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To my mother,
Who was passionate about discovering
the Universe and Science.
For all those years of sacrifice and collusion.



Preface

This book is dedicated to the use of the finite elements method for the approximation
of equations having partial derivatives. It resumes part of the curriculum leading to
the certificate in “Numerical Methods for Mechanics” taught by the author since the
past twelve years as part of the graduate studies in Mechanics at the University of
Pierre and Marie Curie (Paris VI).

Numerical Analysis has undergone a spectacular development during these past
forty years. It is most probably related to the boom in Information Technology which
has literally invaded the planet and provided, de facto, calculation capacities un-
dreamt of up to now.

This mathematical knowledge field – Numerical Analysis – may be characterised
as the “mathematic of mathematics” in the same line of thought as that of a “police
of polices”.

Indeed, as soon as a mathematical technology cannot be applied within the in-
dustrial applications due to operational inadequacy, numerical analysis takes over
and finds the solution by identifying the best adapted approximation process.

From there on, all other mathematical branches may be used to “force a pas-
sage” and to estimate a solution by often combining shrewdness and lucidity within
a stringent mathematical framework.

Numerical analysis is best and most often applied to the approximation of equa-
tions having partial derivatives as a major support to the modelling of real systems.

Whether it be applications in physics or in mechanics, in economy, marketing or
in the field of finance, the phenomenological translation of the system under study
often leads to the resolution of equations having partial derivatives.

This justifies the invention of numerous methods to solve such equations. The fi-
nite elements method, the finite volumes method, the singularity or integral method,
the spectral methods and the variational finite differences method are some of the
most popular methods.

However, the finite elements are those that definitely and drastically changed the
world of numerical approximation of equations having partial derivatives. Having an
exceptional flexibility, the finite elements undoubtedly constitute the approximation
method that is mostly used in solving mathematical models in engineering sciences.
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viii Preface

Considering the mathematical technicality required to apply finite elements,
many authors specialised in numerical analysis, including Pierre Arnaud Raviart
(8), presented the subject at higher level university teaching reserved to students
who possess the mathematical prerequisites, particularly in function analysis, es-
sential for the theoretical initiation to the finite elements method.

Other student populations who have followed a curriculum not specialised in
mathematics – specially graduate and postgraduate students in Physics or in Me-
chanics and the Graduate Engineering Schools who are users of the mathematical
tool at different degrees – may get recourse to Daniel Euvrard’s (5) book which was
written in the 90’s and that offers a version of a course adapted to students who are
unfamiliar with the tools for functional analysis.

The superiority of those two manuals reflects the quality of the teachings of Nu-
merical Analysis by Pierre Arnaud Raviart and subsequently by Daniel Euvrard at
the Training and Research Unit in Mechanics of the Pierre and Marie Curie Univer-
sity.

As far as this piece of work is concerned, its necessity and its core content have
been greatly influenced by the strong interaction between components of the au-
thor’s teaching activities in mechanics, at graduate level, consisting of Numerical
Methods applied to Mechanics and to the mechanics of deformable solids at the
Pierre and Marie Curie University.

Indeed, the author was motivated by the will to pursue the initiative set by the
two authors mentioned above by contributing to a new balance between a selective
specialist reading and one dedicated to “operational aspects while skimming over
the mathematical aspects”, as stated by Daniel Euvrard ([5], p.198).

The author’s training and awareness on all topics dealing with numerical analysis
was greatly influenced by Professor Gérard Tronel, a specially active and passionate
member of the team teaching numerical analysis at the Jacques Louis Lions labora-
tory of the Pierre and Marie Curie University (Paris VI).

The author benefited from Professor Tronel’s significant educational methods
and experience as a student and, later, as a colleague and friend, in bringing about
the new balance offered in this book.

The author’s warm thanks are conveyed to him for his contribution.
Graduate students in Mechanics of the Pierre and Marie Curie University are

the ones who have followed this novel presentation within the framework of uni-
dimensional applications of the resistance of materials.

The present work takes up these examples again and extends them to other ap-
plications.

Having identified targeted tools for functional analysis, as exposed without any
demonstration, the problems dealing with the existence, uniqueness and regularity
of weak solutions and their equivalence with strong solutions have been examined
through the display and use of the result of this identification.

Following this perspective, the present work is composed of a Summary of
Courses on finite elements in addition to Daniel Euvrard’s [5] work, and of var-
ious solutions demonstrating these techniques of functional analysis while, at the
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same time, tackling the construction of nodal equations characteristic of numerical
implementation of the finite elements method.

Moreover, a special emphasis has been laid on the presentation of the applica-
tion of assembly techniques illustrated in the problems related to the Resistance of
Materials.

The author seizes this opportunity to pay tribute to the memory of Claude Kam-
moun who initiated him to these techniques within the framework of Resistance of
Materials.

Finally, this work would never have been published without Benoît Goyeau and
Cédric Croizet’s proofreading of the different examination subjects at graduate level
Mechanics that constitute a major part of this book. The author conveys his sincere
thanks to both of them also to Dr. Arnaud Chauvière for his efficient advices in
Latex Programmation.

30th September 2008 Prof. J. Chaskalovic
Associate Professor

Ariel University Center of Samaria
and University Pierre and Marie Curie (Paris VI)
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Chapter 1

Summary of Courses on Finite Elements

1.1 Some Essential Mathematical Tools

In this section, before introducing the finite elements method and its applications,
some essential tools are presented to facilitate understanding and manipulation of
this particularly famous and efficient technique for the numerical analysis of equa-
tions having partial derivatives.

Keeping in mind the objectives of this book whose aim is to familiarise the reader
at various degrees with a global methodology of approximation of equations having
partial derivatives related to finite elements, this chapter presents the formulas for
vector analysis as well as the main Hilbert and functional analysis theorems that
may be applied to problems subsequently worked out in this book.

1.1.1 Adapted Functional Spaces and Their Properties

This section recalls the definition of certain functional spaces that would be used to
state certain fundamental results of this chapter or to be directly used in the exercises
of following chapters.

� Definition 1.

Let Ω be an open domain of Rn and the Sobolev space H1(Ω) is defined as:

H1(Ω) =
{

v : Ω→R,v ∈ L2(Ω),
∂v
∂xi
∈ L2(Ω),(i = 1,n)

}
. (1.1)

J. Chaskalovic, Finite Element Methods for Engineering Sciences 1
© Springer 2008



2 1 Summary of Courses on Finite Elements

Definition 1 is then generalized by introducing the Sobolev space Hm(Ω) as follows:

� Definition 2.

∀m ∈ N and the result is:

Hm(Ω) =
{

v : Ω⊂ Rn→R,v ∈ L2(Ω),
∂ kv

∂xi1 . . .∂xik
∈ L2(Ω),∀k = 0,m

}
.

(1.2)

� Theorem 1.

For any integer m, the Sobolev space Hm(Ω) is a Hilbert space.

Space D(Ω), for which the notion of support (noted Suppv) is introduced as the
smallest closed subset containing all the points where a given function v is non-
zero, is another functional space essential for the functional analysis of equations
having partial derivatives:

Suppv≡ {x ∈Rn/v(x) �= 0}Rn

. (1.3)

To illustrate the notion of support, consider the example of a function of a real
variable defined as:

H(x) =
∣∣∣∣1 given 0 < x < 1 ,
0 then .

(1.4)

In this case, the function H is non-zero at the open domain ]0,1[ but having closed
interval [0,1] as support:

SuppH ≡ {x ∈ R/H(x) �= 0}R
= [0,1] .

Space D(Ω) is therefore defined as:

� Definition 3.

D(Ω) = {v : Ω⊂ Rn→R,v ∈C∞(Ω), Suppv⊂Ω} . (1.5)

Terminology: The D(Ω) space is the space of functions C∞ over Ω with a compact
support strictly included in Ω.
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The following fundamental density theorem is thus obtained:

� Theorem 2.

Space D(Ω) is dense in L2(Ω) .

Finally, the closure of space H1(Ω) in D(Ω) is associated to the former and is
noted as H1

0 (Ω). The following definition and property are thus obtained:

� Definition 4.

H1
0 (Ω) = H1(Ω)

D(Ω)
. (1.6)

The following result is then shown:

� Theorem 3.

H1
0 (Ω) =

{
v : Ω⊂ Rn→ R,v ∈ H1(Ω),v = 0 on ∂Ω

}
. (1.7)

1.1.2 The Essential Initial Results Never to be Ever Forgotten!

The Green formula and a principal application for the variational formulations are
proposed in this section.

1.1.2.1 The Green formula

� Theorem 4.

Let Ω be an open-bounded domain of Rn with continuous boundary ∂Ω = Γ ,
only admitting discontinuities of the first kind for the tangent vector (i. e. typi-
cal angular points). Given that u and v are two functions of the defined vari-
ables (x1, . . . ,xn) on Ω having real values and belonging to C1(Ω)∩C0(Ω) .
The result is:

∫
Ω

∂u
∂xi
· vdΩ =−

∫
Ω

u · ∂v
∂xi

dΩ +
∫

∂Ω
u · v ni dΓ , (1.8)

where ni denotes the component according to the ith coordinate xi of normal ex-
ternal vector n to open domain Ω.
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n

Ω

Fig. 1.1 Integration domain Ω and normal external n

It is to be noted that the Green formula (1.8) is nothing but a generalization of the
formula of integration by parts in dimension 1.

Moreover, the application of the Green formula to functions u and v, possessing
a weaker regularity than those mentioned above, is possible.

Indeed, given that u and v belong to Sobolev space H1(Ω) then formula (1.8) is
licit.

1.1.2.2 A variation of the Green formula

� Theorem 5.

Let Ω be an open-bounded domain of Rn with continuous boundary ∂Ω = Γ only
admitting discontinuity of the first kind for the tangent vector (i. e.: typical angular
points). Given that u and v are two functions of the defined variables (x1, . . . ,xn)
on Ω having real values such that u∈C2(Ω)∩C1(Ω) and v∈C1(Ω)∩C0(Ω), the
result obtained is:∫

Ω
Δu · v dΩ =−

∫
Ω

∇∇∇u ·∇∇∇v dΩ +
∫

∂Ω

∂u
∂n

vdΓ , (1.9)

where n denotes the normal vector external to open domain Ω and
∂u
∂n

the projec-

tion of the gradient vector in the direction of normal n.

It is to be noted again that the use of formula (1.9) is valid for functions having
a weaker regularity, namely for u ∈ H2(Ω) and v ∈ H1(Ω).

1.1.3 A Set of Fundamental Inequalities

This section recalls some fundamental inequalities that emerge from the analysis
and that are used intensely within the framework of functional analysis of equations
having partial derivatives.
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1.1.3.1 Cauchy-Schwartz Inequality

� Theorem 6.

Let u and v be two functions belonging to L2(Ω). The result obtained is:

∫
Ω

u · v dΩ≤
[∫

Ω
u2 dΩ
]1/2

·
[∫

Ω
v2 dΩ
]1/2

. (1.10)

1.1.3.2 Hölder’s Inequality

� Theorem 7.

Let p and q be two conjugated real numbers that satisfy:
1
p

+
1
q

= 1. Let u be

a function belonging to Lp(Ω) and v a function belonging to Lq(Ω). The result
obtained is:

∫
Ω

u · v dΩ≤
[∫

Ω
up dΩ
]1/p

·
[∫

Ω
vq dΩ
]1/q

. (1.11)

1.1.3.3 Poincaré’s Inequality

� Theorem 8.

Let Ω be an open-bounded domain of Rn and u a function belonging to Sobolev
space H1

0 (Ω). The constant C(Ω) is such that:
∫

Ω
|u|2 dΩ≤C(Ω)

∫
Ω
|∇∇∇u|2 dΩ . (1.12)

Observation: Poincaré’s inequality is also valid if function u is zero only for part
of boundary Σ ⊂ ∂Ω. In this case, H1

Σ (Ω) which consists of functions belonging
to H1(Ω) and that are zero on boundary Σ replaces the H1

0 (Ω) space.

1.1.3.4 Korn’s Inequality

� Theorem 9.

Let Ω be a “sufficiently regular” open-bounded domain of R3. Let v be a field
of vectors defined over Ω with components vi,(i ∈ 1,2,3) such that vi belongs

to H1(Ω). It is thus stated that field v belongs to space
[
H1(Ω)
]3

.



6 1 Summary of Courses on Finite Elements

Then, the constant C > 0 is such that:
∫

Ω
[ε(v) · ε(v)+ v ·v] dΩ≥C

∫
Ω

[∇v ·∇v+ v ·v] dΩ , (1.13)

where:

ε(v) · ε(v) =
1
2 ∑

i j

[(
∂vi

∂xi

)2

+
(

∂vi

∂x j

∂v j

∂xi

)]
. (1.14)

It is to be noted that ∇v denotes the second order tensor of components
∂vi

∂x j
,

1≤ i, j ≤ 3.

1.1.4 Elementary Concepts on Distributions

The Sobolev spaces Hm(Ω) were introduced in paragraph 1.1.1 according to defini-
tion 2. The elements of these spaces require an essential observation related to their
intrinsic nature.

Indeed when considering the elements of space H1(Ω), it is observed that it
should relate to functions whose square as well as the square of each partial deriva-
tive can be integrated.

However, the following question needs to be asked: Should a function, whose
square can be integrated, necessarily be differentiable in order to outright state that
its first partial derivatives can be integrated?

The answer is obviously negative. To make things certain, consider function H
introduced in (1.4).

It can be observed that it deals with a function whose square can be integrated
though it cannot be differentiated at points of discontinuity when x = 0 and when
x = 1.

Yet, it would be reasonable to consider this function as being an element of H1(R)
since the H ′ derivative of H is a defined and always zero function, except at points
of discontinuity of H where the derived function H ′ is not defined.

Since the two points of discontinuity, when x = 0 and when x = 1, have no bearing
on the integrability of the square of derived function H ′ on any point of R, it implies
that H ′ is basically a function whose square can be integrated at any point of R.

This is obtained by ignoring points of discontinuity of H so as to avoid problems
in deriving H and assuring that the Heaviside function belongs to H1(R).
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In other words, it seems that in this case, the digression related to the derivation
of function H is not an obstacle to its belonging to space H1(R).

It is thus legitimate to extend these considerations by avoiding the analysis of the
derivability of functions by generalising the notion of derivative to mathematical
objects whose functions may prove to be a case apart.

These new mathematical objects constitute the distribution theory (1944) prodi-
giously invented and developed by Laurent Schwartz. “Mathematical Methods for
Engineering Sciences”, excellently written by Laurent Schwartz is recommended
for readers seasoned in integration techniques and wishing to enrich their know-
ledge on this topic.

For the present work, the ambition is limited to the presentation of the basic
properties of distributions by justifying the introduction of these new concepts from
an analogy that may be surprising at first sight.

1st opinion: Characterisation of a vector in a vector space of finite dimension.

Let E be a vector space of finite dimension n and having a scalar product noted
as (., .)E . Let (ei)i=1,n be a basis of space E .

Any vector x belonging to E decomposed according to basis (ei)i=1,n yields:

x =
i=1

∑
n

xiei , (1.15)

re-expressed according to the summation of repeated indices convention or Einstein
convention in the form of:

x = xiei . (1.16)

The numerical series (xi)i=1,n describes the contravariant components of vector x
in basis (ei)i=1,n.

The relevant dual space E∗, that is all linear forms defined over E having proven
finite dimension n, is associated to vector space E .

It is noted that all linear forms belonging to E∗ are necessarily continuous since
dimension E is finite.

The canonical dual basis (e∗i)i=1,n of E∗ is then assumed to satisfy: e∗i(e j) = δ i
j,

(where δ i
j is the Kronecker symbol defined as: δ i

i = 1 and δ i
j = 0 given i �= j).

Thus, any linear form ω belonging to dual space E∗ is expressed on the dual
basis (e∗i)i=1,n according to the following decomposition:

ω = ωie
∗i , (1.17)

where the (ωi)i=1,n quantities represent the covariant components of the linear
form ω in the dual basis (e∗i)i=1,n. (The Einstein convention would have been used
again to simplify matters.)
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For each fixed vector x of E , the linear form Lx defined below is then considered.

Lx : E→R
v � Lx(v)≡ (x,v)E .

(1.18)

It is then easily established that form Lx belongs to dual space E∗. Also, Lx is
expressed in basis (e∗i)i=1,n : Lx = (Lx)i e∗i.

Moreover, the action of linear form Lx applied to any vector basis e j of E is
expressed as:

Lx(e j) = (Lx)i e∗i(e j) = (Lx)i δ i
j = (Lx) j ≡ (x,e j)E . (1.19)

The covariant component x j of initially fixed vector x is then defined by stating:

x j ≡ (Lx) j = (x,e j)E . (1.20)

Any vector x of E is then characterised while considering application I from E to E∗
defined by:

I : E→ E∗
x � Lx .

(1.21)

� Lemma 1.

Application I is linear and injective.

Proof:
– Application I is linear:

a) Let (x1,x2) be a pair of vectors belonging to E×E .

The following is obtained:

I(x1 + x2)≡ Lx1+x2 ,

with:

Lx1+x2(v) = (x1 + x2,v)E = (x1,v)E +(x2,v)E = Lx1(v)+ Lx2(v),∀v ∈ E .

In other words:

I(x1 + x2) = I(x1)+ I(x2) . (1.22)

b) Let x be any vector belonging to E and let λ be a given arbitrary real number,
then:

I(λ x)≡ Lλ x ,

with:

∀v ∈ E : Lλ x(v) = (λ x,v)E = λ (x,v)E = λ Lx(v) .

Therefore,

I(λ x) = λ I(x) . (1.23)



1.1 Some Essential Mathematical Tools 9

– Application I is injective:
Since the application I is linear, it is sufficient to prove that its kernel is reduced to
the null vector, thus showing that it is injective:

(I is linear and injective)⇔ (Ker I = {0}) . (1.24)

Hence, let x belong to Ker I. By defining the kernel of I, the following is obtained:

(I(x) = Lx = 0)⇔ (∀v ∈ E : Lx(v)≡ (x,v)E = 0) . (1.25)

However, since the dimension of vector space E is finite, it can be deduced that only
vector x, which is orthogonal for the scalar product (., .)E to all vectors v of E , is the
null vector: x = 0.

In other words, the kernel of application I is reduced to the null vector, implying
that I is injective. Interpretation: The linear application I is injective, meaning that:

(Lx = Ly)⇒ (x = y) . (1.26)

Therefore, any known vector x belonging to E is equivalent to that of the linear
form Lx associated via definition (1.18), that is, through the projections of vector x
over all vectors v of space E .

However, the characterisation of linear form Lx exclusively requires the determi-
nation of its n components on the dual basis (e∗i)i=1,n. This is undoubtedly the result
of the framework considered from the beginning of the analysis, namely, a space
vector E of finite dimension n.

It can be noted that such a characterisation is nothing else than the projection of
vector x over the n vectors which belong to the basis (ei)i=1,n of E .

Conclusion: For any vector x belonging to E , the n projections of x upon the ba-
sis (ei)i=1,n wholly determine this vector and correspond, de facto, to the known
n components (Lx)i,(i = 1,n), of the linear form that is characteristic of vector x.

2nd opinion: Extrapolation to Functions and Introduction of Distributions.

The previous experiment concerning finite dimension suggests extrapolating the
concepts of vector characterisation to certain functions which belong to the func-
tional spaces having an infinite dimension.

In other words, in relation with the notations used above, it is suggested to sub-
stitute vector x of space E by a function f belonging to the functions space that
bears the introduction of linear forms Tf , similar to the forms Lx, and characteristic
of each vector x of E .

To propose a formalism which is broad enough, yet as simple as possible, the
functions framework is studied followed by the distributions defined on R2.
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Therefore, given that Ω indicates an open domain of R2, for any function f be-
longing to L2(Ω), the linear form Tf is considered and is defined by:

Tf : D(Ω)→ R

ϕ � Tf (ϕ)≡
∫

Ω
f ϕ ,

(1.27)

where D(Ω) refers to the set of functions C∞ with compact support strictly within Ω.

It can then be noted that definition (1.27) of the linear form Tf is licit since:

∣∣Tf (ϕ)
∣∣≤
∫

Ω
| f ϕ | ≤

(∫
Ω

f 2
)1/2(∫

Suppϕ
ϕ2
)1/2

, (1.28)

where the Cauchy-Schwartz (1.10) inequality would have been used.

In so far as ϕ belongs to D(Ω), the integral of its square is convergent over its
support and the definition of Tf is obtained therefrom.

It will be observed that definition (1.27) of application Tf may be extended to
the function of L1

loc(Ω), (the functions space which can be completely integrated
over any closed set bounded by Ω); nevertheless this functional framework requires
technical adjustments that will not be considered in this particular course. Once
again, the interested reader may refer to the work of Laurent Schwartz, [9].

Furthermore, the regularity C∞ required for functions ϕ is significantly exagger-
ated, (it would have been sufficient to apply the continuity method at this stage of
the presentation).

However, it will then be seen that the definition of any distribution deliberately
calls for such a degree of regularity for the functions ϕ , upon which the effect of the
distribution will be defined, but this situation has not yet been reached.

Observation and Intuitive Definition: The action of the linear form Tf over any
function ϕ belonging to D(Ω) may be interpreted as the inner product in L2(Ω),
expressed as (., .)L2(Ω), from f by ϕ :

∫
Ω

f ϕ ≡ ( f ,ϕ)L2(Ω) . (1.29)

This explains why the following notation is adopted:

Tf (ϕ) = ( f ,ϕ)L2(Ω) ≡
〈
Tf ,ϕ
〉

. (1.30)

The equivalent linear form Lx, which has been presented during the study of the
finite dimension, is therefore available, at least in the formal form, and is character-
istic of any vector x belonging to a vector space E .

To complete this analogy, it is necessary to verify the extent to which the total
characterisation of any function f belonging to L2(Ω) can be carried out by knowing
the linear forms Tf .
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It is therefore necessary to reconstruct the equivalent of injection I, as was de-
fined by (1.21). This is why application J is introduced and is defined by:

J : L2(Ω)→D ′(Ω)
f � Tf ,

(1.31)

where D ′(Ω) represents, at this stage of the construction, the set of the linear forms
which are defined on D(Ω).

It is then easily shown, thanks to the linear properties of the integral, that appli-
cation J defined by (1.31) is itself linear.

The injectivity of J can now be studied.

Once again, as previously demonstrated in the case of application I defined
by (1.21) and due to the linear property of J, a study of the injectivity is similar
as establishing that the kernel of application J is reduced to the null element.

Let f then be a function belonging to L2(Ω) and an element of the kernel of J.
By definition, the following is obtained:

(
J( f )≡ Tf = 0

)⇔
(∫

Ω
f ϕ = 0,∀ϕ ∈D(Ω)

)
. (1.32)

In the present case, the difficulty to draw a conclusion lies in the fact that function f
which is being sought for, belongs to space L2(Ω) which strictly holds D(Ω).

In other words, it is not, a priori, certain that function f which needs to be worked
out, would be found among all functions ϕ that establish the integral equation (1.32).

Consequently, the particular case ϕ = f which helps in concluding that f is
equally zero cannot be directly chosen from formulation (1.32).

Moreover, and to overcome this difficulty, the result of the density theorem 2 can
be applied, namely: The space D(Ω) is dense in L2(Ω).

This theorem is then applied in the following way: For any given function ψ
belonging to L2(Ω), there exists a sequence of functions ψn belonging to D(Ω)
such that:

lim
n→∞

[∫
Ω
|ψn−ψ |2

]
= 0 . (1.33)

The interest of the “proximity” between the sequence of functions ψn and the func-
tion ψ dwells in the “contamination” of the properties of the sequence ψn which are
passed on to the function ψ .

Indeed, it is adequate to write that the integral equation (1.32) is satisfied for the
sequence of functions ψn belonging to D(Ω):

∫
Ω

f ψn = 0, ∀n ∈ N . (1.34)
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Consequently, for the arbitrary function ψ belonging to L2(Ω), the following is
obtained: ∣∣∣∣

∫
Ω

f ψ
∣∣∣∣=
∣∣∣∣
∫

Ω
f (ψ−ψn)

∣∣∣∣≤ ‖ f‖L2(Ω) ‖ψn−ψ‖L2(Ω) , (1.35)

where the Cauchy-Schwartz (1.10) inequality has been again used.

It is sufficient to see to it that n then tends towards +∞ in the inequality (1.35) so
as to conclude that:

∫
Ω

f ψ = o, ∀ψ ∈ L2(Ω) . (1.36)

Therefore, since f and ψ are now found in the same space L2(Ω) within the integral
equation (1.36), the particular case ψ = f can assuredly be chosen, allowing as such
to reach the conclusion that f = 0.

Consequently, the linear application J contains a kernel reduced to the null elem-
ent and becomes injective:

(
Tf1 = Tf2

)⇒ ( f1 = f2) . (1.37)

The characterisation of the functions f belonging to L2(Ω) is then completed via the
injection J (1.31) in the same way we introduced the adequate injection I (1.21) for
any vector x belonging to a finite dimension vector space E , as previously explained.

It is now possible to define a first type of distributions which are defined on Ω.

� Definition 5.

The linear form Tf defined by (1.27) is called regular distribution associated to
any function f which belongs to L2(Ω) .

Observation: To reach the definition of a distribution which is sufficiently general,
it is adequate to presently keep in mind that the aim of this study is to constitute
a mathematical tool that is likely to “derive” functions presenting points of discon-
tinuity similar to the function defined by H (1.4).

In this prospect, the usual derivation properties must be preserved. Therefore, the
new concept of “derivation” will have to imply the “continuity” of the distributions.

This explains why it is the proper time, at this stage, to introduce the definition
of the continuous distributions.

The regular distribution support whose definition is given by (1.27) is maintained
as the medium of presentation.
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The continuity at the point 0 of the linear form Tf is defined:

� Definition 6.

Given ϕn a sequence of functions belonging to D(Ω), it follows that the linear
form Tf is continuous at the point 0 if:

(ϕn→ 0 in D(Ω))⇒ (Tf (ϕn)→ 0 in R
)

. (1.38)

Considering the linearity of the form Tf , the continuity at 0 is equivalent to any
continuous point ϕ0 of D(Ω).

Indeed, to prove this fact, it is sufficient to express the difference Tf (ϕ)−Tf (ϕ0)
in the form Tf (ϕ−ϕ0), which emphasises the reference element ψ ≡ ϕ−ϕ0.

In other words, the continuity of the form Tf at the point ϕ = ϕ0 is equivalent to
the continuity of Tf at the point ψ ≡ ϕ−ϕ0 = 0.

To ensure that the definition of the continuity 6 is complete, the convergence of
a sequence of functions ϕn belonging to D(Ω) needs to be specified.

� Definition 7.

A sequence of functions ϕn converge towards 0 in D(Ω) given that:

1. ∃ a fixed compact (independent of n) K0 such that: Suppϕn ⊂ K0 , (1.39)

2. Dkϕn uniformly converges to 0, ∀k ∈ N , (1.40)

where Dkϕn represents the k-differential of the sequence of functions ϕn.

The continuity which corresponds to the regular distribution Tf , as defined
by (1.27) is then verified.

Hence let ϕn be a sequence of functions which belongs to D(Ω) and which con-
verges towards 0, as per the definition (1.39)–(1.40).

It is obvious that only the property of the uniform convergence of the sequence
of functions ϕn is required to establish the convergence of the sequence Tf (ϕn) in R,
according to the definition of (1.38):

∣∣Tf (ϕn)
∣∣≤ Sup

x∈Ω
|ϕn(x)|

∫
K0

| f | . (1.41)

Therefore, in the case of the regular distribution Tf , the definition of the convergence
in D(Ω) is compatible so as to secure the continuity property which corresponds to
linear forms.



14 1 Summary of Courses on Finite Elements

At this point, it is legitimate to know why the uniform convergence of the se-
quence ϕn needs to be extended to the successive differentials Dkϕn according to
the definition (1.40).

In this view, it is important to have a more global vision of the distributions,
defined presently as:

� Definition 8.

A distribution T is a linear form defined on D(Ω), continuous as understood in
the definition 6.
Consequently the effect of the distribution T upon any function ϕ belonging
to D(Ω) can be observed, according to the following convention:

T (ϕ)≡ 〈T,ϕ〉, ∀ϕ ∈D(Ω) . (1.42)

Furthermore, all the distributions defined on Ω are referred to by D ′(Ω).

It can be observed that the angle bracket 〈T,ϕ〉 can no more be interpreted in the
general case of a distribution T belonging to D ′(Ω), as the inner product in L2(Ω)
of the distribution T by the function ϕ .

It exclusively concerns a notation whish has been retained by analogy with the
regular distributions Tf associated to the functions f belonging to L2(Ω).

The definition 8 of a distribution T includes new mathematical tools which can-
not be associated anymore to the functions f via the regular distributions Tf .

The most popular example, in this case, is the Dirac distribution δ , defined by:

δ : D(R)→ R , δ (ϕ)≡ 〈δ ,ϕ〉 ≡ ϕ(0) . (1.43)

The definition of δ makes it possible to establish, by simple inspection, that it is
a distribution belonging to D ′(R), that is, a linear form defined on D(R) and con-
tinuous, as understood in the definition (1.38).

It can then be shown that no functions f belonging to L2
loc(R) exist such that:

δ (ϕ)≡ ϕ(0) =
∫

R
f ϕ , ∀ϕ ∈D(R) . (1.44)

Indeed, proceeding by reductio ad absurdum, it is assumed that there exists a func-
tion f belonging to L2

loc(R) so that (1.44) is satisfied.

The particular case of the functions ϕ belonging to D(R) is chosen so that
ϕ(0) = 0.

For each of these functions ϕ , there exists a function φ in D(R) so that:

φ(x) =
ϕ(x)

x
. (1.45)
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Indeed, the only difficulty for the function φ dwells in its regularity in the neigh-
bourhood of x = 0.

Yet, in so far as ϕ belongs to D(R), while having a non-zero value when x = 0,
the expression of φ can be written again in the form:

φ(x) =
ϕ(0)+

∫ x

0
ϕ ′(t)dt

x
=

∫ x

0
ϕ ′(t)dt

x
. (1.46)

Therefore, when x tends to 0, the following is obtained:

φ(x) =

∫ x

0
ϕ ′(t)dt

x
→ ϕ ′(0) , (1.47)

by applying Hôpital’s rule.

However, ϕ ′(0) is bounded since ϕ is an element of D(R). Moreover, the func-
tion φ defined by (1.45) is bounded in the neighbourhood of x = 0.

In the case when x �= 0, the function φ is C∞ over R, this is sufficient to ensure
that it belongs to D(R).

The equation (1.44) is then expressed again by using the function φ defined
by (1.45):

ϕ(0) = 0 ·φ(0) = 0 =
∫

R
x f φ , ∀φ ∈D(R) . (1.48)

It is then inferred from density arguments that x f is equal to the null function, there-
fore implying that the function f is itself zero.

Consequently, the degenerate equality (1.44) is written as:

ϕ(0) = 0, ∀ϕ ∈D(R) . (1.49)

This is obviously absurd since non-zero functions when x = 0 exist in D(R) and
thus δ does not constitute a regular distribution.

It is at present possible to define the derivation, understood as in the sense of
distributions.

� Definition 9.

Let T be a distribution belonging to D ′(Ω). The distribution
∂T
∂xi

is defined,

which is a partial derivative, understood in the sense of distributions in the di-
rection xi,(i = 1,2), of the distribution T , as follows:〈

∂T
∂xi

,ϕ
〉
≡−
〈

T,
∂ϕ
∂xi

〉
, ∀ϕ ∈D(Ω) . (1.50)
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It is immediately observed that according to the definition (1.50),
∂T
∂xi

indeed

constitutes a distribution belonging to D ′(Ω).

In fact, the properties of the distribution T confer the linear and continuity prop-

erties defined by (1.38) to
∂T
∂xi

, maintaining as such its distribution status.

Observation: The definition 9 constitutes a generalisation of the form of deriva-
tion which is usual in the sense of functions.

To prove this, a function f belonging to L2(Ω) and its associated regular distri-
bution Tf can be considered and it can be assumed, moreover, that f is C1 according
to the classical sense that takes the differentiation of functions on Ω.

The partial derivative in the sense of the distributions
∂Tf

∂xi
can hence be worked

out.

∀ϕ ∈D(Ω), the following is obtained:

〈
∂Tf

∂xi
,ϕ
〉
≡−
〈

Tf ,
∂ϕ
∂xi

〉
≡−
∫

Ω
f

∂ϕ
∂xi

ds . (1.51)

In so far as the function f has been equally accepted as C1 on Ω in the classical
sense, its regular distribution T ∂ f

∂ xi

can be associated to each of its classical partial

derivative
∂ f
∂xi

, since
∂ f
∂xi

belongs to L2
loc(Ω).

Therefore, by using integration by parts (see Green’s Formula (1.8), Chap. 1),
the following is obtained:

〈
T ∂ f

∂ xi

,ϕ
〉
≡
∫

Ω

∂ f
∂xi

ϕ ds =−
∫

Ω
f

∂ϕ
∂xi

ds , (1.52)

where the functions ϕ with a strictly included compact support in Ω have been
applied.

In other words, such functions are equal to zero on the boundary ∂Ω of Ω. This
explains the integral absence of a boundary in the integration by parts (1.52).

In the end, when bringing (1.51) and (1.52) closer, the following is obtained:

∂Tf

∂xi
= T ∂ f

∂ xi

, in D ′(Ω) . (1.53)

The interpretation of the equation (1.53) is worked out, as shown below:

The derivative
∂Tf

∂xi
is usually referred to as “the derivative of f ”, understood as

in the sense of distributions since it is obvious that the derivation of the function f
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in this sense would prove meaningless; the exclusive working out of the derivation
of the distribution of Tf as a distribution makes sense.

Furthermore, the distribution T ∂ f
∂ xi

is characteristic of the usual partial deriva-

tive
∂ f
∂xi

, when the injection J defined by (1.31) enables the association between

this partial derivative and its regular distribution.

This becomes completely licit as soon as it is assumed that the function f is C1,
as understood in the sense of functions. In other words, its first partial derivatives
are continuous over Ω and as a result, belong to L2

loc(Ω).

Therefore, the equality (1.53) shows that the derivation in the sense of the distri-
butions of a function, (i. e., its associated regular distribution Tf ), coincides with the
usual derivation of its functions when the distribution “is a function” which can be
continuously differentiated.

The distribution of the derivative T ∂ f
∂ xi

and the derivative of the distribution
∂Tf

∂xi
are equal.

This proves that the new derivation as well as its generalisation regarding to the
classical derivative in the sense of its functions are consistent.

The example of the function H defined by (1.4) and basically belonging to L2(R)
can again be considered to work out its derivative, as understood in the sense of
distribution.

In other words, in so far as H basically belongs to L2
loc(R), it is significant to

consider its regular distribution TH defined by:

∀ϕ ∈D(R) : 〈TH ,ϕ〉 ≡
∫

R
H(x)ϕ(x)dx =

∫ 1

0
ϕ(x)dx . (1.54)

The derivative T ′H of the regular distribution TH is then worked out, as shown below:

∀ϕ ∈D(R) :
〈
T ′H ,ϕ
〉≡−〈TH ,ϕ ′

〉
=−
∫ 1

0
ϕ ′(x)dx = ϕ(0)−ϕ(1) . (1.55)

Hence:

∀ϕ ∈D(R) :
〈
T ′H ,ϕ
〉

= 〈δ0− δ1,ϕ〉 , (1.56)

where a notation (1.43) analogous to the distribution notation δ has been adopted,
by specifying that the Dirac distribution is δ0 and δ1 characteristic of the points x = 0
and x = 1.

There consequently results:

dTH

dx
≡ T ′H = δ0− δ1, in D′(R) . (1.57)
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Generalisation to the k-order derivation: The first partial derivative in the sense of
the distributions (1.50) can be extended to the order k by introducing the k order

partial derivative distribution, denoted
∂ kT

∂xk1
1 ∂xk2

2

, according to the following defini-

tion: 〈
∂ kT

∂xk1
1 ∂xk2

2

,ϕ

〉
≡ (−1)|k|

〈
T,

∂ kϕ
∂xk1

1 ∂xk2
2

〉
, ∀ϕ ∈D(Ω) , (1.58)

where it has been observed that:

|k|= k1 + k2 .

The definition (1.58) underlines the fact that all the weight of the derivation in the
sense of distributions is assumed by the functions ϕ belonging to D(Ω). This facili-
tates the working out of the derivation in the sense of distributions, even if they are
particularly irregular!

This principally accounts for the existence of the functional framework D(Ω),
requiring the regularity C∞ of the functions ϕ , which define the effect of any distri-
bution T belonging to D ′(Ω).

Observations: The definition of the Sobolev spaces (see definitions 1 and 2) conse-
quently needs to be re-examined by considering the partial derivatives which occur
in the definition of these spaces, like derivatives in the sense of distributions.

For example, when a “function” f belongs to space H1(Ω), it is now clear that

the first partial derivatives, in the sense of the distributions
∂Tf

∂xi
of the regular distri-

bution Tf , are associated with the functions of L2(Ω) as usual through the canonical
injection J defined by (1.31).

Finally, to simplify writings and oral expressions, it is specified that function f
and its regular distribution Tf are similar. It amounts to say that for Sobolev
space H1(Ω), its elements constitute the distributions f , (or the functions, involv-
ing a misuse of language, according to the authors) which belong to L2(Ω) and

whose partial derivatives
∂ f
∂xi

are also elements of L2(Ω), through injection J de-

fined in (1.31).

1.2 Nature of the Finite Elements Method

1.2.1 For Mathematical Modelling

Developments in the field of numerical analysis during the 20th century gave rise
to various methods that provided approximate solutions to equations having partial
derivative.
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Be it the finite differences method, the spectral methods, the finite volumes
method or even the singularities method, it cannot be denied that the finite elements
method is the most efficient one.

Undoubtedly, the other methods find their use in specific fields of application,
but the finite elements have literally shattered the capacity of modifying the usually
complex nature of problems with partial derivatives.

It is most certainly its tremendous adaptation to solve equations – whose inher-
ent complexity, partly due to the domains of integration, when it comes to solving
real problems emanating from industry – that caused the finite elements method to
undergo such significant developments in the second half of the 20th century.

Indeed, this case is not an analytical solution whose application would cause
a researcher or engineer to believe, nine times out of ten, that all classical techniques
of problem solving would fail!

At this stage, it is necessary to consider the issues involved in the numerical
approximation of equations having partial derivatives, irrespective of the method
used.

In practice, the study of complex systems whose characteristics may widely differ
from one problem to another, results in the representation of such systems by using
what is commonly known as a model.

In relation with engineering sciences, many of these models consist of equations
having partial derivatives.

It is therefore necessary to use an effective simulation tool, sufficiently accurate
to ascertain the behaviour of a system under various conditions, instead of noting
the damages which may occur in a real experiment.

However, in the first stage of the modelling, which is concerned with the choice
and the mathematical translation of the fundamental mechanisms which regulate the
evolution of the studied system, a non-zero rate of loss of information is inevitable.

Since the model essentially duplicates reality to some extent (it can be com-
pared to the mirror of a bathroom where the image reflected, however much accurate
and elegant, is only a two-dimensional reflection of an inevitably three-dimensional
body!).

In the case of the mathematical modelling, this first stage of approximation may
turn out to be disastrous.

Indeed, the analysis of the model obtained may very well result in the non-
existence of a solution, in consideration of which the model must be revised, most
probably improved by the addition of one or more additional mechanisms that might
have been neglected during the introductory phase.

Moreover, the problem of the uniqueness of a solution needs to be carefully anal-
ysed at the level of the model, because if the latter were to generate several solutions,
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it would be wise to question the legitimacy of the multiplicity of these solutions in
comparison with the behaviour of the real system.

Furthermore, the numerical methods which would be used later should also inte-
grate this dimension of multiple approximate solutions.

This initial awareness on approximation, relative to the modelling of the real
systems, should encourage the numerical analyst to proceed, with as much concen-
tration and care, with the elaboration of a global methodology for approximate reso-
lution, while imperatively respecting the necessary guidelines if final and significant
results are sought for in relation to the reality of the system being modelled.

1.2.2 Structure and Functional Framework of Equations Having
Partial Derivatives

Once the modelling phase is completed, there follows the choice of a problem
solving method which may force the mathematical characteristic of the model. To
achieve this, the mathematical model is manipulated into a form that is as far as
possible conducive to a numerical approximation.

To give concrete expression to the demonstration, the two-dimensional problem
of Laplace-Dirichlet which provides excellent examples for the following explana-
tions is considered.

More specifically, let Ω be a bounded open domain of R2 and it is required to
find function u defined from Ω to R and solution of:

(CP)

{
−Δu = f in Ω ,

u = 0 on ∂Ω ,
(1.59)

where f is a given function.

At this stage, it is important to note that such a formulation is incomplete because
neither the nature of the regularity of boundary ∂Ω of the integration domain Ω
nor that of the second member f is specified though the regularity of solution u of
continuous problem (CP) depends much upon it, as does the regularity of research
perimeter V in which solution u can be considered.

In this way, for reasons that will be explained later, the integration domain Ω will
be assumed to possess a boundary ∂Ω whose regularity is of the order of C2. In
other words, the curvature is a continuous function of the curvilinear abscissa that
describes boundary ∂Ω.

Moreover, assuming that the second member f belongs to C0(Ω), it is then legit-
imate to consider the search for solutions of continuous problems (CP) as elements
of C2(Ω), thus ensuring that the Laplacian is itself continuous, (it then implies clas-
sical solutions).
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In this case, the Poisson equation can be considered again, not in the form of
a functional equation, but at each point M of Ω, in the form:

Find u belonging to C2(Ω) which is the solution to:

(CP)

{
−Δu(M) = f (M), ∀M ∈Ω,

u(M) = 0, ∀M ∈ ∂Ω,
(1.60)

It is obvious that the second member f does not always exhibit regularity C0. For
instance, consider the case where f belongs to L2(Ω). In this case, the Laplacian of
solution u (which is equal to − f ) must also be an element of L2(Ω).

This is why it is necessary to find solution u to the continuous problem (CP) in
Sobolev space H2(Ω), because if this is the case, the Laplacian of u is indeed an
element of L2(Ω).

However, it must again be emphasized that the constitution of the research
perimeter of solutions u results from a logical choice, because the assumed regu-
larity of f requires the search for a solution u whose Laplacian belongs to L2(Ω).

The Poisson equation can no more be considered, a priori, point-by-point as in
the case of regularity C0 for f but in the form of a functional equation. In the present
case, the Poisson equation needs to be considered as an equality in L2(Ω), that is,
as a root mean square equality, or as an “energy” balance:

(
Δu + f = 0 in L2(Ω)

)⇔
(∫

Ω
[Δu + f ]2 dΩ = 0

)
. (1.61)

To conclude this explanation, it may be specified that the Poisson equation, consid-
ered as a functional equation in L2(Ω) implies, nevertheless, that this equation may
be studied, except for a set of zero measurements, at each point M of Ω.

For any reader who is not familiar with the concept of null set, a first encounter
could consist in assuming that Poisson equation is true for each point M of Ω, except
for an infinite number of countable points of Ω.

The Poisson equation would nevertheless still be studied as a global equa-
tion (1.61) written in L2(Ω) rather than as a local equation (1.60).

1.2.3 Construction of a Variational Formulation

The essential principles constituting the finite elements method will now be studied.
The basic idea prevailing in this method is to consider the unknown u no more
as a scalar field which, at each point M of Ω associates a real number u(M) that
needs to be determined, but as an element belonging to a space of functions V in
which different research trajectories would be contemplated so as to lead to the
identification of the solution.
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Concerning the approximation, it is no more required to determine a numer-
ical sequence (ũ1, . . . , ũN) which provides an approximation of the finite differ-
ences type for values (u1, . . . ,uN) of solution u to continuous problem (CP) along
points Mj,( j = 1,N) that have been chosen on an adequate mesh and covering inte-
gration domain Ω.

However, it is more meaningful to elaborate a method that would lead to an
approximation function ũ. It is obvious, in fine, that knowing solution u, or rather
its approximation ũ, would facilitate the evaluation of ũ at any point M of domain Ω
and this evaluation would not be limited to a set of points lying on an already defined
mesh, as is the case for finite differences.

A second major characteristic of the finite elements method is the transforma-
tion of a continuous problem (CP) into an integral formulation known as varia-
tional (VP).

To proceed, a function v, called test function, defined from Ω to R and describing
the functional space V that will be elaborated later and that is not defined a priori.

Equation (1.59) is then multiplied by the test function v and the two members of
the equation are integrated on Ω:

−
∫

Ω
Δu · v dΩ =

∫
Ω

f · v dΩ, ∀v ∈V . (1.62)

Such a transformation is guided by the historic heritage from the finite elements
method introduced as a generalisation of the Principle of Virtual Power in Contin-
uum Mechanics (see Cours de Mécanique des Solides, [G. Duvaut]).

Indeed, the equation with partial derivatives (1.59) of the continuous formula-
tion (CP) is none other than the written expression of the fundamental principle
of statics, which presently expounds upon the equilibrium of an elastic membrane
subjected to the density of transverse forces f that generate the displacement field u
perpendicular to the membrane, while equation (1.62) represents an “energy” for-
mulation in which the lay man in mechanics would still recognise that the second
member of equation (1.62) is interpreted as the energy of external forces f in a dis-
placement field v having an arbitrary status at this stage.

The left member of equation (1.62) corresponds to the energies of internal forces
that are inherent to the deformation of elastic medium Ω.

Moreover, the transformation of the local writing of problem (CP) into a global
or integral formulation (VP) is motivated by the need to reach a formalism that
properly fits the concept of research trajectories in a functional space V .

This is precisely the case within an integral formulation, in so far as the functions
do not directly reveal their numerical values at points M of Ω and only the concept
of the “average value” of the functions is apparent.

The Green formula (1.9) of theorem 5 is then applied, thus enabling equa-
tion (1.62) to be written as:
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∫
Ω

∇∇∇u ·∇∇∇v dΩ−
∫

∂Ω

∂u
∂n

v dΓ =
∫

Ω
f · v dΩ, ∀v ∈V · (1.63)

The present stage consists in the definition of the characteristics of space V .

A first point concerns the complete preservation of information between the writ-
ing of the formulation of the continuous problem (CP) and that of the variational
formulation (VP).

As such, it is observed that the Dirichlet condition u = 0 along boundary ∂Ω of Ω
cannot be analysed directly within the integral writing (1.63).

Considering that the future solution u of the variational problem (VP) must be
one of the functions v of V , it is compulsory that all functions v of V satisfy the
Dirichlet condition:

v = 0 on ∂Ω . (1.64)

This yields equation (1.63) written as:∫
Ω

∇∇∇u ·∇∇∇vdΩ =
∫

Ω
f · vdΩ, ∀v ∈V . (1.65)

The second point concerns the existence of the integrals of formulation (1.65). In-
deed, it is essential to impose sufficient conditions of convergence to the integrals
of equation (1.65).

In so far as it concerns the sufficient conditions of convergence, various func-
tional contexts may constitute a favourable answer to the question.

For reasons that will be explained subsequently, the functional framework of the
Sobolev spaces that provide all the desired properties is considered over and above
the questions that will be dealt with at present.

The convergence of the second member of equation (1.65) is easily obtained by
verification, via the Cauchy-Schwartz inequality:∣∣∣∣

∫
Ω

f · vdΩ
∣∣∣∣≤
∫

Ω
| f · v|dΩ≤

[∫
Ω
| f |2 dΩ

]1/2

·
[∫

Ω
|v|2 dΩ
]1/2

. (1.66)

Therefore, since f is a given function belonging to L2(Ω), it is sufficient to consider
that v is also an element of L2(Ω), so as to ensure the convergence of the second
member of equation (1.65).

In the case of the convergence of the first integral of the left member of equa-
tion (1.65), the absolute convergence of the integral is always taken into considera-
tion and the Cauchy-Schwartz inequality is once again used:∣∣∣∣
∫

Ω
∇∇∇u ·∇∇∇vdΩ

∣∣∣∣≤
∫

Ω
|∇∇∇u ·∇∇∇v|dΩ≤

[∫
Ω
|∇∇∇u|2 dΩ

]1/2

·
[∫

Ω
|∇∇∇v|2 dΩ

]1/2

. (1.67)

Convergence of the first member of (1.65) is hence assured if the gradients of test
function v belonging to V are compulsorily elements that belong to L2(Ω).
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In conclusion, it has been proved that the sufficient conditions for the conver-
gence of the integrals of equation (1.65) are:

v ∈ L2(Ω) and ∇∇∇v ∈ [L2(Ω)]2 .

These reasons consequently explain the choice of the variational space V as the
Sobolev space H1(Ω) earlier presented in the paragraph 1.1.1 and to which the
homogenous Dirichlet condition (1.64) must necessarily be added.

In other words, the following is stated:

V ≡H1
0 (Ω)≡ {v : Ω→ R,v ∈ L2(Ω),∇∇∇v ∈ [L2(Ω)]2,v = 0 on ∂Ω

}
(1.68)

All the results when grouped enable the expression of the variational formula-
tion (VP) that will be considered in the sequel:

(VP)

⎧⎨
⎩

Find u ∈ H1
0 (Ω) solution of:∫

Ω
∇∇∇u ·∇∇∇v dΩ =

∫
Ω

f · v dΩ, ∀v ∈ H1
0 (Ω) .

(1.69)

1.2.4 Existence, Uniqueness and Regularity of a Weak Solution

Obtaining existence and uniqueness results for solutions to differential equations or
to partial differential equations or to variational equations is a totally open topic.
The complexity of such results depends on the nature and structure of the equation,
or system of equations, under study.

Concerning variational formulations, there is a sufficient general formalism for
which, under some conditions, the existence and uniqueness of the solution may be
guaranteed.

It is the object of the Lax-Milgram theorem that is pointed out in the following
form:

� Theorem 10.

Let V be a Hilbert space in relation to a given norm ‖.‖, a(., .) a bilinear form
defined on V ×V and L a linear form defined on V verifying the following prop-
erties:

1. a(., .) is continuous: ∃C1 > 0 such that: |a(u,v)| ≤C1‖u‖·‖v‖,∀(u,v)∈V ×V.

2. a(., .) is V -elliptical: ∃C2 > 0 such that: a(v,v)≥C2‖v‖2,∀v ∈V.

3. L is continuous: ∃C3 > 0 such that: |L(v)| ≤C3‖v‖,∀v ∈V.

Then, there is one and only one solution u belonging to V , solution to the varia-
tional problem:

Find u ∈V solution of: a(u,v) = L(v), ∀v ∈V . (1.70)
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Observations:

i) The 3 constants Ci,(i = 1,2,3) intervening in each of the three clauses of the
Lax-Milgram theorem must absolutely be independent from the generic ele-
ment v covering the space V .

ii) It is essential to note that during the application of the Lax-Milgram theorem,
all the properties required necessitate the use of a unique norm of the Hilbert
space V , (noted as ‖.‖), mainly in order to establish its Hilbertian property.

Yet, it is possible that for the sake of convenience, a change of norms is required to
prove one of the properties of the Lax-Milgram theorem.

In this case, it is appropriate to ensure that all the applied norms are equivalent,
namely:

Given ‖.‖1 and ‖.‖2 two appropriate norms for space V , it should be established
that there are two constants α and β that are strictly positive and independent from v
such that:

∀v ∈V : α‖v‖2 ≤ ‖v‖1 ≤ β‖v‖2 .

The following two lemmas are fundamental for the a priori analysis of the regularity
of weak solutions to a variational formulation having a one space dimension. Their
demonstrations may be consulted in the work of H. Brézis [1].

� Lemma 2.

Let I be an open interval of R and f a function belonging to L1
loc(I) verifying:

∫
I

f (x)ϕ(x)dx = 0, ∀ϕ ∈C1
0(I) . (1.71)

then: f = Cte almost everywhere.

C1
0(I) refers to the defined functions and C1 to those defined over the interval I,

having a compact support and strictly included in I.

� Lemma 3.

Consider g ∈ L1
loc(I); for y0 fixed in I, the following is expressed:

v(x) =
∫ x

y0

g(t)dt, ∀x ∈ I . (1.72)

Then v ∈C(I) (given that I is a bounded interval then v belongs to H1(I)) and
∫

I
vϕ ′ =−

∫
I
gϕ , ∀ϕ ∈C1

0(I) . (1.73)
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Finally, a trace theorem that is very useful for the application of the Lax-Milgram
theorem is recalled, mainly in the framework of the Laplacian-Neumann-Dirichlet
problem.

� Theorem 11.

Assume that Ω is an open bounded domain of R2, having boundary Γ = ∂Ω,
which is “sufficiently regular”, (at least C1-per piece).

Application γ defined by:

γ : H1 (Ω)→ L2(Γ )
v � v|Γ ,

(1.74)

is linear continuous.

In other words, there is a constant C > 0 independent from v, such that:

∀v ∈ H1(Ω) : ‖v‖L2(Γ ) ≤C‖v‖H1(Ω) . (1.75)

Application to the Laplacian-Dirichlet Problem.

A first application of the Lax-Milgram theorem is proposed in order to establish the
existence and uniqueness of the solution to the variational formulation (VP) defined
by (1.69), associated with the continuous problem (CP) defined by (1.59) when the
given data f belongs to L2(Ω).

Application of the Lax-Milgram theorem requires the identification of space V ,
the bilinear form a(., .) and that of the linear form L(.).

Variational formulation (VP) defined by (1.69) suggests the introduction of the
following quantities:

Let V be the search space of solution u to the variational problem defined by:
V = H1

0 (Ω).

Space H1
0 (Ω) is provided with the natural norm ‖.‖H1(Ω) of functions belonging

to H1(Ω).

Thus, ∀v ∈ H1(Ω), the following is written:

‖v‖2
H1(Ω) ≡

∫
Ω

v2 dΩ +
∫

Ω

(
∂v
∂x

)2

dΩ +
∫

Ω

(
∂v
∂y

)2

dΩ . (1.76)

This norm is Hilbertian for space H1(Ω), (see. [8]), as well as for H1
0 (Ω) as a closed

vectorial subspace in H1(Ω).
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Let a be the bilinear form defined by:

a : V ×V → R

(u,v) � a(u,v)≡
∫

Ω
∇∇∇u ·∇∇∇vdΩ .

(1.77)

Likewise, let L be the linear form defined by:

L : V → R

v � L(v) ≡
∫

Ω
f vdΩ (1.78)

Thus, variational formulation (VP) defined by (1.69) is written in the form:

Find u ∈V solution of : a(u,v) = L(v), ∀v ∈H1
0 (Ω) . (1.79)

Then, a verification of the clauses of the Lax-Milgram theorem 10 is carried out.

1. a(., .) is a continuous bilinear form:

The bilinearity of form a(., .) is obvious.

As for its continuity, consider any two elements u and v belonging to H1
0 (Ω).

The following is obtained:

|a(u,v)| ≤
∫

Ω
|∇∇∇u ·∇∇∇v| ≤

(∫
Ω
|∇∇∇u|2
)1/2

·
(∫

Ω
|∇∇∇v|2
)1/2

, (1.80)

where the Cauchy-Schwartz inequality would have been used.

However,

∫
Ω
|∇∇∇u|2 =

∫
Ω

[(
∂u
∂x

)2

+
(

∂u
∂y

)2
]

=
∥∥∥∥∂u

∂x

∥∥∥∥
2

L2(Ω)
+
∥∥∥∥∂u

∂y

∥∥∥∥
2

L2(Ω)
, (1.81)

where ‖.‖L2(Ω) refers to the natural norm in L2(Ω), namely:

∀u ∈ L2(Ω) : ‖u‖L2(Ω) ≡
(∫

Ω
|u|2
)1/2

. (1.82)

The following is then inferred:
∫

Ω
|∇∇∇u|2 ≤ ‖u‖2

H1(Ω) . (1.83)
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Inequality (1.80) then leads to:

|a(u,v)| ≤ ‖u‖H1(Ω) · ‖v‖H1(Ω) , (1.84)

and the continuity constant C1 of theorem 10 is basically equal to one.

2. a(., .) is a V -elliptical form:

In order to establish the V -ellipticity of the bilinear a(., .) form, the quan-
tity a(v,v) defined from (1.77) needs to be minorated.

Also, any function v ∈H1
0 (Ω) yields:

a(v,v) =
∫

Ω
|∇∇∇v|2 =

∥∥∥∥∂v
∂x

∥∥∥∥
2

L2(Ω)
+
∥∥∥∥∂v

∂y

∥∥∥∥
2

L2(Ω)
. (1.85)

In order to obtain a lower bound of a(v,v) in relation to the H1(Ω) norm, it is pointed
out that for all functions v belonging to H1

0 (Ω), the Poincaré inequality (1.12) is
available.

In other words, a constant C(Ω) > 0 exists such that:

∫
Ω
|v|2 dΩ≤C(Ω)

∫
Ω

∣∣∣∣∇∇∇v

∣∣∣∣
2

dΩ . (1.86)

To each side of inequality (1.86), the square of norm L2(Ω) of the module of ∇∇∇v is
added so as to yield the square of norm H1(Ω) of function v:

‖v‖2
H1(Ω) ≡ ‖v‖2

L2(Ω) +
∥∥∥∥∂v

∂x

∥∥∥∥
2

L2(Ω)
+
∥∥∥∥∂v

∂y

∥∥∥∥
2

L2(Ω)
(1.87)

≤ (1 +C(Ω))

[∥∥∥∥∂v
∂x

∥∥∥∥
2

L2(Ω)
+
∥∥∥∥∂v

∂y

∥∥∥∥
2

L2(Ω)

]
(1.88)

≤ (1 +C(Ω))a(v,v) . (1.89)

It then becomes:

a(v,v)≥C2‖v‖2
H1(Ω) , (1.90)

where the V -ellipticity constant C2 is defined by: C2 =
1

1 +C(Ω)
.

3. L(.) is a continuous linear form:

Once again, the linearity of form L is obvious.

Control of linear form L is quite simple being given that f is a function belonging
to L2(Ω):

|L(v)| ≤
∫

Ω
| f v|dΩ≤ ‖ f‖L2(Ω) · ‖v‖L2(Ω) ≤ ‖ f‖L2(Ω) · ‖v‖H1(Ω) . (1.91)
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Continuity constant C3 of linear form L is thus equal to ‖ f‖L2(Ω).

Result: According to the Lax-Milgram theorem, only one function belongs to H1
0 (Ω)

solution of the variational formulation (VP) defined by (1.79).

Observations:

(i) When the given data f shows less regularity than that considered (i. e. L2(Ω)),
then the tools necessary for the functional analysis of the variational formulation do
not fall within the framework of this course.

The reader who is interested in this aspect of the problem may consult more
specialised works such as that of H. Brezis [1] or the Robert Dautray and Jacques-
Louis Lions collection [3].

(ii) In case the continuous problem (CP) defined by (1.59) is replaced by the
Laplace-Neumann-Dirichlet problem then the boundary Γ of Ω is constituted of
two complementary parts Γ1 and Γ2, respectively dedicated to the definition of the
Dirichlet and the Neumann conditions.

In such a case, the continuous problem (CP) takes the following form:

(CP)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu = f in Ω ,

u = 0 on Γ1 ,

∂u
∂n

= g on Γ2 ,

(1.92)

where it is assumed that f and g are two given functions respectively belonging
to L2(Ω) and to L2(Γ2).

As a consequence, it is easily established that the new associated variational for-
mulation is written as:

(VP)

⎧⎨
⎩

Find u ∈ H1
Γ1

(Ω) solution to:∫
Ω

∇∇∇u ·∇∇∇vdΩ =
∫

Ω
f · vdΩ +

∫
Γ2

g · vdΓ , ∀v ∈ H1
Γ1

(Ω) ,
(1.93)

where Sobolev H1
Γ1

(Ω) space is defined by:

H1
Γ1

(Ω)≡
{

v : Ω→R,v ∈ L2(Ω),∇∇∇v ∈ [L2(Ω)
]2

,v = 0 on Γ1

}
. (1.94)

Observations:

(i) When the Dirichlet given data on Γ1 is not homogeneous, the plot tech-
nique [3], which may prove to be very technical, enables the transformation of the
non-homogeneous problem into a homogeneous formulation identical to the one
presented by (1.92).
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(ii) The Lax-Milgram theorem applied to variational problem (1.93) is performed
in an analogous manner to the one presented for variational formulation (1.69), that
is, associated to the Laplace-Dirichlet problem.

However, some substantial modifications need to be performed to obtain conti-
nuity in the linear form L(.).

In fact, in this case, the action of form L on any function v belonging to H1
Γ1

(Ω)
is expressed as:

L(v)≡
∫

Ω
f · vdΩ +

∫
Γ2

g · vdΓ , ∀v ∈H1
Γ1

(Ω) . (1.95)

The control of L(v) is then carried out using:

|L(v)| ≤
∫

Ω
| f · v|dΩ +

∫
Γ2

|g · v|dΓ , (1.96)

≤ ‖ f‖L2(Ω)‖v‖L2(Ω) +‖g‖L2(Γ2)‖v‖L2(Γ2) . (1.97)

Thus, a new difficulty results from the application of the g Neumann condition de-
fined on the Γ2 boundary.

Since, control of L(v) should be performed only in relation to norm H1(Ω) of
function v. This is why the term resulting from the Neumann condition and provid-
ing a measure of v for norm L2 (Γ2) should consequently be modified.

The trace theorem 11 mentioned above is the one that would enable a control
over L(v) in relation to the only measure of function v for norm H1(Ω).

It is to be noted that C4 is the continuity constant of the trace application γ defined
by (1.74).

Then, inequality (1.97) may be modified as follows:

|L(v)| ≤ ‖ f‖L2(Ω)‖v‖L2(Ω) +C4‖g‖L2(Γ2)‖v‖H1(Ω) , (1.98)

≤C5‖v‖H1(Ω), ∀v ∈ H1
Γ1

(Ω) , (1.99)

where it would have been set that: C5 = ‖ f‖L2(Ω) +C4‖g‖L2(Γ2) .

These are the essential points that needed to be specified for extending the
Laplace-Dirichlet problem to that of Laplace-Neumann-Dirichlet.

Other minor modifications, that do not represent any major difficulties, concern
the adaptation of the results while shifting the functional framework of H1

0 (Ω) to
that of H1

Γ1
(Ω).

This is why, once the point about the control of linear form L(.) defined by (1.95)
is made, the application of Lax-Milgram theorem guarantees the existence and
uniqueness of solution u∈H1

Γ1
(Ω) to the variational problem (VP) defined by (1.93).
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1.2.5 Equivalence Between Strong and Weak Formulations

An additional point concerning the equivalence between different formulations
needs to be mentioned within the whole transformation process that has been pre-
sented above.

More precisely, it is not obvious to declare that any solution to variational prob-
lem (VP) (1.69) is a solution to continuous problem (CP) (1.59). Moreover, in many
cases this is absolutely wrong!

The subtleties of the concept of equivalence between the two formulations may
be tested by continuing to assume that the second member f is a function belonging
to L2(Ω) and it is then only necessary to believe that if the solution to the continuous
problem is searched for in the Sobolev space H2(Ω), then that of the variational
problem (VP) is searched for in H1(Ω) and H2(Ω)⊂ H1(Ω).

In other words, any solution to the continuous problem may be a solution to
a variational problem with regards to its regularity, whereas, a priori, there is no
justification for a solution to a variational problem (VP) to be the solution to a con-
tinuous problem (CP).

In fact, the concept of equivalence between the two formulations is completely
dependent on the functional frameworks governing the respective areas of research
for solutions to a continuous problem (CP) on one hand and to a variational prob-
lem (VP) on the other hand.

Now, the manner to establish equivalence between a variational problem (VP)
and a continuous problem (CP) will be demonstrated within the framework of the
Laplace-Dirichlet problem.

In an obvious manner and through construction, any solution to a continuous
problem (CP) belonging to H2(Ω) is a solution to the variational problem (VP).

Given that, a priori (i. e. independently of the fact that solutions are known or
not), regularity properties of a solution u to the variational problem (VP) depend on
the regularity of the second member f as well as on the geometrical properties of
the boundary ∂Ω of the integration domain Ω, a “partial reciprocal” will be stated
as follows:

Is a solution to the variational problem (VP) showing regularity properties of
a continuous problem (CP), i. e. belonging to H2(Ω) (and not only the regularity
of H1(Ω)), the solution to the continuous problem (CP)?

Thus, consider u belonging to H2(Ω) being a solution to the variational prob-
lem (VP). By using the Green formula, the following is obtained:

−
∫

Ω
Δu · vdΩ +

∫
∂Ω

∂u
∂n

vdΓ =
∫

Ω
f · vdΩ, ∀v ∈ H1

0 (Ω) . (1.100)
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As, in addition, v belonging to H1
0 (Ω), the boundary integral over ∂Ω in equa-

tion (1.100) is zero.

It then becomes: ∫
Ω
[Δu + f ] · vdΩ = 0, ∀v ∈ H1

0 (Ω) . (1.101)

The necessity of introducing regularity H2(Ω) for a solution u upon application of
the Green formula would be noted and this is performed in order to guarantee the
convergence of the integral that causes the Laplacien of u to intervene.

In fact, by always using the Cauchy-Schwartz inequality, an increase in control
is obtained as follows:∣∣∣∣
∫

Ω
Δu · vdΩ

∣∣∣∣≤
∫

Ω
|Δu · v|dΩ≤

[∫
Ω
|Δu|2 dΩ

]1/2

·
[∫

Ω
|v|2 dΩ
]1/2

. (1.102)

Now the problem cropping up from equation ( 1.101) is considered. In fact, it would
be desirable to affirm that such a family of equalities, since there are as many equa-
tions as functions v in H1

0 (Ω), should lead to:

Δu + f = 0 in Ω . (1.103)

However, the shift from the integral equation (1.101) to the equation with partial
derivatives (1.103) might be justified subject to the possibility of choosing the spe-
cific function v∗ = Δu + f from all functions v of H1

0 (Ω).

In such a case, the integral of equation (1.101) for such a specific choice would
be expressed as:

∫
Ω
|Δu + f |2 dΩ = 0 , (1.104)

which would necessitate the development of the Poisson equation (1.103) (the inte-
gral of a positive or zero function can be zero only if its integrand is equally zero.)

However, function v of H1
0 (Ω) cannot directly be designated as the specific func-

tion v∗ = Δu + f since the latter does not belong to H1
0 (Ω) but belongs to L2(Ω)

only.

A density technique is applied to overcome this obstacle, i. e. a technique of
“contamination” by proximity.

The key to achieve this is a density theorem that would, through neighbourhood
proximity, enable the extension of the desired property (integral equation (1.101) in
this case) to suitable functions of L2(Ω).

More specifically, a density theorem would be applied to show that equa-
tion (1.101) may be written for any v belonging to H1

0 (Ω) and also for any func-
tion v belonging to L2(Ω) in order to facilitate the choice of the specific function v
that is equal to Δu + f .
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Caution! This result is not trivial since the inclusion of functional spaces is not
such as would enable the application of a reasoning of the type: “that which is
capable of more, is capable of less”. . .

In fact, given that H1
0 (Ω) is included in L2(Ω), and not the other way round,

it cannot be claimed that equation (1.101) may be written, particularly for any v
belonging to L2(Ω).

Then, the density theorem 2 is applied and this enables the assertion that for any
function w belonging to L2(Ω), there exists a sequence of functions wn of C∞

0 (Ω)
that converge towards function w along the same sense as for norm L2(Ω).

lim
n→∞

[∫
Ω
|wn−w|2 dΩ

]
= 0 . (1.105)

In addition, the following Sobolev embedding holds: C∞
0 (Ω)⊂ H1

0 (Ω). It is thus
legitimate to write equation (1.101) for each function of the sequence wn as these
particularly belong to H1

0 (Ω).
∫

Ω
[Δu + f ] ·wn dΩ = 0, ∀n ∈ N . (1.106)

It is then possible to establish the same property for functions w of L2(Ω):
∣∣∣∣
∫

Ω
[Δu + f ] ·wdΩ

∣∣∣∣=
∣∣∣∣
∫

Ω
[Δu + f ] · (w−wn)dΩ

∣∣∣∣ (1.107)

≤
[∫

Ω
|Δu + f |2 dΩ

]1/2

·
[∫

Ω
|wn−w|2 dΩ

]1/2

. (1.108)

It then suffices to tend n towards +∞ in integrality (1.108) and to the property of
convergence (1.105) so that for any function w belonging to L2(Ω), the following is
obtained:

∫
Ω
[Δu + f ] ·wdΩ = 0, ∀w ∈ L2(Ω) . (1.109)

The conclusion is then immediate as mentioned before and the Poisson equation
is thus satisfied in L2(Ω) for any solution u of the variational problem (VP) that
possesses the additional regularity of belonging to H2(Ω).

It will again be observed that this last property is useful because Δu, being a func-
tion of L2(Ω), enables the use of density theorem 2.

In fact, the hypothesis that consists in considering any solution to the variational
problem (VP) in H2(Ω) may be rejected if ∂Ω is C2 and this would be possible if
functional analysis tools pertaining to the theory of a priori estimation were avail-
able.
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In fact, it could be demonstrated that given the second member f belongs
to L2(Ω), then any solution u to the variational problem (VP) belonging to H1

0 (Ω) is
also an element of H2(Ω) for Ω domains of integration whose geometry of bound-
ary ∂Ω exhibits a C2 regularity (see H. Brézis, [1]).

This is exactly what was assumed in the paragraph entitled “Formalism and Func-
tional Framework of Equations Having Partial Derivatives”.

By contrast, in the case of a geometry that exhibits prominent angles (see Fig. 1.2),
it can be shown that the solution to the variational problem (VP) does not belong
to H2(Ω).

Worse, for certain geometries, there exist infinite solutions to the continuous
problem (CP) (see M. Moussaoui, [6]) when the variational problem (VP) possesses
one and only one solution belonging to H1

0 (Ω).

Thus, for situations exhibiting geometrical peculiarities at the ∂Ω boundary and
with a view to preserve equivalence between the two formulations, it is neces-
sary to restrict the solutions research perimeter of the continuous problem (CP)
to space H1

0 (Ω).

It may then be shown that there exists one and only one function belonging
to H1

0 (Ω) being the simultaneous solution to continuous problems (CP) and to vari-
ational problems (VP).

In other words, since f belongs to L2(Ω), the Poisson equation would be satisfied
in L2(Ω) and thus almost everywhere.

As a consequence, solution u would have a Laplacian in L2(Ω), however this
does not imply that u belongs to H2(Ω).

Ω

Fig. 1.2 Integration Domain Ω Exhibiting a Prominent Angle

Finally, to complete this “partial reciprocal” it should be noted that the homoge-
neous Dirichlet condition over ∂Ω is automatically satisfied for each solution u to
the variational problem (VP) and being an element of space H1

0 (Ω), these functions
possess an identical zero trace over ∂Ω.
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The aim of the demonstration was to create an awareness, may be stronger than
usual, among those who, for various reasons, do not pay attention to all those ques-
tions that might appear as taken for granted when in fact they represent the surety,
the credibility and the perpetuity of mathematical models applied to engineering
sciences.

This process should not be misunderstood and it is only by controlling the aspects
of methodological coherence that the numerical analyst may reach a position to
produce a real scientific system of modelling that can be an aid to decision taking
and to forecasting of the behaviour of real systems.

1.2.6 Methodology and Approximation Cascades

It is now important to study the structure of the formulation of the variational prob-
lem (VP) (1.69), to compare it with that of the continuous problem (CP) (1.59), so
as to understand and identify the mechanisms that would not allow the display of
methods of solving problems through analytical pathways.

A numerical approach would be successful under such conditions since all or
part of structural constraints that limit the resolution of a problem would have been
eliminated from whatever conceivable mathematical formulation.

A first observation is made on the continuous problem (CP). Two related mech-
anisms lead to the impossibility of resolving a problem through the analytical path-
way.

The first one, immediate and obvious, resides in the complexity of combined
differentiation operations on the unknown function u.

In fact, the combination of two second order partial derivatives unquestionably
constitutes a barrier to the resolution and this is true for whatever expression and
complexity of the second member f .

Of course, the reader who masters the techniques of solving equations with par-
tial derivatives (see D. Euvrard, [5]) would wish to apply one or several miraculous
transformations (Laplace, Fourrier,. . . ).

However, the above neglects the fact that the second factor intervenes in the prob-
lematic of resolution and it relates to the more or less complex form of the integra-
tion domain Ω.

In fact, when Ω has a regular form (square, circular, elliptical, . . . ), the essential
difficulty to resolve is masked. Since, in a general manner, there is necessity to read
the formulation of the continuous problem (CP) in a different way and may be in an
unusual way.

This reading requires that the continuous problem be considered as a system of
non-algebraic equations made up of an infinite number of equations for an infinite
number of unknowns.
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Since, in fact, the Poisson (1.59) equation with partial derivatives is finally writ-
ten for each point M of the domain of integration Ω.

And, as commonly known, the fact that there is an infinite number of points that
constitutes the interior of Ω leads to the consideration, in general silently, of an
infinite number of equations for an infinite number of unknowns that are nothing
else than the values of function u at each point M of Ω!

These reasons drive the numerical analyst to transform the continuous problem
into a formulation that is expressed in a finite dimension since human beings are not
structured nor “equipped” to understand the infinite dimension. . .

The finite differences method demonstrated in various works (see D.Euvrard, [5])
performs this transformation through restriction, by introducing a mesh so as to
consider only a number of finite points Mi of a grid and approximations ũi at these
points, to yield solutions to a system of algebraic equations obtained by approxima-
tion of partial derivatives after having basically used the formula of Taylor.

But then, is an acceptable alternative obtained by the transformation of the con-
tinuous problem (CP) into a variational problem (VP) as demonstrated?

In the affirmative, what would then be the advantage of this new formulation that,
at first sight, seems to render the original continuous problem (CP) complex.

At this stage, it is to be noted that the inherent difficulty of the continuous prob-
lem (CP) has completely been transferred into variational formulation (VP).

In fact, as demonstrated above, the infinite number of unknowns and of equations
associated with the Poisson equation (1.59) determine one of the main obstacles to
resolution.

In the present case of variational formulation (1.69), this concept of infinite di-
mension is always present and it concerns the research space V which is here repre-
sented by H1

0 (Ω) and, as a consequence, the infinite number of equations present in
variational formulation (1.69).

This is why the method of approximation of finite elements, also known as the
method of Galerkin, consists in considering a sub-space Ṽ having a finite dimension.
State Kh to be the dimension of space Kh.

The shift from variational problem (VP) to the approximate variational problem
˜(VP) is performed by substituting the pair of functions (u,v) belonging to V ×V by
their approximations (ũ, ṽ) belonging to Ṽ × Ṽ .

Thus ˜(VP) is written as:

(̃VP)

⎧⎨
⎩

Find ũ ∈ Ṽ solution of:∫
Ω

∇∇∇ũ ·∇∇∇ṽdΩ =
∫

Ω
f · ṽdΩ, ∀ṽ ∈ Ṽ .

(1.110)
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Care should be taken to avoid the misleading simplicity of the approximation pro-

cess since the approximate variational formulation ˜(VP) is not simply a writing
composition in relation to formulation (VP).

On the contrary, it is a real progress in the capacity to resolve variational prob-
lem (VP) by approximation but it also relates to a loss of information that should be
estimated subsequently.

In order to really appreciate the critical progress that this represents in terms of
resolution, we introduce a basis (ϕi)i=1,Kh of the approximation space Ṽ we consider
which a finite dimensional vector space.

In this case, unknown ũ may be broken down on the basis of functions ϕi as
below:

ũ =
Kh

∑
j=1

ũ jϕ j . (1.111)

In other words, since equation (1.110) is true, ∀ṽ ∈ Ṽ , each basis functions ϕi,
(i = 1,Kh), may be chosen from among the approximate test functions ṽ and this
leads to state: ṽ = ϕi.

The approximate variational equation (1.110) is then written as:

˜(VP)

⎧⎪⎨
⎪⎩

Find ũ j,( j = 1,Kh) solution of:
Kh

∑
j=1

(∫
Ω

∇∇∇ϕi ·∇∇∇ϕ j dΩ
)

ũ j =
∫

Ω
f ·ϕi dΩ, ∀i = 1,Kh .

(1.112)

Then the following is stated:

Ai j =
∫

Ω
∇∇∇ϕi ·∇∇∇ϕ j dΩ and Bi =

∫
Ω

f ·ϕi dΩ . (1.113)

Then, approximate variational problem ˜(VP) is stated as:

(̃VP)

⎧⎪⎨
⎪⎩

Find ũ j,( j = 1,Kh), solution of:
Kh

∑
j=1

Ai jũ j = Bi, ∀i = 1,Kh .
(1.114)

This last form clearly shows the reduction that occurs as a result of the approxi-
mation process, by starting with variational problem (VP), to give a problem having
a finite dimension and whose resolution consists of a linear system of Kh equations
with Kh unknowns.

The application of the finite elements method then necessitates the specification,
in system (1.114), of the expression of basis functions ϕi, the operational method
for the calculation of integrals intervening in the expression of the coefficients of
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matrix Ai j as well as that of the second member Bi and of course, the algorithm for
the inversion of the linear system.

It is quite evident that, from a theoretical point of view it would be necessary to
ensure that the matrix obtained is perfectly reversible before applying any inversion
algorithm used on linear system (1.114) (see D.Euvrard, [5]).

Should the general problem of the approximation process that has been described
at the beginning of this paragraph be reverted back to, it now appears that the suc-
cessive chains of transformations that lead to the approximations that have been
developed may be reassembled under the scheme below:

(Actual System)⇒ (Mathematical Model or Continuous Problem (CP)) ,

⇒ (Variational Formulation (VP)) ,

⇒ (Approximate Variational Problem ˜(VP)) ,

⇒ (Method for inversion of Linear System
˜

˜(VP)) .

The whole processing thus represented needs to really sensitise the numerical
analyst engineer to show humbleness and care when publishing the final results.

It is true that theorems for estimating the error inherent to the method of finite
elements do exist, but, as usual, this type of result cannot be global and concerns
only part of the process demonstrated above.

In general, it relates to an evaluation of the error that appears following an ap-

proximation of variational problem (VP) by its approximate formulation ˜(VP) (see
for example, the Bramble-Hilbert lemma in D. Euvrard [5]).



Chapter 2

Some Fundamental Classes of Finite Elements

2.1 Variational Formulation and Approximations

Following the demonstration of the fundamental principles underlying the global
methodology of the finite elements in Chapter 1, this chapter is dedicated to the
approximation of variational formulations and to different choices generated by the
finite elements method.

The whole process leads to the estimation of an approximate solution ũ for a vari-
ational formulation (VP) as well as for a continuous problem (CP), both of which
produce that form.

As seen previously (see 1.112), the Galerkin method is used to associate the vari-
ational formulation with the Laplace-Dirichlet problem and to give an approximate
formulation (ṼP) that is only a linear system needing to be reversed.

The resolution of this linear system offers approximation ũ of the solution to
variational problem (VP) and consequently an approximation of the solution to con-
tinuous problem (CP).

In fact, many mathematical models for engineering sciences lead to a formalism
similar to the one demonstrated for the Laplace-Dirichlet problem.

A generic family of variational problems (VP) describing this formalism can be
abstractly expressed in the form of:

(VP) Find u belonging to V solution of: a(u,v) = L(v), ∀v ∈V, (2.1)

where:

– V is a vector space of functions,

– a(., .) is a bilinear form on V ×V ,

– L(.) is a linear form on V .

J. Chaskalovic, Finite Element Methods for Engineering Sciences 39
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As shown in Chap. 1, additional investigations involving appropriate functional
analysis techniques are essential to obtain a variational formulation (VP) having
a unique solution equivalent to the solution of the continuous problem.

The approximation of the variational formulation (2.1) is essential in the wake of
these conditions that “lock” the continuous and variational problems.

This state is closely related to the infinite dimension of functional spaces that
emerge in most mathematical models applied to engineering sciences.

To this end, Galerkin suggests a method that consists in considering a sub-
space Ṽ , (Ṽ ⊂V ), of finite dimension Kh that enables overcoming this incapacity of
resolution of formulations having the same structure as formulation (2.1).

In this case, the abstract variational formulation (2.1) is transformed into the
following approximation (ṼP):

Find ũ belonging to Ṽ solution of:

a(ũ, ṽ) = L(ṽ), ∀ṽ ∈ Ṽ . (2.2)

Since approximation space Ṽ of finite dimension Kh has been introduced, it is now
licit, and even natural, to consider a base of functions ϕi, (i = 1,Kh), and to look for
approximation ũ that replaces solution u belonging to V in the form:

ũ = ∑
j=1,Kh

ũ jϕ j . (2.3)

Note that decomposition (2.3) is fundamentally related to the shift of space V having
an infinite dimension, to its internal approximation Ṽ of finite dimension Kh.

Indeed, when considering a functional space V of infinite dimension, this form of
decomposition (2.3) is no more relevant and the resolution of the variational prob-
lem (VP) stays whole except when considering particular vector spaces where any
elements can be decomposed according to a basis composed of an infinite number
of denumerable elements (as for separable Hilbert spaces).

In the approximate variational formulation (ṼP) defined by (2.2), the specific
choice of functions ṽ equal to basis functions ϕi, (i = 1 to Kh), now allows rewriting
formulation (2.2) as follows:

(
ṼP
)⎡⎢⎣

Find ũ = t [ũ1, . . . , ũKh ] belonging to Ṽ solution of:

a

(
∑

j=1,Kh

ũ jϕ j,ϕi

)
= L(ϕi), ∀i = 1 to Kh .

(2.4)

The bilinear properties of form a(., .) and of the linear properties of form L(.) are
thus applied.
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Therefore, the variational formulation (ṼP) is expressed in the form of:

(
ṼP
)⎡⎣ Find ũ = t [ũ1, . . . , ũKh ] belonging to Ṽ solution of :

∑
j=1,Kh

a(ϕ j,ϕi)ũ j = L(ϕi), ∀i = 1 to Kh . (2.5)

The Ai j and bi quantities are finally introduced and defined by:

Ai j = a(ϕ j,ϕi), bi = L(ϕi) . (2.6)

From there, approximate variational formulation (ṼP) takes its following final form:

(
ṼP
)⎡⎢⎣

Find ũ = t [ũ1, . . . , ũKh ] belonging to Ṽ solution of :

∑
j=1,Kh

Ai jũ j = bi, ∀i = 1 to Kh . (2.7)

As from then, it is noted that formulation (2.7) is none other than a linear system
composed of matrix A of generic elements Ai j and of a second member b having
component bi.

Thus, it is established that any variational formulation (VP) expressed in
form (2.1) and having form a(., .) and L(.) are respectively bilinear and linear and
can be solved by an approximation whose solution is equivalent to a linear sys-
tem (2.7).

Of what nature is the data that can be defined within parameters and that is re-
quired to determine an effective solution to linear system (2.7) and consequently an
approximation to variational formulation (2.1)?

Calculation of coefficients Ai j and that of second member bi requires knowing
basis functions ϕi,(i = 1 to Kh), of approximation space Ṽ .

Of course, this knowledge closely depends on the definition of space Ṽ whose
dimension Kh is finite.

This explains why one of the first ways to fix dimension Kh of space Ṽ consists
in binding this dimension Kh to a finite number of values of functions ṽ belonging
to Ṽ at privileged points or nodes Mk,(k = 1 to K), of integration domain Ω .

From then on, the introduction of an elementary geometry Gm,(m = 1 to M), is
relevant since it generates a mesh of integration domain Ω , de facto providing the
nodes of the geometrical discretisation (See Fig. 2.1).

These concepts gave rise to the Lagrange finite elements defined by triplet
(G,Σ ,P(G)) where:

– G defines the geometry of the elementary mesh (segment, triangle, square, poly-
hedron, etc.),
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– Σ = (M1, . . . ,MK′),(K′ < K), denotes the group of nodes delimiting the elemen-
tary mesh G,

– P(G) is the approximation space consisting of polynomials defined over G.

Finally, (G,Σ ,P) triplet has to satisfy the unisolvence property defined as follows:

∀(ξ1, . . . ,ξK′) ∈ RK′ ,∃!p ∈ P(G)
such that: p(Mk) = ξk, ∀k = 1 to K′ .

(2.8)

In other words, there exists only one function p belonging to P(G) going through
the given K′ values (ξ1, . . . ,ξK′) at K′ nodes delimiting elementary mesh G.

When the definition of functions belonging to P(G) defined by a generating
mesh G is known, the process of construction of approximation spaces Ṽ within
the framework of the Lagrange finite elements consists in stating:

Ṽ ≡ {ṽ : Ω → R, ṽ ∈C0(Ω), ṽ|G ∈ P(G)
}

, (2.9)

where the boundary conditions to which functions ṽ of Ṽ may be subjected, depend-
ing on the problem considered, are disregarded.

Consequently, when disregarding boundary conditions that vary from one prob-
lem to another, the dimension of space Ṽ defined by (2.9) is inferred from dimen-
sion K′ of P(G), from the number of mesh and from the number of nodes intervening
in the geometrical discretisation of the integration domain Ω .

The generalisation of Lagrange finite elements is then done as follows:

Triplet (G,Σ ,P(G)) defines a finite element with:

– An elementary mesh of geometrical discretisation G of Rn, (n = 1,2 or 3).

mG

kM

Fig. 2.1 Example of Mesh by Triangular Finite Elements
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– A set Σ of degrees of freedom σk,(k = 1 to K′), consisting of linear forms on the
space of defined functions on G.

– A vector space P(G) of finite dimension equivalent to K′.

– The unisolvance property: For any K′-tuple of RK′ having real numbers, a unique
element p exists and belongs to P(G) such that:

σk(p) = ξk, ∀k = 1 to K′ .

2.2 Convergence of the Finite Elements Method

As shown in paragraph 1.2.6 of Chap. 1, the significance of the different approx-
imation levels resulting from the process of the modelling cascade of a numerical
approximation, should encourage the numerical analyst to make a lucid and humble
use of measuring tools which are necessary for the estimation of an approximation
error in relation to the relevant numerical method.

In this case, the finite elements method offers a body of theoretical results which
facilitates the estimation of the approximation error between solution u of varia-
tional problem (VP) and its approximation ũ which is the solution to the approxi-
mate variational problem (ṼP).

Considering the nature of the mathematical objects involved (functions u and ũ),
a family of results are proposed in this paragraph to enable an estimation of the
distance between solution u and its approximation ũ, (‖u− ũ‖), according to an ad
hoc norm.

The family of variational problems (VP) having the abstract form below is used
as an aid to the demonstration:

Find u ∈V solution of: a(u,v) = L(v), ∀v ∈V . (2.10)

As in the previous paragraph, Ṽ denotes the approximation space internal to V with
finite dimension (Ṽ ⊂V ) having the generic element noted as ṽ and the approximate
solution ũ of solution u being a particular case approximation functions ṽ belonging
to Ṽ .

In other words, approximate formulation (ṼP) of variational problem (VP) is
expressed as:

Find ũ ∈ Ṽ solution of: a(ũ, ṽ) = L(ṽ), ∀ṽ ∈ Ṽ . (2.11)

Given the assumptions of the Lax-Milgram theorem 10 (See Chap. 1) associated
with a Hilbertian norm noted as ‖.‖, the following lemma is obtained:
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� Lemma 4.

Variational Problem (ṼP) (2.11) only admits one and only one solution ũ. More-
over, this solution satisfies the orthogonality relationship:

a(u− ũ, ṽ) = 0, ∀ṽ ∈ Ṽ . (2.12)

Proof : The existence and uniqueness of solution ũ belonging to Ṽ is immediate
since the approximation is internal, (Ṽ ⊂V ).

In fact, it is first noticed that the approximation space of finite dimension Ṽ
included in V is consequently a closed vector sub-space of V and thus presents
a Hilbertian structure. The inclusion of Ṽ in V allows the use of properties required
for the application of a Lax-Milgram theorem to Ṽ .

As for the orthogonality relationship (2.12), the variational equation (VP) has to
be expressed by substituting v by ṽ:

a(u, ṽ) = L(ṽ), ∀ṽ ∈ Ṽ . (2.13)

The difference between equs. (2.13) and (2.11) immediately leads to orthogonality
relationship (2.12).

The first result of the estimation of approximation error ‖u− ũ‖ is known as the
Céa’s lemma.

� Lemma 5.

According to the hypothesis of Lax-Milgram theorem 10, if it is additionally as-
sumed that approximation ũ of exact solution u is internal, (Ṽ ⊂ V ), then the
estimation of the error is obtained as:

‖u− ũ‖ ≤C in f
ṽ∈Ṽ
‖u− ṽ‖ . (2.14)

Proof : The demonstration of Céa’s lemma is based on the double control of quan-
tity a(u− ũ,u− ũ) by using the property of V -ellipticity and the continuity of bilinear
form a(., .).

For a start, according to orthogonality relationship (2.12), the following result is
obtained by choosing ṽ = ũ:

a(u− ũ, ũ) = 0 . (2.15)
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From then on, quantity a(u− ũ,u− ũ) may be expressed as:

∀ṽ ∈ Ṽ :
a(u− ũ,u− ũ) = a(u− ũ,u)−a(u− ũ, ũ) = a(u− ũ,u) (2.16)

= a(u− ũ,u)−a(u− ũ, ṽ) = a(u− ũ,u− ṽ) . (2.17)

Thus, by keeping the notations of the Lax-Milgram theorem 10, the following is
obtained:

C2 ‖u− ũ‖2 ≤ a(u− ũ,u− ũ) = a(u− ũ,u− ṽ)≤C1 ‖u− ũ‖ .‖u− ṽ‖ . (2.18)

After simplification, the following is obtained:

‖u− ũ‖ ≤ C1

C2
‖u− ṽ‖ , ∀ṽ ∈ Ṽ . (2.19)

and expected constant C is none other than the ratio between C1 and C2.

The use of inequality control (2.19) is even more convincing considering that the
upper bound of norm ‖u− ũ‖ is minimised.

This explains how the result of Céa’s lemma brings out the lower bound of quan-
tities ‖u− ṽ‖ for any function ṽ belonging to Ṽ .

The next step consists in the characterisation of approximation space Ṽ to deter-
mine the estimation of the error produced by Céa’s lemma.

As mentioned in paragraph 2.1, Lagrange finite elements offer a simple solution
for the systematic production of approximation space Ṽ of finite dimension.

This process is based on the unique determination of an approximation function
by considering its values taken at a finite number of points Mk,(k = 1,K) situated
on a given mesh of integration domain Ω .

From here, the reader needs to go back to the section detailing Lagrange finite el-
ements (See paragraph 2.1) stating that the dimension of the approximation space Ṽ
corresponds to the number of nodes of the mesh of domain Ω if the boundary con-
ditions that influence approximation functions ṽ are ignored.

This brings about the general introduction of the interpolation operator πh defined
as:

πh : C0(Ω̄ )→ Ṽ (2.20)

v � πhv≡ ∑
k=1,K

v(Mk)ϕk ,

where ϕk denotes the basis function of approximation space Ṽ characteristic of
node Mk and satisfying the following property:

ϕk(Ml) = δkl,(δkl being the Krönecker symbol) . (2.21)
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It is thus simple to verify that function πkv, interpolated from v to K nodes Mk of the
mesh of integration domain Ω is the unique function of Ṽ proving:

πhv(Mk) = v(Mk), ∀k = 1,K . (2.22)

It is thus licit to express the control inequality of Céa’s lemma when specifically
choosing ṽ = πhu:

‖u− ũ‖ ≤C‖u− ṽ‖= C‖u−πhu‖ . (2.23)

Therefore, according to inequality control (2.23), the approximation error and the
interpolation error are of the same order of magnitude.

This is why it suffices to estimate the interpolation error as a tool to measure the
approximation error according to the nature and property of each Lagrange finite
element.

The Bramble-Hilbert lemma is then introduced since it relies on these consider-
ations to render the application of Céa’s lemma fully operational.

In this present work, the demonstration is limited to the terms of the lemma
having straight and unflattened finite elements and variational space V is considered
to correspond to Sobolev space H1(Ω).

Indeed, numerous problems arising from engineering sciences correspond to this
functional framework (probably more regularly), knowing that, in any event, certain
applications that may not fit in this framework would require mathematical tech-
niques coming from a functional analysis that is way more than what this book can
handle.

� Lemma 6.

Let h be the size of the elementary mesh of a Lagrange finite element. If approx-
imation space Ṽ contains the space of polynomials Pk having a degree less than
or equal to k, in relation the pair of variables (x,y), then, for a finer discretisa-
tion and for any “sufficiently regular” solution u (at least in H1(Ω)) to variational
problem (VP) of form (2.10), the following is obtained:

‖u−πhu‖H1(Ω) = O(hk) and ‖u− ũ‖H1(Ω) = O(hk) . (2.24)

Evidently, all the technicalities of the result of this lemma rest upon the estima-
tion of the norm measuring the gap between solution u and its interpolation πhu.

The preamble exposed using Céa’s lemma was actually meant to underline the
necessity of estimating this last norm in order to conclude on the approximation
error of the finite elements method, at least in the context previously described.
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2.3 Description of Ordinary Finite Elements

This section is dedicated to the introduction of the principal finite elements most
commonly used in applications of engineering sciences.

In this chapter, each finite element is described in a systematic manner according
to the following model:

1. The definition of elementary geometric mesh G,

2. The definition and dimension of approximation space P(G)

3. The definition of all linear forms σi on the space of functions defined on G.

4. The determination of the functions of the canonical basis of space P(G), i. e.
functions (p1, . . . , pdimP(G)) satisfying: Gi(p j) = δi j, where δi j denotes the Krö-
necker symbol.

� Remark

The existence of a collection of functions (p1, . . . , pdimP(G)) belonging to P(G)
satisfying canonical property σi(p j) = δi j,∀(i, j) ∈ {1, . . . ,dimP(G)} implies that
this system of function constitute a basis of P(G).

In fact, it should be shown that system (p1, . . . , pdimP(G)) is an independent family
in P(G).

Let (α1, . . . ,αdimP(G)) ∈ RdimP(G) be, such that:

∑
i=1,dimP(G)

αi pi = 0 . (2.25)

Then show that linear combination (2.25) renders any coefficient αi equal to zero.

To achieve this result, apply jth linear form σ j (for fixed j) to linear combina-
tion (2.25).

σ j

[
∑

i=1,dimP(G)
αi pi

]
= σ j(0) . (2.26)

The linear property of form σ j along with the fact that σ j(0) = 0 are then applied.

Equation (2.26) is then expressed as:

∑
i=1,dimP(G)

αiσ j(pi) = ∑
i=1,dimP(G)

αiδi j = α j = 0, ∀ j = 1, . . . ,dimP(G) . (2.27)
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The result shows that any coefficients α j are all equal to zero and that
(p1, . . . , pdimP(G)) is an independent family in a space of finite dimension dimP(G).

It is thus a generating family and consequently a basis to approximation
space P(G).

It will be noted that the “canonical” characterisation is relevant since each func-
tion pi of this particular basis is characteristic of a privileged linear form σ j consid-
ering that the other linear forms on canonical basis function pi are equal to zero.

When particularly considering Lagrange finite elements, the linear forms show
a number of particular values of the functions of P(G) at certain points (or discreti-
sation nodes) of the site of integration.

In this case, each function of the canonical basis corresponds to the unique func-
tion having value 1 at a given node of the discretisation and value 0 at the other
nodes.

2.3.1 Finite Elements with a Space Variable

In this sub-paragraph, the finite elements presented are described by an elementary
mesh consisting of the interval G≡ [0,1].

� Finite P0 Element

1) Space P(G) ≡ P0 is constituted by polynomials p being defined and constant on
interval [0,1].

The dimension of P0 is obviously equal to 1.

2) Linear form σ is considered and is defined by:

σ : p→
∫ 1

0
p(x)dx . (2.28)

3) The unique function of the canonical basis for this element is the constant func-
tion equal to 1 on interval [0,1].

To be sure, the definition of the function of the canonical basis is expressed ac-
cording to the following agreed definition:

(σ(p) = 1)⇐⇒
(∫ 1

0
p(x)dx = 1

)
, where p(x) = Cte, ∀x ∈ [0,1] . (2.29)

It is immediately deduced that

p(x) = 1, ∀x ∈ [0,1] .
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Functions ṽ belonging to Ṽ are constant functions for each elementary mesh for this
first finite element.

It would be noted that the constant on each mesh element corresponds to the
mean value of function ṽ on the corresponding mesh.

� Finite P1 Element

1) Approximation space P(G) ≡ P1 consists of affine functions defined on elemen-
tary mesh [0,1].

The dimension of space P1 is equal to 2.

2) Both linear forms being considered are defined by:

σ1 : p→ p(0), σ2 : p→ p(1) . (2.30)

3) In order to determine the functions of the canonical basis of space P1 the property
of both basis functions (p1, p2) are expressed as:[

σ1(p1) = 1⇔ p1(0) = 1 , σ1(p2) = 0⇔ p2(0) = 0 ,

σ2(p1) = 0⇔ p1(1) = 0 , σ2(p2) = 1⇔ p2(1) = 1 .
(2.31)

It is then easily inferred that basis functions (p1, p2), solutions to (2.31) belonging
to space P1, consisting of defined affine functions on interval [0,1], correspond to:

p1(x) = 1− x , p2(x) = x . (2.32)

� Finite P2 Elements

1) Approximation space P(G)≡P2 consists of polynomials having degrees less than
or equal to two and defined on elementary mesh [0,1].

The dimension of P2 is equal to 3.

2) The three linear forms defined below are considered:

σ1 : p→ p(0), σ2 : p→ p

(
1
2

)
, σ3 : p→ p(1) . (2.33)

3) Now the properties of functions (p1, p2, p3) of the canonical basis belonging to P2

are expressed:⎡
⎢⎢⎢⎢⎢⎢⎣

σ1(p1) = 1⇔ p1(0) = 1 , σ1(p2) = 0⇔ p2(0) = 0 ,

σ1(p3) = 0⇔ p3(0) = 0 , σ2(p1) = 0⇔ p1( 1
2 ) = 0 ,

σ2(p2) = 1⇔ p2( 1
2 ) = 1 , σ2(p3) = 0⇔ p3( 1

2 ) = 0 ,

σ3(p1) = 0⇔ p1(1) = 0 , σ3(p2) = 0⇔ p2(1) = 0 ,

σ3(p3) = 1⇔ p3(1) = 1 .

(2.34)
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Then, use is made of the fact that each polynomial pi of degree less than or equal to
two is in the form of: ax2 + bx + c.

The 9 coefficients of the 3 polynomials (p1, p2, p3) are obtained from the 9 rela-
tionships (2.34).

The following is then obtained:

p1(x) = (2x−1)(x−1), p2(x) = 4x(1− x), p3(x) = x(2x−1) . (2.35)

� Hermite’s Finite Element

1) Approximation space P(G)≡P3 consists of polynomials having degrees less than
or equal to three and defined on elementary mesh [0,1].

The dimension of P3 is equal to 4.

2) Let the four linear forms be defined by:

σ1 : p→ p(0), σ2 : p→ dp
dx

(0), σ3 : p→ p(1), σ4 : p→ dp
dx

(1) . (2.36)

3) The four functions (p1, p2, p3, p4) of canonical basis P3 are determined. This
result is achieved by expressing the sixteen relationships of the form σi(p j) = δi j:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1(p1) = 1⇔ p1(0) = 1 , σ1(p2) = 0 ⇔ p2(0) = 0 ,

σ1(p3) = 0⇔ p3(0) = 0 , σ1(p4) = 0 ⇔ p4(0) = 0 ,

σ2(p1) = 0⇔ p′1(0) = 0 , σ2(p2) = 1 ⇔ p′2(0) = 1 ,

σ2(p3) = 0⇔ p′3(0) = 0 , σ2(p4) = 0 ⇔ p′4(0) = 0 ,

σ3(p1) = 0⇔ p1(1) = 0 , σ3(p2) = 0 ⇔ p2(1) = 0 ,

σ3(p3) = 1⇔ p3(1) = 1 , σ3(p4) = 0 ⇔ p4(1) = 0 ,

σ4(p1) = 0⇔ p′1(1) = 0 , σ4(p2) = 0 ⇔ p′2(1) = 0 ,

σ4(p3) = 0⇔ p′3(1) = 0 , σ4(p4) = 1 ⇔ p′4(1) = 1 .

(2.37)

The sixteen relationships (2.37) again produce the sixteen coefficients of the four
polynomials (p1, p2, p3, p4) of the canonical basis of P3.

After a few calculations, the following is obtained:

p1(x) = (x−1)2(2x + 1), p2(x) = x(x−1)2,

p3(x) = x2(3−2x), p4(x) = (x−1)x2.
(2.38)
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2.3.2 Finite Elements with Two Space Variables

2.3.2.1 Triangular Finite Elements

This section is dedicated to the introduction of finite elements whose elementary
mesh G is a triangle with vertices M1, M2 and M3 on plan (O;x,y) (See Fig. 2.2).

� Finite P0 Element

1) Approximation space P(G)≡ P0 consists of constant functions on triangle G.

The dimension of P0 is equal to 1.

2) Linear form σ defined below is considered:

p→ 1
Area(G)

∫∫
G

p(x,y)dxdy . (2.39)

3) Basis function p of P0 satisfying property σ(p) = 1 is determined:

(σ(p) = 1)⇔
(

1
Area(G)

∫∫
G

p(x,y)dxdy = 1

)
,

where:

p(x,y) = Cte, ∀(x,y) ∈ G . (2.40)

Then, the function of canonical basis p is the constant function equal to 1 on the
whole of triangle G.

� Finite P1 Element

1) Approximation space P1 consists of polynomial functions having degrees less
than or equal to one for the pair of variables (x,y).

M2

M3M1

G

Fig. 2.2 Triangular Elementary Mesh
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In other words, any function p of P1 is expressed in the form:

p(x,y) = ax + by + c, (2.41)

where (a,b,c) is a triplet of R3.

The previous definition leads to the conclusion that dimension P1 is equal to 3.

2) The three linear forms defined below are considered:

σ1 : p→ p(M1), σ2 : p→ p(M2), σ3 : p→ p(M3) . (2.42)

3) The identification of the three functions of canonical basis (p1, p2, p3) corre-
sponds to the three barycentric functions (λ1,λ2,λ3) whose existence is established
in the work of Daniel Euvrard [5].

Though, it is pointed out that, by definition, the polynomial functions of degree
less than or equal to one for the pair (x,y) prove the canonical property:

σ j(λi)≡ λi(Mj) = δi j . (2.43)

� Finite P2 Element

1) Approximation space P(G)≡ P2 consists of polynomial functions having degrees
less or equal to 2 for the pair of variables (x,y).

In other words, any function p of P2 is written in the form:

p(x,y) = ax2 + by2 + cxy + dx + ey + f , (2.44)

where (a,b,c,d,e, f ) is of any value and belongs to R6.

The previous definition (2.44) leads to the conclusion that the dimension of P2 is
equal to 6.

M2

M12 M23

M1 M13 M3

G

Fig. 2.3 Triangular Mesh for a Finite P2 Element
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2) To define the six linear forms σi,(i = 1 to 6), three new nodes (M12,M13,M23)
are introduced and placed in the middle of each side of triangle G (See Fig. 2.3).

It is then possible to introduce the six linear forms defined by:

σ1 : p→ p(M1) , σ2 : p→ p(M2) , (2.45)

σ3 : p→ p(M3) , σ4 : p→ p(M12) , (2.46)

σ5 : p→ p(M13) , σ6 : p→ p(M23) . (2.47)

3) The construction of the functions of canonical basis (p1, p2, p3, p4, p5, p6) is
worked out in the following way:

Function p1 may be taken as an example. This second degree polynomial in
relation to the pair (x,y) must be zero at the points below: M2, M3, M12, M13 and M23.

Therefore, polynomial p1, whose trace is a second degree trinomial of the oblique
variable defining the parameter of segment M2M3, is identically zero over seg-
ment M2M3, being zero at the three points M2, M3 and M23.

Moreover, as segment M2M3 is characterised by equation λ1 = 0, it means that
λ1 can be factorised in the polynomial expression p1.

In the same way, polynomial p1 is zero at nodes M13 and M12. Since the barycen-
tric functions λi are affine in x and in y, in these two nodes, λ1 is exactly equal to 1/2
on segment M13M12.

In other words, by factorising p1 by the quantity λ1− 1
2 , it is ensured that p1 is

really zero at nodes M13 and M12.

Therefore, the polynomial structure of function p1 is written as:

p1(M) = αλ1(M)
(

λ1(M)− 1
2

)
, (2.48)

where α is a constant which must be determined so that polynomial p1 may equal 1
at its characteristic node, namely at node M1.

Moreover, it can be noted that expression (2.48) indeed confers a second degree
polynomial structure in relation to the pair of variables (x,y) to function p1 because
polynomial λ1 is of the first degree in relation to the pair (x,y).

The following is then written as:

p1(M1)≡ αλ1(M1)
(

λ1(M1)− 1
2

)
= α× 1

2
. (2.49)

To ensure the property p1(M1) = 1, the value of coefficient α can then be inferred
therefrom: α = 2.

Polynomial p1 is finally written as:

p1(M) = λ1(M)(2λ1(M)−1) . (2.50)
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The other polynomials of the canonical basis may be inferred by the same method
and the following is obtained:

p1(M) = λ1(M)(2λ1(M)−1) , p2(M) = λ2(M)(2λ2(M)−1), (2.51)

p3(M) = λ3(M)(2λ3(M)−1) , p12(M) = 4λ1λ2(M) , (2.52)

p13(M) = 4λ1λ3(M) , p23(M) = 4λ2λ3(M) . (2.53)

� Finite P3 Elements

1) The approximation space P(G) ≡ P3 consists of polynomial functions of degree
less or equal to three for the pair of variables (x,y).

In other words, any function p of P3 is written in the form:

p(x,y) = ax3 + by3 + cx2y + dxy2 + ex2 + f y2 + gxy + hx + iy + j , (2.54)

where (a,b,c,d,e, f ,g,h, i, j) is of any value and belongs to R10.

The previous definition (2.54) leads to the conclusion that the dimension of P3 is
equal to 10.

2) To define the ten linear forms σi,(i = 1 to 10), seven new nodes (M112,M122,
M113,M133,M223,M233,M123) are introduced and placed in the third part of each
side of triangle G, (See Fig. 2.4).

It is then possible to introduce the ten linear forms by using:

σ1 : p→ p(M1) , σ2 : p→ p(M2) , (2.55)

σ3 : p→ p(M3) , σ4 : p→ p(M112) , (2.56)

σ5 : p→ p(M122) , σ6 : p→ p(M223) , (2.57)

σ7 : p→ p(M233) , σ8 : p→ p(M113) , (2.58)

σ9 : p→ p(M133) , σ10 : p→ p(M123) . (2.59)

M3

M133 M233
M123

M113 M223

M1 M112 M122 M2

Fig. 2.4 Triangular Mesh for Finite P3 Element
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3) The determination of the ten functions of canonical basis (p1,(i = 1 to 10)) is
worked out by using the same principles presented for the triangular finite P2 ele-
ments.

The case of polynomial p1, which is characteristic of the node, M1 can be studied
again, since it satisfies the property: p1(M1) = 1.

Polynomial p1 being zero at the other nine nodes, the following factorisations
may be inferred:

– λ1 is factorised in the expression of p1, since this polynomial must be zero at
nodes (M2,M3,M223,M233).

– (λ1− 2/3) is factorised in the expression of p1, since this polynomial must be
zero at nodes (M112,M113).

– (λ1− 1/3) is factorised in the expression of p1, since this polynomial must be
zero at nodes (M122,M133,M123).

Therefore, polynomial p1 takes the following form:

p1(M) = αλ1(M)
(

λ1(M)− 1
3

)(
λ1(M)− 2

3

)
, (2.60)

where, once again, constant α must be adjusted so that polynomial p1 is equal to 1
at node M1.

Moreover, it would be noted that the shape of polynomial p1 (2.60) is coherent
with that of definition (2.54) of the functions belonging to P3 in accordance with the
fact that the barycentric function λ1 is a first degree polynomial in relation to the
pair of variables (x,y).

The following is then easily obtained: α =
9
2

and the final shape of polynomial p1

is thus:

p1(M) =
9
2

λ1(M)
(

λ1(M)− 1
3

)(
λ1(M)− 2

3

)
. (2.61)

Polynomials p2 and p3 are immediately inferred from the expression of polyno-
mial p1, for reasons of obvious symmetry:

p2(M) =
9
2

λ2(M)
(

λ2(M)− 1
3

)(
λ2(M)− 2

3

)
, (2.62)

p3(M) =
9
2

λ3(M)
(

λ3(M)− 1
3

)(
λ3(M)− 2

3

)
. (2.63)

Polynomial p112 is now studied. This polynomial presents the following factorisa-
tions:

– λ1 is factorised in the expression of p112, since this polynomial must be zero at
nodes (M2,M3,M223,M233).
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– λ2 is factorised in the expression of p112, since this polynomial must be zero at
nodes (M1,M3,M113,M133).

– (λ1− 1/3) is factorised in the expression of p1, since this polynomial must be
zero at nodes (M122,M133,M123).

Hence, the structure of p112 is given by:

p112(M) = β λ1(M)λ2(M)
(

λ1(M)− 1
3

)
, (2.64)

where the constant β must be adjusted so that the polynomial p112 is equal to one at
node M112.

By therefore writing that λ1 = 2/3 and λ2 = 1/3 at node M112, the following is
hence obtained:

β =
27
2

. (2.65)

The basis function p112 is finally written as:

p112(M) =
27
2

λ1(M)λ2(M)
(

λ1(M)− 1
3

)
. (2.66)

Once again, for reasons of symmetry, the other basis functions pi jk, where (i, j,k)
differs from triplet (1,2,3), are written as:

p122(M) =
27
2

λ1(M)λ2(M)
(

λ2(M)− 1
3

)
, (2.67)

p113(M) =
27
2

λ1(M)λ3(M)
(

λ1(M)− 1
3

)
, (2.68)

p133(M) =
27
2

λ1(M)λ3(M)
(

λ3(M)− 1
3

)
, (2.69)

p223(M) =
27
2

λ2(M)λ3(M)
(

λ2(M)− 1
3

)
, (2.70)

p233(M) =
27
2

λ1(M)λ3(M)
(

λ3(M)− 1
3

)
. (2.71)

This study can be concluded by the analysis of the last polynomial function p123 of
the canonical basis of P3.

This polynomial presents the following factorisations:

– λ1 is factorised in the expression of p123, since this polynomial must be zero at
nodes (M2,M3,M223,M233).
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– λ2 is factorised in the expression of p123, since this polynomial must be zero at
nodes (M1,M3,M113,M133).

– λ3 is factorised in the expression of p123, since this polynomial must be zero at
nodes (M1,M2,M112,M122).

Hence, function p123 possesses the following polynomial structure:

p123(M) = γλ1(M)λ2(M)λ3(M) , (2.72)

where constant γ is adjusted so that the polynomial p123 may satisfy its characteristic
property at node M123, namely: p123(M123) = 1.

Considering that the barycentric functions λ1, λ2 and λ3 have, all three, the same
value of 1/3 at node M123, the constant γ is then equal to:

γ = 27 . (2.73)

The polynomial p123 is finally written as:

p123(M) = 27λ1(M)λ2(M)λ3(M) . (2.74)

2.3.2.2 Quadrangular Finite Elements

This section is dedicated to the presentation of finite elements, whose elementary
mesh G is the square [0,1]× [0,1] of vertices M1, M2, M3 and M4 in the plan (O;x,y),
(See Fig. 2.5).

� Finite Q1 Element

1) Space P(G) ≡ Q1 is defined as comprising the set of the polynomials of degree
less or equal to 1 for each of the variables x and y.

M3M4

M1 M2

G

Fig. 2.5 Elementary Square Mesh for Plane Finite Element
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Hence, any function p belonging to Q1 is written as:

p(x,y) = axy + bx + cy + d , (2.75)

where (a, b, c, d) represents any value and describes R4.

A simple examination of definition (2.75) confirms that the dimension of Q1 is
equal to 4.

2) The four linear forms which are then introduced are defined by:

σi : p→ p(Mi), ∀i = 1 to 4 . (2.76)

3) To determine the four functions pi,(i = 1 to 4) of the canonical basis of space Q1,
it is noted that these functions must satisfy the definition:

σ j(pi) = pi(Mj) = δi j .

Therefore, each function of the canonical basis is characteristic of a unique vertice
which defines the square G, that is, by taking the value of 1 at this characteristic
vertice and 0 at the three other vertices.

This is why the following factorisation properties are identified.

The properties of polynomial p1 are described below:

– p1 having a zero value on segment M2M3 defined by x = 1, the monomial (x−1)
must be factorised in the expression of p1.

– p1 having a zero value on segment M3M4 parameterised by y = 1, the mono-
mial (y−1) must be factorised in the expression of p1.

Therefore, the structure of the function of the canonical basis p1 is:

p1(x,y) = α(x−1)(y−1) , (2.77)

where, as usual, constant α is determined so that: p1(M1) = 1 .

Coefficient α is then worked out so as to be equal to 1 and function p1 of the
canonical basis is written as:

p1(x,y) = (x−1)(y−1) . (2.78)

An analogous reasoning enables the writing down of the three other functions of the
canonical basis of Q1 :

p2(x,y) = x(1− y), p3(x,y) = xy, p4(x,y) = y(1− x) . (2.79)

� Finite Q2 Element

1) Space P(G) ≡ Q2 is defined as comprising the set of the polynomials of degree
less or equal to 2 for each of the variables x and y.
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Hence, any function p belonging to Q2 is written as:

p(x,y) = ax2y2 + bx2y + cxy2 + dx2 + ey2 + f xy + gx + hy + i , (2.80)

where (a, b, c, d, e, f , g, h, i) represents any value and describes R9.

Definition (2.80) therefore implies that the dimension of Q2 is equal to 9.

2) To define the nine linear forms of σi, five additional discretisation nodes M5, M6,
M7, M8 and M9 are introduced, so that the first four nodes correspond to the middle
of each side of square G, while M9 indicates the centre of the square (See Fig. 2.6).

The nine linear forms σi,(i = 1 to 9) are then defined by:

σi : p→ p(Mi), ∀i = 1 to 9 . (2.81)

3) The same construction process, presented in the case of the quadrangular finite Q1
element, is strictly applied and the nine functions of the canonical basis pi,(i =
1 to 9) is easily obtained:

p1(x,y) = (1− x)(1−2x)(1− y)(1−2y) ,

p2(x,y) = x(2x−1)(1− y)(1−2y) ,

p3(x,y) = xy(2x−1)(2y−1) ,

p4(x,y) = y(1− x)(1−2x)(2y−1) ,

p5(x,y) = 4x(1− x))(1− y)(1−2y) ,

p6(x,y) = 4xy(2x−1)(1− y) ,

p7(x,y) = 4xy(1− x)(2y−1) ,

p8(x,y) = 4y(1− x)(1−2x)(1− y) ,

p9(x,y) = 16xy(1− x)(1− y) .

(2.82)

M3M7M4

M8 M6

M9

M1 M5 M2

Fig. 2.6 Elementary Square Mesh for Finite Q2 Element
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2.3.3 Finite Elements with Three Space Variables

� Cubic Finite Element

This last section is devoted to the presentation of a finite element, whose elemen-
tary mesh G is the cube [0,1]× [0,1]× [0,1] of vertices Mi,(i = 1 to 8), in the
space (O;x,y,z) (See Fig. 2.7).

1) Space Q1 is defined as comprising the set of the polynomials of degree less or
equal to one for each of variables x, y and z.

Therefore any function p belonging to Q1 is written as:

p(x,y,z) = axyz+ bxy + cxz+ dyz+ ex + f y +gz+h , (2.83)

where (a, b, c, d, e, f , g, h) represents any value and describes R8.

The examination of definition (2.83) clearly shows that the dimension of Q1 is
equal to 8.

2) The eight linear forms which are then introduced are defined by:

σi : p→ p(Mi), ∀i = 1 to 8 . (2.84)

3) The eight functions of the canonical basis pi,(i = 1 to 8) can constructed at
present, that is, by satisfying: σ j(pi)≡ pi(Mj) = δi j.

M7M8

M5 M6

M4 M3

M1 M2

z

y

x

Fig. 2.7 Cubic Mesh for Finite Element in Three Dimensional Space
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To proceed, it is sufficient to construct each of these eight polynomial func-
tions pi, by identifying the monomials that need to be factorised in the expression
of each of the polynomial functions.

The polynomial p1 which is characteristic of node M1 and which is zero at the
other seven nodes Mi is considered.

a) The monomial (1−x) is factorised in the expression of p1 so that it takes a zero
value at nodes M2, M3, M6 and M7.

b) The monomial (1−y) is factorised in the expression of p1 so that it takes a zero
value at nodes M3, M4, M7 and M8.

c) The monomial (1− z) is factorised in the expression of p1 so that it takes a zero
value at nodes M5, M6, M7 and M8 .

Therefore, the basis function p1 presents the following structure:

p(x,y,z) = α(1− x)(1− y)(1− z) , (2.85)

where constant α is determined so as to adjust the value of polynomial p1 to 1 within
its characteristic node M1.

However, at node M1, x = y = z = 0 implies that constant α equals 1 and func-
tion p1 is finally written as:

p(x,y,z) = (1− x)(1− y)(1− z) . (2.86)

An analogous reasoning enables the hop by hop formation of each polynomial of
the canonical basis of Q1.

The basis, thus constructed, is written as:

p1(x,y,z) = (1− x)(1− y)(1− z), p2(x,y,z) = x(1− y)(1− z) ,
p3(x,y,z) = xy(1− z), p4(x,y,z) = (1− x)y(1− z) ,
p5(x,y,z) = (1− x)(1− y)z, p6(x,y,z) = x(1− y)z ,
p7(x,y,z) = xyz, p8(x,y,z) = (1− x)yz .

(2.87)



Chapter 3

Variational Formulations

The purpose of this chapter is to develop and analyse the variational formulations for
a one-dimensional case, on the one hand and to apply the P1 elements of Lagrange,
on the other hand.

In fact, in accordance with the degree of complexity of the problems tackled, it
will be suggested to apply the following program of analysis, which is common to all
partial differential equations, whose approximation is sought by the finite elements
method:

• Step A: This first step aims at obtaining a variational formulation (VP) (or weak
formulation) for a given continuous problem (CP) (or strong formulation).

• Step B: The existence and uniqueness of weak solutions of the problem (VP) are
studied, (essentially the application of the Lax-Milgram theorem).

• Step C: This step is devoted to the analysis of the regularity of the weak solutions
of the variational problem (VP).

• Step D: This part deals with the equivalence of strong and weak formulations. It
is particularly shown that a weak solution of the variational problem (VP), which
moreover shows the regularity property as obtained in Step C, is a strong solution
of the continuous problem (CP).

• Step E: This step is devoted to the writing of the nodal equation system that
provides an approximation of the weak solution of the variational problem (VP).

Furthermore, nodal equations obtained will be compared to those obtained with the
finite differences scheme that are associated with the continuous problem (CP).

Hence, two distinct parts may be studied separately. A first theoretical part will be
devoted to the analysis of the existence, uniqueness and regularity of the solutions to
variational formulations as well as to the notion of equivalence between continuous
and variational problems (Steps A, B, C and D).

J. Chaskalovic, Finite Element Methods for Engineering Sciences 63
© Springer 2008
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The second part, which is totally different, will be devoted to obtaining an ap-
proximation of the different nodal equations, mainly using the Lagrange finite ele-
ment P1 and to the analysis of some schemes having finite differences.

Therefore, the reader may, at leisure, deal with the whole aspect of the problem
(both theoretical and numerical) or study either of these parts.

However, in the case where only the numerical part needs to be studied, it would
be suitable to refer to the theoretical part, or at least the first question, so as to elab-
orate and determine the proper variational formulation for the numerical application
of finite elements.

3.1 Dirichlet’s Problem

3.1.1 Statement

The aim of this problem is to propose a mathematical and numerical study of
the solution to a linear differential equation subjected to Dirichlet boundary
conditions.

Find u ∈ H2(0,1) being the solution to:

(CP)

{
−u′′(x)+ u(x) = f (x), 0≤ x≤ 1 ,

u(0) = u(1) = 0 ,
(3.1)

in which f is a given function belonging to L2(0,1).

Besides, it is pointed out that Sobolev’s space H2(0,1) is defined as:

H2(0,1) =
{

v :]0,1[→R,
dkv
dxk ∈ L2(0,1), ∀k = 0,1,2

}
. (3.2)

� Variational Formulation – Theoretical Part

1) Let v be a test function, defined from [0,1] to R, belonging to a functional
space V whose characteristics will be determined a posteriori.

Show that the continuous problem (CP) may be expressed in a variational
formulation (VP) in the form:

a(u,v) = L(v), ∀v ∈V .

The bilinear form a(., .), the linear form L(.) as well as the functional space V
need to be specified.
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2) Establish the existence and uniqueness of the weak solution of the varia-
tional problem (VP) in H1

0 (0,1), in which H1
0 (0,1) is defined as:

H1
0 (0,1) =

{
v :]0,1[→ R , v and v′ ∈ L2(0,1), v(0) = v(1) = 0

}
. (3.3)

3) Show that any weak solution of the variational problem (VP) also belongs
to H2(0,1).

4) To infer the equivalence between the strong formulation (CP) set in
H2(0,1) and the weak formulation (VP) considered in:

H1
0 (0,1)∩H2(0,1) .

� Numerical Part – Lagrange Finite P1 Elements

5) The approximation of the variational problem (VP) is worked out using
the Lagrange finite elements P1.

This is performed by introducing a regular mesh of [0,1] interval, of con-
stant step h, such as: {

x0 = 0, xN+1 = 1 ,

xi+1 = xi + h , i = 0 to N .
(3.4)

The approximation space Ṽ can now be defined as:

Ṽ =
{

ṽ/ṽ ∈C0([0,1]), ṽ|[xi,xi+1] ∈ P1, ṽ(0) = ṽ(1) = 0
}

, (3.5)

in which P1 ≡ P1([xi,xi+1]) refers to the polynomial space which is defined
over [xi,xi+1], having a degree less or equal to one.

– What is the dimension of Ṽ?

6) Let ϕi,(i = 1 to dimṼ ), be the canonical basis of Ṽ establishing
ϕi(x j) = δi j, in which δi j refers to the Krönecker symbol.

After having written the approximate variational formulation (ṼP), of so-
lution ũ, which is associated to the variational problem (VP), show that by
choosing:

ṽ(x) = ϕi(x), (i = 1 to dimṼ ) and ũ(x) = ∑
j=1,dimṼ

ũ jϕ j , (3.6)

the following system (ṼP) is obtained:

(P̃V) ∑
j=1,dimṼ

Ai jũ j = bi, ∀i ∈ {1, . . . ,dimṼ} , (3.7)
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where it has been observed that:

Ai j =
∫ 1

0
(ϕ ′i ϕ

′
j + ϕiϕ j)dx, bi =

∫ 1

0
f ϕidx . (3.8)

� Function ϕi Characteristic of a Node Strictly Interior at [0,1]

7) Given the regularity of the mesh, the generic nodal equation of the (ṼP)
system associated to any basis function ϕi, which is characteristic of a node
strictly interior at [0,1], is expressed as:

(ṼPInt)Ai,i−1ũi−1 + Ai,iũi + Ai,i+1ũi+1 = bi, (∀i = 1 to Kh) , (3.9)

where it has been assumed that:

Kh = dimṼ .

– Using the trapezium formula, calculate the 4 coefficients of (Ai j, bi).

8) Group the results together by writing down the corresponding nodal equa-
tion.

9) Show that the centrered finite differences scheme associated with the dif-
ferential equation of the continuous problem (CP) is obtained again. What is
its degree of precision?

It is pointed out that the trapezium quadrature formula is written as:

∫ b

a
ξ (s)ds� (b−a)

2
{ξ (a)+ ξ (b)} .
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3.1.2 Solution

� Variational Formulation – Theoretical Part

A.1) Let v be a test function, defined on [0,1] having real values and “sufficiently
regular”. Each time a variational formulation is needed, the regularity of the func-
tions v will be specified a posteriori, so that the formulation is significant enough to
be understood.

The differential equation of the continuous problem (CP) is then multiplied by v
and is integrated along the interval [0,1].

−
∫ 1

0
u′′vdx +

∫ 1

0
uvdx =

∫ 1

0
f vdx, ∀v ∈V . (3.10)

An integration by parts moreover leads to:
∫ 1

0
u′v′ dx + u′(0)v(0)−u′(1)v(1)+

∫ 1

0
uvdx =

∫ 1

0
f vdx, ∀v ∈V . (3.11)

It is now observed that the homogeneous boundary conditions for u, (u(0) = u(1) =
0) do not appear in the integral formulation (3.11).

In order to retain the whole information of the continuous problem (CP) in the
future variational formulation (VP), it would therefore be suitable to impose that
test functions v fulfil the boundary conditions:

v(0) = v(1) = 0 . (3.12)

Such a method indeed ensures that the solution u, as one of the functions v of the
searched variational space V , will have all the properties required at the boundary
conditions on [0,1].

The following formal variational formulation is thus obtained:

Find u belonging to V being the solution of:
∫ 1

0
(u′v′+ uv)dx =

∫ 1

0
f vdx, ∀v such that: v(0) = v(1) = 0 . (3.13)

In fact, this variational formulation is indeed formal, since it is necessary to specify
the regularity of the test functions, which enables the equ. (3.13) to acquire signifi-
cance, especially the convergence of the integrals of the equation.

This consequently leads to the specification of the functional space V within
which the solution u of the integral formulation (3.13) would be found out.

This is performed by making use of the Cauchy-Schwartz Inequality that pro-
duces the following inequality of control:

∣∣∣∣
∫ 1

0
u′v′dx

∣∣∣∣≤
∫ 1

0
|u′v′|dx≤

[∫ 1

0
|u′|2dx

]1/2

·
[∫ 1

0
|v′|2dx

]1/2

, (3.14)
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∣∣∣∣
∫ 1

0
f vdx

∣∣∣∣≤
∫ 1

0
| f v|dx≤

[∫ 1

0
| f |2dx

]1/2

·
[∫ 1

0
|v|2dx

]1/2

. (3.15)

Given that the inequality (3.14) can be rewritten by substituting u′ by u and v′ by v,
so as to process the integral bearing on the product uv by the same method.

Therefore, if the variational space V is determined as being the set of the func-
tions v belonging to L2(0,1) and whose first derivative also belongs to L2(0,1), the
variational equation (3.13) is correctly defined.

To conclude, and by adding the homogenous Dirichlet boundary condi-
tions (3.12), the variational space V , in which the solution u of the variational for-
mulation (VP) will be sought is nothing else but the Sobolev space H1

0 (0,1), which
is defined by (3.3). Finally, the variational formulation (VP) is written as:

(VP)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find u belonging to V being the solution of: a(u,v) = L(v), ∀v ∈V, where:

a(u,v) ≡
∫ 1

0

[
u′(x)v′(x)+ u(x)v(x)

]
dx ,

L(v) ≡
∫ 1

0
f (x)v(x)dx ,

V ≡ H1
0 (0,1) . (3.16)

A.2) In order to prove the existence and uniqueness of the solution pertaining to the
variational problem (VP) (3.16), the application of Lax-Milgram theorem 4 requires
the choice of a norm to be defined in the functional space H1

0 (0,1).

Yet, as H1
0 (0,1) ⊂ H1(0,1), it is natural to evaluate the size of the functions of

H1
0 (0,1) using the natural norm of H1(0,1).

In other words, the following formula is proposed:

∀v ∈H1
0 (0,1) : ‖v‖2

H1 ≡
∫ 1

0
v2dx +

∫ 1

0
v′2dx≡ ‖v‖2

L2 +‖v′‖2
L2 . (3.17)

It is then seen that the bilinear form a(., .) is none other than the inner product from
which the H1 norm (3.17) is obtained:

∀v ∈ H1(0,1) : a(v,v)≡ (v,v)H1 = ‖v‖2
H1 ,

in which (., .)H1 has been written as the inner product in H1.

Under these conditions, the Sobolev spaces H1(0,1) and H1
0 (0,1), (as a sub-

space of H1(0,1), also is a Hilbert space for the norm (3.17)), (the works of
P. A. Raviart [7] or H. Brézis [1] may be referred to for clarifications).

Moreover, the continuity constant for the bilinear form a(., .) can be then easily
be obtained since it only necessary to use the Cauchy-Schwartz Inequality to find
the inner product (., .)H1 :

|a(u,v)| ≡ |(u,v)H1 | ≤ (u,u)1/2
H1 · (v,v)1/2

H1 = ‖u‖H1 · ‖v‖H1 . (3.18)
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In other words, the continuity constant for the form a(., .) is equal to one.

The continuity for the linear form L is furthermore obtained by interpreting the
inequality check (3.15) with the use of the H1 norm:

| L(v) |2≤
[∫ 1

0
| f (x)v(x)|dx

]2
≤ ‖ f‖2

L2‖v‖2
L2 ≤ ‖ f‖2

L2‖v‖2
H1 . (3.19)

Hence, the continuity constant that arises for the linear form L is equal to the
L2-norm of the second member f .

Finally, the property of the V -ellipticity for the bilinear form a(., .) is immediate
if it is observed that:

a(v,v) = ‖v′‖2
L2 +‖v‖2

L2 = ‖v‖2
H1 ≥ ‖v‖2

H1 , (3.20)

which means that the ellipticity constant is also equal to one.

The Lax-Milgram theorem then implies that there is strictly only one function
belonging to H1

0 (0,1), which is the solution of the variational problem (VP).

� Remark

The application of the Lax-Milgram could have been perfectly performed by
choosing a different norm. Specifically, for this variational problem (VP) estab-
lished in H1

0 (0,1), a more precise norm exists to describe the elements of this
Sobolev space.

Indeed, if the norm is changed by establishing:

∀v ∈ H1
0 (0,1) : ‖v‖H1

0
≡
[∫ 1

0
v′(x)2dx

]1/2

. (3.21)

It is then easily shown that (3.21) is a norm for H1
0 (0,1).

In particular, the first property of the norms is fulfilled, given that any function v
belonging to H1

0 (0,1) is zero on the border of its definition interval.

Hence, if v is a function of H1
0 (0,1) such that ‖v‖H1

0
= 0, v′ is therefore zero

on [0,1]. Consequently, v is a constant on the entire interval [0,1] that can be mea-
sured, especially when x = 0. This then implies that v is identically zero on [0,1].

It will be noted that the other properties of the norm H1
0 (0,1) may be immediately

established.

A.3) To achieve results of complementary regularity for weak solutions to a vari-
ational problem (VP) is often difficult and therefore requires the availability of
a fairly sophisticated mathematical tool.
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For the present work, the study is limited to simple one-dimensional case for
which the mathematical tools that will be used are referred to in Chap. 1, para-
graph 1.1, sect. 1.1.4.

Thus, let u be an element of H1
0 (0,1), solution to the variational problem (VP)

and the following is obtained:
∫ 1

0
u′v′dx =

∫ 1

0
( f −u)vdx, ∀v ∈ H1

0 (0,1) . (3.22)

The function space C1
0(]0,1[) is then introduced and defined by:

C1
0(]0,1[)≡ {v : [0,1]→R, v ∈C1(]0,1[), Supp v⊂]0,1[

}
, (3.23)

where Supp v denotes the support of function v.

Therefore function v from C1
0(]0,1[) can be chosen in the equality (3.22), since

this equality is in fact, a series of variational equations valid for all functions v
belonging to H1

0 (0,1) and containing C1
0(]0,1[).

Moreover, if function g is introduced and defined by g = f −u, the result is:

g ∈ L2(0,1)⊂ L1(0,1)⊂ L1
loc(0,1) , (3.24)

where space L1
loc(0,1) is defined by:

Let any K be a closed subset strictly included in [0,1], then:

Given v ∈ L1
loc(0,1) then v ∈ L1(K) . (3.25)

Thus, the variational equations family (3.22) can be expressed in C1
0(]0,1[), (accord-

ing to lemma 1), in the form of:
∫ 1

0
u′v′dx =

∫ 1

0
gvdx =−

∫ 1

0
Gv′dx, ∀v ∈C1

0(]0,1[) , (3.26)

where G is a primitive of g.

It is then expressed (3.26) in the form:
∫ 1

0
(u′+ G)v′dx = 0, ∀v ∈C1

0(]0,1[) . (3.27)

Having finally obtained u′+ G ∈ L2(0,1), since u belongs to H1(0,1), on one part,
and G belongs to C0(]0,1[)∩H1(0,1) on the other, the result obtained, according to
the same lemma 2, is u′+ G which belongs to L1

loc(0,1).

It is then possible to apply the lemma 1 to the variational equation (3.27), which
leads to:

u′+ G = Cte . (3.28)

Thus, it is seen that u′ is a function of H1(0,1), as the difference of a constant and
of the G function.
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It is finally inferred that u belongs to H2(0,1).

A.4) It is now important to establish the equivalence between the solution of the
continuous problem (CP) and that of the variational problem (VP).

Clearly, if u is a solution to the continuous problem (CP) looked for in H2(0,1)
then u is a weak solution to the variational problem (VP).

For this to happen, it is necessary that the construction process of the variational
formulation (VP) be re-examined and be stated to be licit, (specially using the in-
tegration formula by parts, cf. Chapter 1, theorem 4), being given that u belongs
to H2(0,1) and v to H1

0 (0,1).

The reciprocal is then established. Let u be the solution belonging to
H1

0 (0,1)∩ H2(0,1) of the variational problem (VP).

The integration formula is used by parts in the reverse order to the one used to
obtain the variational formulation.

This results in:
∫ 1

0
(−u′′+ u− f )vdx = 0, ∀v ∈H1

0 (0,1) . (3.29)

The particular functions v belonging to D(0,1), which are the functions v belong-
ing to C∞(]0,1[) whose support is strictly included in interval ]0,1[, are then chosen
from the variational equations (3.29). This choice is legitimate since
D(0,1)⊂ H1

0 (0,1).

The density theorem 2 is then used as follows, rewriting equ. (3.29) in space D(0,1):

∫ 1

0
(−u′′+ u− f )vdx = 0, ∀v ∈D(0,1) . (3.30)

It would be better to have the last equality family (3.30) for any v function belonging
to L2(0,1) in order to choose v = −u′′+ u− f , as special function of L2(0,1) to
conclude.

Therefore let ϕ be any function belonging to L2(0,1) and according to the density
theorem 2, D(0,1) is dense in L2(0,1). Then, there exists a sequence of functions ϕn

belonging to D(0,1) and that converge towards ϕ , according to the L2 norm:

lim
n→∞

[∫ 1

0
|ϕn−ϕ |2 dx

]
= 0 . (3.31)

However, for any function of the sequence ϕn belonging to D(0,1), the equal-
ity (3.30) occurs by choosing v = ϕn:

∫ 1

0
(−u′′+ u− f )ϕn dx = 0, ∀n ∈ N . (3.32)
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10 +Ni xxx

Fig. 3.1 Profile of a Piecewise Affine Function

It is then possible to obtain the same property for the functions ϕ of L2(0,1) by the
following method:∣∣∣∣
∫ 1

0
ψ ·ϕ
∣∣∣∣=
∣∣∣∣
∫ 1

0
ψ · (ϕ−ϕn)

∣∣∣∣≤
[∫

Ω
|ψ |2
]1/2

·
[∫ 1

0
|ϕn−ϕ |2

]1/2

, (3.33)

where it was stated: ψ =−u′′+ u− f .

n is made to tend towards +∞ in inequality (3.33), which demonstrates that:∫ 1

0
ψ ·ϕ dx = 0, ∀ϕ ∈ L2(0,1) . (3.34)

The demonstration now ends by choosing function as one of all functions of L2(0,1)
which is equal to: ϕ∗ =−u′′+ u− f .

It is then deduced that:

−u′′+ u + f = 0 in L2(0,1) . (3.35)

Moreover, if the second member f belongs to L2(0,1)∩C0(]0,1[), then the differ-
ential equation is satisfied for any x belonging to ]0,1[ and the solution u is the
classical solution to the continuous problem (CP) belonging to C2(]0,1[).

� Numerical part – Lagrange Finite Elements P1

A.5) The dimension of the approximation space Ṽ can be determined in various
ways. The simplest and smartest way is to state that the functions ṽ of Ṽ are basically
pecked lines affined by full mesh [xi,xi+1] and cancelling each one when x = 0 and
when x = 1, (see Fig. 3.1).

Hence, having (N + 2) points of discretisation for the entire mesh of inter-
val [0,1], two Ṽ functions stand out because of their difference in values that may
be seen at N interior points (x1,. . . , xN).

Any function ṽ of Ṽ also needs to satisfy, ṽ0 = ṽN+1 = 0.

In other words, a function ṽ belonging to Ṽ is entirely determined by the N-tuple
(ṽ1, . . . , ṽN).

This implies that the space is isomorphic to RN . In conclusion, it can be deduced
that the dimension of Ṽ is equal to N.
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Fig. 3.2 Basis Functions ϕi−1, ϕi and ϕi+1

A.6) The approximated variational formulation is obtained by substituting the
approximation functions (ũ, ṽ) to the (u,v) functions in the variational formula-
tion (VP).

Moreover, the approximation expressions given by (3.6) are used and the follow-
ing is obtained:

Find the numerical sequence (ũ j),( j = 1 to N), solution to:

∑
j=1,N

[∫ 1

0

(
ϕ ′i ϕ ′j + ϕiϕ j

)
dx

]
ũ j =
∫ 1

0
f ϕi dx, ∀i = 1 to N . (3.36)

The expressions of Ai j, and b j corresponding to the formulas (3.8) are then obtained
by identification.

� Function ϕi Characteristic of a Node Strictly Interior at [0,1]

A.7) The basis functions ϕi, characteristic of nodes strictly interior to integration
interval [0,1], are now considered.

The generic equation of system (3.36) has, a priori, non zero terms, except those
corresponding to ϕ j functions whose support intercepts those of the ϕi function
considered (see Fig. 3.2).

Thus, the basis functions concerned are: ϕi−1, ϕi and ϕi+1.

This explains why the equation (ṼPint), only has terms Ai,i−1, Ai,i and Ai,i+1 and is
expressed according to (3.9).

� Approximate Calculation of Coefficients Aij, j = i−1, i, i+ 1 .

a) Approximation of coefficient Aii.

Aii =
∫ 1

0

(
ϕ ′2i + ϕ2

i

)
dx =

∫
Supp ϕi

(
ϕ ′2i + ϕ2

i

)
dx ,

=
∫ xi

xi−1

(
ϕ ′2i + ϕ2

i

)
dx +

∫ xi+1

xi

(
ϕ ′2i + ϕ2

i

)
dx ,

�
(

1
h2 ×h

)
+

h
2

(0 + 1) +
(

1
h2 ×h

)
+

h
2

(1 + 0) ,

Aii � 2
h

+ h .

(3.37)
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This was achieved by considering the fact that the basis functions ϕi of are piece-
wise affines. Thereafter, the derivatives ϕ ′i are constant on each mesh having the
form [xi,xi+1].

The integrals bearing on those derivatives can then be calculated either exactly
or by using the trapezium quadrature formula being exact for constants func-
tions.

b) Approximation of coefficient Ai,i−1.

Ai,i−1 =
∫ 1

0

(
ϕ ′i ϕ

′
i−1 + ϕiϕi−1

)
dx ,

=
∫

Supp ϕi−1∩Supp ϕi

(
ϕ ′i ϕ ′i−1 + ϕiϕi−1

)
dx ,

�
(
− 1

h2 ×h

)
+

h
2

[(0×1)+ (1×0)] ,

Ai,i−1 � −1
h

.

(3.38)

c) Approximation of coefficient Ai,i+1.

Calculation of the coefficient Ai,i+1 is easily obtained as long as the following
symmetrical properties are observed:

– Matrix A of coefficient Ai j is symmetrical: Ai, j = A j,i.

– The mesh over interval [0,L] is translation invariant as a consequence of its
uniform step of constant discretisation h.

It then becomes:

Symmetry Invariant
↓ ↓

Ai,i−1 = Ai−1,i = Ai,i+1 � −1
h

.

� Estimation of the Second Member bi

The second member bi is calculated by considering that every basis function ϕi,
characteristic of a strictly interior node has a support consisting of the union of
the [xi−1,xi] and [xi,xi+1] intervals, (see Fig. 3.2).

It then becomes:

bi =
∫ 1

0
f ϕi dx =

∫ xi

xi−1

f ϕi dx +
∫ xi+1

xi

f ϕi dx ,

� h
2

[0 + fi]+
h
2

[ fi + 0] ,

bi � h fi .

(3.40)



3.1 Dirichlet’s Problem 75

A.8) The previous results (3.37)–(3.40) are then grouped to obtain the corresponding
nodal equation:

− ũi−1−2ũi + ũi+1

h2 + ũi = fi, (i = 1 to N) . (3.41)

A.9) Discretization by finite differences of second order differential equation of the
continuous problem (CP) is classical.

The method uses the Taylor’s formula after choosing to express the differential
equation at the discretisation point xi:

−u′′ (xi)+ u(xi) = f (xi) ,(i = 1 to N) . (3.42)

Taylor’s formula enables the substitution of the second derivative u′′ at point xi by
algebraic combination, using different values of the unknown u in different proximal
points of the mesh.

To obtain an order which is consistent with the finite elements method, the pro-
gressive form and the regressive form of the Taylor’s formula are used:

u(xi+1) = u(xi)+ hu′(xi)+
h2

2
u′′(xi)+

h3

6
u′′′(xi)+ O(h4) , (3.43)

u(xi−1) = u(xi)−hu′(xi)+
h2

2
u′′(xi)− h3

6
u′′′(xi)+ O(h4) . (3.44)

The addition of equs. (3.43) and (3.44) is then performed.

It then becomes:

u′′(xi) =
u(xi+1)−2u(xi)+ u(xi−1)

h2 + O(h2) . (3.45)

The expression of the second derivative of u (3.45) is substituted at point xi in the
differential equation (3.20) to obtain:

−u(xi+1)−2u(xi)+ u(xi−1)
h2 + u(xi) = f (xi)+ O

(
h2) , (i = 1 to N) . (3.46)

The traces ui of u, (ui ≡ u(xi)) are replaced at nodes xi, by the approximations
ũi,(ũi ≈ ui), in order to preserve the equality between both members of (3.46) when
suppressing the infinitely small O(h2).

This substitution leads to an exact correspondence between the scheme with finite
differences and the nodal equation (3.41).

It is obvious that the scheme with finite differences (3.41) is of the second order,
considering the approximation process that was explained earlier.

As a matter of fact, if the u(xi) values were substituted by the ũi values, the result
would be the differential equation (3.42) as closely as possible by O(h2).

This is the reason why the scheme having finite differences (3.41) is the second
order.
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3.2 The Neumann Problem

3.2.1 Statement

The aim of this problem is to propose a mathematical and numerical study of
the solution to a linear differential problem, subjected to Neumann boundary
conditions.

Thus, let u be a function of the real variable defined on [0,1] and has
values in R. The interest is on the solution to the continuous problem (CP)
defined by:

Find u ∈ H2(0,1) as solution to:

(CP)

{
−u′′(x)+ u(x) = f (x), 0≤ x≤ 1 ,

u′(0) = u′(1) = 0 ,
(3.47)

where f is a given function belonging to L2(0,1).

� Variational Formulation – Theoretical Part

1) Let v be a test function defined on [0,1] having real values and belonging
to a variational space V .

Show that the continuous problem (CP) can be written in a variational
formulation (VP) like the following:

a(u,v) = L(v), ∀v ∈V .

The bilinear form a(., .), the linear form L(.) and the functional space V will
be specified.

2) Establish the existence and uniqueness of the weak solution of the varia-
tional problem (VP) in H1(0,1).

3) Show that any weak solution to the variational problem (VP) also belongs
to H2(0,1).

4) Deduce from it the equivalence between the strong formulation of the
problem (CP) set in H2(0,1) and the weak formulation of the variational
problem (VP) considered in H1(0,1)∩H2(0,1).

� Numerical Part – Lagrange Finite Elements P1

5) The approximation of the variational problem (VP) is performed by using
Lagrange finite elements P1.
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To make that happen, we introduce a regular mesh of the interval [0,1]
with a constant step h, so that:

{
x0 = 0, xN+1 = 1 ,
xi+1 = xi + h , i = 0 to N .

(3.48)

The approximation space Ṽ is now defined using:

Ṽ =
{

ṽ : [0,1]→ R, ṽ ∈C0([0,1]), ṽ|[xi,xi+1] ∈ P1
}

, (3.49)

where P1 ≡ P1([xi,xi+1]) refers to the space of polynomials defined over
[xi,xi+1] having a degree less than or equal to one.

– What is the dimension of Ṽ?

6) Let ϕi,(i = 1 to dimṼ ), be the canonical basis of Ṽ verifying ϕi(x j) = δi j,
where δi j refers to the Kronecker symbol.

After having written the approximate variational formulation (ṼP), hav-
ing a solution and associated with the variational problem (VP), show that
by selecting:

ṽ(x) = ϕi(x), (i = 1 to dimṼ ) and ũ(x) = ∑
j=1,dimṼ

ũ jϕ j , (3.50)

the following (ṼP) system is obtained:

(ṼP) ∑
j=1,dimṼ

Ai jũ j = bi, ∀i ∈ {1, . . . ,dimṼ} , (3.51)

where the following was noted:

Ai j =
∫ 1

0
(ϕ ′i ϕ

′
j + ϕiϕ j)dx, bi =

∫ 1

0
f ϕidx . (3.52)

� Function ϕi Characteristic of Node Strictly Interior at [0,1]

7) Given the mesh regularity, the generic nodal equation of the (ṼP) system
associated with any basis function ϕi,(i = 1 to dimṼ − 2), characteristic of
a node interior at [0,1] is written as:

(ṼPInt) Ai,i−1ũi−1 + Ai,iũi + Ai,i+1ũi+1 = bi, (∀i = 1 to dimṼ −2) .
(3.53)

– Using the trapezium formula, calculate the 4 coefficients (Ai j, bi).

8) Group the results together by writing the corresponding nodal equation.
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9) Show that the centred finite differences scheme associated with the differ-
ential equation of the continuous problem (CP) is obtained again. What is its
order of precision?

Remember that the trapezium quadrature is written as:

∫ b

a
ξ (s)ds� (b−a)

2
{ξ (a)+ ξ (b)} .

� Function ϕ0 Characteristic of the Node x0 = 0

10) When considering the basis function ϕ0 characteristic of the node x0 = 0,
show that the corresponding nodal equation of the (ṼP) system is written as:

(ṼP0) A0,0ũ0 + A0,1ũ1 = b0 . (3.54)

– Using the trapezium formula, calculate the 3 coefficients A0,0, A0,1

and b0.

11) Write the corresponding nodal equation.

12) Show that the finite differences scheme associated with the Neumann
condition in x = 0 is obtained again. What is its order of precision?

� Function ϕN+1 Characteristic of the Node xN+1 = 1

13) Now, consider the basis function ϕN+1 characteristic of the node
xN+1 = 1.

Show that the nodal equation associated with the (ṼP) system is written
as:

(ṼPN+1) AN+1,NũN + AN+1,N+1ũN+1 = bN+1 . (3.55)

– Using the trapezium formula, calculate the 3 coefficients AN+1,N+1,
AN+1,N and bN+1.

14) Write the corresponding nodal equation.

15) Show that the finite differences scheme associated with the Neumann
condition in x = 1 is obtained again. What is its order of precision?
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3.2.2 Solution

� Variational Formulation – Theoretical Part

A.1) Let v be a test function defined on [0,1] having real values and “sufficiently
regular”.

As already mentioned in the presentation of the Dirichlet problem (see para-
graph [3.1]), the regularity of functions v will be specified a posteriori in order to
give sense to the variational formulation, when the latter is established.

The differential equation of the continuous problem (CP) is multiplied by v then
integrated over the interval [0,1].

−
∫ 1

0
u′′vdx +

∫ 1

0
uvdx =

∫ 1

0
f vdx, ∀v ∈V . (3.56)

An integration by parts then gives the following:

∫ 1

0
u′v′dx + u′(0)v(0)−u′(1)v(1)+

∫ 1

0
uvdx =

∫ 1

0
f vdx, ∀v ∈V . (3.57)

Here, the homogenous Neumann boundary conditions defined in the continuous
problem (CP), (u′(0) = u′(1) = 0), appear in the integral formulation (3.57).

As a result and by considering the above two boundary conditions, the following
formulation is obtained:

Find u belonging to V being the solution to:

∫ 1

0
(u′v′+ uv)dx =

∫ 1

0
f vdx, ∀v ∈V . (3.58)

At this stage, the formulation (3.58) is only formal since the various integrals ap-
pearing in it have no reason to be convergent.

It is then observed that this variational formulation is strictly analogous to the one
obtained within the framework of the Dirichlet problem – see paragraph [3.1], (3.13)
– except the boundary conditions that should no longer be imposed on the test func-
tions v within the framework of the Neumann problem treated here.

That is the reason why, if the functional analysis presented in paragraph [3.1]
is used, a sufficient condition guaranteeing the convergence of the integrals in the
variational formulation (3.58) consists in defining the variational space V as follows:

V ≡ H1(0,1)≡ {v : [0,1]→R, v ∈ L2(0,1), v′ ∈ L2(0,1)} . (3.59)
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Finally, the variational problem (VP) is written as:

(VP)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find u belonging to V solution of: a(u,v) = L(v), ∀v ∈V, where:

a(u,v) ≡
∫ 1

0

[
u′(x)v′(x)+ u(x)v(x)

]
dx ,

L(v) ≡
∫ 1

0
f (x)v(x)dx ,

V ≡ H1(0,1) .

(3.60)

A.2) The existence and uniqueness of the variational problem (VP) (3.60) are
demonstrated by applying the Lax-Milgram theorem (lemma 4).

To make that happen, choosing one norm to be defined on the functional space
H1(0,1) represents one of the key points in the application of the Lax-Milgram
Theorem.

Then the choice is to measure the dimension of functions v belonging to H1(0,1)
by the natural norm defined by:

∀v ∈ H1(0,1) : ‖v‖2
H1 ≡
∫ 1

0
v(x)2dx +

∫ 1

0
v′(x)2dx≡ ‖v‖2

L2 +‖v′‖2
L2 . (3.61)

The norm being selected, the process that consists in verifying the various hypothe-
ses of the Lax-Milgram theorem is strictly similar to the one presented for the
Dirichlet problem, (see paragraph [3.1]).

The following is a point-by-point summary of this verification:

– The space H1(0,1) is a Hilbert space for the norm (3.61); the inner product re-
sulting from this norm coincides exactly with the bilinear norm a(., .) defined
by (3.60).

– The bilinear form a(., .) is continuous on H1(0,1)×H1(0,1); the continuity con-
stant being equal to one.

– The linear form L(.) defined by (3.60) is continuous on H1(0,1); the continuity
constant being equal to the L2-norm of the second member f .

– The form a(., .) is H1-elliptic and the ellipticity constant is equal to one.

The application of the Lax-Milgram theorem thus implies the existence of one
and only one function u belonging to H1(0,1), the solution to the variational prob-
lem (VP) defined by (3.60).

A.3) Once again, the Dirichlet problem [3.1] will be used to treat this question.

In fact, as mentioned above, achieving complementary regularity results for weak
solutions to the variational problem (VP) may require sufficiently sophisticated
mathematical tools.
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That is the reason why the present study, being limited to a one-dimensional case,
refers to mathematical results mentioned in Chap. 1, paragraph 1.1, sect. 1.1.4.

So, let u be an element of H1(0,1), solution to the variational problem (VP), and
the following is obtained:

∫ 1

0
u′v′dx =

∫ 1

0
( f −u)vdx, ∀v ∈ H1(0,1) . (3.62)

Among the functions v belonging to H1(0,1), only those belonging to C1
0(]0,1[),

(C1
0(]0,1[)⊂ H1(0,1)), are then selected.

Moreover, by introducing the function g defined by g = f − u, the following is
obtained:

g ∈ L2(0,1)⊂ L1(0,1)⊂ L1
loc(0,1) , (3.63)

where the space L1
loc(0,1) is defined by:

Let any K be a closed subset strictly included in [0,1], then:

Given v ∈ L1
loc (0,1) then v ∈ L1 (K) . (3.64)

Thus the family of variational equations (3.62) can be written within C1
0(]0,1[) in

the following form:

∫ 1

0
u′v′dx =

∫ 1

0
gvdx =−

∫ 1

0
Gv′dx, ∀v ∈C1

0(]0,1[) , (3.65)

where G is a primitive of g. (To make that happen, the lemma 2 would be used).

(3.65) is then written in the following form:

∫ 1

0
(u′+ G)v′dx = 0, ∀v ∈C1

0(]0,1[) . (3.66)

Having finally obtained u′+G ∈ L2(0,1), (since, on one hand u belongs to H1(0,1)
and on the other hand G belongs to C0(]0,1[) ∩ H1(0,1)), still according to
lemma 2, u′+ G belonging to L1

loc(0,1) is obtained in the same manner.

Then, lemma 1 may be applied to the variational equation (3.66), leading to:

u′+ G = Cte . (3.67)

Thus, it happens that u′ is a function belonging to H1(0,1) as the difference of
a constant and of the function G.

Finally, it is inferred that u belongs to H2(0,1).



82 3 Variational Formulations

A.4) This last question of the theoretical part is dedicated to the equivalence between
the solution to the continuous problem (CP) and the solution to the variational prob-
lem (VP).

The direct way is simple since if u is a solution to the continuous problem (CP)
searched for in H2(0,1), then u is a weak solution to the variational problem (VP).

To do so, it is only necessary to revert back to the process that enabled the estab-
lishment of the variational formulation (VP) and to note that the latter makes sense,
(in particular by using the integration-by-parts formula, see Chap. 1, theorem 4),
given that u belongs to H2(0,1) and v to H1(0,1).

The reciprocal is now calculated. In the variational problem (VP), let u be a so-
lution belonging to H2(0,1) – any solution u to the variational problem henceforth
belongs to H2(0,1) according to the previous question.

The integration-by-parts formula is then used in the inverse direction to the one
that enabled the variational formulation to be obtained and this gives:

∫ 1

0
(−u′′+ u− f )vdx = 0, ∀v ∈ H1(0,1) . (3.68)

It is then noticed that the formulation (3.68) is identical to the one considered in
the Dirichlet problem [3.1] except the functional framework (H1

0 in the Dirichlet
problem and H1which is here considered in the Neumann problem).

It is then only necessary to observe the functional inclusion H1
0 ⊂ H1 even if it

is trivial, in order to strictly apply the whole methodology that has been presented.
(see Dirichlet problem [3.1], question No. 4).

The essential points treated in the rest of the demonstration is thus pointed out:

– In the equality (3.68), functions v belonging to D(0.1) are selected since
D(0,1)⊂ H1(0,1).

– The density theorem 2 is used: D(0,1) is dense in L2(0,1).

– Then, it is shown that the equality (3.68) no longer takes place in H1(0,1) but in
a bigger space i. e. in L2(0,1).

– It is then possible to choose from all the v functions belonging to L2(0,1) and
involved in the equation (3.68), the one that exactly equals: v∗ =−u′′+ u− f .

If in addition, the second member f belongs to L2(0,1)∩C0(]0,1[) then the dif-
ferential equation is satisfied for any x ∈]0,1[ and the solution u is the classical
solution to the continuous problem (CP) belonging to C2(]0,1[).

� Numerical Part – Lagrange Finite Elements P1

A.5) To calculate the dimension of space Ṽ , the following remark is necessary:

The definition (3.49) of the approximation space is almost similar to the one
considered in the Dirichlet problem (see problem of [3.1], question No.5, (3.5)).
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Fig. 3.3 Profile of a Piecewise Affine Function

Thus, using the demonstration performed within the framework of the Dirichlet
problem, it is only necessary to note that in space Ṽ defined by (3.49), two liberty
degrees, due to the two values of any function ṽ of Ṽ in x = 0 and in x = 1, add two
units to the dimension found in the Dirichlet problem.

In other words, finding any function ṽ of Ṽ means finding its trace
(ṽ0, ṽ1, . . . , ṽN , ṽN+1) in (N + 2) discretisation points of the mesh in the inter-
val [0,1], i. e. (x0,x1, . . . ,xN ,xN+1) which on their own fix the definition of ṽ
(see Fig. 3.3).

As a result, space Ṽ is isomorphic to RN+2 and the dimension of Ṽ is equal
to N + 2.

A.6) As usual, the approximate variational formulation (ṼP) is obtained by substi-
tuting the approximate functions (ũ, ṽ) for functions (u,v) in the variational formu-
lation (VP).

Moreover, the expressions supplied by the formula (3.50) are used.

Thus, the approximate variational formulation (ṼP) is written as:

(VP)

⎡
⎢⎣

Find the numerical sequence (ũ j) , ( j = 0 to N + 1) , solution to:
N+1

∑
j=0

[∫ 1

0

(
ϕ ′i ϕ ′j + ϕiϕ j

)]
ũ j =
∫ 1

0
f ϕi(x), ∀i = 0 to N + 1 .

(3.69)

The expressions of Ai j, and b j corresponding to the formulas (3.52) are then ob-
tained by identification.

� Function ϕi characteristic of a node strictly interior at [0,1]

A.7) When observing variational formulation (ṼP) defined by (3.69), it appears
that, in the linear system consecutive equations (N + 2), the “interior” N equations
corresponding to the values of j ranging from 1 to N, are totally identical to those
found in the Dirichlet problem, (see paragraph 3.1, question 7).
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As mentioned previously in the theoretical part, only the functional frame differs
between the two formulation in order to consider the change in boundary conditions.

It is then expected to find the same approximation described by the nodal equa-
tions associated to the basis functions ϕi, characteristic of nodes strictly interior
to [0,1] mesh interval.

In other words, the nodal equation (3.53) coefficients have the following value:

Aii ≡ 2
h

+ h, Ai,i−1 = Ai,i+1 ≡−1
h
, bi ≡ h fi . (3.70)

This is the result of the variational formulation identical formalism between the
Dirichlet and the Neumann problem, for basis functions ϕi characteristic of nodes
strictly interior at interval [0,1].

A.8) The nodal equation of the approximate variational problem (ṼP) corresponding
to the basis function ϕi, which is characteristic of a strictly interior node xi and
written as:

− ũi−1−2ũi + ũi+1

h2 + ũi = fi, (i = 1 to N) . (3.71)

A.9) For the same reasons previously mentioned in the last questions, the analogy
made with the Dirichlet problem ensures that the results, concerning the finite dif-
ferences scheme obtained similarly in the present case, are at one’s disposal.

Therefore, the finite differences scheme, with application of a second order dis-
cretisation to the differential equation of the continuous problem (CP), precisely
corresponds to the nodal equation (3.71).

� Function ϕ0 Characteristic of the Node x0 = 0

A 10) The generic equation (3.69) of the approximate variational problem (ṼP),
corresponding to the basis function ϕ0, characteristic of the node x0, is written as:

(ṼP0) A00ũ0 + A01ũ1 = b0 . (3.72)

This results from the fact that when considering the approximate variational prob-
lem (ṼP) (3.69) in the case of the basis function ϕ0, the summation upon the other
basis functions ϕ j only leads to zero contribution.

This is again the consequence of the position relative to the support of each of
the basis functions ϕ j as regards to the one of the basis function ϕ0, (see Fig. 3.4).

� Approximate Calculation of the Coefficients A00 and A01

a) Approximation of the coefficient A00.

The calculation of the coefficient is performed in a way analogous to that pre-
sented for the calculation of the coefficient Aii in the answer to the question 7.
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Fig. 3.4 Basis Functions ϕ0 and ϕ1

However, there is a difference since the basis function ϕ0 comprises a sup-
port, which is solely constituted of the mesh [x0,x1] while the basis functions
ϕi, (i = 1,N), have a support which is made up of two meshes, [xi−1,xi] and
[xi,xi+1].

The working out of the coefficient A00 is therefore performed as follows:

A00 =
∫ 1

0

(
ϕ ′20 + ϕ2

0

)
dx =
∫

Supp ϕ0

(
ϕ ′20 + ϕ2

0

)
dx

=
∫ x1

x0

(
ϕ ′20 + ϕ2

0

)
dx ,

�
(

1
h2 ×h

)
+

h
2

(0 + 1). (3.73)

Thus finally:

A00 � 1
h

+
h
2

. (3.74)

b) Approximation of the coefficient A01.

A01 =
∫ 1

0

(
ϕ ′0ϕ ′1 + ϕ0ϕ1

)
dx =
∫

Supp ϕ0∩ Suppϕ1

(
ϕ ′0ϕ ′1 + ϕ0ϕ1

)
dx ,

�− 1
h2 ×h +

h
2

[(0×1)+ (1×0)]. (3.75)

Results consequently in:

A01 �−1
h

. (3.76)

It will be noted that the approximation of the coefficient A01 represents a partic-
ular case of the generic calculation presented above (see paragraph 3.1, (3.38),
in so far as the discretisation step h is constant.

Therefore, the integration of the basis function ϕ0 against the basis function ϕ1

along the interval [x0,x1] is completely equivalent to the integration of ϕi

against ϕi+1 along the interval [xi,xi+1].
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To prove this, it should be possible to carry out the substitution of the adequate
variable by associating the interval [xi,xi+1] with the interval [x0,x1] and to ob-
serve the equality between the coefficients Ai,i+1 and A01.

� Evaluation of the Second Member b0

The evaluation of the second member b0 is performed according to the scheme sim-
ilar to the one presented for the second member bi (see paragraph 3.1, (3.40)).

Therefore, the following is obtained:

b0 =
∫ 1

0
f ϕ0 dx =

∫ x1

x0

f ϕ0 dx� h
2

[0 + f0]� h
2

f0 . (3.77)

A.11) The results (3.73)–(3.77) are consequently gathered to obtain the correspond-
ing nodal equation associated with the function of ϕ0, characteristic of the node x0.

(
1
h

+
h
2

)
ũ0− 1

h
ũ1 =

h
2

f0 . (3.78)

A.12) To determine the finite differences scheme which discretises the Neumann
condition when x0 = 0,(u′(x0) = 0), it can be observed that, if it were neces-
sary to maintain the second order of discretisation obtained for the finite differ-
ences scheme (3.72), associated with differential equation of the continuous prob-
lem (CP), inside the interval [0,1], the Taylor’s expansion that will be studied must
be written till the third order.

Therefore, the following Progressive Taylor’s Expansion will be written as fol-
lows:

u(x1) = u(x0)+ hu′(x0)+
h2

2
u′′(x0)+ O(h3) . (3.79)

It is then possible to replace the value of the first derivative which is zero when
x0 = 0 (since it concerns the Neumann condition), still, as usual, in the case of the
application of such a method, there appears the second derivative of u at the point x0.

Therefore, the differential equation of the continuous problem (CP) can be as-
sumedly written till the border of the interval, namely, here, when x0 = 0:

−u′′(x0)+ u(x0) = f (x0) . (3.80)

The equ. (3.80) can express the second derivative u′′ at the point x0 and inserted in
the Taylor’s expansion (3.79).

There consequently results:

u(x1) = u(x0)+ hu′(x0)+
h2

2
[u(x0)− f (x0)]+ O(h3) . (3.81)

The approximations can then be worked out, while omitting the rest O(h3) in the
equ. (3.81).
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Following the process of discretisation when x0 = 0, the equation is then written
as:

ũ1 = ũ0 +
h2

2
[ũ0− f0] . (3.82)

The nodal equation (3.78), corresponding to the basis function ϕ0, characteristic of
the node x0 of the discretisation is found.

� Function ϕN+1 characteristic of the node xN+1 = 1

A.13) Considerations analogous to those presented above, for the working out of the
nodal equation when x0 = 0, are also relevant for the nodal equation when xN+1 = 1.

As such, it is only necessary to see to it that the situation of the basis functions ϕN

and ϕN+1 is symmetrical to the situation of the basis functions ϕ0 and ϕ1, (see
Fig. 3.5).

That is why the equation of the approximate variational formulation (ṼP) corre-
sponding to the basis function ϕN+1 is written as:

(ṼPN+1) AN+1,NũN + AN+1,N+1ũN+1 = bN+1 . (3.83)

Likewise, provided that a great care is taken to replace the integration interval [x0,x1]
by the one which corresponds to the support of the function ϕN+1 i. e. [xN ,xN+1], the
following results for the evaluation of coefficients AN+1,N , AN+1,N+1 and bN+1 are
obtained.

� Approximate Calculation of Coefficients AN+1,N and AN+1,N+1

a) Approximation of coefficient AN+1,N+1.

AN+1,N+1 =
∫ 1

0

(
ϕ ′2N+1 + ϕ2

N+1

)
dx =
∫

Supp ϕN+1

(
ϕ ′2N+1 + ϕ2

N+1

)
dx ,

=
∫ xN+1

xN

(
ϕ ′2N+1 + ϕ2

N+1

)
dx ,

�
(

1
h2 ×h

)
+

h
2

(0 + 1) ,

� 1
h

+
h
2

. (3.84)
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Fig. 3.5 Basis Functions ϕN and ϕN+1
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b) Approximation of coefficient AN+1,N .

AN+1,N =
∫ 1

0

(
ϕ ′Nϕ ′N+1 + ϕNϕN+1

)
dx ,

=
∫

Supp ϕN ∩ Supp ϕN+1

(
ϕ ′Nϕ ′N+1 + ϕNϕN+1

)
dx ,

�
(
− 1

h2 ×h

)
+

h
2

[(0×1)+ (1×0)]�−1
h

. (3.85)

� Estimation of the Second Member bN+1

The approximation of the second member bN+1 is obtained by using the trapezium
quadrature formula:

bN+1 =
∫ 1

0
f ϕN+1dx ,

=
∫ xN+1

xN

f ϕN+1dx� h
2

[0 + fN+1]� h
2

fN+1 . (3.86)

A.14) The nodal equation associated with the basis function ϕN+1 is written by
grouping the results of (3.84)–(3.86).

This equation is perfectly symmetrical compared to the one associated with the
basis function ϕ0:

−1
h

ũN +
(

1
h

+
h
2

)
ũN+1 =

h
2

fN+1 . (3.87)

A.15) Given the symmetry mentioned in the previous question, finding the nodal
equation (3.87) by using finite differences is conceivable.

In fact, at abscissa xN+1 = 1, if a progressive expansion was considered when
x0 = 0, this time a regressive Taylor’s expansion must be considered in the following
way:

u(xN) = u(xN+1)−hu′(xN+1)+
h2

2
u′′(xN+1)+ O(h3) . (3.88)

Then, the second derivative when xN+1 is replaced by writing the differential equa-
tion of the continuous problem (CP) at the point xN+1:

u(xN) = u(xN+1)−hu′(xN+1)+
h2

2
[u(xN+1)− f (xN+1)]+ O(h3) . (3.89)

Now, by exploiting the information concerning the homogenous Neumann condition
when xN+1, the pendant of the discrete equation (3.82) is obtained provided that the
values u(xi) are replaced by the respective approximations ũi:

ũN = ũN+1 +
h2

2
[ũN+1− fN+1] . (3.90)
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3.3 The Fourier-Dirichlet Problem

3.3.1 Statement

The aim of this problem is to propose a mathematical and numerical study
of the solution to a second order linear differential problem subjected to
Fourier-Dirichlet mixed boundary conditions.

Let u be a function of a real variable, defined from values [0,1] in R.

The considered continuous problem (CP) is defined by:

To find u ∈H2(0,1) which is the solution to:

(CP)

{
−u′′(x)+ u(x) = f (x), 0≤ x≤ 1 ,

u(0) = 0, u′(1)+ ku(1) = 1 ,
(3.91)

where f is a given function belonging to L2(0,1) and k a given positive or
zero real parameter.

� Variational Formulation – Theoretical Part

1) Let v be a test function, defined by [0,1], and having real values, belonging
to the variational space V . Show that the continuous problem (CP) can be
expressed as a variational formulation (VP) in the form:

a(u,v) = L(v), ∀v ∈V .

The bilinear form a(., .), the linear form L(.) and the functional space V need
to be specified.

2) Establish the existence and uniqueness of a weak solution of the varia-
tional problem (VP) in H1∗ (0,1) defined by:

H1
∗ (0,1) =

{
v : ]0,1[→R,v and v′ ∈ L2(0,1), v(0) = 0

}
. (3.92)

3) Show that any weak solution to H1∗ (0,1) the variational problem (VP) also
belongs to H2(0,1).

4) Infer from therein, the equivalence between the strong formulation pre-
sented in H2(0,1) and the weak formulation considered in H1∗ (0,1)∩H2(0,1).

� Lagrange Finite Element P1 – Numerical Part

5) Approximation of the variational problem (VP) is performed using La-
grange finite elements P1.
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To achieve this, a regular mesh of interval [0,1] of constant step h is in-
troduced, such as: {

x0 = 0, xN+1 = 1 ,

xi+1 = xi + h, i = 0 to N .
(3.93)

The approximation space Ṽ is now defined using:

Ṽ =
{

ṽ : [0,1]→R, ṽ ∈C0([0,1]), ṽ|[xi,xi+1] ∈ P1([xi,xi+1]), ṽ(0) = 0
}

,

(3.94)

where P1([xi,xi+1]) denotes the polynomial space defined over [xi,xi+1], of
degree less than or equal to one.

– What is the dimension of Ṽ?

6) Let ϕi,(i = 1 to dimṼ ), be the canonical basis Ṽ of establishing
ϕi(x j) = δi j.

After having written the approximate variational formulation (ṼP), of so-
lution (ṼP), which is associated to the variational problem (VP), show that
by choosing:

ṽ(x) = ϕi(x), (i = 1 to dimṼ ) and ũ(x) = ∑
j=1, dim Ṽ

ũ jϕ j , (3.95)

the following (ṼP) system is obtained:

(ṼP) ∑
j=1, dim Ṽ

Ai jũ j = bi, ∀i ∈ {1, . . . , dim Ṽ} , (3.96)

where the following was noted:

Ai j =
∫ 1

0
(ϕ ′i ϕ

′
j + ϕiϕ j)dx + kϕi(1)ϕ j(1), bi =

∫ 1

0
f ϕidx + ϕi(1) .

(3.97)

� Function ϕi Characteristic of a Node Strictly Interior at [0,1]

7) Given the regularity of the mesh, the generic nodal equation of the (ṼP)
system associated to any function with basis ϕi, which is characteristic of
a node strictly interior at [0,1], is expressed as:

(ṼPInt) Ai,i−1ũi−1 + Ai,iũi + Ai,i+1ũi+1 = bi,

(∀i = 1, dim Ṽ −1) . (3.98)

– Using the trapezium rule, calculate the 4 coefficients (Ai j,bi).
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8) Group the results together by writing down the corresponding nodal equa-
tion.

9) Show that the centred finite differences scheme associated with the differ-
ential equation of the continuous problem (CP) is obtained again. What is its
order of precision? It is pointed out that the trapezium quadrature formula is
written as:

∫ b

a
ξ (s)ds� (b−a)

2
{ξ (a)+ ξ (b)} .

� Function ϕN+1 Characteristic of the Node xN+1 = 1

10) Now, consider the basis function ϕN+1 characteristic of the node
xN+1 = 1.

Show that the nodal equation associated with the (ṼP) system is written
as:

(ṼPN+1) AN+1,NũN + AN+1,N+1ũN+1 = bN+1 . (3.99)

– Using the trapezium formula, calculate the 3 coefficients AN+1,N ,
AN+1,N+1 and bN+1.

11) Write the corresponding nodal equation.

12) Show that the finite differences scheme associated to the Fourier bound-
ary conditions when x = 1 is obtained again. What is its order of precision?



92 3 Variational Formulations

3.3.2 Solution

� Variational Formulation – Theoretical Part

A.1) Let v be a test function defined by [0,1] having real values and “sufficiently
regular”.

As already mentioned in the presentation of the Dirichlet problem (see para-
graph [3.1]), the regularity of functions v will be specified a posteriori in order to
give sense to the variational formulation, when the latter is established.

The differential equation of the continuous problem (CP) is multiplied by v then
integrated over the interval [0,1].

−
∫ 1

0
u′′(x)v(x)dx +

∫ 1

0
u(x)v(x)dx =

∫ 1

0
f (x)v(x)dx, ∀v ∈V . (3.100)

The integration by parts then results in:
∫ 1

0
u′(x)v′(x)dx + u′(0)v(0)−u′(1)v(1)+

∫ 1

0
u(x)v(x)dx,

=
∫ 1

0
f (x)v(x)dx, ∀v ∈V . (3.101)

Here the Fourier boundary conditions, defined in the continuous problem (CP),
(u′(1)+ ku(1) = 1), appears in the integral formulation (3.101). In fact, this may
be confirmed by re-writing the Fourier condition in the form:

u′(1) = 1− ku(1) , (3.102)

in order to replace the first derivative of solution u, at the abscissa x = 1 in equa-
tion (3.101).

Moreover, as previously observed for this type of second order differential equa-
tion, the homogenous Dirichlet condition when x = 0 cannot be directly taken into
account in formulation (3.101).

This explains why this homogenous Dirichlet condition is imposed on test func-
tions v whose solution u constitutes a specific case.

This method guarantees that the full memory of the information contained in the
continuous problem (CP) is maintained in the future variational formulation.

These two boundary conditions, (the first one bearing on u via its relationship
with (3.102) and the second one concerning the zero v test functions when x = 0)
lead to the following variational formulation (VP):

Find u belonging to V , solution to:
∫ 1

0
(u′v′+ uv)dx + ku(1)v(1) =

∫ 1

0
f vdx + v(1), ∀v ∈V. (3.103)
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At this stage of the study, the V space is composed of v functions subjugated to the
homogenous Dirichlet condition when x = 0 : v(0) = 0.

Meanwhile, formulation (3.103) is only formal since the different integrals do
not need to be convergent.

Actually, this variational formulation is structurally analogous to the one ob-
tained within the framework of the Dirichlet problem – see (3.13), paragraph [3.1] –
except for the boundary conditions that need to be modified to suit the test functions
v within the framework of the Fourier-Dirichlet problem being examined here.

Thus, referring to the functional analysis previously shown in paragraph [3.1],
a sufficient condition securing the convergence of integrals of the variational formu-
lation (3.103) is to consider the following functional framework:

V ≡ H1(0,1)≡ {v : [0,1]→ R,v ∈ L2(0,1),v′ ∈ L2(0,1)}. (3.104)

The homogenous Dirichlet condition at abscissa x = 0 is added to the above func-
tional space to finally lead to the following variational formulation:

(VP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u belonging to V solution of: a(u,v) = L(v), ∀v ∈V, where:

a(u,v) ≡
∫ 1

0
(u′v′+ uv)dx + ku(1)v(1) ,

L(v) ≡
∫ 1

0
f vdx + v(1) ,

V ≡ H1∗ (0,1) ,

(3.105)

where space H1∗ (0,1) is defined by (3.92).

A.2) The existence and uniqueness of the solution to the variational problem (VP)
defined by (3.105), is obtained by applying the Lax-Milgram theorem 4.

This is achieved by again choosing the H1(0,1) norm (see paragraph 3.1, (3.61)
and (3.106) defined hereafter), by trading off measurement of the “size” of as any
function of H1(0,1),(H1∗ (0,1)⊂ H1(0,1)).

The H1(0,1) natural norm, previously defined, is as follows:

∀v ∈ H1(0,1) : ‖v‖2
H1 ≡
∫ 1

0
v(x)2dx +

∫ 1

0
v′(x)2dx≡ ‖v‖2

L2 +‖v′‖2
L2 . (3.106)

Once the norm is chosen, the different points described below need to be validated
in order to apply the Lax-Milgram theorem:

a) H1∗ (0,1) space is a Hilbert space for norm (3.106).

This is achieved by showing, for example, that H1∗ (0,1) is a closed vector sub-
space of H1(0,1) for norm (3.106), (see H. Brézis, [1]).
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b) The bilinear form a(., .) is continuous on H1∗ (0,1)×H1∗ (0,1) for norm (3.106).

In fact, let be (u,v) ∈ H1∗ (0,1)×H1∗ (0,1):

|a(u,v)| ≤|(u,v)H1 |+ k|u(1)v(1)|
≤(u,u)1/2

H1 · (v,v)1/2
H1 + k|u(1)v(1)|

≤‖u‖H1 .‖v‖H1 + k|u(1)v(1)| , (3.107)

where (., .)H1 denotes the inner product of H1 from which norm (3.106) arises.

Moreover, for any function v belonging to H1(0,1), the result is:

∀x ∈ [0,1] : v(x) = v(0)+
∫ x

0
v′(t)dt . (3.108)

Thus, for the specific case of v functions belonging to H1∗ (0,1), v(0) = 0.

It then becomes:

∀x ∈ [0,1] : v(x) =
∫ x

0
v′(t)dt . (3.109)

Equation (3.109) is then expressed as x = 1 and the Cauchy-Schwartz inequality is
used to obtain the following control inequality:

|v(1)| ≤
[∫ 1

0
v′2(t)dt

]1/2

≡ ‖v′‖L2 . (3.110)

Inequality (3.107) is then used to obtain:

|a(u,v)| ≤ ‖u‖H1 · ‖v‖H1 + k‖u′‖L2‖v′‖L2 ≤ (1 + k)‖u‖H1 · ‖v‖H1 . (3.111)

The bilinear form a(., .) is thus continuous for the H1-norm defined by (3.106). The
continuity constant is actually equal to (1 + k).

c) The linear form L(.) defined by (3.105) is continuous on H1∗ (0,1) for norm
(3.106).

The same scheme of analysis previously presented for the bilinear form a(., .) is
applied.

| L(v) |≤
∫ 1

0
| f v|dx + |v(1)| ≤ ‖ f‖L2‖v‖L2 + |v(1)| . (3.112)

The inequality control (3.110), which is valid for any v function belonging to
H1∗ (0,1), is used again to obtain:

| L(v) |≤ ‖ f‖L2‖v‖L2 +‖v′‖L2 ≤ (1 +‖ f‖L2)‖v‖H1 . (3.113)
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The linear form L(.) is therefore continuous on space H1∗ (0,1) with the norm (3.106)
and the continuity constant is equal to (1 +‖ f‖L2).

d) The a(., .) form is H1-elliptic and the ellipticity constant is equal to one.

In fact, the ellipticity inequality is immediate if it is reckoned that:

a(v,v) = ‖v′‖2
L2 +‖v‖2

L2 + kv(1)2 = ‖v‖2
H1 + kv(1)2 ≥ ‖v‖2

H1 . (3.114)

The fact that parameter k is a real positive number has been used.

The application of the Lax-Milgram theorem (see theorem 10) thus implies that
there exists one and only one function belonging to H1∗ (0,1) being the solution to
the variational problem (VP) defined by (3.105).

A.3) The method presented for the Dirichlet problem [3.1] is used to prove that any
weak solution belonging to H1∗ (0,1) is also a function of H2(0,1).

Thus, let u be an element of H1∗ (0,1), solution to the variational problem (VP)
and the following is obtained:

∫ 1

0
u′v′dx =

∫ 1

0
( f −u)vdx +[1− ku(1)]v(1), ∀v ∈ H1

∗ (0,1) . (3.115)

Among the functions v belonging to H1∗ (0,1), those belonging to C1
0(]0,1[),

(C1
0(]0,1[)⊂ H1∗ (0,1)), are then selected.

This choice implies that the retained functions v are null when x = 0 and when
x = 1.

Moreover, the function g defined by g = f −u is introduced and the following is
obtained:

g ∈ L2(0,1)⊂ L1(0,1)⊂ L1
loc(0,1) , (3.116)

where space L1
loc(0,1) is defined by:

Let any K be a closed subset strictly included in ]0,1[, then:

Given v ∈ L1
loc(0,1) then v ∈ L1(K) . (3.117)

Thus, the family of variational equations (3.115) can be written within C1
0(]0,1[) in

the form:
∫ 1

0
u′(x)v′(x)dx =

∫ 1

0
g(x)v(x)dx =−

∫ 1

0
G(x)v′(x)dx, ∀v ∈C1

0(]0,1[) ,

(3.118)

where G is a primitive of g (Lemma 2 is used to achieve this).
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(3.118) is then written in the form:

∫ 1

0

[
u′(x)+ G(x)

]
v′(x)dx = 0, ∀v ∈C1

0(0,1) . (3.119)

In this form, the family of variational equations (3.119) strictly corresponds to
the family of equations demonstrated in the Dirichlet problem (see Dirichlet prob-
lem [3.1], (3.27)).

The rest of the analysis is inferred from it and the same arguments are used
to state that any solution u to the variational problem belonging to H1∗ (0,1) also
belongs to the Sobolev space H2(0,1).

A.4) This last question of the theoretical part is dedicated to the equivalence between
the solution to the continuous problem (CP) and the solution to the variational prob-
lem (VP).

The direct sense is simple as it is the result of the construction of a solution to the
variational formulation (VP) using a given solution to the continuous problem (CP).

Then, it will be observed that this construction process is licit provided that the
solution u to the continuous problem (CP) belongs to H2(0,1) and the test func-
tions v that intervene in the variational formulation (VP) belong to H1∗ (0,1).

It will notably be noticed that if u is a solution to the continuous problem (CP)
satisfying the homogenous Dirichlet boundary conditions when x = 0, then this
time u when considered as a solution to the variational problem (VP) belongs de
facto to H1∗ (0,1).

The reciprocal is now considered. Let u belong to H2(0,1)∩H1∗ (0,1) a solution
to the variational problem (VP). According to the previous question, it is known that
any solution u of the variational problem (VP) belonging to H1∗ (0,1) also belongs
to H2(0,1).

The integration-by-parts formula used in the reverse order to the one that yielded
the variational formulation (VP) leads to the following:

∫ 1

0
(−u′′+ u− f )v dx +

[
u′(1)+ ku(1)−1

]
v(1) = 0, ∀v ∈ H1

∗ (0,1) . (3.120)

Then, consider the particular case of functions v in the equation (3.120) belonging
to H1

0 (0,1). This means that the functions v that are null when x = 0 and when x = 1.

In that case, the equation (3.120) is written as:

∫ 1

0
(−u′′+ u− f )v dx = 0, ∀v ∈ H1

0 (0,1) . (3.121)

Here it is observed that, the formulation (3.121) is similar to the one considered in
the Dirichlet problem [3.1].
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That is why the rest of the reasoning is also similar. The essential points for the
continuation of the demonstration are:

– In the equality (3.121), functions v belonging to D(0,1) are selected since
D(0,1)⊂ H1(0,1).

– The density theorem 2 is used: D(0,1) is dense in L2(0,1).

– Then, it is shown that the equality (3.121) no longer takes place in H1(0,1) but
in a bigger space i. e. in L2(0,1).

– It is then possible to choose from all the v functions belonging to L2(0,1) the one
that exactly equals: v∗ =−u′′+ u− f .

Moreover, if the second member f belongs to L2(0,1)∩ C0(]0,1[), the differen-
tial equation is satisfied for any x belonging to ]0,1[ and the solution u is the classical
solution of the continuous problem (CP) belonging to C2(]0,1[).

Once it is proved that the differential equation of the problem (CP) is satisfied
by the solution to the variational problem (VP), the family of equations (3.120) is
reduced and is written as:

[
u′(1)+ ku(1)−1

]
v(1) = 0, ∀v ∈ H1

∗ (0,1) . (3.122)

A last selection in equation (3.122) consists in considering the particular case of
function v* defined by: v∗∗(x) = x,∀x ∈ [0,1].

Of course, it will be easily verified that v∗∗ belongs to H1∗ (0,1). In that case,
equation (3.122) implies that u satisfies the Fourier boundary conditions:

u′(1)+ ku(1) = 1 . (3.123)

This ends the demonstration of the reciprocal and any solution of the variational
problem (VP) belonging to H2(0,1)∩ H1∗ (0,1) is a solution to the continuous prob-
lem (CP).

� Lagrange Finite Elements P1 – Numerical Part

A.5) To calculate the dimension of space Ṽ , the following observation is necessary:

Once again, definition (3.94) of the approximation space Ṽ is very close to the
one considered in the Dirichlet problem (see problem of [3.1], question 5, (3.5)).

Thus, by considering the demonstration presented above, it is only necessary to
observe that space Ṽ defined by (3.94) produces an additional degree of freedom
attributable to the value of function ṽ of Ṽ when x = 1.
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As a result, the dimension of Ṽ defined by (3.5) found in the Dirichlet problem
should be increased by one unit.

In other words, for any function ṽ of Ṽ , knowledge of its trace (ṽ1, . . . , ṽN+1) at
(N + 1) discretisation points of the mesh at the [0,1] interval, namely in (x1, . . . ,
xN+1), that fixes the definition of ṽ in a unique manner.

That is why space Ṽ is isomorphic to RN+1 and the dimension of Ṽ is equal
to N + 1.

A.6) In order to obtain the approximate variational formulation (ṼP), the approxi-
mation functions (ũ, ṽ) are substituted in the (u,v) functions of the variational for-
mulation (VP). Moreover, the expressions given by (3.95) are used.

The approximate variational formulation (ṼP) is thus written as:

Find the numerical sequence (ũ j),( j = 1 to N + 1), solution to:

N+1

∑
j=1

[∫ 1

0

(
ϕ ′i ϕ

′
j + ϕiϕ j

)
dx + kϕi(1)ϕ j(1)

]
ũ j =
∫ 1

0
f ϕi(x)dx + ϕi(1) ,

(∀i = 1 to N + 1) . (3.124)

The expressions of Ai j, and b j corresponding to the formulas (3.97) are then ob-
tained by identification.

� Characteristic Function ϕj of a Node Strictly Interior at [0,1]

A.7) The characteristic basis functions ϕi of the nodes of the mesh that are strictly
interior at the [0,1] integration interval is now considered.

The generic equation of system (3.124) is strictly similar to the one obtained in
the Dirichlet problem, (see Problem [3.1], (3.36)).

In fact, to be sure of that, it is only necessary to note that for any characteristic
basis function ϕi of a node strictly interior at the [0,1] interval, the following is
obtained: ϕi(1) = 0, (see Fig. 3.6).
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Fig. 3.6 Basis Functions ϕi−1, ϕi and ϕi+1
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In that case, the nodal equ. (3.124) is then written as:

N+1

∑
j=1

[∫ 1

0

(
ϕ ′jϕ

′
i + ϕ jϕi

)
dx

]
ũ j =
∫ 1

0
f ϕi(x)dx,

(∀i = 1,N + 1) , (3.125)

which corresponds exactly to the nodal equation (3.36) of the Dirichlet problem.

That is why the results demonstrated in the Dirichlet problem are directly reused
in order to exploit them directly in the Fourier-Dirichlet problem.

� Approximate Calculation of Coefficients Aij, j = i−1, i, i+ 1

a) Approximation of coefficient Aii.

Aii � 2
h

+ h . (3.126)

b) Approximation of coefficient Ai,i−1.

Ai,i−1 = Ai,i+1 �−1
h

. (3.127)

� Estimation of the Second Member bi

bi � h fi . (3.128)

A.8) The nodal equation associated with any characteristic function ϕi of a strictly
interior node is obtained by grouping results (3.126)–(3.128):

− ũi−1−2ũi + ũi+1

h2 + ũi = fi, i = 1 to N . (3.129)

A.9) Discretisation of the second order differential equation of the continuous prob-
lem (CP) by finite differences is strictly similar to the one presented in the Dirichlet
problem.

This discretisation is written as:

−u(xi−1)−2u(xi)+ u(xi+1)
h2 + u(xi) = f (xi)+ O

(
h2) ,(i = 1 to N) . (3.130)

Then, the traces ui ≡ u(xi) of function u, having nodes xi are replaced by the
respective approximations (ũi ≈ ui) in order to keep equality between the two mem-
bers of (3.130) during the elimination of the infinitesimal O(h2).

The result of this substitution is that the finite differences scheme obtained cor-
responds exactly to the nodal equation (3.129) associated with any characteristic
function ϕi of a node xi strictly interior at the [0,1] interval.

Moreover, the finite differences scheme (3.129) is of the second order, given that
the approximation consists in neglecting the term in O(h2) in the equation (3.130).
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� Characteristic Basis Function ϕN+1 of the Node xN+1 = 1

A.10) The nodal equation associated with the characteristic basis function ϕN+1 of
the node xN+1 = 1 is written as:

(ṼPN+1) AN+1,NũN + AN+1,N+1ũN+1 = bN+1 . (3.131)

The coefficients AN+1,N , AN+1,N+1 and the second member bN+1 whose estimations
are obtained below intervene in this equation (3.131).

� Approximate Calculation of Coefficients AN+1,N and AN+1,N+1

a) Approximation of coefficient AN+1,N+1.

AN+1,N+1 =
∫ 1

0

(
ϕ ′2N+1 + ϕ2

N+1

)
dx + kϕ2

N+1(1) ,

=
∫ xN+1

xN

(
ϕ ′2N+1 + ϕ2

N+1

)
dx + k ,

�
(

1
h2 ×h

)
+

h
2

(0 + 1)+ k ,

� 1
h

+
h
2

+ k . (3.132)

It will be noticed that the characteristic property of the basis function ϕN+1 has
been used at abscissa xN+1: ϕN+1(xN+1) = 1.

b) Approximation of coefficient AN+1,N .

AN+1,N =
∫ 1

0

(
ϕ ′Nϕ ′N+1 + ϕNϕN+1

)
dx + kϕN(1)ϕN+1(1) ,

=
∫

Supp ϕN ∩ Supp ϕN+1

(
ϕ ′Nϕ ′N+1 + ϕNϕN+1

)
dx ,

�− 1
h2 ×h +

h
2

[(0×1)+ (1×0)]�−1
h

. (3.133)

Likewise, it will be noticed that the property of the basis function ϕN has been
used: ϕN(xN+1) = 0 .

� Estimation of the Second Member bN+1

Starting from:

bN+1 =
∫ 1

0
f ϕN+1dx + ϕN+1(1) =

∫ xN+1

xN

f ϕN+1dx + 1 ,

�h
2

[0 + fN+1]+ 1� h
2

fN+1 + 1 . (3.134)



3.3 The Fourier-Dirichlet Problem 101

A.11) The nodal equation associated with the basis function ϕN+1 is written by
grouping the results of (3.132)–(3.134).

This equation is written as:

−1
h

ũN +
[

1
h

+
h
2

+ k

]
ũN+1 =

h
2

fN+1 + 1 . (3.135)

A.12) The Fourier boundary conditions at abscissa xN+1 = 1 are now discretised
using finite differences.

To achieve this, a regressive Taylor’s expansion is considered at abscissa xN+1

expressing the solution u of the continuous problem (CP) at abscissa xN according
to the values of u and of its derivatives at abscissa xN+1.

This expansion is written as:

u(xN) = u(xN+1)−hu′(xN+1)+
h2

2
u′′(xN+1)+ O(h3) . (3.136)

Then, supposing that the differential equation of the continuous problem (CP) can
be written at the border of the integration domain ]0,1[ i. e. here at abscissa xN+1,
the second derivative of the solution u at abscissa xN+1 appearing in the equ. (3.136)
is replaced as below:

u(xN) = u(xN+1)−hu′(xN+1)+
h2

2
[u(xN+1)− f (xN+1)]+ O(h3) . (3.137)

Moreover, the first derivative of the solution u at abscissa xN+1, is expressed by
using the Fourier boundary conditions:

u′(xN+1) = 1− ku(xN+1) . (3.138)

Then equ. (3.137) takes the following form:

u(xN) = u(xN+1)−h [1− ku(xN+1)]+
h2

2
[u(xN+1)− f (xN+1)]+ O(h3) . (3.139)

Then, some algebraic manipulations are operated to write equation (3.139) in the
following form:

−1
h

u(xN)+
[

1
h

+
h
2

+ k

]
u(xN+1) =

h
2

fN+1 + 1 + O(h2) . (3.140)

The nodal equ. (3.135) associated with the basis function ϕN+1 is then obtained,
provided that the values u(xi) of the solution u to the continuous problem (CP) are
replaced by the respective approximations ũi in equ. (3.140):

−1
h

ũN +
[

1
h

+
h
2

+ k

]
ũN+1 =

h
2

fN+1 + 1 . (3.141)
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3.4 Periodic Problem

3.4.1 Statement

This objective of the problem is to initiate the finite element method in a sec-
ond order differential problem showing periodic boundary conditions.

Actually, interest is axed on the solutions to the following continuous
problem:

Find u ∈ H2(0,1) which is the solution to:

(CP)

{
−u′′(x)+ u(x) = f (x),0 ≤ x≤ 1 ,

u(0) = u(1),u′(0) = u′(1) ,
(3.142)

where f is a given function belonging to L2(0,1).

� Variational Formulation – Theoretical Part

1) Let v be a test function, defined from [0,1] to R, belonging to variational
space V .

Show that the continuous problem (CP) can be expressed as a variational
formulation (VP) under the form of:

a(u,v) = L(v), ∀v ∈V .

The bilinear form a(., .), the linear form L(.) and the functional space V need
to be determined.

2) Establish the existence and uniqueness of a weak solution of the varia-
tional problem (VP) in H1

per(0,1) defined by:

H1
per(0,1) =

{
v : ]0,1[→R, v ∈ L2(0,1), v′ ∈ L2(0,1), v(0) = v(1)

}
.

3) Show that any weak solution to the variational problem (VP) belongs also
to H2(0,1).

4) Deduce the equivalence between the strong formulation presented in
H2(0,1) and the weak formulation (VP) considered in H1

per(0,1)∩H2(0,1).

� Lagrange finite element P1 – Numerical Part

5) The approximation to the variational problem (VP) is done by Lagrange
finite elements P1. To do so, a regular mesh is introduced at interval [0,1]
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of constant step h, such as:{
x0 = 0, xN+1 = 1 ,
xi+1 = xi + h, i = 0 to N .

(3.143)

The approximation space Ṽ is now defined by:

Ṽ =
{

ṽ : [0,1]→ R, ṽ ∈C0([0,1]), ṽ|[xi,xi+1] ∈ P1([xi,xi+1]), ṽ(0) = ṽ(1)
}

,

(3.144)

where P1([xi,xi+1]) denotes the polynomial space defined on [xi,xi+1], of de-
gree less than or equal to one.

– What is the dimension of Ṽ?

6) In order to numerically solve the variational problem (VP) by finite ele-
ments, the periodic boundary conditions bearing upon the values of the v and
u functions, where x = 0 and x = 1, are temporarily “set aside”.

To achieve this, the W̃ approximation space is introduced and defined by:

W̃ =
{

w̃ : [0,1]−→ R, w̃ ∈C0([0,1]), w̃ ∈ P1([xi,xi+1])
}

. (3.145)

– What is the dimension of W̃?

7) Let ϕi(i = 0 to dim W̃−1) be the basis of W̃ testing ϕi(x j) = δi j. After ex-
pressing the approximated variational formulation of solution ũ (temporarily
looked for in W̃ ) associated to the variational problem (VP), show that when
choosing:

w̃(x) = ϕi(x),(i = 0, dim W̃ −1) and ũ(x) = ∑
j=0, dim W̃−1

ũ jϕ j (3.146)

the following (ṼP) system is obtained :

(ṼP) ∑
j=0, dim W̃−1

Ai jũ j = bi, ∀i ∈ {0, . . . , dim W̃ −1} , (3.147)

where it was stated:

Ai j =
∫ 1

0
(ϕ ′i ϕ

′
j + ϕiϕ j)dx, bi =

∫ 1

0
f ϕidx . (3.148)

� Characteristic Function ϕi of a Node Strictly Interior at [0,1]

8) Considering the mesh regularity, the generic nodal equation of the (VP)
system associated to any basis function ϕi, (i = 1 dim W̃ −2), characteristic
of a node interior at [0,1], is expressed as:

(ṼPInt) Ai,i−1ũi−1 + Ai,iũi + Ai,i+1ũi+1 = bi,

(∀i = 1 to dim W̃ −2) . (3.149)

– Using the trapezium rule, calculate the 4 coefficients (Ai j,bi).
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9) Group the results by expressing them in a corresponding nodal equation.

10) Show that the centred finite differences scheme associated to the differ-
ential equation of the continuous problem (CP) is obtained again. What is its
precision order?

For reminder, the trapezium quadrature formula is expressed as:
∫ b

a
ξ (s)ds� (b−a)

2
{ξ (a)+ ξ (b)} .

� Characteristic Function ϕ0 of the Abscissa Node x0 = 0

11) The same process is used for the basis function ϕ0, characteristic of the
initial node x0. The corresponding equation of the (ṼP) system is then ex-
pressed as:

(ṼP0) A00ũ0 + A01ũ1 = b0 . (3.150)

– Using the trapezium rule, calculate the A00,A01 and b0 coefficients.

12) Group the results by expressing them in a corresponding nodal equation.

� Characteristic Function ϕN+1 of the Abscissa Node xN+1

13) The same process is used for the basis function ϕN+1, characteristic of
the final node xN+1. The corresponding equation to the (ṼP) system is then
expressed as:

(ṼPN+1) AN+1,NũN + AN+1,N+1ũN+1 = bN+1 . (3.151)

– Using the trapezium rule, calculate the AN+1,N , AN+1,N+1 and bN+1

coefficients.

14) Group the results by expressing them in a corresponding nodal equation.

15) Considering the periodicity properties of the nodal equations character-
istic of nodes x0 and xN+1, state an algebraic equation, noted (R), between
the unknowns (ũ0, ũ1, ũN) and the data ( f0, fN+1).

16) Process a second-order discretization on the periodic boundary condi-
tions of the continuous problem (CP) using the finite differences method,
and show that the exact previous algebraic equation (R) is obtained.
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3.4.2 Solution

� Variational Formation – Theoretical Part

A.1) Let v be a test function, defined from [0,1] to R, “sufficiently regular” be-
longing to a functional space V . The differential equation of the continuous prob-
lem (CP) is multiplied by v and integrated upon [0,1] interval:

−
∫ 1

0
u′′v dx +

∫ 1

0
uv dx =

∫ 1

0
f v dx, ∀v ∈V . (3.152)

The integration by parts then results in:

∫ 1

0
u′v′dx + u′(0)v(0)−u′(1)v(1)+

∫ 1

0
uv dx =

∫ 1

0
f v dx, ∀v ∈V . (3.153)

It is now demonstrated that the periodic boundary conditions bearing on the u deriva-
tive (u′(0) = u′(1)), can be directly injected in the integral formulation (3.153).

Thus, the result obtained is:

∫ 1

0
(u′v′+ uv)dx + u′(0)(v(0)− v(1)) =

∫ 1

0
f v dx, ∀v ∈V . (3.154)

Concerning the periodic boundary conditions bearing upon u, the test function v is
bound to satisfy the same boundary conditions, being:

v(0) = v(1) . (3.155)

Thus, the variational problem (VP) keeps all the information contained in the con-
tinuous problem (CP).

The result obtained is that u is solution to the following formal variational for-
mulation:

∫ 1

0
(u′v′+ uv)dx =

∫ 1

0
f vdx, ∀v such that: v(0) = v(1) . (3.156)

Finally, it is shown that the Cauchy-Schwartz inequality secures, as usual, the con-
vergence of the different integrals composing the variational formulation (3.156),
if v and v′ are functions belonging to L2(0,1). In other words, from then on, take the
test functions v – and from there, solution u – as belonging to H1(0,1).

Considering the periodic boundary conditions (3.155) imposed in addition, the
result is a variational space V defined by:

V ≡ H1
per(0,1) =

{
v : ]0,1[→R,v and v ∈ L2(0,1), v′ ∈ L2(0,1), v(0) = v(1)

}
.

(3.157)
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Finally, the variational formulation (VP) is expressed as:

(VP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u belonging to V solution to: a(u,v) = L(v), ∀v ∈V, where:

a(u,v) ≡
∫ 1

0

[
u′(x)v′(x)+ u(x)v(x)

]
dx ,

L(v) ≡
∫ 1

0
f (x)v(x)dx ,

V ≡ H1
per(0,1) .

(3.158)

A.2) The existence and uniqueness of the variational formulation (VP) solution is
demonstrated by applying the Lax-Milgram theorem (theorem 10), using an analo-
gous method to the one detailed in the Dirichlet problem (see problem [3.1]).

To achieve this, the space H1
per(0,1) is fitted with the H1-norm (3.17) and the aim

is to prove that H1
per(0,1) is a closed of H1(0,1), thus conferring it with the Hilbert

structure for the H1-norm.

The sequence vn is then considered as belonging H1
per(0,1) to converging for

norm H1 towards a v function of H1(0,1).

The closing property of H1
per(0,1) in H1(0,1) consists to establish that the limit v

is also an element of H1(0,1).

It is established that (Cf. H. Brézis, [1]) if v is a function of H1(0,1), v is also
a continuous function (to be exact, a continuous representative in the function class
equal to v exists almost everywhere).

Moreover, since vn converges towards v in H1(0,1), it is inferred that (Cf. H.
Brézis, [1]) a sub-sequence vnk exists, composed of vn in such a way that vnk simply
converges towards v, for nearly any x belonging to [0,1] (actually, it can be estab-
lished that the convergence of vn towards v is uniform).

Since vn and v are “continuous” functions, it is inferred that the simple conver-
gence occurs at any x point of the interval [0,1]. Thus, it is possible to express the
simple convergence when x = 0 and when x = 1:

lim
n→+∞

vnk (0) = v(0) and lim
n→+∞

vnk (1) = v(1) . (3.159)

The only step left is to evaluate the [v(0)− v(1)] difference where the aim is to
establish that it is equal to zero, in order to certify that limit v and sequence vn do
belong to H1

per(0,1):

|v(0)− v(1)|= |v(0)− vnk(0)+ vnk(0)− v(1)| , (3.160)

≤ |v(0)− vnk(0)|+ |vnk(1)− v(1)| . (3.161)

The periodicty property of the sequence vn, (vn(0) = vn(1)), has been used and
applied to the sub-series vnk .
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To conclude, it suffices to perform a run at the boundary of inequality (3.61) to
finally obtain:

v(0) = v(1) , (3.162)

which ends the demonstration and confers a Hilbert structure to H1
per(0,1) together

with the H1-norm defined in (3.17), as a H1(0,1) closed vector sub-space.

The display of Lax-Milgram theorem is then performed for space H1
per(0,1) to-

gether with the H1-norm, with no formal difference with the presentation of the
Dirichlet problem.

Therefore, a unique solution exists to the variational formulation (VP) that be-
longs to H1

per(0,1).

A.3) The regularity result for the variational formulation (VP) solution will be
obtained through the same procedures as the ones previously established for the
Dirichlet problem (see Problem [3.1]).

It only needs to be fitted to the H1
per(0,1) functional frame.

Effectively, let u be a solution to the problem (VP) and the result is:

∫ 1

0
u′(x)v′(x)dx =

∫ 1

0
[ f (x)−u(x)]v(x)dx, ∀v ∈ H1

per(0,1) . (3.163)

It is then possible to choose v in C1
0(]0,1[) which is well included in H1

per(0,1) and
a situation of variational equations family (3.26) is obtained.

The following steps of the demonstration remain unchanged and it is inferred
that the variational problem’s (VP) solution belongs to H1

per(0,1) ∩ H2(0,1).

A.4) Using the same way as for the previous question, the equivalence between
a weak and a strong solution is processed according to the demonstration pro-
posed for the Dirichlet problem, while adapting it to the actual functional frame,
being H1

per(0,1).

Effectively, let v be a variational problem’s (VP) solution, where integration by
parts leads to:

∫ 1

0
(−u′′+ u− f )v(x)dx + u′(1)v(1)−u′(0)v(0) = 0, ∀v ∈H1

per(0,1) , (3.164)

or else, since v(0) = v(1),

∫ 1

0
(−u′′+ u− f )v(x)dx +[u′(1)−u′(0)]v(0) = 0, ∀v ∈ H1

per(0,1) . (3.165)

Again, it is possible to choose v in D(0,1) (being legitimate since
D(0,1)⊂ H1

per(0,1)). The rest of the demonstration remains unchanged.
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It is next proceeded by density and it is inferred that solution u of variational
formulation (VP) verifies the differential equation of the continuous problem (CP)
as a functional equation in L2(0,1).

Moreover, if the second member f belongs to L2(0,1) ∩ C0(]0,1[) then the dif-
ferential equation is satisfied for any x belonging to ]0,1[ and the solution u is the
classical solution of the continuous problem (CP) belonging to C2(]0,1[).

� Lagrange Finite Element P1 – Numerical Part

A.5) A function ṽ belonging to Ṽ is a continuous function over the interval [0,1]
and is piecewise affine. Therefore, in the absence of periodic boundary conditions,
Ṽ would be isomorphic to RN+2.

Such an explanation will prove convincing if it is observed that a function ṽ of Ṽ
is completely determined provided that its values at (N + 2) points xi of the mesh
are fixed.

Indeed, the difference between two functions of Ṽ inevitably corresponds to
a change in one of the values of theses functions in relation to one of the nodes
of the mesh xi,(i = 0 to N + 1).

The periodicity constraint of the functions ṽ of Ṽ consequently leads to the loss
of a degree of freedom.

In other words, the following expression is finally obtained:

dim Ṽ = N + 1 . (3.166)

A.6) The previous question provides an immediate answer by showing that, consid-
ering the periodicity constraint, the dimension of W̃ is equal to N + 2.

A.7) The approximate variational formulation (ṼP) is obtained by substituting the
functions u and v in the variational formulation (VP) for the respective approximate
functions ũ and ṽ.

The following is then obtained:

∫ 1

0
ũ′w̃′ dx +

∫ 1

0
ũw̃ dx =

∫ 1

0
f w̃ dx, ∀w̃ ∈ W̃ . (3.167)

Or, again, by using particular expressions defined by (3.146):

∑
j=0,N+1

[∫ 1

0
(ϕ ′i ϕ

′
i + ϕiϕi) dx

]
ũ j =
∫ 1

0
f ϕi dx, ∀i = 0 to N + 1 . (3.168)

This expression precisely corresponds to what needs to be expounded, provided that
the quantities Ai j and bi, as defined by (3.148), are introduced.
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� Function ϕi Characteristic of a Node Strictly Interior at [0,1]

A.8) The regularity of the mesh enables the constitution of a generic analysis of
the nodal equation, associated with any function ϕi, which is characteristic of the
interior node xi.

Indeed, given the support properties of basis functions ϕi, (i = 1 to N), and for
a fixed value i, only the values of j = i− 1, j = i, j = i + 1 in the sum of equa-
tion (3.168) can provide non-zero contributions, (see Fig. 3.7).

This is why the approximate variational equation (ṼP) is written in the form
(ṼPInt), for all values of i varying from 1 to N.

For the remainder, the same formalism, as considered for of the Dirichlet, Neu-
mann and Fourier-Dirichlet problems, is observed.

Hence, direct use is made of the results obtained while solving these problems
for the calculation of the coefficients of matrix Ai j, as well as from the second mem-
ber bi.

In other words, the following formula is obtained:

Ai,i � 2
h

+ h, Ai,i−1 = Ai,i+1 �−1
h
, bi � h fi . (3.169)

A.9) Likewise, the nodal equation corresponding to the above mentioned coeffi-
cients is once more used directly:

− ũi−1−2ũi + ũi+1

h2 + ũi = fi, (i = 1 to N) . (3.170)

A.10) Discretisation by finite differences is also applied as for the Dirichlet problem
to give the following:

−u(xi−1)−2u(xi)+ u(xi+1)
h2 + u(xi) = f (xi)+ O

(
h2) , (i = 1 to N) . (3.171)

The traces ui of u, at the nodes xi, are then replaced by the approximations ũi,
(ũi ≈ ui), so as to maintain equality between the two members of (3.171) when
suppressing the infinitely small O(h2).

This substitution immediately leads to the nodal equation (3.170).
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Fig. 3.7 Basis Functions ϕi−1, ϕi and ϕi+1
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� Basis Function ϕ0 Characteristic of the Node x0 = 0

A.11) The first equation of the linear system (3.147) is now considered, that is when
it corresponds to i = 0.

Given the support properties of basis functions ϕi, only the functions ϕ0 and ϕ1

can produce non-zero contributions in their integration against the function ϕ0.

This is why the generic equation of system (3.147) is, in this particular case,
written according to formula (3.150), namely:

A00ũ0 + A01ũ1 = b0 . (3.172)

Again, calculations of the coefficients A00, A01 and b0 have been presented in the
Neumann problem (see Problem [3.2]).

The following is then obtained:

A0,0 � 1
h

+
h
2
, A0,1 �−1

h
, b0 � h

2
f0 . (3.173)

A.12) The resulting nodal equation is then written as:[
1
h

+
h
2

]
ũ0− 1

h
ũ1 =

h
2

f0 . (3.174)

� Basis Function ϕN+1 Characteristic of the Node xN+1 = 1

A.13) For analogous reasons to the ones previously described for the nodal equation
associated with the basis function ϕ0, the results obtained in the Neumann problem
(see Problem [3.2]) are used directly.

Thus, the coefficients AN,N+1, AN+1,N+1 and bN+1 are given by:

AN+1,N+1 � 1
h

+
h
2
, AN+1,N �−1

h
, bN+1 � h

2
fN+1 . (3.175)

A.14) The resulting nodal equation is then written as:

−1
h

ũN +
[

1
h

+
h
2

]
ũN+1 =

h
2

fN+1 . (3.176)

A.15) The periodicity properties of the solution u to the continuous problem (CP)
are now imposed into the approximation ũ, namely: ũ0 = ũN+1.

By adding the two nodal equs. (3.174) and (3.176), the algebraic relationship (R)
is obtained: [

2
h

+ h

]
ũ0− 1

h
[ũ1 + ũN ] =

h
2

[ f0 + fN+1] . (3.177)
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A.16) The finite differences method, is applied to the periodic boundary conditions
of the continuous problem (CP) by simultaneously expanding at the third order,
the progressive Taylor formula at point x0 and the regressive Taylor formula at
point xN+1 :

u(x1) = u(x0)+ hu′(x0)+
h2

2
u′′(x0)+ O(h3) , (3.178)

u(xN) = u(xN+1)−hu′(xN+1)+
h2

2
u′′(xN+1)+ O(h3) . (3.179)

It is then assumed that the solution u of the continuous problem (CP) is sufficiently
regular so as to correctly write the differential equ. (3.142) at points x0 and xN+1:

u′′(x0) = u(x0)− f (x0) , (3.180)

u′′(xN+1) = u(xN+1)− f (xN+1) . (3.181)

The respective expressions of the second derivative (3.180) and (3.181) at points x0

and xN+1 are then replaced in equs. (3.178) and (3.179):

u(x1) = u(x0)+ hu′(x0)+
h2

2
[u(x0)− f (x0)]+ O(h3), (3.182)

u(xN) = u(xN+1)−hu′(xN+1)+
h2

2
[u(xN+1)− f (xN+1)]+ O(h3) . (3.183)

The approximations ũi are then considered and this enables one to discard the in-
finitely small ones while maintaining equality.

Finally, the periodicity conditions written for the sequence ũi are applied, in order
to obtain the algebraic relationship (R) by identifying (3.182) and (3.183):

h
2

[ f0 + fN+1] =
[

2
h

+ h

]
ũ0− 1

h
[ũ1 + ũN] . (3.184)



Chapter 4

Finite Elements in Deformable Solid Body
Mechanics

4.1 Mixed Stress-Displacement Problems

4.1.1 Statement

A homogenous and isotropic elastic solid having a given Lame’s Coefficient of λ >
0 and μ > 0, occupies a region Ω representing an open area bordered by the three-
dimensional space (x1,x2,x3), (cf. Fig. 4.1).

Ω

n

Fn

u

2

1

)(

0

∑

=

=

∑

σ

Fig. 4.1 Three-dimensional Elastic Medium

The following linear elastostatic problem is considered:

Determine (σ ,u) the stress and the displacement fields defined in Ω being the solu-
tion to the continuous problem (CP):

J. Chaskalovic, Finite Element Methods for Engineering Sciences 113
© Springer 2008
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∂σi j

∂x j
+ fi = 0, in Ω , (4.1)

u = 0, on Σ1 , (4.2)

(CP)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σi jn j = Fi, on Σ2 , (4.3)

σi j = λ εll(u)δi j + 2μεi j(u) , (4.4)

εi j(u) =
1
2

[
∂ui

∂x j
+

∂u j

∂xi

]
, (4.5)

where we have used the Einstein summation convention, also called the summation
of repeated indices convention. Thus we obtain:

∂σi j

∂x j
≡ ∑

j=1,2,3

∂σi j

∂x j
, (4.6)

εll(u)≡ Tr ε(u)≡ ε11(u)+ ε22(u)+ ε33(u) . (4.7)

The mathematical notation Trε(u) represents the trace of the matrix associated with
the strain tensors ε(u), of generic elements εi j(u).

In addition, the volumetric density of efforts f, of components fi is given and is
such that fi,(i = 1,2,3), belonging to L2(Ω).

Similarly, the surface density of efforts F, of Fi components is given and belongs
to L2(Σ2).

� Variational Formulation for Mixed Stress-Displacements

1) Let v be a test field (or virtual) vectors that is “sufficiently regular” and consisting
of vi components. By applying the symmetry of the stress tensor σ to solve the
problem (CP), show that: ∫

Ω
σi j

∂vi

∂x j
=
∫

Ω
σi jεi j(v) . (4.8)

2) Infer from it that for any displacement fields v, null on the border of Σ1, a varia-
tional formulation (VP) associated to the continuous problem (CP) may be written
as: ∫

Ω
σi jεi j(v) =

∫
Ω

fivi +
∫

Σ2

Fivi, ∀v ∈V . (4.9)

3) After having eliminated the stress tensor from the variational formulation (4.9),
write the displacement variational formulation (VP)u as following:

Find u ∈V being the solution of: a(u,v) = L(v), ∀v ∈V . (4.10)

– Specify the functional V space.

4) Justify the existence of a minimisation problem (MP) that is equivalent to the
variational formulation (VP)u.
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� Variational Formulation Associated with Navier’s Equation

All along the problem, the material’s geometry is restricted to a two-dimensional
(x1,x2) situation.

It is proposed to study the mechanical system whose geometry is defined by the
square Ω≡ ]0,1[× ]0,1[.

In addition, the border Σ2 of ∂Ω is made up of the segment that is x2 = 0 and
the border Σ1 corresponds to the supplementary part of Σ2 in ∂Ω. In other words,
Σ1 consists of three other sides of the square Ω (cf. Fig. 4.2).

1x

Ω

2x

Fig. 4.2 Elastic Square ]0,1[×]0,1[

5) Then show that the continuous problem (CP) may be solved as displacements
using Navier’s Equation written in the vectorial form:

(λ + μ)
−−→
grad(div u)+ μΔu+ f = 0 , in Ω . (4.11)

6) Infer that the continuous problem (DCP), of unknown displacements u has the
structure shown below:

(λ + μ)
−−−→
grad (div u)+ μΔu+ f = 0 , in Ω , (4.12)

u = 0 , on Σ1 , (4.13)

(DCP)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u1

∂x2
(x1,0)+

∂u2

∂x1
(x1,0) =−F1

μ
, (4.14)

λ
∂u1

∂x1
(x1,0)+ (λ + 2μ)

∂u2

∂x2
(x1,0) =−F2 , (4.15)

where u1 and u2 are the components of the displacement field u.
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7) Let v be an arbitrary field of vectors belonging to Vd . Show that a variational
formulation (DVP) associated to the continuous problem (DCP) is written as:

Find u ∈Vd the solution of: a(u,v) = L(v), ∀v ∈Vd , (4.16)

with:

a(u,v) = μ
∫

Ω
[∇∇∇u1∇∇∇v1 +∇∇∇u2∇∇∇v2] dΩ

+(λ + μ)
∫

Ω
div u · div vdΩ (4.17)(DVP)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ μ
∫ L

0

(
∂u1

∂x1
v2− ∂u2

∂x1
v1

)
dx1 ,

L(v) =
∫

Ω
f1v1 dΩ +

∫
Ω

f2v2 dΩ +
∫ L

0
F1v1 dx1 +

∫ L

0
F2v2 dx1 . (4.18)

The nature of the space Vd will have to be specified (regularity and boundary condi-
tions of the functions v belonging to Vd).

� Lagrange Finite Elements P1

8) Approximation of the variational problem (DVP) is performed using Lagrange’s
finite elements P1.

To achieve this, a regular mesh of the square Ω (cf. Fig. 4.3) is introduced with
the help of a triangulation I consisting of Tk isosceles triangles having sides h, such
that:

{
x(0)

1 = x(0)
2 = 0, x(N+1)

1 = x(N+1)
2 = L ,

x(i+1)
1 = x(i)

2 + h, x(i+1)
2 = x(i)

2 + h, (i = 0 to N) .
(4.19)

Now the approximation space Ṽ is defined by:

Ṽ =
{

ṽ : Ω→ R2, ṽ ∈ [C0(Ω)
]2

, ṽi|Tk ∈ P1 (Tk) , ṽ = 0 on Σ1

}
, (4.20)

where P1(Tk) refers to the polynomial space specified on the generic triangle Tk,
having a degree less than or equal to 1 relative to the two variables (x1,x2) of the
space.

– What is the dimension of Ṽ?

� Approximate Variational Formulation

9) Assume P = N(N + 1). Thus ϕi, (i = 1 to P) being the classical basis functions
used for P1 finite elements that satisfies:

ϕi(Mj) = δi j .
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1x

2x

O A

C B

Fig. 4.3 Mesh for Finite Element P1

Having written the approximate variational formulation (˜DVP) of the solution ũ,
associated to the variational problem (DVP), show that by writing ũ in the form of:

ũ =

(
∑

j=1,P

ũ1
jϕ j, ∑

j=1,P

ũ2
jϕ j

)
, (4.21)

and by successively choosing ṽ in the form of:

ṽ = (ϕi,0) , then ṽ = (0,ϕi) , (i = 1,P) , (4.22)

The following linear system is obtained:

˜(DVP)

⎡
⎣A(1,1)

i j ũ1 j + A(2,1)
i j ũ2 j = b(1)

i ,

A(1,2)
i j ũ1 j + A(2,2)

i j ũ2 j = b(2)
i , (∀i = 1,P) ,

(4.23)

with:

A(1,1)
i j = μ

∫
Ω

∇∇∇ϕi ·∇∇∇ϕ j +(λ + μ)
∫

Ω

∂ϕi

∂x1

∂ϕ j

∂x1
, (4.24)

A(2,1)
i j = (λ + μ)

∫
Ω

∂ϕi

∂x1

∂ϕ j

∂x2
− μ
∫ L

0
ϕi

∂ϕ j

∂x1
dx1 , (4.25)

A(1,2)
i j = (λ + μ)

∫
Ω

∂ϕi

∂x2

∂ϕ j

∂x1
+ μ
∫ L

0
ϕi

∂ϕ j

∂x1
dx1 , (4.26)

A(2,2)
i j = μ

∫
Ω

∇∇∇ϕi ·∇∇∇ϕ j +(λ + μ)
∫

Ω

∂ϕi

∂x2

∂ϕ j

∂x2
, (4.27)

b(1)
i =
∫

Ω
f1ϕi +

∫ L

0
F1ϕi dx1 ,

b(2)
i =
∫

Ω
f2ϕi +

∫ L

0
F2ϕi dx1 . (4.28)
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� Characteristic Basis Function ϕi of an Interior Node at Ω

10) Considering the regularity of the mesh, the two generic nodal equations of

the ˜(DVP) system may be re-written in their following local forms using the lo-
cal numeration shown below:

˜(DVP)Int

⎡
⎢⎣

∑
j=0,6

(
A(1,1)

o, j ũ j
1 + A(2,1)

o, j ũ j
2

)
= b(1)

o ,

∑
j=0,6

(
A(1,2)

o, j ũ j
1 + A(2,2)

o, j ũ j
2

)
= b(2)

o .
(4.29)

5 6

1
0

4

3 2

Fig. 4.4 Local Numeration Associated to a Node Strictly Interior to Ω

In the rest of the problem, only the first nodal equation of the system will explic-
itly be dealt with (4.29), i. e., corresponding to the particular choice of ṽ = (ϕi,0),
knowing that the second nodal equation is handled in an analogous manner.

– Calculate the 14 coefficients A(1,1)
0, j ,A(2,1)

0, j ,( j = 0 to 6), as well as the second

member b(1)
0 .

11) Bring the results together by writing the corresponding nodal equation of
the (D̃VP)Int system.

12) Show that the pattern with centered finite-differences is obtained again and is
associated to the first partial differential equation of the continuous problem (DCP).
What is the order of its precision?

It is pointed out that the trapezium quadrature formula applied to a triangle T123,
whose vertices are given as A1, A2 and A3 is written as:

∫∫
T123

f (x,y)dxdy � Area (T123)
3 ∑

i=1,2,3

f (Ai) , (4.30)

where the area of triangle T123 is denoted by Area(T123).
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� Characteristic Basis Function ϕi of an Interior Node at Σ2

13) By keeping the local numeration (cf. Fig. 4.5) and by considering the geometric
specificities of the border Σ2, the nodal equations corresponding to the characteristic
basis functions of the border nodes Σ2 are written as:

˜(DVP)Σ2

⎡
⎢⎢⎢⎣

∑
j=0,4

(
A(1,1)

0, j ũ j
1 + A(2,1)

0, j ũ j
2

)
= b(1)

0 ,

∑
j=0,4

(
A(1,2)

0, j ũ j
1 + A(2,2)

0, j ũ j
2

)
= b(2)

0 .
(4.31)

3 2

0
4 1

Fig. 4.5 Local Numeration Associated to a Node Found Inside Σ2

– Calculate the 10 coefficients A(1,1)
0, j ,A(2,1)

0, j ,( j = 0 in 4), as well as the second

member b(1)
0 .

14) Bring the results together by writing the corresponding nodal equation of

the ˜(DVP)Σ2 system.

15) Show that the pattern with centered finite-differences of the second order, asso-
ciated to the system of the two equations defining the stress on Σ2 (4.14)–(4.15) of
the (DCP) continuous problem, is obtained again.
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4.1.2 Solution

� Variational Formulation for Mixed Stress-Displacements

A.1) Let v be a field of test vectors having all the necessary regularity for carrying
out integration calculations that will be developed in the questions that follow.

Formula (4.8) is obtained by inserting the strain tensors ε(v) using the left inte-
gral of formula (4.8).

To achieve this, the integral of the stress tensors σ against the complementary

partial derivative of
∂v j

∂xi
appearing in the definition of the strain tensors ε(v) (4.5)

is derived:
∫

Ω
σi j

∂v j

∂xi
=
∫

Ω
σ ji

∂vi

∂x j
=
∫

Ω
σi j

∂vi

∂x j
, (symmetry of the tensor σ ) . (4.32)

This brings the deduction:
∫

Ω
σi j

[
∂v j

∂xi
+

∂vi

∂x j

]
= 2
∫

Ω
σi j

∂vi

∂x j
. (4.33)

Formula (4.8) is obtained if care is taken to introduce the definition (4.5) of the
strain tensors ε(v).

A.2) In order to produce a variational formulation (VP), the partial differential equa-
tion (4.1) is multiplied by the vi component of the test displacement field v and is
integrated on the Ω domain:

∫
Ω

∂σi j

∂x j
vi +
∫

Ω
fivi = 0 . (4.34)

In addition, Green’s formula is used to transform the first member of (4.34).

This operation yields the equation below:

−
∫

Ω
σi j

∂vi

∂x j
+
∫

∂Ω
σi jn jvi +

∫
Ω

fivi = 0 . (4.35)

Then, formula (4.8) and the stress boundary conditions (4.3) are considered and
these yield:

∫
Ω

σi jεi j(v) =
∫

Σ1

σi jn jvi +
∫

Ω
fivi +
∫

Σ2

Fivi . (4.36)

Since it is impossible to integrate boundary conditions (4.2) bearing on the displace-
ment field solution u into formula (4.36), the variational space V is constructed in
such a way that its elements v are identically nil on Σ1 so that the solution being
a particular element of V be also nil on the Σ1 border of Ω.
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The formula then becomes:∫
Ω

σi jεi j(v) =
∫

Ω
fivi +
∫

Σ2

Fivi, ∀v ∈V = {v/v = 0 on Σ1} . (4.37)

A.3) At this stage the behaviour law of the material (4.35) is used so as to replace
the stress tensor σ by the strain tensor ε(u) and subsequently by the displacement
field solution u.

Equation (4.37) then leads to the variational formulation (VP)u:

(VP)u

⎡
⎢⎣

Find u ∈V, the solution to: ∀v ∈V =
{

v/v = 0 on Σ1

}
:∫

Ω
[λ εll(u)δi j + 2μεi j(u)]εi j(v) =

∫
Ω

fivi +
∫

Σ2

Fivi ,
(4.38)

or else, by using the properties of Krönecker’s symbol:

a(u,v) = L(v) , ∀v ∈V , (4.39)

with:

(VP)u

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(u,v)≡
∫

Ω
[λ εll(u)εmm(v)+ 2μεi j(u)εi j(v)] , (4.40)

L(v)≡
∫

Ω
fivi +
∫

Σ2

Fivi . (4.41)

� Properties of the space functions V

As should be, so as to guarantee the convergence of the different integrals con-
tributing in formulation (4.40)–(4.41), the necessary conditions bearing on the
regularity of the field of vectors v belonging to V will now be introduced. On sev-
eral occasions (cf. Dirichlet’s Problem [3.1], Neumann’s [3.2], etc.), it has been
shown how the Cauchy-Schwartz inequality enabled the control of integrals hav-
ing the form of those contributing in the expression of L(v), given that the densi-
ties f and F belong to L2. This is precisely what has been assumed at the beginning
of this problem.

Concerning the two terms that are under the integral of the quantity a(u,v), it is
seen that only linear combinations of partial derivatives of the first order appear in
the expression of a(u,v).

The Cauchy-Schwartz inequality thus enables one to write in a generic manner:

∣∣∣∣
∫

Ω

∂ui

∂x j

∂vk

∂xl

∣∣∣∣≤
[∫

Ω

∣∣∣∣ ∂ui

∂x j

∣∣∣∣
2
]1/2[∫

Ω

∣∣∣∣∂vk

∂xl

∣∣∣∣
2
]1/2

. (4.42)
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It is observed that it suffices to consider the field of vectors in a functional space
such as the first partial derivatives belong to L2(Ω).

Thus, given that it was observed earlier that the vi components of the field v
should also belong to L2(Ω), the definition below is finally drawn:

V =
{

v : Ω→ R2/vi ∈ L2(Ω) ,
∂vi

∂x j
∈ L2(Ω) and vi = 0 on Σ1

}
. (4.43)

The above represents the Sobolev space H1(Ω)×H1(Ω) for the vector fields in R2

that, in addition, are nil on Σ1.

A.4) The existence of an equivalent minimisation problem (MP) associated to the
variational problem (VP)u is the result of the following properties of forms a(., .)
and L(.), as respectively defined by (4.40) and (4.41).

1. a(., .) and L(.) are bilinear and linear forms respectively.

2. a(., .) has a symmetrical form.

3. a(., .) has a positive form.

In general, more of the a(., .) form is required in case the Lax-Milgram theorem
(cf. Theorem 10) has to be applied.

In this case, it is necessary to establish that form a(., .) is V -elliptic. From then
on, a V-elliptical form is automatically positive.

In addition, D. Euvrard [4] demonstrates the equivalence between (MP) and
(VP)u problems under previously inventoried conditions.

� Variational Formulation Associated with Navier’s Equation

A.5) Navier’s equation is obtained by replacing the stress tensor σ in equation (4.1)
by its expression supplied by Hook’s Law (4.4) as a function of the strain tensors
and consequently as a function of the displacement field solution u.

Thus the formula below is obtained:

∂
∂x j

[λ εll(u)δi j + 2μεi j(u)]+ fi = 0 , ∀i = 1 to 3 , (4.44)

or:

λ
∂εll(u)

∂x j
δi j + 2μ

∂εi j(u)
∂x j

+ fi = 0 , ∀i = 1 to 3 . (4.45)

The properties of Krönecker’s symbol on one side and permutation of the second
partial derivative in the case of a “sufficiently regular” solution on the other side,
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enables the re-writing of (4.45) by using the definition of the linear strain tensor (4.5)
in the form below:

λ
∂

∂xi
div(u)+ μ

∂ 2ui

∂x j∂x j
+ μ

∂
∂xi

(
∂u j

∂x j

)
+ fi = 0 , ∀i = 1 to 3 . (4.46)

And finally:

(λ + μ)
∂

∂xi
(divu)+ μΔui + fi = 0 , ∀i = 1 to 3 . (4.47)

A.6) Formulation of the displacements continuous problem (DCP) is immediate. To
achieve this, it is only necessary to replace the equilibrium equation (4.1) of the con-
tinuous problem (CP) by Navier’s equation (4.47), on one side, and to express the
conditions to the stress (4.3) on Σ2 as a function of the displacement field solution u.

Thus, given that the Σ2 border corresponds to the x2 = 0 segment, the normal
exterior vector is −x2.

Subsequently, the boundary conditions (4.3) are written as following:(
σ11(x1,0) σ12(x1,0)
σ21(x1,0) σ22(x1,0)

)(
0

−1

)
=

(
F1(x1)
F2(x1)

)
, (4.48)

so, {
−σ12(x1,0) = F1(x1),

−σ22(x1,0) = F2(x1).
(4.49)

Thus, by expressing the stress components σ12 and σ22 as a function of the com-
ponents of the displacement field solution u, equations (4.14)–(4.15) are obtained
from the formulation of the continuous problem (DCP).

A.7) Now a variational formulation (DVP) corresponding to the continuous problem
(DCP) is established.

To achieve this, consider an arbitrary field of vectors v belonging to a functional
space Vd that will be specified later.

Then the Navier’s equation is multiplied in a scalar manner by the vi component
yielding:

(λ + μ)
∫

Ω

∂
∂xi

div u · vi + μ
∫

Ω
Δui · vi +

∫
Ω

fi · vi = 0 . (4.50)

Green’s formula is then used to obtain:

−(λ + μ)
∫

Ω
div u · ∂vi

∂xi
+(λ + μ)

∫
∂Ω

div u · vini + . . .

−μ
∫

Ω
∇∇∇ui ·∇∇∇vi + μ

∫
∂Ω

∂ui

∂n
· vi +
∫

Ω
fi · vi = 0 .

(4.51)
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It is then assumed that the displacement field v homogeneously satisfies the Dirichlet
condition on Σ1 : v = 0 on Σ1.

The two border integrals bearing on ∂Ω and contributing to the variational equa-
tion (4.51) are evaluated in the following manner:

∫
∂Ω

div u · vini =
∫ L

0
div u(−v2) =−

∫ L

0

[
∂u1

∂x1
v2 +

∂u2

∂x2
v2

]
, (4.52)

∫
∂Ω

∂ui

∂n
· vi =
∫ L

0
− ∂ui

∂x2
· vi =−

∫ L

0

[
∂u1

∂x2
· v1 +

∂u2

∂x2
· v2

]
. (4.53)

Then the results of equation (4.52)–(4.53) are injected in formula (4.51) to obtain:

(λ + μ)
∫

Ω
div u div v+(λ + μ)

∫ L

0
(div u)v2 + . . .

. . .+ μ
∫

Ω
∇∇∇ui ·∇∇∇vi + μ

∫ L

0

[
∂u1

∂x2
· v1 +

∂u2

∂x2
· v2

]
=
∫

Ω
fi · vi . (4.54)

Boundary conditions on Σ2, written as a function of components (u1,u2) of the
vector field solution u as well as of the density of efforts F given on the border of Σ2,
enable the re-writing of the variational formula (4.54) following some elementary
reorganization in the form of:

Find u = (u1,u2) ∈V such that: a(u,v) = L(v) , ∀v ∈V where:

a(u,v) = μ
∫

Ω
∇∇∇u1 ·∇∇∇v1 + μ

∫
Ω

∇∇∇u2 ·∇∇∇v2 +(λ + μ)
∫

Ω
div u ·div v

(DVP)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ μ
∫ L

0

(
∂u1

∂x1
v2− ∂u2

∂x1
v1

)
, (4.55)

L(v) =
∫

Ω
f1 v1 +

∫
Ω

f2 · v2 +
∫ L

0
F1 · v1 +

∫ L

0
F2 · v2 . (4.56)

� Lagrange Finite Elements P1

A.8) The approximation space is nothing else than the Cartesian product of the clas-
sical approximation space by finite element P1, for a scalar approximation within
a square, by itself.

In other words, the dimension of Ṽ is equal to:

dimṼ = 2N(N + 1) = [N(N + 1)+ N(N + 1)] ,

because each component of the vector field solution u is approximated by a scalar
function of approximation ũi, which describes the classical approximation space of
the finite elements P1, mentioned above.
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� Approximate Variational Formulation

A.9) The approximate variational formulation (D̃VP) is immediately obtained after
replacing (u,v) in the variational formulation (DVP) by the corresponding approx-
imation fields (ũ, ṽ).

Moreover, in order to get the two corresponding generic equations for each com-
ponent of the approximated field displacement ũ, there has to be the test vector
field ṽ on one part, expressed as ṽ = (ϕi,0), followed by ṽ = (0,ϕi).

Therefore, when ṽ = (ϕi,0), we obtain:

a[(u1,u2),(ϕi,0)] =∑
j

(
μ
∫

Ω
∇∇∇ϕi ·∇∇∇ϕ j +(λ + μ)

∫
Ω

∂ϕi

∂x1

∂ϕ j

∂x1

)
ũ j

1 (4.57)

+∑
j

(
(λ + μ)

∫
Ω

∂ϕi

∂x1

∂ϕ j

∂x2
− μ
∫ L

0
ϕi

∂ϕ j

∂x1

)
ũ j

2 , (4.58)

L[(ϕi,0)] =
∫

Ω
f1ϕi +

∫ L

0
F1ϕi . (4.59)

In the same manner, by choosing ṽ = (0,ϕi), we obtain:

a[(u1,u2),(0,ϕi)] =∑
j

(
(λ + μ)

∫
Ω

∂ϕi

∂x2

∂ϕ j

∂x1
+ μ
∫ L

0
ϕi

∂ϕ j

∂x1

)
ũ j

1

+∑
j

(
μ
∫

Ω
∇∇∇ϕi ·∇∇∇ϕ j +(λ + μ)

∫
Ω

∂ϕi

∂x2

∂ϕ j

∂x2

)
ũ j

2 , (4.60)

L[(0,ϕi)] =
∫

Ω
f2ϕi +

∫ L

0
F2ϕi . (4.61)

Thus, the equations system (4.29) is obtained by simple identification.

� Basis function ϕi Characteristic of an Node Interior at ΩΩΩ

A.10) The calculations that will be presented are based on the approximation
of finite elements P1 of the Laplace-Dirichlet problem in a square discussed in
D. Euvrard’s book [4].

To be more precise, it is the evaluations of the integrals by triangle that will be
directly used in the solution below.

This was done by systematic exploitation of the local numeration presented in
the statement, (cf. Fig. 4.4).

� Calculation of the Coefficients A(1,1)
o j

A(1,1)
o j = μ

∫
Ω

∇∇∇ϕo ·∇∇∇ϕ j +(λ + μ)
∫

Ω

∂ϕo

∂x1

∂ϕ j

∂x1
. (4.62)
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a) Calculation of the coefficient A(1,1)
oo

A(1,1)
oo = μ

∫
Support ϕo

|∇∇∇ϕo|2 +(λ + μ)
∫

Ω

(
∂ϕo

∂x1

)2

. (4.63)

However,∫
Support ϕo

|∇∇∇ϕo|2 =
∫

012
|∇∇∇ϕo|2 +

∫
023
|∇∇∇ϕo|2

+
∫

034
|∇∇∇ϕo|2 +

∫
045
|∇∇∇ϕo|2 +

∫
056
|∇∇∇ϕo|2 +

∫
061
|∇∇∇ϕo|2 ,

=
h2

2

{
2
h2 +

1
h2 +

1
h2 +

2
h2 +

1
h2 +

1
h2

}
= 4 . (4.64)

Moreover,
∫

Ω

(
∂ϕo

∂x1

)2

= 2×
(

1
h2

)
×
(

h2

2

)
+ 0 +
(

1
h2

)
×
(

h2

2

)
×2 + 0 . (4.65)

By grouping the results of (4.64) and (4.65), the expression of the coefficient A(1,1)
oo

is obtained with the help of the definition (4.62):

A(1,1)
oo = 4μ + 2(λ + μ) . (4.66)

By proceeding in an analogous manner for the other coefficients A(1,1)
o j , given

that the calculations are modified to suit the intersection of the basis functions sup-
ports ϕ j, the formula below is obtained:

b) Calculation of the coefficient A(1,1)
o j ,( j = 1 to 3)

A(1,1)
o1 =−μ− (λ + μ) , (4.67)

A(1,1)
o2 =−μ , (4.68)

A(1,1)
o3 = 0 . (4.69)

The other coefficients A(1,1)
o j ,( j = 4 to 6), are obtained by the properties of geomet-

rical symmetry and of invariant translation of the mesh in the two directions that
generate the plan.

Then the following formula is thus obtained:

A(1,1)
o4 =A(1,1)

o1 , (4.70)

A(1,1)
o5 =A(1,1)

o2 , (4.71)

A(1,1)
o6 =A(1,1)

o3 . (4.72)
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c) Calculation of the coefficients A(2,1)
o j

A(2,1)
o j = (λ + μ)

∫
Ω

∂ϕo

∂x1
· ∂ϕ j

∂x2
− μ
∫ L

0
ϕo

∂ϕ j

∂x1
dx1 . (4.73)

Given that characteristic basis functions of nodes strictly interior at Ω are being con-
sidered, the border integral taken between x1 = 0 and x1 = L in the expression (4.73)
is identically nil.

In this case, the coefficients A(2,1)
o j are expressed as:

A(2,1)
o j = (λ + μ)

∫
Ω

∂ϕo

∂x1
· ∂ϕ j

∂x2
. (4.74)

d) Calculation of the coefficient A(2,1)
o j ( j = 0 to 6).

By proceeding in a manner analogous to the evaluation of the coefficients A(1,1)
o j , the

following is obtained:

A(2,1)
o j = (λ + μ) , (4.75)

A(2,1)
o1 = A(2,1)

o2 = A(2,1)
o4 = A(2,1)

o5 =−1
2
(λ + μ) , (4.76)

A(2,1)
o3 = A(2,1)

o6 =
1
2
(λ + μ) . (4.77)

� Estimation of the Second Member b(1)
0

In cases of a characteristic function of a node strictly interior at Ω, the second mem-
ber (4.59) is expressed as:

b(1)
o =
∫

Ω
f1ϕo . (4.78)

By using the trapezium quadrature formula, the following is obtained:

b(1)
o � 6× h2

2
× 1

3
× f (0)

1 = h2 f (0)
1 . (4.79)

A.11) The nodal equation corresponding to a characteristic basis function of a node
strictly interior at Ω, is obtained by simple consolidation of the previous calcula-
tions.
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It is then showed that it is expressed as:

+ μ
[
4ũ(0)

1 − ũ(1)
1 − ũ(2)

1 − ũ(4)
1 − ũ(5)

1

]
+ 2(λ + μ)ũ(0)

1

− (λ + μ)
[
ũ(1)

1 + ũ(4)
1

]
+(λ + μ)ũ(0)

2

− (λ + μ)
2

[
ũ(1)

2 + ũ(2)
2 − ũ(3)

2 + ũ(4)
2 + ũ(5)

2 − ũ(6)
2

]
= h2 f (0)

1 . (4.80)

A.12) Navier’s equation projected on the axis (0;x1) is written as:

(λ + 2μ)
∂ 2u1

∂x2
1

+(λ + μ)
∂ 2u2

∂x1∂x2
+ μ

∂ 2u1

∂x2
2

+ f1 = 0 . (4.81)

In order to obtain a second order approximation of a second order crossed par-
tial derivative, the Taylor’s developments of a “sufficiently regular” solution u from
equation (4.81) are written between the points (x1−h , x2 +h) and (x1 , x2), on one
hand, and between the points (x1 + h , x2−h) and (x1 , x2), on the other.

This choice is guided by two reasons:

Since a second order approximation is sought, the developments have to be writ-
ten up to the fourth order. From then on, the choice of points

M−h,+h ≡ (x1−h,x2 + h) , Mh,−h ≡ (x1 + h,x2−h) and Mo,o ≡ (x1,x2)

will enable playing along Taylor’s development’s symmetry to the appearing odd
orders, particularly the third order, which has to be eliminated.

Moreover, in order to simplify writings, the notation convention will be as fol-
lows: u2 ≡ u2(Mo,o).

u2(M−h,+h) = u2−h
∂u2

∂x1
+ h

∂u2

∂x2
+

h2

2
∂ 2u2

∂x2
1

+
h2

2
∂ 2u2

∂x2
2

−h2 ∂ 2u2

∂x1∂x2

+
1
3!

[
−h3 ∂ 3u2

∂x3
1

+ 3h3 ∂ 3u2

∂x2
1∂x2

−3h3 ∂ 3u2

∂x1x2
2

+ h3 ∂ 3u2

∂x3
2

]
+ O(h4) .

(4.82)

Similarly,

u2(Mh,−h) = u2 + h
∂u2

∂x1
−h

∂u2

∂x2
+

h2

2
∂ 2u2

∂x2
1

+
h2

2
∂ 2u2

∂x2
2

−h2 ∂ 2u2

∂x1∂x2

+
1
3!

[
+h3 ∂ 3u2

∂x3
1

−3h3 ∂ 3u2

∂x2
1∂x2

+ 3h3 ∂ 3u2

∂x1x2
2

−h3 ∂ 3u2

∂x3
2

]
+ O(h4) .

(4.83)

Adding equations (4.82) and (4.83) gives:

u2(M−h,+h)+ u2(Mh,−h) = 2u2 + h2Δu2−2h2 ∂ 2u2

∂x1∂x2
+ O(h4) . (4.84)
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The Laplacian Δu2 at point Mo,o is then replaced by its evaluation by the intervention
of the centred finite-differences of the second order to yield the expression of the
second order crossed partial derivative of u2 at point Mo,o:

∂ 2u2

∂x1∂x2
(Mo,o) =

u2(Mh,0)+ u2(M−h,0)+ u2(M0,h)+ u2(M0,−h)
2h2 + . . .

· · ·− 2u2(M0,0)+ u2(M−h,+h)+ u2(Mh,−h)
2h2 + O(h2) . (4.85)

An approximation of the crossed partial derivative u2 of the second order is obtained
by omitting O(h2) from the equation (4.85) and by substituting the sequence of ap-
proximations to the true values of the solution, at the corresponding points following
the notations used in the previous questions:

∂ 2u2

∂x1∂x2
(Mo,o)� ũ(1)

2 + ũ(4)
2 + ũ(2)

2 + ũ(5)
2

2h2 − 2ũ(0)
2 + ũ(3)

2 + ũ(6)
2

2h2 . (4.86)

An approximation by finite-differences of equation (4.81) is then obtained by sub-
stitution of the second order crossed partial derivative by approximation (4.86) as
well as other second order partial derivatives by their classical approximations.

The following is obtained:

(λ + 2μ)

[
ũ(1)

1 −2ũ(0)
1 + ũ(4)

1

h2

]
+ μ

[
ũ(2)

1 −2ũ(0)
1 + ũ(5)

1

h2

]

+(λ + μ)

[
ũ(1)

2 + ũ(4)
2 + ũ(2)

2 + ũ(5)
2 −2ũ(0)

2 − ũ(3)
2 − ũ(6)

2

2h2

]
+ f (0)

1 = 0 . (4.87)

An ultimate re-organization of equation (4.87) yields the nodal equation (4.80) cor-
responding to a characteristic basis function of a node strictly interior at Ω.

Finally, the fact that partial derivatives, of the order O(h2), have been ignored in
all approximations, the finite differences scheme is globally of the second order 2.

� Basis Function ϕi Characteristic of a Node Interior at Σ2

A.13) Given that the border Σ2 corresponds to the segment parametered by the
equation x2 = 0, the support of a characteristic basis function of a node of the mesh

3                            2

4                                                           1
0

Fig. 4.6 Local Numeration Associated to a Node Strictly Interior at Σ2.
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belonging to this segment is composed of (according to local numeration, see be-
low) T012,T023 and T034 triangles.

Thus, calculation of the coefficients A(1,1)
o j is done by adapting the results of ques-

tion 10 to the basis functions support ϕi mentioned above.

a) Calculation of the coefficients A(1,1)
o j

A(1,1)
oo = 2μ +(λ + μ) . (4.88)

A(1,1)
o1 =−μ

2
− 1

2
(λ + μ) , (4.89)

A(1,1)
o2 =−μ , (4.90)

A(1,1)
o3 = 0 , (4.91)

A(1,1)
o4 = A(1,1)

o1 . (4.92)

b) Calculation of the coefficients A(2,1)
o j

Expression of coefficients A(2,1)
o j is modified in relation to the one used in ques-

tion 10, considering the presence of the border integral of Σ2.

In fact, the following is obtained:

A(2,1)
o j = (λ + μ)

∫
Ω

∂ϕo

∂x1
· ∂ϕ j

∂x2
− μ
∫ L

0
ϕo

∂ϕ j

∂x1
dx1 , (4.93)

or even,

A(2,1)
o j = (λ + μ)

∫
Ω

∂ϕo

∂x1
· ∂ϕ j

∂x2
− μ
∫

40
ϕo

∂ϕ j

∂x1
dx1− μ

∫
01

ϕo
∂ϕ j

∂x1
dx1 , (4.94)

where it was noted symbolically as
∫

40
, the integral bearing an effect on the segment

determined by the nodes 4 and 0, and, according to a similar convention, on the

integral
∫

01
.

By using the trapezium quadrature formula for both one-dimensional integrals, it
becomes:

A(2,1)
oo =

(λ + μ)
2

−
(

μ
h
× h

2

)
+
(

μ
h
× h

2

)
=

(λ + μ)
2

, (4.95)

A(2,1)
o1 = 0−0−

(
μ
h
× h

2

)
=−μ

2
, (4.96)

A(2,1)
o2 =− (λ + μ)

2
, (4.97)

A(2,1)
o3 =

(λ + μ)
2

, (4.98)

A(2,1)
o4 =− (λ + μ)

2
− μ
∫

40
ϕo

∂ϕ4

∂x1
dx1 =− (λ + μ)

2
+

μ
2

. (4.99)
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� Estimation of the Second Member b(1)
0

Again, calculation of the second member b(1)
0 has to consider border integral of Σ2,

that is, interval [0,L]:

b(1)
0 =
∫

Ω
f1ϕo +

∫ L

0
Foϕo . (4.100)

A numerical quadrature combining simultaneously the trapezium formula by trian-
gle Ti jk and by segment [xi,xi+1], leads to the following approximation:

b(1)
0 �

h2

2
f (0)
1 + hF(o)

1 . (4.101)

A.14) The nodal equation corresponding to a characteristic basis function of a mesh
node coinciding with the border Σ2 is obtained by grouping the estimations (4.87)–
(4.92), (4.96)–(4.99) and (4.101):

(λ + 3μ)ũ0
1−
[

λ
2

+ μ
]
(ũ1

1 + ũ4
1)− μ ũ2

1 +
(λ + μ)

2
ũ0

2

−μ
2

ũ1
2 +

(λ + μ)
2

[ũ3
2− ũ2

2]−
λ
2

ũ4
2 =

h2

2
f (0)
1 + hF(o)

1 . (4.102)

A.15) In order to find the nodal equation (4.102) by the finite differences method, the
projection σ(−x2) ·x1 of the boundary conditions on Σ2 (4.14) has to be considered
that bears an effect on the field of stress σ :

∂u1

∂x2
(x1,0)+

∂u2

∂x1
(x1,0) =−F1

μ
. (4.103)

Taylor’s developments are then used in order to replace the combination of partial
derivatives (4.103) by finite differences.

To achieve this, the component u1 is measured at point (x1,x2 + h) and the com-
ponent u2 at point (x1 + h,x2), relative to the central point (x1,x2).

As for the developments shown in the answer to question 12, the following nota-
tions will be used in order to simplify writings:

u1 ≡ u1(M0,0),u2 ≡ u2(M0,0), M0,+h ≡ (x1,x2 + h) and M+h,0 ≡ (x1 + h,x2)

u1(M0,+h) = u1 + h
∂u1

∂x2
+

h2

2
∂ 2u1

∂x2
2

+ O(h3) , (4.104)

u2(M+h,0) = u2 + h
∂u2

∂x1
+

h2

2
∂ 2u2

∂x2
1

+ O(h3) . (4.105)
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The following is then obtain:

u1(M0,+h)+ u2(M+h,0)−u1(Mo,o)−u2(Mo,o)
h

=
(

∂u1

∂x2
+

∂u2

∂x1

)
(Mo,o)+

h
2

∂ 2u1

∂x2
2

(Mo,o)+
h
2

∂ 2u2

∂x2
1

(Mo,o)+ O(h2) . (4.106)

The first substitution now performed consists of replacing the sum of the first partial
derivatives at point (Mo,o) by the second member of the equation of the boundary
conditions (4.103).

u1(M0,+h)+ u2(M+h,0)−u1(Mo,o)−u2(Mo,o)
h

=− F1(Mo,o)
μ

+
h
2

∂ 2u1

∂x2
2

(Mo,o)+
h
2

∂ 2u2

∂x2
1

(Mo,o)+ O(h2) . (4.107)

The second substitution proposed allows an evaluation of the second partial deriva-
tive of

∂ 2u1

∂x2
2

(Mo,o)

in relation to the crossed partial derivative

∂ 2u2

∂x1∂x2
(Mo,o)

by using the partial differential equation (4.81) whose approximation was shown by
finite differences of the second order (4.86).

The following is thus obtained:

u1(M0,+h)+ u2(M+h,0)−u1(Mo,o)−u2(Mo,o)
h

= . . . ,

− F1(Mo,o)
μ

− h
2μ

f1(Mo,o)− (λ + 2μ)
2μ

h
∂ 2u1

∂x2
1

(Mo,o)+ . . . ,

− (λ + 2μ)
2μ

h
∂ 2u2

∂x1∂x2
(Mo,o)+

h
2

∂ 2u2

∂x2
1

(Mo,o)+ O(h2) . (4.108)

By using notations relative to the local numeration, the scheme of the finite dif-
ferences corresponding to the discretisation of the boundary conditions (4.103) is
finally written as:

μ
[
ũ2

1 + ũ1
2− ũ0

1− ũ0
2

]
= . . . ,

−hF0
1 −

h2

2
f 0
1 −

(λ + 2μ)
2

[
ũ1

1−2ũ0
1 + ũ4

1

]
+ . . . ,

− λ + μ
2

[
ũ2

2− ũ3
2− ũ0

2 + ũ4
2

]
+

μ
2

[
ũ1

2−2ũ0
2 + ũ4

2

]
. (4.109)
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It is then shown, after reorganising the equation (4.109), that the exact nodal equa-
tion (4.102) is found associated to a basis function, characteristic of a node interior
at segment [0,1] of border Σ2.
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4.2 Clamped Plate

4.2.1 Statement

This problem seeks to study the two types of variational formulations for the vertical
displacement equation u, following the axis (O;z), of a square elastic plate Ω, which
is perfectly clamped on its border and subjected to a density of efforts perpendicular
to the plate, whose shape is: f = f (x,y)z, (cf. Fig. 4.7).

f

Fig. 4.7 Clamped Plate

� Variational Formulations

The interest is on the scalar function u of the variables (x,y), which is the solution
to the 4th order partial derivatives of the equation:

Find u ∈ H4(Ω) which is the solution to:

(CP1)

⎧⎨
⎩

Δ 2u = f in Ω ,

u =
∂u
∂n

= 0 on ∂Ω ,
(4.110)

where the bi-Laplacian operator Δ 2 is defined by:

Δ2 = Δ(Δ) =
∂ 4

∂x4 + 2
∂ 4

∂x2∂y2 +
∂ 4

∂y4 , (4.111)

Ω denotes the square ]0,1[×]0,1[ of the noted external normal n, f is a given func-
tion belonging to L2(Ω) and H4(Ω) the functional space defined by:

H4(Ω) =
{

v : Ω⊂ Rn→R ,
∂ kv

∂xi1 . . .∂xik
∈ L2(Ω) , ∀k = 0 to 4

}
. (4.112)
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� First Variational Formulation

1) Let v be a test function “sufficiently regular” of the variables (x,y), show that
a variational formulation associated to the continuous problem (CP) can be ex-
pressed as:

(VP)

⎧⎨
⎩

Find u belonging to V solution to:∫
Ω

ΔuΔvdΩ =
∫

Ω
f vdΩ , ∀v ∈V .

(4.113)

The space V has to be specified (regularities and boundary conditions of functions v
in V ).

2) Can the finite elements P1 be used to solve in an approximate form the variational
formulation (VP)?

� Second Variational Formulation

3) Let u be a solution of the problem (CP1), the function ϕ is now introduced and
defined by:

−Δu = ϕ . (4.114)

If u is solution of the continuous problem (CP1), show that the pair (ϕ ,u) is a solu-
tion to the problem (CP2):

Find (ϕ ,u) ∈ H2(Ω)×H2(Ω), the solution to:

(CP2)

⎧⎪⎪⎨
⎪⎪⎩

−Δϕ = f in Ω ,

−Δu = ϕ in Ω ,

u =
∂u
∂n

= 0 on ∂Ω .

(4.115)

where:

H2(Ω)≡
{

v : Ω→R , v ∈ L2(Ω) ,
∂v
∂xi
∈ L2(Ω) ,

∂ 2v
∂xix j

∈ L2(Ω)
}

.

4) A double variational formulation is now performed by introducing a pair of test
functions (ψ ,v) belonging to H1

0 (Ω)×H1(Ω), where H1
0 (Ω) is Sobolev’s space

defined by:

H1
0 (Ω) = H1(Ω)∩{v/v = 0 on ∂Ω} . (4.116)
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Show that if (ϕ ,u) is a solution to the continuous problem (CP2) then (ϕ ,u) is
a solution to the following variational problem (VP2):

(VP2)

⎧⎪⎨
⎪⎩

Find (ϕ ,u) belonging to H1(Ω)×H1
0 (Ω) solution to:

a(ϕ ,ψ) = Lf (ψ) , ∀ψ ∈H1
0 (Ω) ,

a(u,v) = Lϕ (v) , ∀v ∈ H1(Ω) ,

(4.117)

where the bilinear form a(., .) as well as the linear form Lf (.) will be determined.

It is to be noted that the linear form Lϕ (.) is identical to Lf (.), as soon as f is
substituted by ϕ .

� Approximation by Finite Elements P1

An approximation of the variational problem (VP2) is now performed by finite ele-
ments P1.

To achieve this, a constant step of discretization h is introduced and the square Ω
is uniformly meshed by triangles Tk,(k = 1 to NTriangles), isoceles rectangles of
side h, (cf. Fig. 4.8).

C                                               B

O A

2

1

x

x

Fig. 4.8 Mesh by Finite Elements P1

The sequence of Mi, j points would have thus been constructed with (xi,y j) coor-
dinates defined by: ⎧⎪⎨

⎪⎩
x0 = y0 = 0 , xN+1 = yN+1 = 1 ,

xi+1 = xi + h , i = 1 to N + 1 ,

y j+1 = y j + h , j = 1 to N + 1 .

(4.118)

5) Let Ṽ be the space defined by:

Ṽ = {ψ̃ : Ω−→ R , ψ̃ ∈Co(Ω) , ψ̃ |Tk ∈ P1(Tk) ,k = 1 to NTriangles} , (4.119)
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where P1(Tk) represents the set of polynomial having a degree less or equal to 1 in
relation to the ordered pair (x, y).

Moreover it is to be noted that (ξi),(i = 1 to (N +2)2) the canonical basis of the
space Ṽ , that is it satisfies the property: ξl(Mm) = δlm.

On the other hand, Ṽ0 will refer to the space of functions belonging to Ṽ , being
zero on the border of Ω.

The formula is stated as follows:

ϕ̃ = ∑
j=1,(N+2)2

ϕ̃ jξ j and ũ = ∑
j=1,N2

ũ jξ j . (4.120)

Show that the approximate variational formulation to the problem (VP2) is writ-
ten as:

(ṼP2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j=1,(N+2)2

Ai jϕ j = b1
i , (i = 1 to N2) ,

∑
j=1,N2

Ai jũ j = b2
i , (i = 1 to (N + 2)2) ,

with: Ai j =
∫

Ω
∇∇∇ξi ·∇∇∇ξ j dΩ ,

b1
i =
∫

Ω
f ξi dΩ , b2

1 =
∫

Ω
ϕ̃ξi dΩ .

(4.121)

� System of Equations Associated with ϕ̃

6) Given the mesh regularity (invariance by horizontal and vertical translation), lo-
cal numeration described is adopted as in Fig. 4.9. Then make explicit that part of
system (4.121) concerning ϕ̃ , written in its local form:

∑
j=0,6

Ao jϕ̃ j = b1
o . (4.122)

3                          2

5                          6

4                                                     1
0

Fig. 4.9 Local Numeration Associated with a Node Strictly Interior at Ω
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– The coefficients Ao j are then exactly calculated whereas the second member b1
0

will be approximately evaluated by means of the trapezium quadrature method.

7) What is the essential characteristic of system (4.122) which penalizes the con-
ventional implementation of a linear system inversion algorithm.

� System of Equations Associated with ũ

Nodal equation associated with a characteristic basis function of a node interior
at Ω.

8) Wiser from the experience of the previous question, directly write the equations of
system (4.121) corresponding to the characteristic basis functions of a node situated
in the interior of the mesh.

Equation associated with a characteristic basis function of a node interior to seg-
ment OA.

9) Still by adopting a local numeration (cf. Fig. 4.10), make explicit the system of
equations (4.121) written in its local form:

∑
j=2,3

Ao jũ j = b2
o . (4.123)

3 2

4 1

0

Fig. 4.10 Local Numeration Associated with a Node Positioned on the ∂ Ω Border

10) Directly find the set of discrete equations for the two approximation functions
(ϕ̃ , ũ), by using a discretisation of finite differences type.
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4.2.2 Solution

� First Variational Formulation

A test function v is introduced, defined on Ω having real values, and the partial
differential equation of the continuous problem (CP1) is multiplied by v:

∫
Ω

Δ 2u · vdΩ =
∫

Ω
f · vdΩ . (4.124)

Green’s formula is used twice successively, the left member of (4.124) is written as
follows:
∫

Ω
Δ 2u · vdΩ =

∫
Ω

Δ(Δu) · vdΩ =−
∫

Ω
∇∇∇(Δu) ·∇∇∇vdΩ +

∫
∂Ω

∂ (Δu)
∂n

· vdΓ ,

=
∫

Ω
Δu ·ΔvdΩ−

∫
∂Ω

Δu · ∂v
∂n

dΓ +
∫

∂Ω

∂ (Δu)
∂n

· vdΩ . (4.125)

Now and as presented systematically without any ex ante concerning the nature
and properties of test functions v, the construction of the functional frame V cor-
responding to the frame of existence of functions v, should meet the requirements
for conserving the set of information existing in the formulation of the continuous
problem (CP1).

However, it turns out that none of the boundary conditions leading to the clamp-
ing of the plate along its border ∂Ω appears in the integral formulation (4.125).

That is the reason why functions v of V are required to meet the following bound-
ary conditions:

v =
∂n
∂n

= 0, on ∂Ω . (4.126)

Thus, as the object of the search for a solution to the variational formulation consists
in finding solution u in space V , it will be ascertained that this solution will keep
the boundary conditions to which it is subjected as soon as the existence of such
a solution has been proved.

By taking into account the boundary conditions (4.126), the last equation
of (4.125) is written:

∫
Ω

Δ 2u · vdΩ =
∫

Ω
Δu ·ΔvdΩ . (4.127)

Then (4.127) is replaced in (4.124) and the variational equation is obtained:

Find u ∈V the solution to:
∫

Ω
Δu ·ΔvdΩ =

∫
Ω

f · vdΩ (4.128)

The final stage of variational formulation consists in defining the functional space V .
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To make this happen, only regularity properties have to be added to boundary
conditions in (4.126) to guarantee the integral convergence of equation (4.128).

The integral on the left side of equation (4.128) can be controlled by:

∣∣∣∣
∫

Ω
Δu ·ΔvdΩ

∣∣∣∣≤
∫

Ω
|Δu ·Δv|dΩ≤

[∫
Ω
(Δu)2 dΩ

]1/2

·
[∫

Ω
(Δv)2 dΩ

]1/2

,

(4.129)

where the Cauchy-Schwartz inequality would have been used.

Then consider the natural norm of the Sobolev space H2(Ω):

∀u ∈ H2(Ω) :

‖u‖2
H2(Ω) =

[
‖u‖2

L2(Ω) + ∑
i=1,2

∥∥∥∥ ∂u
∂xi

∥∥∥∥
2

L2(Ω)
+ ∑

i, j=1,2

∥∥∥∥ ∂ 2u
∂xi∂x j

∥∥∥∥
2

L2(Ω)

]
,

(4.130)

with:

∀u ∈ L2(Ω) : ‖u‖2
L2(Ω) =

∫
Ω
|u|2 dΩ . (4.131)

Consequently, the following is obtained:

∀u ∈H2(Ω) :

[∫
Ω
(Δu)2 dΩ

]
≤ ‖u‖2

H2(Ω) . (4.132)

Then the integral of the member on the left side of (4.128) is used again by means
of the inequality (4.129):

∣∣∣∣
∫

Ω
Δu ·ΔvdΩ

∣∣∣∣≤ ‖u‖H2(Ω)‖v‖H2(Ω) . (4.133)

In other words, considering u and v in H2(Ω) is enough to guarantee the conver-
gence of the integral in the left member of the variational equation (4.128).

Likewise, by using once again the Cauchy-Schwartz inequality, the member on
the right side of equation (4.128) is increased by:

∣∣∣∣
∫

Ω
f · vdΩ
∣∣∣∣≤
∫

Ω
| f · v|dΩ≤ ‖ f‖L2(Ω)‖u‖L2(Ω) . (4.134)

Then introduce the Sobolev space H2
0 (Ω) defined by:

H2
0 (Ω) = H2(Ω)∩

{
v/v =

∂v
∂n

= 0, on ∂Ω
}

. (4.135)
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Finally, the variational problem (VP) is written as:

(PV)
∫

Ω
ΔuΔvdΩ =

∫
Ω

f vdΩ , ∀v ∈ H2
0 (Ω) . (4.136)

A.2) The use of finite elements P1 to solve the variational formulation (VP) by
approximation would lead to the fact that the member on the left side of (4.136)
would be identically nil.

In fact, the second partial derivatives of a function whose degree is less or equal
to one with respect to the ordered pair (x,y) being nil, it follows that the Laplacian
of such a function is alike!

Thus, the use of such finite elements to numerically solve the problem (VP) by
variational approximation is not really recommended since the right side of (4.136)
is not zero.

� Second Variational Formulation

A.3) The formulation of problem (CP2) is instantaneous. In fact, it is only neces-
sary to inject of the function change (4.114) in the partial differential equation of
the plates of problem (CP1) to obtain the first partial differential equation to prob-
lem (CP2), i. e. Laplace equation:

−Δϕ = f .

The other equations forming the rest of problem (CP2) are trivial.

A.4) Let (ψ ,v) be a couple of test functions belonging to H1
0 (Ω)×H1(Ω). Func-

tion ψ will be the test function associated with function ϕ and function v with the
second unknown u.

In order to obtain a variational formulation (VP2) associated with the continuous
problem (CP2), multiply each of the partial differential equations of continuous
problem (CP2) by its corresponding test function and obtain:

(PV2)

⎧⎪⎪⎨
⎪⎪⎩
−
∫

Ω
Δϕ ·ψ dΩ =

∫
Ω

∇∇∇ϕ ·∇∇∇ψ dΩ +
∫

∂Ω

∂ϕ
∂n
·ψ ≡
∫

Ω
f ·ψ dΩ ,

−
∫

Ω
Δu · vdΩ =

∫
Ω

∇∇∇u ·∇∇∇vdΩ +
∫

∂Ω

∂u
∂n
· v≡
∫

Ω
ϕ · vdΩ .

(4.137)

Then use the boundary conditions bearing upon u and its normal differential coeffi-
cient, identically nil on the border ∂Ω of Ω.

In fact, concerning the normal differential coefficient of u, given the fact that the
values of u do not intervene at all in the integrals of double formulation (4.137), in
order to keep its memory in variational formulation (VP2), introduce the suitable
properties in the functional space in which function ψ will be the generic element.
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It really consists of the variational space associated with ψ since the plate equa-
tion is multiplied by this function, of course rewritten with a change of function ϕ .

Thus, when the boundary conditions bearing on the nullity of u on the border ∂Ω
is replaced in system (4.137) and by choosing H1(Ω)×H1

0 (Ω) as functional spaces
for the unknowns (ϕ ,u) on one hand, and H1

0 (Ω)×H1(Ω) for the pair of test func-
tions (ψ ,v) on the other hand, the double variational formulation is written as:

Find (ϕ ,u) belonging to H1(Ω)×H1
0 (Ω) being the solution to:

(PV2)

⎧⎪⎨
⎪⎩

a(ϕ ,ψ)≡
∫

Ω
∇∇∇ϕ ·∇∇∇ψ dΩ =

∫
Ω

f ·ψ dΩ≡ Lf (ψ) , ∀ψ ∈ H1
0 (Ω) ,

a(u,v)≡
∫

Ω
∇∇∇u ·∇∇∇vdΩ =

∫
Ω

ϕ · vdΩ≡ Lϕ(v) , ∀v ∈H1(Ω) .

(4.138)

A.5) The change from variational formulation (VP2) to approximate variational for-

mulation ˜(VP2) is obtained by substituting unknowns (ϕ ,u) by respective approxi-
mation functions (ϕ̃ , ũ):

Find (ϕ̃ , ũ) belonging to Ṽ × Ṽ0, being solution to:

˜(VP2)

{
a(ϕ̃ , ψ̃) = Lf (ψ̃) , ∀ψ̃ ∈ H1

0 (Ω) ,

a(ũ, ṽ) = Lϕ (ṽ) , ∀ṽ ∈ H1(Ω) .
(4.139)

Then the decompositions of ϕ̃ and ũ are used on their respective basis, according to
the formula (4.120).

Moreover, given the bilinearity of form a(., .) and the linearity of form Lf (.),
(form Lϕ(.) obviously displays the same property), the expressions of (4.121) easily
follows it.

One will note on this occasion that approximation ũ breaks up on basis func-
tions N2 where as approximation ϕ̃ breaks up on basis functions (N + 2)2.

In fact, this is due to the fact that unknown ũ has to be identically nil on the
border ∂Ω.

As a result, the characteristic basis functions of nodes situated on the border of
square Ω should not be included in the decomposition of function ũ.

The result is that only the points N2 strictly interior to the mesh and the charac-
teristic basis functions of these nodes have to be considered in the decomposition of
approximation ũ.

The same arguments lead to N2 equations whose second member is mentioned
as b1

i in the variational problem formulation and (N + 2)2 equations for the second
system whose second member is mentioned as b2

i .
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A.6) Now the constitution of the linear system associated with the unknown ϕ̃ of
problem (VP2) is considered as written in its local form.

To make that happen, it is observed that having considered a regular mesh,
(cf. Fig. 4.8), and by adopting the locale numeration shown in Fig. 4.9, if 0 be-
comes the local number of numbered function i in the global numeration, only the
numbers of the triangles’ apexes, where the node 0 is one of the apexes, intervene,
and this, in accordance with the properties of the “affine by triangle” basis function
supports.

Then the following is obtained:
⎡
⎣ ∑

j=1,(N+2)2

Ai jϕ j = b1
i , i = 1 to N2

⎤
⎦⇒
[

∑
j=0,6

Ao jϕ̃ j = b1
o

]
(4.140)

� Calculation of Coefficients A00

All the coefficients will be calculated correctly, given the fact that the gradients of
basis functions ξi are constant per triangle.

These calculations are conventional and may be consulted, for further details, in
the work of D. Euvrard, [4].

a) Calculation of coefficient A00

A00 =
∫

Supp ξ0

|∇∇∇ξ0|2 dΩ =
∫

012
|∇∇∇ξ0|2 dΩ +

∫
023
|∇∇∇ξ0|2 dΩ

+
∫

034
|∇∇∇ξ0|2 dΩ +

∫
045
|∇∇∇ξ0|2 dΩ +

∫
056
|∇∇∇ξ0|2 dΩ +

∫
061
|∇∇∇ξ0|2 dΩ ,

A00 =
h2

2

{
2
h2 +

1
h2 +

1
h2 +

2
h2 +

1
h2 +

1
h2

}
= 4 . (4.141)

b) Calculation of coefficients A01 and A02

A01 =
∫

Supp ξ0
⋂

Supp ξ1

∇∇∇ξ0 ·∇∇∇ξ1 dΩ =
∫

012
∇∇∇ξ0 ·∇∇∇ξ1 dΩ +

∫
061

∇∇∇ξ0 ·∇∇∇ξ1 dΩ

=
h2

2

{
− 1

h2 −
1
h2

}
=−1 . (4.142)

By analogue reasoning, the following would be found in the same way:

A02 =
∫

Supp ξ0
⋂

Supp ξ2

∇∇∇ξ0 ·∇∇∇ξ2 dΩ =
∫

012
∇∇∇ξ0 ·∇∇∇ξ2 dΩ +

∫
023

∇∇∇ξ0 ·∇∇∇ξ2 dΩ

=
h2

2

{
− 1

h2 −
1
h2

}
=−1 . (4.143)
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c) Calculation of coefficient A03

A03 =
∫

Supp ξ0
⋂

Supp ξ3

∇∇∇ξ0 ·∇∇∇ξ3 dΩ =
∫

023
∇∇∇ξ0 ·∇∇∇ξ3 dΩ +

∫
034

∇∇∇ξ0 ·∇∇∇ξ3 dΩ

=
h2

2
{0 + 0}= 0 . (4.144)

d) Calculation of coefficients A04,A05 and A06

Because of symmetries inherent to the invariance of the mesh in the two directions
of the plan, on one hand at the symmetry of bilinear form a(., .), and consequently
of matrix A0 j, the following is obtained:

⎧⎪⎨
⎪⎩

A04 = A40 = A01 =−1 ,

A05 = A50 = A02 =−1 ,

A06 = A60 = A03 = 0 .

(4.145)

� Estimation of the Second Member b1
0

Evaluation of the second member b1
0 is performed using the trapezium quadrature

formula:

∫∫
T

f (χ)dχ � Area T
3

{
f (Ai)+ f (A j)+ f (Ak)

}
, (4.146)

where T refers to any triangle of the mesh whose vertices Ai, A j and Ak would have
been noted. Thus,

b1
0 =
∫

Supp ξ0

f ξ0 dΩ =
∫

012
f ξ0 dΩ +

∫
023

f ξ0 dΩ +
∫

034
f ξ0 dΩ

+
∫

045
f ξ0 dΩ +

∫
056

f ξ0 dΩ +
∫

061
f ξ0 dΩ ,

� h2

2
×6× 1

3
× [ f0×1] , (4.147)

where f0 refers to the value of the second member f at node 0.

The generic equation (4.140) associated with characteristic basis function ξ0 of
an interior node (i. e., equal to 1 in this node and to 0 at the other nodes of the mesh)
and noted 0 in local numeration, is written as:

4ϕ̃0− ϕ̃1− ϕ̃4− ϕ̃2− ϕ̃5 = h2 f0 . (4.148)
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As usual, and for any regular mesh, the finite differences schema associated to the
Laplacian is observed:

−
[

ϕ̃1−2ϕ̃0 + ϕ̃4

h2

]
−
[

ϕ̃2−2ϕ̃0 + ϕ̃5

h2

]
= f0 . (4.149)

A.7) The linear system described in the generic equation (4.148) is a system of
(N + 2)2 equations with N2 unknowns.

In other words, it is a rectangular linear system. Thus, not having as many equa-
tions as unknowns, it cannot be solved numerically in an autonomous manner.

A complete resolution by simultaneously finding out the pair of unknowns (ϕ̃ , ũ)
may only be performed by completing this system with the ones dealt with in ques-
tions 8) and 9).

But hold on since each thing is performed in its own time. . .

A.8) Given that the linear system governing the approximation function ũ is built up
with a same germ matrix, the basis function of a node strictly interior to Ω may be
written as the following corresponding nodal equation:

4ũ0− ũ1− ũ4− ũ2− ũ5 = h2ϕ0 . (4.150)

However, the second member f0 of system (4.148) should be interchanged with the
appropriate value of ϕ0 before carrying out the above operation.

A.9) Now a characteristic function of a node belonging to a segment OA is consid-
ered, one of the segments forming the border ∂Ω, (cf. Fig 4.8).

In this case, only the functions of nodes locally numbered 0,1,2,3 and 4 display
a potential contribution in the writing of the nodal equation associated with the
characteristic function of node 0.

In other words, the nodal equation is in this case written as:

∑
j=0,4

A0 jũ j = ∑
j=2,3

A0 j ũ j = b2
0 . (4.151)

It would be observed that the contributions of nodes 0, 1 and 4 are at once eliminated
because they are situated on the border of Ω domain where the unknown u has to be
identically nil. The same thing is done for the approximation function ũ.

The two coefficients A02 and A03 are thus basically obtained in accordance with
the calculations shown in detail in question 6).
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Thus, the following is immediately obtained:

A02 =
∫

Supp ξ0
⋂

Supp ξ2

∇∇∇ξ0 ·∇∇∇ξ2 dΩ =
∫

012
∇∇∇ξ0 ·∇∇∇ξ2 dΩ +

∫
023

∇∇∇ξ0 ·∇∇∇ξ2 dΩ ,

=−1 .

A03 =
∫

Supp ξ0
⋂

Supp ξ3

∇∇∇ξ0 ·∇∇∇ξ3 dΩ =
∫

023
∇∇∇ξ0 ·∇∇∇ξ3 dΩ +

∫
034

∇∇∇ξ0 ·∇∇∇ξ3 dΩ ,

= 0 . (4.152)

As the same causes lead to the same effects, the second member b2
0 is estimated by

analogous manner as for the second member b1
0, so long as it is considered that in the

present case there are twice fewer triangles and that function ϕ̃ replaces function f
in the integral of second member b1

0.

Finally, the nodal equation is written as:

−ũ2 =
h2

2
ϕ0 . (4.153)

A.10) The discretisation by finite differences of problem (CP2) is conventional. It
consists in discretising successively two second-order Laplacians and one Neumann
condition.

The solution to Dirichlet’s and Neumann’s problems that have been presented on
this subject may be consulted, (cf. Problems [3.1] and [3.2]), for the integrality of
discretisation calculations by finite differences.



Chapter 5

Finite Elements Applied to Strength of Materials

Preamble

This chapter is dedicated to the application of the finite elements method within the
framework of strengths of materials.

The main objective of this chapter is to clear up, as much as possible, a state of
confusion that predominates within the community of graduate students in mechan-
ics, physics, and also within certain graduate schools of engineering.

In fact, experience shows that, very often, the finite elements method appears to
be radically different and this causes an unjustified confusion in students’ minds! –
depending on whether this method is presented within the framework of a classic
course in numerical analysis or whether it relates to a course in solid mechanics.

The author’s expressed wish and the essential motivation in writing this chapter
are to get rid of any doubts that may exist among the concerned public by demon-
strating the uniqueness in fundament and in form of the finite elements method,
more so as it originated from the mechanics of deformable solids.

For, in fact, only the teacher’s lack of concern is the unique source of possible
confusions. It is the teaching staff’s responsibility to dissipate the difficulty unnec-
essarily faced by a great number of students.

Let there not be the slightest ambiguity. The finite elements method though ap-
plied to solid mechanics is, and should be standardized for the benefit of students
on one hand, and for its own further use in applications that can only benefit from
its practical and indisputable performance and flexibility on the other hand.

In order to set up this standardization, the aim of this presentation is to propose
and expound, within the framework of the beam theory, a double application of the
finite elements method.

Therefore, on one hand, the “numerical analysis” version based on the approx-
imation of a variational formulation will be developed, and, on the other hand, the
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“mechanics of deformable solids” version aimed at resolving the minimization prob-
lem associated with and equivalent to the variational formulation of the first version
will be expanded.

Moreover, as far as the “solid mechanics version” of the finite elements method is
concerned, this opportunity is taken to address the principles of the technique of as-
sembly of the linear system obtained during the approximation of the minimization
problem.

5.1 Beam Subjected to Simple Traction

5.1.1 Case of a Restraint

Statement

Consider a homogenous beam Ω having a length L, a cross section S and a con-
stant density ρ , whose mechanical behaviour is the isotropic elasticity with small
disturbances.

Moreover, the constituent material of the beam has a Young’s modulus E and
a Poisson’s ratio ν .

(O;X1) refers to the axis of the beam and the current abscissa is x. The beam is
restrained at the abscissa x = 0 and is free from stress when x = L.

In addition, a charge density f = f1X1 is applied to longitudinal forces along the
beam (see Fig. 5.1). The density f1 is given and has “enough regularity” to enable
the integration calculations of the theoretical part.

� Displacement Variational Formulation – Principle of Virtual
Works – Theoretical Part

1) By choosing a field of virtual displacements U∗ in the form:

U∗ = u∗(x)X1 such that u∗(x) = 0 , (5.1)

find the virtual work of the interior forces T ∗Int and the virtual work of the exterior
forces T ∗Ext defined by:

T ∗Int =−
∫

Ω
σi jεi j(U∗)dΩ , T ∗Ext =

∫
Ω

f ·U∗ dΩ , (5.2)

1

11
X

Xff =

Fig. 5.1 Beam Subject to Traction
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where σ refers to the stress tensor and ε(U∗) to the linear strain tensor associated
with the virtual displacements field U∗:

εi j(U∗) =
1
2

[
∂U∗i
∂x j

+
∂U∗j
∂xi

]
. (5.3)

It would be necessary to introduce the normal force N(x) and the force loading f (x)
defined by:

N(x) =
∫∫

S(x)
σ11 dS(x), f (x) =

∫∫
S(x)

f1 dS(x) , (5.4)

S(x) refers to the section having abscissa x.

2) Assuming that the various integrated magnitudes are “sufficiently regular”, show
that the application of the Principle of Virtual Works leads to the following formal
variational formulation (EVP):

(EVP)

⎡
⎢⎢⎢⎣

Find N defined on [0,L] having values in R, solution to:∫ L

0
Ṅu∗dx + N(L)u∗(L)+

∫ L

0
f u∗ dx = 0 ,

∀u∗/u∗(0) = 0 ,

(5.5)

the parameters having been defined: Ṅ ≡ dN
dx

.

3) Using the behaviour law of the material (N = ESu̇) and by assuming that the force
density f belongs to L2(0,L), show that the continuous problem (CP) consisting of
the equilibrium equations of the beam is written as:

(CP)

⎡
⎢⎣

Find u belonging to H2(0,L), solution to:

−ESü(x) = f (x), ∀x ∈]0,L[ ,

u(0) = 0, u̇(L) = 0 .

(5.6)

4) V ≡ H1∗ (0,L) refers to the Sobolev space defined by:

H1
∗ (0,L) = {v ∈ L2(0,L),v′ ∈ L2(0,L) such that v(0) = 0} , (5.7)

then show that a displacement variational formulation (VP) can be written as:

(VP)

⎡
⎣Find u belonging to V , solution to:

ES
∫ L

0
u̇(x)v̇(x)dx =

∫ L

0
f (x)v(x)dx , ∀v ∈V .

(5.8)

5) Likewise, show that there is a minimization problem (MP) equivalent to the vari-
ational formulation (VP) defined by:

(MP)

⎡
⎢⎢⎢⎣

Find u belonging to V , solution to:

J(u) = Min
v∈V

J(v),

where: J(v) =
ES
2

∫ L

0
v̇2(x)dx−

∫ L

0
f (x)v(x)dx .

(5.9)
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� Numerical Part

This part is dedicated to the approximation by finite elements applied to elastic
beams.

In order to propose the application of this method as a complementary to the
one exposed in the previous chapters, this approximation will be worked out by
underlining the assembly technique on one hand and by applying it in the particular
framework of approximation of the minimization problem (MP) on the other hand.

The global framework of the approximation is that of the finite elements P1 and
a regular mesh of the interval [0,L] having constant step h is considered, such as:{

x0 = 0, xN+1 = L ,

xi+1 = xi + h, i = 0 to N .
(5.10)

The approximation space Ṽ is now defined using:

Ṽ =
{

ṽ : [0,L]→ R, ṽ ∈C0([0,L]), ṽ|[xi,xi+1] ∈ P1([xi, xi+1]), ṽ(0) = 0
}

, (5.11)

where P1([xi,xi+1]) refers to the space of polynomials defined on [xi,xi+1], having
a degree less than or equal to one.

6) If the canonical basis of Ṽ satisfying ϕi(x j) = δi j, (δii = 1, and δi j = 0 if i �= j),
is noted ϕi,(i = 1 to N + 1), let ṽ belongs to Ṽ defined by:

ṽ =
N+1

∑
j=1

ṽ jϕ j . (5.12)

Propose a mechanical interpretation having coefficients ṽ j.

7) Let (M̃P) be the approximate minimization problem associated with the prob-
lem (MP) defined by:

(M̃P) Find ũ belonging to Ṽ , solution of: J(ũ) = Min
ṽ∈Ṽ

J(ṽ) .

– Show that a necessary condition allowing ũ to be a solution of (MP) is written
as:

Find the numerical sequence (ũi)1,N+1 defining the approximation ũ belonging to Ṽ ,
solution to the global linear system:

N+1

∑
j=1

Ai jũ j = bi, (∀i = 1 to N + 1) , (5.13)

where the following was noted:

Ai j ≡ ES
∫

Supp ϕi ∩ Supp ϕ j

ϕ̇iϕ̇ j dx, bi ≡
∫

Supp ϕi

f ϕi dx . (5.14)
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8) The elements of the elementary matrix a(i+1), leading the contribution of the
segment [xi,xi+1], i. e. the (i + 1)-th element of the mesh of the interval [0,L], into
the global matrix A of the linear system (5.13), having a generic element Ai j is now
introduced. Thus, the following is written:

a(i+1) =

⎡
⎢⎣

a(i+1)
1,1 a(i+1)

1,2

a(i+1)
2,1 a(i+1)

2,2

⎤
⎥⎦ ,

≡ ES

⎡
⎢⎢⎢⎣

∫ xi+1

xi

(ϕ̇i)2 dx
∫ xi+1

xi

ϕ̇iϕ̇i+1 dx

∫ xi+1

xi

ϕ̇i+1ϕ̇i dx
∫ xi+1

xi

(ϕ̇i+1)2 dx

⎤
⎥⎥⎥⎦ . (5.15)

Likewise, introduce the elementary vector b(i+1) defined by:

b(i+1) =

⎡
⎢⎣

b(i+1)
1

b(i+1)
2

⎤
⎥⎦≡
⎡
⎢⎢⎢⎣

∫ xi+1

xi

f ϕi dx

∫ xi+1

xi

f ϕi+1 dx

⎤
⎥⎥⎥⎦ . (5.16)

Find the relationship between the coefficients Ai j and a(i+1)
i j , and then, between bi

and b(i). Qualitatively explain the assembly technique inferred from it.

9) Exactly calculate the 4 coefficients of the elementary matrix a(i+1) then propose
an approximation for the vector b(i+1) by using the trapezium rule.

10) Assemble the global matrix A having generic element Ai j and the second mem-

ber bi defined by the problem (M̃P).

11) Are the nodal equations obtained by the classic technique of approximation by
finite elements P1 applied to the variational formulation (VP) found again?

12) And what about the finite differences method applied to the continuous prob-
lem (CP)?

5.1.2 Case of an Elastic Support

13) The restraint condition when x = 0 is replaced by an elastic support having
a given stiffness k (cf. Fig.5.2). When the spring of the support is at rest, the dis-
placement u1 at the end of the beam having abscissa x1 = 0 is zero.
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Knowing that the beam is subjected to the force density f = f1X1, show that the
minimization of the potential energy of the system “Beam-Spring” is written as:

(PM)

⎡
⎢⎢⎢⎢⎢⎢⎣

Find u belonging to V ′, solution to:

J(u) = Min
v∈V ′

J(v) ,

where:

J(v) =
ES
2

∫ L

0
v̇2(x)dx−

∫ L

0
f (x)v(x)dx +

1
2

ku2
1 .

(5.17)

It may have been noticed that the displacement fields belonging to V ′ are no longer
subjected to the homogenous Dirichlet condition when x1 = 0.

14) The particular case of a mesh of the beam Ω , composed of only one mesh
[x1 = 0,x2 = L] is considered.

– Write the system of equations verified by the approximate displacements ũ1

and ũ2, (respectively at nodes x1 and x2).

– Solve the system of equations and find the approximate displacements ũ1 and ũ2

and propose an approximation of the displacement field ũ at any point of the
beam.

15) When the stiffness of the elastic support is infinite, show that the results of
a restrained beam when x1 = 0 is found again.
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Solution

� Displacement Variational Formulation – Principle of Virtual
Work – Theoretical Part

A.1) The choice of a virtual field defined by (5.1) is justified by the physical nature
of the forces acting on the beam Ω .

Indeed, the beam is exclusively subject to a density f which prompts the search
for a real displacement field U, and as a result, of virtual fields U∗ in the form
of (5.1).

The expression of the strain tensor ε(U∗), associated with the virtual field U∗,
can be easily inferred from the shape of the virtual fields (5.1) by using the defini-
tion (5.3):

ε(U∗) = ε∗11X1⊗X1 = u̇∗(x)X1⊗X1 , (5.18)

in which the tensor product X1⊗X1 indicates that the strain tensor field ε(U∗) has
only one non-zero component, namely: ε∗11. Therefore, the evaluation of the virtual
work of internal forces can be performed:

T ∗Int =−
∫

Ω
σi jεi j(U∗)dΩ =−

∫
Ω

σ11ε∗11 dΩ (5.19)

=−
∫ L

0

(∫∫
S(x)

σ11 dS(x)
)

u̇∗(x)dx =−
∫ L

0
N(x)u̇∗(x)dx , (5.20)

in which the expression of the normal forces N as defined by (5.4) is used.

In the same way, the virtual work of external forces is evaluated:

T ∗Ext =
∫

Ω
f ·U∗ dΩ =

∫
Ω

f1u∗(x)dΩ (5.21)

=
∫ L

0

(∫∫
S(x)

f1 dS(x)
)

u∗(x)dx =
∫ L

0
f (x)u∗(x)dx . (5.22)

A.2) The application of the principle of virtual work for static phenomena is written
as:

T ∗Int + T ∗Ext = 0, ∀u∗ which fulfils the conditions in (5.1). (5.23)

1X

Fig. 5.2 Beam with Elastic Support
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In other words, by using the expressions (5.20) and (5.21), the following is obtained:

−
∫ L

0
N(x)u̇∗(x)dx +

∫ L

0
f (x)u∗(x)dx = 0, ∀u∗/u∗(0) = 0 . (5.24)

An integration by parts is then performed on the first integral of (5.24) and the
homogenous Dirichlet condition as defined by (5.1) is used.

The variational problem (EVP) is obtained:

(EVP)

⎡
⎢⎣
∫ L

0
Ṅ(x)u∗(x)dx + N(L)u∗(L)+

∫ L

0
f (x)u∗(x)dx = 0 ,

∀u∗/u∗(0) = 0 .

(5.25)

A.3) To obtain the formulation of the continuous problem (CP), the equation (5.25)
of the variational problem (EVP) is again used and the normal force N is replaced by
its expression in relation with the associated displacement field u, via the behaviour
law, as pointed out in the statement of this question.

The following is then obtained:

(EVP)

⎡
⎢⎣
∫ L

0
[ESü(x)+ f (x)]u∗(x)dx + ESu̇(L)u∗(L) = 0 ,

∀u∗/u∗(0) = 0 .

(5.26)

From the variational formulation (5.26), which is in fact a formal formulation,
a functional framework for the working out of solution u, will be proposed; i. e.
a plausible existence space for u as well as for virtual displacement fields u* which
occur in (5.26).

To achieve this, considering that the density f is a given function belonging
to L2(0,L), the application of the Cauchy-Schwartz inequality to the integral of
equ. (5.26) ensures its existence, provided that ü and u∗ belong to L2(0,L).

This is why the solution u and the virtual fields u* are considered in Sobolev
space H2(0,L).

It can further be remarked that the functions of H2(0,L) being C1 on [0,L] (cf.
H. Brézis, [1]), the values of u̇ and of u∗ at the point x = L, occurring in formula-
tion (5.26), are perfectly licit.

Moreover, the homogenous Dirichlet condition u(0) = u∗(0) = 0 leads to the
consideration of the displacement field u, being the solution of (5.26) as well as the
virtual displacement fields u∗ in the space H2∗ (0,L) as defined by:

H2
∗ (0,L)≡ {v : [0,L]→R , v ∈ H2(0,L) and v(0) = 0

}
. (5.27)
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The variational formulation (EVP) is written as:

(EVP)

⎡
⎢⎢⎢⎣

Find u belonging to H2∗ (0,L) which is the solution to:∫ L

0
[ESü(x)+ f (x)]u∗(x)dx + ESu̇(L)u∗(L) = 0 ,

∀u∗ ∈H2∗ (0,L) .

(5.28)

The continuous problem (CP) is then solved in two steps:

Firstly, the equ. (5.28) is studied, the first particular case being that of the func-
tions u* belonging to H2∗ (0,L) and which are moreover zero when x = L.

For such functions, equ. (5.28) is written as:
∫ L

0
[ESü(x)+ f (x)]u∗(x)dx = 0, ∀u∗ ∈ H2

∗ (0,L)/u∗(L) = 0 . (5.29)

The process is then performed using density while noting that (5.29) is also verified
for any function u∗ belonging to D(0,L) which comprises the function spaces C∞

having compact support as

D(0,L)⊂ H2
∗ (0,L) .

The fact that D(0,L) is dense in L2(0,L) is then used:

∀g ∈ L2(0,L), ∃gn ∈D(0,L) such that: lim
n→+∞

‖gn−g‖L2 = 0 , (5.30)

the limit being considered as for the L2-norm.

Thus, when g is fixed, (while remaining an undefined value), in L2(0,L), the
sequence gn of D(0,L) defined by (5.30), verifies the variational equ. (5.29) like
any function of D(0,L).

In fact, it would be convenient for (5.29) to be verified by the function g belong-
ing to L2(0,L) so as to choose among all the g functions of L2(0,L) the precise
function that is equal to the specific function G defined by:

G≡ ESü(x)+ f (x) .

This easily yields the differential equation of the continuous problem (CP).

To achieve this, the left member of equ. (5.29) is checked and if u* is a function g
of L2(0,L).∣∣∣∣
∫ L

0
G(x)g(x)dx

∣∣∣∣≤
∫ L

0
|G(x)| · |g(x)−gn(x)|dx ,

≤
[∫ L

0
G2(x)dx

]1/2[∫ L

0
|g(x)−gn(x)|2(x)dx

]1/2

. (5.31)
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The limit process in the inequality (5.31) is then done and this leads to the varia-
tional equality (5.29), for any function g belonging to L2(0,L).

As mentioned earlier, the differential equation of the continuous problem (CP)
is then obtained immediate; it only requires the choice of a function among all the
functions g belonging to L2(0,L) that satisfies (5.29) and that strictly equals G,
(g ≡ G).

The variational equality (5.28) that, as shown earlier, holds a zero integral in so
far as its integrand [ESü(x)+ f (x)] is necessarily zero, is processed again.

It then becomes:

u̇(L)u∗(L) = 0, ∀u∗ ∈ H2
∗ (0,L) . (5.32)

It can be easily concluded that u̇(L) = 0.

� Summary

The solution u of the variational equation (5.28) has been worked out in the
space H2∗ (0,L), as defined in (5.27).

In so far as this particular solution, as shown earlier, satisfies the differential equa-
tion of the problem (CP), on the one hand and the Neumann condition u̇(L) = 0
on the other hand and even the homogenous Dirichlet condition with x = 0, as
a property of the space H2∗ (0,L), it proves that the function u is the exact solution
of the continuous problem (CP), as defined in (5.6).

A.4) Considering the way in which the different formulations occurring in the given
problem based on mechanical considerations were constructed, the variational for-
mulation (VP) that may be obtained through the traditional method as proposed in
the previous chapters is used again as follows.

Indeed, it only suffices to revert to formulation (5.28) keeping in mind that the
functional framework used for this formulation has been defined in the previous
question, namely: H2∗ (0,L).

Moreover, should u be a solution to the continuous problem (CP) and u satisfies
the Neumann condition u̇(L) = 0, equ. (5.28) is re-written as:

Find u belonging to H2∗ (0,L) which is the solution of:

∫ L

0
[ESü(x)+ f (x)]u∗(x)dx = 0 , ∀u∗ ∈ H2

∗ (0,L) . (5.33)

An integration by parts in variational equation (5.33), coupled with the boundary
conditions satisfied by u∗ when x = 0 and by when x = L, enables establishment of
the variational formulation (VP) as defined in (5.8).
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Concerning the functional framework of this formulation, subsequent to the inte-
gration by parts just mentioned, a degree of derivation is “lost” in the course of this
transformation.

This is why the problem (VP) is set down in H1∗ (0,L), so as to ensure conver-
gence of the integrals found in its formulation.

A.5) In order to establish the equivalence between the variational formulation (VP)
and the minimisation problem (MP) defined in (5.9), it is only necessary to note that
the variational formulation (VP) is written as:

a(u,v) = L(v), ∀v ∈V , (5.34)

in which the bilinear form a(., .) and the linear form L(.) satisfy the properties en-
suring the equivalence between (VP) and (MP)

It principally concerns the symmetry and positivity of form a(., .), (cf. D. Eu-
vrard, [4] or P.A. Raviard, [7]).

Indeed, it suffices to state the formula below in the framework of the variational
formulation (5.8):

V ≡H1
∗ (0,L) , (5.35)

a(u,v)≡ ES
∫ L

0
u̇(x)v̇(x)dx , (5.36)

L(v) ≡
∫ L

0
f (x)v(x)dx . (5.37)

� Remark

The minimisation problem (MP) which is defined by (5.9) gives an interpretation
from a mechanical point of view.

Indeed, the function J to be minimised on the set of the displacement fields
v = v(x)X1, is none other than the potential energy Ep of the beam Ω , as defined
by:

Ep(v)≡ EDef(v)−WExt(v) , (5.38)

in which EDef(v) is the modulus of resilience corresponding to:

EDef(v)≡ 1
2

∫
Ω

σi jεi j dΩ =
1
2

∫
Ω

σ11ε11 dΩ =
E
2

∫
Ω

ε2
11 dΩ , (5.39)

=
E
2

∫ L

0

(∫∫
S(x)

dS(x)
)

v̇2 dx =
ES
2

∫ L

0
v̇2 dx . (5.40)
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Furthermore, WExt(v) represents the known work of forces in the unknown dis-
placement v, namely:

WExt(v)≡
∫

Ω
f ·vdΩ =

∫ L

0

(∫∫
S(x)

f1 dS(x)
)

v(x)dx ,

=
∫ L

0
f (x)v(x)dx . (5.41)

Then it suffices to replace the respective expressions of (5.40) and (5.41) in the
definition of the potential energy Ep(v), which is defined in (5.38), so as to pre-
cisely find the definition of the function J of the problem (MP), (cf. (5.9)).

� Numerical Part

A.6) From this question onwards, the approximation of the minimisation prob-
lem (MP) and, in a similar manner, that of the variational formulation (VP) would
be performed using finite elements P1.

In this perspective, any function ṽ belonging to the approximation space Ṽ is
factorized on the canonical basis form made up of functions (ϕi)i=1,N+1, satisfying:

ϕi(x j) = δi j . (5.42)

The decomposition of any element ṽ of Ṽ is then written as:

ṽ =
N+1

∑
j=1

ṽ jϕ j . (5.43)

Considering the property (5.42), if ṽ defined by (5.43) is estimated at the abscissa xi,
the following is obtained:

ṽ(xi) =
N+1

∑
j=1

ṽ jϕ j(xi) =
N+1

∑
j=1

ṽ jδi j = ṽi , (5.44)

where the properties of the Krönecker symbol δ i j would have been used:

δi j =

∣∣∣∣∣
1, if i = j,

0, if i �= j .
(5.45)

Thus, ṽi is interpreted exactly as the value of an approximate displacement field ṽ at
the point of discretisation xi.

For this reason, and this constitutes the major consequence of the choice of
the basis functions (ϕi)i=1,N+1, which satisfy the conditions (5.42), the unknown
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coefficients (ũ1, ũ2, . . . , ũN+1) in the linear combination defining the approximate
solution ũ, correspond to the approximation of (N + 1) approximate displace-
ments (ũ(x1), ũ(x2), . . . , ũ(xN+1)) of the displacement field ũ at the nodes of the
mesh (x1,x2, . . . ,xN+1).

A.7) The approximation of the minimisation problem of problem (MP) can now be
worked out. To this end, any function v in the functional space V is replaced by its
approximation ṽ belonging to the space Ṽ which is defined by (5.11).

The approximate minimisation problem (M̃P) is therefore written as:

(M̃P)

⎡
⎢⎢⎢⎢⎢⎣

Find ũ belonging to Ṽ which is the solution to:

J(ũ) = Min
ṽ∈Ṽ

J(ṽ) ,

with : J(ṽ) =
ES
2

∫ L

0

[
N+1

∑
j=1

ṽ jϕ̇ j

]2
dx−
∫ L

0
f

[
N+1

∑
j=1

ṽ jϕ j

]
dx .

(5.46)

In this form, the functional J can be considered as a function of (N + 1) variables
(ṽ1, ṽ2, . . . , ṽN+1).

Therefore, a necessary condition of minimisation of J is written as:
∂J
∂ ṽ j

(ũ1, ũ2, . . . , ũN+1) = 0, ∀ j = 1, . . . ,N + 1 . (5.47)

The expression (5.46) is then used again and partial derivation is applied in relation
with each ṽ j, ( j = 1 to N + 1).

(M̃P)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

For all i belonging to {1, . . . ,N + 1}, it follows that:(
∂J
∂ ṽ j

(ũ1, ũ2, . . . , ũN+1) = 0

)

⇔
(

ES
N+1

∑
j=1

[∫ L

0
ϕ̇iϕ̇ j dx

]
ũ j =
∫ L

0
f (x)ϕi dx

)
.

(5.48)

Hence, the linear system (5.13) is obtained.

A.8) Using simple identification, the relationships between coefficients a(i+1)
i, j and

Ai, j are obtained, provided that it is shown that only the coefficients Ai,i−1, Ai,i

and Ai,i+1 are non-zero, a priori, in the global matrix A.

These relationships are then expressed as:

Ai,i−1 = ES
∫

Supp ϕi−1 ∩ Supp ϕi

ϕ̇i−1ϕ̇i dx = ES
∫ xi

xi−1

ϕ̇i−1ϕ̇i dx≡ a(i)
2,1, (5.49)

Ai,i = ES
∫

Supp ϕi

ϕ̇2
i dx = ES

[∫ xi

xi−1

ϕ̇2
i dx +

∫ xi+1

xi

ϕ̇2
i dx

]
≡ a(i)

2,2 + a(i+1)
1,1 , (5.50)

Ai,i+1 = ES
∫

Supp ϕi ∩ Supp ϕi+1

ϕ̇iϕ̇i+1 dx = ES
∫ xi+1

xi

ϕ̇iϕ̇i+1 dx≡ a(i+1)
1,2 . (5.51)
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Having established the three relationships (5.49), (5.50) and (5.51) between the co-
efficients of the global matrix A and those of the local matrix a(i+1), showing the
contribution of each element [xi,xi+1] in matrix A, it appears that each Ai j coeffi-
cient is “made up” of either one or two geometrical finite elements contributions.

Moreover, express the ith and (i + 1)th lines of linear system (5.13) using the
coefficients of the local matrix a(i).

The result is:

a(i)
2,1ũi−1 +

[
a(i)

2,2 + a(i+1)
1,1

]
ũi + a(i+1)

1,2 ũi+1 = bi , (5.52)

a(i+1)
2,1 ũi +

[
a(i+1)

2,2 + a(i+2)
1,1

]
ũi+1 + a(i+2)

1,2 ũi+2 = bi+1 , (5.53)

where bi and bi+1 are noted as second member of system (5.13).

In addition, there is:

bi ≡
∫ L

0
f (x)ϕi dx =

∫ xi+1

xi−1

f (x)ϕi dx (5.54)

=
∫ xi

xi−1

f (x)ϕi dx +
∫ xi+1

xi

f (x)ϕi dx≡ b(i)
2 + b(i+1)

1 , (5.55)

where definition (5.16) of the elementary vector b(i+1) has been used.

Thus b(i+1) represents the contribution of mesh [xi,xi+1] in the constitution of the
second member bi just as the local matrix a(i+1) does for the global matrix A.

The contribution of mesh [xi,xi+1] has thus been identified for the constitution of
the global matrix A and for the second member b.

Moreover, concerning the elements of the local matrix a(i+1), these weight the
approximate displacements ũi and ũi+1 as follows:

ũi ũi+1
↓ ↓

ũi →
ũi+1 →

⎡
⎣ a(i+1)

1,1 a(i+1)
1,2

a(i+1)
2,1 a(i+1)

2,2

⎤
⎦ ,

⎡
⎣ b(i+1)

1

b(i+1)
2

⎤
⎦ . (5.56)

The technique of assembly then consists in passing each geometrical element
[xi,xi+1] one by one, while transcribing again the contribution of each mesh in the
global matrix A and in the second member b of the linear system (5.13).

This assembly methodology is licit since it relies on the linear structure of the
global matrix A and of the second member b from the point of view of contributions
of elementary meshes [xi,xi+1].
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This is none other than the qualitative representation of equs. (5.52) to (5.55) that
brings out the different above-mentioned contributions by “linear combinations”.

Start assembling with the first element [x0,x1]. If node x0 is restrained (u(0) = 0),
the degree of freedom corresponding to ũ0 is zero.

In other words, in this case, the elementary matrix a(1) is degenerate.

In fact, in this particular case, the following is obtained:

[
a(1)
]
(ũ1)≡ a(1)

2,2 ũ1 . (5.57)

Similarly, for the second member b, the contribution of mesh [x0,x1] is that of

node x1. This contribution is exactly equivalent to b(1)
2 as defined in (5.16).

Using this first result, the coefficient a(1)
2,2 is inserted in the global matrix A by

positioning it at the corresponding place, i. e. in the first line of the first column.

The same process is used to integrate the contribution of coefficient b(1)
2 in the

second member:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a(1)
2,2 0 . . . . . . 0

0 0 . . . . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b(1)
2

. . .

. . .

. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.58)

The second element [x1,x2] is now examined. Its contribution in the global matrix
is determined by the elementary matrix a(2) affected by the corresponding approxi-
mate displacements ũ1 and ũ2:

ũ1 ũ2
↓ ↓

ũ1 →
ũ2 →

⎡
⎣ a(2)

1,1 a(2)
1,2

a(2)
2,1 a(2)

2,2

⎤
⎦ ,

⎡
⎣b(2)

1

b(2)
2

⎤
⎦ . (5.59)

The contribution of the second mesh [x1,x2] is then inserted in the global matrix A
by affecting the coefficients of elementary matrix a(2) (5.59) at the relevant places
in the matrix A.
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The same process is applied to the second member b and the result is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(a(1)
2,2 + a(2)

1,1) a(2)
1,2 . . . . . . 0

a(2)
2,1 a(2)

2,2 . . . . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b(1)
2 + b(2)

1

b(2)
2

. . .

. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.60)

The global matrix A and the second member b are thus filled hop-by-hop by passing
each element of the mesh, one by one, in order to attach the contribution of each
mesh [xi,xi+1] by using the corresponding elementary matrix a(i+1) and the local
second member b(i+1).

The final result corresponds to the following matrix A:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(a(1)
2,2 + a(2)

1,1) a(2)
1,2 . . . . . . 0

a(2)
2,1 (a(2)

2,2 + a(3)
1,1) a(3)

1,2 . . . 0

0 a(3)
2,1 (a(3)

2,2 + a(4)
1,1) . . . . . .

. . . . . . . . . . . . . . .

0 0 (a(N−1)
2,2 + a(N)

1,1 ) a(N)
1,2 . . .

. . . . . . a(N)
2,1 (a(N)

2,2 + a(N+1)
1,1 ) a(N+1)

1,2

0 0 . . . a(N+1)
2,1 (a(N)

1,1 + a(N+1)
2,2 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.61)

and to second member b:

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b(1)
2 + b(2)

1

b(2)
2 + b(3)

1

. . .

. . .

. . .

b(N)
2 + b(N+1)

1

b(N+1)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.62)

A.9) Calculation of the matrix coefficients a(i+1) is performed without approxima-
tion, provided that the integrands are solely composed of derivatives of affine func-
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tions per mesh [xi,xi+1]. In other words, the integrands bear on constant functions
by mesh.

It then becomes:

a(i+1)
1,1 = ES

∫ xi+1

xi

(ϕ̇i)2 dx =
ES
h

, (5.63)

a(i+1)
1,2 = a(i+1)

2,1 = ES
∫ xi+1

xi

ϕ̇iϕ̇i+1 dx =−ES
h

, (5.64)

a(i+1)
2,2 = ES

∫ xi+1

xi

(ϕ̇i+1)2 dx =
ES
h

. (5.65)

The elementary vector b(i+1) is now approximated using the trapezium quadrature
formula.

b(i+1)
1 =

∫ xi+1

xi

f ϕi dx� h
2

[ f (xi)ϕi(xi)+ f (xi+1)ϕi(xi+1)]

� h
2

[( fi×1)+ ( fi+1×0)] =
h
2

fi . (5.66)

b(i+1)
2 =

∫ xi+1

xi

f ϕi+1 dx� h
2

[ f (xi)ϕi+1(xi)+ f (xi+1)ϕi+1(xi+1)]

� h
2

[( fi×0)+ ( fi+1×1)] =
h
2

fi+1 . (5.67)

A.10) After replacement of coefficients (5.63)–(5.65) of the elementary matrix and
of approximations (5.66)–(5.67) of the constituents of the elementary vector in the
structure of matrix A and in that of second member b previously obtained in (5.61)
and (5.62), the following final result is obtained:

A = ES

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
h
−1

h
0 . . . . . . . . . . . . 0

−1
h

2
h
−1

h
0 . . . . . . . . . 0

0 −1
h

2
h
−1

h
0 . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . 0 −1
h

2
h
−1

h
0

0 . . . . . . . . . 0 −1
h

2
h
−1

h

0 . . . . . . . . . . . . 0 −1
h

1
h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h f1

h f2

h f3

. . .

. . .

h fN−1

h fN

h
2

fN+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.68)
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The “border effects” of the assembly techniques are noticed at the level of matrix A
and of the second member b.

Namely, the last coefficient of diagonal AN+1,N+1 is equal to
ES
h

while the other

diagonal coefficients are equivalent to
2ES

h
.

This is due to the fact that coefficient AN+1,N+1 solely beneficiates from co-

efficient a(N+1)
2,2 of the elementary matrix a(N+1) while the other diagonal coeffi-

cients Ai,i are expressed in the form of a(i)
2,2 + a(i+1)

1,1 .

A.11) In order to compare the results obtained from the previous question (5.68)
with those that could possibly come from the approximation of the variational for-
mulation (VP) by finite elements P1, it must be noted that the approximate mini-
mization (5.48) problem composed of linear system (5.13) is exactly identical to the
one obtained from approximation of the (VP) formulation.

To ensure matters, retrieve expression (5.8) of the variational formulation (VP)
and execute the classical approximation substitutions:

u(x)→ ũ(x) =
N+1

∑
j=1

ũ jϕ j , (5.69)

v(x)→ ṽ(x) = ϕi . (5.70)

Thus, having the same system of equations defined by matrix A and the second
member b (5.68), the nodal equation characteristic of a node strictly interior at xi,
(i = 1,N) match the N first lines of the linear system (5.13) whose generic expres-
sion is:

ES
h

[−ũi−1 + 2ũi− ũi+1] = h fi . (5.71)

The nodal equation corresponding to the basis function ϕN+1 compares to the last
equation of the linear system (5.13), i. e.:

ES
h

[−ũN + ũN+1] =
h
2

fN+1 . (5.72)

A.12) The comparison is now examined with the finite differences method. It is im-
mediately obvious that the nodal equation (5.71) is exactly identical to the one that
would be obtained by discretisation of the differential equation of the continuous
problem (CP) by finite differences.

As for the nodal equation (5.72) and its comparison with the discretisation of
the Neumann condition u̇(L) = 0, perform Taylor’s expansion of solution u of the
continuous problem (CP) – by assuming that it shows “sufficient” regularity around
abscissa x = L.
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u(xN) = u(xN+1)−hu̇(xN+1)+
h2

2
ü(xN+1)+ O(h3) , (5.73)

u(xN) = u(xN+1)− h2

2ES
f (xN+1)+ O(h3) , (5.74)

where the second derivative ü has been replaced by its expression obtained from the
differential equation of the (CP) problem.

From equ. (5.74), consider approximations ũi by omitting O(h3) and finally the
nodal equation (5.72) is obtained.

� Case for an Elastic Support

A.13) When replacing the restraint at x = 0 by an elastic support having stiffness k,
an additional kinematic degree of freedom needs to be introduced at this end of the
beam. This justifies why u1 is used to refer to the displacement at this end of the
beam in relation to the fixed frame.

Moreover, the deformation work of the “Beam/Spring” system is expressed as:

EDef(Beam/Spring) = EDef(Beam)+ EDe f (Spring) . (5.75)

But each of these deformation works is expressed as:

EDef(Beam) =
ES
2

∫ L

0
u̇2(x)dx , EDef(Spring) =

1
2

ku2
1 , (5.76)

where the expression of the deformation work of a push-pull beam, established in
the previous part (cf. (5.39)–(5.40)), is used directly.

The formulation of minimisation problem (5.71) is immediate as soon as it is
shown that the Dirichlet condition, homogenous when x1 = 0, is obsolete in defining
the search space V ′.

A.14) In the particular case of a beam meshed with a single element [x1 = 0,x2 =
L], the approximate solution is found on the whole beam in all displacement fields
expressed as:

ṽ(x) = ṽ1ϕ1(x)+ ṽ2ϕ2(x) . (5.77)

a) Equation system verified by approximate displacements ũ1 and ũ2.

The potential energy of minimisation problem, (5.17) measured on the displacement
field defined by (5.77), is expressed as:

J(ṽ) =
ES
2

∫ L

0
(ṽ1ϕ̇1 + ṽ2ϕ̇2)2 dx−

∫ L

0
f (ṽ1ϕ1 + ṽ2ϕ2)dx +

1
2

kṽ2
1 . (5.78)
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Then write both necessary minimisation conditions of the J functional as:

∂J
∂ ṽ1

(ũ1, ũ2) =
∂J
∂ ṽ2

(ũ1, ũ2) = 0 . (5.79)

Considering (5.78), these two conditions are expressed as:

∂J
∂ ṽ1

(ũ1, ũ2) =ES
∫ L

0
[ũ1ϕ̇1 + ũ2ϕ̇2] ϕ̇1 dx−

∫ L

0
f ϕ1 dx + kũ1 = 0 , (5.80)

∂J
∂ ṽ2

(ũ1, ũ2) =ES
∫ L

0
[ũ1ϕ̇1 + ũ2ϕ̇2] ϕ̇2 dx−

∫ L

0
f ϕ2 dx = 0 . (5.81)

The linear system with unknowns ũ1 and ũ2 is then expressed as:

⎡
⎢⎢⎣

k + ES
∫ L

0
ϕ̇2

1 ES
∫ L

0
ϕ̇1ϕ̇2

ES
∫ L

0
ϕ̇1ϕ̇2 ES

∫ L

0
ϕ̇2

2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ũ1

ũ2

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

b(2)
1

b(2)
2

⎤
⎥⎥⎦ . (5.82)

b) Determination of approximate displacements ũ1 and ũ2 and approximation of the
global displacement field along the beam.

Solving the linear system (5.82) leads to solution:

ũ1 =
L
2k

( f1 + f2), ũ2 =
L2

2ES
f2 +

L
2k

( f1 + f2) . (5.83)

Thus, the approximate displacement ũ on the whole beam is obtained by injecting
the values of (5.83) in equation (5.77):

ũ(x) =
[

L
2k

( f1 + f2)
]

ϕ1(x)+
[

L2

2ES
f2 +

L
2k

( f1 + f2)
]

ϕ2(x) . (5.84)

It is to be noted that the approximate displacement fields ũ defined by (5.84) provide
an approximation of the displacement field u on any point defined by [0,L], through
the usual finite element method.

It is one of the main differentiation points, in relation to the finite differences
method, producing a sequence of approximations at points fixed on a discretisation
grid, namely on the nodes of a predefined mesh of the beam.

A.15) The boundary case of a restraint when x1 = 0, tackled from the elastic sup-
port angle having a coefficient of stiffness k tending towards infinity, is obtained by
a run at the boundary in the expressions of ũ1 and ũ2 defined by (5.83). Thus, the
asymptotic approximations ũ∞

1 and ũ∞
2 are expressed as:

ũ∞
1 = 0, ũ∞

2 =
L2

2ES
f2 . (5.85)



5.1 Beam Subjected to Simple Traction 167

Compare these two values to those that could possibly be obtained directly from the
problem of the fully fixed beam studied in the previous section.

To do this, just revert to the global matrix as well as to the second member (5.68)
and adapt them to a case of a single mesh [x1,x2], restrained at x1 = 0.

A degenerated system is thus obtained from a single equation containing a single
unknown ũ2, such as:

(
ES
L

)
× ũ2 =

L
2

f2 . (5.86)

The same expression obtained for ũ2 is obtained for ũ∞
2 and is defined by (5.85):

ũ2 =
L2

2ES
f2 . (5.87)

Finally, it is noted that, in cases of restraint, the boundary conditions are obtained
when x1 = 0: ũ1 = ũ∞

1 = 0.
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5.2 Beam Subject to Simple Bending

5.2.1 Beam Fitted With a Restraint and Having
a Freely Movable Bearing

Statement

Consider a homogenous beam Ω of length L, cross-section S and constant density ρ ,
where the isotropic elasticity with small disturbances constitutes the mechanical be-
haviour. Moreover, it is noted that the constituent material of the beam has a Young’s
modulus of E and a Poisson’s ratio of v.

The beam’s axis is designated by (O;X1) and the current abscissa is x. The
beam’s cross-section is parameterised by the geometric variables (y,z).

Moreover, the beam’s geometric symmetry as well as that of the forces to which
it is subjected enables considering the plan (O;X1,X2) as the symmetrical plan.

The beam is restrained at its end where x = 0 and rests on a freely movable
bearing restricting any vertical movement when x = L.

Moreover, a volume density of the transverse forces f = − f2X2 is applied along
the beam (see Fig. 5.3).

Density f2 is given and has all properties of functional regularity so that the
integration calculations of the first two questions of the theoretical part may be per-
formed.

� Displacement Variational Formulation – Virtual Work Principle
– Theoretical Part

1) The kinematic framework retained to describe the real displacement field is the
Timoshenko theory. Thus, the virtual displacement fields V∗ to be considered are
written as:

V∗ =−yΩ ∗(x)X1 + v∗(x)X2 , (5.88)

Fig. 5.3 Fixed Beam Resting on a Freely Movable Bearing
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satisfying boundary conditions:

v∗(0) = Ω ∗(0) = 0 and v∗(L) = 0 . (5.89)

In addition, the boundary conditions (5.89) show, on one part, the presence of a re-
straint when x = 0, and on the other part, that of a freely movable bearing restricting
any vertical displacement when x = L for any virtual displacement field V∗.

Thus V∗ denotes the set of the virtual displacement fields satisfying proper-
ties (5.88)–(5.89).

Determine the virtual work of internal forces T ∗Int as well as the virtual work of
external forces T ∗Ext defined by:

T ∗Int =−
∫

Ω
σi jεi j(V∗)dΩ , T ∗Ext =

∫
Ω

f ·V∗ dΩ , (5.90)

where σ denotes the stress tensor and ε(V∗) the linear strain tensor associated with
the virtual displacement fields V∗:

εi j(V∗) =
1
2

[
∂V ∗i
∂x j

+
∂V ∗j
∂xi

]
. (5.91)

It is important to introduce the bending moment M(x), the shearing force T (x) and
the 1D-density of loading forces f (x) defined by:

M(x) =−
∫

S(x)
yσ11 dS(x), T (x) =

∫
S(x)

σ12 dS(x), f (x) =
∫

S(x)
f2 dS(x) , (5.92)

where S(x) denotes the section with abscissa x.

2) Without justifying the convergence of integrals, show that the principle of virtual
works lead to the following formal variational formulation (EVP):

(EVP)

⎡
⎢⎢⎢⎣

Find (M,T ) defined from [0,L]× [0,L] to R, solution to:∫ L

0

(
Ṁ + T
)

Ω ∗ dx +
∫ L

0

(
Ṫ − f
)

v∗ dx−M(L)Ω ∗(L) = 0 ,

∀(v∗,Ω ∗)/v∗(0) = v∗(L) = Ω ∗(0) = 0 .

(5.93)

3) The behaviour laws of the constituent material of the beam are introduced:

M(x) = EIΩ̇(x) and T (x) = μS(v̇(x)−Ω(x)) , (5.94)

where I denotes the beam’s moment of inertia in relation to the axis (O;X3) and μ
the shear stiffness coefficient.
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Assuming that the force density f belongs to L2(0,L), show that the continuous
problem (CP) composed of the equilibrium equations of the beam is expressed as:

Find (v,Ω) belonging to H2(0,L)×H2(0,L), solution of:

EIΩ̈(x)+ μS [v̇(x)−Ω(x)] = 0, ∀x ∈ ]0,L[ , (5.95)
(CP)

⎡
⎢⎢⎢⎢⎢⎣ μS[v̈− Ω̇ ] = f (x), ∀x ∈ ]0,L[ , (5.96)

v(0) = v(L) = 0 and Ω(0) = Ω̇(L) = 0 . (5.97)

4) Introduce of the product space V , defined by:

V ≡V1×V2 ≡ H1
∗ (0,L)×H1

∗∗(0,L) ,

where:

H1
∗ (0,L) = {ω/ω(k) ∈ L2(0,L),(k = 0,1) , ω(0) = 0} , (5.98)

and

H1
∗∗(0,L) = {h/h(k) ∈ L2(0,L),(k = 0,1) , h(0) = h(L) = 0} . (5.99)

Show that a moving variational formulation (VP) can be expressed as:

(VP)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find (Ω ,v) belonging to V , solution of:

EI
∫ L

0
Ω̇ ω̇ dx + μS

∫ L

0
(v̇−Ω)(ḣ−ω)dx =

∫ L

0
f hdx ,

∀(ω ,h) ∈V .

(5.100)

5) Moreover, show that there is a minimization problem (MP) equivalent to the
variational formulation (VP) defined as:

(MP)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find (v,Ω) ∈V solution of:

J(v,Ω) = Min
(h,ω)∈V

J(h,ω), where:

J(h,ω) =
EI
2

∫ L

0
ω̇2 dx +

μS
2

∫ L

0
[ḣ−ω ]2 dx +

∫ L

0
f hdx .

(5.101)

� Numerical Part

This part is dedicated to the approximation by finite elements P1 of bending elastic
beams, modeled by the Timoshenko theory.

Thus, let the regular mesh of the interval [0,L], having a constant step h, be such
as: {

x0 = 0, xN+1 = L ,

xi+1 = xi + h, i = 0 to N .
(5.102)
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Moreover, the approximation spaces (Ṽ1,Ṽ2) are introduced and defined by:

Ṽ1 =
{

h̃/ h̃ ∈C0([0,L]), h̃|[xi ,xi+1] ∈ P1, h̃(0) = h̃(L) = 0
}

, (5.103)

Ṽ2 =
{

ω̃ / ω̃ ∈C0([0,L]), ω̃ ∈ P1, ω̃(0) = 0
}

, (5.104)

where P1 ≡ P1([xi,xi+1]) refers to the space of polynomials defined on [xi,xi+1],
having a degree less than or equal to one.

6) What is the dimension of spaces Ṽ1 and Ṽ2?

7) Let (ṽ,Ω̃) belong to Ṽ ≡ Ṽ1× Ṽ2 as defined by:

ṽ =
N

∑
j=1

ṽ jϕ j, Ω̃ =
N+1

∑
k=1

Ω̃kϕk , (5.105)

where ϕi is the functions of the canonical basis associated with the finite elements P1
satisfying: ϕi(x j) = δi j.

Let (M̃P), the approximate minimization problem associated with problem (MP)
be defined by:

(P̃M)

⎡
⎣Find (ṽ,Ω̃) ∈ Ṽ , solution to:

J(ṽ,Ω̃) = Min
(h̃,ω̃)∈Ṽ

J(h̃, ω̃) ,
(5.106)

where J is the potential energy defined by (5.101).

– Show that a necessary condition allowing (ṽ,Ω̃) to be a solution of the approxi-
mate minimization problem (M̃P) is written in the following form:

Find the two sequences having components (ṽ j) j=1,N and (Ω̃k)k=1,N+1, defining
the approximation belonging to Ṽ , solution to the global linear system:

A(1,1)
i j ṽ j + A(2,1)

i j Ω̃ j = b(1)
i , (i = 1 to N) , (5.107)

(M̃P)

⎡
⎢⎢⎢⎣A(1,2)

i j ṽ j + A(2,2)
i j Ω̃ j = b(2)

i , (i = 1 to N + 1),

(∀ j/Supp ϕi ∩ Supp ϕ j �= ∅) , (5.108)

where:

A(1,1)
i j = μS

∫ L

0
ϕ̇iϕ̇ j dx,

A(1,2)
i j = − μS

∫ L

0
ϕ̇iϕ j dx , (5.109)

A(2,1)
i j = − μS

∫ L

0
ϕiϕ̇ j dx ,
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A(2,2)
i j = EI

∫ L

0
ϕ̇iϕ̇ j dx + μS

∫ L

0
ϕiϕ j dx , (5.110)

b(1)
i = −

∫ L

0
f ϕi dx , (5.111)

b(2)
i = 0 . (5.112)

Moreover, it would have been agreed to adopt the Einstein Summation Convention
(or summation of repeated indices convention):

A(1,1)
i j ṽ j ≡∑

j

A(1,1)
i j ṽ j . (5.113)

8) For each of the characteristic basis functions (ϕi)1,N of each node strictly inte-
rior at [0,L], write the corresponding nodal equation associated with the discrete
equs. (5.107) and (5.108).

9) Show that the approximation of the system of the differential equs. (5.95)–(5.96)
is then found again by the finite differences method.

10) Write the nodal equation associated with the basis function ϕN+1, characteristic
of node xN+1, in relation to the discrete equation (5.108).

11) Find the finite differences scheme that discretises the Neumann condition of
equ. (5.97) bearing on the first derivative of Ω .

12) Show that the elementary stiffness matrix governing the contribution of the local
element [xi,xi+1] and associated with the system (5.107)–(5.108) is written as:

A(i+1) =

⎡
⎢⎢⎢⎢⎣

α β −α β

β δ −β γ

−α −β α −β

β γ −β δ

⎤
⎥⎥⎥⎥⎦ , (5.114)

where the following was noted:

α =
μS
h

, β =
μS
2

, γ =−EI
h

, δ =
[

EI
h

+
μSh

2

]
. (5.115)

13) Then, proceed to the assembly of the discrete system having an approxima-
tion (M̃P) defined by (5.107)–(5.108).
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Solution

� Displacements Variational Formulation – Principle of Virtual
Works – Theoretical Part

A.1) The form of the virtual displacements field V∗ defined by (5.88) implies that
the strain tensor ε(V∗) (cf. (5.91)) associated with V∗ is written as:

ε(V∗) = ε∗11X1⊗X1 + ε∗12 [X1⊗X2 + X1⊗X1] , (5.116)

where:

ε∗11 =−yΩ̇ ∗(x) and ε∗12 =
1
2

[v̇∗(x)−Ω ∗(x)] . (5.117)

The notation of the tensor product Xi⊗X j resulting in the presence of a non-zero
component ε∗i j within the strain tensor ε(U∗) would have been used.

The virtual work of the internal forces T ∗Int is then evaluated as follows:

T ∗Int = −
∫

Ω
σi jεi j(V∗)dv

= −
[∫

Ω
σ11ε11(V∗)dv + 2

∫
Ω

σ12ε12(V∗)dv

]

= −
∫ L

0

(
−
∫∫

S(x)
yσ11 dS(x)

)
Ω̇ ∗(x)dx

−
∫ L

0

(∫∫
S(x)

σ12 dS(x)
)

[v̇∗(x)−Ω ∗(x)]dx

= −
∫ L

0
M(x)Ω̇ ∗(x)dx−

∫ L

0
T (x)[v̇∗(x)−Ω ∗(x)]dx , (5.118)

where the definitions of the bending moment M(x) and of the shearing force T (x)
defined by (5.92) were used.

Similarily, the virtual work of the external forces is obtained from:

T ∗Ext =
∫

Ω
f ·V∗ dv =−

∫
Ω

f2v∗(x)dx

=−
∫ L

0

(∫∫
S(x)

f2 dS(x)
)

v∗(x)dx =−
∫ L

0
f (x)v∗(x)dx . (5.119)

A.2) The application of the principle of virtual works is then written within the
framework of an elastostatic problem:

T ∗Int + T ∗Ext = 0, ∀V ∗ ∈V∗ . (5.120)
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Thus, using expressions (5.118) and (5.119), the following is obtained:

∫ L

0
MΩ̇ ∗ dx +

∫ L

0
T [v̇∗ −Ω ∗]dx +

∫ L

0
f v∗ dx = 0 ,

∀(v∗,Ω ∗)/v∗(0) = v∗(L) = Ω ∗(0) = 0 . (5.121)

The use of integrations by parts produces a transformation of the variational formu-
lation (5.121) as follows:

∫ L

0
ṀΩ ∗ dx− [MΩ ∗]L0 +

∫ L

0
Ṫ v∗ dx− [T v∗]L0 +

∫ L

0
TΩ ∗ dx−

∫ L

0
f v∗ dx = 0 ,

∀(v∗,Ω ∗)/v∗(0) = v∗(L) = Ω ∗(0) = 0 . (5.122)

The boundary conditions (5.89) of the virtual fields V ∗ lead to the variational for-
mulation (EVP):

(EVP)

⎡
⎢⎢⎢⎣

Find (M,T ) defined from [0,L]× [0,L] to R, solution to:∫ L

0

(
Ṁ + T
)

Ω ∗ dx +
∫ L

0

(
Ṫ − f
)

v∗ dx−M(L)Ω ∗(L) = 0 ,

∀(v∗,Ω ∗)/v∗(0) = v∗(L) = Ω ∗(0) = 0 .

(5.123)

A.3) The continuous problem (CP) is obtained using the density arguments just as
they were applied on several occasions.

To achieve this, first of all the variational equation (5.123) is transformed by
replacing the bending moment M and the shearing force T by the kinematic vari-
ables (v,Ω), by applying the behaviour laws (5.94).

The variational problem (EVP) is then written as:

(EVP)

⎡
⎢⎢⎢⎣

Find(v,Ω)defined by [0,L]× [0,L]having values in R, solution to:∫ L

0

[
EIΩ̈ + μS(v̇−Ω)

]
Ω ∗ dx +

∫ L

0

[
μS(v̈− Ω̇)− f

]
v∗ dx

−EIΩ̇(L)Ω ∗(L) = 0 , ∀(v∗,Ω ∗)/v∗(0) = v∗(L) = Ω ∗(0) = 0 .

(5.124)

A reasonable functional framework is now defined to give a sense to the writing up
of problem (5.124).

To achieve this, suppose that v and v∗ are elements of H2∗∗(0,L) – defined in
the same way as (5.99) provided that H1 is replaced by H2 (it is only necessary to
consider the virtual fields v∗ in L2(0,L)), whereas the rotation of the section Ω is
looked for in the space H2∗ (0,L) defined according to the principle similar to (5.98).

Under these conditions, it is easily noticed that the integral equation (5.124)
makes sense, and this is essentially due to the Cauchy-Schwartz inequality.
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In fact, it is only necessary to note that the quantities [EIΩ̈ + μS(v̇−Ω)] and
[μS(v̈− Ω̇)− f ] are really elements of L2(0,L), ( f itself being a distribution of
given forces belonging to L2(0,L)).

Then, consider the particular case where equ. (5.124) is satisfied for the virtual
fields Ω ∗ which are identically zero.

The particular formulation of (5.124) is then written as:

Find (v,Ω) belonging to H2∗∗(0,L)×H2∗ (0,L) solution to:
∫ L

0

(
μS(v̈− Ω̇)− f

)
v∗ dx, ∀v∗ ∈ H2

∗∗(0,L) . (5.125)

The differential equation (5.96) is obtained by using the density method.

Among the functions v∗ of H2∗∗(0,L), consider those belonging to D(0,L) (since
D(0,L)⊂ H2∗∗(0,L)) and use the fact that D(0,L) is dense in L2(0,L).

A complete demonstration of the density method may be consulted within the
framework of the problem of a beam subjected to traction [5.1.1].

Finally, the following is obtained:

μS(v̈− Ω̇)(x)− f (x) = 0, ∀x ∈]0,L[ . (5.126)

A similar reasoning leads to the obtention of differential equation (5.95) by the same
arguments of density and by considering this time as a second particular case of the
equ. (5.124) that of the functions v∗ which are identically zero.

At last, having the two differential equations of the continuous problem (CP),
the equ. (5.24) is degenerate and is written as:

−EIΩ̇(L)Ω ∗(L) = 0, ∀Ω ∗ /Ω ∗(0) = 0 . (5.127)

It is immediately inferred that: Ω̇(L) = 0.

� Summary:

The solution (v,Ω) of the variational equation (5.124) was considered in the prod-
uct space H2∗∗(0,L)×H2∗ (0,L), satisfying de facto the boundary conditions (5.95)
when x = 0 and when x = L.

Moreover, it is proved by the density method that v and Ω are solutions of the
differential system (5.95)–(5.96).

In other words, (v,Ω) is a solution to the continuous problem (CP) defined
by (5.95)–(5.97).

A.4) Let (v,Ω) be a solution to the continuous problem (CP) defined by (5.95)–
(5.97). Moreover, let there be a pair of test functions (h,ω).
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Then, the differential equation (5.95) of the problem (CP) is multiplied by the
test function h and the differential equation (5.96) by the second test function ω .

Then, each equation is integrated within [0,L] to obtain:

EI
∫ L

0
Ω̈ω dx =−μS

∫ L

0
(v̇−Ω)ω dx, ∀ω ∈V1 , (5.128)

⎡
⎢⎢⎢⎣

μS
∫ L

0
(v̈− Ω̇)hdx =

∫ L

0
f hdx, ∀h ∈V2 , (5.129)

where (V1×V2) represents a pair of spaces of the test functions (h,ω) that will be
defined later.

Then, an integration by parts of the integral equations (5.128)–(5.129) is per-
formed to obtain:

−EI
∫ L

0
Ω̇ ω̇ dx + EI

[
Ω̇ω
]L

0 =−μS
∫ L

0
(v̇−Ω)ω dx , ∀ω ∈V1 , (5.130)

⎡
⎢⎢⎢⎣
− μS
∫ L

0
v̇ḣdx + μS

[
v̇h
]L

0− μS
∫ L

0
Ω̇hdx =

∫ L

0
f hdx, ∀h ∈V2 . (5.131)

Thus, the unique possibility to take into account the Neumann boundary conditions
bearing on Ω appears in the formulation (5.130)–(5.131): Ω̇(L) = 0.

Other Dirichlet-type boundary conditions bearing on v and Ω must be kept in the
future variational formulation, by using the test functions h and ω .

To achieve this, the pair of test functions (ω ,h) is made to belong to the func-
tional product space V ≡V1×V2 ≡ H1∗ (0,L)×H1∗∗(0,L) with:

H1
∗ (0,L) =

{
ω/ω(k) ∈ L2(0,L),(k = 0,1) , ω(0) = 0

}
, (5.132)

H1
∗∗(0,L) =

{
h/h(k) ∈ L2(0,L),(k = 0,1) , h(0) = h(L) = 0

}
. (5.133)

The immediate consequence of this choice of functional spaces is the disappearance
of the terms entirely integrated in the system (5.130)–(5.131) which is then written
as:

Find (ω ,v) belonging to V solution to:

−EI
∫ L

0
Ω̇ ω̇ dx =−μS

∫ L

0
(v̇−Ω)ω dx , ∀ω ∈V1 , (5.134)

⎡
⎢⎢⎢⎣
− μS
∫ L

0
v̇ḣdx− μS

∫ L

0
Ω̇h =

∫ L

0
f hdx, ∀h ∈V2 . (5.135)

Moreover, it will be noticed that the pair solution (Ω ,v) has lost much of its regu-
larity during the change from strong formulation of the continuous problem (CP) to
the weak or variational formulation (VP).
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In fact, the functions belonging to V1×V2 are sufficiently regular to guarantee the
convergence of the integrals appearing in the variational formulation (VP). In order
to obtain the variational formulation (VP) defined by (5.100), it is only necessary to
sum the two equs. (5.134) and (5.135).

A.5) The variational formulation (VP) defined by (5.100) presents the advantage of
having a bilinear form a[(., .),(., .)] and a linear form L[(., .)] defined by:

a[(Ω ,v),(ω ,h)] = EI
∫ L

0
Ω̇ ω̇ dx + μS

∫ L

0
(v̇−Ω)(ḣ−ω)dx , (5.136)

L[(ω ,h)] =
∫ L

0
f hdx . (5.137)

It is then observed that the two forms a and L possess the whole properties including
the symmetry of the bilinear form a in particular – D. Euvrard [4] may be consulted
to make a list of the whole properties – so as to obtain, by equivalence, the mini-
mization problem (MP) defined by:

(MP)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find (v,Ω) ∈V solution of:

J(v,Ω) = Min
(h,ω)∈V

J(h,ω) where:

J(h,ω) =
1
2

a[(h,ω),(h,ω)]−L[(h,ω)] .

(5.138)

� Numerical Part

A.6) The estimation of the dimension of spaces Ṽ1 and Ṽ2 is performed according
to the same procedure. Only the additional degree of freedom when x = L is to be
considered in the functions belonging to Ṽ1, which provides one unit of difference
compared to the dimension of space Ṽ2.

Thus, the functions belonging to space Ṽ1 are exactly defined by the N values of
the interior nodes (xi)i=1,N defined by the mesh (5.102). To ascertain that, it is only
necessary to proceed to the visualization of such functions (cf. Fig. 5.4).

In fact, the functions of the approximation space Ṽ1 are pecked lines formed by
affine functions per mesh [xi,xi+1], whose interior nodes xi constitute the points of
continuity between two adjacent meshes.

10 +Ni xxx

Fig. 5.4 Profile of a Piecewise Affine Function
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Moreover, concerning the functions belonging to space Ṽ1, it is advisable to add
the two stresses which require the functions of this space to be zero when x = 0 and
when x = L.

That is why only values at the N nodes strictly interior at the interval [0,L] display
a degree of freedom for any function ṽ of Ṽ1. Changing of one of these N values
immediately results in the modification of element ṽ of Ṽ considered in another
function of Ṽ1.

Thus, without any formal demonstration, it is observed that understanding a func-
tion ṽ of Ṽ1 is equivalent to understanding a vector RN constituted by the N values
of (ṽ1, . . . , ṽN) at the discretisation points (x1, . . . ,xN).

In conclusion, given the additional degree of freedom when x = L, the dimension
of Ṽ1 is equal to N whereas that of Ṽ2 is equal to (N + 1).

A.7) The approximate formulation (M̃P) associated with the minimization prob-
lem (MP) is obtained by evaluating functional J defined by (5.101) at point (h̃, ṽ):

J(h̃, ω̃) =
EI
2

∫ L

0
˙̃ω2 dx +

μS
2

∫ L

0
[ ˙̃h− ω̃]2 dx +

∫ L

0
f h̃dx , (5.139)

where (h̃, ṽ) belongs to Ṽ1× Ṽ2.

Thus, given the finite dimension of spaces V1 and V2, h̃ and ṽ can be described in
the form of developments which are similar to (5.105).

In that case, J(h̃, ṽ) is evaluated as follows:

J(h̃, ω̃) =
EI
2

∫ L

0

[
N+1

∑
k=1

ω̃kϕ̇k

]2
dx +

μS
2

∫ L

0

[
N

∑
j=1

h̃ jϕ̇ j−
N+1

∑
k=1

ω̃kϕk

]2
dx

+
∫ L

0
f

N

∑
j=1

h̃ jϕ j dx . (5.140)

A necessary condition enabling (ṽ,Ω̃) to constitute the minimum of function J is
then written as:

∂J

∂ h̃i
(ṽ,Ω̃ ) =

∂J
∂ω̃l

(ṽ,Ω̃) = 0, ∀(i, l) ∈ {1, . . . ,N}×{1, · · · ,N + 1} . (5.141)

The following is then obtained:

∂J

∂ h̃i
(ṽ,Ω̃) = μS

∫ L

0

[
N

∑
j=1

ṽ jϕ̇ j−
N+1

∑
k=1

Ω̃kϕk

]
ϕ̇i dx +

∫ L

0
f ϕi dx = 0, (∀i = 1,N) .

(5.142)

∂J
∂ω̃l

(ṽ,Ω̃) = EI
∫ L

0

[
N+1

∑
k=1

Ω̃kϕ̇k

]
ϕ̇l dx− μS

∫ L

0

[
N

∑
j=1

ṽ jϕ̇ j−
N+1

∑
k=1

Ω̃kϕk

]
ϕl dx

= 0,(∀l = 1,N + 1) . (5.143)
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Fig. 5.5 Basis Functions ϕi−1, ϕi and ϕi+1

Then, it is noticed that the support of a basis function ϕi consists of two meshes
[xi−1,xi] and [xi,xi+1], (cf. Fig. 5.5).

From now on, only the basis functions ϕi−1, ϕi and ϕi+1 have a support whose
intersection with that of the function ϕi is non-vacuous.

That is why the finite sums intervening in equs. (5.142) and (5.143) are degener-
ate in the following way:
[

∂J

∂ h̃i
(ṽ,Ω̃) = 0

]
⇔

μS

[(∫ L

0
ϕ̇i−1ϕ̇i

)
ṽi−1−
(∫ L

0
ϕi−1ϕ̇i

)
Ω̃i−1

]
+ · · ·

μS

[(∫ L

0
ϕ̇2

i

)
ṽi−
(∫ L

0
ϕiϕ̇i

)
Ω̃i

]
+ · · ·

μS

[(∫ L

0
ϕ̇i+1ϕ̇i

)
ṽi+1−
(∫ L

0
ϕi+1ϕ̇i

)
Ω̃i+1

]
=−
∫ L

0
f ϕi .

(5.144)

Likewise:[
∂J
∂ω̃l

(ṽ,Ω̃) = 0

]
⇔

EI

[(∫ L

0
ϕ̇l−1ϕ̇l

)
Ω̃l−1

+
(∫ L

0
ϕ̇2

l

)
Ω̃l +
(∫ L

0
ϕ̇l+1ϕ̇l

)
Ω̃l+1

]

− μS

[(∫ L

0
ϕ̇l−1ϕl

)
ṽl−1−
(∫ L

0
ϕl−1ϕl

)
Ω̃l−1

]

− μS

[(∫ L

0
ϕ̇lϕl

)
ṽl−
(∫ L

0
ϕ2

l

)
Ω̃l

]

− μS

[(∫ L

0
ϕ̇l+1ϕl

)
ṽl+1−
(∫ L

0
ϕl+1ϕl

)
Ω̃l+1

]
= 0 . (5.145)
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By reverting to notations (5.109), (5.110)–(5.112), the necessary minimization con-
ditions (5.144)–(5.145) of the functional J correspond exactly to the writing of the
approximate minimization problem (M̃P) defined by (5.107)–(5.108).

A.8) This question studies the basis functions that are characteristic of each interior
node xi, (i = 1,N).

The equation system is then re-written to define the approximate formula-
tion (M̃P) by using the elementary properties of the basis functions ϕi.

Furthermore, the trapezium quadrature formula is used to evaluate the integrals
that occur in equs. (5.144)–(5.145).

It then becomes:

(∀i = 1,N), (∀l = 1,N) :

[
∂J

∂ h̃i
(ṽ,Ω̃ ) = 0

]
⇔ μS

[
− ṽi−1−2ṽi + ṽi+1

h2 +
Ω̃i+1− Ω̃i−1

2h

]
=− fi , (5.146)

[
∂J
∂ω̃l

(ṽ,Ω̃) = 0

]
⇔ EI

[
Ω̃l−1−2Ω̃l + Ω̃l+1

h2

]
+ μS

[
ṽl+1− ṽl−1

2h
− Ω̃l

]
= 0 .

(5.147)

A.9) To work out an approximation by finite differences of the second order of
differential equations (5.95)–(5.96) from nodal equations (5.146)–(5.147), the fol-
lowing different identities, as demonstrated on several occasions are observed:

vi−1−2vi + vi+1

h2 = v̈(xi)+ O(h2) , (5.148)

Ωi+1−Ωi−1

2h
= Ω̇(xi)+ O(h2) . (5.149)

The nodal equations (5.146)–(5.147) are respectively written as:

μS
[

¨̃v(xi)− ˙̃Ω(xi)
]

= f (xi), (i = 1,N) , (5.150)

EI ¨̃Ω(xl)+
[

˙̃v(xl)− Ω̃(xl)
]

= 0, (l = 1,N) , (5.151)

to the nearest O(h2). Hence the equs. (5.150)–(5.151) strictly correspond to differ-
ential equations (5.95)–(5.96) of the continuous problem (CP), provided that the
approximation functions (ṽ,Ω̃ ) have been substituted by the solutions (v,Ω).
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A.10) To write down the nodal equation which corresponds to the basis func-
tion ϕN+1, the final equation of system (5.143) is considered and is written in this
particular case as:

[
∂J

∂ω̃N+1
(ṽ,Ω̃ ) = 0

]
⇔ EI

[(∫ L

0
ϕ̇N ϕ̇N+1

)
Ω̃N +
(∫ L

0
ϕ̇2

N+1

)
Ω̃N+1

]

− μS

[(∫ L

0
ϕ̇NϕN+1

)
ṽN−
(∫ L

0
ϕNϕN+1

)
Ω̃N

]

− μS

[(∫ L

0
ϕ̇N+1ϕN+1

)
ṽN+1−

(∫ L

0
ϕ2

N+1

)
Ω̃N+1

]
= 0 .

(5.152)

The trapezium quadrature formula, combined with the elementary properties of the
basis functions ϕN and ϕN+1 (cf. Fig. 5.6) is once more applied and the following is
obtained:

EI
Ω̃N+1− Ω̃N

h
+

μS
2

[
ṽN − ṽN+1

]
+

μSh
2

Ω̃N+1 = 0 . (5.153)

A.11) This question involves a discretisation of the Neumann condition (5.97) by
finite differences: Ω̇(xN+1) = 0.

To achieve this, the regressive Taylor’s expansion is written at the abscissa xN+1:

Ω(xN) = Ω(xN+1)−hΩ̇(xN+1)+
h2

2
Ω̈(xN+1)+ O(h3) . (5.154)

Now, the second derivative Ω̈ is determined at abscissa xN+1 by assuming that the
first differential equation (5.95) of the continuous problem (CP) may be extended
by continuity at this point.

It then becomes:

Ω(xN) = Ω(xN+1)+
h2

2

[
μS
EI

(Ω(xN+1)− v̇(xN+1))
]
+ O(h3). (5.155)

N
φ

N+1
φ

11 +− NNN xxx

Fig. 5.6 Basis Functions ϕN and ϕN+1
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To maintain a second-order approximation in h, it is only necessary to consider
a first-order approximation of the first derivative v̇ at the point xN+1, the first deriva-
tive being weighted by a multiple of h2.

Therefore, the common regressive finite difference is considered:

v̇(xN+1) =
v(xN+1)− v(xN)

h
+ O(h) . (5.156)

The expression v̇(xN+1) supplied by (5.156) is then replaced in the limited expan-
sion (5.155):

EI [Ω(xN)−Ω(xN+1)]− μSh2

2
Ω(xN+1) =

μSh
2

[v(xN+1)− v(xN)]+ O(h3) ,

(5.157)

or even:

EI

[
Ω(xN)−Ω(xN+1)

h

]
− μSh

2
Ω(xN+1)− μS

2

[
v(xN+1)− v(xN)

]
= O(h2) .

(5.158)

This last formulation helps to find the exact nodal equation corresponding to the
basis function ϕN+1 described in the final equation of the system (5.143).

To achieve this, it suffices to use the approximations in the equ. (5.158) by sub-
stituting the real values (vi,Ωi)≡ (v,Ω)(xi), (i = N,N + 1) by their corresponding
approximations (ṽi,Ω̃i) and by eliminating the residue of Landau O(h2).

A.12) To determine the elementary matrix A(i+1), which expresses the local ele-
ment contribution [xi,xi+1] in the global system of the approximate minimisation
problem (M̃P) defined in (5.107) – (5.108), the minimisation equations causing ap-
plication of the geometrical mesh are written down.

Yet, only the basis functions ϕi and ϕi+1 have part of their support that intercept
the interval [xi,xi+1].

This explains why only the minimisation equations, which are responsible for the
occurrence of the basis functions ϕi and ϕi+1 along the interval [xi,i+1 ] are written
down.

∂J

∂ h̃i
(ṽ,Ω̃) =

∂J

∂ h̃i+1
(ṽ,Ω̃ ) =

∂J
∂ω̃i

(ṽ,Ω̃) =
∂J

∂ω̃i+1
(ṽ,Ω̃) = 0 . (5.159)

Below is a detailed explanation of the formulation of the two necessary conditions
for minimisation bearing upon:

∂J

∂ h̃i
(ṽ,Ω̃) =

∂J

∂ h̃i+1
(ṽ,Ω̃ ) = 0 . (5.160)
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The following is obtained:[
∂J

∂ h̃i
(ṽ,Ω̃ ) = 0

]
⇔ ···

ṽi−1

[
μS
∫ xi

xi−1

ϕ̇i−1ϕ̇i

]
+ · · ·

ṽi

[
μS
∫ xi

xi−1

ϕ̇2
i +μS

∫ xi+1

xi

ϕ̇2
iμS

∫ xi+1

xi

ϕ̇2
iμS

∫ xi+1

xi

ϕ̇2
i

]
+ · · ·

ṽi+1

[
μS
∫ xi+1

xi

ϕ̇i+1ϕ̇iμS
∫ xi+1

xi

ϕ̇i+1ϕ̇iμS
∫ xi+1

xi

ϕ̇i+1ϕ̇i

]
+ · · ·

Ω̃i−1

[
−μS
∫ xi

xi−1

ϕi−1ϕ̇i

]
+ · · ·

Ω̃i

[
−μS
∫ xi

xi−1

ϕiϕ̇i−μS
∫ xi+1

xi

ϕiϕ̇i−μS
∫ xi+1

xi

ϕiϕ̇i−μS
∫ xi+1

xi

ϕiϕ̇i

]
+ · · ·

Ω̃i+1

[
−μS
∫ xi+1

xi

ϕi+1ϕ̇i−μS
∫ xi+1

xi

ϕi+1ϕ̇i−μS
∫ xi+1

xi

ϕi+1ϕ̇i

]
+ · · ·

=−
[∫ xi

xi−1

f ϕi +
∫ xi+1

xi

f ϕi

∫ xi+1

xi

f ϕi

∫ xi+1

xi

f ϕi

]
. (5.161)

Then,[
∂J

∂ h̃i+1
(ṽ,Ω̃ ) = 0

]
⇔ ···

ṽi

[
μS
∫ xi+1

xi

ϕ̇iϕ̇i+1μS
∫ xi+1

xi

ϕ̇iϕ̇i+1μS
∫ xi+1

xi

ϕ̇iϕ̇i+1

]
+ · · ·

ṽi+1

[
μS
∫ xi+1

xi

ϕ̇2
i+1μS

∫ xi+1

xi

ϕ̇2
i+1μS

∫ xi+1

xi

ϕ̇2
i+1 + μS

∫ xi+2

xi+1

ϕ̇2
i+1

]
+ · · ·

ṽi+2+
[

μS
∫ xi+2

xi+1
ϕ̇i+2ϕ̇i+1

]
+ · · ·

Ω̃i

[
−μS
∫ xi+1

xi

ϕiϕ̇i+1−μS
∫ xi+1

xi

ϕiϕ̇i+1−μS
∫ xi+1

xi

ϕiϕ̇i+1

]
+ · · ·

Ω̃i+1

[
−μS
∫ xi+1

xi

ϕi+1ϕ̇i+1−μS
∫ xi+1

xi

ϕi+1ϕ̇i+1−μS
∫ xi+1

xi

ϕi+1ϕ̇i+1− μS
∫ xi+2

xi+1

ϕi+1ϕ̇i+1

]
+ · · ·

Ω̃i+2

[
−μS
∫ xi+2

xi+1
ϕi+2ϕ̇i+1

]
+ · · ·

=−
[∫ xi+1

xi

f ϕi+1

∫ xi+1

xi

f ϕi+1

∫ xi+1

xi

f ϕi+1 +
∫ xi+2

xi+1

f ϕi+1

]
. (5.162)

Likewise, the two other conditions for minimisation can at present be explained in
detail:

∂J
∂ω̃i

(ṽ,Ω̃ ) =
∂J

∂ω̃i+1
(ṽ,Ω̃ ) = 0 . (5.163)
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The following is obtained:
[

∂J
∂ω̃i

(ṽ,Ω̃ ) = 0

]
⇔ ···

Ω̃i−1

[
EI
∫ xi

xi−1

ϕ̇i−1ϕ̇i + μS
∫ xi

xi−1

ϕi−1ϕi

]
+ · · ·

Ω̃i

[
EI
∫ xi

xi−1

ϕ̇2
i +EI

∫ xi+1

xi

ϕ̇2
iEI

∫ xi+1

xi

ϕ̇2
iEI

∫ xi+1

xi

ϕ̇2
i

+ μS
∫ xi

xi−1

ϕ2
i +μS

∫ xi+1

xi

ϕ2
iμS

∫ xi+1

xi

ϕ2
iμS

∫ xi+1

xi

ϕ2
i

]
+ · · ·

Ω̃i+1

[
EI
∫ xi+1

xi

ϕ̇iϕ̇i+1EI
∫ xi+1

xi

ϕ̇iϕ̇i+1EI
∫ xi+1

xi

ϕ̇iϕ̇i+1 +μS
∫ xi+1

xi

ϕiϕi+1μS
∫ xi+1

xi

ϕiϕi+1μS
∫ xi+1

xi

ϕiϕi+1

]
+ · · ·

ṽi−1

[
−μS
∫ xi

xi−1

ϕ̇i−1ϕi

]
+ · · ·

ṽi

[
−μS
∫ xi

xi−1

ϕ̇iϕi−μS
∫ xi+1

xi

ϕ̇iϕi−μS
∫ xi+1

xi

ϕ̇iϕi−μS
∫ xi+1

xi

ϕ̇iϕi

]
+ · · ·

ṽi+1

[
−μS
∫ xi+1

xi

ϕ̇i+1ϕiμS
∫ xi+1

xi

ϕ̇i+1ϕiμS
∫ xi+1

xi

ϕ̇i+1ϕi

]
+ · · ·

= 0 . (5.164)

Then,
[

∂J
∂ω̃i+1

(ṽ,Ω̃ ) = 0

]
⇔ ···

Ω̃i

[
EI
∫ xi+1

xi

ϕ̇iϕ̇i+1EI
∫ xi+1

xi

ϕ̇iϕ̇i+1EI
∫ xi+1

xi

ϕ̇iϕ̇i+1 + μS
∫ xi+1

xi

ϕiϕi+1

]
+ · · ·

Ω̃i+1

[
EI
∫ xi+1

xi

ϕ̇2
i+1EI

∫ xi+1

xi

ϕ̇2
i+1EI

∫ xi+1

xi

ϕ̇2
i+1 + EI

∫ xi+2

xi+1

ϕ̇2
i+1 +μS

∫ xi+1

xi

ϕ2
i+1μS

∫ xi+1

xi

ϕ2
i+1μS

∫ xi+1

xi

ϕ2
i+1

+ μS
∫ xi+2

xi+1

ϕ2
i+1

]
+ . . .

Ω̃i+2

[
EI
∫ xi+2

xi+1

ϕ̇i+1ϕ̇i+2 + μS
∫ xi+2

xi+1

ϕi+1ϕi+2

]
+ · · ·

ṽi

[
−μS
∫ xi+1

xi

ϕ̇iϕi+1−μS
∫ xi+1

xi

ϕ̇iϕi+1−μS
∫ xi+1

xi

ϕ̇iϕi+1

]
+ . . .

ṽi+1

[
−μS
∫ xi+1

xi

ϕi+1ϕ̇i+1−μS
∫ xi+1

xi

ϕi+1ϕ̇i+1−μS
∫ xi+1

xi

ϕi+1ϕ̇i+1− μS
∫ xi+2

xi+1

ϕi+1ϕ̇i+1

]
+ · · ·

ṽi+2

[
−μS
∫ xi+2

xi+1

ϕ̇i+2ϕi+1

]
+ · · ·

= 0 . (5.165)
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It would have been noted that, for each group of equs. (5.161)–(5.162) and (5.164)–
(5.165), the different contributions inherent to the finite element[xi,xi+1] are in bold
characters.

It is therefore sufficient to extract the weighting coefficients of the unknowns
(ṽi, ṽi+1,Ω̃i,Ω̃i+1) from each of the four equations and to find their values by using
the trapezium quadrature formula.

Therefore, the elementary matrix A(i+1) corresponds to:

ṽĩvĩvi ṽi+1ṽi+1ṽi+1 Ω̃iΩ̃iΩ̃i Ω̃i+1Ω̃i+1Ω̃i+1

↓ ↓ ↓ ↓

A(i+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μS
h

μS
2

−μS
h

μS
2

μS
2

EI
h

+
μSh

2
−μS

2
−EI

h

−μS
h

−μS
2

μS
h

−μS
2

μS
2

−EI
h

−μS
2

EI
h

+
μSh

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← ṽĩvĩvi

← ṽi+1ṽi+1ṽi+1

← Ω̃iΩ̃iΩ̃i

← Ω̃i+1Ω̃i+1Ω̃i+1

. (5.166)

It can be noted that it is possible to rewrite matrix (5.166) in the form of (5.144),
provided that the notations (5.115) are adopted.

Before initiating the assembly process and in order to distinguish the contribution
of each mesh [xi,xi+1] in the global matrix, the following writing norm is adopted
by rewriting the local elementary matrix A(i+1) as:

ṽĩvĩvi Ω̃i+1Ω̃i+1Ω̃i+1 ṽi+1ṽi+1ṽi+1 Ω̃i+1Ω̃i+1Ω̃i+1

↓ ↓ ↓ ↓

A(i+1) =

⎡
⎢⎢⎢⎢⎢⎣

α(i+1) β (i+1) −α(i+1) β (i+1)

β (i+1) δ (i+1) −β (i+1) γ(i+1)

−α(i+1) −β (i+1) α(i+1) −β (i+1)

β (i+1) γ(i+1) −β (i+1) δ (i+1)

⎤
⎥⎥⎥⎥⎥⎦

← ṽĩvĩvi

← Ω̃iΩ̃iΩ̃i

← ṽi+1ṽi+1ṽi+1

← Ω̃i+1Ω̃i+1Ω̃i+1

. (5.167)

To avoid all confusion pertaining to the previous notations, it is pointed out that the
notion of exponent in this present case only indicates, in fine, the contribution of
each mesh [xi,xi+1] in the global matrix.

However, as far as values of the coefficients matrix A(i+1) are concerned, they are
constant and are not regulated by the finite element.

In other words:

∀i = 0,N : α(i+1) ≡ α , β (i+1) ≡ β , γ(i+1) ≡ γ , δ (i+1) ≡ δ , (5.168)

in which (α,β ,γ,δ ) have been defined by (5.115).
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A.13) This question is devoted to the process of assembly of the global matrix de-
scribing the linear system emanating from the minimisation problem (M̃P), whose
unknowns are (ṽ1,Ω̃1, . . . , ṽN ,Ω̃N ,Ω̃N+1).

It is necessary to clearly note that for the node xN+1, the approximate solution ṽ
is zero at this point while the solution Ω̃ possesses an unknown value Ω̃N+1 at the
point xN+1.

To constitute the global matrix of the linear system (5.107)–(5.108), each element
[xi,xi+1],(i = 0,N) of the mesh is passed and the global matrix is completed hop-
by-hop with each of the local contributions.

The assembly process is initiated by considering the mesh [x0,x1].

Concerning this first element, only the degrees of freedom at the abscissa x1 must
be considered since the beam is fitted when x0 = 0.

In other words, if the local matrix A(1) is considered for this first element, only
the sub-matrix relative to the unknowns (ṽ1,Ω̃1) is to be considered.

This sub-matrix is presented in bold characters in the elementary matrix A(1), as
shown below: ṽ1ṽ1ṽ1 Ω̃1

↓ ↓

A(1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

α(1) β (1) −α(1) β (1)

β (1) δ (1) −β (1) γ(1)

−α(1) −β (1) α(1)α(1)α(1) −β (1)−β (1)−β (1)

β (1) γ(1) −β (1)−β (1)−β (1) δ (1)δ (1)δ (1)

⎤
⎥⎥⎥⎥⎥⎥⎦ ← ṽ1ṽ1ṽ1

← Ω̃1

. (5.169)

The process is further performed with the second mesh [x1,x2].

In this case, the elementary matrix A(2) is fully participates with its contribution,
in so far as the two degrees of freedom, (ṽ1,Ω̃1) on one hand and (ṽ2,Ω̃2) on the
other hand, are associated with the nodes x1 and x2.

Consequently, by maintaining the norm of bold characters for writing down the
coefficients of matrix A(2) that would be considered during the assembly process,
the matrix in question is written as:

ṽ1ṽ1ṽ1 Ω̃1 ṽ2ṽ2ṽ2 Ω̃2

↓ ↓ ↓ ↓

A(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α(2)α(2)α(2) β (2)β (2)β (2) −α(2)−α(2)−α(2) β (2)β (2)β (2)

β (2)β (2)β (2) δ (2)δ (2)δ (2) −β (2)−β (2)−β (2) γ(2)γ(2)γ(2)

−α(2)−α(2)−α(2) −β (2)−β (2)−β (2) α(2)α(2)α(2) −β (2)−β (2)−β (2)

β (2)β (2)β (2) γ(2)γ(2)γ(2) −β (2)−β (2)−β (2) δ (2)δ (2)δ (2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

← ṽ1ṽ1ṽ1

← Ω̃1

← ṽ2ṽ2ṽ2

← Ω̃2

(5.170)
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The contribution of the interval [x1,x2] consequently extends to the other meshes
[xi,xi+1] for all values of i, ranging from 2 to N.

In other words, for the whole of the N meshes, the contribution of the elementary
matrix A(i+1) is complete and by maintaining the same writing norms, the following
is obtained:

ṽĩvĩvi Ω̃i ṽi+1ṽi+1ṽi+1 Ω̃i+1

↓ ↓ ↓ ↓

A(i+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α(i+1)α(i+1)α(i+1) β (i+1)β (i+1)β (i+1) −α(i+1)−α(i+1)−α(i+1) β (i+1)β (i+1)β (i+1)

β (i+1)β (i+1)β (i+1) δ (i+1)δ (i+1)δ (i+1) −β (i+1)−β (i+1)−β (i+1) γ(i+1)γ(i+1)γ(i+1)

−α(i+1)−α(i+1)−α(i+1) −β (i+1)−β (i+1)−β (i+1) α(i+1)α(i+1)α(i+1) −β (i+1)−β (i+1)−β (i+1)

β (i+1)β (i+1)β (i+1) γ(i+1)γ(i+1)γ(i+1) −β (i+1)−β (i+1)−β (i+1) δ (i+1)δ (i+1)δ (i+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

← ṽĩvĩvi

← Ω̃i

← ṽi+1ṽi+1ṽi+1

← Ω̃i+1

(5.171)

The integration of all of the elementary contributions of each finite element in the
global matrix is then performed.

To easily visualise the global matrix structure, three levels of analysis are pro-
posed: at the top left of the matrix, in its centre and at its bottom right.

Left upper corner of the stiffness matrix:

ṽ1ṽ1ṽ1 Ω̃1 ṽ2ṽ2ṽ2 Ω̃2 . . . Ω̃N+1

↓ ↓ ↓ ↓ ↓

AAA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α(1) + α(2) −β (1) + β (2) −α(2) β (2) . . . . . .

−β (1) + β (2) δ (1) + δ (2) −β (2) γ(2) . . . . . .

−α(2) −β (2) α(2) + α(3) −β (2) + β (3) . . . . . .

β (2) γ(2) −β (2) + β (3) δ (2) + δ (3) . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← ṽ1ṽ1ṽ1

← Ω̃1

← ṽ2ṽ2ṽ2

← Ω̃2

. . .

← Ω̃N+1

(5.172)
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Generic centre of the stiffness matrix:

. . . ṽ̃ṽvi Ω̃i ṽ̃ṽvi+1 Ω̃i+1 . . .
↓ ↓ ↓ ↓

AAA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . . . . . . . . . . .

. . . α(i) +α(i+1) −β (i) +β (i+1) −α(i+1) β (i+1) . . .

. . . −β (i) +β (i+1) δ (i) +δ (i+1) −β (i+1) γ(i+1) . . .

. . . −α(i+1) −β (i+1) α(i+1) +α(i+2) −β (i+1) +β (i+2) . . .

. . . β (i+1) γ(i+1) −β (i+1) +β (i+2) δ (i+1) +δ (i+2) . . .

. . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . .

← ṽ̃ṽvi

← Ω̃i

← ṽ̃ṽvi+1

← Ω̃i+1

. . .

(5.173)

Lower right corner of the stiffness matrix:

. . . . . . ṽNṽNṽN Ω̃N Ω̃N+1

↓ ↓ ↓

AAA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . α(N) + α(N+1) −β (N) + β (N+1) β (N+1)

. . . . . . −β (N) + β (N+1) δ (N) + δ (N+1) γ(N+1)

. . . . . . β (N+1) γ(N+1) δ (N+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . .

. . .

← ṽNṽNṽN

← Ω̃N

← Ω̃N+1

(5.174)

The assembly is completed by performing all algebraic calculations and by consid-
ering the stationarity of the α(i), β (i), γ(i) and δ (i) sequences as indicated in (5.168).
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The stiffness matrix then assumes the following final form:

ṽ1ṽ1ṽ1 Ω̃1 ṽ2ṽ2ṽ2 Ω̃2 ṽ3ṽ3ṽ3 Ω̃3 ṽ4ṽ4ṽ4 Ω̃4 . . . ṽNṽNṽN Ω̃N Ω̃N+1

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

AAA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2α 0 −α β . . .

0 2δ −β γ 0 . . .

−α −β 2α 0 −α β . . .

β γ 0 2δ −β γ 0 . . .

0 −α −β 2α 0 −α β . . .

β γ 0 2δ −β γ . . .

0 −α −β 2α 0 . . .

β γ 0 2δ . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 2α 0 β

. . . 0 2δ γ

. . . β γ δ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← ṽ1ṽ1ṽ1

← Ω̃1

← ṽ2

← Ω̃2

← ṽ3ṽ3ṽ3

← Ω̃3

← ṽ4ṽ4ṽ4

← Ω̃4

. . .

← ṽNṽNṽN

← Ω̃N

← Ω̃N+1

(5.175)
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5.2.2 Clamped-clamped beam – Euler-Bernoulli theory

Statement

Considering a homogenous beam Ω of length L, cross section S and constant den-
sity ρ whose mechanical behaviour is the isotropic elasticity with small distur-
bances. Moreover, it is noted that the constituent material of the beam has a Young’s
modulus of E and a Poisson’s ratio of v.

The beam’s axis is designated by (O;X1) and the current abscissa is x. The
beam’s cross-section is parameterised by the geometric variables (y,z).

The beam is clamped-clamped at its ends when x = 0 and when x = L. Moreover,
a volume density of transverse forces f = − f2X2 is applied along the beam (see
Fig. 5.7).

The density f2 is given and has all the functional regularity properties so as to
perform the integration calculations of the first two questions of the theoretical part.

� Displacements Variational Formulation – Principle of Virtual
Works – Theoretical Part

1) The kinematic frame chosen to describe the real displacement field is that of
Euler-Bernoulli. This justifies choosing to consider virtual displacement fields U∗
expressed in the form:

U∗ =−yu̇∗(x)X1 + u∗(x)X2 , (5.176)

satisfying boundary conditions:

u∗(0) = u∗(L) = 0 , (5.177)

u̇∗(0) = u̇∗(L) = 0 , (5.178)

where the following expression has been adopted: u̇∗ ≡ du∗

dx
.

In addition, (5.177) and (5.178) demonstrate the clamping condition for any vir-
tual field U∗.

22 Xff −=

Fig. 5.7 Clamped-clamped Beam Subject to Flexion Forces



5.2 Beam Subject to Simple Bending 191

U∗ denotes the totality of the displacement fields satisfying all three (5.176) to
(5.178) conditions.

The virtual work of the internal forces T ∗Int, and the virtual work of external forces
T ∗Ext are determined and defined by:

T ∗Int =−
∫

Ω
σi jεi j(U∗)dΩ , T ∗Ext =

∫
Ω

f ·U∗ dΩ , (5.179)

where σ denotes the stress tensor and ε(U∗) the linear strain tensor associated with
virtual displacement fields U∗:

εi j(U∗) =
1
2

[
∂U∗i
∂x j

+
∂U∗j
∂xi

]
. (5.180)

The bending moment M is to be introduced together with the 1D-density of loading
forces f and is defined by:

M(x) =−
∫∫

S(x)
yσ11 dS(x), f (x) =

∫∫
S(x)

f2 dS(x) , (5.181)

where S(x) denotes abscissa x.

2) Without justifying the convergence of the concerned integrals, show that apply-
ing the principle of virtual works leads to the following formal variational formula-
tion (EVP):

(EVP)

⎡
⎣Find M defined from [0,L] to R, solution of:∫ L

0

[
M̈(x)+ f

]
u∗(x)dx = 0 ,∀u∗ ∈ U∗ .

(5.182)

3) Using the behaviour law of the beam’s constituent material (M(x) = EIü(x), I be-
ing the beam’s moment of inertia in relation to the (O;X3) axis), and assuming that
the force density f belongs to L2(0,L), show that the continuous problem (CP)
composed of the beam’s equilibrium equations is expressed as:

(CP)

⎡
⎢⎢⎢⎢⎣

Find u belonging to H4([0,L]), solution of:

−EIu(4)(x) = f (x), ∀x ∈]0,L[ ,

u(0) = u(L) = 0 ,

u̇(0) = u̇(L) = 0 ,

(5.183)

where the Sobolev space H4([0,L]) is defined by:

H4(0,L) = {v : [0,L]→ R,v(k) ∈ L2(0,L), (k = 0 to 4)} . (5.184)
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4) V ≡ H2
0 ([0,L]) denotes the Sobolev space defined by:

H2
0 (0,L) = {v/v(k) ∈ L2(0,L), (k = 0 to 2)}∩ W0 ,

where:

W0 = {v/v(0) = v̇(0) = v(L) = v̇(L) = 0} . (5.185)

Then, show that a displacements variational formulation (VP) can be expressed as:

(VP)

⎡
⎣Find u belonging to V , solution of:

EI
∫ L

0
ü(x)v̈(x)dx +

∫ L

0
f (x)v(x)dx = 0 , ∀v ∈V .

(5.186)

5) Show that there is a minimization problem (MP) equivalent to the variational
formulation (VP) defined by:

(MP)

⎡
⎣Find u belonging to V , solution of: J(u) = Min

v∈V
J(v) ,

where: J(v) =
EI
2

∫ L

0
v̈2(x)dx +

∫ L

0
f (x)v(x)dx .

(5.187)

� Numerical Part

This part is dedicated to the approximation by applied finite elements of the elastic
beams in flexion deformation, modelised by the Euler-Bernoulli theory.

To achieve this, the Hermite finite elements can be applied as follows:

Let the regular mesh be at interval [0,L] and of constant step h, such as:
{

x0 = 0, xN+1 = L ,

xi+1 = xi + h, i = 0 to N .
(5.188)

In addition, let the approximation space W̃ be defined by:

W̃ =
{

w̃ : [0,L]→ R, w̃ ∈C1([0,L]), w̃|[xi ,xi+1] ∈ P3([xi,xi+1])
}

, (5.189)

where P3([xi,xi+1]) denotes the polynomial space defined on [xi,xi+1], of degree less
than or equal to three.

In the same manner, introduce space Ṽ defined by:

Ṽ =
{

ṽ ∈ W̃ / ṽ(0) = ˙̃v(0) = ṽ(L) = ˙̃v(L) = 0
}

. (5.190)

6) What are the dimensions of the W̃ and Ṽ spaces?
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7) The system of functions (ϕi)i=1,2N of Ṽ , divided in two groups, is considered as
follows:

ϕ̇2k(x j) = δ2k, j,ϕ2k(x j) = 0, (∀ j = 1 to N) (5.191)

ϕ2k+1(x j) = δ2k+1, j, ϕ̇2k+1(x j) = 0, (∀ j = 1 to N) . (5.192)

– What is the support of functions (ϕi)i=1,2N?

– Show that the 2N functions (ϕi)i=1,2N constitute a basis of the space Ṽ .

8) Let ṽ belonging to Ṽ be defined by:

ṽ =
N

∑
k=1

α̃kϕ2k +
N

∑
k=1

β̃kϕ2k−1 . (5.193)

– Suggest a mechanical interpretation of the α̃k and β̃k coefficients.

– Explain how the approximation ṽ of a mesh [xi,xi+1] is expressed?

– State the 4 basis functions ϕ2i−1, ϕ2i, ϕ2i+1 and ϕ2i+2 on element [xixi+1].

9) Let (M̃P) be the approximate minimization problem, associated to the (MP)
problem, defined by:

(M̃P̃MP̃MP) Find ũ belonging to Ṽ , being solution to: J(ũ) = Min
ṽ∈Ṽ

J(ṽ) ,

where J is the potential energy defined by (5.187).

– Show that a necessary condition for ũ to be a solution to (M̃P) is written as:

Determine the (ũi)1,N and ( ˙̃ui)1,N numerical sequences, defining approximation ũ
belonging to Ṽ solution to the global linear system:

∀i = 1 to N :

EI
N

∑
k=1

[∫
S2i−1,2k

ϕ̈2i−1ϕ̈2k dx

]
˙̃uk +

N

∑
k=1

[∫
S2i−1,2k−1

ϕ̈2i−1ϕ̈2k−1 dx

]
ũk

(M̃P)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

=−
∫

S2i−1

f ϕ2i−1 dx , (5.194)

EI
N

∑
k=1

[∫
S2i,2k

ϕ̈2iϕ̈2k dx

]
˙̃uk +

N

∑
k=1

[∫
S2i,2k−1

ϕ̈2iϕ̈2k−1 dx

]
ũk

=−
∫

S2i

f ϕ2i dx , (5.195)

where the following notations have been adopted:

Sl,m ≡ Supp ϕl ∩ Supp ϕm, Sm ≡ Supp ϕm . (5.196)
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10) The elementary matrix a(i+1) is now introduced, showing the contribution of
segment [xi,xi+1] in the global matrix A of the linear system (5.194) to (5.195),
namely the (i+ 1)th mesh element from interval [0,L].

Thus, the result obtained is:

a(i+1) =
2EI
h3

⎡
⎢⎢⎢⎢⎢⎢⎣

6 3h −6 3h

3h 2h2 −3h h2

−6 −3h 6 −3h

3h h2 −3h 2h2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.197)

The elementary vector b(i+1) is introduced in the same way and is defined by:

b(i+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b(i+1)
1

b(i+1)
2

b(i+1)
3

b(i+1)
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
∫ xi+1

xi

f ϕ2i−1 dx

−
∫ xi+1

xi

f ϕ2i dx

−
∫ xi+1

xi

f ϕ2i+1 dx

−
∫ xi+1

xi

f ϕ2i+2 dx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.198)

– Using the Simpson quadrature formula, suggest an approximation for vector b(i+1).

For reminder, the Simpson formula is expressed as:

∫ b

a
f (x)dx� (b−a)

6

[
f (a)+ 4 f

(
a + b

2

)
+ f (b)
]

. (5.199)

– Show that, in the special case of a uniformly distributed load p,

(f = − f2X2 ≡ −pX2), the result for vector b(i+1)
∗ is found again and is defined

by:

t b(i+1)
∗ =

[
− ph

2
,− ph2

12
,

ph
2

,
ph2

12

]
. (5.200)

11) Consider a special case where the beam’s mesh Ω is composed of 3 meshes of
constant length h.

– Process the assembly of the global matrix A with generic element Ai j as well as

that of the second member b of component bi corresponding to problem (M̃P).
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– Infer the form of the approximation of the displacement field at all points of
beam Ω .

– Are the nodal equations obtained by the classical approximation techniques using
Hermite finite elements applied to the variational formulation (VP), seen again?
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5.2.3 Solution

� Displacements Variational Formulation – Principle of Virtual
Works – Theoretical Part

A.1) The structure of a virtual displacements field U∗ defined by (5.176) implies
that the strain tensor ε(U∗) (cf. (5.180)) associated with U∗ is written as:

ε(U∗) = ε∗11X1⊗X1 =−yü∗(x)X1⊗X1 . (5.201)

The notation of tensor product X1⊗X1 expressing the fact that the tensor ε(U∗) has
only one non-zero component, namely ε∗11 would have been introduced.

The virtual work of internal forces T ∗Int is evaluated in the following way:

T ∗Int =−
∫

Ω
σi jεi j(U∗)dΩ =−

∫
Ω

σ11ε11(U∗)dΩ ,

=−
∫ L

0

(
−
∫ ∫

S(x)
yσ11 dS(x)

)
ü∗(x)dx =−

∫ L

0
M(x)ü∗(x)dx, (5.202)

where the definition of the bending moment M defined in (5.181) has been used.

In an analogous way, the virtual work of external forces is obtained from:

T ∗Ext =
∫

Ω
f ·U∗ dΩ =−

∫
Ω

f2u∗(x)dΩ

=−
∫ L

0

(∫ ∫
S(x)

f2 dS(x)
)

u∗(x)dx =−
∫ L

0
f (x)u∗(x)dx . (5.203)

A.2) The application of the principle of virtual works in the case of an elastostatic
problem is written as:

T ∗Int + T ∗Ext = 0 , ∀u∗ ∈ U∗ . (5.204)

Therefore, by using the expressions (5.202) and (5.203), the following is obtained:
∫ L

0
M(x)ü∗(x)dx +

∫ L

0
f (x)u∗(x)dx = 0 , ∀u∗ ∈ U∗ . (5.205)

A double integration by parts transforms the first integral of (5.205) and gives:
∫ L

0

[
M̈(x)+ f (x)

]
u∗(x)dx− [Ṁu∗

]L
0 +[Mu̇∗]L0 = 0 , ∀u∗ ∈ U∗ . (5.206)

Consequently, by using the boundary conditions (5.177) and (5.178) of the virtual
fields of U∗, the formal variational formulation (EVP) is obtained:

(EVP)

⎡
⎣Find M defined from [0,L] to R being the solution of:∫ L

0

[
M̈(x)+ f (x)

]
u∗(x)dx = 0 , ∀u∗ ∈ U∗ .

(5.207)
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A.3) Solving of the continuous problem (CP) is worked out from the density argu-
ments as applied on several previous occasions.

To achieve this, formulation (5.207) of the variational equation (EVP) is applied
again and the bending moment M is substituted by its expression according to the
displacement field of solution u via the behaviour law mentioned in the statement of
this question.

The following is then obtained:
∫ L

0

[
EIu(4)(x)+ f (x)

]
u∗(x)dx = 0 , ∀u∗ ∈ U∗ . (5.208)

To give a sense to the integration of variational formulation (5.208), the solution u
would be searched within the space H4(0,L) defined by (5.184).

Indeed, considering that the fact f belongs to L2(0,L), should the fourth deriva-
tive u(4) as well as the virtual field u∗ be set to belong to L2(0,L), the existence of
the integral of (5.208) would as such be ensured.

The stress pertaining to the boundary conditions bearing upon u and u∗ are added
to these regularity conditions.

It can then be considered that the solution u and the virtual fields u∗ belong to the
Sobolev space H4∗ ([0;L]) defined by:

H4
∗ (0,L)≡ H4(0,L)∩U∗ . (5.209)

The variational formulation (EVP) is consequently written as:

(EVP)

⎡
⎣Find u belonging to H4∗ (0,L) which is the solution of:∫ L

0

[
EIu(4)(x)+ f (x)

]
u∗(x)dx = 0 , ∀u∗ ∈ H4

∗ (0,L) .
(5.210)

The continuous problem (CP) is then estimated by using the density method:

Among all the functions of H4∗ (0,L), those which belong to D(0,L) are con-
sidered (since D(0,L) ⊂ H4∗ (0,L)) and the fact that D(0,L) is dense in L2(0,L) is
used.

The reader may refer to the elaboration of the density method as applied in the
case of the problem of a beam subjected to traction [5.1.1].

The following is then easily obtained:

EIu(4)(x)+ f (x) = 0 , ∀x ∈]0,L[ . (5.211)

� Summary

The solution u of the variational equation (5.210) has been considered in the
space H4∗ (0,L).
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By using the density method, it has then been proven that u satisfies differen-
tial equation (5.211), while satisfying the homogenous boundary conditions of
Dirichlet and Neumann when x = 0 and when x = L, which are the properties at
the border of the interval [0,L] of the functions of H4∗ (0,L).

In other words, u is the solution of the continuous problem (CP) defined
by (5.183).

Finally, it can be noted that when the distribution of forces f shows more regu-
larity, at least continuous along the interval [0,L], the solution u of the continuous
problem (CP) is then the classical solution belonging to C4(]0,L[).

A.4) To prove the variational formulation (VP), let v be a function belonging to
a variational space V to be later defined.

The fourth orde r differential equation (5.183) is multiplied, and two successive
integrations by parts is performed.

The following formulation is then found:

EI
∫ L

0
[üv̈ + f v]dx +

[
u(3)v
]L

0
− [üv̇]L0 = 0 , ∀v ∈V . (5.212)

The definition of the functional framework V occurring in formulation (5.212) can
now be studied.

Firstly, it can be observed that subsequent to the double integration by parts,
variational equation (5.212) does not explicitly manifest the values of solution u
and of its derivative u̇ when x = 0 and when x = L.

In order to record this information in the variational formulation (VP), it is com-
pulsory that the functions v of V (area of investigation of solution u) satisfy the
following boundary conditions:

v(0) = v̇(0) = v(L) = v̇(L) = 0 . (5.213)

Thus, the future solution u also belonging to V as one of the functions v of V , will
satisfy de facto the boundary conditions of the clamped-clamped beam Ω .

Consequently, equation (5.212) is then written as:

EI
∫ L

0
[üv̈+ f v]dx = 0 , ∀v ∈V . (5.214)

With regards to the regularity of the functions v of V , the Sobolev space H2(0,L)
will be considered so as to ensure the convergence of the two integrals of equa-
tion (5.214).

The variational formulation (VP) as defined in (5.186) is hence obtained.
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A.5) The variational formulation (VP) defined by (5.186) comprises a bilinear
form a(., .) and a linear form L(.) respectively defined by:

a(u,v) = EI
∫ L

0
üv̈dx , L(v) =−

∫ L

0
f vdx , (5.215)

in which u and v describe H2
0 (0,L).

Thus, the variational formulation can be written in a generic form:

Find u ∈V being a solution of:

a(u,v) = L(v) , ∀v ∈V . (5.216)

Furthermore, it is clear that the bilinear form a is symmetrical and positive. These
properties ensure that an equivalent minimisation problem defined by (MP) exists,
(cf. Raviart [7] or Euvrard [4]).

� Numerical Part

The dimension of space W̃ is equal to 2N +4 while that of space Ṽ is equal to 2N.

Indeed, to determine the dimension of W̃ , it suffices to calculate the number of
degrees of freedom that characterise any function w̃, belonging to W̃ .

However, any function w̃ of W̃ is a third degree polynomial by mesh [xi,xi+1].
Therefore, by using mesh [xi,xi+1], four degrees of freedom are available. In such
a way that over the whole of the (N + 1) meshes, 4(N + 1) degrees of freedom are
obtained.

There still is need to eliminate the continuity conditions resulting from the junc-
tion of two adjacent meshes for both function ω̃ as well as ˙̃ω for its derivative in so
far as the functions of W̃ are C1 along the interval [0,L].

In other words, the 2N continuity conditions for w̃ and ˙̃w correspond to the N
points of the junction (x1, . . . ,xN).

Finally, any function w̃ has 4(N + 1)− 2N degrees of freedom, that is (2N + 4)
in all and dimW̃ = 2N + 4.

The dimension of Ṽ can be immediately inferred since the fixed values at zero
of ṽ and of ˙̃v when x = 0 and when x = L need to be considered, therefore scaling
any function ṽ of Ṽ by four degrees of freedom.

This explains why the dimension of Ṽ is equal to 2N.

A.7) Let ϕi be one of the 2N functions of Ṽ defined by the conditions (5.191)–
(5.192).
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a) Study of the support of functions ϕi.

For any interval [xk,xk+1], which is different from [xi−1,xi] or from [xi,xi+1], ϕi is
a function that is zero like its derivative at points xk and xk+1.

Indeed, given that function ϕi is a polynomial having a degree less or equal to
three along the interval [xk,xk+1], this polynomial is bound to have a zero value
along the whole of the interval.

To prove this, it is only necessary to assume, to the point of absurdity, that such
a function has a non zero value along the interval [xk,xk+1].

In this case, given the boundary conditions when using xk and xk+1, this function
would necessary take one of the following two forms (cf. Fig. 5.8):

It is then seen that the profile of ϕi inevitably shows two or three inflexion points;
such an aspect does not occur in a third degree polynomial.

A more analytical demonstration consists in applying the Rolle’s theorem, given
the fact that:

ϕi(xk) = ϕi(xk+1) = 0 and ϕ̇i(xk) = ϕ̇i(xk+1) = 0 .

The consequent result is that the support of functions ϕi is the union of inter-
vals [xi−1,xi] and [xi,xi+1].

b) Study of the system of the 2N functions (ϕi)i=1,2N of Ṽ .

To prove that the 2N functions (ϕi)i=1,2N constitute a basis of Ṽ , it is suggested
to prove that it constitutes a free system of 2N elements in a vector space having
a dimension of 2N.

kkmm xxxx 11 −+

Fig. 5.8 Counter-Example
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To achieve this, two sequences of real coefficients (ξi)i=1,N and (ηi)i=1,N are
chosen and the linear combination is considered:

N

∑
k=1

ξkϕ2k +
N

∑
k=1

ηkϕ2k−1 = 0 . (5.217)

By evaluating (5.217) at nodes xi, it is seen that all coefficients ηi have a zero value.
Furthermore, following the derivation of (5.217), at point xi once more, it is similarly
observed that the coefficients ξi also have a zero value.

It would be observed that such a result is essentially based on properties (5.191)–
(5.192) of functions ϕi and of their derivative ϕ̇i.

The family of 2N functions ϕi is linearly independent; it is therefore a generator
in a vector space of dimension 2N and constitutes, as a result, a basis of Ṽ .

A.8) The approximation proposed in this problem pertains to the Hermite’s finite
elements.

The aim is to carry out an interpolation, of the displacement field ũ and of its
derivative ˙̃u, which represents the rotation of the plane section according to the
Euler-Bernoulli theory whereas in the Timoshenko beam theory, rotation θ of the
section of the beam is an independent function of the displacement field U.

a) Mechanical interpretation of coefficients α̃k and β̃k.

Any function ṽ of Ṽ breaks down over the two families of basis functions (ϕ2k)k=1,N

and (ϕ2k−1)k=1,N in such a way that:

ṽ =
N

∑
k=1

α̃kϕ2k +
N

∑
k=1

β̃kϕ2k−1 . (5.218)

Therefore, if factorisation (5.218) is evaluated at point xi, considering the properties
of the basis functions (5.191)–(5.192), the following is obtained:

ṽ(xi) = β̃i . (5.219)

Similarly, after having derived (5.217), the derivative of ṽ is calculated at point xi

and the following is obtained:

˙̃v(xi) = α̃i . (5.220)

This explains why coefficients αi and βi are respectively interpreted as the approx-
imation of derivative ˙̃vi, (the rotation of the section) and of the displacement ṽi at
node xi.

The approximation ṽ is finally expressed as:

ṽ =
N

∑
k=1

˙̃vkϕ2k +
N

∑
k=1

ṽkϕ2k−1 , (5.221)
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where it has been set that:

ṽk ≡ ṽ(xk) and ˙̃vk ≡ ˙̃v(xk) . (5.222)

b) Restriction of the approximation ṽ to a mesh [xi,xi+1].

In the previous question, it has been proven that the support of functions (ϕi)i=1,2N

is constituted by the union of intervals [xi−1,xi] and [xi,xi+1].

Therefore, on mesh [xi,xi+1], the restriction of a function ṽ of Ṽ is expressed as:

ṽ = ṽiϕ2i−1 + ˙̃viϕ2i + ṽi+1ϕ2i+1 + ˙̃vi+1ϕ2i+2 . (5.223)

c) Expression of basis functions on the mesh [xi,xi+1].

The only basis functions having part of their support along the interval [xi,xi+1] are:

ϕ2i−1 , ϕ2i , ϕ2i+1 and ϕ2i+2 .

These four functions are third degree polynomials and must satisfy properties
(5.191)–(5.192).

Therefore, function ϕ2i−1(x) is defined by:

ϕ2i−1(xi) = 1 , ϕ̇2i−1(xi) = 0 , (5.224)

ϕ2i−1(xi+1) = 0 , ϕ̇2i−1(xi+1) = 0 . (5.225)

Considering the cubic polynomial structure of ϕ2i−1, conditions (5.225) imply that
is expressed as:

ϕ2i−1(x) = (x− xi+1)2(Ax + B) . (5.226)

Furthermore, the boundary conditions (5.224) enable the evaluation of coefficients A
and B and the function ϕ2i−1 is expressed in its final form as:

ϕ2i−1(x) =
1
h3 (x− xi+1)2[2(x− xi)+ h] . (5.227)

Similarly, an analogous reasoning leads to the expression of the other basis func-
tions:

ϕ2i(x) =
1
h2 (x− xi+1)2(x− xi) , (5.228)

ϕ2i+1(x) =
1
h3 (x− xi)2[2(xi+1− x)+ h] , (5.229)

ϕ2i+2(x) =
1
h2 (x− xi)2(x− xi+1) . (5.230)

A.9) To obtain the approximate formulation of the minimisation problem (MP),
the functional J defined in (5.187) is evaluated at point ṽ obtained from the expan-
sion (5.193).
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To simplify the written expressions, the mute index summation (or Einstein sum-
mation convention), is adopted and the following is obtained:

J(ṽ) =
EI
2

∫ L

0

[
˙̃vkϕ̈2k + ṽkϕ̈2k−1

]2
dx +
∫ L

0
f
[

˙̃vkϕ2k + ṽkϕ2k−1
]

dx . (5.231)

A necessary condition for minimisation of the functional J is therefore written as:

∀k = 1 to N :
∂J

∂ ˙̃vk
(ũ) =

∂J
∂ ṽk

(ũ) = 0 . (5.232)

The 2N conditions (5.232) are therefore expressed as:

EI
∫ L

0

[
˙̃uk ¨ϕ2k + ũkϕ̈2k−1

]
ϕ̈2k−1 dx =−

∫ L

0
f ϕ2k−1 dx ,

(∀k = 1 to N) , (5.233)
(M̃P)

⎡
⎢⎢⎢⎢⎢⎢⎣ EI

∫ L

0

[
˙̃uk ¨ϕ2k + ũk+1ϕ̈2k+1

]
ϕ̈2k dx =−

∫ L

0
f ϕ2k dx ,

(∀k = 1 to N) . (5.234)

It is finally observed that the integrands occurring in the two equations (5.233)
and (5.234) exclusively bear upon the intersection of the supports of the basis func-
tions (ϕi)i=1,2N , resulting in formulation (5.194)–(5.195).

A.10) The elementary matrix a(i+1) defined by (5.197) integrates the contribution of
element [xi,xi+1] in the global matrix A of system (5.194)–(5.195).

Similarily, b(i+1) is the contribution of this same element in the second member b.

a) Approximation of the Elementary Vector b(i+1) by the Simpson formula.

Each of the 4 components of vector b(i+1) is evaluated by approximation using the
Simpson quadrature formula (5.199).

b(i+1)
1 =−

∫ xi+1

xi

f ϕ2i−1 dx =−
∫ xi+1

xi

1
h3 (x− xi+1)2[2(x− xi)+ h] f (x)dx

�− h
6h3

(
fih

3 + 4(xi+ 1
2
− xi+1)2

[
2
(

xi+ 1
2
− xi

)
+ h
]

fi+ 1
2

)

�−h
6

(
fi + 2 fi+ 1

2

)
. (5.235)

Likewise, the following is obtained:

b(i+1)
2 =−

∫ xi+1

xi

f ϕ2i dx =−
∫ xi+1

xi

1
h2 (x− xi+1)2(x− xi) f (x)dx

�− h
6h2

(
(0× fi)+ 4

(
xi+ 1

2
− xi+1

)2(
xi+ 1

2
− xi

)
fi+ 1

2
+(0× fi+1)

)

�− h2

12
fi+ 1

2
. (5.236)
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Then,

b(i+1)
3 =−

∫ xi+1

xi

f ϕ2i+1 dx =−
∫ xi+1

xi

1
h3 (x− xi)2[2(xi+1− x)+ h] f (x)dx

�− h
6h3

(
4
(

xi+ 1
2
− xi

)2 [
2
(

xi+1− xi+ 1
2

)
+ h
]

fi+ 1
2
+ h3 fi+1

)

�−h
6

(
fi+1 + 2 fi+ 1

2

)
. (5.237)

Finally, the last component b(i+1)
4 is evaluated as:

b(i+1)
4 =−

∫ xi+1

xi

f ϕ2i+2 dx =−
∫ xi+1

xi

1
h2 (x− xi)2 (x− xi+1) f (x)dx

�− h
6h2

(
(0× fi)+ 4

(
xi+ 1

2
− xi

)2(
xi+ 1

2
− xi+1

)
fi+ 1

2
+(0× fi+1)

)

� h2

12
fi+ 1

2
. (5.238)

To conclude, the approximation of the elementary vector b(i+1) is written as:

t b(i+1) �
[
−h

6

(
fi + 2 fi+ 1

2

)
, − h2

12
fi+ 1

2
, −h

6

(
fi+1 + 2 fi+ 1

2

)
,

h2

12
fi+ 1

2

]
.

(5.239)

b) Particular Case of a Uniform Load having Intensity f2 ≡ p.

When the density f2 is constant along beam Ω , the elementary vector b(i+1) is writ-
ten as:

t b(i+1)
∗ =−p

[∫ xi+1

xi

ϕ2i−1 dx ,

∫ xi+1

xi

ϕ2i dx ,

∫ xi+1

xi

ϕ2i+1 dx ,

∫ xi+1

xi

ϕ2i+2 dx

]
.

(5.240)

Thus, given that the basis functions of W̃ are third degree polynomials, the Simpson
quadrature formula is exact for such polynomials and the approximation proposed
in (5.239) becomes an exact evaluation provided that values fi, fi+ 1

2
and fi+1 are

replaced by the loading constant p.

The following is finally obtained:

tb(i+1)
∗ =

[
− ph

2
, − ph2

12
, − ph

2
,

ph2

12

]
. (5.241)

A.11) Now, suppose that the beam is subdivided into three equal meshes having
length h. Then x0,x1,x2 and x3 are the four nodes of the mesh resulting from this
three-meshed discretisation.
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Before proceeding to the assembly of matrix A and of the second member cor-

responding to the linear system of the minimization problem ˜(MP), observe the
degree of freedom corresponding to the approximation framework using Hermite’s
finite elements.

To achieve this, first of all note that given the clamped-clamped beam structure
when x0 = 0 and when x3 = L, only the nodes at abscissas x1 and x2 constitute the
degrees of freedom noted: ũ1, ˙̃u1, ũ2 and ˙̃u2.

Thus, the approximation of the displacements field along beam Ω is written as:

ũ = ũ1ϕ1 + ˙̃u1ϕ2 + ũ2ϕ3 + ˙̃u2ϕ4 . (5.242)

c) Assembly of global matrix A and that of the second member b corresponding to

the ˜(MP) problem.

The assembly is performed according to the method set out in problem 5.1.1 by first
considering the first element [x0,x1].

In this case, only the node at abscissa x1 makes a contribution to the global ma-
trix A.

In other words, if the elementary matrix a(1) relative to the element [x0,x1] is
considered, it is the sub-matrix corresponding to the degree of freedom of node
x1, (ũ1, ˙̃u1) that should be taken into consideration in the assembly of matrix A as
follows.

Elements of the elementary matrix a(1) (see definition (5.197)) that should be
taken into consideration for the assembly are indicated in bold character as follows:

ũ1ũ1ũ1 ˙̃u1˙̃u1˙̃u1

↓ ↓

a(1) =
2EI
h3

⎡
⎢⎢⎢⎢⎢⎣

6 3h −6 3h

3h 2h2 −3h h2

−6 −3h 6 −3h

3h h2 −3h 2h2

⎤
⎥⎥⎥⎥⎥⎦ ← ũ1

← ˙̃u1

. (5.243)

Then, after taking into account the contribution of element [x0,x1], the global ma-
trix A has the following form:
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ũ1 ˙̃u1 ũ2 ˙̃u2

↓ ↓

A =
2EI
h3

⎡
⎢⎢⎢⎢⎢⎣

6 −3h 0 0

−3h 2h2 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

← ũ1

← ˙̃u1

ũ2

˙̃u2

. (5.244)

Likewise, the contribution of elementary vector b(1), according to the general defi-

nition (5.198), corresponds only to the two components b(1)
3 and b(1)

4 relative to the
two degrees of freedom ũ1 and ˙̃u1.

Thus, after integrating the contribution of the first mesh [x0,x1], the second mem-
ber b is written as:

t b =
[
b(1)

3 , b(1)
4 , 0 , 0

]
. (5.245)

Now, the second mesh [x1,x2] of the beam Ω is considered.

In this case, the two nodes at abscissas x1 and x2 respectively constitute the de-
grees of freedom (ũ1 , ˙̃u1) and (ũ2 , ˙̃u2).

Thus, the elementary matrix a(2), relative to element [x1,x2] is full and is written
according to definition (5.198):

ũ1ũ1ũ1 ˙̃u1˙̃u1˙̃u1 ũ2ũ2ũ2 ˙̃u2˙̃u2˙̃u2
↓ ↓ ↓ ↓

a(2) =
2EI
h3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 3h −6 3h

3h 2h2 −3h h2

−6 −3h 6 −3h

3h h2 −3h 2h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← ũ1

← ˙̃u1

← ũ2

← ˙̃u2

. (5.246)

Then, carry out the assembly by integrating the contribution of matrix a(2) in the
global matrix A. This contribution is shown in bold characters in matrix A, (the
terms from the elementary matrix a(1) being neutralized in normal font size):
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ũ1 ˙̃u1 ũ2 ˙̃u2
↓ ↓ ↓ ↓

A =
2EI
h3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 + 6 −3h + 3h −6 3h

−3h + 3h 2h2 + 2h2 3h h2

−6 −3h 6 −3h

3h h2 −3h 2h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← ũ1

← ˙̃u1

← ũ2

← ˙̃u2

. (5.247)

The elementary calculations intervening in the coefficients of the matrix A being
performed, the following is obtained:

A =
2EI
h3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 0 −6 3h

0 4h2 −3h h2

−6 −3h 6 −3h

3h h2 −3h 2h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.248)

Concerning the contribution of mesh [x1,x2] in the second member b, the elementary
vector b(2) is once again full and is written as:

t b(2) =
[
b(2)

1 , b(2)
2 , b(2)

3 , b(2)
4

]
. (5.249)

Then, the assembly in the second member b gives:

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b(1)
3 + b(2)

1

b(1)
4 + b(2)

2

b(2)
3

b(2)
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.250)

End the assembly of matrix A by taking into account the contribution of the last
mesh [x2,x3].

In the present case, there is a situation of symmetry in relation to the one pre-
sented for mesh [x0,x1].

In fact, in the present case, it is node x3 that is restrained and only the degrees of
freedom of the node at abscissa x2 i. e. (ũ2, ˙̃u2) should be taken into consideration.
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The coefficients of the elementary matrix a(3) to be taken into account are those
of the sub-matrix indicated as follows:

ũ2 ˙̃u2
↓ ↓

a(3) =
2EI
h3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 3h −6 3h

3h 2h2 −3h h2

−6 −3h 6 −3h

3h h2 −3h 2h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← ũ2

← ˙̃u2

(5.251)

Then, the assembly in the global matrix gives:

ũ1 ˙̃u1 ũ2 ˙̃u2
↓ ↓

A =
2EI
h3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 0 −6 3h

0 4h2 −3h h2

−6 −3h 6 + 6 −3h + 3h

3h h2 −3h + 3h 2h2 + 2h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ũ1

˙̃u1

← ũ2

← ˙̃u2

(5.252)

Finally, the final form of the matrix corresponding to a mesh of the beam constituted
by three meshes is:

A =
2EI
h3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 0 −6 3h

0 4h2 −3h h2

−6 −3h 12 0

3h h2 0 4h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.253)

Given the restraint when x3 = L, the contribution of mesh [x2,x3] in the second
member intervenes by the elementary vector b(3), and this occurs only through its

components b(3)
1 and b(3)

2 .
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The final assembly in the second member b then gives:

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b(1)
3 + b(2)

1

b(1)
4 + b(2)

2

b(2)
3 + b(3)

1

b(2)
4 + b(3)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h
6

(
2 f 1

2
+ 2 f1 + 2 f 3

2

)

h2

12

(
f 1

2
− f 3

2

)

−h
6

(
2 f 3

2
+ 2 f2 + 2 f 5

2

)

h2

12

(
f 3

2
− f 5

2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.254)

where the generic result of approximation (5.239) of the elementary vector b(i+1)

would have been used.

d) Approximation of the displacement field at any point of beam Ω .

In order to find an approximation of the displacement field ũ at any point of beam Ω ,
it is only necessary to solve the linear system defined by matrix A (5.253) and by
the second member b (5.254).

The corresponding analytical solution produced by a computational solver is
given by:

ũ1 =
1

171h
[(11b3 + 24b1)h−17b4−4b2] , (5.255)

˙̃u1 =
1

57h2 [(5b3 + 4b1)h−6b4 + 12b2] , (5.256)

ũ2 =
1

171h
[(16b3 + 9b1)h−4b4−11b2] , (5.257)

˙̃u2 =− 1
57h2 [(4b3 + 7b1)h−20b4 + 2b2] , (5.258)

where b1, b2, b3 and b4 are the components of the second member b whose approx-
imation has been proposed in (5.254).

At any abscissa x of the beam Ω , the displacement field ũ is then defined by the
formula (5.218) after adapting it to a mesh having three elements, namely:

ũ(x) = ũ1ϕ1(x)+ ˙̃u1ϕ2(x)+ ũ2ϕ3(x)+ ˙̃u2ϕ4(x) , (5.259)

where the coefficients ũ1, ˙̃u1, ũ2 and ˙̃u2 are given by (5.255)–(5.258) and the func-
tions (ϕi)i=1,4 are the basis functions corresponding to expressions (5.227)–(5.230).
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e) Hermite’s finite elements applied to the variational formulation (VP).

The variational formulation (VP) is written according to formula (5.186). In order
to obtain the approximate variational formulation (P̃V), the usual substitutions are
performed:

u(x)→ ũ(x) =
N

∑
k=1

˙̃ukϕ2k(x)+
N

∑
k=1

ũkϕ2k−1(x) , (5.260)

v(x)→ ṽ(x) = ϕi(x) . (5.261)

The approximate formulation (ṼP) is then written as:

(ṼP)

⎡
⎢⎢⎢⎢⎣

Find ũ solution to:

EI
N

∑
k=1

∫ L

0

[
˙̃ukϕ2k + ũkϕ2k−1

]
ϕi dx =−

∫ L

0
f ϕi dx ,

i = 1 to 2N .

(5.262)

Then, it is only necessary to note that the 2N equations parameterised by i in formu-
lation (5.262) may be split into two groups: those corresponding to the even values
of i and those corresponding to the odd values of i.

This distinction then strictly yields the same formulation as that of the system of
equations (5.233)–(5.234) of the minimization problem (M̃P).

Wherefrom, it is inferred that, in the case of a discretisation with three meshes,
the nodal equations of the approximate variational formulation (ṼP) resulting from
it leads to the same linear system of matrix A defined by (5.253) and of the second
member b defined by (5.254).

Given the properties of the bilinear form a(., .) and of the linear form L(.) defined
by (5.215), this result is nothing but the consequence of the equivalence between the
variational problem (VP) and the minimization problem (MP).



Chapter 6

Finite Elements Applied to Non Linear Problems

6.1 Viscous Burgers Equation

� Warning

This problem deals with the viscous Burgers equation as an approximation to the
Navier-Stokes equation in the one-dimensional case.

In order to suggest the study of a “Finite elements in space – Finite differences in
time” mixed formulation that may be accessible to science graduate students who
do not possess all the knowledge in functional analysis necessary for processing
the result, all that is inherent to the definition of the functional framework has
been voluntarily excluded in the subsequent presentation.

In other words, only the formal aspects of the variational formulations and of the
numerical application of the finite elements are considered in all that will follow.

Statement

1) Here, the scalar function u of variables (x,t) is of interest as solution to the fol-
lowing partial differential equation:

(CP)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂ t

+ u
∂u
∂x

= ν
∂ 2u
∂x2 , ∀(x,t) ∈]0,L[×]0,+∞[ ,

u(0,t) = 0 ,
∂u
∂x

(L,t) = f (t) , ∀t ∈]0 ,+∞[ ,

u(x,0) = u0(x) , ∀x ∈]0,L[ ,

(6.1)

where v denotes the kinematic viscosity of the fluid, L a given and characteristic
length of the flow and f , a “sufficiently regular” function is also given.
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– What is the fundamental property of the partial differential equation (CP)?

2) Let v be a test function of the only variable x. Show that the (CP) problem can
be expressed in the following variational formulation (VP):

Find u belonging to V solution of:

(VP)
d
dt

∫ L

0
uvdx + ν

∫ L

0

∂u
∂x

dv
dx

dx +
∫ L

0
u

∂u
∂x

vdx = ν f (t)v(L) , ∀v ∈V . (6.2)

The boundary conditions satisfying the functions v of V are to be specified without
discussing their characteristics for functional regularity.

3) The approximation of the variational problem (VP) is done using Lagrange finite
elements P1.

To achieve this, a regular mesh of constant step h is introduced at interval [0,L],
such that: {

x0 = 0 , xN+1 = L ,
xi+1 = xi + h , i = 0 to N .

(6.3)

In addition, the approximation space Ṽ is defined by:

Ṽ =
{

ṽ : [0,L]→R, ṽ ∈Co([0,1]) , ṽ|[xi,xi+1] ∈ P1 , ṽ(0) = 0
}

, (6.4)

where P1 ([xi,xi+1]) denotes the polynomial space defined on [xi,xi+1], of degree less
than or equal to one.

– What is the dimension of Ṽ?

4) Let ϕi,
(
i = 1 to dimṼ

)
be the basis of Ṽ satisfying ϕi(x j) = δi j.

After expressing approximated variational formulation of solution ũ associated
to the variational problem (VP), show that when choosing:

ṽ(x) = ϕi(x) and ũ(x,t) = ∑
j=1, dimṼ

ũ j(t)ϕ j(x) , (6.5)

the differential system is obtained in time (DS):

Ai jũ
′
j(t)+ Bi jũ j(t)+Ci jkũ j(t)ũk(t) = F̃i(t) ,

∀i ∈ {1, . . . , dimṼ} , ∀t ≥ 0 . (6.6)

where it was stated:

(DS)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũ′j(t) =
d
dt

ũ j(t) , Ai j =
∫ L

0
ϕiϕ j dx ,

Bi j = ν
∫ L

0

dϕi

dx
dϕ j

dx
dx , (6.7)

Ci jk =
∫ L

0
ϕiϕ j

dϕk

dx
dx , F̃i(t) = ν f (t)ϕi(L) . (6.8)
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In addition, the repeated indices summation convention (or Einstein convention)
would have been used where an index repeated in the same monomial is to be
summed over all possible values that this index can take:

XjYj ≡ ∑
j=1, dimṼ

XjYj . (6.9)

– What is the major characteristic of the differential system (DS)?

� Basis Function ϕi Characteristic of a Node Strictly Interior at [0,L]

5) Considering the regularity of the mesh, the generic equation of the system (DS)
associated to any basis function ϕi, characteristic of a node strictly interior at [0,L],
is expressed as:

(DS1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai,i−1 ũ′i−1(t) + Ai,i ũ′i(t) + Ai,i+1 ũ′i+1(t) + . . .

Bi,i−1 ũi−1(t) + Bi,i ũi(t) + Bi,i+1 ũ′i+1(t) + . . .

Ci,i−1,i−1 ũ2
i−1(t) + Ci,i−1,i ũi−1(t)ũi(t) + Ci,i,i−1 ũi(t)ũi−1(t) + . . .

Ci,i,i ũ2
i (t) + Ci,i,i+1 ũi(t)ũi+1(t) + Ci,i+1,i ũi+1(t)ũi(t) + . . .

Ci,i+1,i+1 ũ2
i+1(t) = 0 .

(6.10)

– Using the trapezium rule, calculate the 13 coefficients (Ai j,Bi j,Ci jk) of sys-
tem (DS1) and express the corresponding nodal equation.

– Show that the scheme of centred finite differences associated to the differential
equation of the continuous problem (CP) is found. What is its order?

It is reminded that the trapezium quadrature formula is expressed as:

∫ b

a
ξ (s)ds� (b−a)

2
{ξ (a)+ ξ (b)} .

� Basis Function ϕN+1 Characteristic of the Abscissa Node xN+1 = L

6) The same process is used for the basis function ϕN+1, characteristic of the final
node xN+1. The corresponding equation to the system (DS) is then expressed as:

(DS2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

AN+1,N ũ′N(t) + AN+1,N+1 ũ′N+1(t) + . . .

BN+1,N ũN(t) + BN+1,N+1 ũN+1(t) + . . .

CN+1,N+1,N+1 ũ2
N+1(t) + CN+1,N,N+1 ũN(t)ũN+1(t) + . . .

CN+1,N,N ũ2
N(t) + CN+1,N+1,N ũN(t)ũN+1(t) = ν f (t).

(6.11)
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– Using the trapezium rule, calculate the 8 coefficients (Ai j,Bi j,Ci jk) of equa-
tion (DS2) and express the corresponding nodal equation.

– Show that the scheme of finite differences of the second order is found by
discretising the Neumann boundary condition of the problem (CP).

� Discretisation by Finite Differences in Time

7) Suggest a discretisation by finite differences in time of the differential sys-
tem (DS1)−(DS2).
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6.2 Solution

A.1) Of course, the major characteristic of the Burgers equation of the continu-
ous problem (CP) is its inherent non-linearity to the matching advection-convection

term u
∂u
∂x

.

A number of research works have enabled the exploration of the properties of this
equation as being the particular case of a non-linear hyperbolic partial differential
equation.

The interested reader may consult the work of D. Euvrard [4] for an elemen-
tary presentation intended for mechanics or physics graduate students. The work
of Edwige Godlewski and Pierre-Arnaud Raviart provide further in depth studies
requiring a good command of the basic techniques in functional analysis [6].

A.2) Now, it is proposed to find a variational formulation leading to the application
of the Lagrange finite elements P1 in space.

To achieve this, consider test functions v, defined on [0,L] and having real values.
In other words, test functions v are a function of the only space variable x.

Then, the equation with partial derivatives of the continuous problem (CP) de-
fined in (6.1) is multiplied by v and integrated over the interval [0,L].

∫ L

0

∂u
∂ t

v(x)dx +
∫ L

0
u

∂u
∂x

v(x)dx = ν
∫ L

0

∂ 2u
∂x2 v(x)dx . (6.12)

Now, the second member of (6.12) is integrated by parts and the result is:
∫ L

0

∂u
∂ t

vdx +
∫ L

0
u

∂u
∂x

vdx =−ν
∫ L

0

∂u
∂x

dv
dx

dx . . .

+ ν
[

∂u
∂x

(L,t) · v(L)− ∂u
∂x

(0, t) · v(0)
]

. (6.13)

By using boundary conditions of the problem (CP) when x = L on one hand and by
requiring test functions v to be zero when x = 0 on the other hand, in order to keep
the wholeness of the “in space” information of the formulation of the continuous
problem, the following variational formulation (VP) is obtained:

(VP)

⎡
⎢⎢⎢⎣

Find u belonging to V solution to:∫ L

0

∂u
∂ t

vdx +
∫ L

0
u

∂u
∂x

vdx =−ν
∫ L

0

∂u
∂x

dv
dx

dx + ν f (t) · v(L) ,

∀v/v(0) = 0 .

(6.14)

It would be noticed that the variational formulation in space (VP) is only formal,
insofar as the functional framework V , in which this formulation makes sense, was
completely omitted.



216 6 Finite Elements Applied to Non Linear Problems

For further details, the reader accustomed to the basic techniques of functional
analysis, namely to the Sobolev spaces Hm[0,T ;Lp(R)] may consult the work of
Edwige Godlewski and Pierre Arnaud Raviart [6] mentioned above.

R.3) Estimation of the dimension of approximation space Ṽ is carried out as follows.

The functions belonging to space are exactly defined by the (N + 1) values at
nodes (xi)i=1,N+1 in relation to the mesh (6.3).

It would be noticed that the node at abscissa x0 = 0 does not contribute any degree
of freedom insofar as the value of any function ṽ of Ṽ is zero at this point.

To ascertain that, it is only necessary to proceed to the visualization of such func-
tions. In fact, any function of ṽ the approximation space Ṽ is a pecked line formed
by affine functions per mesh [xi,xi+1] and whose interior nodes xi,(i = 1 to N) con-
stitute the points of continuity between the two adjacent mesh.

That is why, only the values at (N + 1) nodes (x1,x2, . . . ,xN+1) display a degree
of freedom for any function Ṽ of ṽ. Changing of one of these (N + 1) values im-
mediately requires a modification of the given element of into another function ṽ
of Ṽ .

Thus, without any formal demonstration, it is observed that understanding a func-
tion ṽ of Ṽ is equivalent to the data of a vector of RN+1 constituted the (N + 1)
values (ṽ1, . . . , ṽN+1) of any function ṽ of Ṽ .

In other words, the dimension of Ṽ is equal to (N + 1) insofar as this space is
isomorphic at RN+1.

R.4) The approximate variational formulation is obtained by substituting the func-
tions (u,v) of functional space V by their respective approximations (ũ, ṽ) belonging
to space Ṽ .

Thus, the approximate variational formulation ˜(VP) is written as:

(ṼP)

⎡
⎢⎢⎢⎣

Find ũ belonging to Ṽ solution to:

d
dt

∫ L

0
ũṽdx + ν

∫ L

0

∂ ũ
∂x

dṽ
dx

dx +
∫ L

0
ũ

∂ ũ
∂x

ṽdx = ν f (t)ṽ(L) ,

∀ṽ ∈ Ṽ .

(6.15)

Now, a particular case in which functions ṽ are basis functions ϕi of space Ṽ is
examined and the development of the approximate solution ũ is carried out on this
basis:

ṽ(x) = ϕi(x) and ũ(x,t) = ∑
j=1,N+1

ũ j(t)ϕ j(x) . (6.16)

Given that the non-linearity is inherent to the advection-convection term ũ
∂ ũ
∂x

ṽ, it

is necessary to consider the development of approximation ũ (previously proposed
in (6.16)), by introducing two summation indices j and k as follows.
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Then, the approximate variational formulation ˜(VP) defined by (6.15) can then
be rewritten in the form:

ũ′j(t)
∫ L

0
ϕiϕ j dx +

[
ν
∫ L

0

dϕi

dx

dϕ j

dx
dx

]
ũ j(t)+

[∫ L

0
ϕiϕ j

dϕk

dx
dx

]
ũ j(t)ũk(t)

= ν f (t)ϕi(L) , (∀i = 1 to N + 1) , (6.17)

where the convention of repeated indices (6.9) is adopted.

Then, by introducing notations (6.7)–(6.8), the variational approximation (6.17)
produces in time the differential system (DS) defined by:

Ai jũ
′
j(t)+ Bi jũ j(t)+Ci jkũ j(t)ũk(t) = F̃i(t) , (∀i = 1 to N + 1) , ∀t ≥ 0 . (6.18)

Of course, insofar as the Burgers equation of the continuous problem (CP) defined
by (6.1) is non-linear, this characteristic is omnipresent in the variational formula-
tion (6.2) as well as in its approximate form (6.15) and, as a result, in the non-linear
system (DS).

This non-linearity would then require appropriate numerical methods like the
Newton’s method, (cf. [2]) in order to produce an approximation of the differential
system (DS).

R.5) Now, a characteristic basis function ϕi,(i = 1 to N) of a node strictly interior
at the mesh defined by (6.3) is considered.

For each of these basis functions ϕi, insofar as its support consists of the union
of the two intervals [xi−1,xi] and [xi,xi+1] (cf. Fig 6.1), the coefficients of Ai j and Bi j

matrices and those defined by Ci jk (cf. (6.7)–(6.8)) will produce non-zero terms if
and only if the supports of functions ϕ j and ϕk have a non-vacuous intersection with
that of the considered function ϕi.

In order to find the appropriate terms to be considered for the formation of the
differential system (DS), the index i,(i = 1, to N) is fixed.

In this case, concerning the Ai j and Bi j matrices, it immediately comes out that
only basis functions ϕi−1,ϕi and ϕi+1 and can produce a non-zero integration against
the basis function ϕi, (cf. Fig. 6.1).

That is why, only coefficients Ai j,( j = i− 1, i, i + 1) and Bi j,( j = i− 1, i, i + 1)
are to be retained while writing the differential system (DS).

11

1

+−

−

iii

i

xxx

φ
1+iφi

φ

Fig. 6.1 Basis Functions ϕi−1,ϕi and ϕi
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Now, the term Ci jk whose contributions may be subject to a finer analysis is
considered.

Having fixed i,(i = 1 to N) because of the structure of coefficient Ci jk, it is only
necessary to consider the following three values of j as done previously: i− 1, i
and i+ 1.

Thus, the following pairs of indices to be considered are already available:
(i, i−1), (i, i) and (i, i+ 1).

Then, the values of index k are determined for each of these pairs – those likely
to produce non-zero terms in the non-linear system (DS).

Concerning the pair (i, i− 1), only the values of k equal to i− 1 and i are to
be retained. In fact, the value k = i + 1 would lead to a coefficient Ci,i−1,i+1 that
would be zero insofar as the supports of basis function ϕi−1 are separate from that
of function ϕi+1.

Thus, the triplet of indices (i, i−1, i−1) and (i, i−1, i) needs to be considered.

Likewise, the pair (i, i) requires consideration of the following triplet of indices:
(i, i, i−1), (i, i, i) and (i, i, i+ 1).

Finally, pair (i, i+1) is the counterpart of pair (i, i−1) and the following triplets
will be considered: (i, i+ 1, i) and (i, i+ 1, i+ 1).

All coefficients that can produce non-zero terms in the non-linear system (DS)
are grouped below:

Ci,i−1,i−1 , Ci,i−1,i , Ci,i,i−1 , Ci,i,i , Ci,i,i+1 , Ci,i+1,i , Ci,i+1,i+1 . (6.19)

Thus, if coefficients Ai, j, Bi, j and Ci, j,k, just identified as part of the definition of
the generic equation of the non-linear differential system (DS), are retained, the N
equations (DS1) defined by (6.10) are then obtained.

Moreover, it would have been noticed that the second member F̃i(t)≡ ν f (t)ϕi(L)
is identically zero for these basis functions ϕi , (i = 1 to N), given the availability
of the property:

ϕi(L) = ϕi(xN) = 0 , ∀i = 1 to N . (6.20)

At the same time, it will be noticed that all the basis functions ϕi considered here
satisfy the property:

ϕi(x j) = δi j , ∀(i, j) ∈ {1 , . . . ,N + 1} . (6.21)

a) Approximation of coefficients Ai j,( j = i−1, i, i+1) by the trapezium quadrature
formula.

Given the relative fix of the respective supports of basis functions ϕi−1, ϕi and ϕi+1,
the following is obtained:
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Ai,i−1 ≡
∫ L

0
ϕiϕi−1 dx =

∫ xi

xi−1

ϕiϕi−1 dx

� h
2

[ϕi(xi−1)ϕi−1(xi−1)+ ϕi(xi)ϕi−1(xi)] = 0 , (6.22)

where the property (6.21) of basis functions ϕi would have been used.

Likewise,

Ai,i+1 ≡
∫ L

0
ϕiϕi+1 dx =

∫ xi+1

xi

ϕiϕi+1 dx

� h
2

[ϕi(xi)ϕi+1(xi)+ ϕi(xi+1)ϕi+1(xi+1)] = 0 . (6.23)

A classical evaluation of coefficient Ai,i is carried out as follows:

Ai,i =
∫ L

0
ϕ2

i dx =
∫ xi

xi−1

ϕ2
i dx +

∫ xi+1

xi

ϕ2
i dx

� h
2

[1 + 0]+
h
2

[0 + 1] = h . (6.24)

b) Estimation of coefficients Bi j, ( j = i−1, i, i+ 1).

Calculation of the three coefficients Bi j may be performed either by the exact
method or by approximation via the trapezium quadrature formula, insofar as the
latter is exact on the constant functions.

In fact, since functions ϕi are piecewise affine, their derivative is constant per
mesh [xi,xi+1].

Then the following is then obtained:

Bi,i−1 = ν
∫ L

0

dϕi

dx
dϕi−1

dx
dx = ν

∫ xi

xi−1

dϕi

dx
dϕi−1

dx
dx

= νh×
(

1
h

)
×
(
−1

h

)
=−ν

h
. (6.25)

Moreover, the symmetry of Bi j matrix on one hand and the invariance of the mesh
having constant step h on the other hand make it possible to write:

Symmetry Invariant
↓ ↓

Bi,i−1 = Bi−1,i = Bi,i+1 = −ν
h

.
(6.26)
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Finally, calculation of coefficient Bi,i is performed as follows:

Bi,i = ν
∫ L

0

(
dϕi

dx

)2

dx = ν
∫ xi

xi−1

(
dϕi

dx

)2

dx + ν
∫ xi+1

xi

(
dϕi

dx

)2

dx

= νh

[
1
h2 +
(
−1

h

)2
]

=
2ν
h

. (6.27)

c) Estimation of coefficients Ci jk.

Starting with a qualitative observation:

Given that coefficients Ci jk imply the double product ϕi×ϕ j×ϕ ′k the trapezium
quadrature formula applied to the calculation of these coefficients will contain only
terms of the form:

±1
h

ϕi(xl)×ϕ j(xm) .

Moreover, as all the basis functions ϕi satisfy the properties ϕi(x j) = δi j when the
value of index k is fixed (see the analysis above), the only case to be processed for
this value of k corresponds to the one parameterised by i = j.

In other words, coefficientsCi,i,i−1, Ci,i,i and Ci,i,i+1 are relevant in the calculation,
the other four in the collection (6.19) being all identically zero.

In fact, for the other coefficients Ci jk that should be considered when, for exam-
ple, ϕi(xi) is equal to one, ϕi−1(xi) and ϕi+1(xi) would be identically zero.

It then becomes:

Ci,i,i−1 =
∫ L

0
(ϕi)2 · dϕi−1

dx
dx =
∫ xi

xi−1

(ϕi)2 · dϕi−1

dx
dx

�−1
h
×
[

h
2

(1 + 0)
]

=−1
2

. (6.28)

Likewise,

Ci,i,i+1 =
∫ L

0
(ϕi)2 · dϕi+1

dx
dx =
∫ xi+1

xi

(ϕi)2 · dϕi+1

dx
dx ,

� 1
h
×
[

h
2
(1 + 0)
]

=
1
2

(6.29)

Finally, the calculation of coefficient Ci,i,i is performed in the following way:

Ci,i,i =
∫ L

0
(ϕi)2 · dϕi

dx
dx =
∫ xi

xi−1

(ϕi)2 · dϕi

dx
dx +
∫ xi+1

xi

(ϕi)2 · dϕi

dx
dx

� h
2

[
1
h
(1 + 0)
]
+

h
2

[
−1

h
(0 + 1)
]

= 0 . (6.30)
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d) Nodal equation associated with a basis function ϕi, characteristic of a node
xi,(i = 1 to N).

The results obtained from (6.19) to (6.30) are grouped in order to write the corre-
sponding nodal equation (6.18):

hũ′i(t)−
ν
h

[ũi−1(t)+ ũi+1(t)]+
2ν
h

ũi(t)− 1
2

ũi(t)ũi−1(t)+
1
2

ũi(t)ũi+1(t) = 0 .

(6.31)

e) Finite differences scheme in space associated with the viscous Burgers equation.

The nodal equation (6.31) is rewritten in the form:

ũ′i(t)+ ũi(t)
[

ũi+1(t)− ũi−1(t)
2h

]
= ν
[

ũi−1(t)−2ũi(t)+ ũi+1(t)
h2

]
. (6.32)

In this form, it is easy to recognize the second order approximation by finite differ-

ences of the second partial derivative
∂ 2u
∂x2 at point (xi, t):

∂ 2u
∂x2 (xi,t) =

u(xi−1,t)−2u(xi,t)+ u(xi+1,t)
h2 + O(h2) . (6.33)

Moreover, by performing two Taylor’s expansions at point xi, one progressive and
the other regressive to the third order, the following is obtained:

u(xi+1,t) = u(xi,t)+ h
∂u
∂x

u(xi,t)+
h2

2
∂ 2u
∂x2 (xi, t)+ O(h3) , (6.34)

u(xi−1,t) = u(xi,t)−h
∂u
∂x

u(xi,t)+
h2

2
∂ 2u
∂x2 (xi, t)+ O(h3) . (6.35)

Then, the difference between (6.34) and (6.35) results in:

∂u
∂x

(xi,t) =
u(xi+1,t)−u(xi−1,t)

2h
+ O(h2) . (6.36)

Thus, nodal equation (6.32) is nothing but the second-order approximation by finite
differences of the viscous Burgers equation of the continuous problem (CP) defined
by (6.1).

To ascertain that, it is only necessary to replace the finite differences (6.33)
and (6.36) in the Burgers equation of the problem (6.1) to obtain:

∂u
∂ t

(xi,t)+
u(xi+1,t)−u(xi−1,t)

2h
= ν

u(xi−1,t)−2u(xi,t)+ u(xi+1, t)
h2 + O(h2) .

(6.37)

Then, by eliminating the residue O(h2) in (6.37) and moving to the approximations
in order to maintain equality between the two members of the equation, the nodal
equation (6.32) whose approximation is thus of the second order is obtained exactly.
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R.6) In order to obtain the equation (DS2), the approximate variational formula-
tion (6.18) is used again and the particular case of the generic basis function ϕN+1

characteristic of the last node xN+1 in relation to the mesh of the [0,L] interval is
considered.

Moreover, expansion (6.16) of approximation ũ in the canonical basis ϕi,
(i = 1 to N + 1) would have been maintained.

The approximate variational equation (6.18) is then written as:

AN+1, j ũ′j(t)+ BN+1, j ũ j(t)+CN+1, j,k ũ j(t)ũk(t) = F̃N+1(t) , ∀t ≥ 0 , (6.38)

by adopting, as usual, the summation of repeated indices convention (6.9).

From then on, the analysis of the coefficients to be considered in equation (6.38),
that may produce non-zero contribution, is used again.

Given that the basis function ϕN+1 consists of a “half cap” (cf. Fig. 6.2), whose
support is reduced to the [xN ,xN+1] interval, the only values of index j to be consid-
ered are j = N and j = N + 1 corresponding to functions whose supports intercept
that of function ϕN+1.
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Fig. 6.2 Basis Function ϕN+1

In fact, any other value of index j would lead to the consideration of a basis func-
tion ϕ j whose support would have an empty intersection with that of function ϕN+1.

Thus, the coefficients of Ai j and Bi j matrices to be retained for evaluation are:

AN+1,N , AN+1,N+1 , BN+1,N and BN+1,N+1 . (6.39)

Likewise, for those two values of index j, only the values of k corresponding to
k = N and k = N + 1 should be considered for the estimation of non-zero coeffi-
cients Ci jk of equation (6.38) of the non-linear system (DS).

The coefficients Ci jk to be evaluated are thus:

CN+1,N,N , CN+1,N,N+1 , CN+1,N+1,N and CN+1,N+1,N+1 . (6.40)

Finally, it is specified that the second member F̃N+1(t) of equation (6.38) exactly
equals:

F̃N+1(t) = ν f (t)ϕN+1(xN+1) = ν f (t) .
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a) Approximation of coefficients AN+1,N , AN+1,N+1 and BN+1,N+1 by the trapezium
quadrature formula.

The calculation of coefficients AN+1,N and AN+1,N+1 followed by that of BN+1,N

and BN+1,N+1 is performed according to the same logic as presented in the answer
to question 5.

Thus, the following is obtained:

AN+1,N ≡
∫ L

0
ϕNϕN+1 dx =

∫ xN+1

xN

ϕNϕN+1 dx

� h
2

[ϕN(xN)ϕN+1(xN)+ ϕN(xN+1)ϕN+1(xN+1)] = 0 , (6.41)

Likewise:

AN+1,N+1 =
∫ L

0
(ϕN+1)

2 dx =
∫ xN+1

xN

(ϕN+1)2 dx� h
2
[1 + 0] =

h
2

. (6.42)

Then,

BN+1,N = ν
∫ L

0

dϕN+1

dx
dϕN

dx
dx = ν

∫ xN+1

xN

dϕN+1

dx
dϕN

dx
dx

= νh×
(

1
h

)
×
(
−1

h

)
=−ν

h
. (6.43)

Moreover,

BN+1,N+1 = ν
∫ L

0

(
dϕN+1

dx

)2

dx = ν
∫ xN+1

xN

(
dϕN+1

dx

)2

dx

= νh×
(

1
h

)2

=
ν
h

. (6.44)

b) Approximation of coefficients CN+1,N,N , CN+1,N,N+1 , CN+1,N+1,N and
CN+1,N+1,N+1 by the trapezium quadrature formula.

The structural observations, presented in the estimation of coefficients Ci jk of ques-
tion 5 are as valid as in the present case.

That is why only coefficients CN+1,N+1,N and CN+1,N+1,N+1 will be estimated,
the others being trivially zero.

Then the following is obtained:

CN+1,N+1,N =
∫ L

0
(ϕN+1)2 · dϕN

dx
dx =
∫ xN+1

xN

(ϕN+1)2 · dϕN

dx
dx ,

�−1
h

[
h
2
(1 + 0)
]

=−1
2

(6.45)
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Likewise:

CN+1,N+1,N+1 =
∫ L

0
(ϕN+1)2 · dϕN+1

dx
dx =
∫ xN+1

xN

(ϕN+1)2 · dϕN+1

dx
dx ,

� 1
h

[
h
2
(1 + 0)
]

=
1
2

(6.46)

c) Nodal equation associated with the basis function ϕN+1 characteristic of
node xN+1.

The results obtained from (6.41) to (6.46) are once again grouped and the corre-
sponding nodal equation (6.38) is written as:

h
2

ũ′N+1(t)+
ν
h

ũN+1(t)− ν
h

ũN(t)+
1
2

ũ2
N+1(t)−

1
2

ũN(t)ũN+1(t) = ν f (t) , (6.47)

or, after reorganizing the terms, written as follows:

h
2

ũ′N+1(t)+
ν
h

[ũN+1(t)− ũN(t)]+
1
2

ũN+1(t) [ũN+1(t)− ũN(t)] = ν f (t) , (6.48)

d) Finite differences schemes in space associated with the Neumann condition of
the problem (CP).

Now, discretisation by finite differences of the Neumann condition of the continuous
problem (CP) defined by (6.1) is performed:

∂u
∂x

(L,t)≡ ∂u
∂x

(xN+1,t) = 0 , ∀t ≥ 0 . (6.49)

To this end, a regressive Taylor’s expansion at abscissa xN+1, of the solution u to the
problem (CP) is written and assumed to be “sufficiently regular” in the neighbour-
hood of this point.

u(xN ,t) = u(xN+1,t)−h
∂u
∂x

(xN+1,t)+
h2

2
∂ 2u
∂x2 (xN+1, t)+ O(h3) . (6.50)

This last writing displaying the second partial derivative in x at the point (xN+1,t) in
order to evaluate the first partial derivative in x at the same point, looks as if a wrong
direction has been taken. . .

Nevertheless, such an expansion was inevitable in order to obtain an approxi-
mation by finite differences that is of the same order as the one established for the
approximation of the viscous Burgers equation (6.37) i. e. of the second order.

In order to maintain expansion (6.50) while eliminating the second partial deriva-
tive of u at point (xN+1,t), the Burgers equation is written (that represents a strong
hypothesis that should be justified) for this point in order to express the second



6.2 Solution 225

partial derivative x as follows:

∂ 2u
∂x2 (xN+1,t) =

1
ν

[
∂u
∂ t

(xN+1,t)+ u
∂u
∂x

(xN+1, t)
]

. (6.51)

Taylor’s expansion (6.50) is then written as:

u(xN ,t) = u(xN+1,t)+ . . . ,

−h
∂u
∂x

(xN+1,t)+
h2

2ν

[
∂u
∂ t

(xN+1,t)+ u(xN+1,t)
∂u
∂x

(xN+1,t)
]

+ . . . ,

+ O(h3) . (6.52)

Thus, the first order partial derivative in x of the solution u at the point (xN+1,t)
appears at two levels in (6.52).

The first time with a multiple weighting coefficient h, and the second time ac-
cording to a weighting in h2.

Insofar an approximation of the second order (after a division by h) is desired, the
first order partial derivative is replaced by its value (6.49) and an approximation of
the second order is performed for the second first order partial derivative appearing
in the equation (6.52).

The first-order approximation of the partial derivative in x at point (xN+1, t) is
classical and equals:

∂u
∂x

(xN+1,t) =
u(xN+1,t)−u(xN, t)

h
+ O(h) , (6.53)

and from then on, equation (6.52) may be written as:

u(xN ,t) = u(xN+1,t)−h f (t)+ . . . ,

+
h2

2ν

[
∂u
∂ t

(xN+1,t)+ u(xN+1,t)
(

u(xN+1,t)−u(xN, t)
h

+ O(h)
)]

+ . . . ,

+ O(h3) . (6.54)

Now, the approximations are performed:

ũN(t) = ũN+1(t)−h f (t)+
h2

2ν

[
ũ′N+1(t)+ ũN+1(t)

(
ũN+1(t)− ũN(t)

h

)]
. (6.55)

Then, equation (6.55) is rearranged to give it the following form:

h
2

ũ′N+1(t)+
ν
h

[ũN+1(t)− ũN(t)]+
1
2

ũN+1(t) [ũN+1(t)− ũN(t)] = ν f (t) , (6.56)

that leads exactly to nodal equation (6.48).



226 6 Finite Elements Applied to Non Linear Problems

A.7) The differential system (DS1)−(DS2) being of the first order in time and to
obtain an approximation by finite differences that is unconditionally stable, it is
only necessary to apply a finite differences scheme of the family of θ -scheme for
values of θ more than or equal to 1/2 (cf. D. Euvrard, [4]).

To achieve this, a time step k ≡ Δ t and the discrete time sequences t(n) are con-
sidered, the latter being defined by: t(n) = kn.

Moreover, the approximation sequences ū(n)
i introduced is defined by:

ū(n)
i � ũi(t(n))� u(xi,t

(n)) , (6.57)

where the sequences ũi(t(n)) is the solution to the differential system (DS1)−(DS2).

Equations (6.31) and (6.48), at time t(n), can formally be written in the form:

ũ′i(t
(n)) = Φ̃i(t(n)) , ∀i = 1 to N + 1 . (6.58)

where function ϕ̃ is defined by:

Φ̃i(t(n)) =− ũi(t(n))

[
ũi+1(t(n))− ũi−1(t(n))

2h

]
+ . . . ,

+ ν

[
ũi−1(t(n))−2ũi(t(n))+ ũi+1(t(n))

h2

]
, ∀i �= N + 1 . (6.59)

Φ̃N+1(t(n)) =
2ν
h

f (t(n))+ . . .

− 2ν
h2

[
ũN+1(t(n))− ũN(t(n))

]
− ũN+1

h

[
ũN+1(t(n))− ũN(t(n))

]
.

(6.60)

Then a θ -scheme is applied to functional equation (6.58) in the following way:

ū(n+1)
i = ū(n)

i + k
[
θΦ̄(t(n+1))+ (1−θ )Φ̄(t(n))

]
, (6.61)

where approximation Φ̄ follows the same definition Φ̃ as that of (6.59)–(6.60), pro-

vided that quantities ũi(t(n)) are replaced by new approximations ū(n)
i :

Φ̄i(t(n)) =−ū(n)
i

[
ū(n)

i+1− ū(n)
i−1

2h

]
+ ν

[
ū(n)

i−1−2ū(n)
i + ū(n)

i+1

h2

]
, ∀i �= N + 1 ,

(6.62)

Φ̄N+1(t(n)) =
2ν
h

f (t(n))− 2ν
h2

[
ū(n)

N+1− ū(n)
N

]
− ūN+1

h

[
ū(n)

N+1− ū(n)
N

]
. (6.63)
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� Remark

Approximation scheme (6.61)–(6.63) is the result of a mixed “finite elements P1
in space – finite differences in time” approximation.

Given that the mesh in space (6.3) of the interval [0,L] is produced according to
a constant step having discretisation h, it has been proved that nodal equations (6.32)
and (6.47) associated with each of the basis functions ϕi,(i = 1 to N + 1) coincide
with a discretisation in space by finite differences.

In other words, in this particular case of a uniform mesh in space, the global
approximation system (6.61)–(6.63) is exactly that of a finite differences scheme
according to the ordered pair (x,t).

From then on, it is justified to consider the stability of such a numerical scheme
according to usual methods applied to evolution equations and solved by finite dif-
ferences.

But, as presented at the beginning of this question, the choice of a discretisation
in time by a θ -scheme is justified to precisely guarantee the stability of the method
obtained.

It is then only necessary to consider the values of parameter θ that guarantee the

stability scheme (6.61)–(6.63) namely θ ≥ 1
2

.

Moreover, it will be noticed that, apart from the particular value θ =
1
2

, the

scheme is of the first order in time and of the second order in space.

Finally, when θ =
1
2

, the θ -scheme coincides with that of Crank-Nicholson

(cf. D. Euvrard, [4]) and the approximation of system (6.61)–(6.63) is of the second
order in time and in space.
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6.3 Non-Linear Integro-Differential Equation

6.3.1 Statement

The aim of this problem is to apply the finite elements method in the case of a second
order non-linear integro-differential equation.

More precisely, the interest is on the solutions to the following continuous prob-
lem (CP):

To find u ∈ H2(0,1) solution to:

(CP)

⎧⎨
⎩
−u′′(x)+ u(x)

∫ 1

0
u(t)dt = f (x) , 0≤ x≤ 1 ,

u(0) = 0 , u′(1) = α ,

(6.64)

where f is a given function belonging to L2(0,1) and α a given parameter.

It is reminded that Sobolev space H2(0,1) is defined by:

H2(0,1) =
{

v : [0,1]→ R ,v(k) ∈ L2(0,1) , k = 0 to 2
}

.

1) Prove that if u belongs to H2(0,1), then the integral bearing on u in the continuous
problem (CP) is convergent.

� Variational Formulation

2) Let v be a test function defined on [0,1], having real values, belonging to a vari-
ational space V . Show that the continuous problem (CP) may be written in a varia-
tional formulation (VP) as:

a(u,v) = L(v) , ∀v ∈V .

non-linear form a(., .), linear form L(.) and functional space V has to be specified.

� Lagrange Finite Elements P1

3) Approximation of the variational problem (VP) is carried out using Lagrange
finite elements P1. To achieve this, a regular mesh of [0,1] interval with a constant
step h is introduced, such that:{

x0 = 0 , xN+1 = 1 ,
xi+1 = xi + h , i = 0 to N .

(6.65)

The approximation space Ṽ is now defined using:

Ṽ =
{

ṽ : [0,1]→R , ṽ ∈Co([0,1]) , ṽ|[xi,xi+1] ∈ P1([xi,xi+1]) , ṽ(0) = 0
}

, (6.66)

where P1([xi,xi+1]) refers to the space of polynomials defined over [xi,xi+1], having
a degree less than or equal to one.

– What is the dimension of Ṽ?
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� Approximate Variational Formulation

4) Let ϕi,(i = 1 to dimṼ ) be the canonical basis of Ṽ verifying ϕi(x j) = δi j.

After having written the approximate variational formulation ˜(VP), having solu-
tion ũ and associated with the variational problem (VP), show that by choosing:

ṽ(x) = ϕi(x) , (i = 1 to dimṼ ) and ũ(x) = ∑
j=1, dimṼ

ũ jϕ j , (6.67)

the following ˜(VP) system is obtained:

dimṼ

∑
j=1

Ai jũ j +
dimṼ

∑
j=1

dimṼ

∑
k=1

Bi jkũ jũk = Ci ,(∀i = 1 to dimṼ ) , (6.68)

where it was stated:
˜(VP)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai j =
∫ 1

0
ϕ ′i ϕ ′j dx , Bi jk =

(∫ 1

0
ϕiϕ j dx

)
·
(∫ 1

0
ϕk dx

)
, (6.69)

Ci =
∫ 1

0
f ϕi dx + αϕi(1) . (6.70)

5) Using the trapezium quadrature formula, show that Bi jk may be estimated as:

Bi jk �
∣∣∣∣∣
hDi j , ∀k = 1 to N ,
h
2

Di j , if k = N + 1 ,
(6.71)

where: Di j =
∫ 1

0
ϕiϕ j dx .

– Infer from this that the approximate variational formulation ˜(VP) is written as:

˜(VP)
dimṼ

∑
j=1

Ai jũ j + h

[
ũN+1

2
+

N

∑
k=1

ũk

]
·
[

dimṼ

∑
j=1

Di jũ j

]
= Ci . (6.72)

� Characteristic Basis Function ϕi of a Node Interior at [0,1]

Given the regularity of the mesh, the generic nodal equation of system ˜(VP) associ-
ated with any characteristic basis function ϕi,(i = 1 to dimṼ −1) of a node interior
at [0,1] is written as:

˜(VPInt)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀i = 1 to dim Ṽ −1:

Ai,i−1ũi−1 + Ai,iũi + Ai,i+1ũi+1 + . . .

h

[
ũN+1

2
+

N

∑
k=1

ũk

]
· [Di,i−1ũi−1 + Di,iũi + Di,i+1ũi+1] = Ci .

(6.73)

– Using the trapezium formula, calculate the 7 coefficients (Ai j,Di j,Ci).
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6) Group the results by writing the corresponding nodal equation.

7) Show that the centred finite differences scheme associated with the differential
equation of the continuous problem (CP) is obtained again. What is its order of
precision?

It is pointed out that the composed trapezium quadrature formula is written as:

∫ b

a
ξ (s)ds� h

2

[
ξ (a)+ ξ (b)+ 2

N

∑
i=1

ξ (xi)

]
.

� Characteristic Basis Function ϕN+1 of the Node at Abscissa xN+1

8) The same procedure is followed for the basis function ϕN+1 characterising the
final node xN+1.

The corresponding equation of system ˜(VP) is then written as:

˜(VP)N+1

⎧⎪⎪⎨
⎪⎪⎩

AN+1,NũN + AN+1,N+1ũN+1 + . . .

h

[
ũN+1

2
+

N

∑
k=1

ũk

]
· [DN+1,NũN + DN+1,N+1ũN+1] = CN+1 .

(6.74)

– Using the trapezium formula, calculate the 5 coefficients AN+1,N , AN+1,N+1,
DN+1,N , DN+1,N+1 and CN+1.

9) Group the results by writing the corresponding nodal equation.

10) Using the finite differences method, find again this nodal equation by carrying
a second order discretisation of the Neumann boundary conditions of continuous
problem (CP) when xN+1 = 1.
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6.3.2 Solution

A.1) The integro-differential equation of continuous problem (CP) presents a non-

linearity inherent to the matching term between u and the integral
∫ 1

0
u(x)dx .

It is then noticed that the convergence of this integral is provided by the func-
tional space in which the continuous problem is set, i. e. H2(0,1).

In fact, using the Cauchy-Schwartz inequality, the following is obtained:

∣∣∣∣
∫ 1

0
1 ·u(x)dx

∣∣∣∣≤
[∫ 1

0
|1|2 dx

]1/2

·
[∫ 1

0
|u(x)|2 dx

]1/2

≤
[∫ 1

0
|u(x)|2 dx

]1/2

. (6.75)

In other words, if solution u of continuous problem (CP) is searched for in the
Sobolev space H2(0,1), u de facto belongs to L2(0,1) and subsequently to L1(0,1)
according to inequality (6.75).

A.2) Let v be a test function defined on [0,1] and having real values. The integro-
differential equation of continuous problem (CP) is multiplied by v and the obtained
equation is integrated between 0 and 1.

−
∫ 1

0
u′′vdx +

∫ 1

0

(∫ 1

0
u(s)ds

)
uvdx =

∫ 1

0
f vdx . (6.76)

As usual, once the variational formulation is definitely established, the functional
space V will be specified.

Moreover, an integration by parts using the Neumann condition u′(1) = α en-
ables the writing of:

∫ 1

0

[
u′v′+
(∫ 1

0
u(s)ds

)
uv

]
dx + u′(0)v(0) =

∫ 1

0
f vdx + αv(1) . (6.77)

Given that this formulation does not allow the homogenous Dirichlet problem u(0)=
0 to be taken into account, functions v are made to satisfy: v(0) = 0.

The variational problem (VP) is thus written as:

(VP)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find u belonging to V solution of: a(u,v) = L(v) , ∀v ∈V , where:

a(u,v)≡
∫ 1

0

[
u′(x)v′(x)+

(∫ 1

0
u(s)ds

)
u(x)v(x)

]
dx ,

L(v)≡
∫ 1

0
f (x)v(x)dx + αv(1) .

(6.78)

The functional framework V in which a variational formulation (VP) makes sense
is now defined.
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Concerning the integrals bearing on u′v′, on one hand, and on f v, on the other
hand, it was often observed that (cf. Dirichlet [3.1] or Neumann [3.2] problems),
the Cauchy-Schwartz inequality enabled the existence of these two integrals to be
guaranteed.

As for the integral bearing on the non-linear term, it is only necessary to note
that:∫ 1

0

[(∫ 1

0
u(s)ds

)
u(x)v(x)

]
dx =
(∫ 1

0
u(s)ds

)
·
(∫ 1

0
u(x)v(x)dx

)
. (6.79)

Once again, the convergence of the integral is then ensured by the Cauchy-Schwartz
inequality applied to the integral bearing on uv.

Thus, functional space V that allows giving a sense to variational formula-
tion (VP) is defined by:

V ≡ H1(0,1)∩{v : [0,1]→ R , v(0) = 0} . (6.80)

A.3) The dimension of approximation space Ṽ may be found out through several
means. The simplest way consists in noting that functions ṽ of Ṽ are essentially
pecked lines, in fact, affine per entire mesh [xi,xi+1] and are zero when x = 0.

Therefore, having (N + 2) discretisation points for the whole mesh of the [0,1]
interval, two functions of Ṽ distinguish themselves by the difference in their values
that may be observed at (N +1) points (x1, . . . ,xN+1) and, in addition, any function ṽ
of V should satisfy ṽ0 = 0.

In other words, a function ṽ belonging to Ṽ is completely determined by the
(N + 1)-tuple (ṽ1, . . . , ṽN+1).

This implies that space is Ṽ isomorphic at RN+1. In conclusion, it is inferred
from this that the dimension of Ṽ is equal to (N + 1).

A.4) The approximate variational formulation ˜(VP) is obtained by substituting ap-
proximate functions ũ and ṽ by functions u and v in the variational formulation (VP).

Moreover, the expressions given by (6.67) are used and the following is obtained:

˜(VP)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Find (ũ j)( j = 1 to N + 1) , solution to:

∑
j=1,N+1

[∫ 1

0

{
ϕ ′jϕ

′
i (x)+

(
∑

k=1,N+1

∫ 1

0
ũkϕk(s)ds

)
ϕ j(x)ϕi(x)

}
dx

]
ũ j

=
∫ 1

0
f (x)ϕi(x)dx + αϕi(1) .

(6.81)

It is then only necessary to observe that the integral bearing on ũkϕk(s) is indepen-
dent of the variable x of the main integral in expression (6.81).

By identification, expressions (6.69) and (6.70) are then obtained.
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A.5) In order to estimate the quantities Bi jk by approximation, the trapezium quadra-
ture formula is used to approximate the integral bearing on function ϕk:⎡
⎢⎢⎢⎢⎢⎣

∀k = 1 to N :∫ 1

0
ϕk(s)ds =

∫ xk+1

xk−1

ϕk(s)ds =
∫ xk

xk−1

ϕk(s)ds+
∫ xk+1

xk

ϕk(s)ds ,

� h
2
[1 + 0]+

h
2
[0 + 1] = h .

(6.82)

The case of basis function ϕN+1 should be treated separately because its support is
solely constituted by the [xN ,xN+1] interval (cf. Fig. 6.3).
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Fig. 6.3 Basis Function ϕN+1

The following is then inferred:
∫ 1

0
ϕN+1(s)ds =

∫ xN+1

xN

ϕN+1(s)ds� h
2
[1 + 0] =

h
2

. (6.83)

The evaluations of equations (6.82)–(6.83) are then injected in the generic equation
of the approximate variational problem (6.81) and equation (6.72) is obtained.

A.6) The basis functions ϕi,(i = 1 to N) characterising the nodes of the mesh strictly
interior at the [0,1] integration interval are now considered.

The generic equation of system (6.81) contains terms that are, a priori, non-zero
and that only correspond to functions ϕ j whose support intercepts that of a given
function ϕi, (cf. Fig. 6.4).
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Fig. 6.4 Basis Functions ϕi−1, ϕi and ϕi+1

In other words, basis functions ϕi−1, ϕi and ϕi+1 are those concerned.

That is why equation (ṼPInt) contains only terms Ai,i−1, Ai,i and Ai,i+1 on one
hand and Di,i−1, Di,i and Di,i+1, on the other hand.
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� Exact calculation of coefficients Aij, j = i−1, i, i+ 1

a) Calculation of coefficient Aii.

Aii =
∫ 1

0
(ϕ ′i )

2 dx =
∫

Supp ϕ ′i
(ϕ ′i )

2 dx =
∫ xi

xi−1

(ϕ ′i )
2 dx +
∫ xi+1

xi

(ϕ ′i )
2 dx . (6.84)

Since basis functions ϕi of Ṽ are piecewise affine, derivatives ϕi are constant on
every mesh having the form [xi,xi+1].

Then, what may be done is either evaluating every integral of equation (6.84) or
applying the trapezium quadrature formula that is exact for the constant functions:

Aii = h×
(

1
h

)2

+ h×
(
−1

h

)2

=
2
h

. (6.85)

b) Calculation of coefficient Ai,i−1.

Ai,i−1 =
∫ 1

0
ϕ ′i ϕ

′
i−1 dx =

∫
Supp ϕi ∩ Supp ϕ ′i−1

ϕ ′i ϕ
′
i−1 dx =

∫ xi

xi−1

ϕ ′i ϕ
′
i−1 dx

= h×
(

1
h

)
×
(
−1

h

)
=−1

h
. (6.86)

c) Calculation of coefficient Ai,i+1.

Ai,i+1 is obtained directly because it is only necessary to note that:

Ai,i+1 = Ai+1,i = Ai,i−1 . (6.87)

To achieve this, the symmetry of Matrix Ai, j as well as the invariance by horizontal
translation along the mesh would have been used as a result of the uniformity of its
discretisation.

� Approximate Calculation of Coefficients Dij, j = i−1, i, i+ 1

a) Calculation of coefficient Dii.

Dii =
∫ 1

0
ϕ2

i dx =
∫

Supp ϕi

ϕ2
i dx =

∫ xi

xi−1

ϕ2
i dx +

∫ xi+1

xi

ϕ2
i dx

� h
2
(0 + 1)+

h
2
(1 + 0) = h . (6.88)
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b) Calculation of coefficient Di,i−1.

Di,i−1 =
∫ 1

0
ϕiϕi−1 dx =

∫
Supp ϕi ∩ Supp ϕi−1

ϕiϕi−1 dx =
∫ xi

xi−1

ϕiϕi−1 dx

� h
2
(0×1 + 1×0)= 0 . (6.89)

c) Calculation of coefficient Di,i+1.

Because of symmetry reasons similar to those brought up for the calculation of
coefficients Ai,i+1, the following is obtained:

Di,i+1 = Di+1,i = Di,i−1 ≡ 0 . (6.90)

� Calculation of the second member Ci

Given the following basis functions property: ∀i = 1 to N : ϕi(1) = 0, the second
member Ci is estimated in the following way:

Ci =
∫ 1

0
f ϕi dx =

∫ xi

xi−1

f ϕi dx +
∫ xi+1

xi

f ϕi dx

� h
2

[0 + fi]+
h
2

[ fi + 0]

Ci � h fi . (6.91)

A.7) The nodal equation associated with a basis function ϕi,(i = 1 to N) is obtained
by grouping all the results of the previous question:

∀i = 1 ,N : −
[

ũi−1−2ũi + ũi+1

h2

]
+ h

[
ũN+1

2
+

N

∑
k=1

ũk

]
· ũi = fi . (6.92)

A.8) Now, it is proposed to find again nodal equation (6.92) associated with any
basis function ϕi ,(i = 1 to N) by applying the finite différences method.

To achieve this, it is advisable to write the integro-differential equation of contin-
uous problem (CP) at point xi, then to proceed to the approximation of the second
derivative of u on one hand and the approximation of the integral of solution u on
the interval [0,1] on the other hand.

Concerning the second derivative, Taylor’s formula is simultaneously used pro-
gressively and regressively and this gives:

u(xi+1) = u(xi)+ hu′(xi)+
h2

2
u′′(xi)+

h3

3!
u3(xi)+ O(h4) , (6.93)

u(xi−1) = u(xi)−hu′(xi)+
h2

2
u′′(xi)− h3

3!
u3(xi)+ O(h4) . (6.94)
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Then, the sum between (6.93) and (6.94) gives:

u′′(xi) =
u(xi−1)−2u(xi)+ u(xi+1)

h2 + O(h2) . (6.95)

Concerning the integral of u between 0 and 1, the composed trapezium quadrature
formula is used, by noting that solution u verifies the homogenous Dirichlet condi-
tion when x = 0:

∫ 1

0
u(s)ds =

h
2

[
u(xN+1)+ 2

N

∑
i=1

u(xi)

]
+ O(h2) . (6.96)

Then, the integro-differential equation of continuous problem (CP) at point xi is

written, u′′(xi) by substituting by (6.95) and
∫ 1

0
u(s)ds by (6.96) to give:

−
[

u(xi−1)−2u(xi)+ u(xi+1)
h2

]
+ u(xi) · h2

[
u(xN+1)+ 2

N

∑
i=1

u(xi)

]

= f (xi)+ O(h2) . (6.97)

The next step consists in writing the finite differences scheme by substituting the
approximation series ũi by the real values u(xi).

This operation enables one to eliminate the residue of the second order O(h2) in
equation (6.97) and exactly yields nodal equation (6.92) which was found by the
finite elements method.

Moreover, finite differences scheme (6.92) is of the second order as a result of
the elimination of the term in O(h2).

� A general observation.

As usual, for the use of Taylor’s formula in such a context, it will be noticed that
more regularity was assumed for solution u of continuous problem (CP), (assum-
ing in the present case that u is at least C4 over ]0,1[ so that the writing of Taylor’s
formula up to fourth-order would be possible), although it seems that, initially at
least, the latter is rather C2 over ]0,1[.

In fact, although it may be possible in some cases to establish that solution u
possesses more regularity than it seems to have, the majority of cases need to be
explained because the regularity of solution u depends on one hand on the regu-
larity of the second member and on the regularity inherent to the structure of the
differential operator on the other hand.

How then can the free choice of the appropriate regularity for solution u of the
continuous problem be explained in order to write a Taylor’s formula, that may
concern a majority of differential equations which do not permit such a choice?
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The solution is not totally mind-satisfying, however, mastery over the compro-
mise is often what is needed in matters concerning numerical analysis (like in
many other fields, be it scientific or not!): The Taylor’s expansions that have been
written are valid only for the category of differential equations presenting “suffi-
ciently regular” solutions.

To such a point that when a differential equation presents a solution whose reg-
ularity may be proved to be different from the one required by Taylor’s formula,
such a writing is knowingly maintained given that what is ultimately necessary is
to build a sequence of probable approximations that tends to the exact solution of
the problem.

Thus, having assumed that there is certainly as much regularity as possible, an
approximation of the differential operator may be then proposed by an algebraic
procedure that would provide an approximation of a certain standard.
This standard known as the order of the finite differences scheme in the jargon of
numerical analysis finally enables the measurement and appreciation of the per-
formances of various finite differences schemes having equal data and sufficiency
of regularity of solutions to differential equations.

� Characteristic Basis Function ϕN+1 of the Node at Abscissa xN+1

A.9) The equation of system ˜(VP) defined by (6.72) for the particular basis func-
tion ϕN+1, is now written and leads to equation (6.74).

The 5 coefficients of this nodal equation are evaluated in the same way as for the
calculations presented in the previous question.

� Exact Calculation of Coefficients AN+1,N+1 and AN+1,N

a) Calculation of coefficient AN+1,N+1.

AN+1,N+1 =
∫ 1

0
(ϕ ′N+1)

2 dx =
∫

Supp ϕ ′N+1

(ϕ ′N+1)
2 dx =

∫ xN+1

xN

(ϕ ′N+1)
2 dx

= h×
(

1
h

)2

=
1
h

. (6.98)

b) Calculation of coefficient AN+1,N.

AN+1,N =
∫ 1

0
ϕ ′N+1ϕ ′N dx =

∫
Supp ϕ ′N+1∩ Supp ϕ ′N

ϕ ′N+1ϕ ′N dx

=
∫ xN+1

xN

ϕ ′N+1ϕ ′N dx = h×
(

1
h

)
×
(
−1

h

)
=−1

h
. (6.99)
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� Approximate Calculation of Coefficients DN+1,N+1 and DN+1,N

a) Calculation of coefficient DN+1,N+1.

DN+1,N+1 =
∫ 1

0
ϕ2

N+1 dx =
∫

Supp ϕN+1

ϕ2
N+1 dx =

∫ xN+1

xN

ϕ2
N+1 dx

� h
2
(0 + 1) =

h
2

. (6.100)

b) Calculation of coefficient DN+1,N.

DN+1,N =
∫ 1

0
ϕN+1ϕN dx =

∫
Supp ϕN+1 ∩ Supp ϕN

ϕN+1ϕN dx

=
∫ xN+1

xN

ϕN+1ϕN dx � h
2
(0×1 + 1×0)= 0 . (6.101)

� Calculation of the Second Member CN+1

CN+1 =
∫ 1

0
f ϕN+1 dx =

∫ xN+1

xN

f ϕN+1 dx + α ,

� h
2

[0 + fN+1]+ α ,

CN+1 � h
2

fN+1 + α . (6.102)

A.10) Then, all the results of the previous question are grouped and the nodal equa-
tion corresponding to the basis function ϕN+1 is built up:

−1
h

ũN +
1
h

ũN+1 + h

[
ũN+1

2
+

N

∑
k=1

ũk

]
· h

2
ũN+1 =

h
2

fN+1 + α . (6.103)

By rearranging the terms of (6.103), the latter may be written in the form:

2
h3 [ũN+1− ũN ]+

ũ2
N+1

2
+ ũN+1

N

∑
k=1

ũk =
fN+1

h
+

2α
h2 . (6.104)

A.11) The discretisation of the Neumann condition u′(1) = α using finite differ-
ences is now carried out.

To achieve this, a third-order regressive Taylor’s expansion is performed in order
to globally maintain a second-order method for the approximation of the continuous
problem (CP) using the finite differences method.

u(xN) = u(xN+1)−hu′(xN+1)+
h2

2
u′′(xN+1)+ O(h3) . (6.105)
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Moreover, it is assumed that the integro-differential equation may be written in x = 1
and once again, this presupposes properties of regularity of solution u of the contin-
uous problem (CP).

Thus, the second derivative u at abscissa xN+1 may be replaced according to the
values of u taken at the other nodes of the mesh.

u(xN) = u(xN+1)−αh +
h2

2

[
u(xN+1)

∫ 1

0
u(s)ds− f (xN+1)

]
+ O(h3) , (6.106)

where it has been set that:

fN+1 = f (xN+1) .

Then, after the use of composed trapezium quadrature formula, finally gives:

u(xN) = u(xN+1)−αh− h2

2
f (xN+1)+

h3

2
u(xN+1)

[
u(xN+1)

2
+

N

∑
k=1

ũk

]
+ O(h3) .

(6.107)

Finally, equation (6.107) is multiplied by 2/h3 and its various terms are rearranged
in order to exactly find nodal equation (6.104).
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6.4 Riccati Differential Equation

6.4.1 Statement

This problem is dedicated to the numerical resolution of the Riccati non-linear dif-
ferential equation using the method of finite elements P1.

In other words, the interest is on the scalar function u of variable x, being solution
to the continuous problem (CP):

Find u ∈ H1(0,1) as solution to:

(CP)
{

u′(x)+ u2(x) = f (x) 0≤ x≤ 1 ,

u(0) = 0 ,
(6.108)

where f is a given function belonging to L2(0,1).

1) Let v be a test function defined by [0,1], having real values and belonging to vari-
ational space V . Show that the continuous problem (CP) may be written in a varia-
tional formulation (VP) to be given later.

– What are the properties to be verified by functions v belonging to V?

� Lagrange Finite Elements P1

2) Approximation of variational problem (VP) is carried out using Lagrange finite
elements P1. To achieve this, a regular mesh of the [0,1] interval with a constant
step h is introduced, such that:{

x0 = 0 , xN+1 = 1 ,
xi+1 = xi + h , i = 0 to N .

(6.109)

The approximation space Ṽ is now defined using:

Ṽ = {ṽ : [0,1]→R , ṽ ∈Co([0,1]) , ṽ|[xi,xi+1] ∈ P1([xi,xi+1]) , ṽ(0) = 0} , (6.110)

where P1([xi,xi+1]) refers to the space of polynomials defined on [xi,xi+1], having
a degree less than or equal to one.

– What is the dimension of Ṽ?

3) Let ϕi,(i = 1 to dimṼ ) be the basis of Ṽ verifying ϕi(x j) = δi j.

After writing the approximate variational formulation of solution ũ associated
with problem (VP), show that by choosing:

ṽ(x) = ϕi(x) and ũ(x) = ∑
j=1, dimṼ

ũ jϕ j , (6.111)
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the following ˜(VP) system is obtained:

∑
j=1, dimṼ

Ai jũ j + ∑
( j,k)∈{1,...dimṼ}

Bi jkũ jũk = Ci , (6.112)

∀i ∈ {1, . . . ,Ṽ} , where it was stated:
˜(VP)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai j =
∫ 1

0
ϕiϕ ′j dx , Bi jk =

∫ 1

0
ϕiϕ jϕk dx

Ci =
∫ 1

0
f ϕi dx . (6.113)

– What is the characteristic of the ˜(VP) system?

� Characteristic Basis Function ϕϕϕ i of a Node Strictly Interior
at [0,1]

4) Given the regularity of the mesh, the generic nodal equation of system ˜(VP)
associated with any characteristic basis function ϕi of a node strictly interior at [0,1]

is written as ˜(VPInt):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∀i = 1 to dim Ṽ −1:

Ai,i−1 ũi−1 + Ai,i ũi + Ai,i+1 ũi+1 + . . .

(Bi,i−1,i + Bi,i,i−1) ũiũi−1 + Bi,i−1,i−1 ũ2
i−1 + Bi,i,i ũ2

i + . . .

(Bi,i,i+1 + Bi,i+1,i) ũiũi+1 + Bi,i+1,i+1 ũ2
i+1 = Ci .

(6.114)

– Using the trapezium formula, calculate the 11 coefficients (Ai, j, Bi, j,k, Ci).

5) Group the results by writing the corresponding nodal equation.

6) Show that the centred finite differences scheme associated with the Riccati dif-
ferential equation of problem (CP) is obtained again. What is its order of precision?

Remember that the trapezium quadrature formula is written as:
∫ b

a
ξ (s)ds� (b−a)

2
{ξ (a)+ ξ (b)} .

� Characteristic Basis Function ϕN+1 of the Node at Abscissa xN+1

7) The same procedure is followed for the basis function ϕN+1 characterising the
final node xN+1.

The corresponding equation of system ˜(VP) is then written as:

˜(VPExt)

{
AN+1,N ũN + AN+1,N+1 ũN+1 + BN+1,N,N ũ2

N + . . .

(BN+1,N,N+1 + BN+1,N+1,N) ũNũN+1 + BN+1,N+1,N+1 ũ2
N+1 = CN+1 .

(6.115)
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– Using the trapezium formula, calculate the 7 coefficients (Ai, j, Bi, j,k, Ci) of equa-

tion ˜(VPExt).

8) Group the results by writing the corresponding nodal equation.

9) Show that the nodal equation ˜(VPExt) may be obtained again by using the fi-
nite differences method. What is the order of approximation of the scheme thus
obtained?
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6.4.2 Solution

� Theoretical Part

A.1) Let v be a defined function of the [0,1] interval, having real values and be-
longing to a variational space V . The characterization of V will be worked out,
a posteriori, once the variational formulation is formally established.

The Riccati differential equation of continuous problem (CP) (6.108) is multi-
plied by v and the equation thus obtained is integrated between 0 and 1.

A variational formulation (VP) may thus be written as:

Find u ∈V solution to:
∫ 1

0
u′(x)v(x)dx +

∫ 1

0
u2(x)v(x)dx =

∫ 1

0
f (x) · v(x)dx , ∀v ∈V . (6.116)

Before specifying the nature of space V , note that given the structure of the two
integrands u′v and u2v, no integration by parts would lead to the achievement of
a more exploitable variational formulation.

That is why variational equation (6.116) will be maintained throughout the rest
of this exercise.

The regularity of functions v of V is now dealt with in order to establish sufficient
conditions for the existence of the integrals of equation (6.116).

The first integral of equation (6.116) is controlled by applying the Cauchy-
Schwartz inequality as below:∣∣∣∣

∫ 1

0
u′(x)v(x)dx

∣∣∣∣≤
∫ 1

0
|u′(x)v(x)|dx

≤
[∫ 1

0
|u′(x)|2 dx

]1/2

·
[∫ 1

0
|v(x)|2 dx

]1/2

. (6.117)

Thus, should u′ and v be two functions for which the regularity of the functions

of L2(0,1) is set, then integral
∫ 1

0
u′(x)v(x)dx is convergent.

As for the second integral, the procedure is as follows:∣∣∣∣
∫ 1

0
u2(x)v(x)dx

∣∣∣∣≤
∫ 1

0
|u2(x)v(x)|dx≤C

∫ 1

0
|v(x)|dx

≤C

[∫ 1

0
|v(x)|2 dx

]1/2

, (6.118)

where it would be stated:

C = max
x∈[0,1]

[
u2(x)
]

.
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In other words, considering u and v as describing space H1(0,1), on one hand, will
lead to the continuous Sobolev injection:

H1(0,1)⊆C0([0,1]) , (6.119)

which enables the justification of the introduction of finite constant C as the maxi-
mum of function u2.

On the other hand, integral
∫ 1

0
u′(x)v(x)dx will consequently be convergent.

Finally, in order to maintain the whole information existing in the formulation
of continuous problem (CP) i. e. the Dirichlet boundary conditions u(0) = 0, func-
tions v of V are made to satisfy the same boundary conditions (v(0) = 0) so that
solution u of variational problem (VP) maintains this property of homogeneity
when x = 0 as one of the particular functions v of V .

The following is thus stated:

V ≡ H1
0 (0,1) = H1(0,1)∩{v/v(0) = 0} .

� Lagrange Finite Elements P1

A.2) There are several ways to find the dimension of approximation space Ṽ . The
simplest way consists in noting that functions ṽ of Ṽ are essentially pecked lines, in
fact, affine per entire mesh [xi,xi+1] and are zero when x = 0.

Therefore, having (N + 2) discretisation points for the whole mesh of the inter-
val [0,1], two functions of Ṽ distinguish themselves by the difference in their values
that may be observed at (N +1) points (x1, . . . ,xN+1) and in addition, any function ṽ
of V should satisfy ṽ0 = 0.

In other words, function ṽ belonging to Ṽ is entirely determined by (N +1)-tuple
(ṽ1, . . . , ṽN+1), the trace of its values at the nodes of discretisation (x1, . . . ,xN+1).

This implies that space Ṽ is isomorphic at RN+1. In conclusion, it is inferred
from this that the dimension of Ṽ is equal to (N + 1).

A.3) The approximate variational formulation ˜(VP) results from the substitution of
the pair of functions (u,v) belonging to V ×V in the variational formulation (VP)
by functions (ũ, ṽ) describing Ṽ × Ṽ :
∫ 1

0
ũ′(x)ṽ(x)dx +

∫ 1

0
ũ2(x)ṽ(x)dx =

∫ 1

0
f (x) · ṽ(x)dx , ∀ṽ ∈ Ṽ . (6.120)

ṽ = ϕi is now chosen and ũ broken down on the basis functions ϕ j of Ṽ to immedi-

ately lead to the variational formulation ˜(VP) defined by (6.112)–(6.113).

The major characteristic of algebraic system (6.112)–(6.113) having unknowns
(ũ1, . . . , ũN+1) is its non-linearity with regard to these unknowns.
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Of course, traces of the non-linearity of Riccati differential equation are found
after discretisation.

This non-linearity does pause a problem, because resolution methods of the
Gauss, Jacobi, Gauss-Seidel types, successive relaxation methods or simple or con-
jugated gradient methods may not be directly operational in such a case.

Then the Newton type of methods should be resorted to, (e. g. the work of M.
Crouzeix and A. L. Mignot, [2] may be consulted).

� Characteristic Basis Function ϕϕϕ i of a Node Strictly Interior
at [0,1]

A.4) Equations corresponding to the basis functions ϕi characterising a node (i. e.
equal to one at the concerned node and zero at the other nodes) strictly interior at
the mesh are now selected from the systems (6.112)–(6.113).

In other words, in the present case, the values of i having values between 1 and N
are concerned.

Moreover, given that the support of a function ϕi only contains segment
[xi−1, xi+1], only the basis functions ϕi−1,ϕi and ϕi+1 may produce non-zero con-
tributions in the calculation of coefficients Ai j and Bi jk.

In fact, the following is obtained:

Ai j =
∫ 1

0
ϕiϕ ′j dx =

∫
Supp ϕi ∩ Supp ϕ ′j

ϕiϕ ′j dx =
∫

Supp ϕi ∩ Supp ϕ j

ϕiϕ ′j dx

Bi jk =
∫ 1

0
ϕiϕ jϕk dx =

∫
Supp ϕi ∩ Supp ϕ j ∩ Supp ϕk

ϕiϕ jϕk dx . (6.121)

Thus, when i is fixed, (i ranging from 1 to N, since it concerns only interior nodes),
the corresponding equation of system (6.112-6.113) is written according to for-
mula (6.114).

Coefficients Ai j and Bi jk are now calculated using the trapezium rule for the
approximation.

� Approximate Calculation of Coefficients Aij, (j = i−1, i, i+ 1)

a) Calculation of coefficient Aii.

Aii =
∫ 1

0
ϕiϕ ′i dx =

∫
Supp ϕi

ϕiϕ ′i dx =
∫ xi

xi−1

ϕiϕ ′i dx +
∫ xi+1

xi

ϕiϕ ′i dx

Aii � 1
h
× h

2
{ϕi(xi−1)+ ϕi(xi)}− 1

h
× h

2
{ϕi(xi)+ ϕi(xi+1)}

� 1
2
{0 + 1}− 1

2
{1 + 0}= 0 . (6.122)
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b) Calculation of coefficient Ai,i−1.

Ai,i−1 =
∫ 1

0
ϕiϕ ′i−1 dx =

∫
Supp ϕi ∩ Supp ϕ ′i−1

ϕiϕ ′i−1 dx =
∫ xi

xi−1

ϕiϕ ′i−1 dx

�−1
h
× h

2
{ϕi(xi−1)+ ϕi(xi)}

� −1
2
{0 + 1}=−1

2
. (6.123)

c) Calculation of coefficient Ai,i+1.

Ai,i+1 =
∫ 1

0
ϕiϕ ′i+1 dx =

∫
Supp ϕi ∩ Supp ϕ ′i+1

ϕiϕ ′i+1 dx =
∫ xi+1

xi

ϕiϕ ′i+1 dx

�+
1
h
× h

2
{ϕi(xi)+ ϕi(xi+1)}

� 1
2
{1 + 0}= +

1
2

. (6.124)

� Approximate Calculation of Coefficients Bijk, (j,k) ∈ {i−1, i, i+1}
According to the general expression of Bi jk (6.121) and given the characteristic
property of each of the basis functions ϕi, (ϕi(x j) = δi j), only coefficient Bi,i,i may
be non-zero.

In fact, given the use of the trapezium rule to evaluate the integrals of each coef-
ficient Bi jk, expressions containing terms in the form below would be systematically
obtained:

ϕi(xl)ϕ j(xl)ϕk(xl) .

That is why all coefficients Bi jk will be zero by approximation via the trapezium
rule, with the exception of Bi,i,i:

Bi,i,i =
∫ xi

xi−1

ϕ3
i (x)dx +

∫ xi+1

xi

ϕ3
i (x)dx� h

2
{0 + 1}+ h

2
{1 + 0}= h . (6.125)

� Approximate Calculation of Coefficient Ci

The second member Ci will be evaluated according an analogous technique:

Ci =
∫ 1

0
f ϕi(x)dx =

∫ xi

xi−1

f ϕi(x)dx +
∫ xi+1

xi

f ϕi(x)dx

� h
2
{0 + fi}+ h

2
{ fi + 0}= h fi , (6.126)

where fi represents the value of function f at node xi.
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A.5) The previous calculations enable the writing of the corresponding nodal equa-
tion for every characteristic basis function ϕi of a node interior to the mesh:

1
2

[ũi+1− ũi−1]+ hũ2
i = h fi , (i = 1 to N) . (6.127)

A.6) Nodal equation (6.127) corresponds exactly to the centred finite differences
scheme associated with the continuous problem (CP).

In fact, this result is immediate because it consists in writing the Riccati dif-
ferential equation (6.108) at point xi, then in replacing the first derivative of u by
a second-order approximation:

u′(xi)+ u2(xi) = f (xi) at (i = 1,N) . (6.128)

Taylor’s formula is then simultaneously used progressively and regressively:

u(xi+1) = u(xi)+ hu′(xi)+
h2

2
u′′(xi)+ O(h3) , (6.129)

u(xi−1) = u(xi)−hu′(xi)+
h2

2
u′′(xi)+ O(h3) . (6.130)

Equation (6.130) is subtracted from equation (6.129) and it becomes:

u′(xi) =
1

2h
[u(xi+1)−u(xi−1)]+ O(h2) . (6.131)

Finally, by injecting the previous result in equation (6.129), it becomes:

1
2h

[u(xi+1)−u(xi−1)]+ O(h2)+ u(xi)2 = f (xi) , (i = 1 at N) . (6.132)

As usual, for a discretisation by finite differences, the infinitesimal term (here,
O(h2)) is neglected and this imbalances equation (6.132):

1
2h

[u(xi+1)−u(xi−1)]+ u2(xi)� f (xi) , (i = 1 at N) . (6.133)

In order to restore a real equality, the sequence of unknown quantities (ui)i=1,N are
replaced by the numerical approximation sequence (ũi)i=1,N defined by the recur-
rence relationship:

1
2h

[ũi+1− ũi−1]+ hũ2
i = h fi , (i = 1 at N) . (6.134)

Of course, the approximation sequence (ũi)i=1,N has all reasons to produce a satis-
factory approximation of the values of (ui)i=1,N in so far as its construction pro-
cedure is directly motivated by that of real values (ui)i=1,N , (to the nearest er-

ror O(h2)).
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In conclusion, the finite differences scheme (6.134) corresponds exactly to nodal
equation (6.127) that was obtained for any characteristic function ϕi, of a node
strictly interior at the [0,1] integration interval.

� Characteristic Basis Function ϕN+1 of the Node at Abscissa xN+1

A.7) The characteristic basis function of the node at abscissa x = 1 is now consid-
ered; it consists of a basis function ϕN+1.

In this case and by a reasoning similar to the one developed in the previous
question for all nodes interior at 0,1, the approximate variational formulation (̃PV)

leads to equation ˜(PVExt):

˜(PVExt)

⎧⎪⎨
⎪⎩

AN+1,NũN + AN+1,N+1ũN+1 + BN+1,N,Nũ2
N + . . .

(BN+1,N,N+1 + BN+1,N+1,N)ũN ũN+1 + . . .

BN+1,N+1,N+1ũ2
N+1 = CN+1 .

(6.135)

Once again, the property of the supports of basis functions ϕN and ϕN+1 would have
been used.

The calculation of coefficients is then carried out as described below.

� Approximate Calculation of Coefficients AN+1,N and AN+1,N+1

a) Calculation of AN+1,N.

AN+1,N =
∫ 1

0
ϕN+1ϕ ′N dx =

∫
Supp ϕN+1 ∩ Supp ϕ ′N

ϕN+1ϕ ′N dx

=
∫ xN+1

xN

ϕN+1ϕ ′N dx

�−1
h
× h

2
{ϕN+1(xN)+ ϕN+1(xN+1)}

� −1
2
{0 + 1}=−1

2
. (6.136)

b) Calculation of AN+1,N+1.

AN+1,N+1 =
∫ 1

0
ϕN+1ϕ ′N+1 dx =

∫
Supp ϕN+1

ϕN+1ϕ ′N+1 dx

=
∫ xN+1

xN

ϕN+1ϕ ′N+1 dx

� 1
h
× h

2
{ϕN+1(xN)+ ϕN+1(xN+1)}

� 1
2
{0 + 1}=

1
2

. (6.137)
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� Approximate Calculation of Coefficients BN+1,N,N+1, BN+1,N+1,N
and BN+1,N+1,N+1

Given that the trapezium quadrature method is used and the same reasoning as for
question 4 is applied then only coefficient BN+1,N+1,N+1 may be non-zero.

The following is thus obtained:

BN+1,N+1,N+1 =
∫ xN+1

xN

ϕ3
N+1(x)dx� h

2
{1 + 0}=

h
2

. (6.138)

� Approximate Calculation of Coefficients CN+1

CN+1 =
∫ 1

0
f ϕN+1(x)dx =

∫ xN+1

xN

f ϕN+1(x)dx

� h
2
{0 + fN+1}= h fN+1 , (6.139)

where fN+1 represents the value of function f at node xN+1 = 1.

A.8) The previous calculations are now grouped in order to build the corresponding
nodal equation:

1
h

[ũN+1− ũN]+ hũ2
N+1 = h fN+1 . (6.140)

A.9) Nodal equation (6.140) corresponds exactly to the equation resulting from the
discretisation of the Riccati differential equation (6.108) using the finite differences
method.

By the way, a major difference occurs with respect to finite difference
scheme (6.134) established in question 4 for the points strictly interior at the mesh.

In fact, in the present case, it is immediately observed that finite difference
scheme (6.140) is no longer of the second order but only of the first order. This
results in a decrease of the total order of the method since the finite differences
scheme is globally of the first order.

Such a result will not be surprising if the Bramble-Hilbert lemma (cf. D. Eu-
vrard, [4]) is kept in mind. It holds that the finite elements method is of the k-order
if the approximation variational space Ṽ contains space Pk, (all the polynomials
having degrees inferior or equal to k).

In the present case, it is obvious that k is equal to one.
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