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Preface

Shells and plates are critical structures in numerous engineering applications.
Analysis and design of these structures is of continuing interest to the scientific and
engineering communities. Accurate and conservative assessments of the maximum
load carried by a structure, as well as the equilibrium path in both the elastic and
inelastic range, are of paramount importance to the engineer.

The elastic behavior of shells has been closely investigated, mostly by means
of the finite element method. Inelastic analysis however, especially accounting for
damage effects, has received much less attention from researchers.

In this book, we present a computational model for finite element, elasto-plastic,
and damage analysis of thin and thick shells. Formulation of the model proceeds in
several stages. First, we develop a theory for thick spherical shells, providing a set
of shell constitutive equations. These equations incorporate the effects of transverse
shear deformation, initial curvature, and radial stresses.

The proposed shell equations are conveniently used in finite element analysis.
A simple C0 quadrilateral, doubly curved shell element is developed. By means
of a quasi-conforming technique, shear and membrane locking are prevented. The
element stiffness matrix is given explicitly, making the formulation computationally
efficient.

We represent the elasto-plastic behavior of thick shells and plates by means of the
non-layered model, using an Updated Lagrangian method to describe a small-strain
geometric non-linearity. For the treatment of material non-linearities, we adopt an
Iliushin’s yield function expressed in terms of stress resultants, with isotropic and
kinematic hardening rules.

Finally, we incorporate the damage effects modeled through the evolution of
porosity into the yield function, giving a generalized and convenient yield surface
expressed in terms of the stress resultants. As the elastic stiffness matrix is derived
explicitly, and a non-layered model in which integration through the thickness is
unnecessary is used, the current stiffness matrix is also given explicitly and numer-
ical integration is not performed at any stage of the analysis. This makes the model
mathematically consistent, accurate for a variety of applications, and economical in
terms of computational power. We would like to acknowledge the editing assistance
of Ann Rae Jonas.
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Chapter 1
Introduction

1.1 Shell Structures

In this book, we present a comprehensive analysis of homogenous and isotropic
shells. We also consider plates and beams, but only as a special case of shells. The
constitutive equations are developed for shells, and can be easily reduced to plate or
beam equations.

A beam is a structural element in which the length is substantially larger than the
width and thickness. A plate is a flat surface in which the thickness is small com-
pared to the other two dimensions. A shell is a curved surface in which the thickness
is much smaller than the other dimensions. The geometrical properties of shells, e.g.
single or double curvature, give these lightweight structures a tremendous advan-
tage over plates. Plates and beams are usually loaded in the direction normal to the
plane, or longitudinal axis in the case of the latter, and they carry the loads primarily
through bending. The load-carrying efficiency of shells is based on their curvature,
which allows multiple stress paths and an optimum form of transmission of different
load types.

Shells support the loads in two main ways. If subjected to uniform pressures,
shells usually can resist the loads by membrane (in-plane) action. The most desirable
situation is when a shell is subjected to a uniform load causing tensile stresses,
because the material can be used to its full strength (Wadee, 2005). Concentrated
loads, however, introduce local bending stresses, which are much more likely to
cause yielding or ultimately failure of the shell. The eggshell is a good illustration of
these actions. If you try to squash an egg using a uniform or approximately uniform
external pressure, you will notice that it can resist a very high pressure considering
its small thickness. If you press a finger against the egg’s surface, applying a “point
load”, the shell fractures under a much smaller force. As with the eggshell, structural
shells are best utilized when subjected to uniform loading.

Local reinforcement of certain critical regions of shell structures is often neces-
sary. A possible location of these areas is at the transition from one basic surface to
another. The connection between the main cylindrical vessel and its spherical ends
is a good example of the critical region, where stiffening may be required (Wadee,
2005). Stiffened shells are beyond the scope of this work and will not be considered
any further.

G.Z. Voyiadjis, P. Woelke, Elasto-Plastic and Damage Analysis of Plates and Shells,
C© Springer-Verlag Berlin Heidelberg 2008
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2 1 Introduction

The analysis of shells often involves two distinct theories. A membrane theory
is capable of describing only the membrane behavior, i.e., is performed under the
assumption that a curved surface is incapable of conveying the shear forces or bend-
ing moments (Ugural, 1999). A bending theory includes the effects of bending in the
analysis. Although for practical purposes, the membrane stresses are of far greater
importance than the bending stresses, one needs a general or bending theory to ac-
count for the discontinuity effects in geometry, e.g. changes in thickness, or bound-
ary conditions. These effects cannot be approximated by means of the membrane
theory only.

Most, investigations of beams, plates and shells are performed under the assump-
tion that the thickness is small relative to the other two dimensions. The shell or plate
is considered thin if the effects of transverse shear deformations on the behavior of
the structure are negligible. Normal strains and stresses in the out-of-plane (radial)
direction are also considered negligible for thin shells. This is mostly the case for
ratios of thickness h to radius of curvature R equal to or less than 1/50. This limit
is not definite, however, and some of the results in the literature show that under
certain boundary conditions, the shear deformation can be significant even for very
thin shells or plates. With the increased use of thick shells in various engineering
applications such as cooling towers, dams, and pressure vessels it is imperative to
develop a simple and accurate theory for moderately thick to thick shells, accounting
not only for transverse shears, but also for radial effects and initial curvature.

Shells are often considered to act globally as a member, e.g. a lighting column.
In that case, a global behavior of the component can be approximated accurately
using a simplistic model. The local behavior of the shell is, however, often crit-
ical in the analysis of the structure. Dimpling in domes, or development of the
Yoshimura pattern (Fig. 1.1) due to buckling in compressed cylinders, are complex
phenomena, that require an in-depth analysis with non-linear behavior taken into
account. Although buckling, as an eigenvalue problem, is not considered here, the
local behavior of shells is closely approximated.

All the aforementioned structural elements are extensively used in various ap-
plications in many fields of engineering. Different types of shells have often been
used for industrial purposes. Examples of single curvature shells are storage tanks
and silos, pressure vessels, submarines, airplanes, chimneys, oilrigs or even lighting
columns. A double curvature form of a shell can be used to construct spherical tanks
and reservoirs, roofs, stadiums, vehicles, water towers and many other structures.
Examples of the shell structures are shown in Fig. 1.2.

Fig. 1.1 Yoshimura pattern in
a compressed cylinder
(Thompson and Hunt, 1984)
with kind permission from
John Wiley & Sons
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(a)

(b)

Fig. 1.2 Examples of shell structures: (a) Submarine Seawolf, US Navy (1996); (b) Headquarters
of a radio station (RFM-FM) in Poland, Monolithic Dome Institute (2005)



4 1 Introduction

1.2 Motivation and Scope

Shells are important for various engineering applications. Analysis and design of
these structures is therefore of continuing interest to the scientific and engineering
communities. Accurate and conservative assessments of the maximum load carried
by the structure, as well as the equilibrium path in both elastic and inelastic range are
therefore of paramount importance in understanding the integrity of the structure.

Determination of the equilibrium path in the elastic and inelastic range usually in-
volves a complex analysis. Manual calculations provide valuable information about
the behaviour of shells. They are, however, mostly performed under simplifying
assumptions and for a specific problem. Universal algorithms based on manual cal-
culations and accurately approximating the load-displacement response for a variety
of shell problems are virtually unobtainable. At the same time, recent developments
in computer technology allow us to formulate relatively simple computational mod-
els capable of delivering accurate results. By means of the finite element method
(FEM), it is possible to carry out elasto-plastic and damage analyses for both thick
and thin shells of general shape. Finite elements offer tremendous flexibility and
the ability to account for nearly every effect observed in the experimental or “real
life” tests of the material or structural behavior. Attempting to investigate every
experimentally observable phenomenon is, however, neither necessary nor feasible.
Constitutive modeling is understood as a reasonable choice of effects, which are the
most important for explanation of the phenomenon described (Perzyna, 2005). The
model formulated and presented here is addressed to the scientific and engineering
communities. Thus, it considers the most important issues from the structural anal-
ysis point of view. Our objective is to develop a computational model for non-linear
elasto-plastic large displacements damage analysis for isotropic shells.

One difficult of non-linear calculations is that they are based on incremental
and/or iterative algorithms, which may require prohibitively large storage of com-
puter memory. Computational efficiency needs special attention in non-linear mod-
eling of shells. To formulate a simple and efficient algorithm that delivers close
approximations to the equilibrium path in both the elastic and inelastic range, it is
necessary to proceed in several stages.

A refined shell theory, providing a set of shell constitutive equations, is given
first. The theory is universal and general, i.e. it accounts for both membrane and
bending behavior and is formulated for thick shells, accounting for the effects of the
transverse shear deformations, radial stresses and initial curvature. The assumptions
used to derive the shell equations are described in the following section, and detailed
derivations are given in Chap. 2.

The constitutive equations generated by the theory are conveniently used in fi-
nite element analysis. A simple C0 quadrilateral, doubly curved shell element is
developed. To overcome membrane and shear locking as well as other numerical
deficiencies, we adopt quasi-conforming technique that features an explicit form of
the stiffness matrix. Chapter 3 focuses on the formulation of the developed finite
element.

Shelled structures are often subjected to loading conditions that cause very
large displacements. Geometrical non-linearities are crucial in the elasto-plastic and
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damage modeling of shells. Thus, to achieve a desired accuracy, geometric non-
linearities must be accounted for. We consider small strain problems, studied by
means of the Updated Lagrangian method. Details of the geometrically non-linear
calculations are given in Chap. 4.

We adopt a “non-layered” plastic model in the treatment of the material non-
linearities for both its efficiency and its convenient applicability to engineering
problems. The yield function is defined in the stress resultant space; integration of
the stresses over the thickness of the shell is not necessary. Isotropic and kinematic
hardening rules are developed, with the latter aimed at representing the Bauschinger
effect. The definitions of the yield surface, flow, and hardening rules, with the deriva-
tion of the stiffness matrix, are given in Chap. 5.

The final stage of the formulation is the description of the influence of damage
on the behavior of shells. The experimental results show that the degradation of
material properties of ductile metals in the elastic range due to damage effects is
negligible. Hence, the damage is considered here as a phenomenon induced by the
plastic strain and is represented by the scalar porosity parameter introduced into the
yield function. Static loading conditions are considered here, with both plasticity
and damage treated as rate independent processes. The description of the effects of
damage is introduced into the model in Chap. 6.

Chapter 7 describes a the computational issues. The numerical algorithms used
here are outlined, along with the developed software and hardware information.

Each component of the formulation, namely the theory, finite element analy-
sis, non-linear analysis and damage description, are integral parts of the model.
Nevertheless, they are universal and introduce original ideas on every level of the
algorithm. This leads to the ability of the finite elements introduced within this
framework also to be used separately, as “stand-alone” concepts.

1.3 Basic Assumptions

The main assumptions of the computational model we develop are:

� Material is homogenous and isotropic;
� We consider shells of general shape, both thick and thin, with both membrane

and bending actions;
� Buckling as an eigenvalue problem is not considered;
� Loading conditions are static;
� We adopt a non-layered approach in plastic analysis;
� Plasticity and damage are treated as rate-independent processes;
� Damage variable is isotropic and induced by the plastic strain

Additional assumptions, pertinent to the particular components of the model will
be explained in detail in the following chapters.
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Chapter 2
Shell Constitutive Equations

2.1 Introduction

A simple theory of plates was originally developed by Sophie Germain. The
corrected version by Kirchhoff (1850) is widely used in the analysis of thin plates.
Using Kirchhoff’s concept Love developed the complete two-dimensional theory of
thin shells more than 100 years ago, and numerous. Contributions to this subject
have been made since then. Any two-dimensional theory of shells approximates the
real three-dimensional problem. Researchers have been seeking better approxima-
tions for the exact three-dimensional elasticity solutions for shells. In the last three
decades, the developed refined two-dimensional linear theories of thin shells in-
clude important contributions Sanders (1959), Flugge (1960), and Niordson (1978).
In these refined shell theories, the initial curvature effect is taken into consider-
ation. Nevertheless, the deformation is based on the Love–Kirchhoff assumption,
and the radial stress effect is neglected. We will refer to all the theories built on the
Kirchhoff–Love assumption, as the classical theory. The refined theories by Sanders
(1959), Flugge (1960), and Niordson (1978) provide very good results for the anal-
ysis of thin shells. The theory of Sanders-Koiter has been widely used in the finite
element analysis of shells (Ashwell and Gallagher, 1976). Niordson (1971) showed,
however, that Love’s strain energy expression has inherent errors of relative order
[h/R + (h/L)2], where h is the thickness of the shell, R is the magnitude of the
smallest principal radius of curvature, and L is a characteristic wave length of the
deformation pattern of the middle surface. Consequently, when the refined theories
of thin shells are applied to thick shells, with h/R not small compared to unity,
the error can be quite large. Unlike the theory of thin shells, the comprehensive
theory of thick shells, with not only transverse shear strains considered but also
initial curvature and radial stresses, has received limited attention from researchers.
Voyiadjis and Shi (1991) developed a refined shell theory for thick cylindrical shells
that is very accurate and convenient for finite element analysis. We present here
a refined shell theory for thick spherical shells, with the shell equations based on
similar assumptions as those of Voyiadjis and Shi (1991). The work of Voyiadjis
and Woelke (2004) can be considered a more general formulation of the Voyiadjis
and Shi theory (1991).

G.Z. Voyiadjis, P. Woelke, Elasto-Plastic and Damage Analysis of Plates and Shells,
C© Springer-Verlag Berlin Heidelberg 2008

7
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In the following sections of this chapter we present detailed derivations of the
shell constitutive equations. The general form of these expressions is complicated;
they can, however, easily be reduced to commonly used shell equations, as shown
below. At every stage of the formulation, we make references to the classical shell
theory.

2.1.1 Thickness of the Shell

Thick shells have a number of distinctly different features from thin shells. For
thick shells, the Kirchhoff–Love assumption is no longer valid. According to this
assumption, plane sections remain plane after the deformation, as well as perpen-
dicular to the middle surface. The angle of rotation of the cross-section φ is therefore
equal to the first derivative of the vertical displacement �w/�x , and transverse shear
deformation γxz can be neglected (Fig. 2.1).

If the thickness of the shell becomes significant, the transverse shear strains γxz

are not negligible and the angle of rotation of the cross-section is altered, as shown
in Fig. 2.1. Our formulation is unified for both thick and thin shells and thus, the
influence of the transverse shear strains is considered in the analysis.

In our theory, we use the following hypothesis: plane sections originally per-
pendicular to the middle surface remain plane after the deformation but not per-
pendicular to the middle surface (Fig. 2.1). From this hypothesis, we deduce that
the displacements u and v along x and y directions are:

u = −zφx and v = −zφy (2.1)

where φx and φy are the angles of rotation of the sections originally perpendicular
to the middle section, in the xz and yz planes respectively, given by:

φx = �w

�x
− γxz and φy = �w

�y
− γyz (2.2)

Fig. 2.1 Transverse shear
deformations (Voyiadjis and
Woelke, 2006)

  −  γxz
∂w

∂x⎝               ⎠

∂w
−  γxz∂x

u = −z
⎛ ⎞
⎜ ⎟

t

w

z

rx

x

z

z
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where w is the vertical displacement in the z direction and γxz, γyz are the transverse
shear strains in the xz and yz planes, respectively. Shells in which the ratio of the
thickness to the radius of curvature is equal or less than 1/50 are most often consid-
ered thin. In the case of thin shells, transverse shear strains are negligible. This is true
for most of the types of analyses and boundary conditions. Some types of loading
conditions however, cause significant shear forces, regardless of the thickness of the
structure. An example of such a loading condition would be a concentrated bending
moment M applied at mid-span of the beam of length L (Fig. 2.2).

We recognize that there are two ways to apply the concentrated bending moment.
It can be formed by the vertical force couple P (Fig. 2.2a), or by the horizontal
force couple P (Fig. 2.2b). With the former, a very large shear force is generated
at midspan of the beam. This force increases as the distance of the force couple
s decreases. For the correct representation of the deformation of the beam here,
transverse shear strains need to be considered, regardless of the thickness of the
beam. We encounter the same situation when such loading conditions are applied to
plates and shells.

For dynamic and wave propagation problems, shear forces can be very important,
especially at higher modes of vibration in both thin and thick shells. In compos-
ite laminates, addressing the delamination process requires detailed analysis with
the influence of shear accounted for. Dynamic and wave propagation problems are,
however, beyond the scope of this book, and will not be discussed further.

It is not difficult to incorporate transverse shear deformations in shells. This can
be accomplished following the work of Reissner (1945) for the plate theory. Many
other authors have directed their attention to the transverse shear strains, which are
important for analysis of the bending of thick isotropic structures (Basar et al., 1992,
1993; Bathe, 1982; Bathe and Brezzi, 1985; Bathe and Dvorkin, 1984; Dennis and
Palazotto, 1989; Palazotto and Linnemann, 1991; Niordson 1978, 1985; Noor and
Burton, 1989; Reissner, 1945, 1975; Mindlin, 1951; Reddy, 1984, 1989; Kratzig,
1992; Kratzig and Jun, 2003; Voyiadjis and Kattan, 1986, 1991; Voyiadjis and
Baluch, 1981, and many others).

a) b)

M
1 1

L s
−⎛ ⎞

⎜ ⎟⎝ ⎠

L

M

P = M/s

P

M / L M / LM / L

L

s

Fig. 2.2 Concentrated couples formed by: (a) The vertical forces P causing significant shear forces
and (b) The horizontal forces P - no significant shear forces (Hu, 1984 see also Woelke et al. 2006)
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2.1.2 Initial Curvature and Radial (Transverse Normal) Stresses

Another important distinction between thick and thin shell analyses is that in thick
shells the initial curvatures not only contribute to the stress resultants and stress
couples, but also result in a nonlinear distribution of the in-plane stresses across the
thickness of the shell. This is because the length of the surface at a distance z from
the middle surface – ds1 (Fig. 2.3) is different from that of the middle surface – ds
(Fig. 2.3). We also account for this effect in our formulation of the shell equations.

The parameter R – in Fig. 2.3 is a radius of curvature of the middle surface of
the shell, and φ is the angle between two meridians creating a middle surface of
the shell.

Earlier shell theories focused on the two-dimensional shell equations and on
maintaining a linear stress distribution through the shell thickness (Flugge, 1960;
Niordson, 1985). Refinement of the stress distribution in thick shells has not been
extensively studied in terms of the inclusion of radial stresses. The theory of thin
shells may provide a good estimate of the strain energy for some problems in thick
shells. It cannot, however, provide an accurate distribution of the stresses through
the thickness (Gupta and Khatua, 1978). This accuracy is imperative from an engi-
neering point of view.

Our theory is based on the assumed out, of, plane stress components that sat-
isfy given traction boundary conditions. These stress components are established
by means of the analytical investigation of the distribution of the radial stresses in
thick spherical containers subjected to internal and external pressure, performed by
Lame (1852). Thus, the distribution of the radial stresses is the starting point for the
derivation.

In our shell theory, all the in-plane stresses exhibit a non-linear distribution
through the thickness. This is primarily a result of the incorporation of the initial
curvature effect in the theoretical formulation of the proposed shell theory (Fig. 2.3).
Using specific examples, we compare the nonlinear stress expressions with those
obtained through the three-dimensional theory of elasticity.

Fig. 2.3 Initial curvature
effect

ds = Rdφ

ds1 = (R + z) dφ

ds1 =             ds1+
z

R
⎛       ⎞
⎜       ⎟
⎝       ⎠

x y

z

h

zR

R
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2.2 Plate Constitutive Equations

In this section we derive widely known stress components in a plate. Any shell
theory can be considered a generalization of the plate theory; it is therefore use-
ful to present the plate equations first, before addressing the shell problem. For
completeness, we present stresses and stress resultants in a plate loaded out-of-
plane, as well as the governing differential equation of the plate (Sects. 2.2.1,
2.2.2, 2.2.3).

2.2.1 Stresses and Stress Resultants in a Thin Plate

We follow the Kirchhoff–Love assumption, i.e., plane sections remain plane and
perpendicular to the middle section after the deformation. This assumption leads to
the following equations:

γxz = γyz = εz = 0 (2.3)

We consider out of plane loading at this stage; thus the normal strains arise as
a result of bending action only. To obtain the strains, we need to determine the
extension (�s) of the surface of the plate that is at a distance z from the middle
surface (Fig. 2.4).

The term ε is the strain caused by the bending action in the plate and κ is the
curvature of the deformed plate given by:

κ = �

�s

(
�w

�s
− γsz

)
(2.4)

s - direction tangential to the middle surface.

R

z

ds

R

R – z

ds

ds + Δs

ε = − zκ

= ε−=
Δs

=

R

R – z

ds

ds + Δs

Fig. 2.4 Normal strains caused by bending
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Substituting (2.3) into the above yields:

κ = �2w

�s2
(2.5)

or:

κx = �2w

�x2
; κy = �2w

�y2
and κxy = �2w

�x�y
(2.6)

Thus we can write the flowing relations:

εx = −z
�2w

�x2
; εy = −z

�2w

�y2
and εxy = −z

�2w

�x�y
(2.7)

The stress-strain relationships for a flat thin plate can be written as follows:

σx = E

1 − ν2

(
εx + νεy

) = − Ez

1 − ν2

(
�2w

�x2
+ ν

�2w

�y2

)
(2.8)

σy = E

1 − ν2

(
εy + νεx

) = − Ez

1 − ν2

(
�2w

�y2
+ ν

�2w

�x2

)
(2.9)

τxy = E

2 (1 + ν)
γxy = − Ez

1 + ν

�2w

�x�y
(2.10)

Following (2.3) the remaining components of the stress tensor are zero, i.e.:

σz = τxz = τyz = 0 (2.11)

In (2.8), (2.9), (2.10), E is the Young’s modulus and ν is the Poisson’s ratio.
To obtain the stress resultants in a plate we integrate the stresses over the thick-

ness of the plate, as follows:

Mx =
t/2∫

−t/2

σx zdz = −D

(
�2w

�x2
+ ν

�2w

�y2

)
(2.12)

My =
t/2∫

−t/2

σyzdz = −D

(
�2w

�y2
+ ν

�2w

�x2

)
(2.13)

Mxy =
t/2∫

−t/2

τxyzdz = −D (1 − ν)
�2w

�x�y
(2.14)

where D is the flexural rigidity of the plate given by:
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D = Eh3

12
(
1 − ν2

) (2.15)

and h is the thickness of the plate.
Comparing (2.8), (2.9), (2.10) with (2.12), (2.13), (2.14) we express the stresses

in terms of stress resultants, as follows:

σx = Mx z

I
(2.16)

σy = Myz

I
(2.17)

τxy = Mxyz

I
(2.18)

where I is a second moment of area (per unit width) given by:

I = h3

12
(2.19)

and h is the thickness of the plate.
Assuming the plate to be thin and loaded out-of-plane, the bending moments

given by (2.12), (2.13), (2.14) are the only non-zero stress resultants.

2.2.2 Equilibrium Equations and Governing Differential
Equation of Plate

The equilibrium conditions govern the variations of the stress resultants in a plate.
To derive the equilibrium equations, we study a differential plate element of area
dxdy subjected to a uniform vertical (negative z direction) load per unit area p
(Fig. 2.5; for clarity p is not depicted).

The differential plate element in Fig. 2.5 is considered very small; thus, the stress
resultants can be assumed constant over the face of the element. The variations of
the forces and moments acting on different surfaces of the plate are expressed by
the Taylor’s expansion:

Mxy + �Mxy

�x
dx (2.20)

The summation of the forces in the z direction leads to the following equation:

(
Qx + �Qx

�x
dx

)
dy− Qx dy+

(
Qy + �Qy

�y
dy

)
dx − Qydx − pdxdy = 0 (2.21)

which can be reduced to:
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dx
x

Mx ∂
+

dxMxy ∂x

∂Mxy
+

dxQx ∂x

∂Qx+

dx

dy

x
y

z

dy
∂y

My

∂My+

dy
y

Myx ∂
∂Myx+

dyQy ∂y

∂Qy+

Qy

Qx

Mx

Mxy

Myx My

∂Mx

Fig. 2.5 Positive stress resultants (per unit length) on a plate element

�Qx

�x
+ �Qy

�y
− p = 0 (2.22)

The summation of moments around the x axis leads to:

−
(

Mxy + �Mxy

�x
dx

)
dy + Mxydy + Mydx −

(
My + �My

�y
dy

)
dx

−
(

Qy + �Qy

�y
dy

)
dx

dy

2
− Qydx

dy

2
= 0

(2.23)

Reducing the above equation and neglecting the infinitesimal terms, we obtain:

�Mxy

�x
+ �My

�y
+ Qy = 0 (2.24)

Similarly the summation of moments around the y axis gives:

(
Mx + �Mx

�x
dx

)
dy − Mx dy − Myx dx +

(
Myx + �Myx

�y
dy

)
dx

+
(

Qx + �Qx

�x
dx

)
dy

dx

2
+ Qx dy

dx

2
= 0

(2.25)

which can be simplified to:

�Mx

�x
+ �Myx

�y
+ Qx = 0 (2.26)

Substituting (2.12), (2.13), (2.14) into (2.24) and (2.26) respectively, we obtain
the expression for the shear forces:
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Qy = D
�

�y

(∇2w
)

(2.27)

Qx = D
�

�x

(∇2w
)

(2.28)

where ∇ is the Laplace operator, given by

∇2 = �2

�x2
+ �2

�y2
(2.29)

Substituting (2.27) and (2.28) into (2.22) yields:

D

[
�2

�x2

(
�2w

�x2
+ �2w

�y2

)
+ �2

�y2

(
�2w

�x2
+ �2w

�y2

)]
= p (2.30)

or:

∇4w = p

D
(2.31)

where:

∇4 = �4

�x4
+ 2

�4

�x2�y2
+ �4

�y4
(2.32)

Equation (2.31) is the governing differential equation for the deflection of plates.
With the exceptions of the simple problems, solution of (2.31) is cumbersome. The
most common approach involves finding a displacement function w that satisfies the
governing differential equations of plates, as well as static and kinematic boundary
conditions. Such a method is often referred to as the inverse method (Ugural, 1999).
In most practically important cases of the analysis, the choice of the displacement
function satisfying the boundary conditions and the governing plate equation re-
quires a systematic approach. One of the most common such methods is application
of the Fourier series. Methods of solutions of (2.31) are beyond the scope of this
book and will not be discussed further.

2.2.3 Transverse Shear and Transverse Normal Stresses in a Plate

In Sect. 2.2.1 the derivation of the plate equations was performed under the
Kirchhoff–Love assumption, i.e., transverse shear strains and stresses were ne-
glected. These stresses are important for various engineering problems, as discussed
in Sect. 2.1.1. A general theory of shells should take the shear deformation into
account.

Transverse shear stresses can easily be determined by means of the equations of
equilibrium of stresses given by:
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�σx

�x
+ �τxy

�y
+ �τxz

�z
+ FX = 0

�τxy

�x
+ �σy

�y
+ �τyz

�z
+ Fy = 0

�τxz

�x
+ �τyz

�y
+ �σz

�z
+ Fz = 0

(2.33)

where Fx , Fy, Fz are the body forces in x, y, z directions respectively.
Neglecting the body forces in the first of (2.33) and solving for τxz gives:

τxz = −
h/2∫
z

(
�σx

�x
+ �τxy

�y

)
dz (2.34)

Substitution of (2.16), (2.17), (2.18) into the above yields:

τxz = −
(

�Mx

�x
+ �Mxy

�y

) h/2∫
z

z

I
dz = −

(
�Mx

�x
+ �Mxy

�y

)
6

h3

(
h2

4
− z2

)
(2.35)

Using (2.26) we can rewrite the above relation as:

τxz = 3Qx

2h

[
1 −

(
2z

h

)2
]

(2.36)

Following the same procedure for τyz we obtain:

τyz = 3Qy

2h

[
1 −

(
2z

h

)2
]

(2.37)

The transverse normal stresses can be determined in a similar manner, using
the above shear stresses along with the equations of equilibrium given by rela-
tions (2.33):

σz = −
h/2∫
z

(
�τxz

�x
+ �τyz

�y

)
dz = −3

2

(
�Qx

�x
+ �Qy

�y

)(
1

3
− z

h
+ 4z3

3h3

)
(2.38)

Using (2.22), the above expression can be rewritten as:

σz = −3p

4

[
2

3
− 2z

h
+ 1

3

(
2z

h

)3
]

(2.39)
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2.3 Coordinate Transformation – Strains
in Spherical Coordinates

In the following sections, we derive the constitutive equations for spherical shells.
It is natural to use spherical coordinates to do so, as they relate better physically to
the geometry of the structure. Fig. 2.6 shows the coordinate system.

We define r as a vector connecting the origin O of the rectangular coordinate
system (x, y, z) to point P (Fig. 2.6). Noe θ ∈ [0, π ] is a latitude angle measured
from the positive z-axis and vector r, and φ ∈ [0, 2π ] is a longitude angle measured
counterclockwise from the positive x-axis to the orthogonal projection of OP onto
the xy-plane (Schenck, 1999). The vectors er , eθ , eφ are the unit vectors in r, θ, φ

directions, respectively. The following are the relations between the rectangular co-
ordinates (x, y, z) and the spherical coordinates (r, θ, φ) are:

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

r2 = x2 + y2 + z2

tan φ = y/x

cos θ = z/r

(2.40)

The objective is to determine the strain tensor ε in spherical coordinates:

ε =
⎡
⎣ εr εrθ εrφ

εθr εθ εθφ

εφr εφθ εφ

⎤
⎦ (2.41)

To compute components of the above tensor, we need to relate partial derivatives
with respect to rectangular and spherical coordinates. Using the chain rule we obtain
the following relations:

Fig. 2.6 Spherical coordinate
system x

y

z

er

eφ

eθO

θ

φ

P
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�

�x
= �

�r

�r

�x
+ �

�θ

�θ

�x
+ �

�φ

�φ

�x
�

�y
= �

�r

�r

�y
+ �

�θ

�θ

�y
+ �

�φ

�φ

�y
�

�z
= �

�r

�r

�z
+ �

�θ

�θ

�z
+ �

�φ

�φ

�z

(2.42)

Using (2.40) the above relations can be written in a matrix form as:

⎡
⎢⎢⎢⎢⎢⎢⎣

�

�x
�

�y
�

�z

⎤
⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

�

�x
1

r

�

�θ

1

r sin θ

�

�φ

⎤
⎥⎥⎥⎥⎥⎥⎦

= R

⎡
⎢⎢⎢⎢⎢⎢⎣

�

�x
1

r

�

�θ

1

r sin θ

�

�φ

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.43)
Spherical components of the displacements also need to be computed before

the strain tensor is determined. The rectangular displacement vector u (x, y, z) is
given by:

u (x, y, z) = ux (x, y, z) i + uy (x, y, z) j + uz (x, y, z) k (2.44)

where i, j, k are unit vectors in the direction x, y, z, respectively (Fig. 2.6). The
spherical displacement vector us (r, θ, φ) is given by:

us (r, θ, φ) = ur (r, θ, φ) er + uθ (r, θ, φ) eθ + uφ (r, θ, φ) eφ (2.45)

The unit vectors er , eθ , eφ can be computed using vector r, giving a parametric
representation of the sphere:

r = r sin θ cos φ i + r sin θ sin φ j + r cos θ k (2.46)

Vectors tangential to the surface of the sphere in θ and φ directions are obtained
through differentiation of r with respect to θ and φ:

�r
�θ

= rθ = r cos θ cos φ i + r cos θ sin φ j − r sin θ k (2.47)

�r
�φ

= rφ = −r sin θ sin φ i + r sin θ cos φ j (2.48)

By dividing the above vectors by their respective lengths, we find the unit tan-
gential vectors eθ , eφ :

eθ = rθ

|rθ | = cos θ cos φ i + cos θ sin φ j − sin θ k (2.49)
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eφ = rφ∣∣rφ

∣∣ = − sin φ i + cos φ j (2.50)

The unit vector er , which is normal to the surface is a cross product of eθ and eφ :

er = eθ × eφ = sin θ cos φ i + sin θ sin φ j + cos θ k (2.51)

Because we are using a right-handed coordinate system, the above calculated
vector is normal to the surface and pointing outward, as shown in Fig. 2.6. If the
cross product of eφ ×eθ were computed instead, the resulting would be a unit vector
normal to the surface, but pointing inwards.

Substituting (2.49), (2.50), (2.51) into (2.45) results in:

us (r, θ, φ) = ur (r, θ, φ) (sin θ cos φ i + sin θ sin φ j + cos θ k)

+ uθ (r, θ, φ) (cos θ cos φ i + cos θ sin φ j − sin θ k)

+ uφ (r, θ, φ) (− sin φ i + cos φ j) = ux i + uyj + uzk

(2.52)

which yields:

ux = ur sin θ cos φ + uθ cos θ cos φ − uφ sin φ

uy = ur sin θ sin φ + uθ cos θ sin φ − uφ cos φ

uz = ur cos θ − uθ sin θ

(2.53)

Equation (2.53) can be written in a matrix form as:

⎡
⎣ux

uy

uz

⎤
⎦ =

⎡
⎣sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

⎤
⎦
⎡
⎣ur

uθ

uφ

⎤
⎦ = R

⎡
⎣ur

uθ

uφ

⎤
⎦ (2.54)

As expected, the transformation matrix R in the above equation is the same as
the matrix relating partial differentiation with respect to rectangular and spherical
coordinates in (2.43).

We now proceed to the derivation of the strain tensor in spherical coordinates.
The following differential operators are defined:

∇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�x

�

�y

�

�z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; ∇s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�x

1

r

�

�θ

1

r sin θ

�

�φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; ∇ = R∇s (2.55)
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The strain tensor in rectangular coordinates is given by:

� = 1

2

(
�u
�x

+ �u
�x

T)
(2.56)

where u is a rectangular displacement vector given by (2.44). We first consider a
transpose to �u/�x:

�u
�x

T

= ∇ (
ux uy uz

)
(2.57)

substituting (2.54) and (2.55) into the above gives (Schenck, 1999):

�u
�x

T

= R∇s
[(

ux uy uz
)

R−1
] = R∇s

[(
ux uy uz

)]
R−1 + R

⎧⎨
⎩
⎛
⎝ux

uy

uz

⎞
⎠∇s

T

⎫⎬
⎭

T

R−1

= R

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�ur

�r

�uθ

�r

�uφ

�r

1

r

�ur

�θ

1

r

�uθ

�θ

1

r

�uφ

�θ

1

r sin θ

�ur

�φ

1

r sin θ

�uθ

�φ

1

r sin θ

�uφ

�φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R−1 + RA

(2.58)
where A is:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

ur
�

�r
uθ

�

�r
uφ

�

�r
ur

r

�

�θ

uθ

r

�

�θ

uφ

r

�

�θ

ur

r sin θ

�

�φ

uθ

r sin θ

�

�φ

uφ

r sin θ

�

�φ

⎤
⎥⎥⎥⎥⎥⎥⎦

R−1 =

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ur
�

�r
uθ

�

�r
uφ

�

�r
ur

r

�

�θ

uθ

r

�

�θ

uφ

r

�

�θ

ur

r sin θ

�

�φ

uθ

r sin θ

�

�φ

uφ

r sin θ

�

�φ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎤
⎥⎥⎥⎦

(2.59)
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After differentiation we obtain:

A =

⎡
⎢⎢⎢⎣

0 0 0
cφ (ur cθ − uθ sθ )

r

sφ (ur cθ − uθ sθ )

r

−ur sθ − uθcθ

r−sφ (ur sθ − uθcθ ) − uφcφ

rsθ

cφ (ur sθ + uθcθ ) − uφsφ

rsθ
0

⎤
⎥⎥⎥⎦ =

=

⎡
⎢⎢⎣

0 0 0

−uθ

r

ur

r
0

−uφ

r
−cθ

sθ

uφ

r

ur

r
+ cθ

sθ

uφ

r

⎤
⎥⎥⎦R−1

(2.60)
where s denotes sin and c denotes cos.

Using the above expression in (2.58) yields:

�uT

�x
= R

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�ur

�r

�uθ

�r

�uφ

�r

1

r

�ur

�θ
− uθ

r

1

r

�uθ

�θ
+ ur

r

1

r

�uφ

�θ

1

r sin θ

�ur

�φ
− uφ

r

1

r sin θ

�uθ

�φ
− cot θ

uφ

r

1

r sin θ

�uφ

�φ
+ cotθ

uθ

r
+ ur

r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

R−1

(2.61)

= RUs
T R−1

Substituting (2.61) into (2.56) results in:

� = 1

2

(
�u
�x

+ �u
�x

T)
= 1

2

(
RUsR−1 + RU T

s R−1
) = R

1

2

(
Us + U T

s

)
R−1 (2.62)

where the strain tensor in spherical coordinates is given by (Love, 1944; Schenck,
1999):

�s = 1

2

(
Us + UT

s

)
(2.63)

From (2.61) and (2.63) we find the spherical components of the strain as follows:

εr = �ur

�r
(2.64)

εθ = 1

r

�uθ

�θ
+ ur

r
(2.65)

εφ = 1

r sin θ

�uφ

�φ
+ cot θ

uθ

r
+ ur

r
(2.66)
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εrθ = 1

2

(
1

r

�ur

�θ
− uθ

r
+ �uθ

�r

)
(2.67)

εφr = 1

2

(
1

r sin θ

�ur

�φ
− uφ

r
+ �uφ

�r

)
(2.68)

εθφ = 1

2

(
1

r sin θ

�uθ

�φ
− cot θ

uφ

r
+ 1

r

�uφ

�θ

)
(2.69)

2.4 Theoretical Formulation of the Shell Equations

Our shell theory is based on the following:

� Assumed out-of-plane stress components that satisfy given traction boundary
conditions;

� Three-dimensional elasticity equations with an integral form of the equilibrium
equations; and

� Stress resultants and stress couples acting on the middle surface of the shell to-
gether with average displacements along a normal of the middle surface of the
shell and the average rotations of the normal (Voyiadjis and Baluch, 1981).

The resulting constitutive equations of shells reduce to those given by Flugge
(1960) when the shear deformation and radial effects are neglected. In this case, the
average displacement’s are replaced by the middle surface displacements.

The shell equations derived in this chapter are presented in several stages. The
solution of the thick spherical container subjected to uniform pressure, which along
with the assumed out-of-plane stress components provides a basis for the formu-
lation, is given first. Using the stress-strain and strain-displacement relationships,
we determine the displacement field. By means of displacements, we obtain the re-
maining components of the strain and stress tensors. From the stresses, we calculate
the stress resultant and stress couples, accounting for the initial curvature effect. In
Sect. 2.5, the average displacements of the shell are defined in order to identify the
boundary conditions. The stress resultants and stress couples are then expressed in
terms of the average displacements of the shell.

Our theory can easily be reduced to the equivalent plate theory, which is given in
Sect. 2.3. Finally, the numerical examples verifying the reliability of the proposed
shell constitutive equations are presented.

2.4.1 Assumed Out-of-Plane Stress Components

We consider a thick spherical container subjected to uniform external and internal
pressures. This problem was analyzed by Lame (1852), who through analytical cal-
culations obtained an expression for the radial stresses in the spherical vessel shown
in Fig. 2.7. The radial stress distribution for thick spheres subjected to constant
radial loads at both surfaces z = −h/2 and z = −h/2 (Fig. 2.7) is given by (2.70):
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σz = (r2/r )3 − 1

c1
pi + (r1/r )3 − 1

c2
po (2.70)

where:

c1 = 1 −
(

r2

r1

)3

and c2 =
(

r1

r2

)3

− 1 (2.71)

r = R + z (2.72)

and:

σz – radial stresses;
pi , po – distributed radial loads on the inner and outer surfaces respectively

(z = −h/2 and z = h/2);
r1, r2 – radius of curvature of the inner and outer surfaces respectively (Fig. 2.7);
r – radius of curvature of the plane away from the middle plane; and
R – radius of curvature of the mid-plane (Fig. 2.7).

The stress field in a spherical container given in Fig. 2.7 needs to satisfy the
following boundary conditions (Fig. 2.8):

σz = po at z = h/2

τzφ = pφo at z = h/2

τzθ = pθo at z = h/2

σz = −pi at z = −h/2

τzφ = −pφi at z = −h/2

τzθ = −pθ i at z = −h/2

(2.73)

Based on the solution given by (2.70) and (2.71), the above given boundary con-
ditions, and the transverse shear stresses given by (2.36) and (2.37), and accounting
for the initial curvature effect, the following out-of-plane stress components are as-
sumed:

Fig. 2.7 A spherical
container under uniform
pressures (Voyiadjis and
Woelke, 2004)

po

pi r1

r2
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τθ z =
(

1 + z

R

) 3Qθ

2h

[
1 −

(
2z

h

)2
]

+ (r2/r )3 − 1

c1
pθ i + (r1/r )3 − 1

c2
pθo (2.74)

τφz =
(

1 + z

R

) 3Qφ

2h

[
1 −

(
2z

h

)2
]

+ (r2/r )3 − 1

c1
pφi + (r1/r )3 − 1

c2
pφo (2.75)

where:

τθ z, τφz – transverse shear stresses (first subscripts – θ and φ denote the direction
of the normal to the plane on which stresses are acting; second subscripts – z
denote the direction of the stresses);

pθ i , pθo – distributed loads along the θ direction, on the inner and outer surfaces
respectively;

pφi , pφo – distributed loads along the φ direction;
Qθ , Qφ – transverse shear forces; and
h – thickness of the shell.

Equations (2.74) and (2.75) express the assumed transverse shear stresses. The
first term in both the equations depicts the transverse shear stresses calculated for
the plate cross section, given by (2.36) and (2.37). The transverse shear stresses in
curved shells are modified by the term (1 + z/R), which accounts for the fact that
the cross section is not rectangular, but exhibits a curvature. The last two terms from
(2.74) and (2.75) are assumed such that the stresses satisfy the boundary conditions.
This is achieved by using functions similar to those representing the distribution of
the radial stresses in (2.70). The assumed stress field ((2.70), (2.74), (2.75)) satisfies
the boundary conditions given by (2.73).

Fig. 2.8 A spherical shell
element

h / 2

z

pi

h / 2

po

zr1

r
r2

R

θ φ
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2.4.2 Displacement Field

We use the three-dimensional elasticity constitutive equations to derive the displace-
ment field. Using Hooke’s law for a linear elastic material, we obtain the transverse
normal strain εz in terms of the stresses as follows:

εz = 1

E
[σz − ν(σθ + σφ)] (2.76)

where σθ and σφ are normal stresses in the θ and φ directions, respectively.
Using (2.16) and (2.17) the sum of the normal stresses: (σθ + σφ) can be written

as:

σθ + σφ = 12(Mθ + Mφ)z

h3
(2.77)

Equation (2.77) was first used by Reissner (1975) to modify the expression for
the transverse displacement w. Substituting expressions (2.70) and (2.77) into (2.76)
we obtain:

εz = �w

�z
= 1

E

[
(r2/r )3 − 1

c1
pi + (r1/r )3 − 1

c2
po − 12ν

h3
(Mθ + Mφ)z

]
(2.78)

Integrating (2.78) with respect to z yields:

w(θ, φ, z) = w0(θ, φ) + 1

E

∫ [
(r2/r )3 − 1

c1
pi + (r1/r )3 − 1

c2
po − 12ν

h3
(Mθ + Mφ)z

]
dz

(2.79)

Denoting:

M = (Mθ + Mφ) (2.80)

and representing 1/ (R + z) as a power series:

1

R + z
= 1

R
− z

R2
+ z2

R3
− . . . . . . (2.81)

we have:

w(θ, φ, z) = w0(θ, φ) + 1

E

{
pi

c1

[
−z + r3

2

R3

(
z − 3

2

z2

R

)]

+ po

c2

[
−z + r3

1

R3

(
z − 3

2

z2

R

)]
− ν

6z2

h3
M

}
(2.82)
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In the classical theory of bending of thin shells, the term z/R and its higher
order terms are neglected. In the term z/R while neglecting all higher order terms.
Equation (2.82) is the resulting expression for w (θ, φ, z).

To determine the remaining components of the displacement field, i.e. u (θ, φ, z)
and v (θ, φ, z), we use the following strain-displacement relations in spherical coor-
dinates:

�v

�z
+ 1

(R + z)

�w

�φ
− v

(R + z)
= γφz = τφz

G
(2.83)

1

(R + z) sin φ

�w

�θ
+ �u

�z
− u

(R + z)
= γθ z = τθ z

G
(2.84)

where u, v, w are the displacements along the θ, φ, z axes, respectively. Multiplying
both sides of the (2.83) and (2.84) by 1/(R + z), we obtain:

1

(R + z)

�v

�z
− 1

(R + z)

v

(R + z)
= 1

(R + z)

(
τφz

G
− 1

R + z

�w

�φ

)
(2.85)

1

(R + z)

�u

�z
− 1

(R + z)

u

(R + z)
= 1

(R + z)

(
τθ z

G
− 1

(R + z) sin φ

�w

�θ

)
(2.86)

The left side of both of the above equations can be rewritten as:

�

�z

(
v

R + z

)
= 1

(R + z)

(
τφz

G
− 1

R + z

�w

�φ

)
(2.87)

�u

�z

(
u

R + z

)
= 1

(R + z)

(
τθ z

G
− 1

(R + z) sin φ

�w

�θ

)
(2.88)

as

v = (R + z)

h/2∫
−h/2

1

(R + z)

(
τφz

G
− 1

R + z

�w

�φ

)
dz (2.89)

u = (R + z)

h/2∫
−h/2

1

(R + z)

(
τθ z

G
− 1

(R + z) sin φ

�w

�θ

)
dz (2.90)

Solution of the above equations in their current form produces cumbersome
logarithmic terms. To avoid such terms, we replace the term 1/(R + z) in the (2.89)
and (2.90) with the power series given by (2.81). Substituting for the appropriate
shearing stress from expressions (2.83) and (2.84) into (2.89) and (2.90), and inte-
grating both expressions with respect to z, we obtain the remaining components of
the displacement field:
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u(θ, φ, z) = (1 + z/R)

{
u0(θ, φ) + Qθ

2Gh
z

[
3 − 4z2

h2

]

− 1

R sin φ

�w0

�θ

(
z − z2

R

)
+ 2ν

Eh 3

1

R sin φ

�M

�θ
z 3

(
1 − 3z

2R

)

− 1

Ec1

1

R sin φ

�pi

�θ

[
− z2

2
+ 2z 3

3R
+ r 3

2

R 3

(
z2

2
− 7z 3

6R

)]

− 1

Ec2

1

R sin φ

�po

�θ

[
− z2

2
+ 2z 3

3R
+ r 3

1

R 3

(
z2

2
− 7z 3

6R

)]

+ pθ i

Gc1

[
−z + z2

2R
+ r 3

2

R 3

(
z − 2z2

R

)]

+ pθo

Gc2

[
−z + z2

2R
+ r 3

1

R 3

(
z − 2z2

R

)]}

v(θ, φ, z) = (1 + z/R)

{
v0(θ, φ) + Qφ

2Gh
z

[
3 − 4z2

h2

]

(2.91)

− 1

R

�w0

�φ

(
z − z2

R

)
+ 2ν

Eh 3

1

R

�M

�φ
z 3

(
1 − 3z

2R

)

− 1

Ec1

1

R

�pi

�φ

[
− z2

2
+ 2z 3

3R
+ r 3

2

R 3

(
z2

2
− 7z 3

6R

)]

− 1

Ec2

1

R

�po

�φ

[
− z2

2
+ 2z 3

3R
+ r 3

1

R 3

(
z2

2
− 7z 3

6R

)]

+ pφi

Gc1

[
−z + z2

2R
+ r 3

2

R 3

(
z − 2z2

R

)]

+ pφo

Gc2

[
−z + z2

2R
+ r 3

1

R 3

(
z − 2z2

R

)]}

(2.92)

In our shell theory, we omit the variations of the distributed loads pφi , pφo, pθ i ,

pθo for simplicity and conciseness. The reader may choose to include them by fol-
lowing the procedure outlined below.
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2.4.3 Stress Components

To obtain the remaining stress components, the following three-dimensional stress–
strain relationships are used:

σθ = E(
1 − ν2

) [εθ + νεφ

]+ ν

1 − ν
σz (2.93)

σφ = E(
1 − ν2

) [εφ + νεθ

]+ ν

1 − ν
σz (2.94)

τθφ = Gγθφ (2.95)

together with the following strain–displacement relations in spherical coordinates:

εθ = 1

(R + z) sin φ

�u

�θ
+ v

(R + z)
ctgφ + w

R + z
(2.96)

εφ = 1

(R + z)

�v

�φ
+ w

R + z
(2.97)

γθφ = 1

(R + z) sin φ

�v

�θ
+ 1

(R + z)

�u

�φ
− u

(R + z)
ctgφ (2.98)

Substituting for the displacements u, v and w from (2.91), (2.92), (2.82) respec-
tively, into expressions (2.96), (2.97), (2.98), and substituting the resulting strains
into equations (2.93), (2.94), (2.95) we obtain the following expression for the nor-
mal stresses in the θ and φ directions respectively:

σθ = E

1 − ν2
+
{

1

R sin φ

�u0

�θ
+ cos φ

R sin φ
v0 + ν

R

�v0

�φ

+ z

2Gh

[
3 − 4z2

h2

] [
1

R sin φ

�Qθ

�θ
+ cos φ

R sin φ
Qφ + ν

R

�Qφ

�φ

]

+�2
1

[
− 1

R

(
z − z2

R

)
w0 + 2ν

Eh 3

1

R
z 3

(
1 − 3z

2R

)
M

− 1

Ec1

1

R

[
− z2

2
+ 2z 3

3R
+ r 3

2

R 3

(
z2

2
− 7z 3

6R

)]
pi

− 1

Ec2

1
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+ r 3

1

R 3

(
z2

2
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]
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+ pφi cos φ

Gc1 R sin φ

[
−z + z2

2R
+ r 3

2

R 3

(
z − 2z2

R

)]
(2.99)

+ pφo cos φ

Gc2 R sin φ

[
−z + z2

2R
+ r 3

1

R 3

(
z − 2z2

R

)]

+ 1 + ν

R
(

1 + z

R

)
[
w0 + pi

Ec1

[
−z + r 3

2

R 3

(
z − 3

2

z2

R

)]

+ po

Ec2

[
−z + r 3

1

R 3

(
z − 3

2

z2

R

)]
− ν

6z2

Eh 3
M

]}

+ ν

1 + ν

[
pi

c1

(
r 3

2

(R + z) 3
− 1

)
+ po

c2

(
r 3

1

(R + z) 3
− 1

)]

where:

�2
1 = 1

R sin2 φ

�2

�θ2
+ cos φ

R sin φ

�

�φ
+ ν

R

�2

�φ2
(2.100)

σφ = E

1 − ν2

{
1

R sin φ

�u0

�θ
+ ν cos φ

R sin φ
v0 + 1

R

�v0

�φ

+ z

2Gh

[
3 − 4z 2

h 2

] [
ν

R sin φ

�Qθ

�θ
+ ν cos φ

R sin φ
Qφ + 1

R

�Qφ

�φ

]

+�2
2

[
− 1

R

(
z − z2

R

)
w0 + 2ν

Eh3

1

R
z3

(
1 − 3z

2R

)
M

− 1

Ec1

1

R

[
− z2

2
+ 2z3

3R
+ r3

2

R3

(
z2

2
− 7z3

6R

)]
pi

− 1

Ec2

1

R

[
− z2

2
+ 2z3

3R
+ r3

1

R3

(
z2

2
− 7z3

6R

)]
po

]

+ νpφi cos φ

Gc1 R sin φ

[
−z + z2

2R
+ r3

2

R3

(
z − 2z2

R

)]

+ νpφo cos φ

Gc2 R sin φ

[
−z + z2

2R
+ r3

1

R3

(
z − 2z2

R

)]
(2.101)

+ 1 + ν

R
(
1 + z

R

)
[
w0 + pi

Ec1

[
−z + r3

2

R3

(
z − 3

2

z2

R

)]
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+ po

Ec2

[
−z + r3

1

R3

(
z − 3

2

z2

R

)]
− ν

6z2

Eh3
M

]}

+ ν

1 + ν

[
pi

c1

(
r3

2

(R + z)3
− 1

)
+ po

c2

(
r3

1

(R + z)3
− 1

)]

where:

�2
2 = ν

R sin2 φ

�2

�θ2
+ ν cos φ

R sin φ

�

�φ
+ 1

R

�2

�φ2
(2.102)

The shear stresses in the θφ-plane are:

τθφ = G

{
1

R sin φ

�v0

�θ
+ 1

R

�u0

�φ
− u0 cos φ

R sin φ
v0

+ z

2Gh

[
3 − 4z2

h2

] [
1

R sin φ

�Qφ

�θ
+ 1

R

�Qθ

�φ

cos φ

R sin φ
Qθ

]

+ � 2
3

[
− 1

R

(
z − z2

R

)
w0 + 2ν

Eh3

1

R
z3

(
1 − 3z

2R

)
M

− 1

Ec1

1

R

[
− z2

2
+ 2z3

3R
+ r3

2

R3

(
z2

2
− 7z3

6R

)]
pi

− 1

Ec2

1

R

[
− z2

2
+ 2z3

3R
+ r3

1

R3

(
z2

2
− 7z3

6R
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]

(2.103)

+ pφi cos φ

Gc1 R sin φ

[
−z + z2

2R
+ r3

2

R3

(
z − 2z2

R

)]

+ pφo cos φ

Gc2 R sin φ

[
−z + z2

2R
+ r3

1

R3

(
z − 2z2

R

)]}

where:

�2
3 = 2

R sin φ

�2

�θ�φ
+ 2 cos φ

R sin2 φ

�

�θ
(2.104)

2.4.4 Stress Couples and Stress Resultants on the Middle Surface

The definitions of the stress couples with the initial curvature effect taken into ac-
count are:
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Mθ = −
h/2∫

−h/2

σθ z
(

1 + z

R

)
dz (2.105)

Mφ = −
h/2∫

−h/2

σφz
(

1 + z

R

)
dz (2.106)

Mθφ = −
h/2∫

−h/2

τθφz
(

1 + z

R

)
dz (2.107)

The positive bending moment is the one that results in positive stresses in the
bottom part of the shell (Fig. 2.5). We now substitute the stresses given by (2.100),
(2.102), (2.104) into the respective relations for the stress couples to obtain:

Mθ = D

{
− 1

R2 sin φ

�u0

�θ
− cos φ

R2 sin φ
v0 − ν

R2

�v0

�φ

− 6

5Gh

[
1

R sin φ

�Qθ

�θ
+ cos φ

R sin φ
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R

�Qφ

�φ

]

+ 1

R
�2

1w0 +
(

9νh

112E R 3
− 3ν

10E Rh

)
�2

1 M

− 1

E R2c1

[
h2

24

(
1 + 12

5

r 3
2

R2
− r 3

2

R 3

)]
�2

1 pi

− 1

E R2c2

[
h2

24

(
1 + 12

5

r 3
1

R2
− r 3

1

R 3

)]
�2

1 po (2.108)

+ pφi cos φ

R sin φ

1

Gc1

[
1 − r 3

2

R 3
− 3h2

40R2

]
+ pφo cos φ

R sin φ

1
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1

R 3
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]
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E R

[
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[
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2

R 3
(1 − 2ν)

]
+ po
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[
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1

R 3
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]]}

Mφ = D

{
− ν

R2 sin φ

�u0

�θ
− ν cos φ

R2 sin φ
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�φ

− 6

5Gh

[
ν
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�Qθ
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R
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R
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(
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− 1

E R2c1

[
h2

24

(
1 + 12

5

r 3
2

R2
− r 3

2

R 3

)]
�2

2 pi (2.109)

− 1

E R2c2

[
h2

24

(
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5

r 3
1
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1

R 3
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1
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[
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2
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]
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1
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1
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]
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E R

[
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[
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2
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]
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1

R 3
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Mθφ = D
1 − ν

2

{
− 1

R2 sin φ

�v0

�θ
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R2

�u0

�φ
− cos φ

R2 sin φ
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�θ
+ 1

R
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R
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− 1
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r 3
2
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2

R 3
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5

r 3
1

R2
− r 3

1

R 3
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+ pθ i cos φ

R sin φ

1

Gc1

[
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2

R 3
− 3h2

40R2

]
+ pθo cos φ

R sin φ

1
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[
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1

R 3
− 3h2

40R2

]}

Substituting for the stresses σθ , σφ, τθφ from (2.100), (2.102), and 2.104) into the
definitions of the stress resultants:

Nθ =
h/2∫

−h/2

σθ

(
1 + z

R

)
dz (2.111)

Nφ =
h/2∫

−h/2

σφ

(
1 + z

R

)
dz (2.112)

Nθφ =
h/2∫

−h/2

τθφ

(
1 + z

R

)
dz (2.113)
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we obtain the following expression for the normal force in the θ direction:

Nθ = Eh

1 − ν2

{
1

R sin φ

�u0

�θ
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R
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− pφi cos φ

sin φ

1
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1
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(
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1
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R
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1
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The normal force in the φ direction is:

Nφ = Eh
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(2.115)
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[
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(
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2
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)
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1
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The normal force in the θφ-plane is:

Nθφ = Eh

1 − ν2

(
1 − ν

2

){
1

R sin φ

�v0
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+ 1

R
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[
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(
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1
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(2.116)

2.4.5 Average Displacements ū, v̄, w̄ and Rotations φθ, φφ

To identify the appropriate boundary conditions for the derived shell theory, we
introduce average displacements ū, v̄, w̄, and rotations φθ , φφ . The rotations are for
sections θ = const and φ = const , respectively. We first define the transverse shear
resultants as:

Qθ = T γθ z (2.117)

Qφ = T γφz (2.118)

where T is given by:

T = 5

6
Gh (2.119)

and γθ z, γφz are expressed similarly to (2.83) and (2.84):

γθ z = 1

(R + z) sin φ

�w̄

�θ
+ �ū

�z
− ū

(R + z)
(2.120)

γφz = �v̄

�z
+ 1

(R + z)

�w̄

�φ
− v̄

(R + z)
(2.121)

We obtain the average transverse displacement w̄ by equating the work of the
transverse shear stress τφz due to the displacement w to the work of the transverse
shear resultant Qφ due to the average displacement w̄ (Voyiadjis and Baluch, 1981;
Hu, 1984).
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h/2∫
−h/2

τφzw
(

1 + z

R

)
dz = Qφw̄ (2.122)

One could choose to equate the work of the transverse shear stress τθ z due to the
displacement w to the work of the transverse shear resultant Qθ due to the average
displacement w̄ instead, which yields the same expression for w̄, given by:

w̄ = w0 − M

(
3ν

10Eh
− 9νh

112E R2

)
− 1

10

h2

REc1

r3
2

R3
pi − 1
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h2

REc2

r3
1

R3
po (2.123)

Similarly, to obtain ū, v̄ φθ , φφ we use the following equations:

h/2∫
−h/2

σθu
(

1 + z

R

)
dz = Nθ ū + Mθφθ (2.124)

h/2∫
−h/2

σφv
(

1 + z

R

)
dz = Nφv̄ + Mφφφ (2.125)

The resulting expressions for ū, v̄, φθ , φφ are given by:

ū = u0 + 1

E R sin φ
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[
1
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2
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(2.126)

v̄ = v0 + 1

E R
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[
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φθ = 1

R sin φ

�w̄

�θ
− 6

5Gh
Qθ − ū

R
(2.128)

φφ = 1

R

�w̄

�φ
− 6

5Gh
Qφ − v̄

R
(2.129)

Using equations (2.117) and (2.118) we can rewrite (2.128) and (2.129):

φθ = 1

R sin φ

�w̄

�θ
− γθ z − ū

R
(2.130)

φφ = 1

R

�w̄

�φ
− γφz − v̄

R
(2.131)
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The remaining stress resultants and stress couples may be expressed more con-
cisely in terms of ū, v̄, w̄, γθ z, γφz :

Mθ = D

[
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(2.132)
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Nθφ = Eh
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where:

k1 = D
1 + ν
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[
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2
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]
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k2 = D
1 + ν

E Rc2
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k4 = D
ctgφ

RGc2

(
1 − r3

1

R3

)
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k5 = h3
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(
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1
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These constitutive equations reduce to those given by Flugge (1960) when the
shear deformation and radial effects are neglected. In this case, the average dis-
placements are replaced by the middle surface displacements and we obtain the
transverse shear forces Qθ , Qφ from the equilibrium equations in terms of the stress
couples.

An alternative set of expressions for the normal forces and bending moments
can be obtained in terms of the strains εθ , εφ, γθ z, γφz and corresponding rotations
φθ , φφ . These relations (Voyiadjis and Woelke, 2004) are:
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Nθ = Eh

1 − ν2

[
εθ + νεφ

]+ D

R

[
1

R sin φ

�γθ z

�θ
+ ctgφ

R
γφz + ν

R

�γφz

�φ

]

+ k5 pi + k6 po + k7 pφi + k8 pφo

(2.149)
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2.4.6 Equilibrium Equations and Boundary Conditions

To derive the small deformation equilibrium equation, we consider the small shell
element shown in Fig. 2.9. The externally applied forces per unit area are given by
pθ , pφ, pz in θ, φ, z directions, respectively (not shown in Fig. 2.9 for clarity).
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Fig. 2.9 Stress resultants on a shell element
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The equilibrium requirements for forces in θ, φ, z directions and moments around
θ, φ, z axes require that the following equations be satisfied:

�

�θ
(Nθ sin θ ) + �Nθφ

�φ
− Nφ cos θ + Qθ sin θ + pθ R sin θ = 0 (2.152)

�

�θ

(
Nφθ sin θ

)+ �Nφ

�φ
+ Nθφ cos θ + Qφ sin θ + pφ R sin θ = 0 (2.153)

Nφ sin θ + Nθ sin θ − �Qφ

�φ
− �

�θ
(Qθ sin θ ) − pz R sin θ = 0 (2.154)

�

�θ
(Mθ sin θ) + �Mθφ

�φ
− Mφ cos θ + Qθ R sin θ = 0 (2.155)

�

�θ

(
Mφθ sin θ

)+ �Mφ

�φ
− Mθφ cos θ − Qφ R sin θ = 0 (2.156)

Mθφ

R
− Mθφ

R
= Nθφ − Nφθ (2.157)

In the above expressions pφ, pθ , pz are the equivalent distributed loads acting
on the middle surface of the shell. Equation (2.157) is identically satisfied, reducing
the number of equilibrium equations to five. The stress resultants and couples can be
expressed in terms of either ū, v̄, w̄, γθ , γφ or ū, v̄, w̄, φθ , φφ . We therefore have five
unknowns to solve from the conditions (2.152), (2.153), (2.154), (2.155), (2.156).

The static and kinematic boundary conditions can be expressed in terms of either
ū, v̄, w̄, γθ , γφ or ū, v̄, w̄, φθ , φφ , together with the use of the constitutive (2.132),
(2.133), (2.134), (2.135). The boundary conditions (BCs) are given as follows:

� if the edge (0, φ) is simply supported the BCs may be written as: w̄

(0, φ) = 0; φφ (0, φ) = 0; Mθ (0, φ) = 0
� if the edge (0, φ) is clamped the BCs may be written as: w̄

(0, φ) = 0; φφ (0, φ) = 0; φθ = (0, φ) ; ū (0, φ) = 0
� if on the edge (0, φ) stretching of the mid-plane is prevented, BCs may be written

as: u0 (0, φ) = 0; v0 (0, φ) = 0 and if additionally the pressures pz are uniformly

distributed, i.e.
�pz

�θ
= �pz

�φ
= 0 then ū (0, φ) = 0; v̄ (0, φ) = 0

� if the edge (0, φ) is free to stretch in the θ direction, then: v0 (0, φ) = 0;
Nθ (0, φ) = 0

� if the edge (0, φ) is free the BCs may be written as follows: Mθ (0, φ) =
0; Qθ (0, φ) = 0; Mθφ (0, φ) = 0; Nθ (0, φ) = 0; Nθφ (0, φ) = 0

2.4.7 The Non-Linear Nature of the Stress Distribution

The nonlinear distribution of the in-plane stresses through the thickness in our the-
ory is due to the incorporation of the initial curvature of the shell and the three-
dimensional constitutive equations obtained from relations (2.93), (2.94), (2.95).
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This effect becomes highly pronounced in thick shells when the magnitude of the
maximum stress is changed significantly compared to the linear stress variation the-
ory.

In the expressions for in-plane stress components σθ , σφ, τθφ given by (2.100),
(2.100), (2.102), (2.102), (2.103), (2.104), nonlinear terms such as 1/(R + z) and
z2/R are incorporated. Consequently, the stresses given by our theory have a non-
linear distribution along the thickness of the shell. Let us consider the simple case
of a constant normal pressure and investigate the corresponding stress distribution
of σφ through the thickness. Here we have:

σφ = E

1 − ν2

{
1

R sin φ

�u0

�θ
+ ν cos φ

R sin φ
v0 + 1

R

�v0

�φ
+

+ z

2Gh

[
3 − 4z2

h2
− 3z

R

(
1 − 2z

3R
− 2z2

h2

)]

[
ν

R sin φ

�Qθ

�θ
+ ν cos φ

R sin φ
Qφ + 1

R

�Qφ

�φ

]

+ �2
2

[
− 1

R

(
z − z2

R

)
w0 + 2ν

Eh3

1

R
z3

(
1 − 3z

2R

)
M

]

+ νpφi cos φ

Gc1 R sin φ

[
−z + z2

2R
+ r3

2

R3

(
z − 2z2

R

)]

+ νpφo cos φ

Gc2 R sin φ

[
−z + z2

2R
+ r3

1

R3

(
z − 2z2

R

)]

+ 1 + ν

R
(
1 + z

R

)
[
w0 + pi

Ec1

[
−z + r3

2

R3

(
z − 3

2

z2

R

)]

+ po

Ec2

[
−z + r3

1

R3

(
z − 3

2

z2

R

)]
− ν

6z2

Eh3
M

]}

+ ν

1 + ν

[
pi

c1

(
r3

2

(R + z)3
− 1

)
+ po

c2

(
r3

1

(R + z)3
− 1

)]

(2.158)

In equation (2.158) all the terms are nonlinear in z except for those associated

with:
1

R sin φ

�u0

�θ
,

�v0

�φ
,

�2w0

�θ2
.

The stress distribution obtained using our theory will be compared with the elas-
ticity theory.
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2.4.8 The Equivalent Formulation for Thick Plates

It is relatively simple to reduce our theory to a thick plate theory. As R approaches
infinity the stress resultants and stress couples reduce to:

Nx = Eh

1 − ν2

(
�ū

�x
+ ν

�v̄

�y

)
+ k1 (pi + po) (2.159)

Ny = Eh

1 − ν2

(
�v̄

�y
+ ν

�ū

�x

)
+ k1 (pi + po) (2.160)

Nx = Ny = Gh

(
�ū

�y
+ �v̄

�x

)
(2.161)

Qx = T

(
�w̄

�x
− φx

)
(2.162)

Qy = T

(
�w̄

�y
− φy

)
(2.163)

Mx = D

(
�φx

�x
+ ν

�φy

�y

)
+ k2 (pi + po) (2.164)

My = D

(
�φy

�y
+ ν

�φx

�x

)
+ k2 (pi + po) (2.165)

Mxy = Myx = D
1 − ν

2

(
�φx

�y
+ �φy

�x

)
(2.166)

where:

k1 = νh

2 (1 − ν)
(2.167)

k2 = −D
6ν (1 + ν)

5Eh
(2.168)

Note that our shell theory reduces to exactly the same equivalent thick plate
theory as that of Voyiadjis and Shi (1991). The Voyiadjis and Shi theory (1991)
can therefore be regarded as a the special case of our theory, as was indicated in
Chap. 1.

2.5 Examples

We test the validity of these concepts through the following examples. The shell
equations derived in this chapter are complicated, and obtaining analytical closed-
form solutions can be tedious. This is because the formulation takes into account
many important effects affecting the behavior of shells that are often neglected. Use
of the finite element method based on the present shell equations would alleviate this
difficulty. At this stage, however, the main objective is to verify our refined theory
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of shells, not its finite element implementation. We therefore consider two prob-
lems: cylindrical and spherical tanks subjected to uniform pressures (Sects. 2.4.1
and 2.4.3) for which the analytical solutions can be obtained by means of rational
simplifying assumptions and manual calculations. The problems of a hemispherical
dome and an arch (Sects. 2.4.2 and 2.4.4), were solved with the aid of the numerical
procedure, based on the constitutive equations formulated here. We compare the
results of the analysis provided by our theory with those obtained from the theory
of elasticity, as well as the classical theory of thin shells (Niordson, 1985).

2.5.1 Thick Sphere Subjected to Uniform Pressures

We investigate the stress distribution of σφ for a thick spherical container subjected
to uniform pressures pi , po as shown in Fig. 2.2 (pi = 5 k Pa, po = 4 k Pa). In this
case, we have:

v = Qφ = �Mφ

�φ
= 0 (2.169)

and

w = w(z) (2.170)

The stress σφ using our theory is expressed in this case as follows:

σφ = E

R + z

{
w0 + pi

Ec1

[
−z + r3

2

R3

(
z − 3

2

z2

R

)]
+ po

Ec2

[
−z + r3

1

R3

(
z − 3

2

z2

R

)]}
(2.171)

The corresponding exact elasticity solution for this problem is given by Lame
(1852):

σφ = − po

2c2

(
2 + r3

1

(R + z)3

)
− pi

2c1

(
2 + r3

2

(R + z)3

)
(2.172)

The distribution of σφ given by our theory is compared to the elasticity solution
by Lame (1852) in Table 2.1:

Using the theory of elasticity, we have:

w0 = R

E
σφ|z=0 (2.173)

σφ|z=0 = − po

2c2

(
2 + r3

1

R3

)
− pi

2c1

(
2 + r3

2

R3

)
(2.174)

Substituting for w0 from (2.173) and (2.174) into (2.172), we obtain the follow-
ing expression for σφ :
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Table 2.1 σφ Distribution for spherical shell

r1 r2 r2/r1 h = r2 − r1 c1 c2 Elasticity σφ [kPa] Present theory σφ [kPa]

r = r1 r = r2 R = r1 r = r2

3 3.9 1.3 0.9 −1.2 −0.545 19.7782 15.2782 19.712 15.315
3 4.5 1.5 1.5 −2.4 −0.704 14.18421 9.68421 14.01 9.7539
3 5.1 1.7 2.1 −3.9 −0.796 11.95004 7.45004 11.633 7.5458
3 6 2 3 −7 −0.875 10.42857 5.92857 9.8571 6.0476
3 6.6 2.2 3.6 −9.6 −0.906 9.899254 5.39925 9.1463 5.5253

σφ = R

R + z

[
− po

2c2

(
2 + r3

1

R3

)
− pi

2c1

(
2 + r3

2

R3

)]

+ 1

R + z

[
pi

Ec1

(
−z + r3

2

R3

(
z − 3

2

z2

R

))
+ po

Ec2

(
−z + r3

1

R3

(
z − 3

2

z2

R

))] (2.175)

It can easily be shown that σφ obtained from (2.175) for the case of z = 0 is
identical to σφ obtained from the elasticity solution expressed by (2.172), for the
same case. As expected, in the case of a sphere, σφ = σθ .

Gupta and Khatua (1978), in their derivation of a thick shell superparametric
finite element, proposed a modification in the expression for the circumferential
stress σφ , given by:

σφ = R

R + z
σ0 (2.176)

where σ0 is the average hoop stress. We note that Gupta and Khatua’s scheme, how-
ever, cannot distinguish between the internal and external pressures.

As shown in Table 2.1, our theory is very close to the exact elasticity solution for
thick spherical containers. To show the advantages of our theory our the classical,
thin shell theory, we analyze the problem of a spherical container subject to a uni-
form internal pressure pi = 5kPa. Figure 2.10 shows a comparison of the solution
obtained with the classical theory by Niordson (1985), and that obtained with our
theory.

As expected, the results deviate from the exact solution as the thickness of the
shell increases (Fig. 2.11). There is a significant improvement, however, in the re-
sults obtained using our theory over those obtained with the classical theory, which
yields large errors for thick shells.

A close investigation of the relative errors shows that the error in our result is
much smaller than that in the results obtained using the classical thin shell theory
(Fig. 2.11). The latter is built on the Kirchhoff–Love assumption, which, as shown
by Niordson (1971), has a relative error on the order of [h/R+(h/L)2]. We therefore
expect the error of the classical theory to be very close to the expression given by
Niordson: [h/R + (h/L)2]. As shown in Fig. 2.11, the classical theory has an error
equal approximately to the Niordson error. Our theory also shows some loss of
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accuracy as the thickness of the shell increases. This loss, however, is significantly
smaller than the Niordson error.

2.5.2 Thick Cylinder Subjected to Uniform Pressures

Our theory can be reduced to the case of cylindrical shells, as given by Voyiadjis and
Shi (1991). Therefore, the Voyiadjis and Shi (1991) formulation may be regarded
as a special case of our theory. To show this, we now investigate the stress distribu-
tion of σφ for a thick cylinder subjected to uniform pressures pi and po. As in the
previous example, we have:

v = Qφ = �Mφ

�φ
= 0 (2.177)
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and

w = w(z) (2.178)

To reduce our theory to the case of cylindrical shells, we need to adopt two dis-
tinct radii of curvatures Rθ = Rx and Rφ in the θ and φ directions, respectively. In
cylindrical shells we have Rθ = Rx = ∞, and therefore we may write:

Rθ sin φ�θ = �x and
u

Rθ

= v

Rθ

= w

Rθ

= 0 (2.179)

Considering also Lame’s solution for thick cylinders, we obtain the stress distri-
bution for σφ as given by Voyiadjis and Shi for the case of cylindrical shells:

σφ = E

R + z

{
w0 + pi

Ec1

[
−z + r2

2

R2

(
z − z2

R

)]
+ po

Ec2

[
−z + r2

1

R2

(
z − z2

R

)]}

(2.180)
The corresponding exact elasticity solution for this problem is given by:

σφ = − po

c2

(
1 + r2

1

(R + z)2

)
− pi

c1

(
1 + r2

2

(R + z)2

)
(2.181)

Table 2.2 compares the results of the given problem obtained by various other
theories with those obtained here. Our theory shows excellent agreement with the
closed-form solution of the cylindrical shell problem provided by Lame (1852).
This verifies the applicability of the our work not only to spherical shells but also to
shells with different radii of curvature in two directions. Our theory may therefore
be applied to shells of general shapes.

Table 2.2 σφ Distribution for the cylindrical shell

Winkler’s theory Elasticity-exact Present theory

r2/r1 r = r1 r = r2 r = r2 r = r2 r = r2 r = r2

1.5 −26.971 20.607 −27.858 21.275 −27.971 20.029
2 −7.725 4.863 −7.755 4.917 −7.642 4.358
3 −2.285 1.095 −2.292 1.130 −2.105 0.925

2.6 Summary

The examples in this chapter show that the proposed equations are accurate and
in good agreement with the exact solutions and with other theories. The classical
theory of shells based on the Kirchhoff–Love assumption, yields errors that could
become large in the case of thick shells. Our theory shows a significant reduction
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in error. This is evident in the first example (Sect. 2.5.1). The results we present are
accurate for very thick as well as very thin shells.

A limitation of our shell equations is use of the spherical strains in the derivation.
This restrains their direct use from problems in which the radius of the shell is
different in two distinct directions, e.g., cylinders. We showed, however, that the
theory could be easily reduced to the cylindrical case with no substantial loss of
accuracy. Furthermore, through the finite element method, the constitutive equations
derived here may be used to model shells of arbitrary shape, as well as arches,
beams, and plates. Thus, our theory is general and universal and gives excellent
results for all of the above-discussed cases.

Although numerous shell theories are available in the published literature, it is
difficult to find one that takes into account the transverse shears, initial curvature
and radial stresses. Our objective is to present a computational model for the non-
linear analysis of plates, and shells and a refined shell theory is necessary to achieve
that objective. Instead of using an existing formulation as a base for the algorithm,
we opted to develope a new and original theory of thick shells, which for certain
applications is more accurate than other theories.

The motivation for including all of the effects considered in our shell equations
is the higher demands imposed nowadays on the accuracy of structural analysis.
Unfortunately, higher accuracy usually means increased complexity, which is the
case here. Complicated equations are frequently solved with the aid of simplifying
assumptions, which inherently lead to loss of accuracy. Application of the average
displacements is an example of such an assumption. Nevertheless, it is useful to
incorporate more and more phenomena observed physically and experimentally in
modeling of materials and structures, as such an approach ultimately drives scien-
tific developments and technology.
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Chapter 3
Shell Element Based on the Refined Theory
of Thick Spherical Shells

3.1 Introduction

Formulation of a computational model for thick shells presents many problems,
as briefly described in Sect. 1.3.2. In the following sections, we discuss the most
important of these problems-shear and membrane locking and mesh instabilities
along with the remedies we adopted to overcome them.

After the introducing the details of the finite element procedure, which lead, to
the formulation of the stiffness matrix of the element, we verify the reliability of the
numerical algorithm through a series of discriminating examples.

3.1.1 Shear Locking

Shear locking is a numerical deficiency experienced in thick shell finite elements
that account for the transverse shear deformation. For conciseness, we examine the
problem using a thick beam, as the phenomenon is the same. Consider a typical
thick beam element with four degrees of freedom, as shown in Fig. 3.1.

This finite element algorithm is founded on the refined shell theory discussed in
Chap. 2. The main assumption of the theory was that the plane sections remain plane
after the deformation, but not perpendicular to the middle surface. The transverse
shear strains are therefore not negligible, as they are with thin plates or shells. For a
thick beam the shear strain γxz is given by the (3.1):

γxz = �w

�x
− φx (3.1)

where φx is the angle of rotation of the section originally perpendicular to the middle
surface and w is a vertical displacement (Fig. 1.3). The strain energy density of the
thick beam element is:

U = Ub + Us (3.2)
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Fig. 3.1 Thick beam element
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where Ub and Us are bending and shear strain energy densities respectively, given by:
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The constants E and G are the elastic and shear moduli, respectively; b is the width
of the beam and h is the thickness. The term 5/6 in the shear strain energy expression
is the “form factor”, which accounts for the parabolic distribution of the shear stress
τzx over a rectangular cross section (Cook et al., 1989). From the strain energy given
by (3.3) and (3.4) we may obtain the stiffness matrix:

[k] = [kb] + [ks] (3.5)

where [kb] resists bending strain εx and [ks] resists shear strain γxz . For a given
beam we can write:

([kb] + [ks]) {D} = {R} (3.6)

where {D} and {R} are the vectors of the nodal displacements and nodal external
forces respectively. The displacements of the thin beam {D} should be governed only
by [kb] as, the transverse shear deformation γxz is negligible. In other words, if the
shear rigidity 5Gbt/12 becomes much larger than Ebt3/12 in (3.5) and (3.6), then
[ks] should enforce the constraint γxz = 0. Instead, when the thickness of the beam
decreases, [ks] grows in relation to [kb]. Thus, [ks] acts as a penalty matrix causing
(3.6) to yield {D} = {0}, unless [ks] is singular, (Cook et al., 1989). A singular [ks]
can be achieved through a variety of methods described in Sect. 1.3.2. The most
popular method to overcome locking is selective reduced integration. This approach
has been examined extensively by Zienkiewicz (1971), Stolarski and Belytschko
(1981, 1982), Belytschko et al. (1984a,b,c) Hughes (1987), and many others. Deter-
mination of the components of the stiffness matrix, given in (3.6) usually involves
numerical integration of the strain energy density expression given by (3.2). Numer-
ical integration requires a certain number of sampling or Gauss integration points,
at which the values of the integrated functions are determined. If the number of the
sampling points is the same for all of the strain energy components, the integration
is uniform; otherwise it is selective. The integration is also called full if there are
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enough sampling points to ensure the exact integration of all stiffness coefficients. If
the number of Gauss points is smaller than needed to perform the exact integration
the scheme is called reduced integration. Through selective reduced integration, one
can integrate a bending mode of the strain energy (which should be dominant for
thin shells) with sufficient number of sampling points to ensure the exactness of the
solution and underintegrate the shear mode of the strain energy causing [ks] to be-
come singular, which prevents shear locking. This method, although very effective,
as reported by many authors, is mathematically inconsistent.

As discussed above, to overcome shear locking we use the quasi-conforming
technique, along with the appropriate interpolation formulas of the displacement
fields. We directly interpolate the strain fields rather than obtain them from the as-
sumed displacements. The element strains can be expressed in terms of the element
nodal displacement vector by explicit integration along the element boundaries. The
strain energy terms are integrated analytically, and the stiffness matrix is computed
by multiplication of the already integrated matrices. The numerical integration is not
performed, effectively preventing the shear stiffness form “suppressing” the bend-
ing modes.

The mesh of the finite elements may also lock as a result of inadequate represen-
tation of the displacement field on the element boundaries. Widely used bilinear
elements are characterized by the linear displacement functions. Although these
elements are attractive because of their simplicity, they are too stiff in bending.
Take, for example the rectangular, bilinear element subjected to bending moments
as shown in Fig. 3.2.

The correct deformation, shown in Fig. 3.2c gives rise to storage of the energy
caused by the normal strains only, while the bilinear element shown in Fig. 3.2b
stores the energy caused by the normal strain εx and a spurious shear strain γxz .
Thus, for the same deformation we have: M1 > M2. The unwanted shear strain
that produces M1 > M2 is called “parasitic shear”. This effect becomes decisive
especially when the ratio of a/b is large. Here, we use Hu’s (1981) cubic approx-
imation formulas for the displacements avoiding the problem of parasitic shear.
Moreover, the compatibility equations are enforced only in the weak sense, i.e.,
under the integral sign, which has the desirable effect of softening the structure of
elements.
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Fig. 3.2 (a) Rectangular bilinear element. (b) Deformed element-edges straight. (c) Correctly
deformed element for pure bending
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3.1.2 Membrane Locking

The term “membrane locking” refers to an excessive stiffness in bending of the
curved elements; it is similar to shear locking. In the curved element in pure bend-
ing, the nodal displacements should be resisted only by the bending action. If an
element suffers from membrane locking, the deformation is also resisted by the
membrane action. Because the membrane stiffness is much greater than the bending
stiffness in thin shells and arches, the desired bending mode is suppressed from the
element response to load (Cook et al., 2002). For conciseness, we use the simple
problem of a circular arch as an example of membrane locking in a curved element
with a low-order displacement field (Fig. 3.3). This problem was presented by Cook
et al. (2002).

The membrane strain εm and the curvature κ are given by:

εm = du

ds
+ w

R
and κ = 1

R

du

ds
− d2w

ds2
(3.7)

where s is a tangential direction. The membrane strain εm is associated with the
membrane force in the s direction. The curvature κ is associated with the bending
moment. By analogy with the displacement fields used for a straight beam, we use
the radial and axial displacement functions:

u = a1 + a2s

w = a3 + a4s + a5s2 + a6s3
(3.8)

where ai are the generalized degrees of freedom. Substituting the above equations
into (3.7) we have:

εm =
(

a2 + a3

R

)
+ a4

R
s + a5

R
s2 + a6

R
s3

κ = a2

R
− 2a5 − 6a6s

(3.9)
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Fig. 3.3 Arch element
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Under most loading conditions, a slender arch has little membrane strain, which
implies the inextensibility condition:

εm = du

ds
+ w

R
= 0 (3.10)

For the infinitely slender arch, the above condition requires that:

(
a2 + a3

R

)
= 0, a4 = 0, a5 = 0, a6 = 0 (3.11)

If the (3.11) are enforced, the only contribution to κ is from the membrane term,
a2. This is of course insufficient for the appropriate representation of the bending
mode. If, however, equations (3.11) are not satisfied, the membrane strain εm is
not zero. The nonzero membrane strain produces very large energy, leading to very
large membrane stiffness. The bending modes are then suppressed and the bending
deformation is “locked out”, where the deformation should be governed by bending.
The problem disappears when R = ∞.

As with shear locking, reduced selective integration is the most commonly used
approach to overcoming membrane locking. The principle is the same as that dis-
cussed above. Here, the membrane modes must be underintegrated to enforce the
inextensibility condition and free the formulation from membrane locking.

We use the linear interpolation functions for the membrane displacements and
the third order polynomials given by Hu (1981), for the vertical displacement
and angles of rotation. In the quasi-conforming technique, independently from the
displacement approximations, the strains are assumed such that the compatibility
equations are satisfied in a weak sense, i.e. under the integral sign. The appro-
priate choice of strain fields leads to satisfaction of the inextensibility condition.
This method has reported to be a very effective way of overcoming the deficiency
of membrane locking (Tang et al., 1980; Shi and Voyiadjis, 1991a; Lu and Liu,
1981). It is also mathematically more consistent than reduced selective integra-
tion, the integrations are performed analytically and exactly. The stiffness matrix
in the quasi-conforming technique is given explicitly, making the algorithm com-
putationally very efficient. We chose to use the quasi-conforming method to alle-
viate the numerical deficiencies discussed above and to deliver an explicit stiffness
matrix.

3.1.3 Mesh Instabilities

Mesh instabilities in the shell finite elements arise from shortcomings in the element
formulation process, such as inadequate integration scheme or inadequate approx-
imation of strains or displacements. Here, an instability is not in no way related to
buckling problems of structures (Cook et al., 2002). Various types of instabilities
are often referred to as kinematic, hourglass, or zero energy modes. The zero energy
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mode occurs when a nodal displacement vector {D} associated with straining of the
element produces zero strain energy. A spurious energy mode is the reverse situa-
tion, i.e., when a non-zero energy mode is present, despite the element’s moving as
a rigid body, with no strains. These two modes, as well as the other types of mesh
instabilities have been discussed in detail by Zienkiewicz (1978), Cook et al. (2002),
and many others.

A computational procedure we present, relies again on the quasi-conforming
technique and the direct interpolation of the strain fields to prevent spurious energy
modes. The appropriate approximation of the strains results in a reliable algorithm
free of common mesh instabilities.

3.2 Finite Element Formulation

3.2.1 Shell Constitutive Equations

In the previous chapter, we derived the refined shell theory of thick shells. The
final set of constitutive equations defined in the spherical coordinates, is given
by (2.133), (2.134), (2.135), (2.136), (2.137), (2.138), (2.139), (2.140), (2.141),
(2.142), (2.143), (2.144), (2.145), (2.146). These expressions were given in terms of
the average displacements: u, v, w, φθ , φφ given by (2.124), and (2.127), (2.128),
(2.129), (2.130), (2.131), (2.132). To formulate a spherical shell finite element with
the rectangular local coordinate system, it is necessary first to define the strains of
the shell in the Cartesian coordinate system. We express the strains and curvatures
in terms of the average displacements u, v, w, φx , φy as:

εx = �u

�x
+ w

R
(3.12)

εy = �v

�x
+ w

R
(3.13)

εxy = 1

2

(
�u

�y
+ �v

�x

)
(3.14)

κx = �φx

�x
= �

�x

(
�w

�x
− γxz − u

R

)
(3.15)

κy = �φy

�y
= �

�y

(
�w

�y
− γyz − v

R

)
(3.16)

κxy = 1

2

(
�φx

�y
+ �φy

�x

)
(3.17)

The stress resultants and couples can be now expressed in terms of the strains
given above:



3.2 Finite Element Formulation 55

Mx = D
[
κx + νκy

]
(3.18)

My = D
[
κy + νκx

]
(3.19)

Mxy = D (1 − ν) κxy (3.20)

Nx = S
[
εx + νεy

]
(3.21)

Ny = S
[
εy + νεx

]
(3.22)

Nxy = S (1 − ν) εxy (3.23)

Qx = T γxz (3.24)

Qy = T γyz (3.25)

where:

D = Eh3

12
(
1 − ν2

) , S = Eh(
1 − ν2

) , T = 5

12

Eh

(1 + ν)
(3.26)

In the expressions for membrane forces, given by (3.21), (3.22), (3.23), the vari-
ations of the transverse shear strains were neglected. The influence of the shear
strains on the bending moments is significant in thick shells and plates, and therefore
accounted for in the definition of the angles of rotations given by (3.15) and (3.16).
The membrane forces derived in the previous chapter are functions of the membrane
strains and of the variations of the shear strains. The effect of the latter is considered
small and was therefore disregarded ((3.21), (3.22), (3.23)). We later confirmed that
this approximation does not lead to substantial deterioration of the accuracy of our
model. We use the above shell constitutive equations to formulate the coupled strain
energy density and derive the stiffness matrix of the element.

3.2.2 Displacements and Boundary Conditions

We formulate a simple C0 thick/thin shell element based on our refined spherical
shell theory and quasi-conforming technique. It satisfies the Kirchhoff-Love hy-
pothesis for the case of thin plates or shells.

The average displacements along a point on the middle surface and the average
rotations of the normal given in Chap. 2, by (2.124) and (2.127), (2.128), (2.129),
(2.130), (2.131), (2.132) are used instead of the usual middle surface displacement
of the shell. In the case of thin shells, the average displacements are replaced by the
middle surface displacement. In rectangular coordinates, we have:

u = u0 + 1
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h2

24
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1

c1

�pi

�x

(
1 − r2

3

R3

)
+ 1

c2

�po

�x

(
1 − r1

3

R3

)]
(3.27)
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v = v0 + 1
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24
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w = w0 − M

(
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10Eh
− 9νh

112E R2
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− 1
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REc1
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3

R3
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10

h2

REc2

r1
3

R3
po (3.29)

φx = �w

�x
− γxz − u

R
(3.30)

φy = �w

�y
− γyz − v

R
(3.31)

The static and kinematic boundary conditions, expressed in terms of u, v, w, φx ,

φy , together with the use of the constitutive (3.18), (3.19), (3.20), (3.21), (3.22),
(3.23), (3.24), (3.25) are similar to those given in Sect. 2.4.6. Boundary conditions
(BC) are:

� if the edge (0, y) is simply supported the BCs are given as:

w (0, y) = 0; φy (0, y) = 0; Mx (0, y) = 0

� if the edge (0, y) is clamped the BCs are given as:

w (0, y) = 0; φy (0, y) = 0; φx = (0, y) ; u (0, y) = 0

� if on the edge (0, y) stretching of the mid-plane is prevented, BCs are given as:
u0 (0, y) = 0; v0 (0, y) = 0 and if additionally the pressures pz are uniformly
distributed, i.e. �pz/�x = �pz/�y = 0 then u (0, y) = 0; v (0, y) = 0

� if the edge (0, y) is free to stretch in the x direction, then: v0 (0, y) = 0; Nx

(0, y) = 0
� if the edge (0, y) is free the BCs are given as:

Mx (0, y) = 0; Qx (0, y) = 0; Mxy (0, y) = 0; Nx (0, y) = 0; Nxy (0, y) = 0

For simplicity and conciseness, we denote the average displacements u, v, w,

φx , φy as u, v, w, φx , φy . We therefore have the quadrilateral, doubly curved finite
element with five degrees of freedom per node: u, v, w, φx , φy and twenty degrees
of freedom per element. The vector of the nodal displacements is:

q ={
u1, v1, w1, φx1, φy1, u2, v2, w2, φx2, φy2, u3, v3, w3, φx3, φy3, u4, v4, w4, φx4, φy4

}T

(3.32)
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3.2.3 Element Displacement and Strain
Fields – Quasi-Conforming Method

The finite element we present is a four-node quadrilateral, doubly curved element.
The radius of curvature R is constant in both directions. We assume continuity of
the displacement fields but not their derivatives. We therefore have a C0 continuity
problem with twenty degrees of freedom in each element. The quasi-conforming
technique proposed by Tang et al. (1980, 1983) is used to compute the element stiff-
ness matrix. In this case, the strain field is interpolated directly, rather than evaluated
from the displacement field through differentiation. The functions describing the
surface are defined only on the interelement boundaries, leaving the functions inside
the elements undefined explicitly. This method is related to the so-called “general-
ized hybrid model”, which can also be derived using Hu-Washizu principle (Tang
et al., 1983, Hu, 1981, Shi and Voyiadjis (1990)). The quasi-conforming element
technique gives an explicit form of the stiffness matrix, as integrations are carried
out directly.

As stated above our objective is to develop an element applicable to both
thick and thin shells. The challenge lies partly in determining how to assume
the displacement distribution on the element boundary. Many authors adopt sim-
ple and convenient linear interpolation formulas on the boundary of the element.
The results of such approximations may suffice when the shear rigidity is not
very large. When the shear rigidity approaches infinity, however, the linear dis-
placement interpolation leads to a contradiction with the Kirchhoff–Love assump-
tion, which states that the shear deformation must vanish when the shell is thin.
Thus, the linear displacement interpolations are unsuitable when the shear rigid-
ity is very large (Hu, 1981). We discuss this shortcoming in Sect. 3.1.1. To for-
mulate a reliable and universal model for both thick and thin shells, we need
the three-generalized-displacement theory, on which the element is based, to de-
generate to the classical theory satisfying the Kirchhoff–Love assumption for the
case of thin shells. As the shear forces Qx , Qy are generally finite, the shear
deformations γxz and γyz must vanish when the shear rigidity T approaches in-
finity (see (3.24), (3.25), (3.26)). This can be achieved through the interpolation
functions within the element ensuring that w,φx , φy are in general three inde-
pendent functions, but also φx , φy also depend on w according to the classical
theory (Hu, 1981). Hu points out that such interpolation formulas must contain
the ratio of the flexural and shear rigidities. We use the approximation of the
displacement w and tangent rotation φs for the straight beam of length l given
by Hu:

w = 1

2

[
1 − ξ + λ

2

(
ξ 3 − ξ

)]
wi + 1

4

[
1 − ξ 2 + λ

(
ξ 3 − ξ
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2
φi

+1

2

[
1 + ξ − λ

2

(
ξ 3 − ξ

)]
w j + 1

4

[−1 + ξ 2 + λ
(
ξ 3 − ξ

)] l

2
φ j (3.33)
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φs = − 3

2l
λ
[
1 − ξ 2

]
wi + 1

4

[
2 − 2ξ − 3λ

(
1 − ξ 2

)]
φi

+ 3

2l
λ
[
1 − ξ 2

]
w j + 1

4

[
2 + 2ξ − 3λ

(
1 − ξ 2

)]
φ j (3.34)

A subscript s in (3.34) refers to the tangent direction at the edge of the element,
as shown in Fig. 3.4.

The linear approximation of the normal rotation is adopted here, similarly to Shi
and Voyiadjis (1991b), (see Fig. 3.4):

φn = 1

2
[1 − ξ ] φni + 1

2
[1 + ξ ] φnj (3.35)

where:

ξ = 2x

l
− 1 ≤ ξ ≤ 1 (3.36)

The parameter λ in (3.33), (3.34) is given by:

λ = 1(
1 + 12

D

T L2

) (3.37)

where D and T denote the flexural and shear rigidities of the shell, respectively. In
(3.37) the parameter D/T l2 accounts for the shear deformation effect. When the
shear rigidity is very large and (h/ l)2 → 0, λ → 1, w in (3.33) reduces to a
Hermite function. When the shear rigidity is very small λ = 0, then (3.33) reduces
to Cook’s (1972) interpolation formula. The interpolation formulas given by (3.33),
(3.34) are therefore suitable for both the classical theory of shells and the thick shell
theory based on which the present element is formulated. For a two-dimensional

Fig. 3.4 Shell element on a
plane, n-normal and
s-tangential directions
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problem we let Lx be the effective length in the x direction and L y the corresponding
effective length in the y direction. The two-dimensional expressions equivalent to
(3.37) are (Woelke and Voyiadjis, 2006):

λx = 1(
1 + 12

D

T Lx
2

) and λy = 1(
1 + 12

D

T L y
2

) (3.38)

Following the argument in Sect. 3.1.2, the linear approximations for the mem-
brane displacements u, v are:

u = 1

4
[1 − ξ ] ui + 1

4
[1 + ξ ] u j (3.39)

v = 1

4
[1 − ξ ] vi + 1

4
[1 + ξ ] v j (3.40)

where ξ is given by (3.36).
The method we use in the linear elastic analysis of shells called is the “quasi-

conforming technique” (Tang et al., 1983) because the compatibility equations
are satisfied in a weak sense, i.e., under the integral sign and the displacement
and, the strain fields are approximated independently. To determine the element
strain fields using the quasi-conforming technique, we discretize the strains in the
element as:

�b
T =

{
�φx

�x

�φy

�y

�φx

�y
+ �φy

�x

}
(3.41)

�m
T =

{
�u

�x
+ w

R

�v

�y
+ w

R

�u

�y
+ �v

�x

}
(3.42)

�s
T =

{
�w

�x
− φx − u

R

�w

�y
− φy − v

R

}
(3.43)

The derivatives may also be expressed by Taylor’s expansion or approximately
by a polynomial with n truncated terms:

�φx

�x
= α0 + α1x + α2 y + . . . =

n=1∑
i

Piαi (3.44)

We follow the same procedure for the remaining element strain fields. According
to the given nodal variables, the compatibility equations, and the requirement for
the proper rank of the element stiffness matrix (Liu et al., 1984), the strain fields are
interpolated as:
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� Linear bending strain field:

�b =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�φx

�x
�φy

�y
�φx

�y
+ �φy

�x
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=
⎡
⎣1 x y xy 0 0 0 0 0 0 0

0 0 0 0 1 x y xy 0 0 0
0 0 0 0 0 0 0 0 1 x y

⎤
⎦
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α1

α2

α3

α10

α11

⎫⎪⎪⎪⎪⎬
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= Pb�b (3.45)

� Stretch strain field:

�m =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�u

�x
+ w

R
�v

�y
+ w

R
�u

�y
+ �v

�x

⎫⎪⎪⎪⎪⎪⎬
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=
⎡
⎣1 y 0 0 0

0 0 1 x 0
0 0 0 0 1

⎤
⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α12

α13

α14

α15

α16

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= Pm�m (3.46)

� Constant transverse shear strain:

�s =

⎧⎪⎨
⎪⎩

�w

�x
− φx − u

R
�w

�y
− φy − v

R

⎫⎪⎬
⎪⎭ =

[
1 0
0 1

]{
α17

α18

}
= Ps�s (3.47)

where α1, α2, . . . . , α18, are the undetermined strain parameters.
The compatibility equations of the displacement field are not enforced a priori

in the above strain interpolations.
Let P be the trial function for the assumed strain field ((3.45)–(3.47)):

� = P� (3.48)

and N-the corresponding test function. We multiply both sides by the test function
and integrate over the element domain:

∫∫
�

NT�d� = �

∫∫
�

NTPd� (3.49)

The strain parameter � is determined from the quasi-conforming technique as
follows:

� = A−1Cq (3.50)

where q is the element nodal displacement vector given by (3.32), and:
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A =
∫∫
�

NTPd� (3.51)

Cq =
∫∫
�

NT�d� (3.52)

We may now express the strain field in terms of the nodal displacements as fol-
lows:

� = P� = PA−1Cq = Bq (3.53)

In most cases, including the present one, it is convenient to use P = N to ob-
tain a symmetric stiffness matrix. Both matrices A and C can easily be evaluated
explicitly. To briefly illustrate this take, the transverse shear strain �s as an example.
Substituting Ps from (3.47) into (3.51) and (3.52), setting N = P, and using Green’s
theorem, we now obtain:

As =
[

1 0
0 1

] ∫∫
�

d� = �

[
1 0
0 1

]
(3.54)

and:

Csq =
∫∫
�

⎧⎪⎨
⎪⎩

�w

�x
− φx − u

R
�w

�y
− φy − v

R

⎫⎪⎬
⎪⎭ d� =

∫
�
{
wnx ds
wnyds

}
−
∫∫
�

{
φx − u

R

φy − v
R

}
d� (3.55)

where � is the element area, nx , ny are the direction cosines along the element
boundaries, and ds is the differential arc-length along the element boundaries. To
evaluate Cs, As, we use the displacement interpolations given by (3.33), (3.34)
and (3.39), (3.40) respectively. Solving (3.55) and determining of Cb, Cm, how-
ever require that the interpolation functions for rotations φx , φy and membrane
displacements u, v be two-dimensional. To evaluate the integrals, we can use the
approximate methods given by Hu (1981) and Shi and Voyiadjis (1991b), which
allow direct use of the displacement approximations given by (3.33), (3.34), and
(3.39), (3.40). Alternatively, the two-dimensional interpolation formulas for all the
necessary displacements can be constructed, such that they reduce to the one-
dimensional cases of the string net functions. The two-dimensional rotation function
that reduces to the string functions obtained by (3.34), (3.35) is given by:

φx (ξ, η) = 3

4a
λx
[(

1 − ξ 2
)

(1 − η)
]
w1 + 3

4a
λx
[(

1 − ξ 2
)

(1 + η)
]
w2

− 3

4a
λx
[(

1 − ξ 2
)

(1 + η)
]
w3 − 3

4a
λx
[(

1 − ξ 2
)

(1 − η)
]
w4
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+ 1

8

[
2 + 2ξ − 3λx

(
1 − ξ 2

)]
(1 − η) φx1 + 1

8

[
2 + 2ξ − 3λx

(
1 − ξ 2

)]
(1 + η) φx2

+ 1

8

[
2 − 2ξ − 3λx

(
1 − ξ 2

)]
(1 + η) φx3 + 1

8

[
2 − 2ξ − 3λx

(
1 − ξ 2

)]
(1 − η) φx4

(3.56)

where:

ξ = 2x

a
, η = 2y

b
− 1 ≤ ξ, η ≤ 1 (3.57)

In the same way we can construct the rotation interpolation φy (ξ, η), as well as
all the other two-dimensional displacement functions, namely w (ξ, η) , u (ξ, η) and
v (ξ, η). A complete set of the expressions, by means of which the matrices A and
C can be evaluated appears in the Appendix.

Having determined the components of the strain displacement matrices Bm, Bb,

Bs, the strain fields can now be written in a form similar to (3.53):

�b = PbA−1
b Cbq = Bbq (3.58)

�m = PmAm
−1Cmq = Bmq (3.59)

�s = 1

�
Cbq = Bsq (3.60)

3.2.4 Strain Energy and Stiffness Matrix

To determine the stiffness matrix of the element, we use the strain energy density,
expressed as:

U = 1

2

(
Mxκx + Myκy + 2Mxyκxy + Nxεx + Nyεy + 2Nxyεxy + Qxγxz + Qyγyz

)
(3.61)

Substituting (3.12), (3.13), (3.14), (3.15), (3.16), (3.17), (3.18), (3.19), (3.20),
(3.21), (3.22), (3.23), (3.24), (3.25) into the above expression we obtain the following:

U = Ub + Um + Us (3.62)

where Ub, Um, Us are respectively: the bending component of the strain energy den-
sity function (quadratic function of curvatures), the membrane component (quadratic
function of membrane strains) and the transverse shear component of the strain en-
ergy. We now define the following groups of strains, namely the bending, membrane
and shear strains separately in the form of vectors:
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�b = {
κx , κy, 2κxy

}T
(3.63)

�m = {
εx , εy, 2εxy

}T
(3.64)

and

�s = {
γxz, γyz

}T
(3.65)

We then write the strain energy densities Ub, Um, Us, Ubm in matrix form as:

Ub = 1

2
�b

T D

⎡
⎣1 ν 0

ν 1 0
0 0 1 − ν/2

⎤
⎦�b = 1

2
�b

TD�b (3.66)

Um = 1

2
�m

TS

⎡
⎣1 ν 0

ν 1 0
0 0 1 − ν/2

⎤
⎦ �m = 1

2
�m

TS�m (3.67)

Us = 1

2
�s

TT

[
1 0
0 1

]
�s = 1

2
�s

TT�s (3.68)

The total strain energy in the element domain � can be written as:

�e =
∫∫

�

Ud�s (3.69)

or using (3.66), (3.67), (3.68) as follows:

�e = 1

2

∫∫
�

(
�b

TD�b + �T
mS�m + �T

s T�s
)

d� (3.70)

We express the strains �b, �m, �s in terms of the nodal displacement vector q as:

�b = Bbq (3.71)

�m = Bmq (3.72)

�s = Bsq (3.73)

where q is given by (3.32). Substituting expressions (3.71), (3.72), (3.73) into (3.70)
we obtain:

�e = 1

2
qT

∫∫
�

(
Bb

TDBb+Bm
TSBm + BT

s TBs
)

d�q (3.74)
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or:

�e = 1

2
qT [Kb + Km + Ks] q (3.75)

where Kb, Km, Ks are the element stiffness matrices related to bending, membrane
and transverse shear deformation, given by:

Kb =
∫∫
�

Bb
TDBbd� (3.76)

Km =
∫∫
�

Bm
TSBmd� (3.77)

Ks =
∫∫
�

Bs
TTBsd� (3.78)

Substituting (3.58), (3.59), (3.60) into (3.76), (3.77), (3.78) we obtain:

Kb= Cb
TAb

−T
∫∫
�

Pb
TDPbd�Ab

−1Cb (3.79)

Km= Cm
TAm

−T
∫∫
�

Pm
TSPmd�Am

−1Cm (3.80)

Ks = Cs
T
(

T
�

)
Cs (3.81)

Analysis of a problem by means of the finite elements formulated here involves
solution of the system of linear algebraic equations:

Kq = R (3.82)

where K is the element stiffness matrix given by:

K = Kb + Km + Ks (3.83)

R is the external load vector, and q is the vector of nodal displacements given
by (3.32).

3.3 Numerical Examples

Several benchmark problems selected from the literature (MacNeal and Harder,
1985; Belytschko et al., 1985; Simo et al., 1989a,b) are used here to evaluate the
performance of the proposed generalized shell element. Any set of problems for
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Table 3.1 Standard Shell elements used here as reference

Name Description

4-ABQ Doubly curved shell element used by ABAQUS, built on
Mindlin/Sanders Koiter theory with reduced integration
and hourglass control (1959, 1960), Hibbit, Karlson &
Sorensen, Inc. (2001)

4-DKQ Discrete Kirchhoff quadrilateral element
9-GAMMA Belytschko (1985), biquadratic degenerated shell element

with uniform reduced integration
4-SRI Bilinear degenerated shell element with selective, reduced

integration, Hughes and Hinton (1986), Hughes (1987)
9-SRI Biquadratic degenerated shell element with selective,

reduced integration
MIXED Simo (1989), bilinear shell element with mixed

formulations and full 2 × 2 quadrature

shell elements should be discriminating. Inextensional bending modes of deforma-
tion must be tested, as well as rigid body modes, complex membrane state of stress,
and shear deformation modes (Belytschko et al., 1985). We selected these problems
to challenge the above mentioned capabilities of our formulation, as well as to ex-
amine its functioning for thick and very thick shells. We compare the convergence
of the results with other formulations available in the literature. Table 3.1 gives the
shell elements used here as reference, as well as the abbreviations used in the text.

3.3.1 The Patch Test

We consider a square plate problem is considered here, that is modeled by a single
element, subjected to constant tension and bending, as shown in Fig. 3.5. The dis-
placements obtained using the present element are exact as they match the analytical
solution.

3.3.2 Cantilevered Beam

Another problem frequently used as a benchmark test is the evaluation of the perfor-
mance of an proposed element in straight cantilever beams (Fig. 3.6). A point load
applied to the free end of the beam evokes all of the principal deformation modes.

L = 10 in 
E = 10 x 106 psi
ν = 0.3

L

Fig. 3.5 Constant stress patch test: tension and bending (E-Young’s modulus; ν-Poisson’s ratio)
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L = 4.0 m 

E = 210x106 MPa 
ν = 0.3
P = 100 kN L

P

Fig. 3.6 Cantilevered beam problem (E-Young’s modulus; ν-Poisson’s ratio)

The height and thickness of the beam are, respectively, h = 0.4 m, and b = 0.2 m.
We investigate the maximum displacement of the beam, which is modeled with
four, eight, and ten elements and compare the results with those obtained using the
engineering beam theory. Table 3.2 shows the comparison.

The results shown in Fig. 3.7 indicate that the current element is in very good
agreement with the analytical solution. It shows a robust performance.

3.3.3 Morley’s Hemispherical Shell (Morley and Moris, 1978)

The following example is used as a standard test to evaluate the performance of finite
elements (MacNeal and Harder, 1985; Simon et al., 1989). The problem represents
a hemisphere with four point loads alternating in sign at 900 intervals on the equator,
which is a free edge (Fig. 3.8).

Table 3.2 Vertical displacement at the free end [m] (EBT∗-Engineering Beam Theory)

Number of
elements

Analytical
E BT ∗ × 10−3

Present
F E × 10−3

Normalized
present FE

4 9.52 9.369 0.98
8 9.52 9.493 0.997

10 9.52 9.517 0.999

0.98

0.985

0.99

0.995

1

1.005
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Analytical - EBT
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Fig. 3.7 Convergence of the present element for the cantilevered beam problem, displacement
under the load
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Sym.

Sym.

Free

R = 10 in

t = 0.04 in

E = 6.825 × 107 psi
F = 1.0 lbf for quadrant

Reference solution

Deflection under load: 0.093 in

Fig. 3.8 Morley’s Sphere (t-thickness, R-radius, E-Young’s modulus, F-load)
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Fig. 3.9 Comparison of results by different shell formulations – Morley’s Sphere, deflection under
the load

In the hemispherical shell problem, the membrane strains are very small, making
the problem a discriminating test of the element’s ability to represent inextensional
modes. Moreover, under these loading conditions, large sections of the model rotate
as almost rigid bodies, which allows us to check the ability of the element to model
rigid body motion (Belytschko et al., 1985).

Bending strains contribute significantly to the radial displacement at the point of
the application of the load F . The value of the displacement under the concentrated
load is 0.094 in, which was obtained by MacNeal and Harder (1985). Simon et al.
(1989) found, however that the analytical solution of this problem yields a value of
0.093 in, which is used as a reference solution. The results are given in Table 3.3.
Figure 3.10 compares the proposed element’s performance with that of 4-DKQ,
9-SRI, 9-GAMMA, and MIXED elements.
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Table 3.3 Normalized displacement under the load for the hemispherical shell

Nodes per side Mixed 4-DKQ 9-GAMMA 9-SRI Present

3 0.919 0.663 1.37 0.002 1.17
5 1.004 0.928 1.09 0.01 1.08
9 0.998 1.001 1.02 0.05 1.002

17 0.999 1.003 1.00 0.3 1.002

L = 600 in 
R = 300 in 
t = 3 in 
E = 3 × 106 psi 
ν = 0.3
P = 1.0 lbf 
Ends constrained: ux = uy = φz = 0
Reference solution: 1.82488 x 10–5 in 

Fig. 3.10 Pinched cylinder with diaphragms – geometry and material properties (t-thickness, E-
Young’s modulus, ν-Poisson’s ratio)

As shown in Fig. 3.9, the proposed doubly curved finite element performs very
well in this test. It converges quickly and produces accurate results, even for a very
coarse mesh.

We also investigate the transverse shear stresses for the above problem with dif-
ferent shell thicknesses and compare the values obtained with those of the 4-ABQ
element in Table 3.4. Normal stresses σx are used in Table 3.4 in order to compare
the relative magnitudes of the normal and transverse shear stresses. The last column
of the table gives the ratio of τxz/σx . It shows the increasing importance of the
transverse shear stresses with the increase of the thickness of the shell. For the first
shell analyzed, with thickness 0.04 in., τxz is only 0.0068 of the normal stresses σx ,
whereas for the thickness of 0.9 in. the ratio increases to 0.12. It demonstrates the
expected pattern whereby the transverse shear stresses become much more signifi-
cant for thick shells.

Table 3.4 Transverse shear and normal stresses for the hemispherical shell

Thickness
t[in]

τ xz[psi] τ yz[psi] σ x [psi] Ratio
τ xz/σ x

4-ABQ Present 4-ABQ Present 4-ABQ Present

0.04 −38.71 −38.5 −22.38 −22.21 −5691 −5658 0.0068
0.1 −15.11 −14.98 −6.7 −6.62 −965.7 −954.6 0.0156
0.18 −8.131 −7.96 −3.596 −3.51 −305.4 −298.303 0.0266
0.28 −5.047 −4.97 −2.417 −2.37 −127.3 −125.6 0.0396
0.4 −3.41 −3.19 −1.804 −1.703 −62.34 −61.63 0.0547
0.54 −2.441 −2.3 −1.42 −1.33 −33.93 −33.26 0.0719
0.7 −1.824 −1.642 −1.152 −1.121 −19.92 −19.67 0.0915
0.9 −1.376 −1.27 −0.9376 −0.926 −11.82 −11.68 0.1164
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Our formulation provides sound and reasonable predictions of the transverse
stresses, which is particularly important in the case of thick shells. It emphasizes
a main thrusts of our theory, on which the current element is built. The approxima-
tions given here are better than most of the reference models, except for the MIXED
shell element by Simon et al. (1989), which confirms the validity of out theoretical
concepts and numerical procedure.

3.3.4 Pinched Cylinder with Diaphragms

The pinched cylinder with a diaphragm is one of the most severe tests for both
inextensional bending modes and complex membrane states. An element that passes
this test will also perform well if the boundary conditions are simplified to free ends.
It is therefore sufficient to present only the cylinder with diaphragms (Belytschko
et al., 1985).

A short cylinder with two pinching vertical forces at the middle section and two
rigid diaphragms at the ends is modeled here. Because of the symmetry we consider
only one octant of the cylinder and apply the appropriate boundary conditions. We
investigate the radial displacement under the load and normalize the results against
the analytical solution of the problem: 1.82488 × 10−5 in. (Lindberg et al., 1969;
Flugge, 1960). The geometry of the problem is shown in Fig. 3.10.

The normalized numerical results are shown in Table 3.5 and Fig. 3.11.
The above problem is one of the most demanding tests for shell elements. Most of

the Mindlin elements, accounting for shear deformation do not converge efficiently
in this problem, except for the discrete Kirchhoff formulations. The present element
again offers a very good approximation, as well as fast convergence. It is known that
for the pinched cylinder with diaphragms, the elements using the discrete Kirchhoff
constraints are among the best performers. The new element is, however, no lesser
in this case, providing results closer to the exact solution than any of the other
elements considered, except for the above-mentioned 4-DKQ (Discrete Kirchhoff
constraints).

Despite performing robustly in this test, the finite element developed here experi-
ences mild membrane locking. When the series of cylinders with diaphragms, with a
reduced radius of curvatures (R = 200 in, R = 100 in, R = 50 in) were examined,
the mesh of finite elements showed a tendency to be slightly too stiff, predicting
about 80% of the reference solution for the case of R = 50 in. The problem gradu-
ally disappears when the radius of curvature of the cylinder is increased.

Table 3.5 Normalized displacement – pinched cylinder with diaphragms

Nodes per side Mixed 4-DKQ 4-SRI Present

5 0.399 0.626 0.373 0.562
9 0.763 0.951 0.747 0.909

17 0.935 1.016 0.935 1.003
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Fig. 3.11 Comparison of results by different shell formulations – pinched cylinder with di-
aphragms, displacement under the load

3.3.5 Scordellis-Lo Roof

The Scordellis-Lo Roof problem is one of the best tools for testing the accuracy
of the elements in solving complex states of membrane strains. Representation of
the inextensional modes is not crucial in this problem, as the membrane strain en-
ergy makes a large portion of the strain energy. Therefore, even the elements that
experience severe membrane locking may converge in this test. Inaccuracies in the
membrane stress representation, however, will hinder the convergence process.

The Scordellis-Lo Roof is a short cylindrical section, loaded by gravity forces
(Scordelis and Lo, 1969). The geometry and material properties of the problem are
shown in Fig. 3.12.

As with the pinched cylinder, because of the symmetry we consider only an oc-
tant. The vertical displacement at midpoint of the free edge was reported by Scordel-
lis and Lo as 0.3024 in., which will serve here as a reference solution. Table 3.6
shows the results of the problem. Convergence of the element is shown in Fig. 3.13.

All of the elements considered here converge reasonably well. Our formulation is
in good agreement with the analytical result, although, its performance is not better

L = 50 in 
R = 25 in
t = 0.25 in 
E = 4.32 × 107 psi 
ν = 0.3
Reference solution:  
0.3024 in 40°

R

L

Fig. 3.12 Scordellis-Lo Roof (t-thickness, E-Young’s modulus, ν-Poisson’s ratio)
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Table 3.6 Normalized displacement – Scordellis-Lo Roof

Nodes per side Mixed 4-DKQ 4-SRI Present

3 1.45 1.391 1.263 1.58
5 1.083 1.048 0.964 1.14
9 1.015 1.005 0.984 1.022

17 1.00 0.996 0.999 1.002
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Fig. 3.13 Comparison of results by different shell formulations – Scordellis-Lo Roof, vertical
displacement at midpoint

than that of the elements with which it is compared. It converges completely with a
reasonable mesh of 16 × 16 elements (Fig. 3.13).

Although the vertical displacement at midpoint of the shell is very closely ap-
proximated, as seen in Fig. 3.13, the deflection pattern is less accurate. The value of
the vertical displacement at a distance L/4 from the midpoint is about 10% larger
than displacement at midpoint. As expected, this error is also observed in the pattern
of the internal forces, which are calculated from the displacement. As Scordelis-Lo
Roof is a very demanding test of the ability of the element to model complex states
of membrane strains, the deficient interpolation of these strains is most likely the
reason for the loss of accuracy of the displacement patterns.

3.3.6 Pinched Cylinder

We now consider a similar test to the pinched cylinder with diaphragms (Sect. 3.3.4),
which serves however, a different purpose. The ends of the cylinder are free (no
rigid diaphragms). As noted above an element that gives accurate results for the
cylinder with diaphragms will also perform very well if the boundary conditions
are simplified to free ends. We therefore use the present example to investigate the
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Fig. 3.14 Pinched cylinder
without diaphragms
(E-Young’s modulus,
ν-Poisson’s ratio)

L = 10.35 in 
R = 4.953 in 

E = 10.5 × 106 psi 
ν = 0.3125
P = 100 lbf 

performance of out formulation for the case of very thick shells. The characteristics
of the problem are shown in Fig. 3.14.

We vary the thickness of the cylinder and investigate the displacement under
point loads. The results obtained with the present finite element are compared with
those obtained using the 4-ABQ doubly curved shell element used by ABAQUS,
built on Mindlin/Sanders Koiter (Sanders, 1959; Koiter, 1960) theory with reduced
integration and hourglass control, as well as with an analytical solution of the prob-
lem by Timoshenko and Woinowsky-Krieger (1959). The latter treat the problem
as an inextensional deformation of a circular cylinder, i.e., the membrane strains
are zero and the deformation is governed only by the bending modes. The values
of the displacements provided by the inextensional solution are therefore slightly
too low. Nevertheless, they may still be regarded as accurate, especially for the case
of thin shells. The correction factor increasing the displacement under the load by
0.4%, due to extensional bending, was estimated by Ashwell and Sabir (1971) for
a thin shell (t = R/320). Although for very thick shells (t = R/2) this correction
factor reaches 1.3%, it is still considered small. Thus, the results of the inextensional
deformation of the cylindrical shell by Timoshenko and Woinowsky-Krieger (1959)
may still serve as a reference solution. The results of the pinched cylinder problem
are shown in Table 3.7 and Fig. 3.15.

Although the Mindlin element with reduced integration provides a good approx-
imation of the analytical solution, our formulation offers superior performance. The
pattern of decreasing value of the displacement with increasing thickness of the
shell is in excellent agreement with the analytical inextensional bending solution. It
is worth mentioning that the analytical solution used here as a reference is not exact,
as discussed above. Our formulation proves to be more accurate than the Mindlin

Table 3.7 Displacement under load [in] – Pinched cylinder

t [in] Analytical 4-ABQ Present

1 9.02E-05 1.08E-04 9.82E-05
1.2 5.22E-05 8.63E-05 6.08E-05
1.4 3.29E-05 5.38E-05 3.92E-05
1.6 2.2E-05 4.14E-05 2.84E-05
2 1.13E-05 2.39E-05 1.63E-05
2.5 5.77E-06 1.52E-05 1.13E-05
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Fig. 3.15 Pinched cylinder – deflection under the load [in]

type of element in the analysis of thick shells. Moreover, the 4-ABQ element, as
well as all the other elements using numerical integration, are dependent on the
number of integration points. Although it is known that with appropriate choice of
the number of integration points one can obtain an accurate result, the process is
cumbersome, compared with the present algorithm with an explicit stiffness matrix
and noneed for numerical integration during the finite element computations.

3.4 Summary

We evaluated the performance of the proposed finite element through a set of dis-
criminating benchmark problems selected from the literature. The examples show
that our formulation experiences neither shear locking nor spurious energy modes
for thin shells. At the same time, in the analysis of thick shells it offers a superior
performance than most of the formulations with which we compare it, providing
very accurate results.

Despite careful considerations when interpolating the strains, the finite element
suffers from mild membrane locking. An example of a pinched cylinder with a di-
aphragm, one of the most severe tests for both inextensional bending modes and
complex membrane states, is given in Sect. 3.3.4. Although our formulation offered
very accurate results and fast convergence in the case of the cylinder with radius
R = 300 in, the mesh became too stiff when the radius was decreased to R = 50 in.
Thus we conclude that the representation of the membrane strains can be inade-
quate and does not always ensure satisfaction of the inextensibility condition. This
was also indicated by the results of the Scordelis-Lo roof problem in Sect. 3.3.5.
The strain fields could be further refined to cure this problem. We found, however,
that the quasi-conforming technique although very convenient, is also sensitive to
changes in the interpolation of both strain and displacement fields. Approximation
formulas that may seem reasonable from the physical point of view sometimes
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produce results as much as 20% off the target solution. Refining the strain inter-
polation to get rid of membrane locking completely is therefore an iterative that can
be tedious. The best solution is to construct the membrane displacement approx-
imations dependent on the vertical displacement function w. The ratio of flexural
and membrane rigidities should enter the membrane displacement interpolations,
similarly to adopted Hu’s functions for w and φ ((3.33), (3.34)), where a parameter
λ (3.37) enforced a constraint of transverse shears reducing to zero in the case of
thin shells. A similar parameter, dependent on the ratio of flexural and membrane
rigidities, should be included in the displacement field such that the inextensibility
condition is explicitly satisfied when the thickness of the shell decreases. Such a
remedy could be successful, and the quasi-conforming technique, along with care-
fully devised inter-related displacement approximations, would be a powerful and
efficient tool for constructing curved shell elements, despite its sensitivity.

Despite the above-discussed deficiencies, the finite element model we present
here performs well in all of the tests undertaken. The model is also superior to
many others in simulating the behavior of moderately thick and thick shells. Our
formualation is therefore universal, applicable to thick and thin shells, plates, and
beams; it shows good overall performance at the same time that it is computationally
efficient.
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Chapter 4
Geometrically Non-linear Finite Element
Analysis of Thick Plates and Shells

4.1 Introduction

A problem of geometric non-linearity can be explained through the example of the
simple beam. We consider a plane cantilever beam subjected to an end load, as
shown in Fig. 4.1 (Cook et al., 1989).

Assuming that the beam is slender and the material linearly elastic, we seek the
quasistatic deflections produced by the end load P . If the deflections are small, the
linear theory is adequate to simulate the behavior of the beam. The reactant bending
moment at the fixed end is M = P L , as the shortening of the moment arm e is
negligible. For large displacements, e becomes significant and the reactant bending
moment is M = P (L − e). If the effect of large displacement is taken into account,
the equilibrium equations must be written in the deformed configuration. This is
because the deformation of the beam substantially alters the location of the external
load P . The equations describing such an effect are non-linear and the nature of
non-linearity is geometric.

Large displacement play an important role the investigation of the behavior of
plates and shells. Certain parts of the structure under given loading conditions may
undergo large rigid rotations and translations. Considering these effects is even
more important in the elasto-plastic and damage analysis of shells. The regions of
the structure deforming inelastically will most likely undergo large displacements.
These can be approximated through geometrically non-linear analysis. Our objec-
tive is to present a reliable computational model for the elasto-plastic and damage

Fig. 4.1 Geometric
non-linearity; cantilever beam
under the end load
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analysis of shells; to achieve the desired accuracy, geometrical non-linearities must
be considered.

One can usually distinguish two types of geometrical non-linearity when analyz-
ing shells: large deformations and large rotations. Large deformations are attributed
to the stretch of the middle surface of the shell undergoing large displacements.
Large rotations are attributed to significant changes of the slope during the analy-
sis. These changes also cause the transformation matrix of the coordinates to also
change during the analysis. It is also possible to have rigid body motion without
any strains. In that case, large rigid rotations and translations are considered, but the
strains remain small.

For simplicity and conciseness, we examine only the most significant effects
from the viewpoint of shell behavior. This leads us to include large rigid rotations
and translations but not large strains. We use the Updated Lagrangian description,
with the total rotations decomposed into large rigid and moderate relative rotations.
The relative rotations and the derivatives of the in-plane displacements from two
consecutive configurations can be considered small (Shi and Atluri, 1988; Shi and
Voyiadjis, 1991a). Consequently, the quadratic terms of the derivatives of the in-
plane displacement are negligible. We therefore have a non-linear analysis with
large displacements and rotations but small strains. As shown below (Sect. 4.4, and
Chaps. 5 and 6), such a treatment of the geometrical non-linearities is capable of
simulating the shell behavior with sufficient accuracy. This is also convenient for the
elasto-plastic modeling of shells in the stress resultant space. If the strains are small,
then the assumption of additive decomposition of strains into elastic and plastic
parts, commonly used in modeling of plasticity, can be extended to displacements.
This allows use of the plastic node method in the elasto-plastic considerations.

Although the primary motivation for including large displacements in the anal-
ysis is to validate the plastic and damage investigations of shells, the procedure
described in this chapter is universal and may be used as a stand-alone algorithm.
The elastic shell model, which use developed with constitutive equations derived in
Chap. 2, and elastic stiffness matrix in Chap. 3, is extended here to account for the
geometrical non-linearities.

In the following sections, we briefly discuss the nature of the Updated Lagrangian
description, used here in the treatment of geometric non-linearities. In Sect. 4.3, we
present the kinematics of the shell followed by the derivation of the explicit tangent
stiffness matrix in Sect. 4.4. Finally, we give a numerical example challenging the
adopted concepts.

4.2 Updated Lagrangian Description

We adopt the Updated Lagrangian description, which has proven to be an effective
method (Bathe, 1982; Flores and Onate, 2001; Horrigmoe and Bergan, 1978; Kebari
and Cassell, 1992). In the Lagrangian description of a mechanical stressed problem,
we study a coordinate frame in which the body under investigation is rigidly trans-
lated and rotated, and may also be deformed. This method is based on calculation of
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Fig. 4.2 Updated Lagrangian
description
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the increments of the displacements. In the Updated Lagrangian description, the ref-
erence configuration is in the state after the deformation, at time t + �t , as opposed
to the Total Lagrangian description, in which the reference configuration is at time
t (Fig. 4.2). In the Updated Lagrangian description, the element local coordinates
and local reference frame are continuously updated during the deformation. The
transformation matrix given by Argyris (1982) is used to handle large rigid rotations.

4.3 Shell Kinematics

As discussed above we use the Updated Lagrangian description to study large
displacements and rotations of the shell element. The coordinates of the nodal
points are continuously updated during the deformation. The rotations are addi-
tively decomposed into large rigid rotations and moderate relative rotations (Shi and
Voyiadjis, 1991a,b).

The structure under consideration is defined in the global, fixed-coordinate sys-
tem X. We also have the local coordinate system x, surface coordinates at any nodal
point xs , and base coordinates, which serve as a reference frame for the global de-
grees of freedom (Fig. 4.3).

4.3.1 Local Coordinates

To obtain the unit vector in the direction normal to the plane of the element, we first

define two vectors,
−→
41 and

−→
42, connecting the origin of the coordinate system (point

4) to points 1 and 2, respectively. The cross product of these two vectors divided by
its length, gives e3, as shown in Fig. 4.3 and given by (4.1):
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Fig. 4.3 Local coordinate
system and normal vector es3

(Voyiadjis and Woelke, 2006)
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The unit vector e2 can be similarly obtained as a cross product of e3 and e1.
We may now determine the relation between the global coordinates X and ele-

ment local coordinates in configuration k:

ke = kRE (4.2)

where ke is the unit base vector of the local coordinates in configuration k, E is the
unit base vector of the global coordinates, and R is a transformation matrix from
local to global coordinates.

4.3.2 Surface Coordinates

The surface coordinate system xS originates at each node of the element. As defined
by Shi and Voyiadjis (1991a), the position and direction of this system are func-
tions of rotations. Surface coordinates translate and rigidly rotate with the element.
Consequently, xS3 is always normal to the surface of the element.

The finite rigid body rotation vector V is given by:

V =
⎡
⎣θ1

θ2

θ3

⎤
⎦ (4.3)

where θ1, θ2, θ3 are rigid body rotations around x, y, z axes respectively.
The transformation matrix of large rotations Tθ , given by Argyris (1982) is

used here:

Tθ = exp
(
θ̃
)

(4.4)

with:

θ̃ = θ̃i j = ei jkθk, k = 1, 2, 3 (4.5)
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where θ̃ is a skew symmetric matrix and ei jk is the permutation tensor. In the above
equation, the indicial notation is used, with Einstein’s summation convention. The
transformation of the surface coordinates is therefore:

V′ = TθV (4.6)

where V′ is a rigid body rotation vector transformed into a new position. Similarly,
we can write a transformation of the surface coordinates for a given rotation vector
θ j resulting from configuration k − 1 to k at node j :

kes = Tθ j
k−1es (4.7)

where kes are the unit base vectors of the surface coordinates at configuration k.
Defining the transformation between E and kes as:

kes = kRsE (4.8)

we rewrite (4.7) as:

kes = Tθ j
k−1RsE = kRs

kRT ke = kS j
ke (4.9)

where kRT is the transpose of kR defined in (4.2), and kS j is a transformation matrix
from local to the surface coordinate system. Note 0Rs is a 3 × 3 identity matrix for
a flat plate.

4.3.3 Base Coordinates

The base coordinates defined by Horrigmoe and Bergan (1978) are adopted here as
a common reference frame to which all element properties are transformed, prior
to the assembly of the stiffness matrices. The base coordinates are defined by the
combination of the fixed global and base coordinates.

The global degrees of freedom at node j are the incremental translations:
�U j , �Vj , �W j in the directions of global coordinates X, Y, Z , respectively, and ro-
tations �x j , �y j around xS, yS , respectively. The local degrees of freedom at node j
are the incremental translations �u j , �v j , �w j in the directions of local coordinates
x, y, z, respectively, and rotations φx j , φy j around x, y, respectively. The transfor-
mation of the increments of the displacements at node j from the local coordinate
system �qej , to the corresponding base coordinates, �qbj can be written as:



82 4 Geometrically Non-linear Finite Element Analysis

Fig. 4.4 Incremental degrees of freedom of shell element (Voyiadjis and Woelke, 2006)

�qbj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�U j

�Vj

�W j

�x j

�y j

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
[

kRT 0

0 ks j

]
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�u j

�v j

�w j

φx j

φy j

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= kTbj �qej (4.10)

in which ks j is the upper left 2 × 2 submatrix of kS j defined in (4.9). The transfor-
mation matrix for the nodal displacement vector can be written as:

�qb = kTb�qe (4.11)

where kTb is composed of kTbj with j = 1, 2, 3, 4.
The vector of the local increments of nodal displacements is shown in Fig. 4.4

and given by (4.12):

�qej = {
�u j , �v j , �w j , �φx j , �φy j

}T
j = 1, 2, 3, 4 (4.12)

4.4 Explicit Tangent Stiffness Matrix

In this geometrically non-linear analysis of plates and shells presented here, we use
the shell constitutive equations derived in Chap. 2. These equations, transformed
into a rectangular coordinate system are given by the (3.12), (3.13), (3.14), (3.15),
(3.16), (3.17), (3.18), (3.19), (3.20), (3.21), (3.22), (3.23), (3.24), (3.25), (3.26).
To determine the tangent stiffness matrix of the element, we define δ�b, δ�m, δ�s

as virtual elastic bending, membrane, and transverse shear strains respectively (δ-
virtual) and M, N, Q as stress couples and stress resultants of the element.

Rewriting the shell constitutive equations in the matrix form yields:
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M = D�b (4.13)

N = S�m (4.14)

Q = T�s (4.15)

where �b, �m, �s are bending, membrane and shear strains respectively, defined by
the (3.45), (3.46), (3.47) and rewritten here in the incremental form:

�b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

��φx

�x

��φy

�y

��φx

�y
+ ��φy

�x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, �m =
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

��u

�x
+ �w

R

��v

�y
+ �w

R

��u

�y
+ ��v

�x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, �s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

��w

�x
− φx − �u

R

��w

�y
− φy − �v

R

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.16)
and D, S, T are bending, membrane and shear rigidities matrices, respectively,
given by:

D = D

⎡
⎣1 ν 0

ν 1 0
0 0 1 − ν/2

⎤
⎦ , S = S

⎡
⎣1 ν 0

ν 1 0
0 0 1 − ν/2

⎤
⎦ , T = T

[
1 0

0 1

]

(4.17)

D, T, S are defined by (3.26).
We also use the linearized equilibrium equations of the system at configuration

k + 1 in the Updated Lagrangian description, expressed by the principle of virtual
work, which in finite element modeling takes the form:

∫∫
�

(
δ�b

TD�b + δ�m
TS�m + δ�s

TT�s
)

dxdy +
∫∫
�

δ�TkF�dxdy = k+1 R

−
∫∫
�

(
δ�b

TkM + δ�m
TkN + δ�s

TkQ
)

dxdy (4.18)

where k+1 R is the total external virtual work at step k + 1.
As discussed above, we use the quasi-conforming technique proposed by Tang

et al. (1980, 1983) here to compute the element stiffness matrix. We therefore in-
terpolate the strains directly. The compatibility equations are satisfied only in the
weak sense, i.e., under the integral sign. Again, all the integrations are calculated
analytically and the explicit form of the stiffness matrix is preserved.

The strain interpolation formulas are identical to those used in the linear elas-
tic analysis in Chap. 3 ((3.45), (3.46), (3.47)). Following the same procedure as in
Chap. 3, we obtain:
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�b = PbAb
−1Cb�qe = Bb�qe (4.19)

�m = PmAm
−1Cm�qe = Bm�qe (4.20)

�s = 1

�
Cb�qe = Bs�qe (4.21)

In (4.18), � is the slope vector and kF is a membrane stress resultant matrix at
step k given by:

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

��w

�x

��w

�y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, kF =
[

k Nx
k Nxy

k Nxy
k Ny

]
(4.22)

The slope field � is evaluated in the same way as the strain fields, using the
quasi-conforming technique (Tang et al., 1980, 1983). A bilinear interpolation as
given by Shi and Voyiadjis (1991a) is used to approximate the slope field:

� =
[

1 x y xy 0 0 0 0

0 0 0 0 1 x y xy

]
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1

β2

β3

· · ·
β7

β8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= P� (4.23)

where P denotes the trial function matrix and � is a vector of undetermined pa-
rameters, calculated the same way as the vector of strain parameters � used to
approximate the strain fields (equations (3.50), (3.51), (3.52)):

� = A−1C�qe, A =
∫∫
�

PTP dxdy, C�qe =
∫∫
�

PT� dxdy (4.24)

The slope field � is therefore expressed in terms of the slope-displacement ma-
trix G:

� = PA−1C�qe = G�qe (4.25)

The matrix A appearing in (4.24) can easily be evaluated, as was shown in
Chap. 3. The matrix C in (4.24) can be evaluated through the quasi-conforming
technique as follows (Shi and Voyiadjis, 1990):
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C1i �qei =
∫
�

��w

�x
dxdy =

∫
��wnx ds, (i = 1, 2, 3, . . . , Ned )

C2i �qei =
∫
�

��w

�x
xdxdy =

∫
��wxnx ds −

∫
�

�wdxdy

=
∫
��wxnx ds −

1∫
−1

1∫
−1

�w (ξ, η) |J | dξdη

C3i �qei =
∫
�

��w

�x
ydxdy =

∫
��wynx ds

C4i �qei =
∫
�

��w

�x
xydxdy =

∫
��wxynx ds −

∫
�

�wydxdy

=
∫
��wxynx ds −

1∫
−1

1∫
−1

�w (ξ, η) y (ξ, η) |J | dξdη

(4.26)

where Ned denotes the number of the nodal displacement variables in an element;
nx = cos (n, x) is the cosine of the angle between the normal vector to the bound-
ary and a direction of the x axis; s is the tangential coordinate along an element
boundary; |J | is the Jacobian; and �w (ξ, η) is an interpolation of the transverse
displacement of the element in the isoparametric coordinates. We use the cubic in-
terpolation of �w along the boundary of the elements given by Hu (1981) to evaluate
the C matrix:

�w(s) = [
1 − ξ + λ

(
ξ − 3ξ 2 + 2ξ 3

)]
�wi

+ [
ξ − ξ 2 + λ

(
ξ − 3ξ 2 + 2ξ 2

)] l

2
�φsi

+ [
ξ − λ

(
ξ − 3ξ 2 + 2ξ 3)]�w j

+ [−ξ + ξ 2 + λ
(
ξ − 3ξ 2 + 2ξ 2)] l

2
�φs j

ξ = 2s

li j
; − l

2
≤ s ≤ l

2
; −1 ≤ ξ ≤ 1; λ = 1(

1 − 12
D

T L2

)

(4.27)

where l is the length of the side of the element; �φsi , �φs j are tangential rotations
at nodes i and j , respectively, and D, T are flexural and transverse shear rigidities,
respectively. The influence of parameter λ was discussed in the previous chapter.

Using (4.25), the virtual work principle given by (4.18) can now be rewritten as:
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∫∫
�

(
δ�b

TD�b + δ�m
TS�m + δ�s

TT�s
)

dxdy + δ�qeT
Kg�qe

= k+1 R −
∫∫
�

(
δ�b

TkM + δ�m
TkN + δ�s

TkQ
)

dxdy (4.28)

where Kg is the initial stress matrix defined as:

Kg =
∫∫
�

GTkFGdxdy (4.29)

Substituting (4.19), (4.20), (4.21) into the right side of (4.28), we write:

∫∫
�

(
δ�b

TkM + δ�m
TkN + δ�s

TkQ
)

dxdy = δ�qT�f (4.30)

where f is the internal force vector resulting from the unbalanced forces in configu-
ration k and is expressed as:

f =
∫∫
�

(
Bb

TkM + Bm
TkN + Bs

TkQ
)

dxdy (4.31)

Similarly, substitution of (4.19), (4.20), (4.21) and (4.30) into (4.28) yields:

∑
elem

δ�qeT (
Ke + Kg

)
�qe = k+1 R −

∑
elem

δ�qeT
�f (4.32)

where Ke is a linear elastic stiffness matrix of the element given by:

Ke =
∫∫
�

(
Bb

TDBb + Bm
TSBm + Bs

TTBs
)

dxdy (4.33)

Redefining the total external virtual work as:

k+1 R = k+1 R∗δ�q (4.34)

we finally obtain:

(
Ke + Kg

)
�qe − k+1 R∗ + �f = 0 (4.35)
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or:

Keg�q = k+1 R∗ − �f (4.36)

where:

Keg = Ke + Kg (4.37)

The tangent stiffness matrix given by equation (4.37) is similar to that presented
by Shi and Voyiadjis (1990). Our formulation however, is much more general, as it
is universal and suitable for analysis of plates, shells, and beams.

One of the most important features of the derived tangent stiffness is its explicit
form. This is because application of the quasi-conforming technique in the formu-
lation of both the linear elastic stiffness matrix and the initial stress stiffness matrix
allows all of the integrations to be performed analytically. This makes our model
extremely efficient in terms of computer time and power, at the same time that it
is mathematically consistent. All the matrices of the stiffness matrix of the element
can be integrated analytically and exactly, without use of the numerical selective
reduced integration.

4.5 Numerical Example

For the purpose of analysis, we developed a finite element code in programming
language Fortran 95. A modified Newton-Raphson technique was used to solve a
system of non-linear, incremental equations. The external forces in the system of the
(4.36) are balanced by the iteration scheme. The local increments at the iterations
are calculated using the arc-length method (Crisfield, 1991). The results obtained
by our model were computed using a personal computer. Further explanation of the
numerical techniques used here is provided in Chap. 7.

The example used to verify the validity and accuracy of our model is that of
a pinched hemispherical shell. This benchmark problem is commonly used to test
the performance of shell elements with the influence of the large displacements
taken into account. The results obtained by means of our formulation here will be
compared with other formulations available in the literature. Table 4.1 gives the
references used here, as well as their abbreviations.

We consider a pinched hemispherical shell (Morley Sphere) with an 180 hole
at the top, subjected to four point loads alternating in sign at 900 intervals on the
equator. Because of symmetry, we model only a quadrant. The geometry, deformed
shape, and material properties are shown in Fig. 4.5. The linear elastic solution
of the problem often serves as a benchmark problem for linear analysis of shells

Table 4.1 Models used and abbreviations

Name Description

F&O Numerical solution of pinched hemispherical shell by Flores and Onate (2001)
SIMO Numerical solution of pinched hemispherical shell by Simo et al. (1990)
W&V The present formulation without shear forces included in the yield function
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R = 10 in; t = 0.04 in;
E = 6.825 × 107  psi; ν = 0.3; F = 1.0 lbf

Symm.Symm.

18°

Free

F
F

A
B

Fig. 4.5 Pinched hemispherical shell (Morley Sphere): geometry, deformed shape, and material
properties (Voyiadjis and Woelke, 2006)

(Morley and Morris, 1978; Belytschko et al., 1985; MacNeal and Harder, 1985;
Simo et al., 1989a,b; Shi and Voyiadjis, 1991a; Voyiadjis and Woelke, 2006). Ample
sections of the shell rigidly rotate under these loading conditions; hence, precise
modeling of the rigid body motion is essential for good performance in this test
(Belytschko et al., 1985). Simo et al., (1990) as well as Parish (1995), Hauptmann
and Schweizerhof (1998), and Flores and Onate (2001) used the same problem with
an increased load factor to examine the capabilities of their models in the description
of large deformations. We compare the results provided by our formulation with
those by Simo et al. and Flores and Onate. In the case of geometrically non-linear
analysis, the deflections under alternating forces are not equal; we therefore plot
the equilibrium path for both points of application of the load – A and B. The load
displacement path is plotted in Fig. 4.6.
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Fig. 4.6 Pinched hemispherical shell (Morley Sphere) – Equilibrium paths (A-point under an in-
ward load, B-point under an outward load) (Voyiadjis and Woelke, 2006)
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The displacements calculated with our model are very accurate and compare very
well with the reference solutions, confirming that it gives adequate representation of
large displacements.

The reliability of our formulation will be further verified through a series of
discriminating examples in Chap. 5, where the elasto-plastic behavior of shells is
investigated. The large displacement representation is crucial for accurate predic-
tions of the load-displacement curve for both plates and shells undergoing inelastic
deformations. Hence, close approximations of the elasto-plastic equilibrium path
and collapse load confirm the robustness of the large displacement formulation.

4.6 Summary

We evaluated the ability of our model to simulate large rigid rotations and transla-
tions in shells with a numerical example in Sect. 4.5. The displacements calculated
with the model are very accurate and compare excellently with the reference solu-
tions.

Because certain sections of the structure deforming inelastically usually undergo
large displacements, representation of geometrical non-linearities is crucial for the
accuracy of elasto-plastic and damage analysis of shells. If the computational model
for the elasto-plastic analysis of shells with large rotations performs well in the
elasto-plastic analysis, it also confirms, although indirectly, the adequate representa-
tion of large displacements. We discuss the results of the elasto-plastic investigations
in Chap. 5.

To thoroughly examine the functioning of our algorithm in the description of
large displacements in shells, further testing would be necessary. We discuss the
ability of, model to simulate the plasticity and damage in plates and shells in the
following chapters.
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Chapter 5
Elasto-Plastic Geometrically Non-linear
Finite Element Analysis of Thick Plates
and Shells

5.1 Introduction

In this chapter, the computational model for the analysis of shells presented in the
previous chapters is further developed to simulate the elasto-plastic behavior of
plates and shells with the effect of large rotations considered. The shell constitutive
equations given in Chap. 2 are again adopted as a base for the formulation. A simple
C0 quadrilateral, geometrically non-linear shell element presented in Chapter 4 is
extended to account for material non-linearities.

We adopt the non-layered approach and the plastic node method (Ueda and
Yao, 1982) in the treatment of material non-linearities. We use the Iliushin’s yield
function expressed in terms of stress resultants and stress couples (Iliushin, 1956),
modified to investigate the development of plastic deformations across the thick-
ness (Crisfield, 1981a), as well as the influence of the transverse shear forces on
the plastic behavior of plates and shells (Shi and Voyiadjis, 1992). Both isotropic
and kinematic hardening rules are included in the yield function, with the latter de-
rived on the basis of the Armstrong and Frederick evolution equation of backstress
(Armstrong and Frederick, 1966), thus reproducing the Bauschinger effect.

The strongest motivation for the advances in shell elements is not only ac-
curacy but computational efficiency. Shells can be analyzed by means of solid,
three-dimensional elements, defined in the stress space. This, however, can require
prohibitively large storage in the computer. The shell elements based on the shell
constitutive equations, relating stress resultants and stress couples to strains have
proven to be as accurate as the stress-based elements, while while less expensive;
they are capable of approximating the exact solutions of problems with complicated
geometry and boundary conditions. Moreover, the purpose of most analysis and
design procedures used by structural engineers is to determine the internal forces
and bending moments in the structure to enable a design able to resist those forces.
Ideally, the analysis directed to the engineering community is performed in the stress
resultant space. Nevertheless, using the stress resultant models in the elasto-plastic
investigations has been cumbersome, mainly because of a lack of suitable yield
functions expressed in terms of the forces and moments, capable of representing the
progressive plastification of the cross section, the influence of all the components of
the stress tensor on plastic behavior, and isotropic and kinematic hardening effects.

G.Z. Voyiadjis, P. Woelke, Elasto-Plastic and Damage Analysis of Plates and Shells,
C© Springer-Verlag Berlin Heidelberg 2008
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The most important feature of the our framework is an ablity to obtain an accurate,
stress resultant-based yield surface that accounts for the gradual growth of the plas-
tic curvatures, influence of the shear forces on yielding, and isotropic and kinematic
hardening rules, that represent the Bauschinger effect. Application of such a yield
surface is convenient from an engineering point of view, as it allows taking the
full advantage of the shell elements not only in the elastic, but also in the plastic
zone, making the algorithm highly efficient. The approach is effective because, un-
like in the layered approach where the yield function is expressed in terms of the
stresses, discretization through the thickness is unnecessary. Furthermore, it leaves
room for further enhancements allowing for example approximation of the effects
of damage and/or rate dependence. Damage of shells is discussed in Chap. 6. These
advances lead to the objective of performing a full and comprehensive analysis of
shells through the use of internal forces and moments.

All of the assumptions made in previous chapters are still valid. We again use
the shell equations presented in Chap. 2. We adopt the linear elastic stiffness matrix,
derived in Chap. 3 and the large displacements examined in Chap. 4. The advantage
of the explicit form of the elastic stiffness matrix, obtained by means of the quasi-
conforming technique (Tang et al., 1980, 1983), is even more evident in non-linear
computations where the stiffness matrix must be evaluated many times during the
analysis. As we follow the non-layered approach, numerical integration is not per-
formed at any stage of the analysis. All the integrals are calculated analytically, with
the results later introduced into a computer code.

The order of this chapter is as follows: in Sect. 5.2 the yield surface with the flow
and hardening rules are derived. The elasto-plastic, large displacement stiffness ma-
trix is formulated in Sect. 5.3. The numerical examples verifying the performance of
the constitutive equation, as well as the numerical procedure, are given in Sect. 5.4.

5.2 Yield Criterion and Hardening Rule

5.2.1 Iliushin’s Yield Function (Iliushin, 1956)

As discussed in the Introduction, we use a yield criterion expressed in terms of stress
resultants and couples, similar to the Iliushin’s yield function modified to account
for the progressive development of the plastic curvatures and shear forces, as given
by Shi and Voyiadjis (1992). The Iliushin’s yield function F can be written as:

F = M2

M0
2 + N 2

N0
2 + 1√

3

|M N |
M0 N0

− Y (k)

σ0
2

= 0 (5.1)

or:

F = |M |
M0

+ N 2

N0
2 − Y (k)

σ0
2

= 0 (5.2)

where N and M are the stress intensities given by:
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N 2 = Nx
2 + Ny

2 − Nx Ny + 3Nxy
2 (5.3)

M2 = Mx
2 + My

2 − Mx My + 3Mxy
2 (5.4)

M N = Mx Nx + My Ny − 1

2
Mx Ny − 1

2
My Nx + 3Mxy

2 (5.5)

and M0 and N0 are, respectively, the moment capacity of the cross section when the
plastic hinge has formed, i.e., the cross section is fully plastic, and the normal force
capacity of the cross section given by:

M0 = σ0h2

4
, N0 = σ0h (5.6)

The symbol σ0 is the uniaxial yield stress; Y (k) is a material parameter, which
depends on the isotropic hardening parameter k; h is the thickness of the shell,
and |.| denotes the absolute value; and Nx , Ny, Nxy and Mx , My, Mxy are the stress
resultants and stress couples, respectively, defined in terms of the strains of the shell
by (3.18), (3.19), (3.20), (3.21), (3.22), (3.23), (3.24), (3.25) and shown in Fig. 5.1.

5.2.2 Influence of the Shear Forces

The form of the yield condition given by (5.1) can be easily derived from the von
Mises function and the definition of normal stresses at top and bottom surfaces of
the shell, as shown by Bieniek and Funaro (1976). To examine the influence of the
transverse shear forces on the plastic behavior of shells, the yield surface given by
(5.1) must be modified. We include the transverse shear forces Qx , Qy (Fig. 5.1) by
altering the stress intensity given by (5.3) following (Shi and Voyiadjis, 1992):

N 2 = Nx
2 + Ny

2 − Nx Ny + 3
(
Nxy

2 + Qx
2 + Qy

2
)

(5.7)

Fig. 5.1 Stress resultants on a shell element (Voyiadjis and Woelke, 2006)
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We show below, that the representation of the shear forces in thick plastic plates
and shells can be very important under certain conditions.

5.2.3 Development of the Plastic Hinge

For a bending dominant situation, according to (5.1) or (5.2), the structure will
behaves linearly until the entire cross section is plastic, i.e., the plastic hinge has
formed. In reality, however, plastic curvature develops progressively from the outer
fibers of the shell or plate, and the material behaves non-linearly as soon as the outer
fibers start to yield. To account for the development of plastic curvature across the
thickness, Crisfield (1981a) introduced a plastic curvature parameter α (κ̄ p) into the
(5.1), (5.2):

F = M2

α2 M0
2 + N 2

N0
2 + 1√

3α

|M N |
M0 N0

− Y (k)

σ0
2

= 0 (5.8)

or:

F = |M |
αM0

+ N 2

N0
2 − Y (k)

σ0
2

= 0 (5.9)

where α was chosen such that αM0 follows the uniaxial moment-plastic curvature
relation:

α = 1 − 1

3
exp

(
−8

3
κ̄ p

)
(5.10)

κ̄ p =
∑

�κ̄ p = Eh√
3σ0

∑((
�κx

p
)2 + (

�κy
p
)2 + �κx

p�κy
p + (

�κxy
p
)2

/4
)1/2

(5.11)

κ̄ p is the equivalent plastic curvature �κx
p
, �κy

p and �κxy
p are the incre

ments of the plastic curvatures. For κ̄ p = 0, α = 2/3 and we obtain

αM0 = σ0t2

6
which represents the moment capacity at first yield. If, however,

κ̄ p = ∞ → α = 1 we obtain the moment capacity of the fully plastic cross section.
Therefore, through the introduction of the plastic curvature parameter α we account
for the progressive development of the plastic curvatures and predict the first yield.

5.2.4 Bauschinger Effect and Kinematic Hardening Rule

The Bauschinger effect is a phenomenon observed in the experimental tests of met-
als. For most metals the stress–strain curve in a simple compression test is almost
identical to that in a simple tension test. If, however, the specimen is plastically
prestrained in tension and the load is then reversed, the stress–strain curve in com-
pression differs considerably from the curve that, would be obtained on reloading
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Fig. 5.2 Bauschinger effect

σy′

σy″

σy

−σy

σ

ε

the specimen in tension, or on loading the undisturbed specimen in compression. As
shown in Fig. 5.2 for the specimen with the preloading σy

′ in tension, its correspond-
ing compression yielding occurs at the stress level σy

′′, which is less than the initial
yield stress σy and much less than the subsequent yield point σy

′. The Bauschinger
effect and is usually present when there is a load reversal. This indicates that the
strain is not a function of the stress alone, but depends on the previous loading his-
tory. Thus, the material is load path dependent (Chen and Han, 1988). To model the
Bauschinger effect requires an accurate kinematic hardening rule, which represents
the rigid body motion of the yield surface in the stress or stress resultant space.
The shape and orientation of the initial surface is maintained. Our work focuses on
development of a stress resultant-based model; hence, the need for such a kinematic
hardening rule.

Bieniek and Funaro (1976) introduced residual bending moments (“hardening
parameters”), allowing for description of the Bauschinger effect. These were later
successfully applied for dynamic (Bieniek et al., 1976) and viscoplastic dynamic
(Atkatsh et al., 1982, 1983) analysis of shells. To correctly determine the rigid
translation of the yield surface in the stress resultant space, we need not only resid-
ual bending moments, but also residual normal and shear forces. These hardening
parameters are related directly to backstress, representing the center of the yield sur-
face in the stress space. We introduce a new kinematic hardening rule for plates and
shells, with residual stress resultants, derived directly from the evolution of the back-
stress given by Armstrong and Frederick (1966). The yield surface is expressed as:

F∗ = |M∗|
αM0

+ (N ∗)2

N0
2 − Y (k)

σ0
2

= 0 (5.12)



96 5 Elasto-Plastic Geometrically Non-linear Finite Element Analysis

where:

(
N ∗)2 = (

Nx − Nx
∗)2 + (

Ny − Ny
∗)2 − (

Nx − Nx
∗) (Ny − Ny

∗)
+ 3

[(
Nxy − Nxy

∗)2 + (
Qx − Qx

∗)2 + (
Qy − Qy

∗)2
] (5.13)

(
M∗)2 = (

Mx − Mx
∗)2 + (

My − My
∗)2 − (

Mx − Mx
∗) (My − My

∗)
+ 3

(
Mxy − Mxy

∗)2
(5.14)

and Mx
∗, My

∗, Mxy
∗, Nx

∗, Ny
∗, Nxy

∗, Qx
∗, Qy

∗ are previously described residual
bending moments, normal forces, and shear forces, respectively. We now proceed
to the definition of the kinematic hardening parameters. For conciseness, we use
indicial notation in the derivation, and engineering notation only for the final result.
The Armstrong and Frederick’s evolution of backstress ρi j is given by:

�ρi j = c�εi j
p − aρi j �εeq

p (5.15)

where a and c are material constants and the equivalent plastic strain increment is:

�εeq
p =

√
2

3
�εi j

p�εi j
p (5.16)

The backstress represents the center of the translated yield surface in the stress
space. It has the same dimension as the stress tensor. To compute the stress resultants
we need to integrate the stresses over the thickness of the shell. We use the same
definition to derive the hardening parameters, which represent the center of the yield
surface in the stress resultant space. We therefore need to integrate the backstress
over the thickness of the shell or plate to obtain residual normal and shear forces and
bending moments. The definitions of the increments of hardening parameters are:

�Ni j
∗ =

h/2∫
−h/2

�ρi j dz (5.17)

�Mi j
∗ =

h/2∫
−h/2

�ρi j zdz (5.18)

Substituting (5.15) into (5.17) we obtain:

�Ni j
∗ =

h/2∫
−h/2

(
c�εi j

p − aρi j �εeq
p
)

dz (5.19)
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The increments of plastic strains �εi j
p in (5.19) are membrane strains, due to

normal forces only. These are constant across the thickness of the shell; therefore,
we can write:

�Ni j
∗ = ch�εi j

p − ahρi j �εeq
p (5.20)

Defining the hardening parameters similarly as stress resultants:

hρi j = Ni j
∗ (5.21)

we rewrite (5.21) as:

�Ni j
∗ = ch�εi j

p − aNi j
∗�εeq

p (5.22)

Constants a and c are similar to Bieniek and Funaro (1976):

a = c = β1 (1 − F)
1

h

N0

ε0
(5.23)

where N0 and ε0 are given by:

N0 = σ0h, ε0 = σ0/E (5.24)

where F is a yield surface given in (5.9) and h is the thickness of the plate and β1 is
a constant. We therefore obtain:

�Ni j
∗ = β1 (1 − F)

N0

ε0

[
�εi j

p − 1

h
Ni j

∗�εeq
p

]
(5.25)

Similarly, substituting (5.15) into (5.18) we determine the increments of the
residual bending moments:

�Mi j
∗ =

h/2∫
−h/2

(
c�εi j

p − aρi j �εeq
p
)

zdz (5.26)

where �εi j
p and �εeq

p are:

�εi j
p = z�κi j

p (5.27)

�εeq
p =

√
2

3
z2�κi j

p�κi j
p (5.28)
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Substituting (5.27) into (5.26) and integrating it we have:

�Mi j
∗ = c

h3

12
�κi j

p − a
h3

12
ρi j �κeq

p (5.29)

�Mi j
∗ = c

h3

12
�κi j

p − a
h

2
Mi j

∗�κeq
p where ρi j

h2

6
= Mi j

∗ (5.30)

The constants a and c are expressed similarly to those in (5.23):

a = c = β2 (1 − F)
12

h3

M0

κ0
(5.31)

which leads to:

�Mi j
∗ = β2 (1 − F)

M0

κ0

[
�κi j

p − 6

h2
Mi j

∗�κeq
p

]
(5.32)

The hardening parameters can now be rewritten in engineering notation as:

I f F∗ = 1 and ∇F∗ > 0 (plastic loading)

�Nx
∗ = β1 (1 − F)

N0

ε0

[
�εx

p − 1

h
Nx

∗�εeq
p

]

�Ny
∗ = β1 (1 − F)

N0

ε0

[
�εy

p − 1

h
Ny

∗�εeq
p

]

�Nxy
∗ = β1 (1 − F)

N0

ε0

[
�εxy

p − 1

h
Nxy

∗�εeq
p

]

�Qx
∗ = β1 (1 − F)

N0

ε0

[
�εxz

p − 1

h
Qx

∗�εeq
p

]

�Qy
∗ = β1 (1 − F)

N0

ε0

[
�εyz

p − 1

h
Qy

∗�εeq
p

]

(5.33)

�Mx
∗ = β2 (1 − F)

M0

κ0

[
�κx

p − 6

h2
Mx

∗�κeq
p

]

�My
∗ = β2 (1 − F)

M0

κ0

[
�κy

p − 6

h2
My

∗�κeq
p

]

�Mxy
∗ = β2 (1 − F)

M0

κ0

[
�κxy

p − 6

h2
Mxy

∗�κeq
p

]
(5.34)
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Fig. 5.3 Yield surface on
Nx Mx plane – interpretation
of kinematic hardening
parameter, O ′ is the center of
transferred yield surface
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I f F∗ < 1 and ∇F∗ ≤ 0 (unloading or neutral loading)

�Nx
∗ = �Ny

∗ = �Nxy
∗ = �Qx

∗ = �Qy
∗ = �Mx

∗ = �My
∗ = �Mxy

∗ = 0
(5.35)

Parameters β1 and β2 in the above formulation control the membrane force-
membrane strain and moment-curvature relations. A value of β1 = β2 = 2.0 is
found to be of sufficient accuracy in the representation of the behavior
of shells.

We arrive at a final form of the yield function expressed in terms of stress resul-
tants and couples, with isotropic and kinematic hardening rules. A graphic repre-
sentation of the yield surface given by (5.12) on the Nx Mx plane with α = 1 and
Y = σ0

2 is shown in Fig. 5.3 (Woelke and Voyiadjis, 2005). Point O ′ denotes the
transferred center of the yield surface.

5.3 Explicit Elasto-Plastic Tangent Stiffness Matrix
with Large Displacements

We adopt the plastic node method (Ueda and Yao, 1982), i.e., the plastic deforma-
tions are considered to be concentrated in the plastic hinges. The yield function is
checked only at each node of the finite element. If the combination of stress resul-
tants satisfies the yield condition, that node is considered plastic. In this method the
inelastic deformations are considered only at the nodes, while the interior of the
element remains elastic.
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When node i of the element becomes plastic, the yield function takes the form:

F∗
i
(
Ni, Qi, Mi, N∗

i, Q∗
i, M∗

i, k
) = 0 (5.36)

where:

Ni =
⎧⎨
⎩

Nx

Ny

Nxy

⎫⎬
⎭ ; Qi =

{
Qx

Qy

}
; Mi =

⎧⎨
⎩

Mx

My

Mxy

⎫⎬
⎭ (5.37)

N∗
i =

⎧⎨
⎩

N ∗
x

N ∗
y

N ∗
xy

⎫⎬
⎭ ; Q∗

i =
{

Q∗
x

Q∗
y

}
; M∗

i =
⎧⎨
⎩

M∗
x

M∗
y

M∗
xy

⎫⎬
⎭ (5.38)

At the same time, the stress resultants must remain on the yield surface, i.e., the
consistency condition must be satisfied:

�F∗
i

�Mi
dMi + �F∗

i

�Ni
dNi + �F∗

i

�Qi
dQi + �F∗

i

�M∗
i
dM∗

i

+ �F∗
i

�N∗
i
dN∗

i + �F∗
i

�Q∗
i
dQ∗

i + �F∗
i

�k
dki = 0

(5.39)

We assume additive decomposition of strains into elastic and plastic parts:

ε = εe + ε p (5.40)

The associated flow rule is used here to determine the increments of plastic
strains:

�κx
p =

NPN∑
i=1

�λi
�F∗

i

�Mxi
(5.41)

where NPN is the number of plastic nodes in the element and dλi is a plastic multi-
plier. The remaining increments of the plastic strains are obtained the same way. The
plastic strain fields are interpolated as in the linear elastic analysis ((3.45), (3.46),
(3.47)) rewritten here in the incremental form:

��b
p =

⎧⎨
⎩

�κx
p

�κy
p

2�κxy
p

⎫⎬
⎭ , ��m

p =
⎧⎨
⎩

�εx
p

�εy
p

2�εxy
p

⎫⎬
⎭ , ��s

p =
{

�γxz
p

�γyz
p

}
(5.42)

or:



5.3 Explicit Elasto-Plastic Tangent Stiffness Matrix with Large Displacements 101

��b =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

��φx

�x
��φy

�y
��φx

�y
+ ��φy

�x

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, ��m =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

��u

�x
+ �w

R
��v

�y
+ �w

R
��u

�y
+ ��v

�x

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, ��s =

⎧⎪⎪⎨
⎪⎪⎩

��w

�x
− φx − �u

R
��w

�y
− φy − �v

R

⎫⎪⎪⎬
⎪⎪⎭

(5.43)
The assumption of an additive decomposition of strains can be extended to

displacements, provided that the strains are small (Ueda and Yao, 1982; Shi and
Voyiadjis, 1992). Although we take into account geometric non-linearities, we con-
sider only large rigid rotations and translations, but small strains. We write:

q = qe + q p (5.44)

Following the work of Shi and Voyiadjis (1992) we approximate the increments
of plastic displacements by the increments of plastic strains. The plastic rotation
�φx

p is a function of both �κx
p and �κxy

p, as can be deduced from (5.43).
Assuming that increment of plastic nodal rotation �φxi

p is proportional to the in-
crement of elastic nodal rotation, �φxi we express the former as:

�φxi
p = lim

δ�→0

∫∫
δ�i

[
�κx

p + �φxi
2

�φxi
2 + �φyi

2 2�κxy
p

]
dxdy

= �λi

[
�F∗

i

�Mxi
+ 2�φxi

2

�φxi
2 + �φyi

2

�F∗
i

�Mxyi

] (5.45)

where δ�i represents the infinitesimal neighborhood of node i . The vector of incre-
mental nodal plastic displacements of the element at node i can then be expressed as:

�qi
p = ai�λi (5.46)

with ai given by:

ai
T =

{
�F∗

i

�Nxi
+ pu

�F∗
i

�Nxyi
;

�F∗
i

�Nyi
+ pv

�F∗
i

�Nxyi
;

�F∗
i

�Qxi
+ �F∗

i

�Qyi
;

�F∗
i

�Mxi
+ pφx

�F∗
i

�Mxyi
;

�F∗
i

�Myi
+ pφy

�F∗
i

�Mxyi

}

pu = 2�ui
2

�ui
2 + �vi

2
; pv = 2�vi

2

�ui
2 + �vi

2
; pφx = 2�φxi

2

�φxi
2 + �φyi

2 ;

pφy = 2�φyi
2

�φxi
2 + �φyi

2

(5.47)

Equations (5.46) and (5.47) indicate that the plastic displacements at the nodes
are functions of the stress resultants only at this node (Shi and Voyiadjis, 1992).
Therefore, we can write the vector of increments of nodal plastic displacements as:
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�qp =
⎡
⎣a1 0 0

0 ai 0
0 0 aNPN

⎤
⎦
⎧⎨
⎩

�λ1

�λi

�λNPN

⎫⎬
⎭ = a�� (5.48)

As with the geometrically non-linear analysis presented in Chap. 4, to deter-
mine the tangent stiffness matrix of the element we define δ�b, δ�m, δ�s as virtual
elastic bending, membrane and transverse shear strains, respectively (δ-virtual), and
M,N,Q as stress couples and stress resultants of the element. We also use the same
linearized equilibrium equations of the system at configuration k +1 in the Updated
Lagrangian description, expressed by the principle of the virtual work, which in
finite element modeling takes the form:

∫∫
�

(
δ�b

TD�b + δ�m
TS�m + δ�s

TT�s
)

dxdy +
∫∫
�

δ�TkF�dxdy = k+1 R

−
∫∫
�

(
δ�b

TkM + δ�m
TkN + δ�s

TkQ
)

dxdy
(5.49)

where k+1 R is the total external virtual work at step k + 1, � is the slope vector,
and kF is a membrane stress resultant matrix at step k given by (4.22). Following
the procedure described in Chap. 4, we derive the initial stress stiffness matrix.
Equation (4.18) can be expressed as:

∫∫
�

(
δ�b

TD�b + δ�m
TS�m + δ�s

TT�s
)

dxdy + δ�qeTKg�qe =k+1 R − δ�qT�f

(5.50)
where Kg is the initial stress matrix defined as in Chap. 4:

Kg =
∫∫
�

GTkFGdxdy (5.51)

and f is the internal force vector resulting from the unbalanced forces in configura-
tion k expressed as:

f =
∫∫
�

(
Bb

TkM + Bm
TkN + Bs

TkQ
)

dxdy (5.52)

We now rewrite (5.50), using (5.40), written in a matrix form as:

∫∫
�

[(
δ�b

eT + δ�b
pT)M + (

δ�m
eT + δ�m

pT)N + (
δ�s

eT + δ�s
pT)Q

]
dxdy

+ δ�qeTKg�qe =k+1R − δ�qT�f
(5.53)

Rearranging terms and writing the above equation in incremental form, we have:
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∫∫
�

(
δ��b

eT�M + δ��m
eT�N + δ��s

eT�Q
)

dxdy +
∫∫
�

(
δ��b

pT�M

+δ��m
pT�N + δ��s

pT�Q
)

dxdy + δ�qeTKg�qe = k+1R − δ�qT�f (5.54)

Substituting (5.41) into (5.54) we obtain:

∫∫
�

(
δ��b

eT
�M + δ��m

eT
�N + δ��s

eT
�Q

)
dxdy

+
NPN∑
i=1

δ�λi

[
�F∗

i

�Mi
dMi + �F∗

i

�Ni
dNi + �F∗

i

�Qi
dQi

]
+ δ�qeT

Kg�qe

= k+1 R − δ�q
T
�f

(5.55)

Using (3.66), (3.67), (3.68), (3.69), (3.70), (3.71), (3.72), (3.73), (3.74), (3.75),
(3.76), (3.77), (3.78), (3.79), (3.80), (3.81), as well as the consistency condition
given by (5.39), we may write:

δ�qeT (Ke+Kg
)

�qe

−
NPN∑
i=1

δ�λi

[
�F∗

i

�M∗
i
dM∗

i + �F∗
i

�N∗
i
dN∗

i + �F∗
i

�Q∗
i
dQ∗

i + �F∗
i

�k
dki

]

= k+1 R − δ�qT�f

(5.56)

where Ke is the linear elastic stiffness matrix given by (3.83).
Similarly to (5.47) we define the following relations:

abi
T = �F∗

i

�M∗
i

=
{

�F∗
i

�M∗
xi

;
�F∗

i

�M∗
yi

;
�F∗

i

�M∗
xyi

}
;

ami
T = �F∗

i

�N∗
i

=
{

�F∗
i

�N ∗
xi

;
�F∗

i

�N ∗
yi

;
�F∗

i

�N ∗
xyi

}
;

asi
T = �F∗

i

�Q∗
i

=
{

�F∗
i

�Q∗
xi

;
�F∗

i

�Q∗
yi

}
;

(5.57)

Substituting (5.41) into (5.33) and (5.34) we obtain:

d Mx
∗ = �Mx

∗

= β2 (1 − F)
M0

κ0
�λ

⎡
⎣ �F∗

�Mx
− 6

h2
Mx

∗

√√√√2

3

[(
�F∗

�Mx

)2

+
(

�F∗

�My

)2

+
(

�F∗

�Mxy

)2
]⎤
⎦

(5.58)
and similarly for the remaining hardening parameters. Vectors of hardening param-
eters therefore yield:
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dN∗
i =

⎧⎨
⎩

�N ∗
x

�N ∗
y

�N ∗
xy

⎫⎬
⎭ = ��Ami; dQ∗

i =
{

�Q∗
x

�Q∗
y

}
= ��Asi (5.59)

and:

dM∗
i =

⎧⎨
⎩

�M∗
x

�M∗
y

�M∗
xy

⎫⎬
⎭ = ��Abi (5.60)

where Ami, Asi, Abi are given by:

Ami =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 (1 − F)
N0

ε0

⎡
⎣ �F∗

�Nx
− 1

h
Nx

∗

√√√√2

3

[(
�F∗

�Nx

)2

+
(

�F∗

�Ny

)2

+
(

�F∗

�Nxy

)2
]⎤
⎦

β1 (1 − F)
N0

ε0

⎡
⎣ �F∗

�Ny
− 1

h
Ny

∗

√√√√2

3

[(
�F∗

�Nx

)2

+
(

�F∗

�Ny

)2

+
(

�F∗

�Nxy

)2
]⎤
⎦

β1 (1 − F)
N0

ε0

⎡
⎣ �F∗

�Nxy
− 1

h
Nxy

∗

√√√√2

3

[(
�F∗

�Nx

)2

+
(

�F∗

�Ny

)2

+
(

�F∗

�Nxy

)2
]⎤
⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.61)

Asi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β1 (1 − F)
N0

ε0

⎡
⎣ �F∗

�Qx
− 1

h
Qx

∗

√√√√ 2

3

[(
�F∗

�Qx

)2

+
(

�F∗

�Qy

)2
]⎤
⎦

β1 (1 − F)
N0

ε0

⎡
⎣ �F∗

�Qy
− 1

h
Qy

∗

√√√√ 2

3

[(
�F∗

�Qx

)2

+
(

�F∗

�Qy

)2
]⎤
⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Abi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2 (1 − F)
M0

κ0

⎡
⎣ �F∗

�Mx
− 6

h2
Mx

∗

√√√√2

3

[(
�F∗

�Mx

)2

+
(

�F∗

�My

)2

+
(

�F∗

�Mxy

)2
]⎤
⎦

β2 (1 − F)
M0

κ0

⎡
⎣ �F∗

�My
− 6

h2
Mx

∗

√√√√2

3

[(
�F∗

�Mx

)2

+
(

�F∗

�My

)2

+
(

�F∗

�Mxy

)2
]⎤
⎦

β2 (1 − F)
M0

κ0

⎡
⎣ �F∗

�Mxy
− 6

h2
Mx

∗

√√√√2

3

[(
�F∗

�Mx

)2

+
(

�F∗

�My

)2

+
(

�F∗

�Mxy

)2
]⎤
⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Following the work of Shi and Voyiadjis (1992) we also define the isotropic
hardening parameter as:

H�� =
⎡
⎣H1 0 0

0 Hi 0
0 0 HNPN

⎤
⎦
⎧⎨
⎩

�λ1

�λi

�λNPN

⎫⎬
⎭ = −

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�F∗
1

�k1
dk1

�F∗
i

�ki
dki

�F∗
NPN

�kNPN
dkNPN

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.62)
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where k is represented by the amount of plastic work, i.e. dki = Nid�m
p +Mid�b

p.
We substitute (5.57), (5.59) and (5.62) into (5.56) to obtain:

δ�qeT (K + Kg
)

�qe + δ��T [H − ab
TAb−am

TAm−as
TAs

]
��

=k+1R − δ�qT�f
(5.63)

or using (5.44) and (5.46):

(
δ�qT − δ�qpT) (K + Kg

)
�qe + δ��T [H − ab

TAb−am
TAm−as

TAs
]

��

− k+1R + δ�qT�f = δ�qT [(K + Kg
)

�qe − k+1 R∗ + �f
]

+ δ��T [−aT (K + Kg
)

�qe + (
H − ab

TAb−am
TAm−as

TAs
)

��
] = 0

(5.64)
with:

k+1 R = k+1 R∗δ�q (5.65)

By the virtue of the variational method, (5.64) gives:

(
K + Kg

)
�qe − k+1 R∗ + �f = 0

− aT (K + Kg
)

�qe + (
H − ab

TAb−am
TAm−as

TAs
)

�� = 0
(5.66)

Substituting (5.44) and (5.46) into the above equations we get:

(
K + Kg

)
�qe − k+1 R∗ + �f = (

K + Kg
)

(�q − a��) = k+1 R∗ − �f (5.67)

− aT (K + Kg
)

(�q − a��) + (
H − ab

TAb−am
TAm−as

TAs
)

�� = 0 (5.68)

Equation (5.68) leads to:

�� = [
aT (K + Kg

)
a + (

H − ab
TAb−am

TAm−as
TAs

)]−1
aT (K + Kg

)
�q
(5.69)

Equation (5.67) becomes:

Kepg�q = k+1 R∗ − �f (5.70)

where Kepg is the elasto-plastic, large displacement stiffness matrix of the element,
given by:

Kepg = (
K + Kg

)
{

I − a
[
aT (K + Kg

)
a + (

H − ab
TAb−am

TAm−as
TAs

)]−1
aT (K + Kg

)}
(5.71)

The tangent stiffness matrix given by (5.71) is similar to that presented by Shi and
Voyiadjis (1992). As our formulation accounts for large displacements the stiffness
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matrix of the element contains the initial stress matrix Kg. More important however,
the above-derived stiffness matrix describes not only isotropic hardening, by means
of the parameter H, but kinematic hardening, through matrices Ab, Am, As, which
are not determined by curve fitting but derived explicitly from the evolution equation
of the backstress given by Armstrong and Frederick (1966). We therefore have a
non-layered finite element formulation with shell constitutive equations, yield con-
dition, flow, and hardening rules expressed in terms of membrane and shear forces
and bending moments. All the variables used here, namely the stress resultants and
couples, as well as the residual stress resultants and couples, representing the center
of the yield surface, are rigorously derived from stresses and backstresses.

A significant feature of the derived tangent stiffness is its explicit form. The
linear elastic stiffness matrix and initial stress matrix are determined by the quasi-
conforming technique. We do not use through-the-thickness integration, as our pro-
cedure is for the non-layered model with the yield condition expressed in terms of
stress couples and resultants.

5.4 Numerical Examples

A finite element code written in the programming language Fortran 95 for the pur-
pose of the geometrically non-linear analysis was further enhanced to model the
elasto-plastic behavior. As before, we used the modified Newton-Raphson technique
to solve a system of non-linear, incremental equations. To overcome the singularity
problem appearing at the limit point, we adopted the arc-length method (Crisfield,
1991) to determine the local load increment for each iteration. A return to the yield
surface algorithm was also implemented (Crisfield, 1991). The results delivered by
our model were computed on a personal computer. Some of the reference solutions
obtained with the layered approach (ABAQUS) were determined using a Silicon
Graphics Onyx 3200 system. Computational and programming issues are discussed
in detail in Chap. 7.

The accuracy of our formulation is verified through a series of discriminating
examples. We solve only non-linear examples to test the reliability of the elasto-
plastic framework presented in this chapter. The problems were chosen to challenge
and demonstrate the most important features of our model:

� Representation of progressive development of plastic deformation until the plas-
tic hinge is formed;

� Influence of the transverse shear forces on plastic behavior of thick plates, beams,
and shells of general shape;

� Elasto-plastic behavior of structures of interest upon reversal of loading (repre-
sentation of Bauschinger effect through kinematic hardening); and

� Description of large displacements and rotations.

We compare the performance of the our procedure with other formulations avail-
able in the literature. Table 5.1 gives the references used, and their abbreviations.
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Table 5.1 References used with abbreviations

Name Description

ABQ-L ABAQUS layered model with von Mises type yield crite-
rion and Ziegler kinematic hardening rule (Hibbit, Karlson
& Sorensen, Inc., 2001)

C&H Bounds for collapse load – analytical solution of cylindrical
shell Chen and Han (1988)

HOD Analytical solution given by Hodge (1959)
O&HNL Owen and Hinton Non-Layered Model based on Mindlin

plate theory and Iliushin’s Yield Criterion (1980)
O&HL Owen and Hinton Layered Model based on Mindlin plate

theory and von Mises Yield Criterion (1980)
V&W-Q The present formulation with shear forces included in the

yield function (Voyiadjis and Woelke, 2006)
V&W The present formulation without shear forces included in the

yield function (Voyiadjis and Woelke, 2006)

5.4.1 Simply Supported Elasto-Plastic Beam

The importance of the transverse shear forces in the approximation of the col-
lapse load of thick beams, plates, and shells is known to be significant. Neglecting
transverse shears in the assessment of the maximum load carrying capacity of the
structure may lead to predictions that are not conservative. Accurate and safe ap-
proximations should result in a decreasing value of the maximum load factor with
increasing thickness. To test the accuracy of our formulation in accounting for shear
deformation, we consider a simply supported beam of length 2L = 20 in. sub-
jected to a concentrated load 2P = 20 lb at its mid-point. The Young’s modulus is
E = 10.5×106 psi , yield stress σ = 500 psi , and width of the beam is b = 0.15 in.
We compute the load factor of the beam as a function of thickness. The analytical
solution of this problem given by Hodge (1959) serves as a reference solution. The
geometry of the problem, as well as the material and section properties, are given in
Fig. 5.4. The comparison of the results provided by our formulation, compared with
the reference solutions are given in Fig. 5.5.

Fig. 5.4 Simply supported
beam – geometry and
material properties (Voyiadjis
and Woelke, 2006)

σ = 500 psi

2P

A

A
2L

AA −

H

0.15in
P = 10 lb

L = 10 in

E = 10.5 × 106 psi
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Fig. 5.5 Simply supported beam – results of the analysis: collapse load as a function of thickness
(Voyiadjis and Woelke, 2006)

As seen in Fig. 5.5, our formulation agrees very well with analytical results of this
problem by Hodge (1959). We observe a substantial drop in the load factor for thick
beams. Note that, for practical purposes only a certain range of H is significant.
When the thickness of the beam, plate, or shell reaches 50% of its total length,
we clearly enter into a purely academic problem, although it is still valuable for
illustrative purposes.

The reduction of the load factor is very significant even for moderately thick
beams, i.e., H = 0.5L (total length of the beam is 2L), which is closely approxi-
mated here.

5.4.2 Simply Supported Plate

The following example corroborates the accuracy of our formulation in the predic-
tion of the first yield in plates, as well as the description of the load-displacement
response under cyclic loads. We examine only material non-linearities, to allow for
comparison with the reference solution by Owen and Hinton (1980).

We consider a square (L =1.0 m) simply supported plate subjected to a uniformly
distributed load q = 1.0 k Pa. Young’s modulus is E = 10.92 k Pa, Poisson’s ratio
ν = 0.3, yield stress σ = 1600 k Pa, and thickness of the plate t = 0.01 m. The
geometry and material properties are shown in Fig. 5.6.

We compare the results obtained with our finite element model, with those pub-
lished by Owen and Hinton (1980), using layered and non-layered model (O&HL,
O&HNL – Table 5.1). The load-deflection responses are shown in Fig. 5.7.

One of our objectives is to account for the progressive plasticization of the cross
section by means of a non-layered model. In a layered model, used here as a refer-
ence, we track the development of the plastic deformation directly, as stresses are
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Fig. 5.6 Simply supported
plate – geometry, material
properties and deformed
shape (Voyiadjis and
Woelke, 2006)

E = 10.92 kPa, ν = 0.3
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Fig. 5.7 Simply supported plate – Load-displacement curves (Voyiadjis and Woelke, 2006)
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calculated at several different levels (layers) in the model. In a layered model, we
operate in a stress resultant and stress couples space. The plastic bending moment is
calculated under the assumption of a fully plastic cross section. Hence, unless steps
are taken to alleviate this problem, the cross section can only be either fully elastic
or fully plastic, with no intermediate states.

As seen in Fig. 5.7, our approach provides a very good approximation of plastic
strains growing gradually from the outer fibers to the mid-plane.

A main thrusts of our work is development of a physically sound kinematic hard-
ening rule for non-layered plates and shells, correctly representing not only moment-
curvature relationship, but normal force-normal strain and shear force-shear strain
relationships upon complete reversal of loading. We therefore need to show the im-
portance of all the hardening parameters N∗, Q∗, M∗. The simply supported plate
under a uniformly distributed load is a problem in which the normal forces are
negligible. The residual forces N∗ are also negligible. The influence of these is
investigated in the following examples.

The plate example is a bending dominant problem and the moment curvature
relation is of primary importance. The load-displacement curve takes the shape of a
moment-curvature relation. Figure 5.8 shows the load-deflection curves for the plate
shown in Fig. 5.6, in the case of reverse loading condition. The ABAQUS layered
model with kinematic hardening rule is used as a reference. Our approximation is
very close to the one by the layered approach, as seen in Fig. 5.8. This confirms that
the definition of residual bending moments M∗ in the hardening rule is sound and
produces accurate results.

For the thickness of the plate t = 0.01 m, the influence of the transverse shear
forces on the plastic behavior is very small. In this case, the residual transverse shear
forces Q∗ do not matter either. With increasing thickness of the plate, we observe
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Fig. 5.8 Simply supported plate – Load-displacementresponse (Voyiadjis and Woelke, 2006)
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the increasing importance of the transverse shear forces, as was shown by Shi and
Voyiadjis (1992). We show here that for thick plates, both transverse shear forces
and residual transverse shear forces play a very important role.

We now consider the same rectangular simply supported plate as in Fig. 5.6. The
thickness of the plate, however, is increased to t = 0.35 m, and a uniform load to
q = 850 k Pa, and the yield stress reduced to σ = 1200 k Pa. The thickness of the
plate is now 35% of its length; hence, we expect a significant reduction of the load
factor of the plate, due to the influence of the shear forces. Again, we compare the
results with the layered model, with the influence of transverse shear taken into
account. The results are presented in Fig. 5.9. A diamond line denoted by ABQ-L
indicates a layered approach with shear forces considered. This approach serves as
a reference solution.

As expected, the influence of the shear forces on the approximations of the
collapse load is significant. The analysis in which the transverse shear forces are
not considered leads to a nearly 20% higher prediction of maximum load car-
ried by the plate. Neglecting the shear forces when analyzing thick plates, shells
and beams potentially leads to overprediction of the ultimate load carried by the
structure.

When loading is reversed and applied in the opposite direction, until yielding
occurs at the top surface of the plate, the residual shear forces Q∗ become dominant
in the analysis.

Our model reproduces very well the lowered yield point upon reversal of loading,
and offers a solution close to that of the layered approach. We therefore conclude
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that the representation of the residual shear forces as kinematic hardening parame-
ters is physically sound and capable of delivering highly accurate results.

The effect of the shear forces on the plastic behavior and maximum load carrying
capacity is correctly recognized. As expected, because of the increasing significance
of transverse shears, the results show a reduction of the limit load for thick plates,
shells, and beams.

5.4.3 Cylindrical Shell Subjected to Ring of Pressure

The previous example showed the validity of the definition of the residual bending
moments and residual shear forces as kinematic hardening parameters. The deriva-
tion of the residual membrane forces is based on the same assumptions, thus we
expect them to be as reliable as the shear forces and bending moments. As the
membrane forces in bending of plates are negligible, the results of the previous
example do not confirm the soundness of the formulation of the residual normal
forces. To do so, we investigate a cylindrical shell under a ring of pressure. The
geometry, deformed shape of a cylinder, octant, and material parameters are shown
in Fig. 5.10.

Membrane forces play an important role here. If the structure is loaded into a
plastic zone, then unloaded and loaded in the opposite direction, the residual mem-
brane forces are also significant. The results of the analysis are compared with those
of the “through the thickness integration” (layered) method in Fig. 5.11.

Again, our non-layered model with a new kinematic hardening rule is robust and
agrees excellently with the layered approach. The latter, however, requires many
more operations for non-linear calculations, as the yield function and consistency
condition must be checked separately at each layer.

The problem presented here was originally investigated by Drucker (1954) and
later by Chen and Han, (1988), who analytically determined the bounds for the
collapse load of the cylinder. These bounds are given by:

1.5 ≤ P

σ0h
(

h
R

)1/2 ≤ 2.0 (5.72)

x

L L

R

P

t = 2 in

P = 0.85 lb / in

E = 3.0 × 103 psi

R = 300 in

L = 600 in

ν  = 0.3

σ0  = 10 psi

Fig. 5.10 Cylindrical shell subjected to a ring of pressure and a deformed shape (Woelke
et al. 2006)
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Assessment of the collapse load of structures is of paramount importance from
an engineering point of view. We therefore examine the functionality of our model
in the determining the maximum load carried by the cylinder. Equation (5.12) serves
as a target solution. The collapse load as a function of thickness of the shell is shown
in Fig. 5.12.
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Note that for the case of a very thick shell, the results approach the lower bound
solution. This is because the shear forces become more and more important for thick
shells, causing a reduction in the load carrying capacity.

5.4.4 Spherical Dome Subjected to Ring of Pressure

The problem of a spherical dome with an 180 hole at the top, subjected to a ring of
pressure, is solve to establish the wide range of applicability of our method. This
is an important engineering problem, as well as a discriminating test of accuracy

E = 6.82 × 107 psi

t = 0.04 in

R = 10 in

σ0 = 125 psi

ν = 0.3

Fig. 5.13 Spherical dome with an 180 cut-out; geometry and material properties (Voyiadjis and
Woelke, 2006)

–80

–60

–40

–20

0

20

40

60

80

–1.E-04 –5.E-05 0.E+00 5.E-05 1.E-04

Vertical Displacement

L
oa

d

ABQ-L

V&W

Fig. 5.14 Spherical dome with an 180 cut-out; Load –displacement curves (Voyiadjis and
Woelke, 2006)



5.5 Summary 115

of the finite element representation in the behavior of shells. We again study the
performance of the yield function and the kinematic hardening rule. Geometrical
and material data are shown in Fig. 5.13.

The structure is loaded into a plastic zone and the pressure is reversed. The
kinematic hardening rule is applied to determine the equilibrium path. The layered
approach again serves as a reference. The load-displacement curves are plotted in
Fig. 5.14.

The approximation of the equilibrium path obtained by our approach agrees very
well with the adopted target solution, showing again the validity of our assumptions.
The lowered yield point is correctly reproduced by the yield surface defined here.

Although this framework is robust for plates and shells of general shape, it per-
forms best with spherical shells. This is to be expected, as the shell constitutive
equations we use were derived by means of spherical strains, and then generalized
with the finite element method.

5.5 Summary

We evaluated the reliability of our concepts through a series of benchmark prob-
lems that were selected to challenge and demonstrate the most important features
of our model. In all the cases, the results were very close to the reference solutions,
demonstrating that the model is well grounded.

The effect of the shear forces on the plastic behavior and maximum load carrying
capacity is correctly recognized. As expected, because of the increasing significance
of transverse shears, the results show a reduction of the load factor for thick plates,
shells, and beams.

The progressive plastification of the cross section is also closely approximated.
Typically, in the non-layered approach the load displacement relation is linear until
the plastic hinge is developed. Any yielding occurring before the section is fully
plastic is neglected. Through a modification introduced by Crisfield (1981a), the
first yield of the outer fibers can be predicted, as was also confirmed here.

A spherical dome problem (Sect. 5.4.4) confirms that, although our framework
is robust for plates and shells of general shape, it performs best in the case of spher-
ical shells. This is to be expected, as the shell constitutive equations we used were
derived by means of spherical strains and to be generalized with the finite element
method.

The Bauschinger effect can only be numerically observed only if the method used
features a reliable kinematic hardening rule. The one use propose was defined in a
stress resultant space, which is effective in terms of structural analysis. The lowered
yield point upon load reversal was correctly determined here for both plates and
shells confirming that the definition of the “hardening parameters” is sound and
capable of delivering very accurate results. It is worth noting the importance of the
material constants in the definition of the hardening parameters. Correct determina-
tion of these constants is critical for the dependability of the kinematic hardening
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rule. Our calibration of the constants was based on the reference solutions; ideally,
they should be determined from extensive experimental data. Furthermore, the anal-
ysis results provided by our model, which are of course approximate, should be
compared with experimental results, rather than with other approximations, based
on a different theoretical formulation (Bieniek and Funaro, 1976).

It is important that the elasto-plastic analysis is a continuation of the formulation
developed in the preceding chapters. Consequently, any limitations and deficiencies
experienced in the elastic and geometrically non-linear investigations will persist.

The approximation introduced on the elasto-plastic level of the model that can
be subject to critique uses a plastic node method, which presumes the concentration
of the plastic deformation in the nodes of the elements, while the interior remains
elastic. Clearly, the spread of inelastic deformations will occur in many cases. The
results of our analysis show, however, that any errors that arise from a plastic node
method are in significant, even for coarse meshes.

The elasto-plastic formulation we present offers a reliable yield surface and a
new kinematic hardening rule in the stress resultant space. It delivers precise results
of the non-linear analysis of shells under cyclic loading, yet it is relatively simple
and very efficient.
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Chapter 6
Elasto-Plastic Geometrically Non-linear Finite
Element Analysis of Thick Plates and Shells
With Damage Due to Microvoids

6.1 Introduction

In this chapter we introduce the effects of damage into the computational model
for the analysis of plates and shells. All previously made assumptions pertaining to
the shell theory, shell element, geometrically non-linear, and elasto-plastic investi-
gations presented in the preceding chapters are employed here. The characteristics
of the present damage formulation, as well as the published literature, were already
discussed in Chap. 1. Thus, we only briefly review the features of the damage model
developed.

The experimental results (Bluhm and Morrissey, 1965; Fisher, 1980; Roy et al.,
1981) show that the degradation of material properties of ductile metals in the elastic
range due to damage effects is negligible. Hence, the damage considered here is a
phenomenon induced by the plastic strain and any damage occurring in the elastic
zone is disregarded.

Following the discussion given in Chap. 1, we adopt an isotropic scalar damage
parameter. In the isotropic representation of damage, the stiffness of the material
is reduced according to the same relation in all directions. For a better descrip-
tion of the anisotropic effects, the second order damage tensor, which is capable of
representing different levels of material degradation in different directions, is often
used (Abu Al-Rub and Voyiadjis, 2003; Doghri, 2000; Lubarda and Krajcinovic,
1993; Murakami, 1988; Seweryn and Mroz, 1998; Voyiadjis and Abu-Lebdeh, 1993;
Voyiadjis and Deliktas, 2000a, b; Voyiadjis and Kattan, 1991, 1992a, b, 1999;
Voyiadjis and Park, 1997, 1999; Voyiadjis and Venson, 1995).

One complexity in using anisotropic damage variables is the need to determine
of numerous material parameters, which describe the directional dependency of the
evolution of damage. Extensive experimental data are required to calibrate these
constants with sufficient accuracy and consistency. The isotropic damage formu-
lation requires determination of fewer constants (two in the case of our analysis),
yet it is capable of delivering very accurate results. For our investigation of the
behavior of isotropic plates and shells, we consider the isotropic scalar parameter
in the representation of damage to be satisfactory. The effects of anisotropy are not
accounted for.

G.Z. Voyiadjis, P. Woelke, Elasto-Plastic and Damage Analysis of Plates and Shells,
C© Springer-Verlag Berlin Heidelberg 2008
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The isotropic porosity parameter defined by Duszek-Perzyna and Perzyna (1994)
is used to describe damage effects in plates and shells. The evolution of porosity
given by Duszek-Perzyna and Perzyna (1994), reduced to a rate-independent case,
consists of three terms responsible for the cracking of the second-phase particles,
debonding of the second-phase particles from the matrix material, and void growth
controlled only by plastic flow phenomena. The first term (cracking of the second-
phase particles) is dependent only on the stress, which allows for variation of dam-
age, even without plastic flow.

This makes the formulation universal and capable of correctly describing the
material behavior under all loading conditions, including the hydrostatic stress for
the case of isotropic damage conditions. Here, we consider only the most impor-
tant effects from the point of view of structural analysis of isotropic homogenous
plates and shells. Loading conditions are assumed to be static, and the evolution
of porosity is reduced to represent only the void growth. Although the effects of
the microcracks can be important for investigations of the material behavior, obser-
vations of ductile fracture in metals (Beachem, 1963; Gurland and Plateau, 1963)
led to the conclusion that this process may involve the generation of considerable
porosity through nucleation and growth of voids (Gurson, 1977). The influence of
the growth of microvoids is considered decisive in the modeling of ductile isotropic
material. Thus we consider only damage due to microvoids.

Like Gurson (1975, 1977), as well as Duszek-Perzyna and Perzyna (1994), we
incorporate the porosity parameter into the yield function, obtaining a yield criterion
and flow rule for porous ductile materials with a strong coupling between plastic-
ity and damage. The yield function given by Duszek-Perzyna and Perzyna (1994),
which could be directly related to Gurson’s model (1975, 1977), is expressed in
terms of the stress resultants and stress couples, similarly to Iliushin’s yield function
(1956), following the procedure presented by Bieniek and Funaro (1976). The yield
surface derived here is very similar to that presented by Woelke and Voyiadjis (2005)
with kinematic hardening parameters in the form as well as of residual normal and
shear forces, residual bending moments. It is, however, enhanced to account for the
reduction of the stiffness caused by the damage effects, represented by the porosity
parameter.

The stiffness matrix presented in Chap. 5 was derived by means of the principle
of virtual work and the plastic node method (Ueda and Yao, 1982), which assumes
the inelastic deformations to be concentrated in the plastic hinges. Following the
work of Shi and Voyiadjis (1992, 1993), we adopt the plastic node method to derive
the elasto-plastic, damage stiffness matrix of the element. The explicit form of the
stiffness matrix is therefore preserved, i.e., numerical integration is not performed,
which makes our formulation very effective and accurate (see below).

Our formulation offers a simple and convenient way to achieve a detailed analysis
of shells that is accurate and mathematically consistent. Its simplicity and computa-
tional efficiency make it particularly useful for structural analysis. Below we verify
the assumptions, as well as the derivation, through the discriminating numerical
examples.
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In the following sections, we first formulate a loading surface with the previously
used isotropic and kinematic hardening rules, featuring a strong coupling between
plasticity and damage. An associated flow rule and evolution of porosity represent-
ing damage is defined. In Sect. 6.3, we derive the explicit tangent stiffness matrix,
and in Sect. 6.4, we present the numerical examples that challenge our procedure.

6.2 Yield and Damage Criterion

As discussed above, we derive here a yield criterion for porous metals expressed
in terms of the stress resultants and couples, similar to the yield function derived
in Chap. 5, and modified to account for the damage effects. The Iliushin’s yield
function F is given by (5.1), (5.2), (5.3), (5.4), (5.5), (5.6), repeated here for conve-
nience:

F = M2

M0
2 + N 2

N0
2 + 1√

3

|M N |
M0 N0

− Y (k)

σ0
2

= 0 (6.1)

or:

F = |M |
M0

+ N 2

N0
2 − Y (k)

σ0
2

= 0 (6.2)

where:

N 2 = Nx
2 + Ny

2 − Nx Ny + 3Nxy
2 (6.3)

M2 = Mx
2 + My

2 − Mx My + 3Mxy
2 (6.4)

M N = Mx Nx + My Ny − 1

2
Mx Ny − 1

2
My Nx + 3Mxy

2 (6.5)

M0 = σ0h2

4
, N0 = σ0h (6.6)

In the above relations σ0 is the uniaxial yield stress; Y (k) is a material parameter,
which depends on the isotropic hardening parameter k; h is the thickness of the shell;
and |.| is the absolute value.

The form of the yield condition given by (6.2) can be derived from the von Mises
function and the definition of normal stresses at the top and bottom surfaces of the
shell, as shown by Bieniek and Funaro, (1976). Here, however, we use the yield
criterion for porous ductile metals as originally proposed by Gurson (1975, 1977)
and modified by Perzyna (1984b) and Dornowski and Perzyna (2000). Although it is
similar in form to the von Mises equation (also referred to as Huber-Mises-Hencky
equation), it accounts for the isotropic damage effects through the dependence of the
first invariant of stress and the evolution of porosity. The plastic potential function
defined by Dornowski and Perzyna (2000) can be written as:
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f =
√

3

2
Si j Si j + nξσi i

2, i, j = 1, 2, 3 (6.7)

where Si j is the deviatoric stress tensor given by:

Si j = σi j − 1

3
σkkδi j (6.8)

In the above relation σi j is a stress tensor given by:

σi j = Ni j

h
± 6Mi j

h2
(6.9)

where Ni j are normal forces, Mi j are bending moments, h is a thickness of the
shell, and δi j is a Kronecker delta. The parameter n in (6.7) is a material constant,
determined by Perzyna (1984b): n = 1.2587 (for ductile metals).

The parameter ξ in (6.7) is a porosity parameter given by Gurson (1975, 1977)
and modified by Duszek-Perzyna and Perzyna (1994):

�ξ = k1�σi i + k2�σi j �εi j
p + k3�εi i

p (6.10)

where k1, k2, k3 denote the material constants, and �σ and �ε p are the increments
of stress and plastic strain, respectively.

The first two terms in the above equation are responsible for nucleation due to
cracking of the second-phase particles and debonding of the second-phase particles
from the matrix material. The third term depicts the growth of voids and is controlled
only by the plastic flow. The main term is the growth term. We assume that from the
metallurgical investigations of the isotropic material forming a plate or a shell, we
can determine the initial porosity ξ (t = 0) = ξ0; we shall consider only the growth
term in the evolution of porosity, i.e.:

�ξ = k3�εi i
p (6.11)

Equations (6.7), (6.8), (6.9), (6.10), (6.11) are written using indicial notation and
a summation convention. Rewriting (6.11) in engineering notation yields:

�ξ = k3
(
�εx

p + �εy
p + �εz

p) (6.12)

where �εx
p; �εy

p; �εz
p are increments of normal plastic strains due to both mem-

brane and bending actions in x, y, z directions respectively. �εx
p and �εy

p can be
written as:

�εx
p = �εmx

p + �εbx
p = �εmx

p + z�κx
p

�εy
p = �εmy

p + �εby
p = �εmy

p + z�κy
p (6.13)
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where �εmx
p and �εmy

p are the increments of plastic strains due to membrane ac-
tion only, in x, y directions, respectively; �εbx

p and �εby
p are the increments of

plastic strains due to bending action only, in x, y directions, respectively; z is the
distance from the mid-plane to the plane under consideration; and �κx

p
, �κy

p are
the increments of plastic curvatures at the mid-surface in planes parallel to the xz, yz
planes, respectively. The maximum normal plastic strain caused by bending occurs
at z = h/2, which leads to:

�εx
p = �εmx

p + h

2
�κx

p

�εy
p = �εmy

p + h

2
�κy

p

(6.14)

Substituting (6.14) into (6.12) and neglecting �εz
p, we obtain:

�ξ = k3

[
�εmx

p + �εmy
p + h

2

(
�κx

p + �κy
p)] (6.15)

We now proceed to the determination of the plastic potential function expressed
in terms of the stress resultants and couples. For conciseness, we neglect radial
and transverse shear stresses in this current derivation. Later transverse shear forces
will be introduced into the yield condition. Equation (6.7) can be written using the
engineering notation:

f = 1√
2

√[(
σx − σy

)2 + σx
2 + σy

2 + 6τxy
2 + nξ

(
σx + σy

)2
]

(6.16)

where σx , σy are the normal stresses in the x,y directions, respectively, and τxy is a
shear stress on the xy plane.

We define the yield condition as:

1√
2

√[(
σx − σy

)2 + σx
2 + σy

2 + 6τxy
2 + nξ

(
σx + σy

)2
]

= σ0 (6.17)

where σ0 denotes the uniaxial yield stress.
Substituting of (6.9) into (6.17) and using some manipulations results in the fol-

lowing relation:

N 2

N0
2 + M2

M0E
2 ± 2

N M

N0 M0E
= 1 (6.18)
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where:

N 2 =
(

1 + 1

2
nξ

) (
Nx

2 + Ny
2
)− (1 − nξ ) Nx Ny + 3Nxy

2

M2 =
(

1 + 1

2
nξ

) (
Mx

2 + My
2
)− (1 − nξ ) Mx My + 3Mxy

2 (6.19)

N M =
(

1 + 1

2
nξ

) (
Nx Mx + Ny My

)− 1

2
(1 − nξ )

(
My Nx + Mx Ny

)+ 3Nxy Mxy

and:

N0 = σ0h, M0E = σ0h2

6
(6.20)

Both the top and bottom surfaces of the shell should be considered, in order to

obtain the larger value of the term ±2
N M

N0 M0E
. We ensure representation of the most

negative effect by writing the (6.18) in the form (Bieniek and Funaro, 1976; Bieniek
et al., 1976):

N 2

N0
2 + M2

M0E
2 + 2

|N M |
N0 M0E

= 1 (6.21)

The yield surface given above is similar to Iliushin’s yield function (1956) given
by (6.1). To derive (6.1), we follow the procedure presented by Bieniek and Funaro
(1976), which is essentially the surface fitting approach. We write (6.21) as:

a
N 2

N0
2 + b

M2

M0E
2 + c

|N M|
N0 M0E

= 1 (6.22)

We determine the parameters a,b,c by considering the special loading cases sep-
arately. If we account for membrane forces only, we see that for a = 1 we obtain
the exact limit condition. Similarly, if we take a pure bending case, (6.22) produces

exact results for b = M2
0E

M2
0

. To find c, we investigate the loading case corresponding

to the maximum value of the ratio
N M

N0 M0E
, which occurs if Nx = Ny, Mx = My

and Nxy = Mxy = 0. The stress distribution in the cross section in this case is shown
in Fig. 6.1.

Based on the stress distribution in Fig. 6.1, we may calculate the normal force:

Nx =
h/2∫

−h/2

σx dz =
−h/2

√
3∫

−h/2

−σ0dz +
h/2∫

−h/2
√

3

σ0dz = σ0h√
3

(6.23)
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Fig. 6.1 Stress distribution
corresponding to maximum

N M

N0 M0E
(η = h/2

√
3)

(Woelke et al., 2006)

σ0

η 

h 

Using (6.20), we write:

Nx
2

N0
2 = 1

3
(6.24)

Similarly, we obtain:

M2

M0E
2 = 4M0

2

9M0E
2 and

N M

N0 M0E
= 2

√
3

M0

9M0E
(6.25)

Substitution of (6.24), (6.25) and the above-determined parameters a = 1 and

b = M0E
2

M0
2 into the (6.22) yields:

1

3
+ M0E

2

M0
2

4M0
2

9M0E
2 + 2

√
3c

M0

9M0E
= 1 (6.26)

which leads to:

c = M0E√
3M0

(6.27)

Substituting the parameters a,b,c into (6.22) we arrive at the limit yield surface
as defined by Iliushin:

F = M2

M0
2 + N 2

N0
2 + 1√

3

|M N |
M0 N0

= 1 (6.28)

The stress intensities are given by (6.19); unlike in the original Iliushin’s yield
function, they account for the damage effects.
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In Chap. 5, were introduced several other modifications to the Iliushin’s yield
surface for a better description of the plastic behavior of shells. We adopt the same
modifications of the yield function in this chapter. We include the transverse shear
forces Qx , Qy by expanding one of the stress intensities in (6.19), as in the previous
chapter, cf. (Shi and Voyiadjis, 1992):

N 2 =
(

1 + 1

2
nξ

) (
Nx

2 + Ny
2
)− (1 − nξ ) Nx Ny + 3

(
Nxy

2 + Qx
2 + Qy

2
)

(6.29)

Shi and Voyiadjis (1992) showed that the influence of the shear forces on plastic
behavior of thick plates and shells could be very important.

In Sect. 5.2.3 a plastic curvature parameter α (κ̄ p) was incorporated into (6.28), to
account for the development of the plastic curvature across the thickness (Crisfield,
1981a):

F = M2

α2 M0
2 + N 2

N0
2 + 1√

3α

|M N |
M0 N0

− Y (k)

σ0
2

= 0 (6.30)

or:

F = |M |
αM0

+ N 2

N0
2 − Y (k)

σ0
2

= 0 (6.31)

where α and κ̄ p were given by (5.10), (5.11).
We used a material parameter Y (k), in (6.30), (6.31), which depends on the

isotropic hardening parameter k, similarly to (6.1), (6.2).
In Sect. 5.2.4, we derived a stress resultant-based kinematic hardening rule, al-

lowing for the correct predictions of the Bauschinger effect. Adopting the same
hardening rule here, we express the yield surface as:

F∗ = |M∗|
αM0

+ (N ∗)2

N0
2 − Y (k)

σ0
2

= 0 (6.32)

where:

(
N ∗)2 =

(
1 + 1

2
nξ

)[(
Nx − Nx

∗)2 + (
Ny − Ny

∗)2
]

− (1 − nξ )
(
Nx − Nx

∗) (Ny − Ny
∗)

+ 3
[(

Nxy − Nxy
∗)2 + (

Qx − Qx
∗)2 + (

Qy − Qy
∗)2
]

(6.33)

(
M∗)2 =

(
1 + 1

2
nξ

)[(
Mx − Mx

∗)2 + (
My − My

∗)2
]

− (1 − nξ )
(
Mx − Mx

∗) (My − My
∗)+ 3

(
Mxy − Mxy

∗)2
(6.34)
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In the above relations Mx
∗, My

∗, Mxy
∗, Nx

∗, Ny
∗, Nxy

∗, Qx
∗, Qy

∗ are the resid-
ual bending moments, and normal and shear forces, respectively, that were derived
in the previous chapter and given by (5.33), (5.34), (5.35). We repeat them for
completeness:

I f F∗ = 1 and ∇F∗ > 0 (plastic loading)

�Nx
∗ = β1 (1 − F)

N0

ε0

[
�εx

p − 1

h
Nx

∗�εeq
p
]

�Ny
∗ = β1 (1 − F)

N0

ε0

[
�εy

p − 1

h
Ny

∗�εeq
p
]

�Nxy
∗ = β1 (1 − F)

N0

ε0

[
�εxy

p − 1

h
Nxy

∗�εeq
p
]

�Qx
∗ = β1 (1 − F)

N0

ε0

[
�εxz

p − 1

h
Qx

∗�εeq
p
]

�Qy
∗ = β1 (1 − F)

N0

ε0

[
�εyz

p − 1

h
Qy

∗�εeq
p
]

(6.35)

�Mx
∗ = β2 (1 − F)

M0

κ0

[
�κx

p − 6

h2
Mx

∗�κeq
p
]

�My
∗ = β2 (1 − F)

M0

κ0

[
�κy

p − 6

h2
My

∗�κeq
p
]

�Mxy
∗ = β2 (1 − F)

M0

κ0

[
�κxy

p − 6

h2
Mxy

∗�κeq
p
]

(6.36)

I f F∗ < 1 and ∇F∗ ≤ 0 (unloading or neutral loading)

�Nx
∗ = �Ny

∗ = �Nxy
∗ = �Qx

∗ = �Qy
∗ = �Mx

∗ = �My
∗ = �Mxy

∗ = 0
(6.37)

Note that by setting the porosity parameter to zero, i.e., ξ = 0, the yield surface
given by (6.32), (6.33), (6.34) reduces to that given by (5.12), (5.13), (5.14), where
the damage effects were not considered.

The meaning of the material parameters β1 and β2 in the above formulation was
explained in Chap. 5.

We arrive at a final form of the yield function for ductile porous metals, given
by (6.32), (6.33), (6.34) and (6.35), (6.36), (6.37), expressed in terms of the stress
resultants and couples, with isotropic and kinematic hardening. This is a convenient
form of the yield surface for the analysis of shells, accounting for the damage effects
through the evolution of porosity. A graphic representation of the yield surface on
the Nx Mx plane with α = 1 and Y = σ 2

0 is shown in Fig. 5.3.
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6.3 Explicit Tangent Stiffness Matrix

We follow the same procedure as in the preceding chapter to derive the tan-
gent stiffness matrix. The plastic node method is used in the derivation, i.e., the
plastic deformations and damage are considered to be concentrated in the plas-
tic hinges. The yield function is checked only at each node of the finite ele-
ments. If the combination of stress resultants satisfies the yield condition, that
node is considered to be plastic, which triggers the void growth, as we consider
the porosity to be a function of the plastic flow. Thus, the inelastic deforma-
tions are considered only at the nodes, and the interior of the element remains
elastic.

When node i of the element becomes plastic, the yield function takes the form:

F∗
i
(
Ni, Qi, Mi, N∗

i, Q∗
i, M∗

i, ki, �i

) = 0 (6.38)

where:

Ni =

⎧⎪⎨
⎪⎩

Nx

Ny

Nxy

⎫⎪⎬
⎪⎭ ; Qi =

{
Qx

Qy

}
; Mi =

⎧⎪⎨
⎪⎩

Mx

My

Mxy

⎫⎪⎬
⎪⎭ (6.39)

N∗
i =

⎧⎪⎨
⎪⎩

N ∗
x

N ∗
y

N ∗
xy

⎫⎪⎬
⎪⎭ ; Q∗

i =
{

Q∗
x

Q∗
y

}
; M∗

i =

⎧⎪⎨
⎪⎩

M∗
x

M∗
y

M∗
xy

⎫⎪⎬
⎪⎭ (6.40)

At the same time, the stress resultants must remain on the loading surface, i.e.,
the consistency condition must be satisfied:

�F∗
i

�Mi
dMi + �F∗

i

�Ni
dNi + �F∗

i

�Qi
dQi + �F∗

i

�M∗
i
dM∗

i + �F∗
i

�N∗
i
dN∗

i + �F∗
i

�Q∗
i
dQ∗

i

+ �F∗
i

�ki
dki + �F∗

i

��i
d�i = 0

(6.41)
We assume an additive decomposition of strains into elastic and plastic parts:

ε = εe + ε p (6.42)

The associated flow rule is used to determine the increments of plastic strains:

�κx
p =

NPN∑
i=1

�λi
�F∗

i

�Mxi
and �εx

p =
NPN∑
i=1

�λi
�F∗

i

�Nxi
(6.43)

where NPN is the number of plastic nodes in the element and �λi is a plastic multi-
plier. The remaining increments of the plastic strains are obtained the same way. The
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plastic strain fields are interpolated as in the linear elastic analysis, ((3.45), (3.46),
(3.47)) given here in the incremental form:

��b
p =

⎧⎨
⎩

�κx
p

�κy
p

2�κxy
p

⎫⎬
⎭ , ��m

p =
⎧⎨
⎩

�εx
p

�εy
p

2�εxy
p

⎫⎬
⎭ , ��s

p =
{

�γxz
p

�γyz
p

}
(6.44)

The evolution of the porosity parameter representing damage is given by (6.15),
repeated here for convenience:

�ξ = k3

[
�εx

p + �εy
p + h

2

(
�κx

p + �κy
p)] (6.45)

The assumption of an additive decomposition of strains can be extended to dis-
placements, provided that the strains are small (Shi and Voyiadjis, 1992; Ueda and
Yao, 1982). Although we take into account geometric non-linearities, we consider
only large rigid rotations and translations, but small strains. Thus, we write:

q = qe + q p (6.46)

Following the work of Shi and Voyiadjis (1992), we approximate the increments
of plastic displacements by the increments of plastic strains. The plastic rotation
�φx

p is a function of both �κx
p and �κxy

p, as can be deduced from (6.44). As-
suming that the increment of the plastic nodal rotation �φxi

p is proportional to the
increment of the elastic nodal rotation �φxi , we express the former as:

�φxi
p = lim

δ�→0

∫ ∫
δ�i

[
�κx

p + �φxi
2

�φxi
2 + �φyi

2 2�κxy
p

]
dxdy

= �λi

[
�F∗

i

�Mxi
+ 2�φxi

2

�φxi
2 + �φyi

2

�F∗
i

�Mxyi

] (6.47)

where δ�i represents the infinitesimal neighborhood of node i . The vector of incre-
mental nodal plastic displacements of the element at node i can then be expressed
as:

�qi
p = ai�λi (6.48)
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with ai given by:

ai
T =

{
�F∗

i

�Nxi
+ pu

�F∗
i

�Nxyi
;

�F∗
i

�Nyi
+ pv

�F∗
i

�Nxyi
;

�F∗
i

�Qxi
+ �F∗

i

�Qyi
;

�F∗
i

�Mxi
+ pφx

�F∗
i

�Mxyi
;

�F∗
i

�Myi
+ pφy

�F∗
i

�Mxyi

}

pu = 2�ui
2

�ui
2 + �vi

2 ; pv = 2�vi
2

�ui
2 + �vi

2 ;

pφx = 2�φxi
2

�φxi
2 + �φyi

2 ; pφy = 2�φyi
2

�φxi
2 + �φyi

2

(6.49)

Equations (6.48) and (6.49) indicate that the plastic displacements at the nodes
are functions only of stress resultants at this node. We therefore, we write the vector
of increments of the nodal plastic displacements, as:

�qp =
⎡
⎣a1 0 0

0 ai 0
0 0 aNPN

⎤
⎦
⎧⎨
⎩

�λ1

�λi

�λNPN

⎫⎬
⎭ = a�� (6.50)

To determine the tangent stiffness matrix of the element, we use the definition
of the virtual elastic bending, membrane, and transverse shear strains, respectively:
δ�b, δ�m, δ�s (δ-virtual) and the stress couples and stress resultants of the element
M, N, Q from the preceding chapters. We again use the linearized equilibrium equa-
tions of the system at configuration k + 1 in the Updated Lagrangian description,
expressed by the principle of the virtual work, which in finite element modeling
takes the form:

∫∫
�

(
δ�b

TD�b+δ�m
TS�m+δ�s

TT�s
)

dxdy +
∫∫

�

δ�TkF�dxdy

= k+1 R −
∫∫

�

(
δ�b

TkM+δ�m
TkN+δ�s

TkQ
)

dxdy
(6.51)

where k+1 R is the total external virtual work at step k + 1, � is the slope vector, and
kF is a membrane stress resultant matrix at step k given by:

� =

⎧⎪⎪⎨
⎪⎪⎩

��w

�x
��w

�y

⎫⎪⎪⎬
⎪⎪⎭

, kF =
[

k Nx
k Nxy

k Nxy
k Ny

]
(6.52)
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The slope field � is evaluated the same way as in Chap. 4. Using the equations
derived in Chap. 5, we rewrite (6.51) as:

∫∫
�

(
δ�b

TD�b + δ�m
TS�m+δ�s

TT�s
)

dxdy + δ�qeTKg�qe = k+1 R − δ�qT�f

(6.53)
where Kg is the initial stress matrix defined as in Chap. 4:

Kg =
∫∫

�

GTkFGdxdy (6.54)

and f is the internal force vector resulting from the unbalanced forces in configura-
tion k and expressed as:

f =
∫∫

�

(
Bb

TkM + Bm
TkN + Bs

TkQ
)

dxdy (6.55)

We now rewrite (6.53) using (6.42) as:

∫∫
�

[(
δ�b

eT + δ�b
pT)M+ (

δ�m
eT + δ�m

pT)N+ (
δ�s

eT + δ�s
pT)Q

]
dxdy

+ δ�qeTKg�qe = k+1 R − δ�qT�f
(6.56)

Rearranging terms and writing the above equation in incremental form, we
obtain:

∫∫
�

(
δ��e

b
T�M+δ��e

m
T�N+δ��e

s
T�Q

)
dxdy

+
∫∫

�

(
δ��

p
b

T�M+δ��p
m

T�N+δ��p
s

T�Q
)

dxdy

+ δ�qeTKg�qe = k+1 R − δ�qT�f

(6.57)

Substituting (6.43) into (6.57), we obtain:

∫∫
�

(
δ��b

eT�M+δ��m
eT�N+δ��s

eT�Q
)

dxdy

+
NPN∑
i=1

δ�λi

[
�F∗

i

�Mi
dMi + �F∗

i

�Ni
dNi + �F∗

i

�Qi
dQi

]

+ δ�qeTKg�qe = k+1 R − δ�qT�f

(6.58)
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Using (3.68), (3.69), (3.70), (3.71), (3.72), (3.73), as well as the consistency con-
dition given by (6.41), we write:

δ�qeT (Ke+Kg
)

�qe

−
NPN∑
i=1

δ�λi

[
�F∗

i

�M∗
i
dM∗

i + �F∗
i

�N∗
i
dN∗

i + �F∗
i

�Q∗
i
dQ∗

i + �F∗
i

�ki
dki + �F∗

i

�ξi
dξi

]

=k+1 R − δ�qT�f
(6.59)

where Ke is the linear elastic stiffness matrix given by (3.80). Similarly to (5.57),
we define:

ab
T = �F∗

i

�M∗
i
=
⎡
⎣ab1

T 0 0
0 abi

T 0
0 0 abNPN

T

⎤
⎦ , am

T = �F∗
i

�N∗
i

=
⎡
⎣am1

T 0 0
0 ami

T 0
0 0 amNPN

T

⎤
⎦ ,

as
T = �F∗

i

�Q∗
i

=
⎡
⎣as1

T 0 0
0 asi

T 0
0 0 asNPN

T

⎤
⎦ , a�

T = �F∗
i

��i
=
⎡
⎣aξ1 0 0

0 aξ i 0
0 0 aξ NPN

⎤
⎦

(6.60)
and:

abi
T =

{
�F∗

i

�M∗
xi

;
�F∗

i

�M∗
yi

;
�F∗

i

�M∗
xyi

}
;

ami
T =

{
�F∗

i

�N ∗
xi

;
�F∗

i

�N ∗
yi

;
�F∗

i

�N ∗
xyi

}
;

asi
T =

{
�F∗

i

�Q∗
xi

;
�F∗

i

�Q∗
yi

}
;

aξ i = �F∗
i

�ξi
;

(6.61)

Substituting (6.43) into (6.35) and (6.36), we obtain:

d Mx
∗ = �Mx

∗

= β2 (1 − F)
M0

κ0
�λ

⎡
⎣ �F∗

�Mx
− 6

h2
Mx

∗

√√√√2

3

[(
�F∗

�Mx

)2

+
(

�F∗

�My

)2

+
(

�F∗

�Mxy

)2
]⎤
⎦

(6.62)

and similarly for the remaining hardening parameters. Vectors of the hardening
parameters therefore yield:
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dN∗
i =

⎧⎨
⎩

�N ∗
xi

�N ∗
yi

�N ∗
xyi

⎫⎬
⎭ = Am��; dQ∗

i =
{

�Q∗
xi

�Q∗
yi

}
= As��; (6.63)

and

dM∗
i =

⎧⎨
⎩

�M∗
xi

�M∗
yi

�M∗
xyi

⎫⎬
⎭ = Ab�� (6.64)

where Am, As, Ab are given by:

Am =
⎡
⎣Am1 0 0

0 Ami 0
0 0 AmNPN

⎤
⎦ , Ab =

⎡
⎣Ab1 0 0

0 Abi 0
0 0 AbNPN

⎤
⎦ ,

As =
⎡
⎣As1 0 0

0 Asi 0
0 0 AsNPN

⎤
⎦

(6.65)

Ami, Asi, Abi are given by (5.61).
The evolution equation for the porosity parameter can be obtained by substitution

of (6.43) into (6.45):

dξi = �ξi = k3�λi

[
�F∗

i

�Nxi
+ �F∗

i

�Nyi
+ h

2

(
�F∗

i

�Mxi
+ �F∗

i

�Myi

)]
= Aξ i �λi (6.66)

Again, we apply the plastic node method to derive the matrix form of the above
equation:

d�i = ��i = A��λ (6.67)

where:

Aξ =
⎡
⎣Aξ1 0 0

0 Aξ i 0
0 0 Aξ N P N

⎤
⎦ (6.68)

and:

Aξ i = k3

[
�F∗

i

�Nxi
+ �F∗

i

�Nyi
+ h

2

(
�F∗

i

�Mxi
+ �F∗

i

�Myi

)]
(6.69)

Following the work of Shi and Voyiadjis (1992) we also define the isotropic
hardening parameter as:
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H�� =
⎡
⎣H1 0 0

0 Hi 0
0 0 HN P N

⎤
⎦
⎧⎨
⎩

�λ1

�λi

�λN P N

⎫⎬
⎭ = −

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�F∗
1

�k1
dk1

�F∗
i

�ki
dki

�F∗
NPN

�kNPN
dkNPN

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.70)

We now substitute (6.60), (6.63), (6.67) and (6.70) into (6.59) to obtain:

δ�qeT (Ke + Kg
)

�qe + δ��T [H − ab
TAb−am

TAm−as
TAs − aξ

TAξ

]
��

= k+1 R − δ�qT�f
(6.71)

Using equations (6.46) and (6.48) in equation (6.71), we write:

(
δ�qT − δ�qpT) (Ke + Kg

)
�qe + δ�λT [H − ab

TAb−am
TAm−as

TAs−aξ
TAξ

]
��

− k+1 R + δ�qT�f = δ�qT [(Ke + Kg
)

�qe − k+1 R∗ + �f
]

+ δ��T [−aT (Ke + Kg
)

�qe + (
H − ab

TAb−am
TAm−as

TAs−aξ
TAξ

)
��

] = 0
(6.72)

with

k+1 R = k+1 R∗δ�q (6.73)

By virtue of the variational method, equation (6.72) gives:

(
Ke + Kg

)
�qe − k+1 R∗ + �f = 0

− aT (Ke + Kg
)

�qe + (
H − ab

TAb−am
TAm−as

TAs−a�
TAξ

)
�� = 0

(6.74)
Substituting equations (6.46) and (6.48) into the above equations we obtain:

(
Ke + Kg

)
�qe − k+1 R∗ + �f = (

Ke + Kg
)

(�q − a��) = k+1 R∗ − �f (6.75)

− aT (Ke + Kg
)

(�q − a��) + (
H − ab

TAb−am
TAm−as

TAs−a�
TAξ

)
�� = 0

(6.76)

Equation (6.76) leads to:

�� = [
aT
(
Ke + Kg

)
a + (

H − ab
TAb−am

TAm−as
TAs−aξ

TAξ

)]−1
aT
(
Ke + Kg

)
�q
(6.77)

Equation (6.75) becomes:

Kepdg�q = k+1 R∗ − �f (6.78)

where Kepg is the elasto-plastic, damage, large displacement stiffness matrix of the
element, given by:
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Kepdg = (
Ke + Kg

)
{

I − a
[
aT (Ke + Kg

)
a + (

H − ab
TAb−am

TAm−as
TAs−aξ

TAξ

)]−1
aT (Ke + Kg

)}
(6.79)

The tangent stiffness matrix given by (6.79) is similar to that presented by Shi
and Voyiadjis (1992). As our formulation accounts for large displacements, the stiff-
ness matrix of the element contains the initial stress matrix Kg. The stiffness matrix
derived above describes not only isotropic hardening, by means of the parameter H,
but kinematic hardening, through parameters Ab, Am, As, which are not determined
by curve fitting but derived explicitly from the evolution equation of the backstress
given by Armstrong and Frederick (1966).

The most important characteristic described in this chapter is consistent and
convenient incorporation of the damage effects into the yield condition and stiff-
ness matrix, by means of A� matrix. We therefore have a non-layered finite el-
ement formulation with shell constitutive equations, yield condition for porous
ductile metals, and flow and hardening rules expressed in terms of the membrane
and shear forces and bending moments. All the variables used here, namely the
porosity function, stress resultants, and couples as well as the residual stress re-
sultants and couples representing the center of the yield surface, are rigorously
derived.

6.4 Numerical Examples

We enhanced a finite element computer program previously developed for the
elasto-plastic considerations in programming language Fortran 95 to account for the
damage effects due to microvoids. A modified Newton-Raphson technique was used
to solve a system of non-linear, incremental equations. To overcome the singularity
problem appearing at the limit point, the arc-length method (Crisfield, 1983, 1991)
was adopted to determine the local load increment for each iteration. We also used
an algorithm to return to the yield surface (Crisfield, 1991). We computed our results
delivered by the current model were on a personal computer. Some of the reference
solutions obtained with the layered approach (ABAQUS) were determined using a
Silicon Graphics Onyx 3200 system.

The accuracy of the description of the elasto plastic and damage behavior of
shells is verified through discriminating numerical examples. This chapter is a con-
tinuation of the previous ones, where linear elastic and elasto-plastic formulations
were given. The most important novel feature of the present algorithm is the de-
scription of isotropic damage in plates and shells. The examples we present were
selected to challenge mainly the representation of the evolution of damage in shells
and the associated reduction of stiffness.

Table 6.1 gives the references used here and their abbreviations.
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Table 6.1 Models used with abbreviations

Name Description

V&W-E Present formulation – elastic analysis
V&W-EP Present formulation – elasto-plastic analysis
V&W-EPD Present formulation – elasto-plastic, damage analysis

6.4.1 Clamped Square Plate Subjected to a Central Point Load

In this example, we consider a square plate with all the edges fixed, with an aspect
ratio L/h = 20, where L is the length of the plate and h is the thickness. The
plate is subjected to a central point load. Because of symmetry only a quarter of the
plate needs to be examined due to symmetry. This problem was analyzed by Shi and
Voyiadjis (1993), by means of the 4 × 4 mesh of finite elements. The same mesh
of 4 × 4 elements per quarter of the plate will be used here. The geometry of the
problem and the material properties are given in Fig. 6.2.

The equilibrium path is a universal curve providing most of the information about
functioning of the model independently of whether the deformation of the structure
is governed by the bending, membrane, or shear strains. We study the equilibrium
path for this problem. The material parameters n and k3 appearing in (6.7) and (6.11)
are: n = 1.2587, k3 = 0.09, as determined by Perzyna (1984b) See also Woelke
et al., 2006b. The central deflection of the plate as a function of the applied load is
given in Fig. 6.3. Shi and Voyiadjis (1993) obtained the critical load for this problem
without the influence of damage, of Pc = 10M0. They also showed the substantial
reduction of stiffness of the structure when damage was considered. The critical
load of the damaged plate was about Pc = 8M0. The result of (Woelke et al., 2006)
analysis with the influence of damage considered yields approximately the same

Fig. 6.2 Clamped square
plate subjected to a central
point load – geometry and
material properties (Woelke
et al., 2006)

E = 10.92 kPa, ν = 0.3

P = 1.0 kPa, L = 1.0 m

σ = 1600 kPa, t = 0.05 m
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Fig. 6.3 Clamped square plate subjected to a central point load – load displacement curve (Woelke
et al., 2006)

critical load Pc = 8M0. As expected, the damage variable only becomes significant
when the structure deforms plastically. This is because the evolution of damage is
neglected in the elastic zone. Our formulation performs robustly in this test.

6.4.2 Spherical Dome Subjected to Ring of Pressure

The problem of a spherical dome with an 180 hole at the top, subjected to a ring of
pressure, was investigated in the previous chapter. It was shown by Voyiadjis and
Woelke (2004) that the stress resultant-based shell model with the kinematic hard-
ening rule given by (6.35), (6.36) is capable of correctly predicting the elasto-plastic
behavior of shells, including the Bauschinger effect. In this chapter, we revisit the
problem of the spherical dome subjected to a ring of pressure, to establish the ability
of our formulation to approximate damage due to microvoids. As discussed above,
the structure is loaded into a plastic zone and the pressure then reversed. We examine
the elasto-plastic load-displacement curve and compare the results with the curve
obtained with the influence of damage taken into account, to test the functioning
and accuracy of the presented yield surface for ductile porous metals, defined in the
stress resultant space. The material parameters n and k3 are the same as in example
7.1: n = 1.2587, k3 = 0.09. Geometrical and material data are presented in Fig. 6.4
and the resulting load-displacement curves are plotted in Fig. 6.5.

Through the introduction of the porosity function, which characterizes dam-
age into the yield function, we obtain a strong coupling between plasticity and
damage. The damage variable is dependent on the plastic deformation; therefore,
through application of a robust kinematic hardening rule, we can model the evo-
lution of damage in the structure loaded into the plastic zone in tension and, after
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Fig. 6.4 Spherical dome with
an 180 cut-out; geometry and
material properties (Woelke
et al., 2006)

E = 6.82E7 psi

t = 0.04 in

R = 10 in

σ0 = 125 psi

ν = 0.3

the load has been reversed, in compression (Fig. 6.5). The lowered yield point due
to the Bauschinger effect is again correctly approximated. The reduction of stiff-
ness caused by damage initiated by the inelastic strains is significant. It leads to a
decrease of the ultimate load carried by the structure by about 10%. It is a very sig-
nificant factor in terms of the engineering analysis of critically important structures.

Figure 6.6 presents a plot of porosity ξ as a function of load. As the evolution
of porosity representing growth of voids is a function of the plastic strains, we see
growth of voids only when plasticity occurs. In reality, the porosity in the material
will not be zero, even with only elastic strains. The level of porosity in the elastic
range is, however, negligible and thus is not accounted for in this work. At the load
level of approximately P = 63 lb/ in we observe a clear plateau in Fig. 6.6. This
means that this load level is the ultimate load carried by the structure. The porosity
will most likely grow without application of any additional loading leading to a
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Fig. 6.5 Spherical dome with an 180 cut-out – load displacement curve (Woelke et al., 2006)
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local fracture and ultimately collapse of the structure. The collapse will therefore
occur at the load level approximately 8% lower than that predicted by the elasto-
plastic analysis. Based on the level of porosity, at the first sign of unloading the
fracture criterion could be postulated, which would provide additional tools for the
modeling of shells. Such a criterion should, however, be verified by the experimental
results for various materials and structures, along with all the material parameters
necessary for the damage description. As shown in Figs. 6.5 and 6.6, our approach
provides a good approximation of the evolution of damage of modeled structures,
confirming the validity of the original assumptions. Once again, the computational
cost of the calculations is much lower than in the case of shell elements with a
layered approach. This is because of the explicit form of the stiffness matrix and
the application of the single loading surface with damage variable incorporated. A
three-dimensional analysis with the solid elements would be even more expensive.
For some problems with a complicated geometry, the computational cost of the finite
element procedure may be decisive.

6.5 Summary

The reliability of our concept was evaluated through example problems. In the ex-
ample in Sect. 6.4.2, the plot of porosity versus load was given, based on which the
fracture criterion could be formulated. The example in Sect. 6.4.2 also showed that
not considering damage in the analysis of plates and shells could lead to overpre-
diction of the ultimate load carried by the structure. Unfortunately, there is a limited
amount of data regarding the evolution of damage in plates and shells that could
be used as references. Moreover, it is unrealistic to verify the damage formulation
based on comparisons with results obtained by approximate methods. As discussed
in previous chapters, the functioning of this algorithm should be tested against
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experimental results, particularly in the case of damage. References providing in-
formation about the damage in structures based on experiments are even more dif-
ficult to find than numerical estimates. Our formulation incorporating damage is
conceptually correct, based on the limited references; in addition, our results show
the expected pattern of the reduction of stiffness caused by the evolution of damage.

Similarly to the kinematic hardening rule presented in Chap. 5, there are material
constants n, k3 defining the constitutive relations. Determination of these constants
is critical to the accuracy of the model. We found the model to be highly sensitive
to changes in the values of n, k3, as well as the parameters defining the kinematic
hardening rule. In fact, the results of the analysis obtained using damage formu-
lation could be closely approximated by manipulation of the material parameters
in the kinematic hardening rule and the corresponding damage effects that were
not considered here. Although this is an interesting observation, such an approach
cannot be considered constitutive modeling of the damage phenomenon.

The strongest advantage of our method is its simplicity and efficiency. By means
of the quasi-conforming technique the elastic stiffness matrix is calculated ex-
plicitly. A non-layered approach allows for the elasto-plastic calculation without
discretization of the shell through the thickness. Thus, the tangent stiffness matrix
computed here is also given explicitly and numerical integration is not used. This
makes the procedure extremely efficient computationally. The isotropic damage
variable inserted into the yield criterion expressed in terms of the stress resultant
and stress couples provides an additional tool for simulating the behavior of plates
and shells, without substantially complicating the analysis. The porosity parameter
representing damage due to void growth only is used here. This can be regarded as a
limitation of our model, as the influence of nucleation caused by microcracks is very
important for certain applications. Our model, however, is based on the evolution
of porosity as defined by Duszek-Perzyna and Perzyna (1994), who reported very
good results in modeling ductile metals. According to this reference, the influence of
microcracks is very important when analyzing metal matrix composites because of
cracking of the reinforcing fibers. In the case of homogenous and isotropic shells,
the void growth is decisive in the analysis and thus, is the only damage-causing
phenomenon we describe.

Only two additional material parameters need be determined to account for dam-
age, as opposed to the higher order approximations advocated by many authors,
where sometimes tremendous amounts of experimental data are necessary to cal-
ibrate all the required material constants. This would be the case if higher-order
damage tensors were used. Moreover, while a more advanced procedure would be
needed to model the elasto-plastic and damage behavior of materials, the accuracy of
our analysis in terms of structural analysis is satisfactory. Many variables simulating
the material behavior lose their significance when the structure made of the material
is investigated. This is confirmed by the sensitivity of the model to material param-
eters defining the kinematic hardening rule, as discussed in the previous paragraph
(See also Woelke et al. 2008. In view of the above arguments, as well as the accuracy
of the numerical results presented in this chapter, our representation of damage in
plates and shells is robust and useful.
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There is no “best” comprehensive shell model. Any given formulation will al-
ways perform better than others for certain applications. Our formulation is no
exception. It has its limitations and is likely to yield more accurate results for cer-
tain problems and slightly less accurate for others. Our model realizes the concept
of shell elements built on reliable constitutive equations, in the elasto-plastic and
damage modeling of plates and shells. It offers flexibility, accuracy, and efficiency.
The soundness of all the assumptions was verified and confirmed by a series of
challenging numerical examples that confirmed the model’s reliability. Thus, the
shell formulation developed and presented here is a significant advancement in the
area of plates and shells.
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Chapter 7
Non-linear Post Buckling Finite Element
Analysis of Plates and Shells

7.1 Introduction

In this chapter we present the nonlinear post-buckling analysis of plates and shells
by the finite element method, using the four-node C0 strain element. As previously,
the element tangent stiffness matrix is given explicitly, i.e., without any numerical
integration, which results in a computationally efficient algorithm.

The buckling behavior of plates and shells differents from that of columns. A
slender straight column subjected to gradually increasing compressive loads at its
ends, becomes unstable and buckles when the applied loads reach a certain value
called the critical load. The column, in general, collapses completely when a slight
incremental load is applied beyond the critical load. The load-carrying capacity of
plates and shells, however, differs significantly from the critical loads predicted by
the stability analysis. This can be demonstrated by large discrepancies between re-
sults given by the classical stability theory of plates and shells and by experimental
observations. Von Karman and Tsien (1939) first showed that such buckling behav-
ior of plates and shells is caused by the highly unstable and nonlinear post-buckling
phenomenon exhibited by thin structures. The nonlinear post-buckling analysis of
plates and shells is necessary for correct prediction of the load-carrying capacity of
these structures. As it is difficult to obtain rigorous analytical solutions of nonlinear
post-buckling problems in most cases, numerical methods must be adopted.

Because of the increased use of shells and plates in the aerospace and nu-
clear industries, instability analysis of these structures has become more important
in recent years. With the advent of computers and the finite element technique,
the engineer’s ability to solve complex structural problems has greatly improved.
Numerous finite element models for the large displacement and post-buckling
analysis of plates and shells have been suggested (Murray and Willson, 1969;
Gallagher and Thomas, 1973; Sabir and Lock, 1973; Wood and Zienkiewicz, 1977;
Horrigmoe and Bergan, 1978; Bathe and Dvorkin, 1986; Noor et al., 1989; Kim and
Voyiadjis, 1999). In most nonlinear finite elements, however, the element matrices
are evaluated through numerical integration, which is computationally expensive,
especially in nonlinear analysis where the element matrices must be evaluated nu-
merous times.

G.Z. Voyiadjis, P. Woelke, Elasto-Plastic and Damage Analysis of Plates and Shells,
C© Springer-Verlag Berlin Heidelberg 2008
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An assumed strain shell element, with five degrees of freedom at each node,
was developed for nonlinear post buckling analysis by Voyiadjis and Shi (1992).
The element formulation is based on the Updated Lagrangian description, the von
Karman assumption, and the quasi-conforming element method (an assumed strain
method – Tang et al., 1980, 1983). The four-node quadrilateral element can reduce
to the corresponding three-node triangular element.

The formulation of the explicit element tangent stiffness matrix is similar to
that presented in Chap. 4. The emphasis here is on evaluation of the initial sur-
face coordinates for large deformation analysis of shells. The post-buckling anal-
ysis using our algorithm is performed on a number of structures and compared
with the existing analytical/numerical solutions where they are available. These
numerical examples demonstrate that our nonlinear plate element is efficient and
accurate.

7.2 Element Tangent Stiffness Matrix

The element considered here is the four-node quadrilateral strain element; each
node has five degrees of freedom, three translations, and two rotations. The ele-
ment formulation for the nonlinear analysis of plates and shells was presented in the
previous chapters. Here we use this element for the post-buckling analysis of plates
and shells. For convenience, we repeat some of the equations derived in previous
chapters.

7.2.1 Element Stiffness in Local Coordinates

The von Karman assumptions and Updated Lagrangian description are used here
to derive the element tangent stiffness matrix. In the finite element modeling of
transverse shear deformable plates using a generalized displacement method, the
incremental bending strains �b, membrane strains �m, transverse shear strains �s,
and slopes � of an element defined in the element local coordinates take the form
(Shi and Voyiadjis, 1990, 1991a,c):

�b =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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��φy

�y
��φx

�y
+ ��φy

�x

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= Bb�qe (7.1)
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��w

�y
− �φy

⎫⎪⎪⎬
⎪⎪⎭

= Bs�qe (7.3)

and

� =

⎧⎪⎪⎨
⎪⎪⎩

��w

�x
��w

�y

⎫⎪⎪⎬
⎪⎪⎭

= G�qe (7.4)

where �w is the increment of the generalized transverse displacement across the
plate thickness; �φx and �φy are the increments of generalized rotations of cross-
sections of the plate; �qe is the vector of increments of the nodal displacements
of the element under consideration; and Bb, Bm, Bs, and G are, respectively, the
bending strain, membrane strain, transverse shear strain and slope-displacement
matrices. Using the principle of virtual work, the element tangent stiffness matrix
in the element local coordinates (x, y) at configuration k takes the form (Horrigmoe
and Bergan, 1978):

K = Ke + Kg (7.5)

where

Ke =
∫∫
�

(
Bb

TDBb + Bm
T

SBm + Bs
TTBs

)
dxdy (7.6)

Kg =
∫∫
�

GTkFGdxdy (7.7)

kF =
[

k Nx
k Nxy

k Nxy
k Ny

]
(7.8)

in which 	 is the element domain; D, S, and T are, respectively, the plate bending,
stretching, and shearing rigidity matrixes; and kF is the in-plane stress resultant
matrix at configuration k. In (7.5), Ke is the linear part of the tangent stiffness matrix
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K and Kg is the nonlinear part of K. As shown in (7.7), Kg is associated with the
in-plane stress resultants and takes into account the geometric nonlinearity including
the post-buckling behavior. As shown by Voyiadjis and Shi (1992), the element
strain-displacement matrices Bb, Bm, Bs, as well as the slope-displacement matrix
G, can be evaluated by the quasi-conforming element method (Tang et al., 1980,
1983). The starting point in the formulation of a quasi-conforming element is to
interpolate element strain fields in terms of the undetermined strain parameters that
are the element local quantities. For example, the bending strains �b defined in (7.1)
can be approximated as:

�b ≈ Pb�b (7.9)

where Pb is the interpolation function matrix (usually a polynomial function) and
�b is the element strain parameter vector. If Wb is the test functions matrix, the
weak form of (7.1) and (7.9) can be written as:

∫
�

Wb (�b − Pb�b) d	 = 0 (7.10)

To obtain a symmetric stiffness matrix, the test functions can be taken as Wb =
PT

b . Carrying out the integration, the above equation leads to:

Ab�b = Cb�qe or �b = Ab
−1Cb�qe (7.11)

where:

Ab =
∫
�

Pb
TPbd	; Cb�qe =

∫
�

Pb
T�bd	 (7.12)

where Ab is a symmetric and nonsingular square matrix and Cb is the element strain
discretization matrix. Substituting for �b in (7.9) from (7.11) and using (7.1) and
(7.9) yields:

Bb = PbAb
−1Cb (7.13)

Similarly, we obtain:

Bm = PmAm
−1Cm (7.14)

Bs = PsAs
−1Cs (7.15)

G = P�A�
−1C� (7.16)

where Pb, Pm, Ps, and P� are the interpolation function matrices for element
bending, membrane, transverse shear strains and slope field, respectively. Equa-
tions (7.9), (7.10), (7.11), (7.12), (7.13), (7.14), (7.15), (7.16) indicate that the
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element strain fields in quasi-conforming elements are obtained from integration
instead of the differentiation used in the conventional assumed displacement ele-
ments. For the four-node quadrilateral element considered here, the following strain
interpolation matrices are used:

Pb =
⎡
⎣1 x y xy 0 0

0 1 x y xy 0
0 0 1 x y

⎤
⎦ (7.17)

Pm =
⎡
⎣1 y 0 0 0

0 0 1 x 0
0 0 0 0 1

⎤
⎦ (7.18)

Ps =
[

1 0
0 1

]
(7.19)

P� =
[

1 x y xy 0 0 0 0
0 0 0 0 1 x y xy

]
(7.20)

Ab, Cb, Am, Cm, As, Cs, A� and C� are given explicitly. Substituting (7.13),
(7.14), (7.15), (7.16) into (7.6) and (7.7) gives:

Ke = Cb
TAb

−1
∫
�

Pb
TDPbdxdyAb

−1Cb

+ Cm
TAm

−1
∫
�

Pm
TSPmdxdyAm

−1Cm

+ Cs
TAs

−1
∫
�

Ps
TTPsdxdyAs

−1Cs

(7.21)

Kg = C�
TA�

−1
∫
�

P�
TFP�dxdyA�

−1C� (7.22)

The integrals in (7.21) and (7.22) can be carried out explicitly, as the integrands
are simple polynomials. Consequently, the element tangent stiffness matrix can be
obtained explicitly, i.e., without numerical integration. Compared with the nonlinear
elements obtained through numerical integration, the explicit form of the element
tangent stiffness matrix presented here makes the resulting element computationally
very efficient.

The element nodal force vector evaluated in the element local coordinates at
configuration k is given by:
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f =
∫∫
�

(
Bb

TkM + Bm
TkN + Bs

TkQ
)

dxdy (7.23)

in which Bb, Bm and Bs are defined in (7.13), (7.14), (7.15); kM, kN, and kQ
are the stress couple, in-plane stress, and transverse shear stress resultant vectors,
respectively, which take the form:

kM =
⎧⎨
⎩

k Mx
k My

k Mxy

⎫⎬
⎭ , kN =

⎧⎨
⎩

k Nx
k Ny

k Nxy

⎫⎬
⎭ , kQ =

{
k Qx
k Qx

}
(7.24)

Corresponding to the strain interpolation functions given in (7.17), (7.18), (7.19),
a bilinear field for kM and kN and a constant function for kQ are used here. Similar
to (7.21) and (7.22), the integrals in (7.23) can also be carried out explicitly.

7.2.2 Initial Surface Coordinates for Large Deformation Analysis

A surface coordinate system associated with each nodal point is adopted (see also
Chap. 4). This allows efficient definition of the global rotational degrees of freedom.
After deformation from configuration k − 1 to k, there are three rotational compo-
nents (θ1, θ2, θ3) at a nodal point, and the nodal surface coordinates at node i will
undergo a finite rigid body rotation with components (θ1, θ2, θ3). The initial surface
coordinates for a flat plate take the form of a 3×3 identity matrix. The initial surface
coordinates for shells are presented here.

If E is the unit base vectors of the fixed global coordinates, and ke and kes are,
respectively, the unit base vectors of the element local coordinates and the nodal
surface coordinates at configuration k, then the relations between ke and E as well
as between kes and E are:

ke = kRE (7.25)

kes = kRsE (7.26)

kR can be easily determined by the nodal coordinates of the element under consid-
eration. The determination of kRs is presented below. Note that ke is associated with
a finite element and is updated with the changes of the element nodal coordinates,
while kes is related to a nodal point and rotates rigidly with the deformations of this
nodal point.

The transformation from k−1es to kes at node i can be written as:

kesi = Tθ i
k−1esi = Tθ i

k−1 Rsi E = k Rsi E (7.27)
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where Tθ i s the transformation matrix for large rotations at node i and is given by:

Tθ i = exp

(
�

�i

)
(7.28)

�

�i = �

�mn = εmnkθk (m, n, k = 1, 2, 3) (7.29)

where εmnk is the permutation tensor. For the initial surface coordinates oes =
{oes1,

oes2,
oes3} at a nodal point of a shell, oes3 is chosen to coincide with the outward

normal of the undeformed shell surface at the point, and oes1 and oes2 are given by:

0es1 = E2 × 0es3∣∣E2 × 0es3

∣∣ (7.30)

0es2 = 0es3 × 0es1 (7.31)

where E2 is the second component of the unit base vectors E of the fixed global co-
ordinates, and the symbol × denotes the cross-product. Equations (7.25) and (7.27)
yield the transformation between kes and ke at node i of an element as:

kesi = k Rsi
k Ri

T kei = k Si
kei (7.32)

where

k Si = k Rsi
k Ri

T (7.33)

Note that k Si is not only associated with a nodal point but also dependent on the
element.

7.2.3 Transformation of Element Stiffness Matrix

In this study, each node has five degrees of freedom, i.e., three translations and two
rotations. At node i of an element, the degrees of freedom defined in the element
local coordinates are the incremental translations �ui , and �vi , as well as �wi in
the directions of ke1,

ke2, and ke3, respectively, under consideration and two incre-
mental rotations �ϕxi and �ϕyi about ke2 and ke1. The global degrees of freedom at
the same node are the incremental translations �U1i , �U2i , and �U3i measured in
the directions of the fixed global coordinates E j ( j = 1, 2, 3), respectively, as well
as rotations �ϕs1i and �ϕs2i about kes2 and kes1, respectively, of the surface coordi-
nate system kes at the nodal point. The coordinates that combine the element local
coordinates with the nodal surface coordinates are called the “base coordinates”.
The transformation of the incremental displacement parameters at node i from an
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element local coordinates, �qei , to the corresponding base coordinates, �qbi , takes
the form:

�qbi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�U1i

�U2i

�U3i

�ϕs1i

�ϕs2i

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
[

k RT 0

0 ksi
∗

]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�ui

�vi

�wi

�ϕxi

�ϕyi

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= k Tbi �qei (7.34)

in which ksi
∗ is the upper left 2 × 2 submatrix of matrix k S at node i as defined

in (7.33) but with a different sequence. Consequently, the global displacement vec-
tor �qb and the local displacement vector �qe for the element have the following
relationship:

�qb = k Tb�qe (7.35)

For the four-node element considered here, k Tb is given by:

k Tb =

⎡
⎢⎢⎣

k Tb1 0 0 0
0 k Tb2 0 0
0 0 k Tb3 0
0 0 0 k Tb4

⎤
⎥⎥⎦ (7.36)

Using (7.35), the element tangent stiffness matrix evaluated in the element coor-
dinates, K, given by (7.5), (7.6), (7.7) can be transformed into that corresponding to
the base coordinates, Kb:

Kb = kTbKkTb
T (7.37)

Similarly, the element internal nodal force vector fb in the base coordinates is
given by:

fb = kTbf (7.38)

7.3 Solution Algorithm

Following the common assembling procedure, one obtains the nodal equilibrium
equations of a system for configuration k + 1 given by:

Kg�qg = �P + Funb (7.39)

where

Kg�qg =
∑
elem

Kb�qb (7.40)
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Funb = kP −
∑
elem

fb (7.41)

where Kg, �qg, and Funb are, respectively, the assembled global stiffness matrix,
the nodal displacement increment vector, and the unbalanced force vector of the
system; �P is the load increment vector from configurations k to k + 1 ; and kP is
the total load vector up to configuration k. The unbalanced forces Funb in (7.41) are
due to geometric nonlinearities of the system.

We adopt the Newton-Raphson method to solve the incremental system equa-
tions in (7.39) in which the unbalanced forces are resolved through iterations. The
load increments �P are determined by the arc length method (Crisfield, 1981; Riks,
1972; Wempner, 1971), which is a very effective and efficient approach to deal-
ing with snap-through and other post-buckling problems. Detailed descriptions of
both Newton-Raphson arc-length methods are given in Chap. 9. The convergence
criterion used here is:

∣∣�qg′
∣∣∣∣�qg

∣∣ ≤ etol (7.42)

in which |�qg′ | is the norm of the displacement increments obtained in the latest
iteration, |�qg| is the norm of the total displacement increments obtained during
the current increment, and etol is a prescribed value of error tolerance. The value of
etol = 0.0001 is used here.

7.4 Numerical Examples

The post-buckling analysis of a number of structures is presented in this section.
All the shapes of the elements used in this section rectangular, quadrilateral, and
triangular are the variations of the four-noded quadrilateral strain element presented
in previous chapters. The numerical solutions obtained by our element are compared
with the existing analytical/numerical solutions where available.

7.4.1 The Williams’ Toggle Frame

The Williams’ toggle is shown schematically in Fig. 7.1, together with the material
properties and load condition (the units used are in/lb to compare our results with
others directly). The toggle under the central load exhibits snap-through behavior.
Four rectangular elements are used for the discretization of a half-span of the toggle.
The curves of the central deflection and horizontal reaction at the fixed end versus
the applied load are shown in Fig. 7.1. The numerical solutions given by Wood and
Zienkiewicz (1977), as well as by Kondoh and Atluri (1986) are also plotted for
comparison. Our results agree well with the reference solutions.
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Fig. 7.1 Load-deflection and load-reaction curves of William’s Toggle frame (Voyiadjis and Shi,
1992)

7.4.2 Simply Supported Circular Plate Subjected to Edge Pressure

In this example we investigate a thin simply supported circular plate subjected to
a uniform comprehensive normal stress along the edge. The geometry and material
properties of the circular plate are given in Fig. 7.2. The critical edge pressure is

qcrit = 4.24D

R2h
(Friedrichs and Stoker, 1942), where D, R and h are the bending

rigidity, radius, and thickness of the circular plate, respectively. The load-carrying
capability of this plate, however, is far beyond the critical load. The buckling pat-
tern of the circular plate is symmetric about the plate center (Friedrichs and Stoker,
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PRESENT ANALYSIS 
ANALYTICAL SOLUTION: Friedrichs and Stoker (1942) 

CENTRAL DEFLECTION 

Fig. 7.2 Central deflection and edge-slope curves beyond the critical load for a simply supported
circular plate subjected to edge compression (Voyiadjis and Shi, 1992)

1942). Therefore, we consider only one quarter of the plate. Twelve quadrilateral

elements are used, as shown in Fig. 7.2. A lateral disturbance force P = 2π Rhq

1000
is introduced. The deflection at the center and the slope at the edge against the load

parameter � = q

qcrit
beyond the critical load are plotted in Fig. 7.2. The parameter

γ used in the load-deflection curve is defined as γ = 1/
√

12(1 − ν2). The numerical
results are in good agreement with the analytical solutions given by Friedrichs and
Stoker (1942).

7.4.3 Rectangular Plate Subjected to In-Plane Load

This example concerns the post-buckling analysis of a simply supported rectangular
plate subjected to a uniaxial compression along the shorter edges. The in-plane dis-
placements of the simply supported plate are constrained such that the longitudinal
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Fig. 7.3 Rectangular plate subjected to in-plane load (Voyiadjis and Shi, 1992)

edges can move freely in the tangential direction but are completely restrained in
the normal direction. The geometric and material data of the plate are shown in
Fig. 7.3. These data are the same as those used by Allman (1982). In Allman’s
paper, however, each transverse end of the plate is assumed to be compressed by
a force applied through a rigid end-block. Under the given boundary and loading
conditions, this rectangular plate has a symmetric buckling mode. Consequently,
only one-quarter of the plate needs be analyzed.

The rectangular plate undergoes single wave buckling in the transverse direction.
It can have a higher buckling mode in the longitudinal direction when the load is
large enough. To account more accurately for the higher buckling mode, 2 × 3 and
2 × 6 meshes are considered. The 2 × 3 mesh and boundary conditions are shown
in Fig. 7.3. A small lateral disturbance force is applied at the plate center. The plot
of displacement in the longitudinal direction U versus the in-plane load P is shown
in Fig. 7.3, where U and P are defined, respectively, as:

U = 1

b

b∫
0

u

(−a

2
, y

)
dy (7.43)

P = bq (7.44)

The deflections along the central longitudinal line of the plate corresponding to
various load values obtained by 2×6 mesh are shown in Fig. 7.4. Note that the plate
undergoes buckling from one wave to three waves when the load reaches a certain
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Fig. 7.4 Rectangular plate
subjected to in-plane load –
deflection along the central,
longitudinal line (Voyiadjis
and Shi, 1992)

value. Figure 7.3 shows that the plate can be in equilibrium in more than one buckle
pattern in certain load regions. Figures 7.3 and 7.4 also show that the stiffness of the
plate becomes negative when the central deflection crosses its initial equilibrium
configuration after the large deflection. Allman (1982) also showed that the plate
can be in equilibrium in more than one buckling mode. The local drop in force is
observed, however, at the limit point of the U − P curve. Such behavior makes the
slope of the curve become infinite at the corresponding point.

7.4.4 Cylindrical Shell Under a Central Load

The geometry and material properties of the circular cylindrical shell under consid-
eration are shown in Fig. 7.5. The shell is subjected to a concentrated central load
as shown in Fig. 7.5. The longitudinal edges of the shell have all the translational
degrees of freedom restrained while rotations are free. All the curved edges are
free. Only one-quarter of the shell is analyzed here because of the symmetry, and a
4 × 4 mesh is used. Both triangular and quadrilateral elements are used. The central
deflection as a function of applied load is plotted in Fig. 7.6. The numerical solution
obtained by Horrigmore and Bergan (1978) is also shown for comparison.

The results we obtained from the flat three-noded triangular elements agree very
well with the solution given by Horrigmore and Bergan (1978), while the results
given by the flat rectangular elements are stiffer. The difference in the behavior of
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Fig. 7.5 Cylindrical shell –
geometry, material properties
and finite element mesh
(Voyiadjis and Shi, 1992)

Fig. 7.6 Cylindrical shell –
Load-displacement curve
(Voyiadjis and Shi, 1992)

the triangular and rectangular elements can be attributed to the fact that the trian-
gular elements represent the deformed geometry of the shell more accurately than
the quadrilateral elements. Yang and Saigal (1985) solved the same problem using
a higher-order curved shell element (48 degrees of freedom) and a 2 × 2 mesh for
a quarter of the shell. Even though fewer elements are used in Yang and Saigal’s
solution, more nodal degrees of freedom are used compared with the finite elements
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used here. The simple flat plate elements presented by Horrigmore and Bergan
(1978) and in our study give results with the same accuracy as Yang and Saigal’s
higher-order curved element. This indicates that the lower-order plate elements can
lead to increased computational efficiency in nonlinear shell analysis.

7.4.5 Spherical Shell Subjected to Central Load

Figure 7.7 shows a spherical shell subjected to a concentrated load at its apex. All the
translational degrees of freedom on the edges are restrained, while rotations are free.
A 5×5 mesh of triangular elements is used for one-quarter of the spherical shell. The
resulting load-deflection curve at the apex, obtained by sixteen increments, is shown
in Fig. 7.7. Results obtained by Horrigmore and Bergan (1978), where twenty-nine
increments were used, are shown for comparison. Our analysis agrees very well
with Horrigmore and Bergan’s numerical solution. This example is also studied by
Bathe and Ho (1981) by means of the flat three-node triangular elements and mesh
identical to that used here. Bathe and Ho (1981) obtained similar results, but the
maximum central displacement Wc = 298.35 mm was obtained using nineteen load
increments.

Fig. 7.7 Spherical shell under a central load (Voyiadjis and Shi, 1992)
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7.5 Summary

The four-node quadrilateral strain element is used here for nonlinear post-buckling
shell analysis. The von Karman assumptions and the Updated Lagrangian descrip-
tion are used to derive the element tangent stiffness matrix. The transformation
matrix of large rotations proposed by Argyris (1982) is adopted to account for the
large rigid rotations. By means of the quasi-conforming method, the element tangent
stiffness matrix is calculated explicitly. As the element tangent stiffness matrices
must be evaluated numerous times in a nonlinear analysis, this feature makes our
formulation very efficient computationally.

The nonlinear post-buckling analysis of a number of structures is presented and
compared with the analytical/numerical solutions of other works. The examples
show that the four-node strain element presented here is not only simple and com-
putationally efficient but accurate.
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Chapter 8
Determination of Transverse Shear Stresses
and Delamination in Composite Laminates
Using Finite Elements

8.1 Introduction

In this chapter, we present a simple and efficient method of analysis for the shear
flexible shells and composite laminates using the finite element framework dis-
cussed in the previous chapters (See also Woelke et al. 2008).

Transverse shear strains and stresses are especially important in the analysis of
composite laminates. This is because advanced filamentary composite materials are
susceptible to thickness effects, as their effective transverse shear modulus is sub-
stantially smaller than the effective elastic modulus in the fiber direction. Moreover,
increasing use of composite laminates in various branches of industry requires anal-
ysis of these structures beyond the elastic behavior and up to failure. Composite
laminates have various modes of failure: delamination, debonding, fiber cracking,
and matrix yielding and cracking. Thus, determination of the accurate distribution
of transverse shear stresses across the thickness of the laminate demands special
attention.

One of the most common failure modes is delamination caused by the trans-
verse shear stresses. To accurately model composite plates and shells and address
the issues related to failure, it is necessary to include transverse shear stresses in
analyses. We use a description of shear effects based on the Mindlin-Reissner theory
of plates, modified to improve the model’s accuracy. The Mindlin-Reissner theory
leads to a constant distribution of the transverse shear stresses across the laminate
thickness. This representation is inexact, as the transverse shear stress function is
actually parabolic through the thickness of the lamina and not continuous through
the laminate. To improve the accuracy of shear stress prediction, a shear correction
function is applied, obtaining a parabolic distribution of shear stresses across the
thickness of the laminate without changing the definitions of the shell kinemat-
ics. The correction function satisfies the boundary conditions, enforcing zero shear
stresses on the outer surfaces of the laminas. Although using a second-order strain
function through the thickness of the composite laminate is a significant improve-
ment over a constant one, it still results in an undesired strain continuity through the
thickness. Substantial stiffness variations of the individual laminas lead to “jumps”
of the shear stress gradients at lamina interfaces. As failure analysis focuses on
stresses, we adopt a transformed section method that assumes a continuous shear
strain distribution. The transverse shear stresses are calculated using the effective
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section properties, i.e., first and second moments of area, allowing for accurate
determination of the stress distribution through the thickness. The formulation is
a generalization of the effective section method commonly applied in composite
beams. This allows prediction of the aforementioned “jumps” in the shear stress
gradients through the thickness of the composite laminate.

A Tsai-Hill interactive, anisotropic failure criterion is used to account for the
influence of transverse shear stresses. To enable prediction of the failure mode, the
maximum stress criterion is modified to include shear stresses.

Our formulation is simple and computationally inexpensive, and it yields accu-
rate results without employing higher-order displacement interpolations. It is imple-
mented into the explicit dynamic finite element codes EPSA and FLEX (WAI, 1998;
Vaughan, 2005).

This chapter contains six sections. Following the Introduction, Sect. 8.2 discusses
shell kinematics. Section 8.3 presents the constitutive equations. Section 8.4 dis-
cusses failure criteria in composite laminates, and Section 8.5 presents numerical
examples demonstrating the accuracy of our computational model’s results. Finally,
Sect. 8.6 gives the summary.

8.2 Kinematics of the Shell

The thick shell formulation, which uses Mindlin kinematics, is, according to Reddy’s
classification (Putcha and Reddy, 1986; Reddy, 1984, 1989; Reddy et al., 1989),
a single-layer shear deformation formulation. It accounts for a constant state of
transverse shear strains across the thickness of a composite laminate. It is not a
layerwise formulation, which would require higher-order interpolation functions to
approximate variation of axial displacement through the thickness of the composite
laminate. Use of a layerwise formulation to model composite laminates would re-
quire major changes in the kinematics of the shell element, which would make the
element more complex and could negatively affect code reliability.

The displacement-based shear deformation formulations are developed using a
displacement field of the form Putcha and Reddy (1986):

u(x, y, z, t) = u0 − z

[
−α

�w

�x
− βφx − γ

4

3

( z

h

)2
(

φx + �w

�x

)]

v(x, y, z, t) = v0 − z

[
−α

�w

�y
+ βφy − γ

4

3

( z

h

)2
(

−φy + �w

�y

)]
(8.1)

w(x, y, z, t) = w (x, y, t)

where u, v ,w are the displacement components in the (x, y, z) directions respectively,
at time t ; u0, v0 are displacement of the middle surface; φx and φy are the angles
of rotation of the transverse normal around x and y axes, respectively; and h is the
thickness of the composite laminate. The above relations can easily be reduced to a
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classical thin shell formulation by setting α = 1, β = 0, γ = 0. Here, a single-layer
shear deformation formulation is obtained by setting α = 0, β = 1, γ = 0:

u = u0 + zφx and v = v0 − zφy (8.2)

with φx , φy given as:

φx = −�w

�x
+ γxz and φy = �w

�y
− γyz (8.3)

where γxz, γyz are the transverse shear strains in the xz and yz planes, respectively.
Equations (8.2) and (8.3) express the following hypothesis: plane sections origi-

nally perpendicular to the middle surface remain plane after the deformation but not
perpendicular to the middle surface (Fig. 8.1). The formulation is therefore related
to the Mindlin-Reissner theory of plates.

The plate or shell considered here is assumed to be a laminated surface with a
thickness h. At any point of the shell, the membrane strains and curvatures in a
rectangular coordinate system (x, y, z) are given by the following equations:

ex = �u

�x
(8.4)

ey = �v

�y
(8.5)

exy = 1

2

(
�u

�y
+ �v

�x

)
(8.6)

κx = �φx

�x
= �

�x

(
−�w

�x
+ γxz

)
(8.7)

κy = �φy

�y
= �

�y

(
�w

�y
− γyz

)
(8.8)

Fig. 8.1 Transverse shear
deformations (Woelke
et al., 2006b)
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κxy = 1

2

(
�φx

�y
+ �φy

�x

)
(8.9)

The transverse shear strains are calculated using the following equations:

γxz = �w

�x
+ φx (8.10)

γyz = �w

�y
− φy (8.11)

where 2εxz = γxz ; 2εyz = γyz .
In (8.4), (8.5), (8.6), (8.7), (8.8), (8.9), (8.10), (8.11) z is a measure of the distance

between the middle surface of the shell and the surface under consideration; ex , ey

are membrane strains; exy is in-plane shear strain; and κx , κy, κxy are curvatures at
the mid-surface in planes parallel to the xz, yz, and xy planes, respectively; u, v, w are
the displacements along the x, y, z axes, respectively; γxz, γyz are transverse shear
strains in xz and yz planes respectively; and φx , φy are angles of rotation of the
cross-sections that were normal to the mid-surface of the undeformed shell (see
Fig. 8.1). The total normal strains due to both membrane and bending deformation
in x, y directions, respectively, can be written as follows:

εx = ex + zκx and εy = ey − zκy (8.12)

8.3 Lamina Constitutive Equations

For a lamina of constant thickness h and made of an orthotropic material (the
plate having a plane of elastic symmetry parallel to the xy plane), the constitutive
equations relating stresses σ to strains � for a layer can be written in the principal
material directions (1, 2, 3) as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ1

σ2

σ4

σ5

σ6

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 2Q44 0 0
0 0 0 2Q55 0
0 0 0 0 2Q66

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε1

ε2

ε23

ε13

ε12

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8.13)

where the transverse normal stresses σ3 are neglected. The principal material direc-
tions (1, 2, 3) are shown in Fig. 8.2, defined for a single lamina:

The quantities Qi j in (8.13) form the stiffness matrix and are expressed as follows
(Sloan, 1979; Vinson and Sierakowski, 1987):

Q11 = E11/�, Q22 = E22/�, Q12 = ν21 E11/�

Q44 = G23, Q55 = G13, Q66 = G12, � = 1 − ν12ν21
(8.14)
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Fig. 8.2 Principal material
directions for an individual
layer (local coordinate
system); 1 is the direction of
the fibers (Woelke
et al., 2006b)

1

2
3

Fibers

where E11, E22 are Young’s moduli of the composite in 11 and 22 directions, re-
spectively; G23, G13, G12 are shear moduli of the composite in 23, 13, and 12
directions, respectively; and ν12 is a Poisson’s ratio in 12 direction. Directions are
defined as in the theory of elasticity, where the first subscript defines the normal to
the plane under consideration and the second subscript defines the direction.

Note that ε23 = (1/2G23)σ4, ε13 = (1/2G13)σ5, and ε12 = (1/2G12)σ6; thus,
coefficients “2” appear in the Qi j matrix.

The transformation matrix from the local (lamina) to global (laminate) coordinate
system is given by matrix T (see Figs. 8.2 and 8.3):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

σ4

σ5

σ6

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= T
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⎪⎪⎪⎪⎪⎪⎪⎭

;
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ε1

ε2

ε3

ε23

ε13

ε12

⎫⎪⎪⎪⎪⎪⎪⎪⎬
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= T

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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εx

εy

εz

εyz

εxz

εxy

⎫⎪⎪⎪⎪⎪⎪⎪⎬
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where T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m2 n2 0 0 0 2mn
n2 m2 0 0 0 −2mn
0 0 1 0 0 0
0 0 0 m −n 0
0 0 0 n m 0

−mn mn 0 0 0
(
m2 − n2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m = cos θ ; n = sin θ (8.15)

where θ is the angle between the positive x direction of the global coordinate system
and the direction of the fibers 1 (Fig. 8.3). An inverse of the transformation matrix
T−1 can easily be found by replacing θ with −θ in T.

Using (8.13), (8.14), (8.15) we calculate the stresses in each lamina of the
composite laminate. To calculate the stress resultants and stress couples Mx , My,

Fig. 8.3 Lamina (local)
coordinate system – 123 and
laminate (global) coordinate
system – xyz (Woelke
et al., 2006b)
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Mxy, Nx , Ny, Nxy, Qx , Qy in the laminate, we use definitions of normal and shear
forces, as well as bending moments commonly used in beam, plate, and shell theory:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Nx

Ny

Nxy

Nxz

Nyz
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dz;

⎧⎨
⎩

Mx
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Mxy

⎫⎬
⎭ =

h/2∫
−h/2

⎧⎨
⎩

σx

σy

σxy

⎫⎬
⎭ z dz (8.16)

The positive directions of the stress resultants, consistent with their definitions
given by (8.16), are shown in Fig. 8.4.

The shear correction factor of 5/6 is often applied in the definition of the trans-
verse shear forces in (8.16). This is because transverse shear strains are defined
according to the Mindlin plate theory, where the strain is constant over the thick-
ness. The stresses are obtained by multiplying strains by a shear modulus (8.13),
which leads to a constant distribution of the shear stresses across the thickness of
the composite laminate. In reality, however, shear stresses σxz and σyz are quadratic
functions of thickness coordinate z, and in absence of the traction boundary condi-
tions on the outer surfaces of the shell, they should vanish on the top and bottom
surfaces, i.e., z = ± h/2 → σxz = σyz = 0. If these boundary conditions are
not satisfied, the integration of constant stresses over the thickness will not yield
accurate values of the transverse shear forces without application of the shear cor-
rection factor. The value of the shear correction factor is derived by equating the
strain energy for the exact parabolic function of shear stress to the strain energy of
the approximate constant shear stress, acting over a modified area. The shear strain
energy of a beam is given by:

Us = 1

2

∫
V

τ 2
zx

G
dV = 1

2

∫
V

Gγ 2
zx dV = 5

2

Gbh

6

L∫
0

(
dw

dx
− φx

)2

dx (8.17)
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Fig. 8.4 Stress resultants on shell element (Woelke et al., 2006a)
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To obtain the same energy for a uniform stress σxz , the stresses need to act on a
modified area A = (5/6)bh, where b and h are the width and thickness of the beam.

Application of the shear correction factor results in accurate computations of
transverse shear forces. Transverse shear stresses are still uniform, however, which
may lead to incorrect failure prediction of individual laminas and of the composite
laminate. To correct this deficiency without redefining the kinematics of the shell,
it is necessary to modify the strains by applying not only a shear correction factor,
but the shape function f (z). The function describing the variation of shear stresses
across the thickness is obtained from the equilibrium equations of stresses and is
given by:

f (z) = 5

6

3

2

[
1 −

(
2z

h

)2
]

(8.18)

The shape function obtained by (8.18) is introduced into the formulation, result-
ing in a parabolic distribution of the stresses across the thickness. This representa-
tion is not exact, as the real strain function is not continuous through the thickness
of the composite laminate, owing to the stiffness variation of the individual laminas
(see Sect. 8.5.1). It is, however, convenient, as it does not require redefinition of the
kinematics of the shell.

One of the most common failure modes in composite laminates is delamination,
which is driven by the transverse shear stresses. On one hand, accurate determi-
nation of transverse shear stresses is important and the aforementioned parabolic
distribution might be insufficient. On the other hand, a mathematically consistent
formulation ensuring convergence to the analytical solution requires adoption of a
higher-order kinematics of the shell, which is cumbersome, especially when used
in explicit finite element codes such as EPSA and FLEX. To avoid these difficulties
while obtaining accurate representation of the shear stresses through the thickness,
we use a transformed section method. This approach, which has been used in the an-
alytical calculation of composite beams, can easily be extended to plates and shells.
In the case of the beam, the cross section built of several materials is transformed
into an equivalent cross section of a single material on which the resisting forces and
the neutral axis are the same as on the original section. The usual flexure formula
is then applied to the new section (Ugural and Fenster, 1995). The equivalent cross
section is found by multiplying the width of each lamina by a so-called modular
ratio, given by:

n = Ex

E2
(8.19)

where Ex is Young’s modulus of a considered lamina in the global x direction and
E2 is Young’s modulus of a lamina in the direction perpendicular to the fiber. We
therefore have for the lamina oriented at 0◦, n = E1/E2 ≥ 1 and for the lamina
oriented at 90◦, n = 1. The width of each lamina is then multiplied by its respective
modular ratio to form the equivalent cross section, shown in Fig. 8.5.
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Fig. 8.5 Equivalent cross
section of the composite
beam (Woelke et al., 2006b)
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Having established the equivalent cross section, we can determine the equiva-
lent area and first and second moment of area, which can be used to calculate the
displacements, strains, and stresses. In the case of plates and shells, the geometric
cross-section characteristics of individual laminas are multiplied by the modular
factor given by:

Eequ x = E1 cos2 θ + E2 sin2 θ

Eequ y = E2 cos2 θ + E1 sin2 θ
(8.20)

where Eequ x and Eequ y are the modular factors of the lamina in global x and y
directions, respectively; E1 and E2 are Young’s moduli of the lamina in directions
1 (fiber direction) and 2 (direction perpendicular to the fibers), respectively; and
θ is the angle between a positive x direction of a global coordinate system and a
direction of the fibers 1, (Fig. 8.3). The equivalent cross-section area of the lamina
is therefore:

Axi = hi Eequ xi where i = 1, k (8.21)

where k is the number of laminas and hi is the thickness of the i − th lamina. The
equivalent area of the laminate can be obtained by adding the equivalent areas:

Ax =
k∑

i=1

Axi (8.22)

Similarly, the equivalent first and second moment of area are given by:

Qx =
k∑

i=1

hi zi Eequ xi

Ix =
k∑

i=1

(
h3

i

12
+ hi z

2
i

)
Eequ xi where i = 1, k

(8.23)
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where zi is the distance between the center axes of the lamina and composite
laminate.

The transverse shear stresses can now be calculated:

σxz = Qx N ′
xz

Ix
; σyz = Qyx N ′

yz

Iy
(8.24)

where N ′
xz and N ′

yz are transverse shear forces calculated not by means of (8.16),
but through direct integration of transverse shear strains multiplied by the shear
correction factor given by (8.18):

N ′
xz =

h/2∫
−h/2

Gxz f (z) εxz ; N ′
yz =

h/2∫
−h/2

G yz f (z) εyz (8.25)

where Gxz = G13 and G yz = G23. As mentioned above, application of the shear
correction factor results in the accurate computation of transverse shear forces. Sub-
stituting these forces into (8.24), along with previously obtained equivalent cross-
section characteristics, allows for accurate determination of the non-continuous dis-
tribution of the transverse shear stresses across the thickness of the shell.

The above constitutive equations are universal for both plates and shells. They
are implemented into the explicit finite element codes EPSA and FLEX. The com-
posite shell element used is flat, with constant strains and 4 nodes and 5 degrees
of freedom per node, i.e., linear velocities u̇, v̇, ẇ in x, y, z directions, respectively,
and angular velocities φ̇x , φ̇y around y and x axes, respectively. The curvature of
the shell is modeled through finite element discretization. The positive directions of
the degrees of freedom are the same as the positive directions of the stress resultants
(see Fig. 8.4).

Details of the kinematics of the element, integration scheme, and anti-hourglassing
procedure are given by Flanagan and Belytschko (1981).

8.4 Failure Criteria for Composite Laminates

Some of the most common failure criteria for composite laminates are discussed
in WAI (2005). Here, transverse shear stresses were introduced into the composite
model. Transverse shear stresses are important in failure investigation of composite
laminates, primarily because they cause delamination. To consider the influence
of shear stresses on failure prediction, we modify a maximum stress criterion as
follows: the composite begins to fail if F ≥ 1, where F is given by:

F = max

(∣∣∣σ11

X

∣∣∣ , ∣∣∣σ22

Y

∣∣∣ ,
∣∣∣∣σ12

S12

∣∣∣∣ ,
∣∣∣∣σ13

S13

∣∣∣∣ ,
∣∣∣∣σ23

S23

∣∣∣∣
)

(8.26)
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where σ11, σ22, σ12, σ13, σ23 are the stresses in the principal material directions, and
X, Y, S12, S13, S23 are, respectively, tensile or compressive strength in 11 and 22
directions and shear strengths in 12, 13, 23 directions. The maximum stress crite-
rion is especially useful, as it allows for predictions of the failure modes. With the
appropriate experimental data, the transverse shear strength of the composite lami-
nate could be determined. This would allow anticipation of failure by delamination,
substantially improving the modeling of failure in composite laminates.

We also modify an interactive anisotropic Tsai-Hill criterion to account for trans-
verse shear stresses. Although this criterion is commonly used, it usually considers
only a plane state of stress. To include transverse shear stresses in the failure anal-
ysis of composite laminates, we use an interactive Tsai-Hill criterion in the follow-
ing form:

F = σ11
2

X2
− σ11σ22

X2
+ σ22

2

Y 2
+
(

σ12

S12

)2

+
(

σ23

S23

)2

+
(

σ13

S13

)2

(8.27)

According to this criterion the individual lamina fails if F ≥ 1. The Tsai-Hill
criterion in the form given by (8.27) is introduced separately into EPSA. We there-
fore have both a plane stress version of the Tsai-Hill criterion and the form given by
(8.27), which accounts for transverse shear stresses.

The above criteria are commonly used in the analysis of composite laminates.
They are based, however, on the assumption that the structure is linear until failure
occurs. When the failure criterion is satisfied, the lamina is typically eroded. In
reality however, satisfying the failure criterion (such as Tsai-Hill) could indicate,
for example, local fiber cracking, in which case the laminate continues to carry
the reduced load. To represent failure in composite laminates, plasticity and elastic
and inelastic damage must be invoked. Use of the experimental data necessary to
calibrate the model would allow prediction of yielding and cracking of the matrix,
cracking of the fibers, debonding of the fibers from the matrix material, and delam-
ination. We will describe such failure in composites in future work.

8.5 Implementation and Numerical Examples

We implemented our formulation into dynamic finite element codes EPSA and
FLEX using the programming language Fortran 95. The novel feature of the model,
i.e., the calculation of the transverse shear stresses does not require any changes to
the laminated shell element that would negatively affect its convergence rate. The
convergence of the laminated shell elements in EPSA and FLEX are discussed by
Vaughan (2005) and WAI (1998).

Both EPSA and FLEX use an explicit time integration scheme, which does not
require any nonlinear equation solver (e.g., Newton-Raphson technique). Conse-
quently, explicit time integration is convenient for implementation of advanced ma-
terial constitutive models. The disadvantage of the explicit methods as opposed to
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implicit time integration lies in conditional stability. The solution is stable only if the
timestep size is equal to or lower than a critical value (Courant stability criterion).
The critical timestep is a function of the maximum frequency of the analyzed struc-
ture. In this analysis, the choice of timestep size is such that the Courant stability
criterion is satisfied and stability of the solution ensured.

We investigate the reliability of our approach through a series of discriminating
examples. The problems are selected to demonstrate and challenge new features of
the formulation, i.e., representation of transverse shear deformation and transverse
shear stresses in the analysis of layered composites.

The importance of shear deformation in the analysis of composite structures is
widely known and has been discussed by many authors. Our objective here is to
confirm that our description of the shear effects is reliable and leads to improvement
in the accuracy of analyses of composite structures.

8.5.1 Laminated Composite Strip under Three-Point Bending

We consider a simply supported 7-layer symmetric beam with a central line load.
This problem is a commonly used composite benchmark (Hardy, 2001). The stack-
ing sequence and orientation of the fibers is as follows: 0/90/0/90/0/90/0, where the
center ply is four times as thick as the others. The geometry of the beam including
the stacking sequence is shown in Fig. 8.6.

The length of the beam is L = 50 mm, the line load P = 10 N/mm is applied at
point E , and material properties are: E1 = 1.0E5 M Pa, E2 = 5.0E3 M Pa, G12 =
3.0E3 M Pa, G13 = G23 = 2.0E3 M Pa, and ν12 = 0.4, ν12 = 0.3.

To confirm that our formulation reliably represents of the shear effects and is
therefore applicable to the analysis of thick composite shells, we investigate the
vertical displacement under the load (point E), bending stresses at the same location,
and transverse shear stresses at point D (see Fig. 8.6). All of these values can be

Fig. 8.6 Simply supported
laminated beam subjected to
central line load with material
properties (Hardy, 2001)
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calculated analytically using a transformed section method. In this method, a cross
section composed of several materials is transformed into an equivalent cross section
of a single material on which the resisting forces and neutral axis are the same as
on the original section. The usual flexure formula is then applied to the new section
(Ugural and Fenster, 1995).

The equivalent cross section is obtained by multiplying the width of each lamina
by a so-called modular ratio, given by:

n = Ex

E2
(8.28)

where Ex is Young’s modulus of a considered lamina in the global x direction and
E2 is Young’s modulus of the lamina in the direction perpendicular to the fiber.
We therefore have for the lamina oriented at 0o, n = E1/E2 = 20, and for
the lamina oriented at 90o, n = 1. The width of each lamina is then multiplied
by the appropriate modular ratio to form the equivalent cross section, shown in
Fig. 8.7.

Having established the equivalent cross section, we can determine its moment of
inertia using Steiner’s theorem (Parallel Axis Theorem):

Ieq =
m∑

j=1

(
b j h3

12
+ b j hd j

2

)
j

= 10.9667 mm4 (8.29)

where m is a number of sub-areas (Fig. 8.7); b j is a width of considered sub-area;
h is the total thickness of the composite laminate; and d j is the distance between
the neutral axes of the laminate and lamina. Using the equivalent moment of inertia,
we calculate the displacement under the load due to bending and shear actions. We
apply the virtual unit force at point C to determine the displacement by means of
the virtual work principle:

Fig. 8.7 Equivalent cross
section of the composite
beam (Woelke et al., 2006b)

0.1
0.1
0.1

0.4

0.1
0.1
0.1

beq = 200 mm

b = 10 mm
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w = wM + wQ =
∫
L

M M̄

E2 Ieq
dx +

∫
L

6 Q Q̄

5 G13 Aeq
dx = P L3

48E2 Ieq
+ 3P L

10G13 A
= −1.07 mm

(8.30)
where M,Q are bending moment and shear force functions, respectively; M̄, Q̄ are
virtual bending moment and shear force, respectively; L = 30 mm, (see Fig. 8.6);
5/6 is a shear correction factor (see (8.16), (8.17)); and A is the area of the cross
section.

The problem described above is modeled using 20 composite shell elements
based on the thin shell and thick shell formulations. We compare the time histories
obtained using the two formulations, as well as a final numerical solution to the
analytical result given by (8.30). Figure 8.8 shows the time history for the vertical
displacement at point E (Fig. 8.6), calculated without accounting for shear stresses
and after transverse shears have been introduced:

In Fig. 8.8, as expected, the displacement calculated with shear stresses taken
into account (w = −1.069 mm) is slightly larger than that calculated with shear
effects not taken into account (w = −1.054 mm). Both values, however, compare
well with the reference solution (w = −1.07 mm). We therefore conclude that shear
stresses do not significantly affect the response of the structure under consideration.
The situation changes, however, if the transverse shear moduli G13 and G23 are
significantly smaller than the in-plane shear modulus G12. If G13 = G23 = 250 MPa
the displacement calculated using (8.30) is:

for G13 = G23 = 250 MPa : w = wM + wQ = −1.026 − 0.36 = −1.386 mm
(8.31)

The significant increase (nearly 26%) in the displacement is caused mainly by
transverse shear action only, while the deformation caused by bending does not

Fig. 8.8 Displacement time histories (displacement under load) (Woelke et al., 2006b)
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change. In this case, only a formulation that features a reliable representation of the
shear effects is capable of delivering an accurate solution.

Figure 8.9 shows the time histories of displacement under load calculated, as
above, with EPSA composite shell elements based on the thin shell formulation,
without taking shear stresses into account, and on the thick shell formulation, ac-
counting for shear stresses. The significant difference between the results obtained
by means of the thin and thick shell formulations is attributed to the influence of
shear stresses. Our thick shell formulation delivers a value of displacement under
load (w = −1.3838 mm) that practically matches the reference solution obtained
by (8.31) (w = −1.386 mm). The thin shell formulation correctly predicts only
the bending part of the deformation, while the shear part is entirely neglected (see
Fig. 8.9).

For further verification, we compare the values of maximum bending stresses
and transverse shear stresses computed using EPSA-III, with the reference solution
calculated analytically. The maximum bending stress is given by:

σx = nM

Ieq

h

2
= ± n P Lh

8Ieq
= ± 683.89 MPa (8.32)

where n is given by (8.28), M is the bending moment at midspan of the beam (under
the load), and h is the thickness of the composite laminate. The transverse shear
stress (interlaminar shear) between the jth and the ( j + 1)th can be calculated from
equilibrium of stresses. At the top layer (z = ± 0.4 mm), we have:

Fig. 8.9 Displacement time histories (displacement under load) with reduced shear modulus G13

(Woelke et al., 2006b)



8.5 Implementation and Numerical Examples 177

Table 8.1 Comparison of analytical and numerical results (A and E are shown in Fig. 8.6)

Analytical
solution

EPSA thin
shell

EPSA
thick
quadratic

EPSA
thick
TSM∗

Displacement at E [mm] 1.07 1.054 1.069 1.069
Displacement at E [mm],

(reduced G13)
1.386 1.054 1.384 1.384

Shear force between A and E [kN] 0.05 0.05 0.05 0.05
Shear stress at

D(z = ± 0.4 mm) [MPa]
−4.103 – −2.620 −4.131

Bending moment at E [kNm] 7.5E-4 7.51E-4 7.51E-4 7.51E-4
Bending stress at E [MPa] 683.89 684.96 684.96 684.96
∗ Note: TSM – Transformed Section Method.

σxz = −
0.5∫

0.4

�σx

�x
dz = −

0.5∫
0.4

�

�x

(
n 0.05xz

Ieq

)
dz = −4.103 MPa (8.33)

Table 8.1 compares the analytical and numerical values of displacements and
bending stresses, as well as shear forces and bending moments, and Fig. 8.10
presents the transverse shear stress distribution.

The interlaminar shear stress at z = ± 0.4 mm, determined using our model,
is σxz = −4.134 MPa (Fig. 8.10), which compares very well with the analytical
solution obtained by (8.33) (σxz = −4.103 M Pa). The distribution of the transverse
shear stresses, as calculated by the transformed section method, also agrees closely
with the reference solution. Table 8.1 and Fig. 8.10 compare the formulations. Note
that, although application of the second-order shape function significantly improves
model accuracy over the constant distribution, it leads to inaccuracies in shear

EPSA - Transformed Section Method
EPSA-with quadratic shape function (Eqn. 18)
Constant distribution
Analytical solution

Shear stresses [MPa]

z 
[m

m
]
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Fig. 8.10 Distribution of transverse shear stress σxz [MPa] across the thickness of the composite
laminate (Axis of symmetry z = 0.0) (Woelke et al., 2006b)
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stresses. This negatively affects the failure prediction capability of the model. The
transformed section method allows for reliable shear stress distribution calculations,
and it is simple and efficient. In all of the approaches considered, the integration of
stresses through the thickness yields accurate results for the shear forces.

The displacements calculated by means of the thin shell formulation are accu-
rate only when shear effects are negligible. When the transverse shear modulus is
significantly smaller than the in-plane shear modulus, the thin shell formulation
does not produce accurate results. The displacements calculated by means of the
thick shell formulation almost exactly match the reference solutions, verifying that
our thick shell formulation reliably represents of the shear effects and can be used
successfully to model the behavior of thick composite plates, shells, and beams.

8.5.2 Composite Cylinder under Internal Pressure

In the previous example, we confirmed that our thick shell formulation correctly
represents the increased shear flexibility caused by the differences between in-plane
and out-of-plane shear moduli. Taking into account shear stresses in the analysis
of thin shells can lead, however, to numerical deficiency commonly referred to as
shear locking. A reliable shell model correctly predicts shear modes of deformation
in the case of both thin and thick shells, without suffering from shear locking. To
verify that we have avoided this numerical deficiency, we consider a long cylinder
composed of two layers. The internal layer is an isotropic material and the external
layer an orthotropic material. The cylinder is subjected to internal pressure (see
Fig. 8.11). Properties of the cylinder are given in Table 8.2.

Because of symmetry, only an octant of the cylinder need be considered. The
mesh of 160 EPSA shell elements, used to model cylinderoctant, is shown in
Fig. 8.12.

Fig. 8.11 Composite cylinder
under internal pressure
(Woelke et al., 2006b)

L L

z

r1
r2

r3

Table 8.2 Material properties and dimensions of the pinched cylinder

Dimensions [mm] L = 100.0, r1 = 27.0, r2 = 25.0, r3 = 23.0
Loading Internal pressure: p = 200 M Pa
Layer 1 (Inner) Isotropic: E = 2.1E5 MPa, ν = 0.3

Material
Properties

Layer 2 (Outer) Orthotropic: E1 = 1.3E5 M Pa, E2 = 5.0E3 MPa ,
ν12 = 0.3, G12 = 1.0E4 MPa , G13 = 500 MPa

Note: Direction 1 is a hoop direction; 2 is a z direction.
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Fig. 8.12 Finite element mesh and displacements of an octant of the cylinder (Woelke et al., 2006b)

We investigate the radial displacement of the cylinder (see Fig. 8.11), calcu-
lated by means of the thin and thick shell formulations. The outer shell layer is
orthotropic, the inner layer is isotropic, and the cylinder is relatively thin. The loads
are resisted mainly by the membrane action of the shell, and shear effects are negli-
gible. Despite the fact that the in-plane shear modulus (G12) of layer 2 is much larger
than the out-of-plane shear modulus (G13), the difference between displacements
obtained from the two formulations should not be significant. The time histories of
displacement under load determined using the thin and thick shell formulations are
shown in Fig. 8.13.

Fig. 8.13 Time history plots for radial displacements (Woelke et al., 2006b)
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In Fig. 8.13 the radial displacements calculated using the thin and thick shell
formulations practically coincide. Because, as discussed above, shear effects are
negligible, this result confirms the reliability of the thick shell formulation.

8.5.3 Cylindrical Shell Subjected to Ring of Pressure

As discussed in the Introduction, our main objective is to account for the influence
of transverse shear strains and stresses on the behavior of composite laminates. In
Sects. 8.5.1 and 8.5.2, the composite problems were investigated, confirming the
reliability of the current thick shell formulation for composite structures. A reliable
layered shell formulation should produce accurate results of the analysis of lami-
nated isotropic plates and shells. In this section, we analyze a layered isotropic shell
to further confirm the effectiveness of the model.

We consider a cylindrical shell subjected to the ring of pressure. The geometry
and material parameters are shown in Fig. 8.14. Because of symmetry, we need
consider only an octant of a shell, which is modeled using finite element mesh, as
shown in Fig. 8.12.

We analyze the problem using EPSA layered shell elements, based on the thin
shell formulation, and compare the results with those obtained using the thick com-
posite shell elements accounting for transverse shear deformation. First, we consider
a cylinder with thickness t = 0.5 mm. Shells in which the ratio of the radius of the
curvature and thickness is higher than 50 are usually considered thin. In this case,
the results delivered by EPSA thin-layered shell element, previously shown to be
reliable, will be sufficiently accurate. Solving the problem using the thick layered
shell formulation presented here should therefore produce similar results. We com-
pare the radial displacements at midspan of the cylinder, determined by thin and
thick shell formulations. The time history plots are shown in Fig. 8.15.

Figure 8.15 shows that, as expected, the results produced by the thin and thick
shell formulations are practically identical. Shear effects are negligible in this prob-
lem, as correctly recognized by the thick layered shell model.

R P

LL

x

L = 100 mm

R = 25 mm

t = 0.5 mm

P  = 0.0625 kN/mm

E = 2.1E5 MPa

σο = 215 MPa

ν = 0.3

Fig. 8.14 Cylindrical shell subjected to a ring of pressure (Woelke et al., 2006b)
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Fig. 8.15 Radial displacements for a cylinder subjected to a ring of pressure (t = 0.5 mm) (Woelke
et al., 2006b)

We increase the thickness of the cylinder to t = 5 mm and the pressure to
P = 1.0 k N/mm and again compare the radial displacements obtained from the
two formulations. The displacement time history plots are shown in Fig. 8.16.

Displacement calculated using our thick shell formulation is 17% larger than
that obtained without accounting for shear stresses. At the same time, the bend-
ing moments and axial forces determined by the thick and thin shell formulations
are approximately the same (see Fig. 8.17). This significant discrepancy between

Fig. 8.16 Radial displacement for a cylinder subjected to a ring of pressure (t = 5 mm) (Woelke
et al., 2006b)
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Fig. 8.17 Bending moment at midspan of the cylinder subjected to a ring of pressure (t = 5 mm)
(Woelke et al., 2006b)

displacement values is attributed to the increased influence of the transverse shear
effects, which are correctly represented in our model.

8.6 Summary

Accounting for out-of-plane shear strains and stresses is necessary for the accurate
modeling of the elasto-plastic behavior of thick plates and shells. In the case of
composite laminates, the influence of transverse shear stresses is even more im-
portant. This is because of the orthotropic nature of these structures and the of-
ten significant difference between in-plane and out-of-plane shear moduli. As this
leads to increased shear flexibility of the composites, neglecting shear effects can
result in an unsafe design. Moreover, transverse shear stresses cause delamination
in composites, one of the most important failure modes. Our formulation makes it
possible to account for transverse shear stresses in failure criteria. With the use of
appropriate experimental data, this can result in greatly improved failure predictions
for composite laminates.

EPSA is an explicit code that features a constant strain, flat shell element. The
equation of motion is solved locally, without assembling the stiffness matrix of the
structure. Neither shear nor membrane locking is experienced, as shown in Sect. 8.5.
The anti-hourglass procedure is given by Flanagan and Belytschko (1981).

The numerical examples in Sect. 8.7 were selected to challenge the most impor-
tant features of this work, i.e., representation of transverse shear effects in composite
laminates and elasto-plastic investigations of isotropic shells. Because of a lack of
appropriate experimental data, we do not discuss the failure prediction capability of
the model. We will address this capability in their future work. In all of the analyzed
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cases, the results are accurate, confirming that the model is well grounded. EPSA
layered composite finite elements are therefore capable of delivering accurate ap-
proximations of the structural behavior of thin and thick beams, plates, shells, and
composite laminates.
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Chapter 9
Numerical Methods and Computational
Algorithms

9.1 Introduction

In this chapter use discuss the numerical techniques and computational algorithms
used in our work. Together the equations derived, form a procedure for a compre-
hensive analysis of thick plates and shells. Given the complexity of the constitu-
tive equations, analytical solutions would be possible only for specific problems.
Recent developments in computer technology, as well as numerical methods, pro-
vide a powerful tool that allows approximations of the sometimes very complicated
systems of equations, used to describe engineering problems. To take advantage
of this tool, a set of instructions must be given to the computer, which defines in
suitable form the sequence of operations required to solve a given problem (Ketter
and Prawel, 1969).

We gradually built a computer program, Voyiadjis-Woelke-SHELLS, based on
the shell constitutive equations presented in the preceding chapters, as well as on
the computer program published by Voyiadjis and Shi (1990). The programming
language was Fortran 95, along with the Compaq Visual Fortran compiler, version
6.6.C. We conducted our analyses on a personal computer. Some of the reference
solutions were computed using the commercial finite element program ABAQUS
installed on a Silicon Graphics Onyx 3200 workstation.

Below, we discuss computational issues and numerical techniques of the com-
puter program. First, we present a method for solving a system of linear algebraic
equations. We then discuss the solution scheme of the non-linear equations followed
by the overall structure of the program.

9.2 Linear Elastic Analysis – System
of Linear Algebraic Equations

In Chapter 3 we formulated a shell finite element, based on the shell constitutive
equations derived in Chap. 2. The stiffness matrix of the element K was deter-
mined using a quasi-conforming technique. This method allows for the explicit
determination of K without a need for numerical integration. Once the stiffness

G.Z. Voyiadjis, P. Woelke, Elasto-Plastic and Damage Analysis of Plates and Shells,
C© Springer-Verlag Berlin Heidelberg 2008
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matrix is calculated, the analysis involves a solution of the system of linear algebraic
equations given by:

Kq = R (9.1)

where K is the stiffness matrix of the structure given by equation (3.83), q is a vector
of unknown nodal displacements of the structure, and R is an external load vector.
In a linear problem, the coefficients of the stiffness matrix do not depend on the
unknowns. There are many different methods of successive elimination of the un-
knowns, which is a direct way of solving simultaneous linear equations. One of the
most popular elimination method the Gauss method, is used here. It is demonstrated
through consideration of a system of equations of the form:

a11x1 + a12x2 + a13x3 + . . . + a1n xn = c1

a21x1 + a22x2 + a23x3 + . . . + a2n xn = c2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

an1x1 + an2x2 + an3x3 + . . . + ann xn = cn

(9.2)

To solve the above equations requires two stages, i.e., forward elimination and
backward substitution. The former involves eliminating the unknowns from the sys-
tem of equations. For a11 �= 0, the first of the (9.2) can be written as:

x1 + b12x2 + b13x3 + . . . + b1n xn = b1m (9.3)

where

b1 j = a1 j

a11
, j > 1 and m = n + 1 (9.4)

An (n − 1) set of equations in the unknowns x2, x3, . . . ., xn is obtained by suc-
cessive elimination between (9.3) and the latter (n − 1) equations of (9.2). Dividing
the coefficients of the first equation in this new set by the leading element a22−1

gives the following equation (Ketter and Prawel, 1969):

x2 + b23−1x3 + . . . + b2n−1xn = b2m−1 (9.5)

where

b2 j−1 = a2 j−1

a22−1
, j > 2 (9.6)

By continuing the process, the leading equation of the (n − 2) system can be
written as:

x3 + b34−2x4 + . . . + b3n−2xn = b3m−2 (9.7)
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and

b3 j−2 = a3 j−2

a33−2
, j > 3 (9.8)

When (n − 1) eliminations have been carried out, we have:

xn = bnm−(n−1) (9.9)

where:

bnm−(n−1) = anm−(n−1)

ann−(n−1)
(9.10)

We follow backward substitution to determine the remaining (n − 1) values of
the unknown x .

The total number of multiplications and divisions necessary to solve a set of n
linear simultaneous algebraic equations by the single division Gauss elimination
procedure described above is given by (Ketter and Prawel, 1969):

n

3

(
n2 + 3n − 1

)
(9.11)

Following the above sequence, the vector of unknown nodal displacements q is
determined.

9.3 Non-linear Analysis – System of Non-linear
Algebraic Equations

Several classes of non-linear problems of interest in many branches of science and
engineering can be reduced to the solution of a system of simultaneous equations
in which the coefficients are dependent on some functions of the prime variables
(Zienkiewicz, 1978). Here, we are concerned only with the investigation of the geo-
metrically non-linear and elasto-plastic-damage problems. The use of finite element
discretization in a large class of non-linear problems results in a system of simulta-
neous equations of the same form as (9.1):

Kq = R (9.12)

The coefficients of the stiffness matrix K are, however, dependent on the un-
knowns q. This is a main distinction between the non-linear problem and a linear
one, in which the equation coefficients are independent. In the case of stress path-
dependent models, such as those in plasticity, the result is a system of functional
equations even harder to solve than the typical non-linear algebraic equations. The
numerical solution of the system of non-linear equations is much more complicated
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than the system of linear equations. Direct solution of (9.12) is generally impos-
sible necessitating an iterative scheme (Owen and Hinton, 1980). This leads to a
computational cost for the analysis of the non-linear problems 10–100 times greater
than the that for linear approximation for the same number of degrees of freedom.
Nevertheless, advances in computer technology have decreased computing costs and
non-linear calculations are undertaken much more frequently than in the past. In
addition, there is greater demand for structural redundancy, which requires more
sophisticated analysis (Cook et al., 1989).

The method of solution of the system of non-linear equation we adopt here, a
modified Newton-Raphson technique, is discussed below.

9.3.1 Modified Newton-Raphson Method – Combined
Incremental/Iterative Solutions

Analysis of a non-linear problem requires an iterative scheme, such as a Newton
Raphson method. During any step of the iterative process expression (9.12) is not
satisfied unless convergence has occurred. A system of residual forces may be as-
sumed to exist so that (Owen and Hinton, 1980):


 = Kq − R �= 0 (9.13)

The residual forces 
 can be interpreted as a measure of the departure of (9.12)
from the equilibrium. As K is a function of q and possibly its derivatives, at any
stage of the process the residual forces are functions of the displacement vector,
i.e., 
 = 
 (q). If the true solution to the problem exists at qr + �qr , then the
Newton-Raphson approximation for the general term of the residual force vector

r is:

	r
i = −

N∑
j=1

�qr
j

(
�	i

�q j

)r

(9.14)

in which N is the total number of variables in the system and the superscript r de-
notes the r th approximation of the true solution. Substituting for 	i from (9.13), the
complete expression for all the residual components can be written in matrix form:



(
qr
) = −J

(
qr
)

�qr (9.15)

where J is a Jacobian matrix with a typical term given by:

Ji j =
(

�	i

�q j

)r

= kr
i j +

m∑
k=1

(
�kik

�q j

)r

qr
k (9.16)

and ki j is the general term of the stiffness matrix. The last term in (9.16) gives rise
to non-symmetric terms in the Jacobian matrix. We retain these terms for the sake
of a better convergence (Owen and Hinton, 1980).
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The explicit form of the non-linear terms in (9.16) depends on the way in which
the stiffness coefficients ki j depend on the unknowns q. The terms in the Jacobian
matrix can be assembled to give the general expression:

J (q) = K (q) + K′ (q) (9.17)

where K′ (q) contains only the unsymmetric terms. Finally, the Newton-Raphson
process can be written using (9.15) and (9.17) in the following form:

�qr = − [
J
(
qr
)]−1



(
qr
) = [

K
(
qr
)+ K′ (qr

)]−1


(
qr
)

(9.18)

The above relation allows the correction to the vector of unknowns q to be ob-
tained from the residual force vector 
 for any iteration. The iterative approach
must be followed, with the vector q corrected at each stage according to equa-
tion (9.18) until convergence. The technique is shown schematically for a single
variable case in Fig. 9.1.

Solution of the non-linear problem is achieved when the residual force 
 van-
ishes, as this is a direct measure of the lack of equilibrium of the governing equation.
First, a trial value q0 of the unknown is assumed, and the material stiffness associ-
ated with this value is calculated according to the prescribed K−q relationship. The
residual force is then calculated from (9.13) and the Jacobian matrix from (9.16).
The correction of the first assumed value �q0 can be found from (9.18), giving an
improved approximation to the solution q1 = q0+�q0. The process is then repeated
until the residual force 
 vanishes or is sufficiently small. The Newton-Raphson
process generally gives relatively rapid and stable convergence.

Fig. 9.1 The Newton-
Raphson method for a single
variable problem-convex
K − q relation

K (q)q = R

q

q0 q1 q2

Δq0 Δq1

Ψ1

Ψ0

J (q0)
J (q1)

R
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Fig. 9.2 A combination of
incremental predictors with
Newton-Raphson iterations

predictor

q

Load P

Δ P

Δ P

predictor

iterations

iterations

This iterative technique provides only a single point solution, as we apply only
a single increment of load and then iterate until convergence. In practice, however,
one generally needs a complete load-displacement response (equilibrium path). To
determine the equilibrium path, we combine the incremental and iterative solution
procedures. First, we apply an increment of load and then with a tangential stiffness
matrix, we obtain a starting solution q0, as shown in Fig. 9.1. This first step of the
solution is called a “predictor”. After computing the first predictor, we apply the
iterations until the solution converges. Another increment of loading is then applied
and the process repeated until the desired load level is reached. This method is
commonly referred to as a “modified Newton-Raphson” technique or “combined
incremental/iterative solution”. Figure 9.2 shows this process.

9.3.2 The Arc-Length Technique

Our computational model is intended for the non-linear elasto-plastic and damage
analysis of shells. Comprehensive modeling of structures requires determination of
the entire equilibrium path until collapse occurs. Solution of the system of non-
linear equations by means of the combined incremental/iterative algorithms dis-
cussed in Sect. 7.3.1, can lead to problems near the limit point, where the stiffness
of the structure approaches zero. This can result in a singularity problem and poten-
tially large errors in the results. To overcome this shortcoming, we use the arc-length
method. Use of this technique in structural analysis was originally proposed by Riks
(1979) and Wempner (1971), later modified by Crisfield (1983, 1991 and 1997).

To begin our demonstration of the arc-length method, we write the equilibrium
equations in the following form (Crisfield, 1991):

g (q, λ) = Fi (q) −λFe f = 0 (9.19)
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where Fi is a vector of the internal forces, which are functions of the displacements
q; the vector Fe f is a fixed internal loading vector; and the scalar parameter λ is a
load level parameter that multiplies Fe f . The arc-length method is used to find the
intersection of the curve described by (9.19) with the curve s = constant, where s
is the arc length, defined by:

s =
∫

ds (9.20)

and

ds =
√(

dqT dq + dλ2ϑ2Fe f
T Fe f

)
(9.21)

The scaling parameter ϑ in (9.21) accounts for the fact that the load contribution
depends on the adopted scaling between the load and displacement terms. For the
arc-length method, we replace the differential form of (9.21) with the incremen-
tal form:

a = (
�qT �q + �λ2ϑ2Fe f

T Fe f
)− �l2 = 0 (9.22)

where �l is a fixed radius of the desired intersection (Fig. 9.3). The vector �q
and the scalar parameter �λ are incremental (not iterative) and relate to the last

q

Δq1
Δq2

Δq3

q0

δ q0 δ q1 δ q2

Δl

2 efFΔ

λ Fef (q1, λ1Fef)
(q2, λ 2Fef)

(q0, λ 0Fef)

(q3, λ 3Fef)
Δλ 3Fef

λ 0 
Fef

Δλ 1 
Fef

Δλ 2 
Fef

Fig. 9.3 Spherical arc-length method (Crisfield, 1991)
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converged equilibrium state. The essence of the arc-length method is that the load
parameter λ is a variable. An additional constraint expression that allows us to de-
termine that variable is (9.22).

The Newton-Raphson technique with the load parameter accounted for can be
introduced via a truncated Taylor series. Using (9.19) and (9.22) we write:

gn = go + �g
�q

δq + �g
�λ

δλ = go + Ktδq − Fe f δλ = 0 (9.23)

an = ao + 2�qT δq + 2�λδλϑ2Fe f
T Fe f = 0 (9.24)

where the subscript n means “new” and the subscript o means “old”. We then di-
rectly introduce the constraint of (9.24) for the displacement control for a single
point. To this end, an iterative displacement δq is split into two parts. The change of
the displacement at the unknown load level λn = λo + δλ becomes:

δq = −K−1
t g (qo, λ) = −K−1

t

(
Fi (qo) − λnFe f

) = −K−1
t

(
g (qo, λo) − δλFe f

)
(9.25)

The above equation can also be written as (Crisfield, 1991):

δq = −K−1
t go + δλK−1

t Fe f = δq̄ + δλδqt (9.26)

where:

δqt = K−1
t Fe f and δq̄ = −K−1

t go (9.27)

The symbol δq̄ is the iterative change that would arise from the standard load-
controlled Newton-Raphson method (at a fixed load level λo), and δqt is the dis-
placement vector corresponding to a fixed load vector Fe f . After calculating δq
from (9.26), we update the incremental displacements as:

�qn = �qo + δq = �qo + δq̄ + δλδqt (9.28)

where δλ is the only unknown. The increment δλ can be found from equation (9.22),
which can be expressed as:

(
�qo

T �qo + �λo
2ϑ2Fe f

T Fe f
) = (

�qn
T �qn + �λn

2ϑ2Fe f
T Fe f

) = �l2 (9.29)

Substituting (9.28) into the above we obtain a scalar quadratic equation:

a1δλ
2 + a2δλ + a3 = 0 (9.30)
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where:

a1 = δqt
T δqt + ϑ2Fe f

T Fe f

a2 = 2δqt (�qo + δq) + 2�λoϑ
2Fe f

T Fe f

a3 = (�qo + δq)T (�qo + δq) − �l2 + �λo
2ϑ2Fe f

T Fe f

(9.31)

Equation (9.30) can be solved for δλ so that the change of displacement given by
(9.28) is defined. Solution of the quadratic equation (9.30) yields two roots, δλ1 and
δλ2. We select the appropriate root by calculating both solutions and substituting
them into (9.28). We now have:

�qn1 = �qo + δq̄ + δλ1δqt

�qn2 = �qo + δq̄ + δλ2δqt
(9.32)

Of the two solutions above, we select the displacement that lies closest to the old
incremental direction �qo. This procedure can be implemented by finding the solu-
tion with the minimum angle between �qo and �qn; hence, the maximum cosine of
the angle, is expressed as:

cos θ = �qo
T �qn

�l2
= �qo

T (�qo + δq̄)

�l2
+ δλ

�qo
T δqt

�l2
= a4 + a5δλ

�l2
(9.33)

The process of determining of the load increment using the arc-length method
is shown schematically in Fig. 9.3. After convergence at the equilibrium point(
q0, λ0Fe f

)
, an incremental tangential predictor (�q1, �λ1) is calculated, leading

to the point
(
q1, λ1Fe f

)
. The first iteration uses (9.30) and (9.31) with the old value

�qo as �q1 and the old �λo as �λ1, to obtain δq1 and δλ1, after which the updating
procedure leads to:

�q3 = �q2 + δq2

�λ3 = �λ2 + δλ2
(9.34)

When added to the displacements qo and load level λo at the end of the previous
increment, the process leads to the point

(
q2, λ2Fe f

)
in Fig. 9.3. The next iteration

again applies (9.30) and (9.31) with the old value �qo as �q2 and the old �λo as �λ2,
in order to obtain δq2 and δλ2, after which the updating procedure leads to �q3 =
�q2 + δq2 and �λ3 = �λ2 + δλ2. The iterative process ends when convergence is
reached. The flowchart for this procedure is given by Crisfield (1991).

For most practical problems, the scaling parameter ϑ introduced in (9.21) can be
set to zero (Crisfield, 1981, 1991). This is the case here.
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9.3.3 Integrating the Rate Equations – Return to the Yield Surface

The associated flow rules given by (6.43) are of incremental nature. The solution of
the constitutive equations is based on the predictor/corrector approach. This method,
however, leads to errors that are unrelated to the lack of equilibrium but are caused
by the errors in the integration of the flow rules and their relation to the incre-
mental/iterative solution procedure. Even if equilibrium is exactly satisfied at the
beginning and end of the increment, the solution will not correspond exactly with a
solution in which the increment itself was cut into a number of smaller increments,
for each of which equilibrium was exactly ensured (Crisfield, 1991). If the stress and
strain increments were very small, one could effectively proceed with the previous
tangential stiffness with no significant loss of accuracy. The strains and subsequent
stress resultant increments, however, are not infinitesimally small; consequently, the
errors accumulate leading to a drift from the yield surface. If we follow the process
described in Chaps. 5 and 6 to determine the plastic multiplier �λi , we use (5.69),
repeated here for convenience:

�� = [
aT (K + Kg

)
a + (

H − ab
TAb−am

TAm−aT
s As

)]−1
aT (K + Kg

)
�q
(9.35)

with

ai
T =

{
�F∗

i

�Nxi
+ pu

�F∗
i

�Nxyi
;

�F∗
i

�Nyi
+ pv

�F∗
i

�Nxyi
;

�F∗
i

�Qxi
+ �F∗

i

�Qyi
;

�F∗
i

�Mxi
+ pφx

�F∗
i

�Mxyi
;

�F∗
i

�Myi
+ pφy

�F∗
i

�Mxyi

}

pu = 2�ui
2

�ui
2 + �v2

i

; pv = 2�vi
2

�ui
2 + �vi

2 ;

pφx = 2�φxi
2

�φxi
2 + �φyi

2 ; pφy = 2�φyi
2

�φxi
2 + �φyi

2

(9.36)

The meaning of all the functions and parameters in the above relations is ex-
plained in Chap. 5. In this case, we compute ai at the beginning of the increment;
we then obtain the stress resultants that lie outside of the yield surface at the end
of an increment, as shown in Fig. (9.4), in which �� is an increment of the stress
resultants.

The situation shown in Fig. 9.4 requires that steps be taken to return the stress
resultants to the yield surface, to prevent an accumulation of errors that would lead
to overprediction of the collapse load. The procedure discussed by Crisfield (1991)
is adopted here to overcome this shortcoming. We first determine the point of in-
tersection of the elastic stress vector with the yield surface. In this case, we require
that the stress resultants after application of the increment of loading remain on the
yield surface. This can be written as:
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Fig. 9.4 Drift from the yield
surface

F > 0

F = 0

Σ

Δ Σ

Nx

N0

Mx

M0

−1 1

−1

1

F
(
� + β��

) = 0 (9.37)

where � is a stress resultant vector (see Fig. 9.4), which is a function of both the
bending moment M and normal force N ; �� is an increment of the stress resultants;
and β is a scaling parameter. As the yield function is expressed in terms of the stress
resultants, the function � + β�� is given by:

� + β�� = � + β�� (M + β�M, N + β�N ) (9.38)

To return to the yield surface, we use the yield surface of the form given by (5.1)
rewritten here for convenience:

F
(
�
) =

(
M∗

M0

)2

+
(

N ∗

N0

)2

− 1 = 0 (9.39)

where M0, N0 are the moment and normal force capacities of the cross section of
the shell, respectively, given by:

M0 = σ0h2

4
, N0 = σ0h (9.40)

and σ0 is a yield stress; h is the thickness of the shell; and M∗, N ∗ are the stress
resultant intensities given by (6.33), (6.34).

Note that we did not consider the influence of the parameter α, responsible for
representation of the progressive development of the plastic curvatures across the
thickness of the shell, on the errors related to the integration of the rate equations
(compare (5.8), (5.9)).
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Multiplying both sides of (9.39) by σ 2
0 we obtain:

F
(
�
) =

(
M∗

M0

)2

σ0
2 +

(
N ∗

N0

)2

σ0
2 − σ0

2 = 0 (9.41)

Substituting (9.40) into the above yields:

F
(
�
) = 16M2

h4
+ N 2

h2
− σ0

2 = 0 (9.42)

with M∗, N ∗ replaced by M, N for brevity. Using (9.37), we write:

F
(
� + β��

) = 16 (M + β�M)2

h4
+ (N + β�N )2

h2
− σ0

2 = 0 (9.43)

simplifying (9.43), we obtain a quadratic expression for β:

(
16�M2

h4
+ �N 2

h2

)
β2 +

(
32M�M

h4
+ 2N�N

h2

)
β +

(
16M2

h4
+ N 2

h2

)
− σ0

2 = 0

(9.44)
where we require a positive root of (9.44). Once a parameter β is found, we scale
down the stress resultants until the yield surface F becomes zero (Ortiz and Popov,
1985).
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Appendix

Interpolation Formulas for Displacement Field

The two-dimensional interpolation formulas for the displacement field, discussed in
Sect. 3.2.3 are given below:

φx (ξ, η) = 3

4a
λx
[(

1 − ξ 2
)

(1 − η)
]
w1 + 3

4a
λx
[(

1 − ξ 2
)

(1 + η)
]
w2

− 3

4a
λx
[(

1 − ξ 2
)

(1 + η)
]
w3 − 3

4a
λx
[(

1 − ξ 2
)

(1 − η)
]
w4

+ 1

8

[
2 + 2ξ − 3λx

(
1 − ξ 2

)]
(1 − η) φx1

+ 1

8

[
2 + 2ξ − 3λx

(
1 − ξ 2

)]
(1 + η) φx2

+ 1

8

[
2 − 2ξ − 3λx

(
1 − ξ 2

)]
(1 + η) φx3

+ 1

8

[
2 − 2ξ − 3λx

(
1 − ξ 2)] (1 − η) φx4

(A.1)

φy (ξ, η) = − 3

4b
λy
[(

1 − η2
)

(1 + ξ )
]
w1 + 3

4b
λy
[(

1 − η2
)

(1 + ξ )
]
w2

− 3

4b
λy
[(

1 − η2) (1 − ξ )
]
w3 − 3

4b
λy
[(

1 − η2) (1 − ξ )
]
w4

+ 1

8

[
2 − 2η − 3λy

(
1 − η2

)]
(1 + ξ ) φy1

+ 1

8

[
2 + 2η − 3λy

(
1 − η2

)]
(1 + ξ ) φy2

+ 1

8

[
2 + 2η − 3λy

(
1 − η2
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(1 − ξ ) φy3

+ 1

8

[
2 − 2η − 3λy

(
1 − η2
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(1 − ξ ) φy4

(A.2)
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u (ξ, η) = 1

8
[1 + ξ ] [1 − η] u1 + 1

8
[1 + ξ ] [1 + η] u2

+ 1

8
[1 − ξ ] [1 + η] u3 + 1

8
[1 − ξ ] [1 − η] u4

(A.3)

v (ξ, η) = 1

8
[1 + ξ ] [1 − η] v1 + 1

8
[1 + ξ ] [1 + η] v2

+ 1

8
[1 − ξ ] [1 + η] v3 + 1

8
[1 − ξ ] [1 − η] v4

(A.4)

w (ξ, η) = 1

4

[
1 + ξ − λx

2

(
ξ 3 − ξ

)] [
1 − η + λy

2

(
η3 − η

)]
w1

+ 1

4

[
1 + ξ − λx

2

(
ξ 3 − ξ

)] [
1 + η − λy

2

(
η3 − η

)]
w2

+ 1

4

[
1 − ξ + λx

2

(
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)] [
1 + η − λy

2

(
η3 − η

)]
w3

+ 1

4

[
1 − ξ + λx

2

(
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)] [
1 − η + λy

2

(
η3 − η

)]
w4

+ 1

8

[−1 + ξ 2 + λx
(
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(1 − η)

a

2
φx1

+ 1

8
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(
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)]
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a

2
φx2

+ 1

8

[
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(
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a

2
φx3

+ 1

8

[
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(
ξ 3 − ξ
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(1 − η)

a

2
φx4

+ 1

8

[
1 − η2 + λy

(
η3 − η

)]
(1 + ξ )

b

2
φy1

+ 1

8

[−1 + η2 + λy
(
η3 − η

)]
(1 + ξ )

b

2
φy2

+ 1

8

[−1 + η2 + λy
(
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b

2
φy3

+ 1

8

[
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b

2
φy4

(A.5)

where:

ξ = 2x

a
, η = 2y

b
− 1 ≤ ξ, η ≤ 1 (A.6)
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Numerical methods and computational

algorithms, 185
linear elastic analysis – system of linear

algebraic equations, 185–187
non-linear analysis – system of non-linear

algebraic equations, 187–188
arc-length technique, 190–193
integrating rate equations – return to

yield surface, 194–196
modified Newton-Raphson Method –

combined incremental/iterative
solutions, 188–190

P
Parasitic shear, 51
Patch test, 65
Perzyna, P., 4, 120, 121, 122, 136, 140
Pinched cylinder, 71–83

deflection under load, 73
with diaphragms, 69–70

displacement under load, 70
geometry and material properties, 68
normalized displacement, 69

displacement under load, 72
without diaphragms, 72

Pinched hemispherical shell, 87
equilibrium paths, 88
geometry, deformed shape, and material

properties, 88
see also Morley’s hemispherical shell

Plastic curvature parameter, 94
development across thickness, 126

Plastic displacements
vector of nodal, 102, 129–130

Plastic hinge, development of, 94
Plastic nodal rotation, 101, 129

Plastic node method, 91, 99, 116, 120, 128, 133
yield function, 100

Plastic potential function, 121
engineering notation, 123
yield condition, 123

Plastic strain fields, 97, 100, 128
Plate constitutive equations, 11

coordinate transformation – strains in
spherical coordinates, 17–22

equilibrium equations and governing
differential equation of plate, 13–15

stresses and stress resultants in thin plate,
11–13

thickness of shell, 8–9
transverse shear and transverse normal

stresses in plate, 15–16
Plates, 1

differential equation for deflection of, 15
strain caused by bending action, 11
stress resultants in, 12
variations of forces and moments acting on

different surfaces of, 13
Plate theory, 7, 9

thick, 41
Poisson’s ratio, 12
Porosity parameter, 122

evolution of, 120, 127, 140
representing damage, 129

function of load, 138–139
initial, 122

normal plastic strains, 122–123
isotropic, 120

Predictor/corrector approach, 194
Putcha, N.S., 164

Q
Quasi-conforming method, 53, 57–62, 73,

85, 148
determining element strain fields, 59
determining strain parameter, 60
element displacement and strain fields,

57–62

R
Rectangular bilinear element, 51
Rectangular displacement vector, 18, 20
Rectangular plate subjected to in-plane load,

155–157
deflection along central, longitudinal

line, 157
Reddy, J. N., 9, 164
Reduced integration, 51
Rotations, 78
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S
Scordellis-Lo Roof, 70–71

normalized displacement, 71
vertical displacement at midpoint, 71

Shear deformation formulation, single-layer,
164, 165

Shear forces, 15
dynamic and wave propagation, 9
expression, 15
at higher modes of vibration, 9
influence of, 93–94

Shear locking, 49–51
quasi-conforming technique to

overcome, 51
Shear rigidity

large, see Hermite function
and linear displacement, 57
small, see Interpolation formula

Shear strain
constant transverse, 60
energy of beam, 168

Shells, 1
analysis

solid, three-dimensional elements,
defined in stress space, 91

types of geometrical non-linearity, 78
see also Bending theory; Membrane

theory
behavior, 2
geometrical properties of, 1
load-carrying efficiency of, 1
structure, example, 3
subjected to uniform pressure, 1

Shell constitutive equations, 7–8
coordinate transformation – strains in

spherical coordinates, 17–22
examples, 41–42

thick cylinder subjected to uniform
pressures, 44–45

thick sphere subjected to uniform
pressures, 42–44

initial curvature and radial (transverse
normal) stresses, 10

in matrix form, 83
plate constitutive equations, 11

equilibrium equations and governing
differential equation of plate, 13–15

stresses and stress resultants in thin
plate, 11–13

theoretical formulation of shell
equations, 22

assumed out-of-plane stress
components, 22–24

average displacements u, v, w and
rotations φθ , φφ , 34–38

displacement field, 25–27
equilibrium equations and boundary

conditions, 38–39
equivalent formulation for thick

plates, 41
non-linear nature of stress distribution,

39–40
stress components, 28–30
stress couples and stress resultants on

middle surface, 30–34
thickness of shell, 8–9
transformed into rectangular coordinate

system, 54–55
transverse shear and transverse normal

stresses in plate, 15–16
Shell elements

on plane, 58
standard, 65

Shell equations, theoretical formulation of, 22
assumed out-of-plane stress components,

22–24
average displacements u, v, w and rotations

φθ , φφ , 34–38
displacement field, 25–27
equilibrium equations and boundary

conditions, 38–39
equivalent formulation for thick plates, 41
non-linear nature of stress distribution,

39–40
stress components, 28–30
stress couples and stress resultants on

middle surface, 30–34
Shell finite element, 49, 53, 54, 185
Shell kinematics, 79

base coordinates, 81–82
incremental degrees of freedom of shell

element, 82
local coordinates, 79–80

and normal vector, 80
surface coordinates, 80–81

finite rigid body rotation vector, 80
Shell structures, 1–3
Shell theories, 7

based on, 22
assumed out-of-plane stress

components, 22–24
displacement field, 25–27
stress components, 28–30

boundary conditions for, 34
constitutive equations defined in spherical

coordinates, 36–37
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nonlinear distribution of in-plane stresses,
39–40

of thick shells
thin and, 10

variations of distributed loads, omitted, 27
Voyiadjis and Shi theory and, 41
see also Classical theory (Kirchhoff–Love

assumption)
Shi, G., 7, 41, 44, 45, 53, 57, 58, 61, 78, 79,

80, 84, 87, 88, 91, 92, 93, 101, 104,
105, 111, 120, 126, 129, 133, 135,
136, 146, 148, 154, 155, 156, 157,
158, 159, 185

Simply supported circular plate subjected to
edge pressure, 154–155

central deflection and edge-slope curves
beyond critical load for, 155

Simply supported elasto-plastic beam, 107–108
geometry and material properties, 107
results of analysis: collapse load as function

of thickness, 108
Simply supported plate, 108–112

geometry, material properties and deformed
shape, 109

load-displacement response, 110
thick plate – Load–displacement

response, 111
Slope field, 84, 131, 148
Slopes (theta), 146
Sphere, surface of

unit tangential vectors, 18
unit vector, 19
vectors tangential to, 18

Spherical components of strain, 21
Spherical container under uniform

pressures, 23
Spherical coordinate system, 17

relations between rectangular coordinates
and, 17

strain-displacement relations in, 26
strain tensor, 17

Spherical displacement vector, 18
Spherical dome subjected to ring of pressure,

114–115, 137–139
geometry and material properties,

114–115, 138
load–displacement curves, 114, 138
load-porosity curve, 139

Spherical shell
distribution for, 43
element, 24
finite element with rectangular local

coordinate system

strains and curvatures in terms of
average displacements, 54

stress resultants and couples in terms of
strains, 55

subjected to central load, 159
Spurious energy mode, 54
Stiffness matrix

vector of nodal displacements, 186–187
Straight beam

approximation of displacement and tangent
rotation, 57–58

Strain energy
density, 62

bending, membrane and shear, 63
in element domain, 63
expression, Love’s - errors, 7
and stiffness matrix, 62–64

Strain field
constant transverse, 60
linear bending, 60
stretch, 60
in terms of nodal displacements, 61

Strain fields, 62
Strain interpolation formulas, 83–84
Strain interpolation matrices, 149
Strains

bending, membrane and shear, 60
in incremental form, 83
rigidities matrices, 83
in vectors, 63
virtual elastic, 102

normal, caused by bending, 11
Strain tensor

in rectangular coordinates, 20
in spherical coordinates, 19, 21

determination of, 17–18
Stress

components, 28–30
establishing, 10
normal stresses in θ and φ directions, 28
shear stresses in θφ-plane, 30
three-dimensional stress–strain

relationships for obtaining, 28
stress resultants, in terms of, 13

Stress couples
average displacements and rotations, 34–38
with initial curvature effect, 30–31
normal forces

and bending moments in terms of
strains and corresponding rotations,
37–38

in θ, φ direction and θφ-plane, 33–34
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and stress resultants on middle surface,
30–34

substituting for stresses into definitions of
stress resultants, 32

substituting stresses into respective
relations for, 31–32

Stress distribution
corresponding to maximum, 125
non-linear nature of, 39–40

expressions for in-plane stress
components, 40

through thickness under normal
pressure, 40

Stress field in spherical container, 23
boundary conditions, 24

Stress resultants
integrate stresses over thickness of plate, to

obtain, 12
positive, 14
on shell element, 38, 93, 168
stresses in terms of, 13
in thin plate, 11–13

Summation of forces, 13
around x and y axis, 14

Symmetric stiffness matrix, 148

T
Tangent stiffness matrix, 82–87, 135

bending, membrane and shear
rigidities matrices, 83
strains in incremental form, 83

elasto-plastic, large displacements, 99–106
of element, 105
hardening parameters, vectors of,

103–104
initial stress matrix, 102
plastic rotation, 101
yield function, 100

elasto-plastic, large displacements plastic
nodal rotation, 101

finite element modeling, 83
initial stress matrix, 86
linear elastic, 86
membrane stress resultant matrix, 84
redefining total external virtual work,

86–87
slope field, 84
slope vector, 84
strain interpolation formulas, 84
of thick plates and shells with damage due

to microvoids, 128–135
associated flow rule, 128

evolution of porosity parameter
representing damage, 129

yield function, 128
Taylor’s expansion, 13
Thick beam, 50

shear strain for, 49
strain energy density of, 49

Thick cylinder subjected to uniform pressures,
44–45

Thick plate, theory for, 41
Thick shell formulation, 164, 176
Thick sphere subjected to uniform pressures,

42–44
Thick spherical shells, shell element based on

refined theory of
finite element formulation

displacements and boundary conditions,
55–56

element displacement and strain fields –
quasi-conforming method, 57–62

shell constitutive equations, 54–55
strain energy and stiffness matrix,

62–64
membrane locking, 52–53
mesh instabilities, 53–54
numerical examples, 64–65

cantilevered beam, 65–66
Morley’s hemispherical shell, 66–69
patch test, 65
pinched cylinder, 71–83
pinched cylinder with diaphragms,

69–70
Scordellis-Lo Roof, 70–71

shear locking, 49–51
Thick/thin shell element, 55
Thick vs. thin shells, 8

initial curvatures, 10
shear forces at higher modes of vibration, 9

Thin shells
classical theory of bending of, 26
middle surface displacement in rectangular

coordinates, 55–56
negligible transverse shear strains, 9
two-dimensional theory of, 7

Three-generalized-displacement theory, 57
Transformation matrix of large rotations, 80
Transverse normal stresses, 16

in plate, 15–16
using Hooke’s law for linear elastic

material, 25
Transverse shear

deformations, 8, 165–166
forces, by expanding stress intensities, 126
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resultants, 34
strains, 146

Mindlin plate theory, 168
Transverse shear stresses, 16, 34–35, 163–164

assumed, 24
determination and delamination, 163–164
from equilibrium equations in terms of

stress couples, 37
failure criteria for composite laminates,

171–172
for hemispherical shell, 68
implementation and numerical examples,

172–173
composite cylinder under internal

pressure, 178–180
cylindrical shell subjected to ring of

pressure, 180–182
laminated composite strip under

three-point bending, 173–178
kinematics of shell, 164–166
lamina constitutive equations, 166–171
stress resultants and stress couples, 36–37

Two-dimensional rotation function, 61–62

U
Uniaxial yield stress, 23, 93, 121
Unit vectors, 18
Updated Lagrangian description, 78–79

expressed by principle of virtual work
in finite element modeling, 83,
102, 130

V
Virtual work, principle of, 83, 86, 102, 120,

130, 147, 174
Voyiadjis, G. Z., 7, 8, 9, 22, 34, 37, 41, 44, 45,

53, 57, 58, 59, 61, 78, 79, 80, 82,

84, 87, 88, 91, 92, 93, 99, 101, 104,
105, 107, 108, 109, 110, 111, 113,
114, 119, 120, 126, 129, 133, 135,
136, 137, 145, 146, 148, 154, 155,
156, 157, 158, 159, 185

Voyiadjis-Woelke-SHELLS, 185

W
Williams’ toggle frame, 153–154

load-deflection and load-reaction curves
of, 154

Y
Yield condition/function, 92, 99–100, 123,

128, 195
plastic node method, 100
plastic potential function, 123

Yield criterion and hardening rule
Bauschinger effect and kinematic

hardening rule, 94–99
development of plastic hinge, 94
Iliushin’s yield function, 92–93
influence of shear forces, 93–94

Yield surface, 92, 95, 124, 195
drift from, 195
limit (Iliushin), 125
on Nx Mx plane – interpretation of

kinematic hardening parameter, 99
stress resultant-based kinematic hardening

rule, 126
Yoshimura pattern in compressed cylinder, 2
Young’s modulus, 12, 107, 169, 174

Z
Zero energy mode, 53–54


	cover.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	back-matter.pdf

