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Guest Editorial 

The existence of crack-like flaws cannot be precluded in any engineering structure. At the same 
time, the increasing demand for energy and material conservation dictates that structures are 
designed with smaller safety factors. Consequently, accurate quantitative estimates of the flaw 
tolerance of structures are of direct concern for the prevention of fracture in load-bearing 
components of all kinds, ranging from space satellites and aircrafts to bone prosthesis and home 
appliances. 

In order to sustain a reasonable cost for design and maintenance, it is generally accepted that 
computational analysis and simulation must partially replace full scale and laboratory testing. In 
general, numerical methods such as the Boundary Element Method (BEM) and the Finite Element 
Method (FEM) and more recently Meshless methods are used in the fracture analysis of structures, 
because of the complex shape and continuously changing path of the growing cracks. 

This special issue of Key Engineering Materials presents nine papers that cover different aspects of 
the current areas of research in Fracture Mechanics using innovative and new computational 
approaches based on the BEM and meshless methods. A number of topics are addressed, such us 
dynamic and viscolastic fracture problems, crack surface contact, fatigue and cohesive crack 
propagation, and the analysis of cracks in composite and anisotropic bodies. There are also 
presented innovative formulations for fracture problems, such us Symmetric Galerkin formulations 
and a Local Boundary Integral Equation for the BEM and a variational element-free technique.. 

The editors would like to thank the contributors of papers, the reviewers and the Key Engineering 
Materials journal for helping put together this special issue.  
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Abstract. In this paper, the Symmetric Galerkin Boundary Element Method for Linear Elastic Frac-
ture Mechanics is extended to non-linear cohesive cracks propagating through homogeneous linear
elastic isotropic media. The cohesive model adopted is based on the concept of free energy den-
sity per unit undeformed area. The corresponding constitutive cohesive equations present a softening
branch which induces a potential instability. Thus, a suitable solution algorithm capable of follow-
ing the growth of the cohesive zone is needed, and in the present work the numerical simulation is
controlled by an arc-length method combined with a Newton-Raphson algorithm for the iterative so-
lution of nonlinear equations. The Boundary Element Method is very attractive for modeling cohesive
crack problems as all nonlinearities are located on the boundaries of linear elastic domains. Moreover
a Galerkin approximation scheme, applied to a suitable symmetric boundary integral equation for-
mulation, ensures an easy and efficient treatment of cracks in homogeneous media and an excellent
convergence behavior of the numerical solution. The cohesive zone model is applied to simulate a
pure mode I crack propagation in concrete. Numerical results for three-point bending test are used
to check the numerical results for mode I and are compared with some numerical results obtained by
FEM analysis found in the literature.

Introduction

Classical computer analysis of cracks has traditionally been based on Linear Elastic Fracture Me-
chanics (LEFM) assuming the presence of a crack, see [1, 2, 3] for surveys of Boundary Element
Method (BEM) applications to fracture. In this LEFM approach it is difficult to study crack initiation.
Furthermore LEFM is only applicable when the size of the fracture process zone at the crack tip is
small compared to the size of the crack and the size of the specimen [4]. Recently, other models have
been intensively developed and applied in computer crack analysis, e.g. the Cohesive Zone Models
(CZMs) [5, 6, 7, 8] that assume hypotheses different from those adopted in LEFM, and avoid the
presence of a stress singularity at the crack tip. The CZMs are suitable to study both crack initiation
and propagation. In a cohesive crack, the propagation is governed by a traction-displacement relation
across the crack faces near the tip.

In the framework of BEM [9, 10], CZM formulations have been developed by Yang and Ravi-
Chandar [11] and Aliabadi and Saleh [12, 13], who implemented novel numerical procedures for
cohesive crack growth by using a collocational approximation and the so-called Dual BEM. Never-
theless, the use of the Symmetric Galerkin Boundary Element Method (SGBEM) [14, 15, 16, 17,
18] for CZM implementation has several advantages in comparison with the traditional collocation
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BEM [19, 20], e.g., no difficulty with smoothness requirements on displacement approximations at
element junctions due to the hypersingular kernel, a consistent treatment of subdomain corners or
discontinuities of boundary conditions (changing abruptly their value or kind) where traction dis-
continuities can take place. SGBEM provides the required number of equations and no additional
equations are required as they are in the collocational BEM [9] in some cases. The SGBEM uses
both the strongly singular displacement BIE and the hypersingular traction BIE in such a way that the
discretizations of these BIEs lead to a symmetric linear system of algebraic equations, with positive
or negative definite diagonal blocks associated to unknown tractions or displacements.

In the present work, the Ortiz - Pandolfi [7] CZM is implemented in a 2D Symmetric Galerkin
BEM (SGBEM) code. The original version of this code [21] solved plane elastic problems includ-
ing multi-material (piece-wise homogenous) isotropic linear-elastic solids having traction-free cracks
inside the homogenous components. The materials were considered to be perfectly bonded along
their interfaces. The SGBEM and the implementation details of the algorithm employed herein are
discussed in [17, 18, 21]. Constitutive equations of a CZM usually include a softening branch, which
induces a strong nonlinearity and potential instability. Thus, the development and implementation of
a suitable solution algorithm capable of following the evolution of the cohesive zone and modeling the
crack growth becomes an important issue. An arc-length control combined with a Newton-Raphson
algorithm for iterative solution of nonlinear equations is used in the present work [22, 23, 24, 25].

Cohesive Zone Models

This kind of model is motivated by the fact that in some materials such as concrete, polymers, fiber-
reinforced composites, tough ceramics and some alloys, the crack surfaces are usually not separated
completely behind the crack tip. There exists a relatively long extension of the crack - variously
called the weak zone, the bridging zone, or cohesive zone - where tractions can be transferred across
the crack line. The mechanism responsible for the development of this kind of process zone can be
bridging of long-chain molecules in polymers, bridging of fibers in composites, interlocking of grain
boundaries in alloys and ceramics, and so on. A cohesive constitutive law is required for modeling
the behavior of the material in the process zone. For these materials, the cohesive zone model of
a crack seems to be the appropriate model. In a simple 2D history-independent (holonomic) CZM
formulation (no friction, no plasticity, etc.) displacement discontinuities across the crack, δi, (i =
1, 2 corresponding to the normal and tangential directions to the crack respectively) are related to
the traction vector, ti, in a zone located ahead of the actual crack tip [6, 7, 8]. The constitutive
law in its simplest history-independent (holonomic) version may be formally written as t = t(δ).
A fundamental aspect in the present simple formulation of the constitutive cohesive model is the
requirement that the energy dissipated at a crack propagation must be equal to the fracture energy,
i.e., the following relation must be satisfied:∫ δfi

0

tidδi = Gc (1)

where δfi is the “final” value (not necessarily finite) of the relative displacement leading to the van-
ishing of cohesive forces.

Ortiz-Pandolfi Model. This holonomic model is defined by three parameters (β, σc, δc). The
relation between tractions and relative displacements in the cohesive zone proposed in [6, 7], requires
the concept of effective opening displacement δ: δ =

√
δ21 + βδ22 , i.e., different weights are assigned
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to the normal opening displacement (δ1) and sliding (tangential) displacement (δ2) through the pa-
rameter β.

Following [6, 7] the existence of a free energy density per unit undeformed area, ϕ, is postulated.
Under the presence of isothermal conditions and the assumption of isotropy, it is possible to show
that the cohesive law takes the form: t = gradδ[ϕ] if it is assumed that the free energy ϕ depends on δ
only through the effective opening displacement. This implies that:

t = gradδ[ϕ] =
∂ϕ

∂δ

(
δ1
δ

n1 + β2 δ2
δ

n2

)
(2)

where ni is the unit vector in the i-direction. If no unloading is considered, a simple expression for
the potential ϕ is furnished by the Smith and Ferrante universal binding law [7]:

ϕ(δ) = eσcδc

[
1−

(
1 + δ

δc

)
e−

δ
δc

]
, ∂ϕ

∂δ
(δ) = t = eσc

δ
δc
e−

δ
δc (3)

where e ≈ 2.718 is the base of the natural logarithm, σc is the maximum cohesive normal traction and
δc is a characteristic opening displacement in pure fracture mode I.

Cohesive Zone Models and SGBEM

Consider a linear elastic 2D body of an arbitrary shape Ω which contains a crack. The boundary
Γ of the body Ω is composed of the non-crack boundary Γb and the crack surface Γc. The crack
surface Γc consists of two coincident surfaces Γ+

c and Γ−
c which represent the upper and lower crack

surfaces respectively. As explained in [19, 21] it suffices to discretize one crack surface (e.g. the
upper one) as the crack surfaces are usually symmetrically loaded, verifying the equilibrium condition
t = t+c = −t−c along Γc. Thus, the Somigliana displacement (u-BIE) and traction (t-BIE) identities
written at a point P in a smooth part of the boundary take the following form:

1

2
uk(P ) =

∫
Γb

[Ukj(P,Q)tj(Q)− Tkj(P,Q)uj(Q)] dQ−
∫
Γ+
c

[Tkj(P,Q)wj(Q)] dQ on Γu (4)

1

2
tk(P ) =

∫
Γb

[
T ∗
kj(P,Q)tj(Q)− Skj(P,Q)uj(Q)

]
dQ−

∫
Γ+
c

[Skj(P,Q)wj(Q)] dQ on Γt (5)

tk(P ) =

∫
Γb

[
T ∗
kj(P,Q)tj(Q)− Skj(P,Q)uj(Q)

]
dQ−

∫
Γ+
c

[Skj(P,Q)wj(Q)] dQ on Γc (6)

where w = u+
c − u−

c represents relative displacement along Γc. Ukj and Tkj are the weakly and
strongly singular kernels given by the displacement and traction fundamental solution, and T ∗

kj and
Skj are the strongly singular and hypersingular corresponding derivative integral kernels. The non-
crack boundary Γb is formed by Γu and Γt, where Γu is the portion of the boundary with prescribed
displacements uu and Γt is the portion of the boundary with prescribed tractions tt. As the primary
unknowns on the crack surface are relative displacements, w, and tractions are given in terms of
w through the cohesive constitutive law, only t-BIE is written for points on Γ+

c . Discretizing a weak
form of Equations (4-6) in terms of rates of variables u, t and w with respect to a “non-physical” time,
associated to a load parameter λ by using a Galerkin scheme, the following linear system [A]{ẋ} =
{ḃ} is obtained, in block matrix form: −Uuu Tut Tuc

T∗
tu −Stt −Stc

T∗
cu −Sct −Scc +KMcc

 ṫu
u̇t

ẇc

 =


−(1

2
Muu + Tuu)u̇u + Uutṫt

Stuu̇u + (1
2
Mtt − T∗

tt)ṫt
Scuu̇u − T∗

ctṫt

 (7)

where the subscripts u, t, and c represent the terms corresponding to the non-crack boundary with
prescribed displacements Γu, non-crack boundary with prescribed tractions Γt, and the crack surface
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Γc, respectively. Thus tu represents unknown tractions and ut represents unknown displacements on
the boundaries Γu and Γt respectively; M are symmetric ‘mass matrixes’ obtained from the free term
of the integral equations.

It is important to mention that the final coefficient matrix of this system is symmetric due to the
reciprocity relations of the integral kernel tensors as shown in [15, 16, 18, 26]. In [26] a similar
matrix is obtained for the case of traction free cracks. The only difference is the lower right-hand
diagonal block of the linear system matrix −Scc + KMcc, where K is the tangent elastic stiffness
matrix obtained from the cohesive law defined in a previous section. It can be shown that the product
KMcc keeps the desired symmetry if K is symmetric, which is the case of the present cohesive law.
Note that elements of K associated to the softening branch are negative, which implies that the block
−Scc +KMcc may not be positive definite.

In the case of a pure traction problem (Γu = ∅) the rigid body motion in the displacement solution
is removed by the use of the Method S introduced and studied by Vodička et. al. [27].

Non linear solution algorithm

The arc-length method is a powerful solution algorithm, allowing the evolution of the equilibrium
states of a problem to be solved at various load levels [22, 23, 24, 25]. All these equilibrium states
trace the load-displacement response of the structure in which the applied load varies proportionally
as a function of a unique load parameter. In this case, for a system with n degrees of freedom (DOF),
the n+ 1 unknowns completely define the problem.

Several variants of the arc-length method, in its discrete formulation, have been proposed in the
past. The one used in the present work is the normal-flow algorithm [25], where successive Newton-
Raphson iterations converge to the equilibrium solution along a path which is normal (in an asymp-
totic sense) to the so-called Davidenko flow [25].

It should be mentioned that Risk’s and Ramm’s arc-length versions [22, 23] have also been imple-
mented in the SGBEM code used. In a comparison of these three versions, the normal-flow algorithm
led to a slightly faster convergence (fewer steps and/or iterations) than the other two arc-length algo-
rithms, and for this reason it was chosen to be applied in the present work.

The solution algorithm was implemented using the full Newton-Raphson method. The prediction
phase includes the determination of the arc-length step size at each increment. The first step includes
the selection of an appropriate value for the arc length.

A very important issue of the procedure is to define a suitable scaling of the known and unknown
variables involved in the solution of a nonlinear system of equations. The variables in the final system
should have similar orders of magnitude, so as to aid the performance of the non-linear numerical
solver.

Numerical Results

In order to verify the capability of the present numerical model to reproduce the cohesive zone model
behavior, a three-point bending test, Fig. 1(a), for a concrete mix is modeled. The growth of a cohesive
crack in such a specimen has been studied extensively in [28] using the Finite Element Method (FEM)
and the node release technique for a linear cohesive law. In the present work the influence of the initial
crack depth and the value of fracture energy are studied.

The dimensions of the specimen considered are height b = 0.15m, thickness t = b and span
l = 4b. A uniform boundary element mesh (size 0.005m) with 672 nodes and 330 quadratic elements
are employed in the numerical simulation of this specimen made of a concrete-like material. The
anticipated straight crack path is modeled by a mesh placed inside the single domain representing
the specimen tested. The point-supports are imposed by means of the Method S [27]. This method

Γc, respectively. Thus tu represents unknown tractions and ut represents unknown displacements on
the boundaries Γu and Γt respectively; M are symmetric ‘mass matrixes’ obtained from the free term
of the integral equations.

It is important to mention that the final coefficient matrix of this system is symmetric due to the
reciprocity relations of the integral kernel tensors as shown in [15, 16, 18, 26]. In [26] a similar
matrix is obtained for the case of traction free cracks. The only difference is the lower right-hand
diagonal block of the linear system matrix −Scc + KMcc, where K is the tangent elastic stiffness
matrix obtained from the cohesive law defined in a previous section. It can be shown that the product
KMcc keeps the desired symmetry if K is symmetric, which is the case of the present cohesive law.
Note that elements of K associated to the softening branch are negative, which implies that the block
−Scc +KMcc may not be positive definite.

In the case of a pure traction problem (Γu = ∅) the rigid body motion in the displacement solution
is removed by the use of the Method S introduced and studied by Vodička et. al. [27].
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Figure 1: (a) A three-point bending specimen configuration and (b) BEM mesh used and the boundary
conditions employed.

Figure 2: Load-deflection plots for different initial crack depths, a, for GIc = 50J/m2.

Figure 3: Load-deflection plots for several initial crack depths, a, for GIc = 10J/m2.
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allowed an adequate simulation of the three-point bending test, as the point-support boundary condi-
tion can be situated at a single node (similar to FEM), rather than fixing an entire element. The point
supports at the two bottom corners are shown in Fig. 1(a), and as only one node is constrained at each
support, rotation around these points is allowed. Constant distributions of pressures, which fulfill the
condition of global equilibrium, were imposed over two elements at the centre top of the specimen
and on one element at each bottom corner, Fig. 1(b). The mechanical properties of the concrete-like
material are Young modulus E = 36.5GPa and Poisson’s ratio ν = 0.1. Two different values of
fracture energy GIc = 50 and 10J/m2 are considered. The parameter values for the Ortiz-Pandolfi
model are maximum cohesive stress, σc = 3.19MPa, and critical opening displacement, δc, which has
two values: δc = 5.77x10−6m and δc = 1.15x10−6m, for each of the two different values of fracture
energy respectively. It is important to mention that in the present study the parameter β is irrelevant,
due to the Mode I character of the problem.

Figure 4: BEM and FEM load-deflection plots for GIc = 50J/m2.

Figure 5: BEM and FEM load-deflection plots for GIc = 10J/m2.
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Figure 6: Deformed boundary element mesh (displacement multiplied by a factor of 500) for the
initially uncracked specimen with GIc = 50J/m2 for different load steps at the softening branch: (a)
F = 17718N (peak load), (b) F = 9144N , (c) F = 4328N and (d) F = 1395N .

For each considered value of fracture energy, different initial values of crack depth, a, are con-
sidered from a = 0 (initially uncracked specimen) to a = 0.06m, with increments of 0.01m. For all
these cases considered, the load deflection (F-δ) curves are obtained. These (F-δ) curves shown in
Fig. 2 for GIc = 50J/m2 are related to different initial crack depths. In a similar way as in [28] ini-
tial stiffness and maximum loading capacity of the specimen decrease by increasing the initial crack
depth a. Also the uncracked specimen reveals considerable instability and a nearly vertical drop in its
loading capacity (a small snap-back is observed), whereas the cracked specimens appear much more
“ductile”. The last part of the softening branch appears as totally independent of the initial crack
depth a, where all the plots superpose. The (F-δ) curves in Fig. 3 describe the specimen behavior
when GIc = 10J/m2. For a ≤ 0.02m a snap-back instability occurs, that is, a softening branch with
positive slope is revealed.

Fig. 4 and Fig. 5 show a comparison between the results obtained by the SGBEM code and those
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these cases considered, the load deflection (F-δ) curves are obtained. These (F-δ) curves shown in
Fig. 2 for GIc = 50J/m2 are related to different initial crack depths. In a similar way as in [28] ini-
tial stiffness and maximum loading capacity of the specimen decrease by increasing the initial crack
depth a. Also the uncracked specimen reveals considerable instability and a nearly vertical drop in its
loading capacity (a small snap-back is observed), whereas the cracked specimens appear much more
“ductile”. The last part of the softening branch appears as totally independent of the initial crack
depth a, where all the plots superpose. The (F-δ) curves in Fig. 3 describe the specimen behavior
when GIc = 10J/m2. For a ≤ 0.02m a snap-back instability occurs, that is, a softening branch with
positive slope is revealed.
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Figure 7: Normal stresses along the crack path for different load steps at the softening branch (a)
F = 17718N (peak load), (b) F = 9144N , (c) F = 4328N and (d) F = 1395N .

obtained in Carpinteri and Colombo [28] by means of the Finite Element Method (FEM). Taking into
account different cohesive laws, exponential herein and linear in [28], and different meshes, there is
a very good agreement in the results. One of the reasons for the good agreement of the SGBEM and
FEM results is the use of the Method S [27] in the SGBEM implementation to impose point-supports
for the removal of rigid body motions.

Fig. 6 shows the deformed boundary element mesh of the beam at various load steps for the
initially uncracked specimen with GIc = 50J/m2, the crack growth being clearly observable at those
stages. Notice the ticks appearing in the graphic, which represent the nodes of the SGBEM mesh. In
Fig. 7 the normal stresses along the crack path for the same load steps as in Fig. 6 and same material
properties are also shown. It can be observed that the expected behavior is obtained for stresses along
the cohesive zone. The advancing of the so called mathematical crack tip (where the critical stress is
reached) is also shown.

Conclusions

In the present work a symmetric boundary integral formulation for problems with cohesive cracks
placed inside homogeneous domains has been implemented. The 2D SGBEM code used is based
upon a previous implementation of crack analysis in the LEFM framework [21]. The present approach
is likely to be suitable for engineering applications involving isotropic materials, e.g. for an analysis
of crack initiation and growth in composites modeled as piecewise homogeneous materials at the
micro-scale. The introduction of the cohesive zone requires an iterative solution procedure to solve
the nonlinear equations resulting from the boundary integral formulation; the arc-length method with
the normal flow procedure has been implemented.

As shown by the numerical results, the present SGBEM cohesive zone formulation agreed very
well with a previous FEM crack growth analysis of the load-deflection behavior for the three-point
bending test. The SGBEM analysis was capable of following the instabilities produced by a nearly
vertical drop in the loading capacity and snap-back behaviors seen in some cases. Although a different
cohesive law is used in [28] the SGBEM results are consistent with the results presented therein.
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FEM results is the use of the Method S [27] in the SGBEM implementation to impose point-supports
for the removal of rigid body motions.
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stages. Notice the ticks appearing in the graphic, which represent the nodes of the SGBEM mesh. In
Fig. 7 the normal stresses along the crack path for the same load steps as in Fig. 6 and same material
properties are also shown. It can be observed that the expected behavior is obtained for stresses along
the cohesive zone. The advancing of the so called mathematical crack tip (where the critical stress is
reached) is also shown.

Conclusions

In the present work a symmetric boundary integral formulation for problems with cohesive cracks
placed inside homogeneous domains has been implemented. The 2D SGBEM code used is based
upon a previous implementation of crack analysis in the LEFM framework [21]. The present approach
is likely to be suitable for engineering applications involving isotropic materials, e.g. for an analysis
of crack initiation and growth in composites modeled as piecewise homogeneous materials at the
micro-scale. The introduction of the cohesive zone requires an iterative solution procedure to solve
the nonlinear equations resulting from the boundary integral formulation; the arc-length method with
the normal flow procedure has been implemented.

As shown by the numerical results, the present SGBEM cohesive zone formulation agreed very
well with a previous FEM crack growth analysis of the load-deflection behavior for the three-point
bending test. The SGBEM analysis was capable of following the instabilities produced by a nearly
vertical drop in the loading capacity and snap-back behaviors seen in some cases. Although a different
cohesive law is used in [28] the SGBEM results are consistent with the results presented therein.
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As can be observed by the analysis of the three point bending test, when the initial crack depth
a becomes larger the specimen becomes more “ductile”, and at the same time it makes the problem
more stable. It is also important to mention the influence of GIc, as shown by the results. When this
value is small an unstable behavior is presented, especially for small initial crack depths a.

To predict the real behavior of structures, the first step would be to determine parameters of the
discrete model (σc and δc in the case of the Ortiz-Pandolfi model for Mode I), where the so-called
inverse method could be very useful [29].
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On the solution of the 3D crack surface contact problem

using the boundary element method
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crack propagation

Abstract. The efficient solution of the 3D crack surface contact problem utilizing the boundary
element method (BEM) is presented. The dual discontinuity method (DDM), a special formu-
lation of the BEM, is applied. This method deals directly with the relative displacements and
the discontinuities of the tractions at the crack. For the normal behavior a unilateral contact
is assumed and for the description of the tangential behavior Coulomb’s frictional law is uti-
lized. The hard contact formulation is regularized by the application of the penalty method.
An incremental iterative procedure based on a radial return mapping algorithm is applied for
the solution of this non-linear problem. Based on the stress field the fracture mechanical pa-
rameters are determined by an extrapolation method for all increments of a characteristic load
cycle. By the analysis of this load cycle the cyclic fracture mechanics values are obtained. Due
to the non-linear nature of crack growth the simulation is implemented in the framework of a
predictor-corrector scheme. For the investigation of the influence of the crack surface roughness
on the behavior of cracks two numerical examples are presented.

Introduction

The assessment of the structural integrity of components includes a fracture mechanical anal-
ysis. Therefore, an efficient numerical tool for the stress analysis in the framework of the sim-
ulation of three dimensional crack growth is required. Due to the non-linear behavior of crack
growth an incremental procedure is necessary, cf. Fig. 1. Each incremental loop starts with
the stress analysis of the current crack configuration including the calculation of the fracture
mechanical parameters. Next, the 3D crack growth criterion based on linear-elastic fracture
mechanics is evaluated for the determination of the new position of the crack front. Finally,
the mesh of the numerical model is adapted in order to consider the new crack geometry in the
next increment.

Due to its nature the boundary element method (BEM) in terms of the dual BEM [1, 2]
is especially suited for stress concentration problems. Here, a special formulation for cracked
structures of the BEM – the dual discontinuity method (DDM) [3, 4, 5, 6] – is utilized. This
method offers two advantages. On the one hand, the numerical complexity is reduced. On
the other hand, crack surface interaction can be easily considered by this method. Since the
crack growth criterion is mainly based on the fracture mechanical parameters these values
are determined from the stress field in front of the crack front by an optimized extrapolation
method [6, 7].
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factors (SIFs). For the crack propagation it has to be distinguished between the tensile mode
crack growth and the shear mode growth. In this paper it is assumed that the crack grows in
the tensile mode. If only the state of stress of the current crack geometry is taken into account,
a linear prediction of the new crack front is obtained. In order to consider the changing stress
field between two discrete crack fronts corrector steps are required. This leads directly to an
implicit time integration scheme, which yields additionally an optimization of the new crack
front with respect to its shape and location [8].

Finally, the numerical model has to be updated with respect to the new crack geometry.
Since the BEM is utilized this task is less complicated compared to volume orientated methods,
see Fig. 1c. In case of a predictor step large crack extensions along the whole crack front are
present. Therefore, a new row of elements is inserted to close the gap between the old and the
new crack front. Otherwise, only small changes of the crack front occur during the correction.
Here, the nodes of the crack front are simply moved towards their new position. For surface
breaking cracks the discretization of the outer boundary around the surface breaking points has
to be modified. It is done by a local re-meshing procedure [7] using a direct paving algorithm [9].

The interaction of the crack surfaces causes a non-linear reaction of the structure on the
applied load. In order to consider this behavior an incremental procedure has to be applied
within the stress analysis. In principle, the state of contact is not a-priori known and has to
be iteratively determined within each increment. For an efficient determination of the state of
contact the hard contact formulations have to be softened. In this paper the well-known penalty
method is utilized. Within this method the contact tractions are defined via a constitutive law
with respect to penetrations of the hard contact formulation. Therewith, the frictional contact
problem is solved by a radial return mapping scheme [10, 11, 12].

First solutions of the contact problem with the BEM trace back to Andersson et al. [13].
Later numerous investigations e.g. [14] have been carried out including the application of the
penalty method [15]. The contact of the crack surfaces has been considered in [16], in which
the crack is modeled via domain decomposition. Lee [17] is utilizing the dual BEM in terms
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of the basic formulation. 2D cracks in unbounded domains have been analyzed by Phan [18]
using the symmetric-Galerkin boundary element method (SGBEM). Here, the crack surfaces
are separated by the introduction of the discontinuities of the displacements and of the trac-
tions. Furthermore, the crack surface interaction has been taken into account. Due to the
two-dimensional point of view no softening of the contact conditions is required.

3D dual boundary element method

The boundary value problem is solved by the 3D dual boundary element method (BEM). Within
this method the coincident crack surfaces are separated by the utilization of the displacement
and the traction boundary integral equation. Here, a special formulation namely the dual dis-
continuity method (DDM) is applied. It provides advantages with respect to the numerical
complexity and deals directly with the relative displacements of the crack surfaces.

Due to the time dependency of the contact problem the basic equations are written in the
rate formulation. The dots on the values denote the time derivatives. In the present case of a
time independent formulation these values become rather incremental values.

Description of the boundary value problem. For the description of the boundary value
problem (BVP) an arbitrary domain Ω ∈ R

3 containing a crack is investigated, see Fig. 2. The
domain Ω is bounded by the surface Γ. The whole surface Γ consists of the normal bound-
ary Γn and the coincident crack surfaces Γc and Γc̄. The normal vector n is orientated out-
wards. Assuming a homogeneous and isotropic material behavior with linear elastic properties

Fig. 2: Sketch of the 3D boundary value problem.

the boundary value problem is described by the Lamé-Navier equation

u̇i,jj(x) +
1

1 − 2ν
u̇j,ji(x) +

1

G
ḃi(x) = 0 (1)

as well as by prescribed Neumann boundary conditions (˙̄t(x)) on ΓN and Dirichlet boundary
conditions ( ˙̄u(x)) on ΓD. Between ΓN and ΓD the conditions Γ = ΓN ∪ ΓD and ΓN ∩ ΓD = ∅
are fulfilled. The corresponding tractions are defined by the Cauchy formula

ṫi(x) = σ̇ij(x)nj(x), x ∈ Γ. (2)

Without loss of generality, body forces ḃi(x) are neglected in the present paper.
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Boundary integral equations. Using the method of weighted residuals for the Lamé-Navier
equation (1) the Somigliana equation is obtained after integration by parts twice and the choice
of a fundamental solution as weighting function. The strongly singular displacement BIE results
from moving the source point ξ on the boundary. It reads

cij(ξ) u̇j(ξ) =

∫

Γ

Uij(ξ,x) ṫj(x) dΓ(x) −
∫

Γ

−Tij(ξ,x) u̇j(x) dΓ(x) (3)

for source points on the normal boundary (ξ ∈ Γn). The free term cij depends on the geometry
at the source point and it is defined as 1

2
δij for smooth boundaries. Uij and Tij denote the

known Kelvin fundamental solutions.

For source points on a smooth crack surface (ξ ∈ Γc ∪ Γc̄) the displacement BIE is written
as

1

2
u̇c

i(ξ) +
1

2
u̇c̄

i(ξ) =

∫

Γ

Uij(ξ,x) ṫj(x) dΓ(x) −
∫

Γ

−Tij(ξ,x) u̇j(x) dΓ(x), (4)

in which u̇c
i(ξ) denotes the displacement rate of the geometric point ξ at the crack surface Γc

and u̇c̄
i(ξ) denotes the displacement rate of the same point at the opposite crack surface Γc̄.

Therefore, it can not be distinguished between the coincident crack surfaces.

To overcome this problem, the corresponding hypersingular traction BIE is additionally
taken into account within the concept of the dual integral formulations [1, 2]. It reads

1

2
ṫci(ξ) − 1

2
ṫc̄i(ξ) =

∫

Γ

−Dij(ξ,x) ṫj(x) dΓ(x) −
∫

Γ

= Sij(ξ,x) u̇j(x) dΓ(x) (5)

for source points on a smooth crack. The kernels Dij and Sij are the derivatives of the Kelvin
fundamental solutions with respect to ξ multiplied by the elastic tensor and the normal vector
at the source point, which are called Gebbia solutions [19, 20].

Dual discontinuity method. A special technique for crack problems within the concept of
the dual integral formulations is the dual discontinuity method (DDM).

This method utilizes the symmetric properties of the fundamental solutions for the integra-
tion point x at the crack:

U c
ij(ξ,x) = U c̄

ij(ξ,x) , T c
ij(ξ,x) = −T c̄

ij(ξ,x), (6)

Dijc(ξ,x) = Dc̄
ij(ξ,x) , Sc

ij(ξ,x) = −S c̄
ij(ξ,x). (7)

Moreover, the special geometric situation of the crack surfaces is considered. The crack surfaces
describe the same geometric surface with reversed normal vectors. By the introduction of the
discontinuities of the displacements

˙̂uc
i(x) = u̇c

i(x) − u̇c̄
i(x) (8)

and the tractions
˙̂tci(x) = nc

j(x)
(
σc

ij(x) − σc̄
ij(x)

)
= ṫci(x) + ṫc̄i(x) (9)
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with respect to Γc as new variables at the crack one crack surface e.g. Γc̄ is substituted by the
other one. Therewith, the displacement BIE reads as

cij(ξ) u̇n
j (ξ) =

∫

Γn

Uij(ξ,x) ṫnj (x) dΓ(x) +

∫

Γc

Uij(ξ,x) ˙̂tcj(x) dΓ(x)

−
∫

Γn

−Tij(ξ,x) u̇n
j (x) dΓ(x) −

∫

Γc

Tij(ξ,x) ˙̂uc
j(x) dΓ(x) (10)

for source points on the normal boundary and

u̇c
j(ξ) =

1

2
˙̂uc
j(ξ)+

∫

Γn

Uij(ξ,x) ṫnj (x) dΓ(x) +

∫

Γc

Uij(ξ,x) ˙̂tcj(x) dΓ(x)

−
∫

Γn

Tij(ξ,x) u̇n
j (x) dΓ(x) −

∫

Γc

−Tij(ξ,x) ˙̂uc
j(x) dΓ(x) (11)

for source points on the crack. The traction BIE is now written as

ṫcj(ξ) =
1

2
˙̂tcj(ξ)+

∫

Γn

Dij(ξ,x) ṫnj (x) dΓ(x) +

∫

Γc

−Dij(ξ,x) ˙̂tcj(x) dΓ(x)

−
∫

Γn

Sij(ξ,x) u̇n
j (x) dΓ(x) −

∫

Γc

= Sij(ξ,x) ˙̂uc
j(x) dΓ(x). (12)

In all BIEs the integration is reduced by one crack surface, here Γc̄.

Numerical solution. For the application of the BEM only the surface is discretized by
boundary elements. The normal surface is meshed with continuous elements. For the evaluation
of the hypersingular traction BIE (12) C0,α-continuity for the tractions and C1,α-continuity for
the displacements are required and a smooth boundary is assumed [21]. Therefore, discontinuous
elements are utilized at the crack. In case of surface breaking cracks, the transition to the crack
surface is meshed with edge- and node-discontinuous elements.

The relevant BIEs are evaluated within the framework of a collocation procedure. Relevant
in this context means that the displacement BIE (10) is applied for source points at the outer
boundary. If Dirichlet boundary conditions are prescribed at the source point on both crack
surfaces, the displacement BIE (11) is evaluated. Otherwise, the traction BIE (12) is applied.
After a rearrangement according to the boundary conditions the linear system of equations


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Ann Anc 0
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ḃ
n

ḃ
c
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bc




 (13)

is obtained [4, 5, 6]. The third part of the equations in (13) results from the evaluation of the
remaining BIE for the source points at the crack. Here, Id denotes the identity matrix. The
vector ẋ contains all unknown boundary values of the normal boundary ẋn and the unknown
discontinuities at the crack ˙̂xc respectively the unknown boundary values ẋc at Γc. Obviously,
only the reduced system of equations
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has to be solved. Here, the iterative GMRES algorithm [22] is applied. The remaining unknowns
are directly calculated in a post processing step via

ẋc = ḃ
c − Ã

cn
ẋn − Ã

cc ˙̂xc (15)

to have all field quantities available e.g. for the visualization.
Due to the utilization of the discontinuous formulation the integration procedure is reduced

by one crack surface. Moreover, the number of degrees of freedom (DOFs) of the linear system
of equations is decreased by the number of DOFs of one crack surface.

Crack surface interaction

Since the BEM in terms of the DDM deals directly with the relative displacements (displace-
ment discontinuities) and the discontinuities of the tractions, it is especially suited for the
consideration of interaction effects of the crack surfaces. For the treatment of the contact
problem it has to be distinguished between the behavior in the normal and the tangential di-
rection. Therefore, the boundary values are defined with respect to a local orthogonal cartesian
coordinate system (n, t1, t2) at the collocation points that is orientated in the normal n and
tangential tj directions. Possible parts of the crack surface that might get in contact belong
to the Neumann boundary. Here, the total tractions are composed of the prescribed and the
contact tractions (t = t̄ + tcontact), which can be treated separately. Without loss of generality
it is assumed that the crack surfaces belong to the Neumann boundary and no initial tractions
are prescribed (t̄ = 0 ⇒ t = tcontact).

For the collocation points at the crack surfaces three states of contact have to be distin-
guished. The crack could be opened or the crack surfaces can be in stick or slip mode.

Frictional contact. For the behavior of the crack surfaces in the normal direction a unilateral
contact is assumed. Therefore, the crack surfaces can not penetrate each other and the gap g
must fulfill the condition

g ≥ 0. (16)

Due to the definition of the displacement discontinuities (8) condition (16) is written as

ûc
n ≤ 0 (17)

for the normal displacement discontinuity ûc
n. Furthermore, only compressive tractions in the

normal direction are possible
tcn ≤ 0. (18)

The behavior in the tangential direction is described by a frictional law. In the present context
Coulombs frictional law is applied. Within this criterion the effective tangential traction tct =
√

(tct1)
2 + (tct2)

2 is limited with respect to the compressive normal traction tcn ≤ 0 and the
frictional coefficient µ:

tct ≤ −µ tcn = tcmax. (19)

In case of stick tct is smaller than tcmax = −µ tcn. Otherwise, in case of slip tct is equal to tcmax and
the direction of the tangential traction is opposite to the relative sliding direction ˙̂uc

ti
such that

energy is dissipated:
˙̂uc
ti

tcti ≤ 0. (20)
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Frictional contact. For the behavior of the crack surfaces in the normal direction a unilateral
contact is assumed. Therefore, the crack surfaces can not penetrate each other and the gap g
must fulfill the condition

g ≥ 0. (16)

Due to the definition of the displacement discontinuities (8) condition (16) is written as

ûc
n ≤ 0 (17)

for the normal displacement discontinuity ûc
n. Furthermore, only compressive tractions in the

normal direction are possible
tcn ≤ 0. (18)

The behavior in the tangential direction is described by a frictional law. In the present context
Coulombs frictional law is applied. Within this criterion the effective tangential traction tct =
√

(tct1)
2 + (tct2)

2 is limited with respect to the compressive normal traction tcn ≤ 0 and the
frictional coefficient µ:

tct ≤ −µ tcn = tcmax. (19)

In case of stick tct is smaller than tcmax = −µ tcn. Otherwise, in case of slip tct is equal to tcmax and
the direction of the tangential traction is opposite to the relative sliding direction ˙̂uc

ti
such that

energy is dissipated:
˙̂uc
ti

tcti ≤ 0. (20)
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Boundary integral equations for crack surface contact. As a result of the crack surface
interaction contact tractions in normal and tangential direction have to be considered. Due to
the principle of action and reaction the contact tractions are equal according to their amount
but with opposite sign (equilibrium condition). Therewith, the discontinuities of the contact
tractions vanish:

t̂ci(x) = 0 respectively ˙̂tci(x) = 0. (21)

By the consideration of this condition within the BIEs (10) - (12) the integrals concerning the
traction discontinuities vanish similarly

∫

Γc

Uij(ξ,x) ˙̂tcj(x) dΓ(x) = 0,

∫

Γc

−Dij(ξ,x) ˙̂tcj(x) dΓ(x) = 0. (22)

Therefore, the effort for the integration is reduced further. Moreover, the contact tractions
remain only in the traction BIE (12) in an integral free way. In case of stick these tractions can
be directly calculated in a postprocessing step. In the slip mode the tangential tractions are
known from the frictional law.

It has to be mentioned that prescribed tractions t̄ generally do not lead to vanishing traction
discontinuities. In this case the integrals (22) have to be evaluated with respect to the applied
traction discontinuities.

Penalty method. For an efficient determination of the state of contact during the simulation
the hard contact formulation is soften in terms of the penalty method. By the consideration of
equation (17) a linear constitutive law given by

tn(ûc
n) =

{

0 if ûc
n ≤ 0

−ǫn ûc
n if ûc

n > 0
(23)

with a constant normal contact stiffness ǫn is assumed for the normal contact. In case of contact
– stick or slip – the total tangential relative displacements are composed by a reversible elastic
part ûc,el

ti
and the slip ûc,sl

ti
:

ûc
ti

= ûc,el
ti

+ ûc,sl
ti

. (24)

Between the reversible displacements and tangential tractions also a linear constitutive law
with the constant tangential contact stiffness ǫt is assumed:

tti(û
c
ti
) = −ǫt û

c,el
ti

. (25)

This softening of the hard contact conditions can be physically interpreted as a deformation of
the surface roughness [23].

Within the traction BIE (12) the total time derivative of the traction vector is required.
These values are determined by a linearization of the constitutive equations (23) and (25)
under consideration of the frictional law (19) written as


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ṫn
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∂tt2
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∂tt2
∂ût2






︸ ︷︷ ︸

=C





˙̂un

˙̂ut1

˙̂ut2



 . (26)

The matrix C depends on the state of contact and it is determined during the solution proce-
dure. If the open case is present C becomes zero, ∂ti

∂ûj
= 0.
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n if ûc
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c,el
ti

. (25)

This softening of the hard contact conditions can be physically interpreted as a deformation of
the surface roughness [23].

Within the traction BIE (12) the total time derivative of the traction vector is required.
These values are determined by a linearization of the constitutive equations (23) and (25)
under consideration of the frictional law (19) written as





ṫn
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∂ûn

∂tt1
∂ût1
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The matrix C depends on the state of contact and it is determined during the solution proce-
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Solution of the contact problem. Due to the non-linear behavior of the contact problem
a time integration of the rate formulation in terms of an incremental iterative procedure has
to be applied. Therefore, the rate values marked by a dot become incremental values ∆u, ∆t.
Along this, the linear system of equations (14) is written as

Ai ∆xi = ∆bi. (27)

The incremental system matrix Ai of the increment i is not constant during the simulation.
It depends on the state of contact of the collocation points at the crack, which has to be
iteratively determined within each increment. If the state of contact is not found within a
maximum number of iterations, the increment is equally split into two sub increments which
are successively treated. This procedure is recursively applied until the state of contact is found.

The total boundary values of the increment i are calculated by the accumulation of the
incremental values

ui = ui−1 + ∆ui respectively ti = ti−1 + ∆ti. (28)

A radial return mapping scheme is utilized for the solution of the frictional contact problem.
Since the normal traction do not depend on the tangential displacements the linearization of
equation (23) reads as

∂tn
∂ûn

= −ǫn, (29)

∂tn
∂ûtj

= 0. (30)

Under the assumption of sticking a trial state of the tangential contact tractions considering
equation (25) is calculated by

t̃itj(ûtj) = ti−1
tj

− ǫt ∆ûi
tj
. (31)

The values ti−1
ti

are known from the last increment and ∆ûi
ti

are calculated in the current incre-
mental loop. After the determination of the absolute value of the tangential trial stresses t̃it =
‖t̃itj‖, the frictional law (19) is evaluated. In case of stick the trial state is correct and it is
accepted

titj = t̃itj(ûtj). (32)

The linearization of the stick mode with respect to the tangential slip is written as

∂ttj
∂ûtk

= −ǫt δjk. (33)

Since the trial state does not depend on the normal relative displacement the corresponding
partial derivatives vanish:

∂ttj
∂ûn

= 0. (34)

Otherwise, if the frictional law (19) is violated with respect to the trial state, the tangential
tractions are defined via

titj = µtin
t̃itj

‖t̃tj‖
. (35)
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Since the normal traction tin(ûn) and the trial state t̃itj(ûtj) are depending on the relative dis-
placements û the linearization reads as

∂titj
∂ûk

=
∂(µtin)

∂ûk

t̃itj
‖t̃tj‖

+ µtin
∂

∂ûk

(

t̃itj
‖t̃tj‖

)

(36)

The first part leads to the partial derivatives [10]

∂titj
∂ûi

n

= µ ǫn

t̃itj
‖t̃tj‖

(37)

and the second part to [10]

∂titj
∂ûi

tk

= ǫt

µ tn

‖t̃tj‖

(

δjk −
t̃itj
‖t̃tj‖

t̃itk
‖t̃tj‖

)

. (38)

Therewith, the constitutive matrix in equation (26) is defined for all states of contact.

Crack growth algorithm

The simulation of fatigue crack propagation is implemented in the framework of linear-elastic
fracture mechanics on the basis of the SIF-concept. Due to the crack closure a complete charac-
teristic load cycle has to be analyzed for the calculation of the ranges of the SIFs. These values
are utilized for the computation of crack growth in direction and magnitude. By taking into
account the non-linear behavior of fatigue crack propagation an incremental iterative procedure
in terms of a predictor-corrector scheme is applied for the simulation of crack growth.

Fracture mechanical parameters. Based on the state of stress and strain the fracture
mechanical parameters – the stress intensity factors (SIFs) and the non-singular T-stresses –
are determined. Beside the well known procedures of an extrapolation from the displacement
discontinuity field [24] or the J-Integral [25] the fracture mechanical parameters in this paper
are determined by an extrapolation method from the singular stress field in front of the crack
front.

At smooth parts of the crack front the classical r−0.5-stress singularity is valid. The stresses in
the vicinity of a crack front point P are written with respect to the local crack front coordinate
system (cf. Fig. 3) as [26]

σij(r, ϕ, P ) =
III∑

M=I

KM(P )√
2π r

fM
ij (ϕ) + Tij(P ) + O(

√
r). (39)

The intensity of each mode M is characterized by the corresponding SIF KM(P ), while fM
ij (ϕ)

are the angular functions. The stress field is completed by the T-stresses Tij(P ).
The stress tensor is calculated for discrete points P ′

i on a straight line in front of the point P
by the evaluation of the boundary integral equation of stresses. Based on these stresses the so-
called pseudo-SIFs and the pseudo-T-stresses are determined. These values are showing an error
of the order O(r) and O(

√
r), respectively [7]. Therefore, the actual fracture mechanical param-

eters are calculated by the extrapolation r → 0 based on a regression analysis. By omitting
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Fig. 3: Crack front coordinate system.

points at the beginning and the end of the regression line controlled by the minimization of the
standard deviation very accurate values are obtained.

At non-smooth parts of the crack front and especially at the intersection points of the
crack front with the outer boundary the kind of singularity is generally not a priori known.
Here, the classical SIFs are no longer defined and 3D corner singularities have to be taken into
account. In the vicinity of such a singular point Q (e.g. the surface breaking point in Fig. 4) the
displacement field is asymptotically expanded with respect to a spherical coordinate system [27]

ui(ρ, θ, ϕ,Q) =
∞∑

L=1

K∗

L(Q)ραLgL
i (θ, ϕ,Q). (40)

The displacement field is primarily described by the exponents αL, which depend on the geo-
metric situation around the singular point as well as on the material properties. They have to
satisfy αL > −0.5 from the elastic energy point of view. The angular functions gL

i (θ, ϕ,Q) and
the generalized SIFs K∗

L(Q) complete the description.

crack surface

free surface

crack front

Fig. 4: Geometric situation at surface intersection point.

The exponents αL result from the solution of a quadratic eigenvalue problem and gL
i (θ, ϕ,Q)

are the corresponding eigenvectors [27, 7]. Based on the stress field described by the leading
exponent O(ραL−1) the classical SIF can be asymptotically defined [28]. If αL is greater than 0.5,
the stress singularity behaves weaker than the classical 1/

√

(r) stress singularity. Therefore, the
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SIF is defined as KM → 0 to express this behavior within the classical SIF-concept. Otherwise,
if αL is smaller than 0.5, the stress singularity is more intensive and the SIF KM tends to
infinity.

It has been shown, that fatigue crack growth shapes a crack front, which is characterized by
the 1/

√

(r) stress singularity at all points of the crack front including these special points [29].
Therefore, the crack front has to be smooth and a special geometric situation represented by
the crack front intersection angle γ is formed (cf. Fig 4) at the surface breaking points. This
angle is iteratively determined [7] and it is used to define the new position of the crack front
intersection points.

Determination of the new crack front. It is a well known fact tracing back to Paris’
pioneer work [30] that fatigue crack propagation depends on the cyclic values of the stresses.
Due to the crack surface interaction a representative load cycle has to be evaluated for the
determination of the cyclic SIFs, cf. Fig. 5. For this purpose, the equivalent SIF calculated

crack closure

Keq

D
K

eq

t

D
K

eqth
eo

Keq

max

Keq

min

Fig. 5: Definition of the cyclic stress intensity factor.

by the criterion of the maximum energy release rate [31, 8] is taken into account. The time,
when the maximum equivalent SIF is present, is denoted by tmax and tmin is the time, when the
minimum equivalent SIF is present. Therewith, the cyclic equivalent SIF is defined as

∆Keq(P ) = Kmax
eq (P ) − Kmin

eq (P ) = Keq(P, tmax) − Keq(P, tmin). (41)

According to the cyclic equivalent SIF the ranges of the SIFs are defined by

∆KM(P ) = KM(P, tmax) − KM(P, tmin). (42)

Based on these cyclic values it is assumed that the crack starts growing in the radial direction.
By excluding the generation of so-called facets (also called factory-roofs) the mode III twisting
can be neglected for an infinitesimal crack extension in order to define the crack growth di-
rection. Therefore, the kink angle ϕ(P ) is calculated by the maximum tangential stress (MTS)
criterion of Erdogan et al. [32]. It results from the condition ∂σϕ/∂ϕ = 0 under the restriction
∂2σϕ/∂ϕ2 < 0 and can be explicitly written as

ϕ(P ) = 2 arctan

(

−2 KII(P )

KI(P ) +
√

K2
I (P ) + 8K2

II(P )

)

. (43)
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by the criterion of the maximum energy release rate [31, 8] is taken into account. The time,
when the maximum equivalent SIF is present, is denoted by tmax and tmin is the time, when the
minimum equivalent SIF is present. Therewith, the cyclic equivalent SIF is defined as
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According to the cyclic equivalent SIF the ranges of the SIFs are defined by

∆KM(P ) = KM(P, tmax) − KM(P, tmin). (42)

Based on these cyclic values it is assumed that the crack starts growing in the radial direction.
By excluding the generation of so-called facets (also called factory-roofs) the mode III twisting
can be neglected for an infinitesimal crack extension in order to define the crack growth di-
rection. Therefore, the kink angle ϕ(P ) is calculated by the maximum tangential stress (MTS)
criterion of Erdogan et al. [32]. It results from the condition ∂σϕ/∂ϕ = 0 under the restriction
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For non proportional loading conditions with changing ratios of KII(P ) to KI(P ) during the
load cycle different kink angles are obtained. Following the investigation of Tanaka et al. [33]
the values of KI(P ) and KII(P ) are replaced by their ranges ∆KI(P ) and ∆KII(P ) within the
MTS-criterion (43).

The behavior of the magnitude of crack growth is described by the crack propagation rate.
A widely used approach is the formula of Paris and Erdogan [34]

da(P )

dN
= C [∆Keq(P )]m . (44)

The crack propagation rate da(P )/dN depends on the cyclic equivalent SIF as well as on the
material parameters C and m. An extension considering the static pre-stressing of the structure
is given by the formula of Hourlier et al. [35]

da(P )

dN
= C [∆Keq(P )]m

[
Kmax

eq (P )
]n

(45)

with the additional material parameter n.

Predictor-corrector scheme. Due to the non-linear nature of crack growth the simulation
of fatigue crack propagation is implemented in the framework of a predictor-corrector scheme.

Knowing the state of stress and strain of the present crack front a new one is predicted. It
is defined by the local crack extension ∆a(P ) and deflection ϕ(P ) relative to the initial crack
front. After the analysis of a characteristic load cycle in order to calculate the cyclic SIFs, the
kink angle ϕ(P ) of each point P of the initial crack front is determined. It is obtained by the
evaluation of the MTS-criterion (43) in terms of the ranges of the SIFs. For the calculation of
the crack extension a crack propagation rate is evaluated for a user-specified number of load
cycles ∆Nlc:

∆a(P ) =

[
da

dN

(

∆Keq(P )
)]

∆Nlc. (46)

Since only the SIFs of the initial crack front are considered both – the crack deflection and
the crack extension – are determined in a linear way. Finally, the new position of the surface
breaking points result from the geometric requirement of the crack front intersection angle
ensuring the 1/

√
r-stress singularity.

Due to the linearization of the crack growth within the predictor step the accuracy of the
predicted crack front is mainly influenced by the user-specified number of load cycles ∆Nlc.
Therefore, corrector steps including an error estimation of the predictor step are required. Af-
ter the solution of the boundary value problem of the predicted crack front within the next
incremental loop, the SIFs of this crack configuration are additionally known. By the consider-
ation of these values the changing stress field is approximated by the well known relation

∆K = ∆σn

√
2π a Y (a) (47)

with the cyclic normal stress ∆σn, the crack length a and the geometric function Y (a) depending
on the crack length. For the evaluation of this equation a virtual initial crack length a0(P ) is
introduced for each point along the crack front. Consequently, the crack length of the predicted
crack front is written as a0(P )+∆a(P ). For the geometric function it is assumed that Y (a0(P )+
∆a(P )) ≈ Y (a0). On the one hand, if the crack is very small – crack in an infinite domain –
the geometric function is constant. On the other hand, if the crack length has increased, the

For non proportional loading conditions with changing ratios of KII(P ) to KI(P ) during the
load cycle different kink angles are obtained. Following the investigation of Tanaka et al. [33]
the values of KI(P ) and KII(P ) are replaced by their ranges ∆KI(P ) and ∆KII(P ) within the
MTS-criterion (43).

The behavior of the magnitude of crack growth is described by the crack propagation rate.
A widely used approach is the formula of Paris and Erdogan [34]

da(P )

dN
= C [∆Keq(P )]m . (44)

The crack propagation rate da(P )/dN depends on the cyclic equivalent SIF as well as on the
material parameters C and m. An extension considering the static pre-stressing of the structure
is given by the formula of Hourlier et al. [35]

da(P )

dN
= C [∆Keq(P )]m

[
Kmax

eq (P )
]n

(45)

with the additional material parameter n.

Predictor-corrector scheme. Due to the non-linear nature of crack growth the simulation
of fatigue crack propagation is implemented in the framework of a predictor-corrector scheme.

Knowing the state of stress and strain of the present crack front a new one is predicted. It
is defined by the local crack extension ∆a(P ) and deflection ϕ(P ) relative to the initial crack
front. After the analysis of a characteristic load cycle in order to calculate the cyclic SIFs, the
kink angle ϕ(P ) of each point P of the initial crack front is determined. It is obtained by the
evaluation of the MTS-criterion (43) in terms of the ranges of the SIFs. For the calculation of
the crack extension a crack propagation rate is evaluated for a user-specified number of load
cycles ∆Nlc:
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Since only the SIFs of the initial crack front are considered both – the crack deflection and
the crack extension – are determined in a linear way. Finally, the new position of the surface
breaking points result from the geometric requirement of the crack front intersection angle
ensuring the 1/

√
r-stress singularity.

Due to the linearization of the crack growth within the predictor step the accuracy of the
predicted crack front is mainly influenced by the user-specified number of load cycles ∆Nlc.
Therefore, corrector steps including an error estimation of the predictor step are required. Af-
ter the solution of the boundary value problem of the predicted crack front within the next
incremental loop, the SIFs of this crack configuration are additionally known. By the consider-
ation of these values the changing stress field is approximated by the well known relation

∆K = ∆σn

√
2π a Y (a) (47)

with the cyclic normal stress ∆σn, the crack length a and the geometric function Y (a) depending
on the crack length. For the evaluation of this equation a virtual initial crack length a0(P ) is
introduced for each point along the crack front. Consequently, the crack length of the predicted
crack front is written as a0(P )+∆a(P ). For the geometric function it is assumed that Y (a0(P )+
∆a(P )) ≈ Y (a0). On the one hand, if the crack is very small – crack in an infinite domain –
the geometric function is constant. On the other hand, if the crack length has increased, the
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crack extension is much smaller than the crack length: ∆a(P ) ≪ a0(P ). Here, the geometric
function is approximately constant. Eliminating ∆σn after the evaluation of (47) at the initial
(superscript in) and predicted (superscript pr) crack front the approximation of the changing
stress field represented by the cyclic equivalent SIF ∆Kapp

eq (a, P ) is written as

∆Kapp
eq (a, P ) = ∆Kin

eq (P )

√
a

a0(P )
, a0(P ) ≤ a ≤ a0(p) + ∆a(P ) (48)

with

a0(P ) = ∆a(P )
[∆Kin

eq (P )]2

[∆Kpr
eq (P )]2 − [∆Kin

eq (P )]2
. (49)

This approximation of the stress field is utilized for the re-calculation of a more accurate number
of load cycles ∆Nacc(P ) by the evaluation of the crack propagation rate:

∆Nacc(P ) =

a0(P )+∆a0(P )∫

a0(P )

1
da
dN

(
∆Kapp

eq (a, P )
)da. (50)

In general, the resulting number of load cycles differs from the prescribed one. This fact is used
for the correction of the predicted crack extension by replacing the predicted crack extension
by

∆acr(P ) = ∆a(P ) +

[
da

dN

(

∆Kpr
eq (P )

)]

· [∆Nlc − ∆Nacc(P )] (51)

until the relative error
|∆Nlc − ∆Nacc(P )|

∆Nlc

< ǫ (52)

can be neglected with respect to a user-defined accuracy ǫ for all points of the crack front.
Following [36], the directions of crack growth at the initial and predicted crack front are

taken into account for the correction of the crack deflection, see Fig. 6. In principle the corrected
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Fig. 6: Determination of crack deflection.

crack growth direction reads as

ϕcr(P ) = ϕin(P ) + c(P )ϕpr(P ). (53)

The value c(P ) describes the crack growth direction at the point P of the initial ϕin and pre-
dicted ϕpr crack front. On the one hand, both directions can be weighted equally

c(P ) = 0.5. (54)
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crack growth direction reads as
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On the other hand, the crack growth rate can be taken into account. This leads to

c(P ) =
(∆Kpr

eq (P ))m

(∆Kin
eq (P ))m + (∆Kpr

eq (P ))m
. (55)

This procedure is repeated until the modification of the crack growth direction is smaller than
a user-specified tolerance.

Examples

To demonstrate the influence of the frictional contact on the behavior of cracks, two examples
are presented. Within the first example the principle influence of the frictional coefficient rep-
resenting the roughness of the crack surfaces is investigated. Within the second example crack
propagation is analyzed.

Single edge crack specimen The first example is a single edge crack (SEC) specimen of
the material steel (E = 210GPa, ν = 0.3) as sketched in Fig. 7. It is loaded by a constant
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Fig. 7: Geometry and loading of SEC-specimen (dimensions in mm).

compressive force of F = 25 kN that causes a compressive stress of σx = −20 N
mm2 . This

force ensures that the crack surfaces are in contact. Beside this, the specimen is loaded with
a torsional moment that increases from 0Nm to 250Nm. Then, this moment is decreased
to 0 Nm. Overall, this procedure is successively applied four times as shown in Fig. 8. Since
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Fig. 8: Loading versus time of the specimen.

quasi static loading conditions are assumed no time dependency is present and the given time
becomes more a general value.

Fig. 9 shows the displacements of the coincident points Pn on both crack surfaces for the
frictional coefficient of µ = 0.2 after the compression. The lower left path is linked to the point
Pn on the right crack surface of the specimen and the upper right path belongs to the point on
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force ensures that the crack surfaces are in contact. Beside this, the specimen is loaded with
a torsional moment that increases from 0Nm to 250Nm. Then, this moment is decreased
to 0 Nm. Overall, this procedure is successively applied four times as shown in Fig. 8. Since
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quasi static loading conditions are assumed no time dependency is present and the given time
becomes more a general value.

Fig. 9 shows the displacements of the coincident points Pn on both crack surfaces for the
frictional coefficient of µ = 0.2 after the compression. The lower left path is linked to the point
Pn on the right crack surface of the specimen and the upper right path belongs to the point on
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Fig. 9: Path of nodes at Pn for µ = 0.2 (displacement in mm).

the crack surface at the left side with respect to Fig. 7. At the beginning of the loading process
stick is present for each point of the crack surface and the specimen behaves as an un-cracked
structure. Here, the maximum shear stress is present at the surface intersection points of the
crack front and it is orientated in the vertical direction. Therefore, the crack surfaces start
sliding in this area in vertical direction. As soon as the complete crack surfaces are sliding,
they rotate around a point in the center of the specimen. This leads to a changing sliding
direction during the loading procedure. When the torsional moment is decreasing, the complete
crack surfaces firstly stick at each others. Then they start sliding in the same way as in the
loading process. In detail, sliding begins in the vicinity of the crack front intersection points
perpendicular to the deformed position followed by an approximately straight path. Due to the
friction a relative displacement of the crack surfaces remains after the unloading process.

Exemplarily for all points of the crack front the state of stress at the point Pi which is located
at the mid of the crack front is analyzed. Due to the symmetry of the problem only KIII has to
be considered at this point. Fig. 10 shows the KIII-value versus the acting torsional moment for
different frictional coefficients. For µ = 0 the KIII is directly linked to the torsional moment.
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Fig. 10: KIII at Pi for different frictional coefficients.

In case of friction hysteresis curves are observed, which are passed counter-clockwise in this
diagram. As a result of the three dimensional frictional contact problem the maximum value of
KIII does no longer correlate with the maximum torsional moment. It occurs in the unloading
process during the transition from the sticking state to the sliding of the crack surfaces. This
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the crack surface at the left side with respect to Fig. 7. At the beginning of the loading process
stick is present for each point of the crack surface and the specimen behaves as an un-cracked
structure. Here, the maximum shear stress is present at the surface intersection points of the
crack front and it is orientated in the vertical direction. Therefore, the crack surfaces start
sliding in this area in vertical direction. As soon as the complete crack surfaces are sliding,
they rotate around a point in the center of the specimen. This leads to a changing sliding
direction during the loading procedure. When the torsional moment is decreasing, the complete
crack surfaces firstly stick at each others. Then they start sliding in the same way as in the
loading process. In detail, sliding begins in the vicinity of the crack front intersection points
perpendicular to the deformed position followed by an approximately straight path. Due to the
friction a relative displacement of the crack surfaces remains after the unloading process.

Exemplarily for all points of the crack front the state of stress at the point Pi which is located
at the mid of the crack front is analyzed. Due to the symmetry of the problem only KIII has to
be considered at this point. Fig. 10 shows the KIII-value versus the acting torsional moment for
different frictional coefficients. For µ = 0 the KIII is directly linked to the torsional moment.
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In case of friction hysteresis curves are observed, which are passed counter-clockwise in this
diagram. As a result of the three dimensional frictional contact problem the maximum value of
KIII does no longer correlate with the maximum torsional moment. It occurs in the unloading
process during the transition from the sticking state to the sliding of the crack surfaces. This
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effect can be clearly seen for high frictional coefficients.
From the fracture mechanical point of view the ranges of the SIFs are of interest. Here, it is
observed that the higher the frictional coefficient the more the maximum value is reduced and
the minimum value is increased. This leads to a decreasing range of the cyclic SIF ∆KIII that
is sketched in Fig. 11. The mean value KIII is approximately constant.
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Fig. 11: Range and mean value of KIII .

Compressive specimen Fig. 12 shows a plate with a plane initial crack that is slanted by
45◦ to the mid-cross section. The plate consists of the material steel with a Young’s modulus of
E = 210GPa and a Poisson ratio of ν = 0.3. This specimen is loaded by a compressive force,
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Fig. 12: Geometry of the compressive specimen (dimensions in mm).

which oscillates between 100 kN and 200 kN , cf. Fig. 13. The crack propagation rate of this
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is sketched in Fig. 11. The mean value KIII is approximately constant.
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model is described by the Paris-law given by [37]

da

dN
= 1.27 · 10−12

(
∆Keq

MPa mm0.5

)2.66

[mm] . (56)

The simulation of crack propagation is carried out with the frictional coefficients 0.0 and 0.1.
The resulting crack paths at the middle of the upper crack front are illustrated in Fig. 14.
Additionally, the accumulated numbers of load cycles at selected steps of the simulation are
shown. The crack paths of both simulations are approximately identical. The main difference
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Fig. 14: Crack paths for µ = 0 and µ = 0.1 (load cycles in millions).

induced by friction between both simulations is in the number of load cycles. At the beginning
of the simulation, the number of load cycles for µ = 0.1 is approximately twice the number
of load cycles as for µ = 0.0. Due to the non-linear behavior of crack growth this effect is
increasing when the crack grows and it ends up with a difference of the factor 2.5. Finally,
it can be observed that the crack propagation slows down during crack growth independently
from the frictional coefficient. At the beginning the crack needs only 5 million load cycles for
a propagation of approximately 2 mm in case of µ = 0.1. Afterward, 14 million load cycles are
required for the same crack extension.

Conclusion

The influence of crack surface interaction on the behavior of cracks has been investigated in this
paper. The main topic has been focused on the solution of the boundary value problem with
the boundary element method. Here, an incremental iterative procedure has been applied in
order to consider the non-linear behavior of the contact problem. The penalty method has been
utilized for an efficient determination of the state of contact of the collocation points at the
crack surfaces. Consistent tangential stiffness matrices for the three contact states have been
obtained from a linearization procedure. For the simulation of crack propagation a predictor-
corrector scheme has been applied in order to capture the changing stress field. Two examples
have been presented to analyze the effect of the interaction.
It has been shown that due to friction the range of the stress intensity factors is reduced and
the stress ratio acting at the crack front is different to the applied load ratio. Furthermore,
the maximum and the minimum stress intensity factor correlate no longer with the maximum
and minimum applied load. Therefore, a complete characteristic load cycle has to be evaluated.
As a consequence of the reduced cyclic stress intensity factor, the rate of crack propagation is
similarly dropped down.
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induced by friction between both simulations is in the number of load cycles. At the beginning
of the simulation, the number of load cycles for µ = 0.1 is approximately twice the number
of load cycles as for µ = 0.0. Due to the non-linear behavior of crack growth this effect is
increasing when the crack grows and it ends up with a difference of the factor 2.5. Finally,
it can be observed that the crack propagation slows down during crack growth independently
from the frictional coefficient. At the beginning the crack needs only 5 million load cycles for
a propagation of approximately 2 mm in case of µ = 0.1. Afterward, 14 million load cycles are
required for the same crack extension.

Conclusion

The influence of crack surface interaction on the behavior of cracks has been investigated in this
paper. The main topic has been focused on the solution of the boundary value problem with
the boundary element method. Here, an incremental iterative procedure has been applied in
order to consider the non-linear behavior of the contact problem. The penalty method has been
utilized for an efficient determination of the state of contact of the collocation points at the
crack surfaces. Consistent tangential stiffness matrices for the three contact states have been
obtained from a linearization procedure. For the simulation of crack propagation a predictor-
corrector scheme has been applied in order to capture the changing stress field. Two examples
have been presented to analyze the effect of the interaction.
It has been shown that due to friction the range of the stress intensity factors is reduced and
the stress ratio acting at the crack front is different to the applied load ratio. Furthermore,
the maximum and the minimum stress intensity factor correlate no longer with the maximum
and minimum applied load. Therefore, a complete characteristic load cycle has to be evaluated.
As a consequence of the reduced cyclic stress intensity factor, the rate of crack propagation is
similarly dropped down.
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Abstract. In this paper a variational technique is developed to calculate stress intensity factors 

with high accuracy using the element free Glerkin method. The stiffness and mass matrices are 

evaluated by regular domain integrals and the shape functions to determine displacements in the 

domain are calculated with radial basis function interpolation. Stress intensity factors were obtained 

by a boundary integral with a variation of crack length along the crack front. Based on a static 

reference solution, the transformed stress intensity factors in the Laplace space are obtained and 

Durbin inversion method is utilised in order to determine the physical values in time domain. The 

applications of proposed technique to two and three dimensional fracture mechanics are presented. 

Comparisons are made with benchmark solutions and indirect boundary element method. 

Introduction 

Crack like flaws are costly – their presence increases the time and effort spent on maintenance 

and repair. Cracks may ultimately lead to component fracture and subsequent structural failure, 

which in extreme cases can endanger human life. Since cracks cannot be eliminated totally, 

procedures must be devised to quantify and predict the behavior of cracked structure under service 

conditions.   

The fundamental postulate of linear elastic fracture mechanics is that the behavior of cracks is 

determined solely by the stress intensity factor. Many different numerical methods have been 

developed over the last four decades for evaluating the stress intensity factors (see Aliabadi and 

Rooke[1]). The most prominent methods are the finite element method (FEM), the boundary 

element method (BEM) and more recently the MeshFree methods.  

Early application of the finite element method to crack problems was due to Swedllow[2]. Later 

developments by Tracey[3], Blackburn[4], Henshell and Shaw[5] and Barsoum[6] demonstrated 

that accurate stress intensity factor solutions can be obtained by utilizing special crack tip elements. 

Virtual crack extension approach developed by Hellen[7] and Park[8] and domain integral energy 

approaches proposed by Shih et al [9] have helped to firmly establish FEM as an effective 

computational tool for cracks problems in fracture mechanics. More recent developments have been 

directed toward improving the FEM performance for crack growth modeling with so-called XFEM 

[10-12]. 

An early application of the BEM to crack problems was due to Cruse[13], who reported only a 

modest accuracy for evaluation of of the stress intensity factors. Later the sub-region BEM 

formulation and displacement discontinuity approaches were developed [see Aliabadi [14-15] for 

comprehensive reviews]. Since the early work the method has improved with the development of a 

new generation of BEM formulation known as the Dual Boundary Element Method [16-18]. The 

DEBEM has established itself as probably the most efficient and accurate method for evaluating 

stresses intensity factors and modeling crack growth [19-21]. Application of the method to 
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dynamics crack problems can be found in ref[22-29]. Other recent contributions can be found in 

ref[30-341].    

Meshless approximations have received much interest since Nayroles et al [42] proposed the 

diffuse element method. Later, Belyschko et al [43] and Liu et al [44] proposed element-free 

Galerkin method (EFGM) and reproducing kernel particle methods, respectively. One key feature of 

these methods is that they do not require a structured grid and are hence meshless. Recently, Atluri 

et al presented a family of Meshless methods, based on the Local weak Petrov-Galerkin formulation 

(MLPGs) for arbitrary partial differential equations [45] with moving least-square (MLS) 

approximation. MLPG is reported to provide a rational basis for constructing meshless methods 

with a greater degree of flexibility. Local Boundary Integral Equation (LBIE) with moving least 

square and polynomial radial basis function (RBF) has been developed by Sladek et al [46-47] for 

the boundary value problems in anisotropic non-homogeneous media, i.e. functionally graded 

materials. Both methods (MLPG and LBIE) are meshless as no domain/boundary meshes are 

required in these two approaches. Other application of meshless or meshfree methods to crack 

problems can be found in Refs[48-58]. 

In this paper, the numerical implementation of element free Galerkin method for solving 

static/dynamic fracture problems is presented with radial basis function interpolation. The 

variational technique described in [29] is firstly developed with the use of element free method to 

determine stress intensity factor of static reference problems, which can be used to obtain the stress 

intensity factors in transformed domain. The accuracy of this method has been demonstrated by 

solving several problems in cluding:  rectangular sheet and cylinder containing central/edge cracks 

subjected to either static or dynamic load.  

 

Element free Galerkin method 

For a linear two or three dimensional elasticity, the governing equations are written as  

iijij uf ��ρσ =+,            (1) 

where ijσ  denotes the stress tensor, if  the body force, ρ the mass density, 22 / tuu ii ∂∂=��  the 

acceleration. Consider homogeneous anisotropic and linear elasticity, the relationship between the 

stress and strain by Hooke’s law can be written as 

lkijklklijklij uCC ,== εσ           (2) 

where ( ) ijklkllkkl Cuu   and  ,2/,, +=ε  denotes the elasticity tensor which has the following 

symmetries 

.klijjiklijkl CCC ==           (3) 

For a homogeneous isotropic solid, we have 

( )jkiljlikklijijklC δδδδµδλδ ++=         (4) 

where λ and µ are the Lame’s constants. For two dimensional isotropic plane strain state, Hooke’s 

law can also be written, in matrix form, as  
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where material matrix 

 

dynamics crack problems can be found in ref[22-29]. Other recent contributions can be found in 

ref[30-341].    

Meshless approximations have received much interest since Nayroles et al [42] proposed the 

diffuse element method. Later, Belyschko et al [43] and Liu et al [44] proposed element-free 

Galerkin method (EFGM) and reproducing kernel particle methods, respectively. One key feature of 

these methods is that they do not require a structured grid and are hence meshless. Recently, Atluri 

et al presented a family of Meshless methods, based on the Local weak Petrov-Galerkin formulation 

(MLPGs) for arbitrary partial differential equations [45] with moving least-square (MLS) 

approximation. MLPG is reported to provide a rational basis for constructing meshless methods 

with a greater degree of flexibility. Local Boundary Integral Equation (LBIE) with moving least 

square and polynomial radial basis function (RBF) has been developed by Sladek et al [46-47] for 

the boundary value problems in anisotropic non-homogeneous media, i.e. functionally graded 

materials. Both methods (MLPG and LBIE) are meshless as no domain/boundary meshes are 

required in these two approaches. Other application of meshless or meshfree methods to crack 

problems can be found in Refs[48-58]. 

In this paper, the numerical implementation of element free Galerkin method for solving 

static/dynamic fracture problems is presented with radial basis function interpolation. The 

variational technique described in [29] is firstly developed with the use of element free method to 

determine stress intensity factor of static reference problems, which can be used to obtain the stress 

intensity factors in transformed domain. The accuracy of this method has been demonstrated by 

solving several problems in cluding:  rectangular sheet and cylinder containing central/edge cracks 

subjected to either static or dynamic load.  

 

Element free Galerkin method 

For a linear two or three dimensional elasticity, the governing equations are written as  

iijij uf ��ρσ =+,            (1) 

where ijσ  denotes the stress tensor, if  the body force, ρ the mass density, 22 / tuu ii ∂∂=��  the 

acceleration. Consider homogeneous anisotropic and linear elasticity, the relationship between the 

stress and strain by Hooke’s law can be written as 

lkijklklijklij uCC ,== εσ           (2) 

where ( ) ijklkllkkl Cuu   and  ,2/,, +=ε  denotes the elasticity tensor which has the following 

symmetries 

.klijjiklijkl CCC ==           (3) 

For a homogeneous isotropic solid, we have 

( )jkiljlikklijijklC δδδδµδλδ ++=         (4) 

where λ and µ are the Lame’s constants. For two dimensional isotropic plane strain state, Hooke’s 

law can also be written, in matrix form, as  

DεDσ =
















=
















=

12

22

11

12

22

11

ε
ε

ε

σ
σ

σ

         (5) 

where material matrix 

32 Computational Methods in Fracture Mechanics



 























−
−

−

−

−+
−

=

)1(2

21
00

01
1

0
1

1

)21)(1(

)1(

ν
ν

ν
ν

ν
ν

νν
νE

D       (6) 

in which, E is the Young’s modulus and ν the Poisson’s ratio. Consider the domain Ω enclosed by 

boundary Г, we have the total potential energy with 

WU −=Π            (7) 

where the initial elastic strain energy is defined 
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and the external energy,  the sum of contributions from known interior and boundary forces, is 
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ΓΩΩ

dddW ��ρ     (9) 

where { }T

21 ,bb=b  is the body force vector, { } jiji nttt σ== in which   ,
T

21t or nσt ⋅=  is the vector 

of traction on the boundary, and in  is a unit outward normal vector. We assume that the 

displacements u(y) at the field point y ),( 21 yy=  can be approximated in terms of the nodal values in 

a local domain (see Figure 1) as 
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total number of node in the local support domain, which is a function of field point y. For two 

dimensional problems, we can rearrange the above relations as following 
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Therefore, the relationship between strains and displacements is given by 
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Considering the variation of total potential energy, with respect to nodal displacement, gives 

0=−=Π WU δδδ                (13) 

Substituting DεσuBεuΦu ===   and  ˆ ,ˆ  into Eq.(13) yields a set of 2×N linear algebraic equations 

in the global coordinate system 

[ ] [ ]   ˆˆ
222222 NNNNNN fuCuK =+ ×× ��ρ              (14) 

where N is the total number of nodes (collocation point), and the stiffness and mass matrices are 

defined as 
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Figure 1. Sub-domain Ωy for RBF interpolation of the field point y and 
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and the nodal force vector is 

∫∫
ΓΩ

Γ+Ω=
σ
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where Гσ denotes the boundary on which the traction is specified. For concentrated forces acting at 

the node i, we may determine the nodal force vector directly by 
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The approximation scheme 
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As the RBF are positive definite, the matrix 0R  is assured to be invertible. Therefore, we can obtain 
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is the dimension of  1−mP . A set of linear equations can be written, in the matrix form, as 
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where I denotes the diagonal unit matrix. It is clear that the coefficients a and b are functions of 

nodal coordinate x in the support domain only. In addition, the accuracy has been shown to be the 

same by using RBF with/without these polynomials. Therefore, the shape functions with radial basis 

function are selected by Eq.(23) for simplicity in the following analysis. 
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where i and j denote the number of nodes in the local support domain centred at ml
y , ),( xy
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ii φφ = , 

i, j=1,2,…, )( mln y . Applying the Laplace transform to Eq.(14) results 
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in which s is a Laplace parameter. Obviously the system stiffness matrix K and mass matrix C are 

symmetric with diagonal strip distribution similar to finite element method.  

Variational technique to evaluate SIF  

To obtain stress intensity factor for either static or dynamic problem, one needs a static 

reference problem to be solved. Let tΓ and uΓ be the traction and displacement boundaries 

respectively and consider a reference problem with a variation aδ  of crack length along the crack 

surface (see Figure 3), i.e. the collocation coordinate of crack tip )0 ,(aa =x . The variations of 

displacement and traction with respect to a are atk δδ /  and auk δδ / , respectively. Since 

0/ =atk δδ on the traction boundary, and 0/ =auk δδ on displacement boundary, the stress intensity 
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Therefore, by solving Eq.(43), the variations of displacement can be obtained, and then the 

variations of stress/traction can be written as 
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In order to determine the transformed stress intensity factors in Laplace space for the same 

configuration of geometry, above variations of displacement and traction are needed. The 

relationship between static and transformed stress intensity factors can be written as [10] 
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in which 0~
ku and 0~

kt  are displacement and traction boundary values in the transformed domain, 
static

IK  stress intensity factor for the static reference problem obtained from Eq.(41) and ku~  

displacements by Eq.(39) in the Laplace domain. 

The variational technique for two-dimensional problems can be easily extended to 3D axial 

symmetric problems. In this case, Eq.(41) becomes  
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for static problem and Eq.(49) 
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for dynamic problem respectively, where a is coordinate of crack tip and 2y  axis of symmetry. 

In order to evaluate the stress intensity factor in the time domain, the Durbin’s inverse method 

is employed [23] 
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where )(
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ksf is the transformed variable in the Laplace transform domain when the  parameter 
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for dynamic problem respectively, where a is coordinate of crack tip and 2y  axis of symmetry. 

In order to evaluate the stress intensity factor in the time domain, the Durbin’s inverse method 

is employed [23] 
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where )(
~

ksf is the transformed variable in the Laplace transform domain when the  parameter 

1 ,/2 −=+= iTiksk πη . Numerical results show that the selections of parameters η  and T affect 
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the accuracy slightly. In the computations, 0/5 t=η  and 20/ 0 =tT  in the following examples, 

where time unit 10 / cwt = , here w is the selected length such as the width of plate for 2D or radius 

R of cylinder for 3D, and =1c )21)(1(/)1( ννρν −+−E  which is velocity of longitudinal waves. 

Obviously the total number of samples in the Laplace domain is K+1 and K is chosen as 25 in the 

following examples. 

 

Examples 

6.1 Central/edge cracks in rectangular sheet under uniform static load 0σ  

A rectangular plate of width 2w and height 2h containing a centred crack of 2a subjected to a 

uniform shear load 0σ  both on the top and bottom of sheet is analysed firstly. Due to the symmetry, 

a quarter of plate is considered as shown in Figure 4(a). Here Poisson’s ratio ν=0.3. The nodes are 

uniformly distributed as shown in Figure 4(b) and the total number of nodes are (m+1)×(m+1) and 

the integration is performed by dividing the rectangular plate into m×m cells with 4×4 Gauss points 

for each cell. The support domain is selected as a circle of radius yd centered at field point y, which 

radius is determined such that the minimum number of nodes in the sub-domain 0)( Nn ≥y , here the 

number 0N  is chosen to be 6 for all examples. Free parameter c=w in RBF. Figure 5 shows the 

relative error 0

I

0

I

static

I / KKK −=η  against the parameter of node m when a/w=0.5, where 0

IK  is 

accurate result presented in the handbook [24]. Excellent agreement can be achieved when m>12 

with the relative error of 1%. In the following examples, m is selected to be 20. The normalize stress 

intensity factors aK πσ 0

static

I /  for a central or edge/double edge cracks varying with the crack 

length wa /  and height of plate  wh / are plotted in Figures 6 and 7 respectively and comparison is 

made with accurate solutions. Good agreement has been achieved and the results are to be found 

within 2% of the accurate solutions.  

 
6.2 A Single central crack in rectangular plate/cylinder under dynamic tension 

Consider a rectangular plate of width 2w and length 2h with a centrally located crack of length 

2a. It is loaded dynamically in the direction perpendicular to the crack by a uniform tension 

)(0 tHσ on the top and bottom of plate, where )(tH  is the Heaviside function. Due to the symmetry, 

a quarter of plate is analysed as shown in Figure 4(a). Let Poisson ratio ν=0.3, half length of crack 

a=0.5w and Young’s modulus a unit. Two rectangular plates are considered, i.e. h=w and h=2w. 

Normalize dynamic stress intensity factors atK I πσ 0/)(  are plotted in Figures 8 and 9 

respectively. To demonstrate the accuracy of the element free method, the results obtained by 

fictitious load method (FLM, also called indirect boundary element method in [25]) are plotted for 

comparison. Apparently before the arrival of dilatation wave traveling from the top/bottom of plate, 

the stress intensity factor should remain to be zero. In general, the maximum value of dynamic 

stress intensity factor for each case is found to be twice of that for the static. Finally a cylindrical bar 

of radius R and height 2h is analysed with a central circular crack of radius a subjected to a uniform 

Heaviside load )(0 tHσ at the top and bottom surfaces. Figure 10 shows the normalize dynamic 

stress intensity factor 0( ) / 2 /IK t aσ π , where a/R=0.5, h/R=1 and Poisson ratio ν=0.2. In this 

figure, the results presented by Wen [25] using FLM for a central circular crack in a rectangular bar 

are presented for comparison. The agreement with the fictitious load method is considered to be 

good.   
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Conclusion 

This paper has demonstrated the availability of the element free Galerkin method to elastostatic 

and elastodynamic fracture mechanics with a variational technique. Considering a static reference 

with same boundary configuration, the transformed stress intensity factors can be obtained by an 

integral in the Laplace transform domain. The accuracy of stress intensity factor by proposed 

method has been demonstrated by several examples. We can conclude with the following 

observations: (1) Element free Galerkin method with variational technique is valid to deal with 

static/dynamic crack problems; (2) Stiffness matrix is symmetric and strip diagonal. Therefore, the 

combination with different methods such as Finite Difference Method, FEM and BEM can be easily 

realised; (3) The high accurate solutions can be obtained with less number of samples in the Laplace 

space, i.e. K=25 in this paper; (4) Proposed method can be easily developed to mixed mode, three-

dimensional elasticity, functionally graded material and plate bending crack problems. 
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Figure 9. Normalized dynamic stress intensity factor KI(t)/√πa for a central 

crack under uniform tension when a/w=0.5, h/w=2 and ν=0.3. 
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Figure 10. Normalized dynamic stress intensity factor KI(t)/2√a/π for a 

cylindrical bar containing a central circular crack under uniform dynamic load, 

where a/R=0.5,  h/R=1 and ν=0.2 
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Abstract 

It is presented in this paper a three-dimensional Boundary Element Method (BEM) implementation of the 

Energy Domain Integral for the fracture mechanical analysis of three-dimensional interface cracks in 

transversely isotropic bimaterials. The J-integral is evaluated using a domain representation naturally 

compatible with the BEM, in which the stresses, strains and derivatives of displacements at internal points 

are evaluated using their appropriate boundary integral equations. Several examples are solved and the 

results compared with those available in the literature to demonstrate the efficiency and accuracy of the 

implementation to solve straight and curved crack-front problems. 

1 Introduction 

The greatest advantage of composite materials is strength and stiffness combined with lightness. By choosing 

an appropriate combination of reinforcement and matrix material, manufacturers can produce materials with 

mechanical properties that fit the requirements for a particular structure for a particular purpose.  

Commonly, high strength and stiffness are required in various directions within a plane. The solution is to 

stack and weld together a number of plies, each having the fibres oriented in different directions. Such a 

stack is termed a laminate. The individual plies present a macroscopic transversely isotropic behaviour with 

the symmetry axis in the direction of the fibres (Gibson, 2007). 

Delamination is one of the most important damage mechanisms in laminate composites. It consists in the 

nucleation of interface cracks between the plies of the laminate as consequence of thermo-mechanical 

fatigue, impact or material degradation (Gibson, 2007). Once cracking initiation has arisen, preventing crack 

growth (propagation) is the variable to control in order the keep the material in a reliable condition. It is 

therefore important to develop fracture-mechanics methods for assessing interface cracks and predicting their 
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behaviour during the material life time. 

Many questions regarding the mechanics of interface fracture have been answered during the past few 

decades. However, progress has been generally focused in the two-dimensional idealization of an interface 

crack, and not until recently major effort has been conducted on the three-dimensional aspect of interface 

fracture. This is in part due to the complexity of such problems and the very large computational efforts 

required for their numerical analysis. However, given the material mismatch at the interface boundary, it is 

expected that the three-dimensional effects play a more significant role in a laminate structure than in a 

homogenous structure. 

The numerical analysis of interface cracks in transversally isotropic materials has been traditionally 

addressed using Finite Element Analysis (FEA) (see for example Boniface and Banks-Sills, 2002 and Freed 

and Banks-Sills, 2005).  Besides, there is the alternative of using the Boundary Element Method (BEM). The 

attraction of the BEM can be largely attributed to the reduction in the dimensionality of the problem; for 

two-dimensional problems, only the line-boundary of the domain needs to be discretized into elements, and 

for three-dimensional problems only the surface of the domain needs to be discretized. This means that, 

compared to finite-element domain-type analysis, a boundary analysis results in a substantial reduction in 

data preparation. At the same time, and due to the inherent characteristics of its formulation, BEM provides 

very accurate results for problems containing strong geometrical discontinuities. This makes BEM a 

powerful numerical tool for modelling crack problems (see Aliabadi, 1997). Fracture mechanical analysis of 

three dimensional transversely isotropic materials using BEM has been reported by Sáez et al. (1997) and  

Ariza and Dominguez (2004a, 2004b) who modelled static and dynamic crack problems, Zhao et al. (1998) 

who derived the displacement discontinuity boundary integral equation, and more recently by Chen et al. 

(2009) who studied the stress intensity factors of a central square crack in a transversely isotropic cuboid 

with arbitrary material orientations. To our knowledge, there is no published material about the three 

dimensional BEM modelling of interface cracks in dissimilar transversely isotropic bimaterials. 

A number of techniques have been proposed for the evaluation of fracture parameters of interface cracks 

using FEM and BEM. They are, among others, the virtual crack extension approach (So, Lau and Ng; 2004), 

contour and domain path-independent integrals (Chow and Atluri, 1998; Ortiz and Cisilino, 2005; Freed and 

Banks-Sills, 2005; Shah, Tan and Wang, 2006), displacement extrapolation techniques (Freed and Banks-

Sills, 2005; Tan and Gao, 1990; Mao and Sun, 1995) and special crack-tip elements (He, Lin and Ding, 

1994).  In particular, path-independent integral techniques are derived from the J-integral proposed by Rice 

(1968). Being an energy approach, path-independent integrals eliminate the need to solve local crack tip 

fields accurately. If the integration domain is defined over a relatively large portion of the mesh, an accurate 

modelling of the crack tip is unnecessary because the crack tip field contribution to the overall energy is not 

significant. At the same time, it is worth noting that the J-integral as it was developed by Rice (1968) 

characterizes the crack driving force for two-dimensional problems. Therefore, for general three-dimensional 

cases involving cracks of arbitrary shape an alternative form for the J-integral is needed. 

Three basic schemes have evolved for the numerical computation of the J-integral in three dimensions: 

virtual crack extension methods, generalization of Rice’s contour integral, and domain integral methods 

(Anderson, 1994). Domain integrals are equivalent to the virtual crack extension technique and are better 

suited for numerical analysis than contour integral methods. Among the available domain integral methods 
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(see for example Nikishkov and Atluri ,1987 and Saliva et al, 2000) the Energy Domain Integral (EDI) due 

to Moran and Shih (1987) was chosen for this work.  

The EDI can be formulated by applying the divergence theorem to Rice's J-integral. It produces a domain 

independent integral defined over finite volumes enclosing some portion of the crack front (Moran and Shih, 

1987). Previous works by the authors of this paper have demonstrated the versatility and efficiency of the 

BEM implementation of the EDI for assessing three-dimensional cracks in elastic (Cisilino et al, 1998), 

elastoplastic (Cisilino and Aliabadi, 1999) and thermoelastic bodies (Balderrama et al, 2006 and 2008) and 

for interface cracks in dissimilar isotropic bimaterials (Ortiz and Cisilino, 2005).  

It is presented in this work the BEM implementation of the EDI for the J-integral computation in three-

dimensional interface cracks in dissimilar transversely isotropic bimaterials. The BEM solution strategy for 

the fracture problem and the EDI implementation is an extension of that proposed by Ortiz and Cisilino 

(2005) for interface cracks in dissimilar isotropic bimaterials. A number of examples demonstrate the 

suitability of the proposed numerical tool for assessing delamination cracks in composite laminates. 

2 Transversely isotropic materials 

The basic constitutive expressions governing the elastic behaviour of transversely isotropic materials are 

reviewed next following Ting (1996).  

The general constitutive law of the anisotropic material is  

���(�) = ���	
(�)�	
(�) = ���	
(�)�	,
(�) (1) 

where ���(�) is the stress tensor, ���(�) is the infinitesimal strain tensor and �	(�) is the displacement 

vector. Partial derivatives are indicated using the comma notation. The symbol ���	
(�) is the fourth-order 

constitutive tensor which is defined in terms of 21 independent elasticity constants. 

Transversely isotropic materials are those with an axis of symmetry such that all directions perpendicular to 

that axis are on a plane of isotropy. In such a case the constitutive tensor can be defined in terms of 5 

independent elasticity constants only. Using the Voight reduced notation (see Ting, 1996), the fourth-order 

constitutive tensor ��� (�, � = 1, … ,6) for a transversely isotropic material with the axis of symmetry 

coincident with the Cartesian axis �� can be expressed in terms of the five following elastic constants: ����� = ���,  ����� = ���,  ����� = ���,  ����� = ��� and  ����� = ��� .                                        (2) 

Due to the symmetry with respect to ��,  ��� = (��� − ���)/2. 
The coefficients of the constitutive tensor ��� can be written in terms of the elastic engineering constants as 

follows: 

��� =  (! − "#�)$(1 + ") ,   ��� =  (! + "′�)$(1 + ") , �13 =  "′$ ,   �33 =  (1 + ")$ , �44 = )′, 
                                         

(3) 

being:  

 $ = !(1 − ") − 2"#� and  ! =  / ′, 
                                         

(4) 

 

  

  

 

(see for example Nikishkov and Atluri ,1987 and Saliva et al, 2000) the Energy Domain Integral (EDI) due 

to Moran and Shih (1987) was chosen for this work.  

The EDI can be formulated by applying the divergence theorem to Rice's J-integral. It produces a domain 

independent integral defined over finite volumes enclosing some portion of the crack front (Moran and Shih, 

1987). Previous works by the authors of this paper have demonstrated the versatility and efficiency of the 

BEM implementation of the EDI for assessing three-dimensional cracks in elastic (Cisilino et al, 1998), 

elastoplastic (Cisilino and Aliabadi, 1999) and thermoelastic bodies (Balderrama et al, 2006 and 2008) and 

for interface cracks in dissimilar isotropic bimaterials (Ortiz and Cisilino, 2005).  

It is presented in this work the BEM implementation of the EDI for the J-integral computation in three-

dimensional interface cracks in dissimilar transversely isotropic bimaterials. The BEM solution strategy for 

the fracture problem and the EDI implementation is an extension of that proposed by Ortiz and Cisilino 

(2005) for interface cracks in dissimilar isotropic bimaterials. A number of examples demonstrate the 

suitability of the proposed numerical tool for assessing delamination cracks in composite laminates. 

2 Transversely isotropic materials 

The basic constitutive expressions governing the elastic behaviour of transversely isotropic materials are 

reviewed next following Ting (1996).  

The general constitutive law of the anisotropic material is  

���(�) = ���	
(�)�	
(�) = ���	
(�)�	,
(�) (1) 

where ���(�) is the stress tensor, ���(�) is the infinitesimal strain tensor and �	(�) is the displacement 

vector. Partial derivatives are indicated using the comma notation. The symbol ���	
(�) is the fourth-order 

constitutive tensor which is defined in terms of 21 independent elasticity constants. 

Transversely isotropic materials are those with an axis of symmetry such that all directions perpendicular to 

that axis are on a plane of isotropy. In such a case the constitutive tensor can be defined in terms of 5 

independent elasticity constants only. Using the Voight reduced notation (see Ting, 1996), the fourth-order 

constitutive tensor ��� (�, � = 1, … ,6) for a transversely isotropic material with the axis of symmetry 

coincident with the Cartesian axis �� can be expressed in terms of the five following elastic constants: ����� = ���,  ����� = ���,  ����� = ���,  ����� = ��� and  ����� = ��� .                                        (2) 

Due to the symmetry with respect to ��,  ��� = (��� − ���)/2. 
The coefficients of the constitutive tensor ��� can be written in terms of the elastic engineering constants as 

follows: 

��� =  (! − "#�)$(1 + ") ,   ��� =  (! + "′�)$(1 + ") , �13 =  "′$ ,   �33 =  (1 + ")$ , �44 = )′, 
                                         

(3) 

being:  

 $ = !(1 − ") − 2"#� and  ! =  / ′, 
                                         

(4) 

 

  

  

Key Engineering Materials Vol. 454 49



 

where 

•   and  ′ are the Young’s moduli in the plane of isotropy and in the directions normal to it, respectively. 

• * is the Poisson’s ratio that represents the strain response in the plane of isotropy due to an action parallel 

to it; and *′ is the lateral strain response for the planes normal to the plane of isotropy. 

• )′ is the shear modulus for the planes normal to the planes of transverse isotropy.  

3 Elastic solution in the vicinity of 3D interface crack front 

Consider a three-dimensional crack front with a continuously turning tangent as depicted in Figure 1a. 

Define a local coordinate system �∗ at position ,, where the crack energy release rate is evaluated, given by ��∗ normal to the crack front, ��∗ normal to the crack plane, and ��∗ tangent to the crack front. 

The elastic solution at the neighbourhood of the interface crack front can be expressed using a double series 

expansion of the form: 

�(-, ., ,) = / / 0��1�(,)-234�5�(23)(.)�67�6� , 
                                       

(5) 

for 89(:;) ≤ 89(:=) when > < @. The symbol u in equation (5) is the displacement vector in cylindrical 

coordinates (see Figure 1a), 1�(,) is the Stress Intensity Factor (SIF) associated to exponent αi, and 5�(23)(.) 

is an angular function. The exponent and the angular function depend of the boundary conditions over the 

crack faces, solids angles of the materials and the material properties (see Omer and Yosibash, 2008). 

When � = 0 in equation (5), αi and 57(23)(.) yield the solution for the two-dimensional crack problem. For a 

crack in a homogenous material :� = :� = :� = 1/2, :� = 1 and the coefficients 1� are the well-known 

stress intensity factors (SIFs) KI, KII and KIII, respectively. For interface cracks the exponents αi are complex 

numbers where 89(:�) = 89(:�) = 89(:�) = 1/2 and 89(:�) = 1. The additional high order terms in 

Eq. (5) when � ≥ 1 are the so-called “shadow terms” not present in the two dimensional problem. The 

shadow terms are originated by variation of the SIFs along the crack front. 

4 The energy domain integral 

Following Natha and Moran (1993), the energy release rate, C(,), due to crack extension in its own plane 

along a three-dimensional crack front takes the form (see Figure 1b) 

C(,) = limG→7 I	(,) J KL ∙ N	� − ��� ∗ ��,	∗ O!�P�G(Q) , 
                                         

(6) 

where w is the strain energy density, RST ∗ and UT,V∗  are Cartesian components of stress and displacement 

derivatives expressed in the system W∗, XV(Y) are the components of the unit outward normal to the crack 

front in the crack  plane WZ∗ − W[∗ , \S is the unit vector normal to the contour ](Y) (which lies in the WZ∗ − W∗̂  

plane), and  _] is the differential of the arc length ] . It is worth noting that, although Eq. (6) comes from a 

two-dimensional analysis, it applies for a general three-dimensional case. This is because the three-

dimensional stress field along a crack front of arbitrary shape is the same to that governing a two-

dimensional plain strain problem (see Omer and Yosibash, 2008). Thus, the energy domain integral 

introduced in this section can be used for the solution of cracks of arbitrary shape in three-dimensions. 
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In order to derive the equivalent domain representation of Eq. (6), we consider a small segment `a of the 

crack front that lies in the WZ∗ − W[∗  plane as shown in Fig. 1b. Next we assume that the segment undergoes a 

virtual crack advance in the plane of the crack, and we define the magnitude of the advance at each point Y  

as bc(Y). Note that bc(Y) varies continuously along `a and it vanishes at each end of the segment. Now let 

C̅(,) = J C(,)Δf(,)P,gh
, 

                                       

(7) 

where i(Y) is the integral defined in Eq.(6). When i(Y) belongs to the point-wise energy release rate, ij 

gives the total energy released when the finite segment `a undergoes the virtual crack advance.  

The appropriate domain form of the point-wise crack-tip contour integral can be obtained from Eq. (7) by 

considering a tubular domain k surrounding the crack segment (see Figure 2). As it shown in the figure, the 

surface lm is formed by translating the contour ] along the segment  `a, and ln stands for the outer surface 

of k including the ends. Next an auxiliary vector function  o is introduced, which is sufficiently smooth in k 

and it is defined on the surfaces of  k as follows: 

@	 = p∆f(,) ∙ I	(,) on rs 0 on r7 t     
                                         

(8) 

Finally, in the limit as the tubular surface lm is shrunk onto the crack segment `a and in the absence of crack 

face tractions, we obtain the domain integral: 

  C̅(,) = J K��� ∗ ��,	∗ − L ∙ N	�O@	,�Pu.v  

                                         

(9) 

In absence of body forces the integral ij given in Eq. (9) reduces to the domain representation of the familiar 

J-integral. If it is assumed that i(Y) is constant along `a, it follows directly from Eq. (7) that: 

w(,) = C(,) = C̅
x Δf(,)P,gh

. 
                                         

(10) 

 

5 Boundary Element Analysis 

In order to account for the non homogeneous material properties, a multi-domain BEM formulation is used 

for the problem solution. The modelling strategy is illustrated in the schematic representation in Figure 3, for 

a model consisting of two subdomains, Ωy(�) and Ωyy(�), with external boundaries Γy(�) and Γyy(�), 

respectively. Both subdomains share a common interface Γyzyy(�), a portion of which is debonded and thus 

an interface crack is introduced. The subdomains possess a linear transversely isotropic material behaviour as 

it has been described in Section 2. The orientation of the material is specified using a local Cartesian 

system (��7, ��7, ��7) for each subdomain. In every case the direction of the symmetry axis of the material is 

chosen coincident with the direction ��7 (see Figure 3). In this way, it is possible to model interface cracks 

lying between laminates with arbitrary relative fibre orientations. 
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gives the total energy released when the finite segment `a undergoes the virtual crack advance.  

The appropriate domain form of the point-wise crack-tip contour integral can be obtained from Eq. (7) by 

considering a tubular domain k surrounding the crack segment (see Figure 2). As it shown in the figure, the 

surface lm is formed by translating the contour ] along the segment  `a, and ln stands for the outer surface 

of k including the ends. Next an auxiliary vector function  o is introduced, which is sufficiently smooth in k 

and it is defined on the surfaces of  k as follows: 

@	 = p∆f(,) ∙ I	(,) on rs 0 on r7 t     
                                         

(8) 

Finally, in the limit as the tubular surface lm is shrunk onto the crack segment `a and in the absence of crack 

face tractions, we obtain the domain integral: 

  C̅(,) = J K��� ∗ ��,	∗ − L ∙ N	�O@	,�Pu.v  

                                         

(9) 

In absence of body forces the integral ij given in Eq. (9) reduces to the domain representation of the familiar 

J-integral. If it is assumed that i(Y) is constant along `a, it follows directly from Eq. (7) that: 

w(,) = C(,) = C̅
x Δf(,)P,gh

. 
                                         

(10) 

 

5 Boundary Element Analysis 

In order to account for the non homogeneous material properties, a multi-domain BEM formulation is used 

for the problem solution. The modelling strategy is illustrated in the schematic representation in Figure 3, for 

a model consisting of two subdomains, Ωy(�) and Ωyy(�), with external boundaries Γy(�) and Γyy(�), 

respectively. Both subdomains share a common interface Γyzyy(�), a portion of which is debonded and thus 

an interface crack is introduced. The subdomains possess a linear transversely isotropic material behaviour as 

it has been described in Section 2. The orientation of the material is specified using a local Cartesian 

system (��7, ��7, ��7) for each subdomain. In every case the direction of the symmetry axis of the material is 

chosen coincident with the direction ��7 (see Figure 3). In this way, it is possible to model interface cracks 

lying between laminates with arbitrary relative fibre orientations. 
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The standard BEM uses the displacement boundary integral equation to relate the displacement and traction 

fields, �(�) and {(�) over the model boundary in the global coordinate system (see Aliabadi, 2002): 

|�	(�#)��(�#) + J }�	(�, �#)��(�)dΓ� (�) = J ��	(�, �#){�(�)dΓ� (�), 
                                    

(11) 

where ��	K�, � ′O and }�	K�, � ′O are the displacement and traction fundamental solutions, respectively. The 

fundamental solutions account for the solution of i-th component of the displacement and traction fields, ��(�) and {�(�), at the field point,  �, due to the action of a unit load acting in the direction � at the source 

point, �′.  The symbol |�	 is the so-called jump term which depends on the local geometry at the source 

point, �′, only. There are several expressions for the fundamental solutions for a transversely isotropic 

materials, see for example Pan and Chou (1976) and Loloi (2000). However, these solutions could be 

cumbersome to implement into a BEM code because of the multiple cases they consider to account for all 

possible material configurations and the relative positions of the source and field points. On the other hand,  

Távara et al. (2008) have recently derived completely general and unique expressions valid for all possible 

configurations given in terms of real functions only (no difficulties with using complex functions).  The 

solutions due to Távara et al. (2008) have been used in this work.  

According to Távara et al. (2008), the displacement fundamental solutions when � ′ = 0 has the form 

�7(�) = 14π- �(�), (12) 

where - =  |�|, and the matrix �(�) is the modulation function of the displacement fundamental solution. 

The matrix �(�) is symmetric and it depends on the direction of - but not on its magnitude (see Figure 4). A 

relatively simple and general expression of  �(�) can be obtained using the auxiliary vector �� = (-��, 0, ��7), 

where -�� = �(��7)� + (��7)�; and the triad �!, �, ��/-� with ! = (|, 0, −�) and � = (0, 1, 0) where | = |�� � = ��7/-  and � = ��! � = -��/-, and the angle 0 ≤ � ≤ � , see Figure 4. For such a coordinate 

system only the coefficients ���(��) and ���(��) are non-zeros (see Appendix A). The general expression of 

the tensor �(�) for any x can be obtained by transformation of components:  ���(�) = Ω�	  Ωjs�	�(��),                           (13) 

where the rotation matrix ��� is  

��� = �cos . −sin . 0sin . cos . 00 0 1�. 

                                  

(14) 

The computation of the traction fundamental solution, }7(�), follows a similar procedure. The details can be 

found in Távara et al. (2008). 

Finally, the fundamental solutions ��	(�) and }�	(�) have to be transformed from the local coordinate 

system, (��7, ��7, ��7), to the global one in order to assemble the boundary integral equation (11). The 

fundamental solutions are transformed from the local coordinate system to the global one via the standard 

transformations for second order tensors (see Ting, 1996): ���(�) = f�	f�
�	
� (�)  

and  }��(�) = f�	f�
}	
� (�),                                

(15) 
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where f�	 is the transformation matrix. 

BEM models are discretized using 9-node quadrilateral elements. Continuous elements are used everywhere 

in the model, except at the intersections of the interface and the crack surfaces with model surface. In such 

cases one- and two-side discontinuous elements are used in order to avoid common nodes at the intersections 

(see Figure 5). It is worth noting that, although discontinuous elements are not strictly necessary to solve 

most of the practical bimaterial crack problems; they have been implemented in this work in order to develop 

a versatile and robust discretization strategy capable of dealing with general multiple subdomain problems 

(including the case of more than two subdomains sharing a single edge). At the same time, the 

implementation remains open to introduce further extensions to account for crack propagation which could 

require of the automatic model remeshing. 

The regular BEM integrals over continuous and discontinuous elements are evaluated using standard 

Gaussian quadrature. In the case of nearly singular integrals an adaptive element subdivision technique is 

also employed. On the other hand, the Cauchy principal value integrals and the free terms are evaluated 

using the rigid body motion approach (see Aliabadi, 2002). Singular integrals are computed using the 

variable transformation technique due to Lachat and Watson (1976).  

The equation (11) is applied to each of the subdomains while considering the orientation of the material as 

explained before. The equilibrium, {y = −{yy, and continuity, �y = �yy, conditions are enforced at the  nodes 

used to discretize the common interface Γyzyy.  The resultant system of equations is solved for the unknown 

traction and displacement nodal values after specifying the boundary conditions. It is worth noting that the 

implemented BEM code is not capable of detecting contact between the crack surfaces, and so, its 

application is restricted to open cracks only. For further details on the multi-domain BEM formulation and 

implementation the reader is referred to the book by Aliabadi (2002).  

The computation of the J-integral are included in the BEM code as a post-processing procedure, and so, it 

could be applied to the results from a particular model at a later stage. The required stresses, strains and 

derivatives of displacements at internal points are directly obtained from their boundary integral 

representations (Aliabadi, 2002):  

��,�(�#) = J ���,�(�, �′){�(�)dΓ� (�) − J }��,�(�, �#)��(�)dΓ� (�) 
(16) 

where �′ is the coordinate of the internal point, ���,�(�, �′) and }��,�(�, �#) are the derivatives of the 

fundamental displacement ���(�, �#)  and traction }��(�, �#)  fundamental solutions respectively (see Távara 

et al., 2009). The boundary � corresponds to that of the subdomain where the internal point �# lies on. 

Strains and stresses at internal points can then be easily computed using the definition of the infinitesimal 

strain tensor ��� = �� K��,� + ��,�O and the constitutive relationships in equation (1). 

On the other hand, the derivatives of the displacements, strains and displacements for boundary points are 

evaluated from the boundary displacements and tractions by means of a procedure similar to that usually 

used for finite elements. For further details the reader is referred to the paper by Ortiz and Cisilino (2005). 

 Finally, and in order to proceed with the J-integral computation, the resultant displacement derivatives, 

strains and stresses for both internal and boundary points are transformed to the local the crack-front 
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coordinate system (��∗, ��∗, ��∗) (see Section 4) using the standard transformation rule for second-order tensors 

(see Ting, 1996). 

6 J-integral Computation 

The computation of J-integral at any position Y on the crack front requires of the evaluation of a volume 

integral within closed domains that enclose a segment of the crack front `a (see equations 9 and 10). A 

natural choice here is to make Y coincident with the element nodes on the crack front, while `a is taken as 

the element or element sides at which points Y lies (on see Figure 6). The portion of the model domain in 

which the volume integrals are evaluated is discretized using 27-node cells. The cells are similar to the three-

dimensional finite elements and they are implemented using an isoparametric interpolation scheme, being 

their nodes the internal points of the BEM analysis. Thus, the values of stresses, RST∗ , strains,
 

�ST∗ , and 

displacements derivatives, US,�∗ , are interpolated by means of the cell interpolation functions, �S. Besides, 

the boundary mesh is designed to have a web shape around the crack front in order to build the integration 

volumes with the shape of cylinders. This is illustrated in Figure 7, where the frontal face of the model has 

been partially removed to show the crack and the integration domains. 

As it is depicted in Figure 6, three different cases are considered depending on whether the crack front 

position M is a mid-side node, it is shared by two elements, or it is located coincident with the external 

surface (surface node). If the node M is a mid-side node or surface node, `a (the segment of the crack front 

over which the J-integral is computed) spans over one element, connecting nodes M-1, M, and M+1 and 

nodes M-2, M-1 and M, respectively. On the other hand, if M is a shared node, `a spans over two elements, 

connecting nodes from M-2 to M+2. 

The function o is defined to vary quadratically in the directions tangential and normal to the crack front. This 

bi-quadratic definition of o has been employed with excellent results in the computation of EDI for a variety 

of problems in previous works (see Cisilino et al, 1998; Cisilino and Aliabadi, 1999; Ortiz and Cisilino, 2005 

and Balderrama et al., 2006 and 2008). Within this approach, and considering that the evaluation point Y is at 

the middle of the crack front segment `a, and �n is the radius of the integration domain, the function o is 

written as: 

@(�∗) = �1 − � ��∗��2  � ∙ ¡1 − ¢ --7£�¤ 
(17) 

where � is the distance from the crack front in the WZ∗ − W∗̂  plane as it is depicted in Figure 1. Function o is 

specified at all nodes within the integration volumes. Consistent with the isoparametric formulation, the      

q-values are interpolated using 

@ = / Ψ�¦��§
�¨� , (18) 

where �S are the shape functions defined within the volume cell and ©S are the nodal values for the ith node. 

From the definition of o (see equation 7), ©S = n if the ith node is on ln while for nodes inside V, ©S are 

given by interpolating between the nodal values on `a and ln. 
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Following standard manipulations the derivatives of o are: 

@	,� = / / ∂Ψ«∂¬

�


¨�
∂¬
∂�� ¦��§

�¨� , (19) 

where ­V are the coordinates in the cell isoparametric space and ®­V ®W¯⁄  is the Jacobian matrix of the 

transformation. 

Finally, if Gaussian integration is used, the discretized form of expression (9) is  

C̅(,) = / / ±K��� ∗ ��,	∗ − ��� ∗ ��� ∗ N	�O@	,�P9{ ²∂��∂¬	³´;
�

;¨�µ¶··¸ «¹ v L;, (20) 

where � is the number of Gaussian points per cell, and º» are the weighting factors. 

 

7 Application Examples 

7.1 Thick tension bimaterial plate with a centre interface crack 

A thick bimaterial plate containing a through crack on the interface is considered in the first example. A 

schematic representation of the problem geometry, dimensions and boundary conditions are depicted in 

Figure 8. Model discretization is similar to that depicted in Figure 7. It consists of 658 elements and 

2855 nodes. Eighteen elements are placed along the crack front, and a total of 126 elements are used in the 

crack discretization. Five rings of cells with normalized radii r/a = 0.1, 0.2, 0.3, 0.44 and 0.64 are 

accommodated around the crack front for J computations. With this purpose 648 cells and 6438 nodes are 

employed. 

In order to validate the code and to allow comparisons with other results from the bibliography, the problem 

was solved first for homogeneous cases, this is, the material elastic constants and orientations were set the 

same for both subdomains. The first case is that of an isotropic homogeneous plate with material elastic 

properties E=E’=100 GPa, ν=ν’=0.3 and µ’=0.5E/(1+ν). Computed J values along the crack front are 

presented in Figure 9, where the origin of the normalized coordinate, z/t=0, corresponds to the specimen mid-

plane (see Figure 8b). The reference values are those reported by Raju and Newman (1977) for a 

homogeneous centre cracked specimen and presented in a polynomial form by Aliabadi (1996). Since 

reference results are reported in terms of the mode-I stress intensity factors, KI, they have been converted to 

J values using the expression (see for example Anderson, 2005) w = 1y�  ¼⁄  (21) 

where ½j = ½ KZ − ¾^O⁄  for the plane strain condition. It is worth mentioning that the reference results are 

reported in terms of stress intensity factors with an accuracy of 5%. So that, when they are converted into 

J values using expression (21), the error bound is increased to around 10%. The accuracy of the reference 

J results is indicated in Figure 9 using the error bars. Data in Figure 9 are normalized with respect to the 

J value for a crack in a infinite homogenous plate under plane strain condition, ¿n = R^Àc ½j⁄ . Excellent 

agreement is found between the reference and computed results throughout the specimen thickness. 

Computed results are well within the error bounds of the reference results. Results of similar accuracy were 

obtained using a single-domain dual boundary element method (DBEM) in a previous work by Cisilino, 

et al. (1998). 
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For the next two homogeneous cases the direction of the axis of symmetry, W[n, is chosen to be parallel to the 

crack plane, this is, coincident with the global directions x  and z, respectively. For these cases the material 

elastic constants are chosen the same to those of the laminated used by Ariza and Dominguez (2004b). The 

five independent values of the coefficients of the tensor ]ST (see equation 3) are C�� = 5.37 GPa,   C�� = 1.34 GPa,   C�� = 3.35 GPa,   C�� = 251.168 GPa , and C�� = 5 GPa.   (22) 

The associated elastic properties are: E= 5 GPa, E´= 247.83 GPa, ν=0.245,  ν´= 0.01  and µ´= 2.5. The 

material orientation is specified for each subdomain by means of the angles (Ç, È, É) which define the 

orientation of
 
W[n, the material axis of symmetry, with respect to the global coordinate system (W, Ê, Ë). In this 

way, for the material axis of symmetry oriented in the direction global direction x, the orientation angles are 

are 0°/90°/90°, while for the material axis of symmetry oriented in the global direction z, the angles are 

90°/90°/0°.  

Computed results along the crack front are presented in Figure 10. In other to compare with other results, 

data in Figure 10 is presented in terms of normalized stress intensity factors,  ÌÍ Ìn⁄ , where Ìn = R√Àc. 

To compute the stress intensity factors from the J results, the problem was assimilated to a two-dimensional 

one in the xy plane. Stress intensity factors were computed from the J results using the expressions (see 

Chu and Hong, 1990), w� = f��1y� + f��1y1yy + f��1yy� and  w� = Ï��1y� + Ï��1y1yy + Ï��1yy� , (23) 

where the coefficients a and b depend on the elastic material properties and the material orientation. The 

coefficients cZ^, c^^ and the three coefficients Ð are zero when one of the principal axes of  the material is 

parallel to the crack plane. Thus, for the cases considered in this work w� = f��1y�. (24) 

The values for the coefficient cZZ as a function of the ratio between the Young modulus in the xy plane, ½W ½Ê⁄ ,  are reported in Table 1. 

It can be seen in Figure 10 that with the only exceptions of the regions next to the lateral faces of the 

specimen (say, |Ë m⁄ | > 0.45) where the boundary layer effect takes place, the stress intensity factor value is 

nearly constant along the crack front. Also plotted in Figure 10 there are two sets of results computed using a 

two-dimensional high-resolution finite element model. The finite element model was solved using Abaqus 

(2009), and it was discretized using a fine regular mesh consisting of 9,600 8-node biquadratic, plane stress 

elements (CPS8R). The stress intensity factors were computed using an Abaqus built-in facility. The 

resultant normalized stress intensity factors are ÌÍ Ìn⁄ = Z. Z^Ò and ÌÍ Ìn⁄ = Z. ZÓÒ for the material axis 

of symmetry oriented in the global directions x and z, respectively. The difference between the BEM and 

FEM results is less than 2%. 

The final case consists in a heterogeneous plate with the axis of symmetry of the material oriented in the 

global directions z and y for the subdomains I and II, respectively; this is, 90°/90°/0°  for the subdomain I 

and 90°/0°/90° for the subdomain II. The material elastic properties are the same of the previous cases. 

Computed results are presented in Table 2. The results are normalized with respect to  ¿n = R^Àc ½′⁄ . It can 

be seen that J value is nearly constant along the complete crack front.  Besides, the path independence is 

found excellent with a standard deviation of around 5% for the results computed using the domains with 

radii � c⁄ ≥ n. ^n. The only exceptions are the positions next to the lateral face of the specimen, where the 

 

For the next two homogeneous cases the direction of the axis of symmetry, W[n, is chosen to be parallel to the 

crack plane, this is, coincident with the global directions x  and z, respectively. For these cases the material 

elastic constants are chosen the same to those of the laminated used by Ariza and Dominguez (2004b). The 

five independent values of the coefficients of the tensor ]ST (see equation 3) are C�� = 5.37 GPa,   C�� = 1.34 GPa,   C�� = 3.35 GPa,   C�� = 251.168 GPa , and C�� = 5 GPa.   (22) 

The associated elastic properties are: E= 5 GPa, E´= 247.83 GPa, ν=0.245,  ν´= 0.01  and µ´= 2.5. The 

material orientation is specified for each subdomain by means of the angles (Ç, È, É) which define the 

orientation of
 
W[n, the material axis of symmetry, with respect to the global coordinate system (W, Ê, Ë). In this 

way, for the material axis of symmetry oriented in the direction global direction x, the orientation angles are 

are 0°/90°/90°, while for the material axis of symmetry oriented in the global direction z, the angles are 

90°/90°/0°.  

Computed results along the crack front are presented in Figure 10. In other to compare with other results, 

data in Figure 10 is presented in terms of normalized stress intensity factors,  ÌÍ Ìn⁄ , where Ìn = R√Àc. 

To compute the stress intensity factors from the J results, the problem was assimilated to a two-dimensional 

one in the xy plane. Stress intensity factors were computed from the J results using the expressions (see 

Chu and Hong, 1990), w� = f��1y� + f��1y1yy + f��1yy� and  w� = Ï��1y� + Ï��1y1yy + Ï��1yy� , (23) 

where the coefficients a and b depend on the elastic material properties and the material orientation. The 

coefficients cZ^, c^^ and the three coefficients Ð are zero when one of the principal axes of  the material is 

parallel to the crack plane. Thus, for the cases considered in this work w� = f��1y�. (24) 

The values for the coefficient cZZ as a function of the ratio between the Young modulus in the xy plane, ½W ½Ê⁄ ,  are reported in Table 1. 

It can be seen in Figure 10 that with the only exceptions of the regions next to the lateral faces of the 

specimen (say, |Ë m⁄ | > 0.45) where the boundary layer effect takes place, the stress intensity factor value is 

nearly constant along the crack front. Also plotted in Figure 10 there are two sets of results computed using a 

two-dimensional high-resolution finite element model. The finite element model was solved using Abaqus 

(2009), and it was discretized using a fine regular mesh consisting of 9,600 8-node biquadratic, plane stress 

elements (CPS8R). The stress intensity factors were computed using an Abaqus built-in facility. The 

resultant normalized stress intensity factors are ÌÍ Ìn⁄ = Z. Z^Ò and ÌÍ Ìn⁄ = Z. ZÓÒ for the material axis 

of symmetry oriented in the global directions x and z, respectively. The difference between the BEM and 

FEM results is less than 2%. 

The final case consists in a heterogeneous plate with the axis of symmetry of the material oriented in the 

global directions z and y for the subdomains I and II, respectively; this is, 90°/90°/0°  for the subdomain I 

and 90°/0°/90° for the subdomain II. The material elastic properties are the same of the previous cases. 

Computed results are presented in Table 2. The results are normalized with respect to  ¿n = R^Àc ½′⁄ . It can 

be seen that J value is nearly constant along the complete crack front.  Besides, the path independence is 

found excellent with a standard deviation of around 5% for the results computed using the domains with 

radii � c⁄ ≥ n. ^n. The only exceptions are the positions next to the lateral face of the specimen, where the 

56 Computational Methods in Fracture Mechanics



 

boundary layer effect takes place and the applicability of the J-integral is not strictly valid. The smallest 

integration domains with � c⁄ = n. Zn do not provide accurate results. This is attributed to the fact that these 

domains are discretized using a single cell in the radial direction. Similar behaviours were found in previous 

works by the authors (see for example Cisilino et al., 1998 and Ortiz and Cisilino, 2005).    

 

7.2 Bimaterial laminate with an edge interface crack 

It is considered in this example the analysis of an edge crack in a bimaterial laminate. The model geometry 

and discretization are depicted in Figure 11. Model dimensions are: crack length a=10 mm, specimen width 

b=4a, height h=a and thickness 2t=1.5a.  Material properties are the same used by Ariza and Dominguez 

(2004b) and reported in Equation (22) in the previous example. The discretization of the model is that 

illustrated in Figure 7, using 596 elements.  Five rings of cells with normalized radii r/a = 0.05, 0.1, 0.15, 

0.22 and 0.32 are accommodated around the crack front for the J computations. Five hundred and four cells 

are used in the construction of the integration domains. 

The model was solved for a number of relative orientations of the axis of symmetry of the material in both 

subdomains. The computed results are reported in Figure 12. J-results in Figure 12 are normalized with 

respect to  ¿n = R^Àc ½′⁄ . It can be seen that when one of the principal axes of the material is specified 

perpendicular to the crack front direction for both subdomains, the J-integral results along the crack front are 

symmetric with respect to the specimen mid-plane (z/t=0). These are the cases for the results labelled 

90°/90°/0°-90°/90°/0° and 0°/90°/90°-90°/90°/0° in the figure. On the other hand, when the orientation of the 

principal axes of the material are arbitrary in at least one of the two subdomains, the J-integral results along 

the crack front are not symmetric with respect to the specimen mid-plane. The extreme values for the           

J-integral are attained at the free surface. 

 

7.3 A circumferential interface crack in a cylindrical bimaterial bar 

The last example consists in a cylindrical bimaterial bar containing a circumferential crack subjected to 

remote axial tension σ , see Figure 13a.  The radius of the bar is b=5a and its height h=24a, being a the 

crack depth. A total of 684 elements are employed in the model discretization. Four rings of cells with radii 

r/a = 0.25, 0.5, 0.75 and 1 are accommodated around the crack front for the J computations. Integration 

domains are constructed using 672 cells. The model discretization is illustrated in Figure 13b. Material 

properties are the same reported in Equation 22 for a previous example. 

The problem was solved considering different material orientations. The results are reported in Figure 14. In 

every case the results are normalized with respect to ¿n = R^Àc/½′. The first solution is for an isotropic 

homogeneous material and it was used with validation purposes. The J result is constant along the complete 

crack front. The difference between the computed result and that reported by Murakami and Okazaki (1976) 

is 5% (it is worth noting that the reported precision for the reference solution is 3%). The second solution is 

for a homogeneous transversely-isotropic case, with the material symmetry axis specified coincident with the 

direction y for both subdomains (results labeled 90°/0°/90°-90°/0°/90° in Figure 14). Once again, and as it 

was expected, the computed J values are constant along the complete crack front. In the third case the 

orientation of the material axis of symmetry are different in each subdomain: for the subdomain I the 
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material axis of symmetry is oriented in the z-direction, while for the subdomain II it is oriented in the y-

direction (results labelled 90°/90/0°-90°/0°/90° in Figure 14). The J results exhibit a periodic variation along 

the crack front. Minimum values occur in the positions coincident with the direction of the z-axis, while the 

maximums are in the positions coincident with the direction of the x-axis. In the last case, the orientation of 

the material axis of symmetry is specified in the x-direction for both subdomains (results labelled 0°/90/90°-

0°/90°/90° in Figure 14). As for the previous case, the  J results exhibit a periodic variation along the crack 

front. However, in this case minimum values occur in the positions coincident with the direction of the x-

axis, while the maximums are in the positions coincident with the direction of the z-axis. 

 

8 Conclusions 

A boundary element methodology for the analysis of three-dimensional interface cracks in transversely 

isotropic bimaterials has been presented in this paper. The analysis is addressed using a multidomain BEM 

formulation in order to account for the different material properties at both sides of the crack. The J-integral 

is computed along the crack front using the Energy Domain Integral (EDI) methodology. This is 

implemented as a post-processing technique, and so, it can be applied to the results from a particular model 

at a later stage. The implementation takes advantage of the efficiency of the boundary integral equation to 

directly obtain the required displacement derivatives, stress and strain fields from their boundary integral 

representations.  

The efficiency and accuracy of the proposed implementation has been addressed by analysing a number of 

examples with straight and curved crack fronts. The computed results compared very well with those 

reported in the literature for benchmark problems. Besides, the implemented algorithm allowed studying the 

effect of the relative orientations of the materials on both sides of the crack on the J integral values.  

Maximum errors and dependence of the computed results with the integration paths occur for surface cracks 

at the intersection of the crack front with a free surface. In this sense it is worth noting that the formulation of 

EDI methodology used in this work is based on the assumption that the near-crack tip fields asymptote to the 

plane strain fields along the crack front. But it turns out that this assumption does not hold at the intersection 

of the crack front and a free surface, and so the proposed methodology is not strictly applicable. This 

problem remains unsolved in this work. Following previous work (Cisilino and Ortiz, 2005), alternative 

approaches for the selection of the auxiliary function o for the implementation of the EDI could be explored 

to improve the accuracy of the computations. 
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Appendix A 

Non-zero components of the tensor Ô(WÕ): 

ÔZZ = ZÖ××È[ + ÖÒÒa^ + Ö[[Ø^ÖZZÖÒÒÙÚ − ÛX 

, 

(A1) 

Ô^^ = ZÖZZÙ + ÛX, 
, 

(A2) 

Ô[[ = ZÙÚ ±Ú + a^ÖÒÒ + Ø^ÖZZ´, (A3) 

��� = (C�� + C��)�|C��C��Üℎ , (A4) 

Þ� = ±C��|� + C����C�� ´�/�, (A5) 

ℎ = ±|� + ,��|�C��C�� + C����C�� ´�/�, (A6) 

Ü = ±2(ℎ + |�) + ,��C��C��´�/�, (A7) 

I = Ü(ℎ + ÜÞ� + Þ��), (A8) , = C��C�� − C��� − 2C��C��, (A9) 

 

where = cos � = ��/- , � = sin � = -��/- and the angle � is indicated in Figure 4.  
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Figure 1: (a) Definition of the local orthogonal Cartesian coordinates at 

point η on the crack front, (b) Virtual crack front advance. 

 

 

 

 

 

  

r 

    θ

η 

a(η) 

C 

2x*

1

3 x
*

n 

x* 

(a) (b) 

η
Lc 

a(η) 

∆a(η) 

Figure 1: (a) Definition of the local orthogonal Cartesian coordinates at 

point η on the crack front, (b) Virtual crack front advance. 

Key Engineering Materials Vol. 454 63



 

 

 

 

  

Figure 2: Tubular domain surrounding a segment of the 

crack front. 
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Figure 3: Schematic two-dimensional representation of the multi-domain 

BEM model with an interface crack. 
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Figure 5: Model discretization strategy using continuous and 
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Figure 6: Schematic of the crack front region illustrating 

the virtual crack extensions for a corner node, a mid-node 

and a surface node. 
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Figure 7: (a) Problem geometry, (b) Boundary Element discretization,  

(c) Integration domains. 
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Figure 7: (a) Problem geometry, (b) Boundary Element discretization,  

(c) Integration domains. 
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Figure 8: (a) Schematic representation of the thick tension plate with 

a centre interface crack, (b) Model dimensions. 
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Figure 8: (a) Schematic representation of the thick tension plate with 

a centre interface crack, (b) Model dimensions. 
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Figure 9: Normalized J-integral results along the crack front for 

the homogeneous isotropic centre crack specimen. 
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Figure 10: Normalized SIF results along the crack front for the 

homogeneous transversely-isotropic centre crack specimen. 
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Figure 10: Normalized SIF results along the crack front for the 

homogeneous transversely-isotropic centre crack specimen. 

72 Computational Methods in Fracture Mechanics



 

 

 

 

 

 

 

 

  

Figure 11: Bimaterial laminate with an edge crack (deformed geometry) 
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Figure 11: Bimaterial laminate with an edge crack (deformed geometry) 
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Figure 12: Normalized J-integral  results along the crack front of 

the edge crack in the ply. 
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(b) 

Figure 13: External circumferential interface crack in a cylindrical bimaterial bar, 

(a) model geometry and dimensions, (b) model discretization (deformed mesh) 
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(b) 

Figure 13: External circumferential interface crack in a cylindrical bimaterial bar, 

(a) model geometry and dimensions, (b) model discretization (deformed mesh) 
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Figure 14: Normalized J-integral results along the crack front of the circumferential crack in the biomaterial 

bar. 
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Table 1: Resulting values for the coefficients a11 and Young Modulus ratios used to compute stress intensity 

factors from the J results.  

Case 11a  
x yE E  

Material symmetry in x- direction 0.112 10
-9 

49.57 

Material symmetry in z- direction 0.2 10
-9 

1 

 

 

Table 2: Normalized J-integral results for the heterogeneous plate as a function of the integration domain 

size. The results for the smallest integration domains, r/a=1 (shaded column in the table) are excluded for the 

computation of the average value and the STD. 

 

z/t 
r/a 

Average STD 
0.10 0.20 0.30 0.44 0.64 

0.000 25.6382 30.4503 30.7658 30.7658 30.6081 30.5613 0.49 

0.042 25.6382 30.4503 30.7658 30.7658 30.6081 30.5566 0.49 

0.083 25.6382 30.4503 30.7658 30.7658 30.6081 30.5512 0.49 

0.125 25.6382 30.4503 30.7658 30.7658 30.6081 30.5452 0.49 

0.167 25.6382 30.4503 30.7658 30.7658 30.6081 30.5384 0.49 

0.192 25.6382 30.4503 30.6869 30.7658 30.6081 30.5306 0.44 

0.217 25.6382 30.4503 30.6869 30.7658 30.6081 30.5231 0.44 

0.242 25.6382 30.4503 30.6869 30.7658 30.6081 30.5144 0.44 

0.267 25.6382 30.4503 30.6869 30.7658 30.6081 30.5041 0.44 

0.292 25.6382 30.4503 30.6869 30.7658 30.6081 30.4917 0.44 

0.317 25.6382 30.3714 30.6869 30.6869 30.5292 30.4766 0.50 

0.342 25.6382 30.3714 30.6081 30.6869 30.4503 30.4651 0.47 

0.367 25.6382 30.3714 30.6081 30.6081 30.4503 30.4559 0.39 

0.400 25.5593 30.3714 30.6081 30.6081 30.4503 30.4470 0.39 

0.433 25.5593 30.2925 30.6081 30.6081 30.4503 30.4345 0.50 

0.450 25.5593 30.2925 30.5292 30.6081 30.4503 30.4207 0.44 

0.467 25.4804 30.2925 30.6869 30.7658 30.6869 30.4043 0.70 

0.483 25.0071 29.9770 30.7658 31.1603 31.2391 30.3024 1.91 

0.500 23.5871 28.5570 29.7403 30.3714 30.6081 29.8192 3.08 
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Abstract. A dynamic analysis of crack-inclusion interaction is described in this paper. The anal-
ysis employs a two-dimensional symmetric-Galerkin boundary integral formulation for multi-
domain elastodynamic fracture analysis in the frequency domain. The multi-domain technique
is based on the assumption of perfectly bonded inclusions. The numerical implementation of
this boundary integral formulation is carried out with standard quadratic elements, allowing
the use of an improved quarter-point element for accurately determining frequency responses
of the dynamic stress intensity factors (DSIFs). To deal with singular and hypersingular in-
tegrals, the formulation is decomposed into two parts: the first part is identical to that for
elastostatics while the second part contains at most logarithmic singularities. The treatment
of the elastostatic singular and hypersingular singular integrals employs an exterior limit to
the boundary, while the weakly singular integrals in the second part are handled by Gauss
quadrature. Time histories (transient responses) of the DSIFs are obtained in a post-processing
step by applying the standard fast Fourier transform algorithm to the frequency responses of
these DSIFs. Two numerical examples are presented for the computation of the DSIFs due to
crack-inclusion interaction under two types of impact loading: Heaviside step loading and blast
loading. The numerical results are consistent and confirm the well known crack tip shielding
mechanism observed during the interaction between a crack and a much stiffer inclusion.

Introduction

As the use of composite materials in industry (e.g., airframes) has expanded, there is an
increasing interest in their fracture behavior under impact loading conditions. Of particular
interest is the dynamic fracture behavior due to crack-inclusion interaction in these materi-
als. Among numerical methods available for this class of problems, boundary element method
(BEM, e.g., [1]) has emerged as an effective tool. The key feature of the BEM is that only the
boundary of the domain is discretized. For wave problems posed as scattering from a finite body
in an infinite domain, this means that an artificial truncation of the domain is not required.
For fracture analysis the important implications are that the singular stress field ahead of the
crack is not approximated, and that remeshing a propagating crack is an easier task. There
are two types of BEM formulations in dynamics: frequency domain (FD, e.g., [2–8]) and time
domain (TD, e.g., [8–10]). Nonlinear elastodynamics by means of incremental schemes requires
the use of TD formulation [1] while a FD formulation is better suited for parallel computing and
analyses of the same structure under different dynamic loading conditions (frequency responses
are independent of each other as well as the loading). Although the FD formulation requires the
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3DICATA, Università di Brescia, via Branze 38, 25123 Brescia, Italy

avphan@jaguar1.usouthal.edu, bgraylj1@ornl.gov, calberto.salvadori@ing.unibs.it

Keywords: symmetric-Galerkin boundary element method, elastodynamics, crack-inclusion interac-
tion, dynamic stress intensity factors, transient responses.

Abstract. A dynamic analysis of crack-inclusion interaction is described in this paper. The anal-
ysis employs a two-dimensional symmetric-Galerkin boundary integral formulation for multi-
domain elastodynamic fracture analysis in the frequency domain. The multi-domain technique
is based on the assumption of perfectly bonded inclusions. The numerical implementation of
this boundary integral formulation is carried out with standard quadratic elements, allowing
the use of an improved quarter-point element for accurately determining frequency responses
of the dynamic stress intensity factors (DSIFs). To deal with singular and hypersingular in-
tegrals, the formulation is decomposed into two parts: the first part is identical to that for
elastostatics while the second part contains at most logarithmic singularities. The treatment
of the elastostatic singular and hypersingular singular integrals employs an exterior limit to
the boundary, while the weakly singular integrals in the second part are handled by Gauss
quadrature. Time histories (transient responses) of the DSIFs are obtained in a post-processing
step by applying the standard fast Fourier transform algorithm to the frequency responses of
these DSIFs. Two numerical examples are presented for the computation of the DSIFs due to
crack-inclusion interaction under two types of impact loading: Heaviside step loading and blast
loading. The numerical results are consistent and confirm the well known crack tip shielding
mechanism observed during the interaction between a crack and a much stiffer inclusion.

Introduction

As the use of composite materials in industry (e.g., airframes) has expanded, there is an
increasing interest in their fracture behavior under impact loading conditions. Of particular
interest is the dynamic fracture behavior due to crack-inclusion interaction in these materi-
als. Among numerical methods available for this class of problems, boundary element method
(BEM, e.g., [1]) has emerged as an effective tool. The key feature of the BEM is that only the
boundary of the domain is discretized. For wave problems posed as scattering from a finite body
in an infinite domain, this means that an artificial truncation of the domain is not required.
For fracture analysis the important implications are that the singular stress field ahead of the
crack is not approximated, and that remeshing a propagating crack is an easier task. There
are two types of BEM formulations in dynamics: frequency domain (FD, e.g., [2–8]) and time
domain (TD, e.g., [8–10]). Nonlinear elastodynamics by means of incremental schemes requires
the use of TD formulation [1] while a FD formulation is better suited for parallel computing and
analyses of the same structure under different dynamic loading conditions (frequency responses
are independent of each other as well as the loading). Although the FD formulation requires the
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use of Fourier/Laplace transform if time solutions are needed, its implementation is generally
simpler than for the TD formulation. For BEM works on the dynamic crack-inclusion interac-
tion, FD formulation has been employed by Mykhas’kiv and Khay [11] while TD formulation
has been preferred by several other research groups (e.g., [12–15]).

A variant of the BEM, employing a Galerkin approximation of both the displacement
boundary integral equation (BIE) and the hypersingular traction BIE, has been known as
the symmetric-Galerkin BEM (SGBEM) (e.g., [16]). Compared with the dual BEM (DBEM),
the SGBEM is potentially more time-consuming as the Galerkin procedure is based upon an
additional boundary integration. However, the SGBEM also offers several key advantages in
fracture applications: (a) SGBEM uses the displacement BIE on the boundary part where
displacement is prescribed and traction BIE on the boundary part where traction is known.
As the name implies, this results in a symmetric coefficient matrix, and this remains true for
fracture problems, with the proviso that the unknowns on the crack faces are the jumps in
displacement. Thus, the extra computational expense can be partially offset by exploiting this
symmetry, both in the matrix construction phase and in solving the linear system of equations;
(b) unlike the DBEM or other collocation methods, there is no smoothness requirement on the
displacement (e.g., [17]) in order to evaluate the hypersingular integral; thus, standard contin-
uous elements can be employed. The Galerkin approach can therefore easily exploit the highly
effective quarter-point quadratic element to accurately capture the crack tip behavior. On the
other hand, internal collocation, as often employed by the DBEM, results in a physically un-
appealing discontinuous interpolation; and (c) the weighted averaging formulation of Galerkin,
by avoiding direct collocation at corners and junction points, provides a smoother solution in
the neighborhood of geometric discontinuities. This is especially useful for dealing with kinked
crack problems.

In addition to important developments of the SGBEM for stress and fracture analysis in
elastostatics, the SGBEM for elastodynamics has been reported in the time domain (e.g.,
[18,19]) and frequency domain (e.g., [20–24]). However, to the best knowledge of the authors, no
work on dynamic crack-inclusion interaction using SGBEM has been reported in the literature.
This paper presents a study on the interaction between a crack and a circular inclusion using a
symmetric-Galerkin boundary integral formulation for elastodynamics in the frequency domain
(Fourier space).

In both finite and boundary element modeling of discrete cracks, the standard approach
consists of incorporating the quarter-point (QP) element [25, 26] to improve the accuracy of
stress intensity factor (SIF) calculations (e.g., [27,28]). Nevertheless, in either finite or boundary
element analyses, the prediction of KII and KIII has not been nearly as accurate as for KI.
Recently, Gray and Paulino [29] have proved that, for an arbitrary crack geometry, a constraint
exists in the series expansion of the crack opening displacement at the tip (see also [30]). As
discussed in [29], the standard QP (SQP) element in general fails to satisfy this constraint,
and this has led to the development of an improved modified QP (MQP) element [31]. It
was demonstrated in [31–33] that the accuracy of the computed SIFs and/or T-stress can be
significantly improved by incorporating this MQP element into the SGBEM. As a result, the
MQP element is employed to determine the dynamic SIFs (DSIFs) in this work. Note that a
recent development of the so-called enhanced QP (EQP) element [34] has suggested that EQP
would provide even a better accuracy than MQP in evaluating the SIFs.

As the FD formulation is employed in this work, the DSIFs produced from any SGBEM
analysis are a function of frequency. If time histories (transient responses) of the DSIFs are
needed, the standard fast Fourier transform (FFT) algorithm can be used to obtain these
time-dependent quantities.
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Two numerical examples are reported to demonstrate the effectiveness of using the SGBEM
for frequency-domain elastodynamics and Fourier transforms in the analysis of crack-inclusion
interaction. These problems involve the determination of transient responses of the DSIFs for
a crack interacting with a circular inclusion in a finite plate and a three-point bend beam.

Boundary Integral Equations for Elastodynamic Fracture Analysis

prescribed displacement

prescribed traction

Γc
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Fig. 1: A domain containing a crack

Consider a finite domain containing a crack as shown in Fig. 1. The crack is composed of
two symmetrically loaded surfaces Γ+

c and Γ−c which are initially coincident. Let the boundary
of the domain be Γ and Γ = Γb ∪ Γ+

c ∪ Γ−c . Also, let Γb = Γbu ∪ Γbt where Γbu is part of
Γb where displacement is specified and Γbt is part of Γb where traction is prescribed. Finally,
let Γt = Γbt + Γ+

c and note that traction is supposed to be known on Γc = Γ+
c ∪ Γ−c . The

Navier-Cauchy governing equation for elastodynamics without body force is given by

(c2
p − c2

s)ui,ij(Q, t) + c2
suj,ii(Q, t)− üj(Q, t) = 0 . (1)

where commas and dots denote space and time differentiations, respectively, and ui(Q, t) rep-
resents the displacement vector at a field point Q and at time t. The compressional (cp) and
shear (cs) velocities are known to be

c2
p =

λ+ 2µ

ρ
, c2

s =
µ

ρ
. (2)

where λ and µ are the Lamé constants, and ρ is the mass density.
The Fourier transform of Eq. (1) gives the following frequency domain representation:

(c2
p − c2

s)ui,ij(Q,ω) + c2
suj,ii(Q,ω) + ω2uj(Q,ω) = 0 . (3)

Use of the reciprocal relation for two elastodynamic states of the same angular frequency
ω results in the following displacement BIE for a source point P interior to the domain in
question:

U(P, ω) ≡ uk(P, ω)−
∫
Γb

[Ukj(P,Q, ω) tj(Q,ω)− Tkj(P,Q, ω)uj(Q,ω)] dQ

+

∫
Γ+
c

Tkj(P,Q, ω) ∆uj(Q,ω) dQ = 0 . (4)

where Q denotes a field point, uj and tj are the displacement and traction vectors, respectively,
and ∆uj is the displacement jump vector across the crack surfaces. As ∆uj is used as the
unknown on the crack, only one crack surface, e.g., Γ+

c , needs to be discretized.
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suj,ii(Q, t)− üj(Q, t) = 0 . (1)

where commas and dots denote space and time differentiations, respectively, and ui(Q, t) rep-
resents the displacement vector at a field point Q and at time t. The compressional (cp) and
shear (cs) velocities are known to be

c2
p =

λ+ 2µ

ρ
, c2

s =
µ

ρ
. (2)
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For P off the boundary, the kernel functions are not singular and it is permissible to dif-
ferentiate Eq. (4) with respect to P , yielding the displacement gradients. Substitution of these
gradients into Hooke’s law and then Cauchy’s relation results in the following BIE for surface
traction:

T (P, ω) ≡ tk(P, ω)− n`(P )

∫
Γ

[Dkj`(P,Q, ω) tj(Q,ω)− Skj`(P,Q, ω)uj(Q,ω)] dQ

+ n+
` (P )

∫
Γ+
c

Skj`(P,Q, ω) ∆uj(Q,ω) dQ = 0 . (5)

where n` is the outward normal vector to the related boundary. It is well known that this traction
BIE is essential for treating crack geometries. As it is difficult to find correct expressions for the
elastodynamic kernel tensors Ukj, Tkj, Dkj` and Skj`, these formulas are given in the Appendix.

It can be shown that the limits of the integrals in Eqs. (4) and (5) as P approaches the
boundary exist. From now on, for P ∈ Γ, the BIE is understood in this limiting sense.

The Galerkin boundary integral formulation is obtained by taking the shape functions ψm

employed in approximating the boundary tractions and displacements as weighting functions
for Eqs. (4) and (5). For a symmetric-Galerkin approximation, Eq. (6) needs to be employed on
the boundary part Γbu where displacements are prescribed, and Eq. (7) is used on the boundary
part Γt where tractions are prescribed,∫

Γbu

ψm(P )U(P, ω) dP = 0 . (6)

∫
Γt

ψm(P ) T (P, ω) dP = 0 . (7)

The additional boundary integration is the key to obtaining a symmetric coefficient matrix
(as the name implies), as this ensures that the source point P and field point Q are treated in
the same manner.

As mentioned earlier, standard (continuous) quadratic shape functions are used in this work
to exploit the highly accurate MQP element for fracture analysis. One of the advantages of the
frequency-domain analysis is that Eqs. (4) and (5) have a similar form as those in elastostatics.
Thus, the reader is referred to, for example, Ref. [16] for more details on the SGBEM.

Multi-domain Analysis

The above SGBEM formulations need to be extended to deal with multi-domain problems
such as those involving crack-inclusion interaction. The multi-domain technique is based upon
the assumption of a perfect bonding between inclusions and the matrix which requires the
displacement continuity and traction equilibrium conditions to be enforced on the interface.

Without loss of generality, consider a problem with two domains A and B as shown in Fig.
2. The coefficient matrix is partitioned into a 4× 4 block structure as follows:

SAA 0 SAuI
SAtI

0 SBB SBuI
−SBtI

SuIA SuIB SuIuI
SuI tI

BStIA StIB StIuI
StI tI

 . (8)
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Fig. 2: A multi-domain problem

where SAA and SBB refer to Eqs. (6) and (7), depending on the boundary conditions, written for
the non-interface boundaries of domains A and B, respectively, and SAuI

, SAtI , etc., correspond
to the unknown interface displacement (uI) and interface traction (tI). As both displacements
and tractions are the unknowns on the interface, both Eqs. (6) and (7) need to be employed on
this interface.

As a result of the symmetric-Galerkin (SG) procedure, SAA and SBB are symmetric matrices.
The (1,2) and (2,1) blocks are equal to zero as the SG equations for domain A do not involve
the geometry of domain B, and vice versa. The minus sign in the (2,4) block is due to the
change in sign for the interface traction. The key in obtaining a symmetric coefficient matrix
is to complete rows three and four with appropriate interface equations. More details of multi-
domain techniques for the SGBEM can be found in, e.g., [18, 36,37].

Treatment of Singular Integrals

The main computational task in implementing Eqs. (6) and (7) is the evaluation of the singular
and hypersingular integrals [24]. For this type of evaluation, one can employ a direct regulariza-
tion approach (e.g., [38]) or a decomposition technique as adopted herein: the elastodynamics
formulation is decomposed into two parts as follows:∫ ∫

I dQ dP =

∫ ∫
Is dQ dP +

∫ ∫
(I − Is) dQ dP . (9)

where I and Is denote an elastodynamic kernel and its elastostatic counterpart, respectively.
As seen in the Appendix, I involves modified Bessel functions of the second kind.

The first part
∫ ∫

Is dQ dP is identical to that for elastostatics. The treatment of the singular
and/or hypersingular integrals in this part is carried out by means of an exterior limit to the
boundary (the needed analytic integrations and limit are aided by symbolic computation). As
the general procedure for this treatment has been presented in [16, 39], we therefore focus on
the second term.

As the distance r between P and Q tends to zero (∀ω > 0), the modified Bessel functions
of the second kind take the following forms:

K0(z) = − ln
z

2
− γ +O(z) , (10)

K1(z) =
1

z
+
z

2

(
ln
z

2
+ γ − 1

2

)
+O(z2) , (11)

K2(z) =
1

z2
− 1

2
+O(z3) , (12)

where z could be either z1 or z2 (see Eq. (31)), and γ is Euler’s constant.
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Use of these above equations in the elastodynamic kernels results in the following asymptotic
behavior for the kernel functions,

Ud
kj − U s

kj =
Eω

2πµ
δkj = O(1) , (13)

T d
kj − T s

kj = O(r ln r) , (14)

Dd
kj` −Ds

kj` = O(r ln r) , (15)

Sd
kj` − Ss

kj` = O(ln r) , (16)

where i2 = −1, ν is Poisson’s ratio and

Eω =
−1

4(1− ν)

[
(3− 4ν)

(
ln
iω

2
+ γ

)
+

1

2

]
+

1

2

[
ln cs +

(
cs
cp

)2

ln cp

]
. (17)

It can be seen that the second part
∫ ∫

(I − Is) dQ dP is regular except when the integrand
is Sd

kj` − Ss
kj`. However, this logarithmic singularity can be treated straightforwardly by Gauss

quadrature using the following conversion [40]:

1∫
0

f(r) ln r dr = −
1∫

0

1∫
0

f(sr) ds dr . (18)

Finally, it should be noted that, since both I and Is are singular, the singular terms in the
kernel difference (I − Is) must be algebraically canceled out to avoid large round-off errors. By
doing that, the integrand (I−Is) can be accurately obtained by using Eqs. (29) and (30), where
K0(z), K1(z), K2(z) are given by Eqs. (10) through (12), and ψ,r, χ,r, ψ,rr, χ,rr are replaced by
ψ,r − AA, χ,r − AA+BB, ψ,rr − CC, χ,rr +DD, respectively. Here,
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(
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2
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]
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,
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[
−
(
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)2
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1

2

(
ln
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2
+ γ − 3

2

)
+
z2

2

2

(
ln
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2
+ γ − 3

2

)]
1

r2
. (19)

Dynamic Stress Intensity Factors

In this work, the DSIFs are numerically evaluated using the displacement correlation technique
(DCT). This technique is based upon the crack displacement jump in the vicinity of the crack
tip and the jump is determined by the SGBEM described earlier. According to the DCT,

KI(ω) = βµ lim
r→0

√
2π

r
∆un(ω) ,

KII(ω) = βµ lim
r→0

√
2π

r
∆ut(ω) , (20)

Use of these above equations in the elastodynamic kernels results in the following asymptotic
behavior for the kernel functions,

Ud
kj − U s

kj =
Eω

2πµ
δkj = O(1) , (13)

T d
kj − T s

kj = O(r ln r) , (14)

Dd
kj` −Ds

kj` = O(r ln r) , (15)

Sd
kj` − Ss

kj` = O(ln r) , (16)

where i2 = −1, ν is Poisson’s ratio and
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It can be seen that the second part
∫ ∫

(I − Is) dQ dP is regular except when the integrand
is Sd

kj` − Ss
kj`. However, this logarithmic singularity can be treated straightforwardly by Gauss

quadrature using the following conversion [40]:

1∫
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0

1∫
0

f(sr) ds dr . (18)

Finally, it should be noted that, since both I and Is are singular, the singular terms in the
kernel difference (I − Is) must be algebraically canceled out to avoid large round-off errors. By
doing that, the integrand (I−Is) can be accurately obtained by using Eqs. (29) and (30), where
K0(z), K1(z), K2(z) are given by Eqs. (10) through (12), and ψ,r, χ,r, ψ,rr, χ,rr are replaced by
ψ,r − AA, χ,r − AA+BB, ψ,rr − CC, χ,rr +DD, respectively. Here,

AA =
z2

2

2r

(
ln
z2

2
+ γ − 1

2

)
,

BB =

(
cs
cp

)2
z2

1

2r

(
ln
z1

2
+ γ − 1

2

)
,

CC =

[(
cs
cp

)2
z2

1

2

(
ln
z1

2
+ γ − 1

2

)
+
z2

2

2

]
1

r2
,

DD =

[
−
(
cs
cp

)2
z2

1

2

(
ln
z1

2
+ γ − 3

2

)
+
z2

2

2

(
ln
z2

2
+ γ − 3

2

)]
1

r2
. (19)

Dynamic Stress Intensity Factors

In this work, the DSIFs are numerically evaluated using the displacement correlation technique
(DCT). This technique is based upon the crack displacement jump in the vicinity of the crack
tip and the jump is determined by the SGBEM described earlier. According to the DCT,

KI(ω) = βµ lim
r→0

√
2π

r
∆un(ω) ,

KII(ω) = βµ lim
r→0

√
2π

r
∆ut(ω) , (20)

84 Computational Methods in Fracture Mechanics



where ∆un and ∆ut are the normal and tangential components of the crack displacement jump
vector, respectively, and r is the distance to the crack tip. In Eq. (20),

β =
4βpβs − (1 + β2

s )2

4βp(1− β2
s )

, (21)

and

βp =
√

1− (c/cp)2 , βs =
√

1− (c/cs)2 , (22)

where c is the crack growth velocity. For stationary cracks such as those considered in this work,
c = 0 and

lim
c→0

β =
c2
p − c2

s

2c2
p

=
1

4(1− ν)
. (23)

The dynamic fracture analysis calculations reported in this work are performed using the
MQP element developed in [31]. By using the MQP shape functions in Eq. (20), the DCT-based
DSIFs are obtained as

KI(ω) =
βµ

3

√
2π

L

(
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n

)
,

KII(ω) =
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3

√
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(
8∆u

(2)
t −∆u

(3)
t

)
, (24)

where L is the distance between the tip and ending nodes, and the superscripts (2) and (3)
denote the quarter-point and ending nodes of the crack-tip element, respectively.

As the DSIFs are directly given in terms of the nodal values of the displacement jump of
the crack-tip element, and the MQP element enhances the accuracy of the nodal displacement
jump, this enhances the accuracy of the obtained DSIF frequency responses.
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Fig. 3: A model for obtaining time histories using the standard FFT algorithm

To simplify the notations used in this paper, X(ω) is understood as the Fourier transform
of X(t) and vice versa.

The solution of a dynamic problem for a system can be viewed as an input/output relation
where the input is the load P and the output is the dynamic response F of the system. If P
and F are in the frequency domain, the relation can be written as

F (ω) = H(ω)P (ω) . (25)
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As the DSIFs are directly given in terms of the nodal values of the displacement jump of
the crack-tip element, and the MQP element enhances the accuracy of the nodal displacement
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To simplify the notations used in this paper, X(ω) is understood as the Fourier transform
of X(t) and vice versa.

The solution of a dynamic problem for a system can be viewed as an input/output relation
where the input is the load P and the output is the dynamic response F of the system. If P
and F are in the frequency domain, the relation can be written as

F (ω) = H(ω)P (ω) . (25)

Key Engineering Materials Vol. 454 85



In Eq. (25), H(ω) is called the frequency response which is the response of the system due
to a unit harmonic load P (ω) = eiωt.

Figure 3 depicts a model for obtaining time histories (transient responses) from frequency
response analysis of damped systems. In this model, the problem under a unit harmonic load
(eiωt) is analyzed first using SGBEM to obtain the frequency response H(ω). In the mean time,
the time-dependent load P (t) is converted to the frequency domain (P (ω)) by means of FFT.
Relation (25) is then employed to obtain the dynamic response F (ω) in the frequency domain.
Finally, IFFT is used to transform F (ω) into the time domain (F (t)).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

f = ω /2π,  MHz

-60

-40

-20

0

20

40

60

H
(ω

)

real
imaginary
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frequency of frequency response H(ω)
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A procedure for obtaining the transient responses by the standard FFT algorithm can be
summarized as follows:

(a) Determine a frequency resolution ∆f (f = 2πω) which needs to be small enough to
minimize the loss of frequency information.

(b) Perform SGBEM analysis for f = 0,∆f, 2∆f, . . . , N
2

∆f = fNyq, where N = 2m and m is
a positive integer, to obtain the frequency response H(ω) for the first (N

2
+ 1) samples.

The Nyquist frequency fNyq needs to be chosen such that frequency responses above fNyq

are not significant and can thus be discarded. Note that the very first sample (j = 1) is
the static sample (f = 0);

(c) For the last (N
2
− 1) samples (j = N

2
+ 2 . . . N), H(ω) must be determined such that it is

conjugate symmetric about the Nyquist frequency, i.e.,

H(j) = conj(H(N − j + 2)) (j =
N

2
+ 2 . . . N) . (26)

Figure 4 depicts an example of a frequency response H(ω) constructed from using ∆f =
0.001 MHz, N = 211 = 2, 048 and fNyq = 1.024 MHz.

(d) Perform FFT for the time-dependent load P (t) for the first N samples (j = 1 . . . N);

In Eq. (25), H(ω) is called the frequency response which is the response of the system due
to a unit harmonic load P (ω) = eiωt.

Figure 3 depicts a model for obtaining time histories (transient responses) from frequency
response analysis of damped systems. In this model, the problem under a unit harmonic load
(eiωt) is analyzed first using SGBEM to obtain the frequency response H(ω). In the mean time,
the time-dependent load P (t) is converted to the frequency domain (P (ω)) by means of FFT.
Relation (25) is then employed to obtain the dynamic response F (ω) in the frequency domain.
Finally, IFFT is used to transform F (ω) into the time domain (F (t)).
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A procedure for obtaining the transient responses by the standard FFT algorithm can be
summarized as follows:

(a) Determine a frequency resolution ∆f (f = 2πω) which needs to be small enough to
minimize the loss of frequency information.

(b) Perform SGBEM analysis for f = 0,∆f, 2∆f, . . . , N
2

∆f = fNyq, where N = 2m and m is
a positive integer, to obtain the frequency response H(ω) for the first (N

2
+ 1) samples.

The Nyquist frequency fNyq needs to be chosen such that frequency responses above fNyq

are not significant and can thus be discarded. Note that the very first sample (j = 1) is
the static sample (f = 0);

(c) For the last (N
2
− 1) samples (j = N

2
+ 2 . . . N), H(ω) must be determined such that it is

conjugate symmetric about the Nyquist frequency, i.e.,

H(j) = conj(H(N − j + 2)) (j =
N

2
+ 2 . . . N) . (26)

Figure 4 depicts an example of a frequency response H(ω) constructed from using ∆f =
0.001 MHz, N = 211 = 2, 048 and fNyq = 1.024 MHz.

(d) Perform FFT for the time-dependent load P (t) for the first N samples (j = 1 . . . N);
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(e) Calculate F (ω) = H(ω)P (ω);

(f) Perform IFFT for F (ω) to obtain the transient response F (t). Note that the period
and time resolution (sampling interval) of this transient response are Tf = 1/∆f and
∆t = Tf/N , respectively;

(g) If the calculated ∆t does not give a very good indication of the shape of the transient
curves, interpolation [41] can be used. This is done by increasing the value of Nyquist’s
frequency while requiring no extra SGBEM analysis as extra zeros are added to the
frequency response. As a result, the number of samples N is increased accordingly which
improves the resolution of the transient curves.

Figure 5 shows an example of a frequency response H(ω) for which Nyquist’s frequency
fNyq is doubled from 1.024 MHz to 2.048 MHz. Thus, ∆t is reduced in half.

More mathematical details of this frequency domain analysis can be found in [42] where
some studies on the effects of fNyq and ∆f on the computational cost were given.

Numerical Examples

Two numerical examples involving viscoelastic materials are given in this Section to illustrate
the effectiveness of using frequency-domain elastodynamic SGBEM and the standard FFT
algorithm in transient analysis of the DSIFs in case of crack-inclusion interaction. The internal
damping of the viscoelastic materials is considered by means of a complex shear modulus defined
as µc = µ(1 + 2iζ) where ζ is the damping ratio. Note that undamped cases (ζ = 0) are not
considered here as their transient responses never decay which violate the periodic nature of
the standard FFT algorithm presented in Section 6 (e.g., [41]). That’s why some studies in the
literature reported that zero damping ratio would result in spurious oscillations in the time
solution [6,42]). Two types of impact loading are considered as depicted in Fig. 6: a Heaviside
step function and a blast loading function. Note in the standard implementation of the FFT
that a quiet zone, where the applied load σ(t) = 0, needs to be added to the end of the duration
of the load. This zone and Tf must be long enough in order to obtain accurate transient results.
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Fig. 6: (a) Heaviside step loading; (b) Blast loading

Crack-inclusion interaction in a finite plate

The first example deals with a plate of size (2W × 2H) = (30 mm× 40 mm) containing a
30◦-oriented crack of length 2a = 4.8 mm and an inclusion of diameter d = 4 mm as shown
in Fig. 7. The plate is subjected to a uniaxial tension σ(t) in the form of a Heaviside step or
blast loading (t1 = 2 µs, t2 = 8 µs) as depicted in Fig. 6. Crack tip A is eccentrically positioned
relative to the inclusion center as shown, and the eccentricity is denoted as e. The material
properties for the matrix and inclusion are respectively assumed to be: µ = 260 GPa and 640
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More mathematical details of this frequency domain analysis can be found in [42] where
some studies on the effects of fNyq and ∆f on the computational cost were given.
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damping of the viscoelastic materials is considered by means of a complex shear modulus defined
as µc = µ(1 + 2iζ) where ζ is the damping ratio. Note that undamped cases (ζ = 0) are not
considered here as their transient responses never decay which violate the periodic nature of
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step function and a blast loading function. Note in the standard implementation of the FFT
that a quiet zone, where the applied load σ(t) = 0, needs to be added to the end of the duration
of the load. This zone and Tf must be long enough in order to obtain accurate transient results.

t

σ σ

tt t21

(b)(a)

oσ σo

Fig. 6: (a) Heaviside step loading; (b) Blast loading

Crack-inclusion interaction in a finite plate

The first example deals with a plate of size (2W × 2H) = (30 mm× 40 mm) containing a
30◦-oriented crack of length 2a = 4.8 mm and an inclusion of diameter d = 4 mm as shown
in Fig. 7. The plate is subjected to a uniaxial tension σ(t) in the form of a Heaviside step or
blast loading (t1 = 2 µs, t2 = 8 µs) as depicted in Fig. 6. Crack tip A is eccentrically positioned
relative to the inclusion center as shown, and the eccentricity is denoted as e. The material
properties for the matrix and inclusion are respectively assumed to be: µ = 260 GPa and 640
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GPa, ν = 0.08 and 0.01, and ρ = 3, 220 kg/m3 and 3,515 kg/m3. Let the normalized mode-I
and mode-II DSIFs be defined as

FI =
KI

σo
√
πa

, FII =
KII

σo
√
πa

. (27)
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Fig. 7: Crack-inclusion interaction in composite plate.
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Fig. 8: FI and FII at tip A (ζ = 1%, Heaviside
step loading).
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Fig. 9: FI and FII at tip A (ζ = 1%, blast
loading).

Due to the interaction between the inclusion and a very nearby crack, a dense mesh needs
to be employed for the SGBEM frequency response analysis of the normalized DSIFs. Per
convergence study, 20 elements is used on the plate boundary, 20 equal-length elements on the
crack and 64 elements on the inclusion boundary. Here, ∆f = 0.001 MHz, N = 211 = 2, 048
and fNyq = 1.024 MHz are selected which results in a period of Tf = 1/∆f = 1, 000µs and a
time resolution of ∆t = Tf/N = 0.4883µs. To double the resolution of the transient responses
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Due to the interaction between the inclusion and a very nearby crack, a dense mesh needs
to be employed for the SGBEM frequency response analysis of the normalized DSIFs. Per
convergence study, 20 elements is used on the plate boundary, 20 equal-length elements on the
crack and 64 elements on the inclusion boundary. Here, ∆f = 0.001 MHz, N = 211 = 2, 048
and fNyq = 1.024 MHz are selected which results in a period of Tf = 1/∆f = 1, 000µs and a
time resolution of ∆t = Tf/N = 0.4883µs. To double the resolution of the transient responses
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Fig. 10: FI and FII at tip A (e = d/4, Heavi-
side step loading).
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Fig. 11: FI and FII at tip A (e = d/4, blast
loading).
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Fig. 12: FI and FII at tipB (ζ = 1%, Heaviside
step loading).
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Fig. 13: FI and FII at tip B (ζ = 1%, blast
loading).

for this problem, N is doubled from 2,048 to 4,096 which cuts the time resolution in half at
∆t = 0.2441µs.

First of all, it can be observed that there are many oscillations on the time-history DSIF
curves in Figs. 8 through 15. These oscillations are caused by the wave scattering from the
crack tip, inclusion and plate boundary. The first oscillation occurs at time T1 which is the time
needed for the incident longitudinal wave to reach the crack (T1 ' 1.25µs and 1.5µs for the
Heaviside and blast loading, respectively).

Figures 8 through 11 and 12 through 15 show the time histories of the normalized DSIFs
at crack tip A and B, respectively, during the first 7µs for the Heaviside step loading and the
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Fig. 12: FI and FII at tipB (ζ = 1%, Heaviside
step loading).
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Fig. 13: FI and FII at tip B (ζ = 1%, blast
loading).

for this problem, N is doubled from 2,048 to 4,096 which cuts the time resolution in half at
∆t = 0.2441µs.

First of all, it can be observed that there are many oscillations on the time-history DSIF
curves in Figs. 8 through 15. These oscillations are caused by the wave scattering from the
crack tip, inclusion and plate boundary. The first oscillation occurs at time T1 which is the time
needed for the incident longitudinal wave to reach the crack (T1 ' 1.25µs and 1.5µs for the
Heaviside and blast loading, respectively).

Figures 8 through 11 and 12 through 15 show the time histories of the normalized DSIFs
at crack tip A and B, respectively, during the first 7µs for the Heaviside step loading and the
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loading).

first 9µs for the blast loading. Figures 8 and 12 depict FI and FII as functions of three different
eccentricities, namely e = 3d/4, d/2 and d/4, under the Heaviside step loading while Figs. 9
and 13 show the same type of solution, but under the blast loading. These figures confirm a
mechanism known as crack-tip shielding: the SIFs/DSIFs decrease as the crack tip approaches a
much stiffer inclusion (as e decreases). As crack tip B is located further away from the inclusion,
the interaction between this crack tip and the inclusion is less significant as seen in Figs. 12
and 13.

Figures 10 and 14 show FI and FII as functions of three different damping ratios under the
Heaviside step loading while Figs. 11 and 15 depict the same type of solution, but under the
blast loading. It can be seen that the DSIF solutions are dampened accordingly as ζ increases.
Finally, the crack tip shielding mechanism at A can also be observed by noticing that FI at tip
A (Figs. 10 and 11) are smaller than that at tip B (Figs. 14 and 15).

Crack-inclusion interaction in a three-point bend beam
The last example deals with a three-point bend beam of width L = 200 mm and depth

W = 50 mm, containing an edge crack of length a = 10 mm and an inclusion of diameter
d = 2R = 5 mm as shown in Fig. 16. The crack is eccentrically positioned relative to the
inclusion center as shown, and the eccentricity in the x- and y-direction are denoted as ex and
ey, respectively. The material properties for the matrix and inclusion are respectively assumed
to be; µ = 4.1 GPa and 15 GPa, ν = 0.34 and 0.3, and ρ = 1, 175 kg/m3 and 1,500 kg/m3. The
beam is subjected to an impact load P (t) per unit thickness of the beam. Again, both types
of impact: Heaviside step function and blast function (with t1 = 100µs and t1 = 400µs) are
considered (see Fig. 6 where σ and σo are replaced by P and Po, respectively). The normalized
mode-I and mode-II DSIFs are defined as

FI =
KI

PoL/W 3/2
, FII =

KII

PoL/W 3/2
. (28)

A convergence test suggests a total of 125 elements for the beam boundary, 5 equal-length
elements for the crack and 68 uniform elements for the matrix-inclusion interface. The frequency
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first 9µs for the blast loading. Figures 8 and 12 depict FI and FII as functions of three different
eccentricities, namely e = 3d/4, d/2 and d/4, under the Heaviside step loading while Figs. 9
and 13 show the same type of solution, but under the blast loading. These figures confirm a
mechanism known as crack-tip shielding: the SIFs/DSIFs decrease as the crack tip approaches a
much stiffer inclusion (as e decreases). As crack tip B is located further away from the inclusion,
the interaction between this crack tip and the inclusion is less significant as seen in Figs. 12
and 13.

Figures 10 and 14 show FI and FII as functions of three different damping ratios under the
Heaviside step loading while Figs. 11 and 15 depict the same type of solution, but under the
blast loading. It can be seen that the DSIF solutions are dampened accordingly as ζ increases.
Finally, the crack tip shielding mechanism at A can also be observed by noticing that FI at tip
A (Figs. 10 and 11) are smaller than that at tip B (Figs. 14 and 15).

Crack-inclusion interaction in a three-point bend beam
The last example deals with a three-point bend beam of width L = 200 mm and depth

W = 50 mm, containing an edge crack of length a = 10 mm and an inclusion of diameter
d = 2R = 5 mm as shown in Fig. 16. The crack is eccentrically positioned relative to the
inclusion center as shown, and the eccentricity in the x- and y-direction are denoted as ex and
ey, respectively. The material properties for the matrix and inclusion are respectively assumed
to be; µ = 4.1 GPa and 15 GPa, ν = 0.34 and 0.3, and ρ = 1, 175 kg/m3 and 1,500 kg/m3. The
beam is subjected to an impact load P (t) per unit thickness of the beam. Again, both types
of impact: Heaviside step function and blast function (with t1 = 100µs and t1 = 400µs) are
considered (see Fig. 6 where σ and σo are replaced by P and Po, respectively). The normalized
mode-I and mode-II DSIFs are defined as

FI =
KI

PoL/W 3/2
, FII =

KII

PoL/W 3/2
. (28)

A convergence test suggests a total of 125 elements for the beam boundary, 5 equal-length
elements for the crack and 68 uniform elements for the matrix-inclusion interface. The frequency
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responses of the mode-I DSIF are obtained using the following data: ∆f = 25 Hz, N = 211 =
4, 096, fNyq = 51.2 KHz. This results in the following values for the transient analysis using the
standard FFT algorithm: Tf = 1/∆f = 40 ms and ∆t = Tf/N = 9.766µs.

Again, the oscillations on the time-history DSIF curves in Figs. 17 through 22 are due to
wave scattering from the inclusion, crack tip, supports and beam boundary. As shown in Figs.
17 and 18, the first oscillation occurs at time T1 ' 30µs and 35µs for the Heaviside and blast
loading, respectively). These are times needed for the incident longitudinal wave to travel from
the top surface of the beam to the crack tip.
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Fig. 17: Effect of ex on FI under Heaviside
step loading (ey = R).
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Fig. 18: Effect of ex on FI under blast loading
(ey = R).

Figures 17 and 19 depict the effect of the eccentricities ex and ey, respectively, on the
normalized DSIFs during the first 800 µs under the Heaviside step loading, while Figs. 18 and
20 show the same effects during the first 900 µs under the blast loading. Again, the results
exhibit the increase of crack-tip shielding for FI and amplification for FII as the tip approaches
the inclusion. Actually, due to the position of the inclusion relative to the crack tip in this
case, the shielding of FI is more pronounced and the amplification of FII is not noticeable (Figs.
17 and 18) as the horizontal eccentricity ex decreases (the approaching direction of the stiff
inclusion is perpendicular to the crack which mainly decreases the crack opening displacement
(COD)) while the shielding of FI is less pronounced and the amplification of FII is noticeable
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responses of the mode-I DSIF are obtained using the following data: ∆f = 25 Hz, N = 211 =
4, 096, fNyq = 51.2 KHz. This results in the following values for the transient analysis using the
standard FFT algorithm: Tf = 1/∆f = 40 ms and ∆t = Tf/N = 9.766µs.

Again, the oscillations on the time-history DSIF curves in Figs. 17 through 22 are due to
wave scattering from the inclusion, crack tip, supports and beam boundary. As shown in Figs.
17 and 18, the first oscillation occurs at time T1 ' 30µs and 35µs for the Heaviside and blast
loading, respectively). These are times needed for the incident longitudinal wave to travel from
the top surface of the beam to the crack tip.
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Fig. 17: Effect of ex on FI under Heaviside
step loading (ey = R).
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Figures 17 and 19 depict the effect of the eccentricities ex and ey, respectively, on the
normalized DSIFs during the first 800 µs under the Heaviside step loading, while Figs. 18 and
20 show the same effects during the first 900 µs under the blast loading. Again, the results
exhibit the increase of crack-tip shielding for FI and amplification for FII as the tip approaches
the inclusion. Actually, due to the position of the inclusion relative to the crack tip in this
case, the shielding of FI is more pronounced and the amplification of FII is not noticeable (Figs.
17 and 18) as the horizontal eccentricity ex decreases (the approaching direction of the stiff
inclusion is perpendicular to the crack which mainly decreases the crack opening displacement
(COD)) while the shielding of FI is less pronounced and the amplification of FII is noticeable
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Fig. 19: Effect of ey on FI under Heaviside step
loading (ex = R).
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Fig. 20: Effect of ey on FI under blast loading
(ex = R).
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Fig. 21: Effect of ζ on FI under Heaviside step
loading (ex = ey = R).
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Fig. 22: Effect of ζ on FI under blast loading
(ex = ey = R).

(Figs. 19 and 20) as the vertical eccentricity ey decreases (the approaching direction of the
stiff inclusion is parallel to the crack which decreases the COD and increases the crack sliding
displacement).

Finally, Figs. 21 and 22 show the effect of three different damping ratios, namely ζ =
1%, 2.5% and 5%, on the transient responses of FI and FII under the Heaviside and blast
loading, respectively. Again, the DSIF solutions are dampened accordingly as ζ increases.
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(ex = R).
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(Figs. 19 and 20) as the vertical eccentricity ey decreases (the approaching direction of the
stiff inclusion is parallel to the crack which decreases the COD and increases the crack sliding
displacement).

Finally, Figs. 21 and 22 show the effect of three different damping ratios, namely ζ =
1%, 2.5% and 5%, on the transient responses of FI and FII under the Heaviside and blast
loading, respectively. Again, the DSIF solutions are dampened accordingly as ζ increases.
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Conclusion

A 2-D symmetric-Galerkin boundary integral formulation for multi-domain elastodynamic frac-
ture analysis in the frequency domain, together with a post-processing procedure for obtaining
transient responses using the standard FFT algorithm, were described in this paper. The for-
mulation was successfully employed for analyzing the dynamic interaction between a crack and
a circular inclusion in a finite plate and a three-point bend beam. There are several major
advantages of this dynamic fracture modeling technique: (a) Compared to a static counterpart,
this formulation only requires additional integrals that are either regular or weakly singular.
However, care should be taken to avoid large round-off errors in evaluating the additional weakly
singular integrals; (b) Unlike in the conventional collocation dual BEM, standard continuous
elements can be employed in the SGBEM, allowing the use of SQP/MQP/EQP elements to
accurately capture the crack tip behavior; (c) The FD formulation is suitable for arbitrarily
time-dependent loading often seen in practical engineering, as the handling of this type of load-
ing by means of the standard FFT algorithm is inexpensive; and (d) The FD formulation is also
known to result in stable transient responses as it is easier to select an appropriate frequency
step for the FD formulation than a suitable time step for the TD formulation. The transient
responses of the DSIFs obtained for the two examples considered in this paper are reason-
able, consistent and suggest that the dynamic fracture modeling technique discussed herein is
very effective. The results also confirm the well-known crack tip shielding mechanism due to
crack-inclusion interaction. A potential extension of this work is the modeling of dynamic crack
growth through a cluster of particles.
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Appendix

The elastodynamic kernels in Eqs. (4) and (5) are given by
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where nj is the normal vector to the boundary, δij is the Kronecker delta, and
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Conclusion

A 2-D symmetric-Galerkin boundary integral formulation for multi-domain elastodynamic frac-
ture analysis in the frequency domain, together with a post-processing procedure for obtaining
transient responses using the standard FFT algorithm, were described in this paper. The for-
mulation was successfully employed for analyzing the dynamic interaction between a crack and
a circular inclusion in a finite plate and a three-point bend beam. There are several major
advantages of this dynamic fracture modeling technique: (a) Compared to a static counterpart,
this formulation only requires additional integrals that are either regular or weakly singular.
However, care should be taken to avoid large round-off errors in evaluating the additional weakly
singular integrals; (b) Unlike in the conventional collocation dual BEM, standard continuous
elements can be employed in the SGBEM, allowing the use of SQP/MQP/EQP elements to
accurately capture the crack tip behavior; (c) The FD formulation is suitable for arbitrarily
time-dependent loading often seen in practical engineering, as the handling of this type of load-
ing by means of the standard FFT algorithm is inexpensive; and (d) The FD formulation is also
known to result in stable transient responses as it is easier to select an appropriate frequency
step for the FD formulation than a suitable time step for the TD formulation. The transient
responses of the DSIFs obtained for the two examples considered in this paper are reason-
able, consistent and suggest that the dynamic fracture modeling technique discussed herein is
very effective. The results also confirm the well-known crack tip shielding mechanism due to
crack-inclusion interaction. A potential extension of this work is the modeling of dynamic crack
growth through a cluster of particles.
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where nj is the normal vector to the boundary, δij is the Kronecker delta, and
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In Eq. (30), Kn(z) is the modified Bessel function of the second kind and order n, and

z1 =
iωr

cp
,

z2 =
iωr

cs
,

r =

√
[x1(Q)− x1(P )]2 + [x2(Q)− x2(P )]2 . (31)

References

[1] J. Dominguez: Boundary Elements in Dynamics(Computational Mechanics Publications,
Southampton 1997).

[2] J. Sladek and V. Sladek: Int. J. Numer. Meth. Eng., Vol. 23 (1986), p. 919.
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Abstract. The aim of this paper is to present a procedure to perform the evaluation of dynamic
stress intensity factors of composite cracked sheets. The numerical method that is used to perform
the modeling of the crack is the dual boundary element method. The inertial effects are modeled
using the dual reciprocity boundary elements method. The Houbolt Method is used to integrate
time, and the energy domain integral is used to evaluate stress intensity factors.

INTRODUCTION

The presence of cracks in mechanical or structural components decreases its mechanical and fatigue
resistance due to the high stress concentration at the crack tip. Under dynamic loads, a crack
can be still more dangerous due to wave propagations that increase magnitude of stress intensity
factors. Stress intensity factors can be obtained in the boundary element analyses by different
methods, such as the the crack tip opening displacement [1, 8], special crack tip elements [2, 3],
and path independent integrals based on conservation principles [5]. Among these methods, path
independent integrals, as J and M integrals, have the advantage that they do not require an
elaborate representation of the crack tip singular fields, due to the relatively small contribution
that the crack tip fields make to the total strain energy of the body. The contour integrals in
the J and M -integral expressions can be evaluated at points far away from the crack tip, hence
the accuracy of the these methods is expected to be higher. The M integral has some advantages
over J integral. For example, a unique relation between the M -integral and T -stress can be found.
However, the expression of M integral has more terms and its implementation is not justified if the
interest is only in the computation of stress intensity factors.

The successful application of high performance composites is reflected in many of the mechanical
properties such as strength, ductility, toughness, and fatigue resistance. Composite materials are
ideal for components which require high strength per weight and stiffness per weight ratios. For ex-
ample, aircraft are typically weight sensitive structures in which composite materials are effective.
Typical, composite weight saving of 30 % has been reported. However, the application of com-
posite materials in critical components has lagged behind, due to the lack of sufficient knowledge
about composite damage tolerance properties. Wave propagation in cracked laminated (anistropic)
materials, for example, is one of the area that still demands a lot of research. Dynamic fracture
mechanics in anisotropic materials has been investigated with boundary elements [7, 8] and by other
numerical methods. However, none of the literature articles presented the computation of dynamic
stress intensity factors using path independent integrals.

In this paper, the boundary element method (BEM) is applied for the analysis of the dynamic
response of composite cracked sheets. The elastodynamic response of cracked sheets has been
previously presented by Albuquerque et al. [7, 8]. The dual boundary element method (DBEM)
is a boundary modelling technique aiming fracture mechanics problems, allowing to discretize the
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crack in a single region. This technique has been successfully described and implemented by Portela
et al. [9], and regarded as an efficient technique to simulate fracture mechanics problems. The
consideration of inertial effects of the component introduces domain integrals in the boundary
equilibrium equations, which must be transformed into boundary integrals. The dual reciprocity
method (DRBEM) has been successfully used to overcome this problem for isotropic and anisotropic
sheets, as shown by Kögl and Gaul [10] and Albuquerque, Sollero and Aliabadi [7, 8]. A transient
procedure is adopted using the Houbolt [11] time integration. Finally, the evaluation of the dynamic
stress intensity factors is performed using the energy domain integral (EDI). The EDI for fracture
mechanics problems has been described by Cisilino, Aliabadi and Otegui [12] and by Balderrama,
Cisilino, and Martinez [13]. To the best of authors knowledge, it is the first time that EDI is been
used in the computation of dynamic stress intensity factors for anisotropic materials.

BOUNDARY ELEMENT FORMULATION

Figure 1: Illustration of cracked plate

Considering that the sheet shown in Fig.(1) is under a dynamic load, the integral equation for the
sheet in a source point (x′) is given by [8]:

cij
(
x′
)
uj
(
x′
)

+
∫
Γ

Tij
(
x′, x

)
uj
(
x′
)
dΓ =

∫
Γ

Uij
(
x′, x

)
tj
(
x′
)
dΓ+

∫
Ω

Uij
(
x′, x

)
ρüj

(
x′
)
dΩ . (1)

The coefficient cij (x′) depends on the position of the source point (x′) in relation to the bound-
ary which is being integrated, tj (x′) and uj (x′) are nodal tractions and displacements, Tij (x′, x)
and Uij (x′, x) are anisotropic fundamental solutions for tractions and displacements, and ρ is the
mass density of the material. The first three terms from eq.(1) refer to the classical elastostatics
formulation, and the last term refers to the effect of body forces due to the mass of the sheet under
dynamic load.

DUAL BOUNDARY ELEMENT METHOD (DBEM)

The DBEM consists on applying a displacement equation in the boundary and in one of the sides
of the crack, and a traction equation in the remaining side of the crack. The displacement equation
is given by eq.(1). The traction equation, obtained by the differentiation of eq.(1) [8], is given by:
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where Sijk (x′, x) and D (x′, x) are linear combinations of derivatives of Tij (x′, x) and Uij (x′, x).
When x′ → x, Sijk (x′, x) exhibits hypersigularity O

(
r−2
)
, and D (x′, x) exhibits strong singularity

O
(
r−1
)
, where r (x′, x) is the distance between the source and the integration points and ni (x′)

is a unitary vector, normal to the boundary at the source point. Eq.(2) is known as hypersingular
equation for plane elasticity, and, together with eq.(1), constitutes the basis of the DBEM technique.
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DISCRETIZED BOUNDARY ELEMENT FORMULATION

In order to obtain the elastodynamic response of the system, the boundary is divided into boundary
elements. Quadratic elements are used to model the sheet. For matters of convenience, four vectors
with dimension (2× E) are created:

u = ϕu(i) ; û = ϕû(i) ; t = ϕt(i) ; t̂ = ϕt̂(i) , (8)

where ϕ is the vector of quadratic shape functions, u (2× E) and t (2× E) are vectors of nodal
displacements and tractions of the system, and û (2× E) and t̂ (2× E) are the vectors of particularly
solutions for nodal displacements and tractions of the system. Coupling eq.(8) with eq.(7), and
calling ∫

Γj

UϕdΓ = G and
∫

Γj

TϕdΓ = H , (9)

it is possible to rewrite the integral equation (7) as:

Hljuj = Gljtj +
E∑
e=1

[
Hljuej −Gljte

j

]
βe . (10)

The E vectors βe (2× 1) can be assembled in one vector β (2E × 1). Therefore, eq.(3) can be
rewritten as:

p = Qβ , (11)

where p contains the body forces of the component under consideration for each one of its nodes.
The matrix Q contains values of the function qej (x′, x) for the nodes of the component which is
being considerate. The matrix form for the equilibrium equations of the component is obtained
coupling eq.(11) with eq.(10), and can be written as:

HΓuΓ −GΓtΓ = BΓpΓ (12)

where B is given by:

B =
[
HÛE −GT̂E

]
Q−1 . (13)

T̂ and Û are matrices of traction and displacement particular solutions. Finally, coupling equations
for boundary and domain, the equation system, can be written as:

Hu = Gt + Bp. (14)

TRANSIENT SOLUTION

To solve the linear system given by eq.(14), a transient solution procedure is used. This procedure
was proposed by Houbolt[11]. Considering that the inertial effects of the components are due to an
acceleration field given by:

p = ρü = Qβ , (15)
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eq.(14) can be rewritten for an instant of time τ +4τ as:

Huτ+4τ = Gtτ+4τ + Bρüτ+4τ . (16)

In order to proceed with the time integration, the period τ is divided in N time steps , where:

τ = N4τ . (17)

Assuming that the solution for eq.(16) is known at τ = 0,4τ, 24τ..., the acceleration at τ +4τ is
approximated by the expression[11]:

üτ+4τ =
1
4τ2

(
2uτ+4τ − 5uτ + 4uτ−4τ − uτ−24τ

)
. (18)

Inserting eq.(18) into eq.(16), the following system of equation is obtained:[
H− ρ 2

4τ2
B
]
uτ+4τ = Gtτ+4τ + Bρ

1
4τ2

(
−5uS

τ + 4uS
τ−4τ − uS

τ−24τ
)
. (19)

Energy Domain Integral

Figure 2: Integration limits for J-Integral.

The linear elastic fracture mechanics theory is only suitable for problems with a small area
of non-linear deformation around the crack tip. When this criteria is not verified, an alternative
theory must be applied [12]. Furthermore, the evaluation of stress intensity factors using numerical
solutions of stresses and strains near the crack tip, usually require a fine mesh of elements and often
do not provide accurate results for stress intensity factors [5]. Among the most used parameters
to overcome these problems, are the J Integral and the energy domain integral. Those parameters
consider a virtual energy release rate for stationary cracks, and can be used as failure criteria.

The EDI methodology is a general domain integral method for the computation of J proposed
by [14], [15], and [16]. The methodology can be applied to quasi-static and dynamic problems with
elastic, plastic, or viscoplastic material response, as well as thermal loading. The EDI methodology
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The EDI methodology is a general domain integral method for the computation of J proposed
by [14], [15], and [16]. The methodology can be applied to quasi-static and dynamic problems with
elastic, plastic, or viscoplastic material response, as well as thermal loading. The EDI methodology
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is equivalent to the virtual crack extension technique but has the advantage that only one computer
run is necessary to evaluate the point wise energy release rate along the complete crack front.
Besides, the domain integral formulation is efficient and relatively simple to implement numerically.

Considering the simplified example given by Fig.(2), the energy release rate per unit of crack
length advance along the x∗1 axis under quasi-static conditions is given by [12]:

Jk = lim
Γ→0

∫
Γ

(
wδik − σ∗iju∗j,k

)
nidC , (20)

where w is the strain energy density, σ∗ij and u
∗
j,1 are Cartesian components of stress and displace-

ment expressed in the local system x∗, ni is the unit vector that is normal to the contour Γ, and
dC is the differential of the arc length C , as depicted in Fig.(2). Although is possible to compute
Jk integral, these methods are generally quite time consuming, as they require internal evaluations
at Gauss points of all quantities. In order to overcome this drawback, the EDI is the method
implemented in this work.

Let δl denote the local crack front advance in the normal to the crack front direction in the
plane of the crack. Thus, the energy released Jk per unit of finite segment of crack advance ∆a, for
quasi-static conditions, can be obtained by:

−δπ = Jk∆a , (21)

where −δπ is the decrease in potential energy.
Inducing h → 0, as depicted in Fig.(3), means that the surfaces S+ and S− will have normal

vectors mk along the x∗2 axis, and the surface St will have its normal vector mk along the x∗1 axis.
Hence, the local crack front advance δl is given by:

δl = ∆a lkmk . (22)

where ∆alk denotes the crack advance in the x∗k direction.
Furthermore, restricting lk to lie along St and to be a function of x∗1, we obtain:

Jk∆a = ∆a
∫
St

(
σ∗iju

∗
j,k − wδki

)
lkmi dS . (23)

Figure 3: Integration limits for J-Integral.

is equivalent to the virtual crack extension technique but has the advantage that only one computer
run is necessary to evaluate the point wise energy release rate along the complete crack front.
Besides, the domain integral formulation is efficient and relatively simple to implement numerically.

Considering the simplified example given by Fig.(2), the energy release rate per unit of crack
length advance along the x∗1 axis under quasi-static conditions is given by [12]:

Jk = lim
Γ→0

∫
Γ

(
wδik − σ∗iju∗j,k

)
nidC , (20)

where w is the strain energy density, σ∗ij and u
∗
j,1 are Cartesian components of stress and displace-

ment expressed in the local system x∗, ni is the unit vector that is normal to the contour Γ, and
dC is the differential of the arc length C , as depicted in Fig.(2). Although is possible to compute
Jk integral, these methods are generally quite time consuming, as they require internal evaluations
at Gauss points of all quantities. In order to overcome this drawback, the EDI is the method
implemented in this work.

Let δl denote the local crack front advance in the normal to the crack front direction in the
plane of the crack. Thus, the energy released Jk per unit of finite segment of crack advance ∆a, for
quasi-static conditions, can be obtained by:

−δπ = Jk∆a , (21)

where −δπ is the decrease in potential energy.
Inducing h → 0, as depicted in Fig.(3), means that the surfaces S+ and S− will have normal

vectors mk along the x∗2 axis, and the surface St will have its normal vector mk along the x∗1 axis.
Hence, the local crack front advance δl is given by:

δl = ∆a lkmk . (22)

where ∆alk denotes the crack advance in the x∗k direction.
Furthermore, restricting lk to lie along St and to be a function of x∗1, we obtain:

Jk∆a = ∆a
∫
St

(
σ∗iju

∗
j,k − wδki

)
lkmi dS . (23)

Figure 3: Integration limits for J-Integral.

102 Computational Methods in Fracture Mechanics



To develop an domain integral, we consider the simply connected area S enclosed by the surfaces
S+, S−, St and S1, as depicted in Fig.(3). Furthermore, introduce the functions[12]:

qk = lk em St and qk = 0 em S1 , (24)

and consider that qk is a smooth function in the area S . Using eq.(24), we can re-write eq.(23) as:

Jk =
∫
S

(
σ∗iju

∗
j,k − wδki

)
mi qk dS −

∫
S++S−

σ∗2ju
∗
j,km2 qk dS . (25)

To obtain eq.(25), we consider that m1 = 0 and m2 = ±1 on the crack surfaces. It may be noted
that q2 = l2 = 0 everywhere. In the absence of crack face tractions, the second term of eq.(25)
vanishes. Finally, applying the divergence theorem to the closed surface integral eq.(25), we obtain:

Jk =
∫
V

(
σ∗iju

∗
j,k − wδki

)
qk,i dV. (26)

Notice that the integration presented by eq.(26) is path independent. Thus, any area may be used
to perform the integration, regardless of shape, or symmetry.

Taking into consideration the inertial effects of the sheet, another term is added to eq.(20).
Thus, the energy release rate can be re-written as [12]:

Ĵk = lim
Γ→0

∫
Γ

(
wδik − σ∗iju∗j,k

)
nidC +

∫
V

ρüi
∗u∗i,kdV

 , (27)

where ρüi∗ are inertial effects active near the crack tip.

Considering the inertial effects acting in the sheet, eq.(26) can be re-written as:

Ĵk =
∫
V

(
σ∗iju

∗
j,k − wδki

)
qk,i dV +

∫
V

ρüi
∗u∗i,1dV. (28)

The function qk was introduced in order to model the virtual crack front advance. Cisilino et al.
[12] have presented a bi-quadratic function for a three dimensional problem, which has been widely
tested. The two dimensional form of this function is given by:

qk (x∗) =

[
1−

(
r

r0

)2
]
, (29)

where r is the distance of the crack tip on the plane given by x∗1 − x∗2. Notice that qk, given by
eq.(29), fulfills the condition of smoothness inside the integration area S. The shape of the function
qk is quadratic in order to interpolate the contribution of the stress intensity factors in the stress
distribution at the crack region.
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Ĵk =
∫
V

(
σ∗iju

∗
j,k − wδki

)
qk,i dV +

∫
V

ρüi
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COMPUTATIONAL IMPLEMENTATION OF THE EDI

Figure 4: EDI integration domain.

In possession of eq.(28), it is necessary to perform the domain integration around the crack tip,
in order to obtain Ĵ . An alternative to proceed with the analysis, is to perform the isoparametric
integration of cells created around the crack tip with bi-quadratic elements, as shown in the Fig.(4),
thus fulfilling the derivative condition of qk. The portion of the domain in which area integrals are
performed is discretized using 9-node isoparametric cells, over which stresses, strains and displace-
ments derivatives are approximated by products of the interpolation function Φi, and the nodal
values of σij , εij and üi, known at the end of each time step of the solution procedure. Functions
qk are specified at all nodes within the integration area. Thus, it can be written in isoparametric
form as:

qk =
NCells∑
i=1

ΦiQ
k
i , (30)

where Qki are the nodal values of qk in the ith node. From eq.(24), it is possible to realize that Q1
i

and Q2
i are equal to zero. Therefore, we have:

∂q1

∂xj
=

NCells∑
i=1

(
∂Φi

∂ε

∂ε

∂xj
+
∂Φi

∂η

∂η

∂xj

)
. (31)

Considering the matrix:

Biso =

 ∂Φ1
∂ε

∂Φ2
∂ε

∂Φ3
∂ε

∂Φ4
∂ε

∂Φ5
∂ε

∂Φ6
∂ε

∂Φ7
∂ε

∂Φ8
∂ε

∂Φ9
∂ε

∂Φ1
∂η

∂Φ2
∂η

∂Φ3
∂η

∂Φ4
∂η

∂Φ5
∂η

∂Φ6
∂η

∂Φ7
∂η

∂Φ8
∂η

∂Φ9
∂η

 , (32)
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it is possible to obtain the values of ∂ui/∂xj by the product:

[
∂u1
∂x1

∂u1
∂x2

∂u2
∂x1

∂u2
∂x2

]
= Biso



u1
1 u1

2

u2
1 u2

2

u3
1 u3

2

u4
1 u4

2

u5
1 u5

2

u6
1 u6

2

u7
1 u7

2

u8
1 u8

2

u9
1 u9

2



, (33)

where uk is the displacement value in the kth node, known after each time-step of the solution
procedure. Applying the Gaussian integration, the discretized form of eq.(28) is given by:

Ĵ1 =
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Ĵ1 = α11K
2
I + α12KIKII + α22K

2
II , (36)
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the βij are defined by
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where aij are the compliance coefficients, µk are roots of the characteristic polynomial and pij are
material constants [17].

For traction free cracks the J1-integral vanishes along the crack surfaces, whereas the J2-integral
would involve integration of highly singular integrands along each surfaces. In order to avoid this
difficulty an auxiliary relationship in terms of displacements ratios is developed here to be used
together with J1 for decoupling of the stress intensity factors KI and KII .

The coupling of the stress intensity factors has been a limiting factor in the analysis of cracked
composite materials under mixed mode loading. However, a simple procedure can be introduced
for the decoupling of mode I and mode II stress intensity factors, based on the ratio of relative
displacements and equation (36), the relation of the J-integral for anisotropic materials, and KI

and KII .
The relative sliding and opening displacements δn, for θ = ±π are given by

δ1 = 2

√
2r
π

(D11KI +D12KII) (41)

and
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2r
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where Dij are functions of the complex parameters of the anisotropic material [17].
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Substituting equation (36) into equation (45), and solving for KII gives the following relation-
ship:

KII =
(

J1

α11F 2 + α12F + α22

) 1
2

. (46)

Thus KII and KI are now decoupled and can be obtained from a knowledge of S, F, J1 and αij .

EXAMPLES

1-Rectangular quasi-isotropic plate with central crack

Figure 5: Rectangular plate with central crack.

A rectangular plate with central crack, as depicted in Fig.(5), is instantaneously loaded by a uniform
tensile stress σ0 = 100 MPa at time τ = 0. The plate has the following dimensions: the length is
400 mm; the width is 200 mm; and crack length is 48 mm. The plate has the following material
properties: Young modulus E1 and E2 equal to 220 GPa lying respectively on the sheet’s width
and length directions; shear modulus of 77 GPa; Poisson modulus ν = 0.3; and density ρ = 5000
Kg/m3. A state of plane stress is assumed. This Problem was studied by Chen [18] using the finite
difference method, and by Dominguez and Gallego [2] using the time domain BEM, both applied to
isotropic materials. The structure was discretized using 80 discontinuous elements and 246 domain
points, from which, 75 are used for the energy domain integration. The normalized dynamic stress
intensity factor KI/K0 versus time is shown in Fig.(6).

Substituting equation (36) into equation (45), and solving for KII gives the following relation-
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Figure 5: Rectangular plate with central crack.

A rectangular plate with central crack, as depicted in Fig.(5), is instantaneously loaded by a uniform
tensile stress σ0 = 100 MPa at time τ = 0. The plate has the following dimensions: the length is
400 mm; the width is 200 mm; and crack length is 48 mm. The plate has the following material
properties: Young modulus E1 and E2 equal to 220 GPa lying respectively on the sheet’s width
and length directions; shear modulus of 77 GPa; Poisson modulus ν = 0.3; and density ρ = 5000
Kg/m3. A state of plane stress is assumed. This Problem was studied by Chen [18] using the finite
difference method, and by Dominguez and Gallego [2] using the time domain BEM, both applied to
isotropic materials. The structure was discretized using 80 discontinuous elements and 246 domain
points, from which, 75 are used for the energy domain integration. The normalized dynamic stress
intensity factor KI/K0 versus time is shown in Fig.(6).
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Figure 6: KI/K0 for rectangular quasi-isotropic plate with central crack.

2-Rectangular orthotropic plate with central crack

A rectangular plate with central crack, as depicted in Fig.(5), is instantaneously loaded by a uniform
tensile stress σ0 = 100 MPa at time τ = 0. The plate has the following dimensions: the length is
400 mm; the width is 200 mm; and crack length is 48 mm. The plate has the following material
properties: Young moduli E1 = 118.3 GPa and E2 = 54.8 GPa, lying respectively on the sheet’s
width and length directions; shear modulus of G12 = 8.79 GPa; Poisson modulus ν = 0.4286; and
density ρ = 1900 Kg/m3. A state of plane stress is assumed. This problem was studied by Hua,
Tian-You and Lan-Quao[19] using the finite difference method applied do anisotropic materials.
The discretization if the structure is similar to the discretization of the previous example. The
normalized dynamic stress intensity factor KI/K0 versus time is shown in Fig.(7).

Figure 7: KI/K0 for rectangular orthotropic plate with central slanted crack.

Figure 6: KI/K0 for rectangular quasi-isotropic plate with central crack.

2-Rectangular orthotropic plate with central crack

A rectangular plate with central crack, as depicted in Fig.(5), is instantaneously loaded by a uniform
tensile stress σ0 = 100 MPa at time τ = 0. The plate has the following dimensions: the length is
400 mm; the width is 200 mm; and crack length is 48 mm. The plate has the following material
properties: Young moduli E1 = 118.3 GPa and E2 = 54.8 GPa, lying respectively on the sheet’s
width and length directions; shear modulus of G12 = 8.79 GPa; Poisson modulus ν = 0.4286; and
density ρ = 1900 Kg/m3. A state of plane stress is assumed. This problem was studied by Hua,
Tian-You and Lan-Quao[19] using the finite difference method applied do anisotropic materials.
The discretization if the structure is similar to the discretization of the previous example. The
normalized dynamic stress intensity factor KI/K0 versus time is shown in Fig.(7).

Figure 7: KI/K0 for rectangular orthotropic plate with central slanted crack.
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3-Rectangular orthotropic plate with central crack

Figure 8: Rectangular plate with central inclinated crack.

A rectangular plate with central crack, with inclination of 45o, as depicted in Fig.(8), is instanta-
neously loaded by a uniform tensile stress σ0 = 100 MPa at time τ = 0. The plate has the following
dimensions: the length of 600 mm; the width is 300 mm; and crack length is 141.4 mm. The plate
has the following material properties: Young moduli E1 = 220 GPa and E2 = 110 GPa, lying
respectively on the sheet’s width and length directions; shear modulus G12 = 76.93 GPa; Poisson
modulus ν = 0.4286; and density ρ = 5000 Kg/m3. A state of plane stress is assumed. This Problem
was studied by Albuquerque, Sollero and Aliabadi [7, 8] using the DBEM and DRBEM techniques.
The structure was discretized using 96 discontinuous elements and 304 domain points, from which,
105 are used for the energy domain integration. The normalized dynamic stress intensity factors
KI/K0 and KII/K0 are shown versus time in Fig.(9) and Fig.(10), respectively.

3-Rectangular orthotropic plate with central crack

Figure 8: Rectangular plate with central inclinated crack.

A rectangular plate with central crack, with inclination of 45o, as depicted in Fig.(8), is instanta-
neously loaded by a uniform tensile stress σ0 = 100 MPa at time τ = 0. The plate has the following
dimensions: the length of 600 mm; the width is 300 mm; and crack length is 141.4 mm. The plate
has the following material properties: Young moduli E1 = 220 GPa and E2 = 110 GPa, lying
respectively on the sheet’s width and length directions; shear modulus G12 = 76.93 GPa; Poisson
modulus ν = 0.4286; and density ρ = 5000 Kg/m3. A state of plane stress is assumed. This Problem
was studied by Albuquerque, Sollero and Aliabadi [7, 8] using the DBEM and DRBEM techniques.
The structure was discretized using 96 discontinuous elements and 304 domain points, from which,
105 are used for the energy domain integration. The normalized dynamic stress intensity factors
KI/K0 and KII/K0 are shown versus time in Fig.(9) and Fig.(10), respectively.
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Figure 9: KI/K0 for rectangular orthotropic plate with central inclinated crack.

Figure 10: KII/K0 for rectangular orthotropic plate with central inclinated crack.

Conclusions

In this paper, a formulation for dynamic analysis of composite cracked sheets was presented, and
a procedure to solve the problem was proposed as well. The procedure described in this paper is
more time consuming than a procedure on a frequency domain. However, allows a broader range
of solutions with application of different load cycles. A procedure for the evaluation dynamic stress
intensity factors was also presented. The EDI is computationally more expensive than the Crack Tip
Opening Displacement (DTOD) method. However, it allows the implementation of other mechanical
phenomena, as plasticity effects at the crack tip, and crack propagation. The EDI integration is
derived from the Ĵk integral, but it is easier to calculate since all of its terms are domain integrals. It

Figure 9: KI/K0 for rectangular orthotropic plate with central inclinated crack.

Figure 10: KII/K0 for rectangular orthotropic plate with central inclinated crack.

Conclusions

In this paper, a formulation for dynamic analysis of composite cracked sheets was presented, and
a procedure to solve the problem was proposed as well. The procedure described in this paper is
more time consuming than a procedure on a frequency domain. However, allows a broader range
of solutions with application of different load cycles. A procedure for the evaluation dynamic stress
intensity factors was also presented. The EDI is computationally more expensive than the Crack Tip
Opening Displacement (DTOD) method. However, it allows the implementation of other mechanical
phenomena, as plasticity effects at the crack tip, and crack propagation. The EDI integration is
derived from the Ĵk integral, but it is easier to calculate since all of its terms are domain integrals. It

110 Computational Methods in Fracture Mechanics



also allows the isoparametric derivation of the values of displacements. Hence, it is not necessary to
integrate the values of displacement derivatives, which is a much more time consuming procedure.
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stress intensity factors. International Journal of Fracture 65: 369-381 (1994).

[6] J. Sladek, V. Sladek, and P. Fedelinski, Computation of the second fracture parameter in elas-
todynamics by the boundary element method. Advances in Engineering Software 30:725-734
(1999).

[7] E. L. Albuquerque, P. Sollero, and M. H. Aliabadi, The boundary element method applied to
time dependent problems in anisotropic materials. International Journal of Solids and Structures,
39:1405-1422 (2002).

[8] E. L. Albuquerque, P. Sollero, and M. H. Aliabadi, Dual boundary element method for
anisotropic dynamic fracture mechanics. International Journal for Numerical Methods in Engi-
neering, 59:1187-1205 (2004).

[9] A. Portela, M. H. Aliabadi, and D. P. Rooke, The dual boundary element method: Effective
implementation for crack problems. International Journal for Numerical Methods in Engineering,
33:1269-1287 (1982).

[10] M. Kögl and L. Gaul, A boundary element method for transient piezoelectric analysis. Engi-
neering Analysis with Boundary Elements, 24:591-598 (2000).

[11] J. C. Houbolt, A recurrence matrix solution for the dynamic response of elastic aircraft. Journal
of Aeronautical and Science, 17:540-550 (1950).

[12] A. P. Cisilino, M. H. Aliabadi, and J. L. Otegui. Energy domain integral applied to solve
center and double edge crack problems in three-dimensions. Theoretical and Applied Fracture
Mechanics 29:181-194 (1998).

[13] R. Balderrama, A. P. Cisilino, and M. Martinez. Boundary element analysis of three-
dimensional mixed-mode thermoelastic crack problems using the interaction and energy domain
integrals. International Journal for Engineering Material 74:294-320 (2008).

also allows the isoparametric derivation of the values of displacements. Hence, it is not necessary to
integrate the values of displacement derivatives, which is a much more time consuming procedure.

Acknowledgments

The authors would like to thanks FAPESP (The State of São Paulo Research Foundation) and
CNPq (National Research Council) for the financial support of this work.

References

[1] G. E. Blandford, A. R. Ingraffea, and J. A. Ligget, Two dimensional stress intensity factor
computation using the boundary element method. International Journal for Numerical Methods
in Engineering 17:387–404 (1981).

[2] J. Domdinguez and R. Gallego, Time domain boundary element method for dynamic stress
intensity factor computation. International Journal of Numerical Methods in Engineering 33:
635-647 (1992).

[3] F. Garcia-Sanchez, C. Z. Zhang, A. Saez. A two-dimensional time-domain boundary element
method for dynamic crack problems in anisotropic solids. Engineering Fracture Mechanics
75:1412-1430 (2008).

[4] P. Fedelinski and M. H. Aliabadi, The Dual boundary element method in dynamic fracture
mechanics. Engineering Analysis with Boundary Elements 12: 203-210 (1993).

[5] P. Fedelinski and M. H. Aliabadi, The Dual boundary element method: Ĵ-integral for dynamic
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Abstract. In this work the time-domain boundary element method (BEM) is applied to simulate 

dynamic fracture experiments. The fast fracture is modelled by adding new boundary elements at 

the crack tip. The direction of crack growth is perpendicular to the direction of maximum 

circumferencial stress. The time dependent loading of specimens and velocities of crack growth are 

taken from experiments as input data for computer simulations. The method is used to analyze: a 

short beam specimen, a special mixed-mode specimen and a three-point bend specimen subjected to 

impact loads. The dynamic stress intensity factors (DSIF) and the crack paths are compared with the 

results obtained by other authors who used the finite element method (FEM) and experimental 

methods. 

1. Introduction 

The analysis of rapidly growing cracks is one of the important subjects of dynamic fracture 

mechanics [1]. The path and velocity of crack growth depend on the magnitude and distribution of 

the stress field in the vicinity of the crack tip, which can be characterized by dynamic stress intensity 

factors. The aim of dynamic fracture experiments is the determination of fracture toughness, the 

time dependence of DSIF, the crack growth direction, velocity and shape. These results can be used 

to establish laws, which define the dependence of crack direction and velocity on DSIF. 

Analytical methods are limited to cracked bodies with simple geometries and boundary 

conditions. Consequently, numerical methods are needed to analyze more general and practical 

problems. Recently numerical methods are combined with experiments. During the numerical 

simulation it is assumed that the dimensions of a specimen, its material properties, initial and 

boundary conditions are known. Additionally the following parameters are specified or searched: 

- crack-path history - xi(t), 

- crack-growth history - a(t), c(t), 

- crack-growth criterion - c(K), 

- crack-direction criterion - α(K), 

- crack tip parameters - K(t), 

where xi are the coordinates of crack tip, a is the crack length, c is the crack growth velocity, α is 
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Nishioka et al. [2,3] proposed three types of numerical simulation depending on which 

parameters are known from the experiments and which are searched. The classification of the 
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Abstract. In this work the time-domain boundary element method (BEM) is applied to simulate 

dynamic fracture experiments. The fast fracture is modelled by adding new boundary elements at 

the crack tip. The direction of crack growth is perpendicular to the direction of maximum 

circumferencial stress. The time dependent loading of specimens and velocities of crack growth are 

taken from experiments as input data for computer simulations. The method is used to analyze: a 

short beam specimen, a special mixed-mode specimen and a three-point bend specimen subjected to 

impact loads. The dynamic stress intensity factors (DSIF) and the crack paths are compared with the 

results obtained by other authors who used the finite element method (FEM) and experimental 

methods. 

1. Introduction 

The analysis of rapidly growing cracks is one of the important subjects of dynamic fracture 

mechanics [1]. The path and velocity of crack growth depend on the magnitude and distribution of 

the stress field in the vicinity of the crack tip, which can be characterized by dynamic stress intensity 

factors. The aim of dynamic fracture experiments is the determination of fracture toughness, the 

time dependence of DSIF, the crack growth direction, velocity and shape. These results can be used 

to establish laws, which define the dependence of crack direction and velocity on DSIF. 

Analytical methods are limited to cracked bodies with simple geometries and boundary 

conditions. Consequently, numerical methods are needed to analyze more general and practical 

problems. Recently numerical methods are combined with experiments. During the numerical 

simulation it is assumed that the dimensions of a specimen, its material properties, initial and 

boundary conditions are known. Additionally the following parameters are specified or searched: 

- crack-path history - xi(t), 

- crack-growth history - a(t), c(t), 

- crack-growth criterion - c(K), 

- crack-direction criterion - α(K), 

- crack tip parameters - K(t), 

where xi are the coordinates of crack tip, a is the crack length, c is the crack growth velocity, α is 

the crack growth angle, K are dynamic stress intensity factors and t is time. 

Nishioka et al. [2,3] proposed three types of numerical simulation depending on which 

parameters are known from the experiments and which are searched. The classification of the 

methods is given in Table 1. 
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The most frequently used computer method in numerical simulations of fracture experiments is 

the finite element method (FEM). Bui, Maigre and Rittel [4,5,6,7] applied the FEM to analyze a 

special specimen with a crack of constant length, which was loaded by the split Hopkinson bar. 

Numerically computed DSIF and velocities of loaded surfaces of the specimen were compared with 

experimental results. Weisbrod and Rittel [8] analyzed a one-point bend short specimen loaded by a 

bar. They compared DSIF computed by the FEM with the experimental solutions till the moment of 

propagation of the crack. Nishioka et al. [3] analyzed by the FEM a three-point bend specimen 

loaded by a dropping hammer. The numerically computed DSIF and crack paths were compared 

with the experimental results for various loading points. Gregorie et al. [9] and Combescure et al. 

[10] applied the extended finite element method (X-FEM) to analyze a special mixed-mode 

compression specimen. A comparison of numerically computed crack paths and velocities of loaded 

edges of the specimen with experimental results was presented in that work. 

The boundary element method (BEM) is particularly suitable to analysis of crack growth. The 

computer modelling is simplified in comparison to the FEM since only external boundaries and 

crack surfaces are divided into boundary elements. The crack growth is modelled by adding new 

elements at the crack tip. Because of the reduced interpolation to the boundaries of the body the 

method gives very accurate results. The dynamic crack growth problems are modelled by the time-

domain BEM (Dominguez [11]). This formulation was applied to dynamic analysis of stationary 

cracks by Fedelinski et al. [12]. The same authors applied for the first time the method to 

dynamically growing cracks without predefined crack paths [13]. Practical applications of the 

method were presented in [14]. Sellig et al. [15,16] presented the formulation of the method for fast 

growing cracks with variable velocity and they take into account contact of crack surfaces. Sellig et 

al. [17] applied the method to simulation of the dynamic fracture test which was earlier analyzed by 

Bui et al. [4]. They considered additionally dynamic crack growth. The results computed by the 

BEM and FEM were compared with experiments. 

In this work the fundamentals of the time-domain BEM for structures with growing cracks are 

given for completeness. The method is used to simulate three different dynamic fracture 

experiments. The numerical examples show possible applications of the method and its accuracy. 

The type of the present computer simulation can be classified as the mixed-phase simulation 

(type a), called the fracture-path prediction mode. In the numerical examples dynamic loading and 

velocities of crack growth are taken from experiments. The computer code is used to calculate 

dynamic stress intensity factors and crack paths. The aim of this kind of simulation is to determine 

DSIF for growing cracks, which is difficult to measure experimentally, and to verify the crack 

growth direction criterion. 

2. Boundary integral equations 

The method is applied to a linear elastic, homogeneous and isotropic body containing a rapidly 

growing crack. The boundary of the body, denoted by Γ(t), is a function of time t because of the 

crack growth. The boundary Γ consists of the external boundary Γ 
e 
and two crack surfaces Γ 

+
 and 

Γ 
-
, as shown in Fig. 1. For a body which is not subjected to body forces and which has zero initial 

displacements and velocities, the displacement of a point x’ can be represented by the following 

boundary integral equation [11]: 

0 0

( ') ( ', ) [ ( ', , , ) ( , ) ( )] [ ( ', , , ) ( , ) ( )]

t t

ij j ij j ij jc x u x t U x t x t x d x d T x t x u x d x dτ τ τ τ τ τ
Γ Γ
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where Uij(x’,t,x,τ) and Tij(x’,t,x,τ) are the fundamental solutions of elastodynamics, uj(x,τ) and 
tj(x,τ) are the boundary displacements and tractions respectively, cij(x’) is a constant which depends 

on the position of the collocation point, x’ is the collocation point, x is a boundary point and t is the 

observation time. 
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Fig. 1 Boundary element modelling of the body with the crack 

 

The displacement equation for points, which belong to the smooth crack surfaces, has the form: 
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where x’ and x” are coincident points on the opposite crack surfaces. The traction equation for 

the same points is: 
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where Ukij(x’,t,x,τ) and Tkij(x’,t,x,τ) are the fundamental solutions of elastodynamics and ni(x’) is an 

outward normal unit vector at the collocation point. 

3. Numerical formulation 

The numerical modelling requires discretization of both space and time variations. The boundary 

Γ(τ) of the body is divided into boundary elements. The observation time t is divided into N time 

steps. The crack growth is modelled by adding new elements ahead of the crack tip [13]. A distinct 

set of boundary integral equations is obtained by applying the displacement equation (1) for 

collocation nodes along the external boundary, the displacement equation (2) and the traction 

equation (3) simultaneously for coincident nodes along both crack faces. Quadratic elements are 

used for the discretization of the boundary, as shown in Fig. 1. Within each time step the 

displacements are approximated by using linear interpolating functions and the tractions are 

piecewise constant. After discretization and integration the following matrix equation is obtained 

for time t, that is after N time steps: 
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where u
n
, t

n
 contain nodal values of displacements and tractions at the time step n; H

Nn
 and G

Nn
 

depend on the fundamental solutions and interpolating functions. The columns of matrices H
NN
, 

G
NN
 are reordered according to the boundary conditions, giving new matrices A

NN
 and B

NN
. The 

matrix A
NN
 is multiplied by the vector x

N
 of unknown displacements and tractions and the matrix 

B
NN
 by the vector y

N
 of the known boundary conditions; thus: 
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The matrix equation is solved step-by-step giving the unknown displacements and tractions at 

each time step. 

4. Modelling of crack growth 

The dynamic stress intensity factors (DSIF) are obtained from the crack opening displacements [13]: 
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where: 
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where µ is the shear modulus; ∆u1 and ∆u2 are the relative displacements in the tangential and 

perpendicular direction of corresponding points on opposite crack faces; r is the distance of points 

from the crack tip, c is the velocity of crack growth, c1 and c2 are the velocities of longitudinal and 

shear waves respectively. In the present work the relative displacements of the third pair of 

coincident nodes of boundary elements at the crack tip were used to calculate dynamic stress 

intensity factors for growing cracks. The stress distribution in the vicinity of a crack tip is calculated 

using DSIF and current tip velocity. The crack will grow in the direction of maximum 

circumferential stress. The crack growth is modelled by adding a new pair of boundary elements of 

length ∆a at the crack tip: 

 

a c∆ ∆τ= ,                                                                                                                                     (9) 

 

where ∆τ is a time step. 

4. Numerical examples 

4.1. One point bend short beam specimen. An unsupported short beam specimen is in contact 

with a single bar. The striker hits the bar, the stress wave propagates through the bar and loads the 

specimen. Strains in the bar and the specimen are measured by strain gauges. The experimental 

setup is shown in Fig. 2. This problem was analyzed by the FEM and experimentally in [8]. The 

loading of the specimen is determined from the incident and reflected strains recorded by the gauge 

1. The onset of crack propagation is detected by gauges 2 and 3. The dimensions of the specimen in 

millimeters and loading are given in Fig. 3. The specimen is made of a commercial tungsten base 

heavy alloy. The dynamic Young modulus of the material is equal to E=338 GPa, Poisson’s ratio 

v=0.3 and mass density ρ=17100 kg/m
3
. The specimen is in plane strain conditions. The 

experimentally determined loading is shown in Fig. 4 [8]. 

The specimen is divided into 84 boundary elements and the time step is ∆τ=1 µs. The computer 

modelling was performed for a stationary crack. The experimentally detected crack propagation 

started at 21 µs after the specimen was loaded [8]. Therefore the numerical results are valid for 

times smaller than 21 µs. 
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Fig. 2. Measurement system [8] 

 

                                                           
 

Fig.3. Dimensions of the short beam specimen and loading [8] 

 

The comparison of boundary element method (BEM), finite element method (FEM) and 

experimental (EXP) dynamic stress intensity factors [8] is shown in Fig. 5. The quality of computer 

simulation strongly depends on the accuracy of experimentally determined dynamic loading. The 

results of the BEM simulation better agree with the FEM simulation, than with experimental results, 

because the same dynamic boundary conditions were used in computer simulations. 

 

                             
Fig. 4. Time variation of loading for the short beam specimen [8] 
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Fig. 5. Dynamic stress intensity factors for the short beam specimen 

 

4.2. Special mixed-mode specimen. The method is applied to analyze a special cracked 

specimen loaded by the split pressure Hopkinson bar. The experimental results and the computer 

modelling of this specimen by using the X-FEM are presented in works [9,10]. The data, which are 

necessary for computer simulation, are taken from the work [9]. The special specimen is placed 

between the split Hopkinson bars shown in Fig 6. The input bar is loaded by the striker. The 

velocity of the striker is measured by the optical gauge. The strains in the input bar are measured by 

strain gauges 1 and 2 and strains in the output bar by the strain gauge 3. The specimen is lighted and 

4 cameras register the state of the specimen during the experiment. The striker hits the input bar and 

the stress wave propagates through the input bar, the specimen and the output bar. The dimensions 

of the specimen are given in millimeters in Fig 7. The initial crack, which is situated above the axis 

of symmetry of the specimen, is subjected simultaneously to tension and shear mode of loading 

when the specimen is compressed. 

                
 

Fig. 6. Measurement system [9] 

 

The specimen is made of polymethyl methacrylate (PMMA) and has the following material 

properties: Young’s modulus E=3.3 GPa, Poisson’s ratio ν=0.42, mass density ρ=1180 kg/m3
, and 

the structure is in plane strain. Only the specimen is modelled using 70 boundary elements. During 

the crack growth in each time step two boundary elements are added at the crack tip. The final 

number of elements is equal to 130. The time step is equal to ∆t= 10 µs.  
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properties: Young’s modulus E=3.3 GPa, Poisson’s ratio ν=0.42, mass density ρ=1180 kg/m3
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the structure is in plane strain. Only the specimen is modelled using 70 boundary elements. During 

the crack growth in each time step two boundary elements are added at the crack tip. The final 

number of elements is equal to 130. The time step is equal to ∆t= 10 µs.  
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The left and right edge is loaded by the uniformly distributed tractions t1 and t2, which were 

measured during the experiment. The time dependence of resultant forces on both edges of the 

specimen F1 and F2 is given in Fig 8. The crack is stationary from the beginning of loading till 

200 µs, next it grows with a velocity 210/m/s, during the period of time from 270 till 320 µs it 
arrests, and later it grows with the velocity 160 m/s. The process is simulated till 500 µs. 
 

                                                
 

Fig. 7. Dimensions of the special mixed-mode specimen and loading [9] 

 

The comparison of computed and experimental velocities of the edges of the specimen is shown 

in Fig. 9. Time variations of DSIF KI and KII are presented in Fig 10. When the longitudinal wave 

reaches the crack tip the DSIF increase. When the crack starts to grow the DSIF decrease. During 

the period of time from 270 till 320 µs, when KI has the minimal value, the crack arrests. After the 

increase of KI the crack grows again. The DSIF KII has small values during the growth of the crack. 

Gregorie et al. [9] assumed in the computer simulation of this experiment that the critical value of 

DSIF is KIC=1.33 MPam
1/2
. In Fig. 10 it can bee seen that KI has smaller value than the critical DSIF 

during the arrest of the crack. The specimen with the final crack is shown in Fig 11. The shape of 

the crack computed numerically is compared with the experimental crack [9] in Fig 12. A good 

agreement of shapes of the crack can be seen. 

                           
Fig. 8. Time variation of resultant tractions on edges of the special mixed-mode specimen [9] 

 

The left and right edge is loaded by the uniformly distributed tractions t1 and t2, which were 

measured during the experiment. The time dependence of resultant forces on both edges of the 

specimen F1 and F2 is given in Fig 8. The crack is stationary from the beginning of loading till 

200 µs, next it grows with a velocity 210/m/s, during the period of time from 270 till 320 µs it 
arrests, and later it grows with the velocity 160 m/s. The process is simulated till 500 µs. 
 

                                                
 

Fig. 7. Dimensions of the special mixed-mode specimen and loading [9] 

 

The comparison of computed and experimental velocities of the edges of the specimen is shown 

in Fig. 9. Time variations of DSIF KI and KII are presented in Fig 10. When the longitudinal wave 

reaches the crack tip the DSIF increase. When the crack starts to grow the DSIF decrease. During 

the period of time from 270 till 320 µs, when KI has the minimal value, the crack arrests. After the 

increase of KI the crack grows again. The DSIF KII has small values during the growth of the crack. 

Gregorie et al. [9] assumed in the computer simulation of this experiment that the critical value of 

DSIF is KIC=1.33 MPam
1/2
. In Fig. 10 it can bee seen that KI has smaller value than the critical DSIF 

during the arrest of the crack. The specimen with the final crack is shown in Fig 11. The shape of 

the crack computed numerically is compared with the experimental crack [9] in Fig 12. A good 

agreement of shapes of the crack can be seen. 

                           
Fig. 8. Time variation of resultant tractions on edges of the special mixed-mode specimen [9] 

Key Engineering Materials Vol. 454 119



 

                              
Fig. 9. Time variation of velocities of edges of the special mixed-mode specimen 

                              
Fig. 10. Dynamic stress intensity factors for the special mixed-mode specimen 

                                      
 

Fig. 11. The special mixed-mode specimen with the final crack 

 

                              
Fig. 9. Time variation of velocities of edges of the special mixed-mode specimen 

                              
Fig. 10. Dynamic stress intensity factors for the special mixed-mode specimen 

                                      
 

Fig. 11. The special mixed-mode specimen with the final crack 
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Fig.12. Crack paths for the special mixed-mode specimen 

 

4.3. Three-point bend specimen. A three-point bend specimen for a mixed-mode fracture is 

shown in Fig. 13. Experimental results and numerical simulation by the FEM for this problem were 

presented in [3]. The dimensions of the plate are given in millimeters. The specimen is made of 

PMMA, which has the following material properties: Young’s modulus E=2.94 GPa, Poisson’s ratio 

ν=0.3 and mass density ρ=1190 kg/m3
. It is assumed that the plate is under plane stress conditions. 

The load is applied by a dropping hammer. The mass of the hammer is m=5.05 kg and its velocity 

v=5m/s. The specimen is loaded symmetrically e=0 and eccentrically e=0.1, where the relative 

loading eccentricity e equals the ratio of the distance of loading point from the line of symmetry to 

half the distance between the supports. 

 

 
 

Fig. 13. Dimensions of the three-point bend specimen and boundary conditions 

for eccentric loading [3] 

 

The variations of forces at the loading point measured experimentally [3] are shown in Fig. 14. 

The load has the maximum value F=6000 N at about 225 µs for e=0 and F=6400 N at about 210 µs 

for e=0.1. Dynamic fracture starts at t=156 µs for e=0 and at t=120 µs for e=0.1. The variations of 

velocity of crack growth determined experimentally [3] are shown in Fig. 15. The maximum crack 

velocity is c=250 m/s for e=0, and c=300 m/s for e=0.1. It is assumed that the specimen is always in 

contact with the supports.  

The initial boundary of the plate is divided into 78 quadratic elements. The time step is ∆t=5 µs. 
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Fig. 14. Time variation of loading for the three-point bend specimen [3] 

                                       
Fig. 15. Velocity of crack growth for the three-point bend specimen [3] 

 

In Fig. 16 and 17 dynamic stress intensity factors for symmetric and eccentric loading are shown 

respectively. The BEM results are compared with the FEM solutions and experimental results 

obtained by the caustic method. The experimental results are not shown in Fig. 17 because they are 

almost the same as the FEM results. For eccentric loading all results agree well. For symmetric 

loading the DSIF obtained by the FEM, for times longer than 150 µs, are smaller than the BEM and 

experimental results. For the symmetric loading when the compressive longitudinal wave arrives at 

the crack tip, KI becomes slightly negative. In this work a contact of crack surfaces is not taken into 

account and small overlapping is allowed. For symmetric case the crack path is straight and vertical. 
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Fig. 15. Velocity of crack growth for the three-point bend specimen [3] 
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Fig. 16. Dynamic stress intensity factors for symmetric loading e=0 

for the three-point bend specimen 

                                   
Fig. 17. Dynamic stress intensity factors eccentric loading e=0.1 

for the three-point bend specimen 

 

For the eccentric loading the KI is positive and increases when the shear wave arrives at the crack 

tip. The absolute value of KII increases up to the onset of crack propagation. During the dynamic 

crack growth the KII  are zero. The crack paths are shown in Fig. 18. The shape of the growing crack 

is compared with that computed by FEM and the experimental one. The crack paths obtained by 

computer simulations agree well. The real crack path is more curved. The crack grows towards the 

loading point. 
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Fig. 17. Dynamic stress intensity factors eccentric loading e=0.1 

for the three-point bend specimen 

 

For the eccentric loading the KI is positive and increases when the shear wave arrives at the crack 

tip. The absolute value of KII increases up to the onset of crack propagation. During the dynamic 

crack growth the KII  are zero. The crack paths are shown in Fig. 18. The shape of the growing crack 

is compared with that computed by FEM and the experimental one. The crack paths obtained by 

computer simulations agree well. The real crack path is more curved. The crack grows towards the 

loading point. 
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Fig. 18. Crack paths for eccentric loading e=0.1 for the three-point bend specimen 

5. Conclusions 

The time domain boundary element method is applied to model three dynamic fracture 

experiments: a short beam specimen with a stationary crack, a special mixed-mode specimen and a 

three-point bend specimen with fast growing cracks subjected to impact loads. The experimentally 

measured impact forces and crack tip velocities as a function of time are used as the data in 

computations. It is assumed in the numerical simulations that the cracks grow in the direction 

perpendicular to the maximum circumferencial stress. This type of computer simulation can be 

classified as the fracture-path prediction mode. The dynamic stress intensity factors and crack paths 

are computed and compared with the finite element method or experimental results presented in 

literature. 

The numerical examples show good agreement of the BEM solutions with the FEM and 

experimental results. These results confirm accuracy of DSIF and the assumed crack growth 

direction criterion. The quality of the computer simulation strongly depends on the experimentally 

measured dynamic loading and crack growth velocity. Usually the BEM results agree better with the 

FEM solutions, than with the experimental results because the same quality input data are used in 

computer simulations. The comparison of numerically computed and experimentally measured 

crack shapes is more reliable than the comparison of DSIF, which are more difficult to measure. 
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Abstract: This work aims at extending the concept of the Numerical Green's Function (NGF), 

known from boundary element applications to potential and fracture mechanics problems, to the 

Local Boundary Integral Equation (LBIE) context. As a "companion" solution, the NGF is used to 

remove the integrals of the main discontinuities over the crack boundary and is to be introduced 

only for source points whose support touches or contains the actual crack surfaces. 

Introduction 

Meshless methods are increasingly proving to be accurate for the analysis of the most common 

problems found in engineering applications. They can be quite efficient, in terms of computer time, 

in the solution of problems that need a great number of node repositioning during the analysis, 

sometimes more expensive than the analysis itself, in comparison to mesh-based methods. 

Normally, a meshless method is a mesh-free counterpart of a well-established mesh-based 

method [1,2] and because of this, there is no reason to believe that the improvements made for the 

mesh-based procedures cannot be implemented in their mesh-free versions. In the context of 

standard boundary integral equations, the so-called local boundary integral (LBIE) method has 

emerged as a possible mesh-free boundary element (BEM) alternative and can profit from many 

previous alternative procedures developed for the original BEM procedure.  

In this work, the concept of the numerical Green’s function (NGF) for potential discontinuity 

problems and 2-D elastostatic fracture mechanics is implemented in the local boundary integral 

equation method. LBIE has been brought into existence from the boundary integral equation, basic 

to the standard BEM whereas the NGF version of this applications was first used in a BEM 

context [3] during the last decade. 

The approximation scheme for the trial function used here is the well-known moving least 

squares (MLS) method, which is the most common alternative in the bibliography [4]. The singular 

integrals are computed using Kutt’s quadrature [5] procedure, well-known from previous BEM 

implementations. The starting ideas applied here originate from References  [6-10].  

 LBIE for potential problems 

To demonstrate the formulation, only the linear Poison equation is used, even though the 

approach is suitable for solving nonlinear problems as well. Poison’s equation can be written as 

Ω∈=∇ xxx      ,)()(2 pu  (1) 

and the boundary conditions 
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Here, p is a domain distributed function, Ω the domain bounded by Γ and Γu and Γq the portions 

of the boundary with potential and flux prescribed respectively. 

A weak formulation of the problem can be written as 
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where u
G
 is the Green’s function used as the test function for the weighted residual statement and u 

is the trial function. The test function satisfies the following equation 

0),(),(2 =+∇ xξxξ δGu  (4) 

in which δ(ξξξξ,x) is the Dirac delta function. 

By integrating eq.(3) by parts twice, the global boundary integral equation is obtained as follows 
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where n is the outward normal vector to Γ, x = [x, y, z]
T
 is the set of co-ordinates and ξξξξ= [xξ, yξ, zξ]
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is defined as the source point. 

To obtain the local formulation of eq.(5), a local sub-domain Ωs and its boundary ∂Ωs are 

considered instead of Ω and Γ respectively, leading to the following form 
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Eq.(6) indicates that the value of the unknown function at ξξξξ can be obtained by carrying out the 

integrals over a sub-domain within the closed outer boundary Γ. 

It should be noted that eq.(6) holds regardless of the shape and size of ∂Ωs, which can be 

deliberately chosen according to the characteristics of the functions used in the method. The most 

regular shape of a sub-domain is an n-dimensional sphere, centered at ξ,ξ,ξ,ξ, for a problem defined on 

an n-dimensional space. 

For 2-D potential problems, Ωs is a circle of radius r0, and the Green’s function and its normal 

derivative are 
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where uc an qc are the complementary solutions for potential and flux respectively, which are added 

to the classic fundamental solution in order to obtain the Green’s function corresponding to the 

desired problem. The use of the Green’s function instead of the conventional fundamental solution 

precludes the use of the so-called “companion” solution [1,2], which is commonly added to the 

fundamental solution in order to make it vanish over the circular part of the sub-domain boundary 

∂Ωs. 

When ξξξξ lies on the global boundary Γ, the sub-domain can still be taken as a part of a circle 

centered at ξξξξ, but now its boundary includes the part of the circumference (Ls) and the part of Γ 

limiting Ωs (Γs). The local integral equation for a nodal point ξξξξ at Γ becomes 
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where α(ξξξξ) is a free coefficient depending on the shape of Γ at ξξξξ. 

 

 

LBIE for liner elasticity problems 
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where α(ξξξξ) is a free coefficient depending on the shape of Γ at ξξξξ. 
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Γ, 
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where ijσ  is the stress tensor, bi is the body force and ( ),i denotes the derivative with respect to xi. 
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where the bar indicates prescribed values, respectively, for displacements u and tractions p and Γu 
and Γp are the parts of the boundary Γ where they are prescribed. 

Using 
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In the present case, 
G
iu  is chosen to be the solution of a unit load in an infinite plane containing 

cracks, to be discussed later on. This solution satisfies the following condition 
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where  
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kip  are, respectively, the i-th components of displacements and tractions due to a 

unit load in the xk direction. 
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where ξ  is the source point and x is the field (generic) point. 

If instead of the real domain Ω and boundary Γ of the problem, a sub-domain Ωs and its 
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and considering two dimensions only, its matrix form is as follows, 
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and αij (αααα) is a constant matrix that depends on the shape of the boundary at ξ . 
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Figure 1 – definition of  internal 

angle θ, θ1 and θ2. 

Moving least squares (MLS) approximation scheme 

The MLS scheme is by far the most used in meshless methods to approximate the trial function 

u
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(x). Its definition will be briefly presented in this section; for further details, see [4,1,2,6]. It has 

the following form 
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where ΦΦΦΦ is the MLS shape function, û is the “fictitious” nodal values of the trial function and n is 

the number of nodes inside the domain of definition Ωx of the considered node. The domain of 

definition of a certain node x is composed by the nodes who have x inside their support. 

Complementary solution for potential problems 

The complementary solution – ( )
C
 – is a function added to the fundamental solution – ( )
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 – to 

generate the Green’s function – ( )
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 – suited to certain types of problems. 
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Here, two GFs for potential problems are proposed: an exact solution for a unit source in a semi-

infinite plane and a numerical solution for an infinite plane containing unloaded lines of potential 

discontinuity. 
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Here, two GFs for potential problems are proposed: an exact solution for a unit source in a semi-

infinite plane and a numerical solution for an infinite plane containing unloaded lines of potential 

discontinuity. 
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Semi-infinite plane 

In this work, the flux-free surface Γ of the half-plane is assumed to be represented by a horizontal 

line. The complementary part for this problem is a function of the coordinates of the image of the 

load point with respect to Γ  as shown in Fig.2 

 

Figure 2 – half-plane Green's Function 

The complementary functions are shown as follows 
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For more details, see Brebbia, Telles and Wrobel [5]. 

Infinite plane with internal lines of potential discontinuity 

Consider an infinite plane, with a line of potential discontinuity within, under the action of a unit 

point source applied at ξ. In what follows, the Green’s function for this problem is written in terms 

of a superposition of the fundamental solution for Laplace’s equation plus a complementary part 

which provides satisfaction of the flux-free requirement over the internal line of potential 

discontinuity (see Fig.3). 

 

 

Figure 3 – Numerical Green's Function (NGF) 
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 and q
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 produces nonzero flux values across the barrier line Γf

(ζ), these 

are then counterbalanced by the complementary fluxes. Hence, an infinite plane with an impervious 

slit is simulated. 
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where q
*
(x,ζ) and Q

*
(x, ζ) are the free (Laplace’s) fundamental flux and its derivative referred to 

the source point as used in the classical and hypersingular boundary integral equations. These 

equations produce the complementary potential and flux at an internal point x due to a unit point 
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source at ξξξξ, as a function of the potential discontinuity c(ξξξξ,ζζζζ) = u(ξξξξ,ζζζζ+
) - u(ξξξξ,ζζζζ−

). Note that here the 

source point of the complementary problem is x; point ξξξξ is introduced only to guarantee that the 

complementary solution is computed with the same notation as eq.(22). The boundary Γ-
 

corresponds to the inferior surface of the line of potential discontinuity, whose superior surface is 

Γ+
. The numerical value of c(ξξξξ,ζζζζ) is computed using an efficient implementation of the 

hypersingular boundary integral equation. 

Complete details of the procedure can be found in [7]. 

 

Numerical Green’s function for fracture mechanics 

Consider an infinite elastic plane with an unloaded crack inside under the action of a unit point 

load applied at ξ . The fundamental displacements and tractions for this case can be calculated by 

the superposition shown in Fig.4, which mathematically reads 
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where ( )
*
 refers to Kelvin’s fundamental solution (Fig.3B) and ( )

c
 indicates the complementary 

part (Fig.3C). 

 

 

 

Figure 4 – superposition of effects 
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where ζ  is a point on Γi and ),( ζξikc  are the crack openings (see Fig.5) 
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Figure 5 – crack openings 

Matrix S is square of dimension 2N (N is the number of points on ζi) that depends only of the 

crack geometry. This complete formulation can be seen in [3]. 

It is worth noticing that the complementary part vanishes if the actual crack, or part of it, does 

not pertain to the integration boundary, here no longer the global boundary Γ, but the boundary of 

the sub-domain of integration ∂ Ωs. Hence, only the nodes whose sub-domains contain part of the 

crack have non-zero complementary parts whereas for all other nodes the NGF becomes Kelvin’s 

solution only. 

The numerical implementation of these equations can be seen in detail in Reference [3]. 

 

Examples 

To illustrate the presented techniques, two examples are proposed, one for each theory presented. 

The results are compared with sufficiently refined ones obtained with a BEM potential and 

elasticity codes using quadratic elements. 

 

Potential problems: cofferdam-type problem 

In this example there are two sheet piles enclosing a permeable soil to be excavated. The 

problem geometry, node cloud and boundary conditions are presented in Fig.6. Because of the 

symmetry, only half of the geometry was analyzed. 

                 

Figure 6 – cofferdam-type problem geometry, node cloud and boundary conditions 

The results obtained with the NGF-LBIE and NGF-BEM were almost the same and could not be 

distinguishable (see Fig.7). 
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Figure 7 – cofferdam-type problem results 

 

Fracture mechanics: stress intensity factor 

In this example, the stress intensity factor KI is the result compared. The relation (ri/ci) for the 

MLS weight function is equal to 4.0. This value can guarantee a good “decay” of w. 

It can be seen in Fig. 8 that the node cloud is denser in the neighborhood of the crack, but 

without any node positioned on it. The distribution of nodes influenced by the presence of the crack 

can be uniform or not, but the crack edges require denser clouds due to the natural difficulty to 

represent the behavior of stresses in that region. Good results were obtained when at least 10% of 

the total number of nodes was influenced by the crack. 

The results are compared with the ones presented in [3]. For this example it is considered: 

E = 50000, ν = 0.2 and number of nodes N = 210. 

 

Figure 8 – geometry and node cloud of fracture mechanics example 

The stress intensity factor KI is obtained here using the following relation [8] 
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where G is the shear modulus, ),(11 ζζic  is the value of the crack opening at node iζ , ri is the 

distance between iζ  and the nearest crack edge and np=6 is the number of nodes considered. The 

chosen positions of the nodes iζ  are presented in Fig.9, in intrinsic coordinates. 
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Figure 9 – position of ζζζζi for KI calculation 

The comparison of the results obtained with this technique and those found with NGF-BEM 

(numerical Green’s function with BEM) and AGF-BEM (analytical Green’s function with BEM) 

are presented in Table 1 

Table 1 – comparison of results 

Method KI /K0 Error (%) 

NGF-LBIE 1.182 0.51 

NGF-BEM 1.1877 0.99 

AGF-BEM 1.1871 0.94 

estimated 1.176 ± 1% - 

 

In order to present the results in non-dimensional form, they are divided by aK πσ=0 , where 

σ is the applied load and a is the half-length of the crack. 

Conclusion 

The present work aimed at introducing the concept of the NGF to potential problems 

and fracture mechanics applications in the context of the LBIE method. Here the LBIE formulation 

was presented for potential and elastostatic problems, as well as the procedure for obtaining the 

NGF for potential discontinuity and fracture mechanics. The MLS approximation scheme was used 

to interpolate the trail function. 

As demonstrated by the results, the LBIE is shown to be suitable for a Green's function 

type of implementation and the development of the NGF for infinite planes with unloaded lines of 

discontinuity has proven to be worth of attention, especially for elastic fracture mechanics 

applications. 
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Abstract. The boundary element methodology is applied to the fracture mechanics of non-linear 

viscoelastic solids. The adopted non-linear model is based on the ‘free volume’ concept, which is 

introduced into the relaxation moduli entering the linear viscoelastic relations through a time shift 

depending on the volumetric strain. Nonlinearity generates an irreducible domain integral into the 

original boundary integral equation governing the behaviour of linear viscoelastic solids. This 

necessitates the evaluation of domain strains, which relies on a non-standard differentiation of an 

integral with a strong kernel singularity. A time domain formulation based on constant shape 

functions over boundary elements and domain cells is computer-implemented through a numerical 

integration algorithm. The effectiveness of the developed numerical tool is demonstrated through 

the analysis of a plate with a central crack. The predicted stress field around the crack tip is 

compared with respective results obtained by the finite element method. 

Introduction 

The importance of polymers and other viscoelastic materials to modern engineering practice has 

prompted extensive research on their failure mechanisms. The issue of viscoelastic fracture, in 

particular, was addressed in many early experimental and theoretical studies [1]. Crack propagation 

was linked to material properties through an experimentally validated model [2]. A sound 

theoretical basis for assessing crack initiation and growth was achieved by combining classical 

fracture mechanics concepts with viscoelastic material modelling [3-5]. An energy criterion for 

crack growth was proposed and tested against experimental evidence [6-7]. More recent studies 

explored the relevance of J-integral as a criterion for crack growth [8-9]. 

It was noted quite early that viscoelastic behaviour becomes highly nonlinear in the presence of 

cracks [5]. Such non-linearity manifests itself as considerable strain softening near the crack tip. 

Schapery [10] proposed a quite general and frequently applied nonlinear constitutive model, which 

includes the principle of time-stress superposition. The latter is accounted for through the definition 

of ‘reduced time’, a concept originally introduced to account for temperature variation [11]. Based 

on experimental studies, Knauss and Emri [12-13] linked the time-stress superposition model to the 

concept of free volume. This model has been applied to various problems [14-15] and found to be a 

very effective analysis tool for assessing the effect of nonlinearity on the behaviour of polymer 

materials. Dooling et al proposed a constitutive model based on the hypothesis of a non-Newtonian 

flow process [16]. A wider view of trends and developments in non-linear viscoelastic modelling 

has been provided by Schapery [17]. Schapery also proposed a theoretical model accounting for 

nonlinearity in the evaluation of J-like path independent integrals [18]. Knauss and Losi [19] used 

the ‘free volume’ concept to study crack propagation through nonlinear viscoelastic material in the 

context of adhesive bond failure. 

The development of numerical techniques for the implementation of linear and nonlinear 

constitutive models in the solution of fracture problems has been an important research objective. 

Applications of the finite element method (FEM) to linear viscoelastic fracture mechanics (LVFM) 

have been mainly concerned with the simulation of crack growth in the polymer matrix of 
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composites [20]. Moran and Knauss [14] used FEM modelling to introduce the ‘free volume’ 

concept into a fracture mechanics context. Non-linear FEM algorithms and codes, based on the 

Schapery model [10], have also been developed and tested for efficiency and stability [21]. 

The boundary element method (BEM) has been extensively and very effectively used in 

modelling linear viscoelastic behaviour [22]. It seems, however, that there has been only one 

previous attempt to extend such formulations to nonlinear problems [23]. On the other hand, BEM 

has been shown to be a reliable tool for performing LVFM analyses. An early such three-

dimensional formulation [24], based on the Laplace transform approach, predicted the crack 

opening displacement of a penny-shaped crack in a viscoelastic material characterised by a three-

parameter Kelvin model. Two-dimensional stress and displacement fields were later analysed in the 

neighbourhood of a crack filled with failed, so-called craze material [25]. Laplace transform-based 

BEM was also used for the evaluation of dynamic stress intensity factors in cracked viscoelastic 

plates under suddenly applied loads [26]. More recently, a direct, time domain BEM formulation 

was applied to the evaluation of an expression for the strain energy release rate derived from a 

functional corresponding to the potential energy in elasticity [27-28]. Further results have 

confirmed the effectiveness of both Laplace transform and time domain BEM in predicting time-

dependent stress intensity factors and energy release rates under constant and time dependent loads 

[29]. In parallel with viscoelastic material modelling for polymers, BEM analyses, based on 

viscoplasticity, have also been developed for predicting  metal creep and rupture [30-32]. 

The non-linear visco-elastic model employed in the present BEM analysis of fractured polymers 

is based on the reduced time concept, which is, in turn, considered as a function of mechanical free-

volume changes. The relaxation moduli of linear visco-elasticity are thus employed in the 

Boltzmann constitutive equations with a time shift depending on the volumetric strain. The 

difference between the actual and a pseudo stress tensor, the latter linearly related to the actual 

strains, generates an irreducible domain integral into the original integral equation derived for linear 

viscoelastic solids. Domain strains are obtained by differentiation of a domain integral with a strong 

kernel singularity resulting in a singular integral and a regular free term. A time domain formulation 

is implemented through a numerical integration algorithm. The effectiveness of the developed 

numerical tool is demonstrated through the analysis of a plate with a central crack subjected to 

remote tension. The results are compared with respective predictions by the finite element method. 

Background Theory 

The linear viscoelastic model adopted in earlier BEM formulations [33] is, in accordance with 

Boltzmann's principle, of hereditary integral type 

σij = Gijkl(t)εkl(0) + 
0

( )
( ) d

t
kl

ijklG t
ε τ

τ τ
τ

∂
−∫

∂
 (1) 

where σij, εij are the stress and small strain tensors, respectively, and Gijkl(t) the relaxation moduli in 

the general case of an anisotropic medium. The problem is described relative to a Cartesian frame 

of reference xi, i =1,2,3, adopting the summation convention for repeated indices. Introducing the 

notation for the Stieltjes convolution of two functions [34], Eq. 1 can be more concisely written as 

σij = Gijkl ∗ dεkl (2) 

For an isotropic material characterised by shear and relaxation moduli µ(t) and K(t), respectively, 

Eq. 2 becomes 

σij = 2µ ∗ dεij + 
1

3
(3K – 2µ) ∗ dεkk δij (3) 
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The nonlinear constitutive equations adopted here are [14] 

σij =
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where ζ(t) is the reduced or intrinsic time, which may account for the effect of temperature [11], 

moisture and pressure variations on the relaxation moduli. A general definition of ζ(t) is 

ζ(t) = 
0

d
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t

v

τ
φ τ

∫  (5) 

where φ is a shift factor, which depends on the fractional free volume v, that is, the ratio of free 

volume to the total polymer volume. The free volume itself is a measure of molecular packing 

irregularities. Here, only the influence of mechanically induced aging is considered, thus v is 

expressed only in terms of volumetric strain as 

v = v0 + Cεkk  (6) 

where v0 is the fractional free volume at some reference state and C is a material parameter which, 

in many cases, may be taken equal to unity. A possible expression for φ is [12] 

φ = exp
0

1 1
b

v v

  
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where b is another experimentally determined material parameter. 

Formulation 

The derivation of an integral equation for non-linear viscoelastic problems begins with the 

reciprocal theorem of linear viscoelasticity [34]. Given two linear viscoelastic states (εij, σij) and 

( ,ij ijε σ� � ), satisfying the constitutive Eq. 2 in the viscoelastic domain Ω , then 

d dij ij
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In a non-linearly deformed viscoelastic material, it is possible to define the notional pseudo stress 

field L
ijσ  related to the actual strain components by 

L
ijσ = Gijkl ∗ dεkl  (9) 

Then, the actual stress developing in the non-linear material can be written as 

σij = L
ijσ + NL

ijσ  (10) 

where NL
ijσ  represents the effect of material non-linearity on stress, that is, the stress difference 

resulting from using constitutive Eq. 4 rather than Eq. 2. The reciprocity relation, Eq. 8, is only 

valid for L
ijσ ; hence, for the non-linear problem, it should take the form 
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Substitution of the small strain-displacement relations into Eq. 11, integration by parts and the 

application of divergence theorem, gives 

d di i
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u p Γ∗∫ � + d di i
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u f Ω∗∫ � = d di i
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u p Γ∗∫ � + d di i
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where Γ is the boundary of Ω while ui, pi and fi are, respectively, the components of the 

displacement, traction and body force corresponding to the actual, nonlinear problem while 

,  and i i iu p f�� �  are the respective quantities associated with the second hypothetical linear stress-strain  

field ( ,ij ijε σ� � ). The latter is assumed to arise from the body forces 

kif�  = δkiδ( x–ξξξξ)H(t) (13)  

acting on an infinite isotropic linearly viscoelastic domain, where δki is the Kronecker delta, δ( x–ξξξξ) 

the delta function and H(t) the Heaviside step function. Then, Eq. 12 is transformed to 
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where ( , )kiu t−x ξ�  is the time-dependent fundamental solution while ijkε�  and ijp�  are the 

corresponding strain and edge traction components. In Eq. 14, κij = δij for interior source points and 

κij = (1/2)δij for points on a smooth boundary. Expressions for κij when the source point is a corner 

boundary point can be found in the boundary element literature [35]. 

The Laplace transform of kiu�  can be derived from the fundamental solution of the respective 

elastic problem via the correspondence principle. Inversion from the transform to the real time 

domain leads to the general form [33] 

( , ) ( ) ( ) ( ) ( )ij ij iju t A t g B t h− = − + −x ξ x ξ x ξ�  (15) 

where the time functions A(t) and B(t) also depend implicitly on the relaxation moduli of the 

material while the spatial functions gij(x – ξξξξ) and hij(x – ξξξξ) also depend on the dimensionality of the 

problem. In two-dimensions, 
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where r = |x – ξξξξ|. 
Eq. 14 is not a true boundary integral equation because of the presence of an irreducible domain 
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( , ) ( ) ( ) ( ) ( )ij ij iju t A t g B t h− = − + −x ξ x ξ x ξ�  (15) 
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Eq. 14 is not a true boundary integral equation because of the presence of an irreducible domain 

integral dependent on material non-linearity. An iterative scheme accounting for that integral 

complements an existing time-stepping boundary element formulation [33] for solving the linear 

part of Eq. 14. The scheme relies on the evaluation of NL
ijσ  at internal points using Eq. 10 and the 

constitutive relations (1) and (4). The strains are given in terms of the displacement gradients, 

which are obtained by spatial differentiation of the domain displacement components given by 

Eq. 14 with κij = δij: 
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The small strain-displacement relations are then applied while the linear pseudo stress as well as the 

actual stress components are calculated using the constitutive Eqs. 1 and 4, respectively. 

Differentiation of the Singular Domain Integral. The strong singularity of the kernel 

/ijk lε ξ∂ ∂� , whose behaviour is of order O(r
–2

), does not allow differentiation under the domain 

integral sign in the third term on the right-hand side of Eq. 16.  The correct expression for that 

gradient is derived using a method proposed by Bui [36]. Thus, the irreducible domain integral is 

separated into two parts, 
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where ΩR is a small circle of radius R, centred at the source point ξξξξ. 

It can be shown that the second volume integral on the right-hand side of Eq. 17 is of the order 

O(R
2
). The proof requires NL

ijσ  as well as its first and second partial derivatives to be continuous 

functions of x in the neighbourhood of ξξξξ. Then, a Taylor’s series expansion of NL
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where Dijkm(t) are linear combinations of A(t) and B(t), independent of ξξξξ. Hence the spatial 

derivatives of the right-hand side of Eq. 18 are expressed in terms of second partial derivatives of 
NL
ijσ  and therefore vanish as R → 0. 

Since ΩR depends on ξξξξ, differentiation of the first domain integral on the right-hand side of 

Eq. 17 produces an additional convective term. Thus 
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where ΓR is the periphery of the circle with radius R and n is the outward unit normal to that circle. 

Using the formulas [37] 
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the last convective term on the right-hand side of Eq. 19 is transformed to 
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that is, a sum of simple convolution integrals. 

As R → 0, the first integral on the right-hand side of Eq. 19 becomes the Cauchy principal value 

of the singular integral, whose existence has been proved and the method to evaluate it is presented 

next. The strain components corresponding to iju�  and their gradients are obtained by successive 

differentiation of Eq. 15. 
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Evaluation of the Cauchy Principal Value. The domain integral on the right-hand side of 

Eq. 19 is evaluated by dividing the domain into cells, that is, two-dimensional subdomains Ωc 

bounded by contours Γc. The integration is performed over each cell using an approximate model 

for the unknown NL
ijσ . The radial integration method [37] was used to evaluate the Cauchy principal 

value of that integral over the cell containing the source point. The integration over all other cells 

was performed using numerical quadrature. 

The domain integral on the right-hand side of Eq. 19 can be expressed as 
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The strong singularity persists in the first integral on the right-hand side of Eq. 22 while the second 

integral can be shown to be regular and therefore evaluated by standard numerical schemes. A polar 

coordinate system (r, θ) is defined with the origin at the source point ξξξξ. It can be shown that, 

relative to this system, the singular integral on the right-hand side of Eq. 22 can be transformed to 
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Since the integration is carried out in the Cauchy principal value sense, a small circle of radius R 

around the singular point ξξξξ can be cut off. Thus, Eq. 23 becomes, 
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where ∂r/∂n = –1 has been used in the second integral along the circle ΓR. Using relations (20), it 

can be shown that the last integral on the right-hand side of Eq. 24 is identical to zero; this is an 

intrinsic property of ψijkl. Hence, as R → 0, Eq. 24 becomes 
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Now the strongly singular domain integral has been transformed into a boundary integral. Since the 

source point is located inside the domain, no singularity occurs and standard Gaussian quadrature 

formulas can be used to calculate this integral. 
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Now the strongly singular domain integral has been transformed into a boundary integral. Since the 

source point is located inside the domain, no singularity occurs and standard Gaussian quadrature 

formulas can be used to calculate this integral. 
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Figure 1 Triangular cell (a) and polar coordinate system with origin at the singular point ξξξξ (b) 

 

The domain was divided into small triangular cells, such as the one shown in Fig. 1(a), with the 

source point ξξξξ at the centre of the triangle. Relative to a polar frame of reference with origin at the 

centre of the triangle, the equation of side A( 1ˆix )-B( 2ˆix ) of the triangle, shown in Fig. 1(b), can be 

expressed in terms of the local corner co-ordinates ˆ j j

i i ix x ξ= − , where j

ix  are the co-ordinates of 

corner j. 

Thus, in this case, the contour integral on the right-hand side of Eq. 25 is evaluated along each 

side of the triangle. Adopting a ‘constant’ cell model for NL

jkσ , the stress difference in Eq. 22 

vanishes and therefore  
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The integrals on the right-hand side of Eq. 26 are calculated using the standard Gaussian quadrature 

formulas. 

Numerical Algorithm 

Constant boundary elements were used in the present numerical implementation of BEM 

formulation based on integral Eq. 14, which also requires modelling in the time dimension. If the 

boundary surface Γ is discretised in E elements Γe, the following representation can be adopted, 
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j jp t p t=x  (27) 

where ( )e

ju t  and ( )e

jp t  are the time dependent nodal values of displacement and traction, 

respectively. Over a cell, strain was modelled as uniform and, as a consequence of Eqs. 1, 4, 6 and 

7, the shift factor as well as both linear and non-linear contributions to the stress are also constant 

within each cell. 

It was assumed that the boundary variables ui(x,t) and pi(x,t) as well as the nonlinear part of total 

stress NL

jkσ (x,t) in the domain are linear with respect to time t within a small time step ∆tκ = tκ – tκ–1. 

The viscoelastic fundamental solutions were written in the general form: 
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where the coefficients m

ija , n

ijb  and q

ijkc  are spatial functions of r = |x – ξξξξ|. Then, the discretised form 

of Eq. 14 was obtained as 
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where, for simplicity, the body force was assumed to be zero and 
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An iterative scheme is proposed for solving Eq. 29 since the current values of the stresses 
NL

jkσ are not known at the beginning of a time step. At the first iteration, the boundary displacements 

and tractions are determined at time t = tκ assuming ( )NL

jk tκσ = 1( )NL

jk tκσ − . Then displacement 

gradients are determined from Eq. 16 leading to initial estimates of domain strains and subsequently 

of stresses through constitutive Eqs. 1 and 4. The value of the domain integral can thus be revised 

and the procedure repeated until results from two successive iterations agree within an acceptable 

tolerance. Convergence of boundary displacements was the adopted criterion for terminating the 

iteration. This was assumed to occur when  
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where u
i
 is any nodal displacement at iteration i. 

It should be noted that, at t = 0 all unknown boundary values can be calculated when the integral 

Eq. 14 governs only the initial elastic response due to any non-zero initial values of the boundary or 

loading conditions. At the following time t = t1 (step κ = 1), the respective unknown boundary 

values can be obtained from Eq. 29 with the current boundary conditions and the additional terms 

depending on the solution at the initial step as well as the non-linear contribution of the current step. 

The solution progresses to the next time step κ = 2 in a similar manner and a step-wise procedure is 

thus established which advances the solution until the final time step is reached. A suite of 

FORTRAN programs was developed for implementing this formulation. The code has already been 

tested and found to be reliable in the case of linear viscoelastic problems [29, 33].  

Crack tip stresses 

Specimen Geometry and Material Model. The developed non-linear analysis was applied to a 

cracked rectangular plate under step tension σ0H(t). The central crack was oriented along the x1-

axis. The input data are approximately the same as those used by Moran and Knauss [14] who 

solved this problem using FEM. Due to symmetry relative to two orthogonal axes, only a quarter of 

the plate was modelled. The plate half-width was 13.44 mm, half-height 12 mm, and the crack half-

length a = 1 mm. The material behaviour was represented by a standard linear solid model in shear 

where the coefficients m

ija , n

ijb  and q

ijkc  are spatial functions of r = |x – ξξξξ|. Then, the discretised form 

of Eq. 14 was obtained as 
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where, for simplicity, the body force was assumed to be zero and 
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An iterative scheme is proposed for solving Eq. 29 since the current values of the stresses 
NL

jkσ are not known at the beginning of a time step. At the first iteration, the boundary displacements 

and tractions are determined at time t = tκ assuming ( )NL

jk tκσ = 1( )NL

jk tκσ − . Then displacement 

gradients are determined from Eq. 16 leading to initial estimates of domain strains and subsequently 

of stresses through constitutive Eqs. 1 and 4. The value of the domain integral can thus be revised 

and the procedure repeated until results from two successive iterations agree within an acceptable 

tolerance. Convergence of boundary displacements was the adopted criterion for terminating the 

iteration. This was assumed to occur when  

1

0.0001
i i

i

u u

u

−−
≤  

where u
i
 is any nodal displacement at iteration i. 

It should be noted that, at t = 0 all unknown boundary values can be calculated when the integral 

Eq. 14 governs only the initial elastic response due to any non-zero initial values of the boundary or 

loading conditions. At the following time t = t1 (step κ = 1), the respective unknown boundary 

values can be obtained from Eq. 29 with the current boundary conditions and the additional terms 

depending on the solution at the initial step as well as the non-linear contribution of the current step. 

The solution progresses to the next time step κ = 2 in a similar manner and a step-wise procedure is 

thus established which advances the solution until the final time step is reached. A suite of 

FORTRAN programs was developed for implementing this formulation. The code has already been 

tested and found to be reliable in the case of linear viscoelastic problems [29, 33].  

Crack tip stresses 

Specimen Geometry and Material Model. The developed non-linear analysis was applied to a 

cracked rectangular plate under step tension σ0H(t). The central crack was oriented along the x1-

axis. The input data are approximately the same as those used by Moran and Knauss [14] who 

solved this problem using FEM. Due to symmetry relative to two orthogonal axes, only a quarter of 

the plate was modelled. The plate half-width was 13.44 mm, half-height 12 mm, and the crack half-

length a = 1 mm. The material behaviour was represented by a standard linear solid model in shear 
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µ(t) = µ0[λ + (1 – λ)e
–ηt

] 

with µ0 = 4800 MPa, η = 0.4 and a constant Poisson’s ratio ν = 1/3. Parameter λ represents the ratio 

of the long-term to initial relaxation modulus. A constant Poisson’s ratio means that bulk and 

Young’s moduli have the same time dependence as the shear modulus. Plane strain conditions were 

assumed; this simplifies the evaluation of the volumetric strain. 

In order to calculate φ using Eq. 7, v0 was assumed to be 0.01, and b was chosen equal to 0.05. 

These values are representative of a moderately strain-softening polymer [14]. A remote tension 

σ22 = σ0 = 0.001E(0) was applied, where E(0) is the initial value of the tensile relaxation modulus. 

Boundary and Domain Meshing. ‘Constant’ boundary elements with variable element length 

were adopted. The two smallest elements, located on either side of the crack tip, were 0.005 mm 

long, the largest element at the loading edge of the plate was 3 mm long. In conformity with the 

boundary mesh, the domain mesh was arranged to be much denser near the crack tip, where the 

stress concentration and high nonlinearity occur.  
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Figure 2. Normalized nonlinear stress field near the crack tip (λ = 0.1) 

 

Nonlinear Stress Field. Fig. 2 shows the normalized nonlinear stress field near the crack tip for 

λ = 0.1. In a linear viscoelastic plate with a constant Poisson’s ratio under step loading, the stress 

field has a constant time history. For nonlinear viscoelastic problems, the material undergoes 

considerable strain softening around the crack tip, where the high stress and strain occur.  As shown 

in Fig. 2, the initial singular elastic response causes an instantaneous reduction in viscosity and the 

σ22 stress near the crack tip drops with time due to the strain softening; this drop slows down with 

time becoming less significant as the strain itself changes more slowly. The stresses far from the 

crack tip increase in order that overall equilibrium is satisfied. This response is similar to that 

predicted by FEM [14]. 

The program was also run with the parameter λ changed to 0.001 implying a more pronounced 

material time-dependence than originally assumed. From the respective results shown in Fig. 3, it 

was clear that the effect of nonlinearity was stronger than previously under the same loading 

conditions. A more significant nonlinear effect was predicted by FEM [14] but this was essentially 

due to the application of a much higher load in that analysis.  
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Figure 3. Normalized nonlinear stress field near the crack tip (λ = 0.001) 

 

Concluding Remarks 

A promising initial attempt has been made to apply a nonlinearly viscoelastic BEM formulation and 

the associated computer code to the solution of fracture mechanics problems. The numerical results 

obtained confirmed the expected effect of non-linearity on the stress time history, which is highest 

in the neighbourhood of the crack tip. They were also consistent with those reported in a previous 

analysis of the same problem by FEM [14]. It was noted in that study that, for materials with high 

viscosity (λ = 0.001), a very refined, computationally expensive mesh is required to capture the area 

of K-dominance around the crack tip. Although a domain mesh is required by the proposed BEM 

approach, this does not introduce any additional unknowns. Therefore, the boundary mesh can be 

very refined near the crack tip and thus provide reliable stress output there even in the case of 

highly strain-softening polymers. 

The current implementation of the formulation needs to be improved to enhance the confidence 

in its validity and reliability. This would involve mesh sensitivity studies to establish the 

convergence of key results. Although the adopted boundary and domain mesh was considered 

acceptable for an initial assessment of the performance of the proposed method, boundary element 

and domain cell size distribution around the crack tip may not have been ideal for capturing the 

local stress concentration. Such mesh refinements may also remove an observed degree of 

inconsistency between the calculated boundary tractions and domain stresses. In order to explain the 

current discrepancy between BEM and FEM predictions, further comparisons with experimental 

and other numerical or analytical results should be made. 

Numerical tests using the validated model can help to assess the sensitivity of the singular stress 

fields to various material input and solution control parameters. As shown previously in the case of 

LVFM [29], the proposed BEM formulation can also prove to be a very reliable and efficient 

numerical tool for the calculation of key fracture parameters, such as energy release rates and J-like 

integrals [18], characterising crack initiation and growth in nonlinear viscoelastic solids. 
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and domain cell size distribution around the crack tip may not have been ideal for capturing the 

local stress concentration. Such mesh refinements may also remove an observed degree of 
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current discrepancy between BEM and FEM predictions, further comparisons with experimental 

and other numerical or analytical results should be made. 

Numerical tests using the validated model can help to assess the sensitivity of the singular stress 

fields to various material input and solution control parameters. As shown previously in the case of 

LVFM [29], the proposed BEM formulation can also prove to be a very reliable and efficient 

numerical tool for the calculation of key fracture parameters, such as energy release rates and J-like 

integrals [18], characterising crack initiation and growth in nonlinear viscoelastic solids. 
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