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Guest Editorial

The existence of crack-like flaws cannot be precluded in any engineering structure. At the same
time, the increasing demand for energy and material conservation dictates that structures are
designed with smaller safety factors. Consequently, accurate quantitative estimates of the flaw
tolerance of structures are of direct concern for the prevention of fracture in load-bearing
components of all kinds, ranging from space satellites and aircrafts to bone prosthesis and home
appliances.

In order to sustain a reasonable cost for design and maintenance, it is generally accepted that
computational analysis and simulation must partially replace full scale and laboratory testing. In
general, numerical methods such as the Boundary Element Method (BEM) and the Finite Element
Method (FEM) and more recently Meshless methods are used in the fracture analysis of structures,
because of the complex shape and continuously changing path of the growing cracks.

This special issue of Key Engineering Materials presents nine papers that cover different aspects of
the current areas of research in Fracture Mechanics using innovative and new computational
approaches based on the BEM and meshless methods. A number of topics are addressed, such us
dynamic and viscolastic fracture problems, crack surface contact, fatigue and cohesive crack
propagation, and the analysis of cracks in composite and anisotropic bodies. There are also
presented innovative formulations for fracture problems, such us Symmetric Galerkin formulations
and a Local Boundary Integral Equation for the BEM and a variational element-free technique..

The editors would like to thank the contributors of papers, the reviewers and the Key Engineering
Materials journal for helping put together this special issue.
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Division Soldadura y Fractomecénica - INTEMA
Facultad de Ingenieria, Universidad Nacional de Mar del Plata

Argentina






Table of Contents

Guest Editorial

SGBEM for Cohesive Cracks in Homogeneous Media
L. Tavara, V. Manti¢, A. Salvadori, L.J. Gray and F. Paris

On the Solution of the 3D Crack Surface Contact Problem Using the Boundary Element
Method
W. Weber, K. Kolk, K. Willner and G. Kuhn

A Variational Technique for Element Free Analysis of Static and Dynamic Fracture
Mechanics
P.H. Wen and M.H. Aliabadi

Boundary Element Analysis of Three-Dimensional Interface Cracks in Transversely
Isotropic Bimaterials Using the Energy Domain Integral
N.O. Larrosa, J.E. Ortiz and A.P. Cisilino

Symmetric-Galerkin Boundary Element Transient Analysis of the DSIFs for the Interaction
of a Crack with a Circular Inclusion
A.V.Phan, L.J. Gray and A. Salvadori

Stress Intensity Factor Evaluation of Anisotropic Cracked Sheets under Dynamic Loads
Using Energy Domain Integral
M. Mauler, P. Sollero and E.L. Albuquerque

Computer Modelling of Dynamic Fracture Experiments
P. Fedelinski

On NGF Applications to LBIE Potential and Displacement Discontinuity Analyses
L.S. Miers and J.C.F. Telles

Nonlinear Viscoelastic Fracture Mechanics Using Boundary Elements
S. Syngellakis and J.W. Wu

11

31

47

79

97

113

127

137



Key Engineering Materials Vol. 454 (2011) pp 1-10
© (2011) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/KEM.454.1

SGBEM for cohesive cracks in homogeneous media
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Abstract. In this paper, the Symmetric Galerkin Boundary Element Method for Linear Elastic Frac-
ture Mechanics is extended to non-linear cohesive cracks propagating through homogeneous linear
elastic isotropic media. The cohesive model adopted is based on the concept of free energy den-
sity per unit undeformed area. The corresponding constitutive cohesive equations present a softening
branch which induces a potential instability. Thus, a suitable solution algorithm capable of follow-
ing the growth of the cohesive zone is needed, and in the present work the numerical simulation is
controlled by an arc-length method combined with a Newton-Raphson algorithm for the iterative so-
lution of nonlinear equations. The Boundary Element Method is very attractive for modeling cohesive
crack problems as all nonlinearities are located on the boundaries of linear elastic domains. Moreover
a Galerkin approximation scheme, applied to a suitable symmetric boundary integral equation for-
mulation, ensures an easy and efficient treatment of cracks in homogeneous media and an excellent
convergence behavior of the numerical solution. The cohesive zone model is applied to simulate a
pure mode I crack propagation in concrete. Numerical results for three-point bending test are used
to check the numerical results for mode I and are compared with some numerical results obtained by
FEM analysis found in the literature.

Introduction

Classical computer analysis of cracks has traditionally been based on Linear Elastic Fracture Me-
chanics (LEFM) assuming the presence of a crack, see [1, 2, 3] for surveys of Boundary Element
Method (BEM) applications to fracture. In this LEFM approach it is difficult to study crack initiation.
Furthermore LEFM is only applicable when the size of the fracture process zone at the crack tip is
small compared to the size of the crack and the size of the specimen [4]. Recently, other models have
been intensively developed and applied in computer crack analysis, e.g. the Cohesive Zone Models
(CZMs) [5, 6, 7, 8] that assume hypotheses different from those adopted in LEFM, and avoid the
presence of a stress singularity at the crack tip. The CZMs are suitable to study both crack initiation
and propagation. In a cohesive crack, the propagation is governed by a traction-displacement relation
across the crack faces near the tip.

In the framework of BEM [9, 10], CZM formulations have been developed by Yang and Ravi-
Chandar [11] and Aliabadi and Saleh [12, 13], who implemented novel numerical procedures for
cohesive crack growth by using a collocational approximation and the so-called Dual BEM. Never-
theless, the use of the Symmetric Galerkin Boundary Element Method (SGBEM) [14, 15, 16, 17,
18] for CZM implementation has several advantages in comparison with the traditional collocation
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BEM [19, 20], e.g., no difficulty with smoothness requirements on displacement approximations at
element junctions due to the hypersingular kernel, a consistent treatment of subdomain corners or
discontinuities of boundary conditions (changing abruptly their value or kind) where traction dis-
continuities can take place. SGBEM provides the required number of equations and no additional
equations are required as they are in the collocational BEM [9] in some cases. The SGBEM uses
both the strongly singular displacement BIE and the hypersingular traction BIE in such a way that the
discretizations of these BIEs lead to a symmetric linear system of algebraic equations, with positive
or negative definite diagonal blocks associated to unknown tractions or displacements.

In the present work, the Ortiz - Pandolfi [7] CZM is implemented in a 2D Symmetric Galerkin
BEM (SGBEM) code. The original version of this code [21] solved plane elastic problems includ-
ing multi-material (piece-wise homogenous) isotropic linear-elastic solids having traction-free cracks
inside the homogenous components. The materials were considered to be perfectly bonded along
their interfaces. The SGBEM and the implementation details of the algorithm employed herein are
discussed in [17, 18, 21]. Constitutive equations of a CZM usually include a softening branch, which
induces a strong nonlinearity and potential instability. Thus, the development and implementation of
a suitable solution algorithm capable of following the evolution of the cohesive zone and modeling the
crack growth becomes an important issue. An arc-length control combined with a Newton-Raphson
algorithm for iterative solution of nonlinear equations is used in the present work [22, 23, 24, 25].

Cohesive Zone Models

This kind of model is motivated by the fact that in some materials such as concrete, polymers, fiber-
reinforced composites, tough ceramics and some alloys, the crack surfaces are usually not separated
completely behind the crack tip. There exists a relatively long extension of the crack - variously
called the weak zone, the bridging zone, or cohesive zone - where tractions can be transferred across
the crack line. The mechanism responsible for the development of this kind of process zone can be
bridging of long-chain molecules in polymers, bridging of fibers in composites, interlocking of grain
boundaries in alloys and ceramics, and so on. A cohesive constitutive law is required for modeling
the behavior of the material in the process zone. For these materials, the cohesive zone model of
a crack seems to be the appropriate model. In a simple 2D history-independent (holonomic) CZM
formulation (no friction, no plasticity, etc.) displacement discontinuities across the crack, J;, (i =
1,2 corresponding to the normal and tangential directions to the crack respectively) are related to
the traction vector, ¢;, in a zone located ahead of the actual crack tip [6, 7, 8]. The constitutive
law in its simplest history-independent (holonomic) version may be formally written as t = t(4).
A fundamental aspect in the present simple formulation of the constitutive cohesive model is the
requirement that the energy dissipated at a crack propagation must be equal to the fracture energy,
i.e., the following relation must be satisfied:

o
/ tds, = G, (1)
0

where 5{ is the “final” value (not necessarily finite) of the relative displacement leading to the van-
ishing of cohesive forces.

Ortiz-Pandolfi Model. This holonomic model is defined by three parameters (3, o.,d.). The
relation between tractions and relative displacements in the cohesive zone proposed in [6, 7], requires
the concept of effective opening displacement §: § = /0% + (342, i.e., different weights are assigned
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to the normal opening displacement (d;) and sliding (tangential) displacement (d5) through the pa-
rameter (3.

Following [6, 7] the existence of a free energy density per unit undeformed area, ¢, is postulated.
Under the presence of isothermal conditions and the assumption of isotropy, it is possible to show
that the cohesive law takes the form: ¢ = grad[¢] if it is assumed that the free energy ¢ depends on §
only through the effective opening displacement. This implies that:

0 ) )
t = gradg[¢] = a—? <§n1 + 52§n2> 2)

where n; is the unit vector in the :-direction. If no unloading is considered, a simple expression for
the potential ¢ is furnished by the Smith and Ferrante universal binding law [7]:

#(0) = ead, [1 - (1 + 5%) 6_%] , g—‘é’(&) =t= 606%6_% 3)

where e ~ 2.718 is the base of the natural logarithm, o, is the maximum cohesive normal traction and
d. is a characteristic opening displacement in pure fracture mode 1.

Cohesive Zone Models and SGBEM

Consider a linear elastic 2D body of an arbitrary shape {2 which contains a crack. The boundary
I' of the body €2 is composed of the non-crack boundary I', and the crack surface I'.. The crack
surface I, consists of two coincident surfaces I'}" and ", which represent the upper and lower crack
surfaces respectively. As explained in [19, 21] it suffices to discretize one crack surface (e.g. the
upper one) as the crack surfaces are usually symmetrically loaded, verifying the equilibrium condition
t = t7 = —t_ along I'.. Thus, the Somigliana displacement (u-BIE) and traction (¢-BIE) identities
written at a point P in a smooth part of the boundary take the following form:

1

3u(P) = [ U(P.QQ) ~T(P.Qw(@1dQ ~ [ IT,(P.Quy@]dQ  onT. @&

30(P) = [ [T5(P.Q1(Q) = Sis(P.Qus@] 4@ - | [S(P.Quy(QldQ onTy 9

6(P) = [ [T5(P.Q(Q) - Su(P.Qus@] 42 - | [Su(P.Quy(QldQ onTe ©
b c

where w = ul — u_ represents relative displacement along I'.. Uy; and T}; are the weakly and
strongly singular kernels given by the displacement and traction fundamental solution, and T}, and
Sk; are the strongly singular and hypersingular corresponding derivative integral kernels. The non-
crack boundary I', is formed by I',, and I';, where I, is the portion of the boundary with prescribed
displacements u, and I'; is the portion of the boundary with prescribed tractions t;. As the primary
unknowns on the crack surface are relative displacements, w, and tractions are given in terms of
w through the cohesive constitutive law, only ¢-BIE is written for points on I'}". Discretizing a weak
form of Equations (4-6) in terms of rates of variables u, t and w with respect to a “non-physical” time,
associated to a load parameter \ by using a Galerkin scheme, the following linear system [A]{Z} =
{b} is obtained, in block matrix form:

_Uuu Tut Tuc £u _(%Muu + Tuu)uu + Uutft
T;, —Su —Ste 0y = Sty + (%Mtt — Tyt (7
T:u _Sct _Scc + KMCC v.Vc Scul.lu - T:ttt

where the subscripts u, ¢, and c represent the terms corresponding to the non-crack boundary with
prescribed displacements I',, non-crack boundary with prescribed tractions I';, and the crack surface
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I'., respectively. Thus t, represents unknown tractions and u, represents unknown displacements on
the boundaries I', and I'; respectively; M are symmetric ‘mass matrixes’ obtained from the free term
of the integral equations.

It is important to mention that the final coefficient matrix of this system is symmetric due to the
reciprocity relations of the integral kernel tensors as shown in [15, 16, 18, 26]. In [26] a similar
matrix is obtained for the case of traction free cracks. The only difference is the lower right-hand
diagonal block of the linear system matrix —S.. + KM,., where K is the tangent elastic stiffness
matrix obtained from the cohesive law defined in a previous section. It can be shown that the product
KM, keeps the desired symmetry if K is symmetric, which is the case of the present cohesive law.
Note that elements of K associated to the softening branch are negative, which implies that the block
—S.. + KM, may not be positive definite.

In the case of a pure traction problem (I",, = ()) the rigid body motion in the displacement solution
is removed by the use of the Method S introduced and studied by Vodicka et. al. [27].

Non linear solution algorithm

The arc-length method is a powerful solution algorithm, allowing the evolution of the equilibrium
states of a problem to be solved at various load levels [22, 23, 24, 25]. All these equilibrium states
trace the load-displacement response of the structure in which the applied load varies proportionally
as a function of a unique load parameter. In this case, for a system with n degrees of freedom (DOF),
the n 4+ 1 unknowns completely define the problem.

Several variants of the arc-length method, in its discrete formulation, have been proposed in the
past. The one used in the present work is the normal-flow algorithm [25], where successive Newton-
Raphson iterations converge to the equilibrium solution along a path which is normal (in an asymp-
totic sense) to the so-called Davidenko flow [25].

It should be mentioned that Risk’s and Ramm’s arc-length versions [22, 23] have also been imple-
mented in the SGBEM code used. In a comparison of these three versions, the normal-flow algorithm
led to a slightly faster convergence (fewer steps and/or iterations) than the other two arc-length algo-
rithms, and for this reason it was chosen to be applied in the present work.

The solution algorithm was implemented using the full Newton-Raphson method. The prediction
phase includes the determination of the arc-length step size at each increment. The first step includes
the selection of an appropriate value for the arc length.

A very important issue of the procedure is to define a suitable scaling of the known and unknown
variables involved in the solution of a nonlinear system of equations. The variables in the final system
should have similar orders of magnitude, so as to aid the performance of the non-linear numerical
solver.

Numerical Results

In order to verify the capability of the present numerical model to reproduce the cohesive zone model
behavior, a three-point bending test, Fig. 1(a), for a concrete mix is modeled. The growth of a cohesive
crack in such a specimen has been studied extensively in [28] using the Finite Element Method (FEM)
and the node release technique for a linear cohesive law. In the present work the influence of the initial
crack depth and the value of fracture energy are studied.

The dimensions of the specimen considered are height b = 0.15m, thickness ¢ = b and span
[ = 4b. A uniform boundary element mesh (size 0.005m) with 672 nodes and 330 quadratic elements
are employed in the numerical simulation of this specimen made of a concrete-like material. The
anticipated straight crack path is modeled by a mesh placed inside the single domain representing
the specimen tested. The point-supports are imposed by means of the Method S [27]. This method
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Figure 1: (a) A three-point bending specimen configuration and (b) BEM mesh used and the boundary

conditions employed.
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Figure 2: Load-deflection plots for different initial crack depths, a, for G;. = 50J/m?.
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Figure 3: Load-deflection plots for several initial crack depths, a, for G;, = 10J/m?.
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allowed an adequate simulation of the three-point bending test, as the point-support boundary condi-
tion can be situated at a single node (similar to FEM), rather than fixing an entire element. The point
supports at the two bottom corners are shown in Fig. 1(a), and as only one node is constrained at each
support, rotation around these points is allowed. Constant distributions of pressures, which fulfill the
condition of global equilibrium, were imposed over two elements at the centre top of the specimen
and on one element at each bottom corner, Fig. 1(b). The mechanical properties of the concrete-like
material are Young modulus £ = 36.5GPa and Poisson’s ratio v = 0.1. Two different values of
fracture energy G;. = 50 and 10J/m? are considered. The parameter values for the Ortiz-Pandolfi
model are maximum cohesive stress, 0. = 3.19MPa, and critical opening displacement, ., which has
two values: §, = 5.77x107%m and . = 1.15x10~%m, for each of the two different values of fracture
energy respectively. It is important to mention that in the present study the parameter [ is irrelevant,
due to the Mode I character of the problem.

20000

a=0m
18000 - a =0.03m
L - = .a =0m (FEM)

16000 - -/ - . .a =0.03m (FEM)
14000 - .

Z 12000 | .
* 10000 S
S 8000 - y
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ad.

4000 - y/ *3
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0 T T T
0.00E+00 5.00E-05 1.00E-04 1.50E-04 2.00E-04
Deflection, 6 (m)

Figure 4: BEM and FEM load-deflection plots for G;. = 50J/m?.
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Figure 5: BEM and FEM load-deflection plots for G, = 10J/m?.
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©
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Figure 6: Deformed boundary element mesh (displacement multiplied by a factor of 500) for the
initially uncracked specimen with G, = 50J/m? for different load steps at the softening branch: (a)
F =17718N (peak load), (b) F' = 9144N, (c) F = 4328N and (d) F' = 1395N.

For each considered value of fracture energy, different initial values of crack depth, a, are con-
sidered from a = 0 (initially uncracked specimen) to a = 0.06m, with increments of 0.01m. For all
these cases considered, the load deflection (F-9) curves are obtained. These (F-9) curves shown in
Fig. 2 for G, = 50J/m? are related to different initial crack depths. In a similar way as in [28] ini-
tial stiffness and maximum loading capacity of the specimen decrease by increasing the initial crack
depth a. Also the uncracked specimen reveals considerable instability and a nearly vertical drop in its
loading capacity (a small snap-back is observed), whereas the cracked specimens appear much more
“ductile”. The last part of the softening branch appears as totally independent of the initial crack
depth a, where all the plots superpose. The (F-9) curves in Fig. 3 describe the specimen behavior
when G, = 10J/m?. For a < 0.02m a snap-back instability occurs, that is, a softening branch with
positive slope is revealed.

Fig. 4 and Fig. 5 show a comparison between the results obtained by the SGBEM code and those
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Figure 7: Normal stresses along the crack path for different load steps at the softening branch (a)
F = 17718N (peak load), (b) F' = 9144N, (c) F' = 4328N and (d) F' = 1395]N.

obtained in Carpinteri and Colombo [28] by means of the Finite Element Method (FEM). Taking into
account different cohesive laws, exponential herein and linear in [28], and different meshes, there is
a very good agreement in the results. One of the reasons for the good agreement of the SGBEM and
FEM results is the use of the Method S [27] in the SGBEM implementation to impose point-supports
for the removal of rigid body motions.

Fig. 6 shows the deformed boundary element mesh of the beam at various load steps for the
initially uncracked specimen with G 7. = 50J/m?, the crack growth being clearly observable at those
stages. Notice the ticks appearing in the graphic, which represent the nodes of the SGBEM mesh. In
Fig. 7 the normal stresses along the crack path for the same load steps as in Fig. 6 and same material
properties are also shown. It can be observed that the expected behavior is obtained for stresses along
the cohesive zone. The advancing of the so called mathematical crack tip (where the critical stress is
reached) is also shown.

Conclusions

In the present work a symmetric boundary integral formulation for problems with cohesive cracks
placed inside homogeneous domains has been implemented. The 2D SGBEM code used is based
upon a previous implementation of crack analysis in the LEFM framework [21]. The present approach
is likely to be suitable for engineering applications involving isotropic materials, e.g. for an analysis
of crack initiation and growth in composites modeled as piecewise homogeneous materials at the
micro-scale. The introduction of the cohesive zone requires an iterative solution procedure to solve
the nonlinear equations resulting from the boundary integral formulation; the arc-length method with
the normal flow procedure has been implemented.

As shown by the numerical results, the present SGBEM cohesive zone formulation agreed very
well with a previous FEM crack growth analysis of the load-deflection behavior for the three-point
bending test. The SGBEM analysis was capable of following the instabilities produced by a nearly
vertical drop in the loading capacity and snap-back behaviors seen in some cases. Although a different
cohesive law is used in [28] the SGBEM results are consistent with the results presented therein.
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As can be observed by the analysis of the three point bending test, when the initial crack depth
a becomes larger the specimen becomes more “ductile”, and at the same time it makes the problem
more stable. It is also important to mention the influence of GG, as shown by the results. When this
value is small an unstable behavior is presented, especially for small initial crack depths a.

To predict the real behavior of structures, the first step would be to determine parameters of the
discrete model (o, and ¢, in the case of the Ortiz-Pandolfi model for Mode I), where the so-called
inverse method could be very useful [29].
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Abstract. The efficient solution of the 3D crack surface contact problem utilizing the boundary
element method (BEM) is presented. The dual discontinuity method (DDM), a special formu-
lation of the BEM, is applied. This method deals directly with the relative displacements and
the discontinuities of the tractions at the crack. For the normal behavior a unilateral contact
is assumed and for the description of the tangential behavior Coulomb’s frictional law is uti-
lized. The hard contact formulation is regularized by the application of the penalty method.
An incremental iterative procedure based on a radial return mapping algorithm is applied for
the solution of this non-linear problem. Based on the stress field the fracture mechanical pa-
rameters are determined by an extrapolation method for all increments of a characteristic load
cycle. By the analysis of this load cycle the cyclic fracture mechanics values are obtained. Due
to the non-linear nature of crack growth the simulation is implemented in the framework of a
predictor-corrector scheme. For the investigation of the influence of the crack surface roughness
on the behavior of cracks two numerical examples are presented.

Introduction

The assessment of the structural integrity of components includes a fracture mechanical anal-
ysis. Therefore, an efficient numerical tool for the stress analysis in the framework of the sim-
ulation of three dimensional crack growth is required. Due to the non-linear behavior of crack
growth an incremental procedure is necessary, cf. Fig. 1. Each incremental loop starts with
the stress analysis of the current crack configuration including the calculation of the fracture
mechanical parameters. Next, the 3D crack growth criterion based on linear-elastic fracture
mechanics is evaluated for the determination of the new position of the crack front. Finally,
the mesh of the numerical model is adapted in order to consider the new crack geometry in the
next increment.

Due to its nature the boundary element method (BEM) in terms of the dual BEM [1, 2]
is especially suited for stress concentration problems. Here, a special formulation for cracked
structures of the BEM — the dual discontinuity method (DDM) [3, 4, 5, 6] — is utilized. This
method offers two advantages. On the one hand, the numerical complexity is reduced. On
the other hand, crack surface interaction can be easily considered by this method. Since the
crack growth criterion is mainly based on the fracture mechanical parameters these values
are determined from the stress field in front of the crack front by an optimized extrapolation
method [6, 7).
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Inserting of a new element row
% AW old crack front

¥ X
X, \

ﬁ
7‘

double nodes f
crack front / )
crack surface Moving of the crack front nodes
a) Calculation of the fracture b) Generation of the c¢) Update of the
mechanical parameters new crack front discretization

Fig. 1: Three steps of an increment.

The 3D crack growth criterion is evaluated for the determination of the new crack front
geometry. Since the crack surface interaction causes non-proportional mixed mode, a complete
characteristic load cycle has to be evaluated for the calculation of the cyclic stress intensity
factors (SIFs). For the crack propagation it has to be distinguished between the tensile mode
crack growth and the shear mode growth. In this paper it is assumed that the crack grows in
the tensile mode. If only the state of stress of the current crack geometry is taken into account,
a linear prediction of the new crack front is obtained. In order to consider the changing stress
field between two discrete crack fronts corrector steps are required. This leads directly to an
implicit time integration scheme, which yields additionally an optimization of the new crack
front with respect to its shape and location [8].

Finally, the numerical model has to be updated with respect to the new crack geometry.
Since the BEM is utilized this task is less complicated compared to volume orientated methods,
see Fig. 1c. In case of a predictor step large crack extensions along the whole crack front are
present. Therefore, a new row of elements is inserted to close the gap between the old and the
new crack front. Otherwise, only small changes of the crack front occur during the correction.
Here, the nodes of the crack front are simply moved towards their new position. For surface
breaking cracks the discretization of the outer boundary around the surface breaking points has
to be modified. It is done by a local re-meshing procedure [7] using a direct paving algorithm [9].

The interaction of the crack surfaces causes a non-linear reaction of the structure on the
applied load. In order to consider this behavior an incremental procedure has to be applied
within the stress analysis. In principle, the state of contact is not a-priori known and has to
be iteratively determined within each increment. For an efficient determination of the state of
contact the hard contact formulations have to be softened. In this paper the well-known penalty
method is utilized. Within this method the contact tractions are defined via a constitutive law
with respect to penetrations of the hard contact formulation. Therewith, the frictional contact
problem is solved by a radial return mapping scheme [10, 11, 12].

First solutions of the contact problem with the BEM trace back to Andersson et al. [13].
Later numerous investigations e.g. [14] have been carried out including the application of the
penalty method [15]. The contact of the crack surfaces has been considered in [16], in which
the crack is modeled via domain decomposition. Lee [17] is utilizing the dual BEM in terms
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of the basic formulation. 2D cracks in unbounded domains have been analyzed by Phan [18]
using the symmetric-Galerkin boundary element method (SGBEM). Here, the crack surfaces
are separated by the introduction of the discontinuities of the displacements and of the trac-
tions. Furthermore, the crack surface interaction has been taken into account. Due to the
two-dimensional point of view no softening of the contact conditions is required.

3D dual boundary element method

The boundary value problem is solved by the 3D dual boundary element method (BEM). Within
this method the coincident crack surfaces are separated by the utilization of the displacement
and the traction boundary integral equation. Here, a special formulation namely the dual dis-
continuity method (DDM) is applied. It provides advantages with respect to the numerical
complexity and deals directly with the relative displacements of the crack surfaces.

Due to the time dependency of the contact problem the basic equations are written in the
rate formulation. The dots on the values denote the time derivatives. In the present case of a
time independent formulation these values become rather incremental values.

Description of the boundary value problem. For the description of the boundary value
problem (BVP) an arbitrary domain Q € R3 containing a crack is investigated, see Fig. 2. The
domain €2 is bounded by the surface I'. The whole surface I' consists of the normal bound-
ary I'" and the coincident crack surfaces I'° and I'°. The normal vector n is orientated out-
wards. Assuming a homogeneous and isotropic material behavior with linear elastic properties

T3

T2

I

[ =Tr"ureure

Fig. 2: Sketch of the 3D boundary value problem.

the boundary value problem is described by the Lamé-Navier equation

1 1.

Uijj(®) + 75 ,56(®) + = bi(x) =0 (1)

as well as by prescribed Neumann boundary conditions (£(x)) on I'V and Dirichlet boundary
conditions (w(x)) on I'P. Between I'V and T'P the conditions ' = TY UT? and TV NTP =
are fulfilled. The corresponding tractions are defined by the Cauchy formula

Without loss of generality, body forces bl(w) are neglected in the present paper.
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Boundary integral equations. Using the method of weighted residuals for the Lamé-Navier
equation (1) the Somigliana equation is obtained after integration by parts twice and the choice
of a fundamental solution as weighting function. The strongly singular displacement BIE results
from moving the source point £ on the boundary. It reads

«waw@=/%@wmwmm@—fn@wwumwm 3)

for source points on the normal boundary (§ € I'"). The free term c¢;; depends on the geometry
at the source point and it is defined as 14;; for smooth boundaries. U;; and Tj; denote the
known Kelvin fundamental solutions.

For source points on a smooth crack surface (£ € I'“UT*) the displacement BIE is written

36(6)+ 310 = [Us(e.2) (@) dl(@) - { T(6,2) (o) AT (@), (@

2
r r
in which u$(€) denotes the displacement rate of the geometric point £ at the crack surface I'®
and 4$(€) denotes the displacement rate of the same point at the opposite crack surface I'°.
Therefore, it can not be distinguished between the coincident crack surfaces.

To overcome this problem, the corresponding hypersingular traction BIE is additionally
taken into account within the concept of the dual integral formulations [1, 2]. It reads

3616 = 5150 = { Dy(€ ) (@) Al @) -  Sy(6 @) iy(@) D@ ©

r

for source points on a smooth crack. The kernels D;; and S;; are the derivatives of the Kelvin
fundamental solutions with respect to & multiplied by the elastic tensor and the normal vector
at the source point, which are called Gebbia solutions [19, 20].

Dual discontinuity method. A special technique for crack problems within the concept of
the dual integral formulations is the dual discontinuity method (DDM).

This method utilizes the symmetric properties of the fundamental solutions for the integra-
tion point @ at the crack:

Ug(éz) =U5& ) , T5& ) =-T5¢& =), (6)

Moreover, the special geometric situation of the crack surfaces is considered. The crack surfaces
describe the same geometric surface with reversed normal vectors. By the introduction of the
discontinuities of the displacements

i () = (@) — i () (8)

and the tractions
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with respect to I'® as new variables at the crack one crack surface e.g. I'® is substituted by the
other one. Therewith, the displacement BIE reads as

s(©5(6) = [Usle. @) (@) @)+ [Uy(e,2)i5(@) dr(e)

—][ T(&, ®) i () AT (z) — /U(E z) u5(@) dT'(x) (10)

for source points on the normal boundary and

i5(€) = 3O+ [Us(e.a) (@) dr@) + [Uy(€.2) (@) dP(@)

- [Te @) i@ ) - [Ty 2) isla)ar@) (11)

for source points on the crack. The traction BIE is now written as

t;(s) = _tc /Dl] §x tn( )dl'(z ][DZ] §x tc( ) dI'()

— [ 54(&;®) uf Sij(&, =) () AT (). (12)
/ %

Tn

In all BIEs the integration is reduced by one crack surface, here I'°.

Numerical solution. For the application of the BEM only the surface is discretized by
boundary elements. The normal surface is meshed with continuous elements. For the evaluation
of the hypersingular traction BIE (12) C%-continuity for the tractions and C'**-continuity for
the displacements are required and a smooth boundary is assumed [21]. Therefore, discontinuous
elements are utilized at the crack. In case of surface breaking cracks, the transition to the crack
surface is meshed with edge- and node-discontinuous elements.

The relevant BIEs are evaluated within the framework of a collocation procedure. Relevant
in this context means that the displacement BIE (10) is applied for source points at the outer
boundary. If Dirichlet boundary conditions are prescribed at the source point on both crack
surfaces, the displacement BIE (11) is evaluated. Otherwise, the traction BIE (12) is applied.
After a rearrangement according to the boundary conditions the linear system of equations

Ann Anc 0 in b
4cn écc 0 Lwc — b (13)

A" A” Id x° b
is obtained [4, 5, 6]. The third part of the equations in (13) results from the evaluation of the
remaining BIE for the source points at the crack. Here, Id denotes the identity matrix. The
vector & contains all unknown boundary values of the normal boundary " and the unknown

discontinuities at the crack ¢ respectively the unknown boundary values &¢ at I'¢. Obviously,
only the reduced system of equations

e a2 (14
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has to be solved. Here, the iterative GMRES algorithm [22] is applied. The remaining unknowns
are directly calculated in a post processing step via

~ CC

e=b — A"z" — A%&° (15)

to have all field quantities available e.g. for the visualization.

Due to the utilization of the discontinuous formulation the integration procedure is reduced
by one crack surface. Moreover, the number of degrees of freedom (DOF's) of the linear system
of equations is decreased by the number of DOFs of one crack surface.

Crack surface interaction

Since the BEM in terms of the DDM deals directly with the relative displacements (displace-
ment discontinuities) and the discontinuities of the tractions, it is especially suited for the
consideration of interaction effects of the crack surfaces. For the treatment of the contact
problem it has to be distinguished between the behavior in the normal and the tangential di-
rection. Therefore, the boundary values are defined with respect to a local orthogonal cartesian
coordinate system (n,t1,t3) at the collocation points that is orientated in the normal n and
tangential ¢; directions. Possible parts of the crack surface that might get in contact belong
to the Neumann boundary. Here, the total tractions are composed of the prescribed and the
contact tractions (¢t = t + t™*) which can be treated separately. Without loss of generality
it is assumed that the crack surfaces belong to the Neumann boundary and no initial tractions
are prescribed (t = 0 = t = teontect),

For the collocation points at the crack surfaces three states of contact have to be distin-
guished. The crack could be opened or the crack surfaces can be in stick or slip mode.

Frictional contact. For the behavior of the crack surfaces in the normal direction a unilateral
contact is assumed. Therefore, the crack surfaces can not penetrate each other and the gap g
must fulfill the condition

g>0. (16)

Due to the definition of the displacement discontinuities (8) condition (16) is written as
iy, <0 (17)

for the normal displacement discontinuity u;,. Furthermore, only compressive tractions in the
normal direction are possible

< 0. (18)

The behavior in the tangential direction is described by a frictional law. In the present context
Coulombs frictional law is applied. Within this criterion the effective tangential traction ¢tf =
(t5,)? + (t5,)? is limited with respect to the compressive normal tractiont; < 0 and the

frictional coefficient yu:
< —pts =1t¢

max* (19)
In case of stick ¢f is smaller than t7 = —ut;. Otherwise, in case of slip ¢} is equal to 7, and
the direction of the tangential traction is opposite to the relative sliding direction 4, such that
energy is dissipated:

s ts < 0. (20)
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Boundary integral equations for crack surface contact. As a result of the crack surface
interaction contact tractions in normal and tangential direction have to be considered. Due to
the principle of action and reaction the contact tractions are equal according to their amount
but with opposite sign (equilibrium condition). Therewith, the discontinuities of the contact
tractions vanish: )

t5(x) = 0 respectively ¢(x) = 0. (21)
By the consideration of this condition within the BIEs (10) - (12) the integrals concerning the
traction discontinuities vanish similarly

/Uij(£7 z) #(z) dl'(z) = 0, ][Dij (&, 2)t;(z) dl(z) = 0. (22)
re re
Therefore, the effort for the integration is reduced further. Moreover, the contact tractions
remain only in the traction BIE (12) in an integral free way. In case of stick these tractions can
be directly calculated in a postprocessing step. In the slip mode the tangential tractions are
known from the frictional law.

It has to be mentioned that prescribed tractions £ generally do not lead to vanishing traction
discontinuities. In this case the integrals (22) have to be evaluated with respect to the applied
traction discontinuities.

Penalty method. For an efficient determination of the state of contact during the simulation
the hard contact formulation is soften in terms of the penalty method. By the consideration of
equation (17) a linear constitutive law given by

e 0 if
tn(un) = { —€, ac if

with a constant normal contact stiffness ¢, is assumed for the normal contact. In case of contact

— stick or slip — the total tangential relative displacements are composed by a reversible elastic

part 45 and the slip "

<0
>0

S S

(23)

C
n
[
n

ag = ag® +ag. (24)
Between the reversible displacements and tangential tractions also a linear constitutive law
with the constant tangential contact stiffness ¢; is assumed:

tti (’LAL;) = —€ ﬂgel. (25)

This softening of the hard contact conditions can be physically interpreted as a deformation of
the surface roughness [23].

Within the traction BIE (12) the total time derivative of the traction vector is required.
These values are determined by a linearization of the constitutive equations (23) and (25)
under consideration of the frictional law (19) written as

Oty Oty Otn

t d8n, OBy, O U
" Oti, Oty Oty S
th | = | %an 0%, o, Ugy | - (26)
tt 8tt2 6tt2 8tt2 i)/t
2 Bty Oy, O, 2
=C
The matrix C' depends on the state of contact and it is determined during the solution proce-

dure. If the open case is present C' becomes zero, ggﬁ = 0.
J




18 Computational Methods in Fracture Mechanics

Solution of the contact problem. Due to the non-linear behavior of the contact problem
a time integration of the rate formulation in terms of an incremental iterative procedure has
to be applied. Therefore, the rate values marked by a dot become incremental values Awu, At.
Along this, the linear system of equations (14) is written as

AP Ax' = Ab. (27)

The incremental system matrix A® of the increment i is not constant during the simulation.
It depends on the state of contact of the collocation points at the crack, which has to be
iteratively determined within each increment. If the state of contact is not found within a
maximum number of iterations, the increment is equally split into two sub increments which
are successively treated. This procedure is recursively applied until the state of contact is found.

The total boundary values of the increment i are calculated by the accumulation of the
incremental values

u' =u" + Au'  respectively ¢ =t + At (28)

A radial return mapping scheme is utilized for the solution of the frictional contact problem.
Since the normal traction do not depend on the tangential displacements the linearization of
equation (23) reads as

oty
ot
5 = (30)

Under the assumption of sticking a trial state of the tangential contact tractions considering
equation (25) is calculated by
t;j (fbtj) = tzj_l — €t A’EL;J (31)

The values t; " are known from the last increment and At are calculated in the current incre-
mental loop. After the determination of the absolute value of the tangential trial stresses ¢ =
||t~ij||, the frictional law (19) is evaluated. In case of stick the trial state is correct and it is
accepted

ty, =t (). (32)
The linearization of the stick mode with respect to the tangential slip is written as
Oty
= —€; Ok 33
aﬁ'tk t Uik ( )

Since the trial state does not depend on the normal relative displacement the corresponding
partial derivatives vanish:

ot
0, (34)

Otherwise, if the frictional law (19) is violated with respect to the trial state, the tangential
tractions are defined via

i}
t

e, 11

(35)

ty, = ut,
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Since the normal traction t/,(4,) and the trial state fﬁj (ti¢;) are depending on the relative dis-
placements o the linearization reads as

ot o(uti) T o [t
G Q) ey O (30)
Par  ou Tl "0 \ T
The first part leads to the partial derivatives [10]
o, = e —Eij (37)
i, " it
and the second part to [10]
ot t o
a,\? = €t ,UL “ (S]k — ~t—] ~tk . (38)
Uy, gl 2, 1124,

Therewith, the constitutive matrix in equation (26) is defined for all states of contact.

Crack growth algorithm

The simulation of fatigue crack propagation is implemented in the framework of linear-elastic
fracture mechanics on the basis of the SIF-concept. Due to the crack closure a complete charac-
teristic load cycle has to be analyzed for the calculation of the ranges of the SIFs. These values
are utilized for the computation of crack growth in direction and magnitude. By taking into
account the non-linear behavior of fatigue crack propagation an incremental iterative procedure
in terms of a predictor-corrector scheme is applied for the simulation of crack growth.

Fracture mechanical parameters. Based on the state of stress and strain the fracture
mechanical parameters — the stress intensity factors (SIFs) and the non-singular T-stresses —
are determined. Beside the well known procedures of an extrapolation from the displacement
discontinuity field [24] or the J-Integral [25] the fracture mechanical parameters in this paper
are determined by an extrapolation method from the singular stress field in front of the crack
front.

At smooth parts of the crack front the classical r~"-stress singularity is valid. The stresses in
the vicinity of a crack front point P are written with respect to the local crack front coordinate
system (cf. Fig. 3) as [26]

-0.5

Uz’j(,’n?@a P) = Z \/ﬁ fzjg\/[(go) +T;J'(P) +O(\/7_ﬂ) (39)

The intensity of each mode M is characterized by the corresponding SIF Ky (P), while f}(¢)
are the angular functions. The stress field is completed by the T-stresses T;;(P).

The stress tensor is calculated for discrete points P/ on a straight line in front of the point P
by the evaluation of the boundary integral equation of stresses. Based on these stresses the so-
called pseudo-SIF's and the pseudo-T-stresses are determined. These values are showing an error
of the order O(r) and O(4/r), respectively [7]. Therefore, the actual fracture mechanical param-
eters are calculated by the extrapolation » — 0 based on a regression analysis. By omitting
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crack surface
Fig. 3: Crack front coordinate system.

points at the beginning and the end of the regression line controlled by the minimization of the
standard deviation very accurate values are obtained.

At non-smooth parts of the crack front and especially at the intersection points of the
crack front with the outer boundary the kind of singularity is generally not a priori known.
Here, the classical SIFs are no longer defined and 3D corner singularities have to be taken into
account. In the vicinity of such a singular point @) (e.g. the surface breaking point in Fig. 4) the
displacement field is asymptotically expanded with respect to a spherical coordinate system [27]

p.0,0,Q ZK* )™ g5 (6,0, Q). (40)

The displacement field is primarily described by the exponents oy, which depend on the geo-
metric situation around the singular point as well as on the material properties. They have to
satisfy ar, > —0.5 from the elastic energy point of view. The angular functions gZ (0, ¢, Q) and
the generalized SIFs K7 (Q) complete the description.

free surface

T2 R crack front

o, t

[
x1
P
Q
x3 ”
? T = —i(Q)
5:‘/ crack surface
1

0

Fig. 4: Geometric situation at surface intersection point.

The exponents oy, result from the solution of a quadratic eigenvalue problem and g* (8, ¢, Q)
are the corresponding eigenvectors [27, 7]. Based on the stress field described by the leading
exponent O(p*-~1) the classical SIF can be asymptotically defined [28]. If az, is greater than 0.5,
the stress singularity behaves weaker than the classical 1/ \/Zr) stress singularity. Therefore, the
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SIF is defined as Kj; — 0 to express this behavior within the classical SIF-concept. Otherwise,
if a is smaller than 0.5, the stress singularity is more intensive and the SIF K),; tends to
infinity.

It has been shown, that fatigue crack growth shapes a crack front, which is characterized by
the 1/ \/(r) stress singularity at all points of the crack front including these special points [29].
Therefore, the crack front has to be smooth and a special geometric situation represented by
the crack front intersection angle 7 is formed (cf. Fig4) at the surface breaking points. This
angle is iteratively determined [7] and it is used to define the new position of the crack front
intersection points.

Determination of the new crack front. It is a well known fact tracing back to Paris’
pioneer work [30] that fatigue crack propagation depends on the cyclic values of the stresses.
Due to the crack surface interaction a representative load cycle has to be evaluated for the
determination of the cyclic SIFs, cf. Fig. 5. For this purpose, the equivalent SIF calculated
I
eq

Kmax

€q

Kmin

©q

crack closure

Fig. 5: Definition of the cyclic stress intensity factor.

by the criterion of the maximum energy release rate [31, 8] is taken into account. The time,
when the maximum equivalent SIF is present, is denoted by ##* and #™® is the time, when the
minimum equivalent SIF is present. Therewith, the cyclic equivalent SIF is defined as

AKy(P) = K2¥(P) — Ki™(P) = Keg(P, 1) — Keo(P,t™"). (41)
According to the cyclic equivalent SIF the ranges of the SIFs are defined by
AKy(P) = Ky (P ™) — Kp (P, t™). (42)

Based on these cyclic values it is assumed that the crack starts growing in the radial direction.
By excluding the generation of so-called facets (also called factory-roofs) the mode III twisting
can be neglected for an infinitesimal crack extension in order to define the crack growth di-
rection. Therefore, the kink angle ¢(P) is calculated by the maximum tangential stress (MTS)
criterion of Erdogan et al. [32]. It results from the condition do,/0¢ = 0 under the restriction
9%0,/0¢* < 0 and can be explicitly written as

= 2 arctan —2Ku(P)
PLP) =2 arct <K1<P>+¢K%<P>+8K%I<P>>' )
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For non proportional loading conditions with changing ratios of K;(P) to K;(P) during the
load cycle different kink angles are obtained. Following the investigation of Tanaka et al. [33]
the values of K;(P) and Kj;(P) are replaced by their ranges AK;(P) and AK;;(P) within the
MTS-criterion (43).
The behavior of the magnitude of crack growth is described by the crack propagation rate.
A widely used approach is the formula of Paris and Erdogan [34]
da(P)
—— =C [AK(P)]™. 44
S = C (MK (P) (44)
The crack propagation rate da(P)/dN depends on the cyclic equivalent SIF as well as on the
material parameters C' and m. An extension considering the static pre-stressing of the structure
is given by the formula of Hourlier et al. [35]
da(P)

S = C (AR (P (K5 (P)]" (45)

with the additional material parameter n.

Predictor-corrector scheme. Due to the non-linear nature of crack growth the simulation
of fatigue crack propagation is implemented in the framework of a predictor-corrector scheme.

Knowing the state of stress and strain of the present crack front a new one is predicted. It
is defined by the local crack extension Aa(P) and deflection ¢(P) relative to the initial crack
front. After the analysis of a characteristic load cycle in order to calculate the cyclic SIFs, the
kink angle ¢(P) of each point P of the initial crack front is determined. It is obtained by the
evaluation of the MTS-criterion (43) in terms of the ranges of the SIFs. For the calculation of
the crack extension a crack propagation rate is evaluated for a user-specified number of load

cycles ANy,

Aa(P) = [j—; (AKeq(P))] AN,,. (46)
Since only the SIFs of the initial crack front are considered both — the crack deflection and
the crack extension — are determined in a linear way. Finally, the new position of the surface
breaking points result from the geometric requirement of the crack front intersection angle
ensuring the 1/4/r-stress singularity.

Due to the linearization of the crack growth within the predictor step the accuracy of the
predicted crack front is mainly influenced by the user-specified number of load cycles AN;,.
Therefore, corrector steps including an error estimation of the predictor step are required. Af-
ter the solution of the boundary value problem of the predicted crack front within the next
incremental loop, the SIF's of this crack configuration are additionally known. By the consider-
ation of these values the changing stress field is approximated by the well known relation

AK = Ao,V21aY(a) (47)

with the cyclic normal stress Aoy, the crack length a and the geometric function Y (a) depending
on the crack length. For the evaluation of this equation a virtual initial crack length ao(P) is
introduced for each point along the crack front. Consequently, the crack length of the predicted
crack front is written as ag(P)+Aa(P). For the geometric function it is assumed that Y (ao(P)+
Aa(P)) = Y (ap). On the one hand, if the crack is very small — crack in an infinite domain —
the geometric function is constant. On the other hand, if the crack length has increased, the
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crack extension is much smaller than the crack length: Aa(P) < ao(P). Here, the geometric
function is approximately constant. Eliminating Ao, after the evaluation of (47) at the initial
(superscript in) and predicted (superscript pr) crack front the approximation of the changing
stress field represented by the cyclic equivalent SIF AKZPP(a, P) is written as

aO(P)’

AK(a, P) = AKZ(P) ao(P) < a < ag(p) + Aa(P) (48)

with ) 5
[AK G (P)]

[AKE (P)? — [AKR(P)]*
This approximation of the stress field is utilized for the re-calculation of a more accurate number
of load cycles AN,..(P) by the evaluation of the crack propagation rate:

ao(P) = Aa(P) (49)

ao(P)+Aao(P) 1
AN,o(P) = da. (50)

& (AK(a, P))

ao(P)

In general, the resulting number of load cycles differs from the prescribed one. This fact is used
for the correction of the predicted crack extension by replacing the predicted crack extension
by

da

Aae(P) = Aa(P) + [ﬁ (AKg’g(P))} - [AN;. — AN,o(P)] (51)

until the relative error
|AN. — ANy (P)]

A-]Vlc

can be neglected with respect to a user-defined accuracy € for all points of the crack front.
Following [36], the directions of crack growth at the initial and predicted crack front are
taken into account for the correction of the crack deflection, see Fig. 6. In principle the corrected

<€ (52)

A
X, pr

P [ (pl
b‘b <, / / (pﬁ -

N L~predicted
¢, crack front

in

P X

initial crack

.
Fig. 6: Determination of crack deflection.

crack growth direction reads as
¢or(P) = ¢™(P) + c(P)¢™ (P). (53)

The value c(P) describes the crack growth direction at the point P of the initial ¢ and pre-
dicted " crack front. On the one hand, both directions can be weighted equally

¢(P) =0.5. (54)
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On the other hand, the crack growth rate can be taken into account. This leads to

(AKZ (P)™

P = aRE P+ QRGP

(55)

This procedure is repeated until the modification of the crack growth direction is smaller than
a user-specified tolerance.

Examples

To demonstrate the influence of the frictional contact on the behavior of cracks, two examples
are presented. Within the first example the principle influence of the frictional coefficient rep-
resenting the roughness of the crack surfaces is investigated. Within the second example crack
propagation is analyzed.

Single edge crack specimen The first example is a single edge crack (SEC) specimen of
the material steel (F = 210GPa, v = 0.3) as sketched in Fig. 7. It is loaded by a constant

'y
1), F (7 P 2 F W
25 22
)_ S NG o (N A Y y
Nz
< 200 . 25 X

Fig. 7: Geometry and loading of SEC-specimen (dimensions in mm).

compressive force of FF = 25kN that causes a compressive stress of o, = —20 m];[n 5. This
force ensures that the crack surfaces are in contact. Beside this, the specimen is loaded with
a torsional moment that increases from 0 Nm to 250 Nm. Then, this moment is decreased

to 0 Nm. Overall, this procedure is successively applied four times as shown in Fig. 8. Since

T Fa
25 kN
250 Nm—)— o — | —f — —

10 20 30 40 7/s

Fig. 8: Loading versus time of the specimen.

quasi static loading conditions are assumed no time dependency is present and the given time
becomes more a general value.

Fig. 9 shows the displacements of the coincident points P, on both crack surfaces for the
frictional coefficient of y = 0.2 after the compression. The lower left path is linked to the point
P, on the right crack surface of the specimen and the upper right path belongs to the point on
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Fig. 9: Path of nodes at P, for = 0.2 (displacement in mm).

the crack surface at the left side with respect to Fig. 7. At the beginning of the loading process
stick is present for each point of the crack surface and the specimen behaves as an un-cracked
structure. Here, the maximum shear stress is present at the surface intersection points of the
crack front and it is orientated in the vertical direction. Therefore, the crack surfaces start
sliding in this area in vertical direction. As soon as the complete crack surfaces are sliding,
they rotate around a point in the center of the specimen. This leads to a changing sliding
direction during the loading procedure. When the torsional moment is decreasing, the complete
crack surfaces firstly stick at each others. Then they start sliding in the same way as in the
loading process. In detail, sliding begins in the vicinity of the crack front intersection points
perpendicular to the deformed position followed by an approximately straight path. Due to the
friction a relative displacement of the crack surfaces remains after the unloading process.
Exemplarily for all points of the crack front the state of stress at the point P; which is located
at the mid of the crack front is analyzed. Due to the symmetry of the problem only K;;; has to
be considered at this point. Fig. 10 shows the K;;;-value versus the acting torsional moment for
different frictional coefficients. For u = 0 the K7 is directly linked to the torsional moment.

KIII ”’ = 0

MPamm” n= %7

100 [ C0i5. o~ -~

200 7/Nm
Fig. 10: K7 at P; for different frictional coefficients.

In case of friction hysteresis curves are observed, which are passed counter-clockwise in this
diagram. As a result of the three dimensional frictional contact problem the maximum value of
K1 does no longer correlate with the maximum torsional moment. It occurs in the unloading
process during the transition from the sticking state to the sliding of the crack surfaces. This
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effect can be clearly seen for high frictional coefficients.

From the fracture mechanical point of view the ranges of the SIF's are of interest. Here, it is
observed that the higher the frictional coefficient the more the maximum value is reduced and
the minimum value is increased. This leads to a decreasing range of the cyclic SIF AK;; that
is sketched in Fig. 11. The mean value K ;; is approximately constant.

MPamm”
N

100 \
\\AK ;
K, T~

<

0 : : : :
0 0.1 0.2 H

Fig. 11: Range and mean value of Kjj;.
Compressive specimen Fig. 12 shows a plate with a plane initial crack that is slanted by

45° to the mid-cross section. The plate consists of the material steel with a Young’s modulus of
E = 210GPa and a Poisson ratio of v = 0.3. This specimen is loaded by a compressive force,

A
|
| Yy
% S
N S S
ol
| 45 I
S Lo | v
» 200 > 20

Fig. 12: Geometry of the compressive specimen (dimensions in mm).

which oscillates between 100 kN and 200 kN, cf. Fig. 13. The crack propagation rate of this

F/kNA characteristic
load cycle
200 /
100
F(1)

10 20 30 tfs

Fig. 13: Loading of the compressive specimen.
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model is described by the Paris-law given by [37]

da o AKeq 2.66

The simulation of crack propagation is carried out with the frictional coefficients 0.0 and 0.1.
The resulting crack paths at the middle of the upper crack front are illustrated in Fig. 14.
Additionally, the accumulated numbers of load cycles at selected steps of the simulation are
shown. The crack paths of both simulations are approximately identical. The main difference

LI N Y I B |

T 113)
mnitial ' _ 0 v
crack :—M;O.l:— + [l | 2 mm

Lo _L_d__L_d__1

Fig. 14: Crack paths for y = 0 and p = 0.1 (load cycles in millions).

induced by friction between both simulations is in the number of load cycles. At the beginning
of the simulation, the number of load cycles for 4 = 0.1 is approximately twice the number
of load cycles as for = 0.0. Due to the non-linear behavior of crack growth this effect is
increasing when the crack grows and it ends up with a difference of the factor 2.5. Finally,
it can be observed that the crack propagation slows down during crack growth independently
from the frictional coefficient. At the beginning the crack needs only 5 million load cycles for
a propagation of approximately 2 mm in case of = 0.1. Afterward, 14 million load cycles are
required for the same crack extension.

Conclusion

The influence of crack surface interaction on the behavior of cracks has been investigated in this
paper. The main topic has been focused on the solution of the boundary value problem with
the boundary element method. Here, an incremental iterative procedure has been applied in
order to consider the non-linear behavior of the contact problem. The penalty method has been
utilized for an efficient determination of the state of contact of the collocation points at the
crack surfaces. Consistent tangential stiffness matrices for the three contact states have been
obtained from a linearization procedure. For the simulation of crack propagation a predictor-
corrector scheme has been applied in order to capture the changing stress field. Two examples
have been presented to analyze the effect of the interaction.

It has been shown that due to friction the range of the stress intensity factors is reduced and
the stress ratio acting at the crack front is different to the applied load ratio. Furthermore,
the maximum and the minimum stress intensity factor correlate no longer with the maximum
and minimum applied load. Therefore, a complete characteristic load cycle has to be evaluated.
As a consequence of the reduced cyclic stress intensity factor, the rate of crack propagation is
similarly dropped down.
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Abstract. In this paper a variational technique is developed to calculate stress intensity factors
with high accuracy using the element free Glerkin method. The stiffness and mass matrices are
evaluated by regular domain integrals and the shape functions to determine displacements in the
domain are calculated with radial basis function interpolation. Stress intensity factors were obtained
by a boundary integral with a variation of crack length along the crack front. Based on a static
reference solution, the transformed stress intensity factors in the Laplace space are obtained and
Durbin inversion method is utilised in order to determine the physical values in time domain. The
applications of proposed technique to two and three dimensional fracture mechanics are presented.
Comparisons are made with benchmark solutions and indirect boundary element method.

Introduction

Crack like flaws are costly — their presence increases the time and effort spent on maintenance
and repair. Cracks may ultimately lead to component fracture and subsequent structural failure,
which in extreme cases can endanger human life. Since cracks cannot be eliminated totally,
procedures must be devised to quantify and predict the behavior of cracked structure under service
conditions.

The fundamental postulate of linear elastic fracture mechanics is that the behavior of cracks is
determined solely by the stress intensity factor. Many different numerical methods have been
developed over the last four decades for evaluating the stress intensity factors (see Aliabadi and
Rooke[1]). The most prominent methods are the finite element method (FEM), the boundary
element method (BEM) and more recently the MeshFree methods.

Early application of the finite element method to crack problems was due to Swedllow[2]. Later
developments by Tracey[3], Blackburn[4], Henshell and Shaw[5] and Barsoum[6] demonstrated
that accurate stress intensity factor solutions can be obtained by utilizing special crack tip elements.
Virtual crack extension approach developed by Hellen[7] and Park[8] and domain integral energy
approaches proposed by Shih et al [9] have helped to firmly establish FEM as an effective
computational tool for cracks problems in fracture mechanics. More recent developments have been
directed toward improving the FEM performance for crack growth modeling with so-called XFEM
[10-12].

An early application of the BEM to crack problems was due to Cruse[13], who reported only a
modest accuracy for evaluation of of the stress intensity factors. Later the sub-region BEM
formulation and displacement discontinuity approaches were developed [see Aliabadi [14-15] for
comprehensive reviews]. Since the early work the method has improved with the development of a
new generation of BEM formulation known as the Dual Boundary Element Method [16-18]. The
DEBEM has established itself as probably the most efficient and accurate method for evaluating
stresses intensity factors and modeling crack growth [19-21]. Application of the method to
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dynamics crack problems can be found in ref[22-29]. Other recent contributions can be found in
ref[30-341].

Meshless approximations have received much interest since Nayroles et al [42] proposed the
diffuse element method. Later, Belyschko et al [43] and Liu et al [44] proposed element-free
Galerkin method (EFGM) and reproducing kernel particle methods, respectively. One key feature of
these methods is that they do not require a structured grid and are hence meshless. Recently, Atluri
et al presented a family of Meshless methods, based on the Local weak Petrov-Galerkin formulation
(MLPGs) for arbitrary partial differential equations [45] with moving least-square (MLS)
approximation. MLPG is reported to provide a rational basis for constructing meshless methods
with a greater degree of flexibility. Local Boundary Integral Equation (LBIE) with moving least
square and polynomial radial basis function (RBF) has been developed by Sladek et al [46-47] for
the boundary value problems in anisotropic non-homogeneous media, i.e. functionally graded
materials. Both methods (MLPG and LBIE) are meshless as no domain/boundary meshes are
required in these two approaches. Other application of meshless or meshfree methods to crack
problems can be found in Refs[48-58].

In this paper, the numerical implementation of element free Galerkin method for solving
static/dynamic fracture problems is presented with radial basis function interpolation. The
variational technique described in [29] is firstly developed with the use of element free method to
determine stress intensity factor of static reference problems, which can be used to obtain the stress
intensity factors in transformed domain. The accuracy of this method has been demonstrated by
solving several problems in cluding: rectangular sheet and cylinder containing central/edge cracks
subjected to either static or dynamic load.

Element free Galerkin method

For a linear two or three dimensional elasticity, the governing equations are written as
o, +f = pi, (1)
where o, denotes the stress tensor, f; the body force, pthe mass density, i, =0’u, /0t the

acceleration. Consider homogeneous anisotropic and linear elasticity, the relationship between the
stress and strain by Hooke’s law can be written as

O, = Cijklgkl = Cijkluk,l (2)

where g, =(uk,, +tuy, )/ 2, and Cy, denotes the elasticity tensor which has the following

symmetries

Cijkl = Cjikl = Cklij' 3)
For a homogeneous isotropic solid, we have

Cijkl = /151‘]'51(1 + Iu(é‘ikdjl + 5i15jk) “4)

where A and u are the Lame’s constants. For two dimensional isotropic plane strain state, Hooke’s
law can also be written, in matrix form, as

O €
6=.0, =D&, r=Ds¢ 5)
O 1

where material matrix
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in which, £ is the Young’s modulus and v the Poisson’s ratio. Consider the domain Q enclosed by
boundary I', we have the total potential energy with

n=v-w (7
where the initial elastic strain energy is defined
1 1
U =—[6" (e(y)OAy) = [2" (v)D2(y)}dy) (8)
Q Q
and the external energy, the sum of contributions from known interior and boundary forces, is
w = [u" (Vb)) - p[u" )i(y)dQAy) + [u” )ty (y) ©)
Q Q r

where b = {bl,b2 }T is the body force vector, t= {tl,t2 }T in which #, =o;n;or t=6-n is the vector
of traction on the boundary, and », is a unit outward normal vector. We assume that the
displacements u(y) at the field point y=(y,,y,) can be approximated in terms of the nodal values in

a local domain (see Figure 1) as

()= g (y.x,)0 = B(y, )i, (10)

where ®(y,x) = {4, (¥, X,),,(¥,X,),-..4,(¥,X,)} and @, = {ﬁE,ﬁiZ,---,ﬁf }T, i=12, 4/(x,) is the
nodal values at collocation point x, = {xl(k),xék) }, k=1,2,..,n, ¢, the shape function and n(y) the

total number of node in the local support domain, which is a function of field point y. For two
dimensional problems, we can rearrange the above relations as following

u(y) ={u,,u, | =®(y,x)

|® o] [¢ 0 ¢ 0 .. g O
q)(y’x)_[o 6}_[0 4 0 4 .. 0 ¢J (D

A Al Al A2 A2 An An T
= {ul,uz,u1 Uy ey U ,uz}
Therefore, the relationship between strains and displacements is given by

g 9, %
ayl ayl ayl
gy)=| 0 % 0 27% .. 0 %ﬁ:B(y)ﬁ. (12)
o4 o4 04 O¢ 04, 04,
Dy, O Oy, Oy ¥ |

Considering the variation of total potential energy, with respect to nodal displacement, gives
Al =0U—-W =0 (13)
Substituting u = ®@u, & = Ba and ¢ = Dg into Eq.(13) yields a set of 2xN linear algebraic equations
in the global coordinate system
[K]ZNXZNﬁZN + p[C]ZNXZNﬁ =f,y (14)
where N is the total number of nodes (collocation point), and the stiffness and mass matrices are
defined as
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collocation

Figure 1. Sub-domain Q, for RBF interpolation of the field point y and

support domains.

K = [B" (x,y)D(y)B(x, y)dy)

(15)
C=[®" (x,y)®(x,y)dA(y)
and the nodal force vector is
f= [ @7 (xy)by)dAY) + [ @7 (x NHYIIT(Y) (16)

o

where I'; denotes the boundary on which the traction is specified. For concentrated forces acting at
the node i, we may determine the nodal force vector directly by

i i T
f,={F Fj} (17)
where F; and F, denote the values of concentrated force either on the boundary (external applied
force) or in the domain (inner body force).

The approximation scheme

The multiquadric RBF was introduced by Hardy [59] for interpolation of topographical surfaces
and an enhanced multiquadrics scheme was developed for spatial approximations by Kansa [60].
Since all radial basis functions are defined globally, the resulting matrix for interpolation is dense
and can be ill-conditioned, particularly for a large number of interpolation points. It also poses
serious stability problems and is computationally inefficient. To overcome this problem, a support
domain technique has been introduced. A sub-domain () as shown in Figure 1 is the

neighbourhood of a field point y and is called support domain. The distribution of function « in the
sub-domain € over a number of randomly distributed notes {xi }, i=1,2,...,n can be interpolated,

at a field point y, by
u(y) = Y R.(y.x,)a; = R(y,x)a(y) (18)

i=1

where R(y,x) = {R1 (y,x),R,(y,X),..., R, (y,x)} is a set of radial basis functions centred at pointy,

{a, }Z:l are the unknown coefficients to be determined. The radial basis function is selected to be the

following in this paper
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R.(y.x) = ¢’ +]y—x,[° (19)
where c is a free parameter. From the interpolation strategy in Eq.(18), a linear system for unknown
coefficients a become
Ra=1 (20)
where coefficient matrix
(R /(x,X,) R,(X,,X,) .. R(x.X,)]
R(X,,X)) Ry(X,,X;) ... R,(X,,X,)

R, = : : : o

R (x,,X)) R,(X,,X,) .. R(X,,X,)]
As the RBF are positive definite, the matrix R, is assured to be invertible. Therefore, we can obtain
the vector of unknowns from Eq.(20)

a =R, (x)li(x) (22)
So that the approximation u(y) can be represented, at domain point y, as
u(y) = R(y, ORG (0)i(x) = Oy, )it = > 4,10, (23)
k=1
where the shape function are defined by
@(y,x) = R(y,0)R;' (x) (24)

It is worth noticing that the shape function depends uniquely on the distribution of scattered nodes
within the support domain and has the property of Kronecker Delta. As the inverse matrix of

coefficient R;'(x) is a function of distributed node x; in the support domain only, it is much easier

to evaluate the partial derivatives of shape function with respect to the field point. From Eq.(23), the
first derivative of displacement with respect to the domain field point y can be obtained directly

U (y) =@, (y, 00 =) 4,4, k=12 (25)
i=1
where
P, (y,x) =R, (y,X)R; (x) (26)
From Eq. (19), we have

(@)
Ve =Xk

R, (y.x;) = = -
ﬂcz +|y_Xi|

In order to guarantee unique solution of the interpolation problem, a polynomial term should be
added to the interpolation in Eq.(18) as

27

n t
u(y) =D R (¥, X)a, + ) P,(¥)b, =R, (y,x)a+P(y)b (28)
k=1 Jj=1
along with the constraints
t
> P(x)a;=0, 1<k<t (29)
j=1
where {Pk }221 is a basis for P,_,, the set of devariate polynomials of degree <m —1, and
e m+d-—1 (30)
\ 4

is the dimension of P, _,. A set of linear equations can be written, in the matrix form, as
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Ra+P'b=d, Pa=0 31
where matrix
_Pl(xl) Py(x,) ... Pt(xl)_
R(xy) PB(x;) .. F(x,)

P=| C e 32)

_Ijl(xn) PZ(xn) Ijt(xn)_
Solving equations in Eq.(31) gives
b=(P"R,'P] ' P'R,'d, a=R,' [1 ~P(P"R;'P)" PTRgl] i (33)
where I denotes the diagonal unit matrix. It is clear that the coefficients a and b are functions of
nodal coordinate x in the support domain only. In addition, the accuracy has been shown to be the

same by using RBF with/without these polynomials. Therefore, the shape functions with radial basis
function are selected by Eq.(23) for simplicity in the following analysis.

Numerical process to evaluate stiffness matrix

To determine the stiffness matrix K in Eq.(14), a domain integral in Eq.(15) over the domain Q
should be carried out. The 2D domain integral over a rectangular of area 4 is approximated by the
Gaussian integration formula

j [ £ 2)ydy, = AZZWA w, SO 3%) (34)
=11 =1
where w, denotes the weight of integral, [ = (l,,1,), L the number of Gaussian points and (y!,y,) the

coordinate of Gaussian points. If domain Q is divided into M sub-domains, then the stiffness and
mass matrices can be written as

K(x) = ZZZWIIWIZ A BT (x,y")D(y" B(x,y") = 3D Y AK™
m=1 =1 =1 Lm_l =i 55)
C() = ZZZ%WZ T (x,y")0(x,y") - ZZZAC’”’

m=1 l,=1 =1 m=1 L,=1 /=1

where the integration points y” = (3", y3") and coefficients w; in Eq.(34) are given, if L=4, by

m 1 1
y 1234 = [ \/7}11 vy —\/g } W1,2,3,4:Za (36)

in which (3", ;") presents the centre of sub integral domain with area A4,, (rectangular), 4; and A,
are half of the width and height of the rectangular region respectively and A,= 4h,h,. For each
Gaussian point y”, the element in the stiffness sub-matrix AK™ and mass sub-matrix AC™ can be

calculated by
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__A4,E(-v) k111 k112 37)
AUV (-2) K, K,
¢4, 0
AC™ =" 38
{0 ¢"¢fl (38)

where i and j denote the number of nodes in the local support domain centred at y”, ¢ = ¢.(y",x),

i, 7=1,2,..., n(y™) . Applying the Laplace transform to Eq.(14) results

(K+psCli=T (39)
where the Laplace transform of f{(x,?) is defined by
J(x8) = [ f(x,0)e™"dt (40)
0

in which s is a Laplace parameter. Obviously the system stiffness matrix K and mass matrix C are
symmetric with diagonal strip distribution similar to finite element method.
Variational technique to evaluate SIF

To obtain stress intensity factor for either static or dynamic problem, one needs a static
reference problem to be solved. Let I',and I',be the traction and displacement boundaries

respectively and consider a reference problem with a variation da of crack length along the crack
surface (see Figure 3), i.e. the collocation coordinate of crack tip x, =(a,0). The variations of
displacement and traction with respect to a are of,/oa and ou,/oa, respectively. Since
ot, / 6a = O on the traction boundary, and ou, /6a = 0 on displacement boundary, the stress intensity

factor K™ for a reference problem is determined by the following boundary integral [10]

KIstaticz( _H < [%jtlgdr_ J' [ﬁ}ugdrﬂ (41)
-\l & o

J

where ¢, and u, are given boundary conditions of traction and displacement. Considering the
system equation for static problem (s = 0) in Eq.(14) gives
KarkM_o (42)
oa oa
Thus we have

@:_K—lﬁﬁ

oa oa
For each Gaussian point y”, the element in the stiffness sub-matrix SAK™ /& can be obtained

S(AK™) 4 E(1-v) |k, kK,
& Alv-2)| Ky, K]

(43)

(44)

where
111 =.a¢i,a%+%a¢j,a + 1_2V (a¢i,a 6¢j +%6¢j,a]
“ oy oy, oy oy, 2(-v)\ oy, 9y, Oy, O,
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As RglR0 =1, the variations of inverse matrix Rgl is obtained
R, -R; léROR ! 47)
o o

Therefore, by solving Eq.(43), the variations of displacement can be obtained, and then the
variations of stress/traction can be written as

LRNPLIE NP

> (43)

In order to determine the transformed stress intensity factors in Laplace space for the same
configuration of geometry, above variations of displacement and traction are needed. The
relationship between static and transformed stress intensity factors can be written as [10]

. Sit, Vo &,
R =g [I [ &ljrk (s)dr" - j[ ] ()l ~ ps” | [ }ukmds:] (49)

in which #/.and 7’ are displacement and traction boundary values in the transformed domain,

K stress intensity factor for the static reference problem obtained from Eq.(41) and i,

displacements by Eq.(39) in the Laplace domain.
The variational technique for two-dimensional problems can be easily extended to 3D axial
symmetric problems. In this case, Eq.(41) becomes

static &'t "
K; _[(l ﬂv)a<_..[ jkyldr J( )ukyldF>J (50)

for static problem and Eq.(49)

% H 5”1( =0 &k ~0 2 5”1( ~
K,(s)= (- V)aKIstatic L‘:( S ]tk (s)y,dl’ — J(gjuk (8)y,dl’ — ps j(g]uk (S)y1dQ] (51)

Q
for dynamic problem respectively, where a is coordinate of crack tip and y, axis of symmetry.

In order to evaluate the stress intensity factor in the time domain, the Durbin’s inverse method
is employed [23]

PN [__ f(’7)+ZRe{ (77+2kT”zj xp[z"; fin (52)

where f (s, )1s the transformed variable in the Laplace transform domain when the parameter

s, =n+2knri/T,i=+—-1. Numerical results show that the selections of parameters 7 and T affect
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the accuracy slightly. In the computations, 77 =5/¢, and 7/t, =20 in the following examples,

where time unit ¢, = w/c,, here w is the selected length such as the width of plate for 2D or radius

R of cylinder for 3D, and ¢, = J E(1-v)/ p(1+v)(1-2v) which is velocity of longitudinal waves.

Obviously the total number of samples in the Laplace domain is K+1 and K is chosen as 25 in the
following examples.

Examples
6.1 Central/edge cracks in rectangular sheet under uniform static load o,

A rectangular plate of width 2w and height 24 containing a centred crack of 2a subjected to a
uniform shear load o, both on the top and bottom of sheet is analysed firstly. Due to the symmetry,

a quarter of plate is considered as shown in Figure 4(a). Here Poisson’s ratio v=0.3. The nodes are
uniformly distributed as shown in Figure 4(b) and the total number of nodes are (m+1)x(m+1) and
the integration is performed by dividing the rectangular plate into mxm cells with 4x4 Gauss points
for each cell. The support domain is selected as a circle of radius d centered at field point y, which

radius is determined such that the minimum number of nodes in the sub-domain n(y) > N, here the
number N, is chosen to be 6 for all examples. Free parameter c=w in RBF. Figure 5 shows the
relative error 77 = ‘Kftm —KIO‘/ K| against the parameter of node m when a/w=0.5, where K is
accurate result presented in the handbook [24]. Excellent agreement can be achieved when m>12
with the relative error of 1%. In the following examples, m is selected to be 20. The normalize stress
intensity factors K %/ JO\/E for a central or edge/double edge cracks varying with the crack

length a/w and height of plate 4/ware plotted in Figures 6 and 7 respectively and comparison is
made with accurate solutions. Good agreement has been achieved and the results are to be found
within 2% of the accurate solutions.

6.2 A Single central crack in rectangular plate/cylinder under dynamic tension
Consider a rectangular plate of width 2w and length 2/ with a centrally located crack of length

2a. It is loaded dynamically in the direction perpendicular to the crack by a uniform tension
o,H (¢) on the top and bottom of plate, where H (¢) is the Heaviside function. Due to the symmetry,

a quarter of plate is analysed as shown in Figure 4(a). Let Poisson ratio v=0.3, half length of crack
a=0.5w and Young’s modulus a unit. Two rectangular plates are considered, i.e. ~=w and A=2w.

Normalize dynamic stress intensity factors K,(¢#)/o,vm are plotted in Figures 8 and 9

respectively. To demonstrate the accuracy of the element free method, the results obtained by
fictitious load method (FLM, also called indirect boundary element method in [25]) are plotted for
comparison. Apparently before the arrival of dilatation wave traveling from the top/bottom of plate,
the stress intensity factor should remain to be zero. In general, the maximum value of dynamic
stress intensity factor for each case is found to be twice of that for the static. Finally a cylindrical bar
of radius R and height 2/ is analysed with a central circular crack of radius a subjected to a uniform
Heaviside load o H (¢)at the top and bottom surfaces. Figure 10 shows the normalize dynamic

stress intensity factorK,(¢)/2c,va/x , where a/R=0.5, h/R=1 and Poisson ratio v=0.2. In this

figure, the results presented by Wen [25] using FLM for a central circular crack in a rectangular bar
are presented for comparison. The agreement with the fictitious load method is considered to be
good.
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Conclusion

This paper has demonstrated the availability of the element free Galerkin method to elastostatic
and elastodynamic fracture mechanics with a variational technique. Considering a static reference
with same boundary configuration, the transformed stress intensity factors can be obtained by an
integral in the Laplace transform domain. The accuracy of stress intensity factor by proposed
method has been demonstrated by several examples. We can conclude with the following
observations: (1) Element free Galerkin method with variational technique is valid to deal with
static/dynamic crack problems; (2) Stiffness matrix is symmetric and strip diagonal. Therefore, the
combination with different methods such as Finite Difference Method, FEM and BEM can be easily
realised; (3) The high accurate solutions can be obtained with less number of samples in the Laplace
space, i.e. K=25 in this paper; (4) Proposed method can be easily developed to mixed mode, three-
dimensional elasticity, functionally graded material and plate bending crack problems.
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Figure 2. Stiffness matrix forming process, where i and j are node numbers in the
support domain for integral Gaussian point /; / and J are numbers in the global system
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Abstract

It is presented in this paper a three-dimensional Boundary Element Method (BEM) implementation of the
Energy Domain Integral for the fracture mechanical analysis of three-dimensional interface cracks in
transversely isotropic bimaterials. The J-integral is evaluated using a domain representation naturally
compatible with the BEM, in which the stresses, strains and derivatives of displacements at internal points
are evaluated using their appropriate boundary integral equations. Several examples are solved and the
results compared with those available in the literature to demonstrate the efficiency and accuracy of the

implementation to solve straight and curved crack-front problems.

1 Introduction

The greatest advantage of composite materials is strength and stiffness combined with lightness. By choosing
an appropriate combination of reinforcement and matrix material, manufacturers can produce materials with
mechanical properties that fit the requirements for a particular structure for a particular purpose.

Commonly, high strength and stiffness are required in various directions within a plane. The solution is to
stack and weld together a number of plies, each having the fibres oriented in different directions. Such a
stack is termed a laminate. The individual plies present a macroscopic transversely isotropic behaviour with
the symmetry axis in the direction of the fibres (Gibson, 2007).

Delamination is one of the most important damage mechanisms in laminate composites. It consists in the
nucleation of interface cracks between the plies of the laminate as consequence of thermo-mechanical
fatigue, impact or material degradation (Gibson, 2007). Once cracking initiation has arisen, preventing crack
growth (propagation) is the variable to control in order the keep the material in a reliable condition. It is

therefore important to develop fracture-mechanics methods for assessing interface cracks and predicting their
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behaviour during the material life time.

Many questions regarding the mechanics of interface fracture have been answered during the past few
decades. However, progress has been generally focused in the two-dimensional idealization of an interface
crack, and not until recently major effort has been conducted on the three-dimensional aspect of interface
fracture. This is in part due to the complexity of such problems and the very large computational efforts
required for their numerical analysis. However, given the material mismatch at the interface boundary, it is
expected that the three-dimensional effects play a more significant role in a laminate structure than in a
homogenous structure.

The numerical analysis of interface cracks in transversally isotropic materials has been traditionally
addressed using Finite Element Analysis (FEA) (see for example Boniface and Banks-Sills, 2002 and Freed
and Banks-Sills, 2005). Besides, there is the alternative of using the Boundary Element Method (BEM). The
attraction of the BEM can be largely attributed to the reduction in the dimensionality of the problem; for
two-dimensional problems, only the line-boundary of the domain needs to be discretized into elements, and
for three-dimensional problems only the surface of the domain needs to be discretized. This means that,
compared to finite-element domain-type analysis, a boundary analysis results in a substantial reduction in
data preparation. At the same time, and due to the inherent characteristics of its formulation, BEM provides
very accurate results for problems containing strong geometrical discontinuities. This makes BEM a
powerful numerical tool for modelling crack problems (see Aliabadi, 1997). Fracture mechanical analysis of
three dimensional transversely isotropic materials using BEM has been reported by Saez et al. (1997) and
Ariza and Dominguez (2004a, 2004b) who modelled static and dynamic crack problems, Zhao et al. (1998)
who derived the displacement discontinuity boundary integral equation, and more recently by Chen et al.
(2009) who studied the stress intensity factors of a central square crack in a transversely isotropic cuboid
with arbitrary material orientations. To our knowledge, there is no published material about the three
dimensional BEM modelling of interface cracks in dissimilar transversely isotropic bimaterials.

A number of techniques have been proposed for the evaluation of fracture parameters of interface cracks
using FEM and BEM. They are, among others, the virtual crack extension approach (So, Lau and Ng; 2004),
contour and domain path-independent integrals (Chow and Atluri, 1998; Ortiz and Cisilino, 2005; Freed and
Banks-Sills, 2005; Shah, Tan and Wang, 2006), displacement extrapolation techniques (Freed and Banks-
Sills, 2005; Tan and Gao, 1990; Mao and Sun, 1995) and special crack-tip elements (He, Lin and Ding,
1994). In particular, path-independent integral techniques are derived from the J-integral proposed by Rice
(1968). Being an energy approach, path-independent integrals eliminate the need to solve local crack tip
fields accurately. If the integration domain is defined over a relatively large portion of the mesh, an accurate
modelling of the crack tip is unnecessary because the crack tip field contribution to the overall energy is not
significant. At the same time, it is worth noting that the J-integral as it was developed by Rice (1968)
characterizes the crack driving force for two-dimensional problems. Therefore, for general three-dimensional
cases involving cracks of arbitrary shape an alternative form for the J-integral is needed.

Three basic schemes have evolved for the numerical computation of the J-integral in three dimensions:
virtual crack extension methods, generalization of Rice’s contour integral, and domain integral methods
(Anderson, 1994). Domain integrals are equivalent to the virtual crack extension technique and are better

suited for numerical analysis than contour integral methods. Among the available domain integral methods
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(see for example Nikishkov and Atluri ,1987 and Saliva et al, 2000) the Energy Domain Integral (EDI) due
to Moran and Shih (1987) was chosen for this work.

The EDI can be formulated by applying the divergence theorem to Rice's J-integral. It produces a domain
independent integral defined over finite volumes enclosing some portion of the crack front (Moran and Shih,
1987). Previous works by the authors of this paper have demonstrated the versatility and efficiency of the
BEM implementation of the EDI for assessing three-dimensional cracks in elastic (Cisilino et al, 1998),
elastoplastic (Cisilino and Aliabadi, 1999) and thermoelastic bodies (Balderrama et al, 2006 and 2008) and
for interface cracks in dissimilar isotropic bimaterials (Ortiz and Cisilino, 2005).

It is presented in this work the BEM implementation of the EDI for the J-integral computation in three-
dimensional interface cracks in dissimilar transversely isotropic bimaterials. The BEM solution strategy for
the fracture problem and the EDI implementation is an extension of that proposed by Ortiz and Cisilino
(2005) for interface cracks in dissimilar isotropic bimaterials. A number of examples demonstrate the

suitability of the proposed numerical tool for assessing delamination cracks in composite laminates.

2 Transversely isotropic materials

The basic constitutive expressions governing the elastic behaviour of transversely isotropic materials are
reviewed next following Ting (1996).

The general constitutive law of the anisotropic material is
0;j(x) = Cijra(x) &g (x) = Cyjgr () (x) (D

where 0;;(x) is the stress tensor, &;(x) is the infinitesimal strain tensor and uy(x) is the displacement
vector. Partial derivatives are indicated using the comma notation. The symbol C;ji;(x) is the fourth-order
constitutive tensor which is defined in terms of 21 independent elasticity constants.

Transversely isotropic materials are those with an axis of symmetry such that all directions perpendicular to
that axis are on a plane of isotropy. In such a case the constitutive tensor can be defined in terms of 5
independent elasticity constants only. Using the Voight reduced notation (see Ting, 1996), the fourth-order
constitutive tensor Cj; (i,j =1,..,6) for a transversely isotropic material with the axis of symmetry

coincident with the Cartesian axis x3 can be expressed in terms of the five following elastic constants:
Ci111 = C11, C3333 = C33, C1122 = C12, C1133 = Ciz and Cp3p3 = Cay . 2)
Due to the symmetry with respect to x3, Coq = (C11 — C12)/2.

The coefficients of the constitutive tensor C;; can be written in terms of the elastic engineering constants as

follows:
E(n—v'?) _E(n+v'?) Ev' _E(1+v)

’ C33

: 3)
Cu=E0=v) o Erv) E+w) (
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being:

A=n(1-v)—2v'%?and n=E/E’, (4)



50 Computational Methods in Fracture Mechanics

where

¢ E and E' are the Young’s moduli in the plane of isotropy and in the directions normal to it, respectively.

o v is the Poisson’s ratio that represents the strain response in the plane of isotropy due to an action parallel
to it; and v’ is the lateral strain response for the planes normal to the plane of isotropy.

e i’ is the shear modulus for the planes normal to the planes of transverse isotropy.

3 Elastic solution in the vicinity of 3D interface crack front

Consider a three-dimensional crack front with a continuously turning tangent as depicted in Figure la.
Define a local coordinate system x* at position 77, where the crack energy release rate is evaluated, given by
x7 normal to the crack front, x5 normal to the crack plane, and x3 tangent to the crack front.

The elastic solution at the neighbourhood of the interface crack front can be expressed using a double series
expansion of the form:

u(r,6,m) = ) > K)ol (o), 5)

i=1 j=0

for Re(ap) < Re(ag) when p < q. The symbol u in equation (5) is the displacement vector in cylindrical
coordinates (see Figure 1a), K;(n) is the Stress Intensity Factor (SIF) associated to exponent «;, and ¢ jai) )]
is an angular function. The exponent and the angular function depend of the boundary conditions over the
crack faces, solids angles of the materials and the material properties (see Omer and Yosibash, 2008).

When j = 0 in equation (5), o; and (poai) (0) yield the solution for the two-dimensional crack problem. For a
crack in a homogenous material @; = a, = a3 = 1/2, a, = 1 and the coefficients K; are the well-known
stress intensity factors (SIFs) K, Kir and Ky, respectively. For interface cracks the exponents ¢; are complex
numbers where Re(a;) = Re(a;) = Re(az) = 1/2 and Re(a,) = 1. The additional high order terms in
Eq. (5) when j > 1 are the so-called “shadow terms” not present in the two dimensional problem. The

shadow terms are originated by variation of the SIFs along the crack front.

4 The energy domain integral

Following Natha and Moran (1993), the energy release rate, G(17), due to crack extension in its own plane

along a three-dimensional crack front takes the form (see Figure 15)

6D =lim & [ (w- b - ofujiInidc, ©
cm

where w is the strain energy density, o7;and u]’f,k are Cartesian components of stress and displacement
derivatives expressed in the system x*, §,(n) are the components of the unit outward normal to the crack
front in the crack plane x] — x3, n; is the unit vector normal to the contour C(n) (which lies in the x] — x5
plane), and dC is the differential of the arc length C . It is worth noting that, although Eq. (6) comes from a
two-dimensional analysis, it applies for a general three-dimensional case. This is because the three-
dimensional stress field along a crack front of arbitrary shape is the same to that governing a two-
dimensional plain strain problem (see Omer and Yosibash, 2008). Thus, the energy domain integral

introduced in this section can be used for the solution of cracks of arbitrary shape in three-dimensions.



Key Engineering Materials Vol. 454 51

In order to derive the equivalent domain representation of Eq. (6), we consider a small segment L. of the
crack front that lies in the x] — x3 plane as shown in Fig. 15. Next we assume that the segment undergoes a
virtual crack advance in the plane of the crack, and we define the magnitude of the advance at each point n

as Aa(n). Note that Aa(n) varies continuously along L, and it vanishes at each end of the segment. Now let

G = fL G(mda(n)dn, )

c

where G(n) is the integral defined in Eq.(6). When G(77) belongs to the point-wise energy release rate, G
gives the total energy released when the finite segment L. undergoes the virtual crack advance.

The appropriate domain form of the point-wise crack-tip contour integral can be obtained from Eq. (7) by
considering a tubular domain V surrounding the crack segment (see Figure 2). As it shown in the figure, the
surface S; is formed by translating the contour € along the segment L., and S stands for the outer surface
of V including the ends. Next an auxiliary vector function q is introduced, which is sufficiently smooth in V

and it is defined on the surfaces of V as follows:

_ {Aa(n) “$k(m) on S, (8)
k
OonsS,

Finally, in the limit as the tubular surface S; is shrunk onto the crack segment L. and in the absence of crack

face tractions, we obtain the domain integral:

~ * * 9
G(n) = f (Uij U — W " 8k )G, AV ©)
Vv

In absence of body forces the integral G given in Eq. (9) reduces to the domain representation of the familiar

J-integral. If it is assumed that G(n) is constant along L., it follows directly from Eq. (7) that:

G
J) =G6() =———. (10)
J,. Aa(n)dn

5 Boundary Element Analysis

In order to account for the non homogeneous material properties, a multi-domain BEM formulation is used
for the problem solution. The modelling strategy is illustrated in the schematic representation in Figure 3, for
a model consisting of two subdomains, Q;(x) and Q;(x), with external boundaries I';(x) and I'j;(x),
respectively. Both subdomains share a common interface I';_;;(x), a portion of which is debonded and thus
an interface crack is introduced. The subdomains possess a linear transversely isotropic material behaviour as
it has been described in Section 2. The orientation of the material is specified using a local Cartesian
system (x?,x2,x9) for each subdomain. In every case the direction of the symmetry axis of the material is
chosen coincident with the direction xJ (see Figure 3). In this way, it is possible to model interface cracks

lying between laminates with arbitrary relative fibre orientations.
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The standard BEM uses the displacement boundary integral equation to relate the displacement and traction

fields, u(x) and t(x) over the model boundary in the global coordinate system (see Aliabadi, 2002):

T G, 2 Yy ()T (x) = jr U G, Xt ()T (3), (1

eomeony|

r
where Uj;, (x,x') and Ty, (x,x') are the displacement and traction fundamental solutions, respectively. The
fundamental solutions account for the solution of i-th component of the displacement and traction fields,
u;(x) and t;(x), at the field point, x, due to the action of a unit load acting in the direction j at the source
point, x’. The symbol c;;, is the so-called jump term which depends on the local geometry at the source
point, x', only. There are several expressions for the fundamental solutions for a transversely isotropic
materials, see for example Pan and Chou (1976) and Loloi (2000). However, these solutions could be
cumbersome to implement into a BEM code because of the multiple cases they consider to account for all
possible material configurations and the relative positions of the source and field points. On the other hand,
Tavara et al. (2008) have recently derived completely general and unique expressions valid for all possible
configurations given in terms of real functions only (no difficulties with using complex functions). The

solutions due to Tavara et al. (2008) have been used in this work.

According to Tavara et al. (2008), the displacement fundamental solutions when x* = 0 has the form
1
U%(x) = — H(x), (12)
() = 7= H®

where r = |x|, and the matrix H(x) is the modulation function of the displacement fundamental solution.
The matrix H(x) is symmetric and it depends on the direction of r but not on its magnitude (see Figure 4). A
relatively simple and general expression of H(x) can be obtained using the auxiliary vector £ = (15,0, x3),
where 1, = [(x)2 4+ (x9)2; and the triad [n,m,%/r] with n = (c,0,—s) andm = (0,1,0) where
c=cos¢ =x2/r and s = sin ¢ = ry,/r, and the angle 0 < ¢p < 7 , see Figure 4. For such a coordinate
system only the coefficients H;;(X) and H;3(X) are non-zeros (see Appendix A). The general expression of

the tensor H(x) for any x can be obtained by transformation of components:

H;j(x) = Qi QsHps (2), (13)
where the rotation matrix (2;; is
cos@ —sinf 0 (14)
;j=|sinf cosf® 0]
0 0 1

The computation of the traction fundamental solution, T°(x), follows a similar procedure. The details can be
found in T4vara et al. (2008).

Finally, the fundamental solutions U;,(x) and Tj,(x) have to be transformed from the local coordinate
system, (x?,x3,x2), to the global one in order to assemble the boundary integral equation (11). The
fundamental solutions are transformed from the local coordinate system to the global one via the standard
transformations for second order tensors (see Ting, 1996):
Uij(x) = apea; Uiy (x) (15)
and T;;(x) = aya; Te (%),
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where a;;, is the transformation matrix.

BEM models are discretized using 9-node quadrilateral elements. Continuous elements are used everywhere
in the model, except at the intersections of the interface and the crack surfaces with model surface. In such
cases one- and two-side discontinuous elements are used in order to avoid common nodes at the intersections
(see Figure 5). It is worth noting that, although discontinuous elements are not strictly necessary to solve
most of the practical bimaterial crack problems; they have been implemented in this work in order to develop
a versatile and robust discretization strategy capable of dealing with general multiple subdomain problems
(including the case of more than two subdomains sharing a single edge). At the same time, the
implementation remains open to introduce further extensions to account for crack propagation which could

require of the automatic model remeshing.

The regular BEM integrals over continuous and discontinuous elements are evaluated using standard
Gaussian quadrature. In the case of nearly singular integrals an adaptive element subdivision technique is
also employed. On the other hand, the Cauchy principal value integrals and the free terms are evaluated
using the rigid body motion approach (see Aliabadi, 2002). Singular integrals are computed using the

variable transformation technique due to Lachat and Watson (1976).

The equation (11) is applied to each of the subdomains while considering the orientation of the material as
explained before. The equilibrium, ¢t; = —t;;, and continuity, u; = u;;, conditions are enforced at the nodes
used to discretize the common interface I';_;;. The resultant system of equations is solved for the unknown
traction and displacement nodal values after specifying the boundary conditions. It is worth noting that the
implemented BEM code is not capable of detecting contact between the crack surfaces, and so, its
application is restricted to open cracks only. For further details on the multi-domain BEM formulation and

implementation the reader is referred to the book by Aliabadi (2002).
The computation of the J-integral are included in the BEM code as a post-processing procedure, and so, it
could be applied to the results from a particular model at a later stage. The required stresses, strains and
derivatives of displacements at internal points are directly obtained from their boundary integral
representations (Aliabadi, 2002):

um(X') = f

r

Ut Ct, Xt GO)T () — fr Ty (6, X 11 () dT () (16)

where X' is the coordinate of the internal point, U;j,(x,X') and Tjjn,(x,X") are the derivatives of the
fundamental displacement U;;(x, X") and traction T;;(x, X') fundamental solutions respectively (see Tavara
et al., 2009). The boundary I' corresponds to that of the subdomain where the internal point X' lies on.
Strains and stresses at internal points can then be easily computed using the definition of the infinitesimal

strain tensor &;; = - (ui, it uj,l-) and the constitutive relationships in equation (1).

On the other hand, the derivatives of the displacements, strains and displacements for boundary points are
evaluated from the boundary displacements and tractions by means of a procedure similar to that usually

used for finite elements. For further details the reader is referred to the paper by Ortiz and Cisilino (2005).

Finally, and in order to proceed with the J-integral computation, the resultant displacement derivatives,

strains and stresses for both internal and boundary points are transformed to the local the crack-front
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coordinate system (x7, X3, x3) (see Section 4) using the standard transformation rule for second-order tensors
(see Ting, 1996).

6 J-integral Computation

The computation of J-integral at any position 77 on the crack front requires of the evaluation of a volume
integral within closed domains that enclose a segment of the crack front L, (see equations 9 and 10). A
natural choice here is to make 9 coincident with the element nodes on the crack front, while L. is taken as
the element or element sides at which points 1 lies (on see Figure 6). The portion of the model domain in
which the volume integrals are evaluated is discretized using 27-node cells. The cells are similar to the three-
dimensional finite elements and they are implemented using an isoparametric interpolation scheme, being
ij>

displacements derivatives, u;,,, are interpolated by means of the cell interpolation functions, ¥;. Besides,

their nodes the internal points of the BEM analysis. Thus, the values of stresses, a}‘j, strains, &;;, and
the boundary mesh is designed to have a web shape around the crack front in order to build the integration
volumes with the shape of cylinders. This is illustrated in Figure 7, where the frontal face of the model has
been partially removed to show the crack and the integration domains.

As it is depicted in Figure 6, three different cases are considered depending on whether the crack front
position M is a mid-side node, it is shared by two elements, or it is located coincident with the external
surface (surface node). If the node M is a mid-side node or surface node, L. (the segment of the crack front
over which the J-integral is computed) spans over one element, connecting nodes M-1, M, and M+1 and
nodes M-2, M-1 and M, respectively. On the other hand, if M is a shared node, L. spans over two elements,

connecting nodes from M-2 to M+2.

The function q is defined to vary quadratically in the directions tangential and normal to the crack front. This
bi-quadratic definition of g has been employed with excellent results in the computation of EDI for a variety
of problems in previous works (see Cisilino et al, 1998; Cisilino and Aliabadi, 1999; Ortiz and Cisilino, 2005
and Balderrama et al., 2006 and 2008). Within this approach, and considering that the evaluation point 7 is at
the middle of the crack front segment L., and 1 is the radius of the integration domain, the function q is

written as:

To

aa=[1-| 2 .[1 _<L)2] 17)

where r is the distance from the crack front in the x] — x5 plane as it is depicted in Figure 1. Function q is
specified at all nodes within the integration volumes. Consistent with the isoparametric formulation, the

g-values are interpolated using
27
. (18)
a=) wae,
i=1

where W; are the shape functions defined within the volume cell and Q' are the nodal values for the ith node.
From the definition of q (see equation 7), Q¢ = 0 if the ith node is on Sy while for nodes inside V, Q* are

given by interpolating between the nodal values on L. and S,.
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Following standard manipulations the derivatives of q are:
27

3
kj = 57 3. ¢

o i 96 9%
where { are the coordinates in the cell isoparametric space and 8¢y /dx; is the Jacobian matrix of the
transformation.

Finally, if Gaussian integration is used, the discretized form of expression (9) is

= NI . o Ox; (20)
G(T]) = Z Z (O-” uj'k - o-l']' gl'j 5ki)qk']'det f Wp,
cellsinV p=1 k 14
where m is the number of Gaussian points per cell, and w,, are the weighting factors.

7 Application Examples

7.1 Thick tension bimaterial plate with a centre interface crack

A thick bimaterial plate containing a through crack on the interface is considered in the first example. A
schematic representation of the problem geometry, dimensions and boundary conditions are depicted in
Figure 8. Model discretization is similar to that depicted in Figure 7. It consists of 658 elements and
2855 nodes. Eighteen elements are placed along the crack front, and a total of 126 elements are used in the
crack discretization. Five rings of cells with normalized radii #/a = 0.1, 0.2, 0.3, 0.44 and 0.64 are
accommodated around the crack front for J computations. With this purpose 648 cells and 6438 nodes are
employed.

In order to validate the code and to allow comparisons with other results from the bibliography, the problem
was solved first for homogeneous cases, this is, the material elastic constants and orientations were set the
same for both subdomains. The first case is that of an isotropic homogeneous plate with material elastic
properties E=E’=100 GPa, v»=v'=0.3 and x'=0.5E/(1+v). Computed J values along the crack front are
presented in Figure 9, where the origin of the normalized coordinate, z/=0, corresponds to the specimen mid-
plane (see Figure 8b). The reference values are those reported by Raju and Newman (1977) for a
homogeneous centre cracked specimen and presented in a polynomial form by Aliabadi (1996). Since
reference results are reported in terms of the mode-I stress intensity factors, Kj, they have been converted to
J values using the expression (see for example Anderson, 2005)

] =KP/E Q1)
where E = E/ (1 - vz) for the plane strain condition. It is worth mentioning that the reference results are
reported in terms of stress intensity factors with an accuracy of 5%. So that, when they are converted into
Jvalues using expression (21), the error bound is increased to around 10%. The accuracy of the reference
Jresults is indicated in Figure 9 using the error bars. Data in Figure 9 are normalized with respect to the
Jvalue for a crack in a infinite homogenous plate under plane strain condition, Jo = o?ma/E. Excellent
agreement is found between the reference and computed results throughout the specimen thickness.
Computed results are well within the error bounds of the reference results. Results of similar accuracy were
obtained using a single-domain dual boundary element method (DBEM) in a previous work by Cisilino,
et al. (1998).
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For the next two homogeneous cases the direction of the axis of symmetry, x3, is chosen to be parallel to the
crack plane, this is, coincident with the global directions x and z, respectively. For these cases the material
elastic constants are chosen the same to those of the laminated used by Ariza and Dominguez (2004b). The

five independent values of the coefficients of the tensor C;; (see equation 3) are
C11 = 5.37 GPa, C12 =1.34 GPa, C13 = 3.35 GPa, C33 = 251.168 GPa, and C44 = 5 GPa. (22)

The associated elastic properties are: E= 5 GPa, E'= 247.83 GPa, v=0.245, v'=0.01 and g = 2.5. The
material orientation is specified for each subdomain by means of the angles (a, 8,y¥) which define the
orientation of xJ, the material axis of symmetry, with respect to the global coordinate system (x, y, z). In this
way, for the material axis of symmetry oriented in the direction global direction x, the orientation angles are
are 0°/90°/90°, while for the material axis of symmetry oriented in the global direction z, the angles are
90°/90°/0°.
Computed results along the crack front are presented in Figure 10. In other to compare with other results,
data in Figure 10 is presented in terms of normalized stress intensity factors, K;/Kg, where Ko = ovma.
To compute the stress intensity factors from the J results, the problem was assimilated to a two-dimensional
one in the xy plane. Stress intensity factors were computed from the J results using the expressions (see
Chu and Hong, 1990),
J1 = a1 KE + a2 KKy + azKf (23)
and J, = by1K{ + by KiKyy + byp Kf,
where the coefficients ¢ and b depend on the elastic material properties and the material orientation. The
coefficients aq,, ay, and the three coefficients b are zero when one of the principal axes of the material is
parallel to the crack plane. Thus, for the cases considered in this work
J1 = ay K7 (24)
The values for the coefficient a4 as a function of the ratio between the Young modulus in the xy plane,
E,/E,, arereported in Table 1.
It can be seen in Figure 10 that with the only exceptions of the regions next to the lateral faces of the
specimen (say, |z/t| > 0.45) where the boundary layer effect takes place, the stress intensity factor value is
nearly constant along the crack front. Also plotted in Figure 10 there are two sets of results computed using a
two-dimensional high-resolution finite element model. The finite element model was solved using Abaqus
(2009), and it was discretized using a fine regular mesh consisting of 9,600 8-node biquadratic, plane stress
elements (CPS8R). The stress intensity factors were computed using an Abaqus built-in facility. The
resultant normalized stress intensity factors are K;/Ky = 1.124 and K;/K, = 1.184 for the material axis
of symmetry oriented in the global directions x and z, respectively. The difference between the BEM and
FEM results is less than 2%.
The final case consists in a heterogeneous plate with the axis of symmetry of the material oriented in the
global directions z and y for the subdomains I and II, respectively; this is, 90°/90°/0° for the subdomain I
and 90°/0°/90° for the subdomain II. The material elastic properties are the same of the previous cases.
Computed results are presented in Table 2. The results are normalized with respect to Jo = 6?ma/E’. It can
be seen that J value is nearly constant along the complete crack front. Besides, the path independence is
found excellent with a standard deviation of around 5% for the results computed using the domains with

radiir/a = 0.20. The only exceptions are the positions next to the lateral face of the specimen, where the
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boundary layer effect takes place and the applicability of the J-integral is not strictly valid. The smallest
integration domains with /a = 0. 10 do not provide accurate results. This is attributed to the fact that these
domains are discretized using a single cell in the radial direction. Similar behaviours were found in previous

works by the authors (see for example Cisilino et al., 1998 and Ortiz and Cisilino, 2005).

7.2 Bimaterial laminate with an edge interface crack

It is considered in this example the analysis of an edge crack in a bimaterial laminate. The model geometry
and discretization are depicted in Figure 11. Model dimensions are: crack length =10 mm, specimen width
b=4a, height h=a and thickness 2+=1.5a. Material properties are the same used by Ariza and Dominguez
(2004b) and reported in Equation (22) in the previous example. The discretization of the model is that
illustrated in Figure 7, using 596 elements. Five rings of cells with normalized radii #/a = 0.05, 0.1, 0.15,
0.22 and 0.32 are accommodated around the crack front for the J computations. Five hundred and four cells
are used in the construction of the integration domains.

The model was solved for a number of relative orientations of the axis of symmetry of the material in both
subdomains. The computed results are reported in Figure 12. J-results in Figure 12 are normalized with
respect to Jo = a*ma/E’. It can be seen that when one of the principal axes of the material is specified
perpendicular to the crack front direction for both subdomains, the J-integral results along the crack front are
symmetric with respect to the specimen mid-plane (z/#=0). These are the cases for the results labelled
90°/90°/0°-90°/90°/0° and 0°/90°/90°-90°/90°/0° in the figure. On the other hand, when the orientation of the
principal axes of the material are arbitrary in at least one of the two subdomains, the J-integral results along
the crack front are not symmetric with respect to the specimen mid-plane. The extreme values for the

J-integral are attained at the free surface.

7.3 A circumferential interface crack in a cylindrical bimaterial bar

The last example consists in a cylindrical bimaterial bar containing a circumferential crack subjected to
remote axial tension o, see Figure 13a. The radius of the bar is b=5a and its height A=24a, being a the
crack depth. A total of 684 elements are employed in the model discretization. Four rings of cells with radii
r/a = 0.25, 0.5, 0.75 and 1 are accommodated around the crack front for the J computations. Integration
domains are constructed using 672 cells. The model discretization is illustrated in Figure 135. Material
properties are the same reported in Equation 22 for a previous example.

The problem was solved considering different material orientations. The results are reported in Figure 14. In
every case the results are normalized with respect to Jo = a?ma/E’. The first solution is for an isotropic
homogeneous material and it was used with validation purposes. The J result is constant along the complete
crack front. The difference between the computed result and that reported by Murakami and Okazaki (1976)
is 5% (it is worth noting that the reported precision for the reference solution is 3%). The second solution is
for a homogeneous transversely-isotropic case, with the material symmetry axis specified coincident with the
direction y for both subdomains (results labeled 90°/0°/90°-90°/0°/90° in Figure 14). Once again, and as it
was expected, the computed J values are constant along the complete crack front. In the third case the

orientation of the material axis of symmetry are different in each subdomain: for the subdomain I the
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material axis of symmetry is oriented in the z-direction, while for the subdomain II it is oriented in the y-
direction (results labelled 90°/90/0°-90°/0°/90° in Figure 14). The J results exhibit a periodic variation along
the crack front. Minimum values occur in the positions coincident with the direction of the z-axis, while the
maximums are in the positions coincident with the direction of the x-axis. In the last case, the orientation of
the material axis of symmetry is specified in the x-direction for both subdomains (results labelled 0°/90/90°-
0°/90°/90° in Figure 14). As for the previous case, the J results exhibit a periodic variation along the crack
front. However, in this case minimum values occur in the positions coincident with the direction of the x-

axis, while the maximums are in the positions coincident with the direction of the z-axis.

8 Conclusions

A boundary element methodology for the analysis of three-dimensional interface cracks in transversely
isotropic bimaterials has been presented in this paper. The analysis is addressed using a multidomain BEM
formulation in order to account for the different material properties at both sides of the crack. The J-integral
is computed along the crack front using the Energy Domain Integral (EDI) methodology. This is
implemented as a post-processing technique, and so, it can be applied to the results from a particular model
at a later stage. The implementation takes advantage of the efficiency of the boundary integral equation to
directly obtain the required displacement derivatives, stress and strain fields from their boundary integral
representations.

The efficiency and accuracy of the proposed implementation has been addressed by analysing a number of
examples with straight and curved crack fronts. The computed results compared very well with those
reported in the literature for benchmark problems. Besides, the implemented algorithm allowed studying the
effect of the relative orientations of the materials on both sides of the crack on the J integral values.
Maximum errors and dependence of the computed results with the integration paths occur for surface cracks
at the intersection of the crack front with a free surface. In this sense it is worth noting that the formulation of
EDI methodology used in this work is based on the assumption that the near-crack tip fields asymptote to the
plane strain fields along the crack front. But it turns out that this assumption does not hold at the intersection
of the crack front and a free surface, and so the proposed methodology is not strictly applicable. This
problem remains unsolved in this work. Following previous work (Cisilino and Ortiz, 2005), alternative
approaches for the selection of the auxiliary function q for the implementation of the EDI could be explored

to improve the accuracy of the computations.
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Appendix A

Non-zero components of the tensor H(X):
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where = cos ¢ = x3/r, s = sin¢ = ry,/r and the angle ¢ is indicated in Figure 4.
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Figure 1: (a) Definition of the local orthogonal Cartesian coordinates at

point n on the crack front, (b) Virtual crack front advance.
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Crack front

Figure 2: Tubular domain surrounding a segment of the
crack front.
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Interface

X1

Figure 3: Schematic two-dimensional representation of the multi-domain
BEM model with an interface crack.
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Figure 4: Point x and X associated with a transversely isotropic
material.
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Figure 5: Model discretization strategy using continuous and
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Virtual crack extension g

corner L I~ M
mid-side Lc

crack front

surface node

Figure 6: Schematic of the crack front region illustrating
the virtual crack extensions for a corner node, a mid-node
and a surface node.
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Figure 7: (a) Problem geometry, (b) Boundary Element discretization,

(c) Integration domains.
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Figure 8: (a) Schematic representation of the thick tension plate with
a centre interface crack, (b) Model dimensions.
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Figure 11: Bimaterial laminate with an edge crack (deformed geometry)
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Figure 12: Normalized J-integral results along the crack front of
the edge crack in the ply.
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Figure 13: External circumferential interface crack in a cylindrical bimaterial bar,
(a) model geometry and dimensions, (b) model discretization (deformed mesh)
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Figure 14: Normalized J-integral results along the crack front of the circumferential crack in the biomaterial
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Table 1: Resulting values for the coefficients a;; and Young Modulus ratios used to compute stress intensity
factors from the J results.

Case 4 E x/ E,
Material symmetry in x- direction 0.112 10" 49.57
Material symmetry in z- direction 02107 1

Table 2: Normalized J-integral results for the heterogeneous plate as a function of the integration domain
size. The results for the smallest integration domains, 7/a=1 (shaded column in the table) are excluded for the
computation of the average value and the STD.

z/t "/ Average STD
0.10 0.20 0.30 0.44 0.64

0.000 25.6382 | 30.4503 | 30.7658 | 30.7658 | 30.6081 30.5613 0.49
0.042 25.6382 30.4503 30.7658 30.7658 30.6081 30.5566 0.49
0.083 25.6382 30.4503 30.7658 30.7658 30.6081 30.5512 0.49
0.125 25.6382 30.4503 30.7658 30.7658 30.6081 30.5452 0.49
0.167 25.6382 30.4503 30.7658 30.7658 30.6081 30.5384 0.49
0.192 25.6382 30.4503 30.6869 30.7658 30.6081 30.5306 0.44
0.217 25.6382 30.4503 30.6869 30.7658 30.6081 30.5231 0.44
0.242 25.6382 30.4503 30.6869 30.7658 30.6081 30.5144 0.44
0.267 25.6382 | 30.4503 | 30.6869 | 30.7658 | 30.6081 30.5041 0.44
0.292 25.6382 | 30.4503 | 30.6869 | 30.7658 | 30.6081 30.4917 0.44
0.317 25.6382 | 30.3714 | 30.6869 | 30.6869 | 30.5292 30.4766 0.50
0.342 25.6382 30.3714 30.6081 30.6869 30.4503 30.4651 0.47
0.367 25.6382 | 30.3714 | 30.6081 | 30.6081 | 30.4503 30.4559 0.39
0.400 25.5593 | 30.3714 | 30.6081 | 30.6081 | 30.4503 30.4470 0.39
0.433 25.5593 30.2925 30.6081 30.6081 30.4503 30.4345 0.50
0.450 25.5593 30.2925 30.5292 30.6081 30.4503 30.4207 0.44
0.467 25.4804 30.2925 30.6869 30.7658 30.6869 30.4043 0.70
0.483 25.0071 29.9770 30.7658 31.1603 31.2391 30.3024 191
0.500 23.5871 28.5570 29.7403 30.3714 30.6081 29.8192 3.08




Key Engineering Materials Vol. 454 (2011) pp 79-96
© (2011) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/KEM.454.79

Symmetric-Galerkin boundary element transient analysis of the DSIFs for
the interaction of a crack with a circular inclusion

A.-V. Phant2 | L. J. Gray?? and A. Salvadori®<

!Department of Mechanical Engineering, University of South Alabama, Mobile, AL 36688, USA
2CSM Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
3DICATA, Universita di Brescia, via Branze 38, 25123 Brescia, Italy

“yphan@jaguarl.usouthal.edu, ®grayljl@ornl.gov, “alberto.salvadori@ing.unibs.it

Keywords: symmetric-Galerkin boundary element method, elastodynamics, crack-inclusion interac-
tion, dynamic stress intensity factors, transient responses.

Abstract. A dynamic analysis of crack-inclusion interaction is described in this paper. The anal-
ysis employs a two-dimensional symmetric-Galerkin boundary integral formulation for multi-
domain elastodynamic fracture analysis in the frequency domain. The multi-domain technique
is based on the assumption of perfectly bonded inclusions. The numerical implementation of
this boundary integral formulation is carried out with standard quadratic elements, allowing
the use of an improved quarter-point element for accurately determining frequency responses
of the dynamic stress intensity factors (DSIFs). To deal with singular and hypersingular in-
tegrals, the formulation is decomposed into two parts: the first part is identical to that for
elastostatics while the second part contains at most logarithmic singularities. The treatment
of the elastostatic singular and hypersingular singular integrals employs an exterior limit to
the boundary, while the weakly singular integrals in the second part are handled by Gauss
quadrature. Time histories (transient responses) of the DSIF's are obtained in a post-processing
step by applying the standard fast Fourier transform algorithm to the frequency responses of
these DSIFs. Two numerical examples are presented for the computation of the DSIFs due to
crack-inclusion interaction under two types of impact loading: Heaviside step loading and blast
loading. The numerical results are consistent and confirm the well known crack tip shielding
mechanism observed during the interaction between a crack and a much stiffer inclusion.

Introduction

As the use of composite materials in industry (e.g., airframes) has expanded, there is an
increasing interest in their fracture behavior under impact loading conditions. Of particular
interest is the dynamic fracture behavior due to crack-inclusion interaction in these materi-
als. Among numerical methods available for this class of problems, boundary element method
(BEM, e.g., [1]) has emerged as an effective tool. The key feature of the BEM is that only the
boundary of the domain is discretized. For wave problems posed as scattering from a finite body
in an infinite domain, this means that an artificial truncation of the domain is not required.
For fracture analysis the important implications are that the singular stress field ahead of the
crack is not approximated, and that remeshing a propagating crack is an easier task. There
are two types of BEM formulations in dynamics: frequency domain (FD, e.g., [2—8]) and time
domain (TD, e.g., [8-10]). Nonlinear elastodynamics by means of incremental schemes requires
the use of TD formulation [1] while a FD formulation is better suited for parallel computing and
analyses of the same structure under different dynamic loading conditions (frequency responses
are independent of each other as well as the loading). Although the FD formulation requires the
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use of Fourier/Laplace transform if time solutions are needed, its implementation is generally
simpler than for the TD formulation. For BEM works on the dynamic crack-inclusion interac-
tion, FD formulation has been employed by Mykhas’kiv and Khay [I1] while TD formulation
has been preferred by several other research groups (e.g., [L2-15]).

A variant of the BEM, employing a Galerkin approximation of both the displacement
boundary integral equation (BIE) and the hypersingular traction BIE, has been known as
the symmetric-Galerkin BEM (SGBEM) (e.g., [16]). Compared with the dual BEM (DBEM),
the SGBEM is potentially more time-consuming as the Galerkin procedure is based upon an
additional boundary integration. However, the SGBEM also offers several key advantages in
fracture applications: (a) SGBEM uses the displacement BIE on the boundary part where
displacement is prescribed and traction BIE on the boundary part where traction is known.
As the name implies, this results in a symmetric coefficient matrix, and this remains true for
fracture problems, with the proviso that the unknowns on the crack faces are the jumps in
displacement. Thus, the extra computational expense can be partially offset by exploiting this
symmetry, both in the matrix construction phase and in solving the linear system of equations;
(b) unlike the DBEM or other collocation methods, there is no smoothness requirement on the
displacement (e.g., [17]) in order to evaluate the hypersingular integral; thus, standard contin-
uous elements can be employed. The Galerkin approach can therefore easily exploit the highly
effective quarter-point quadratic element to accurately capture the crack tip behavior. On the
other hand, internal collocation, as often employed by the DBEM, results in a physically un-
appealing discontinuous interpolation; and (c) the weighted averaging formulation of Galerkin,
by avoiding direct collocation at corners and junction points, provides a smoother solution in
the neighborhood of geometric discontinuities. This is especially useful for dealing with kinked
crack problems.

In addition to important developments of the SGBEM for stress and fracture analysis in
elastostatics, the SGBEM for elastodynamics has been reported in the time domain (e.g.,
[18,19]) and frequency domain (e.g., [20-24]). However, to the best knowledge of the authors, no
work on dynamic crack-inclusion interaction using SGBEM has been reported in the literature.
This paper presents a study on the interaction between a crack and a circular inclusion using a
symmetric-Galerkin boundary integral formulation for elastodynamics in the frequency domain
(Fourier space).

In both finite and boundary element modeling of discrete cracks, the standard approach
consists of incorporating the quarter-point (QP) element [25,26] to improve the accuracy of
stress intensity factor (SIF) calculations (e.g., [27,28]). Nevertheless, in either finite or boundary
element analyses, the prediction of K1 and Ky has not been nearly as accurate as for Ki.
Recently, Gray and Paulino [29] have proved that, for an arbitrary crack geometry, a constraint
exists in the series expansion of the crack opening displacement at the tip (see also [30]). As
discussed in [29], the standard QP (SQP) element in general fails to satisfy this constraint,
and this has led to the development of an improved modified QP (MQP) element [31]. It
was demonstrated in [31-33] that the accuracy of the computed SIFs and/or T-stress can be
significantly improved by incorporating this MQP element into the SGBEM. As a result, the
MQP element is employed to determine the dynamic SIFs (DSIFs) in this work. Note that a
recent development of the so-called enhanced QP (EQP) element [34] has suggested that EQP
would provide even a better accuracy than MQP in evaluating the SIFs.

As the FD formulation is employed in this work, the DSIFs produced from any SGBEM
analysis are a function of frequency. If time histories (transient responses) of the DSIFs are
needed, the standard fast Fourier transform (FFT) algorithm can be used to obtain these
time-dependent quantities.
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Two numerical examples are reported to demonstrate the effectiveness of using the SGBEM
for frequency-domain elastodynamics and Fourier transforms in the analysis of crack-inclusion
interaction. These problems involve the determination of transient responses of the DSIFs for
a crack interacting with a circular inclusion in a finite plate and a three-point bend beam.

Boundary Integral Equations for Elastodynamic Fracture Analysis

____prescribed traction

prescribed displacement

Fig. 1: A domain containing a crack

Consider a finite domain containing a crack as shown in Fig. 1. The crack is composed of
two symmetrically loaded surfaces I'} and ', which are initially coincident. Let the boundary
of the domain be I' and I' = T, UTF U T',. Also, let I’y = T’ U I'yy where I, is part of
I'y where displacement is specified and I'y; is part of I', where traction is prescribed. Finally,
let Ty = I'yy + 'Y and note that traction is supposed to be known on I', = I'f UT',. The
Navier-Cauchy governing equation for elastodynamics without body force is given by

(¢ — c)uii (@, 1) + couyis(Q, 1) — i;(Q, 1) = 0. (1)
where commas and dots denote space and time differentiations, respectively, and u;(Q,t) rep-
resents the displacement vector at a field point @ and at time ¢. The compressional (c,) and
shear (c;) velocities are known to be

A+ 2
= * 'u, c =y (2)
p p
where A\ and p are the Lamé constants, and p is the mass density.
The Fourier transform of Eq. (1) gives the following frequency domain representation:

(c5 — )i (Q,w) + Suyii(Q, w) + w?u;(Q,w) = 0. (3)

Use of the reciprocal relation for two elastodynamic states of the same angular frequency
w results in the following displacement BIE for a source point P interior to the domain in
question:

UPW) = u(Pw)— / Ui (P, Q) £5(Q, ) — Tiy (P, @) 15(Q. )] dQ

Ty

+ /Tkj(P, Q,w) Au;(Q,w)dQ =0. (4)

r

where () denotes a field point, u; and ¢; are the displacement and traction vectors, respectively,
and Auwu; is the displacement jump vector across the crack surfaces. As Au; is used as the

unknown on the crack, only one crack surface, e.g., I'7, needs to be discretized.
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For P off the boundary, the kernel functions are not singular and it is permissible to dif-
ferentiate Eq. (4) with respect to P, yielding the displacement gradients. Substitution of these
gradients into Hooke’s law and then Cauchy’s relation results in the following BIE for surface
traction:

T(P,w)

te(P,w) — ne(P) / [Die(P, Q. ) t5(@,w) — Sije(P, Q) u5(Q, )] dQ
+ nzr(P)/Skjg(P,Q,w) Au;(Q,w)dQ =0. (5)

where n, is the outward normal vector to the related boundary. It is well known that this traction
BIE is essential for treating crack geometries. As it is difficult to find correct expressions for the
elastodynamic kernel tensors Uy, Tj;, Dije and Sij¢, these formulas are given in the Appendix.

It can be shown that the limits of the integrals in Eqgs. (4) and (5) as P approaches the
boundary exist. From now on, for P € I, the BIE is understood in this limiting sense.

The Galerkin boundary integral formulation is obtained by taking the shape functions ¥,
employed in approximating the boundary tractions and displacements as weighting functions
for Egs. (4) and (5). For a symmetric-Galerkin approximation, Eq. (6) needs to be employed on
the boundary part I'y, where displacements are prescribed, and Eq. (7) is used on the boundary
part I'; where tractions are prescribed,

/ on(PYUP.w)dP = 0. (6)
/ on(P)T(P,w)dP = 0. (7)

The additional boundary integration is the key to obtaining a symmetric coefficient matrix
(as the name implies), as this ensures that the source point P and field point @) are treated in
the same manner.

As mentioned earlier, standard (continuous) quadratic shape functions are used in this work
to exploit the highly accurate MQP element for fracture analysis. One of the advantages of the
frequency-domain analysis is that Egs. (4) and (5) have a similar form as those in elastostatics.
Thus, the reader is referred to, for example, Ref. [16] for more details on the SGBEM.

Multi-domain Analysis

The above SGBEM formulations need to be extended to deal with multi-domain problems
such as those involving crack-inclusion interaction. The multi-domain technique is based upon
the assumption of a perfect bonding between inclusions and the matrix which requires the
displacement continuity and traction equilibrium conditions to be enforced on the interface.

Without loss of generality, consider a problem with two domains A and B as shown in Fig.
2. The coefficient matrix is partitioned into a 4 x 4 block structure as follows:

Saa 0 Sau, Say
0 SBB SB’u,I _SBtI
Suza SuiB Supup  Supty
BSy,a S, Stju; Sty
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Fig. 2: A multi-domain problem

where S44 and Spp refer to Egs. (6) and (7), depending on the boundary conditions, written for
the non-interface boundaries of domains A and B, respectively, and S4.,, Sat,, etc., correspond
to the unknown interface displacement (u;) and interface traction (¢7). As both displacements
and tractions are the unknowns on the interface, both Egs. (6) and (7) need to be employed on
this interface.

As a result of the symmetric-Galerkin (SG) procedure, Sa4 and Spp are symmetric matrices.
The (1,2) and (2,1) blocks are equal to zero as the SG equations for domain A do not involve
the geometry of domain B, and wice versa. The minus sign in the (2,4) block is due to the
change in sign for the interface traction. The key in obtaining a symmetric coefficient matrix
is to complete rows three and four with appropriate interface equations. More details of multi-
domain techniques for the SGBEM can be found in, e.g., [18,36,37].

Treatment of Singular Integrals

The main computational task in implementing Eqgs. (6) and (7) is the evaluation of the singular
and hypersingular integrals [24]. For this type of evaluation, one can employ a direct regulariza-
tion approach (e.g., [38]) or a decomposition technique as adopted herein: the elastodynamics
formulation is decomposed into two parts as follows:

//IdeP://IsdePJr//(I—IS)deP. (9)

where I and I° denote an elastodynamic kernel and its elastostatic counterpart, respectively.
As seen in the Appendix, I involves modified Bessel functions of the second kind.

The first part [ [ I* dQ dP is identical to that for elastostatics. The treatment of the singular
and/or hypersingular integrals in this part is carried out by means of an exterior limit to the
boundary (the needed analytic integrations and limit are aided by symbolic computation). As
the general procedure for this treatment has been presented in [16,39], we therefore focus on
the second term.

As the distance r between P and @ tends to zero (Vw > 0), the modified Bessel functions
of the second kind take the following forms:

Ko(z) = —1n§ —v+0(2), (10)
Ki(z) = %—I—%(lng—i—’y—%) +0(2%), (11)
Ky(z) = % — % + O(2?), (12)

where z could be either z; or 22 (see Eq. (31)), and 7 is Euler’s constant.
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Use of these above equations in the elastodynamic kernels results in the following asymptotic
behavior for the kernel functions,

U = Uy = T or; = O(1), (13)
T,fj -Tg; = O(rlar), (14)
D{,— Dy, = O(rlnr), (15)
nge —Spje = O(lnr), (16)
where 12 = —1, v is Poisson’s ratio and
-1 iw 17 1 A

It can be seen that the second part [ [(I — I*) dQ dP is regular except when the integrand
is S,‘fjg — Si;¢- However, this logarithmic singularity can be treated straightforwardly by Gauss
quadrature using the following conversion [10]:

/lf(r)lnrdr:—/l/lf(sr)dsdr. (18)
0 0 O

Finally, it should be noted that, since both I and I° are singular, the singular terms in the
kernel difference (I — I°®) must be algebraically canceled out to avoid large round-off errors. By
doing that, the integrand (I —I°) can be accurately obtained by using Egs. (29) and (30), where
Ko(z), K1(2), K»2(z) are given by Egs. (10) through (12), and ¢, X, ¥+, X, are replaced by
Y, —AA, x, — AA+ BB, ¢, — CC, X + DD, respectively. Here,

2
AA = 2—2(1n9+7—1> :
T

2 2 9
= ()3 (5
co = (&) 4301+
DD — -_<(c:_:>2%%<1n%+7—2>+%§(ln%+fy—g>]%_ (19)

Dynamic Stress Intensity Factors

In this work, the DSIFs are numerically evaluated using the displacement correlation technique
(DCT). This technique is based upon the crack displacement jump in the vicinity of the crack
tip and the jump is determined by the SGBEM described earlier. According to the DCT,

) [2m
Ki(w) = ﬁﬂll_{% TAun(w),

Kn(w) = pplim \/? Au(w) , (20)

r—0
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where Au,, and Au,; are the normal and tangential components of the crack displacement jump
vector, respectively, and r is the distance to the crack tip. In Eq. (20),

6 _ 4ﬁpﬂs B (1 + BsQ)2
ABp(1-52)

(21)

and

Po =1 = (c/e)?, Ps = V1= (c/cs)?, (22)

where c is the crack growth velocity. For stationary cracks such as those considered in this work,
c =0 and

2 — 2 1

. _ p S _
g B = 22 4(1-v) (23)

The dynamic fracture analysis calculations reported in this work are performed using the
MQP element developed in [31]. By using the MQP shape functions in Eq. (20), the DCT-based
DSIFs are obtained as

2
Ki(w) = %MU% (8Au) — Aul)

2
Kn(w) = 5—;‘,/% (8Au§2)—Au§3)), (24)

where L is the distance between the tip and ending nodes, and the superscripts (2) and (3)
denote the quarter-point and ending nodes of the crack-tip element, respectively.

As the DSIF's are directly given in terms of the nodal values of the displacement jump of
the crack-tip element, and the MQP element enhances the accuracy of the nodal displacement
jump, this enhances the accuracy of the obtained DSIF frequency responses.

Obtaining Time Histories from Frequency Response Analysis

Problem | SGBEM
. » H®)
under e’®?
IFFT
F(o) = H®).P®) = F(1)
FFT
Load P(t) = Plw)

Fig. 3: A model for obtaining time histories using the standard FFT algorithm

To simplify the notations used in this paper, X (w) is understood as the Fourier transform
of X (t) and vice versa.

The solution of a dynamic problem for a system can be viewed as an input/output relation
where the input is the load P and the output is the dynamic response F' of the system. If P
and F' are in the frequency domain, the relation can be written as

F(w) = Hw)P(w). (25)
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In Eq. (25), H(w) is called the frequency response which is the response of the system due
to a unit harmonic load P(w) = e**.

Figure 3 depicts a model for obtaining time histories (transient responses) from frequency
response analysis of damped systems. In this model, the problem under a unit harmonic load
(e™*) is analyzed first using SGBEM to obtain the frequency response H(w). In the mean time,
the time-dependent load P(t) is converted to the frequency domain (P(w)) by means of FFT.
Relation (25) is then employed to obtain the dynamic response F'(w) in the frequency domain.
Finally, IFFT is used to transform F'(w) into the time domain (F(¢)).

60— B 60 o
40+ B 40+ 5
—red —red
2ol -~ imaginary i 2l -~ imaginary 1
Ho ‘ i
3 3 ol jd i R Y\
I I ’ ’ "
20— B 20H L
401~ B -40H B
-60— B 60 _
A T N T N T SN BT NI N | | | | | | |
0 02 04 06 08 1 12 14 16 18 2 0 05 1 15 2 25 35 4
f=w/2m MHz f=w/2m MHz

Fig. 4: Conjugate symmetry about Nyquist’s  Fig. 5: Doubling time resolution by doubling

frequency of frequency response H (w)

Nyquist’s frequency

A procedure for obtaining the transient responses by the standard FFT algorithm can be

summarized as follows:

(a)

(b)

(d)

Determine a frequency resolution Af (f = 2mw) which needs to be small enough to
minimize the loss of frequency information.

Perform SGBEM analysis for f = 0, Af,2Af, ..., %Af = fxyq, Where N = 2™ and m is
a positive integer, to obtain the frequency response H(w) for the first (% + 1) samples.
The Nyquist frequency fy,, needs to be chosen such that frequency responses above fy,,
are not significant and can thus be discarded. Note that the very first sample (j = 1) is
the static sample (f = 0);

For the last (§ — 1) samples (j = § +2...N), H(w) must be determined such that it is
conjugate symmetric about the Nyquist frequency, i.e.,

H(j) = conj(H(N — j + 2)) (jzg—l—Q...N). (26)

Figure 4 depicts an example of a frequency response H(w) constructed from using Af =

0.001 MHz, N = 211 = 2,048 and fy,, = 1.024 MHz.

Perform FFT for the time-dependent load P(t) for the first N samples (j =1...N);
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(e) Calculate F(w) = H(w)P(w);

(f) Perform IFFT for F(w) to obtain the transient response F'(t). Note that the period
and time resolution (sampling interval) of this transient response are Ty = 1/Af and
At =Ty /N, respectively;

(g) If the calculated At does not give a very good indication of the shape of the transient
curves, interpolation [41] can be used. This is done by increasing the value of Nyquist’s
frequency while requiring no extra SGBEM analysis as extra zeros are added to the
frequency response. As a result, the number of samples N is increased accordingly which
improves the resolution of the transient curves.

Figure 5 shows an example of a frequency response H(w) for which Nyquist’s frequency
fxyq 1s doubled from 1.024 MHz to 2.048 MHz. Thus, At is reduced in half.

More mathematical details of this frequency domain analysis can be found in [42] where
some studies on the effects of fy,, and Af on the computational cost were given.

Numerical Examples

Two numerical examples involving viscoelastic materials are given in this Section to illustrate
the effectiveness of using frequency-domain elastodynamic SGBEM and the standard FFT
algorithm in transient analysis of the DSIF's in case of crack-inclusion interaction. The internal
damping of the viscoelastic materials is considered by means of a complex shear modulus defined
as pe = (1 + 2i¢) where ¢ is the damping ratio. Note that undamped cases ({ = 0) are not
considered here as their transient responses never decay which violate the periodic nature of
the standard FFT algorithm presented in Section 6 (e.g., [41]). That’s why some studies in the
literature reported that zero damping ratio would result in spurious oscillations in the time
solution [6,42]). Two types of impact loading are considered as depicted in Fig. 6: a Heaviside
step function and a blast loading function. Note in the standard implementation of the FFT
that a quiet zone, where the applied load o(t) = 0, needs to be added to the end of the duration
of the load. This zone and Ty must be long enough in order to obtain accurate transient results.

ol o

60 60

~ 7Y
=
St
-~

(a) (b)

Fig. 6: (a) Heaviside step loading; (b) Blast loading

Crack-inclusion interaction in a finite plate

The first example deals with a plate of size (2W x 2H) = (30 mmx 40 mm) containing a
30°-oriented crack of length 2a = 4.8 mm and an inclusion of diameter d = 4 mm as shown
in Fig. 7. The plate is subjected to a uniaxial tension o(t) in the form of a Heaviside step or
blast loading (¢, = 2 us, to = 8 us) as depicted in Fig. 6. Crack tip A is eccentrically positioned
relative to the inclusion center as shown, and the eccentricity is denoted as e. The material
properties for the matrix and inclusion are respectively assumed to be: u = 260 GPa and 640
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GPa, v = 0.08 and 0.01, and p = 3,220 kg/m?3 and 3,515 kg/m?. Let the normalized mode-I
and mode-IT DSIF's be defined as

K K
= ,  Fn= : (27)
Oo\/TTa Oo\/Ta
o(1)
EERRRRE
xz‘
w T w "
WAB N 300 |
A X
e 1
H
d
1
NN
o(t)
Fig. 7: Crack-inclusion interaction in composite plate.
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Fig. 8: Fy and Fjy at tip A (¢ = 1%, Heaviside
step loading).

Fig. 9: F} and Fyy at tip A (¢ = 1%, blast
loading).

Due to the interaction between the inclusion and a very nearby crack, a dense mesh needs
to be employed for the SGBEM frequency response analysis of the normalized DSIFs. Per
convergence study, 20 elements is used on the plate boundary, 20 equal-length elements on the
crack and 64 elements on the inclusion boundary. Here, Af = 0.001 MHz, N = 2! = 2,048
and fy,, = 1.024 MHz are selected which results in a period of Ty = 1/Af = 1,000 us and a
time resolution of At = Ty/N = 0.4883 us. To double the resolution of the transient responses
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Fig. 10: Fy and Fyy at tip A (e = d/4, Heavi-

side step loading).

Time (us)

Fig. 12: Fjand Fyj at tip B (¢ = 1%, Heaviside

step loading).
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Fig. 11: Fjy and Fy at tip A (e = d/4, blast

loading).

4
Time (us)

Fig. 13: F; and Fy at tip B (¢ = 1%, blast

loading).

for this problem, N is doubled from 2,048 to 4,096 which cuts the time resolution in half at

At = 0.2441 ps.

First of all, it can be observed that there are many oscillations on the time-history DSIF
curves in Figs. 8 through 15. These oscillations are caused by the wave scattering from the
crack tip, inclusion and plate boundary. The first oscillation occurs at time 7; which is the time
needed for the incident longitudinal wave to reach the crack (7} ~ 1.25us and 1.5 us for the

Heaviside and blast loading, respectively).

Figures 8 through 11 and 12 through 15 show the time histories of the normalized DSIF's
at crack tip A and B, respectively, during the first 7 us for the Heaviside step loading and the
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Fig. 14: Fy and Fyy at tip B (e = d/4, Heavi-  Fig. 15: Fy and Fj at tip B (e = d/4, blast
side step loading). loading).

first 9 us for the blast loading. Figures 8 and 12 depict F7 and Fj; as functions of three different
eccentricities, namely e = 3d/4,d/2 and d/4, under the Heaviside step loading while Figs. 9
and 13 show the same type of solution, but under the blast loading. These figures confirm a
mechanism known as crack-tip shielding: the SIFs/DSIFs decrease as the crack tip approaches a
much stiffer inclusion (as e decreases). As crack tip B is located further away from the inclusion,
the interaction between this crack tip and the inclusion is less significant as seen in Figs. 12
and 13.

Figures 10 and 14 show F7 and Fy; as functions of three different damping ratios under the
Heaviside step loading while Figs. 11 and 15 depict the same type of solution, but under the
blast loading. It can be seen that the DSIF solutions are dampened accordingly as ( increases.
Finally, the crack tip shielding mechanism at A can also be observed by noticing that Fy at tip
A (Figs. 10 and 11) are smaller than that at tip B (Figs. 14 and 15).

Crack-inclusion interaction in a three-point bend beam

The last example deals with a three-point bend beam of width L = 200 mm and depth
W = 50 mm, containing an edge crack of length ¢ = 10 mm and an inclusion of diameter
d = 2R = 5 mm as shown in Fig. 16. The crack is eccentrically positioned relative to the
inclusion center as shown, and the eccentricity in the z- and y-direction are denoted as e, and
ey, respectively. The material properties for the matrix and inclusion are respectively assumed
to be; u = 4.1 GPa and 15 GPa, v = 0.34 and 0.3, and p = 1,175 kg/m?® and 1,500 kg/m3. The
beam is subjected to an impact load P(t) per unit thickness of the beam. Again, both types
of impact: Heaviside step function and blast function (with ¢; = 100 us and ¢; = 400 us) are
considered (see Fig. 6 where o and o, are replaced by P and P,, respectively). The normalized
mode-I and mode-IT DSIFs are defined as

K K

FIZW, FHZW.

(28)

A convergence test suggests a total of 125 elements for the beam boundary, 5 equal-length
elements for the crack and 68 uniform elements for the matrix-inclusion interface. The frequency
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Fig. 16: Crack-inclusion interaction in a three-point bend beam.

responses of the mode-I DSIF are obtained using the following data: Af = 25 Hz, N = 21! =
4,096, fxyq = 51.2 KHz. This results in the following values for the transient analysis using the
standard FFT algorithm: Ty = 1/Af = 40 ms and At = T¢/N = 9.766 us.

Again, the oscillations on the time-history DSIF curves in Figs. 17 through 22 are due to
wave scattering from the inclusion, crack tip, supports and beam boundary. As shown in Figs.
17 and 18, the first oscillation occurs at time 77 ~ 30 us and 35 us for the Heaviside and blast
loading, respectively). These are times needed for the incident longitudinal wave to travel from
the top surface of the beam to the crack tip.
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Fig. 17: Effect of e, on F; under Heaviside  Fig. 18: Effect of e, on F1 under blast loading
step loading (e, = R). (e, = R).

Figures 17 and 19 depict the effect of the eccentricities e, and e,, respectively, on the
normalized DSIFs during the first 800 us under the Heaviside step loading, while Figs. 18 and
20 show the same effects during the first 900 ps under the blast loading. Again, the results
exhibit the increase of crack-tip shielding for F} and amplification for Fy; as the tip approaches
the inclusion. Actually, due to the position of the inclusion relative to the crack tip in this
case, the shielding of Fy is more pronounced and the amplification of Fy is not noticeable (Figs.
17 and 18) as the horizontal eccentricity e, decreases (the approaching direction of the stiff
inclusion is perpendicular to the crack which mainly decreases the crack opening displacement
(COD)) while the shielding of Fy is less pronounced and the amplification of Fy is noticeable
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(Figs. 19 and 20) as the vertical eccentricity e, decreases (the approaching direction of the
stiff inclusion is parallel to the crack which decreases the COD and increases the crack sliding

displacement).

Finally, Figs. 21 and 22 show the effect of three different damping ratios, namely ( =
1%,2.5% and 5%, on the transient responses of F} and Fj; under the Heaviside and blast
loading, respectively. Again, the DSIF solutions are dampened accordingly as ¢ increases.
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Conclusion

A 2-D symmetric-Galerkin boundary integral formulation for multi-domain elastodynamic frac-
ture analysis in the frequency domain, together with a post-processing procedure for obtaining
transient responses using the standard FFT algorithm, were described in this paper. The for-
mulation was successfully employed for analyzing the dynamic interaction between a crack and
a circular inclusion in a finite plate and a three-point bend beam. There are several major
advantages of this dynamic fracture modeling technique: (a) Compared to a static counterpart,
this formulation only requires additional integrals that are either regular or weakly singular.
However, care should be taken to avoid large round-off errors in evaluating the additional weakly
singular integrals; (b) Unlike in the conventional collocation dual BEM, standard continuous
elements can be employed in the SGBEM, allowing the use of SQP/MQP/EQP elements to
accurately capture the crack tip behavior; (¢) The FD formulation is suitable for arbitrarily
time-dependent loading often seen in practical engineering, as the handling of this type of load-
ing by means of the standard FFT algorithm is inexpensive; and (d) The FD formulation is also
known to result in stable transient responses as it is easier to select an appropriate frequency
step for the FD formulation than a suitable time step for the TD formulation. The transient
responses of the DSIFs obtained for the two examples considered in this paper are reason-
able, consistent and suggest that the dynamic fracture modeling technique discussed herein is
very effective. The results also confirm the well-known crack tip shielding mechanism due to
crack-inclusion interaction. A potential extension of this work is the modeling of dynamic crack
growth through a cluster of particles.
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Appendix
The elastodynamic kernels in Egs. (4) and (5) are given by
1
Uy = —(ij — XTHT5)
1 or 2x or or A
Ty = oy [Bl <8 Ok + 1, nk) - (r,kn] 2r Kig ) 2x 1 KTig + — Bzr kn]} ,
1 2 A
Dyje = o [(-X - —B2> Oker j — B1(Oksr e + Og57 1) + 2 (X,r - 21) T,kr,jr,£:| ;
T r r
or ,
Skje = 'u {an [4 (X,,«T — 5XT’ + 8%) ’I“,k’r"j’l“’g — Bg((sij,g + 5@"/’7].3) + B4(Sk[l“,j] + B4r7k7“,gnj
AB A\ . .
—Bs (reny, + 7 gne) T i + 4X2 —4522 4 (—> (X rrt+ QX— = Ypr — l/f_) Oem;
r wor I r
B
—271 (8jemi + 5jkm)} : (29)
where n; is the normal vector to the boundary, d;; is the Kronecker delta, and
B = %, -2,
r
By = Bi— X,
B3 = 1/),7"1"_&_3&‘{‘6&

r r2’
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r A r
B4 = 2 2X_7_4&+_ X1"1"_21_,¢}7"r—i_w_7 5
r r2 o\ r2 ’ r

Y = Ko(/2‘2)+zl2 [Kl(zz) - ?Kl(zl)] ,

P
2
CS
X = Ka(z)- <—> K (z1),
Cp
1 |es 9
Y, = — —21K2(Z1) —22K2(22) _ZQKI(ZZ) )
29T | Cp
1 Cs 2
X,r = ; c— ZlKl(Zl) + ZKQ(Z]_) — ZQK:[(ZZ) — QKQ(ZQ) 5
D
1 Cs [
Vpp = P {_c_ 32 Ko(z1) + (22 +6)K1(21) | +322Ko(22) + (22 + 6) K1 (22)
2 D
+Z§ 20Ko(22) + K1 (22) } )

1 Cs 2
Xorr = 02 cp

+25 Ko(22) + 320 K1 (22) + 6K2(22)} : (30)

21 Ko(21) + 321 K1 (21) + 6K2(z1)]

In Eq. (30), K,(z) is the modified Bessel function of the second kind and order n, and

r o= (@) — w1 (P)P + [£2(Q) — 22(P)]? (31)
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Abstract. The aim of this paper is to present a procedure to perform the evaluation of dynamic
stress intensity factors of composite cracked sheets. The numerical method that is used to perform
the modeling of the crack is the dual boundary element method. The inertial effects are modeled
using the dual reciprocity boundary elements method. The Houbolt Method is used to integrate
time, and the energy domain integral is used to evaluate stress intensity factors.

INTRODUCTION

The presence of cracks in mechanical or structural components decreases its mechanical and fatigue
resistance due to the high stress concentration at the crack tip. Under dynamic loads, a crack
can be still more dangerous due to wave propagations that increase magnitude of stress intensity
factors. Stress intensity factors can be obtained in the boundary element analyses by different
methods, such as the the crack tip opening displacement [1, 8|, special crack tip elements [2, 3],
and path independent integrals based on conservation principles [5]. Among these methods, path
independent integrals, as J and M integrals, have the advantage that they do not require an
elaborate representation of the crack tip singular fields, due to the relatively small contribution
that the crack tip fields make to the total strain energy of the body. The contour integrals in
the J and M-integral expressions can be evaluated at points far away from the crack tip, hence
the accuracy of the these methods is expected to be higher. The M integral has some advantages
over J integral. For example, a unique relation between the M-integral and T-stress can be found.
However, the expression of M integral has more terms and its implementation is not justified if the
interest is only in the computation of stress intensity factors.

The successful application of high performance composites is reflected in many of the mechanical
properties such as strength, ductility, toughness, and fatigue resistance. Composite materials are
ideal for components which require high strength per weight and stiffness per weight ratios. For ex-
ample, aircraft are typically weight sensitive structures in which composite materials are effective.
Typical, composite weight saving of 30 % has been reported. However, the application of com-
posite materials in critical components has lagged behind, due to the lack of sufficient knowledge
about composite damage tolerance properties. Wave propagation in cracked laminated (anistropic)
materials, for example, is one of the area that still demands a lot of research. Dynamic fracture
mechanics in anisotropic materials has been investigated with boundary elements |7, 8] and by other
numerical methods. However, none of the literature articles presented the computation of dynamic
stress intensity factors using path independent integrals.

In this paper, the boundary element method (BEM) is applied for the analysis of the dynamic
response of composite cracked sheets. The elastodynamic response of cracked sheets has been
previously presented by Albuquerque et al. [7, 8]. The dual boundary element method (DBEM)
is a boundary modelling technique aiming fracture mechanics problems, allowing to discretize the
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crack in a single region. This technique has been successfully described and implemented by Portela
et al. [9], and regarded as an efficient technique to simulate fracture mechanics problems. The
consideration of inertial effects of the component introduces domain integrals in the boundary
equilibrium equations, which must be transformed into boundary integrals. The dual reciprocity
method (DRBEM) has been successfully used to overcome this problem for isotropic and anisotropic
sheets, as shown by Kogl and Gaul [10] and Albuquerque, Sollero and Aliabadi [7, 8]. A transient
procedure is adopted using the Houbolt [11] time integration. Finally, the evaluation of the dynamic
stress intensity factors is performed using the energy domain integral (EDI). The EDI for fracture
mechanics problems has been described by Cisilino, Aliabadi and Otegui [12] and by Balderrama,
Cisilino, and Martinez [13]|. To the best of authors knowledge, it is the first time that EDI is been
used in the computation of dynamic stress intensity factors for anisotropic materials.

BOUNDARY ELEMENT FORMULATION

QS

N
N
N
N
N
N
Q
N
N\
N
AN

Figure 1: Illustration of cracked plate

Considering that the sheet shown in Fig.(1) is under a dynamic load, the integral equation for the

sheet in a source point (z') is given by [8]:

e (2') uj (/) + / T, (¢, @) (') dT = / Uy (o, @) t; (2/) d0+
/Ui~ («/, z) pii; (z') dQ . (1)

Q

The coefficient ¢;; (2') depends on the position of the source point (z') in relation to the bound-
ary which is being integrated, ¢; (z') and u; (2’) are nodal tractions and displacements, T;; (z/, )
and Uj; (¢/, x) are anisotropic fundamental solutions for tractions and displacements, and p is the
mass density of the material. The first three terms from eq.(1) refer to the classical elastostatics
formulation, and the last term refers to the effect of body forces due to the mass of the sheet under

dynamic load.

DUAL BOUNDARY ELEMENT METHOD (DBEM)

The DBEM consists on applying a displacement equation in the boundary and in one of the sides
of the crack, and a traction equation in the remaining side of the crack. The displacement equation
is given by eq.(1). The traction equation, obtained by the differentiation of eq.(1) [8], is given by:



Key Engineering Materials Vol. 454 99

1
3t (&) gy (o /suk o, ) (2) AT = gy (o /Dmk o, ) i () AT+

n() (93') /Dijk (:c', w) Plig ($') dQ (2)

where Sjji, (', «) and D (2/, x) are linear combinations of derivatives of Tj; (2/, «) and Us; (¢/, x).
When 2’ — z, Si;i, (', =) exhibits hypersigularity O (r‘g), and D (z/, x) exhibits strong singularity
O (r~'), where r (#/, z) is the distance between the source and the integration points and n; (z')
is a unitary vector, normal to the boundary at the source point. Eq.(2) is known as hypersingular
equation for plane elasticity, and, together with eq.(1), constitutes the basis of the DBEM technique.

DUAL RECIPROCITY BOUDARY ELEMENT METHOD (DRBEM)

Eq.(1) contains both, domain and boundary integrals. The DRBEM allows approximating a domain
integral by a sum of boundary integrals. Applying the DRBEM in this elastodynamic problem
consists on approximating the inertial effects of eq.(1) by [8]:

piij ( Zﬁk%k s x) (3)

where E' is number of nodes. Coefficients 3} are interpolation coefficients and q;fk (', ) are inter-
polation functions, which, for the anisotropic sheet, are given by[8]:

@i (2%, ) = Clitm [e7 (rm 7,i Ok + Sim O1k)] (4)

where Cjp, is the elastic constant tensor from the equilibrium equation. The constant c is arbitrary,
figj (') and #y; (z') are given by|7]:

~ 3 >
Ugj = cr° O, and  tkj = Okjm Nm (5)

where n,, is a unitary vector, normal to the boundary at the source point and oy, is given by|(8|:
2

LAY N 6js>] . 6)

Okjm = Crmrs |:C )

Coupling eq.(3) with eq.(1), the integral equation is given by:

s ( +/T” o, 2 uj(')df‘z/U,-J(m 2)t; (2) dT+

r r

Zﬁk cij (€ +/Um ¢, x tkj( €)drlr — / Tij (¢, x) dg; (x x¢)dl’ . (7)
r
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DISCRETIZED BOUNDARY ELEMENT FORMULATION

In order to obtain the elastodynamic response of the system, the boundary is divided into boundary
elements. Quadratic elements are used to model the sheet. For matters of convenience, four vectors
with dimension (2 x E) are created:

u=pu® ;  a=ea® 5 =@ E=f0 8)

where ¢ is the vector of quadratic shape functions, u(2 x E) and t (2 x E) are vectors of nodal
displacements and tractions of the system, and @1 (2 x E) and t (2 x E) are the vectors of particularly
solutions for nodal displacements and tractions of the system. Coupling eq.(8) with eq.(7), and
calling

/ Updl =G and / Tedl =H |, 9)
r; T,

J

it is possible to rewrite the integral equation (7) as:
E
Hjju; = Gyt + Z [Hljui — Gljtﬂ Be . (10)
e=1

The E vectors B, (2 x 1) can be assembled in one vector 3 (2F x 1). Therefore, eq.(3) can be
rewritten as:

p=QB8 , (11)

where p contains the body forces of the component under consideration for each one of its nodes.
The matrix Q contains values of the function q; (2', z) for the nodes of the component which is
being considerate. The matrix form for the equilibrium equations of the component is obtained
coupling eq.(11) with eq.(10), and can be written as:

Hpup — Grtp = Bppl—\ (12)

where B is given by:
B-— [Hij - GTE] Q! . (13)

T and U are matrices of traction and displacement particular solutions. Finally, coupling equations
for boundary and domain, the equation system, can be written as:

Hu = Gt + Bp. (14)

TRANSIENT SOLUTION

To solve the linear system given by eq.(14), a transient solution procedure is used. This procedure
was proposed by Houbolt[11]. Considering that the inertial effects of the components are due to an
acceleration field given by:

p=pii=QB (15)
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eq.(14) can be rewritten for an instant of time 7 + A7 as:
HuT—i—A‘r = GtT-I—AT + Bpﬁ‘r—i-AT . (16)
In order to proceed with the time integration, the period 7 is divided in N time steps , where:

T=NAT . (17)

Assuming that the solution for eq.(16) is known at 7 = 0, A7, 2A..., the acceleration at 7 + A7 is
approximated by the expression[11]:

. 1
uT+AT == A_TQ (2uT+AT - 5117_ + 4uT—AT - uT—QAT) * (18)

Inserting eq.(18) into eq.(16), the following system of equation is obtained:

2 1
|:H — me] UrpAr = GtT+AT + Bpm (—5U.§ + 4117S__A7_ — u7S__2A7_) . (19)

Energy Domain Integral

Figure 2: Integration limits for J-Integral.

The linear elastic fracture mechanics theory is only suitable for problems with a small area
of non-linear deformation around the crack tip. When this criteria is not verified, an alternative
theory must be applied [12]. Furthermore, the evaluation of stress intensity factors using numerical
solutions of stresses and strains near the crack tip, usually require a fine mesh of elements and often
do not provide accurate results for stress intensity factors [5]. Among the most used parameters
to overcome these problems, are the J Integral and the energy domain integral. Those parameters
consider a virtual energy release rate for stationary cracks, and can be used as failure criteria.

The EDI methodology is a general domain integral method for the computation of J proposed
by [14], [15], and [16]. The methodology can be applied to quasi-static and dynamic problems with
elastic, plastic, or viscoplastic material response, as well as thermal loading. The EDI methodology
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is equivalent to the virtual crack extension technique but has the advantage that only one computer
run is necessary to evaluate the point wise energy release rate along the complete crack front.
Besides, the domain integral formulation is efficient and relatively simple to implement numerically.

Considering the simplified example given by Fig.(2), the energy release rate per unit of crack
length advance along the x} axis under quasi-static conditions is given by [12]:

Ji = lim / (wé, — out ) nidC (20)
r

where w is the strain energy density, o7; and uj, are Cartesian components of stress and displace-
ment expressed in the local system x*, n; is the unit vector that is normal to the contour I', and
dC is the differential of the arc length C', as depicted in Fig.(2). Although is possible to compute
Ji, integral, these methods are generally quite time consuming, as they require internal evaluations
at Gauss points of all quantities. In order to overcome this drawback, the EDI is the method
implemented in this work.

Let 4l denote the local crack front advance in the normal to the crack front direction in the
plane of the crack. Thus, the energy released Ji per unit of finite segment of crack advance Aa, for
quasi-static conditions, can be obtained by:

—om = JkACL 5 (21)

where —dm is the decrease in potential energy.

Inducing h — 0, as depicted in Fig.(3), means that the surfaces ST and S~ will have normal
vectors my, along the z3 axis, and the surface S; will have its normal vector mj along the x] axis.
Hence, the local crack front advance &l is given by:

6l = Aalymy . (22)

where Aaly denotes the crack advance in the z7, direction.
Furthermore, restricting {; to lie along S; and to be a function of 7, we obtain:

JkAa = Aa/ (O'Z’U,;k - wékl) lk my; ds . (23)
St

Figure 3: Integration limits for J-Integral.
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To develop an domain integral, we consider the simply connected area S enclosed by the surfaces
S*, 57, S and Si, as depicted in Fig.(3). Furthermore, introduce the functions[12]:

ge =1 em S; and ¢q=0 em Sy , (24)

and consider that g is a smooth function in the area S . Using eq.(24), we can re-write eq.(23) as:

Ji = / (a;‘ju;-,k — wik;) mi g dS — / 05;U; M2 qr dS (25)
5 S++5-

To obtain eq.(25), we consider that m; = 0 and mg = +1 on the crack surfaces. It may be noted
that g2 = Il = 0 everywhere. In the absence of crack face tractions, the second term of eq.(25)
vanishes. Finally, applying the divergence theorem to the closed surface integral eq.(25), we obtain:

Ty = / (0%t — o) gis AV (26)
1%

Notice that the integration presented by eq.(26) is path independent. Thus, any area may be used
to perform the integration, regardless of shape, or symmetry.

Taking into consideration the inertial effects of the sheet, another term is added to eq.(20).
Thus, the energy release rate can be re-written as [12]:

Jp = llin% / (woir, — ojju}y,) nidC + /pdi*u;"kdv , (27)
r 14

where pu;* are inertial effects active near the crack tip.

Considering the inertial effects acting in the sheet, eq.(26) can be re-written as:

jk = / (afju;’k - wékz) Qk,i dv + /pdi*uzldV. (28)
\%4 \%

The function g was introduced in order to model the virtual crack front advance. Cisilino et al.
[12] have presented a bi-quadratic function for a three dimensional problem, which has been widely
tested. The two dimensional form of this function is given by:

0 (2*) = [1 - (—0)] , (29)

where r is the distance of the crack tip on the plane given by z] — x5. Notice that g, given by
eq.(29), fulfills the condition of smoothness inside the integration area S. The shape of the function
qr is quadratic in order to interpolate the contribution of the stress intensity factors in the stress
distribution at the crack region.
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COMPUTATIONAL IMPLEMENTATION OF THE EDI

01F
0.08 -

0.06 -

0.04 -
crack tip

0.02 -

0.02F crack face
0.04 b
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.08

1
0.35 0.3 025 -0z 015 01 x

Figure 4: EDI integration domain.

In possession of eq.(28), it is necessary to perform the domain integration around the crack tip,
in order to obtain J. An alternative to proceed with the analysis, is to perform the isoparametric
integration of cells created around the crack tip with bi-quadratic elements, as shown in the Fig.(4),
thus fulfilling the derivative condition of g. The portion of the domain in which area integrals are
performed is discretized using 9-node isoparametric cells, over which stresses, strains and displace-
ments derivatives are approximated by products of the interpolation function ®;, and the nodal
values of 0;;, €;; and 4;, known at the end of each time step of the solution procedure. Functions
qr are specified at all nodes within the integration area. Thus, it can be written in isoparametric

form as:
NCells

i=1

where Qf are the nodal values of gi in the ith node. From eq.(24), it is possible to realize that Q}
and Q? are equal to zero. Therefore, we have:

Ony NN (08, 0 0% oy 51)
ox; e dz;  On O0z;)

Considering the matrix:

Biso =

Q
&
Q
o
V]
Q
L
Q
o
N
Q Q
S
Q Q
S
Q Q
S
Q Q
S
Q Q
S
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it is possible to obtain the values of du;/0z; by the product:

-1 g -
Uy Ug
uy U%
ui uj
Uy U%
Our  Owy
or ox _ . 5 5
oug ouy | = Biso | ul u3 |, (33)
o1 Oxo
uf  uf
LT
Uy “g
| ) Uy |

where u* is the displacement value in the kth node, known after each time-step of the solution
procedure. Applying the Gaussian integration, the discretized form of eq.(28) is given by:

oq1 8uj Ou,
> { <"”a w(sh-) S pity g+ by det (Jac), Wy, (30)
NCells p=1

where W), are the weighting factors, m is the number of Gaussian points per cell, and Jac is the
Jacobian matrix given by:
0x/0e Ox/0n
Jac = . (35)
dy/0e  By/on

OBTAINING K; AND Kj;

The Ji-integral is related to the stress intensity factors of a cracked homogeneous anisotropic plate
by

jl = OéllK% + a1 KKy + a22K%17 (36)

J2 = Bu1 K7 + B12K K11 + B Kir, (37)
where the «;; are defined by
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the (3;; are defined by

1
B = §Im[w11w21 + wai1wai],
1
B2 = §Im[w11w22 + wiowa1 + waiwaz + w3awai), (39)

1
Bog = §Im[w12w22 + w3awya],

and the w;; by

w12 =

()

( pii1p1 Plzuz)
woo =
— M2

2

) (40)

1 (_p21,u1 + p22M2)
M1 — p2 Vv H1 vV K2

where a;; are the compliance coefficients, u, are roots of the characteristic polynomial and p;; are
material constants [17].

For traction free cracks the Ji-integral vanishes along the crack surfaces, whereas the Js-integral
would involve integration of highly singular integrands along each surfaces. In order to avoid this
difficulty an auxiliary relationship in terms of displacements ratios is developed here to be used
together with J; for decoupling of the stress intensity factors K; and Ki;.

The coupling of the stress intensity factors has been a limiting factor in the analysis of cracked
composite materials under mixed mode loading. However, a simple procedure can be introduced
for the decoupling of mode I and mode II stress intensity factors, based on the ratio of relative
displacements and equation (36), the relation of the J-integral for anisotropic materials, and Ky
and K II-

The relative sliding and opening displacements §,,, for # = +7 are given by

w32 =

W2 =

2r
01 =24/ ?(DHKI + D12 K1) (41)
and
2r
02 = 24 ?(D21KI + Dy Kyy) (42)

where D;; are functions of the complex parameters of the anisotropic material [17].
The ratio of relative displacements is
02 D Kj+ DKy

01 DuKr+ Di2Kgrg (43)

and the ratio of stress intensity factors

K SDiy — D
po K _ SDp 2 (44)
Krir D21 —SDny

or

K;=FKjr . (45)
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Substituting equation (36) into equation (45), and solving for K gives the following relation-

ship:
1
J1 2
K= . 46
. (allF2 +0112F+Oé22) (46)

Thus K5 and K are now decoupled and can be obtained from a knowledge of S, F, J; and a;.

EXAMPLES

1-Rectangular quasi-isotropic plate with central crack

01r

2t 008k .
15} TP SR 0.08 |
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i . R DDE L

0.04 -

0.06

0.08r

01k
1 1 1 1
-1 o 1 2 -0.35 03 0.25 0.2 0.1

Figure 5: Rectangular plate with central crack.

A rectangular plate with central crack, as depicted in Fig.(5), is instantaneously loaded by a uniform
tensile stress o9 = 100 MPa at time 7 = 0. The plate has the following dimensions: the length is
400 mm; the width is 200 mm; and crack length is 48 mm. The plate has the following material
properties: Young modulus F; and Es equal to 220 GPa lying respectively on the sheet’s width
and length directions; shear modulus of 77 GPa; Poisson modulus v = 0.3; and density p = 5000
Kg/m3. A state of plane stress is assumed. This Problem was studied by Chen [18] using the finite
difference method, and by Dominguez and Gallego [2] using the time domain BEM, both applied to
isotropic materials. The structure was discretized using 80 discontinuous elements and 246 domain
points, from which, 75 are used for the energy domain integration. The normalized dynamic stress
intensity factor K/Ky versus time is shown in Fig.(6).
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Figure 6: K;/Kj for rectangular quasi-isotropic plate with central crack.

2-Rectangular orthotropic plate with central crack

A rectangular plate with central crack, as depicted in Fig.(5), is instantaneously loaded by a uniform
tensile stress o9 = 100 MPa at time 7 = 0. The plate has the following dimensions: the length is
400 mm; the width is 200 mm; and crack length is 48 mm. The plate has the following material
properties: Young moduli F; = 118.3 GPa and Fs = 54.8 GPa, lying respectively on the sheet’s
width and length directions; shear modulus of G12 = 8.79 GPa; Poisson modulus v = 0.4286; and
density p = 1900 Kg/m3. A state of plane stress is assumed. This problem was studied by Hua,
Tian-You and Lan-Quao[19] using the finite difference method applied do anisotropic materials.
The discretization if the structure is similar to the discretization of the previous example. The
normalized dynamic stress intensity factor Ky/Kj versus time is shown in Fig.(7).
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Figure 7: K1/Kj for rectangular orthotropic plate with central slanted crack.
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3-Rectangular orthotropic plate with central crack

Figure 8: Rectangular plate with central inclinated crack.

A rectangular plate with central crack, with inclination of 45°, as depicted in Fig.(8), is instanta-
neously loaded by a uniform tensile stress g = 100 MPa at time 7 = 0. The plate has the following
dimensions: the length of 600 mm; the width is 300 mm; and crack length is 141.4 mm. The plate
has the following material properties: Young moduli £y = 220 GPa and F, = 110 GPa, lying
respectively on the sheet’s width and length directions; shear modulus G12 = 76.93 GPa; Poisson
modulus v = 0.4286; and density p = 5000 Kg/m3. A state of plane stress is assumed. This Problem
was studied by Albuquerque, Sollero and Aliabadi [7, 8] using the DBEM and DRBEM techniques.
The structure was discretized using 96 discontinuous elements and 304 domain points, from which,
105 are used for the energy domain integration. The normalized dynamic stress intensity factors
Ki/Koy and Ki1/Kj are shown versus time in Fig.(9) and Fig.(10), respectively.
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Figure 9: K1/Kj for rectangular orthotropic plate with central inclinated crack.
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Figure 10: K;7/Kj for rectangular orthotropic plate with central inclinated crack.

Conclusions

In this paper, a formulation for dynamic analysis of composite cracked sheets was presented, and
a procedure to solve the problem was proposed as well. The procedure described in this paper is
more time consuming than a procedure on a frequency domain. However, allows a broader range
of solutions with application of different load cycles. A procedure for the evaluation dynamic stress
intensity factors was also presented. The EDI is computationally more expensive than the Crack Tip
Opening Displacement (DTOD) method. However, it allows the implementation of other mechanical
phenomena, as plasticity effects at the crack tip, and crack propagation. The EDI integration is
derived from the Jj, integral, but it is easier to calculate since all of its terms are domain integrals. It



Key Engineering Materials Vol. 454 111

also allows the isoparametric derivation of the values of displacements. Hence, it is not necessary to
integrate the values of displacement derivatives, which is a much more time consuming procedure.
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Abstract. In this work the time-domain boundary element method (BEM) is applied to simulate
dynamic fracture experiments. The fast fracture is modelled by adding new boundary elements at
the crack tip. The direction of crack growth is perpendicular to the direction of maximum
circumferencial stress. The time dependent loading of specimens and velocities of crack growth are
taken from experiments as input data for computer simulations. The method is used to analyze: a
short beam specimen, a special mixed-mode specimen and a three-point bend specimen subjected to
impact loads. The dynamic stress intensity factors (DSIF) and the crack paths are compared with the
results obtained by other authors who used the finite element method (FEM) and experimental
methods.

1. Introduction

The analysis of rapidly growing cracks is one of the important subjects of dynamic fracture
mechanics [1]. The path and velocity of crack growth depend on the magnitude and distribution of
the stress field in the vicinity of the crack tip, which can be characterized by dynamic stress intensity
factors. The aim of dynamic fracture experiments is the determination of fracture toughness, the
time dependence of DSIF, the crack growth direction, velocity and shape. These results can be used
to establish laws, which define the dependence of crack direction and velocity on DSIF.

Analytical methods are limited to cracked bodies with simple geometries and boundary
conditions. Consequently, numerical methods are needed to analyze more general and practical
problems. Recently numerical methods are combined with experiments. During the numerical
simulation it is assumed that the dimensions of a specimen, its material properties, initial and
boundary conditions are known. Additionally the following parameters are specified or searched:

- crack-path history - x;(2),

- crack-growth history - a(?), c(?),

- crack-growth criterion - ¢(K),

- crack-direction criterion - (K),

- crack tip parameters - K(2),

where x; are the coordinates of crack tip, a is the crack length, c is the crack growth velocity, a is
the crack growth angle, K are dynamic stress intensity factors and ¢ is time.

Nishioka et al. [2,3] proposed three types of numerical simulation depending on which
parameters are known from the experiments and which are searched. The classification of the
methods is given in Table 1.

Tablel. Types of numerical simulation of dynamic fracture

Simulation Known quantities | Unknown quantities
generation phase xi(1), a(t), c(t) K@), c¢(K), oK)
application phase c¢(K), oK) xi(t), a(®), c(t), K(¥)

mixed-phase (type a) | a(?), c(?), (K) xi(t)
mixed-phase (type b) | xi(?), ¢(K) a), c(t)
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The most frequently used computer method in numerical simulations of fracture experiments is
the finite element method (FEM). Bui, Maigre and Rittel [4,5,6,7] applied the FEM to analyze a
special specimen with a crack of constant length, which was loaded by the split Hopkinson bar.
Numerically computed DSIF and velocities of loaded surfaces of the specimen were compared with
experimental results. Weisbrod and Rittel [8] analyzed a one-point bend short specimen loaded by a
bar. They compared DSIF computed by the FEM with the experimental solutions till the moment of
propagation of the crack. Nishioka et al. [3] analyzed by the FEM a three-point bend specimen
loaded by a dropping hammer. The numerically computed DSIF and crack paths were compared
with the experimental results for various loading points. Gregorie et al. [9] and Combescure et al.
[10] applied the extended finite element method (X-FEM) to analyze a special mixed-mode
compression specimen. A comparison of numerically computed crack paths and velocities of loaded
edges of the specimen with experimental results was presented in that work.

The boundary element method (BEM) is particularly suitable to analysis of crack growth. The
computer modelling is simplified in comparison to the FEM since only external boundaries and
crack surfaces are divided into boundary elements. The crack growth is modelled by adding new
elements at the crack tip. Because of the reduced interpolation to the boundaries of the body the
method gives very accurate results. The dynamic crack growth problems are modelled by the time-
domain BEM (Dominguez [11]). This formulation was applied to dynamic analysis of stationary
cracks by Fedelinski et al. [12]. The same authors applied for the first time the method to
dynamically growing cracks without predefined crack paths [13]. Practical applications of the
method were presented in [14]. Sellig et al. [15,16] presented the formulation of the method for fast
growing cracks with variable velocity and they take into account contact of crack surfaces. Sellig et
al. [17] applied the method to simulation of the dynamic fracture test which was earlier analyzed by
Bui et al. [4]. They considered additionally dynamic crack growth. The results computed by the
BEM and FEM were compared with experiments.

In this work the fundamentals of the time-domain BEM for structures with growing cracks are
given for completeness. The method is used to simulate three different dynamic fracture
experiments. The numerical examples show possible applications of the method and its accuracy.

The type of the present computer simulation can be classified as the mixed-phase simulation
(type a), called the fracture-path prediction mode. In the numerical examples dynamic loading and
velocities of crack growth are taken from experiments. The computer code is used to calculate
dynamic stress intensity factors and crack paths. The aim of this kind of simulation is to determine
DSIF for growing cracks, which is difficult to measure experimentally, and to verify the crack
growth direction criterion.

2. Boundary integral equations

The method is applied to a linear elastic, homogeneous and isotropic body containing a rapidly
growing crack. The boundary of the body, denoted by 77?), is a function of time ¢ because of the
crack growth. The boundary I”consists of the external boundary 7" and two crack surfaces 7~ and
I, as shown in Fig. 1. For a body which is not subjected to body forces and which has zero initial
displacements and velocities, the displacement of a point x” can be represented by the following
boundary integral equation [11]:

t t
¢ (e () = [[[ U Gty x, 20t (,2)dT ()T = [[[ Ty (', x5, ) (x,1)AT (0)1d 7 (1)
0or 0or

where Uy(x’,tx,7) and Tj(x’tx, 1) are the fundamental solutions of elastodynamics, u;(x,7) and
ti(x, 7) are the boundary displacements and tractions respectively, c;(x’) is a constant which depends
on the position of the collocation point, x’ is the collocation point, x is a boundary point and ¢ is the
observation time.
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Fig. 1 Boundary element modelling of the body with the crack

The displacement equation for points, which belong to the smooth crack surfaces, has the form:

t t
)+ ) = ([ Uy st 0 (o, 0T (1= U Ty 5, (o, 0T () @)
0or or

where x’ and x” are coincident points on the opposite crack surfaces. The traction equation for
the same points is:

t t
%t () —%t,- ("0 = m O [ Uy G t,2, 20 (5, D)AT(01d 7 = [ Ti ('8, %, 0ty (v, )AL (0)]1d 7} (3)
or or

where Uy;(x’,t.x, 1) and Ty;(x’,t,x, 7) are the fundamental solutions of elastodynamics and »;(x’) is an
outward normal unit vector at the collocation point.

3. Numerical formulation

The numerical modelling requires discretization of both space and time variations. The boundary
I{7) of the body is divided into boundary elements. The observation time ¢ is divided into N time
steps. The crack growth is modelled by adding new elements ahead of the crack tip [13]. A distinct
set of boundary integral equations is obtained by applying the displacement equation (1) for
collocation nodes along the external boundary, the displacement equation (2) and the traction
equation (3) simultaneously for coincident nodes along both crack faces. Quadratic elements are
used for the discretization of the boundary, as shown in Fig. 1. Within each time step the
displacements are approximated by using linear interpolating functions and the tractions are
piecewise constant. After discretization and integration the following matrix equation is obtained
for time ¢, that is after N time steps:

N-1

n=1

where u”, ' contain nodal values of displacements and tractions at the time step n; H"" and G™"
depend on the fundamental solutions and interpolating functions. The columns of matrices H",
G"" are reordered according to the boundary conditions, giving new matrices A" and B™. The
matrix 4™ is multiplied by the vector x" of unknown displacements and tractions and the matrix
B™ by the vector " of the known boundary conditions; thus:
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N-1
n=l
The matrix equation is solved step-by-step giving the unknown displacements and tractions at
each time step.

4. Modelling of crack growth
The dynamic stress intensity factors (DSIF) are obtained from the crack opening displacements [13]:

_ £4ﬂ1ﬂ2_(1+:322)2
K, —2/1\/; 4ﬂ1(1—,822) Au, , (6)
_ 14,31,32_(1+ﬂ22)2
Ky = 2#\/; 45, (1_1322) Auy, (7)
where:

Bi=A1-(c/c))?, By =y1-(c/e)), (8)

where u is the shear modulus; Au; and Au; are the relative displacements in the tangential and
perpendicular direction of corresponding points on opposite crack faces; r is the distance of points
from the crack tip, c is the velocity of crack growth, c¢; and c;, are the velocities of longitudinal and
shear waves respectively. In the present work the relative displacements of the third pair of
coincident nodes of boundary elements at the crack tip were used to calculate dynamic stress
intensity factors for growing cracks. The stress distribution in the vicinity of a crack tip is calculated
using DSIF and current tip velocity. The crack will grow in the direction of maximum
circumferential stress. The crack growth is modelled by adding a new pair of boundary elements of
length Aa at the crack tip:

Aa=cAr, ©

where Ar is a time step.

4. Numerical examples

4.1. One point bend short beam specimen. An unsupported short beam specimen is in contact
with a single bar. The striker hits the bar, the stress wave propagates through the bar and loads the
specimen. Strains in the bar and the specimen are measured by strain gauges. The experimental
setup is shown in Fig. 2. This problem was analyzed by the FEM and experimentally in [8]. The
loading of the specimen is determined from the incident and reflected strains recorded by the gauge
1. The onset of crack propagation is detected by gauges 2 and 3. The dimensions of the specimen in
millimeters and loading are given in Fig. 3. The specimen is made of a commercial tungsten base
heavy alloy. The dynamic Young modulus of the material is equal to £=338 GPa, Poisson’s ratio
v=0.3 and mass density p=17100 kg/m’. The specimen is in plane strain conditions. The
experimentally determined loading is shown in Fig. 4 [8].

The specimen is divided into 84 boundary elements and the time step is 47=1 ps. The computer
modelling was performed for a stationary crack. The experimentally detected crack propagation
started at 21 ps after the specimen was loaded [8]. Therefore the numerical results are valid for
times smaller than 21 ps.
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Fig. 2. Measurement system [§]
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Fig.3. Dimensions of the short beam specimen and loading [8]

The comparison of boundary element method (BEM), finite element method (FEM) and
experimental (EXP) dynamic stress intensity factors [8] is shown in Fig. 5. The quality of computer
simulation strongly depends on the accuracy of experimentally determined dynamic loading. The
results of the BEM simulation better agree with the FEM simulation, than with experimental results,
because the same dynamic boundary conditions were used in computer simulations.
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Fig. 4. Time variation of loading for the short beam specimen [§]
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Fig. 5. Dynamic stress intensity factors for the short beam specimen

4.2. Special mixed-mode specimen. The method is applied to analyze a special cracked
specimen loaded by the split pressure Hopkinson bar. The experimental results and the computer
modelling of this specimen by using the X-FEM are presented in works [9,10]. The data, which are
necessary for computer simulation, are taken from the work [9]. The special specimen is placed
between the split Hopkinson bars shown in Fig 6. The input bar is loaded by the striker. The
velocity of the striker is measured by the optical gauge. The strains in the input bar are measured by
strain gauges 1 and 2 and strains in the output bar by the strain gauge 3. The specimen is lighted and
4 cameras register the state of the specimen during the experiment. The striker hits the input bar and
the stress wave propagates through the input bar, the specimen and the output bar. The dimensions
of the specimen are given in millimeters in Fig 7. The initial crack, which is situated above the axis
of symmetry of the specimen, is subjected simultaneously to tension and shear mode of loading

when the specimen is compressed.
D flash unit

specimen

striker bar input bar output bar
] O &
|:| strain gauges 1 and 2 strain gauge 3
optical sensor D D DQ
cameras

Fig. 6. Measurement system [9]

The specimen is made of polymethyl methacrylate (PMMA) and has the following material
properties: Young’s modulus E=3.3 GPa, Poisson’s ratio v=0.42, mass density p=1180 kg/m’, and
the structure is in plane strain. Only the specimen is modelled using 70 boundary elements. During
the crack growth in each time step two boundary elements are added at the crack tip. The final
number of elements is equal to 130. The time step is equal to 4= 10 us.
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The left and right edge is loaded by the uniformly distributed tractions ¢; and ¢#,, which were
measured during the experiment. The time dependence of resultant forces on both edges of the
specimen F; and F, is given in Fig 8. The crack is stationary from the beginning of loading till
200 ps, next it grows with a velocity 210/m/s, during the period of time from 270 till 320 ps it
arrests, and later it grows with the velocity 160 m/s. The process is simulated till 500 ps.

X4

" 140

Fig. 7. Dimensions of the special mixed-mode specimen and loading [9]

The comparison of computed and experimental velocities of the edges of the specimen is shown
in Fig. 9. Time variations of DSIF K; and Kj; are presented in Fig 10. When the longitudinal wave
reaches the crack tip the DSIF increase. When the crack starts to grow the DSIF decrease. During
the period of time from 270 till 320 ps, when K; has the minimal value, the crack arrests. After the
increase of K; the crack grows again. The DSIF Kj; has small values during the growth of the crack.
Gregorie et al. [9] assumed in the computer simulation of this experiment that the critical value of
DSIF is K;=1.33 MPam'”. In Fig. 10 it can bee seen that K; has smaller value than the critical DSIF
during the arrest of the crack. The specimen with the final crack is shown in Fig 11. The shape of
the crack computed numerically is compared with the experimental crack [9] in Fig 12. A good
agreement of shapes of the crack can be seen.
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Fig. 8. Time variation of resultant tractions on edges of the special mixed-mode specimen [9]
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Fig. 9. Time variation of velocities of edges of the special mixed-mode specimen
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Fig. 10. Dynamic stress intensity factors for the special mixed-mode specimen

Fig. 11. The special mixed-mode specimen with the final crack
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Fig.12. Crack paths for the special mixed-mode specimen

4.3. Three-point bend specimen. A three-point bend specimen for a mixed-mode fracture is
shown in Fig. 13. Experimental results and numerical simulation by the FEM for this problem were
presented in [3]. The dimensions of the plate are given in millimeters. The specimen is made of
PMMA, which has the following material properties: Young’s modulus £=2.94 GPa, Poisson’s ratio
1=0.3 and mass density p=1190 kg/m’. It is assumed that the plate is under plane stress conditions.
The load is applied by a dropping hammer. The mass of the hammer is m=5.05 kg and its velocity
v=5m/s. The specimen is loaded symmetrically e=0 and eccentrically e=0.1, where the relative
loading eccentricity e equals the ratio of the distance of loading point from the line of symmetry to
half the distance between the supports.

20
' 100
x10 50
% 400 %
' 430 '

Fig. 13. Dimensions of the three-point bend specimen and boundary conditions
for eccentric loading [3]

The variations of forces at the loading point measured experimentally [3] are shown in Fig. 14.
The load has the maximum value F=6000 N at about 225 ps for e=0 and F=6400 N at about 210 pus
for e=0.1. Dynamic fracture starts at /=156 ps for e=0 and at =120 ps for e=0.1. The variations of
velocity of crack growth determined experimentally [3] are shown in Fig. 15. The maximum crack
velocity is ¢=250 m/s for e=0, and ¢=300 m/s for e=0.1. It is assumed that the specimen is always in
contact with the supports.

The initial boundary of the plate is divided into 78 quadratic elements. The time step is 4=5 ps.
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Fig. 14. Time variation of loading for the three-point bend specimen [3]
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Fig. 15. Velocity of crack growth for the three-point bend specimen [3]

In Fig. 16 and 17 dynamic stress intensity factors for symmetric and eccentric loading are shown
respectively. The BEM results are compared with the FEM solutions and experimental results
obtained by the caustic method. The experimental results are not shown in Fig. 17 because they are
almost the same as the FEM results. For eccentric loading all results agree well. For symmetric
loading the DSIF obtained by the FEM, for times longer than 150 ps, are smaller than the BEM and
experimental results. For the symmetric loading when the compressive longitudinal wave arrives at
the crack tip, K; becomes slightly negative. In this work a contact of crack surfaces is not taken into
account and small overlapping is allowed. For symmetric case the crack path is straight and vertical.
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Fig. 16. Dynamic stress intensity factors for symmetric loading e=0
for the three-point bend specimen
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Fig. 17. Dynamic stress intensity factors eccentric loading e=0.1
for the three-point bend specimen

For the eccentric loading the K; is positive and increases when the shear wave arrives at the crack
tip. The absolute value of Kj; increases up to the onset of crack propagation. During the dynamic
crack growth the Kj; are zero. The crack paths are shown in Fig. 18. The shape of the growing crack
is compared with that computed by FEM and the experimental one. The crack paths obtained by
computer simulations agree well. The real crack path is more curved. The crack grows towards the
loading point.
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Fig. 18. Crack paths for eccentric loading e=0.1 for the three-point bend specimen

5. Conclusions

The time domain boundary element method is applied to model three dynamic fracture
experiments: a short beam specimen with a stationary crack, a special mixed-mode specimen and a
three-point bend specimen with fast growing cracks subjected to impact loads. The experimentally
measured impact forces and crack tip velocities as a function of time are used as the data in
computations. It is assumed in the numerical simulations that the cracks grow in the direction
perpendicular to the maximum circumferencial stress. This type of computer simulation can be
classified as the fracture-path prediction mode. The dynamic stress intensity factors and crack paths
are computed and compared with the finite element method or experimental results presented in
literature.

The numerical examples show good agreement of the BEM solutions with the FEM and
experimental results. These results confirm accuracy of DSIF and the assumed crack growth
direction criterion. The quality of the computer simulation strongly depends on the experimentally
measured dynamic loading and crack growth velocity. Usually the BEM results agree better with the
FEM solutions, than with the experimental results because the same quality input data are used in
computer simulations. The comparison of numerically computed and experimentally measured
crack shapes is more reliable than the comparison of DSIF, which are more difficult to measure.
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Abstract: This work aims at extending the concept of the Numerical Green's Function (NGF),
known from boundary element applications to potential and fracture mechanics problems, to the
Local Boundary Integral Equation (LBIE) context. As a "companion" solution, the NGF is used to
remove the integrals of the main discontinuities over the crack boundary and is to be introduced
only for source points whose support touches or contains the actual crack surfaces.

Introduction

Meshless methods are increasingly proving to be accurate for the analysis of the most common
problems found in engineering applications. They can be quite efficient, in terms of computer time,
in the solution of problems that need a great number of node repositioning during the analysis,
sometimes more expensive than the analysis itself, in comparison to mesh-based methods.

Normally, a meshless method is a mesh-free counterpart of a well-established mesh-based
method [1,2] and because of this, there is no reason to believe that the improvements made for the
mesh-based procedures cannot be implemented in their mesh-free versions. In the context of
standard boundary integral equations, the so-called local boundary integral (LBIE) method has
emerged as a possible mesh-free boundary element (BEM) alternative and can profit from many
previous alternative procedures developed for the original BEM procedure.

In this work, the concept of the numerical Green’s function (NGF) for potential discontinuity
problems and 2-D elastostatic fracture mechanics is implemented in the local boundary integral
equation method. LBIE has been brought into existence from the boundary integral equation, basic
to the standard BEM whereas the NGF version of this applications was first used in a BEM
context [3] during the last decade.

The approximation scheme for the trial function used here is the well-known moving least
squares (MLS) method, which is the most common alternative in the bibliography [4]. The singular
integrals are computed using Kutt’s quadrature [5] procedure, well-known from previous BEM
implementations. The starting ideas applied here originate from References [6-10].

LBIE for potential problems

To demonstrate the formulation, only the linear Poison equation is used, even though the
approach is suitable for solving nonlinear problems as well. Poison’s equation can be written as

Viux) = p(x), xeQ (D)

and the boundary conditions

u=u on I';
2
Z—u=q=§ on I'y ( )
n

Here, p is a domain distributed function, Q) the domain bounded by I" and I', and I'y the portions
of the boundary with potential and flux prescribed respectively.

A weak formulation of the problem can be written as
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IQuG(V2u—p)dQ=0 3)
where 4 is the Green’s function used as the test function for the weighted residual statement and u
is the trial function. The test function satisfies the following equation

Vu®Ex)+8Ex)=0 4)
in which &&,x) is the Dirac delta function.

By integrating eq.(3) by parts twice, the global boundary integral equation is obtained as follows

@ = [ 1 @0 200r - [ ) P Var - [ 4 & 0 p(x)d0 )

where 7 is the outward normal vector to I', x =[x, y, z]T is the set of co-ordinates and &= [xg, y¢, z¢] T
is defined as the source point.

To obtain the local formulation of eq.(5), a local sub-domain Qg and its boundary 0CQg are
considered instead of Q2 and I respectively, leading to the following form

u@ =, 1@ - [ a0 *- S - [ w @ 0pmae ©

Eq.(6) indicates that the value of the unknown function at & can be obtained by carrying out the
integrals over a sub-domain within the closed outer boundary I'.

It should be noted that eq.(6) holds regardless of the shape and size of 0, which can be
deliberately chosen according to the characteristics of the functions used in the method. The most
regular shape of a sub-domain is an n-dimensional sphere, centered at &, for a problem defined on
an n-dimensional space.

For 2-D potential problems, ) is a circle of radius ry, and the Green’s function and its normal
derivative are

u® =—2L1n(r)+uc

V4
W1 g
on 27r On

where u. an q. are the complementary solutions for potential and flux respectively, which are added
to the classic fundamental solution in order to obtain the Green’s function corresponding to the
desired problem. The use of the Green’s function instead of the conventional fundamental solution
precludes the use of the so-called “companion” solution [1,2], which is commonly added to the
fundamental solution in order to make it vanish over the circular part of the sub-domain boundary
0Q.

When & lies on the global boundary I', the sub-domain can still be taken as a part of a circle
centered at &, but now its boundary includes the part of the circumference (L) and the part of T’
limiting QO (I's). The local integral equation for a nodal point § at I becomes

a@u® =[x ar- |

where (&) is a free coefficient depending on the shape of I at €.

u(0) P EBar - [ & p(de ®

+L

LBIE for liner elasticity problems

Consider the following 2-D linear elasticity problem defined within the domain Q and boundary
L,



Key Engineering Materials Vol. 454 129

oy +b;=0 ©

i,Jj
where o is the stress tensor, b; is the body force and ('); denotes the derivative with respect to x;.
The boundary conditions are
u;=u; onl,

_ _= (10)
p=oyn;=p; onl,

where the bar indicates prescribed values, respectively, for displacements u and tractions p and T,
and I', are the parts of the boundary I' where they are prescribed.

Using ulG as test function, the weak form of Equation (17) can be written as

j(ayj+b) uSdQ =0 (11)

Q
and integrating Eq.(11) by parts twice, the following expression is obtained:

J‘Gy ju,dQ+'[pl udl = Ipl u; jqudQ (12)

In the present case, u is chosen to be the solution of a unit load in an infinite plane containing
cracks, to be discussed later on. This solution satisfies the following condition

oy (&%) +5(&x)e; =0 (13)
where 6(&,x) is the Dirac delta function and e; is the unit load vector on the x; direction. The test

functions can be rewritten as
u’ =ule

i ki%k

o o (14)
Di = D€

where ug and pg are, respectively, the i-th components of displacements and tractions due to a

unit load in the x; direction.

Substituting Eqgs.(14) and (13) in Eq.(11) leads to the so-called Somigliana’s identity, which
gives the values of displacements in any point of the domain in terms of the boundary values of
displacements and tractions:

u,(8) = [ uf &x)p,()dl - [ pf & x)u,;(x)dl + | uf & x)b,(x)dQ (15)
where § is the source point and x is the field (generic) point.

If instead of the real domain Q and boundary I' of the problem, a sub-domain € and its
boundary 0Q)s located entirely inside Q are considered, Eq.(15) becomes

u,§)=[, uf &X)p,@dr = [ pf&x)u,@dr + [ uf €x)b, (x)d2 (16)
For a source point located on the global boundary I', Eq.(16) can be rewritten as
a,@u,@ =] uf@p,@dr~[  pfEu,dr+ [ uf € x)b,(x)d0 (17)
and considering two dimensions only, its matrix form is as follows,
ou = Jucpdl“ — | pCudrl + jucbdQ (18)
L +T L +T Qg

where
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o_|un wi|. e_|pi Ph|. ,_|®]. ,_|P]. p-|®
L G |’ P =l 5 G |’ u= > P= > - b | (19)
Uy Uy P Px» Uy ) 2

and ¢; (o) is a constant matrix that depends on the shape of the boundary at & .
0 sin26, —sin26, co0s 26, —cos 26,

|2z 8z(1-¥) 8z(1-7)
@)= cos 26, — cos 26, 0 sin26, —sin26, (20)
8x(1-v) 2z 8z (1-v)

where 6, 6; and 6, are defined in Fig.1 and
v for plane strain

V=< v

—— for plane stress

1+v

0= 82_ '8'1

e

& 0

Figure 1 — definition of internal

angle 6, 6; and 6.

Moving least squares (MLS) approximation scheme

The MLS scheme is by far the most used in meshless methods to approximate the trial function
uh(x). Its definition will be briefly presented in this section; for further details, see [4,1,2,6]. It has
the following form

uh(x)=Z¢i(x)ﬁi=(I)T-ﬁ VxeQ ; (21

i=1
where @ is the MLS shape function, i is the “fictitious” nodal values of the trial function and » is
the number of nodes inside the domain of definition Q, of the considered node. The domain of
definition of a certain node x is composed by the nodes who have x inside their support.

Complementary solution for potential problems

The complementary solution — () — is a function added to the fundamental solution — ()" — to
generate the Green’s function — ( ) — suited to certain types of problems.

ulEx) =u’ Ex)+u(Ex)

G
W — &N =¢GN+ CEX)

Here, two GFs for potential problems are proposed: an exact solution for a unit source in a semi-
infinite plane and a numerical solution for an infinite plane containing unloaded lines of potential
discontinuity.

(22)
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Semi-infinite plane

In this work, the flux-free surface T of the half-plane is assumed to be represented by a horizontal
line. The complementary part for this problem is a function of the coordinates of the image of the

load point with respect toI" as shown in Fig.2

Figure 2 — half-plane Green's Function
The complementary functions are shown as follows

C 1
———In(R
u Py n(R)

auc_ c___1 OR (23)
on i 27 r On

For more details, see Brebbia, Telles and Wrobel [5].

Infinite plane with internal lines of potential discontinuity

Consider an infinite plane, with a line of potential discontinuity within, under the action of a unit
point source applied at &. In what follows, the Green’s function for this problem is written in terms
of a superposition of the fundamental solution for Laplace’s equation plus a complementary part
which provides satisfaction of the flux-free requirement over the internal line of potential
discontinuity (see Fig.3).

fundamental
problem

complementary
problem

Figure 3 — Numerical Green's Function (NGF)

The Laplace’s solution u” and q° produces nonzero flux values across the barrier line T''(¢), these
are then counterbalanced by the complementary fluxes. Hence, an infinite plane with an impervious
slit is simulated.

The complementary part of the GF can be written in terms of boundary integral equations as
u @& =] ¢'(x0)-c@OdrQ)

. (24)
q°&x) = J.F, 9 (x,8)-¢(8,9dr(©)

where q*(x,Z;) and Q*(x, €) are the free (Laplace’s) fundamental flux and its derivative referred to
the source point as used in the classical and hypersingular boundary integral equations. These
equations produce the complementary potential and flux at an internal point x due to a unit point
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source at &, as a function of the potential discontinuity c(&,£) = u(€,£") - u(&,&7). Note that here the
source point of the complementary problem is x; point & is introduced only to guarantee that the
complementary solution is computed with the same notation as eq.(22). The boundary I
corresponds to the inferior surface of the line of potential discontinuity, whose superior surface is
I'". The numerical value of c(&() is computed using an efficient implementation of the
hypersingular boundary integral equation.

Complete details of the procedure can be found in [7].

Numerical Green’s function for fracture mechanics

Consider an infinite elastic plane with an unloaded crack inside under the action of a unit point
load applied at &. The fundamental displacements and tractions for this case can be calculated by

the superposition shown in Fig.4, which mathematically reads
;) (&%) = 1;(8,%) + 5 (§,%)
Py Ex) = py (&%) + p (&, X)

where () refers to Kelvin’s fundamental solution (Fig.3B) and ( )° indicates the complementary
part (Fig.3C).

(25)

@) =Lk B) ©)

Figure 4 — superposition of effects
According to [3], the complementary part of the solution can be calculated as follows
uy; (8, %) = J-p;k(xa 8) - ¢y (§,0)dl'(5)
T;

(26)
P&, x)= jﬂl (x,8) - ¢4 (§,8)dl'(§)
T

where § is a point on I'; and ¢, (§,8) are the crack openings (see Fig.5)

¢ (8,8) =u (8,8°) —uy (8.8") 27

which can be calculated by solving the following system of equations

Sc; (8,5 =p; (&%) (28)
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Figure 5 — crack openings

Matrix S is square of dimension 2N (N is the number of points on ;) that depends only of the
crack geometry. This complete formulation can be seen in [3].

It is worth noticing that the complementary part vanishes if the actual crack, or part of it, does
not pertain to the integration boundary, here no longer the global boundary I', but the boundary of
the sub-domain of integration 0 Q);. Hence, only the nodes whose sub-domains contain part of the
crack have non-zero complementary parts whereas for all other nodes the NGF becomes Kelvin’s
solution only.

The numerical implementation of these equations can be seen in detail in Reference [3].

Examples

To illustrate the presented techniques, two examples are proposed, one for each theory presented.
The results are compared with sufficiently refined ones obtained with a BEM potential and
elasticity codes using quadratic elements.

Potential problems: cofferdam-type problem

In this example there are two sheet piles enclosing a permeable soil to be excavated. The
problem geometry, node cloud and boundary conditions are presented in Fig.6. Because of the
symmetry, only half of the geometry was analyzed.

water level

b4

I sheet pile
—_— =

u=100 | u=0

aaaaa

sqﬂ... .

Figure 6 — cofferdam-type problem geometry, node cloud and boundary conditions

The results obtained with the NGF-LBIE and NGF-BEM were almost the same and could not be
distinguishable (see Fig.7).
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100

0
Figure 7 — cofferdam-type problem results

Fracture mechanics: stress intensity factor

In this example, the stress intensity factor K; is the result compared. The relation (ri/c;) for the
MLS weight function is equal to 4.0. This value can guarantee a good “decay” of w.

It can be seen in Fig. 8 that the node cloud is denser in the neighborhood of the crack, but
without any node positioned on it. The distribution of nodes influenced by the presence of the crack
can be uniform or not, but the crack edges require denser clouds due to the natural difficulty to
represent the behavior of stresses in that region. Good results were obtained when at least 10% of
the total number of nodes was influenced by the crack.

The results are compared with the ones presented in [3]. For this example it is considered:

E = 50000, v = 0.2 and number of nodes N = 210.

| -
O
9
(3]

—F —3
= o

% =] _
= 0

?r —
w
(3]

L 20.00 | 100.0

Figure 8 — geometry and node cloud of fracture mechanics example

The stress intensity factor K; is obtained here using the following relation [8]

o Gz icu@-,@)ﬁ 29)

" 41+v) v

i=1 !

where G is the shear modulus, ¢;((;,§) is the value of the crack opening at node {;, 7; is the
distance between §,; and the nearest crack edge and np=6 is the number of nodes considered. The

chosen positions of the nodes §; are presented in Fig.9, in intrinsic coordinates.
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Figure 9 — position of {; for K; calculation

The comparison of the results obtained with this technique and those found with NGF-BEM
(numerical Green’s function with BEM) and AGF-BEM (analytical Green’s function with BEM)

are presented in Table 1

Table 1 — comparison of results

Method K; /Ky Error (%)
NGF-LBIE 1.182 0.51
NGF-BEM 1.1877 0.99
AGF-BEM 1.1871 0.94
estimated 1.176 + 1% -

In order to present the results in non-dimensional form, they are divided by K, = om , where
ois the applied load and a is the half-length of the crack.

Conclusion

The present work aimed at introducing the concept of the NGF to potential problems
and fracture mechanics applications in the context of the LBIE method. Here the LBIE formulation
was presented for potential and elastostatic problems, as well as the procedure for obtaining the
NGF for potential discontinuity and fracture mechanics. The MLS approximation scheme was used
to interpolate the trail function.

As demonstrated by the results, the LBIE is shown to be suitable for a Green's function
type of implementation and the development of the NGF for infinite planes with unloaded lines of
discontinuity has proven to be worth of attention, especially for elastic fracture mechanics
applications.
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Abstract. The boundary element methodology is applied to the fracture mechanics of non-linear
viscoelastic solids. The adopted non-linear model is based on the ‘free volume’ concept, which is
introduced into the relaxation moduli entering the linear viscoelastic relations through a time shift
depending on the volumetric strain. Nonlinearity generates an irreducible domain integral into the
original boundary integral equation governing the behaviour of linear viscoelastic solids. This
necessitates the evaluation of domain strains, which relies on a non-standard differentiation of an
integral with a strong kernel singularity. A time domain formulation based on constant shape
functions over boundary elements and domain cells is computer-implemented through a numerical
integration algorithm. The effectiveness of the developed numerical tool is demonstrated through
the analysis of a plate with a central crack. The predicted stress field around the crack tip is
compared with respective results obtained by the finite element method.

Introduction

The importance of polymers and other viscoelastic materials to modern engineering practice has
prompted extensive research on their failure mechanisms. The issue of viscoelastic fracture, in
particular, was addressed in many early experimental and theoretical studies [1]. Crack propagation
was linked to material properties through an experimentally validated model [2]. A sound
theoretical basis for assessing crack initiation and growth was achieved by combining classical
fracture mechanics concepts with viscoelastic material modelling [3-5]. An energy criterion for
crack growth was proposed and tested against experimental evidence [6-7]. More recent studies
explored the relevance of J-integral as a criterion for crack growth [8-9].

It was noted quite early that viscoelastic behaviour becomes highly nonlinear in the presence of
cracks [5]. Such non-linearity manifests itself as considerable strain softening near the crack tip.
Schapery [10] proposed a quite general and frequently applied nonlinear constitutive model, which
includes the principle of time-stress superposition. The latter is accounted for through the definition
of ‘reduced time’, a concept originally introduced to account for temperature variation [11]. Based
on experimental studies, Knauss and Emri [12-13] linked the time-stress superposition model to the
concept of free volume. This model has been applied to various problems [14-15] and found to be a
very effective analysis tool for assessing the effect of nonlinearity on the behaviour of polymer
materials. Dooling et al proposed a constitutive model based on the hypothesis of a non-Newtonian
flow process [16]. A wider view of trends and developments in non-linear viscoelastic modelling
has been provided by Schapery [17]. Schapery also proposed a theoretical model accounting for
nonlinearity in the evaluation of J-like path independent integrals [18]. Knauss and Losi [19] used
the ‘free volume’ concept to study crack propagation through nonlinear viscoelastic material in the
context of adhesive bond failure.

The development of numerical techniques for the implementation of linear and nonlinear
constitutive models in the solution of fracture problems has been an important research objective.
Applications of the finite element method (FEM) to linear viscoelastic fracture mechanics (LVFM)
have been mainly concerned with the simulation of crack growth in the polymer matrix of
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composites [20]. Moran and Knauss [14] used FEM modelling to introduce the ‘free volume’
concept into a fracture mechanics context. Non-linear FEM algorithms and codes, based on the
Schapery model [10], have also been developed and tested for efficiency and stability [21].

The boundary element method (BEM) has been extensively and very effectively used in
modelling linear viscoelastic behaviour [22]. It seems, however, that there has been only one
previous attempt to extend such formulations to nonlinear problems [23]. On the other hand, BEM
has been shown to be a reliable tool for performing LVFM analyses. An early such three-
dimensional formulation [24], based on the Laplace transform approach, predicted the crack
opening displacement of a penny-shaped crack in a viscoelastic material characterised by a three-
parameter Kelvin model. Two-dimensional stress and displacement fields were later analysed in the
neighbourhood of a crack filled with failed, so-called craze material [25]. Laplace transform-based
BEM was also used for the evaluation of dynamic stress intensity factors in cracked viscoelastic
plates under suddenly applied loads [26]. More recently, a direct, time domain BEM formulation
was applied to the evaluation of an expression for the strain energy release rate derived from a
functional corresponding to the potential energy in elasticity [27-28]. Further results have
confirmed the effectiveness of both Laplace transform and time domain BEM in predicting time-
dependent stress intensity factors and energy release rates under constant and time dependent loads
[29]. In parallel with viscoelastic material modelling for polymers, BEM analyses, based on
viscoplasticity, have also been developed for predicting metal creep and rupture [30-32].

The non-linear visco-elastic model employed in the present BEM analysis of fractured polymers
is based on the reduced time concept, which is, in turn, considered as a function of mechanical free-
volume changes. The relaxation moduli of linear visco-elasticity are thus employed in the
Boltzmann constitutive equations with a time shift depending on the volumetric strain. The
difference between the actual and a pseudo stress tensor, the latter linearly related to the actual
strains, generates an irreducible domain integral into the original integral equation derived for linear
viscoelastic solids. Domain strains are obtained by differentiation of a domain integral with a strong
kernel singularity resulting in a singular integral and a regular free term. A time domain formulation
is implemented through a numerical integration algorithm. The effectiveness of the developed
numerical tool is demonstrated through the analysis of a plate with a central crack subjected to
remote tension. The results are compared with respective predictions by the finite element method.

Background Theory

The linear viscoelastic model adopted in earlier BEM formulations [33] is, in accordance with
Boltzmann's principle, of hereditary integral type

! 0
oy = Gijr(t)&u(0) + (I) Gy (t— r)%(r) dr 1)

where oy, &; are the stress and small strain tensors, respectively, and Gy (f) the relaxation moduli in
the general case of an anisotropic medium. The problem is described relative to a Cartesian frame
of reference x;, i =1,2,3, adopting the summation convention for repeated indices. Introducing the
notation for the Stieltjes convolution of two functions [34], Eq. 1 can be more concisely written as

oy = Gy * déu )

For an isotropic material characterised by shear and relaxation moduli z4¢) and K(?), respectively,
Eq. 2 becomes

0y =24 dey+ 5 GK - 240 * daa & 3)
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The nonlinear constitutive equations adopted here are [14]

agkl (7) agkl (T)

I Gule () —¢(D)]———dr=Gul¢ (t)]8k1(0)+f Gl ) - (O]—— “4)

where £(?) is the reduced or intrinsic time, which may account for the effect of temperature [11],
moisture and pressure variations on the relaxation moduli. A general definition of £{(7) is

5
o¢[()] ©

where ¢ is a shift factor, which depends on the fractional free volume v, that is, the ratio of free
volume to the total polymer volume. The free volume itself is a measure of molecular packing
irregularities. Here, only the influence of mechanically induced aging is considered, thus v is
expressed only in terms of volumetric strain as

v=vo+ Ceu (6)

where vy is the fractional free volume at some reference state and C is a material parameter which,
in many cases, may be taken equal to unity. A possible expression for @is [12]

@=exp {b [l—iﬂ (7)
Vo,

where b is another experimentally determined material parameter.

Formulation

The derivation of an integral equation for non-linear viscoelastic problems begins with the
reciprocal theorem of linear viscoelasticity [34]. Given two linear viscoelastic states (g;, ;) and
(&;,6; ), satisfying the constitutive Eq. 2 in the viscoelastic domain (2, then

[&,*do,dQ=]¢, *d5,dQ ®)
Q Q

In a non-linearly deformed viscoelastic material, it is possible to define the notional pseudo stress
field o} related to the actual strain components by

oL= Gijkl * dé‘k[ (9)

ij
Then, the actual stress developing in the non-linear material can be written as

oj=ck+ ot (10)

where o;ﬁVL represents the effect of material non-linearity on stress, that is, the stress difference

resulting from using constitutive Eq. 4 rather than Eq. 2. The reciprocity relation, Eq. 8, is only
valid for O'UL ; hence, for the non-linear problem, it should take the form

!jgéy.*d(ay.—d;YL)dQ=!jgey.*d6'ide 11
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Substitution of the small strain-displacement relations into Eq. 11, integration by parts and the
application of divergence theorem, gives

i xdpdl+ [ i, *df,dQ=[u,*dp,dI" + [u, *df,.dQ+j§ij *dofrdQ (12)
r Q r Q Q

where /" is the boundary of (2 while u;, p; and f; are, respectively, the components of the
displacement, traction and body force corresponding to the actual, nonlinear problem while

u,, p, and f; are the respective quantities associated with the second hypothetical linear stress-strain

field (&;,6;). The latter is assumed to arise from the body forces

Jri = X x-8)H(?) (13)

acting on an infinite isotropic linearly viscoelastic domain, where ¢y is the Kronecker delta, & x—€)
the delta function and H(#) the Heaviside step function. Then, Eq. 12 is transformed to

K1) =] @ *dp, = Py *du AT+ [, df,dQ—[ &, *dorjidQ (14)

where i, (x—&,¢) is the time-dependent fundamental solution while £, and p; are the

corresponding strain and edge traction components. In Eq. 14, x; = §; for interior source points and
k; = (1/2) ¢ for points on a smooth boundary. Expressions for x; when the source point is a corner
boundary point can be found in the boundary element literature [35].

The Laplace transform of i, can be derived from the fundamental solution of the respective
elastic problem via the correspondence principle. Inversion from the transform to the real time
domain leads to the general form [33]

i, (x=8,0) = A(t)g; (x=8) + B()h; (x - &) (15)

where the time functions A4(¢) and B(¥) also depend implicitly on the relaxation moduli of the
material while the spatial functions g;(x — &) and 4;/(x — &) also depend on the dimensionality of the
problem. In two-dimensions,

(x-¢€) il 1
(x=-8)=—LInr
&y 8n

1
hij(x_g)zgr:i raj

where r =[x — §|.
Eq. 14 is not a true boundary integral equation because of the presence of an irreducible domain
integral dependent on material non-linearity. An iterative scheme accounting for that integral

complements an existing time-stepping boundary element formulation [33] for solving the linear
p g pping ry g

NL
i

constitutive relations (1) and (4). The strains are given in terms of the displacement gradients,
which are obtained by spatial differentiation of the domain displacement components given by
Eq 14 with Kij = @'jl

part of Eq. 14. The scheme relies on the evaluation of ¢~ at internal points using Eq. 10 and the
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. oil op,
ou, (&, 1) =] L dp, ﬁ*du ar +I *df, dg_ j *dotdQ (16)
or ilog Vo o aé 19

The small strain-displacement relations are then applied while the linear pseudo stress as well as the

actual stress components are calculated using the constitutive Egs. 1 and 4, respectively.
Differentiation of the Singular Domain Integral. The strong singularity of the kernel

ﬁél.jk /0¢;, whose behaviour is of order O(r_z), does not allow differentiation under the domain

integral sign in the third term on the right-hand side of Eq. 16. The correct expression for that
gradient is derived using a method proposed by Bui [36]. Thus, the irreducible domain integral is
separated into two parts,

0 NL NL
*dodQ =lim Q Q 17
69‘,!3 i *do! 1_)0{851 QIQ & *doydQ+— 551 | & &y *doyd 17)

where (2 is a small circle of radius R, centred at the source point &.

It can be shown that the second volume integral on the right-hand side of Eq. 17 is of the order

NL

O(R?). The proof requires o; as well as its first and second partial derivatives to be continuous

NL

functions of x in the neighbourhood of & Then, a Taylor’s series expansion of ¢, around § leads

to

jgyk(xét)*da (x,0)dQ = R* D, (1) *do -, (&,1) (18)

where Djj,(f) are linear combinations of A(f) and B(f), independent of & Hence the spatial
derivatives of the right-hand side of Eq. 18 are expressed in terms of second partial derivatives of

N and therefore vanish as R — 0.

Since (% depends on §, differentiation of the first domain integral on the right-hand side of
Eq. 17 produces an additional convective term. Thus

91 g sdoMd0= | %k v do Mg - jn,g
o o o, ’ / o 0, 0¢

*do dlr (19)

ijk

where 7/ is the periphery of the circle with radius R and n is the outward unit normal to that circle.
Using the formulas [37]

R

the last convective term on the right-hand side of Eq. 19 is transformed to

jn,ejk*dcr Ldr= ——A(t)*da L, t)+—B(t)*da L&, 00, 21
FR

that is, a sum of simple convolution integrals.

As R — 0, the first integral on the right-hand side of Eq. 19 becomes the Cauchy principal value
of the singular integral, whose existence has been proved and the method to evaluate it is presented
next. The strain components corresponding to #;; and their gradients are obtained by successive

.
differentiation of Eq. 15.
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Evaluation of the Cauchy Principal Value. The domain integral on the right-hand side of
Eq. 19 is evaluated by dividing the domain into cells, that is, two-dimensional subdomains (2.
bounded by contours /.. The integration is performed over each cell using an approximate model

for the unknown agL . The radial integration method [37] was used to evaluate the Cauchy principal

value of that integral over the cell containing the source point. The integration over all other cells
was performed using numerical quadrature.
The domain integral on the right-hand side of Eq. 19 can be expressed as

J- a‘E’:yk (Xa g) t)

0. (x,&,t
S50 o i - {jﬁ
o 1

dQ} *do’y (&,1)
Q. 1
agi ik (Xa éa t)

*] T*[dajjf (x,1)—do¥ &.1) |d@ (22)
The strong singularity persists in the first integral on the right-hand side of Eq. 22 while the second
integral can be shown to be regular and therefore evaluated by standard numerical schemes. A polar
coordinate system (7, 6) is defined with the origin at the source point §. It can be shown that,
relative to this system, the singular integral on the right-hand side of Eq. 22 can be transformed to

651.. (Xaéat) 1 al" r) dl"
T g 1]y -
o 0% rLron], 0o r
where
Géijk

1
2, -3 Wik(0,1)

Since the integration is carried out in the Cauchy principal value sense, a small circle of radius R
around the singular point € can be cut off. Thus, Eq. 23 becomes,

_[ agijk(xagat)dg _ J

[ln_r or
20,  0g r,

2n
—} Wikt (@,5)dI" +InR | Yiin (8,1)do (24)
r on r 0

where Or/On = —1 has been used in the second integral along the circle /. Using relations (20), it
can be shown that the last integral on the right-hand side of Eq. 24 is identical to zero; this is an
intrinsic property of ;. Hence, as R — 0, Eq. 24 becomes

.[ agljk (Xa g) t)
2, 0% I

aQ = | [h’—’%}r W 0,047 (25)

Now the strongly singular domain integral has been transformed into a boundary integral. Since the
source point is located inside the domain, no singularity occurs and standard Gaussian quadrature
formulas can be used to calculate this integral.
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X2
A (b)
‘)fz (a) B(fc2 )Acz)
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> X1
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Figure 1 Triangular cell (a) and polar coordinate system with origin at the singular point & (b)

The domain was divided into small triangular cells, such as the one shown in Fig. 1(a), with the
source point & at the centre of the triangle. Relative to a polar frame of reference with origin at the

centre of the triangle, the equation of side A( )2,1 )-B()%iz) of the triangle, shown in Fig. 1(b), can be

expressed in terms of the local corner co-ordinates x =x/ —&;, where x/ are the co-ordinates of

corner j.
Thus, in this case, the contour integral on the right-hand side of Eq. 25 is evaluated along each

side of the triangle. Adopting a ‘constant’ cell model for O';ZL , the stress difference in Eq. 22

vanishes and therefore

agijk (Xa é: t)
¢

0,

6,
J *doy (x,1)dQ = {z J In[r(O)ly 4 (6,0)d0 | * oy’ (&,1) (26)

The integrals on the right-hand side of Eq. 26 are calculated using the standard Gaussian quadrature
formulas.

Numerical Algorithm

Constant boundary elements were used in the present numerical implementation of BEM
formulation based on integral Eq. 14, which also requires modelling in the time dimension. If the
boundary surface /is discretised in E elements 7, the following representation can be adopted,

u,(x,0)=u3(1), p,(x,0)=p;@) 27)

where uj(f) and pj(z) are the time dependent nodal values of displacement and traction,

respectively. Over a cell, strain was modelled as uniform and, as a consequence of Egs. 1, 4, 6 and
7, the shift factor as well as both linear and non-linear contributions to the stress are also constant
within each cell.

It was assumed that the boundary variables u;(x,f) and pi(x,f) as well as the nonlinear part of total

stress O'ijL (x,?) in the domain are linear with respect to time ¢ within a small time step At =, — t,1.
The viscoelastic fundamental solutions were written in the general form:

~ 0 N n_—-Bt =~ 0 M m_ —-a, =~ 0 2 q Vet
—_ n —_ m —_ q
ul.j—bl.j+zlbije s Dy =a;+ 21%6 , el.jk—cl.jk+21cijke (28)
n= m= q=
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where the coefficients a; ,b; and cj, are spatial functions of » = [x — &|. Then, the discretised form
of Eq. 14 was obtained as

K, (©u (&) = Z B (&) + > Z[B”(" D (§)e M (e —1)]

k=1 n=1

-3 A7O@R)= 3 S A7 @ e 1)

cq““(a) ZZ[C"(" D(E)e T (e —1)] (29)

k=1g=1
where, for simplicity, the body force was assumed to be zero and

A" @) =[rajudr, B @) =] bp2dl , G @)= o]

NL(x)
a;u; O do

ljk

) =u,(%,0,), pM = pxt), oFO® =0l (x,1,)

An iterative scheme is proposed for solving Eq. 29 since the current values of the stresses

O'ijL are not known at the beginning of a time step. At the first iteration, the boundary displacements

and tractions are determined at time ¢ = f, assuming O'ijL )= ij “(t._,). Then displacement

gradients are determined from Eq. 16 leading to initial estimates of domain strains and subsequently
of stresses through constitutive Egs. 1 and 4. The value of the domain integral can thus be revised
and the procedure repeated until results from two successive iterations agree within an acceptable
tolerance. Convergence of boundary displacements was the adopted criterion for terminating the
iteration. This was assumed to occur when

i i

T8 1<0.0001

ul

where ' is any nodal displacement at iteration .

It should be noted that, at # = 0 all unknown boundary values can be calculated when the integral
Eq. 14 governs only the initial elastic response due to any non-zero initial values of the boundary or
loading conditions. At the following time ¢ = #; (step k= 1), the respective unknown boundary
values can be obtained from Eq. 29 with the current boundary conditions and the additional terms
depending on the solution at the initial step as well as the non-linear contribution of the current step.
The solution progresses to the next time step K= 2 in a similar manner and a step-wise procedure is
thus established which advances the solution until the final time step is reached. A suite of
FORTRAN programs was developed for implementing this formulation. The code has already been
tested and found to be reliable in the case of linear viscoelastic problems [29, 33].

Crack tip stresses

Specimen Geometry and Material Model. The developed non-linear analysis was applied to a
cracked rectangular plate under step tension opH(¢). The central crack was oriented along the x;-
axis. The input data are approximately the same as those used by Moran and Knauss [14] who
solved this problem using FEM. Due to symmetry relative to two orthogonal axes, only a quarter of
the plate was modelled. The plate half-width was 13.44 mm, half-height 12 mm, and the crack half-
length @ = 1 mm. The material behaviour was represented by a standard linear solid model in shear
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()= ol A+ (1= De™]

with 1 = 4800 MPa, 7= 0.4 and a constant Poisson’s ratio v= 1/3. Parameter A represents the ratio
of the long-term to initial relaxation modulus. A constant Poisson’s ratio means that bulk and
Young’s moduli have the same time dependence as the shear modulus. Plane strain conditions were
assumed; this simplifies the evaluation of the volumetric strain.

In order to calculate ¢ using Eq. 7, vy was assumed to be 0.01, and b was chosen equal to 0.05.
These values are representative of a moderately strain-softening polymer [14]. A remote tension
o = op = 0.001E(0) was applied, where E(0) is the initial value of the tensile relaxation modulus.

Boundary and Domain Meshing. ‘Constant’ boundary elements with variable element length
were adopted. The two smallest elements, located on either side of the crack tip, were 0.005 mm
long, the largest element at the loading edge of the plate was 3 mm long. In conformity with the
boundary mesh, the domain mesh was arranged to be much denser near the crack tip, where the
stress concentration and high nonlinearity occur.

-1.67

Figure 2. Normalized nonlinear stress field near the crack tip (1 =0.1)

Nonlinear Stress Field. Fig. 2 shows the normalized nonlinear stress field near the crack tip for
A =10.1. In a linear viscoelastic plate with a constant Poisson’s ratio under step loading, the stress
field has a constant time history. For nonlinear viscoelastic problems, the material undergoes
considerable strain softening around the crack tip, where the high stress and strain occur. As shown
in Fig. 2, the initial singular elastic response causes an instantaneous reduction in viscosity and the
o, stress near the crack tip drops with time due to the strain softening; this drop slows down with
time becoming less significant as the strain itself changes more slowly. The stresses far from the
crack tip increase in order that overall equilibrium is satisfied. This response is similar to that
predicted by FEM [14].

The program was also run with the parameter A changed to 0.001 implying a more pronounced
material time-dependence than originally assumed. From the respective results shown in Fig. 3, it
was clear that the effect of nonlinearity was stronger than previously under the same loading
conditions. A more significant nonlinear effect was predicted by FEM [14] but this was essentially
due to the application of a much higher load in that analysis.
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Figure 3. Normalized nonlinear stress field near the crack tip (4= 0.001)

Concluding Remarks

A promising initial attempt has been made to apply a nonlinearly viscoelastic BEM formulation and
the associated computer code to the solution of fracture mechanics problems. The numerical results
obtained confirmed the expected effect of non-linearity on the stress time history, which is highest
in the neighbourhood of the crack tip. They were also consistent with those reported in a previous
analysis of the same problem by FEM [14]. It was noted in that study that, for materials with high
viscosity (4= 0.001), a very refined, computationally expensive mesh is required to capture the area
of K-dominance around the crack tip. Although a domain mesh is required by the proposed BEM
approach, this does not introduce any additional unknowns. Therefore, the boundary mesh can be
very refined near the crack tip and thus provide reliable stress output there even in the case of
highly strain-softening polymers.

The current implementation of the formulation needs to be improved to enhance the confidence
in its validity and reliability. This would involve mesh sensitivity studies to establish the
convergence of key results. Although the adopted boundary and domain mesh was considered
acceptable for an initial assessment of the performance of the proposed method, boundary element
and domain cell size distribution around the crack tip may not have been ideal for capturing the
local stress concentration. Such mesh refinements may also remove an observed degree of
inconsistency between the calculated boundary tractions and domain stresses. In order to explain the
current discrepancy between BEM and FEM predictions, further comparisons with experimental
and other numerical or analytical results should be made.

Numerical tests using the validated model can help to assess the sensitivity of the singular stress
fields to various material input and solution control parameters. As shown previously in the case of
LVFM [29], the proposed BEM formulation can also prove to be a very reliable and efficient
numerical tool for the calculation of key fracture parameters, such as energy release rates and J-like
integrals [18], characterising crack initiation and growth in nonlinear viscoelastic solids.
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