

(
uan − uap

)2 d𝛺, (134)

EL∞ = max|uan − uap|, (135)

with uan the analytical solution and uap the approximate solution for displacements.

Figure 8 presents the obtained errors for each direction. Notice the spectral conver-

gence rate, with the error norm practically zero with Ou = 8.

Fig. 8 Error norm in terms

of Ou for a

nearly-incompressible MR

material under small

displacements and strains
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Fig. 9 L2- and L∞- error norms for u1, u2, u3 (left). L2- error norm for h- and p-refinements (right)
for the nearly-incompressible MR material under large strains

Now we consider the analytical solution for large strains by setting A = 0.1m

and B = 𝜋

2
m

−1
in Eq. 131. This gives u2 ≈ 0.1m at X = 1m. The external load was

partitioned in 10 equal steps. We performed an h-refinement with meshes of 1, 8,

27, 64 and 125 elements and Ou = 2, 3. The p-refinement used one element with

Ou = 2 − 9 and Op = 1 − 8. Figure 9 presents the error in terms of the polynomial

order and number of degrees of freedom. Notice that the error is much higher for

the h-refinement using the same number of degrees of freedom for the problem.

Such spectral convergence for the p-refinement is expected for problems with smooth

solution [1, 21, 29].

Fig. 10 Deformed

geometry with the solution

for u2. Scale 3:1
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Fig. 11 Solution for displacements u1 using one element with Ou = 5 (upper left), 8 elements with

Ou = 3 (upper right), 27 elements with Ou = 3 (lower left), 125 elements with Ou = 2 (lower right)

The displacement field u2 is illustrated in Fig. 10. Recall from Eq. 131 that the

imposed analytical solutions for u1 and u3 are zero. Thus, the approximate solution

for these directions already represent the absolute error for u1 and u3 in the entire

domain, and is shown in Figs. 11 and 12. There are significant oscillations for a p
refinement with a single element (a). The greater variations are present in the edges,

where the displacements values are higher. Cases (b) and (c), respectively with 8

and 27 elements, showed higher variations in the edges and vertices. We obtained

smaller oscillations using 125 elements and Ou = 2.

The stresses were calculated at the nodes by weighting the neighboring elements.

The maximum principal stress 𝜎1 was calculated and compared to the analytical

solution. Figure 13 presents the nodal stresses along X for edge Y = 0, Z = 0. In the

case of the p-refinement, we obtained a very good approximation withOu = 5. Using

27 elements, we obtained good results starting at Ou = 3.
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Fig. 12 Solution for displacements u3 using one element with Ou = 5 (upper left), 8 elements with

Ou = 3 (upper right), 27 elements with Ou = 3 (lower left), 125 elements with Ou = 2 (lower right)

Fig. 13 Maximum principal

stress 𝜎1 at edge Y = 0,

Z = 0
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4.2 Test 2—Damaged Neo-Hookean Material

In order to analyze the Mullins effect, we considered a cyclic loading test using the

Neo-Hookean material with damage. The material is compressible, without locking

behavior. Therefore, we used the pure displacement formulation.

As described in Sect. 3, the Mullins effect is the progressive loss of material stiff-

ness as the loading increases and results in higher strains. For this purpose, we used

the single element mesh of Fig. 6 with the face X = 0 clamped. Then we applied

three loading/unloading cycles at face X = 1 with traction forces t1 = 35, 50, 75N.

The following material properties are considered

E = 1000 Pa, 𝜈 = 0.3, 𝛼 = 0.5, 𝛽 = 0.3.

The interpolation order used isOu = 1, and the maximum principal stress is analyzed

for the local integration point (𝜉, 𝜂, 𝜁 ) = (−1,−1,−1). Figure 14 shows the Mullins

effect with the progressive reduction of the stresses in the transition of each loading

cycle. When in reloading phase, the stresses return to the main loading path (solid

line, same for all loading cycles), and a subsequent unloading (dotted lines) depends

on the new maximum achieved strain.

Now we perform a convergence test using the same meshes as Test 1. The analytic

solution imposed in this case is

u1 = sin (X),
u2 = 0, (136)

u3 = 0,
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Fig. 14 Mullins effect for the damaged Neo-Hookean material. Maximum principal second Piola-

Kirchhoff stress versus the maximum principal Green-Lagrange strain (left). Maximum principal

Cauchy stress versus the maximum principal Almansi strain (right)



Application of the hp-FEM for Hyperelastic Problems with Isotropic Damage 145

1 2 3 4 5 6 7 8 9

Polynomial order (Ou)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1
L2 - 

er
ro

r 
no

rm

L2- u3

L2- u2

L2- u1

101 102 103

Number of degrees of freedom

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

L2 - 
er

ro
r 

no
rm

h- refinement
p- refinement
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which is smooth and yields a displacement u1 ≈ 0.84m at face X = 1m. The body

forces and traction fields are also obtained from Eq. 129, inserting the damage in

the stress tensor. This is only valid if the load is monotonically applied, because

the derived analytical solution does not account for unloading behavior. We do not

show the expressions of the body and traction forces because the damage equa-

tions increase the size of the force expressions dramatically. Recall that we know

a priori that for smooth solutions, the p-refinement leads to an exponential error

reduction, which is algebraic for the h-refinement. We used the damage parame-

ters 𝛼 = 1.0, 𝛽 = 0.3. Figure 15 (left) illustrates the results for the L2 error norm

for the displacements. Notice that the insertion of damage to the analytical solution

(136) did not change the spectral convergence with the increase of the polynomial

order. The error stagnated at 10−10 for Ou > 7. Figure 15 (right) shows a comparison

between both refinements.

We performed a p refinement with a single element and analyzed the stress and

damage along edge Y = 0, Z = 0. The obtained results are illustrated in Figs. 16 and

17 comparing the analytical solution and approximate solutions with Ou = 3, 4, 5.

Notice the very good approximation for both variables.

4.3 Test 3—Damaged Nearly-Incompressible
Mooney-Rivlin Material

The first part of this test consists on reproducing the Mullins effect, using the same

procedure as test 2. In this case, we used loading cycles with t1 = 1, 2, 3 Pa applied

at face X = 1 of Fig. 6. The material and damage properties are

A10 = A01 = 1.0 Pa, K = 1.0 × 103 Pa, 𝛼 = 1.0, 𝛽 = 0.3. (137)
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Fig. 16 Approximate

solution for 𝜎1 at the nodal

points along the edge Y = 0,

Z = 0
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We used the displacement interpolation order Ou = 3, and analyzed the maximum

principal stress 𝜎1 for local integration point (𝜉, 𝜂, 𝜁 ) = (−1,−1,−1). Figure 18 (left)

presents the maximum principal stress for the second Piola-Kirchhoff stress tensor

in terms of the Green-Lagrange strain. Figure 18 (right) presents the maximum prin-

cipal Cauchy stress in terms of the Almansi strain. Notice that the softening behavior

is similar to observed on test 2.

Now we test the convergence when coupling near-incompressibility and dam-

age. The analytical solution is defined by Eq. 131, with A = 0.25m and B = 1.0m
−1

,

yielding a displacement u2 ≈ 0.21m at X = 1m. As with the damaged compressible

Neo-Hooke material, the applied loads are not shown due to the excessive size of the

expressions. We divided the external load into 10 load steps. The material properties

are the same as Eq. 137.
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Fig. 18 Mullins effect for the maximum principal stress for an integration point. Second Piola-

Kirchhoff stress (left), Cauchy stress (right)

We performed the h-refinement with Ou = 2. Two types of p-refinements were

performed. The first one used a single element mesh, by varying the displacement

order from 2 to 9. The second used 8 elements, increasing the displacement order

from 2 to 6. Figure 19 shows the results for the L2- error norm. Notice that for this

problem, the inclusion of damage did not make the convergence of displacements

harder, when comparing with the undamaged material. The error norm stagnated

at 10−10 for the p-refinements. Figures 20 and 21 present the maximum principal

stresses and damage distributions along edge Y = 0, Z = 0. The increase of the
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degrees of freedom (right)



148 J.L. Suzuki and M.L. Bittencourt

Fig. 20 Approximate

solution for the maximum

principal stress 𝜎1 along the

edge Y = 0, Z = 0
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Fig. 21 Approximate

solution for damage along

the edge Y = 0, Z = 0
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interpolation order and number of elements provided better results, and generally,

for both variables, the difference is similar to the undamaged material. However, the

results for stress are worse when compared to the compressible case.

5 Conclusion

The coupling of a compressible hyperelastic material with damage led to a very

good convergence for the p-refinement, as expected since a smooth solution was

considered. The errors for the stress are greater in magnitude compared to damage.

The Mullins effect could be reproduced with the application of a cyclic loading test,
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and showed a reduction of the material stiffness, depending on the maximum attained

equivalent strain.

We also reproduced the Mullins effect for nearly-incompressible behavior with

damage. We obtained a good convergence of the displacements without locking.

There was a good approximation for the damage variable, but the errors for the

stresses are still higher due to the effect of near-incompressibility.

For the performed tests, the reduction on element size had no significant effect on

the approximated solution for the damage variable when sufficiently high interpola-

tion orders were applied.

The convergence difficulties related to large displacements can be avoided by

partitioning the external load in incremental smaller values. It should be observed

that this partitioning must consider sufficiently small values to obtain a reasonable

number of Newton-Raphson iterations, mainly when treating nearly-incompressible

behavior.
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Mechanical Characterization of the Human
Aorta: Experiments, Modeling
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Abstract This chapter presents an overview of recent works aimed at characterizing

the mechanical behaviour of the human aorta via experiments, modeling and simu-

lation. The application of these techniques are in particular detailed in the analysis of

the following cases: ascending aorta, aortic arch and thoracic descending aorta under

in-vitro and in-vivo conditions. The experimental procedure encompasses uniaxial

tension and pressurization tests on healthy and pathological tissues of different ages.

The tensile measurements are used to calibrate the material parameters of isotropic or

anisotropic quasi-static elastic constitutive models which are intended to predict the

material response in a wide deformation range. Although this task is usually carried

out analytically, numerical simulations (using a discretized formulation defined in

the context of the finite element method) are also performed for problems in which

more complex geometry, boundary conditions and loads are considered. Overall,

the reported material characterization was found to provide a realistic description of

the mechanical behaviour of the aorta subjected to various deformation and stress

scenarios. Finally, the implication of these studies is the possibility to predict the

mechanical response of the human aorta under generalized loading states like those

that can occur in physiological conditions and/or in medical device applications.
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1 Introduction

The aim of this chapter is to present an overview of recent developments devoted

to the characterization of the mechanical behaviour of the human aorta considering

experiments, modeling and simulation. In particular, this methodology is applied to

the study of the ascending aorta, aortic arch and thoracic descending aorta under

in-vitro and in-vivo conditions. Important features related to this topic are discussed

in what follows.

The aorta is the paradigm of major arteries, which not only serve as conduits for

the bloodstreams but they also play a key role in modulating pressure and flow in

the entire circulatory system by means of their mechanical response. Major vascu-

lar diseases alter and degrade the structure and composition of the aortic wall, and

have an effect on its mechanical behaviour. Consequently, a better understanding

of the mechanical performance of the vessel wall and its connection with patholo-

gies should be warranted in order to prevent circulatory accidents, as well as for the

development of effective and reliable treatments and surgical procedures [10, 89].

Aneurysms are placed among the severe, potentially life-threatening abnormali-

ties of the aorta. They are caused by a pathological expansion of the aortic diameter,

which may lead to dissection and rupture. Interventional criteria balance the risks

associated with surgical repair with the risk of complications due to the develop-

ment of the disease. The risk of growth and rupture is commonly related to aortic

diameter, with this being the most used criterion for intervention [9, 30]. Although

there is considerable evidence that the risk of rupture, dissection or death is dramati-

cally increased in thoracic aortic aneurysms with diameters in excess of 60 or 70 mm

for ascending or descending aorta, respectively [17, 22], the fraction of aneurysms

that rupture before reaching that size it is not negligible [21, 49, 102]. Rupture of

aneurysms occurs when the mechanical stresses acting on that zone of the vessel

exceed the strength of the wall tissue. It seems that a particular patient-specific cri-

terion is therefore necessary. However, all the size-based criteria, either considering

absolute [9] or relative aortic diameters [23], do not take into account explicitly the

actual mechanical behaviour of the arterial wall. Enhanced and more reliable criteria

accounting for the particular characteristics of every patient, and more closely related

to the mechanical performance and strength of the arterial wall, are still needed.

Customarily associated to aortic disease and aneurysm development, bicuspid

aortic valve is an anomaly probably due to the presence of a genetic defect that, in

addition to valve leaflets, affects the medial layer of aorta [32]. The high risk of dilata-

tion and aortic dissection up to nine times higher favours that many asymptomatic

patients are operated on prophylactically for aortic replacement [9]. Nevertheless,

recent studies have questioned such a practice on the basis that surgical guidelines

are not based on objective evidence [47].

The accumulated experience with aneurysmal and bicuspid aortic valve patients

two prevalent aortic pathologies demonstrates the relevance of obtaining experimen-

tal information on the mechanical behaviour and strength of the pathological aorta,

in order to develop accurate and dependable diagnostic and interventional criteria.
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Nevertheless, data on the mechanical strength of human ascending aorta are

still limited and somehow controversial. It is generally agreed that healthy tissue is

stronger than aneurysmal in both longitudinal and circumferential directions. Control

and aneurysmal ascending aorta in both such orientations have been compared, with

findings supporting this contention [101]. Pathologic tissue was 30 % weaker and

appreciably stiffer than control. However, other authors presented the unexpected

finding of aneurysmal aorta as being as equally resistant as normal aortic tissue, and

pointed out the importance of considering age-matched subject groups before draw-

ing conclusions [57]. In particular, these authors tested aneurysm tissue from four

regions and reported an increased stiffness and reduction in extensibility compared

to control tissue and anisotropy of both aneurysm and control tissue. The influence

of age on the rupture of pathological ascending aorta and aneurismal strengths in

between the other two studies have been analysed and reported [79]. The fact that

most of the few available studies on the tensile properties of the ascending aortic wall

[79, 101] have been performed at a non-physiological temperature (around 20
◦
C),

and the variable nature of most control vessels, that were taken from autopsies, might

be at the root of these differences. It was demonstrated that peak stretch at failure is

lower for samples from older patients [99]. It should be noted that no significant

anisotropy was reported in these last three works.

The human aortic arch is an elastic artery whose mechanical properties play a

crucial role in damping the pressure wave that occurs inside the vessel and, besides,

to influence the blood flow coming from the heart [74]. Moreover, the knowledge

of the rupture stress and strain in this artery under normal, hypertension and severe

(e.g., automobile accidents or cardiovascular problems) physiological conditions is

also a relevant area of current interest [24, 33, 87]. The aortic arch motion is linked

to that of the heart left ventricle through the aortic root. This motion generates axial

stresses in the ascending aorta. Beller et al. [6] consider that the motion of the aortic

root induces high stress levels in the aortic arch that, in turn, may cause an aortic

dissection even in patients without other risk factors. The surgical operation aimed

at preventing the rupture of the aortic arch is still nowadays a risky procedure [31]

that is only recommended when the risk of failure of the artery wall is greater than

that associated to the operation itself. Such decision is mainly based on the dimen-

sions of the vessel without taking into account its mechanical strength. Although

the maximum artery diameter of 50 mm is usually taken as the criterion leading to

surgery, 23 % of the arteries fail, however, before reaching this threshold [30, 80].

Clinical reports on complex anomalies of the human aortic arch have been exten-

sively published in the past (e.g., double aortic arch and right aortic arch with left

ductus/ligamentum arteriosus; see Kocis et al. [59] for a complete review on this

subject). Other relevant anomalies closely related to the human aortic arch have been

recently studied, e.g., the so-called bovine aortic arch [7] and the aberrant right sub-

clavian artery [98]. On the other hand, some of the genetical pathologies usually

deriving in aneurysms that affect the mechanical response of the aortic arch are the

Marfan [75], DiGeorge [73] and MAGIC [12] syndromes. Surgical repairs for aor-

tic arch aneurysms have been carried out in different ways: complete replacement

[4] or reconstruction consisting of an off-pump distal or proximal reimplantation of
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the aortic arch vessels combined with an endovascular large stent graft to exclude

the entire aortic arch [2, 20]. These surgical techniques are not only associated with

considerable mortality and morbidity but also have undoubtedly mechanical conse-

quences since they involve the application of loading (typically pressure) and the

generation of strain during the repairing or replacement of sick vessels.

The aortic arch may be subjected to extreme loading conditions in situations such

as automobile crashes. In this context, traumatic aortic arch false aneurysms after

blunt chest trauma can be developed [8]. Three types of mechanical actions causing

the blunt traumatic aortic rupture have been identified: stretching, intravascular pres-

sure and water-hammer effect [34, 87]. In particular, hypertension at rest or during

effort in patients with aortic arch coarctation has been studied in cases with suc-

cessful repair or mild degree of obstruction [24]. Moreover, impact-sled tests with

human cadaver thoraces have been carried out to investigate the aortic injury mech-

anism caused by the effect of acceleration that induces a differential motion of the

aortic arch relative to the heart and its neighboring vessels [35].

All the preceding facts clearly justify the need of achieving a better understanding

of the mechanical response of the human aortic arch. One possible way to achieve this

goal is by using numerical simulations that predict the mechanical response of the

artery in order to quantify its risk of failure under different loading conditions and,

thus, may provide useful information for medical therapies of the related pathologies.

In this context, one of the major challenges is the definition of realistic and reliable

stress-strain relationships of the vessel [25, 26, 28, 29, 54].

Numerical simulations have been recently performed to predict the mechanical

response of the human aortic arch. Beller et al. [5] and [6] studied aortic arches

under physiological conditions (in patients with and without aortic insufficiency) by

means of a linear elastic isotropic constitutive model (i.e., the tissue stiffness varia-

tion with increasing strain was not taken into account) and boundary conditions that

accounted for experimentally-measured aortic root displacements during the cardiac

cycle. However, the effect of the ligamentum arteriosum was not included in the

analysis. Both aortic root displacement and hypertension were found to significantly

increase the longitudinal stress in the ascending aorta. Gao et al. [37] performed a

study of the stress distribution in a layered aortic arch model (also using a linear

elastic isotropic law) with interaction between a pulsatile flow and the wall of the

blood vessel. This work indicates that the circumferential stress in the aortic wall is

directly associated with blood pressure, supporting the clinical importance of blood

pressure control. Moreover, another relevant aspect that should be addressed in the

numerical simulation under in-vivo conditions is the definition of a representative

initial configuration of the aortic arch. This can be firstly achieved by means of clin-

ical techniques, e.g. computed tomography (CT) and angiography, that afterwards

allow the application of geometric reconstruction methods which finally give a real

model of the vessel [71, 95]. This geometry is obtained at a specific blood pressure

and, consequently, unknown initial stresses in equilibrium with this internal load

have to develop at the artery wall. It is seen, therefore, that an accurate estimation of

the initial stresses is needed to correctly describe the material response. A method to

account for this stress computation is the inverse analysis in which the effect of the
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residual strain is neglected [43, 66]. This assumption is not always valid in arteries

[54]. It should be noted that the numerical simulation and experimental validation of

the mechanical response of the human aortic arch under in-vivo conditions including

all the aspects mentioned above is nowadays a research subject to be explored.

Another important aspect closely related to the mechanical behaviour of the artery

is the development of surgical treatments and techniques. Some of these treatments

(e.g., angioplasty, stent, bypass, aortic valve surgery) involve mechanical features

such as the application of loading (usually pressure) and the generation of strain

during the repairing or replacement of sick vessels [58]. Moreover, the knowledge

of rupture stress and strain in arteries under both normal (physiological) and severe

(e.g., automobile accidents or cardiovascular problems) conditions is also a relevant

area of current interest [33, 87].

Experiments in aortic samples have been carried out in animals [36] and in addi-

tion, in human tissues (healthy and with aneurisms) for the ascending [38, 60, 79],

the thoracic [96] and the abdominal [54, 68, 84, 86, 100, 103] aortas. These last

three groups have been also mathematically characterized. However, reported in-

vitro experimental data and constitutive modeling for healthy human descending

aortas in youngs and newborns is, in particular, rather scarce.

The most common procedure aimed at characterizing the passive mechanical

behaviour of the human aortic wall is the tensile test. Mohan and Melvin [72] have

used this test to analyze failure properties, anisotropic degree and rate-dependent

effects in human descending aortic samples. Later, Raghavan et al. [86] have carried

out uniaxial tests in human abdominal aortic aneurisms to assess the tissue degrada-

tion as well as the thickness distribution in the aneurism wall.

An alternative approach used to analyze the passive mechanical response of the

human aorta is the pressurization test. In particular, Roy [93] assessed via this test

the non-linearity of the stress-strain relationship in animal and human aortic tissues.

Further studies [90] demonstrated that the aortic stiffness is relatively small for low

pressure levels (i.e., less than those corresponding to the physiological conditions

that range from 80 to 120 mmHg) and very large for higher pressure values. Later,

Wolinsky and Glagov [104] analyzed the structural changes experienced by the aor-

tic tissue during this test concluding that the collagen is mainly involved at high

pressure levels (this is due to the observed alignment of the collagen fibers at such

stress state) whereas the elastin plays an important role at low pressure levels. More

recently, Atienza et al. [3] used this test to study the combined effects of pressure and

temperature on the mechanical response of the human thoracic descending aorta.

Experimental measurements obtained with this test have been also employed to fit

material parameters of different constitutive models applied to coronary arteries in

animals [36, 91].

The objectives of the present study are fourfold. First, to provide researchers with

basic mechanical data on healthy and pathological (aneurysmal and bicuspid aortic

valve arterial tissues) ascending aortic wall measured in vitro at physiological tem-

perature. Second, to evaluate the effect of the two pathologies on the mechanical

deterioration and mechanical performance of the ascending aortic wall. The assess-

ment of data of young healthy tissues (i.e., 16–35 years old) and the analysis of the
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anisotropic response of control and pathological tissues are both original contribu-

tions of this research. Third, to analyze the mechanical response of the human aortic

arch both during the bending and pressurization test through in-vitro experiments

and under in-vivo physiological conditions by means of constitutive modeling and

numerical simulation. Fourth, to characterize the passive mechanical response of

the human thoracic descending aorta. The Materials and Methods considered in

this study are presented in Sect. 2 while the obtained experimental, analytical and

numerical results included in Sect. 3 are discussed in Sect. 4 where, finally, the cor-

responding numerical results are satisfactorily validated with the available experi-

mental measurements also carried out in this research.

2 Materials and Methods

2.1 Experimental Procedure

2.1.1 Materials

The human aortic tissues considered in this work, i.e., ascending aorta, aortic arch

and thoracic descending aorta, have been provided by the Hospital Puerta de Hierro

de Madrid. In all cases, the tissues were obtained according to a protocol approved

by the Hospital Ethics Committee [42], which included the informed consent from

either the patients or the next of kin. The specific analysis carried out on each of

them is separately described below.

Ascending Aortas
Healthy ascending aortic segments were obtained from patients who had died from

non-cardiovascular-related causes. Aortic wall samples were obtained from 23 brain-

dead heart donors, previously deemed acceptable for transplantation, aged between

16 and 57. Despite their origin, histological analyses were performed on samples

from all segments to corroborate the absence of vascular pathologies. For the study,

healthy specimens were divided into two groups depending on age: Group 0A

(<35 years old, nine patients, 25± 3 years) and Group 0B (>35 years old, 14 patients,

51 ± 2 years). Donor information (sex, age and body surface area) is summarised in

Table 1.

Pathologic tissue was obtained from patients undergoing ascending aorta surgery

with or without aortic valve replacement. Ascending aortic samples were classi-

fied into two groups according to the presence/absence of a bicuspid aortic valve

(BAV). Group I enclosed segments coming from 12 patients diagnosed with BAV,

aged between 36 and 80 years (57 ± 5 years).

Group II was made up of 14 patients aged between 44 and 81 (60 ± 4 years) with

normal (tricuspid) aortic valve and diagnosed with ascending aortic aneurysm. Five

patients were operated due to ascending aortic thoracic aneurysm (AATA) and four

had aortic insufficiency (AI) together with AATA. Three patients underwent surgery
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Table 1 Ascending aortas: donor’s data

Sex (F or M) Age (Years) BSA (m
2
)

Control group 0A (<35 years, 9 donors, 25 ± 3 years)

F 31 1.78

M 16 1.88

M 35 1.82

M 20 2.05

M 18 1.98

M 25 2.12

M 20 1.54

M 29 1.99

M 32 1.95

Control group 0B (>35 years, 12 donors, 52 ± 2 years)

M 45 1.97

M 49 1.93

M 52 1.82

F 50 1.78

F 45 1.60

M 50 1.81

F 48 1.44

M 57 2.06

M 57 1.68

F 46 1.66

F 64 1.78

M 62 1.86

having aortic valve (AoVR) and ascending aorta replacement and two patients were

heart receptors due to dilated cardiomiopathy (DCM) in conjunction with AATA.

Patients in group II had neither Marfan’s nor Loeys-Dietz’s syndromes and only one

case presented few atheroma plaques (Ather). Nevertheless, in that case the testing

samples were taken far (at least 2 cm) from the plaques and no significant differences

were observed between the specimens excised closer or further from the plaques nor

with the other patients from group II. Patient information of groups I and II is shown

in Table 2.

All aortic samples were obtained at least 5 mm above the sinotubular junction

and preserved in saline solution at 4
◦
C until testing within 24 h from excision. The

average dimensions of the vessels studied in this work are summarised in Table 3.

Aortic Arch
This sample came from a cardiac transplant donor without previous arterial risk

factors (i.e., tissue with low cholesterol levels, normal physiological pressure and

absence of arterial pathologies of a donor with neither smoking nor diabetes records)

whose death was not related to cardiovascular problems. The aortic arch consid-
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Table 2 Ascending aortas: patient’s data

Sex (F or M) Age (Years) BSA (m
2
)

Bicuspid aortic valve group I (11 patients, 55 ± 4 years)

F 36 1.72

M 49 2.04

M 63 1.76

F 58 1.80

M 48 1.80

M 43 2.12

M 75 1.79

M 65 1.90

F 63 1.68

M 42 1.94

F 66 1.87

Aneurysm group II (11 patients, 56 ± 2 years)

F 57 1.71

M 60 1.83

F 45 1.81

M 62 1.94

M 44 1.95

M 51 1.68

M 58 1.97

M 53 1.80

M 71 2.12

M 65 1.90

M 51 1.94

Table 3 Ascending aortas: average dimensions for different groups

Diameter (mm) Thickness (mm)

Control group 0A 22.0 ± 2.2 1.9 ± 0.3

Control group 0B 23.7 ± 4.4 2.2 ± 0.3

Bicuspid aortic valve group I 38.0 ± 2.0 1.9 ± 0.2

Aneurysm group I 38.5 ± 7.7 2.0 ± 0.3

ered in this study is shown in Fig. 1. This arch configuration, which corresponds to

approximately 70 % of the population [1], belonged to to a 44 years-old woman of

65 kg in weight and 1.60 m tall. All the in-vitro mechanical tests described in this

work have been performed in the same day using samples obtained immediately

after excision (i.e., one day from the time of death to testing). Although for exper-

imental purposes the use of more samples would have been desirable, it should be
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Fig. 1 Human aortic arch considered in the analysis: a frontal view and b top view

noted that healthy and young aortic arches are not easily available. However, taking

into account the low dispersion observed in the mechanical response of healthy and

young human thoracic descending aortas in tensile and pressurization tests [38], the

mechanical characterization described below can be assumed to provide a represen-

tative behaviour of aortic arches belonging to young donors without cardiovascular

pathologies.

The present study is focused on two groups selected according to the age of the

donors: 16–36 (12 patients) and 65–90 (8 patients). The experimentally measured

average diameter and thickness values at different locations of the sample are sum-

marised in Table 4. Moreover, the average radius of the arch directrix for both groups

was 37 mm ±4.5 (a similar value was reported by Beller et al. [5]).

Descending Aortas
All these samples came from cardiac transplant young and adult donors without pre-

vious arterial risk factors (i.e., tissues with low cholesterol levels and absence of arte-

rial pathologies of donors with neither smoking nor diabetes records) whose deaths

were not related to cardiovascular problems (e.g., automobile accidents, suicide, etc.)

and, in addition, from autopsies of newborns that presented cerebral death. Aorta

segments with an approximate length of 50 mm were considered in this study. All

the in-vitro mechanical tests described in this work have been performed in the same

day using samples obtained immediately after their excision (the time between the

death of the donors and the moment of excision was around 20 h in all cases). After

harvesting, the aortic tissue specimens were stored in refrigerated saline at 4
◦
C.

Table 4 Average external diameter and thickness of different parts of the aortic arch

Vessel

Brachyocephalic trunk Carotid artery Subclavian artery Aorta

Diameter (mm) 12.0 ± 0.34 10.1 ± 0.25 11.2 ± 0.31 24.4 ± 0.45
Thickness (mm) 2.06 ± 0.11 1.89 ± 0.21 2.10 ± 0.08 1.95 ± 0.15
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Table 5 Descending aortas: data of Group A (newborns)

Vessel Sex Weight (kg) Height (m)

A1 F 2.8 0.49

A2 M 3.5 0.53

Table 6 Descending aortas: data of Group B (youngs)

Vessel Sex Age (Years) Weight (kg) Height (m)

B1 F 32 63 1.64

B2 F 21 75 1.75

B3 F 36 49 1.65

B4 F 20 52 1.60

B5 M 35 75 1.65

Table 7 Descending aortas: data of Group C (adults)

Vessel Sex Age (Years) Weight (kg) Height (m)

C1 F 60 65 1.60

C2 M 45 85 1.70

C3 M 53 73 1.66

C4 M 57 60 1.70

C5 F 46 75 1.68

The analyzed vessels consisted of thoracic descending aortas that were classified

in three groups, named as A, B and C, whose data is respectively shown in Tables 5,

6 and 7. Group A corresponds to newborns while the respective age intervals for

the samples of Groups B and C are 20–36 and 45–60. Although for experimental

purposes the use of more human newborn samples would have been desirable, it

should be noted that this kind of arteries are difficult to get due to the low mortality

rate of newborns and, in addition, to the social dramatic conditions involved in such

cases.

The composition and structure of the tissues to be mechanically tested were firstly

studied via a histological analysis performed by specialist of the Hospital Puerta de

Hierro at Madrid. Images of the vessels were taken in order to quantify the fractions

of nuclei, elastin and collagen, to study the distribution of elastin and collagen fibers.

This analysis ratified the absence of damaged tissue.

2.1.2 Tensile Test

One of the most common procedures to characterize the passive mechanical behav-

iour of the human aortic wall is the tensile test. Specifically, the aim of this test is to
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obtain a stress-strain relationship of the material under a uniform deformation pat-

tern. This test also provides other important material data as its maximum strength

and rupture elongation. In this study, the strip samples were obtained from the dif-

ferent parts (i.e., ascending, arch and descending) of the aortic tissue wall.

The tensile test assembly together with the clamp used to fix the sample to the jaws

is shown in Fig. 2. The tests were carried out with the specimens fixed to the grips of

an electromechanical tensile testing machine (Instron 5866) and permanently sub-

merged in physiological serum (standard Phosphate Buffered Saline, PBS) at a tem-

perature of 37 ± 0.5 ◦
C controlled by a K-type thermocouple located in the chamber

and close to the artery (<4 mm). The axial force was measured by means of a 10 N

load cell (Instron 2519-101, accuracy better than 5 mN) and the crosshead displace-

ment was taken as a direct measurement of the elongation of the sample, as the

compliance of the aortic specimen had been estimated as being 100 times greater

than that of the equipment (it should be noted that this strain measure was found

to be practically the same as that obtained via video-extensometer measurements

of the axial displacement between two markers drawn on the sample [38]; for sim-

plicity, the first procedure was adopted in the present study). The machine internal

LVDT sensor (accuracy better than 10 m) was used to measure the displacement of

the crosshead.

The tests were performed in the passive state, without electrical or chemical acti-

vation of the vascular wall. In order to achieve uniform conditions for each sample,

a time interval of 10 min was considered between the end of the assembly and the

beginning of the test. To precondition the samples, ten successive loading-unloading

cycles between 0 and 30 % of the maximum load were executed to remove the initial

stress relaxation effect and to yield a stable response. The load cell velocity consid-

ered in the tests up to the rupture of the sample was 0.03 mm/s (which results in a

deformation rate of 15 %/min approximately).

10 162

5

bc

d

a

b

Fig. 2 Tensile test assembly; a Physiological serum exit, b Sample (dimensions in mm), c Physi-

ological serum entry, d Supporting jaws
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In this study, the strip samples were obtained from the artery wall. The sample

dimensions were selected on the basis of balancing the larger number of specimens

with the ease in their manipulation during the experiment (in average, ten samples

were obtained for each available vessel). The chosen sample length and width are

plotted in Fig. 2. As usual, the samples were cut along the longitudinal and circum-

ferential directions in order to characterize the degree of anisotropy in the material

response [38, 72, 79]. These directions are respectively denoted by the angles 0◦ and

90◦. At least six samples of the different parts of the aorta were tested for each direc-

tion. Only tests exhibiting rupture at approximately the center of the sample have

been considered. Since the artery wall is composed of three different layers [36],

valid results are assumed up to the rupture instant of any of such layers. The speci-

men thickness was measured on each sample by means of a Mitutoyo 7301 thickness

gage with 10 m accuracy (e.g., initial thicknesses ranged from 1.6 to 2.1 mm and 1.5

mm to 2.4 mm for ascending and thoracic descending aortic samples, respectively).

Axial load and axial jaws displacement were recorded during the whole test. The

Cauchy axial stress 𝜎1 was computed as F∕A, where F is the axial load and A is

the current transversal area. The axial stretch λ1 was calculated as L∕L0, with L and

L0 being the current and initial sample lengths, respectively. The current transversal

area A is evaluated through the incompressibility condition that leads to A = A0∕λ1,

where A0 is the initial transversal area of the sample. Moreover, assuming a uni-

form strain distribution along the sample, the stresses associated with two orthogonal

directions perpendicular to the loading direction 1 vanish, i.e., 𝜎2 = 𝜎3 = 0.

2.1.3 Pressurization Test

This test is intended to mimic the in-vivo loading conditions that exist in the vessel at

the interior of the human body. In this test, the vessel is subjected to an axial deforma-

tion in the tensile machine followed by the application of internal pressure by means

of a external compressor [46]. To this end, both ends of the specimen are clamped

to the jaws. These boundary conditions together with some particular features of the

vessel (e.g., relatively low wall thickness to diameter and diameter to length ratios,

material heterogeneity and cylindrical asymmetry) typically cause a complex stress

pattern in the sample. However, a nearly uniform stress distribution at least at the

central region of the sample may develop when large length to diameter and diam-

eter to thickness ratios are used; e.g., length/diameter ≥ 5 and diameter/thickness

≥ 10 [76].

In this study, the following initial ratios were considered: length/diameter = 6.5

and diameter/thickness = 10. As mentioned above, these sample dimensions guar-

antee the development of approximately uniform stress patterns in the wall. The

adopted setup of the pressurization test was that already described in [46]. Figure 3

shows the experimental assembly used in this work. The tissue response in both the

physiological and high pressure ranges is specifically analyzed.

Internal pressure, axial jaws displacement and external diameter of the vessel

were recorded during the whole test. An optical extensometer was used to record the
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Fig. 3 Experimental

assembly of the

pressurization test. a Artery,

b Optical extensometer

b

a

external diameter evolution. Curves of internal pressure Pi versus circumferential

stretch λ
𝜃

for different levels of longitudinal stretch λz were obtained. The circum-

ferential stretch was defined as D∕D0, where D and D0 denote the current and initial

diameters of the tube, respectively. As in the previous test, the longitudinal stretch

was calculated as the ratio between the current and initial lengths of the tube. More-

over, in order to improve the accuracy of the measurements of D, small pieces of

tissue located at the outer surface of the sample were removed before its assembly

for the test. Once again, ten successive loading cycles up to an axial stretch value

of 1.2 followed by a pressure value of 200 mmHg were executed to precondition the

samples.

2.1.4 Bending and Pressurization Test of the Aortic Arch

This test is aimed at assessing the mechanical response of the human aortic arch

when it is subjected to large quasi-static deformations given by severe bending, axial

stretching and internal pressurization. The initial configuration of the artery (shown

in Fig. 1) is approximately a 90◦ circular arch with medium radius of 28.5 mm where

the average internal diameter and thickness of the transversal section of the arch are

18 mm and 1.3 mm, respectively.

The test was carried out with the specimen permanently submerged in physiolog-

ical serum (PBS) at a temperature of 37 ± 0.5 ◦
C. In order to achieve uniform tem-

perature conditions in the sample, a time interval of 10 min was considered between

the end of the assembly and the beginning of the test.

In this test, the bending stage is performed to place the specimen in the tensile

machine jaws as shown in Fig. 4. The self-contact wrinkles that can be seen in the

front view are due to the local buckling that develops in this zone during the bending.

In contrast, the tissue observed in the back view exhibits a tensile axial stress state.
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Fig. 4 Aortic arch sample mounted and clampled in the tensile machine jaws (end of bending

stage); a front view and b back view

The next loading stage is achieved by axially deforming the arch whereas the

subsequent pressurization stage consists in the application of internal pressure by

means of an external compressor that injects PBS into the artery (further details of

the experimental setup can be found in Guinea et al. [46]). The full loading sequence

is schematically depicted in Fig. 5.

The axial stretching stage is accomplished via a prescribed displacement that cor-

responds to an average longitudinal stretch, defined as the ratio between the final and

initial lengths of the artery axis, of 1.7. The initial length of the artery axis is con-

sidered as the average of the internal and external arc lengths (measured via image

postprocessing with an error of±2.0mm) while the final length of the artery axis cor-

responds to the final distance between the jaws. This displacement value was selected

to remove the wrinkles and, thus, to allow more accurate measurements of the exter-

nal diameter of the artery during the pressurization stage. Moreover, the load cell

velocity considered in the tests up to the rupture of the sample was 0.03 mm/s.

Internal pressure and external diameter of the sample were recorded during

the pressurization stage. An optical extensometer was used to acquire the external

Pressurization

Bending
Stretching

Artery axis

Fig. 5 Loading sequence applied to an aortic arch sample: bending, axial stretching and internal

pressurization
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diameter evolution (with a precision of 0.001 mm) along the height of the sample.

Although the deformed cross-sections were no longer circular, the diameter values

measured from the optical extensometer located at different angular positions var-

ied around 10 % with respect to the maximum diameter. Moreover, ten successive

loading cycles up to a pressure value of 200 mmHg were executed to precondition

the samples. This pressure level is beyond the normal physiological range (i.e., 80–

120 mmHg). The pressure rate considered in this stage was 1 mmHg/s.

2.2 Constitutive Modeling

According to the measurements to be presented in Sect. 3, an elastic (either isotropic

or anisotropic) and rate-independent material response is considered for the artery

analyzed in the present work. Moreover, its behaviour is taken as incompressible due

to the large amount of water present in it [78]. To this end, hyperelastic constitutive

models can be used to describe its mechanical response [36, 51, 61, 69, 76, 82, 85].

In this context, a deformation energy function W, assumed to describe the isother-

mal material behaviour under any loading conditions, is usually defined in terms of

the right Cauchy deformation tensor C = FT ⋅ F, where F is the deformation gradi-

ent tensor and T is the transpose symbol (note that det F = 1 in this case). Invoking

classical arguments of continuum mechanics, the Cauchy stress tensor 𝝈 is defined

as 𝝈 = 2F ⋅ 𝜕W
𝜕C

⋅ FT
. The isotropic and anisotropic constitutive models considered in

this work are separately described below. Both constitutive models are implemented

in an in-house finite element code extensively validated in many engineering appli-

cations where isoparametric elements including a B-bar technique are used to avoid

numerical locking due to material incompressibility (see Celentano [14] and refer-

ences therein).

2.2.1 Demiray Model

The isotropic energy function proposed by Demiray [26] is expressed as:

W = a
b

[
exp

(b
2
(
I1 − 3

))
− 1

]
(1)

where I1 is the first invariant of C (I1 = tr(C), tr being the trace symbol). Although

this isotropic model is relatively simple (i.e., only depends on I1), reasonably good

responses at high levels of deformation can be predicted with it [25]. Only two con-

stants, a and b, are needed for the material characterization where the parameter a
has a clear physical meaning given by the slope at the origin of the Cauchy stress

versus stretch tensile test curve.

The constitutive model expressed by Eq. 1 is adopted in this work to assess its

capabilities in the prediction of the material responses to be presented in Sect. 3
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by using the material parameters obtained from the mechanical characterization

described below. Although the Demiray model is used in the present study to assess

the risk of rupture, it should be noted that it cannot predict the risk of dissection

since it does not take into account the layered nature of the tissue.

2.2.2 Holzapfel Model

The Holzapfel model adopted in this work aims at consistently characterizing the

material anisotropy present in the internal structure of artery tissues [51]. To this

end, it assumes that the colagen fibers, which are strongly involved in the mechan-

ical response at moderate-to-high levels of deformation, are helically oriented by

means of an approximately constant angle with the artery axis. This model, formu-

lated within the pseudo-invariants framework developed by Spencer [97], considers

the orientations of two symmetric family of fibers defined in the reference (initial)

configuration through two unit vectors a and a′ disposed with an angle ±𝜑 with the

vessel axis; see Fig. 6 (it should be noted that, for simplicity, neither fiber disper-

sion nor layer-specific responses have been considered; see e.g., Holzapfel et al. [52]

and Gasser et al. [41]). The following two invariants can be accordingly defined:

I4 = a ⋅ C ⋅ a and I6 = a′ ⋅ C ⋅ a′. In this context, the energy function proposed by

Holzapfel and Gasser [51] is written as:

W = 𝜇

2
(I1 − 3) +

k1
2k2

∑
i=4,6

[
exp

(
k2(Ii − 1)2

)
− 1

]
(2)

where I1 is the first invariant of C (I1 = tr(C), tr being the trace symbol) and

𝜇, k1, k2, 𝜑 are material parameters (all with positive values). In Eq. 2, the first term

expressed by a classical Neo-Hookean isotropic model is intended to describe the

Fig. 6 Holzapfel-type

material tensile sample
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elastin response while the goal of the other terms is to predict the anisotropic behav-

iour of the artery given by the directions of the colagen fibers defined, in turn, by the

invariants I4 and I6. Since this model only accounts for macroscopic response, the

collagen fraction quantified in the histological analysis is not explicitly considered in

this context. Its capabilities in the predictions of the material response are illustrated

in Sect. 3.

2.3 Material Characterization via the Tensile Test

2.3.1 Determination of Characteristic Stress and Strain Values

True stress (𝜎) versus stretch (λ) relationships for all the tests were derived from

experimental load-displacement curves. When tensile tested, aortic wall specimens

either circumferential or longitudinal typically display the characteristic J-shape

curve depicted in Fig. 7. For small values of applied stress, the aortic tissue exhibits a

compliant behaviour that turns into a much stiffer response when stresses exceed the

elbow of the curve. To simplify the analysis and allow comparison among different

specimens, the stress-stretch curve was condensed into three parameters that sum-

marised the main mechanical response of the arterial wall: the stretch and stress at

the breaking point (λR, 𝜎R), and the stress at the transition point, or elbow, between

the compliant and the stiff regions (𝜎e).

The breaking point of the sample was defined as the first point where one of

its layers fails, easily identified in the tensile curve by a sudden drop of the load.

Although in the vascular biomechanics literature the ultimate tensile strength is usu-

Fig. 7 Stress-stretch curve

of an aortic tissue and

mechanical parameters
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ally taken as the stress at the rupture stage, in the measurements reported in this work

the difference between these two definitions was less than 5 %. Therefore, the values

presented in this study are comparable to other published data. Moreover, the elbow

stress was determined by the change in the first derivative of stress with respect to

stretch, according to the procedure given in the appendix.

Data processing and statistics At least six specimens were tensile tested per indi-

vidual, three in each of two directions (longitudinal and circumferential). All in all,

355 tests on ascending aortic tissue were carried out. Values of the three parame-

ters defined above were averaged for each individual and orientation, and individual

means averaged again for each study group and orientation. Data are presented as

mean ± standard error. An unpaired 2-tailed Student’s t test was performed to com-

pare mechanical parameters. Significance was assumed for p as less than 0.05.

2.3.2 Fitting of Model Material Parameters

The aim of this section is to determine the material parameters of the Demiray and

Holzapfel constitutive model briefly presented in Sect. 2.2 from the uniaxial test mea-

surements to be reported in Sect. 3.

Demiray Model
For the Demiray constitutive model, the Cauchy stress associated to the loading

direction 1 can be exclusively written in terms of the related stretch λ1 since the

incompressibility constraint for an isotropic behaviour reads as λ2 = λ3 =
1√
λ1

[76].

Thus:

𝜎1 = a
(

λ
2
1 −

1
λ1

)
exp

[
b
2

(
λ
2
1 +

2
λ1

− 3
)]

(3)

In this case, the logarithmic version of Eq. 3 results in a linear least-squares fitting

procedure of the material parameters a and b [40]. Moreover, equal weights for both

the longitudinal and circumferential responses were simultaneously considered. The

resulting material parameters for some vessels studied in this work are presented in

Sect. 3.

Holzapfel Model
For the Holzapfel constitutive model it is not possible to obtain a closed expres-

sion for the Cauchy stress 𝜎1 (stress associated with the loading direction 1) and

the related stretch λ1. Therefore, this aspect precludes in this case a straightforward

derivation of the related material parameters. According to the procedure described

in Ogden [77], the material response during the tensile test predicted by this model

is governed by:

𝜎1 = 𝜇

(
λ
2
1 −

1
λ2
1 λ2

2

)
+ 2W4λ

2
1 cos

2(𝜑 − 𝛼) + 2W6λ
2
1 cos

2(𝜑 + 𝛼) (4)
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𝜎2 = 𝜇

(
λ
2
2 −

1
λ2
1 λ2

2

)
+ 2W4λ

2
2 sin

2(𝜑 − 𝛼) + 2W6λ
2
2 sin

2(𝜑 + 𝛼) = 0 (5)

where Wi = 𝜕W∕𝜕Ii (i = 4, 6) and 𝛼 denotes the sample orientation (i.e., 𝛼 = 0◦ and

𝛼 = 90◦ for longitudinal and circumferential samples, respectively; see Fig. 6). In

this case, the 𝜎1(λ1) expression can be obtained by previously solving λ2 from Eq. 5

for an estimated set of material parameters (i.e., 𝜇, k1, k2, 𝜑) and a given value of

λ1. This last operation is performed through the application of the Newton-Raphson

method due to the non-linear nature of Eq. 5.

The fitting procedure to determine the material parameters for the Holzapfel

model is inherently non-linear. Robust and optimal identification procedures have

been developed by Sacks [94], Vande Geest et al. [99, 100]. However, a simpler

alternative approach is considered in the present work. It basically consists in two

steps respectively associated with the two elongation zones defined in Sect. 2.3.1

[13, 53]:

(1) Estimation of parameter 𝜇 through a linear least-squares computation aimed at

exclusively characterizing the isotropic response (i.e., the anisotropic terms of

the energy function (2) are neglected at this stage) at low stretching levels.

(2) Derivation, at high levels of elongation, of the anisotropic parameters k1, k2, 𝜑
(with a fixed 𝜇 value) via a non-linear least-squares expression solved with the

Levenberg-Marquardt algorithm [67]. In this step, the constraint λ2 < 1 is addi-

tionally considered in order to obtain a more realistic material response.

Finally, the fitting procedure simultaneously considers both the longitudinal and

circumferential responses where equal weights are adopted for the two sample direc-

tions.

2.4 Analysis of the Pressurization Test

Although some authors have used this test to derive material parameters for different

constitutive models [91, 96], the aim of the present analysis is to assess the ability

of the material characterization previously described in Sect. 2.3 via tensile tests to

properly model the behaviour of the vessel when it is subjected to axial load and

internal pressure.

The mechanical response of the pressurized artery is analyzed in this work by

using the constitutive models presented in Sect. 2.2. The effects of both residual

stresses and instabilities due to buckling are neglected. It is further assumed here

that the artery is a homogeneous thin-walled cylinder with a large length to diameter

ratio in order to neglect edge effects. At what extent this relatively simple approach

is able to realistically describe the average material response during the pressuriza-

tion test is another objective of this study. For the loading conditions carried out in
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the experiments shown in Sect. 2.1.3, the material response provided by the Demiray

and Holzapfel constitutive models are presented below.

Demiray Model

Pi =
2aB0

D0 λ
𝜃
λz

(
λ
𝜃

− 1
λ3
𝜃

λ2
z

)
exp

[b
2
(
λ
2
𝜃

+ λ
2
z − 1

)2]
(6)

Holzapfel Model

Pi =
2𝜇B0

D0 λ
𝜃
λz

(
λ
𝜃

− 1
λ3
𝜃

λ2
z

)
+ 8k1

B0
D0 λ

𝜃
λz

exp
[
k2

(
λ
2
𝜃

sin2 𝜑 + λ
2
z cos

2
𝜑 − 1

)2]
(
λ
2
𝜃

sin2 𝜑 + λ
2
z cos

2
𝜑 − 1

)
λ
𝜃

sin2 𝜑
(7)

where Pi is the pressure, λ
𝜃

is the circumferential stretch, λz is the axial stretch, D0
is the initial diameter and B0 is the initial thickness of the vessel wall.

3 Results

3.1 Ascending Aorta

3.1.1 Tensile Stretches

Tensile stretches at failure are shown in Fig. 8. To evaluate the anisotropy of the

arterial wall, circumferential and longitudinal values are displayed for every group

in both figures. No distinction has been made between male and female specimens, as

no significant differences between the two sexes have been found in the experiments.

Directional differences in mechanical behaviour were found for healthy speci-

mens, groups 0 A and 0B, where the circumferential failure stresses were greater

than the longitudinal ones (2.18 ± 0.24 vs. 1.14 ± 0.10 MPa, p = 0.001 for group

0A and 1.20 ± 0.20 vs. 0.66 ± 0.07 MPa, p = 0.02 for group 0B). A similar trend

was observed for BAV and aneurismal groups, although only in the BAV group the

difference was statistically significant (1.23 ± 0.15 MPa circumferential vs. 0.84 ±
0.10 MPa longitudinal, p = 0.04 for group I (BAV), and 1.19 ± 0.13 MPa circumfer-

ential vs. 0.88 ± 0.12 MPa longitudinal, p = 0.09 for group II).

Values of stretch at failure, shown in Fig. 9, confirm the anisotropy of the young

healthy specimens, group 0A, (2.35 ± 0.10 circumferential vs. 2.00 ± 0.10 longitu-

dinal, p = 0.03) and BAV aortic wall tissues, group I (1.80 ± 0.08 circumferential

vs. 1.58 ± 0.06 longitudinal, p = 0.04), with the differences being non significant for

the other groups, either healthy (0B) or diseased (II).
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Fig. 8 Stretch at failure (mean ± standard error) of ascending aortic wall samples for healthy and

pathologic groups

Fig. 9 Procedure to obtain

the circumferential stretch

for in-vivo conditions

3.1.2 Tensile Strengths

The tensile strengths of the ascending aortic wall for the two control groups 0A

and 0B (young and old specimens, respectively) and the two groups of pathologies

considered in the study. To assess the risk of rupture of aortic ascending wall, tensile

strengths have to be compared with the circumferential stresses exerted on the aortic

wall by blood pressure, which can be readily evaluated to a good approximation by

means of the thin-walled tube equation: 𝜎
𝜃

= p
2t λ𝜃

λz(λ𝜃

D − t
λ
𝜃
λz
), where 𝜎

𝜃

is the

circumferential stress, p is the blood pressure, λ
𝜃

is the circumferential stretch, λz
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is the longitudinal stretch, t the wall thickness and D the aortic diameter. Note that

𝜎
𝜃

, p,λ
𝜃

,λz are in-vivo variables while D, t are in-vitro variables (see Table 3).

This equation allows the computation of the in vivo circumferential stress consid-

ering the following assumptions: (1) the longitudinal stretch under in vivo conditions

is λz = 1.2 [56] and (2) the circumferential stretch λ
𝜃

is estimated from the tensile

test measurements, as depicted in Fig. 10, resulting the values 1.52, 1.47, 1.44 and

1.38 for groups 0A, 0B, I and II, respectively. Figure 10 shows the mean circum-

ferential wall stresses computed for every group of study under the assumption of

normotensive pressure levels (100 mmHg). The in-vivo ascending aortic diameters

agree well with those reported in the literature for healthy specimens of correspond-

ing age (around 30 ± 0.5 mm) [48] and for bicuspid aortic valve group (50 ± 4 mm)

[79]. For aneurysm group (II), the computed in vivo circumferential wall stresses

is similar to that measured elsewhere from a group of age-matched patients (65 ±
5 years) [60].

Stress at the elbow of the tensile curve Tensile curves of aortic wall specimens

display an initial compliant zone for small and medium strains followed by a region

of higher stiffness. Elastin fibres contribute mostly to the first part of the curve, while

progressive recruitment and extension of collagen fibres are responsible for the sec-

ond region [90]. The transition zone, or elbow point, is usually well marked and

can be characterised by its corresponding stress. Figure 11 plots the circumferen-

tial elbow stresses for the four groups of aortic specimens considered in this work.

Elbow stresses were computed from stress-strain curves, as explained in the appen-

dix. Figure 11 also shows the mean circumferential wall stresses produced by blood

pressure (100 mmHg) that were estimated earlier in this section.

The elbow stress decreases markedly with age, with it being more than halved

in healthy specimens from 0.31 ± 0.02 MPa for group 0A (25 ± 3 years) to 0.14 ±

Fig. 10 Tensile strength (mean ± standard error) of ascending aortic wall samples for healthy and

pathologic groups. The mean physiological stress level in the aortic wall at 100 mmHg is shown for

each group
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Fig. 11 Elbow stress (mean

± standard error) of

ascending aortic wall

samples for healthy and

pathologic groups. The mean

physiological stress level in

the aortic wall at 100 mmHg

is shown for each group

0.02 MPa for group 0B (51 ± 2 years). Pathologies do not show a subsequent reduc-

tion of elbow stress, as their values do not show significant differences with respect

to group 0B (0.15 ± 0.02 for group I, bicuspid aortic valve, and 0.13 ± 0.02 MPa for

group II, aneurysm).

3.2 Aortic Arch

3.2.1 Tensile Test

The average stress-stretch curves corresponding to an adult group (see Table 8) for

both the longitudinal and circumferential directions are plotted in Fig. 12 (the verti-

cal bars denote the standard error, i.e., the ratio between the standard deviation and

the square root of the number of specimens). It should be noted that similar material

responses were observed at different positions around the circumference and along

the length of the artery. Therefore, the good repeatability achieved in the experi-

ments justifies the assumption of homogeneity in the constitutive models described

in Sect. 2.2. Moreover, the high rupture stress value obtained for this aortic arch can

be attributable to the fact that this tissue was relatively young and healthy.

The stress-stretch curve obtained by applying a least-squares fitting of the result-

ing 𝜎1(λ1) relationship (3) to the corresponding experimental data for both the longi-

Table 8 Aortic arch groups considered in the study: age interval and material parameters

Material parameters

Group Age a (kPa) b
Young 16–36 104.0 0.844

Adult 36–65 107.0 1.400

Aged 65–90 69.2 5.792
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Fig. 12 Experimental and computed results of Cauchy stress versus stretch for the aortic arch adult

group

tudinal and circumferential directions is plotted in Fig. 12. According to the measure-

ments reported above, the whole stretch range (1.0–2.3) was chosen for the present

material characterization. The resulting material parameters derived with this pro-

cedure are shown in Table 8. These parameters are used in the simulations presented

in Sect. 3.2.2.

The average experimental stress-stretch curves obtained up to the rupture stage

along the circumferential direction for both young and aged groups (see Table 8)

are plotted in Fig. 13 where a good repeatability of the measurements can clearly

be observed. Although not shown, the stress-stretch curves along the axial direction

exhibited no significant differences with those along the circumferential direction in

a wide stretch range ([1.0–2.1] and [1.0–1.6] for the young and aged samples, respec-

tively). Thus, the behaviour can be assumed as practically isotropic since its stiffness

is mainly provided by the elastin component of the tissue. Moreover, it should be

noted that similar material responses were observed at different positions around the

circumference and along the length of the artery. Therefore, these two aspects (i.e.,

material isotropy and homogeneity) justify the assumption that an adequate descrip-

tion of the material behaviour can be simply tackled by means of the constitutive

model expressed by Eq. 1. In addition, the tensile response of arteries belonging to

healthy patients with ages between 37 and 51 years old (not shown here) exhibits an

intermediate response between those presented in Fig. 13.

The stress-stretch curves obtained by applying a least-squares fitting of Eq. 3 to

the corresponding experimental data are also plotted in Fig. 13. The material para-

meters derived with this methodology are included in Table 8. A detailed description

of this material characterisation procedure is reported in García-Herrera et al. [40].

These parameters are used in the simulations presented in Sect. 3.2.3.
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Fig. 13 Experimental

measurements and computed

results of Cauchy stress

versus stretch along the

circumferential direction for

the aortic arch young and

aged groups (r2Young = 0.996
and r2Aged = 0.961)
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3.2.2 Bending and Pressurisation Test

The experimentally measured evolution of the internal pressure (during the load-

ing and unloading phases) in terms of the maximum external diameter for the axial

stretch achieved in the previous loading stage of an artery belonging to the adult

group (see Table 8) is shown in Fig. 14. In this case, the external diameter rate was

found to be 0.05 mm/s approximately (which results in a circumferential deforma-

tion rate of 45 %/min approximately). The average circumferential stretch at the end

of the test, defined as the ratio between the final and initial external diameters of the

artery, was approximately 1.5.

The mechanical response of the human aortic arch during the bending and pres-

surization test already described in Sect. 2.1.4 is analyzed in this work by using the

non-linear constitutive model and the corresponding material parameters respec-

Fig. 14 Experimental and

computed results of internal

pressure versus external

diameter of the adult aortic

arch
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tively presented in Sects. 2.2 and 3.2.1. To this end, a numerical simulation of the

stages involved in such test (i.e., bending including axial stretching and pressuriza-

tion) is carried out. The aortic arch was geometrically discretized as a 90◦ elbow with

constant internal diameter and thickness (18 mm and 1.3 mm, respectively). A con-

vergence study of the numerical response to different discretizations was performed.

The resulting finite element mesh shown in Fig. 15a is composed of 1280 eight-noded

isoparametric elements. It is seen that only one half of the arch was considered in

the computations owing to the symmetry of the problem. A finer discretization was

chosen for both ends since large strain and stress gradients are expected in those

zones.

The boundary conditions adopted in the simulation, which are essentially the

same as those imposed in the experiment, are schematically depicted in Fig. 5. The

lower end was clamped during the whole test. The bending stage (which also involves

axial stretching in the present analysis) was carried out by applying a prescribed dis-

placement at the upper end of the arch (as in the experiment, with an average longi-

tudinal stretch of 1.7) in order to straighten it. In this way, the numerical simulation

of local buckling and self-contact developed during the purely bending phase shown

in Fig. 4 was avoided. As the mechanical behaviour of the arch is considered elastic,

Fig. 15 Deformed configurations of the adult aortic arch for different steps of the numerical sim-

ulation: initial (a), bending and axial stretching (b, c) and pressurization (d–f)
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V

End of bending End of pressurization

I II III

IV

Fig. 16 Maximum principal stress contours (Pa) of the adult aortic arch

it can be assumed that the simplified boundary conditions adopted in the simulation

do not affect the predictions of the material response (this load-history independent

response was verified by performing an additional simulation with exactly the same

boundary conditions as those of the experiment where, in this case, self-contact is

developed at the end of the bending stage). Then, the upper end was clamped to

subsequently perform the pressurization stage up to a final pressure value of 200

mmHg (it should be mentioned that the additional non-linearity that resulted from

this follower load was taken into account in the simulation). Moreover, due to the

large deformations considered in this test, the effect of the residual stress is neglected

in the present analysis (according to [38], the residual stresses can be estimated as

20 % of the stresses in an artery loaded within the physiological range).

Figure 15 depicts the computed deformed configurations of the adult aortic arch

during the whole loading sequence: bending (b, c) and pressurization (d–f).

Figure 16 plots maximum principal stress contours at the end of the bending and

pressurization stages.

The computed curve of the internal pressure versus the maximum external diam-

eter of the adult aortic arch is plotted in Fig. 14. Moreover, qualitative and quantita-

tive experimental-numerical comparisons of the final deformed configuration of this

artery are respectively shown in Figs. 17 and 18.

3.2.3 Simulation Under In-Vivo Conditions

This section presents the numerical simulation of the mechanical response of young

and aged human aortic archs (see Table 8) under in-vivo normal and hypertension
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Fig. 17 Final deformed configuration of the adult aortic arch: experiment (left) and simulation

(right)

Fig. 18 Maximum external

diameter distribution along

the length of the adult aortic

arch

 20

 22

 24

 26

 28

 30

 32

 34

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
ax

im
um

 e
xt

er
na

l d
ia

m
et

er
 [

m
m

]

Axial relative position at the final deformed configuration

Experimental
FE Simulation

physiological conditions, i.e., systolic pressure of 120 and 160 mmHg, respectively.

To this end, important aspects related to this analysis are separately presented below.

Geometry and Boundary Conditions
The geometry of the human aortic arch used in the numerical simulation carried

out in this work was obtained from anatomical data of adults [6, 83] and from the

samples considered in Sect. 2.1.1. The geometric configuration corresponds to the

arch subjected to the diastolic pressure (80 mmHg). It should be noted that the ini-

tial stresses resulting from this condition must be taken into account in the simula-

tion, otherwise the response is fictitiously flexible. This aspect is described in below.

Figure 19 depicts the geometry of the human aortic arch considered in the present

analysis.

In-vivo measurements on healthy patients during their cardiac cycle reported by

Beller et al. [5] are adopted here in order to define appropriate boundary conditions.
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Fig. 19 Geometry and boundary conditions of the human aortic arch considered in the analysis

for young and aged groups (dimensions in mm)

They encompass three types of kinematic constraints. Firstly, the axial motion of

the aortic root, caused by its connection to the left ventricle, consisting in an axial

displacement of u = 8.9mm and a rotation of 𝜙0 = 6◦; see Fig. 19. Secondly, the

other four edges of the aortic arch are assumed to be axially fixed and unconstrained

along the radial direction. Thirdly, the effect of the ligamentum arteriosum is taken

into account by means of a spring element with a stiffness ten times higher than

that of the aortic arch tissue. The influence of this ligamentum on the mechanical

response of the aortic arch under extreme scenarios was described by Richens et al.

[87, 88]. All these boundary conditions are shown in Fig. 19.

Estimation of Initial Stresses
The in-vivo initial stresses present in the different arteries of the aortic arch are esti-

mated in this work for the diastolic pressure (80 mmHg) together with and axial

stretch of 1.2 according to the measurements reported by Chuong and Fung [16].

Both the circumferential 𝜎
𝜃

and axial 𝜎z components of the stress tensor are firstly

computed with the thin-walled equation for cylinders [39]. The assumption of con-

stant stress along the wall thickness is justified by the long recognized fact that the

main purpose of the initial hoop stress radial distribution that develops along the

artery wall is the achievement of a nearly uniform stress pattern in the vessel when

it is subjected to standard physiological loading states [36, 79]. The obtained values

for the initial circumferential and axial stress components are summarised in Table 9.

However, this computed initial stress field does not strictly fulfill, in general, the equi-

librium with the internal pressure (80 mmHg). This drawback is overcome via the

numerical procedure described below.
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Table 9 First estimation for the initial stress components of young and aged arteries at a pressure

of 80 mmHg

Vessel 𝜎
𝜃

(kPa) 𝜎z (kPa)

Aortic arch 65.1 32.6

Brachyocephalic trunk 32.0 16.0

Carotid artery 26.7 13.4

Subclavian artery 26.7 13.4

The approach to obtain a compatible initial stress field is iteratively tackled by

solving the equilibrium equations together with the Demiray constitutive model

using the finite element method [40] until the condition of a nearly zero displace-

ment field for the whole aortic arch is fulfilled. For this problem, a maximum admis-

sible diameter variation of 2 % was chosen. The converged initial maximum principal

stress field obtained with this procedure, which is considered in the simulations pre-

sented below, is shown in Fig. 20. It is seen that the stresses are mainly concentrated

at the vicinity of the bifurcations and ligamentum arteriosum. Although the stress

distribution is not uniform along the thickness, the corresponding average values

nearly agree with those summarised in Table 10. It should be noted the stress con-

centrations located around these zones were found to not be strongly affected by the

curvature radii of the junctions of the branches from the aorta.

Stress and Stretch Contours
As mentioned above, the mechanical response of a human aortic arch is simulated

under in-vivo normal and hypertension physiological conditions. In the first case,

the systolic pressure of 120 mmHg is applied to the young aortic arch. In the second

case, the effect of the hypertension pressure of 160 mmHg on young and aged vessels

is analysed.

The simulations were carried out using the non-linear constitutive model and the

corresponding material parameters respectively presented in Sects. 2.2 and 3.2.1.

The finite element mesh used in the simulations was composed of 28,437 nodes

and 22,176 isoparametric hexahedra. Four elements were considered along the wall

thickness in order to properly capture the stress radial gradients that may develop in

the different regions of the aortic arch. It should be noted that this mesh is the result of

a previous convergence study of the numerical response to different discretisations.

Table 10 Material parameters of the constitutive model for newborn, young and adult thoracic

descending aortas

Group 𝜇 (kPa) k1 (kPa) k2 (kPa) 𝜑 (
◦
) R2

A 21.972 3.011 0.7667 63.67 0.98

B 37.202 14.085 3.4752 43.88 0.95

C 24.655 45.055 5.3279 42.19 0.88
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Fig. 20 Computed initial maximum principal stress at 80 mmHg for young and aged groups

The maximum principal stress and stretch contours at the deformed configuration

for the young aortic arch subjected to 120 mmHg are plotted in Fig. 21. The same

results at 160 mmHg for the young and aged aortic archs are respectively shown in

Figs. 22 and 23. In addition, the radial, circumferential and longitudinal stress com-

ponents computed for the hypertension conditions for both groups are respectively

depicted in Figs. 24 and 25.

3.3 Descending Aorta

3.3.1 Tensile Test

The experimental average stress-stretch curves corresponding to the thoracic

descending aorta Groups A, B and C (see Tables 5, 6 and 7, respectively) for both

the longitudinal and circumferential directions are plotted in Fig. 26 (the vertical bars
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(a) (b)

Fig. 21 Deformed configuration for the young aortic arch at 120 mmHg: a maximum principal

stress (Pa) and b maximum principal stretch

denote the standard error, i.e., the ratio between the standard deviation and the square

root of the number of specimens).

The stress-stretch curves obtained by applying the least-squares fitting described

in Sect. 2.3 to the corresponding experimental data of Groups A, B and C for both the

longitudinal and circumferential directions are plotted in Fig. 27 whereas Table 10

summarizes the derived material parameters for the Holzapfel constitutive model

and the normalized mean square root error (R2
). According to the measurements

reported above, the stretch range (1.0–1.8) was chosen for the present material char-

acterization since it encompasses a larger deformation interval than that occurring

the pressurization test presented below. Moreover, the computed R2
values show that

a good fitting was achieved for all groups.

3.3.2 Pressurisation Test

Figure 28 shows pressure versus circumferential stretch experimental data corre-

sponding to the thoracic descending aorta Groups B and C for two different values

of λz (1.0 and 1.2), where the two horizontal lines denote the physiological range

of diastole and sistole of the cardiac cycle. The value λz = 1.2 was chosen since it



Mechanical Characterization of the Human Aorta . . . 183

Fig. 22 Deformed configuration for the young aortic arch at 160 mmHg: a maximum principal

stress (Pa) and b maximum principal stretch

Fig. 23 Deformed configuration for the aged aortic arch at 160 mmHg: amaximum principal stress

(Pa) and b maximum principal stretch
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Fig. 24 Deformed configuration for the young aortic arch at 160 mmHg: a radial, b circumferential

and c longitudinal stress components (Pa)



Mechanical Characterization of the Human Aorta . . . 185

Fig. 25 Deformed configuration for the aged aortic arch at 160 mmHg: a radial, b circumferential

and c longitudinal stress components (Pa)
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Fig. 26 Experimental data

of Cauchy stress versus

stretch for newborn, young

and adult thoracic

descending aortas.

a Specimens oriented in

longitudinal direction (0
◦
).

b Specimens oriented in

circumferential direction

(90
◦
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approximately corresponds to the average stretch measured in the vessel before the

excision.

The internal pressure versus circumferential stretch curves obtained with the

Holzapfel model (i.e., Eq. 7) are also presented in Fig. 28. The material response of

Groups B and C is analyzed under the two axial stretch conditions described above.

4 Discussion

4.1 Ascending Aorta

Although our results are partially in agreement with previous data reported elsewhere

[101], which did not find significant difference between circumferential and longi-

tudinal specimens of either control or aneurismal tissue of aged patients, the trend
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Fig. 27 Material

characterization via Cauchy

stress versus stretch curves

for newborn, young and

adult thoracic descending

aortas. a Group A. b Group

B. c Group C
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noted in Fig. 10 suggests that a small anisotropy could be present in both diseased

and healthy aortic walls, as has also been recently reported [57].

While the effect of age on the aortic wall strength had been noticed in dilated

ascending aorta [79], such a phenomenon had not been demonstrated yet in healthy

specimens. Figures 8 and 10 show that age has a predominant role in the mechani-

cal behaviour of the healthy ascending aortic wall, as tensile mechanical resistance

decreases markedly when age is doubled from group 0A to 0B. This effect is more

pronounced in tensile strength, that reduces in group 0B in circumferential direction

up to 55 % of value corresponding to group 0A. In contrast, circumferential stretch

at failure falls only by 22 % from the young to the older specimens. In longitudinal

direction, older specimens retain up to 58 and 89 % of the tensile strength and stretch

at failure of younger ones, respectively, with these differences being statistically sig-

nificant.
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Fig. 28 Internal pressure

versus circumferential stretch

curves for newborn, young

and adult thoracic

descending aortas.

a Group B. b Group C
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The effect of age is even more remarkable if, as noted in Figs. 8 and 10, the reduc-

tion of stress and stretch at failure due to aging places the mechanical parameters of

healthy old specimens either measured in circumferential or longitudinal directions

at a level statistically undistinguishable from pathologic aortas, with the only excep-

tion being the failure stretch of specimens from group I (BAV), which is significantly

lower than the longitudinal stretch of group 0B. Other values of stretch at failure or

tensile strength from group 0B are statistically similar to bicuspid aortic valve (I) or

aneurysm (I) pathologic groups, even though the mean age of group 0B is a little

younger. Our results confirm recently published data on tensile strength of healthy

and aneurysmal ascending aortic tissues [57] and stress the importance of compari-

son of age-matched specimens to avoid biased conclusions.

Another interesting result deduced from Figs. 8 and 10 is that the effect of pathol-

ogy makes no significant differences in rupture parameters, as tensile strengths and

stretches at failure measured on tissues from patients of comparable ages were found

statistically undistinguishable. The measured circumferential tensile strengths and

stretches for groups I (bicuspid aortic valve) and II (aneurysm) are concordant with
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the values reported elsewhere on dilated ascending aortas of age-matching patients

[79].

Tensile strengths of ascending aortic tissues are much higher than wall stresses

for all conditions, with factors of safety (defined as the ratio of tensile strength to

the mean wall stress) about 20 for group 0A. Interestingly, while circumferential

tensile strength seems to reduce to approximately the same stress levels for groups

0B (old healthy), I (bicuspid aortic valve) and II (aneurysm), the factor of safety

shows noticeable differences between healthy and pathologic groups (10.2 for 0B,

and 6.3 and 7.6 for I and II, respectively), thus reflecting the different working stress

at the vessel wall.

Mechanical performance of the ascending aortic wall. The determination of the

tensile strength is of unquestionable interest in evaluating the deterioration and risk

of rupture of aortic wall. Nevertheless, the results shown previously from pathologic

samples that were obtained from patients undergoing aortic replacement demonstrate

that wall stresses due to the cardiac cycle lie fairly below the rupture level of aortic

wall. In contrast, degeneration and dilatation of the aortic wall seems to be a con-

tinuous process caused, among other factors, by the permanent effect of alternating

stresses due to blood pressure. From this perspective, the evaluation of the mechan-

ical performance of the aortic tissue at the working point and its variation with age

and pathology is of primary interest to cardiovascular research.

The circumferential stress level set off by blood pressure causes the aortic wall

to work during the cardiac cycle, either in the compliant elastin-dominated part

before the elbow or in the stiff collagen-dominated zone beyond it. Consequently,

it is expected that variations in the mechanical behaviour of the aortic wall produced

by age or pathologies lead to a change in the position of the elbow point and have a

direct effect on the arterial compliance throughout the cardiac cycle.

When compared to the wall stresses produced by blood pressure, only the elbow

stress of healthy specimens lies above, meaning that these aortas work in the initial

compliant zone. The ratio between the circumferential wall stress and elbow stress

is 0.34 for group 0 A and 0.83 for group 0B, with the older group being close to

the upturning zone. For the pathologic groups the ratio grows to 1.33 and 1.26 (I

and II, respectively), meaning that during physiological operation the aorta works

in the stiffer part of its response curve, losing part of its function of damping the

pressure waves from the cardiac beat. The reduction in distensibility is present in

most pathologies, and connected to deterioration and destructive remodeling of the

aortic wall [44, 57]. Although altered distensibility alone cannot account for a higher

risk of rupture, increases of in vivo stiffness overload collagen fibres and promote a

loss of elastic fibres [57], enlarging aortic diameter and thereby raising the wall stress

and indirectly influencing the risk of rupture. Moreover, reduced aortic elasticity

and aortic root dilatation in nonstenotic BAV patients were previously in in vivo

measurements [45].
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4.2 Aortic Arch

Two zones with different stiffnesses can clearly be identified in the experimental

curves of Fig. 12. At low deformations, the curves show a flexible response with a

nearly constant slope. The first zone ranges up to λ1 ≃ 1.4 for both the longitudi-

nal and circumferential samples. In this first zone the material behaviour is clearly

isotropic, i.e., its stiffness is mainly provided by the elastin component of the tis-

sue. For larger deformations, on the other hand, the slopes of the curves start to

increase up to the rupture stage. The material anisotropy in this second elongation

zone, reflected in the largest differences between the responses corresponding to both

sample directions, is apparent at the very end of the test. This is due to the signifi-

cant action of the collagen fibers that occurs at high elongation levels. However, in

the stretching range (1.0–1.8) the behaviour can be assumed as practically isotropic.

Thus, an adequate description of the material behaviour in this deformation range

(which in turn exhibits a low stress dispersion) can be simply tackled by means of

isotropic constitutive models.

It is also seen in Fig. 12 that the Demiray model provides, due to its isotropic

nature, an average response that lies between those of the two analyzed sample ori-

entations. An excellent adjustment is clearly seen within the stretching range (1.0–

1.8). Although an approximate fitting is achieved at high deformations, the stiffness

increase in these stretching levels is reasonably well captured.

The experimental tensile curves shown in Fig. 13 exhibit two zones with differ-

ent stiffnesses. For low stretching, the curves show a flexible response with a nearly

constant slope. This first zone ranges up to λ1 ≃ 1.35 and λ1 ≃ 1.20 for the young

and aged samples, respectively. For larger stretches, the slope continuously increases

up to the rupture stage. Although some experimental-numerical discrepancies are

noticed (e.g., at high and low levels of deformation for the young and aged samples,

respectively), an overall good adjustment is clearly seen within the full stretching

range for both groups. Moreover, additional experimental tensile tests (not shown)

using samples extracted from regions located near the arterial bifurcations showed

a similar response to that corresponding to the aortic arch (e.g., within the stretch

range [1.0–1.6], the responses are practically the same while a difference of 40 % is

observed for a stretch value of 2.0). The discrepancy at high stretch levels can be

attributable to the action of the complexly oriented collagen fibers. This effect has

been also reported by Hariton et al. [50]. The assumption of homogeneous mechan-

ical properties along the whole arch is clearly a limitation of the present analysis.

The experimental pressure-diameter curves shown in Fig. 14 exhibit a nearly lin-

ear response for pressure values less than 130 mmHg. This is presumably due to

the fact that mainly the elastin is active in this deformation interval. The effect of

the collagen fibers is apparent for pressure values higher than 150 mmHg where the

material becomes stiffer. This late elastin-collagen transition can be attributable to

the fact that, due to the complex pattern that develops after the two first deformation

stages (i.e., bending and axial stretching), the collagen fibers play a relevant role at

the very end of the pressurization stage. Finally, it should be noted that the loading-
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unloading sequences for both the axial stretching and pressurization stages exhibited

nearly elastic and rate-independent material responses in this case. In particular, this

effect is apparent in the loading-unloading curves corresponding to the pressuriza-

tion stage shown in Fig. 14 (note that the maximum difference between the diameters

resulting from these two curves is, for a given pressure, less than 5 %).

It is seen in Fig. 16 that the unfolding of the vessel causes a bending stress pattern,

i.e., axial compression in zone I (that exhibits, in addition, local buckling at the ends

of the arch), axial tension in zone III and a neutral axis in the vicinity of zone II. As

shown in Fig. 15c, this last zone experiences large rotations with low stretching lev-

els. Once the final pressure value is applied, tensile stresses with lower values than

that recorded at the rupture stage in the tensile test (see Fig. 12) develop in region

V. Owing to the previous bending and axial deformation, the stress distribution at

the central region of the sample (zones I, II and III) is not uniform. It can also be

observed that the severe deformation developed at zone II of the artery is mainly due

to the effect of the internal pressure (the ratios of the final to initial average external

diameter and thickness values are 1.55 and 0.55, respectively) where the circum-

ferential stress reaches 590 kPa. Using the average dimensions resulting from the

simulation (i.e., external diameter of 32 mm and thickness of 0.71 mm), the analyt-

ical expression corresponding to thin-walled tubes gives a stress value of 600 kPa.

These similar stress values confirms that the bending effect does not substantially

affect the circumferential response in zone II. Moreover, the barrelling formation in

zone IV is due to the compression stress state promoted by the initial bending of the

vessel.

As already mentioned, the residual stresses can be estimated as 20 % of the

stresses in an artery loaded within the physiological range (80–120 mmHg), i.e., their

values are bounded to 30 kPa [38]. The stresses developed in the bending and pressur-

ization test reached 1000 kPa, hence the effect of the residual stresses is practically

negligible.

The numerical results shown in Fig. 14 reasonably adjust the experimental mea-

surements (the maximum experimental-numerical discrepancy in the diameter is,

for a given pressure level, lower than 4 %). The nearly linear response predicted by

the model is due to the low levels of circumferential stretching developed during the

pressurization stage. This is consistent with the material behaviour shown in Fig. 12.

In addition, it is seen that the numerical results do not properly capture the very dif-

ferent stiffness regime observed in the experiments at the end of the test. However,

the material characterization performed in Sect. 3.1 was found to provide an overall

realistic response of the aortic arch when it is subjected to internal pressure.

An overall good agreement between the experimental and computed final

deformed configuration of the aortic arch can be clearly appreciated in Fig. 17. In

particular, the unsymmetric deformation pattern observed in the experiments is ade-

quately captured by the simulation. The experimental observation that the deformed

cross-sections were no longer circular was also confirmed by the numerical predic-

tions. Finally, a reasonable good agreement between experimental and computed

values for the maximum external diameter distribution along the artery length at the

final deformed configuration can be appreciated in Fig. 18.
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The Demiray model is known to be ill-posed for experimental characterization of

the material response (see Criscione [18]). This drawback could be tackled, as pro-

posed by Criscione [19], by using an alternative set of invariants such that the result-

ing energy function minimizes the experimental error. It should be noted, however,

that the methodology used in this work was found to provide an overall good fitting

between the experimental and numerical results.

The use of the maximum principal stress and stretch values that develop in loaded

aortas have been proposed in the literature to predict the failure of the vessel. In

particular, this problem has been studied by Di Martino and Vorp [27], Li and Kle-

instreuer [63] and Vorp [103] defining a maximum principal stress-based criterion

for descending aortas with aneurysms. Moreover, other authors, such as Mohan and

Melvin [72] and Lonescu et al. [65], proposed failure criteria for soft tissues in terms

of maximum stretchs. In these approaches, the maximum principal stress and stretch

values are respectively compared to those measured in the tensile test. In the present

work, these two variables are also adopted to assess the failure degree of young and

aged aortic archs under normal and hypertension loading conditions.

As depicted in Fig. 21a, the maximum stress values for the young group at the

normal physiological condition occur at the intersection of the brachyocephalic trunk

with the arch. For the ascending aorta, the maximum stress value is 143 kPa which is

well below the tensile rupture stress for the young group (i.e., 1270 kPa, see Fig. 13).

Moreover, relevant stress levels are developed at the internal region of the arch. As

depicted in Fig. 21b, the maximum stretch value of 1.36 is located at the inner wall

of the brachyocephalic trunk—arch union. This value corresponds to 65 % of the

rupture stretch (i.e., 2.1, see Fig. 13). Both failure criteria clearly show that the zones

with higher risk levels are situated at the root of the three aortic arch bifurcations and

at the vicinity of the ligamentum arteriosum. From the clinical point of view, the most

important zone is that located near the ligamentum arteriosum due the high stress

concentration that takes place there [11, 15, 34, 70, 81, 88]. The stress level in this

area is more critical than those developed at the junctions where arteries branch off

from the aortic arch. However, relevant stresses can occur in all these regions under

extreme loading conditions (e.g., hypertension, automobile accidents, etc.).

Although the systolic pressurePs does not significantly affect the stress level com-

pared to the diastolic one Pd (see Figs. 20 and 21a), relatively large strains are devel-

oped in the ascending aorta due to the kinematic boundary conditions. The external

diameter and average thickness of the ascending aorta at 120 mmHg are 26.1 mm

and 1.61 mm, respectively. The external diameters of the ascending aorta at the dias-

tolic and systolic conditions (Dd and Ds, respectively) allow the estimation of its

stretching capacity. This feature is usually quantified by means of the distensibility

DC [62]:

DC =
D2

s − D2
d

D2
s (Ps − Pd)

(8)
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where, in this case, the distensibility gives 2.7 × 10−3 mmHg
−1

which is very close

to the in-vivo measured value of 2.5 × 10−3 mmHg
−1

in healthy young patients [60].

Figure 22 shows that the maximum stress and stretch values for the young group

at the hypertension condition (290 kPa and 1.6, respectively) are, as in the former

case, also mainly located near the root of the three aortic arch bifurcations and at the

vicinity of the ligamentum arteriosum. Considering these values in the stress-stretch

curve of Fig. 13, it is seen that the material behaves within the so-called elbow zone

(defined approximately by the interval 1.55 < λ1 < 1.85), which exhibits a moderate

stiffness that allows the damping of the pressure wave with stretch levels smaller than

that of the rupture stage (the ratio between these two values is 0.73).

The maximum stress and stretch values for the aged aortic arch at the hyperten-

sion condition are, as plotted in Fig. 23, 300 kPa and 1.33, respectively. The aged

aortic arch exhibits, compared to that of the young group, a stiffer material response

with lower stretching levels. This stress-stretch level is beyond the elbow zone of this

material (defined approximately in this case by the interval 1.25 < λ1 < 1.40) which

consequently leads to a deterioration of the pressure wave damping capacity of the

artery reflected in the development of more irregular downstream flows and pres-

sures. It should be noted that the maximum stresses under in-vivo conditions occur

for stretch values higher than 1.4 where the tensile fitting is adequate (see Fig. 13).

This fact is also appreciated in the drop of the distensibility to a value of 1.3 × 10−3
mmHg

−1
, which is very close to the in-vivo measured values of aged arteries [64]

and nearly 50 % than that of a healthy young patient. This marked decrease in dis-

tensibility with age has been also reported by [92]. Moreover, the ratio between the

maximum stretch value and that of the tensile rupture stage (see Fig. 13) is 0.85 in

this case, i.e., closer to the failure condition than that of the young aortic archs.

The stress distributions in the ascending aorta at 160 mmHg are depicted in detail

in Figs. 24 and 25 for the young and aged patients, respectively. For the young tissue,

the maximum stress occurs at the inner part of the aortic arch, e.g., the respective

values for the circumferential and longitudinal stress components are 250 kPa and

125 kPa. It should be noted that the value of the radial stress component at the inter-

nal surface of the aorta evens up the applied pressure (i.e., 160 mmHg = 21.332 kPa).

A similar stress pattern is also observed for the aged tissue where in this case the max-

imum circumferential and longitudinal stress components are 200 kPa and 146 kPa,

respectively. Moreover, different circumferential stress values at the inner and outer

parts of the aortic arch are clearly observed for both tissues.

Finally, it should be mentioned that additional simulations carried out with differ-

ent boundary conditions and lengths of the three arteries (i.e., brachyocephalic trunk,

carotid artery and subclavian artery) showed that they do not substantially affect the

stress contours at the root of those arteries.
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4.3 Descending Aorta

For a given stretch value, the experimental tensile measurements plotted in Fig. 26

show that, in general, older vessels present lower rupture deformations with higher

stresses. Minimum rupture stretch values of 1.8 were observed in all cases with the

exception of the longitudinal samples of Group C for which an average rupture stretch

of 1.7 was measured. Two zones with different stiffnesses can clearly be identified. At

low deformations, the curves show a flexible response with a nearly constant slope.

The response of Group A exhibits a wider interval of very low stiffness bounded by

λ1 ≃ 1.6. For Groups B and C, the first zone ranges up to λ1 ≃ 1.3 and λ1 ≃ 1.45 for

the longitudinal and circumferential samples, respectively. In this first zone the mate-

rial behaviour is clearly isotropic, i.e., its strength is mainly provided by the elastin

component of the vessels. For larger deformations, on the other hand, the slopes of

the curves start to increase up to the rupture stage. The material anisotropy in this

second elongation zone, reflected in the largest differences between the responses

corresponding to both samples directions, is apparent at the very end of the test. This

is due to the significant action of the collagen fibers that occurs at high elongation

levels.

Although some results for aortas in adults have been found in the literature, it

should be noted that they don’t strictly correspond to the tissue studied in this work

(i.e., in-vitro healthy human thoracic descending aortas). For instance, Okamoto

et al. [79] reported an average tensile (uniaxial) rupture elongation of 1.6 for cir-

cumferential samples corresponding to dilated human ascending aortas in adults. In

the present work, the measured final stretch for circumferential samples in adults was

2.0; see Fig. 26b.

Figure 27 shows that the Holzapfel model adequately adjusts the overall material

response; in particular, the progressive stiffness increase and the anisotropic char-

acter provided by the fibers are properly described. Group A exhibits an average

orientation angle 𝜑 > 45◦ (see Table 10) which can be attributed to the low level of

longitudinal residual stress present in this very young tissue. Therefore, the circum-

ferential response is more rigid than the longitudinal one at low stretch values. On

the other hand, the contrary trend is observed for Groups B and C, i.e., 𝜑 < 45◦,

possibly due to the longitudinal residual stress that may act on the aorta during its

life [55]. This fact can be also appreciated in the earlier stiffness increase that occurs

in the longitudinal direction samples.

In Fig. 28a, the experimental data corresponding to Group B for λz = 1.0 exhibits

a nearly linear response for pressure values less than 75 mmHg since the elastin is

only active in this deformation interval. The effect of the collagen fibers is apparent

for pressure values higher than 150 mmHg where the material becomes stiffer. In the

longitudinally prestrained case (i.e., λz = 1.2), the axial stress at which the vessel is

initially subjected caused a diameter reduction (note that λ
𝜃

< 1 for Pi = 0). How-

ever, the average mechanical response of both cases is very similar. Moreover, the

stiffness of the vessel also increases in the data corresponding to Group C plotted

in Fig. 28b but in a more continuous way than that observed for the younger arter-
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ies. In general, slightly stiffer responses can be appreciated for the older arteries. In

particular, for a pressure value of Pi = 100mmHg, the stretch ranges are 1.27–1.35

and 1.18–1.25 for Groups B and C, respectively. Although local buckling occurred

for the tests with λz = 1.0 (due to the compressive load cell force that caused a com-

pressive axial stress in the sample), this undesirable effect practically vanished when

a longitudinal prestrain (as the value λz = 1.2 used in this work which induced a ten-

sile resulting load cell force) was applied to the vessel. In addition, it is important

to mention that higher dispersion in the diameter measurements were observed for

increasing pressure values. These reported experimental data is used below to vali-

date the predictions of the Holzapfel model considered in this work.

Moreover, another parameter that is commonly used to characterize the mechan-

ical response of in-vivo aortas is the distensibility. Some distensibility values (in

10−3 mmHg
−1

) have been determined for in-vivo aortas: 2.5 (for an ascending aorta

in adults; see Koullias et al. [60]) and 3.4 (for only one measurement on an thoracic

aorta in an adult; see Schulze and Holzapfel [96]). In the present work, a value of

2.7 was obtained from the experimental data of Group C shown in Fig. 28b. Other

available results are mainly devoted to aortas with different types of aneurisms; see

e.g., Okamoto et al. [79], Raghavan et al. [86], Vorp [103], Martino et al. [68].

The internal pressure versus circumferential stretch curves for the Holzapfel

model are also presented in Fig. 28a, b for Groups B and C, respectively. The differ-

ences between the predicted and experimental values for λz = 1.0 can be attributable

to local instabilities that, as mentioned above, occurred during the experiment with-

out longitudinal prestrain. A better agreement, however, is in general achieved for

λz = 1.2 since in this case the buckling effects are practically precluded. Overall, it

is seen that the Holzapfel model properly predicts the experimental measurements.

The stiffness increase occurring at high pressure levels (i.e., greater than 120 mmHg)

is particularly well described. In this case, the maximum error is less than 8.5 % for

the whole test.

5 Conclusions

The characterization of the mechanical behaviour of the human ascending aorta, aor-

tic arch and thoracic descending aorta subjected to in-vitro and in-vivo conditions

has been presented. The proposed methodology encompassed experiments, model-

ing and simulation. The concluding remarks and future perspectives related to each

of these three parts of the aorta are separately drawn below.

The mechanical behaviour and strength of the human ascending aorta, both in

healthy and pathological conditions, have been measured in this work through in-

vitro tensile tests. Results show that aging causes a significant decrease of rupture

loads and elongations at breaking, comparable to the effect of severe pathologies

such as aneurysm and bicuspid aortic valve. While aortic ascending wall strength

decreases significantly beyond the age of 35, the mean physiological wall stresses

acting on either healthy or pathologic aortas are always far from the rupture point,
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displaying factors of safety larger than six. In contrast, the physiological operation of

pathologic vessels seems to be differentially affected by the disease since, contrary

to the behaviour of healthy control aortas of similar age, patients with aneurysm

and bicuspid aortic valve have their ascending aortas working in the stiff part of its

response curve, and consequently impairing the aortic elasticity. Finally, the role of

biological processes on the mechanical behaviour of the aortic wall has not been

considered in the present analysis and, therefore, this is an aspect that needs to be

explored in future works.

Experiments, constitutive modeling and numerical simulation have been consid-

ered in this work to analyze the in-vitro and in-vivo mechanical responses of the

human aortic arch. These two behaviours were respectively studied via the bending

and pressurization test of an adult tissue and the application of physiological con-

ditions to young and aged arteries. The experiments carried out in this work were

designed to achieve high stretching and pressure levels as those developed in a real-

life situation (e.g., an automobile crash or specific surgical treatments such as stents

implants). The tissue of these three groups were firstly characterised via in-vitro ten-

sile test measurements that enabled, via a least-squares procedure, the derivation

of the material parameters of a hyperelastic isotropic constitutive model adopted

in this work to describe the material response. Overall, the material characteriza-

tion together with the proposed alternative methodology to estimate the initial stress

was found to be consistent since it provided a reasonable and realistic description

of the mechanical behaviour of the aortic arch under the different studied loading

conditions. In particular, a good agreement between the experimental and computed

results of the internal pressure versus the external diameter of the artery have been

obtained. Moreover, the maximum principal stress and stretch values adopted here

as risk of failure criteria allowed the determination of the critical zones of the vessel

under in-vivo normal and hypertension pressures. These two failure criteria clearly

showed that the zones with higher risk levels are situated at the root of the three

aortic arch bifurcations and at the vicinity of the ligamentum arteriosum for both

groups of patients. For the healthy young patients, the computed distensibility was

very similar to an experimentally measured value reported in the literature. Besides,

the predicted distensibility for the aged tissue was very close to the measured value

of pathological arteries which approximately corresponds to 50 % lower than that of

the young vessel. Future research on this area will be focused on the limitations of the

present analysis, i.e., consideration of patient-specific complex geometry and realis-

tic boundary conditions aimed at achieving a better estimation of the stress and strain

patterns in the artery, further validation including more results than those consid-

ered in this work, assessment of other constitutive models (e.g., those defined within

a well-posed theoretical framework for experimental determination of the material

response), effects of the presence of aneurysms, influence of residual stresses, char-

acterisation of the mechanical response of the ligamentum arteriosum in order to

more accurately compute the stress concentrations, simulation of the influence of

the blood flow on the mechanical response of the aortic arch, material inhomogene-

ity and, in addition, experiments, modeling, inverse material parameter estimation

and simulation of arteries subjected to extreme dynamic loading conditions.
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On the other hand, the characterization of the passive mechanical response of the

human thoracic descending aorta carried out in this work encompassed three differ-

ent groups of healthy arteries: newborns, youngs and adults. The experimental data

measured in the tensile test have been used to determine the material parameters of

a Holzapfel constitutive model. In particular, the application of this methodology to

newborn and young tissues is an original contribution of this research. Moreover, the

constitutive modeling of the pressurization test has been experimentally validated.

The predictive capabilities and limitations of this model have been also discussed.

Overall, the characterization carried out in this work was found to provide a rea-

sonable and realistic description of the mechanical behaviour of the human thoracic

descending aorta under different loading conditions. The limitations of this work that

have to be addressed in further research are mainly related to two different aspects:

assumptions in the constitutive modeling (e.g., the consideration of layer-based laws,

rate-dependent effects and damage evolution has to be explored) and use of simpli-

fied analytical solutions in problems with complex stress and strain patterns (e.g., the

opening ring test). encompassed three different groups of healthy arteries: newborns,

youngs and adults. The experimental data measured in the tensile test have been used

to determine the material parameters of a Holzapfel constitutive model. In particular,

the application of this methodology to newborn and young tissues is an original con-

tribution of this research. Moreover, the constitutive modeling of the pressurization

test has been experimentally validated. The predictive capabilities and limitations of

this model have been also discussed. Overall, the characterization carried out in this

work was found to provide a reasonable and realistic description of the mechanical

behaviour of the human thoracic descending aorta under different loading conditions.

The limitations of this work that have to be addressed in further research are mainly

related to two different aspects: assumptions in the constitutive modeling (e.g., the

consideration of layer-based laws, rate-dependent effects and damage evolution has

to be explored) and use of simplified analytical solutions in problems with complex

stress and strain patterns (e.g., the opening ring test).
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Optimization of Functionally Graded
Materials Considering Dynamical Analysis
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Abstract Functionally graded materials (FGMs) are a new class of bio-inspired
composite materials made from different material phases, in which their volume
fraction changes gradually towards a particular direction. Accordingly, continuous
changes in the composition, microstructure and porosity of the graded materials
results in material properties gradients; for this reason, the material properties move
smoothly and continuously from one surface to another, eliminating the interface
problem. Hence, with appropriate design, FGMs can develop better properties than
their homogeneous counterpart due to their better designability. One potential
employment of FGMs is as damper or energy absorber in dynamic applications, in
which optimization techniques such as the topology optimization method
(TOM) can contribute to a better performance in relation to a non-optimized design.
In this chapter, functionally graded structures are designed with and without the
TOM in order to explore the advantages of the FGM concept in low-velocity impact
condition, which is a special case in the world of dynamic analysis, and has interest
for designing machinery parts and components.
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1 Introduction

An impact is defined as the collision of two or more solid bodies within a short time
(typically, in the order of millisecond and microseconds depending on the velocity
of the impacting objects), in which the load generated has high intensity. Situations
involving impact have historically received great attention. Traditionally, the prime
interest in this area has been for military applications. However, advances in
technology have placed such demands on materials and structures on other problem
applications such as [1]:

• safety transportation of hazardous materials;
• vehicle crashworthiness;
• safety of nuclear reactor structures;
• protection of military vehicles, structures, and aircraft;
• design of lightweight armor systems;
• erosion and fracture of solids due to liquid and solid particle;
• impact protection of spacecraft from meteoroid impact;
• explosive forming and welding of metals;
• and the design of machinery tools for manufacturing processes.

Impact on structures involves dynamic effects of particular interest, because their
effect is potentially catastrophic although their probability of occurrence is gener-
ally lower than for other types of loads. Velocity is perhaps the simplest parameter
to classify the different types of impacts, even though other variables of geometric
type and/or related to material properties are critical. Several classifications have
been suggested, but the most common is the following, which summarizes the
effects on the material [2]:

• Low-velocity impacts (v < 50 m/s). Elastic effects or localized plastic
deformation.

• Medium-velocity impacts (50 m/s < v < 500 m/s). Generalized plastic
deformation.

• High-velocity impacts (500 m/s < v < 2000 m/s). The viscous resistance of the
material still matters.

• Hypervelocity impacts (2000 m/s < v). The material can be considered a
hydrodynamic fluid where the density is the main parameter.

Additionally to the above classification, there are some phenomena that can occur
in the structure depending on the impact velocity, some of them are:

• Dynamic and structural vibrations: relevant in low-velocity impacts in which the
structure geometry is predominant, and it can be studied by implicit or explicit
integration methods.

• Stress and shock waves propagation: the effect of stress waves are important in
low- and medium-velocity impacts, which become shock waves at hyperve-
locity impact.
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• Nonlinear material behavior: some phenomena such as plasticity, fracture, and
dependence on strain rate and temperature can occur. The nonlinearities increase
with the impact velocity; even for very high velocities, the material has a fluid
behavior where its resistance can be neglected.

• Large displacements and deformations: changes in geometry and finite rotations
that influence the loads and their effect.

• Contacts and interface phenomena: contact is the key to any impact model, since
loads are transmitted by it.

• Penetration and perforation: when the impacting object has enough velocity, it
can penetrate (does not cross the material thickness) or perforate (crossing the
material thickness) the impacted object.

• Local phenomena of rupture, such as spalling, scabbing, petalling and plugging.

As shown above, depending on the impact type or impact velocity, the analysis
developed is different. For example, at low-velocity impact, the material properties
have influence since the behavior is predominantly elastic and eventually occurs
local plasticity. In the elastic region, the Young´s modulus, Poisson’s ratio, and
material’s density and damping have the primary influence. Herein, impact forces
classified as low-velocity are considered, in which only dynamic phenomena,
structural vibrations and stress wave propagation are presented. Therefore, material
nonlinearities are avoided, which means that plasticity, penetration, perforation and
local rupture are not considered because these phenomena mainly appear above
medium-velocity impacts and require more elaborated analysis and pose greater
difficulties to simulation. In that sense, the material is modelled as a linear elastic
isotropic material; however, geometric nonlinearities are taken into account to
include large-deflection effects in the transient analysis. Finally, contact is not
considered since an impulsive pressure load is used to represent the impact. More
details about simulation considerations are described in subsequent sections.

2 Functionally Graded Materials

The material used for impact depends on the specific application. For example,
ceramics are hard, which is an important characteristic in high-velocity impacts to
decelerate and to erode the impacting object. However, the lack of ductility in
ceramics is a problem because a ductile element is required to absorb, through
deformation, whole or part of the kinetic energy of the impacting object. On other
hand, metals are good energy absorbers due to their enhanced ductile behavior;
however, their high density represents the major problem because the structures
built with these materials are heavy. For that reason, polymers appear as an alter-
native due to their low density, ranging from 1.0 to 1.4 g/cm3 [3]. The most
common polymers for impact applications are polymeric fibers. These fibers have
been found to be very efficient due to their improved specific strengths (the
strength/density ratios). More efficient materials are based on aramid fibers
(e.g. Kevlar6®), ultra-high molecular weight polyethylene fibers (e.g. Spectra® and
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Dyneema®) and the PBO fiber (e.g. Zylon®). Despite the advantages of polymers,
these materials are not commonly used alone for impact applications due to their
low resistance. Thus, materials with different properties need to be assembled in the
most advantageous way for impact applications [4].

The discussion above shows that to dissipate the energy of an impact, the
material should contain several properties. Composite materials are an adequate
option for this kind of application since they can combine different properties. This
idea is supported by the pioneering research on ceramic armor, which concluded
that the material performance could be significantly enhanced with materials
macrostructurally designed for grading from a pure and stiff ceramic to a ductile
material on the back surface [5]. In recent years, these types of materials have been
referred to as functionally graded materials (FGMs) [6].

FGMs are also frequently found in nature. Bones, teeth and tree stalks are FGMs
designed by nature to meet their expected service requirements. For this reason, the
human designs based on the FGM concept are considered bioinspired
materials/structures. Some examples of biological FGM are shown in Fig. 1; these
nature designs combine high strength with lightweight materials, suitable properties
for many applications. Using FGMs means to emulate nature to solve structural
engineering problems, in the same way as an artificial neural network is used to
emulate the human brain.

An example of a human-made FGM (artificial) is shown in Fig. 2 in which a
micrograph reveal the spatially varying composition between two materials, where
the matrix and inclusions change through thickness following a graded function

Cross section of a palm stem and its
graphical representation of the fiber

distribution

Fiber gradation

Cross section of dinosaur
bone 

Pore gradation

Cross section of an elk horn

Pore gradation

Graphical representation
of the pore distribution

Fig. 1 Natural lightweight FGM examples for impact applications
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intentionally selected. This gradation provides FGMs with the ability to combine
the desired properties of different materials; for example, a metal and a ceramic are
used as base materials for taking advantage of the high temperature and corrosion
resistance of ceramics, as well as the ductility and toughness of metals.

Functionally graded or gradient materials were first proposed in 1984 aiming to
prepare thermal barrier materials exclusively for space application [6]. Functionally
graded means that continuous and smooth changes can be obtained in the com-
positions, microstructure, porosity, etc. in some direction in the material [7]. Hence,
the properties of a typical FGM plate change continuously from one surface to
another through its thickness direction. This FGM design is intended for taking
advantage of certain desirable features of each of the constituent phases [8]. Thus,
FGMs have a number of advantages that make them attractive in potential appli-
cations, including a possible reduction of in-plane and transverse
through-the-thickness stresses, improved residual stress distribution, enhanced
thermal properties, higher fracture toughness, and reduced stress intensity factors
[9]. Due to its advantages as compared with homogeneous materials, the FGM have
found many applications in engineering, not only in the aerospace industry, but also
in the nuclear and the automobile industries [10].

Despite the number of FGM advantages, this class of materials has two major
drawbacks in their design [7]. The first problem is presented in the materials
selection to form the FGM, and the second problem consists in determining the
optimal spatial distribution of the material phases (composition profile).

In the context of low-velocity impacts, the first problem lies in the selection of a
set of suitable materials to support impact loads and simultaneously get a light-
weight structure. As stated before, metals are useful as energy absorbers; however,
they are high-density materials. In consequence, herein an artificially graded
porosity is introduced in the material, specifically, in a circular steel plate. The steel
is selected as a base material due to its popularity, manufacturability and avail-
ability, which makes steel less expensive and more usable than other metals.
Moreover, the induced porosity is meant to reduce the total weight of the structure

Material A on the top surface (Ni)

Material B on the bottom surface (Cu)

From properties
of material A (Ni)

To properties of
material B (Cu)

Rich material A (Ni) region 

Material A (Ni) with
inclusions of material B (Cu) 

Transition region 

Material B (Cu) with
inclusions of material A (Ni) 

Rich material B (Cu) region 

Fig. 2 Microstructure of a FGM graded from material A (Ni) to material B (Cu)
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designed with this material, similar to bamboo, bones and horns (see Fig. 1).
However, the material is modeled as a linear elastic isotropic material and not as a
porous one.

The second problem is the lack of a systematic design approach that allows the
selection of the composition profile which best accomplishes the intended purpose
of the material application, while maintaining other properties within limits that
ensure acceptable performance. Therefore, in this work the topology optimization
method (TOM) is proposed for finding the composition profile (gradation function)
along the thickness direction to provide an optimal pore distribution in a circular
plate under low-velocity impact loads. In addition, since for low-velocity impacts
where dynamics and structural vibrations effects mainly occur, the geometry is
predominantly as stated before. Thus, the design of mechanical parts subjected to
this kind of loads are suitable for TOM since this optimization technique provides
novel geometries, apart from other benefits, such as weight reduction.

3 Topology Optimization Method for FGM Design

Currently, there is a need of efficient engineering methodologies to design parts and
structures in order to save material, time and costs [11]. Thus, in recent years, there
has been increasing interest in methods that automatically obtain optimized struc-
tures from performance conditions specified by the designer [12]. Optimization is a
field of engineering that can be used to facilitate and to automate the design process.
A relatively new method for obtaining optimized designs automatically is the TOM.
The next subsections discuss the basis of TOM and its application to FGM design.

3.1 Basics of the Topology Optimization Method

The TOM is a powerful method in which the basic idea is to distribute one or more
materials within a predefined design domain containing the geometry and boundary
conditions of the problem. In TOM, an objective function is extremized seeking a
desired behavior in the structure to meet some designer requests [12]. An additional
typical goal in structural optimization is to obtain optimal structures with reduced
mass. The TOM commonly produces designs that require some post-processing;
TOM is thus considered to produce conceptual designs. These designs are mostly
non-intuitive and are usually novel designs [13].

The first work that served as the basis for the TOM was by Michell in 1904 [14],
who established the optimality conditions on loaded structures. From this work,
many others have contributed to the area. Specifically, in 1988 Bendsøe and
Kikuchi developed a computational method for topology optimization [15]. This
method consists mainly of two modules, the analysis module and the optimization
module [16]. The first is used to calculate the response of the structure against the
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physical phenomena considered, for which the finite element method (FEM) is the
tool most commonly used. The optimization module is used to update the design
variables that improve the designed structure.

The TOM can be applied to design discrete or continuum structures [13]. For
inherently discrete structures such as those based on beams and/or trusses, the TOM
must determine the optimal number, position and connectivity of structural mem-
bers. This area of research has been active for several decades and was mainly
developed by Prager and Rozvany [13]. Moreover, the TOM in continuum struc-
tures must determine the number of holes and the external and internal contour
shape. There are several investigations concerning the topology optimization of
continuous structures; it can roughly distinguish between two types of approaches:
the material or microstructural approach and the geometric or macrostructural
approach [13].

The geometric approach consists of an iterative process of positioning new holes
or “bubbles” at specific points in the design domain. At each iteration, the holes can
appear and disappear, and their contours are subjected to a shape optimization
process. This procedure is complicated since the mesh must change every iteration
to accurately approximate the new generated contours. Additionally, the “birth” and
“death” of the holes require another optimization technique [13].

In the material or microstructural approach, frequently a constant finite element
(FE) mesh is used to describe the geometry. Typically, the mesh is uniform, and the
design variables are assumed constant for each FE. The method consists in deter-
mining if an element in a continuous medium should contain material or not. Then,
the design variable is defined for each element with values of 1 to indicate solid
elements and 0 for void elements. The result is an approximate description of the
outer and inner contours of the continuous structure that represents the optimized
topology design.

The microstructural approach is preferred for simplicity. However, the topology
optimization problem formulated as 0–1 is a discrete optimization problem, which
is an ill-conditioned problem. Then, in order to obtain a well-conditioned problem,
an adjustment is required in the problem formulation, which can be achieved by
including additional restrictions on the problem formulation and/or by introducing a
continuous design variable [13]. Consequently, the microstructural approach uses a
basic concept known as material model.

The material model addresses the topology optimization problem by relaxing it
by varying design variables continuously between 0 and 1. There are several
material models used in the literature to solve topology optimization problems [17].
However, the models most commonly used in topology optimization apply the
homogenization method, which was first introduced in 1988 by Kikuchi and
Bendsøe [15], and the “power-law” or SIMP (solid isotropic material with penal-
ization) model, proposed a year later by Bendsøe [18].

The material models based on the homogenization method provide a regular-
ization of the optimization problem via relaxation (extension) of the design space,
and its periodicity implies that the effective mechanical properties of the
microstructures can be determined through homogenization [13]. There are some
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variants of this model, such as the hole-in-cell microstructures and layered 2D/3D
microstructures. Even though these methods are useful, the number of design
variables used in the optimization problem are higher than those used in the SIMP
model. Additionally, homogenization models require a dependence model for the
material properties with respect to the geometric parameters of the unit cell, which
complicates their implementation [11].

The SIMP model is a simple approximation used to relax the space of possible
solutions of the optimization problem without increasing the number of design
variables [19]. This material model does not regularize the topology optimization
problem; however, it can be well-conditioned if an additional constraint on the
formulation is used; for example, using a constraint on the perimeter for 2D
structures or surfaces in 3D structures or by using a filtered technique [13]. In the
SIMP model, the design variables are assigned to each FE and the material prop-
erties are assumed constant on it. The general form of SIMP is:

A= ρ xð ÞpA0, 0≤ ρ xð Þ≤ 1, p>1, x∈Ω ð1Þ

where A represents the material interpolated property, ρ is the design variable also
called pseudo-density, p is the penalization factor and A0 is the base or reference
material property. Vector x represents the position in the design domain Ω.
Depending on the dimensionality used in the TOM problem, vector x can be x= x
for one-dimension, x= x yf gT for two-dimension or x= x y zf gT for
three-dimension problems. With SIMP can appear some gray areas with interme-
diate pseudo-densities (composite material) that avoid the convergence to a
black-and-white design (solid and void—porous material), then, the penalization
factor is set to a value higher than 1 [19].

The SIMP model provides good results in topology optimization and is relatively
easy to implement in commercial finite element codes contrasted with the
homogenization methods [20, 21]. However, this model has disadvantages, such as
the topology dependence on input design parameters and mesh discretization;
nevertheless, these problems can be solved by using several strategies, such as those
presented in [22].

For solving the optimization problems there are several approaches which can be
grouped in three main categories: mathematical programming (MP), optimality
criteria (OC) and evolutionary programming (EP) methods. The MP techniques are
math-based methods for optimization [12]. The OC methods are rules intuitively or
rigorously derived if a closed-form formulation is expressed [23]. The EP methods
are heuristic or intuition-based approaches that use mechanisms inspired by bio-
logical evolution, such as reproduction, mutation and survival for finding an opti-
mal solution to the problem [24]. The MP and OC methods use continuous design
variables whereas EP methods typically use discrete representations as design
variables. However, the MP methods are preferred over the others due to their
generality, allowing the solution of complex and non-linear optimization problems.
Additionally, MP methods are more suitable to deal with optimization problems
with more than one constraint.
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The most common searching technique used in MP is the sequential linear
programming (SLP) due to its straightforward implementation. The SLP algorithm
searches for the optimum in a nonlinear design space using a sequence of linear
approximations for the objective function and constraints. It uses linear program-
ming to solve each linear sub-problem. The linear approximation is calculated with
gradient information by using the first-order Taylor expansion series, process
commonly known as sensitivity analysis.

Figure 3 shows the flowchart of the SLP-based topology optimization algorithm.
The first step of this process defines the design domain with loads and boundary
conditions. Next, the optimization iterative process starts with the finite element
analysis (FEA) of the structure under some considered phenomena. After this, the

Fig. 3 SLP-based topology optimization flowchart
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sensitivity analysis, which determines the change in the structural response of small
changes in the design variables, is carried out. The move limits are calculated in the
next step. The move limits are additional side constraints on the optimization
problems that define a region of the design space where the solution of the lin-
earized sub-problem will lie [25]. Next, in order to avoid some numerical insta-
bilities, such as mesh dependence and grey areas, a filter on the design variables,
sensitivities or move limits is computed [22]. After the above steps are finalized, a
linear optimization solver optimizes the linearized objective function. Some typical
linear optimization solvers are based on the simplex or Karmarkar algorithms.
Finally, a convergence criterion is evaluated to verify if the optimization process
can finish. When the iterative process ends, the optimal topology of the structure is
obtained.

3.2 Topology Optimization of FGMs

From the designer viewpoint, the introduction of gradient distribution in a material
provides a larger design domain, therefore providing a better designability. Con-
sequently, the graded material will outperform (or perform just as) its uniform
counterpart [26]. Optimization techniques are hence required in order to find an
optimal gradation for this type of materials.

The optimum topology optimization result is known to consist of a structure with
gray-scale areas, which means intermediate or composite material. In a typical
topology optimized structure, the gray areas are undesirable since they avoid a
precise definition of the boundaries. However, these gray-scale results given by the
TOM are strongly related to the concept of FGM materials, which essentially
considers a continuous transition of material properties [27].

The design of FGM materials using topology optimization has two approaches.
The first consists in finding the optimal property variation of the FGM in the
domain for achieving the design requirements. The second approach consists of a
predefined functionally graded design domain, where the properties change in a
particular direction according to a specified model. These FGM approaches differ in
that in the first case, all the elements are in the final design, i.e., they fill the whole
design domain; however, their material properties are not known a priori, and the
TOM finds them. In the second case, each FE has a specified property; however,
this varies from one element to the other continuously following a predefined
graded function. Hence, the elements that occupy the final design are not known
and the TOM has to find them.

Depending on the FGM optimization approach, a material model is used. For the
first approach, a layered FGM material model is used. This is because current FGM
manufacturing techniques emphasize layered systems, and a layered material
constraint is adopted. In this case, two-phase material systems are considered. Thus,
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the FGMs represent the transition between two base materials, and the objective is
to find the optimal FGM property variation such that the material model allows
local distribution of the two materials in the domain. The material model used is
based on a density method approach, defined for the Lame constants [27].

The material model for the second FGM optimization approach is the
FGM-SIMP material model. This new material model is similar to the traditional
SIMP; the difference is that in the FGM-SIMP, a design domain known as FGM
domain is used. The FGM domain presents a continuous variation in the material
properties, defined by the designer. The TOM must find the elements that satisfy the
objective function and constraints, as in a traditional TOM problem. Thus, in the
FGM-SIMP material model, property A0 considered in Eq. (1) for the traditional
SIMP is not constant along the design domain, but it depends on position x as:

A= ρ xð ÞpA0 xð Þ, x∈Ω ð2Þ

In traditional topology optimization formulations, the design variable is defined in a
piecewise fashion in the discretized domain, which means that the continuity of the
material distribution does not occur between FEs (see Fig. 4a). However, consid-
ering the topology optimization results as an FGM-type, a more natural way of
representing the material distribution emerges by using the concept of the graded
finite elements (GFE) [27]. The GFE leads to a continuous representation of
material properties that are interpolated within the finite element using the FE shape
functions (see Fig. 4b) [28]. Some works have suggested the continuum distribution
of the design variable within the FE in the topology optimization formulation [29].
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This formulation is known as CAMD (continuous approximation of material dis-
tribution) which is a variation of the SIMP model. By means of the continuum
model approach, the design of FGM structures can be fully achieved by applying
topology optimization because a continuous change in material properties is con-
sidered within the design domain.

4 Topology Optimization of Dynamically Loaded
Structures

In this section, the TOM for solving dynamic optimization problems is described.
Since a TOM problem requires two modules (the analysis and optimization mod-
ules) to be solved, some methods for solving the dynamic analysis problem are first
introduced; after this, the addressed methodology to solve the optimization problem
is exposed.

4.1 Dynamic Finite Element Analysis

The structures under low-velocity impacts can be analyzed as an elastic dynamic
phenomenon as previously stated. However, there are three main dynamics analysis
types: modal, harmonic and transient analysis [31]:

• The modal analysis is used to calculate the natural frequencies and mode shapes
of a structure or a machine component. It can also serve as a starting point for
another, more detailed, dynamic analysis, such as a transient dynamic analysis, a
harmonic analysis, or a spectrum analysis.

• The harmonic analysis is used to determine the response of a structure to har-
monically time-varying loads (cyclic loads). This type of analysis is useful to
analyze structures subjected to resonance, fatigue, and other harmful effects of
forced vibrations.

• The transient analysis is used to evaluate structures under loads that are arbi-
trarily time-varying. In an interval of time, the loads can change their magnitude,
direction and/or position. Within this analysis, the inertial and damping effects
are considered important.

Consequently, since for low-velocity impacts the structure is under the action of a
general time-dependent load, thus the transient analysis is preferred over the others.
However, there are two solution methods for the transit analysis, which are
mode-superposition and full transient. The mode-superposition method is com-
monly used in analysis where nonlinearities are not included for being less com-
putationally expensive that the full method. Nevertheless, the full method is a more
general method allowing any kind of nonlinearity and any type of load. Therefore,
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since geometric nonlinearities are considered herein in order to allow
large-deflection effects in the transient analysis, the full method is selected.

The most generic approach for solving the dynamic response in structures is the
direct numerical integration of the dynamic equilibrium equation [31]:

MU
..
+CU ̇+Rint =Rext ð3Þ

where M is the mass matrix, C is the damping matrix, and Rint and Rext are the
internal and external loads, respectively. Eq. (3) is valid for both linear and non-
linear material properties. If the material is linearly elastic, then internal loads are
Rint =KU, where K is the stiffness matrix, and Eq. (3) becomes:

MU
..
+CU ̇+KU=Rext ð4Þ

being U, U̇, U
..
the displacements, velocities, and accelerations of the structure,

respectively. Matrices M, C and K are obtained as a sum (assembly) of local
matrices:

M= ∑
nel

e=1
m, C= ∑

nel

e=1
c, K= ∑

nel

e=1
k ð5Þ

where the symbol ∑ represent the assembly operation, nel is the number of FEs in
the mesh (discretized design domain) and the local matrices can be obtained as:

m=
Z

ρNTNdV , c=
Z

cdNTNdV , k=
Z

BTDBdV ð6Þ

with shape functions matrix N, gradient matrix B and material properties matrix D,
ρ represents mass density and cd is a damping parameter analogous to viscosity. In
Eq. (6), m and c are identified as “consistent” element mass and damping matrices,
which emphasizes that these forms follow directly from the FE discretization, and
use the same shape functions as the element stiffness matrix [31]. However,
non-consistent forms of these matrices are also used.

The consistent mass matrix m is symmetric, full, and positive definite. However,
there is a simpler formulation for the mass matrix known as “lumped”. This
approach consists in placing concentrated masses at nodes, which produce a
diagonal mass matrix. Although the lumped formulation has computational
advantages, such as less storage space and processing time, this formulation can
require especial solution algorithms once the lumped matrices are positive
semidefinite or, indeed, indefinite. Additionally, for implicit integration methods, a
diagonal mass matrix provides little computational economy and a consistent for-
mulation provides more accuracy [31]. Thus, the consistent formulation is chosen
for this work.
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The damping matrix can be generated from Eq. (6) or by using other formula-
tions. Damping dissipates energy by limiting the amplitude of vibration produced
by the loads and produces a decay of these vibrations over time. Several types of
damping can be included in a dynamic analysis; some of them are the viscous or
Rayleigh damping, hysteresis or solid damping, Coulomb or friction damping, and
numerical damping. Here, the numerical damping is considered, which is further
discussed in section “implicit integration”.

Finally, Eq. (4) is discretized in time and solved by some direct integration
method, which makes Eq. (4) be held for all t and then it is also valid at time t + Δt:

MU
..
t+Δt +CU ̇t+Δt +KUt+Δt =Ft+Δt ð7Þ

Various numerical techniques have been developed in direct numerical inte-
gration for solving the system of Eq. (7). However, the next subsections describe
the most common methods: explicit and implicit direct time integration methods.

Explicit Integration
Explicit methods only require information on time step t to predict the structural

response at time t+Δt , e.g.:

Ut+Δt = f Ut, U̇t,U
..
t,Ut−Δt, . . .

� �
ð8Þ

These methods are conditionally stable, i.e., the time step size (Δt) has to be
smaller than a critical value Δtcr; otherwise, the solution is not stable, that is, the
solution diverges [31]. With time step Δt, the velocity and acceleration at time step
t are approximated through conventional central differential equation (in the nota-
tion, time t is equivalent to n, e.g. Ut ≡Un):

U̇n =
1

2Δt
Un+1 −Un− 1ð Þ→Un+1 =Un− 1 + 2ΔtU̇n

U
..
n =

1
Δt2

Un+1 − 2Un +Un− 1ð Þ
ð9Þ

Substituting Eq. (9) into Eq. (3), and reorganizing it:

1
Δt2

M+
1

2Δt
C

� �
Un+1 =Rext

n −Rint
n +

2
Δt2

MUn −
1
Δt2

M−
1

2Δt
C

� �
Un− 1 ð10Þ

Equation (10) is conditionally stable with the condition [31]:

Δt≤
2

ωmax

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξ2

q
− ξ

� �
ð11Þ

218 F.J. Ramírez-Gil et al.



with ξ as the rate of damping and ωmax as largest contributing frequency to the
dynamic response. Thus, the critical time step (time discretization) can be expressed
by the so-called Courant–Friedrichs–Lewy (CFL) condition [31]:

Δtcr ≤
Lmesh

c
ð12Þ

where c is the velocity of sound in the material. In practice, the spatial discretization
is obtained as:

Δx=Δy=
λ

20
with λ=

c
f0
; c=

ffiffiffiffiffiffiffi
E ρ̸

p
ð13Þ

Term λ is the wavelength, f0 is the fundamental frequency, E is the Young modulus
and ρ is the density.

Implicit Integration
The most common implicit integration method is the Newmark method, which

computes the structural response at time t+Δt based on the solution at current and
previous times as follows:

Ut+Δt = f Ut+Δt, U̇t+Δt,U
..
t+Δt,Ut, U̇t,U

..
t, . . .

� �
ð14Þ

Specifically, Newmark relations are (as above, the time t+Δt is equivalent to
n+1, e.g. Ut+Δt ≡Un+1):

U̇n+1 = U̇n +Δt γU
..
n+1 + 1− γð ÞU

..
n

� �

Un+1 =Un +ΔtU̇n +
1
2
Δt2 2βU

..
n+1 + 1− 2βð ÞU

..
n

� � ð15Þ

Manipulating Eqs. (4) and (11), and reorganizing:

KeffUn+1 =Rext
n+1 +M

1
βΔt2

Un +
1

βΔt
U̇n +

1
2β

− 1
� �

U
..
n

	 


+ C
γ

βΔt
Un +

γ

β
− 1

� �
U̇n +Δt

γ

2β
− 1

� �
U
..
n

	 
 ð16Þ

with:

Keff =
1

βΔt2
M+

γ

βΔt
C+K ð17Þ

where γ and β are constant terms that determine the algorithm characteristics,
such as accuracy, numerical stability and the amount of algorithmic damping.
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When γ >1 2̸, Newmark methods display algorithmic damping and, in order to
retain unconditional stability, the following choice of β is appropriate:

γ≥
1
2
, β=

1
4

γ +
1
2

� �2

ð18Þ

For γ =0.5 and β=0.25, Eq. (15) produces the average acceleration method,
while for γ =0.5 and β=1 6̸, Eq. (15) is the linear acceleration method. Moreover,
an amplitude decay factor δ can be introduced and Eq. (18) is rewritten as:

γ =
1
2
+ δ, β=

1
4

1+ δð Þ2, δ≥ 0 ð19Þ

Although Eqs. (18) and (19) impose a condition in order to get an uncondi-
tionally stable solution, i.e., the convergence is independent of the time integration
step Δt, this value must be appropriately selected for accuracy purposes.

At this point, a choice must be made between these two direct integration
methods: explicit or implicit. The explicit integration methods require many, but
low computational cost, integration sub-steps and are useful for short time impact
problems. Conversely, the implicit methods require less, but computational-intense,
integration sub-steps and are useful for structural dynamic problems. Hence, since a
low-velocity impact with material linear effects is considered herein, the Newmark
implicit integration method is suitable. Finally, since only numerical damping is
considered, the Newmark method presented in Eqs. (16) and (17) becomes:

1
βΔt2

M+K
	 


Un+1 =Rext
n+1 +M

1
βΔt2

Un +
1

βΔt
U̇n +

1
2β

− 1
� �

U
..
n

	 

ð20Þ

which will be used for the simulation later in this chapter with K=K Uð Þ since
geometric nonlinearities are considered. Consequently, the Newmark integration
scheme may be used in association with the Newton-Raphson iterative algorithm.

4.2 Topology Optimized Structures Under Impact Loads

The TOM has been applied successfully to many fields [12]. However, most
attention has been paid to structural optimization, especially under static loading
condition. As optimization techniques and computers have increased their power,
new major complex problems can be solved by TOM. One example is the opti-
mization of structures under dynamic loading conditions. These kinds of problems
are complex since they require dynamic finite element and sensitivity analysis.
Topology optimized structures under transient loads are of primary interest to
automotive safety, specifically regarding crashworthiness [32].
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In a dynamic problem, such as impacts involving two or more bodies, the loads
are applied over a short period and transient effects must be considered.
Dynamic FEA is required to obtain the numerical dynamic response of the system.
Dynamic FEA commonly requires geometric and/or materials and/or contact non-
linearities. Even though the dynamic FEA does not consider any nonlinearities and
is evaluated as an elastic analysis, large simulation times are needed.

The complexity of dynamics TOM problems is increased due to the dynamics
sensitivity analysis, which is computational expensive and due to nonlinearities, the
gradient calculation is usually a difficult task or maybe impossible for the most
complex problems. Consequently, these difficulties have hindered research in the
structure optimization for impact loading conditions. To overcome these problems,
surrogate models or non-gradient methodologies are often employed [32].

Surrogate methodologies use design variables in the range of 10–50, while the
topology optimization problems typically need from thousands to millions of design
variables, which increase the problem complexity and the computational time
required for finding the solution. Then, fewer methods using topology optimization
for dynamical analysis exist due to the large number of design variables involved.
Surrogate models reduce the cost of expensive analysis methods as well as alleviate
issues with sensitivities. Additionally, they are good alternatives when dealing with
the highly nonlinear and noisy design spaces. Examples of surrogates methods are
RSM (response surface method), Kriging, artificial neural networks, and RBF
(radial basis functions) [32].

TOM based on non-gradients have populated the dynamic problems avoiding the
complexity imposed by the dynamics sensitivity analysis. An often used, but inef-
ficient approach, is to utilize genetic algorithms (GAs) or semi-stochastic techniques.
These methods may be more likely to find global solutions, but they require thou-
sands of function calls. Another non-gradient based methodology developed by Xie
and Stevens is called evolutionary structural optimization (ESO) [33]. It is based on
the concept of progressively removing inefficient material from a structure so that it
evolves into an optimal design. Another approach that requires non-gradient infor-
mation is the hybrid cellular automaton (HCA) method [34].

Although the design of energy absorption structures has been studied for many
years, the implementation of TOM in this kind of problems is still relatively new
[32]. Since most applications under impact events aim at maximizing the energy
absorption by the structure during the collision, other structures that have shown a
good performance as energy absorbers under impact loads are cellular materials.

Cellular materials, including honeycombs and foams, have been widely applied
to various engineering fields and, among these applications, their employment as
structural materials of dampers or energy dissipation devices has been the most
focused application [35]. These materials with periodic cells are typically config-
ured as cores of panels, tubes and shells, which produce a sandwich-type structure.
The properties in these materials that appear most attractive for impact applications
are energy absorption, vibration control and reduced weight. Additionally, cellular
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materials are topology-sensitive; that is, relevant properties are sensitive to the
micro-architecture of the cells [35]. Two kinds of predominant topologies are
distinguished in cellular materials: stochastic and periodic microstructures. The
second configuration offers structures with superior performance than those con-
structed with the analogous stochastic configuration. Cellular materials, particularly
porous materials are closely related to natural structures and the FGM concept (see
Fig. 1).

4.3 Equivalent Static Loads

Dynamic loads are forces that change in the time domain, while static loads are
forces that are constant, regardless of the time, and the inertial effects are not
considered. Accordingly, structures under dynamic loads cannot be represented by
static loads, although at any given time t, Eqs. (3) and (7) can be thought of as a set

of “static” equilibrium equations that also take into account inertia forces (MU
..
) and

damping forces (CU ̇). Thus, there are several methods to transform dynamic loads
into static loads. One transformation method is the equivalent static load
(ESL) method [36]. An ESL is defined as a static load that produces the same
displacement field as a dynamic load at an arbitrary time t. A static analysis is
expressed as [37]:

KX=S ð21Þ

where X is the static displacement vector and S is the vector of external static loads.
The dynamic displacement vector U(td) at an arbitrary time td can be obtained from
Eq. (3), and substituting X for U(td) in Eq. (21), the ESLs are obtained as follows:

S=KUðtdÞ ð22Þ

Then, a set of ESLs vectors are obtained, and its number depends on the time
discretization used. This set of ESLs vectors are used as multiple load conditions in
the optimization process [37].

4.4 The Optimization Process with ESLs

For a structural optimization problem subjected to an impact load, the objective
function is to minimize the compliance (or maximize the stiffness) of the structure.
This is a classic objective function in structural optimization, the convexity of
which has been mathematically proved. Additionally, this objective function is
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usually accompanied by a volume constraint. Thus, the formulation for a linear
static optimization problem is:

Min
ρ

Fo ¼ UTF ¼ UTKU

Such that :

V� Vmax ≤ 0

ρ� ρmin ≥ 0

With: KU ¼ F

ð23Þ

where the structural stiffness is represented as UTF, V is the maximum allowed
volume in the final optimal design, which is commonly a fraction of the design
domain volume Vmax, ρ is the design variables vector and ρmin is a minimum value
used to avoid numerical singularities. Furthermore, the equilibrium equation must
be satisfied. The sensitivities of the objective function Fo with respect to the design
variable ρe are given by:

∂Fo

∂ρe
¼ �pρp�1

e E uTe k0ue
� � ð24Þ

where ue and k0 are the element displacement vector and local stiffness matrix,
respectively. The k0 matrix is computed with a Young’s module E=1 and based on
isotropic material and axisymmetric modeling. Once the optimization problem has
been formulated, their solution is the next phase. The optimization process with
ESL method consists of two parts [37]: the analysis and the design domains. Based
on the results of the analysis domain, ESLs are calculated for the design domain. In
the design domain, static response optimization is conducted with the ESL. The
modified design domain is incorporated to the analysis domain. The entire opti-
mization process iterates between the two domains until the convergence criteria are
satisfied. Figure 5 shows the optimization process using the ESL method where the
algorithm steps are [37]:

• Step 1: initial setting of parameters and design variables (number of iterations
k = 0, design variables ρk = ρ0, convergence parameters: ε a small value)

• Step 2: performs dynamic analysis with ρk (domain analysis)
• Step 3: calculates the ESLs at all-time intervals
• Step 4: solves the optimization problem with linear static response set of the

equivalent load (in the design domain), as shown in Fig. 3.
• Step 5: evaluates the convergence criteria
• Step 6: updates the design variables if the problem does not reach the conver-

gence and repeats the process.
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5 TOM-Based Design of FGMs Under Impact Loads

In this work, the design of FGMs under low-velocity impacts by the TOM is
conducted by using the ESL method [37]. In this section, cylindrical plates with
holes heuristically located are presented first, and next, the behavior of the same
cylindrical plate after an optimization procedure that introduces pores (or holes) in
the material by using the TOM is shown.

5.1 Heuristic Approach

In this section, functionally graded porous structures subjected to low-velocity
impact loads are analyzed. The graded function controls the holes diameter, which
is selected heuristically in this first part. Cylindrical steel plates with 10 cm in
diameter and 3 cm in thickness are used, as shown in Fig. 6. The plate is supported
at the ends; therefore, movements in X and Y are restricted. At the center, an
impulsive pressure load is applied, which simulates the impact of an element of

Fig. 5 Optimization process using equivalent static loads [37]
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0.6 cm of diameter. Taking advantage of the geometry, a planar axisymmetric FEM
model is used, which reduces the solution time as compared to an equivalent model
made in a three-dimensional (3D) domain and produces approximated results.

The gradation in the plate is performed by circular holes,1 where their diameters
and distribution change in the same direction as the stress wave goes through the
plate (thickness direction). Figure 7 shows the functionally graded plates with their
respective graded function used in the simulations. Holes distribution 1 has rela-
tively small holes through the thickness of the plate with a constant function of
gradation (there is no variation in the distribution or diameter size of the holes).
Holes distribution 2 has similar characteristics as those of distribution 1, yet with
larger hole diameters. Holes distribution 3 begins with a larger diameter on the
surface near the impact area, reducing it as the holes approach the opposite surface.
Holes distribution 4 is opposed to distribution 3. Finally, holes distribution 5 begins
with relatively small holes on the surface near the impact area, then increases in size
in the middle and is reduced again on the opposite surface. These distributions are
arbitrarily selected for verifying the role of the holes, their distribution and their
diameters in the structural behavior subjected to impact loads, and their influence in
the stress wave propagation and weight reduction.

The simulations are performed by using the finite element software ANSYS with
the Newmark implicit integration method using interpolation parameters δ = 0.005,
γ = 0.5050 and β = 0.2525, which is an unconditionally stable scheme. Four types of
steel are used: a low carbon steel (AISI 1020), an alloy steel (AISI 4140), a tool steel
(AISI S2), and a ballistic steel (Mars 300). The material properties needed in the
transient simulation are presented in Table 1 for the different steels used. The applied
pressure is 350 MPa in 6.12 × 10−6 s (see Fig. 8), which represents the low-velocity
impact (an impulsive load applied over one integration time step). The mesh size and
the time step for the simulation is calculated by using the Courant condition, obtaining
Δt = 6.12 × 10−6 s and Δx = Δy = 25 × 10−5 m. Additionally, a convergence
test is performed to adjust the size of the mesh. The axisymmetric FE type used by

Fig. 6 Steel plate geometry used in the simulation. a 3D model and. b Axisymmetric model

1Since we use 2D domains, the holes seem circular; however, the model is asymmetric and thus the
holes are toroidal. We hereafter refer to them simply as holes.
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ANSYS is the so-called Plane182, which is defined by four nodes having two degrees
of freedom at each node: translation in the X and Y directions.

For determining the structural behavior of the arbitrary cylindrical graded plates,
they are compared with a solid plate. By simulation, the stresses are obtained in five

Holes distribution 5 (HD5) 

Holes distribution 3 (HD) 

Holes distribution 1 (HD1) Holes distribution 2 (HD2) 

Holes distribution 4 (HD4) 

Hole diameter (mm) Hole diameter (mm)

Hole diameter (mm) Hole diameter (mm)

Hole diameter (mm)

P
la

te
 th

ic
kn

es
s 

(m
m

)

P
la

te
 th

ic
kn

es
s 

(m
m

)

P
la

te
 th

ic
kn

es
s 

(m
m

)

P
la

te
 th

ic
kn

es
s 

(m
m

)

P
la

te
 th

ic
kn

es
s 

(m
m

)

Fig. 7 Arbitrary hole distributions used in the plate

Table 1 Material properties used in the simulations

Material Density (kg/m3) Young’s modulus (GPa) Poisson’s ratio

AISI 1020 7500 200 0.29
AISI 4140 7850 205 0.29
AISI S2 7750 207 0.29
Mars 300 8100 210 0.32
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points on the opposite surface where the impact load is applied, as shown in Fig. 9,
for the plate with holes distribution 1. Graphs from 1 to 5 show the value of the
equivalent von Mises stress versus time. As expected, the impact energy is atten-
uated by the structure over time. The stresses at point 1 are higher than those at
point 5.

Figure 10 shows the stress wave propagation at different times for a graded
plate. It can be seen that the stress wave propagates concentrically from the load
application point to the ends, across the entire plate. So as to know the stress wave
energy that crosses the plate, the von Mises stresses at each discretized point along
the entire opposite side where the load is applied are measured (line A–A in
Fig. 11). Figure 11 shows, for the graded plate with holes distribution 5, the von
Mises stresses at the load application time (6.12 × 10−6 s) and at the end of the
simulation time (6 × 10−3 s), when the load has been attenuated. However, the
total stress energy2 per unit volume is obtained as the area under the curve of the
stresses versus time. Thus, the von Mises equivalent stress for all points along line
A–A are summed and plotted against time as shown in Fig. 12 for the four materials
and for the five gradation configurations considered.

The gradation effect in the energy dissipation through the plate is compared with
the energy going through the solid plate. For this purpose, the area under the curves
in Fig. 12 is computed and a ratio between solid and graded plates are obtained.
Table 2 shows the comparison of the energy dissipated by the solid plate against
each graded plate and the percentage of weight reduction (relative to the solid
plate). It shows that the graded plates present a weight reduction of at least 14 % as
a consequence of the porosity introduced. Additionally, the energy going through
the graded plates increases in all cases as compared with the solid plate. It is
observed that as the material is more resistant to impact, the amount of energy
going through the plate is lower, as expected. The best result is for the Mars 300
with graded distribution 1. The worst result is for graded distribution 2, which has
the largest weight reduction (18.9 %); however, the energy going through the plate
presents the largest values. Accordingly, the results show that the gradation in the

L.S #: load step number (1,2,3)
P0 = 350 MPa
dt = 6.12 x 10 -6 s (time step)
tf = 6 x 10-3 s (final simulation time)

Fig. 8 Load steps used in the simulations (unscaled)

2The area under the curve indicates strictly power per unit volume, which is directly related to the
elastic deformation energy per unit volume.
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plates does not reduce the amount of energy going through them; depending on the
application, this increase may be relatively less critical as compared with the
advantages provided by the weight reduction. Additionally, the graded functions are
arbitrarily obtained, making it is important to seek for an optimum graded function
obtained by using optimization techniques, which is the subject of the subsequent
section.

Fig. 9 von Mises stress (left) at points 1–5 of the plate (right) with holes distribution 1 (AISI
1020)
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5.2 Optimized Approach

The optimized approach is carried out in ANSYS APDL by adapting its opti-
mization module with the ESL method, which requires four principal steps:

• Problem definition. In this step, the analysis type and the material properties
required by the analysis are defined.

• Active and passive regions definition. The active region corresponds to the
domain to be optimized with the objective function, while the passive region is
that area in which no optimization occurs. This design domain is defined sim-
ilarly to a sandwich-like structure: two solid panels enclosing a porous structure
(see Fig. 13).

• Loads and boundary conditions definition. The optimization problem requires a
FEA analysis at each iteration, which requires the use of loads and boundary
conditions. However, in this study, we use the ESL method to convert the
dynamic loads into equivalent static loads.

• Optimization process definition. Here, the objective function and constraints are
defined.

Fig. 10 Propagation of the von Mises stress waves through time (AISI 1020, Holes distribution 5)

Fig. 11 von Mises stresses along the opposite side where the load is applied. a At the time the
impact load is applied and, b at the end of the simulation (AISI 1020, holes distribution 5)
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The material properties used for the optimization process are shown in Table 1.
The design domain is shown in Fig. 13a, which consists of active (the TOM can
modify it) and passive regions (the TOM cannot modify it). The FE type used in the
study is known as Plane82 in ANSYS. The objective function is the maximization
of the stiffness (minimum compliance problem) under low-velocity impact loads.
Since the set of ESLs are obtained from dynamic displacements at a particular time,
there is an ESL per node; however, for simplifying the study, the areas where the

Fig. 12 Summation of von Mises stress for all points along the line A–A against time simulation
for different materials. a AISI 1020, b AISI 4140, c AISI S2 and, d Mars 300

Table 2 Solid and graded plates comparison for the four materials

Ratio Weight
reduction (%)

Energy increment

AISI 1020 (%) AISI 4140 (%) AISI S2 (%) Mars 300 (%)

Solid/gradation 1 14.1 38.8 31.3 30.9 29.2

Solid/gradation 2 18.9 52.8 45.2 53.6 44.9

Solid/gradation 3 17.1 40.2 37.0 43.3 31.5

Solid/gradation 4 17.1 44.2 36.1 43.5 34.7

Solid/gradation 5 14.1 33.2 34.8 33.6 34.0
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largest displacements are presented are used, as shown in Fig. 13b. Case I
(abbreviated as OTi – optimized topology for case I) obtains the displacements at
the opposite face where the impact load is applied. Case II (abbreviated as OTii -
optimized topology for case II) obtains the displacements in three lines: at the top
(where the impact load is applied), in the middle (where there is an interface
between the passive and the active regions) and at the bottom (similarly to Case I).

Figure 14 shows the optimization process evolution for the AISI 1020 (the worst
material for impact application as demonstrated in the previous section). The blue

Fig. 13 a Two-dimensional design domain with active and passive regions, and b loads and
boundary conditions for two cases (OTi & OTii, respectively)

Fig. 14 Topology optimization process at different times (AISI 1020, Case I)
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color represents voids zones, while the red color indicates zones with base material.
For this optimization process, a constraint in volume is imposed, and the conver-
gence is achieved when this constraint is reached. The volume constraint is
equivalent to a weight constraint since the density is constant. The final topology
obtained by the TOM is given in Fig. 15. The comparison in terms of energy
dissipation between the solid plate, the heuristic graded plate (hole distribution 2—
HD2–) and optimized version are shown in Fig. 16.

Fig. 15 Topology optimized circular plate with his graded function (AISI 1020, Case I)

Fig. 16 Energy dissipation between solid, heuristic graded and optimized graded plates (AISI
1020, Case I)
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However, the optimization results are different if Case II (see Fig. 13b) for the
ESLs are considered as shown in Fig. 17. Figure 18 presents the comparison in
terms of dissipated energy between solid, heuristic graded and topology optimized
plate. Table 3 shows the numerical comparison for the Cases I and II with respect to
solid and heuristic graded plate by using the AISI 1020 steel. It can be seen that
with optimization approach, the graded plates outperform (Case I) or equally

Fig. 17 Topology optimized circular plate with his graded function (AISI 1020, Case II)

Fig. 18 Energy dissipation between solid, heuristic graded and optimized graded plates (AISI
1020, case II)
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perform (Case II) when compared against the plate with heuristic holes distribution
2; however, both types of graded plates have a poor performance compared with
solid plate.

The same study as that conducted above is followed; however, changing the
material. In this case, Mars 300 steel is considered. The optimized topologies for
cases I and II are given in Fig. 19. The numerical comparison between solid,
heuristic graded and optimized graded plates are shown in Table 4. Since, in the
non-optimized approach, holes distribution 1 (HD1) gives the best results for Mars
300 steel, this hole distribution is considered here for the comparisons. The opti-
mized topology obtained for Case I improves the energy absorption, indeed, out-
performing the solid and heuristic graded plate (HD1). However, the OTii case only

Table 3 Dissipated energy comparison for three topology cases by using AISI 1020

Material ratio Weight reduction (%) Energy increase (%)

Solid/heuristic hole distribution 2 (HD2) 18.8 52.8
Solid/optimized topology case I (OTi) 18.8 22.0
Solid/optimized topology case II (OTii) 18.8 52.8
HD2/OTi 0 −20.2
HD2/OTii 0 −0.013

Fig. 19 Topology optimized circular plate with his graded function for Mars 300. a Case I and,
b Case II of loads application

Table 4 Dissipated energy
comparison for three topology
cases by using Mars 300

Material
ratio

Weight reduction
(%)

Energy increase
(%)

Solid/HD1 14 29.2
Solid/OTi 14 −4.9
Solid/OTii 14 25.4
HD1/OTi 0 −26.4
HD1/OTii 0 −3.0

234 F.J. Ramírez-Gil et al.



outperforms the plate with HD1 with a small percentage of difference; and it
performs poorly against the solid plate.

Finally, an experiment is conducted by varying the total volume to be removed
from the optimized graded plate. The topologies obtained for several percentage of
weight reduction are shown in Fig. 20 by using AISI 1020 steel. It is observed that
the dissipated energy through the plate decrease when the material removed is
increased in a non-linear relation as shown in Table 5.

Fig. 20 Topology optimized circular plate for AISI 1020 by reducing. a 10 %, b 20 %, c 35 %
and, d 50 % of total weight

Table 5 Dissipated energy comparison between solid and optimized plate considering four
weight constraints by using AISI 1020

Material ratio Energy increase (%)

Solid/optimized plate (weight reduction: 10 %) 5.9
Solid/optimized plate (weight reduction: 20 %) 17.6
Solid/optimized plate (weight reduction: 35 %) 113.5
Solid/optimized plate (weight reduction: 50 %) 132.6
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6 Conclusions of the Chapter

This chapter presents the concept of functionally graded materials and topology
optimization methods. Both concepts are combined to produce lightweight struc-
tures for low-velocity impact applications. The form that we use to reduce the weight
in the structures considered (circular plates) is by inserting holes into the material.
The addition of holes to circular plates under low-velocity impacts is evaluated in
two ways, by using heuristic and systematic approaches. However, the introduction
of holes to the plate tends to reduce its capacity for absorbing the impact energy.
Nevertheless, the porous material outperforms the solid plate once: by using the
topology optimization method and a high quality steel for impact applications (Mars
300). Additionally, the optimized approach minimizes the impact energy that crosses
the plate when compared with the heuristic holes distributions. These results are
promising for getting lightweight structures with improvements in their performance
against impact loads.
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Complex Variable Semianalytical Method
for Sensitivity Evaluation in Nonlinear Path
Dependent Problems: Applications
to Periodic Truss Materials

Geovane A. Haveroth and Pablo A. Muñoz-Rojas

Abstract The evaluation of structural response derivatives with respect to design

parameters, usually known as sensitivity analysis, is an issue of paramount impor-

tance in gradient-based optimization and reliability analyses in engineering. In the

last 20 years, much research has been devoted to develop efficient strategies for the

accurate evaluation of sensitivity information. A relatively new and promising pro-

cedure combines the semianalytical (SA) approach with the use of complex variables

(CVSA). This method allows the use of diminutive perturbations, circumventing the

weakness that the traditional SA approach shows when applied to shape design vari-

ables. In spite of the great potential of the CVSA, its formulation and application

has been restricted to path independent problems. In this chapter we aim to extend

the method to handle path dependent problems, emphasizing the treatment of inter-

nal variables, such as accumulated plastic strain and damage. In order to make the

concept easy to understand, we use the method to evaluate the sensitivity of partic-

ular homogenized properties of a 2D periodic truss material (PTM). Optimization

of PTMs has encountered great potential in tissue engineering, as well as in auto-

motive and aeronautical applications. Generally PTMs are designed to operate in

the linear geometrical and constitutive range. However, using sensitivity analysis

we can obtain an insight about how these designed homogenized properties behave

when geometrical and/or material nonlinearities are considered.

1 Introduction

The notion of structural improvement and optimization requires the existence of

some freedom to change a given set of parameters, often called design parameters

or design variables. The evaluation of structural response derivatives with respect to
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design parameters, known in the literature as sensitivity analysis, is a kernel issue

in reliability studies, modeling of control systems, among others. The large and

growing number of publications regarding this subject reflects the current interest for

this type of analysis [1–4]. Several methodologies to obtain sensitivity exist, and they

can be classified into three major groups: overall (global) finite differences (OFD),

the semianalytical method (SA) and the analytical method. Among these, the SA

method is held as the most attractive alternative because it combines the computa-

tional efficiency of the analytical method with the generality and simple implemen-

tation of the OFD method [3, 5]. However, many authors have reported severe inac-

curacies when the traditional SA method based on real variables (RVSA) is applied

to problems dominated by rigid body rotations [6–9]. Due to this limitation, several

corrective methods have been developed for both linear and geometrically nonlinear

problems [10–13].

In nonlinear structural analyses, two different situations may occur. The first one

concerns problems said “path independent” such as hyperelasticity, in which the

strain path does not affect the equilibrium points. The second one deals with prob-

lems said “path dependent” such as elastoplasticity, which depend on the loading

history. The implementation of the sensitivity methods for path dependent problems

is slightly more evolved than the independent counterpart.

The analytical sensitivity procedure for nonlinear path dependent problems is

described by Tsay et al. [14], among others. The application of this theory to truss

and beam elements and the difficulties associated to the evaluation of sensitivity

coefficients are widely discussed by Tsay et al. [15]. Some incremental algorithms,

based on the analytical method to structural sensitivity analyses of nonlinear systems

are presented in the works of Chen [16], Ohsaki and Arora [17], as well as Lee and

Arora [18]. The sensitivity analysis considering 2D elastoplasticity and elastovis-

coplasticity is also discussed by several authors [2, 19–22]. In the work of Bugeda

and Gil [23], damage is introduced in the sensitivity study. Two incremental algo-

rithms based on the analytical method are shown by Wisniewski et al. [24] and Conte

et al. [25]. In the study made by Chen et al. [26], the RVSA method is used to perform

sensitivity evaluations in creep and thermal stress problems.

The SA method using complex variables (CVSA), has recently been successfully

applied for the evaluation of structural responses sensitivity with respect to shape

parameters in path independent problems dominated by rigid body rotation [27].

This method consists in the simple concept of improving the OFD accuracy, reducing

or eliminating the errors made by rounding. Since this is a promising method, such

concept of improvement by using of complex variables is extended to path dependent

problems in the present Chapter.

The Chapter is organized in four different and complementary sections: Sect. 2

presents the finite element formulation for truss elements including geometric and

material nonlinearities. The tangent stiffness matrix is obtained via exact lineariza-

tion of the internal force, which is necessary to obtain the correct displacement sen-

sitivities. The formulation is developed using an isoparametric approach, which is
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Fig. 1 Truss finite element

and its associated global XY
and corrotational local x𝓁y𝓁
reference systems

intended to ease its extension to continuum finite elements.
1

Section 3 introduces

the sensitivity methods studied in this research and their implementation into a finite

element code. Special emphasis is devoted to the treatment of internal variables.

Section 4 applies the sensitivity methods studied to evaluate the sensitivity of mater-

ial coefficients of homogenized materials made of periodic truss cells. The sensitivity

methods are compared and the superiority of CVSA method is verified for different

types of nonlinearities. Finally, Sect. 5 highlights the conclusions of the work.

2 Nonlinear Truss Finite Element Formulation

In order to set the formulation used in this work, consider Fig. 1 which shows a typ-

ical two noded truss element and two reference systems associated: a global system

XY and a corrotational local system x𝓁y𝓁 . A parametric coordinate 𝜉 is also defined

along the length of the bar, where 𝜉 = ±1 are related to the extremes.
2

Note that, for

simplicity, the truss element in Fig. 1 is set in a 2D framework, while all the equations

in the text are generalized to the 3D context.

The local coordinates and displacements of any point on an undeformed element,

measured in the local corrotational system are obtained by interpolating the nodal

values

[
X𝓁 u𝓁

]
=
[
N1(𝜉) 0 0 N2(𝜉) 0 0

] [X1 Y1 Z1 X2 Y2 Z2
u1x u1y u1z u2x u2y u2z

]T
𝓁

(1)

= N(𝜉)
[
X𝓁 u𝓁

]
. (2)

1
The use of the isoparametric approach presented in this work does not lead to a direct extension

to continuum elements, but preserves the traditional integral form of the internal force vector and

tangent matrix. The matrices and vectors obtained have an analogous in continuum elements and

thus, the expressions obtained give a deeper insight into the analogous modifications that should

be performed in the continuum elements case.

2
Note that X𝓁 with the “𝓁” subscript stands for the initial value of x𝓁 , while X without the “𝓁”

subscript describes the global position in the XY system.
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Then, at any time, the updated rotated bar geometry can be obtained taking

x𝓁 = X𝓁 + u𝓁 (3)

=
[
N1(𝜉) 0 0 N2(𝜉) 0 0

] [
x1 y1 z1 x2 y2 z2

]T
𝓁 (4)

= N(𝜉)x𝓁 , (5)

where N(𝜉) is the line matrix containing the interpolation functions. For linear inter-

polation, the components of N(𝜉) are

N1(𝜉) =
1
2
(1 − 𝜉) and N2(𝜉) =

1
2
(1 + 𝜉). (6-7)

Also, from Eqs. (2) and (5–7), the corresponding Jacobians are expressed by

J(X𝓁) =
dX𝓁

d𝜉
=

Lo
2

and J(x𝓁) =
dx𝓁
d𝜉

= L
2
, (8-9)

where Lo and L are respectively the undeformed and deformed lengths of the bar.

In a nonlinear finite element formulation, at each nth increment step, equilibrium

must be satisfied. Thus, it is sought to minimize the residue rn composed by the

difference between internal and external force vectors

rn(un) = 𝜇np − f n(un) ≈ 𝟎, (10)

where f n is the global internal force vector, 𝜇n is the load factor which controls the

percentage of the total global external load vector p, and n stands for the load step.

Without loss of generality, suppose that the incremental iterative Newton-Raphson

solution method (NR) is employed. The process begins by an arbitrary and prescribed

initial point ũ0
n for un, which, in general, does not satisfy equilibrium. To determine

the solution, the initial choice is updated by ũi
n = ũi−1

n + 𝛥ui
n, where 𝛥ui

n is obtained

by the linearization of the residue with origin at ũi−1
n

rin(ũ
i
n) = rin(ũ

i−1
n + 𝛥ui

n) ≈ rin(ũ
i−1
n ) +

drin(ũ
i−1
n )

dũi−1
n

𝛥ui
n ≈ 𝟎, (11)

with i being the iteration number. To determine 𝛥ui
n it is necessary to evaluate the

derivative of the residue with respect to ũi−1
n , which yields the so-called tangent

stiffness matrix Ki−1
T ,n . Hence,

Ki−1
T ,n = −

drin(ũ
i−1
n )

dũi−1
n

= −
d
[
𝜇np − f n(ũi−1

n )
]

dũi−1
n

=
df n(ũi−1

n )
dũi−1

n

. (12)
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Fig. 2 External virtual work

The last equality holds when the external force does not have any displacement

dependence. Furthermore, the tilde is adopted to indicate that the displacement un
has not converged yet. The absence of the subscript 𝓁 means that the equations are

taken in the global reference system XYZ. In order to evaluate Eqs. (10) and (11), the

expressions for internal force vector and the tangent stiffness matrix are derived in

the next sections.

2.1 Virtual Work

The virtual work principle states that: The work performed by a real external force
applied on a point of the body, over an imaginary (virtual3) and arbitrary small
displacement of the point (𝛿Wext), must be equal to the work performed by the inter-
nal forces in equilibrium with the real force applied, over the displacement field in
equilibrium with the prescribed virtual external displacement (𝛿Wint) [27].

Based on Fig. 2, the resulting virtual work expression from a virtual displacement

𝛿u𝓁 on a bar subjected to an axial force P is given by

𝛿Wext = P𝛿u𝓁 . (13)

The internal virtual work 𝛿Wint can be expressed using different stress and strain

definitions, provided that their joint use leads to the same virtual work 𝛿Wext. Stress

and strain measures that satisfy this condition are said to be energetically or work

conjugate. The rotated
4

engineering stress and strain measures are respectively

defined by

𝜎E = P
Ao

and 𝜀E =
dx𝓁 − dX𝓁

dX𝓁
. (14-15)

It is important to emphasize that in truss structural elements, the scalars 𝜎E and 𝜀E
are the only nonzero components (𝜎11 = 𝜎x𝓁 and 𝜀11 = 𝜀x𝓁) in the engineering stress

and strain tensors, and therefore, the only components that generate work. The 𝜎ij

3
A virtual displacement field is defined as an infinitesimal displacement that satisfies the boundary

conditions of the original configuration of a given body.

4
A given entity is said to be rotated if it is described in the corrotational system.
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is related to the local system of reference x1, x2, x3. In this case i, j = 1, 2, 3, so that

x1, x2, x3 = x𝓁 , y𝓁 , z𝓁 . Hence,

𝝈 =
⎡⎢⎢⎣
𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

⎤⎥⎥⎦𝓁
≈
⎡⎢⎢⎣
𝜎E 0 0
0 0 0
0 0 0

⎤⎥⎥⎦
and 𝜺 =

⎡⎢⎢⎣
𝜀11 𝜀12 𝜀13
𝜀21 𝜀22 𝜀23
𝜀31 𝜀32 𝜀33

⎤⎥⎥⎦𝓁
≈
⎡⎢⎢⎣
𝜀E 0 0
0 0 0
0 0 0

⎤⎥⎥⎦
. (16-17)

From Eqs. (8) and (9), it comes that

𝜀E =
J(x𝓁) − J(X𝓁)

J(X𝓁)
=

L − Lo
Lo

=
u𝓁
Lo

, (18)

where a linear displacement profile is assumed. Then, the virtual strain resulting

from a virtual displacement is given by

𝛿𝜀E =
d𝜀E
du𝓁

𝛿u𝓁 =
𝛿u𝓁
Lo

, (19)

satisfying the equality

𝛿Wext = P𝛿u𝓁 = 𝜎A𝛿u𝓁 = P
Ao

Ao𝛿u𝓁 = 𝜎E𝛿𝜀EAoLo = 𝛿Wint, (20)

where 𝜎 is the rotated Cauchy stress measure, A and Ao are the deformed and unde-

formed cross-sectional areas, respectively. Equation (20) shows that the rotated stress

and strain definitions are work conjugate.

Considering that in a pin-jointed bar the stress and strain values are the same

along the length of the bar, and aiming to obtain expressions easily extendable to

continuum elements, Eq. (20) can be replaced by

𝛿Wint =
∫Vo

𝜎E𝛿𝜀EdVo. (21)

2.2 Internal Force Vector

Generalizing the formulation presented for a bar element in Sect. 2.1, the use of

Eqs. (2) and (5) lead to the discretized version of virtual work

𝛿Wext =
nel∑
e=1

𝛿uT
𝓁f𝓁

⏟⏞⏞⏟⏞⏞⏟

𝛿Wint

=
nel∑
e=1

∫Vo

𝜎E𝛿𝜀EdVo

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛿Wint

= 𝛿uTp
⏟⏟⏟

𝛿Wext

, (22)
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where nel corresponds to the total number of elements e which constitute the truss,

𝛿Wext stands for the virtual work caused by the virtual displacement 𝛿u, f𝓁 is the

nodal internal force vector with respect to the local system of reference, and p the

external load vector in the global system of reference.

For a given element e, from Eqs. (18) and (19) one gets

𝛿𝜀E = 1
J(X𝓁)

dJ(x𝓁)
du𝓁

𝛿u𝓁 , (23)

and nothing that Eq. (23) is valid for an arbitrary 𝛿u𝓁 , after some manipulations [28],

it results that

f𝓁 =
∫

+1

−1
BT
o𝜎EJ(X𝓁)Aod𝜉, (24)

where

Bo =
1

2J(X𝓁)
[
−1 0 0 1 0 0

]
. (25)

In order to map the internal force vector to the global system of reference, the

rotation matrix T is used

f = TT f𝓁 , (26)

where

T(ui
n) =

[
𝜽 𝟎
𝟎 𝜽

]
with 𝜃pq = cqp, p, q = 1, 2, 3 (27)

and cqp is the direction cosine which relates the pth local reference axis of the bar

with the qth global reference axis. In practice, from Eqs. (24) and (25), just the first

and fourth components of f𝓁 are nonzero, then only cq1 need to be computed.

2.3 Tangent Stiffness Matrix

The global tangent stiffness matrix KT is obtained by application of an assembly

operator Λ which maps local to global degrees of freedom and sums the contribution

of each element e to the stiffness of the whole structure [29],

KT =
nel
𝛬

e=1
ke
T . (28)
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In turn, the tangent stiffness matrix of each element is obtained by differentiation

of the element residue with respect to the element nodal displacement in the global

reference system. Considering that the external force its not dependent on the dis-

placement field, it comes out that

keT = − dre
due =

df e

due = d
due

(
TT f e𝓁

)
= dTT

due f e𝓁
⏟⏟⏟

kT1

+ TT df e𝓁
due

⏟⏟⏟

kT2

= kT1 + kT2, (29)

Using the engineering stress and strain pair, and after some algebraic manipula-

tions, the term kT1 can be expressed as Stahlschimidt [30],

kT1 =
∫

+1

−1
BTHBJ(X𝓁)Aod𝜉, (30)

where

H =
𝜎E

𝜆

[
I −

(1
𝜆

)2
BxxTBT

]
, (31)

and

B = 1
2J(X𝓁)

⎡⎢⎢⎣
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

⎤⎥⎥⎦
, (32)

𝜆 = L⟋Lo is the stretch ratio, I the identity matrix and x the updated coordinate

nodal vector with respect to the global reference system. Accordingly, the term kT2
can be expressed as

kT2 = TT
[
∫

+1

−1
BT
o
d𝜎E
d𝜀E

BoJ(X𝓁)Aod𝜉
]

T, (33)

where d𝜎E⟋d𝜀E is called tangent modulus and is responsible for introducing the

material non-linearity to the formulation. Section 2.6 shows a robust and accurate

form to evaluate this expression.

2.4 Geometric Nonlinearity

The geometric nonlinear behavior is introduced into the above formulation through

the stretch ratio 𝜆 and the updated coordinate vector x into H in kT1, and by the

rotation matrix T(ui
n) in kT2. It is important to emphasize that the geometric linear
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Fig. 3 Damaged

representative volume

element

formulation can be treated as a particularization of nonlinear formulation. In this

case, the kT1 vanishes and the linear equation Eq. (11) is exact, so the whole load

can be applied in just one step, i.e., 𝜇1 = 1, ũ0
1 = 𝟎, r11(ũ

1
1) = 𝟎 and f (ũ0

1) = 𝟎. Then,

the discretized equilibrium particularizes to

r11(ũ
1
1 = u) = r11(ũ

0
1) +

dr11(ũ
0
1)

dũ0
1

u (34)

𝟎 =
[
p − f (ũ0

1)
]
+

dr11(ũ
0
1)

dũ0
1

u (35)

⇒ −
dr11(ũ

0
1)

dũ0
1

u = r11(ũ
0
1) = p − 𝟎 (36)

or consistently with the Eq. (12),

KTu = p, (37)

where

KT =
nel
𝛬

e=1
kT2, p =

nel
𝛬

e=1
pe
, and f =

nel
𝛬

e=1
f e. (38-40)

2.5 Material Nonlinearity: A Coupled Elastoplastic Model
for Ductile Damage

A damaged representative volume element (RVE), oriented by the normal vector n
and subjected to a load P, is shown in Fig. 3. The scalar damage variable is physically

defined as the density of micro-cracks and voids inside an overall cross-sectional area

A in the RVE
5

[31]. Under isotropic hypothesis, the scalar damage variable D does

not dependent on a normal vector and can be defined as

5
The micro-cracks and voids are small if compared to RVE dimension, but large when compared

to the atomic level.
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Fig. 4 Bar subjected to

uniaxial stress. The

micro-cracks and voids are

simultaneously removed

D = A − ̄A
A

=
AD

A
, (41)

where AD is the damaged area and ̄A the effective resisting area. The damage value

D = 0 corresponds to the undamaged state, D = 1 represents the rupture of the mate-

rial into two parts, and 0 < D < 1 represents a damaged intermediate state.

Figure 4 shows a bar subjected to uniaxial stress in the damaged and equivalent

configuration states. The equivalent configuration state is obtained by removing the

micro-cracks and voids. The effective stress 𝜎̄
6

is related to the equivalent configu-

ration without defects, defined on an RVE plane from Eq. (41) by

𝜎̄ = P
̄A
= 𝜎

1 − D
. (42)

In order to model the damage material behavior, the strain equivalence principle

is the most applied. This principle states that the constitutive equations to damaged

material are derived in a similar way than for a virgin materials with the sole differ-

ence that the effective stress 𝜎̄ replaces the usual stress 𝜎 [32]. Then, from Hooke’s

law one obtains

𝜀

e = 𝜎

̄E
= 𝜎̄

E
= 𝜎

E(1 − D)
, (43)

with

̄E = E(1 − D) and D = E − ̄E
E

= 1 −
̄E
E
, (44-45)

where 𝜀
e

is the elastic strain, E the initial (undamaged) modulus and ̄E the damaged

material modulus. This development is based on a phenomenological model using

the elastic modulus degradation as a damage macroscopic measure.

Three equations ground the classical continuum theory of plasticity: the yield

condition, the flow rule and the hardening law [33]. For a one-dimensional stress

state, the yield surface condition can be expressed, considering the effective stress

concept [34], as

6
In favor of neatness, from this point on, the subscript (.)E is dropped because it is implicit that only

the rotated engineering stress and strain tensors will be used throughout the text.
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f (𝜎, 𝛼,D) = |𝜎|
1 − D

−
(
𝜎y + Hiso𝛼

)
≤ 0, (46)

where the scalar variable 𝛼 is known as accumulated plastic strain and is a parameter

associated to isotropic hardening, Hiso is the isotropic hardening modulus and 𝜎y is

the initial yield stress. The evolution of the plastic strain and the isotropic hardening

laws are respectively given by

𝜀̇

p = 𝛾

𝜕f
𝜕𝜎

= 𝛾

sign(𝜎)
1 − D

and 𝛼̇ = |𝜀̇p| = 𝛾, (47-48)

where 𝛾 is the plastic multiplier and sign is the sign function that returns±1. Equation

(47) evinces the damage plasticity coupling.

Once the damage variable is defined, one can adopt the associate evolution law

proposed by Lemaitre [32] which, particularized to the unidimensional case, is given

by [34],

̇D = ṗ
(−Y

r

)S
, (49)

where ̇D is the rate of damage evolution, r and S are material parameters experimen-

tally obtained, Y is the damage energy release rate and ṗ is the equivalent plastic

strain rate. The last two entities are respectively defined by

Y = 𝜎

2

2E(1 − D)2
and ṗ =

√
𝜀̇
p
𝜀̇
p = 𝛾

1 − D
. (50-51)

Now, the continuous constitutive equations are replaced by their incremental

counterparts. Suppose that in the (n − 1)th incremental step, the plastic strain field,

the damage variable and the compatible strain fields are known. For a given strain

increment, one wants to update the information for the current step n. The procedure

adopted to solve this problem is based in a linear prediction scheme and non-linear

correction, schematically shown in Fig. 5.

From the development of Esmaeili and Öchsner [34], based in Fig. 5, the elastic

trial strain is obtained by the expressions

𝜀

e, trial
n = 𝜀n−1 − 𝜀

p
n−1 + 𝛥𝜀n−1 = 𝜀n − 𝜀

p
n−1, (52)

𝜀

e, trial
n = 𝜀n − 𝜀

p
n + 𝛥𝜀

p
n−1 = 𝜀

e
n + 𝛥𝜀

p
n−1. (53)

Using Hooke’s law, the elastic strain in the n state is described as

𝜀

e
n =

𝜎n

(1 − Dn)E
, (54)
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Fig. 5 Scheme integration

algorithm considering the

damage effects. Linear

prediction and nonlinear

correction

which together with Eq. (53) returns the final expression for the stress state,

𝜎n = (1 − Dn)E𝜀e, trialn − (1 − Dn)E𝛥𝜀
p
n−1, (55)

where 𝜀

e, trial
n is evaluated by Eq. (52), whereas 𝛥𝜀

p
n−1 may be replaced by

𝛥𝜀

p
n−1 = 𝛥𝛾n

sign
(
𝜎

trial
n

)
(1 − Dn)

, (56)

obtaining

𝜎n = (1 − Dn)E𝜀e, trialn − 𝛥𝛾nEsign
(
𝜎

trial
n

)
. (57)

The prediction phase consists in evaluating the trial elastic stress, described by

𝜎

trial
n = ̄En−1𝜀

e, trial
n = E(1 − Dn−1)𝜀e, trialn . (58)

In order to verify if the trial stress elastic hypothesis is consistent with the assumption

of a purely elastic state, one checks the yield function

f (𝜎trial
n , 𝛼n−1,Dn−1) =

|𝜎trial
n |

(1 − Dn−1)
−
(
𝜎y + Hiso𝛼n−1

)
. (59)

If f ≤ 0, the current step is elastic and the hypothesis that the variables 𝛼n−1, Dn−1
and 𝜀

p
n−1 are frozen is correct (𝛼n = 𝛼n−1, Dn = Dn−1 and 𝜀

p
n = 𝜀

p
n−1). On the other

hand if f > 0, the correction phase must be performed. In general, at the end of the

nth incremental step, the four Eqs. (60–63) must be satisfied
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𝜎n = (1 − Dn)E𝜀e, trialn − 𝛥𝛾nEsign(𝜎trial
n ), (60)

𝛼n = 𝛼n−1 + 𝛥𝛾, (61)

fn =
||𝜎n||

1 − Dn
− (𝜎y + Hiso𝛼n−1), (62)

Dn = Dn−1 +
𝛥𝛾n

1 − Dn

(−Y(𝜎n,Dn)
r

)S

. (63)

Outside this state, one obtains the residue r on each of these equations

r
𝜎

(𝜎, 𝛥𝛾,D) = 𝜎

E
− (1 − D)𝜀e, trialn + 𝛥𝛾sign(𝜎) ≠ 0 (64)

r
𝛼

(𝛼, 𝛥𝛾) = −𝛼 + 𝛼n−1 + 𝛥𝛾 ≠ 0 (65)

rf (𝜎, 𝛼,D) =
|𝜎|

1 − D
− (𝜎y + Hiso𝛼) ≠ 0 (66)

rD(𝜎, 𝛥𝛾,D) = −D + Dn−1 +
𝛥𝛾

1 − D

(
−Y(𝜎,D)

r

)S

≠ 0. (67)

The final stage is the root of the vector function m, which consists of the residual

functions

m(v) =
[
r
𝜎

(v) r
𝛼

(v) rf (v) rD(v)
]T
, (68)

where

v =
[
𝜎 𝛼 𝛥𝛾 D

]T
. (69)

This root is obtained using any method for the solution of nonlinear equations. In

the present work only the full NR is employed

vi = vi−1 −
[
J(vi−1)

]−1m(vi−1). (70)

At each nth step, the vector

v0 =
⎡⎢⎢⎢⎣

𝜎

0

𝛼

0

𝛥𝛾

0

D0

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

𝜎

trial
n
𝛼n−1
0

Dn−1

⎤⎥⎥⎥⎦
(71)

can be used as the initial value for the argument. The Jacobian matrix of the residue

vector function Eq. (68) is obtained from the partial derivatives of Eqs. (64–67),

specifically by
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J(v) =

⎡⎢⎢⎢⎢⎢⎣

E−1 0 sign(𝜎) 𝜀

e, trial
n

0 −1 1 0
sign(𝜎)
1−D

−Hiso 0 |𝜎|
(1−D)2

2sign(𝜎)S𝛥𝛾|𝜎|2S−1
(1−D)2S+1(2Er)S

0 1
(1−D)2S+1

(
𝜎

2

2Er

)S
−1 + (2S+1)𝛥𝛾

(1−D)2(S+1)

(
𝜎

2

2Er

)S

⎤⎥⎥⎥⎥⎥⎦
. (72)

The inversion of J must be evaluated in the converged state of the previous NR

iteration procedure.

Interestingly, Esmaeili and Öchsner [34] show a simplification of this matrix

scheme which results in only one single residual equation to be solved, resulting

in a more compact and inexpensive computationally numerical scheme. However,

this alternative is not implemented in the present work.

2.6 Tangent Modulus

The tangent modulus depends directly on the constitutive relationship in question.

Thus, to generalize its evaluation, a finite difference procedure based on complex

derivatives is adopted [35].

The tangent modulus is numerically obtained by a perturbation in the imaginary

part of the stress

d𝜎n
d𝜀n

≈
Im

[
𝜎n(𝜀n + i𝛥𝜀n)

]
𝛥𝜀n

, (73)

where

𝛥𝜀n = 𝜑𝜀n (74)

is a perturbation in the strain and 𝜑 is the proportionality perturbation factor, which

can be given values as low as 𝜑 = 10−300, providing accurate and stable results. In

Sect. 3.1.1, the reader will find more details about this procedure based in complex

derivatives. Moreover, this procedure presents a low computational and storage cost,

because it is set at the element (local) level, at each Gauss point in FE computations.

3 Sensitivity Analysis

This section presents an overview of analytical, SA and OFD methods for the treat-

ment of sensitivity in nonlinear quasi-static problems. Such methods are easily par-

ticularized to the linear case simply by considering a single incremental step.
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3.1 Sensitivity Analysis for Path Independent Problems

In this type of problem, the sensitivity can be evaluated from calculations based on

variables, all of which available in the current incremental step. The residue rn can be

described directly as a function of displacement at the end of the nth incremental step

rn(un, s) = 𝜇np(s) − f n(un, s) ≈ 𝟎, (75)

where s = (s1,… , sj,… , sndv) is the design variables vector and ndv is the number

of design variables. The same equilibrium procedure shown in Sect. 2 is adopted in

the present formulation considering the new linearization of the residue around ũi−1
n

rn(ũi
n, s) = rn(ũi−1

n + 𝛥ui
n, s) ≈ rn(ũi−1

n , s) +
𝜕rn(ũi−1

n , s)
𝜕ũi−1

n

𝛥ui
n. (76)

After recursive updating of displacements using Eq. (76), the convergence ũi
n → un

is achieved, that is, rn(un, s) ≈ 𝟎. The residue derivative with respect to un refers to

the tangent stiffness matrix KT ,n shown in Sect. 2.3.

Generally, a given structural constraint can be expressed as

𝖦(s) = G(un(s), s) ≤ 0. (77)

In order to evaluate the constraint sensitivity, Eq. (77) is differentiated with respect

to the design parameter sj ∈ s, resulting in

d𝖦
dsj

= 𝜕G
𝜕sj

+ 𝜕G
𝜕un

dun

dsj
. (78)

3.1.1 Overall Finite Difference Method

This section shows the OFD methods based on real and complex variables. The

details around such formulations are also discussed.

OFD Based on Real Variables

Simplicity and ease of implementation make the traditional (based on real variables)

overall finite difference method (RVOFD) widely used in commercial numerical

codes. However, this approach suffers from computational inefficiency and numeri-

cal errors [36, 37].

In order to apply this method, the iterative procedure expressed by Eq. (76) must

be repeatedly used considering each perturbed design variable. To this end, suppose
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that the displacement is a differentiable function and consider 𝛥sj a perturbation in

the jth design variable with a vector representation given by

𝛥sj =
[
0 … 𝛥sj … 0

]T
. (79)

The design variable can be perturbed positively, negatively or both positively and

negatively. Therefore, without loss of generality, considering a positive perturbation

in the jth design variable and iteratively solving Eq. (76) one obtains the converged

displacement in nth incremental step un(s + 𝛥sj). Similarly, making a negative per-

turbation in the same jth design variable, un(s − 𝛥sj) is obtained.

If positive perturbation is used, the approximation obtained is known by forward

finite difference (FFD)

dun(s)
dsj

≈
[
𝛥un(s)
𝛥sj

]
FFD

=
un(s + 𝛥sj) − un(s)

𝛥sj
. (80)

On the other hand, if a negative perturbation is used, one obtains the backward finite

difference (BFD)

dun(s)
dsj

≈
[
𝛥un(s)
𝛥sj

]
BFD

=
un(s) − un(s − 𝛥sj)

𝛥sj
. (81)

Finally, using a combination of positive and negative perturbations, one gets the

central finite difference (CFD)

dun(s)
dsj

≈
[
𝛥un(s)
𝛥sj

]
CFD

=
un(s + 𝛥sj) − un(s − 𝛥sj)

2𝛥sj
. (82)

It is important to notice that Eqs. (80) and (81) demand a whole new nonlinear

simulation for the perturbed states, while Eq. (82) needs two nonlinear simulations

in addition to the solution of the unperturbed state, given by Eq. (76).

OFD Based on Complex Variables

The use of complex variables to estimate approximations of the derivatives was orig-

inally introduced in the works of Lyness and Moler [38] and Lyness [39]. Starting

from this theory, Squire and Trapp [40] show a procedure based on complex vari-

ables that has been largely used in many fields of engineering due to its accuracy,

robustness and ease of implementation. Additionally, this procedure demands lower

computation cost, although, the storage cost is somewhat higher for complex vari-

ables when compared with the real counterpart [41, 42].

Following the work of Lyness and Moler [38] apud Haveroth et al. [27], the first

derivative of the displacement vector un with respect to sj ∈ s can be calculated by
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defining all the variables involved as complex entities, applying a small perturbation

in the complex part of sj and evaluating the effect in the complex part of un. In order

to show this, recall that when using real variables one expands un using Taylor series

with origin at s

un(s + 𝛥sj) =
∞∑
k=0

dun
k(s)

dskj

𝛥skj
k!

, (83)

where 𝛥sj is described by Eq. (79). Similarly, it is possible to adopt a perturbation

in the imaginary part i𝛥sj instead of using a real perturbation 𝛥sj, as usual. In this

case,

un(s + i𝛥sj) =
∞∑
k=0

dun
k(s)

dskj

(i𝛥sj)k

k!
, (84)

and using the fact that i =
√
−1, the imaginary part of Eq. (84) is given by

Im
[
un(s + i𝛥sj)

]
=

dun(sj)
dsj

𝛥sj +
∞∑
k=1

(−1)k
dun

2k+1(s)
ds2k+1j

𝛥s2k+1j

(2k + 1)!
. (85)

Therefore, the first derivative can be expressed by

dun(s)
dsj

=
Im

[
un(s + i𝛥sj)

]
𝛥sj

+ O , (86)

where O stands for the high order terms. Assuming a relatively small value 𝛥sj the

Eq. (86) is approximated as follows

dun(s)
dsj

≈
Im

[
un(s + i𝛥sj)

]
𝛥sj

, (87)

which is known as the overall finite difference expression based on complex variables

(CVOFD). This same procedure is used to evaluate the tangent modulus described

in Sect. 2.6.

This expression does not involve subtraction between two values in the numerator,

a fact that produces errors in traditional finite differences. In addition, it is noteworthy

that this approach has accuracy of order two, while the conventional finite difference

has accuracy of order one. In other words, the convergence of sensitivity analysis

using the complex method has quadratic convergence with decreasing perturbation

values [41], whereas in the real case this convergence is linear. These aspects make

the complex method remarkable accurate and stable when small perturbations are

applied.
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3.1.2 Semianalytical Method

To evaluate the displacement sensitivity with respect to the design variable sj ∈ s,

the residue equation is derived using the chain rule

𝜕rn(un, s)
𝜕sj

=
𝜕rn(un, s)

𝜕un

dun

dsj
, (88)

and since the residue derivative with respect to the displacement is expressed by the

tangent stiffness matrix, one gets

𝜕rn(un, s)
𝜕sj

= −KT ,n
dun

dsj
, (89)

resulting in the expression of direct
7

analytical sensitivity

dun

dsj
= K−1

T ,n

[
−
𝜕rn(un, s)

𝜕sj

]

= K−1
T ,n

[
𝜕f n(un, s)

𝜕sj
− 𝜇n

dp(s)
dsj

]
, (90)

where p and f are explicitly dependent of s.

The SA method based on real variables is obtained by evaluating the analytical

expression of Eq. (90) using the RVOFD approximation

dun

dsj
≈ K−1

T ,n

[
𝛥f n(un, s)

𝛥sj
− 𝜇n

𝛥p(s)
𝛥sj

]
. (91)

Similarly, the SA method based on complex variables is obtained evaluating the same

expression, now using the CVOFD approximation

dun

dsj
≈ K−1

T ,n

[
Im

[
f n(un, s + i𝛥sj)

]
𝛥sj

− 𝜇n
Im

[
p(s + i𝛥sj)

]
𝛥sj

]
. (92)

The tangent stiffness matrix involved in these systems is the same matrix obtained

for the equilibrium of the original (unperturbed problem), after convergence in

the nth step. Thus, the exact linearization of the internal force vector is of para-

mount importance to avoid sensitivity errors, justifying the development presented

in Sect. 2. Moreover, Eqs. (91) and (92) represent linear equation systems whose

solutions are direct (do not require iterations).

7
This work focuses on direct analytical sensitivity, since this option offers more advantages than the

adjoint approach in path dependent problems even when the number of design variables is smaller

than the number of constraints [43].
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3.2 Sensitivity Analysis for Path Dependent Problems

Path dependent problems are those that require knowledge of the whole history of the

deformed body up to the current configuration, in order to predict the configuration

in the next step. If the structural analysis is path dependent, its respective sensitivity

analysis also will be. The term path dependent, does not mean only the dependence

of the current unperturbed values on the history of deformation, but also the depen-

dence of sensitivity history, namely, the previous stress, displacement and internal

variables sensitivities [43]. The sensitivity analysis methods directed for this nature

of problems are more complex if compared to their path independent counterparts,

because the internal force becomes a function of the current displacement and defor-

mation history. Thus, the internal force differentiation with respect to the particular

design parameter, should be performed consistently.

The OFD method used for this type of problem is obtained in analogy to path

independent problems, thus will not be discussed in this section. A modification of

the OFD method obtaining a significant improvement in computational efficiency is

shown by Muñoz-Rojas [37].

3.2.1 Traditional Semianalytical Method

In path independent problems, the vector of internal variables 𝝌 is null and the stress

𝜎 can be easily evaluated. Conversely, when path dependent problems are consid-

ered, internal variables are not null and change according to the load applied. The

history of these variables must be considered in the new strain evaluation.

In order to consider the internal variables history, one adopts a slight modification

in the approach presented in Sect. 3.1, including an additional update step. Consider-

ing that the aim is to calculate the displacement sensitivity with respect to the design

variable sj ∈ s, Eq. (76) is derived using the chain rule. After some manipulations,

the direct analytical sensitivity expression is obtained

dun

dsj
= K−1

T ,n

[
𝜕f n(un, s)

𝜕sj

|||||u − 𝜇n
dp(s)
dsj

]
(93)

whose solution provides the sensitivity in the current (nth) step. The internal force

vector f n must be described now as dependent on the internal variables vector 𝝌n−1,

the stress 𝜎n−1, the displacement un and the design variables s, as follows

f n = f n
(
𝜎n−1(s),𝝌n−1(s),un(s), s

)
. (94)

The major difficulty to solve Eq. (93) comes from the effective evaluation of the

term
𝜕f n
𝜕sj

||||u, where the notation (.)|u means that the derivative is taken for a fixed value

of u. Conte et al. [44] refer to this term as conditional derivative. As its analytical
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evaluation can be very cumbersome, the SA method represents a general and simple

alternative. This method replaces the conditional derivative vector of the internal

force by an expression based on finite differences

𝜕f n
𝜕sj

|||||u ≈
𝛥sf n||u
𝛥sj

. (95)

Without loss of generality, FFD method is used to obtain Eq. (95), that is

𝛥sf n = f n
(
𝜎n−1(s + 𝛥sj),𝝌n−1(s + 𝛥sj),un(s + 𝛥sj), s + 𝛥sj

)
+

−f n
(
𝜎n−1(s),𝝌n−1(s),un(s), s

)
(96)

and keeping u fixed

𝛥sf n||u = f n
(
𝜎n−1(s + 𝛥sj),𝝌n−1(s + 𝛥sj),un(s), s + 𝛥sj

)
+

−f n
(
𝜎n−1(s),𝝌n−1(s),un(s), s

)
, (97)

where 𝜎n−1(s + 𝛥sj) and 𝝌n−1(s + 𝛥sj) are linearly approximated by

𝜎n−1(s + 𝛥sj) ≈ 𝜎n−1(s) +
d𝜎n−1(s)

dsj
𝛥sj, (98)

𝝌n−1(s + 𝛥sj) ≈ 𝝌n−1(s) +
d𝝌n−1(s)

dsj
𝛥sj. (99)

The unconditional derivatives in Eqs. (98) and (99) are obtained from an addi-

tional step. This step is performed after obtaining unconditional sensitivity in the

nth load step using Eq. (93). The displacement of the perturbed problem at the nth

step can be approximated by

un(s + 𝛥sj) ≈ un(s) +
dun

dsj
𝛥sj (100)

(notice that although the approximations in Eqs. (98–100) are linear, for diminu-

tive perturbations they will be nearly exact). From this approximation, the internal

variables 𝜎n(s + 𝛥sj) and 𝝌n(s + 𝛥sj) are calculated, because they are necessary to

evaluate the sensitivity in the next step.

This procedure is represented geometrically in Fig. 6. For illustrative purposes,

assume that the external force vector does not have dependence on the design vari-

able. The superscript (.)p is adopted to indicate that the variable (.) is evaluated in

the perturbed structure, while the omission of such symbol, (.) means evaluation in

the original structure.
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Fig. 6 Structural response with respect to the original and perturbed design parameter. Internal

variables update procedure

The equilibrium states of increments n − 1 and n are represented by the planes

𝜋n−1 and 𝜋n, respectively. In these states, the structural responses such as

displacement, stress and internal force are dependent on the design variables. Apply-

ing an external force equivalent to 𝜇n−1p, one can see that the equilibrium state of

the original structure is expressed by point 1. This point is obtained from the conver-

gence of the iterative procedure. Therefore, both tangent stiffness matrix KT ,n−1 and

displacement un−1 are known. The objective is to determine equilibrium of the per-

turbed structure, which is achieved at point 2. As the displacement of the perturbed

structure is fixed, the structural response leads to point 3, causing an unbalanced

force 𝛥sf n−1||u, expressed by Eq. (97). From point 3, the tangent stiffness matrix

KT ,n−1 is used to estimate the up
n−1 value, given by up∗

n−1, which is located at point 4

rather than point 2. This approach is responsible for an additional source of error due

its nature based in approximations, in addition to those already provided in Sect. 3.1.

However, if a tiny perturbation can be numerically applied, this source of error will

be negligible.

In fact, it is possible to see graphically that this approximation is consistent

when the perturbation and increments are small, since the displacement sensitivity

is obtained by the tangent of 𝜃n−1. The evaluation of the displacement approximation

up
n−1 is of great importance, because from it, the internal variables of the respective

step are updated, i.e., (𝜎
p
n−1 and 𝝌

p
n−1) using Eqs. (98) and (99). This update becomes

necessary to evaluate the unbalanced force 𝛥sf n||u of the next step. The procedure is

repeated for each new step.
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3.2.2 Complex Variable Semianalytical Method

The CVSA method applied to path dependent problems is obtained replacing the

complex derivative approximation Eq. (87) in the analytical expression Eq. (93),

that is

dun

dsj
≈ K−1

T ,n

⎡⎢⎢⎢⎣
Im

[
f n(s + i𝛥sj)

|||u
]

𝛥sj
− 𝜇n

Im
[
p(s + i𝛥sj)

]
𝛥sj

⎤⎥⎥⎥⎦
, (101)

where

f n(s + i𝛥sj)
|||u = f n(𝜎n−1(s + i𝛥sj),𝝌n−1(s + i𝛥sj),un(s), s + i𝛥sj), (102)

followed by the same procedure previously presented in Sect. 3.2.1.

The numerical implementation of the semianalytical procedure particularized for

complex variables is shown in Fig. 7. To obtain the RVSA procedure, the highlighted

blocks must be changed by real finite differences and real perturbations. The semi-

analytical procedure for path independent problems can be considered a particular-

ization of the path dependent one. Thus, the same flowchart illustrates the procedure

for both problems.

This method is very promising because it combines the efficiency and accuracy

of the analytical method with the positive considerations related to the CVOFD

Fig. 7 Displacement sensitivity evaluation via the SA method to path dependent problems. Scheme

particularized to CVSA method
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method, presented in Sect. 3.1.1. Additionally, the computational and storage cost

are drastically reduced when compared to the CVOFD method, because the com-

plex operations are performed at the element level (as seen in Fig. 7). However, it is

necessary to allocate a global complex vector for each internal variable in order to

save its history.

4 Periodic Truss Material

Periodic truss materials (PTMs) belong to the family of ultralight cellular materi-

als formed by unit cells made of bars, which are spatially distributed in a periodic

pattern. These materials have attractive thermophysical and mechanical properties,

such as high stiffness/weight ratio and high strain energy absorption capability, prop-

erties that can be taylored by modifying the architecture of the unit cell. Due to their

periodicity, the PTMs exhibit low dispersion in their physical properties, a fact that

can be a great advantage over traditional cellular materials like foams, which feature

large dispersion in nominal values of their properties due to a heterogeneous porosity

distribution [45–47].

4.1 Sensitivity Analysis of Periodic Truss Materials

In this section, we evaluate the nonlinear behavior of PTMs for which homogenized

properties were designed considering that linear conditions would apply [45]. The

sensitivity of these homogenized properties is evaluated along the nonlinear incre-

mental steps using and comparing the methods previously presented. In this frame-

work, we adopt a 2D PTM designed to maximize the bulk modulus in the linear

range keeping mechanical isotropy [45]. To conduct this study, we evaluate the bulk

modulus sensitivity with respect to the relative density 𝜌

∗
for different types of non-

linearities. Aiming at a fair comparison among the SA procedures studied, all of

them are implemented within the same truss finite element code with exactly the

same algorithmic operations, such as solvers, time discretization approach, return

mapping scheme and so forth.

The linearly optimized unit cell adopted to perform this study is illustrated in

Fig. 8a. This material has the following parameters
8
: E = 210GPa, Hiso = 150GPa,

𝜎y = 1.5GPa, S = 1.0, r = 80MPa. The cell is square with both sides length equal

to 100mm.
9

Other information such as cross-sectional areas and coordinates are

given in Table 1. Figure 8b shows the periodic material generated from the unit cell,

8
The material parameters adopted do not necessarily correspond to a real material, being chosen

for purely academic purposes.

9
The dimensions given to the cell are irrelevant provided the relative density is kept unchanged.

This is because the cell size must tend to zero when compared to the macroscopic scale [48].
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(a) (b) (c)

Fig. 8 a Basic cell composed of bar elements. b Periodic material generated translating the basic

cells. c Periodic material rotated in 45◦ evincing symmetry

whereas in Fig. 8c this same material is rotated 45◦ to evince that the material has

geometric symmetry. The periodically repeating process leads to an overlapping of

the cell’s borders. Hence, in Fig. 8b, c, the area of the bars common to 2 adjacent

cells must be summed up.

Consider a membrane 𝛱 composed by 10 × 10 unit cells (an extension of the

arrangement illustrated in Fig. 8b) and the subregion 𝛤 formed by 4 × 4 unit cells

located in the center of 𝛱 . The loading P and boundary conditions are shown in

Fig. 9. In order to minimize the problems associated with the boundary (border dis-

tortion effect), the displacement and strains measures are evaluated by their average

on the boundary of 𝛤 (𝜕𝛤 ). This choice aims to reduce oscillations that occur when

the evaluation is performed pointwise on the boundary of 𝛱 (𝜕𝛱). From this point

on, the bar upperscript is used to indicate that the variable is evaluated by average of

contributions along the boundary.

The bulk modulus K is a parameter given by the ratio of hydrostatic compressive

stress 𝜎H and volumetric strain 𝜀V .
10

In the bidimensional case, such measures are

respectively defined by

𝜎H =
𝜎x + 𝜎y

2
and 𝜀V = 𝜀x + 𝜀y. (103-104)

Particularizing to this problem, one obtains

K =
𝜎H

𝜀V
=

𝜎x + 𝜎y

2𝜀V
=

𝜎y

2𝜀V
= P

2L𝜀V
= P

2𝜀V
, (105)

where P is the loading along the unit length L of 𝛱 . Note that 𝜎x = 0, because there

is only axial stress in the bar. In a linear analysis when considering information on

𝜕𝛤 one obtains K = 89.9MPa corresponding to −2.19% of error when compared to

10
In linear analysis the bulk modulus is constant, which does not occur when considering nonlinear

behavior [49].
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Table 1 Cross-sectional areas, connectivities and node coordinates of the unit cell

Node Coord. x [mm] Coord. y [mm] Node Coord. x [mm] Coord. y [mm]

1 0.0 0.0 11 53.3311 97.6912

2 32.3640 0.0 12 97.4020 53.2407

3 0.0 32.3341 13 100.0 0.0

4 21.9762 22.0174 14 0.0 100.0

5 0.0 55.8038 15 100.0 32.3341

6 55.5658 0.0 16 32.3640 100.0

7 52.0023 4.4080 17 79.7751 79.7404

8 4.3940 52.2151 18 100.0 55.8038

9 77.7629 20.1496 19 55.5658 100.0

10 19.9704 77.8184 20 100.0 100.0

Element Area [mm2
] Connectivity Element Area [mm2

] Connectivity

1 9.669613 1 2 29 9.272591 8 5

2 7.722314 2 4 30 8.175303 10 16

3 7.851381 4 3 31 9.669613 16 14

4 9.691293 3 1 32 9.132902 14 5

5 7.652776 1 4 33 10.971773 5 16

6 11.463591 2 3 34 8.329162 10 14

7 10.730236 2 6 35 10.673757 15 18

8 7.723244 6 7 36 8.598719 18 12

9 15.681691 7 4 37 14.323816 12 9

10 9.443370 2 7 38 12.153701 9 18

11 12.153224 6 4 39 10.634020 15 12

12 8.664491 6 9 40 8.876196 18 17

13 14.114726 9 7 41 12.295989 17 12

14 11.518608 6 9 42 9.367847 12 18

15 9.313528 6 7 43 12.041171 18 17

16 9.144346 6 13 44 9.132902 18 20

17 9.691293 13 15 45 9.144346 20 19

18 8.102212 15 9 46 8.840667 19 17

19 10.943938 6 15 47 8.322829 17 20

20 8.304048 13 9 48 10.021312 18 19

21 15.679358 4 8 49 14.203331 10 11

22 7.708146 8 5 50 8.735145 11 19

23 10.673757 5 3 51 10.730236 19 16

24 9.481101 3 8 52 12.132112 10 19

25 12.061977 4 5 53 10.647780 11 16

26 14.104930 8 10 54 12.305260 11 17

27 8.674716 10 5 55 9.439316 11 19

28 11.557651 5 10 56 12.026649 17 19
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Fig. 9 Periodic material 𝛱

composed by 10 × 10 unit

cells. The detail shows the

region 𝛤

the referential homogenized value of 91.8MPa, taken from the work of Guth [45].

On the other hand, this error becomes −7.12% when evaluated in 𝜕𝛱 . This justifies

the fact of obtaining the measures in 𝜕𝛤 .

4.2 Bulk Modulus Sensitivity Expression

The relative density 𝜌

∗
is defined as the ratio between the volume of the unit cell

occupied by the rods Vb and the total volume of the unit cell V , that is

𝜌

∗ =
Vb

V
, (106)

where adopting 𝜌

∗ = 49%, in accordance with Table 1, from the work of Guth [45],

one obtains the values

Vb = 1.7485281 × 10−5m3
and V = 3.5684248 × 10−5m3

. (107)

The bulk modulus variation with respect to the relative density is given by

dK
d𝜌∗

= dK
dVb

dVb

d𝜌∗
, (108)

where, from Eq. (106),

dVb

d𝜌∗
= dV

d𝜌∗
𝜌

∗ + d𝜌∗

d𝜌∗
V = V and

dK
dVb

= dK
dūx

dūx
dVb

+ dK
dūy

dūy
dVb

. (109-110)

Since K is given by Eq. (105) and 𝜀̄V is evaluated by the average of contributions

along 𝜕𝛤 with L𝛤 = 0.4m, one gets
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𝜀̄V = 𝜀̄x + 𝜀̄y =
ūx
L𝛤

+
ūy
L𝛤

= 2.5
(
ūx + ūy

)
, (111)

and

dK
dVb

= −P
5(ūx + ūy)2

[
dūx
dVb

+
dūy
dVb

]
, (112)

where dūx⟋dVb and dūy⟋dVb are obtained using the methods previously presented

in Sect. 3. Finally, the sensitivity of the bulk modulus with respect to the relative

density is given by

dK
d𝜌∗

= −PV
5(ūx + ūy)2

[
dūx
dVb

+
dūy
dVb

]
. (113)

4.3 Numerical Evaluation of the Bulk Modulus Sensitivity

For a given perturbation factor 𝜑, the volume of the unit cell occupied by the bars

Vb is updated by

𝛥Vb = 𝜑Vb = 𝜑

nelem∑
e=1

AeLe =
nelem∑
e=1

(
𝜑Ae

)
Le (114)

where nelem is the total number of bar elements, and Ae and Le are the area of the

cross-section and length of the eth element.
11

For this analysis, 𝜑 varies in the inter-

val [10−300, 10−1].
The global measures adopted for the sensitivity and error are defined based on

the 𝓁1 norm as

̄S =
ninc∑
i=1

||||
dK
d𝜌∗

||||i and ̄ERel = 100 ×
̄S − SRef
SRef

. (115-116)

The reference value SRef is obtained via CVSA method using 𝜑 = 10−300 whose val-

ues are presented in Table 2 for the various types of analyses considered in this work.

The application of this sum along the incremental steps aims to consider the history

of the sensitivity as the load application evolves. Recall that for recovering the linear

formulation it suffices to apply a single load increment (step). In the case of nonlinear

11
Note that the formulation of bar elements presented in Sect. 2 keeps the area of the cross-sections

unchanged, which does not occur strictly. In fact, the effect of the change of the cross-sections along

the deformation of the bars can be very important. An extension to account for this effect can be

found in the work of Crisfield [50].
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Table 2 Reference values for the 2D periodic truss material

Analysis Reference value SRef
Linear 1832272.5310834

Geometric Nonlinearity 91866961.0561386

Elastoplasticity 79334910.8080563

Elastoplasticity and Geometric Nonlinearity 82082439.7992495

Elastoplasticity with Damage and Geometric Nonlinearity 83049902.3622271

Values obtained using the CVSA method and a perturbation factor 𝜑 = 10−300

Fig. 10 The damage is considered only in the highlighted region in order to avoid boundary prob-

lems (border effect), which results in undesired localized critical damage near the edges

analyses, 50 incremental steps are considered. In this example, only the highlighted

bars in Fig. 10 are subject to damage.

Figure 11a depicts the evolution of the bulk modulus along the 50 incremen-

tal steps. Figure 11b shows the incremental bulk modulus sensitivity behavior with

respect to the relative density for: the linear range, geometric nonlinearity,

elastoplasticity, elastoplasticity with geometric nonlinearity, and elastoplasticity cou-

pled to damage and geometric nonlinearity. The sensitivity presented corresponds

to Eq. (113) and is obtained using the CVSA method and a perturbation factor

𝜑 = 10−300. It is noted that considering the linear formulation, the sensitivity is con-

stant, as expected. Considering the nonlinear geometric formulation, it is possible

to note a small increase of the sensitivity along the increments, which is due to the

change of geometry of the periodic bars. The addition of elastoplasticity with or

without damage, yields large variations over the increments. The behavior of sensi-

tivity which occurs between steps 6 and 15 in the 10 × 10 cells arrangement is due

to the sequence in which the bars yield.

A summary of the accuracy range of the sensitivity methods, considering the

various types of analyses is presented in Fig. 12. In general, all the cases analyzed

show that the accuracy range of the SA methods is superior to OFD methods.

This is specially true for the CVSA method which resulted in accurate values for

all perturbation factors in the domain, that is, for 𝜑 ∈ [10−300, 10−1]. In this case,

for 𝜑 ∈ [10−30, 10−1] the error did not surpass 10−11% in the analyses that did not

include damage, and 10−6% when damage was considered.
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(a) (b)

Fig. 11 a Bulk modulus over the load increments considering various types of analyses. The detail

shows the behavior in the initial incremental steps. b Bulk modulus sensitivity with respect to the

relative density versus load increments. Reference values obtained via CVSA method considering

𝜑 = 10−300. The detail describes the behavior in the final incremental steps

... ...

Fig. 12 Accuracy ranges of the SA and OFD methods for different types of analyses

5 Conclusion

A detailed procedure for updating internal variables when using the SA method to

perform sensitivity analyses in path dependent problems has been presented. It has

been shown that, in this procedure, the use of the CVSA method is an excellent
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alternative, since tiny perturbations can be applied and nearly exact sensitivity results

obtained.

In fact, the CVSA method shows small errors from moderate perturbation factors

to values as low as 𝜑 = 10−300. Although limited to a narrower perturbation range

and higher errors, the same behavior was also identified for the RVSA methods.

With respect to computational aspects, a considerable gain in time and storage

is verified for the semianalytical methods when compared to global counterparts,

because these procedures do not require solving a new global system of equations

for each design variable. On the other hand, it is important to remark that in the

CVSA method it is necessary to define complex global vectors to store the history

of the internal variables. However, the operations involving complex variables are

restricted to the element level at the Gauss points.

Due to all the aforementioned advantages, the CVSA procedure is prone to be

employed as a black box in simulation softwares. Nonetheless, additional studies

using continuum finite elements are recommended.

Acknowledgments The authors wish to express their gratitude to CNPq and CAPES (Brazilian

research supporting agencies), and to UDESC for the concession of Master’s scholarships associ-

ated to this work.

References

1. Barthelemy, B., Haftka, R.T.: Accuracy analysis of the semi-analytical method for shape sen-

sitivity calculation. Mech. Struct. Mach. 18, 407–432 (1990)

2. Vidal, C.A., Haber, R.B.: Design sensitivity analysis for rate-independent elastoplasticity.

Comput. Method Appl. Mech. 107, 393–431 (1993)

3. Bletzinger, K.U., Firl, M., Daoud, F.: Approximation of derivatives in semi-analytical struc-

tural optimization. Comput. Struct. 86, 1404–1416 (2008)

4. Habibi, A., Moharrami, H.: Nonlinear sensitivity analysis of reinforced concrete frames. Finite

Elem. Anal. Des. 46, 571–584 (2010)

5. Jin, W., Dennis, B.H., Wang, B.P.: Improved sensitivity analysis using a complex variable

semi-analytical method. Struct. Multidiscip. Optim. 41, 433–439 (2010)

6. Barthelemy, B., Chon, C.T., Haftka, R.T.: Accuracy problems associated with semi-analytical

derivatives of static response. Finite Elem. Anal. Des. 4, 249–265 (1988)

7. Cheng, G., Gu, Y., Zhou, Y.: Accuracy of semi-analytic sensitivity analysis. Finite Elem. Anal.

Des. 6, 113–128 (1989)

8. Olhoff, N., Rasmussen, J., Lund, E.: A method of “exact" numerical differentiation for error

elimination in finite element based semi-analytical shape sensitivity analysis. Mech. Struct.

Mach. 21, 1–66 (1993)

9. Jin, W., Dennis, B.H., Wang, B.P.: Improved sensitivity and reability analysis of nonlinear

Euler-Bernoulli beam using a complex variable semi-analytical method. In: ASME Proceed-

ings (2009). doi:10.1115/DETC2009-87593

10. Cheng, G., Olhoff, N.: New method of error analysis and detection in semi-analytical sensitivity

analysis. Report No. 36, Institute of Mechanical Engineering, Aalborg University, Denmark,

34pp (1991)

11. Cheng, G., Gu, Y., Wang, X.: Improvement of semi-analytic sensitivity analysis and MCADS.

In: Eschenauer, H.A., Mattheck, C., Olhoff, N. (eds.) Engineering Optimization in Design

Processes, vol. 63, pp. 211–223. Springer, Berlin (1991)

http://dx.doi.org/10.1115/DETC2009-87593


Complex Variable Semianalytical Method for Sensitivity Evaluation in Nonlinear . . . 269

12. Mlejnek, H.P.: Accuracy of semi-analytical sensitivities and its improvement by the "natural

method". Struct. Optim. 4, 128–131 (1992)

13. Parente, E., Vaz, L.E.: Improvement of semi-analytical design sensitivities of non-linear struc-

tures using equilibrium relations. Int. J. Numer. Methods Eng. 50, 2127–2142 (2001)

14. Tsay, J.J., Cardoso, J.E.B., Arora, J.S.: Nonlinear structural design sensitivity analysis for path

dependent problems. Part 1: General theory. Comput. Method Appl. Mech. 81, 183–208 (1990)

15. Tsay, J.J., Cardoso, J.E.B., Arora, J.S.: Nonlinear structural design sensitivity analysis for path

dependent problems. Part 2: Analytical examples. Comput. Method Appl. Mech. 81, 209–228

(1990)

16. Chen, X.: Nonlinear finite element sensitivity analysis for large deformation elastoplastic and

contact problems, Ph.D. thesis, University of Tokyo, Japan (1994)

17. Ohsaki, M., Arora, J.S.: Design sensitivity analysis of elastoplastic structures. Int. J. Numer.

Methods Eng. 37, 737–762 (1994)

18. Lee, T.H., Arora, J.S.: A computational method for design sensitivty analysis of elastoplastic

structures. Comput. Methods Appl. Mech. Eng. 122, 27–50 (1995)

19. Vidal, C.A., Lee, H.S., Haber, R.B.: The consistent tangent operator for design sensitivity

analysis of history-dependent response. Comput. Syst. Eng. 2, 509–523 (1991)

20. Kleiber, M., Hien, T.D., Postek, E.: Incremental finite element sensitivity analysis for non-

linear mechanics applications. Int. J. Numer. Methods Eng. 37, 3291–3308 (1994)

21. Kleiber, M., Kowalczyk, P.: Constitutive parameter sensitivity in elasto-plasticity. Comput.

Mech. 137, 36–48 (1995)

22. Kleiber, M., Kowalczyk, P.: Sensitivity analysis in plane stress elasto-plasticity and elasto-

viscoplasticity. Comput. Methods Appl. Mech. Eng. 137, 395–409 (1996)

23. Bugeda, G., Gil, L.: Shape sensitivity analysis for structural problems with non-linear material

behaviour. Int. J. Numer. Methods Eng. 46, 1385–1404 (1999)

24. Wisniewski, K., Kowalczyk, P., Turska, E.: On the computation of design derivatives for

Huber-Mises plasticity with non-linear hardening. Int. J. Numer. Methods Eng. 57, 271–300

(2003)

25. Conte, J.P., Barbato, M., Spacone, E.: Finite element response sensitivity analysis using force-

based frame models. Int. J. Numer. Methods Eng. 59, 1781–1820 (2004)

26. Chen, X., Nakamura, K., Mori, M., et al.: Sensitivity analysis for thermal stress and creep

problems. JSME Int. J. 43, 252–258 (2000)

27. Haveroth, G., Stahlschmidt, J., Muñoz-Rojas, P.A.: Application of the complex variable semi-

analytical method for improved sensitivity evaluation in geometrically nonlinear truss prob-

lems. Lat. Am. J. Solids Struct. 12, 980–1005 (2015)

28. Haveroth, G.: Complex semianalytical sensitivity analysis applied to trusses with geometric

nonlinearity and coupled elastoplastic behavior, Master thesis (in portuguese), Santa Catarina

State University, Brazil (2015)

29. Hughes, T.J.R., Hinton, E.: Finite Element Methods for Plate and Shell Structures: Formulation

and Algorithms, vol. 2. Pineridge Press International (1986)

30. Stahlschimidt, J.: Sensitivity analysis for nonlinear problems via complex variables semi-

analytical Method: Shape and material parameter application, Master thesis (in portuguese).

Santa Catarina State University, Brazil (2013)

31. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brit-

tle Failures. Springer, Berlin (2005)

32. Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press (1990)

33. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)

34. Esmaeili, M., Öchsner, A.: A one-dimensional implementation of a coupled elasto-plastic

model for ductile damage. Mat. -wiss. u. Werkstofftech 42, 444–451 (2011)

35. Tanaka, M., Fujikawa, M., Balzani, D., Schröder, J.: Robust numerical calculation of tangent

module at finite strains based on complex-step derivative approximation and its application to

localization analysis. Comput. Methods Appl. Mech. Eng. 269, 454–470 (2014)

36. Tortorelli, D.A., Michaleris, P.: Design sensitivity analysis: overview and review. Inverse Probl.

Eng. 1, 71–105 (1994)



270 G.A. Haveroth and P.A. Muñoz-Rojas

37. Muñoz-Rojas, P.A., Fonseca, J.S.O., Creus, G.J.: A modified finite difference sensitivity analy-

sis method allowing remeshing in large strain path-dependent problems. Int. J. Numer. Methods

Eng. 61, 1049–1071 (2004)

38. Lyness, J.N., Moler, C.B.: Numerical differentiation of analytic functions. SIAM J. Numer.

Anal. 4, 202–210 (1967)

39. Lyness, J.N.: Numerical algorithms based on the theory of complex variable. In: ACM Pro-

ceedings (1967). doi:10.1145/800196.805983

40. Squire, W., Trapp, G.: Using complex variables to estimate derivatives of real functions. SIAM

J. Numer. Anal. 1, 110–112 (1998)

41. Martins, J., Sturdza, P., Alonso, J.J.: The complex-step derivative approximation. ACM Trans.

Math. Softw. 29, 245–262 (2003)

42. Montoya, A., Fielder, R., Gomez-Farias, A., Millwater, H.: Finite-element sensitivity for plas-

ticity using complex variable methods. J. Eng. Mech. 141, 04014118 (2015)

43. Kleiber, M., Hien, T.D., Antúnez, H., et al.: Parameter Sensitivity in Nonlinear Mechanics:

Theory and Finite Element Computations. Wiley, New York (1997)

44. Conte, J., Vijalapura, P., Meghella, M.: Consistent finite-element response sensitivity analysis.

J. Eng. Mech. 129, 1380–1393 (2003)

45. Guth, D.C.: Optimization of lattice cells materials aiming at thermomechanical applications

including isotropy constraints, Master thesis (in portuguese), Santa Catarina State University,

Brazil (2012)

46. Guth, D.C., Luersen, M.A., Muñoz-Rojas, P.A.: Optimization of three-dimensional truss-like

periodic materials considering isotropy constraints. Multidiscip. Optim. Struct. (2015). doi:10.

1007/s00158-015-1282-4

47. Guth, D.C., Luersen, M.A., Muñoz-Rojas, P.A.: Optimization of periodic truss materials

including constitutive symmetry constraints. Mat. wiss. u.Werkstofftech. 43, 447–456 (2012)

48. Hassani, B., Hinton, E.: A review of homogenization and topology optimization I-

homogenization theory for media with periodic structure. Comput. Struct. 69, 707–717 (1998)

49. Penn, R.W.: Volume changes accompanying the extension of rubber. Trans. Soc. Rheol. 14,

509–517 (1970)

50. Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures. Wiley, New York

(1991)

http://dx.doi.org/10.1145/800196.805983
http://dx.doi.org/10.1007/s00158-015-1282-4
http://dx.doi.org/10.1007/s00158-015-1282-4


Laser Beam Drilling of Cellular Metals:
Numerical Simulation

Manuel Araújo, Markus Merkel and Andreas Öchsner

Abstract Laser drilling is a highly efficient technique to generate holes in almost
any material. It offers an alternative manufacturing method to mechanical drilling
and water stream cutting. The relatively small amount of heat involved in the
process results in a small heat affected zone. This characteristic makes laser pro-
cessing interesting for several engineering application. Within this chapter the
drilling process is applied to cellular materials. A program code was developed and
implemented in order to predict the relation between the initial parameters and the
final characteristics of the drilling process, such as depth-time behavior for each
amount of initial energy. The simulation of the laser drilling process uses the
concept of homogenized cellular materials. It is studied the influence of the heat
intensity of the laser in the process. Also the influence of material parameters like
thermal conductivity, specific heat and enthalpy are studied. The results of the
simulations of the drilling process closely match to the experimental results. The
thermal conductivity is of paramount importance for the final results of the laser
drilling procedures. The program code can be used for example to the optimization
of the laser drilling procedures and to determine or confirm the material properties
of the materials as well.
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1 Introduction

Cellular materials cover a large range of different arrangements and forms of cell
structures. Metal cellular structures are commonly studied and used in the engi-
neering area because light constructions have more and more importance. Metal
cellular structures can be divided in two different types: periodic cellular lattice
structures and stochastic porous structures. Honeycomb structures and metallic
hollow sphere structures (MHSS) are examples of the different metal cellular
structures, respectively. The MHSS represent a relatively new group of cellular
metals [1, 2] and they combine the well-known advantages of the cellular metals
without major scattering of their material parameters as it is observed at foams.
Some of these advantages are good properties for energy adsorption [3, 4], damping
behavior [5], specific stiffness [6], sound adsorption [7, 8] and heat insulation
[9–11]. These properties provide a wide field of potential multi-functional appli-
cations, e.g. in automotive, aviation or space-industry [12], high-speed trains [13]
and ships [14].

The application of cellular metals as design parts in any engineering area
requires joining as well as separation techniques to process bulk material with a
defined geometry. Mechanical processes like milling, drilling, etc. cause burrs and a
low life time of the tools. The laser prevents the material from the burrs. Other
separation techniques like water stream cutting cannot be applied because of the
defocus of the beam [15] and because of the corrosion process involved as well.

Generally, laser beam drilling is a highly efficient technique to generate holes in
engineering materials [16]. During the process, the relatively small amount of heat
affects only a small zone. This is the reason why the laser beam drilling is an
interesting process for composite materials. The process itself has been analyzed in
many references for bulk material by experiments [17, 18] and numerical simula-
tion [19, 20].

In order to optimize the laser process, we are going to use numerical simulation
on 3D models of cellular materials. There are different types of geometries of
cellular materials, and different methods to calculate the temperature as well. There
is also an important dichotomy to solve: the more accuracy we need, the more CPU
time and data memory is required [21].

The laser technology provides not only a cut but a soldered procedure as well.
The simulations are using the concept of a representative volume element (RVE).
The final model is based on a homogenized structure and covers the density, heat
conductivity and enthalpy as essential material parameters.
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2 Fundamentals of Laser Technology

Laser beam drilling is a technique to generate holes in different kinds of materials.
Therefore, the laser beam is focused to a small spot to get high power densities.
A part of the laser beams energy gets absorbed by the workpiece material and the
resulting heat causes it to melt or vaporize. This makes it possible to generate holes
of different diameters and large aspect ratios.

2.1 Laser Beam Drilling Technology

Laser beam drilling can be done as single pulse drilling, percussion drilling,
trepanning or helical drilling. Single pulse drilling is used for fast processing and
high productivity. To achieve higher aspect ratios or a conicity of the drilling hole,
percussion drilling can be used. Therefore, the laser performs in short sequential
pulses and ablates the material with every pulse. Trepanning is used to generate
larger hole diameters. It combines the drilling and cutting process with single pulses
on the contour of the hole. Helical drilling works mainly similar to trepanning, but it
has short pulses like in percussion drilling.

A jet of process gases like oxygen or nitrogen is used to blow out the molten
material and to protect the optics from molten and vaporized material. With the use
of oxygen, there is an exothermal reaction that delivers additional heat to the
melting or vaporizing process.

There are some advances of laser beam drilling, regarding conventional pro-
cessing. In laser drilling there is no contact between the tool and workpiece and thus
no wear of tools. Further advantages of laser beam drilling are the small heat
affected zone (Fig. 1) and forceless machining. This makes the process very suitable
for compound materials.

The work developed intents to predict the laser cutting procedure, according to
the characteristics of the laser, the material properties and the geometry. Using
numerical simulation it is also possible to optimize the process, saving energy and
time.

2.2 Laser Beam Behavior

The behavior of a laser beam is generally characterized using different parameters
[22]. The radius of the laser is not the same along its axis (z-axis in Fig. 2). The
intensity and the direction of the heat flow are not constant. They change over the
distance from the z-axis and the radial distance as well [22]. However, there will be
different lines of constant intensity, called isophotes (Fig. 2). The volume of each
yellow spot in Fig. 2, by rotation over z-axis, is constant. This means that the total
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heat over each wavefront is also constant. The heat distribution is assumed to
comply with the Gaussian distribution.

Figure 3 is a detail of Fig. 2, where it is possible to see that the heat flow
intercepts perpendicularly each wavefront. In the case of the wavefront represented
in Fig. 3, the heat density has a maximum at zero radial distance and a minimum at
1.7645 mm of radial distance. This last value of radial distance corresponds to the
double of the standard deviation, σ = 0.882 (see Fig. 4a). The radius of the laser
(w) was printed in Fig. 3 according to Eq. (1) [22]:

Fig. 1 Experimental laser cutting sample

Fig. 2 Frontal/coronal plane of the laser: radius, isophotes, directions and wavefronts of the laser
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where K and λ, are the dimensionless beam quality parameters and the wavelength,
0.55 and 0.0106 mm respectively; wo is equal to 0.1 mm, corresponding to a
focused beam with a 5’’-lens.

The direction of the heat flow, t, on each point of the radial distance and z-axis
(r,z), is calculated using the derivative of Eq. (1), where instead of the focal radius,
wo, it was used the correspondent value, wi, to each point of the radial distance,
r. The value of t is not an angle but the tangent between the direction of the heat
flow and z-axis. So it comes [22]:
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Fig. 3 Interception between the heat flow and the wavefront (detail of Fig. 2)
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Fig. 4 Representation of heat
flow in 2D a and 3D b
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An isophote can be calculated according to [22]:
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where, n is a real number that defines the curve of the isophote.
Figure 2 shows seven different isophotes: n = {0.4; 1; 2; 3; 4; 5; 6}. The

intensity, Ip [W/m2], of each isophote is determined by [22]:

IP = I0 ⋅ e− n, ð5Þ

with,

I0 =
2PL

w2
0 π

, ð6Þ

where PL [W] is the power of the laser.
The heat flow over the wavefront follows a Gaussian distribution (Fig. 4). Figure

4a shows the heat flow over the wavefront represented in Fig. 3 and a Gaussian
distribution, G, according to Eq. (7) and assuming a PL of 1500 W.
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The heat flow over the wavefront, H, represented in Fig. 4 is calculated according to
Eq. (9).

H = I0 ⋅ e− n, ð9Þ

with,
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The 3D representation (Fig. 4b) of the heat flow over the wavefront is a revolving
feature of the 2D representation (Fig. 4a). The heat flow over the wavefront stops at
2σ (Fig. 4a) and for that reason there will be heat dissipated by the laser (Fig. 4b).
Analyzing the power of the laser and the total amount of heat over the wavefront, it
is possible to conclude that the laser provides about 86.5 % of the total heat. The
simulation results of this topic can be seen in section “Total Heat and Expected
Heat”.

2.3 Homogenization and RVE

Cellular materials may have a very complex geometry and may be very difficult to
model and to simulate with a CAE program because of the computer restrictions.
Therefore, it is needed to simplify the geometry of the cellular materials. Further-
more, the aim of this work is the macroscopic analysis of the temperature in the
cellular materials during laser procedures. For this reason, a simple geometry is
considered.

This objective directs us to the concept of a representative volume element
(RVE). Modeling a RVE, results in good agreement with the experiments can be
obtained [23]. This approach takes us into a homogenization procedure in order to
link the properties of the constituents to the parameters at the macroscopic scale
[24–26]. The RVE sample must be selected small enough to be considered as a
material point with respect to the size of the domain under analysis, but large
enough to be a statistically representative sample of the microstructure [27]. The
computational effort is smaller than the direct calculation for the complete problem
domain [28]. Specimens of the structure may be tested to validate the results and the
material parameters of the RVE. These homogenization procedures have been used
with success in other areas of continuum mechanics [29].

In the homogenization, the cellular material is transformed in a cube (Fig. 5). In
order to do that, the heat transfer coefficient as well as the density equivalent should
be determined. It should not be forgotten that most of the volume of a cellular
material is air. However, the heat transfer by the air is quite low, in comparison with
the heat transfer by the steel of the sphere. According to some studies [30, 31],
when the air is enclosed in volumes within narrow bounds, there is no convection
because the Rayleigh number is too low [32]. There is only a small heat transfer by
air conduction. The thermal conductivity of the air is also low: 0.03 Wm−1K−1 at 80
°C and 0.05 Wm−1K−1 at 400 °C [33]. So, we can ignore the heat transfer by the air
and consider only the heat conduction through the steel of the sphere. Thus, the
thermal conductivity can be calculated by Eq. (11):

Qbasis =Qhom ⇔A1λbasis
T2 − T1

L
⇔A3λhom

T4 − T3
L

, ð11Þ
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where Q is the heat [W], A1 is the area [m
2] of a face of the cellular material, A3 is

the area [m2] of a face of the RVE, T1 and T2 are the temperatures [°C] of the
cellular material, T3 and T4 are the temperatures [°C] of the RVE. The λhom means
the thermal conductivity of the homogenized material and the λbasis means the
thermal conductivity of the base material (steel).

The thermal conductivity is a very important parameter in a RVE study. Several
simulations of the temperature in a cellular material (Fig. 5a) have been computed
in order to analyze the thermal conductivity. It is expected that the value of the
thermal conductivity (λhom) of RVE changes according to the dimensions of the
diameter, the thickness of the sphere and also the thermal conductivity of the base
material (λbasis). Table 1 shows that the geometrical properties are much more

Fig. 5 Homogenization principle: a complex geometry of cellular material a becomes a simple
geometry b

Table 1 Relation between λhom and some geometrical and physical parameters

Diameter of the
sphere [mm]

Thickness of the wall
of sphere [mm]

λbasis½W (̸mK)] λhom½W (̸mK)]

2 0.1 120 4.09
2 0.1 300 4.43
2 0.1 600 4.60
3 0.15 120 3.30
3 0.15 300 3.52
3 0.15 600 3.62
4 0.2 120 2.92
4 0.2 300 3.11
4 0.2 600 3.19
5 0.25 120 2.65
5 0.25 300 2.82
5 0.25 600 2.90

Laser Beam Drilling of Cellular Metals: Numerical Simulation 279



important for the λhom than the physical properties and the thermal conductivity of
the base material. If the λbasis increases 100 %, the λhom only raises up by 4 %. But,
if the geometrical parameters augment twice, the λhom decreases about 30 %. This
effect can be explained by Eq. (11): when the λbasis changes, the final temperature,
T4, will also change inversely.

If the homogenization is correctly done, the general gradient of temperatures has
to be the same between the amount of cellular materials and the homogenized
geometry. But small variations of the gradient are expected on the cellular mate-
rials, because the transversal area is not constant.

If we are dealing with homogenized and non-homogenized cells at the same
time, there should be provided a layer between both materials, because of the abrupt
variation of the area at the interface between both materials. The heat flux within
those materials should be the same. This can be problematic without an interface
layer between the geometries. Subsequently, with this layer the gradient of tem-
perature in longitudinal direction can be constant.

3 Program Code

The objective of the program code developed in this work is to study the relation
between the power and the depth in a laser drilling process on cellular materials.
During a laser drilling process, the geometry is changing along the time according
to the power of the laser beam. The commercial CAM programs are able to deal
with drilling processes as long as the mechanical procedures or mechanical tools are
used. On the other hand, most of the commercial CAE programs are not able to deal
with thermal problems when geometry changing is requested. So a program code
was written to handle a laser drilling procedure.

3.1 Flow Chart of the Program Code

The program code has a main cycle WHILE that runs until one of the stopping
criteria becomes active. The most important stopping criterion is the gradient of the
temperature. This criterion compares the gradient of the temperature in the deepest
cell at each step (Fig. 6), dividing the rise of temperature by the correspondent step
time. If the gradient is lower than a certain limit, then the simulations stops and it is
considered that the laser drilling is static. The limit used for the comparison was
10 000 °C/s. This value was chosen because in reality the laser takes around 0.4 s to
drill a cellular metal of 40 mm of thickness. Taking into account that the variation of
temperature is around 1600 °C, the rough gradient is 4000 °C/s. So, it can be made a
rough estimation for 50 mm as 0.5 s, and consequently a gradient of 5000 °C/s is
considered. However, a greater gradient criterion can be used because the drilling is
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much slower at the end of the procedure. Moreover, a large amount of CPU time can
be saved without losing important accuracy in the final results.

The main program code has two functions (see the flow chart in Fig. 7 left). The
first one calculates the temperature in each cell using an explicit methodology (see
the flow chart in Fig. 7 right). The second one updates the variables.

The phase change is calculated by the internal energy in the first function. The
internal energy has to be enough not only to raise the temperature close to the
temperature of phase change but to go over the latent heat thermal energy as well. It
is assumed that the phase change happens from solid to vapor.

3.2 Finite Volume Method

The applied approximation strategy was based on the finite volume method. The
main Eq. (12) considers conduction, convection and the heat source in the second
member. So, all temperatures of the second member are regarded in the previous
step (i−1). The first member contains the temperature increase in order to calculate
the temperature of the new step (i).

E=Cd +Cv + S, ð12Þ

where E is the internal energy, Cd is the conduction through all of the six faces, Cv

is the convection over all of the six faces and S is the heat source of all the six faces.
With,

Fig. 6 Cell used to check the
gradient of temperature.
Detail of a laser drilling
simulation (750 W) after 0.02
ms of laser procedure
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where ρ is the density [kg/m3], C is the specific heat [Jkg−1K−1], VE is the volume
of the element, Δt is the integration time, TE is the temperature of the element. The
area [m2] is represented by A, λeq is the equivalent thermal conductivity
[Wm−1K−1] between the elements. However, the thermal conductivity is considered
constant along the temperature and over the elements. The heat source of each face
is represented by Q [W] and α [W/m2K] is the convection coefficient at each face.
T∞ is the room temperature at the correspondent face.

Figure 8 shows a scheme of heat transfer applied in the simulation and repre-
sented in Eq. (12). However, there is one type of heat transfer mechanism at each
face, and each element only receives the heat source at most from three faces. It is

Fig. 7 Flow chart of the main program code (left) and of the function that calculates the
temperatures (right)
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assumed that if there is heat source applied on a face, the heat transfer by con-
vection is irrelevant when comparing with the source. Moreover, it is also assumed
that the heat source is not reflected or redirected to the other faces.

An explicit method is used because the geometry changes when any cell
becomes melted, allowing a simpler way to program and to calculate the temper-
atures than would result from an implicit procedure. On the other hand, the inte-
gration time has to be small enough to ensure realistic results, which may result in a
larger computation time. That is the common drawback of explicit schemes [34].

The integration time changes along the simulation according to the temperature
variation of the previous iteration. Usually the integration time increases faster in
the beginning than in the end of the simulation. Nevertheless, each time the deepest
cell (see Fig. 6) melts, the integration time decreases.

4 Results

The geometry used was a homogenized full block of 10 × 10 × 50 mm. The results
are presented with regards to two different studies:

Soldered and sintered cells with different properties;
Different thermal conductivities.
Two cellular materials, soldered and sintered with a similar geometry (Fig. 9),

were taken to compare the results using steel and stainless steel. The difference

Fig. 8 Scheme of the heat transfer

Laser Beam Drilling of Cellular Metals: Numerical Simulation 283



between these two joining technologies is the connection of the cells. The soldered
cells are connected to each other by small parts of tin (Fig. 9b). The sintered cells
are spherical shells connected each other by small flat areas. The cellular materials
were studied in order to find out the thermal conductivity equivalent for a
homogenized geometry using the RVE theory (See the content “Homogenization
and RVE”). Volume, mass and the density of the cells are similar (Table 2), but the
thermal conductivity (of homogenized geometry) is very different when the dif-
ferent materials are compared.

Other simulations were made to study the influence of the thermal conductivity.
The thermal conductivity of the homogenized geometry is the most important
property for the heat transfer analysis on drilling procedures. The initial temperature
and the room temperature was 20 °C. The heat transfer coefficient was 30 W/(m2K).
The properties of homogenized materials (sintered and soldered) and base material
are shown in Table 2. It can be seen that the main difference between steel and
stainless steel is the thermal conductivity.

Fig. 9 Geometrical properties [mm] of the cellular materials: sintered a and soldered b

Table 2 Material properties used in the simulations

Homogenized material Base material
Sintered Soldered
Steel Stain.

Steel
Steel Stain.

Steel
Steel St.

Steel
Tin

Volume [mm3] 42.5 42.5 40.8 40.8 – – –

Mass [kg] 1.77e-5 1.75e-5 1.77e-5 1.75e-5 – – –

Density [kg/m3] 417.5 412.2 433.7 429.2 7850 7750 8600
Thermal conductivity [W/(mK)] 1.38 0.34 1.45 0.4 60 15 50
Specific heat [J/(kgK)] 434 480 434 480 434 480 173
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4.1 Sintered and Soldered Cells

The power of the laser was 1000 W. The maximal depth of the drilling hole is
reached in about 0.1 s. In other words, comparing the models for soldered and
sintered, the differences are around 5 %. Furthermore, comparing the materials, the
differences are around 8 % for the soldered model and 7 % for sintered model
(Table 3).

The drilling process in soldered models is slower than in sintered models.
Furthermore, the drilling process in cells of steel is also slower than in cells of
stainless steel. This happens not only because the sintered cells of these simulations
had a lower density, but particularly because of the thermal conductivity. The
thermal conductivity of steel is about four times higher than the coefficient of
stainless steel. The influence of the thermal conductivity can be explained using
Fig. 10. The numerical simulations of soldered and sintered cells show similar
results for the same material properties. However, there are differences between
steel and stainless steel. It can be seen that the gradient of the temperature depends
principally on the thermal conductivity. The higher the thermal conductivity is, the
lower is the gradient. The difference in the results between soldered and sintered
models is very small. But when the models with different materials are compared,
large differences of temperature gradients show up, because the thermal conduc-
tivity is very different.

The numerical simulations that use a higher thermal coefficient have a lower
gradient in x and y direction. This means that the energy flows with less difficulty
and, consequently, the drilling process needs more time. On the other hand, with a
lower thermal coefficient, the laser energy accumulates in the z direction, or rather,
in the direction of the heat flow (check Figs. 2 and 3). If the properties of the
material are very important during the drilling procedure, we cannot say the same
when we compare the results between the different geometry. The results for sol-
dered and sintered cells are very similar when same base materials, steel and
stainless steel.

Figure 11 shows a 3D detail of the deepest cells of a drilling procedure. A laser
drilling process in a soldered cell looks very close to a process in a sintered cell with
the same main material. This can be explained by the similar mechanical properties
used in both cells. But it also means that it does not matter which kind of cell we
use, but only which thermal properties (specially the thermal coefficient) the cell
material has. Another point should be mentioned: the lower the thermal conduc-
tivity is, the faster the laser drills and reaches the end of the geometry.

Table 3 Simulation of the
performance of drilling
process

Heat = 1000 W Depth [mm] Time [s]

Soldering-Stainless 50 0.101
Soldering-Steel 50 0.109
Sintering-Stainless 50 0.096
Sintering-Steel 50 0.103
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4.2 Thermal Conductivity Influence

In order to study the influence of the thermal conductivity in a laser drilling process,
some numerical simulations were made. Those simulations use only different heat
sources and two different thermal conductivities.

Fig. 10 Detail (2D) of the deepest cells of drilling process

Fig. 11 Detail (3D) of the deepest cells of drilling process
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The results of drilling time and depth over different laser power are shown in
Fig. 12. As expected, the drilling process time decreases when the heat increases as
well as the laser reaches the end of the geometry (50 mm). Otherwise, if the laser
does not reach the end of the geometry, the time of the drilling process will increase
if the heat also increases. This fact can be explained by the stopping criteria,
namely, the gradient of temperature (check the content “Flow Chart of the Program
Code”).

The time of the drilling process depends also on the thermal λ coefficient. While
the drilling process does not reach the end, it takes more time with a lower λ. On the
other hand, if the drilling process reaches the end, a process with a higher λ takes
more time than with a lower λ. This can be understood using the value of the depth.

A process with lower λ goes deeper than with a higher λ. The depth reached with
lower λ is never inferior to the depth reached with higher λ. In the numerical
simulations with lower λ, the energy from the laser is more concentrated on the
bottom of the hole. So, it takes more time (and iterations) to activate the stopping
criteria of the gradient. Furthermore, the laser drilling has a higher velocity at the
beginning but it starts progressively slowing down.

Figure 13 compares the influence of the λ on the gradient of temperatures. As
expected, it is possible to see that the gradient of temperatures from the surface of
the hole is much smoother with λ = 4 Wm−1K−1 than with a λ = 2 Wm−1K−1.
Moreover, with higher heat source the gradient of temperatures is also higher
because the drilling velocity is higher as well.

Figure 14 shows the behavior of the laser drilling along time. The behavior is
very well defined, comparing with Fig. 15. It is interesting to notice that the
behavior of a drilling process with λ = 2 Wm−1K−1 is very similar to the behavior
of a drilling with λ = 4 Wm−1K−1 if we add 250 W of laser power. For example, the
laser drilling performance using 1250 W and λ = 2 Wm−1K−1 is very similar to the
performance using 1500 W and λ = 4 Wm−1K−1. This means that a drilling process
with lower λ is more efficient for higher laser power (see also Fig. 16). Moreover, it
also means that the difference of heat dissipation between two drilling processes
using λ = 2 Wm−1K−1 and λ = 4 Wm−1K−1 is around 250 W.

Figure 15 shows the results for similar numerical simulations but with lower
heat. The behavior of these drilling procedures is not so homogeneous as the
previous results. This means that the acceleration of the laser drilling through the
geometry is not constant.

This particularity can indicate a poor meshing of the geometry for lower heat
sources. However, it also can be better explained using the behavior of the gradient
stopping criteria (check the content “Gradient of Temperature and Velocity of
Drilling”). However, we can take the results as they are, in order to compute the
efficiency or the performance of the drilling procedure. The results show that when
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Fig. 12 Results of drilling
time and depth over several
different laser power
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the laser power increases, the efficiency of the energy decreases while the laser
drilling does not reach the end of the geometry and increases slightly after that (Fig.
16). Nevertheless, the results would be different if we change the stopping criteria.

The results also show that the performance or efficiency of the drilling with λ is
higher as long as the laser drilling does not reach the end of the geometry, and
lower after that.

Fig. 13 Detail (2D) of the deepest cells of drilling process with different thermal λ coefficient

Fig. 14 Depth along the time of drilling process using a laser of 750, 1000, 1250 and 1500 W
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4.3 Considerations About the Results

Several interesting aspects about the results should be considered and analyzed. The
gradient of temperatures has a huge influence on the integration time and on the
stopping criteria. It is closely connected to the velocity of the drilling procedure.

Fig. 15 Depth along the time of drilling process using a laser of 125, 250, 375 and 500 W

Fig. 16 Energy spent and energy efficiency
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Moreover, the laser does not provide the total amount of heat, because of the
characteristics of the laser. Finally, the shape of the laser drilling hole is similar to a
drop and it closely matches reality.

5 Gradient of Temperature and Velocity of Drilling

Any production process should be efficient. With this kind of laser, the drilling
velocity slows down with the depth because the laser heat flows more and more
through the walls of the hole. This means that after a certain depth the process is not
efficient any more.

In other words, when the gradient of the temperatures (in z direction) is too low,
the process should stop as well as the simulation. However, the gradient of tem-
peratures has not a constant variation.

In a virtual model, the laser warms up and melts the cells one by one. After a cell
becomes melted, the next one will abruptly receive heat and increase its tempera-
ture. For this reason, the gradient of temperatures has some kind of “chaotic”
behavior (Fig. 17).

This characteristic is responsible for the variation of the acceleration of the laser
depth. Moreover, this phenomenon is more visible with higher laser power. In order
to neutralize this effect, a thinner mesh (z direction) should be chosen and defined.
The application of an adaptive remeshing technique could handle properly this issue
as well [35].

Fig. 17 Gradient stopping criteria
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6 Total Heat and Expected Heat

Because we are dealing with a discretization of the problem, there are aspects with
less accuracy. One of those aspects is that the total heat at the cells is not constant.
For example, if we apply a laser source of 1500 W, we should expect a total heat at
the cells of 326 W, according to the double symmetry (25 %) and to the Gaussian
distribution of the isophotes (86.5 %) until the radius of the laser (see the content
“Laser Beam Behavior”).

Figure 18 shows the total heat at the cells along the simulation. As expected, the
total heat is not constant, but moreover, the beginning of the simulation is very
irregular. However, the average value is about the expected.

The initial jolt at the beginning of the simulation is explained by the interaction
of the first melted cells on the total heat (Fig. 19). When the first layer of cells is

Fig. 18 Total heat at the cells along the simulation

Fig. 19 Interference of the
first melted cells on the total
heat
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melted, the radius of the laser is not enough to capture the surfaces (Fig. 19).
Obviously, according to the characteristics of the isophotes (see Fig. 2), the second
layer will receive less heat than the first one.

Each surface is captured by the laser when its midpoint has a radial distance
above the radius of the laser in the same z coordinate. Because the laser radius is not
constant along the z direction (see Fig. 2), the flux of the laser is not as straight as it
should be to improve the efficiency of the drilling. This effect is explained in next
content.

7 Drilling Width

It is very interesting to analyze the width of a laser drilling hole. Figure 20 shows
that the drilling width (at low deepness) increases practically proportional over the
deepness, showing a conic profile. On the other hand it is not proportional along the
time. The width of the upper part of the hole becomes stable when the drilling
process goes deeper.

At the end of the drilling hole, the width decreases significantly and the drilling
profile becomes round or spherical. Figure 21 shows the differences of the drilling
profile at the beginning (conic profile) and at the end of the hole (spherical profile).

The profile of the drilling hole looks similar to a “drop”. The “drop” profile is
also related to the isophotes of these laser specifications. This idea can be observed
in Fig. 22, which illustrates several sections of the hole over the deepness.

Fig. 20 Sintered steel model (1000 W) along the simulation: 0.0044 s (left), 0.0174 s and 0.0527 s
(right)
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Finally, the shape of the drilling profile depends on the thermal properties,
specially the thermal conductivity and the heat source. As can be seen in Fig. 23,
the drilling profile at the end of the hole is more rounded with a higher heat source.
Figure 23 is a 3D detail from the same simulations as Fig. 13.

Fig. 21 Sintered steel model (1000 W) at the end of simulation: full model (left), beginning and
end detail (right) of the model

Fig. 22 Width of the drilling using a sintered model with steel and a laser of 1000 W at different
section depths: 0 (left), 10, 20, 30 and 40 mm (right)
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The experimental results of the drilling profile are according to the simulation
results of the drilling profile (see Fig. 1). It confirms the profile obtained in the
simulations of the drilling process. The “drop profile” can be clearly seen.

8 Conclusions

Laser drilling is a relatively efficient process due to the amount of energy con-
centrated in a local zone. The results demonstrate that a drilling process in soldered
cells is very close to a process in sintered cells. It is not important in which kind of
geometry is the laser drilling applied. The thermal properties are the crucial factor,
specially the thermal conductivity. With a lower thermal conductivity, the gradient
of temperatures inside the geometry is lower, and therefore the efficiency is better.
Consequently, the material of the cell is of paramount importance for efficiency of
the drilling process.

The laser drilling velocity is not constant. Since the beginning of the process,
when the velocity is higher, it decreases until the laser beam reaches the end of the
geometry or it stops. The velocity of the laser drilling depends on the thermal
properties, not only the heat source but also the thermal conductivity. With a higher
thermal conductivity, the gradient of temperatures inside the geometry is also
higher, and therefore the velocity of the laser beam is lower because the efficiency
decreases. As expected, the velocity of the laser beam drilling also decreases with a
lower heat source.

The drilling profile is similar to a “drop” profile. The “drop” profile is also
related to the isophotes of this laser. The simulation results are according to the
experimental results. This “drop” profile of the hole is dependent to the laser

Fig. 23 Detail (3D) of the deepest cells of drilling process with λ = 4 Wm−1K−1
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specifications used. For different laser specifications, different profiles are expected.
For example, with a lower focal radius it is expected to obtain different drilling
profiles as well as efficiencies. However, these investigations are reserved for our
future research work.
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Metallic Foam Density Distribution
Optimization Using Genetic Algorithms
and Voronoi Tessellation

Pablo C. Resende, Renato V. Linn and Branca F. de Oliveira

Abstract Metallic foams have a very particular structure due to their high specific
stiffness. Density plays an important role on their structural response and is also
determinant to the foam’s weight. The main goal of this paper is to find an ideal
density distribution to open-cell metallic foams in order to achieve optimized
structural performance. A density distribution optimization using an irregular
description of the foam by a Voronoi tessellation and a genetic algorithm for the
numerical optimization is presented in this work. The structural analysis is per-
formed with linear elastic beam finite elements and the foam structure is modeled as
a Voronoi tessellation. The density is related to the number of Voronoi seeds, which
may configure lighter or denser foams and vary throughout the model. The mini-
mization and maximization of stiffness were analyzed for different structural
applications in order to demonstrate the capability of the developed methodology.
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1 Introduction

The improvement of production methods allied to advantageous mechanical and
thermal characteristics of foam structures, such as high stiffness/density ratio, has
increased the interest in structures having foam cores. Practical applications of such
structures can be observed in aerospace, automobile, chemical and construction
industries and also in orthopedic and clinical applications. Particularly, the present
work is concerned with open-cell metallic foam structures. An open-cell foam
structure can be considered as an array of composed struts [24], as shown in Fig. 1.

The structural behavior of foam structures is strongly dependent on the density
distribution, shape and size of the pores on the media. Many analytical and
numerical models describing the foam behavior have been developed and investi-
gated. Regular foam models based on regular cell packing such as the cubic model
[9], and the tetrakaidecahedron model [5] for isotropic linear elastic, anisotropic
linear elastic and isotropic nonlinear cases are some of the main models investi-
gated. Such models can be used as a repeating cell unit to analytically or numer-
ically (as using the finite element method) estimate the mechanical behavior of the
real structure [13, 17–19]. The irregular foam models, however, incorporate the
structural disorder present in real foams. One possible approach is the use of a
Voronoi tessellation together with finite element analysis, which gives a better
representation of the microstructure of real specimens [23]. Another modeling
technique is the use of exact geometry using tomographic images, digitized images
or X-ray scans of the foam. While being a closer digital reproduction of the
structure of real foams, these models are unique for each individual foam sample
and may not necessarily be representative [22].

The investigation of the optimization of foam structures in order to improve the
mechanical behavior is still a scarcely explored subject. Some investigations on
metallic foams include optimization using genetic algorithms [9], stiffness opti-
mization of living bone tissue by density distribution adaptation [3] and optimization
of structures with foam core using a regular cubic model and gradient-based opti-
mization algorithm [14]. Apparently, the optimization results strongly depend on the
underlying mechanical and foam model assumptions. The related works on

Fig. 1 An aluminum foam
with open cell (DUOECEL®)
[16]
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optimization use a regular model for the foam description. The present work
investigates optimization of open-cell metallic foams by density distribution adap-
tation using an irregular foam model and genetic algorithms. The foam model used is
based on an irregular Voronoi tessellation. The mechanical linear elastic model is
evaluated using the Finite Element Method.

2 Modeling of Open-Cell Foam Structures

Cellular solids are irregular structures and this irregularity is an important feature to
be incorporated on the characterization of the mechanical behavior of such type of
structures. In the present work the foam geometry is generated by a Voronoi
tessellation in which the cell edges are modeled as beam structures. Particularly, for
low-density open-cell foams, beam elements with circular cross section area can be
adequately applied with the Voronoi tessellation for a good mechanical charac-
terization [23]. A Voronoi tessellation is generated by the spatial distribution of
seed points which uniquely determines the tessellation. The method is closely
related to real foam production, where the seed points represent the starting points
of growing bubbles with uniform velocity. The resulting geometry has also both
angular and connectivity distribution values with good agreement with measured
experimental data. The amount of material and disorder in the Voronoi tessellation
depends on the spatial distribution of the seed points.

Formally, for a given set of seed points P = {p1, p2,…, pn} in the plane, if d(p, q)
is the Euclidean distance between two points in space, then the Voronoi diagram of
P can be defined as the subdivision of the plane into n sub-domains (or cells), one for
each point in P, with the property that some point q lies in the cell corresponding to a
point pi if and only if d(q, pi) < d(q, pj) for each pj ∈P and j ≠ i [4].

In simple terms, for a set of points a plane is subdivided into Voronoi
sub-domains in a way that each sub-domain belongs to a specific point (region) and
that every point in that sub-domain is closer to that region than any other. The
border lines between sub-domains are bisectors. Every point on one bisector is at an
equal distance from the two neighboring sites. Those border lines between
sub-domains form the Voronoi diagram, also called Voronoi tessellation [6]. An
example of the plane subdivision with the Voronoi tessellation for 8 seed points is
depicted in Fig. 2.

When the objective is to predict average mechanical properties of a foam
material, a Representative Volume Unit (RVU) cell is usually employed. This RVU
can be analyzed using periodic boundary conditions in order to evaluate mechanical
properties such as directional elastic modulus, densification and others properties
for different applications like compression and tension [22]. In the present work, to
optimize structures with foam core, the finite dimensional structure is modeled with
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real scale using the Voronoi tessellation as the domain distribution. This way, the
modeling approach can be viewed as an intermediary situation between the exact
representation (such as those obtained with digital scan) and regular models. The
amount of geometrical representativeness obtained with the real scale Voronoi
model is also accompanied with the drawback of higher computational effort
increase when compared with a regular model representation.

The mechanical foam model is evaluated using the Finite Element Method. The
cell edges obtained from the Voronoi tessellation are meshed with beam-elements
(axial and bending effects are both considered) which have constant circular
cross-section. The finite structure is subdivided into regular quadratic sub-domains
having edge length Le. The choice of this edge length should be such that the
relation Le/δ has a value between 2 and 8. The parameter δ is the medium distance
between internal seed points contained in the region delimited by the sub-domain.
These values give good stiffness representation of the real foam disorder [23]. The
seeds of the Voronoi tessellation are randomly distributed into each of these
sub-domains and the relation between the amount of material volume on each
sub-domain and the total volume of the sub-domain gives the local density of the
mesh (Fig. 3). Structural analysis is performed with Karamba software [11], which
uses a first order Euler-Bernoulli approach for the beams, considering small dis-
placements and rotations for linear elastic materials in a finite element context.

Fig. 2 Voronoi diagram for
8 seed points
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3 Optimization

The general optimization problem can be stated as:

min f xð Þ subjected to
gi xð Þ≥ 0, i = 1 to p
hj xð Þ=0, j = 1 to q

�
ð1Þ

where f(x) is the objective function, gi(x) are the p inequality constraints, hj(x) are
the q equality constraints and x are n optimization variables. In the present work,
the optimization variables employed are positive integer values, i.e., x ∈ ℤ*n.

3.1 Density Modification of Foam

To modify and optimize the density distribution of the foam, the full domain of the
structure is divided into m sub-domains. Each sub-domain controls its local density
and it is defined as a square region of space. The external edges of these
sub-domains have the dimension Le (Fig. 3). Inside each m sub-domain, there are
sm seed points randomly distributed, which completely define the Voronoi tessel-
lation of the region delimited by this sub-domain. When the number sm is modified,
the Voronoi tessellation also changes, changing both mass and stiffness of the m
sub-domain. Note that, formally, a single design vector {s1, s2,…, sn} may give rise
to an infinite number of Tesselations, since the position of the seeds is not con-
trolled (i.e. inside each rectangular domain the sm seeds can be positioned any-
where). To ensure uniqueness of the domain representation, a single Voronoi
Tessellation is generated for each possible design vector, with randomly positioned
seeds. These tessellations are built before the optimization procedure is started and
are used whenever the corresponding design vector needs to be evaluated. Thus,
increasing sm does not necessarily increase the total mass or stiffness of the
sub-domain, although the number of beams on the region necessarily is increased.

Fig. 3 Foam structure
representation using Voronoi
tessellation
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Figure 4 shows an example of this sub-domain modification. Each i optimization
variable is thus defined as the number of seeds in each sub-domain, i.e., xi = si in
the optimization problem, with i = 1, 2, …, m.

3.2 Genetic Algorithms

In the present work, genetic algorithms are employed to solve the general problem
stated in Eq. (1). Constraint relations are handled with penalty functions.

In Genetic Algorithms (GA) each individual is represented through a unique
chromosome. It is basically an array of numbers that can be used to easily manipulate
individuals, combine them, mutate and eventually store them. The chromosome of
each individual yi, i = 1, n is composed by a vector sm with length j equal to the
number of sub-domainsm of the foam containing a list of the number of seeds of each
of them (Fig. 5). An initial generation is randomly created, containing n individuals

Fig. 5 Chromosome representation and encoding to represent foam structures with Voronoi
tessellation

Fig. 4 Increasing the number of seeds inside sub-domain to locally modify density and stiffness
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which are evaluated, i.e., their fitness, or objective function is determined. The
process enters a loop for a determined number of generations. In this loop, a selection
is made to choose the individuals for breeding, based on their fitness. The chosen
individuals are then crossed, mutated and evaluated again, thus prepared for the next
iteration. The process ends after a predefined number of generations. The genetic
algorithm performs standard mutation, uniform crossover and Roulette Wheel
selection procedures through the evolutionary process, which are detailed below.
Galapagos evolutionary solver is employed in the present work [8].

3.2.1 Selection

The process of selection in Genetic Algorithms chooses individuals of one gener-
ation for crossover according to their fitness. In the Roulette Wheel selection, each
individual has a chance to survival proportional to their fitness. This method gives a
larger variety of solutions and no individuals are neglected as in an elitist selection,
where only the best individuals are selected, which is not an efficient method
because it usually conducts to only local optimum points. If n individuals are
present in one generation, yi as the ith individual of that generation and F(yi) is the
fitness value of that individual, then the probability p(yi) of the individual to be
chosen for reproduction is:

pðyiÞ=
FðyiÞ

∑n
j=1 FðyiÞ

ð2Þ

This allows the individuals with higher fitness values to have better chances of
being selected.

3.2.2 Crossover

The pairs used for breeding are randomly composed using the individuals selected
for reproduction at each generation. When the pairs are chosen, they can be crossed
generating two individuals or can be just be included into the next generation. The
chance of crossover occurrence is called as the crossover probability factor and is
set to 0.6, i.e., 60 % of the individuals in a newly created generation are crossed to
produce new individuals and 40 % of the individuals are just copied in order to
support the survival of the fittest. Here, uniform crossover is used. In this method,
each gene (allele) of both parents is swapped with the corresponding allele of the
other parent with a probability factor of 0.5. In that way, each parent allele has a
50 % chance of being replaced with the one from the other parent (Fig. 6) [6].
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3.2.3 Mutation

Mutation is used to introduce diversity in the current generation. Basically, it
introduces a random change on the chromosome of an individual. The chances of
mutation happening is regulated by the mutation probability factor, set to 1 % in
this work. The mutation process is depicted in Fig. 7, where a gene value in a
chromosome is randomly chosen and then switched with a randomly generated
value to result in a mutated chromosome.

3.3 Fitness Function Evaluation

The objective function, f(x) is represented as a penalized fitness function F(x) in
order to contemplate constraint optimization in Genetic Algorithms. For engi-
neering optimization problems, constraints plays an important role in imposing
geometrical, material and other restrictions over the final design. Most
gradient-based methods contemplate constraints directly, but in Genetic Algorithms
those constraints have to be imposed by some artificial procedure. Different
approaches can be adopted to handle constraints with genetic algorithms [7, 12]. An
approach is remapping fitness values of both feasible and infeasible individuals in
such a way that all feasible solutions have higher fitness than any infeasible
solutions [20]. This concept assumes the superiority of the feasible solution. The
assumption rarely holds since it always happens that some infeasible individuals

Fig. 7 Mutation

Fig. 6 Uniform crossover
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process very good genes that can be very valuable for late generations [6]. That is
why these individuals are preferable during the evolution than many low fitness
feasible solutions. It is therefore necessary to allow some infeasible individuals to
have higher fitness than some feasible solutions [15]. Taking this into consideration
the following method [6] which includes a normalized penalty relation over the
fitness function is employed in this work:

f xð Þ=
f xð Þ− fmin xð Þ

fmax xð Þ− fmin xð Þ if gi xð Þ≥ 0

α 1− ei xð Þ− eimin xð Þ
eimax xð Þ− eimin xð Þ

� �� �
if ei xð Þ≠ eimin xð Þ

α else

( )
if gi xð Þ<0

8>><
>>:

ð3Þ

with a feasibility factor α = 0.6, the min and max subscripts indicate the minimal
and maximal values obtained on the present population and ei(x) represents a
predefined error function for infeasible solutions. The feasible region is delimited
by the space where the constraints are satisfied, gi(x) ≥ 0. The infeasible region is
delimited by the space where a given constraint is violated, i.e., gi(x) < 0.

The use of such normalized relations allows a more robust selection procedure.
The worst feasible individuals will have fitness equal to 0 and the best one will have
fitness 1. The worst has zero chance of being selected for reproduction, and the
other individuals are added up for a Roulette selection mechanism. For the infea-
sible individuals, the function depends on the relative error of the constraint and it is
scaled based on the maximum and minimum error obtained for the current popu-
lation. Since the individual with minimal error is the best infeasible one, the value
calculated was subtracted from 1 in order to make the solution with a smaller error
have bigger values, thus bigger chances of survival. At the end, the value is mul-
tiplied by α, to limit the infeasible solutions and give them a smaller chance of
survival than the feasible ones. In the case of gi(x) = gimin(x), we have the best
infeasible solution and it is assigned to it the maximal value, defined by feasibility
factor α. This calculation is performed for all infeasible solutions. This approach is
more robust than simple death penalty where infeasible individuals are eliminated
from further reproductions [6]. Infeasible solutions are not eliminated, and the
constraints are not necessarily full satisfied, but penalized if violated, leading to
converge to a solution where the constraints are almost satisfied. The approach of
Eq. (2) is well suited for a maximization optimization. For the case of minimiza-
tion, the infeasible evaluations are inverted in order that the lower values are the
best fitted ones.

Some of the mechanical applications of foam structures are the use as passive
safety equipment for energy absorption under compression and sometimes also as a
light stiffener inside foam core structures. In this sense, the structure should be more
flexible in the first case and more rigid in the second. The fitness function should
incorporate a measure of such value, and for this reason the internal energy W is
employed, which is a standard approach for such type of structural optimization
problem [14]:
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f xð Þ=W =
1
2

Z
Ω

σ: ε dΩ ð4Þ

where σ is the stress tensor and ε is the strain tensor. The internal energy W is a
measure of stiffness. Its minimization leads to a more rigid structure. On the other
hand, its maximization produces a more flexible structure for a given fixed quantity
of material.

The constraint employed in the present work is the total mass of the structure M:

M=
Z
Ω
ρdΩ ð5Þ

where ρ is the specific mass of the material and Ω is the structural domain. The
mass should be controlled for some applications to ensure that the optimization
algorithm does not attempt to boundless increase or decrease the mass to achieve
the maximization or minimization of the internal energy [1]. In this way, the
optimization procedure attempts to distribute a given amount of material to obtain
the best structural performance possible. Thus, the error function for infeasible
solutions ei(x) employed is:

ei xð Þ= Mi

M0

� �2Wi

W0
ð6Þ

which increases when the actual mass Mi of an individual is greater than a reference
initial mass of an individual M0 multiplied by the actual internal strain energy
relation between the actual and reference individual Wi/W0. The mass constraint is
required since, otherwise, the optimization procedure would completely fulfil the
structural domain with material in order to obtain a stiffer structure (or completely
remove all the material in order to obtain a more flexible structure). For maxi-
mization, the inverse relation of mass, M0/Mi, should take place instead of Mi/M0.

3.4 Algorithm

The coupling of the finite element solver [11] with the genetic algorithm program
[8] is performed with Grasshopper tools [10]. Galapagos evolutionary solver is
modified to employ Eq. 3 as fitness function and uses the discussed approaches of
selection, crossover and mutation. Grasshopper is coupled with the program Rhi-
noceros [21], allowing the linking of all geometry description with structural
analysis and optimization. Thus, the Voronoi tessellation can be modified by
changing the number of seeds by the genetic algorithm optimization together with
performing structural analysis by the Finite Element Method, which is required for
the optimization.
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4 Applications

4.1 Example 1

The first example studied consists of a rectangular foam structure with dimensions
10 mm × 5 mm. The material has the following properties: E = 70,000 N/mm2

and ν = 0.33, where E is the elastic Young’s modulus of and ν is the Poisson’s
ratio. The foam beams are modeled with constant cross section area
A = 0.0258 mm2, which is the average measured value obtained from experimental
data for an open cell with average density of ρf = 217 kg/m3 [23]. The applied
boundary condition is that the structure is simply supported at the bottom corners
and load is applied on the middle of the upper border, with P = 5 kN, as shown if
Fig. 8. Due to the symmetry, only half of the structure is modeled. The rectangular
domain of this symmetric part is divided into 25 square sub-domains with a 5 × 5
distribution. Each sub-domain is allowed to have one, five, ten, twenty or thirty
seeds randomly positioned inside it. This range of discretization was adopted
because it generates a representation of the foam geometry in which the medium
distance between internal seed points contained in the region delimited by the
sub-domain and the edge length are in agreement with expected values for good
representation of the foam (Sect. 2). Larger number of seeds would lead to a not
consistent modeling of the foam for the adopted edge length. Only five possibilities
of number of seeds are allowed in order to limit the search space of the optimization
problem. A representation of the case where all sub-domains exhibits the same
number possible number of seeds is displayed in Fig. 9. The average density of
each case are 165 kg/m3, 235 kg/m3, 380 kg/m3, 500 kg/m3 and 615 kg/m3 for
one, five, ten, twelve or thirteen seeds, respectively. The case with all sub-domains
with five seeds is used as the reference case because of the better agreement of this
case with experimental measured data for which the material properties were
evaluated. This reference case is also used to define the reference values of strain
energy W0 and mass M0.

Fig. 8 Geometry, boundary conditions and discretization of example 1
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In order to evaluate the convergence of the problem, genetic algorithms are used
for three cases of population size: 100, 300 and 500 individuals with all cases
evaluated through 100 generations. The relative objective function fi = Wi/W0 to be
minimized is the internal strain energy, evaluated as the relation between the actual
internal strain energy Wi of the ith individual and the reference internal strain
energy, W0. The penalty function is employed to control the total mass of the
structure using an inequality constraint. Thus, the total mass of the structure must be
smaller or equal than M0, resulting in the constraint Mi/M0−1 ≤ 0, where Mi, is the
mass of the ith individual.

The evolution of the best relative fitness function and the average relative fitness
along the generations are presented in Fig. 10a and b, respectively. Convergence of
the best fitness when 300 and 500 individuals were used is similar. A population of
only 100 individuals, on the other hand, seems to be small for the current problem.
The case with 500 individuals has more bio-diversity through the generations, as
can be observed by the average relative fitness functions of Fig. 10b. This allows a
faster convergence compared with the case with 300 individuals (Fig. 10a). The
best fitness obtained is F100 = 0.31, which corresponds to a reduction of about
70 % of the internal strain energy of the homogeneous mass distribution case
(Fig. 9 for 5 seeds) with an optimal mass distribution of the total mass of the
homogeneous reference.

Fig. 9 Average density if all sub-domains have the same number of possible seeds for example 1
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The best density distribution and the corresponding foam structure of each
analyzed case are shown in Fig. 11. A clear linear pattern of mass concentration
from the point of load application to the supports becomes more visible for the
cases with 300 and 500 individuals. For the case with only 100 individuals some
spurious mass concentration at the bottom of the structure appears. With this pat-
tern, the structure has less stress due to bending, with more stress due to axial
compression, reducing the internal strain energy, acting like a truss structure
(Fig. 12). The material distribution obtained in this example is compatible with the
material distribution obtained with topology optimization works [2].

Fig. 10 Convergence of example 1. a Best fitness. b Average fitness

Fig. 11 Density distribution of example 1
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4.2 Example 2

The second example studied consists of a quadrangular foam structure with
dimensions of 5 mm × 5 mm. All displacements are constrained in the left border.
Two vertical forces are applied, as shown in Fig. 13. The same material properties
of the first example are employed. The rectangular domain is divided into 25 square
sub-domains with a 5 × 5 distribution. Each sub-domain can have one, five, ten,
twenty or thirty seeds randomly positioned inside it, like in the first example and the
case with five seeds is used as the reference case for mass M0 and internal strain
energy W0. A population with 300 individuals through 150 generations is
employed. Two optimization problems were solved: minimization of the internal
strain energy (as in the first example) and maximization of the same quantity.

The evolution of the best relative fitness for minimization and maximization of
the strain energy are presented in Fig. 14a and b, respectively. For minimization,
the best fitness value obtained is F150 = 0.62 and for maximization F150 = 1.77.
The optimal density distribution obtained and the corresponding foam structure is
shown in Fig. 15. For minimization of the internal strain energy, the density dis-
tribution concentrates the mass in the right side and central region of the structure.

Fig. 12 Truss analogy of
density distribution of
example 1

Fig. 13 Geometry, boundary
conditions and discretization
of example 2
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The pattern of mass distribution for the maximization case has mass increase in the
left and central region, with a more widespread distribution. The region closer to the
applied loads has lower density. This example shows that different patterns of mass
distribution are developed for the case of maximization and minimization of the
strain energy. Thus, optimizing the density distribution it is possible to increase or
decrease the stiffness or flexibility of a foam structure.

Fig. 14 Convergence of example 2. a Minimization. b Maximization

Fig. 15 Density distribution of example 2
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4.3 Example 3

The last example studied consists of a rectangular foam structure with dimensions
of 10 mm × 5 mm. All displacements of the left border are constrained (Fig. 16).
The same material properties of the first and second examples are employed. The
rectangular domain is divided into 18 square sub-domains with a 3 × 6 distribu-
tion. Each sub-domain can have one, five, ten, twenty or thirty seeds randomly
positioned inside it, like in the other examples studied and the case with five seeds
is used as the reference case for mass M0 and internal strain energy W0. A popu-
lation with 300 individuals through 150 generations is employed. Two optimization
problems were solved: minimization of the internal strain energy and maximization
of the same quantity.

The evolution of the best relative fitness for minimization and maximization of
the strain energy are presented in Fig. 17a and b, respectively. The optimal fitness
obtained were F150 = 0.57 and F150 = 13.90 for the case of minimization and
maximization, respectively. The optimal density distribution obtained and the
corresponding foam structure is shown in Fig. 18. For minimization of the internal
strain energy, the density distribution concentrates the mass in the upper side and in
the region close to the support (left side), in order to reduce the displacements and

Fig. 16 Geometry, boundary conditions and discretization of example 3

Fig. 17 Convergence of example 3. a Minimization. b Maximization
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deformation of the structure. For the maximization case, the mass distribution
pattern becomes concentrated in the region near the supports. With this configu-
ration, high displacements and stress appear in the structure due to bending effects,
considerably increasing the internal strain energy up to about 14 times the reference
homogeneous cases. The different geometry configuration of the domain and dif-
ferent applied load lead to a different pattern of mass distribution. Thus, an optimal
mass distribution has to considerer the specific structural application of the foam
structure.

5 Conclusions

The approach developed for foam structures optimization using the Voronoi tes-
sellation has the main difference and advantage of incorporating an irregular rep-
resentation of foam structure, being a geometrical representation closer to the
natural irregularity present on real structures.

For the applications presented, the distribution of density, showing regions of
high and low mass concentration were obtained, revealing the mass distribution
tendency to achieve the objective function required to be optimized. For the ana-
lyzed cases, the flexure and the stiffness were optimized using genetic algorithms.
The methodology allows determining the best pattern of mass distribution for
structural applications.

When increasing the number of seeds inside a sub-domain, the mass distribution
and stiffness of the sub-domain and near sub-domains also changes. As stiffness
depends on the direction and the size of the bars, which vary randomly with the
position of the Voronoi seeds inside the sub-domains, the optimization problem
becomes non-linear in the sense that increasing the mass not always also increases
the stiffness of the structure. This is one of the major difficulties found when
optimizing structures using a random description.

Fig. 18 Density distribution of example 3
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The use of higher number of optimization variables is the next steps to be
investigated, allowing the representation of larger portions of the structure. Higher
computational costs are required for such step due to the larger number of opti-
mization variables and larger computational time required to solve the structural
analysis. The influence of second order effects and material nonlinearities should
also be considered in further investigations.
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Modeling Material Behavior of Polymers

Maria Anna Polak, Hossein Sepiani and Alexander Penlidis

Abstract Polymers are widely used in the automotive, aerospace and computer
industries, building trades and many other applications. Many researchers have
worked on the investigation and analysis of polymers’ properties and behavior. The
present chapter is devoted to polymer material research including testing and mod-
eling. First, an introductory discussion on types of polymers and their tensile and
compressive behavior and mechanical properties is provided. Experimental results
show a high degree of nonlinearity in polyethylene behavior, which requires mod-
eling based on coupled non-separable formulation. Representations of viscoelastic
and viscoplastic models for linear and nonlinear behaviors are presented based on
differential formulation. Finally, comparisons are made between the test data and the
presented theory for the loading cases of short term, long term and step loadings.

1 Introduction

Polymers are the most widespread materials in nature. Silk, wool, DNA, cellulose,
rubber and proteins are typical examples. In contrast, synthetic polymers, like
polyethylene, nylon, polyesters, teflon and epoxy, are industrially derived from
petroleum oil. They are often formulated for specific applications.

Polymers are widely used in the automotive, aerospace and computer industries,
building trades and many other applications. Some important areas of applications
of polymers are: fiber reinforced plastics, adhesives, insulation applications, optical
applications, fibers and plastic pipes.
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1.1 Micromolecular Background to Viscous
and Solid Behavior

There are numerous ways to classify polymers from a micromolecular point of view.
Most of the polymers can be classified as either thermoplastics or thermosets. These
names are associated with general structural, thermal and processing characteristics.
Basic structural differences greatly impact material properties. The fundamental
physical difference between the two classes comes from the way the polymer
molecules are connected with each other. Thermosets consist of cross-linked
molecules, hence they have a network structure. This influences the specific behavior
of these materials. In contrast to thermoset polymers, thermoplastic polymers can be
made to flow over many processing cycles and they can be melted or molded.

Many polymers are two-phase materials consisting of an amorphous and a
crystalline phase. What distinguishes the crystalline phase from the amorphous
phase is that in crystals the macromolecules are packed together in an organized
fashion as opposed to forming a random shape as in the case of the amorphous
phase. When the polymer is subsequently subjected to a load, each phase behaves
differently. The crystalline lamellae provide high yield stress, while the amorphous
phase provides flexibility and hence a recoverable elastic response. Figure 1 shows
a schematic representation of the two phases in polyethylene. The parallel lines at
the centre of the figure represent the crystalline phase and the random configuration
at the two sides represents the amorphous phase.

What gives most polymers, especially polyethylene, their uniform resistance to
load is the existence of covalent bonds between carbon atoms. A covalent bond is a
chemical bond in which the electrons are shared between the atoms. The angular
relations between atoms in a polymer determine the strength of the covalent bond.
To create a polymeric chain each central atom needs to have at least two bonds with
other atoms. However, two carbon atoms can have double or triple bonds.

The cohesive properties of a polymer are due to van derWaals forces, which come
from interactions between different molecules. There are two mechanisms that are at
play when it comes to van DerWaals forces: one is the mass attraction and the other is
related to momentary electron fluctuations. The strength of the van Der Waals force

Fig. 1 Amorphous and
crystalline phases within the
polymer materials
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relative to a covalent bond is usually about 1%. However, there are several factors that
can help increase this value to 10 %. Some of these factors are: proximity of mole-
cules, increase in molecule size, and multiple bonds between carbon atoms.

Two general modes of deformation in polymer crystals are described. (1) Within
chains of the polymer: This mode of deformation can be caused by stretching of
covalent chains (this stretching is strongly resisted and therefore does not account
for much of the deformation), change of angle between adjacent covalent bonds
(which is more easily accommodated than the previous mode), and rotation of one
bond with respect to the next adjacent bond (which is easier than the previous
modes). (2) Between chains, which refers to deformations that are perpendicular to
the chains. This type of deformation happens with much less resistance than the
ones within the chains.

1.2 Types of Polymers and Their Tensile
and Compressive Behavior

As mentioned previously, there are two main categories of polymeric material
behavior.

Thermoplastic polymers: They can be made to flow and one can melt or mold
them during processing. The crystalline phase is denser than the amorphous
part. This results in enhancement in some properties like hardness, corrosion
resistance or resistance to environmental stress cracking (ESC), friction and wear,
and less creep or time-dependent behavior.

Examples include polyethylene, polypropylene, Polyamides (nylon), polyte-
trafluoroethylene, polyvinyl Chloride (PVC), polystyrene, polycarbonate, and
polymethyl Methacrylate.

Thermoset polymers: These are used generally where high thermal and dimen-
sional stability are required. They are suitable for electrical and thermal insulation,
high performance composite applications and where high strength and modulus are
required. Phenolics, polyurethanes, and epoxy-polymers are typical examples.

Tensile and compressive behavior: Polymers show solid and viscous as well as
time-dependent behavior. The induced stress and strain are functions of time. They
generally can be thought of as a three-dimensional surface. The stress-strain-time
relationship, or time-dependent constitutive law, can be determined by loading a
polymer specimen with constant stress (results in creep phase response) or constant
strain (results in relaxation or isometric response). These two types of behavior and
corresponding experiments will be discussed further in the following sections.

Creep phase: Viscous materials deform continuously when subjected to con-
stant load. The initial strain is produced due to the pure elastic property of a
polymer and is predicted by its stress-strain modulus. The elastic region is followed
by the viscoelastic or viscoplastic response. The deformation slowly continues until
rupture or yielding occurs. As seen in Fig. 2, the primary region is the early stage of
loading when the creep rate decreases rapidly with time. Then, the creep rate

Modeling Material Behavior of Polymers 323



reaches a steady-state, which is called the secondary creep stage. The next region is
characterized by a rapid increase in strain (tertiary stage) and, finally, fracture.

The creep response depends on material properties and type, magnitude of
applied stress, temperature and time. Thermoplastics and thermosets show different
behaviors. As seen in Fig. 3, the strain will tend to a constant value after a long time
for a thermoset, while the strain will increase without limit for a thermoplastic.
Upon removal of the applied load, an immediate elastic recovery equal to the elastic
deformation occurs for both types of polymers. It is then followed by a period of
slow recovery. For an ideal thermoset material, a decay to zero can be seen, which
happens after a long time interval (compared to the loading time).

Relaxation phase: This behavior is defined as a gradual decrease in stress with
time under a constant deformation or strain. The resultant response is shown in
Fig. 4. After a long period of time, both curves decay to a constant value. This
asymptotic value is equal to zero for thermoplastic materials.

The relaxation and creep tests observations reveal both solid and fluid charac-
teristics related to polymeric materials. The relation Eðt=0Þ = σ0 ε̸c shows the
instantaneous modulus of elasticity corresponding to the elastic solid behavior in a

Fig. 2 Creep curve for
viscous materials subjected to
constant load [9]

Fig. 3 Strain recovery in both thermoelastic and thermoset polymers [9]
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relaxation test, where index c shows the constant value and index 0 shows the initial
one. In similar fashion, the relation Dðt=0Þ = ε0 σ̸c indicates the initial relaxation
compliance which is related to the elastic solid portion of the material behavior.

Fluid behavior of polymers is defined by considering a time-dependent relaxation
modulus as EðtÞ = σðtÞ ε̸c. Plotting this modulus versus log time (Fig. 5) reveals that
at short times, the stress is at a high plateau corresponding to a “glassy”modulus Eg,
and then falls exponentially to a lower equilibrium “rubbery” modulus Er.

Modulus versus compliance: Creep and relaxation are both illustrations of the
same molecular mechanism, and are related to each other. However, even though
E = 1 D̸ in both glassy and rubbery regions, in general E ≠ 1 D̸. In particular, the
relaxation response moves toward its equilibrium value more quickly than does the
creep response. These factors are related by a convolution integral [29]

Fig. 4 Relaxation behavior
for both thermoelastics and
thermosets and the definition
of the 10 s relaxation modulus
[9]

Eg 

Er 

Fig. 5 The stress relaxation
modulus E(t) versus log(t) [9]
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Z t

0
Eðt − τÞDðτÞdτ = t ð1:1Þ

where t is time and τ is an integration parameter. Several approximation methods of
interconversion between transient relaxation modulus, EðtÞ, and creep compliance,
DðtÞ, are used in the literature. They are mostly based on adjustment of the
elastic-like reciprocal relationship between these two parameters. The simplest
interrelationship which is recommended for weakly viscoelastic materials is based
on the quasi-elastic interrelationship defined as EðtÞDðtÞ≈ 1 [46].

For linear viscoelastic materials in which the relaxation modulus and creep
compliance can be represented by simple power laws over their transition zones,
Leaderman [37], Christensen [19], Denby [21] and Park [46] presented the fol-
lowing interconversion formulas, respectively.

EðtÞDðtÞ = sin nπ
nπ

ð1:2Þ

EðtÞDðtÞ ≅ 1

1 + n2π2
4

ð1:3Þ

EðtÞDðtÞ ≅ 1

1 + n2π2
6

ð1:4Þ

EðαtÞDðtÞ = EðtÞDðt α̸Þ = 1 ð1:5Þ

in which α = sin nπ
nπ

� �1 n̸ and n is the local slope of the source function
FðtÞð=EðtÞ or =DðtÞÞ, defined as

n=
d logFðτÞ
d log τ

����
����
at τ= t

ð1:6Þ

Linearity, nonlinearity and the concept of isochronous modulus: Two important
definitions of linearity (or nonlinearity) are usually employed: the first is material
linearity which deals with Hookean stress-strain behavior or linear relation between
stress and strain; and the second is geometric linearity (or nonlinearity).

One of the main points in analysis is to determine if the material behavior under
specific conditions is linear or nonlinear. This can be accomplished by determining
if the creep compliance (or relaxation modulus) is independent of stress (or strain).
This can be performed by plotting the stress-strain curves for different times. It can
be seen in Fig. 6 and is called isochronous stress-strain diagram. If this isochronous
variation of stress versus strain at any given time, ti, is linear, the material is linear.
In this case the creep compliance (or relaxation modulus) can be determined by
D tið Þ = εi σ̸i ðor E tið Þ = σi ε̸iÞ. This property is characterized as linear viscoelas-
ticity. In the linear range the compliance (or modulus) is independent of stress
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(strain). By increasing the applied stress or strain, a transition from linear to non-
linear viscoelasticity can be observed (Fig. 6). In the nonlinear region, the slope of
isochronous stress-strain curve is no longer constant, meaning that the compliance
(or modulus) is a function of stress (or strain).

It is worth pointing out that polymers generally exhibit linear behavior at low
stresses, while at moderate or higher stress levels, the material is assumed to be
nonlinear and will not obey the linear Hookean relationship.

Both the material nonlinearity analysis and geometric nonlinearity analysis are
of researchers interest. The linearity corresponds to the small or infinitesimal
deformation theory, while the nonlinearity follows the theory of large or finite
deformation. Linearity in polymers is the result of the displacements of the material
particles assumed to be much smaller than any relevant dimension of the body.
With this assumption, the geometry and the constitutive properties of the material
such as density and stiffness at each point of space can be assumed to be unchanged
by the deformation. This results in simplification of the Lagrangian and Eulerian
strain equations. Although a lot of work has been done on large deformation
analysis of polymers (see, for instance, [24, 28, 27, 23]), infinitesimal behavior has
limited applications in polymers (see [11]).

1.3 Experimental Considerations

The main reason for performing experiments is to determine material characteris-
tics. Creep test involves recording the strain due to application of constant stress,
while relaxation test yields the resultant stress when the material is subjected to
constant strain. In some cases shear stress or strain experiments are done. Obser-
vations which show that deformations in viscoelastic materials such as polymers are
more related to changes of shape than changes of volume, suggest that shear tests
may be more valuable than the traditional uniaxial tests. The main material clas-
sifications which form the basis of mathematical modeling of polymers are as
follows:
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Viscoelastic and viscoplastic materials: The first level of material classification
is determining if the material is described best by a viscoelastic or a viscoplastic
model. A viscoelastic material shows a significant amount of delayed recovery
upon unloading, whereas there remains a permanent residual ‘plastic’ strain for
viscoplastic materials. Even though either model can be used to describe the time
dependent “creep” of materials under uniaxial loading, viscoplastic models are
generally used to describe high temperature creep of metals, while viscoelastic
models are used to describe creep of ductile polymers [36].

Linear and nonlinear materials: By performing creep tests at several constant
stress levels, a series of strain versus time curves are obtained. A plot of the
compliance “X = εðtÞ σ̸” versus time can be used to determine if the material
response at various stresses is linear or nonlinear. If the compliance is independent
of the stress, meaning that a single curve is obtained for the compliance under
different levels of constant stress, then the material is said to be ‘linear’. Otherwise,
the compliance is a function of stress, the material is known as ‘nonlinear’, and a
nonlinear model must be used to represent its creep behavior [36].

Nonlinear materials-separable and non-separable: Nonlinear materials can be
categorized taking into account whether the effects of stress (σ) and time (t) on
strain (ε) are separable or not. If all compliance curves for nonlinear materials have
the same ‘shape’, the material needs a nonlinear-separable model, i.e., same
function for all stresses. ε is given by the following equation [36]

ε = h σð Þf ðtÞ ð1:7Þ

Otherwise, if the shape of the compliance curves at all stress levels is not similar,
then ε must be represented by a different function of time at each stress level. In this
case, the material can only be described by a nonlinear non-separable model given
by [36]

ε = g σ, tð Þ ð1:8Þ

1.4 Polymer Material Testing at the University of Waterloo

Polymer studies have been a major research area at the University of Waterloo.
Material testing has included creep and tensile testing of a variety of polyethylenes
and polyfluoroethylenes. Mechanical testing was supplemented by detailed analysis
of polymer micromolecular properties [14, 48, 47]. This section outlines the testing
done and the rationale behind it.

Liu [39] and Liu et al. [40] have done experiments on high density and medium
density polyethylene (PE) materials. Testing was done on seven types of PEs and
included short term tensile creep (3 and 24 h), long-term creep (7 days and
14 days), creep with step loading, constant stress rate, constant strain rate, and
complex load history tests. The specimens were produced from resins by melting
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them and machining, and from pipes by cutting out the samples. 24-h creep testing
was done at different stress levels to examine time dependent and nonlinear
behavior of the materials. The testing showed clear differences in the behavior of
different HDPEs; examples of the results of HDPE 24 h creep curves for two
different materials are shown in Fig. 6. Based on the measured strain values under
different stress levels and observing creep compliance D tð Þ = εðtÞ σ̸ diagrams
versus time [40], it can be inferred that polyethylenes show high degree of material
nonlinearity and time dependency. Comparing the compliance curves in terms of
similarity reveals that they cannot be separated by two stress dependent and time
dependent terms. This leads to the conclusion that the final constitutive equation of
polyethylene is a non-linear-non-separable relationship.

The long term, step loading, complex stress and strain history, and tensile tests,
were all conducted to provide experimental data for mathematical modeling of the
behavior of the materials. Some of the creep tests were later used for parameter
estimation, while others served for model verification. Tensile rate tests were
conducted with the stress rate equal to 1.0, 0.1, 0.05, and 0.01 (MPa/s), and also
with the constant strain rates of 0.05, 0.01 and 0.005 (/s). The step loading tests
involved tests where a material first creeps for a period of time under a constant
stress and then creeps for a period of time at another (increased or decreased)
constant stress level. An example of a strain–time curve for stepped loading creep
tests of HDPE-Pipe is shown in Fig. 7. For increasing stress, progressive strain
growth can be observed; for decreasing stress, strain reduction under sustained
loading can be observed.

Behjat [5] and Behjat et al. [4] performed further experiments on six different
HDPEs obtained from various industrial sources and designed for a variety of
applications. These PEs had a wide range of environmental stress crack resistance
(ESCR) values, determined by prior microstructural analysis testing of the resins
performed by Cheng [14]. Two blow-molding resins (PE1 and PE4) had low ESCR
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and unimodal narrow molecular weight distribution (MWD). These were compared
to pipe resins (PE 7-10) with high ESCR and broad or bimodal MWD. The dif-
ferences in the short and long-term behavior of the two groups of resins provided
meaningful information on the link between molecular structure and mechanical
properties of PEs. The mechanical testing included short and long-term creep tests
and strain rate controlled tests at 7 (mm/min) strain rate based on ASTM D638-03
standard recommendation.

ESCR in PE resins occurs through a slow crack growth mechanism under low
applied stresses and long periods of time. This property is usually assessed by
unreliable and time consuming testing methods, such as the notch constant load test
(NCLT) on notched PE specimens in the presence of an aggressive fluid at elevated
temperatures. Cheng et al. [18, 15, 16] performed tests on PE resins to determine
their average molecular weights (MW), molecular weight distribution (MWD),
short chain branching content, crystallinity, crystalline lamella thickness and area,
ESCR by notch contact load test (NCLT) and hardening stiffness (HS) from
short-term tensile strain hardening tests (i.e., the slope of the stress-strain curve
during the strain hardening phase). They found that HS can be related to ESCR of
PE. Following this, Behjat et al. [4] investigated the relationship of short term creep
strain (8 h at 10 MPa) and ESCR. In Fig. 8 the hardening stiffness (HS) at a
7 mm/min deformation rate is plotted against short-term creep strain at 10 MPa for
all resins. The 8-h strain (elastic plus creep strain) was chosen as an indicator of
short term creep straining level. The graph indicates a relationship of increasing HS
(and thus ESCR) with an increase in short-term creep strain, meaning that
short-term creep is inversely related to the long-term creep behavior in environ-
mental stress cracking.

Short chain branches (SCB) are well known to affect ESCR of PE [14].
A general trend of increasing SCB content is associated with an increase in creep
strain. SCB interferes with the formation of crystalline lamellae, and hence, makes
the PE more malleable.

The long-term mechanical behavior of polyethylene (PE) is of great importance
especially in cases where structural integrity is required. In order to predict

Fig. 8 Strain after 8 h of
creep test at 10 MPa versus
hardening stiffness [4]
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characteristics of the mechanical behavior of PE, it is necessary to fully understand
the molecular structure of the employed resins. Sardashti et al. [48] evaluated
several micromolecular properties of PE. These properties influence an important
performance indicator of PE for structural applications, namely, the environmental
stress cracking resistance (ESCR). In [48], relationships between molecular struc-
ture and material response characteristics, mainly between molecular weight
properties and short chain branching content in relation to strain hardening behavior
of PE resins, were investigated based on results from tensile experiments.

Charbonneau [12] and Charbonneau et al. [13] conducted tests on ethylene
tetrafluoroethyle (ETFE) films. ETFE is used for producing films used in the
construction industry for tensile cushions used for roofs and wall cladding, e.g.,
China’s National Aquatics Centre, commonly known as the Water Cube, which
hosted aquatic events during the 2008 summer Olympic Games was built using
ETFE. The test program included a series of 24-h uniaxial creep, 7-day creep, and
stress-strain tests; all performed in the controlled temperature of 23 °C. Three film
grades with varying thicknesses were tested. The 24 h creep tests were done at
stress levels of 2, 8, 12 and 14 MPa. All films were tested in both the longitudinal
(the direction of extrusion) and transverse directions. A minimum of two inde-
pendent replications were done on each film type, at each stress level and in each
direction.

All of the films were tested at all stress levels in both the longitudinal and
transverse directions of the material, and in nearly every case, more strain was
observed in the transverse direction than the longitudinal direction. The stress-strain
curves in Fig. 9 show the same trend. The extrusion process by which ETFE film is
created could be responsible for this anisotropic behavior because it causes the
molecules to be stretched in the direction of extrusion such that they are aligned in
the longitudinal direction. It could also be due to the crystal structure of the
molecule, i.e., the degree of crystallinity, the location of the crystalline regions and
the orientation of the crystals, or to thermally activated relaxation processes that
occur during film processing.

Fig. 9 Sample stress-strain curves for ETFE film tested in tension in both directions
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2 Constitutive Modeling

Also known as anelasticity, viscoelasticity is the study of materials that exhibit both
viscous and elastic characteristics when undergoing deformation. Viscous materi-
als, like honey, resist shear flow and strain linearly with time when stress is applied.
Elastic materials strain instantaneously when stretched and return to their original
state once the stress is removed. Viscoelastic materials have elements of both of
these properties and, as such, exhibit time-dependent strain. Whereas elasticity is
usually the result of bond stretching along crystallographic planes in an ordered
solid, viscoelasticity is the result of the diffusion of atoms or molecules inside of an
amorphous material.

Another approach is based on viscoplasticity, which is a theory in continuum
mechanics that describes the rate-dependent inelastic behavior of solids.
Rate-dependence in this context means that the deformation of the material depends
on the rate at which loads are applied. The inelastic behavior that is the subject of
viscoplasticity is plastic deformation, which means that the material undergoes
unrecoverable deformations when a load level is reached. Rate-dependent plasticity
is important for transient plasticity calculations. The main difference between
rate-independent plastic and viscoplastic material models is that the latter exhibit
not only permanent deformations after the application of loads but continue to
undergo a creep flow as a function of time under the influence of the applied load.
The constitutive equations of these materials may be either linear or nonlinear.

The usefulness of a numerical model depends largely on three features [50]:
(1) physically, the constitutive model should be able to predict material response
well for a wide range of loading histories; (2) mathematically, the constitutive
formulation should be simple and suitable for easy implementation in computer
algorithms; and (3) the parameters in the model should be easily evaluated from
experimental data.

In this section, different methods are discussed and constitutive models are
developed which are useful for implementation in numerical procedures (e.g., finite
elements).

2.1 Micro- and Macro-Scale Modeling

Two approaches are usually taken to develop constitutive models for polymeric
materials. They are molecular and macroscopic in nature [10]. Micromechanical
models emphasize the relation between the macroscopic properties of materials and
their microstructure. The mechanical performance of polyethylene materials
depends on loading and temperature conditions but also on phenomena occurring at
the microscopic level (e.g., [33, 38, 49, 32]). In recent years, there has been a
considerable interest in developing reliable experimental and mathematical models
to study polymeric materials at different scales. Understanding the nonlinear
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behavior of semicrystalline polyethylene by relating microstructure with macro-
scopic performance under both small [44, 45] and large [38, 20] deformations has
been the focus of many studies.

Alvarado-Contreras et al. [2, 1], proposed coupling a damage mechanics for-
mulation for the crystalline phase and its amorphous counterpart in polyethylene.
The study involved modeling degradation processes taking place in the
microstructure due to loading effects. The mechanical properties were studied
considering not only the original microstructure but also the particular mechanisms
activated at various deformation steps. The microscopic deterioration was modeled
considering an isotropic damage variable. The evolution of this variable was linked
to the deformation evolution and the changes in tie-molecule density. This resulted
in a damage–coupled model for semicrystalline polyethylene, which effectively
incorporated the developed constitutive equations for the crystalline and amorphous
phases.

For predicting mechanical response of polymers for structural analysis, the
macroscopic approach is usually employed. Examples include the work of Zhang
and Moore [50, 51] and Drozdov et al. [26, 25, 22, 24]. The finite element programs
developed for simulating viscoelastic or viscoplastic analysis use formulations
similar to those of the incremental theory of plasticity, in which the total strain rate
is separable into elastic and inelastic components [35, 52, 34].

In viscoelastic theory, constitutive equations are usually formulated using one of
the differential or integral forms [42]. In contrast to the differential formulation
(simulating the behavior by spring and dash-pot element configurations) which
involves only the current values of stress and strain and their current time rates, the
integral form takes into account the history of loading and it is more accurate and
strict in nonlinear modeling. The viscoplastic formulation is usually an extension of
viscoelastic theory which considers permanent residual strain by assuming the rate
of total strain as summation of elastic and plastic strain rates. These forms of the
constitutive equation in linear viscoelasticity are described in the following
sections.

2.2 Viscoelastic Modeling

Two explanations can be offered for viscoelastic modeling. The first is defining the
material response as a mixture of two simple cases: elastic and viscous. In the
elastic behavior, the material acts as a spring in which the length increases by a
certain amount u or ε, in proportion to the applied load f or σ. When the force is
removed, the spring returns to its original length. Assuming linear-elastic behavior,
Hooke’s law, σ = Eε, is used to describe the stress-strain relation for the spring. In
viscous behavior, a piston cylinder (dash-pot) system is used to describe the
time-dependent behavior of viscous materials. In this case, the deformation rate is
proportional to the applied force. Considering a linear relationship, the applied load
is related to the rate of change of displacement by σ = με ̇. There are many possible
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spring and dash-pot configurations that describe viscoelastic material behavior.
Maxwell Fluid uses a spring and a dash-pot model in a series configuration and is
suitable generally for viscoelastic fluid modeling. Kelvin Solid or Voigt Solid uses a
spring and a dash-pot model in a parallel configuration and is suitable for modeling
viscoelastic solid materials.

Direct use of spring and dash-pot elements and their combination in modeling of
the material behavior leads to the following constitutive equation and the method is
referred as differential formulation,

PðDÞσðtÞ = QðDÞεðtÞ ð2:1Þ

where the operators P and Q are polynomials in D such that Dn is interpreted as
dn d̸tn. Due to the complicated configurations of these two elements, one of the
most useful methods to reach the final governing equation is Laplace Transfor-
mation. The second approach to the definition of linear viscoelastic behavior is the
hereditary integral form of the constitutive equations which takes into account the
history of loading, described as:

ε tð Þ =
Z t

−∞
ψ t − τð Þσ ̇ τð Þdτ ð2:2Þ

σ tð Þ =
Z t

−∞
ϕ t − τð Þε ̇ τð Þdτ ð2:3Þ

where ϕ tð Þ is known as the stress relaxation function for the material, and ψ tð Þ is
known as the strain compliance function. They must be determined either by
experiments or from the physics of the material structure. It is possible to consider
the material to be linear at first and use the rule of linear superposition to calculate
the strain produced by the common action of several loads (creep phase) or stress
caused by the application of several strain constraints (relaxation phase). This is
what makes this method special for non-linear modeling by means of linear
superposition. The procedures for both creep and relaxation are the same. For any
additional strain (stress), time is measured by a clock that starts at t = τ. The total
strain for t > τ is [31]:

ε tð Þ =
Z τ= +∞

τ= −∞
ψ t − τð Þdσ τð Þ ðcreep phaseÞ ð2:4Þ

σ tð Þ =
Z τ= +∞

τ= −∞
ϕ t − τð Þdε τð Þ ðrelaxation phaseÞ ð2:5Þ

This form plays a significant role in linear and non-linear modeling of viscoelastic
and viscoplastic materials. Either Eq. 2.4 or Eq. 2.5 can be used for defining the
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material response. Creep functions are easier to obtain from experiments. In the
linear modeling case, the stress in the experiment is kept constant and the strain is
recorded with time. For a constant applied stress, Eq. 2.4 becomes:

ε tð Þ = σcψ tð Þ ð2:6Þ

The material modeling task is to find an approximation function ψ tð Þ that best fits
test results. This is what one may get from the differential approach to viscoelas-
ticity mentioned before in this section. In linear viscoelastic theory, Christensen
[19] introduced the concept of fading memory, which states that the material
response depends more on recent history than earlier events. Based on this, an
assumption was made for the relaxation modulus and/or creep compliance:

A tð Þ = A∞ − ∑
N

i=1
Aie− t τ̸i ð2:7Þ

In order to find the unknown parameters involved in A (assumed ψ and/or ϕ), the
Prony series approximation is used. Based on what Christensen [19] stated as
fading memory, the best alternative for the Prony series is a multi-Kelvin approach
model, since it considers the instantaneous elastic strain, εe, and consequently the
instantaneous elastic modulus, E0 (or elastic compliance, ψ0). The strain growth
rate decreases with time and it becomes constant at a certain time. Therefore, the
linear viscoelastic material behavior under constant stress can be described as
Eq. 2.6, in which [40]:

ψ tð Þ = ψ e + ψ v tð Þ = ψ0 + ∑
N

i=1
ψ i 1 − exp −

t
τi

� �� �
ð2:8Þ

Or, similarly, for constant strain by substituting ψ by ϕ in which ψ0 = 1 E̸0 or
ϕ0 = E0 = 1 ψ̸0. Material constants are E0 and Ai with corresponding relaxation
times τi. One can obtain parameter values by fitting the material response (Eq. 2.8)
to experimental data.

2.3 Viscoplastic Modeling

The plasticity in semicrystalline polymers like polyethylene starts to develop at
small strain and the material behaves with both viscoelastic and viscoplastic
characteristics. Yield (the development of permanent deformation) occurs gradually
with a steady transition from linear to nonlinear response. Thus, it is difficult to
identify exactly where yielding commences. For this reason, classical plastic
potential theory [52, 6, 7] which employs a yield surface is unsuitable for
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characterizing rate effects. Instead, unified theories, [8, 41, 6, 7], which do not
separate creep strains and plastic strains and which consider inelastic deformation to
be rate dependent, are a better alternative.

Based on a yield criterion, the total strain rate is considered to be decomposable
into elastic and inelastic components:

ε ̇ij = ε ̇eij + ε ̇Pij ð2:9Þ

Based on what Krishnaswamy et al. [36] have suggested, a power law function can
describe the linear viscoplastic creep behavior. This function is able to model the
growing deformation (strain) at decreasing rate, which doesn’t approach an
asymptotic value and the material remains time-dependent. In this model the
compliance is expressed as a power law function [40]

ψ tð Þ = ψ e + ψ v tð Þ = 1
E0

+ C0tC1 ð2:10Þ

where ψ e is the instantaneous elastic component, ψ v tð Þ the time-dependent com-
ponent, and E0, C0 and C1 are material constants. Similar to viscoelastic modeling,
the formulation constants are obtained by least squares. Substituting Eq. 2.10 into
Eq. 2.6, results in the final constitutive equation for linear viscoplasticity:

ε tð Þ = σn
E0

+ σnC0tC1 ð2:11Þ

3 Parameter Estimation for Linear Modeling

Any configuration of spring and dash-pot obeys the following differential formula:

σ + p1σ ̇ + p2σ ̈ + . . .

= q0ε + q1ε ̇ + q2ε ̈ + . . .
ð3:1Þ

and the material properties are represented by an expression consisting of multi-
plication of a constant and a time-dependent term. In the development of linear
viscoelasticity models it is necessary to perform stress-strain experiments involving
time as an independent variable. Thereafter, the experimental results are represented
by a constitutive equation obtained by means of theoretical approaches. The relation
is fitted to data and an error function has to be minimized.

The other way to construct constitutive equations is approximating a creep
compliance or a relaxation modulus using an appropriate function. The function,
then, is fitted to experimental data, and unknown parameters associated with the
material response are obtained. Researchers use different methods of minimization
along with approximation functions. One of the most common functions is called
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Prony’s series, which uses an exponential basis function. The Prony series is the
most used mathematical curve to represent viscoelastic materials properties, which
many researches have proved to be a representative and computationally efficient
function for such materials. However, the procedure to obtain the Prony series
unknown constants from experimental data is not trivial, involving many numerical
tasks. Another notable point regarding this method is the complexity of viscoelastic
time functions related to material properties, which involves complex mathematical
relations that are easy to overcome using Prony’s series.

Prony series method: Since the material properties are independent of the
testing procedure, Eqs. (2.4)–(2.6) uniquely define the material response. Creep
functions are easier to obtain from experiments. The material modeling task is to
find an approximation function ψ tð Þ and/or φ tð Þ that best fits test results (see
Eq. 2.7).

The equation representing the viscoelastic material is obtained by a mechanical
model consisting of linear springs and dashpots (as discussed in previous sections).
The alternative representation of the relation can be of the form of Eq. 2.8, which
can be rewritten as:

A tð Þ=A0 + ∑
N

i=1
Ai 1− expð− t τ̸iÞð Þ ð3:2Þ

where A0 =A∞ + ∑
N

i=1
Ai. The terms A∞ and A0 are called independent terms. The

exponential terms τi are known as time constants because they appear in association
with the time variable t. The set of terms Ai are the dependent terms of the Prony
series and the number of terms N is determined according to the experimental data.
Usually, one must use around 8–15 terms in the Prony series in order to have a
satisfactory mathematical model based on experimental data.

The objective is to determine the constants Ai and τi from measured values of
A tð Þ at fixed moments in time. The problem is particularly difficult in that the τi
appear non-linearly in the expression. Further the appropriate number N is also
unknown. Collocation or least squares approaches are used for obtaining the
unknown constants of Prony’s series approximation function.

Prony-collocation method: let’s say f tð Þ=A tð Þ. We suppose that experimental
values of f ðtÞ are specified on a set of N equally spaced points. Therefore from
experimental results we have the values for f ð0Þ, f ðΔtÞ, f ð2ΔtÞ, … . For simplicity
we set fk = f ðkΔtÞ.

In Prony’s method we will first find αi = expð−Δt τ̸iÞ (from which
τi = −Δt l̸nðαiÞ) and then we will find Ai, which are positive values. The procedure
is to first note that

fk = f kΔtð Þ= ∑Aiα
k
i ðk=0, 1, 2, . . .Þ ð3:3Þ
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which is particular for Eq. 2.7, and that the αj can be considered the roots of the
polynomial

p αð Þ= ∏
N

i=1
ðα− αiÞ

= αN + cN − 1α
N − 1 +⋯+ c0

ð3:4Þ

With these relations one can observe that

f0c0 + f1c1 +⋯+ fN − 1cN − 1 + fN =0

f1c0 + f2c1 +⋯+ fNcN − 1 + fN +1 = 0

. . .

fkc0 + fk+1c1 +⋯+ fk+N − 1cN − 1 + fk +N =0

ð3:5Þ

The first of these follows easily by expansion and noting that each αj is a root of
p αð Þ=0; the second follows by introducing A ̄i =Aiαi, expanding, and using the root
property again; the third follows by a similar procedure. Rewriting in matrix vector
form, we have:

f0 f1
f1 f2

⋯
fN − 1

fN
⋮ ⋱ ⋮

fN − 1 fN ⋯ f2N − 2

0
BBB@

1
CCCA

2
6664

3
7775

c0
c1
⋮

cN − 1

0
BBB@

1
CCCA

= −

fN
fN +1

⋮
f2N − 1

0
BBB@

1
CCCA

ð3:6Þ

With these equations we have a set of linear equations that we can solve for ci. One
can use only the number of equations needed to uniquely determine ci (as shown) or
one can use more equations and over-determine the system—thus leading to a least
squares solution. Once the ci are known, the roots αj of p αð Þ=0 can be determined.
Once these are known one can solve the system

1 1
α11 α12

⋯ 1
α1N

⋮ ⋱ ⋮
αN − 1
1 αN − 1

2 ⋯ αN − 1
N

0
B@

1
CA

2
64

3
75

A1

A2
⋮
AN

0
B@

1
CA= −

f0
f1
⋮

fN − 1

0
B@

1
CA ð3:7Þ

for the Ai. These relations are the first N equations from Eq. 3.5. Note that in this
procedure one needs to select N ahead of time.
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Prony-least squares method: A linear least squares fitting is used by assuming
values for the relaxation times τj in Eqs. 2.7 and 3.2. We define the squared error as

F tj
� �

= ∑
p

i=1
f tið Þ− f ð̄tiÞð Þ2 ð3:8Þ

where p is the number of data (measurements), f ð̄tiÞ is a data measurement at time
ti, and f tið Þ is the corresponding theoretical value (Eqs. 2.7 and 3.2). By setting
dF d̸tj =0 for j=1 . . .N (N is the number of terms in Prony series), to minimize
F tj
� �

, a set of linear simultaneous equations with respect to the material parameters
tj is obtained.

T½ �N ×N Af gN ×1 = Bf gN ×1 ð3:9Þ

where for Eq. 2.7

Tij = ∑
p

k =1
e− tk τ̸i
� �

e− tk τ̸j
� �

Bi = ∑
p

k =1
f ̄ tkð Þ−A∞ð Þ e− tk τ̸j

� � ð3:10Þ

and for Eq. 3.2

Tij = ∑
p

k=1
1− e− tk τ̸i
� �

1− e− tk τ̸j
� �

Bi = ∑
p

k=1
f ̄ tkð Þ−A0ð Þ 1− e− tk τ̸j

� � ð3:11Þ

For this approach, see [40, 17].

4 Nonlinear Modeling

This section deals with nonlinear constitutive relations for polymers. Polyethylene
is time dependent with a high degree of nonlinearity.

In the linear approach, the compliance is a function of time which means that for
a constant applied stress a resultant strain is obtained and the constitutive equation
has a separable nature of Eq. 1.7. The nonlinear constitutive equation obeys the
non-separable format of Eq. 1.8.
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4.1 Methods for ‘Nonlinearization’ of the Model Parameters

Liu et al. [40] obtained a separate set of material parameters for each stress level.
The sets of constants for all creep tests created an array of material constants. The
material parameters for stresses other than the tested stresses were obtained by
linear interpolation. Thus, piece-wise linear functions were assumed for the material
functions. The expressions for the linear interpolation of material parameters for
non-linear viscoelatic modeling were the following:

E0 σð Þ=E0 σmð Þ+ σ − σm
σn − σm

E0 σnð Þ−E0 σmð Þ½ �

ψ i σð Þ=ψ i σmð Þ+ σ − σm
σn − σm

ψ i σnð Þ−ψ i σmð Þ½ �
ð4:1Þ

where σm and σn are stresses used for model development by considering
σm < σ < σn. Similarly, for non-linear viscoplastic modeling:

C0 σð Þ=C0 σmð Þ+ σ − σm
σn − σm

C0 σnð Þ−C0 σmð Þ½ �

C1 σð Þ=C1 σmð Þ+ σ − σm
σn − σm

C1 σnð Þ−C1 σmð Þ½ �
ð4:2Þ

and the interpolation of the instantaneous elastic parameter, E0 σð Þ, is the same as in
the viscoelastic case, Eq. 4.1. The presented two-step curve-fitting approach works
well at a given stress for a material for which the model is developed. However,
since each polyethylene behaves differently under a creep test, the model
compliance-stress relationship should theoretically be redefined for each specific
material. This means that for each specific material new compliance functions of
stress representing material parameters should be created.

In our recent unpublished work, continuous functions for the ‘nonlinearizations’
of model parameters for the case of viscoelasticity were proposed. The process of
developing a non-linear model starts with a linear model for the material under
constant stress (separable form) and then it is extended to the nonlinear one by
considering effects of stress on the stress dependent part (non-separable form).
Thus, the following stress-strain relationship is defined for predicting the response
of the material under constant applied stress:

ε tð Þ= σX tð Þ ð4:3Þ

In this formulation, X tð Þ describes the creep compliance of the material and is based
on the spring and dash-pot method of modeling described previously. According to
the concept of fading memory, the material response depends more on recent his-
tory than on earlier events. Accordingly, this theory considers the following for-
mulation for creep compliance:

340 M.A. Polak et al.



X tð Þ=X0 + ∑
N

i=1
Xi 1− e− t τ̸i
� � ð4:4Þ

where X0 is the elastic time-independent compliance at time t0 = 0, and Xi and τi are
creep compliance and relaxation time, respectively, for the ith Kelvin element. N
indicates the number of Kelvin elements in the model.

Most finite element implementations of this form assume that the creep com-
pliance and relaxation modulus have the exponential form of Eq. 4.4, which is a
form of a Prony series approximation, with 2 ×N unknown material properties (Xi

and τi). The term X0 = 1 E̸0 is called an independent term. One can obtain parameter
values by means of least squares estimation by fitting the Prony series to experi-
mental data by fixing a set of τi or by pre-setting Xi and τi as power law functions
of t.

Xi and τi can be expressed as power-law functions of stress. To reduce the
number of material functions, which is equal to 2 ×N, all values of Xi and τi are
obtained using four parameters X1, τ1, m and α following the formulation presented
by Zhang and Moore [50].

Xi =m1− i ×X1, τi = αi− 1 × τ1 ð4:5Þ

The determination of the material functions proceeds in two steps. In the first step,
and for a particular creep stress, Eqs. (4.3)–(4.5) are used to fit the corresponding
experimental creep curve and find the specific unknown parameters by means of
least squares (linear modeling). Then, in the second step, curve fitting is used to
produce stress-dependent parameters X1ðσnÞ and τ1ðσnÞ based on the values from
linear modeling. This is referred to as ‘nonlinearizing the constants’ by assuming
that they are functions of stress and obey the non-separable form of the kinematic
relation [36].

For simplicity, constants m and α are considered to be stress-independent [51].
In recent unpublished work of ours, the curve fitting of the two parameters X1 and
τ1 showed that the parameter distributions versus applied stress σn obeyed the
following:

X − 1
1 = b0 + b1expðb2 − b3σn − b4 σ̸nÞ
τ1 = c0expð− c1 + c2σn + c3σ2n − c4σ3nÞ

ð4:6Þ

where X0 is a constant that is obtained from experimental results for each test and it
is assumed to vary with respect to stress. The constants bi, ci, m and α are obtained
via least squares for each examined material. It can be seen that X0 is approximately
constant for all stress levels, and the variation versus stress is trivial and therefore
negligible. These material properties are used to plot the response of HDPE resin
versus experiments in Fig. 10.
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The nonlinearization for viscoelasticity starts with the assumption that the plastic
flow starts to develop when there is a small strain and the material behaves in both
viscoelastic and viscoplastic fashion. Since yield occurs gradually with a steady
transition from a linear to a nonlinear response, unified theories, which do not
separate creep strains and plastic strains, are a better alternative than those that
consider creep and plasticity as separate phenomena [50]. Here is the non-separable
viscoplastic model that has been discussed in this chapter:

ε= εe + εv =
σ

E0
+ σC0

t
T

	 
C1 ð4:7Þ

Similar to viscoelastic modeling, the determination of the material constants pro-
ceeds in two steps. In the first step, for a particular constant creep stress, Eq. 4.7 is
used to fit the corresponding experimental creep curve and determine the unknown
parameters (linear modeling). Then, in the second step, ‘nonlinearizing’ curve fit-
ting is used to find the distribution of parameters, C0ðσÞ and C1ðσÞ with respect to
stress. E0 is also obtained from the experimental data at each stress level.

The first step leads to the material constants, and corresponding plots of model
and experiments are shown in Fig. 11 for HDPE resin. Based on the variation of the
constants versus stress, the following equations can be fitted:

C0 = b1 + b2σn + b3σ2n
� �

σ
b4 + b5σn + b6σ2nð Þ

n

C1 =m1 +m2 1 +
1
2
atan sað Þ

� �

T = T1σd0n

ð4:8Þ

Fig. 10 Experimental
(continuous line) and
non-linear viscoelastic model
(dashed line) results for 24-h
creep tests for an HDPE resin
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5 Extending the Material Parameters to Longer Times
Frames

In order to realistically model the service life-time for polymeric structures,
long-term prediction methods are needed within the developed constitutive law.
The constitutive laws are normally formulated based on available short-term tests.
One of the most popular methods for predicting long term properties of polymers is
‘tme temperature superposition’, which is based on short term behavior and uses the
information from short duration tests. The method uses the similarity between the
variation of relaxation modulus (creep compliance) with time and temperature. The
variation of time and temperature of the moduli (compliances) of a polymer is often
said to be related or even equivalent [3, 43]. There are also several test methods for
evaluating long-term properties of materials, including creep test ASTM-D2990,
stress relaxation test D2991, hydrostatic test D1598, D2837, and DMA (Dynamic
Mechanical Analysis).

A nonlinear approach has been proposed by recent work of ours and an overview
is given in the following section.

5.1 Using Short Term Testing for Predictions at Longer
Time Frames

The important point of constructing a mathematical model is predicting the
response of creep behavior over extended operating time. Using the material
properties and modeling constants, as described in Sect. 4, resulted in good
agreement during the test time interval which was 24 h (creep test time, Figs. 10 and
11). To examine the validity of the model for extended times, the method proposed
herein is to observe the trend of material constants with respect to test time. First,

Fig. 11 Experimental
(continuous line) and
non-linear viscoplastic model
(dashed line) results for 24-h
creep tests for an HDPE resin
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the curve fitting is done for all materials in different test times, namely: 10, 14, 18,
20, 22 and 24 h. This allows one to observe how the modeling constants are
dependent on test time (λ). It is proposed that the material parameter change over
test time can be represented by the following equations for the viscoelastic case:

bi λð Þ= b0iλ
di for i=0, 1, 2

bi λð Þ= b
0
i λ̸

di for i=3, 4

c0 λð Þ= c00 × λd5

ð5:1Þ

λ stands for test time and c00, b
0
i and di are constants independent of the test time

used to develop the model.
Similarly, when the same method is applied to viscoplastic modeling, the fol-

lowing equations for the dependency of constants on λ are obtained:

bi λð Þ= b0i × λdi for i=0∼ 6

mi λð Þ=m0
i × λni for i=1, 2

sa λð Þ= sa0 × λs

T1 λð Þ= T 0
1 × λT2

ð5:2Þ

5.2 Viscoelastic (NVE) and Viscoplastic (NVP) Long Term
Responses

The parameter identification procedure is based on a minimization of the total error
between experimental data and model predictions. The models have been devel-
oped using the data from 24 h creep testing (using 10, 12, 14… hour time frames).
Then the model was verified using experimental data for long-term creep of
polyethylene [40]. The model showed the ability to predict well the independent
data from long-term testing; it sufficiently describes the variation of strain in time
for the loading history. The long-term scheme was validated by tests on PIPE
material and other HDPE resins. Creep tests were conducted under three different
stress levels of 4.42, 6.08 and 8.15 MPa over 40 h [40]. In addition, creep strain
measurements on a pipe material were conducted under 6.89 MPa in a seven-day
test [40].

Both NVE and NVP models have been applied to the experimental data.
According to the definition, the parameter λ is set to be 40 and 168 for case I and
case II, respectively. The theoretical results are depicted in Figs. 12, 13, 14 and 15
and compared with experimental ones.

Looking at Figs. 12, 13, 14 and 15, it can visually be inferred that the NVE
model results in smaller fitting error for the long-term strain response prediction
compared to the NVP model. The NVE model seems more capable in modeling
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Fig. 12 Experimental
(continuous line) and NVE
model prediction (dashed
line) in 40 h test time (pipe
material)

Fig. 13 Experimental
(continuous line) and NVE
model prediction (dashed
line) in 7 days test time (pipe
material)

Fig. 14 Experimental
(continuous line) and NVP
model prediction (dashed
line) in 40 h test time (pipe
material)
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polymer behavior in extended time. The most important reason for this is that the
NVP model has only two parameters to adjust during fitting, while NVE has more,
resulting in more accurate curve fitting. The other difference is that based on the
nature of the governing equation for each model, viscoplastic materials tend to
extend under continuing applied load, while viscoelastic strain reaches an upper
limit after a while.

6 Modeling the Response Under Varying Stress

The modified superposition principle [30] employs the assumption that the strain
response after any abrupt change of stress is the sum of the strain due to the first
loading and the strain response due to each change of stress. This approach makes
use of the equations from the multiple functions for constant stress (linear models)
to describe the nonlinear yet synergistic characteristics of creep behavior. In this
method, the modification of the superposition principle consists of relaxing the
requirement of linearity in stress and treating nonlinearity as discussed in this
section.

6.1 Modified Superposition Principle (MSP)

The stress-strain equation for viscoelastic and viscoplastic materials consists of
time-independent and time-dependent parts:

Fig. 15 Experimental
(continuous line) and NVP
model prediction (dashed
line) in 7 days test time (pipe
material)
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ε= εe + εv = f e σð Þ+ f v σ, tð Þ ð6:1Þ

where f e σð Þ denotes the elastic strain εe, and f v σ, tð Þ denotes the time dependent
strain εv, caused by applied constant stress.

The superposition method can be described as follows [30]. When the state of
stress is abruptly changed from σ1 to σ2 at time t1, the creep behavior can be
considered as if, at this instant, stresses σ1 are removed and at the same time stresses
σ2 are applied to the specimen, both being considered as independent actions. The
recovery strain ε0 resulting from removal of σ1 after loading time t1 is given by:

ε
0
= f e σ1ð Þ− f e σ1ð Þ+ f v σ1, tð Þ− f v σ1, t− t1ð Þð Þ

ε
0
= f v σ1, tð Þ− f v σ1, t− t1ð Þð Þ

ð6:2Þ

The creep behavior due to σ2 applied at t1, denoted by ε
00
, is

ε
00
= f e σ2ð Þ+ f v σ2, t− t1ð Þð Þ ð6:3Þ

The total strain is the sum of ε
0
and ε

00
and equal to

ε= f v σ1, tð Þ− f v σ1, t− t1ð Þð Þ+ f e σ2ð Þ
+ f v σ2, t− t1ð Þð Þ ð6:4Þ

In this theory, the time-independent part of the strain response depends only on the
final state of stress applied to the specimen. The time-independent part of the strain
on loading and unloading follows the same path. Thus, when the stress state
changes from σ1 to σn, the total strain response after the nth stress change will be as
follows:

ε= f e σnð Þ+ ∑
n

p=1
f v σp, t− tp− 1

� �� ��

− f v σp− 1, t− tp− 1
� �� �� ð6:5Þ

For example, consider a 2N +1-parameter (N Kelvin units) spring and dash-pot
model. The stress-strain relationship under constant stress for the kth step is as follows:

εðtÞ= f e σið Þ+ f v σi, tð Þ
⇒ εk tð Þ=X0, kðσ, λÞσk

+ ∑
k

j=1
∑
N

i=1
Xi, jðσ, λÞ 1− exp −

tk − tj− 1

τiðσ, λÞ
� �
 �

σj

�

− ∑
N

i=1
Xi, j− 1ðσ, λÞ 1− exp −

tk − tj− 1

τiðσ, λÞ
� �
 �

σj− 1

�
ð6:6Þ
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If the stress state changes from σ1 to σ2, the total strain response for each step is:

0≤ t< t1 ε1 tð Þ=X0, 1σ1 + ∑
N

i=1
Xi, 1 1− exp −

t1 − t0
τi

� �
 �
σ1 ð6:7Þ

ε2 tð Þ=X0, 2σ2 + ∑
N

i=1
Xi, 1 1− exp −

t2 − t0
τi

� �
 �
σ1

� �

t1 ≤ t<∞ + ∑
N

i=1
Xi, 2 1− exp −

t2 − t1
τi

� �
 �
σ2

�

− ∑
N

i=1
Xi, 1 1− exp −

t2 − t1
τi

� �
 �
σ1

�
ð6:8Þ

The theoretical and experimental results for a high density PE resin (HDPE) sub-
jected to various load histories are compared and discussed next. The material was
tested subject to multi-stress levels by [39].

Figure 16 shows three steps change in applied stress. The resin was tested under
2.9, 5.8 and 8.7 MPa stresses which lasted 2 h each. Very good correlation can be
seen between two data sets. In Fig. 17, the material was tested under five different
time step loadings starting from smaller stress values. 1.46, 2.92, 4.38, 5.84 and
7.30 MPa stresses were applied.

MSP can also be applied on viscoplastic formulations. The corresponding
relation is:

εk =X0, σkσk + ∑
k

j=1
C0, σj × tk − tj− 1

� �C1, σj

h i
σj

n

− C0, σj− 1 × tk − tj− 1
� �C1, σj− 1

h i
σj− 1

o ð6:9Þ

Fig. 16 Strain versus time for
HDPE resin. Stress level
1 = 2.90 MPa, stress level
2 = 5.80 MPa, stress level
3 = 8.70 MPa, (blue
continuous line experimental
data, red dashed line model)
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For the first time-step the stress-strain relationship under constant stress is:

ε1 = X0, σ1 +C0, σ1 × tC1, σ1
� �

σ1 ð6:10Þ

If the stress state changes from σ1 to σ2, the total strain response after the second
stress change is:

0≤ t≤ t1 ε1 = X0, σ1 +C0, σ1 × tC1, σ1
� �

σ1

ε2 =X0, σ1σ1 + C0, σ1 × t2 − t0ð ÞC1, σ1

n o
σ1

t1 ≤ t≤∞ + C0, σ2 × t2 − t1ð ÞC1, σ2

h i
σ2

n

− C0, σ1 × t2 − t1ð ÞC1, σ2

h i
σ1
o

ð6:11Þ

7 Conclusion

This chapter presents an overview of polymer material research including testing
and modeling. Modeling techniques for short-term, long-term and time-history
cases are discussed.

The experimental results show a high degree of nonlinearity in polyethylene
behavior which requires simulations based on coupled non-separable formulations.
Viscoelastic and viscoplastic models were developed based on differential formu-
lations, suitable for implementation in finite element procedures.

Fig. 17 Strain versus time for
HDPE pipe. Stress level
1 = 1.50 MPa, stress level
2 = 2.90 MPa, stress level
3 = 4.38 MPa, stress level
4 = 5.84 MPa, stress level
5 = 7.30 MPa, (blue
continuous line experimental
data, red dashed line model)
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Material Model Based on Response Surfaces
of NURBS Applied to Isotropic
and Orthotropic Materials

Marianna Coelho, Deane Roehl and Kai-Uwe Bletzinger

Abstract A finite element analysis depends on the material model used to represent

the material behavior of a physical phenomenon. Some materials expose a consti-

tutive behavior that cannot be represented by analytical models. Complex mater-

ial behavior requires the use of appropriate material models able to represent the

response under a wide range of load conditions. This contribution uses a response

surface based on non-uniform rational B-splines (NURBS) surfaces to define direct

biaxial stress–strain relations. For the application in a finite element method, an

approach is suggested to compute the matrix of material coefficients from these sur-

faces. The method was developed for a plane stress condition, which can be used

for membranes, beams and thin plates. Two applications of this method are shown:

a large strain elastoplastic material behavior with von Mises yield criterion and a

linear elastic orthotropic material behavior (Münsch-Reinhardt). The advantage of

this material model is that from results of experimental tests, any kind of material

can be modeled by fitting the response surface parameters subjected to monotonic

load. This approach might be a good alternative to model new fabrics and polymers

used in membrane structures.
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1 Introduction

Non–uniform rational basis splines (NURBS) can be used to describe mathemati-

cally a 3D geometry using curves and surfaces. This representation is widely used

in computer–aided design (CAD) to create and modify designs offering smooth sur-

faces. Regarding the success in CAD application the use of NURBS has been sug-

gested in other fields as well. An example of this is the isogeometric analysis intro-

duced by Hughes et al. [7], which is a new numerical discretization method to solve

problems governed by partial differential equations.

Kiendl et al. [8–10] developed a Kirchhoff-Love shell element on the basis of

isogeometric approach. In this isogeometric analysis the functions from the geometry

description are used as basis functions for the analysis. This offers a possibility to

close the existing gap between design and analysis as both use the same geometry

model.

Isogeometric analysis is also used in the contribution of Schmidt et al. [16] for

thin-walled structures. This work proposes an integrated design process, which is

predicated on a NURBS-based CAD environment as well as on the NURBS-based

isogeometric analysis.

Another application of NURBS in numerical analysis is the NURBS–enhanced

finite element method (NEFEM). Sevilla et al. [17] has reported that the NEFEM

uses NURBS to accurately describe the boundary of the computational domain. The

NURBS application proposed in this work aims to state smooth relations between

biaxial strains and stresses from which the constitutive material tensor is calculated.

This constitutive tensor can be introduced in a finite element application.

Bridgens and Gosling [1] and Gosling and Bridgens [5] have shown another appli-

cation of splines for response surfaces, in which Bezier functions, B-splines and

NURBS are used to represent the biaxial behavior of coated woven fabrics. The

validity of the approach is assessed through an extensive fabrics testing program.

This approach provides a direct correlation between stresses and strains in the wide

range of possible stress paths the material is subject to. As pointed out in Bridgens

and Gosling [1] this representation has the additional ability to represent surfaces

with rapid changes in gradients and discontinuities in the data. Also, the plane stress

constraint, frequently used by the analysis of films and membrane structures is not

explicitly imposed.

The response surface approach using NURBS is extended in this contribution to

the development of constitutive tensors for easy implementation in finite element

method. First results showing this methodology were presented in [2, 3]. Here, the

methodology is applied to membrane materials with NURBS surfaces based on two

axes of strain and one axis of stress. In order to validate this methodology as an

alternative to the use of analytical material models, response surfaces were gener-

ated from von Mises material response and from linear elastic orthotropic material

behavior (Münsch-Reinhardt).

Aiming at the application of this methodology together with a finite element

non–linear analysis program for the investigation of global structural behavior, the
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derivation of the NURBS surface for a constitutive matrix has been developed.

The implementation was carried out for the structural analysis program CARAT++

(Computer Aided Research Analysis Tool) [4].

It is noteworthy to mention that the present method was developed just for

monotonic loading, therefore unloading and cycling loading cannot be considered

in the analysis. Further works will improve this limitation.

2 Nonuniform Rational B-Spline Curves and Surfaces

The concept of a NURBS surfaces used in the present study refers to the contribution

of Piegl and Tiller [14] and Piegl [13].

The definition of NURBS surface described by Piegl and Tiller [14] and Piegl

[13] is the rational generalization of the tensor–product nonrational B–spline sur-

face. Therefore the concepts of tensor–product surface and B–spline surfaces will be

introduced.

According to Rogers [15], a NURBS surface is a special case of a general rational

B–spline surface that uses a particular form of knot vector. For a NURBS surface,

the knot vector has multiplicity of duplicate knot values equal to the order of the

basis function at the ends. The knot vector may or may not have uniform internal

knot values.

2.1 Tensor Product Surfaces

A surface is defined as a vector-valued function of two parameters, u and v, and

represents a mapping of a region of the u − v plane into Euclidean three–dimensional

space. Thus, it has the form S(u, v) = [x(u, v), y(u, v), z(u, v)].
The tensor product method is basically a bidirectional curve scheme. It uses basis

functions and geometric coefficients. The basis functions are bivariate functions of u
and v, which are constructed as products of univariate basis functions. The geometric

coefficients are arranged in a bidirectional n X m net. Thus, a tensor product surface

has the form:

S(u, v) = [x(u, v), y(u, v), z(u, v)] =
n∑
i=0

m∑
j=0

fi(u)gj(v)bi,j, (1)

where bi,j = (xi,j, yi,j, zi,j), 0 ≤ u, v ≤ 1.

S(u, v) can be rewritten in matrix notation:

S(u, v) = [fi(u)]T [bi,j][gj(v)], (2)
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where [fi(u)]T is a (1) X (n+1) row vector, [gj(v)] is a (m+1) X (1) column vector,

and [bi,j] is a (n+1) X (m+1) matrix of three–dimensional points.

2.2 Definition of B–Spline Basis Functions

LetU = {u0,… , um} be a nondecreasing sequence of real numbers, i.e., ui ≤ ui+1, i =
0,… ,m − 1. The ui are called knots, and U is the knot vector. The ith B–spline basis

functions of p–degree (order p+1), denoted by Ni,p(u), are defined as

Ni,0(u) =

{
1 if ui ≤ u < ui+1
0 otherwise,

(3)

Ni,p(u) =
u − ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u), (4)

Ni,p is written instead of Ni,p(u) for brevity.

The derivative of B–spline basis functions with respect to u is given by:

N ′

i,p =
p

ui+p − ui
Ni,p−1(u) −

p
ui+p+1 − ui+1

Ni+1,p−1(u). (5)

The proof of Eq. 5 is presented in Piegl and Tiller [14].

2.3 Definition of B–Spline Curves

A pth-degree B-spline is defined by

C(u) =
n∑
i=0

Ni,p(u)CPi a ≤ u ≤ b, (6)

where the CPi are the control points and the Ni,p(u) are the pth-degree B-spline basis

functions (Eq. 3). These are defined on the nonperiodic and nonuniform knot vector

U = {a,… , a
⏟⏟⏟

p+1

, up+1,… , um−p−1, b,… , b
⏟⏟⏟

p+1

}, (7)

with n + 1 number of control points and m + 1 number of knots related by:

m = n + p + 1. (8)
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The derivative of the B-spline curve w.r.t. u is given by:

C′ (u) =
n∑
i=0

N ′

i,p(u)𝐂𝐏i. (9)

Substituting Eq. 5 in Eq. 9, C′ (u) can be rewritten as:

C′ (u) =
n−1∑
i=0

Ni+1,p−1(u)
CPi+1 − CPi

ui+p+1 − ui+1
=

n−1∑
i=0

Ni+1,p−1(u)Qi, (10)

where Qi =
CPi+1−CPi

ui+p+1−ui+1
.

Considering ̄U the knot vector obtained by dropping the first and last knots from

U:

̄U = {a,… , a
⏟⏟⏟

p

, up+1,… , um−p−1, b,… , b
⏟⏟⏟

p

}, (11)

it has m − 1 knots. Then it is easy to check that the function Ni+1,p−1(u), computed

on U, is equal to Ni,p−1(u) computed on ̄U. Thus

C′ (u) =
n−1∑
i=0

Ni,p−1(u)Qi, (12)

and C′ (u) is a (p − 1)th-degree B–spline curve.

2.4 Definition of B–Spline Surfaces

Taking a bidirectional net of control points, two knot vectors and the products of the

univariate B–spline functions a B–spline surface is defined as:

S(u, v) =
n∑
i=0

m∑
j=0

Ni,p(u)Nj,q(v)CPi,j, (13)

with

U = {0,… , 0
⏟⏟⏟

p+1

, up+1,… , ur−p−1, 1,… , 1
⏟⏟⏟

p+1

},

V = {0,… , 0
⏟⏟⏟

q+1

, vq+1,… , vs−q−1, 1,… , 1
⏟⏟⏟

q+1

}.
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The knot vector U has r + 1 knots and knot vector V has s + 1 knots. Equation 8

takes the form

r = n + p + 1 and s = m + q + 1. (14)

The derivative of a B–spline surface w.r.t. u is given by

Su(u, v) =
𝜕S(u, v)

𝜕u
=

m∑
j=0

Nj,q(v)
𝜕

∑n
i=0 Ni,p(u)CPi,j

𝜕u
, (15)

=
m∑
j=0

Nj,q(v)
𝜕Cj(u)
𝜕u

,

where Cj(u) =
∑n

i=0 Ni,p(u)CPi,j j = 0,… ,m are B-spline curves. Applying Eq. 12

into Eq. 15 gives

Su(u, v) =
n−1∑
i=0

m∑
j=0

Ni,p−1(u)Nj,q(v)CP(1,0)
i,j , (16)

where

CP(1,0)
i,j =

CPi+1,j − CPi,j

ui+p+1 − ui+1
,

U(1) = {a,… , a
⏟⏟⏟

p

, up+1,… , ur−p−1, b,… , b
⏟⏟⏟

p

},

V (0) = V .

Analogously Sv(u, v) is determined, similarly as:

Sv(u, v) =
n∑
i=0

m−1∑
j=0

Ni,p(u)Nj,q−1(v)CP(0,1)
i,j , (17)

where

CP(0,1)
i,j =

CPi,j+1 − CPi,j

vj+q+1 − vj+1
,

U(0) = U,

V (1) = {a,… , a
⏟⏟⏟

q

, vq+1,… , vs−q−1, b,… , b
⏟⏟⏟

q

},
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2.5 Definition of NURBS Surfaces

A NURBS surface is defined as a bivariate vector-valued piecewise rational function

of the form

SNURBS(u, v) =

n∑
i=0

m∑
j=0

wi,jCPi,jNi,p(u)Nj,q(v)

n∑
i=0

m∑
j=0

wi,jNi,p(u)Nj,q(v)
, 0 ≤ u, v ≤ 1, (18)

where wi,j are the weights, CPi,j are control points that form a control net, and Ni,p(u)
and Ni,q(v) are the nonrational B–spline basis functions of degree p and q in the u
and v directions, respectively, defined over the knot vectors:

UNURBS = [0,… , 0,
⏟⏟⏟

p+1

up+1,… , ur−p−1, 1,… , 1
⏟⏟⏟

p+1

], (19)

VNURBS = [0,… , 0,
⏟⏟⏟

q+1

vq+1,… , vs−q−1, 1,… , 1
⏟⏟⏟

q+1

], (20)

where r = n + p + 1 and s = m + q + 1.

Introducing the piecewise rational basis functions as:

Ri,j(u, v) =
Ni,p(u)Nj,q(v)wi,j

n∑
k=0

m∑
l=0

Nk,p(u)Nl,q(u)wk,l

. (21)

Equation 18 can be rewritten as:

SNURBS(u, v) =
n∑
i=0

m∑
j=0

Ri,j(u, v)CPi,j. (22)

A NURBS surface example is shown in Fig. 1.

2.6 Derivatives of a NURBS Surface

The derivatives of a NURBS surface are computed analogously to the derivatives of

a NURBS curve. Considering SNURBS(u, v) as follows:
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Fig. 1 NURBS surface: (a) Control point net (b) biquadratic NURBS surface (source: Piegl and

Tiller [14])

SNURBS(u, v) = w(u, v)SNURBS(u, v)
w(u, v)

= A(u, v)
w(u, v)

, (23)

where A(u, v) is the numerator and w(u, v) is the denominator of Eq. 18, the deriva-

tives of a NURBS surface are calculated:

SNURBS
𝛼

(u, v) =
A
𝛼

(u, v) − w
𝛼

(u, v)SNURBS(u, v)
w(u, v)

, (24)

and 𝛼 denotes either u or v. In the above expression A
𝛼

(u, v) is defined as:

A
𝛼

(u, v) = w(u, v) 𝜕
𝜕𝛼

SNURBS(u, v), (25)

= w(u, v)

(
𝜕

𝜕𝛼

m∑
j=0

Nj,q(v)
n∑
i=0

Ni,p(u)CPi,j

)
.

The derivatives in direction u of NURBS surface are computed as follow:

𝜕

𝜕u

n∑
i=0

Ni,p(u)CPi,j =
n−1∑
i=0

Ni,p−1(u)CP(1,0)
i,j ,

SNURBSu (u, v) =
n−1∑
i=0

m∑
j=0

Ni,p−1(u)Nj,q(v)CP(1,0)
i,j , (26)
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where

CP(1,0)
i,j = p

CPi+1,j − CPi,j

ui+p+1 − ui+1
,

UNURBS(1) = [0,… , 0,
⏟⏟⏟

p

up+1,… , ur−p−1, 1,… , 1
⏟⏟⏟

p

],

VNURBS(0) = VNURBS
.

Analogously the derivatives in direction v of NURBS surface are also computed:

SNURBSv (u, v) =
n∑
i=0

m−1∑
j=0

Ni,p(u)Nj,q−1(v)CP(0,1)
i,j , (27)

where

CP(0,1)
i,j = q

CPi,j+1 − CPi,j

vj+q+1 − vj+1
,

UNURBS(0) = UNURBS
,

VNURBS(1) = [0,… , 0,
⏟⏟⏟

q

vq+1,… , vs−q−1, 1,… , 1
⏟⏟⏟

q

].

3 Data Fitting

Data fitting based on least-squares approximation is used to generate NURBS sur-

faces for the experimental data. This process is briefly described below. For more

details the references are the contributions of Piegl and Tiller [13] and Piegl [13].

Equation 22 can be written in matrix notation as:

SNURBSf (u, v) = R CP, (28)

where SNURBSf (u, v), CP and R are (n + 1) × (n + 1) matrices. If there are more data

points than control points, Eq. 28 is overdetermined and can be solved approximately

as follows:

SNURBSf (u, v) = R[RT
∗R∗]−1RT

∗SNURBS∗ . (29)

where R∗ and SNURBS∗ are computed with numeric values corresponding to the exper-

imental surface points.
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Assigning initial parameters to the data points, as the p-th degree and the control

points, a least-squares fit is generated using Eq. 29.

An alternative approach for the generation of NURBS surfaces is the use of a

CAD software. In this case, a surface is generated based on a point cloud.

4 Material Model Based on NURBS for Principal
Directions (NURBS–Material)

The formulation of the NURBS–Material model, which is based on principal direc-

tions of stress and strain, is presented as follows. Here the special case of membrane

state of stress is considered.

The notation used herein follows the contribution of Gruttmann and Taylor [6].

The Green–Lagrange strain tensor is defined as:

E
𝛼𝛽

= 1
2
(x

,𝛼

⋅ x
,𝛽

− X
,𝛼

⋅ X
,𝛽

)

where x = xiei and X = Xiei are the current and initial configurations with compo-

nents related to Cartesian basis ei.
In matrix notation the Green–Lagrange strain tensor is given by:

E = 1
2
(FT ⋅ F − I) = 1

2
(C − I) ,

where the deformation gradient F transforms the reference configuration into the

actual configuration.

F = 𝜕x
𝜕X , (30)

x is the position of a point in current configuration and X is the position of a point

in the reference configuration.

C is the right Cauchy–Green tensor, which can be defined by:

C = FT ⋅ F. (31)

The right Cauchy–Green tensor in principal direction ̂𝐂 is given by:

̂𝐂 = T ⋅ C, (32)
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̂𝐂 and 𝐂 are written in vector form as:

̂𝐂 =
[
̂C11 ̂C22 2 ̂C12

]
, (33)

𝐂 =
[
C11 C22 2C12

]
, (34)

and 𝐓 is the rotation matrix:

𝐓 =
⎡⎢⎢⎣

cos2𝜙 sin2𝜙 cos𝜙sin𝜙
sin2𝜙 cos2𝜙 −cos𝜙sin𝜙

−2cos𝜙sin𝜙 2cos𝜙sin𝜙 cos2𝜙 − sin2𝜙

⎤⎥⎥⎦
. (35)

Equation 31 can also be written in spectral representation:

𝐂 =
3∑
i=0

𝜆i𝐌i i = 1, 2, 3, (36)

where 𝜆i are the principal stretches and 𝐌i are the eigenprojections.

𝐌1 =
[

cos2𝜙 cos𝜙sin𝜙
cos𝜙sin𝜙 sin2𝜙

]
, 𝐌2 =

[
sin2𝜙 −cos𝜙sin𝜙

−cos𝜙sin𝜙 cos2𝜙

]
. (37)

The value of 𝜙 is calculated with the spectral decomposition presented in Eqs. 31

and 37. 𝜙 and it is the rotation angle, which relates the general stress axes to the

principal stress axes.

The second Piola–Kirchhoff stresses and the Green–Lagrange strains in principal

directions are given, respectively by:

̂𝐒 =
[
S1 S2 0

]
, (38)

̂𝐄 =
[
E1 E2 0

]
. (39)

The second Piola–Kirchhoff stresses tensor has the following relation with the

rotation matrix:

𝐒 = TT ⋅ ̂𝐒, 𝐒 = [S11 S22 S12], (40)
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The constitutive material tensor is obtained with the rotation matrix calculated as

follows:

d𝐒
dE =

⎡⎢⎢⎢⎣

dS11
dE11

dS11
dE22

dS11
2dE12

dS22
dE11

dS22
dE22

dS22
2dE12

dS12
dE11

dS12
dE22

dS12
2dE12

⎤⎥⎥⎥⎦
= TT ⋅

d ̂S
d ̂E

⋅ T, (41)

where
d ̂S
d ̂E is the constitutive material tensor in principal directions:

d ̂S
d ̂E

=
⎡⎢⎢⎢⎣

dS1
dE1

dS1
dE2

0
dS2
dE1

dS2
dE2

0

0 0 d ̂S12
d ̂C12

⎤⎥⎥⎥⎦
. (42)

The constitutive material tensor in principal directions is computed with the

NURBS surface derivatives introduced in Sect. 2.6:

[ dS1
dE1
dS1
dE2

]
=

([ dE1
du

dE2
du

dE1
dv

dE2
dv

])−1

⋅

[ dS1
du
dS1
dv

]
, (43)

[ dS2
dE1
dS2
dE2

]
=

([ dE1
du

dE2
du

dE1
dv

dE2
dv

])−1

⋅

[ dS2
du
dS2
dv

]
. (44)

The derivatives of the NURBS surface for direction 1 w.r.t. u and v are given by

SNURBSu1
(u, v) =

[
dE1
du

dE2
du

dS1
du

]
, (45)

SNURBSv1
(u, v) =

[
dE1
dv

dE2
dv

dS1
dv

]
, (46)

and analogously for the derivatives of the NURBS surface for direction 2 w.r.t. u
and v:

SNURBSu2
(u, v) =

[
dE1
du

dE2
du

dS2
du

]
, (47)

SNURBSv2
(u, v) =

[
dE1
dv

dE2
dv

dS2
dv

]
. (48)
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The derivative
d ̂S12
d ̂C12

is calculated as follows:

d ̂S12
d ̂C12

=
d ̂S12
d𝜙

⋅
d𝜙
d ̂C12

=
−(S2 − S1)cos2𝜙

C11 − C22
, (49)

where

d ̂S12
d𝜙

= sin𝜙cos𝜙(S11 − S22) = S2 − S1,

d𝜙
d ̂C12

= −cos2𝜙
C11 − C22

,

̂C12 = ̂C21 = −1
2
(
C11 − C22

)
sin(2𝜙) + C12cos(2𝜙) = 0.

and C11 and, C22 are the components of the right Cauchy–Green tensor C.

The algorithm of the material model based on NURBS for principal directions is

presented in the following box:

1. Update the strain tensor.

En+1 =
1
2
(FT

n+1Fn+1 − I)

2. Calculate the rotation matrix T (Eq. 35)

3. Calculate the strains in principal directions

̂En+1 = TTEn+1

4. Calculate the local parameter u and v from the strains (Eq. 22).

5. Obtain the stress values S1(u, v) and S2(u, v).
6. Calculate the derivatives

dS1
dE1

,
dS1
dE2

,
dS2
dE1

,
dS2
dE2

, and
d ̂S1
d ̂E1

(Eqs. 43 and 44).

7. The constitutive material tensor is obtained using:

dS
dE = TT ⋅

⎡⎢⎢⎢⎣

dS1
dE1

dS1
dE2

0
dS2
dE1

dS2
dE2

0

0 0 d ̂S12
2d ̂E12

⎤⎥⎥⎥⎦
⋅ T

8. Calculate the stress tensor.

S = TT ⋅ ̂S
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Fig. 2 Schematic representation of the proposed material model

Figure 2 shows the schematic representation of the proposed material model based

on NURBS surfaces.

5 Application of NURBS–Material in Membrane Finite
Element Modeling

5.1 Comparison with Elastoplastic Material Model

The elastoplastic von Mises material with isotropic hardening is used here to investi-

gate the applicability and accuracy of the NURBS–Material. The example consists in

the monotonic stretching of a perforated rectangular membrane with large strains and

displacements. This example is taken from Simo and Hughes [18], Simo and Taylor

[19], and Souza Neto et al. [20] and is modeled in CARAT++ for plane stress with

membrane elements.

The membrane material properties are: E = 70 GPa (membrane modulus), 𝜇 =
0.2 (Poisson ratio),K = 0.2GPa (hardening modulus), 𝜎y = 0.243GPa (yield stress),

and membrane thickness of 1 mm. The dimension and boundary conditions are
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Fig. 3 Mesh, geometry and

boundary conditions of a

perforated rectangular

membrane (dimensions in

millimeters)

shown in Fig. 3. The static analysis was carried out with cylindrical arc-length

control of the free edge. The mesh is composed of 531 nodes and 480 membrane

elements with linear discretization and 2× 2 Gauss integration as shown in Fig. 3.

Due to symmetry a quarter of the membrane is modeled.

It is worth pointing out that a full elastoplastic stress history can not be obtained

with the proposed NURBS–material since unloading/reloading cycles are not repre-

sented by the NURBS surfaces herein. The proposed material law is well suited to

identify complex materials.

The elastoplastic material properties are used to produce the data points for the

generation of the NURBS surfaces in principal directions. These NURBS surfaces

are shown in Fig. 4. The control point net has degree 2 (p = 2 and q = 2) and the

number of points are 60(u)× 60(v) and 100(u)× 100(v).

The elastic region can be identified in the NURBS surfaces in Fig. 4 as the flat

ellipse plane. Outside this region nonlinear behavior is present. Therefore the corre-

sponding axis S1(u, v) and S2(u, v) values fall in the elastoplastic range of the plastic

model.

5.1.1 Results

The nonlinear analysis was performed in 40 steps. The results obtained with the

NURBS–material model are compared with those of the classical von Mises model.

Table 1 shows the number of iterations for the von Mises material and NURBS–

material with two different control point nets, 60× 60 and 100× 100. The results for

steps 20, 21, 39 and 40 are shown. The plastic behaviour is achieved in step 21. These

steps can be visualized in Fig. 5. Step 21 is the first step that presents elastoplastic

behavior.
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(a)

(b)

Elastic region

Elastic region

Fig. 4 NURBS surfaces for stresses and strains in principal directions for elastoplastic material:

(a) stresses in direction 1, and (b) stresses in direction 2

For the control point net with 100× 100 points (NURBS 100) convergence was

achieved for a maximum of 4 iterations. On the other hand, the control point net with

60× 60 points (NURBS 60) did not show convergence for step 40 and for step 39

the convergence required 16 iterations.

The convergence depends on the NURBS surface shape, because of the NURBS

surface derivatives that are necessary to calculate the material matrix. The lineariza-

tion of the material matrix was not implemented in the present work. Therefore a

quadratic convergence is not guaranteed. Future works will explore and improve this

convergence.

The errors for the displacement in y direction for steps 20, 21, 39 and 40 are shown

in Table 2. The errors obtained for NURBS 100 and NURBS 60 are quite small for

engineering purpose.
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Table 1 Displacement residuum and the iteration number for the classical von Mises material and

the NURBS–material with 60× 60 and 100× 100 control points

Iteration Classical NURBS 60 NURBS 100

Step 20 1 3.503109e-04 3.463489e-04 3.327881e-04

2 4.989924e-10 7.248311e-06 1.655211e-06

Step 21 1 3.197563e-04 3.464462e-04 3.252045e-04

2 9.020717e-06 1.350109e-05 4.341103e-06

3 1.603098e-06

Step 39 1 4.223207e-04 3.978951e-04 4.352328e-04

2 2.957438e-07 1.307737e-04 1.274219e-05

3 1.097290e-04 5.325408e-06

4 8.877458e-05

5 7.353401e-05

6 6.044716e-05

7 4.981207e-05

8 4.102275e-05

9 3.378555e-05

10 2.782875e-05

11 2.291854e-05

12 1.887753e-05

13 1.554703e-05

14 1.280550e-05

15 1.054647e-05

16 8.686593e-06

Step 40 1 4.719461e-04 no convergence 4.459105e-04

2 4.185541e-08 2.989403e-05

3 1.384563e-05

4 5.056272e-06

Fig. 5 Stress–strain result

for the stretching of a

perforated rectangular

membrane
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Table 2 Results of displacement in y direction for classical von Mises material and NURBS

material

Step Classical NURBS 100 Error (%) NURBS 60 Error

(%)

Displac. y (mm) 20 0.0223024 0.0223095 0.03179 0.0223026 0.00087

21 0.0233277 0.0233360 0.03569 0.0233331 0.02291

39 0.0418858 0.0419161 0.07243 0.0419490 0.15087

40 0.0429259 0.0429561 0.07050 no convergence

5.2 Comparison with an Orthotropic Material Model

The methodology using a NURBS surface as material model was also applied to the

Münsch–Reinhardt orthotropic linear elastic material model [12]. The example con-

siders geometric nonlinearity. The stress–strain relation for this model is given by:

S = DE, (50)

where D is:

D = 1
1 − 𝜇 ⋅ 𝜇

⋅
⎡⎢⎢⎣

Ek 𝜇 ⋅ Ek 0
𝜇 ⋅ Es Es 0
0 0 (1 − 𝜇 ⋅ 𝜇) ⋅ G

⎤⎥⎥⎦
, (51)

and the parameters Ek, Es, 𝜇 and G are the Young’s modulus in warp and weft direc-

tion, Poisson ratio and shear modulus, respectively.

A rectangular membrane was stretched in both in-plane directions. The mesh,

geometry and boundary conditions are shown in Fig. 6. The mesh is composed of

Fig. 6 Mesh, geometry and

boundary conditions of a

rectangular membrane
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Fig. 7 NURBS surfaces for

stresses and strains in

principal directions for

Münsch–Reinhardt material:

(a) stresses in direction 1,

and (b) stresses in

direction 2

(a)

(b)

441 nodes and 400 membrane elements with linear discretization and 2× 2 Gauss

integration.

The material properties are: Ek = 100 kN/m
2
, Es = 50 kN/m

2
, 𝜇 = 0.3 and G =

10 kN/m
2
. These properties were taken from an example of the contribution of Lin-

hard [11].

The response NURBS surfaces are generated based on a points cloud using a CAD

software. The degree of the NURBS surfaces is 1 (p = 1 and q = 1). A control point

net with 2(u)× 2(v) points was considered in the analyses. The representations of

these surfaces are shown in Fig. 7. As the material model is linear elastic, the surfaces
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Table 3 Displacement residuum for steps 10 and 20 for Münsch-Reinhardt material and NURBS-

material

Step Iteration Münsch-Reinhardt Control points

2× 2

10 1 7.1941e-05 1.4124e-04

2 2.5250e-07 2.4135e-08

20 1 7.1801e-05 1.4076e-04

2 2.4622e-07 2.3916e-08

are planar. Due to the orthotropic behavior the surfaces related to S1 (Fig. 7a) and S2
(Fig. 7b) have different inclinations.

5.2.1 Results

The analyses were performed in 20 steps using force control up to 100 N. The results

obtained with the model based in NURBS surfaces were the same as the classical

model.

Table 3 shows the displacement residuum for steps 10 and 20 for conventional

and NURBS–material. The analyses obtained the same number of iterations. The

convergence rate shows better performance using the NURBS–material.

6 Conclusions

The formulation of a new approach to obtain the constitutive material tensor to be

used with finite element analyses was presented. This method is based on NURBS

surfaces that act as response surfaces returning stresses from strains. These NURBS

surfaces are generated in principal directions and, therefore, the experimental results

from biaxial tests can be used. The advantage is that this methodology can directly

be applied to orthotropic and nonlinear materials subjected to monotonic loading

without further adaptations. This can be a useful tool for the development of new

materials, cutting pattern analysis and for complex membrane material behavior.

However, the experimental data should provide a point distribution to generate suit-

able NURBS surfaces.

Two validation examples were presented comparing results of analytical mod-

els with those of the NURBS–material: the stretching of a perforated rectangular

membrane with classical von Mises material and a biaxial stretching of a square

membrane with orthotropic material (Münsch–Reinhardt). The results obtained with
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the NURBS–material were in excellent agreement with the classical models. We

conclude that this material model is a good alternative for the development of mod-

els for new materials.
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Characterization of Constitutive
Parameters for Hyperelastic Models
Considering the Baker-Ericksen
Inequalities

Felipe Tempel Stumpf and Rogério José Marczak

Abstract Hyperelastic models are used to simulate the mechanical behavior of
rubber-like materials ranging from elastomers, such as natural rubber and silicon, to
biologic materials, such as muscles and skin tissue. Once the desired hyperelastic
model has its parameters fitted to the available experimental results, these hyper-
elastic parameters have to fulfill the requirements imposed by the Baker-Ericksen
inequalities in order to guarantee a plausible physical behavior to the material,
although seldom used. When applied to an incompressible isotropic hyperelastic
model, these inequalities state that the first derivative of the strain energy density
function with respect to the first strain invariant must be positive and the first
derivative of the strain energy density function with respect to the second strain
invariant must be non-negative. The aim of this work is to study which improve-
ments the requirement of the Baker-Ericksen inequalities can bring when fitting
hyperelastic models to experimental data. This is accomplished through a con-
strained optimization procedure. Results obtained for natural rubber and silicon
samples considering classical and newly developed hyperelastic models are shown
and discussed.

Keywords Hyperelasticity ⋅ Optimization ⋅ Constitutive parameters

1 Introduction

As the applications with rubber-like materials in the industry increased and their
mechanical behavior started to be investigated more deeply, several authors have
been pointing out about the necessity of imposing mathematical restrictions to the

F.T. Stumpf
School of Engineering, FURG, Av. Itália, km.8, Rio Grande, Brazil

R.J. Marczak (✉)
Mechanical Engineering Department, UFRGS, Rua Sarmento Leite 435, Porto Alegre, Brazil
e-mail: rato@mecanica.ufrgs.br

© Springer International Publishing Switzerland 2016
P.A. Muñoz-Rojas (ed.), Computational Modeling, Optimization
and Manufacturing Simulation of Advanced Engineering Materials,
Advanced Structured Materials 49, DOI 10.1007/978-3-319-04265-7_14

375



theoretical strain energy density functions used to model these materials, in order to
guarantee their positivity, monotonicity, unicity of solutions, numerical stability
and ensure that the material will behave in a physically plausible way [3, 14–16]
Bilgili [4].

Truesdell and Noll [16] have cited seven different types of conditions to be
satisfied by any material model so its mechanical behavior is compatible with the
known laws of Physics. Among these conditions are the Baker-Ericksen inequalities
[1] which state that, in a compressible isotropic elastic solid body under defor-
mation, the largest principal stress must be aligned with the largest principal strain.

According to Balzani et al. [3] the constitutive equations written as functions of
the strain energy density must satisfy general requirements of convexity, in order to
ensure numerical stability and a physically plausible behavior of the material. Ball
[2] introduced the concept of polyconvexity, which was later shown by Ogden [12]
and Hartmann and Neff [6] to automatically satisfy the Baker-Ericksen inequalities,
when applied to a strain energy density function.

Truesdell and Noll [16] concluded that when applied to incompressible isotropic
materials, the Baker-Ericksen inequalities are satisfied by guaranteeing the posi-
tivity of the first derivative of the strain energy density function (W) with respect to
the first strain invariant (I) and the non-negativity of the first derivative of with
respect to the second train invariant (II). These conditions were analytically
determined for the models analyzed in this work.

It is important to note that, in some cases, better stress-strain fittings are achieved
if the Baker-Ericksen inequalities are neglected; however there is no mathematical
guarantee that outside the strain range used to calibrate the model the material will
not behave badly. When complex simulations take place, there can occur particular
regions in which the material strains are higher than those for which its parameters
were calibrated, and in these cases it is very important to guarantee that at least its
mechanical behavior does not violate any law of physics.

The aim of this paper is to apply the Baker-Ericksen inequalities to the equations
of five distinct hyperelastic models, write a procedure to retrieve their constitutive
parameters satisfying the inequalities, and then fit these models against three dif-
ferent sets of experimental data (simple tension, biaxial tension and pure shear)
from two different elastomers samples. Treloar [8] and unfilled silicone rubber [10]
experimental data were used in all tests. An optimizing technique that uses data
from one or more sets of experimental tests simultaneously (multi-criteria opti-
mization) and obtains the optimum constitutive parameters that minimize the error
between experimental and theoretical results is used. These tests also allowed to
verify if a single tension test along with the Baker-Ericksen inequalities can deliver
results comparable in quality with the ones obtained by multi-test fitting.
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2 Constitutive Parameters Optimization Technique

In order to guarantee good results when analyzing rubber-like materials, the analyst
must be sure that the available experimental data to be fitted to a model represents
the major type of deformation of the analyzed component. For a few simple cases,
that should not represent a problem, but when a component is subjected to more
complex deformation states, the best solution is to calibrate the hyperelastic model
to data from more than one experimental test.

It was shown by Hoss [7] and Stumpf [14] that predicting the behavior of an
elastomer in a deformation mode different than the one used in the fitting can lead to
inaccurate results. Depending on the hyperelastic model, sometimes the predictions
do not even show a physically plausible behavior [7], and many times lead to
numerical problems when the constitutive constants so obtained are used in a finite
element software.

In order to overcome this problem, the best solution is to adopt a methodology
for fitting the hyperelastic model to more than one set of experimental data
simultaneously. It is easy to use any combination of two or more different
stress-strain tests (usually simple tension, biaxial tension, pure shear, simple shear
and compression tests) to obtain the constitutive parameters needed for most
hyperelastic models. First it is necessary to know the analytical relationship
between stress and strain for simple cases of deformation (homogeneous defor-
mation). These relationships depend uniquely on the equation of the hyperelastic
model and the deformation itself and Figs. 1, 2 and 3 along with Eqs. (1), (2) and
(3) show the classic cases used in this work (λ is the stretch) [9]:

σ1 = tT =2 λ−
1
λ2

� �
∂W
∂I

+
1
λ

∂W
∂II

� �
ð1Þ

σ1 = σ2 = tB =2 λ−
1
λ5

� �
∂W
∂I

+ λ2
∂W
∂II

� �
ð2Þ

σ1 = tP =2 λ−
1
λ3

� �
∂W
∂I

+
∂W
∂II

� �
ð3Þ

The fitting procedure is well known. By subtracting the theoretical stresses from
the experimental values (Fig. 4), we obtain the error function to be minimized:

E= eT + eP + eB = ∑
nT

i=1
tTi − tEið Þ2T + ∑

nP

j=1
tTj − tEj

� �2
P + ∑

nB

k=1
tTk − tEkð Þ2B ð4Þ

where nT , nP and nB are the number of points in available single tension, pure shear
and biaxial tension experimental data respectively, tT and tE are the theoretical and
experimental values for the engineering stresses respectively, while the sub-indexes
T , B and P refer to axial tension, biaxial tension and pure shear tests, respectively.
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Fig. 1 Simple tension case of
deformation—Eq. (1)

Fig. 2 Biaxial tension case of
deformation—Eq. (2)
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The problem lies now in obtaining the constitutive coefficients that minimize the
error function E:

min
C

E Cð Þ ð5Þ

where EðCÞ is the error function in terms of the set of constitutive coefficients C.
This methodology consists in an optimization technique, since it obtains the

optimum set of coefficients for any hyperelastic model that will lead to the mini-
mum error between experimental and theoretical results for two or more distinct
sets of data simultaneously. It is also possible to assign weights to each term on the
right side of Eq. (4) in order to take into account the prevailing deformation stress
on the real component or the reliability of the experimental data used.

Compared to the classical methodology in which for each different deformation
case a particular set of constitutive parameters is obtained, the multi-test method-
ology presents great advantage, since one single set of constants is used for any
deformation case, or combination of them.

Fig. 3 Pure shear case of
deformation—Eq. (3)
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If no constraints are imposed to the set of constants C, this can be solved as an
unconstrained optimization problem, but in this work, due to the conditions
imposed by the Baker-Ericksen inequalities, the problem has to be evaluated as a
constrained optimization case.

3 Imposing the Inequalities to the Models

In order to apply the Baker-Ericksen inequalities to a given hyperelastic model, it is
first necessary to obtain its derivatives with respect to the first and second strain
invariants. After that, the conditions to be satisfied by the parameters of each model
are analytically developed and inserted into the optimization procedure.

The following models and their respective restrictions were analyzed in this
work:

• Hoss-Marczak/HMI-LS—The strain energy function for this model is given by
[7]:

W =
α

β
1− e− β I − 3ð Þ

� �
+

μ

2b
1+

bðI − 3Þ
n

� �n

− 1
� 	

ð6Þ

∂W
∂I

= αe− β I − 3ð Þ +
μ

2
1+

b I − 3ð Þ
n

� �n− 1

> 0 ð7Þ

∂W
∂II

=0 ð8Þ

where α, β, μ, b and n are constitutive parameters and I is the first strain invariant.
As seen in the inequality of the Eq. (7), it is not possible just by inspection to

determine analytically the restrictions to be applied to the parameters of the
HMI-LS model. This inequality has to be checked at each point along the
stress-strain data.

• Hoss-Marczak/HMI-HS—The strain energy function for this model is a varia-
tion of the one in Eq. (6) [7]:

W =
α

β
1− e− β I − 3ð Þ

� �
+

μ

2b
1+

bðI − 3Þ
n

� �n

− 1
� 	

+C2 ln
II
3

� �
ð9Þ

∂W
∂I

= αe− β I − 3ð Þ +
μ

2
1+

b I − 3ð Þ
n

� �n− 1

> 0 ð10Þ
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∂W
∂II

=
C2

II
≥ 0 ð11Þ

where C2 is an additional parameter (not present in Eq. (6)) and II is the second
strain invariant.

The first derivative in Eq. (10) is the same of the HM-LS model in Eq. (7), so the
same approach was used to check the model parameters. Equation (11) however,
shows clearly a restriction imposed to the parameter C2:

C2 ≥ 0 ð12Þ

• 3-terms Yeoh—The well known strain energy function for this model is Yeoh
[18]:

W =C1ðI − 3Þ+C2ðI − 3Þ2 +C3ðI − 3Þ3 ð13Þ

where C1, C2 and C3 are constitutive parameters. Its derivatives with respect to the
first and second strain invariants are, respectively:

∂W
∂I

=C1 + 2C2ðI − 3Þ+3C3ðI − 3Þ2 > 0 ð14Þ

∂W
∂II

=0 ð15Þ

Although Eqs. (14 and 15) are not the only possible conditions to satisfy the
Baker-Ericksen inequalities in this case, they were chosen to guarantee the posi-
tivity of the parameters C1, C2 and C3 in the Yeoh model.

Therefore, in order to ensure the satisfaction of the Baker-Ericksen inequalities
in the Yeoh model, its parameters have to fulfill the following conditions:

C1 > 0, C2 > 0, C3 > 0 ð16Þ

• Fung—A simple, two parameter strain energy function given by [5]:

W =
μ

2b
ebðI − 3Þ − 1

� �
ð17Þ
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where μ and b are fitting constitutive parameters. The first derivative with respect to
the strain invariant is:

∂W
∂I

=
μ

2
ebðI − 3Þ >0 ð18Þ

One should note that the term I − 3ð Þ is always positive, provided there is a
deformation, and so is the exponential term ebðI − 3Þ. Thus the only condition nec-
essary to satisfy the Baker-Ericksen inequalities in the Fung model is:

μ>0 ð19Þ

• Pucci-Saccomandi—This model provides reasonably good predictions with the
following strain energy function [13]:

W = −
μ JL
2

ln 1−
I − 3
JL

� �
+C2 ln

II
3

� �
ð20Þ

where C2, μ and JL are the constitutive parameters.
The first derivative of the Pucci-Saccomandi model with respect to the first strain

invariant is found to be:

∂W
∂I

=
μ

2 1− I − 3
JL

� � >0 ð21Þ

An initial condition inherent to this model is that the parameter JL should always be
higher than the term I − 3ð Þ. Therefore the term between parentheses in the
denominator is always positive. This leads to the condition:

μ>0 ð22Þ

The derivative of W with respect to the second strain invariant leads to the
second condition for the Pucci-Saccomandi model:

C2 ≥ 0 ð23Þ

For each model analyzed in this work, two codes were written: one concerning
the analytical equation for the error to be minimized as presented in the opti-
mization methodology and another containing the restrictions imposed by the
Baker-Ericksen inequalities as detailed in this section.
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4 Experimental Data

The experimental data used in this work was obtained from simple tension (T),
biaxial tension (B) and pure shear (P) tests in samples of natural rubber—NR [8]
and unfilled silicone—USR [10]. Figures 5 and 6 show the experimental
stress-strain curves for these materials under the three cases of loading.
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Fig. 5 Treloar experimental data for natural rubber [8]
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Fig. 6 Experimental data for the USR samples [10]
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5 Results

Figures 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 show the experimental results
(symbols) and theoretical results for both material samples used in this work along
with Hoss-Marczak, Yeoh, Fung and Pucci-Saccomandi models. The sets of
coefficients listed in the labels of the figures satisfy their respective inequalities, as
determined by Eqs. (7), (12), (16), (19), (22) and (23).

Results obtained when the methodology was applied to the HMI-LS model for
the NR and USR data are shown in Figs. 7 and 8, along with the coefficients
obtained in each case. Good agreement between experimental and theoretical values
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is evident, but similar results for the HMI-HS model are better, as shown in Figs. 9
and 10.

Results for the 3-terms Yeoh model are presented in Figs. 11 and 12. Again,
good agreement is observed between experimental data and theoretical predictions.

When applied to the Fung model, the methodology also led to similarly good
quantitative and qualitative results, in spite of the simplicity of Fung’s model. These
results are plotted in Figs. 13 and 14.

Figures 15 and 16 show analog results when analyzing the Pucci-Saccomandi
model. Once again, good agreement between experimental data and theoretical
predictions is verified.
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Besides ensuring a physically plausible behavior, the inclusion of additional
constraints given by the Baker-Erickssen inequalities narrows the feasible domain
of viable constitutive parameters during the fitting process. But another important
advantage the inequalities provide, and possibly not yet reported in the open lit-
erature, is the potential generation of constitutive constants better than the ones
obtained in single or multi-test fittings.

For the sake of comparison of the classical prediction methodology usually used
in industry—when the chosen model is fitted against a single loading case—and the
ones obtained when the inequalities are considered, a number of numerical tests
were performed. In the former case good predictions are obviously expected for the
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loading case used to calibrate the model, but usually there is no guarantee that the
predictions for other load cases will be acceptable (and quite commonly are not).
That is, even if a model fits accurately with a single set of experimental data,
caution should be taken when using these parameters to simulate an elastomer
component subjected to different or combined loadings.

The comparisons presented below show that the inclusion of the inequalities can
lead to very good predictions to all load cases. Although not yet investigated, their
consideration can lead to good predictions even if only one single set of experi-
mental data is used to calibrate the model.

First, using the classical least square technique and the well known SQP opti-
mization method, the fitting algorithm was extended to take all restrictions into
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account and solved using the Matlab optimization routine called fmincon [17]. Then
the HMI-LS model was calibrated against the data for axial tension using the USR
sample. The parameters obtained were used to predict the model behavior under the
other two cases of deformation: biaxial tension and pure shear. In a second
example, the model was fitted against the data for biaxial tension of the USR
sample and the constants used to predict its behavior under single tension and pure
shear. The last case shows the results when the model was fitted against pure shear
data and the predicted behaviors for single tension and biaxial tension were ana-
lyzed. Figures 17, 18 and 19 summarize the comparisons.
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In Fig. 17, the predictive behaviors for axial tension deformation of USR sample
using the HMI-LS model fitted against biaxial tension only, pure shear only, and
using Eqs. (4 and 5) but considering the inequalities (present methodology).

In Fig. 18, the experiment was repeated to check the predicted biaxial behavior
using the HMI-LS model fitted against biaxial tension only, pure shear only, and the
present methodology.
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Fig. 17 Prediction of the behavior of USR samples under axial deformation when the constants of
the HMI-LS model are fitted against biaxial tension, pure shear and the proposed method (Eqs. (4
and 5) + inequalities)
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Finally, Fig. 19 shows a comparison of the predictive behaviors for USR sample
under pure shear deformation when it is fitted against single tension only, biaxial
tension only and when applied the proposed method, again for the HMI-LS model.

For the three cases, the optimization methodology proposed delivered better
predictions than the ones obtained by any case of calibration against a single set of
data. It should be pointed out that for each plot in Figs. 17, 18 and 19, a different set
of constants was necessary when applying the classical least square technique [11],
whereas for the proposed methodology, a single set of constants is used to plot all
three graphs.

6 Conclusions

This work investigated a methodology to obtain constitutive parameters for
hyperelastic materials by means of a constrained optimization technique. The
constraints imposed to the parameters were derived analytically after applying the
Baker-Ericksen inequalities to each hyperelastic model. In three out of five models,
analytical constraints were obtained, but for the HMI models, it was necessary to
check them along the strain range.

The optimization technique was based in the work of Stumpf [14] which uses
experimental data originated from two or more distinct cases of deformation
simultaneously. Therefore an optimum set of constitutive coefficients is obtained in
such a way that it minimizes error between experimental and theoretical results for
all deformation modes considered.
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Fig. 19 Prediction of the behavior of USR samples under shear deformation when the constants
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Experimental data from to three different deformation cases (simple tension,
biaxial tension and pure shear) and two different elastomers samples (Treloar set of
data and unfilled silicone rubber) were used to calibrate five different hyperelastic
models (HMLSI, HMHSI, 3-terms Yeoh, Fung and Pucci-Saccomandi) and the
results were presented in Sect. 5. In all cases, the sets of coefficients satisfied the
restrictions imposed by the Baker-Ericksen inequalities.

As one can conclude from Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16, theoretical
results fitted the experimental data of the three cases of deformation accurately in all
cases, which is very unlikely to observe when a model is calibrated for a single
deformation case and its fitted parameters are used to predict the elastomer´s
behavior for a distinct case, as demonstrated in the final part of Sect. 5.

Moreover, these coefficients also satisfy the Baker-Ericksen inequalities, which
guarantees that, for all ranges of strain—and not only for that the model was fitted
to—these materials will behave in a physically plausible way.

The methodology is also characterized by its flexibility, since through modifi-
cation of Eq. (4) by including or eliminating the desired terms, the user can suit the
method to the available experimental data, making it capable to be used to any
combination of deformation cases and any hyperelastic model.
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