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preface

This book is intended for anyone who is interested in the computation of sound
propagation in the atmosphere. In some simple cases the computation can
be performed analytically. In most cases, however, the computation must be
performed numerically, as the atmosphere is a complex medium for sound waves.
The book describes current computational methods for sound propagation in the
atmosphere.

The book is based on many excellent articles from the literature of atmo-
spheric acoustics. Articles presented at the International Symposia on Long
Range Sound Propagation have been particularly valuable.

The book was written ‘on week-ends’, but the inspiring atmosphere on
week-days at the TNO Institute of Applied Physics has very much contributed
to the book.

The author is grateful to Andrew Thean and Niels Salomons for many valu-
able comments on the text. Above all, the author is grateful to Marga Salomons,
Michelle Salomons, and Lisa Salomons for help and support in writing the book.

Erik M. Salomons
TNO Institute of Applied Physics
May 2001
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Chapter 1

Introduction

1.1 Atmospheric acoustics

Atmospheric acoustics is the science of sound propagation in the atmosphere.
The basic geometry with a source and a receiver is illustrated in Fig. 1.1. Sound
waves are generated by a source and travel through the atmosphere to a receiver.
The source may be a whistling bird, as in Fig. 1.1. Other important examples
of sources are cars, trains, and airplanes.

The atmosphere is a complex medium for sound propagation. Wind and
temperature distributions in the atmosphere play an important role in the prop-
agation. The influence of wind is illustrated by the fact that the sound from a
source near the ground is often louder on the downwind side of the source than
on the upwind side of the source. Sound propagation is affected not only by the
distributions of the mean wind and temperature, but also by rapid fluctuations
of wind and temperature, i.e. atmospheric turbulence.

The ground surface can be considered as the boundary of the propagation
medium. Reflection of sound waves by the ground surface plays an impor-
tant role in the propagation. One distinguishes hard grounds and absorbing

receiver

@: atmosphere %J

ground

Figure 1.1. Basic geometry of sound propagation in the atmosphere.

1

E. M. Salomons, Computational Atmospheric Acoustics
© Springer Science+Business Media Dordrecht 2001



2 Chapter 1

grounds. A hard ground reflects a sound wave completely. An absorbing ground
partly reflects and partly absorbs a sound wave. Many natural grounds, such
as grassland, can be described as sandy soil covered with vegetation. These
grounds are absorbing. Concrete is an example of a hard ground. A water
surface can also be considered as a hard surface. Not only the ground material
but also the terrain profile, i.e. the spatial variation of the ground level, has an
effect on the propagation of sound waves.

General descriptions of the effects of the atmosphere and the ground on
sound propagation can be found in Refs. (66, 124, 75, 108, 40, 51, 146]. Exper-
imental results can be found in Refs. [157, 101, 102, 20, 115].

1.2 Scope of the book

During the past two decades, several accurate computational models have been
developed for sound propagation in the atmosphere. These models take into
account the complex effects of the atmosphere and the ground. The models are
based on analogous models used in underwater acoustics, electromagnetics, and
seismology. .

The objective of this book is to present a self-contained description of com-
putational models that are currently employed in atmospheric acoustics. The
description includes a derivation of the models from basic acoustic principles. As
meteorological effects play an important role in atmospheric acoustics, selected
topics from boundary layer meteorology and wave propagation in turbulent me-
dia are also presented.

The models described in this book can be used for a wide variety of situa-
tions. The propagation distance may vary between a distance of the order of
one meter and a distance of the order of ten kilometers. The source height and
the receiver height may also vary. Emphasis will be on situations with source
and receiver heights of the order of a few meters, but the models can also be
used for high sources, e.g. a flying airplane.

The models described in this book take into account various effects of the
atmosphere and the ground surface on sound propagation. Some models even
take into account the complex effects of atmospheric turbulence and irregular
terrain. In practice, detailed information about the state of the atmosphere and
the state of the ground surface is always limited. Consequently, computational
studies of atmospheric sound propagation are restricted to relatively idealized
systems. A challenge in computational atmospheric acoustics is to find accept-
able idealizations of real systems. The idealizations presented in this book are
based on the author’s experience. It should be noted that comparisons of model
predictions with experimental results are not presented in this book.

With the models described in this book, both the amplitude and the phase
of a sound wave can be computed. Emphasis will be on the amplitude, however,
as the amplitude determines the loudness of a sound wave. The phase of a
sound wave is relatively unimportant, in particular for propagation distances of
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Figure 1.2. Illustration of the structure of the book. Chapters 2 to 7 describe
sound propagation in systems of increasing complexity. In Chap. 2, an un-
bounded homogeneous atmosphere is considered. In Chaps. 3 to 7, the follow-
ing elements are included successively: ground surface, wind and temperature
distributions, turbulence, terrain, and a noise barrier.

the order of a kilometer or more.

The models are based on the theory of linear acoustics. This implies that
the models are valid for most types of sound that occur in the atmosphere, but
not for very loud sounds such as strong blast waves from explosions or sonic
booms from supersonic airplanes. In all models, it is assumed that the source is
a point source. A real source with finite dimensions can always be represented
by a set of point sources.

1.3 Structure of the book

The main text of the book focuses on physical phenomena in atmospheric acous-
tics, and gives brief descriptions of the computational models; detailed mathe-
matical descriptions of the models are presented in the appendices. In this way,
the reader can first get a quick impression of a model from the main text, and
next study the complete description of the model in an appendix.

The main text consists of the present introductory chapter followed by six
chapters, which describe sound propagation in systems of increasing complexity
(see Fig. 1.2).

Chapter 2 describes sound propagation in the simplest system: an un-
bounded homogeneous atmosphere, i.e. a homogeneous atmosphere without a
ground surface. Chapter 3 describes sound propagation over a flat ground sur-
face in a homogeneous atmosphere. Chapter 4 describes sound propagation
over a flat ground surface in a refracting atmosphere, i.e. an atmosphere with
inhomogeneous distributions of the temperature and the wind velocity. Chap-
ters 5 to 7 describe the effects on sound propagation of atmospheric turbulence,
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irregular terrain, and a noise barrier, respectively.

Chapter 2 is based on Appendices A and B. Appendix A presents the basic
equations of linear acoustics. Appendix B introduces the sound pressure level
and the sound power level, and describes spherical spreading and atmospheric
absorption of sound waves.

Chapter 3 is based on Appendices C and D, which introduce the acoustic
impedance of a ground surface and describe the reflection of spherical sound
waves by a ground surface.

Chapter 4 is based on Appendices E, F, G, H, L, and N. Appendix E
presents linear acoustic equations for moving inhomogeneous atmospheres. Ap-
pendices F, G, H, and L describe four computational models for atmospheric
sound propagation (the FFP model, the CNPE model, the GFPE model, and
the ray model). In Appendix N, wind and temperature profiles in the atmo-
spheric surface layer are described.

Chapter 5 is based on Appendices I, J, and K. Appendix I presents an
outline of the mathematical theory of atmospheric turbulence. Appendices J and
K describe the incorporation of atmospheric turbulence in sound propagation
models.

Chapter 6 is based on Appendix M, which describes computational methods
for sound propagation over irregular terrain.

Chapter 7 is based on Appendix O, which describes computational methods
for sound propagation over a noise barrier.



Chapter 2

Unbounded homogeneous
atmosphere

2.1 Introduction

Sound in the atmosphere is produced by a sound source. The source may be a
rapidly vibrating object, e.g. the membrane of a loudspeaker. A vibrating object
generates a sequence of compressions and rarefactions in the air surrounding it.
The corresponding local fluctuations in air pressure travel away from the source,
in all directions. Such a traveling pressure fluctuation is called a sound wave.
The difference between the fluctuating pressure and the average pressure, i.e. the
variation of the pressure, is called the acoustic pressure or the sound pressure.
A sound wave travels with a finite speed of about 340 m/s. This is experienced
most clearly for sound pulses: it takes some time before a sound pulse generated
by a source reaches a distant receiver.

A pure tone is a sound wave in which the sound pressure oscillates sinusoidally
with time. The sound wave is called a harmonic sound wave in this case. The
number of oscillations per unit time is called the frequency, which is expressed
in units of hertz, abbreviated as Hz; 1 Hz equals 1 oscillation per second. The
pitch of the tone is determined by the frequency. Most sound signals are mix-
tures of pure tones with different frequencies. The human ear is sensitive to
frequencies in the range from roughly 20 Hz to 20 kHz.

The loudness of a pure tone is determined by the amplitude of the sinusoidal
pressure oscillation. In acoustics, loudness is represented by the sound pressure
level, which is directly related to the amplitude of the pressure oscillation, as
will be explained in this chapter. The sound pressure level is expressed in
decibels, abbreviated as dB. The decibel scale is defined in such a way that 0 dB
corresponds roughly to the hearing threshold of a person with acute hearing,
and 130 dB roughly to the threshold of pain.

In practice, sound pressures are often small in comparison with the total
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6 Chapter 2

Figure 2.1. Left: cross-section of the sound pressure field of a plane harmonic
sound wave, at fixed time t. A grey level scale is used, with the maximum
positive and negative sound pressures indicated as white and black, respectively.
Right: corresponding graph of the sound pressure as a function of propagation
distance z. The wavelength X is indicated in the graph.

pressure in the atmosphere, typically 0.1% or smaller. This fact is used in
the mathematical description of sound that is called linear acoustics. In linear
acoustics, only terms linear in the sound pressure are retained in the equations;
quadratic and higher-order terms are neglected. The basic equations of linear
acoustics, including the wave equation, are derived in Appendix A.

In the derivation of the equations of linear acoustics, the atmosphere is mod-
eled as a compressible fluid, i.e. a gaseous medium in which local pressure fluc-
tuations cause local density fluctuations. When a sound wave travels through
this medium, alternating local compressions and rarefactions occur. The corre-
sponding movement of air is represented by a (fluctuating) fluid velocity. The
time average of the fluid velocity is equal to zero, as there is no net transport
of air in a sound wave (here we ignore the effect of wind in the atmosphere).

2.2 Plane waves

The sound pressure at a point in the atmosphere is defined as the instantaneous
pressure minus the time-averaged pressure at the point. The sound pressure is
a function of position r and time ¢, and is denoted as p(r,t). We use boldfaced
symbols for vectors in this book, so r represents a three-dimensional vector, e.g.
r = (z,v, z) if a rectangular zyz coordinate system is used.

As an example, we consider a harmonic sound wave traveling in the z direc-
tion, with sound pressure

p(r,t) = Acos(kz — wt), (2.1)

where A is the amplitude and kxr — wt is the phase, which depends on the
angular frequency w and the wave number k. The corresponding fluid velocity
has an z component only, which is equal to A’ cos(kz — wt), with amplitude A’.
A sound wave with sound pressure given by Eq. (2.1) is called a plane wave, as
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the sound pressure is constant within each plane perpendicular to the z axis.
This is illustrated in Fig. 2.1.

Plane waves do not occur frequently in the open air, but are useful for
illustrating wave propagation. Equation (2.1) shows that the sound pressure
of a harmonic wave is a periodic function of time, with period T = 27 /w, at
each point in the atmosphere. The number of oscillations per unit time is the
frequency f = 1/T, so we have w = 27 f. Equation (2.1) also shows that the
sound pressure at fixed time ¢ is a periodic function of z, with spatial period
A = 2m/k, which is called the wavelength. Further, the sound pressure appears
constant to an observer moving in the z direction with speed ¢ = w/k, as the
argument (kx — wt) = k(z — ct) of the cosine function in Eq. (2.1) is constant
for the receiver. In other words, acoustic pressure fluctuations travel with speed
¢ = w/k, or ¢ = Af, which is called the sound speed. The sound speed is
sometimes called the adiabatic sound speed, as sound propagation in air can
be considered as an adiabatic process, i.e. a process without heat flow. The
(adiabatic) sound speed in air is evaluated in Sec. A.2.

The sound speed in air is a function of the temperature of the air. At a
temperature of 15°C we have ¢ = 340 m/s. The sound speed increases with
increasing temperature. A variation of the temperature by 1°C corresponds to
a variation of the sound speed by about 0.6 m/s, within the temperature range
between —20°C and +40°C. The temperature usually varies with position in
the atmosphere, in particular with height above the ground. In the daytime,
the temperature usually decreases with increasing height above the ground; at
night, the temperature usually increases with increasing height.

A spatial variation of the sound speed causes an effect that is called
atmospheric refraction: a sound wave is bent (refracted) toward regions where
the sound speed is low. This is illustrated in Fig. 2.2, which shows two examples
of a moving wave front. A wave front is defined as a surface on which the phase
of a sound wave is constant. With increasing time, a wave front moves in the
direction of sound propagation. The propagation direction at a point is defined
as the direction of the vector normal to the wave front through the point. In the
example of a plane wave with sound pressure given by Eq. (2.1), the wave fronts
are plane surfaces perpendicular to the z axis, and the propagation direction is
everywhere in the positive z direction. In the examples shown in Fig. 2.2, how-
ever, the upper part of the wave front travels slower or faster than the lower part,
corresponding to upward and downward refraction, respectively. Consequently,
the propagation direction follows the curves indicated in the figure.

The influence of wind on sound propagation makes the description of atmo-
spheric refraction more complex. Wind can be taken into account approximately
by treating wind speed as a contribution to the sound speed: sound waves travel
faster in downwind directions and slower in upwind directions. Therefore, spa-
tial variations of both the temperature and the wind speed contribute to atmo-
spheric refraction. Atmospheric refraction is an important effect in atmospheric
acoustics. A consequence of refraction is that a sound source often generates
higher levels in downwind directions than in upwind directions (see Chap. 4).
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Figure 2.2. Top: illustration of upward refraction of sound, in a situation in
which the sound speed decreases with increasing height z above the ground
surface. Bottom: illustration of downward refraction of sound, in a situation
in which the sound speed increases with increasing height z above the ground
surface. A wave front moving to the right is shown at four successive times.
The thick curve shows the propagation direction, defined at each point as the
direction of the vector normal to the wavefront.

In the remainder of this chapter and the next, we will ignore the effect of
refraction and assume a non-refracting, or homogeneous, atmosphere, with a
constant sound speed. In subsequent chapters we will consider the effect of
refraction.

2.3 Complex notation for harmonic waves

A sound signal p(t) at a point in the atmosphere can always be written as a
sum of harmonic components of the form

p(t) = Acos(¢p — wt). (2.2)

The harmonic components have different values of the amplitude A4, the phase
angle ¢, and the angular frequency w. The decomposition of a sound signal
into harmonic components is called spectral decomposition (see Sec. B.4). Con-
versely, a sound field can be calculated by summing over all harmonic contri-
butions. This is very useful in computational atmospheric acoustics, as many
computational methods assume a harmonic sound field. Figure 2.3 shows a sim-
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ple example of the spectral decomposition of a sound signal with three harmonic
components. In practice the number of harmonic components is much larger
than three, typically a few thousands.

In the example considered in the previous section, with the sound pressure
given by Eq. (2.1), the amplitude A was a constant and the phase angle ¢ was
equal to kz. In general, however, both A and ¢ are functions of position r in
the atmosphere. Equation (2.2) can be written as

p(r,1) = Re [pe(r) exp(~iwt)], (2.3)
where Re(z) denotes the real part of complex number 2z and p(r) is given by
Pe(r) = A(r) exp[ig(r)]- (24)

The quantity p.(r) is called the complex pressure amplitude.

2.4 Spherical waves

In the computational models described in this book we assume that the sound
source is a monopole source. A monopole source is a point source which gener-
ates spherical waves, at least if the atmosphere is unbounded and homogeneous.
In a spherical sound wave, the sound pressure (at a given time) is constant
within each spherical surface with the source at the center. This is illustrated
in Fig. 2.4, for a harmonic monopole source.

The sound pressure of a harmonic spherical wave can be represented by Eq.
(2.3), with complex pressure amplitude given by (see Sec. A.4)

pe(r) = § 3‘%?5’—), (2.5)

where r is the radial distance from the source and S is a constant. From
Eqgs. (2.4) and (2.5) we find that the amplitude of a spherical wave is given
by A(r) = S/r. The amplitude decreases with increasing distance from the
source. At fixed position, the sound pressure oscillates between the values A(r)
and —A(r) (see Fig. 2.4).

2.5 Atmospheric absorption

In the previous sections we assumed an ideal atmosphere. We found that the
amplitude of a plane wave is a constant and the amplitude of a spherical wave
decreases as 1/r with increasing distance r from the source. In a real atmo-
sphere, however, the amplitude of a plane wave also decreases, and the decrease
of the amplitude of a spherical wave is larger than in an ideal atmosphere. This
is due to the effect of atmospheric absorption: a sound wave loses energy by
dissipative processes in the atmosphere (see Sec. B.5). Atmospheric absorption
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Figure 2.3. Simple example of the spectral decomposition of a sound signal.
The signal p(t) (upper graph) consists of three harmonic components p,(t),
p2(t), and ps(t), with frequencies of 100 Hz, 200 Hz, and 300 Hz, respectively
(lower three graphs). We have p(t) = p1(t) + p2(t) + p3(t). The calculation of
the sound pressure levels on the right of the graphs is explained in Sec. 2.6.
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Figure 2.4. Left: cross-section of the spherical sound pressure field of a harmonic
monopole source (the source is located at the center). Right: corresponding
graph of the sound pressure along a line through the source. The dashed line
in the graph represents the amplitude, which diverges at the source.

depends on the frequency of the sound wave, and on the temperature and the
humidity of the atmosphere.

Atmospheric absorption causes an exponential decrease of the amplitude
with distance (see Sec. B.5). This decrease can be taken into account by includ-
ing a small imaginary term ik; in the wave number k. Thus, we replace k by
k + ik;, so the complex pressure amplitude given by Eq. (2.5) becomes

exp(zkr)
T

pe(r) =S exp(—kir). (2.6)

The factor exp(—k;r) represents the exponential decrease of the amplitude with
distance r due to atmospheric absorption.

Atmospheric absorption also has an effect on the phase of a sound wave [106].
This effect varies with frequency, so waves with different frequencies travel with
different speeds (this is called dispersion). Phase effects can be represented by
including not only a small imaginary term but also a small real term in the wave
number. For most practical applications, however, phase effects of atmospheric
absorption can be neglected.

2.6 Sound pressure level and spectrum

The time average of the sound pressure of a harmonic sound signal, performed
over an integral number of harmonic periods, is equal to zero [see Eq. (2.2))].
The time average of the squared sound pressure p? is not equal to zero, unless
we have p = 0 for all times ¢. This time average is denoted as (p?)ay-

For an arbitrary sound signal, the quantity (p?),y is a measure of the loudness
of the signal. We assume that the averaging period is sufficiently long, so (p?)av
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is independent of the averaging period. The sound pressure level is defined as

L,=10Ig (—(pzﬁ) (2.7)

Pref

with reference pressure pres = 2x10° Pa (or 20 uPa), where Pa is the symbol
for pascals, the units of pressure (1 Pa = 1 N/m?). For example, (p?)ay = 1 Pa?
corresponds to L, = 94 dB, where we recall that dB stands for decibels. An
increase of the sound pressure level by 1 dB corresponds to an increase of (P?)av
by a factor of 10%! ~ 1.26. The choice pres = 2x10° Pa determines the zero
point of the decibel scale: (p?)ay = pZ; corresponds to L, = 0 dB.

For a harmonic sound signal, the time average in Eq. (2.7) can be performed
over a single harmonic period. From Eq. (2.3) we find (p?)av = 3pc(r)[* (see
Sec. B.3). Substitution into Eq. (2.7) gives

L,=10lg (%—(-:)—P) . 2.8)

For a harmonic point source we find from Egs. (2.6) and (2.8) the following
expression for the sound pressure level as a function of distance r from the
source (see Sec. B.5):

L, = Lw — 10lg4nr® — ar, (2.9)

where Lw is the sound power level and a is the atmospheric absorption coef-
ficient (in dB per unit length). The sound power level Ly is a measure of the
‘strength’ of the sound source. The term ar is negligible for small r, so Lw is
equal to the sound pressure level Ly, at distance r = (47)~'/? = 0.3 m.

The term ar in Eq. (2.9) represents the attenuation of sound waves due to
atmospheric absorption. The absorption coefficient a is related to the imaginary
term zk; used in Sec. 2.5 by a = k;201ge.

The term 101g47nr? in Eq. (2.9) represents the attenuation due to the factor
1/r in Eq. (2.6) (the factor 47 is explained in Sec. B.3). This attenuation
is called the geometrical attenuation, corresponding to spherical spreading of
sound waves from a point source.

In the derivation of Eq. (2.9) we assumed that the source is harmonic. If
the source is not harmonic, we decompose the sound pressure signal p(t) into
harmonic components: p(t) = 3_ py(t), where py(t) is the sound pressure signal
of a harmonic component with frequency f (see Fig. 2.3 and Sec. B.4). Equation
(2.9) can be applied to the harmonic components:

Ly(f) = Lw(f) — 101g4nr® — a(f)r. (2.10)

The sound pressure level L,(f) is related to the harmonic signal ps (t) by Eq.
(2.7): Lp(f) = 101g((p?)av/PZ%)- The quantities (p})av satisfy the important
relation (p?)ay = Z(p?)a,,, where the sum is over all harmonic components (this
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Figure 2.5. Tllustration of frequency scales: narrow band scale, 1/3-octave band
scale, and octave band scale. Each octave band covers several narrow bands.
We assume that the narrow band width is a constant on a linear scale (for
example equal to 1 Hz), so the number of narrow bands in an octave band
increases with increasing octave band center frequency. Each octave band covers
three 1/3-octave bands, with center frequencies that are approximately equal
to 271/3f., f., and 21/3f., where f. is the octave band center frequency. The
octave band with center frequency 125 Hz, for example, covers the 1/3-octave
bands with center frequencies 100 Hz, 125 Hz, and 160 Hz.

follows from Parseval’s theorem; see Sec. B.4). The corresponding relation in
decibels is L, = 101g(}" 10L»(£)/10) We will call this logarithmic summation
of the levels L,(f). In this context, the level L, is called the broadband sound
pressure level and the function L,(f) is called the spectrum of the sound pressure
level (or narrow band spectrum of the sound pressure level, as will be explained
later). The broadband level L, is the logarithmic sum of the levels L,(f) of the
spectrum. We assume here that the frequencies f of the harmonic components
are equidistant on a linear scale (see Fig. 2.5).

The sound power level Ly, was identified above as the sound pressure level at
distance r = (47)1/2, s0 we also have the expression Ly = 101g(3_ 10Lw()/10)
for the broadband sound power level Ly. The function Lw(f) is called the
spectrum of the sound power level. Equation (2.10) can be considered as the
definition of Lw (f).

Logarithmic summation is illustrated by the example shown in Fig. 2.3,
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with three harmonic components. As indicated in the figure, the signal p(t)
corresponds to (p?)ay = 1.0 Pa? and, by Eq. (2.7), L, = 94 dB. The three
harmonic components p;(t) with j = 1,2,3 correspond to (p?)av = 0.1, 0.5,
0.4 Pa? and L,; = 84, 91, 90 dB. These values agree with the relations (p?)ay =
(82)av + (P2)av + (P3)av and L, = 101g(10%72/10 4 10Ls2/10 4 10L#/10), which
represent logarithmic summation.

In practice the number of harmonic components is much larger than three,
typically a few thousands. The frequencies of the harmonic components may
be, for example, f = 1,2,...,5000 Hz. The spectrum L,(f) is often a rather
irregular function of frequency (an example will be shown in Fig. 2.6 later in
this section). Therefore one replaces the large number of levels L,(f) by a
much smaller number of octave band levels L,(f.). Octave bands are contigu-
ous frequency intervals that cover the complete frequency range (see Fig. 2.5).
Each octave band is characterized by a center frequency, denoted by the sym-
bol f.. In atmospheric acoustics one uses the octave bands with the center
frequencies 16, 31.5, 63, 125, 250, 500, 1000, 2000, 4000, and 8000 Hz. An
octave band level L,(f.) is calculated by logarithmic summation of the lev-
els Ly(f) of the harmonic components with frequencies in the octave band:
Lp(fc) = 101g(3" 10L#(£)/10) " where the prime indicates that the sum is over
the frequencies in the octave band. We assume here that the frequencies are
equidistant on a linear scale (see Fig. 2.5 and Sec. B.4). The function L,(fc) is
called the octave band spectrum of the sound pressure level and, in this context,
the function L,(f) is called the narrow band spectrum of the sound pressure
level.

It is straightforward to show that logarithmic summation of the octave band
levels L,(f.) yields the broadband level Ly, so we have L, = 101g(}_ 10L»(fe)/10)
where the sum is over the octave bands. This implies that the octave band spec-
trum can be considered as an intermediate stage in the logarithmic summation
of the narrow band spectrum to the broadband level. Of course many details of
the narrow band spectrum are lost in the octave band spectrum.

The octave band spectrum of the sound power level, denoted as Lw(fc),
is defined in the same way as the octave band spectrum of the sound pressure
level. An octave band sound power level is calculated from the narrow band
spectrum Ly (f) with the relation Lw(f.) = 101g(3"' 10w ()/10) where the
sum is over the frequencies in the octave band.

Sometimes octave bands are too wide, and the narrower 1/3-octave bands,
or one-third-octave bands, are used (see Fig. 2.5). A 1/3-octave band spec-
trum contains more details of the narrow band spectrum than an octave band
spectrum does.

Equation (2.10) is a relation between the narrow band spectra Ly(f) and
Lw(f). An analogous relation holds for the 1/3-octave or octave band spectra
Ly(f.) and Lw(f.). If Lw(f) is constant over a 1/3-octave or octave band we
have Lw (f.) = 101g(N10Lw(f)/10) where N is the number of frequencies in
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the band; logarithmic summation of Eq. (2.10) over the band gives
Ly(fe) = Lw(fc) —10 1g47”'2 —a(fo)r, (2.11)

where —a(fe)r = 101g(4 ' 1072()7/10) js the logarithmic average of the func-
tion —a(f)r over the band. In general, Ly (f) is not constant over the band,
but Eq. (2.11) is still used as an approximation, with Lw (f.) given by the log-
arithmic sum 101g(3"’' 102w (£)/10) Thus, while the 1/3-octave or octave band
levels Ly(f.) and Lw(f.) are calculated from the narrow band spectra L,(f)
and Lw(f) by logarithmic summation, the term —a(f.)r is calculated from
the function —a(f)r by logarithmic averaging. In practice, however, the term
—a(f.)r is often approximated by the function —a(f)r evaluated at f = f. (see
Sec. B.5).

It should be noted that the spectrum L,(f.) and the broadband level L,
are calculated most accurately by logarithmic summation of the narrow band
spectrum L,(f) given by Eq. (2.10). In practice one uses Eq. (2.11), however,
because the sound emission of a source is usually represented by the 1/3-octave
or octave band spectrum Lw (fc).

Equations (2.10) and (2.11) are important relations in atmospheric acoustics.
The relations show that there is a clear distinction between sound emission and
sound propagation. Sound emission is represented by the spectrum of the sound
power level, i.e. the first term on the right-hand side of Egs. (2.10) and (2.11).
Sound propagation is represented by the remaining terms on the right-hand
side. In this case we have an unbounded homogeneous atmosphere and the
propagation terms are easily calculated; in the next chapter we will include an
additional propagation term on the right-hand side to represent the effects of
ground reflections, atmospheric refraction, and other propagation effects; we will
describe numerical methods for the computation of this additional propagation
term. After the computation of all propagation terms, Eq. (2.10) or Eq. (2.11)
can be used to calculate the spectrum of the sound pressure level at the receiver,
for an arbitrary source with a given spectrum of the sound power level.

In applications in which human perception is involved, one often applies the
A-weighting to spectra of the sound pressure level. There are also B- and C-
weightings, but these are rarely used. The A-weighting approximately represents
the ‘filter’ that the human ear applies to sound (see Sec. B.4). The human ear is
most sensitive to frequencies around 1 kHz. Therefore, the A-weighting assigns
a larger weight to the part of a spectrum around 1 kHz than to the part of the
spectrum around 100 Hz, for example. The broadband sound pressure level that
results from logarithmic summation of an A-weighted spectrum of the sound
pressure level is often called simply the sound level, denoted by the symbol Ly
and expressed in dB(A) (‘A-weighted decibels’).

Figure 2.6 shows an example of the spectral decomposition of a sound signal.
The upper graph shows the sound pressure as a function of time, over a period of
1 s. Narrow band, 1/3-octave band, and octave band spectra are shown for the
(unweighted, or linear) sound pressure level (left column) and the A-weighted
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sound pressure level (right column). The broadband levels L, and Ly are also
indicated in the graphs.

Figures 2.7 and 2.8 show examples of A-weighted octave band spectra of
the sound pressure level at various distances from a noise source. Spectra are
shown for three types of noise source: a passenger car, a heavy truck, and a jet
airplane. The spectra have been calculated with Eq. (2.11), using representa-
tive (experimental) sound power spectra for the sources and a temperature of
10°C and a relative humidity of 80% for the calculation of atmospheric absorp-
tion. The effects of ground reflections and atmospheric refraction are obviously
not included in the spectra. These effects are studied in Chaps. 3 and 4. The
graphs in Figs. 2.7 and 2.8 show that the frequency range from roughly 125 Hz
to 4 kHz is most important for human perception of traffic noise and airplane
noise. Frequencies below 125 Hz and above 4 kHz are relatively unimportant.
With increasing distance from the source, low frequencies become increasingly
important (see Fig. 2.8), due to the effect of atmospheric absorption: atmo-
spheric absorption is larger at high frequency than at low frequency.

The spectrum of sound received from a moving source is affected by the
motion of the source: frequencies are shifted by the Doppler effect (see Sec. B.6).
In practice the Doppler frequency shift is often small and can be neglected. For
a car with a speed of 100 km/h, for example, the frequency shift is less than
10%.
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Figure 2.6. Example of the spectral decomposition of a sound signal (broad-
band noise). The figure shows the time signal (upper graph) and narrow band,
1/3-octave band, and octave band spectra of the unweighted (left column) and
A-weighted (right column) sound pressure level.
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Figure 2.7. A-weighted octave band spectra of the sound pressure level of a
noise source, at four distances from the source (see legend). The upper graph
represents the noise from a passenger car with a speed of 120 km/h. The lower
graph represents the noise from a heavy truck with a speed of 90 km/h. The
spectra have been calculated with Eq. (2.11), so the effects of ground reflections
and atmospheric refraction are not included. We used sound power spectra
from Ref. [153], and a temperature of 10°C and a relative humidity of 80% for
the calculation of atmospheric absorption. The term —a(f.)r in Eq. (2.11) was
approximated by the function —a(f)r evaluated at f = f..
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Figure 2.8. As Fig. 2.7, for the noise from a typical jet airplane, with a sound
power spectrum from Ref. [110] and a broadband A-weighted sound power level
of 160 dB(A). With increasing distance from the source, the maximum of the
spectrum shifts to lower frequency due to the effect of atmospheric absorption.



Chapter 3

Homogeneous atmosphere
above a ground surface

3.1 Introduction

In the previous chapter we have seen that a point source generates spherical
waves in an unbounded homogeneous atmosphere. We showed that the sound
pressure level at a receiver in the spherical sound field can be calculated from the
sound power level of the source, taking into account the geometrical attenuation
due to spherical spreading and the attenuation due to atmospheric absorption.

In practice the source or the receiver, or both, are often close to a ground
surface. In this case the calculation of the sound pressure level at the receiver is
more complex, as will be described in this chapter. The ground surface reflects
sound waves, so there are not only direct sound waves from the source to the
receiver but also reflected sound waves. The interference between direct waves
and reflected waves has a considerable effect on the sound field (see Fig. 3.1).
In Chaps. 4 and 5 we will see that the interference is affected by atmospheric
gradients and atmospheric turbulence. For small distances between the source
and the receiver, however, these atmospheric effects can be neglected.

For an acoustically hard ground surface, e.g. concrete, the calculation of the
sound pressure level is relatively simple. For an acoustically absorbing ground
surface, e.g. grassland, the calculation is more complex.

3.2 Reflection of spherical waves by a ground
surface

We consider the geometry shown in Fig. 3.2, with a harmonic monopole source
and a receiver in a homogeneous atmosphere above a ground surface. We use an
rz coordinate system in the vertical plane through the source and the receiver;
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Figure 3.1. Fields of the sound pressure (left) and the sound pressure level
(right), generated by a harmonic monopole source at a height of three wave-
lengths (3X) above an acoustically hard ground surface, in a homogeneous at-
mosphere. Regions of low amplitude corresponding to destructive interference
are clearly visible as dark regions in the field of the sound pressure level, but are
also visible in the field of the sound pressure. The fields have been calculated
with Eq. (3.2), using @ = 1 for a hard ground surface.

height z
? receiver
z
1
Z; 4
0 > range r
“Zs -l O”

image source

Figure 3.2. Geometry with a source and a receiver above a ground surface. Also
indicated is the image source below the ground surface.
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7 is the horizontal range measured from the source and z is the height above
the ground surface. The source is at position (rs = 0,z5) and the receiver is at
position (r,z).

The source is characterized by the free field, i.e. the sound field of the source
in an unbounded homogeneous atmosphere. The complex pressure amplitude
of the free field is (see Sec. 2.4)

exp(ikR;)

pa (3.1)

Dree = S
where S is a constant, k is the wave number, and R, is the distance from the
source.

The complex pressure amplitude at the receiver in the geometry shown in
Fig. 3.2 can be written as (see Sec. D.4)

exp(tkR;) exp(ikR3)
R1 R2 ’

with Ry = /12 + (2 — 2)? and Ry = /72 + (2 + 2)2. The quantity Q in this
equation is called the spherical-wave reflection coefficient; this quantity can be
calculated with Eq. (D.54), Eq. (D.58), or Eq. (D.72) in Appendix D. The value
of Q is a complex number, in general. Equation (3.2) can be interpreted in terms
of two sound rays: the direct ray and the ray reflected by the ground surface
(see Fig. 3.2). The path length of the direct ray is R; and the path length of
the reflected ray is R2. Equation (3.2) can also be interpreted in terms of two
sources: the real source above the ground surface and the image source below
the ground surface (see Fig. 3.2). The distance between the receiver and the
real source is R; and the distance between the receiver and the image source is
Rs.

Atmospheric absorption is taken into account in Egs. (3.1) and (3.2) by
including a small imaginary term in the wave number (see Sec. 2.5).

The complex pressure amplitude given by Eq. (3.2) is unaffected if the posi-
tions of the source and the receiver are interchanged. This is called the princi-
ple of reciprocity [121, 106], which holds also in an inhomogeneous atmosphere
without wind (and even in an inhomogeneous atmosphere with wind if the wind
direction is reversed).

pc=S +QS (3.2)

3.3 Spherical-wave reflection coefficient and
ground impedance

The spherical-wave reflection coefficient @ in Eq. (3.2) is a function of the fol-
lowing four quantities (see Sec. D.4):

¢ wave number k (or frequency f = k¢/2w),

e distance R;,
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o reflection angle @ (see Fig. 3.2),
¢ normalized ground impedance Z.

The normalized ground impedance Z is a quantity that characterizes the ground
surface acoustically (see Appendix C). The value of Z is a complex number,
which depends on the frequency of the sound waves and on the structure of
the ground. Various models exist for the calculation of the normalized ground
impedance from parameters that characterize the structure of the ground. The
most important parameter is the flow resistivity, denoted by the symbol o.

To define the flow resistivity, we consider a situation in which a pressure
difference over a slab of porous material forces air to flow through the slab.
The flow resistivity is equal to the ratio of the pressure difference to the flow
velocity, divided by the thickness of the slab. This is analogous to the definition
of electric resistance. We express flow resistivity in units of kPa-s-m™.

The concept of flow resistivity is also used for natural grounds such as grass-
land. Thus, grassland is modeled as a porous medium. A typical value of
the flow resistivity for grassland is ¢ = 200 kPa-s'm™2. The flow resistivity of
a material can be measured directly, but is often determined indirectly from
acoustic measurements [6, 8, 31, 32, 37, 15, 48, 50, 96, 127, 87]. In the latter
case the flow resistivity is treated as an adjustable parameter, and is called
the effective flow resistivity. Values of the effective flow resistivity of natural
absorbing grounds, such as grassland, forest floors, and sandy grounds, range
roughly from ¢ = 10 kPa-s-m2 to o = 1000 kPa-s-m™2.

Delany and Bazley [39] developed an empirical model for the calculation
of the impedance of fibrous absorbing materials. This model works well also
for natural grounds such as grassland. Zwikker and Kosten [161] and Atten-
borough (4, 5, 6, 7, 10, 11] developed theoretical models for the calculation
of the impedance. In the theoretical models, the ground is approximated as
a semi-infinite porous medium, or as a porous layer with a rigid backing. In
the numerical examples in this book, we model absorbing ground as a semi-
infinite porous medium; unless indicated otherwise, we use the four-parameter
model developed by Attenborough [5] for the calculation of the impedance; the
parameters of the model are specified in Sec. C.4.

To gain insight into the ground reflection of spherical waves, we note that at
high frequency the spherical-wave reflection coefficient @ is approximately equal
to the plane-wave reflection coefficient R,,, which is given by (see Sec. D.2)

_Zcosf—1
P™ Zcos+1

For an acoustically hard ground surface we have Z = oo (and o = 00) so we
find R, = 1. In this case we also have @ = 1 (see Sec. D.4). An acoustically
hard surface is usually referred to as a rigid surface. Examples are a concrete
surface and a water surface.

An acoustically absorbing ground surface has a finite impedance. Let us
consider a situation in which the ground surface has a finite impedance and

(3.3)
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both the source height and the receiver height are very small compared with
the horizontal distance between the source and the receiver. In this case the
reflection angle 8 approaches 7/2 (see Fig. 3.3). The limit § — 7/2 is called
the limit of grazing incidence. It follows from Eq. (3.3) that R, approaches -1
in the limit of grazing incidence. Hence, the spherical-wave reflection coefficient
at high frequency also approaches -1 in the limit of grazing incidence. The
path lengths of the direct ray and the reflected ray are approximately equal
in this case (R; &~ Rj), so the two terms on the right-hand side of Eq. (3.2)
have approximately equal magnitudes but opposite signs. This corresponds to a
destructive interference between direct sound waves and sound waves reflected
by the ground surface. Thus, the sound pressure above a finite-impedance
ground surface is very low in the limit of grazing incidence.

direct ray receiver

source
e
s temim

ground

Figure 3.3. The reflection angle § approaches w/2 in the limit of grazing inci-
dence.

3.4 Relative sound pressure level

From Egs. (3.1) and (3.2) we have
R, ) .
Pc = Pree |1+ QR_ exp(ikRz - 'Lle) . (34)
2

This relation between p. and pee can also be expressed in terms of the corre-
sponding sound pressure levels L, and Ly gree, respectively. From Eq. (2.8) we
have LP = 10 lg(%|Pc|2/P3ef) and Lp,free = 10 lg(%lpfreep/p?ef)' ThiS gives

L, = Ly free + AL, (3.5)
with
AL=10lg (lpc|2/lpfree|2) . (3'6)

The quantity AL will be referred to as the relative sound pressure level, and
plays an important role in this book. From Egs. (3.4) and (3.6) we find

2
AL =101g|1 + Q% exp(ikRa — ikRy)| . 3.7)
2
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The relative sound pressure level AL represents the deviation from the free field
sound pressure level due to the presence of the ground surface. Both positive
and negative values of AL occur.

Negative values of AL occur in the case of destructive interference between
direct sound waves and reflected sound waves. Complete destructive interference
(AL = —o0) occurs if the second term in the argument of the logarithmic
function in Eq. (8.7) is equal to -1.

Positive values of AL occur in the case of constructive interference between
direct and reflected sound waves. For a rigid ground we have Q = 1 and the
maximum value of AL is 101g 22 ~ 6 dB, as follows from Eq. (3.7) for R; =~ R;.
For absorbing ground we often have |Q| < 1, so the maximum value of AL is
lower than 6 dB. In some situations, however, we have |Q| > 1 and values of
AL higher than 6 dB occur; this can be attributed to the so-called surface wave
[108, 51, 146] (see also Sec. H.5), which is contained implicitly in the expressions
for the spherical-wave reflection coefficient Q given in Sec. D.4.

As noted before, atmospheric absorption is taken into account by including
a small imaginary term in the wave number (see Sec. 2.5). In many practi-
cal situations, however, we have R, ~ R,, and atmospheric absorption can be
neglected in Eq. (3.7). Only in situations with a high source and a high re-
ceiver, the distances R; and R, may be considerably different, and atmospheric
absorption should be taken into account in Eq. (3.7).

Substitution of Eq. (2.9) for L, free into Eq. (3.5) gives

L, =Lw — 10lg47R} — aR, + AL. (3.8)

This equation, with relative sound pressure level AL defined by Eq. (3.6), is not
restricted to the geometry shown in Fig. 3.2. Any deviation from the free field
of a source can be represented by AL defined by Eq. (3.6). If the deviation is
due to a ground reflection in a homogeneous atmosphere, AL is given by Eq.
(3.7). The deviation may also be due to other effects. In Chaps. 4 to 7 we will
use the relative sound pressure level to represent deviations due to atmospheric
refraction, atmospheric turbulence, irregular terrain, and noise barriers.

Instead of the relative sound pressure level AL, the equivalent quantity ‘ex-
cess attenuation’ is also used in atmospheric acoustics. The excess attenuation
is equal to —AL.

The quantities L,, Lw, a, and AL in Eq. (3.8) are functions of frequency,
in general. The function Ly (f), for example, is the narrow band spectrum
of the sound power level of the source (see Sec. 2.6). The function AL(f) is
the corresponding spectrum of the relative sound pressure level. The spectrum
AL(f) should not be considered as a narrow band spectrum, as the value of
AL(f) does not depend on a narrow band width [whereas the values of L,(f) and
Lw (f) do depend on the narrow band width]. The term ‘continuous’ spectrum
is more appropriate for the spectrum AL(f).

The narrow band or continuous spectra in Eq. (3.8) can be converted to
octave band spectra or 1/3-octave band spectra. Logarithmic summation of
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Figure 3.4. Example of logarithmic summation of the sound pressure level
(left) and logarithmic averaging of the relative sound pressure level (right). The
summation and averaging may be over the frequencies in an octave band or a
1/3-octave band.

Eq. (3.8) over a 1/3-octave or octave band yields the approximate relation
Ly(fc) = Lw(fc) — 10lg4nR} — a(fc)R1 + AL(fe)- (3.9)

The quantities Ly(f.), Lw(f.), and a(f.)R; in this relation have been de-
fined in Sec. 2.6 and the quantity AL(f.) is equal to the ‘logarithmic average’
101g(4 ' 10AL(5)/10)  where the sum is over N frequencies in the band; we
assume that the frequencies are equidistant on a linear scale (see Fig. 2.5 and
Sec. B.4). To derive Eq. (3.9) from the narrow band relation (3.8) one neglects
the variation of Lw (f) and —a(f)R; over the band. This variation can usually
not be neglected, but Eq. (3.9) is still used as an approximation (see Sec. 2.6).
Figure 3.4 shows an example of logarithmic summation of the sound pressure
level and logarithmic averaging of the relative sound pressure level. The loga-
rithmic average is dominated by the highest levels.

3.5 Examples

In this section we present graphs of the relative sound pressure level, calculated
with Eq. (3.7) for the geometry shown in Fig. 3.2. We use the rz coordinate
system shown in Fig. 3.2 to denote the positions of the source and the receiver.
We use the following notation above the graphs:

¢ source (rs = 0,z;), where z; is expressed in meters,
e receiver (r,z), where r and z are expressed in meters,
¢ frequency f in Hz,

e flow resistivity o of the ground surface in kPa-s-m™2.
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Figure 3.5 shows the field of the relative sound pressure level AL for a
harmonic monopole source of 500 Hz at a height of 2 m above a rigid ground
surface (¢ = 00). The field contains distinct regions where the level AL is low
(lower than the lower limit of -20 dB of the grey level scale). These regions
correspond to destructive interference between direct sound waves and sound
waves reflected by the ground surface. For a rigid ground surface we have Q =1,
and it follows from Eq. (3.7) that the minima of the relative sound pressure level
occur for exp(ikRy—1kR;) = —1, or k(R —R;) = (2n+1)7, withn = 0,1,2,....
Using k = 2n f /¢, we find that the minima occur for

Ro—Ri=(n+ %)/\, (3.10)
where A = ¢/f is the wavelength. Thus, destructive interference occurs if the
path length difference R, — R; between the direct sound ray and the reflected
sound ray is equal to (n + })A, so that direct waves and reflected waves have
a phase difference of 180°. With increasing height in Fig. 3.5, one successively
passes the regions corresponding ton =0,1,2,....

Figure 3.6 demonstrates the effect of 1/3-octave band averaging, both for a
rigid ground surface and for an absorbing ground surface. For the rigid ground
surface, deep interference minima occur in the continuous spectrum AL(f),
while the minima in the 1/3-octave band spectrum are considerably less deep
(cf. Fig. 3.4). For the absorbing ground surface, the interference minima in the
continuous spectrum are considerably less pronounced than for the rigid ground
surface, and consequently the effect of 1/3-octave band averaging on the minima
is smaller than for the rigid ground surface.

For the rigid ground surface, the relative sound pressure level in Fig. 3.6
approaches 6 dB below a frequency of about 100 Hz (see Sec. 3.4). For the
absorbing ground surface, the relative sound pressure level in Fig. 3.6 approaches
6 dB at very low frequencies, below about 16 Hz (at very low frequency the
reflection coefficient @ approaches unity and the absorbing ground surface can
be considered as a rigid ground surface); at frequencies around 100 Hz the
relative sound pressure level is considerably lower for the absorbing ground
surface than for the rigid ground surface. With increasing frequency in the
graphs in Fig. 3.6, one successively passes the interference minima corresponding
ton=0,1,2,... (see above).

In Fig. 3.6, and in many practical situations, we have z < r and 2z, < r. In
this case the frequencies of the interference minima can be calculated with Eqgs.
(3.11) and (3.12) below. Equation (3.11) is valid for a rigid ground surface and
Eq. (3.12) is valid for an absorbing ground surface.

For a rigid ground surface we have from Eq. (3.10) the relation R; — R, =
(n + %),\ at the interference minima, with n = 0,1,2,.... From z <« r and
zs € r we find Ry — Ry ~ 2zz;/r. Using A = ¢/ f, we find that the interference
minima for a rigid ground surface occur at the frequencies
1. rc

fo=n+ 2)2zzs' (3.11)



Homogeneous atmosphere above a ground surface 29

Substitution of the values z; = 2 m, z = 2 m, and r = 30 m, which were used for
Fig. 3.6, gives the relation f, = (2n+1)fo with fo = 637.5 Hz. The interference
minima in Fig. 3.6 for the rigid ground surface occur at frequencies that agree
with this relation. '

For the absorbing ground surface, the interference minima occur at slightly
lower frequencies. This is due to the fact that the reflection by a finite-impedance
ground surface causes a phase change of a sound wave. The spherical-wave
reflection coefficient @ in Eq. (3.7) is a complex number, and can be written as
Q = |Q| exp(iV), where |Q| is the absolute value and ¥ is the argument. For an
absorbing ground surface, it follows from Eq. (3.7) that the minima of the level
AL occur for exp(ikRy — ikRy +i9) = —1, or k(R2 — R1) + 9 = (2n+ 1), with

n=0,1,2,.... Using Ry — R, = 2zz/r, we find that the interference minima
for an absorbing ground surface occur at the frequencies
1 9, rc
_ 1_v , 3.12
fo= 0t - 2o (3:12)

The argument 9 is a positive quantity; this can be seen from Eq. (3.3), using
Q ~ R, and the fact that the imaginary part of the normalized impedance Z is
positive (see Sec. C.4). Consequently, the interference minima for an absorbing
ground surface occur at lower frequencies than for a rigid ground surface.

The interference minima in Fig. 3.6 are deeper for the rigid ground surface
than for the absorbing ground surface. This can be explained as follows. For
the rigid ground surface, direct waves and reflected waves have approximately
equal amplitudes, so the waves cancel each other almost completely in regions
where the phases are opposite. For the absorbing ground surface, the amplitude
of reflected waves is smaller than the amplitude of direct waves, due to the ab-
sorption of acoustic energy by the ground, so only a partial cancellation occurs.
This can also be seen from Eq. (3.7). For the rigid ground surface we have
Q =1, and the second term in the argument of the logarithm is approximately
equal to -1 at the interference minima (using Ry = Ry). For the absorbing
ground surface we have |Q| < 1 at the interference minima, and the term is
smaller (less negative) than -1.

Figure 3.7 illustrates the effect of the choice of the impedance model (see
Sec. 3.3) on the spectrum of the relative sound pressure level. The model de-
veloped by Delany and Bazley [39] yields a slightly different spectrum than the
model developed by Attenborough [5] does.

Figures 3.8 and 3.9 illustrate the effect of receiver range r (i.e. the horizontal
distance between the source and the receiver) on the spectrum of the relative
sound pressure level, for a rigid ground surface and an absorbing ground surface,
respectively. For the rigid ground surface, the interference minima shift to
higher frequency with increasing range r, in agreement with Eq. (3.11). For
the absorbing ground surface, the first interference minimum becomes broader
and deeper with increasing range r. This is a consequence of the destructive
interference between direct sound waves and reflected sound waves, which occurs
for grazing incidence on a finite-impedance ground surface (see Sec. 3.3).
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Figures 3.10 and 3.11 illustrate the effect of receiver height z on the spectrum
of the relative sound pressure level, for a rigid ground surface and an absorb-
ing ground surface, respectively. For the rigid ground surface, the interference
minima shift to lower frequency with increasing height 2, in agreement with
Eq. (3.11). For the absorbing ground surface, the first interference minimum
becomes broader and deeper with decreasing height z. Again, this is a conse-
quence of the destructive interference for grazing incidence on a finite-impedance
ground surface.

Figure 3.12 illustrates the effect of flow resistivity ¢ of the ground surface on
the spectrum of the relative sound pressure level. With increasing o, the first
interference minimum shifts to higher frequency.

Figure 3.13 illustrates the effect of finite dimensions of a sound source on
the spectrum of the relative sound pressure level. For this figure we use a
rectangular zyz coordinate system, where = and y are horizontal coordinates
and z is the height above the ground surface. Source positions are denoted
as (zs = 0,ys,2s) and the receiver position is (z = 100,y = 0,z = 2), where
coordinates are expressed in meters. The figure shows three spectra:

e a spectrum for a point source at position (0,0,2),

e a spectrum for a set of 256 incoherent point sources distributed uniformly
over a square of 4 m? in the yz plane, with —1 <y, <1land 1< 2, <3,

¢ a spectrum for a set of 100 incoherent point sources distributed uniformly
over a line segment with a length of 200 m, located above the y axis, with
zs =0, =100 < y5 < 100, and 25 = 2.

By ‘incoherent point sources’ we mean that the contributions of the point sources
to the received sound pressure level are summed logarithmically (see Sec. 2.6),
corresponding to logarithmic averaging of AL. This approach is reasonable
if the point sources have no phase relations with each other, or if the phase
differences between the sources show random fluctuations. The set of point
sources distributed uniformly over the line segment, for example, can be used
to calculate the average noise from cars on a road, as the cars have no phase
relations with each other. A continuous distribution of point sources over a line
is called an incoherent line source [75]. The representation of a car by a point
source is studied in Refs. [59, 60].

The differences between the three spectra shown in Fig. 3.13 are small. The
second interference minimum in the spectrum for the single point source is
absent in the spectrum for the set of point sources distributed over the square.
In other situations, however, the effect of finite dimensions of a sound source
may be larger.
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Figure 3.5. Field of relative sound pressure level AL as a function of receiver
range r and receiver height 2. The grey level represents the value of AL in dB,
as indicated by the vertical bar. The geometry is shown above the graph. The
source is a harmonic source with a frequency of 500 Hz. The source is located
at range r = 0 and height z = 2 m. The ground surface is rigid (o0 = 00) and
the atmosphere is homogeneous. The notation above the graph is explained in
Sec. 3.5.
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Figure 3.6. Continuous spectrum and one-third-octave band spectrum of the
relative sound pressure level, for a rigid ground surface (upper graph) and an
absorbing ground surface (lower graph). The impedance of the absorbing ground
surface was calculated with a model developed by Attenborough [5], using a flow
resistivity of 200 kPa-s-m2.
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Figure 3.7. One-third-octave band spectrum of the relative sound pressure level,
for an absorbing ground surface with a flow resistivity of 200 kPa-s:m2. The
ground impedance was calculated from the flow resistivity with a model devel-
oped by Delany and Bazley [39] (‘model 1°) and a model developed by Atten-

borough [5] (‘model 2’).
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Figure 3.8. One-third-octave band spectrum of the relative sound pressure level,
for five receiver ranges r (see legend) and a rigid ground surface.
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Figure 3.9. As Fig. 3.8, for an absorbing ground surface.
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Figure 3.10. One-third-octave band spectrum of the relative sound pressure
level, for five receiver heights z (see legend) and a rigid ground surface.
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Figure 3.11. As Fig. 3.10, for an absorbing ground surface.
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Figure 3.12. One-third-octave band spectrum of the relative sound pressure

level, for five values of the flow resistivity o of the ground surface (see legend).
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Figure 3.13. Example of the effect of finite dimensions of a source on the
1/3-octave band spectrum of the relative sound pressure level (see the text).
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Atmospheric refraction

4.1 Introduction

In the previous chapter we studied sound propagation in a non-refracting at-
mosphere over a ground surface. In general, the assumption of a non-refracting
atmosphere is justified only for small propagation distances. For propagation
distances of the order of 100 m or more, atmospheric refraction often has large
effects on received sound pressure levels, in particular if the source and the
receiver are close to the ground, at heights of a few meters or less.

In this chapter we study sound propagation in a refracting atmosphere over
a ground surface. In Sec. 4.2 we describe the physical process of atmospheric
refraction, which is caused predominantly by vertical gradients of the temper-
ature and the wind speed. Empirical relations for the vertical profiles of the
temperature and the wind speed in the atmospheric surface layer are given in
Appendix N. In Sec. 4.3 we introduce the profile of the effective sound speed,
which depends on the profiles of the temperature and the wind speed.

In Sec. 4.4 we describe the ray model for sound propagation in a refracting
atmosphere. The ray model is useful for a qualitative understanding of atmo-
spheric sound propagation. It is less useful for accurate computations of sound
pressure levels, in particular in situations with irregular sound speed profiles,
owing to complex effects such as the focusing of sound rays at so-called caustic
points. A ray model for smooth sound speed profiles is described in Appendix L.

In Sec. 4.5 we describe three accurate numerical methods for sound propa-
gation in a refracting atmosphere over a ground surface:

e the Fast Field Program (FFP),

e the Crank-Nicholson Parabolic Equation (CNPE) method,

e the Green’s Function Parabolic Equation (GFPE) method.
The1 three methods are described in detail in Appendices F, G, and H, respec-
tively.
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Figure 4.1. Refraction of a plane wave in an atmosphere with sound speed ¢;
for z < 2; and sound speed c; for 2z > z;. Line segment AB is a wave front
of the incident wave. Secondary sources (solid circles) at the interface z = 2;
generate spherical waves which form wave front A’B’ of the refracted wave.
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Figure 4.2. Refracted sound ray from a point source to a receiver, in the same
atmosphere as in Fig. 4.1. The origin of the zz coordinate system is chosen at
the position of the source. Point P is at position (z,z;) and the receiver is at
position (z, z;).
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In Sec. 4.6 we present numerical examples. The examples illustrate the
accuracy of the computational methods in various situations.

4.2 Atmospheric refraction

Atmospheric refraction was described in Sec. 2.2 as a change of the propagation
direction of a sound wave due to a sound speed gradient in the atmosphere.
The propagation direction at a point was defined as the direction of the vector
normal to the wave front through the point. The wave fronts of a plane wave
in a non-refracting atmosphere are plane surfaces; in this case the propagation
direction is independent of position. Refraction of a plane wave is illustrated in
Fig. 4.1, for an atmosphere in which the sound speed ¢ is a simple function of
height z:

_Ja forz<z
oz) = { cg for z > 2z, (4.1)

where ¢; and c; are constants and z; is the height indicated in Fig. 4.1. In
general, the function ¢(z) is called the (vertical) sound speed profile. The figure
shows a plane wave in the region z < z; incident on the interface at height z,.
The elevation angle of a plane wave is defined as the angle between the propa-
gation direction and the (horizontal)  axis; the elevation angle of the incident
plane wave is ;. All points of the interface at height z; can be considered as
secondary point sources (this is Huygen’s principle [106]). Spherical waves gen-
erated by the secondary sources form a plane wave in the region z > z;, with
elevation angle ;.

We consider line segment AB of the wave front at time t, which has moved
to A'B’ at time ¢ + &t. The time interval §t is equal to |AA’|/c;, and also equal
to |BB'|/cz, where |AA’| and |BB’| are the lengths of line segments AA’ and
BB’, respectively. From |AA’| = |A’B|cosy; and |BB’| = |A'B|cosy2, where
|A’B] is the length of line segment A’B, we find

cosm _ cosy2 4.2)

C1 C2

This is Snell’s law of refraction (see also Sec. D.3). For an atmosphere with a
continuous sound speed profile ¢(z), instead of the discontinuous profile given
by Eq. (4.1), Snell’s law states that the elevation angle v of a plane wave varies
with z in such a way that the ratio cosy(z)/c(z) is constant.

In Fig. 4.1 we have 73 < 71, corresponding to c; > c;; the atmosphere is
called a downward refracting atmosphere in this case. In the opposite case with
72 > 7 and ¢z < ¢;, the atmosphere is called an upward refracting atmosphere.

The wave fronts of a point source in a non-refracting atmosphere are spheres.
In a refracting atmosphere, the spheres are deformed by the effect of refraction.
A curved wave front can be approximated locally by a plane wave front. The
propagation of such a plane wave front obeys Snell’s law of refraction. An
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equivalent statement is that the curved sound rays from a point source, i.e. the
curves perpendicular to the wave fronts of the point source, obey Snell’s law for
sound rays:

M = constant along a sound ray, (4.3)
c(2)

where y(z) = arctan(dz/dz) is the elevation angle of the sound ray at height z.
This is illustrated in Fig. 4.2 for an atmosphere with the sound speed profile
given by Eq. (4.1). The sound ray consists of two straight segments, with a
discontinuous slope at z = z;. In an atmosphere with a continuous sound speed
profile ¢(z), instead of the discontinuous profile given by Eq. (4.1), the sound
rays are curves with a continuous slope.

The travel time of a sound wave along the path represented by a sound ray
is always smaller than the travel time along a slightly deformed path. In other
words, a sound wave follows the path between the source and the receiver that
corresponds to a (local) minimum of the travel time. This is Fermat’s principle
of minimum travel time (a more general statement is that a sound wave follows
the path that corresponds to a stationary travel time; see Ref. [106]).

To illustrate Fermat’s principle we consider a deformation of the path shown
in Fig. 4.2 by varying the z coordinate of point P. The travel time ¢ is given
by t = r1/e1 + r2/co, with 1y = /22 + 22 and r2 = /(z: — 2)% + (2r — 21)2.
The derivative of the travel time with respect to the z coordinate of point P is
8t/0zx = (z/r1)/c1 — [(z: — x)/r2]/ca, Or Bt/ = cosm /e1 — cosy2/c2. From
Fermat’s principle we have 8t/8z = 0, which gives cosv/c1 = cosyz/ca, i.e.
Snell’s law.

4.3 Effective sound speed

In a non-moving atmosphere, i.e. an atmosphere without wind, sound waves
travel with the adiabatic sound speed, which is a function of the temperature
of the atmosphere (see Secs. 2.2 and A.2). An atmosphere with wind is called
a moving atmosphere. The computation of sound propagation in a moving at-
mosphere is more complex than the computation of sound propagation in a
non-moving atmosphere. Fortunately, a moving atmosphere can be approxi-
mated by a non-moving atmosphere with an effective sound speed ceg = ¢ + u,
where ¢ is the adiabatic sound speed and wu is the (horizontal) component of
the wind velocity in the direction of sound propagation. The idea behind this
approximation is that a sound wave travels faster if the atmosphere moves in
the propagation direction (u > 0) and slower if the atmosphere moves in the op-
posite direction (v < 0) [40]. A more rigorous justification of the effective sound
speed approximation is given in Sec. E.3. In general, the effective sound speed
approximation is valid in situations in which sound waves travel with relatively
small elevation angles, such as situations with the source and the receiver near
the ground. For large elevation angles, the effective sound speed approximation
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is not valid. The effective sound speed ceg will often be referred to simply as
the sound speed c.

Spatial variations of the temperature and the wind velocity in the atmo-
sphere correspond to spatial variations of the effective sound speed. These
variations cause atmospheric refraction. In situations with a flat, homogeneous
ground surface, it is usually a good approximation to assume that the temper-
ature, the wind velocity, and the effective sound speed are functions of height z
only:

ceft (2) = ¢(z) + u(2)- (4.4)

The atmosphere is called a layered atmosphere or a stratified atmosphere in this
case. The function ceg(2) is called the (effective) sound speed profile.

Empirical expressions for the vertical profiles of the temperature and the
wind speed are given in Appendix N. These profiles should be considered as
average profiles, averaged over a period of typically ten minutes (variations of
the profiles on smaller time scales are considered in Chap. 5). The expressions
given in Appendix N are valid for the atmospheric surface layer, which has
a height of typically 100 m. The profiles are characterized by large vertical
gradients near the ground surface. At the ground surface, the wind speed is
approximately zero, due to friction at the ground surface. With increasing
height, the wind speed increases while the vertical derivative of the wind speed
decreases. The variation of the wind speed is largest in the first few meters
above the ground surface. The shape of the wind speed profile depends on the
roughness of the ground surface. Air flowing over a ground surface is ‘slowed
down’ more effectively by a rough surface, e.g. grassland, than by a smooth
surface, e.g. a water surface.

The shape of the temperature profile is similar to the shape of the wind speed
profile. The variation of the temperature is largest near the ground surface
and decreases with increasing height. In the daytime, the temperature usually
decreases with increasing height. At night, the temperature usually increases
with increasing height.

A realistic profile of the effective sound speed in the atmospheric surface
layer is the logarithmic profile

cei(2) = co + bln (ZZ—O + 1) (4.5)

with parameters co, b, and zo. Parameter co is the sound speed at the ground
surface; the precise value of ¢y is unimportant, and we use ¢g = 340 m/s.
Parameter zg is called the (aerodynamic) roughness length of the ground surface;
typical values are between 0.01 m and 0.1 m for grassland and between 1074 m
and 1072 m for a water surface. We use zp = 0.1 m, unless indicated otherwise.
Typical values of parameter b in Eq. (4.5) are 1 m/s for a downward refracting
atmosphere and -1 m/s for an upward refracting atmosphere. Figure 4.3 shows
the logarithmic profile (4.5) for ¢o = 340 m/s, 20 = 0.1 m, and b= 1 m/s. Foran
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Figure 4.3. Logarithmic profile (4.5) of the effective sound speed, for
co =340 m/s, 20 = 0.1 m, and b =1 m/s.

atmosphere with a constant temperature, the values b =1 m/s and 2o = 0.1 m
correspond to a wind speed (component) of 4.6 m/s at a height of 10 m.

4.4 Ray model

Atmospheric sound propagation can be modeled with sound rays. Basically, the
approach of a ray model consists of two steps:

i) calculation of the paths of all sound rays between the source and the
receiver,

i) calculation of the received sound pressure by summation of the contribu-
tions of all sound rays.

This approach is called geometrical acoustics. The principles of geometrical
acoustics are described in Refs. [2, 17, 106].

The model described in Chap. 3 for sound propagation in a non-refracting
atmosphere can be considered as a simple ray model. The complex pressure
amplitude p. was written in Eq. (3.2) as a sum of two terms:

2
Pc = Z A exp(igm), (4.6)
m=1

with phases ¢, = kR,, and amplitudes A, that follow by comparison with
Eq. (3.2). In general, A, is complex, so ¢, is not the total phase of the second
term. The two terms can be interpreted as the contributions of sound rays.
The first term represents the direct ray and the second term represents the ray
reflected by the ground surface. In this case the ray model can be considered as
a representation of the exact solution of the wave equation for a system with a
non-refracting atmosphere and a finite-impedance ground surface (see Sec. D.4).
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direct ray receiver receiver

ground ground

Figure 4.4. Direct ray and ray reflected by the ground surface, in a downward
refracting atmosphere (left) and an upward refracting atmosphere (right). The
dashed lines represented the straight rays in a non-refracting atmosphere.

In general, the assumption of a non-refracting atmosphere is justified only
for small propagation distances, of the order of a few tens of meters. For larger
distances, the effects of atmospheric refraction must be taken into account. In
a refracting atmosphere, sound rays are curved and the number of rays is often
different from two.

For small source-receiver distances, the number of rays is still equal to two,
but the rays are curved as shown in Fig. 4.4. A solution of the wave equation for
this situation, analogous to the exact solution for a non-refracting atmosphere,
can be found in Ref. [82].

For larger distances, the number of rays is often different from two. This
is illustrated in Figs. 4.5 and 4.6, for an upward refracting atmosphere and
a downward refracting atmosphere, respectively. The figures show sound rays
emitted by a point source within a limited interval of the elevation angle (a
point source emits sound rays in all directions, but for graphical clarity we have
omitted rays with large elevation angles in the figures). The rays were calculated
for the logarithmic sound speed profile (4.5), with b = -1 m/s for Fig. 4.5 and
b =1 m/s for Fig. 4.6.

In an upward refracting atmosphere (Fig. 4.5), a region exists where no
sound rays arrive. This region is called the shadow region. The location of the
shadow region depends on the source height and the sound speed profile. The
ray model predicts a vanishing sound pressure in a shadow region. In reality,
the sound pressure is small but not zero, due to the effect of diffraction and the
effect of scattering by atmospheric turbulence [89] (see Sec. 4.6.4 and Chap. 5).

In a downward refracting atmosphere (Fig. 4.6), sound rays with multiple
ground reflections occur, so the number of rays arriving at a distant receiver
is often much larger than two. The calculation of all ray paths to a receiver is
called ‘ray tracing’. One needs in general an iterative computational algorithm
to ‘trace’ all ray paths. A ray tracing algorithm consists basically of the compu-
tation of many ray paths and the selection of those ray paths that arrive at the
receiver. A ray path is computed by numerical integration of Snell’s law (4.3),
i.e. by making small steps along the ray path in such a way that the elevation
angle satisfies Snell’s law (4.3) at all points of the ray path. Figure 4.7 shows
that the number of rays increases with increasing distance between the source
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Figure 4.5. Sound rays in an upward refracting atmosphere.

Figure 4.6. Sound rays in a downward refracting atmosphere.
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Figure 4.7. Sound rays between a source at position (0,2) and a receiver at
position (r,2), for r = 80 m (top), r = 300 m (middle), and 7 = 1000 m
(bottom), in a downward refracting atmosphere with logarithmic sound speed
profile (4.5) with b = 1 m/s. The lower graph for r = 1000 m illustrates the
grouping of rays in sets of four rays.
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ray 2
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Figure 4.8. The ray tube diameter D is the normal distance between two sound
rays emitted by the source with a small difference in elevation angle.

and the receiver, for a logarithmic sound speed profile. The figure also shows
that the rays are grouped in sets of four rays [49], except for small distances
between the source and the receiver.

The generalization of Eq. (4.6) for a situation with two or more sound rays
in a downward refracting atmosphere is [17, 81, 135]

Nrayl
Pe= Y Amexp(ipm), 4.7)
m=1

where Niays is the number of sound rays. The phase ¢, of ray m is given by
ém = [ k(z)ds, where s is the path length along the ray; we assume a layered
atmosphere here, with k = k(z). This can also be written as ¢, = wtm, where
tm = [ ¢7!(2)ds is the travel time along the ray. The amplitude A, of ray m
can be written as (see Sec. L.3)

A = fnONn 2, 48)
1

where f,, is a focusing factor, C,, is a reflection coefficient, and N, is the num-
ber of ground reflections. For the reflection coefficient C,,, we use the spherical-
wave reflection coefficient (see Sec. L.3.4). The focusing factor f, accounts
for the fact that, in a refracting atmosphere with curved sound rays, there are
regions where the ‘concentration’ of sound rays is high and regions where the
‘concentration’ of sound rays is low (see Fig. 4.6). A measure of the ray con-
centration is the ray tube diameter D, which is defined as the normal distance
between two sound rays emitted by the source with a small difference in ele-
vation angle (see Fig. 4.8). The ray tube diameter is small in regions of high
ray concentration (the rays are focused here) and the ray tube diameter is large
in regions of low ray concentration (the rays are defocused here). The focusing
factor is equal to \/Dyee/ D, where Dyee is the ray tube diameter in the free
field, i.e. the field in an unbounded homogeneous atmosphere (see Sec. L.3.6).
The focusing factor is equal to unity in the free field.

A problem with the ray model is caustics {18, 17, 106]. A caustic is a set
of points where the ray tube diameter vanishes. In other words, two sound
rays emitted by the source with a small (infinitesimal) difference in elevation
angle, cross each other at a caustic point (see Fig. 4.6). Hence, the focusing
factor diverges at a caustic point, and geometrical acoustics predicts an infinite
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Figure 4.9. Example of a sound ray with two turning points (n = 2). The
maximum height of the ray, denoted as h, is indicated.

amplitude at a caustic point. In reality, the amplitude of the sound pressure
at a caustic point is relatively high but not infinite of course. The difference
between the real sound pressure field and the geometrical acoustics prediction is
called a caustic diffraction field. Caustic diffraction fields eliminate the infinite
amplitudes. The computation of caustic diffraction fields is complex [85, 73],
which makes the ray model less attractive for accurate computations of sound
propagation, in particular for irregular sound speed profiles.

In Appendix L we describe a ray model that takes into account caustic
diffraction fields. The model assumes a smooth sound speed profile, with a sound
speed that increases monotonically with height; an example is the logarithmic
profile (4.5). The rays shown in Figs. 4.6 and 4.7 for a downward refracting
atmosphere were computed with this model (the rays shown in Fig. 4.5 for an
upward refracting atmosphere were computed by straightforward integration of
Snell’s law).

In the remainder of this section we will use the ray model to provide insight
into sound propagation in situations such as shown in the lower graph in Fig. 4.7
(for r = 1000 m), with a large distance between the source and the receiver and
a large number of sound rays. The sound rays are grouped in sets of four rays.
In the example shown in the lower graph in Fig. 4.7, there is a group of four
rays that reach a height of about 22 m, a second group of four rays that reach
a height of about 11 m, and so on. In general, the highest point of a sound
ray is called the turning point, and the height of the turning point is called the
maximum height of the ray; the maximum height is denoted as h (see Fig. 4.9).
The four rays of a group have an equal number of turning points, which is
denoted asn (n = 1,2,...). The maximum height h is approximately equal for
the four rays of a group, and we denote the value of h for a group of rays with n
turning points as hy,. For the logarithmic profile (4.5) we have (see Sec. L.3.1)

home Do) 2 (4.9)
nV 2rcy
For r = 1000 m and b = 1 m/s we find h,, =~ 22/n m. Thus, we have h; =~ 22 m,
hz = 11 m, and so on. These values are in agreement with the maximum heights
of the rays shown in the lower graph in Fig. 4.7.
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Equation (4.9) for the maximum height h,, is valid if the source height z
and the receiver height z are small compared with h,,. With increasing n, the
maximum height A,, decreases and deviations occur from Eq. (4.9). At a certain
value of n, hy, given by Eq. (4.9) becomes smaller than z or z, and Eq. (4.9)
should not be used anymore, as there are no sound rays with a maximum height
smaller than z; or z.

If we neglect the deviations from Eq. (4.9) and use this equation for all rays
with h;, larger than 2, and z, we find that the total number of groups is given
approximately by h;/z,, where z; is, for example, the average of the source
height and the receiver height. Each group consists of four rays, so the total
number of rays is Nrays % 4h) /2. In the example in the lower graph in Fig. 4.7,
4h) [z is equal to 44, in good agreement with the actual number of rays (40).

The relation Nyays & 4h /25 can be used to derive a simple expression for
the relative sound pressure level AL for the case of sound propagation over
a water surface in a downward refracting atmosphere with logarithmic sound
speed profile (4.5). As the reflection coefficient for a water surface is equal to
unity, all rays have approximately equal amplitudes at a distant receiver; here
we neglect the effects of focusing and caustics. We further neglect the effects
of interference between the rays, so we assume that the phases of the rays are
random. In the free field there is only one ray, so we have |pc|> & Nrays|Ptree|?
in the definition (3.6) of AL. This gives

AL % 101g Nyays, (4.10)

where Niays = 4h; /2, is the number of rays. It follows from Eq. (4.9) that Nyays
is proportional to the receiver range r, so it follows from Eq. (4.10) that AL
increases linearly with lgr. In Sec. 4.6.4 we will illustrate this linear increase by
a numerical example. In Chap. 6 we will see that the increase is not unlimited,
as a consequence of the roughness of a water surface.

In the case of sound propagation over an absorbing ground surface, e.g.
grassland, the above linear increase of AL with lgr does not occur. In this
case, rays with many ground reflections have a small amplitude at a distant
receiver. Consequently, most of the sound energy flows along the highest sound
rays [131]. In this case the relative sound pressure level AL at a distant receiver
is dominated by the highest sound rays.

4.5 FFP and PE methods

In this section we describe three accurate numerical methods for sound propa-
gation in a refracting atmosphere over a ground surface:

o the Fast Field Program (FFP),
e the Crank-Nicholson Parabolic Equation (CNPE) method,

e the Green’s Function Parabolic Equation (GFPE) method.
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Figure 4.10. Rectangular zyz coordinates and cylindrical rz¢ coordinates. In
the axisymmetric approximation we neglect the variation of the sound field with
azimuthal angle ¢.

The three methods are described in detail in Appendices F, G, and H, respec-
tively. References to the literature are given in the appendices. The three
methods will be referred to as the FFP method, the CNPE method, and the
GFPE method, respectively.

In general, the three methods yield a solution of the wave equation, or an
approximation of the wave equation, for a system with a monopole source above
an absorbing or rigid ground surface. The computation is performed in the fre-
quency domain, i.e. for a harmonic sound field. The computation of a complete
spectrum requires separate computations for all frequencies of the spectrum.
In general, the computing time increases with increasing frequency, and the
computing time for a complete spectrum is often considerable.

To keep the computing time acceptably small, the computations are usually
performed in two dimensions, in the vertical plane through the source and the
receiver. This approach is based on the axisymmetric approximation, which
corresponds to a neglect of the variation of the sound field with azimuthal angle
¢ around the vertical axis through the source (see Fig. 4.10; see also Sec. E.4).
The axisymmetric approximation is a good approximation in many practical
situations, as wind and temperature variations with azimuthal angle are usu-
ally considerably smaller than wind and temperature variations with height.
An example that illustrates the accuracy of the axisymmetric approximation is
presented in Sec. 4.6.3.

The Fast Field Program (FFP method) is based on a Fourier transformation
of the wave equation from the horizontal spatial domain to the horizontal wave
number domain. The transformed wave equation is solved numerically, and
the solution is transformed back to the spatial domain by an inverse Fourier
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ground

Figure 4.11. The PE method is valid for sound waves with elevation angles ~y
between —Ymax and Ymax.

transformation. Thus, the solution in the spatial domain is an inverse Fourier
integral over horizontal wave numbers. Therefore, the FFP method is sometimes
called the ‘wave number integration method’ [69]. The FFP method is widely
used in ocean acoustics. For simple sound speed profiles, the wave equation in
the horizontal wave number domain can be solved analytically with the method
of normal modes [69, 120, 9].

In Appendix F we describe a generalized formulation of the FFP method,
which can be applied to both axisymmetric (two-dimensional) systems and
three-dimensional systems, with either a non-moving atmosphere or a moving
atmosphere with an arbitrary field of the (horizontal) wind vector. Results of the
generalized FFP method will be used in Sec. 4.6.1 to illustrate moving-medium
effects and the accuracy of the effective sound speed approximation.

As a consequence of the Fourier transformation to the horizontal wave num-
ber domain, the FFP method is restricted to systems with a layered atmosphere
and a homogeneous ground surface. Systems with a range-dependent sound
speed profile or a range-dependent ground impedance cannot be modeled with
the FFP method.

In contrast to the FFP method, the Parabolic Equation (PE) method is
not restricted to systems with a layered atmosphere and a homogeneous ground
surface. The PE method is based on a parabolic equation, which is an ap-
proximate form of the wave equation. As described in Appendix G, different
parabolic equations exist. A parabolic equation is valid for elevation angles that
do not exceed a limiting angle Ymax- In other words, PE results are accurate
only for receivers at elevation angles smaller than ymax (see Fig. 4.11). This
angular limitation will be studied quantitatively in Sec. 4.6.2.

For a moving atmosphere, the effective sound speed approximation is used
in the PE method. Since the effective sound speed approximation is not valid
for large elevation angles, the PE method should not be used for moving atmo-
spheres and large elevation angles.

Back scattering of sound waves, i.e. scattering by sound speed gradients in
the direction back to the source, is neglected by a parabolic equation. In other
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Figure 4.12. Grid in the rz plane used in two-dimensional PE methods, with
horizontal grid spacing Ar and vertical grid spacing Az. The amplitude of the
sound pressure at a grid point is represented schematically by the size of the
circle at the grid point.

words, a parabolic equation is a one-way wave equation, taking into account
only sound waves traveling in the direction from the source to the receiver. As
the sound speed is usually a smooth function of position in the atmosphere, the
one-way wave propagation approximation is usually a good approximation.

The Crank-Nicholson Parabolic Equation (CNPE) method and the Green’s
Function Parabolic Equation (GFPE) method are two different methods of solv-
ing a parabolic equation. Two-dimensional CNPE and GFPE methods are based
on the axisymmetric approximation, so the solution is performed in two dimen-
sions, in the rz plane through the source and the receiver. Both methods make
use of a rectangular grid in the rz plane (see Fig. 4.12). The source is repre-
sented by a starting function p(r = 0, z) of the complex pressure amplitude at
range r = 0. This starting function is extrapolated step-wise on the grid, in the
positive r direction. An extrapolation step from range r to range r + Ar can be
expressed as

Pe(r, 2) = pe(r + Ar, 2). (4.11)

By repeating this extrapolation step many times, the complete field p¢(r, z) of
the complex pressure amplitude is computed.

In the CNPE method, a Crank-Nicholson finite-difference scheme is used for
the numerical evaluation of an extrapolation step. The horizontal and vertical
grid spacings Ar and Az in the CNPE method are limited to a maximum value
of about A/10, where A is an average wavelength. Consequently, the number of
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Figure 4.13. In the three-dimensional GFPE method, the field is computed in a
pie slice region. Periodic boundary conditions are imposed on the straight sides
at ¢ =0and ¢ =4.

grid points, and hence the computing time, increases with increasing frequency.
In the GFPE method, the vertical grid spacing is also limited to about /10, but
the horizontal grid spacing (or range step) may be chosen considerably larger,
up to about 50A. Consequently, computing times of the GFPE method are
considerably smaller than computing times of the CNPE method.

As indicated before, the PE method is not restricted to systems with a
layered atmosphere and a homogeneous ground surface. A range dependence
of the sound speed profile or the ground impedance is taken into account by
changing the profile or the impedance during the extrapolation of the field in
the positive r direction. In Chap. 5 we will see that we can even take into
account the effect of atmospheric turbulence with the PE method.

A three-dimensional GFPE method is described in Sec. H.12. In this case we
compute the field in a pie slice region (see Fig. 4.13), by a step-wise extrapolation
of the field in the positive r direction. Periodic boundary conditions are imposed
on the straight sides at ¢ = 0 and ¢ = §. This approach is obviously correct for
0 = 360°. For ¢ < 360° it is an approximate approach. By choosing a low value
for 6 we keep the computation efficient.

4.6 Examples

In this section we present results that illustrate the application of the FFP
method, the PE methods, and the ray model. Results are represented by the
relative sound pressure level AL = 101g(|pc|/|Ptree|®), in the same way as in
Chap. 3 for a non-refracting atmosphere. Parameters are indicated above the
graphs using the same notation as in Sec. 3.5. Unless indicated otherwise, we
use the logarithmic sound speed profile (4.5) with ¢ = 340 m/s and zp = 0.1 m.
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4.6.1 Moving-medium effects

The generalized formulation of the FFP method described in Appendix F can
be used to study moving-medium effects and the accuracy of the effective sound
speed approximation. In the three-dimensional FFP method, the atmosphere is
represented by three profiles: the (adiabatic) sound speed profile ¢(z) and the
profiles u4(2) and v(z) of horizontal wind velocity components; « and v are the
components parallel and perpendicular to the direction of sound propagation,
respectively. In the two-dimensional FFP method, the atmosphere is repre-
sented by the profiles ¢(z) and u(z). In this example, the profiles are given by
logarithmic functions:

e(z) = co+ by In (% + 1) (4.12)
u(z) = by In (% + 1) (4.13)
v(2) = by In (;—0 + 1) (4.14)

with ¢p = 340 m/s and zp = 0.1 m. We consider different combinations of the
parameters b;, by, and b,. For the two-dimensional FFP method we consider

i) b =1m/s, b, = 0 m/s (non-moving atmosphere),
#) by = 0 m/s, by = 1 m/s (moving atmosphere).

Both combinations correspond to the effective sound speed profile ceg(z) =
co + bIn(1 + z/2zp) with b =1 m/s. For the three-dimensional FFP method we
consider

i) by = 1 m/s, by = 0 m/s, b, = 0 m/s (non-moving atmosphere),
W) by =0 m/s, by, =1 m/s, b, = 0 m/s (moving atmosphere),
v) by =0m/s, b, = 1 m/s, b, = 1 m/s (moving atmosphere with cross-wind).

These three combinations also correspond to the effective sound speed profile
ceff(2) = co + bIn(1 + 2/z) with b =1 m/s. If the combinations ) and i) give
equal results, and if the combinations i), iv), and v) give equal results, we
can conclude that the effective sound speed approximation is an accurate ap-
proximation. If two-dimensional results are equal to three-dimensional results,
we can conclude that two-dimensional modeling, based on the axisymmetric
approximation, is an accurate approach.

In this example the source height is 2 m, the frequency is 400 Hz, and the flow
resistivity of the ground surface is 200 kPa-s-m™2. Results are shown in Fig. 4.14
for a receiver height of 2 m and in Fig. 4.15 for a receiver height of 50 m, for
the combinations i) to v) of the parameters b;, b,, and b,. As a reference, the
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Figure 4.14. Relative sound pressure level as a function of range, computed with
the two-dimensional FFP method and the three-dimensional FFP method, for
a situation with 2, = 2 m, f = 400 Hz, ¢ = 200 kPa-s'm'?, and z = 2 m. The
legend shows values of the parameters used in Eqgs. (4.12), (4.13), and (4.14)
for the atmospheric profiles. The thick solid line represents a non-refracting
atmosphere. The other lines and the symbols represent downward refracting
atmospheres, which all correspond to the effective sound speed profile ceg(z) =
co + bIn(1l + z/2zp) with b = 1 m/s. The dashed line is indistinguishable from
the thin solid line.
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figures show also the result for a non-refracting atmosphere, represented by a
thick solid line.

Figure 4.14 shows that, for a receiver height of 2 m, the combinations i) to
v) of b, by, and b, give equal results. Consequently, the effective sound speed
approximation is accurate and two-dimensional modeling is accurate.

Figure 4.15 shows that, for a receiver height of 50 m, small deviations occur
between the results for the different combinations of b, b,, and b,. The effective
sound speed approach gives slightly inaccurate results, in this case. Neverthe-
less, cross-wind has no effect and two-dimensional modeling is accurate.

4.6.2 Angular limitation of the PE method

In this section we present results that illustrate the angular limitation of the PE
method (see Fig. 4.11). We first investigate how accurate the CNPE and GFPE
methods can reproduce the exact field of the relative sound pressure level shown
in Fig. 3.5, for a rigid ground surface and a non-refracting atmosphere (b = 0).
The CNPE field is shown in Fig. 4.16 and the GFPE field is shown in Fig. 4.17.
We see that the GFPE method is accurate up to high elevation angles, while
the CNPE method is accurate only up to about 30° or 40°. Figure 4.18 shows
the relative sound pressure level along a horizontal line at a height of 50 m in
the fields shown in Figs. 3.5, 4.16, and 4.17.

It should be noted that we used a high-order starting function for the GFPE
field (order 8, see Sec. H.10). The accuracy for large elevation angles decreases
with decreasing order of the starting function.

From Figs. 4.16 to 4.18 we conclude that, for a non-refracting atmosphere,
the GFPE method is more accurate than the CNPE method, at high elevation
angles. Figure 4.19 shows an example which suggests that this conclusion is
valid also for a refracting atmosphere. The figure shows a graph of the relative
sound pressure level as a function of elevation angle, for a fixed receiver range of
400 m. In this example we used a linear sound speed profile ¢(z) = ¢o +az, with
¢o = 340 m/s and a = 0.1 s’!. For comparison, the result for a non-refracting
atmosphere (a = 0) is also included. FFP results and GFPE results agree up
to high angles, while CNPE results deviate for angles larger than about 30°.

4.6.3 Accuracy of the axisymmetric approximation

With the three-dimensional GFPE method we can study the accuracy of the
axisymmetric approximation, which is used in the two-dimensional methods
(cf. Sec. 4.6.1). As an example, Fig. 4.20 shows the field of the relative sound
pressure level at a height of 2 m, in a horizontal circular region around the
source at position (z,y) = (0,0) and a height of 2 m. We assumed a wind
vector in the positive z direction (as indicated in the figure) and a logarithmic
wind speed profile u(z) = b, In(1 + z/zp), with b, = 1 m/s and zp = 0.1 m.
The corresponding effective sound speed profile is ¢(z) = ¢p + u(z) cos ¢, where
¢ = arctan(y/z) is the azimuthal angle of the source-receiver line. The profile
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is downward refracting for receivers in the region £ > 0 and upward refracting
for receivers in the region £ < 0. This results in an acoustic shadow in the
region z < 0, with low sound pressure levels, and higher levels in the region
z > 0. In the shadow very low levels occur, much lower than the lower limit of
the grey level scale of -30 dB. In Chap. 5 we will see that in reality the levels
in the shadow are much higher, typically AL ~ —20 dB, as a consequence of
atmospheric turbulence.

The sound pressure field shown in Fig. 4.20 is clearly not axisymmetric. To
study the effect of the axisymmetric approximation, we have also computed the
field with the two-dimensional GFPE method. In this case the three-dimensional
field was determined by combining two-dimensional fields in vertical 7z planes
with azimuthal angle ¢ varying between ¢ = 0° and ¢ = 360°. If we ignore levels
below —30 dB in the shadow region, the maximum deviation from the three-
dimensional field shown in Fig. 4.20 is 0.4 dB. Therefore, the axisymmetric
approximation is an accurate approximation in this case. In situations with
larger azimuthal sound speed gradients, the axisymmetric approximation may
be less accurate (cf. Sec. K 4).

4.6.4 Atmospheric refraction

Figure 4.21 shows the field of the relative sound pressure level for the logarithmic
sound speed profile (4.5) with b = 1 m/s, computed with the GFPE method.
The deviation from the field for b = 0 shown in Fig. 4.17 is small, except near
the ground surface. Atmospheric refraction has large effects near the ground
surface.

Figure 4.22 shows the field for the same situation with b = -1 m/s. In this
case the atmosphere is upward refracting, which results in a sound shadow.
In practice, the low levels in the shadow region are considerably affected by
atmospheric turbulence (see Chap. 5).

Figure 4.23 shows 1/3-octave band spectra of AL for four receiver ranges
(30, 100, 300, and 1000 m) and an absorbing ground surface. Figure 4.24 shows
corresponding spectra for a rigid ground surface. We used the logarithmic sound
speed profile (4.5) with b=1m/s, b= 0m/s, and b = -1 m/s. For the absorbing
ground surface we see that downward refraction has a considerable effect on the
interference minimum. For the rigid ground surface we see that downward
refraction causes high levels at the ranges 300 and 1000 m. Upward refraction
causes low levels in the shadow region, both for the absorbing ground surface
and for the rigid ground surface.

Figure 4.25 shows an example of the variation of the relative sound pressure
level up to a range of 10 km, for an absorbing and a rigid ground surface, and
b=0and b=1m/s. For the rigid ground surface and b = 1 m/s we see that the
relative sound pressure level increases linearly with lgr. This was explained at
the end of Sec. 4.4 by the fact that the number of sound rays increases linearly
with r. The figure shows also the simple prediction represented by Eq. (4.10):
AL = 10lg Nrays, where Np,ys = 4hy /25 is the number of rays. The simple
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prediction is in fair agreement with the PE result for b =1 m/s.

4.6.5 Accuracy of the ray model

Figures 4.26 and 4.27 show comparisons between PE results and results of the
ray model described in Appendix L [135]. The CNPE and GFPE methods give
equal results in this case. The PE results can be considered accurate, so the
comparisons give an indication of the accuracy of the ray model.

Figure 4.26 shows 1/3-octave band spectra of AL for an absorbing ground
surface and a downward refracting atmosphere with a linear sound speed profile
¢(z) = co +az, with a = 0.1 s"*. The agreement between the PE results and the
results of the ray model is good.

Figure 4.27 shows 1/3-octave band spectra of AL for a linear sound speed
profile (the same profile as used for Fig. 4.26) and a logarithmic sound speed
profile [given by Eq. (4.5) with b= 1m/s and zo = 0.1 m]. Again the agreement
between PE results and results of the ray model is good for the linear profile,
but for the logarithmic profile the results of the ray model deviate from the PE
results below a frequency of about 300 Hz. The fact that the ray model is more
accurate for the linear profile than for the logarithmic profile can be attributed
to the large gradients of the logarithmic profile near the ground surface. The
gradient of the logarithmic profile at z = 0 is 10 s’!, which is a factor of 100
larger than the gradient a = 0.1 s of the linear profile.
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Figure 4.16. Field of the relative sound pressure level for b = 0, computed with
the CNPE method. The level in dB is represented by the grey level scale.

Figure 4.17. Field of the relative sound pressure level for b = 0, computed with
the GFPE method.
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Figure 4.18. Relative sound pressure level as a function of range, for a receiver
height of 50 m.
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Figure 4.19. Relative sound pressure level as a function of elevation angle
v = arctan[(z — zg)/r], for receiver range r = 400 m.
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Figure 4.20. Field of the relative sound pressure level computed with the three-
dimensional GFPE method, at a height of 2 m, in a horizontal circular region
around the source at (z,y) = (0,0). The source height is 2 m, the frequency
is 400 Hz, and the flow resistivity of the ground surface is 200 kPa-s-m™2. The
effective sound speed profile is ¢(z) = co + u(z) cos ¢, where ¢ = arctan(y/z) is
the azimuthal angle and u(z) = b, In(1 + z/zp) is the wind speed profile, with
b, = 1 m/s and zp = 0.1 m. This profile corresponds to a wind vector in the
positive = direction, as indicated in the figure.
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Figure 4.21. Field of the relative sound pressure level for b = 1 m/s, computed
with the GFPE method.

Figure 4.22. Field of the relative sound pressure level for b = -1 m/s, computed
with the GFPE method. Note that the range scale is larger than in Fig. 4.21.
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Figure 4.23. One-third-octave band spectra of the relative sound pressure level
for an absorbing ground surface, computed with the CNPE method.
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Figure 4.24. One-third-octave band spectra of the relative sound pressure level
for a rigid ground surface, computed with the CNPE method.
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Figure 4.25. Relative sound pressure level as a function of range, computed
with the CNPE method for the 125 Hz octave band. Thick lines are for a rigid
ground surface and thin lines are for an absorbing ground surface, as indicated
in the legends. The dotted line represents Eq. (4.10) for b = 1 m/s and a rigid
ground surface. For the rigid ground surface we assumed a roughness length of
2o = 0.001 m, appropriate for a water surface, instead of zp = 0.1 m.
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Figure 4.26. One-third-octave band spectra of the relative sound pressure level,
computed with the ray model and with the PE method (the CNPE and GFPE
methods give equal results), for a linear sound speed profile.
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Figure 4.27. One-third-octave band spectra of the relative sound pressure level,
computed with the ray model and with the PE method, for a linear sound speed
profile (upper graphs) and a logarithmic sound speed profile (lower graphs).
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Atmospheric turbulence

5.1 Introduction

In the previous chapter we described sound propagation in a refracting atmo-
sphere. For the vertical profiles of the temperature, the wind velocity, and the
(effective) sound speed we used smooth functions of height [see Eqs. (4.5), (4.12),
(4.13), and (4.14); see also Appendix N]. These profiles should be considered as
average profiles, averaged over a period of typically ten minutes.

On time scales of seconds or minutes, the temperature and the wind velocity
show considerable fluctuations around the average values. These fluctuations
are commonly referred to as atmospheric turbulence (see Appendix I). Due to
atmospheric turbulence, the instantaneous profiles of the temperature and the
wind velocity are not smooth functions of height. The turbulent fluctuations of
the temperature and the wind velocity have a considerable effect on atmospheric
sound propagation, as will be described in this chapter.

In Sec. 5.2 we describe the effect of atmospheric turbulence on sound propa-
gation in a non-refracting atmosphere. The description is based on an analytical
model for sound propagation in a non-refracting turbulent atmosphere, which is
described in detail in Appendix K. In Sec. 5.3 we study the effect of turbulence
on sound propagation in a refracting atmosphere. We describe qualitatively how
turbulence is taken into account in the PE method. A detailed description of
the PE method for a turbulent atmosphere is given in Appendix J. In Sec. 5.4
we present numerical examples that illustrate the effects of turbulence on sound
propagation.

5.2 Non-refracting turbulent atmosphere

In a non-refracting turbulent atmosphere, the average atmosphere (averaged
over a period of typically ten minutes) is non-refracting, so the average (effective)
sound speed is independent of position in the atmosphere. Turbulence causes
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fluctuations of the instantaneous sound speed around the average value.

In Chaps. 3 and 4 we have seen that sound propagation in a non-refracting
non-turbulent atmosphere can be modeled with two sound rays, the direct ray
from the source to the receiver and the ray reflected by the ground surface (see
Fig. 3.2). The interference between the direct ray and the reflected ray causes
characteristic minima in the spectrum of the relative sound pressure level (see
Sec. 3.5). Atmospheric turbulence reduces the depth of the interference minima
[67), as will be explained in the following two paragraphs.

We assume that sound propagation in a non-refracting turbulent atmosphere
can still be modeled with a straight direct sound ray and a straight reflected
sound ray. This means that we neglect small deformations of the straight rays
due to refraction by turbulent sound speed fluctuations. Turbulence is taken into
account only by phase and amplitude fluctuations of the sound waves traveling
along the ray paths.

The turbulent phase fluctuations are particularly important for the interfer-
ence minima in the spectrum. An interference minimum occurs at a frequency
for which direct and refiected waves have a phase difference of 180°, which means
that the waves (partially) cancel each other. The phase fluctuations of the direct
and reflected waves cause fluctuations of the frequency of the interference min-
imum. In other words, the interference minimum shifts more or less randomly
within a limited frequency interval. Logarithmic averaging (see Sec. 3.4) over
time results in a reduction of the depth of the interference minimum.

In Appendix K we describe an analytical model for the computation of the
time-averaged sound pressure level in a non-refracting turbulent atmosphere.
The model is based on a statistical method for averaging over the turbulent
phase and amplitude fluctuations of the direct and reflected sound waves.

5.3 Refracting turbulent atmosphere

In the previous section we explained that, in a non-refracting atmosphere, atmo-
spheric turbulence causes a reduction of the depth of the interference minima.
In a downward refracting atmosphere, the effect of turbulence is similar. In a
downward refracting atmosphere, the spectrum of the sound pressure level also
has characteristic interference minima, due to interference between sound rays
from the source to the receiver. The number of rays in a downward refracting
atmosphere, however, is usually considerably larger than two.

Thus, the effect of turbulence in a downward refracting turbulent atmo-
sphere is also a reduction of the depth of the interference minima. The ana-
lytical two-rays model for a non-refracting turbulent atmosphere described in
Appendix K can be generalized to a multi-rays model for a downward refracting
turbulent atmosphere [81, 131] (see Sec. L.5).

In an upward refracting atmosphere, the effect of turbulence is completely
different. Upward refraction results in a shadow region, i.e. a region where no
sound rays arrive (see Fig. 4.5). Figures 4.20 and 4.22 show that the relative
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Figure 5.1. Diffraction of sound into a refractive shadow region is analogous to
diffraction of sound into a shadow region behind a hill.
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Figure 5.2. Scattering of sound into a refractive shadow region. Four turbulent
inhomogeneities (eddies) are shown.

sound pressure level in a refractive shadow region in a non-turbulent atmosphere
is very low; in fact, the level well inside the shadow region is much lower than the
lower limit of —30 dB of the grey level scale used in the figures. Sound penetrates
into a refractive shadow region in a non-turbulent atmosphere only by sound
waves that can be considered as diffracted sound waves, as the penetration of
sound waves into the refractive shadow region is analogous to the diffraction of
sound waves into the shadow region behind a hill (see Fig. 5.1).

Atmospheric turbulence causes a large increase of the low levels in a re-
fractive shadow region. The mechanism responsible for the effect of turbulence
in a refractive shadow is usually described as scattering by turbulent inhomo-
geneities in the atmosphere (see Fig. 5.2). The scattering can be considered
as small-scale refraction. Sound waves are scattered into a refractive shadow
region by small random changes of the propagation direction.

The effect of turbulence in a refractive shadow region will be illustrated in
Sec. 5.4 by numerical examples. Typically, we find relative sound pressure levels
around —20 dB in a refractive shadow region, instead of the levels well below
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—30 dB in a non-turbulent atmosphere. Experimental data confirm the typical
value of —20 dB [157, 101, 102).

The PE methods described in Chap. 4 for sound propagation in a refracting
non-turbulent atmosphere can also be applied to sound propagation in a refract-
ing turbulent atmosphere. This is described in detail in Appendix J. Basically,
the approach is as follows.

Using a random number generator, we calculate random fluctuations of the
sound speed and add these to the average sound speed values corresponding
to the average, smooth sound speed profile. In this way we generate random
realizations of the fluctuating sound speed field in the turbulent atmosphere.
The random realizations can be considered as ‘snapshots’ of the turbulent at-
mosphere.

First we compute sound propagation for the different random realizations
with the PE method. Next we calculate average sound pressure levels by log-
arithmic averaging of the sound pressure levels computed for the different re-
alizations. Thus, averaging over time is replaced by ensemble averaging over
random realizations of the turbulent atmosphere.

For the calculation of the random realizations we make use of a quantity
that is equivalent to the (effective) sound speed: the (acoustic) refractive index
n = cop/c, where c is the sound speed and cy is a constant sound speed. As
sound speed fluctuations are relatively small, the value of the refractive index is
of the order of unity and fluctuations of the refractive index are small compared
to unity.

A statistical description of the refractive-index fluctuations is given in Ap-
pendix I. An important statistical quantity is the spatial correlation function
of refractive-index fluctuations. In the literature on wave propagation in the
turbulent atmosphere, various mathematical forms are given for this correla-
tion function. The correlation function is used in the calculation of random
realizations of the turbulent atmosphere (see Appendix J).

5.4 Examples

Figure 5.3 illustrates the effect of turbulence on sound propagation in a non-
refracting atmosphere. The figure shows a graph of the relative sound pressure
level as a function of receiver range, with a characteristic interference minimum
{analogous to the interference minimum in the spectrum, i.e. the relative sound
pressure level as a function of frequency). The interference minimum is con-
siderably reduced by turbulence, as explained in Sec. 5.2. For the turbulence
we used the Gaussian correlation function B(r) = i3 exp(~r?/a?) of refractive-
index fluctuations, with the values @ = 1.1 m and p3 = 10~°, which represent
relatively strong turbulence (see Secs. 1.7.1 and 1.7.2). The figure shows both
PE results and analytical results. The PE results for the turbulent atmosphere
were computed with the CNPE method, and were averaged over 500 random
realizations [139]. The analytical results for the turbulent atmosphere were cal-
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culated with the model described in Appendix K [Equation (K.6)]. The figure
shows good agreement between PE results and analytical results.

Figures 5.4 and 5.5 illustrate the effect of turbulence on 1/3-octave band
spectra of the relative sound pressure level in a non-refracting atmosphere, for a
rigid ground surface and an absorbing ground surface, respectively. The spectra
were calculated with the analytical model described in Appendix K [Equation
(K.6)]. For the turbulence we used the von Karman spectrum of refractive-index
fluctuations, with parameters K ', C%/T3, and C?/c3 (see Sec. 1.7.2).

Figure 5.6 illustrates the effect of turbulence for an upward refracting at-
mosphere with a shadow region. Comparison with the corresponding graph in
Fig. 4.22 for a non-turbulent atmosphere shows that the level in the shadow
region is enhanced by turbulence. The field was averaged over 50 random real-
izations of the turbulent atmosphere.

Figure 5.7 shows a graph of the relative sound pressure level along a hor-
izontal line in the field shown in Fig. 5.6, at height z = 2 m. In the shadow
region, the relative sound pressure level is constant, in good approximation. For
comparison, the result for a non-turbulent atmosphere (from Fig. 4.22) is also
shown.

Figure 5.8 shows a similar graph for the frequency of 125 Hz. For the com-
putation of the levels shown in this graph we used the CNPE method with a
range step Ar of 0.25 m and the GFPE method with two values of Ar: 10 and
20 m. All results are in good agreement with each other. The advantage of the
GFPE method over the CNPE method that larger range steps are possible (see
Sec. 4.5) is preserved in a turbulent atmosphere.

Figure 5.9 illustrates the effect of atmospheric turbulence on 1/3-octave band
spectra that were presented for non-turbulent atmospheres in Figs. 4.23 and
4.24. In general, the effect of turbulence is larger for low levels than for high
levels.
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Figure 5.3. Relative sound pressure level as a function of range, for a non-
refracting atmosphere with and without turbulence. Analytical results for the
turbulent atmosphere were calculated with Eq. (K.6). PE results for the tur-
bulent atmosphere were averaged over 500 random realizations. For the turbu-
lence we used the Gaussian correlation function B(r) = pdexp(—r?/a?) with

a=1.1m and pg =1075.
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Figure 5.4. One-third-octave band spectra of the relative sound pressure level,
for a non-refracting atmosphere and a rigid ground surface. The thick curve is
for a non-turbulent atmosphere. The thin curves are for turbulent atmospheres
with a von Karman spectrum for a moving atmosphere with C2/c = 2C%/T§.
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Figure 5.5. As Fig. 5.4, for an absorbing ground surface.



74 Chapter 5

Figure 5.6. Field of the relative sound pressure level computed with the GFPE
method for the logarithmic sound speed profile (4.5) with b = —1 m/s. The field
was averaged over 50 random realizations of a turbulent atmosphere, with a von
Karmén spectrum with parameters K, ' = 10 m, C2/T¢ = 2.5x10°7 m2/3, and
C2%/ck = 1x10°° m™%/3,
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Figure 5.7. Relative sound pressure level along a horizontal line at height 2 =2m
in the field shown in Fig. 5.6 for a turbulent atmosphere (thin line) and the field
shown in Fig. 4.22 for a non-turbulent atmosphere (thick line).
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Figure 5.8. Relative sound pressure level as a function of range, computed with
the CNPE and GFPE methods for different values of the range step Ar. The
levels were averaged over 50 random realizations of a turbulent atmosphere with

the same parameters as for Fig. 5.6.
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Figure 5.9. One-third-octave band spectra of the relative sound pressure level,
computed with the CNPE method for an absorbing ground surface (upper
graphs) and a rigid ground surface (lower graphs). Spectra are shown for turbu-
lent atmospheres with the same turbulence parameters as for Fig. 5.6 (averaged
over 16 random realizations) and for non-turbulent atmospheres (from Figs. 4.23
and 4.24). For the sound speed profile we used Eq. (4.5), with values of the pa-
rameter b indicated in the legend.
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Irregular terrain

6.1 Introduction

In the previous chapters we assumed that the ground surface is perfectly flat. In
practice, a ground surface is never perfectly flat. Natural ground surfaces, e.g.
grassland, always show small variations of the ground level, and sometimes larger
variations, such as hills. In this chapter we study the effect of smooth variations
of the ground level. In Appendix M we describe computational methods for
sound propagation over a ground surface with a smooth terrain profile.

In Sec. 6.2 we describe qualitatively the effects of a terrain profile on sound
propagation. In Sec. 6.3 we present numerical examples that illustrate the
effects.

6.2 Hills and other terrain profiles

The effect of a hill on sound propagation from a source near the ground is
illustrated in Fig. 6.1. The hill can be considered as a barrier for sound waves,
with a shadow region behind the hill. The shadow region is limited by the
shadow boundary, which is also shown in Fig. 6.1.

The sound pressure levels in the shadow region depend on the dimensions
of the hill, the position of the source, the frequency, and the atmospheric con-
ditions. In general, the levels are enhanced by downward atmospheric refrac-
tion: sound waves travel along curved paths over the hill if the atmosphere is
downward refracting. The levels are also enhanced by atmospheric turbulence:
sound waves are scattered into the shadow region by atmospheric turbulence
(cf. Sec. 5.3). In Sec. 6.3 we will illustrate these atmospheric effects by a nu-
merical example.

The effect of a hill can also be considered in a different way. The hill shown
in Fig. 6.2 consists of two concave ground segments and one convex ground
segment. The convex curvature and the concave curvature have opposite effects
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Figure 6.1. Shadow region behind a hill.
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Figure 6.2. Hill consisting of two concave segments and one convex segment.

Figure 6.3. Ray illustration of the conformal mapping method for computing
sound propagation over a curved ground surface. A convex ground curvature
is transformed to an upward refracting contribution to the atmospheric sound
speed profile; a concave ground curvature is transformed to a downward re-
fracting contribution. To demonstrate the effect of the transformation on the
sound speed profile, the figure shows the straight direct sound ray in the original
systems and the corresponding curved sound rays in the transformed systems.
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on sound propagation. This follows from the conformal mapping method, which
is described in detail in Sec. M.2.

The conformal mapping method is based on a coordinate transformation that
is called a conformal mapping. The conformal mapping transforms a system
with a curved ground surface to a system with a flat ground surface and a
modified sound speed profile. A convex curvature is transformed to an upward
refracting contribution to the sound speed profile and a concave curvature is
transformed to a downward refracting contribution to the sound speed profile.
This is illustrated in Fig. 6.3.

Consequently, sound propagation over a convex or concave ground surface
can be computed with the computational methods described in the previous
chapters (the PE methods for example); first a conformal mapping is applied
and next sound propagation is computed for the transformed system with a flat
ground surface. This approach can also be applied to a terrain profile consisting
of a ‘chain’ of convex and concave segments (e.g. the hill shown in Fig. 6.2), by
applying a series of conformal mappings [43).

An alternate method for computing sound propagation over a smooth terrain
profile is the Generalized Terrain PE (GTPE) method [129]. For a flat ground
surface, the GTPE method is identical to the CNPE method (which is described
in Appendix G). The GTPE method is described in Sec. M.3.

6.3 Examples

Figure 6.4 shows a comparison between results of the GTPE method and results
of the conformal mapping method in combination with the GFPE method. The
figure shows the relative sound pressure level as a function of receiver range,
for sound propagation over a hill with a height of 10 m. The logarithmic sound
speed profile (4.5) with b = 1 m/s was used (with height measured with respect
to local ground level). This profile represents a downward refracting atmosphere.
Other parameters are given in the figure. For comparison, the figure shows also
results for the situation without the hill, i.e. for a flat ground surface. The
agreement between the GTPE method and the conformal mapping method is
good.

Figure 6.5 shows fields of the relative sound pressure level, computed with
the conformal mapping method in combination with the GFPE method. The
fields demonstrate that both downward refraction and atmospheric turbulence
enhance sound pressure levels in the shadow region behind a hill.

Figure 6.6 illustrates the effect of surface roughness on sound propagation
over water in a downward refracting atmosphere. For a flat water surface, the
figure shows that the relative sound pressure level increases linearly with the
logarithm of the range, as predicted by Eq. (4.10) (the curve for the flat surface
in Fig. 6.6 was also shown in Fig. 4.25). For the rough surface we used a
periodic oscillation with a wavelength of 25 m between z = 0 and z = —0.5 m.
For ranges larger than about 1 km, the relative sound pressure level above the
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rough surface is considerably lower than above the flat surface. This can be
explained as follows. High levels above a flat surface are due to the fact that
many rays with multiple reflections arrive at receiver positions near the surface.
An example of such a ray is shown in Fig. 6.7. Above a rough surface the levels
are lower, because many of the rays do not arrive at the receiver positions near
the surface: rays that hit a surface section with a positive slope are reflected
with large elevation angles. This is illustrated in Fig. 6.7.
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Figure 6.4. Comparison between results of the GTPE method and results of the
conformal mapping method in combination with the GFPE method, for sound
propagation over a hill. The geometry with the hill is indicated below the graph.
For comparison, results for the situation without the hill (flat ground) are also
shown. For a flat ground, the GTPE method is identical to the CNPE method.
The receiver height is 2 m, measured with respect to local ground level.
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Figure 6.5. Fields of the relative sound pressure level, computed with the
conformal mapping method in combination with the GFPE method, for a
non-refracting non-turbulent atmosphere (upper graph), a downward refract-
ing non-turbulent atmosphere (middle graph), and a non-refracting turbulent
atmosphere (lower graph). For the refracting atmosphere we used the loga-
rithmic profile (4.5) with b = 1 m/s. The sound field for the turbulent atmo-
sphere was computed by averaging over 50 random realizations, using a von
Karmén spectrum with parameters K; ! = 10 m, C2 /T2 = 2.5x107 m%/3, and
C2%/c2 = 1x10® m2/3,
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Figure 6.6. Relative sound pressure level as a function of range, averaged over
the 125 Hz octave band, for propagation over a rigid flat surface and a rigid
rough surface (e.g. water surfaces). For the rough surface we used a periodic
oscillation with a wavelength of 25 m between z = 0 and z = -0.5 m. For the
sound speed profile we used the logarithmic profile (4.5) with ¥ = 1 m/s and
zo = 0.001 m. For the computation we used the GTPE method.

Figure 6.7. Top: example of a ray that reaches the receiver by two reflections at
a flat surface. Bottom: the ray does not reach the receiver in a situation with

a rough surface.
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Noise barriers

7.1 Introduction

Noise from a source near the ground can be reduced by means of a barrier
between the source and the receiver. Noise barriers are widely used for the re-
duction of traffic noise. The simplest noise barrier is a vertical screen, e.g. a thin
wall. In this chapter we describe computational methods for sound propagation
over a vertical screen. In Appendix O we describe the computational methods
in more detail. Experimental results for sound propagation over barriers can be
found in Refs. [114, 71, 38, 117, 12].

In Sec. 7.2 we describe an analytical model for sound propagation over a
screen in a non-refracting atmosphere. In Sec. 7.3 we describe the application
of the PE method to sound propagation over a screen in a refracting atmosphere.
In general, atmospheric refraction has large effects on sound propagation over a
screen. The complex wind speed profile near a screen plays an important role in
the refraction. This profile is also described in Sec. 7.3. In Sec. 7.4 we present
numerical examples.

7.2 Non-refracting atmosphere

In Chap. 3 we have seen that sound propagation in a non-refracting atmosphere
over a flat ground surface can be described with two sound rays: a direct ray
and a ray reflected by the ground surface (see Fig. 3.2). We denote these rays
as follows:

ray 1: source — receiver

ray 2: source — ground — receiver.

In a similar way, sound propagation over a screen on a ground surface, in a
non-refracting atmosphere, can be described with four sound rays (see Fig. 7.1):
ray 1: source — screen top — receiver

ray 2: source — ground — screen top — receiver
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Figure 7.1. Four sound rays contributing to sound propagation over a screen on
a ground surface, in a non-refracting atmosphere.

ray 3: source — screen top — ground — receiver

ray 4: source — ground — screen top — ground — receiver.

All four rays are diffracted by the screen top. Rays 2 and 3 are reflected once by
the ground surface; ray 4 is reflected twice by the ground surface. In Sec. 0.2 we
give expressions for the contributions of the four rays to the complex pressure
amplitude at the receiver. These expressions are based on a combination of the
theory of reflection of spherical waves by a finite-impedance ground surface and
the theory of diffraction of spherical waves by a screen.

We assume here that the receiver is below the shadow boundary of the
source, t.e. the line through the source and the screen top. If the receiver is
above the shadow boundary of the source, the direct ray (source — receiver) also
contributes to the complex pressure amplitude at the receiver. If the receiver
is above the shadow boundary of the image source (see Sec. 0.2), the reflected
ray (source — ground — receiver) also contributes.

7.3 Refracting atmosphere

In Chap. 4 we have seen that sound propagation in a refracting atmosphere over
a ground surface can be computed with the PE method. Sound propagation over
a screen on a ground surface, in a refracting atmosphere, can also be computed
with the PE method. Both the CNPE method and the GFPE method can be
used.

The basic approach of the PE method is a step-wise extrapolation of the field
on a rectangular grid in the vertical plane through the source and the receiver.
The effect of the screen can be taken into account by setting the field equal to
zero at the grid points covered by the screen. This is equivalent to the Kirchhoff
approximation of diffraction [142]. The application of the PE method to sound
propagation over a screen is described in detail in Sec. O.3.

A noise screen has an effect not only on sound waves but also on the wind
speed profile in the atmosphere. Wind speeds are low in the region behind the
screen {on the downwind side) and high in the region just above the screen.



Noise barriers 87

24 T T T T T T T T L T 1 T T

height (m)
N ®
T T
i ) I

(=24
T
1

0 12 24 36 48 60 72 84 96 108 120 132 144
range (m)

Figure 7.2. Wind speed profiles at ranges 0, 12, 24 ..., 144 m near a screen on
a ground surface. The screen is located at range 30 m and has a height of 6 m.
The profiles have been calculated with approximate relations given in Sec. 0.4,
for zo = 0.1 m and ujp = 4 m/s. The undisturbed logarithmic profile at range
zero corresponds to a wind speed of 4 m/s at a height of 10 m.

This effect of a screen on the wind speed profile has an indirect effect on sound
propagation over the screen.

Figure 7.2 shows an example of wind speed profiles near a screen. The
profiles have been calculated with approximate analytical relations for the wind
speed field near a screen [137], which are given in Sec. O.4. Far from the screen,
an undisturbed logarithmic profile is assumed; this profile is shown in Fig. 7.2
at range zero. Near the screen, the profiles are disturbed by the screen. The
profiles show large vertical wind speed gradients in the region near the screen
top. These screen-induced wind speed gradients have a significant effect on
sound propagation over a screen [118, 136, 137).

Sound propagation over a screen is also affected by atmospheric turbulence.
The effect of turbulence is particularly important deep in the shadow region
behind a screen [34, 53, 54]. This is analogous to the effect of turbulence in a
refractive shadow (see Chap. 5). The PE method for a turbulent atmosphere
(see Chap. 5) can be used to study the effect of turbulence on sound propagation
over a screen.

7.4 Examples

Figure 7.3 shows 1/3-octave band spectra of the relative sound pressure level
for sound propagation in a non-refracting atmosphere over a screen on a rigid
ground surface. Figure 7.4 shows corresponding spectra for an absorbing ground
surface. The figures show spectra for two screen heights, H =4 m and H = 8 m.
For comparison, the figures show also spectra for the situation without the
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screen, indicated as H = 0. The spectra for H > 0 were computed with the
analytical model described in Secs. 7.2 and 0.2; the spectra for H = 0 were
computed with the method described in Chap. 3.

As expected, the relative sound pressure levels for H > 0 are lower than for
H = 0. In other words, the levels are reduced by the screens. The reduction is
larger for H = 8 m than for H = 4 m (except in a narrow frequency interval
in Fig. 7.3). At high frequency, the relative sound pressure level decreases with
increasing frequency by (on average) 3 dB per octave; this simple behavior at
high frequency can be derived from the diffraction solution used in the ana-
lytical model described in Sec. 0.2 [106, 74], and also from well-known scale
model results presented by Mackawa [86]. At lower frequency, around 250 Hz,
the spectra show various interference minima, corresponding to interference be-
tween the four sound rays shown in Fig. 7.1. At very low frequency, all spectra
approach the limiting value AL = 6 dB, corresponding to a doubling of the
acoustic pressure; in this frequency range, the wavelength is large compared
with the screen height, so the screen is nearly ‘invisible’ for sound waves.

Figure 7.5 illustrates the effect of screen-induced wind speed gradients on
sound propagation over a screen (see end of Sec. 7.3). The figure shows the
relative sound pressure level as a function of range, computed with the CNPE
method for three different sound speed profiles, indicated as (i), (ii), and (iii).
Profile (i) is the profile shown in Fig. 7.2, with large wind speed gradients in
the region near the screen top. Profile (ii) is the undisturbed logarithmic profile
(also shown in Fig. 7.2, at range zero); profile (ii) ignores the effect of the screen
on the wind speed profile. Profile (iii) represents a non-refracting atmosphere.
For comparison, analytical results for the non-refracting atmosphere are also
shown in Fig. 7.5; the analytical results are in good agreement with the PE
results for the non-refracting atmosphere.

The PE results for the profiles (i) and (ii) deviate considerably from the
results for the non-refracting atmosphere. This implies that atmospheric re-
fraction has a significant effect on the propagation over the screen. Moreover,
screen-induced wind speed gradients have a significant effect on the propaga-
tion over the screen, as the levels for profile (i} are considerably higher than
the levels for profile (ii) (except for the 125 Hz octave band). The acronym
RESWING (REfraction by Screen-induced WINd speed Gradients) is used for
this effect [136].
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Figure 7.3. One-third-octave band spectrum of the relative sound pressure level,
for sound propagation in a non-refracting atmosphere over a rigid ground surface
with a screen. Results are shown for three screen heights H: 0, 4, and 8 m (see
legend).
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Figure 7.4. As Fig. 7.3, for an absorbing ground surface.
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Figure 7.5. Relative sound pressure level as a function of range, for sound
propagation over a screen on a ground surface [137]. PE results are shown for
four octave bands and three sound speed profiles (see legend): (i) the profile
¢(z) = co + u(z) shown in Fig. 7.2, (ii) an ‘undisturbed’ logarithmic profile
¢(z) = co + uo(z), and (iii) the profile c(z) = cp representing a non-refracting
atmosphere. The functions u(z) and ue(z), with parameters ujo and zo, are
given in Sec. 0.4. A value of 340 m/s was used for ¢g. For comparison, analytical
results for the non-refracting atmosphere are also shown. The distance between
the source and the screen is 30 m and the screen has a height of 6 m, as indicated

above the graphs.



Appendix A

Basic acoustic equations for
a homogeneous atmosphere

A.1 Introduction

The models described in this book are based on linear acoustics. In linear
acoustics one assumes that the pressure fluctuations generated by a sound wave
are small compared with the average pressure in the atmosphere. This is usually
a good assumption. Nonlinear terms are important only for very loud sounds,
such as the sound generated by an explosion.

In this appendix we derive the basic equations of linear acoustics for a ho-
mogeneous atmosphere {106, 107]. In Sec. A.2 we derive the linear acoustic
equations and the wave equation, and we develop an expression for the adia-
batic sound speed. In Sec. A.3 we derive the Helmholtz equation for harmonic
sound waves. In Sec. A.4 we derive the inhomogeneous Helmholtz equation,
which includes a Dirac delta function for a monopole source.

A.2 The linear acoustic equations and the wave
equation

The atmosphere is modeled as a compressible fluid, i.e. a gaseous medium in
which local pressure fluctuations cause local density fluctuations. When a sound
wave travels through this medium, local pressure fluctuations and local density
fluctuations are generated. The corresponding movement of the fluid is repre-
sented by a (fluctuating) fluid velocity.

The mathematical description of sound waves in the atmosphere follows from
the equations of mass conservation and momentum conservation in a fluid. The
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equation of mass conservation is

a—;ﬁ + V- (pava) =0, (A1)
t

where p, is the density of the atmosphere (mass per unit volume), v, is the fluid
velocity of the atmosphere, and ¢ is the time. The index ‘a’, for ‘atmosphere’,
is used to distinguish p, and v, from the quantities p and v used below. The
derivation of Eq. (A.1) is a matter of keeping track of the mass in an infinitesimal
fluid volume, and can be found in textbooks on fluid dynamics. The term dp, /8t
represents the rate of change of the density of the volume. The term V - (p,V,)
represents the net flow of fluid out of the volume.

The equation of momentum conservation is

Dv,
Dt

where p, is the pressure in the atmosphere and the operator D/Dt = 9/0t +
Va - V is the time derivative in a frame moving with the local fluid velocity.
This equation is of the form ‘mass x acceleration = force’, and represents the
acceleration of the fluid by local pressure gradients.

In a sound wave in the atmosphere, the fluctuations of the pressure and the
density are usually small compared with the average values (i.e. time averages)
of these quantities. For example, the fluctuation of the pressure is typically
smaller than 100 Pa, which is only 0.1 % of the average pressure in the atmo-
sphere. The velocity fluctuation is linearly related to the pressure and density
fluctuations, in the linear acoustic approximation, so the velocity fluctuation
can also be considered as a small quantity.

We assume that the atmosphere is homogeneous, so the average pressure,
the average density, and the average velocity are independent of position in
the atmosphere (a generalization to inhomogeneous atmospheres is presented
in Appendix E). We assume that there is no wind in the atmosphere, so the
average velocity is zero everywhere in the fluid. We write

= _Vpay (A'2)

Pa

Pa = Pav +P
Pa = Pav +p (A3)

Va = Vay +V,

where payv, pav, and v,, are the constant average values, with v,, = 0, and
p, p, and v are the small fluctuating contributions, referred to as the acoustic
contributions. The fluctuation p is called the acoustic pressure or sound pres-
sure. We substitute Egs. (A.3) into Egs. (A.1) and (A.2), retain only terms
linear in the small fluctuating contributions, and find

)
pavV v = —a—’t’ (A.4)
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Equations (A.4) and (A.5) are called the linear acoustic equations. To proceed,
we have to specify the thermodynamic relation between the pressure p, and the
density p, in the atmosphere. The fluctuations caused by a sound wave are so
rapid that sound propagation can be considered as an adiabatic process, i.e. a
process without heat flow. In adiabatic processes, the pressure and the density
satisfy the relation

pa = szv (A.6)

where K is a constant and v = ¢, /¢y is the specific-heat ratio; ¢, and ¢y are
the specific-heat coefficients of air at constant pressure and constant volume,
respectively. A relation between the pressure fluctuation p and the density
fluctuation p is found from a first-order Taylor expansion of the function p,(pa):

3pa)
av + = Pav + y A7
Pa(pav +p) =P ( 30.) " (A7)

where the derivative is evaluated under adiabatic conditions and at density pay.
Using p = pa — pav and Eq. (A.6), we find

p=cp (A.8)
with
2= (g&> .3 (4.9)
Pa / .y Pav

The constant ¢ will be identified later as the sound speed. From the ideal-gas
law

Pav = pavRT (A.10)
we find
¢ = yRT. (A.11)

Here T is the absolute temperature and R is a constant. Using Eq. (A.8), we
write the linear acoustic equations (A.4) and (A.5) as

10p

pV'V= —22-5 (A.12)
ov

where we have omitted the subscript of pay; the subscript of pay will be omitted
when it is clear from the context that p represents the average atmospheric
density (this is the case in all appendices except in Appendix E). We take the
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time derivative of Eq. (A.12) and take the divergence of Eq. (A.13), eliminate
0(V - v)/0t from the two resulting equations, and find the wave equation

2, 10°p
P 2
From this equation we can identify the constant ¢ as the sound speed. To
show this, we consider the solution p = g(xr — ct) of Eq. (A.14), where g is
an arbitrary function. This solution represents a plane wave traveling in the
positive z direction, with constant values of the pressure p within planes normal
to the = axis. As the solution depends only on z — ct, the pressure appears
constant to an observer moving in the positive = direction with speed c¢. In
other words, the wave travels with speed c.
For dry air we have v = 1.4 and R = 287 J.kg!-K™!, and we find from
Eq. (A.11) a sound speed of 331 m/s at temperature 273 K, i.e. 0°C. Equation
(A.11) can be written as

=0. (A.14)

where we use Tp = 273 K and ¢o = 331 m/s (one may also use, for example,
To = 288 K and ¢y = 340 m/s). Values of the sound speed calculated with
Eq. (A.15) agree with experimental values, which confirms our assumption that
sound propagation can be considered as an adiabatic process. The sound speed
given by Eq. (A.11) or Eq. (A.15) is referred to as the adiabatic sound speed.
For comparison, the isothermal sound speed is a factor of y~1/2 ~ 0.85 smaller
than the adiabatic sound speed.

The value ¢g = 331 m/s for Ty = 273 K was derived for dry air. The effect of
humidity is a small increase of the sound speed, by a factor of (1+0.16h), where
h is the molar concentration of water vapour in the atmosphere (0 < h < 1;
cf. Sec. B.5). At 20°C, an upper limit for h is about 0.02, corresponding to an
increase of the sound speed by 0.3%.

For future reference we note that the ideal-gas law (A.10) gives the following
expression for the density of air at a pressure of 1 atm (1 atm = 1.01325x10° Pa):

p = poTo/T, (A.16)

where gy = 1.29 kg-m? is the density at temperature Ty = 273 K.

A.3 Helmbholtz equation for harmonic waves

A sound wave is harmonic if the time dependence of the sound pressure is given
by a factor cos(¢ — wt), where w = 2 f is the angular frequency (f is the
frequency) and ¢ is a constant phase angle. The factor can also be written
as sin(¢’ — wt), with ¢’ = ¢ + 4x. In this case, the sound pressure and the
other acoustic variables oscillate sinusoidally with time, at each position. This
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is perceived as a pure tone. We write in this case
p= Re (pce—-iwt)

] (A.17)
—iw )

v = Re (vce ,

where p. and v, are complex amplitudes and Re(z) is the real part of a complex
number z. To explain this notation, we write the complex amplitude p. as
Ae'®, where A and ¢ are real numbers. Substitution into Eq. (A.17) gives
p = Acos(¢p — wt). The factor A is called the amplitude of the sound field and
¢ — wt is called the phase. The amplitude and the phase vary with position in
the atmosphere, in general. A surface on which the phase is constant is called
a wave front. In Sec. A.4 we will see that the wave fronts of a point source are
spheres.

For harmonic sound waves we can simplify the linear acoustic equations
(A.12) and (A.13) and the wave equation (A.14). From Egs. (A.17) we have
that the pressure p and the velocity v depend on time only through the factor
e ™. Consequently, the time derivative in Eqgs. (A.12) to (A.14) reduces to
a multiplication by the factor —iw. For example, substitution of Eqs. (A.17)
into Eq. (A.12) gives Re [(pc?V - v — iwpc)e~*t] = 0. This should hold for all
values of time ¢, which implies pc?V - v, — iwp. = 0. The same arguments can
be used in Egs. (A.13) and (A.14). The linear acoustic equations (A.12) and
(A.13) become

P2V - v, = iwp. (A.18)

wpv, = Vo (A.lg)
and the wave equation (A.14) becomes
V2pe + k*pe = 0, (A.20)

where k = w/c is the wave number. Equation (A.20) is called the Helmholtz
equation.

A.4 Inhomogeneous Helmholtz equation for a
harmonic monopole source

We consider a sound field generated by a point source, and assume that the
field has spherical symmetry with respect to the source, i.e. depends only on
the radial distance r from the source. In this case the source is called a monopole
source. The Helmholtz equation (A.20) becomes

;W(rpc) + k*pe = 0. (A.21)
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This implies that the product rp, satisfies the one-dimensional Helmholtz equa-
tion 8%(rp.)/0r? + k*(rp.) = 0. The solution is

pe=S &"(:ZC-Q, (A.22)
where S is a constant; we assume that S is real, for simplicity. This solution
represents an ‘outgoing’ wave, i.e. a wave that travels away from the point
source. This can be seen as follows. Substitution of Eq. (A.22) into Eq. (A.17)
gives p = Scos(kr — wt)/r. The corresponding wave fronts, i.e. surfaces of
constant phase kr — wt, are spheres with radius r. The phase kr — wt of a wave
front remains constant in time only if the radius r increases with increasing
time ¢.

A second solution of Eq. (A.21) is p. = S exp(—ikr)/r. This solution is non-
physical, as it represents a wave in which the radius of a wave front decreases
with increasing time.

The amplitude of the spherical sound field represented by Eq. (A.22) is
S/r, which decreases with increasing r. The corresponding sound pressure
p = Scos(kr —wt)/r is a periodic function of time with period 27/w = 1/f
and a periodic function of r with ‘spatial period’ 2w /k = ¢/ f, which is called
the wavelength.

The field given by Eq. (A.22) diverges for 7 — 0. This divergence can be
represented by including a term —4mwSd(r — rs) on the right-hand side of Eq.
(A.20):

V2pe + k®pe = —4nS8(r —15), (A.23)

where rs = (zs,¥s, zs) denotes the source position in a rectangular zyz coor-
dinate system and 8(r — rs) = 8(z — 25)80(y — ¥s)8(2z — 2) is the product of
three Dirac delta functions. The Dirac delta function is defined by the relation
[ 9(z)é(z — a)dz = g(a), where g(z) is an arbitrary function and the integration
interval includes z = a [91].

To prove Eq. (A.23), we integrate Eq. (A.23) over the volume of a sphere
with radius € around the source:

€

4me? (%’-}) + 4nk? /pcrzdr = —4rS. (A.24)
r=e¢ 0

In the first term on the left-hand side we have used Gauss’ theorem

///V-FdV://F-ndSc, (A.25)
\ % Se

where F(r) is an arbitrary vector field, S, is a closed surface, V' is the volume
enclosed by the surface S, and n is the outward unit normal vector at the
surface S;; in this case we have F = Vp, and Vp. = (9p./0r)n, as we have
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Pe = pc(r) in a spherically symmetric field. We substitute Eq. (A.22) into Eq.
(A.24) and take the limit ¢ — 0. This gives an identity. Equation (A.23)
is called an inhomogeneous Helmholtz equation, while Eq. (A.20) is called a
homogeneous Helmholtz equation.
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Free field of a point source

B.1 Introduction

The sound field of a source in an unbounded homogeneous atmosphere is called
the free field of the source. The atmosphere is unbounded if there are no
boundaries, such as a ground surface. The atmosphere is homogeneous, or
non-refracting, if the sound speed is constant, i.e. independent of position in
the atmosphere.

In this appendix we describe the free field of a point source. This field is
used as a reference field in the definition of the relative sound pressure level (see
Sec. 3.4).

The ‘strength’ of a source is represented by the acoustic power, which is
defined in Sec. B.2. In Sec. B.3 we introduce the sound pressure level, and
we derive a relation between the sound pressure level and the sound power
level, taking into account the geometrical attenuation corresponding to spherical
spreading of sound waves. In Sec. B.4 we describe the spectral decomposition
of the sound field, using the mathematical technique of Fourier transformation.
In Sec. B.5 we include the effect of atmospheric absorption in the description of
the sound field. In Sec. B.6 we describe the Doppler effect for a moving source.

B.2 Acoustic power of a source

The sound field of a source is represented by the acoustic pressure p(r,t) and
the fluid velocity v(r,t), where r denotes position in the field and ¢ denotes
time. We assume that the source is harmonic, and write p = Re (p.e™**) and
v = Re (vce~™!) with complex amplitudes p. = pr +ip; and Ve = Vr +1Vi (see
Sec. A.3). The acoustic intensity is defined as I = pv, which can be written as
follows in this case:

I = (p; coswt + p; sin wt) (v, coswt + v;sinwt). (B.1)

99
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The intensity is a function of time. The time average of the intensity, denoted
as Iy, is given by

1 1 1,
Iav = =pVe + oDV = Re( _pch)v (B2)
2 2 2
as follows from Eq. (B.1) and the relation (cos2wt),y = (sin2wt),, = 0. Here
the average is performed over an integral number of harmonic periods.

The average acoustic power of the source is defined as

Wy = / / L, -n dS., (B.3)
Se

where S, is an arbitrary surface that encloses the source and n is the outward
unit normal vector at the surface. The integral in Eq. (B.3) is independent of
the choice of the surface S, as long as it encloses the source. An equivalent
statement is that the integral vanishes if the surface encloses no sources. This
can be shown as follows. We have V-1 = (Vp) - v + pV - v. Substitution of the
linear acoustic equations (A.12) and (A.13) gives the relation V - I = —0w/dt,
where w = $pv? + $p?/pc? is called the acoustic energy density [106]. This re-
lation is valid at all positions except source positions (at source positions, p and
v diverge). As w depends on time through v? and p?, we have (8w/8t)av = 0,
where the average is performed over an integral number of harmonic periods
[from p = p; coswt + p;sinwt we find (8p?/Ot)ay = 0]. Consequently, we have
V-I.v = 0 at all positions except source positions. With Gauss’ theorem (A.25)
we find that the integral in Eq. (B.3) vanishes if the surface encloses no sources.

B.3 Sound pressure level and geometrical atten-
uation

We assume that the sound field has spherical symmetry with respect to the
source, so the complex pressure amplitude p. and the complex velocity ampli-
tude v. depend on position only through the radial distance r from the source.
In this case Eq. (B.3) gives

Wy
47r?’

where I, = I, - n is the magnitude of the average intensity, which has only a
radial component in this case.

In practice the field of a sound source is often not spherical. The field
is usually a smooth function of the direction of sound emission. In this case
the analysis presented in this section can still be applied. The power W,, is a
function of the direction of sound emission in this case, and Eq. (B.4) represents
the decrease with distance r of the intensity within a cone, with the source at
the apex of the cone.

Ly (B.4)
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The complex pressure amplitude is given by Eq. (A.22):

exp(ikr)
7’ k

pc=3S5 (B.5)

where S is a constant. The corresponding fluid velocity has only a radial com-
ponent, which follows from Eq. (A.19):

ve = L 9Pc (B.6)
iwp Or
This gives
v = (1 + i) P (B.7)
kr ) pc

For large r we have kr >> 1, and we find v, = p./pc. As pc is a real number, this
implies that the pressure and the fluid velocity are in phase with each other,
at large distance from the source. For plane waves, the relation v. = pe/pc
holds exactly, as follows from Eq. (A.19) (see Sec. C.3). Thus, a spherical wave
behaves locally as a plane wave, at large distance from the source. The region
where we have kr > 1 is called the far-field region.

The average acoustic intensity given by Eq. (B.2) becomes, from Eq. (B.7),

2
Ly, = P (B.8)

2 pc

The near-field term i/kr in Eq. (B.7) does not contribute to I,,. Equation (B.8)
can also be written as

Ly = P (B.9)

where (p?)ay is the squared sound pressure averaged over an integral number
of harmonic periods. The proof that (p?)ay is equal to 3|pc|? is analogous to
the derivation of Eq. (B.2) from Eq. (B.1). From Egs. (B.5) and Eq. (B.8) we
find that I,, is proportional to r~2, in agreement with Eq. (B.4); the quantity
Wav in Eq. (B.4) is related to the constant S by the relation W,, = 275%/pc.
Equations (B.4) and (B.9) give the relation

Way
4mr?’

(P*)av = pc (B.10)

The sound pressure level is defined as

2
L,=101g (—’g& (B.11)

ref
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with reference sound pressure pyes = 2x10°° Pa (or 20 uPa). The sound power
level is defined as

WBV

ref

Lw =10lg (B.12)

with reference sound power Wyef = 1x1012 W (or 1 pW). The values of pres
and Wi s satisfy the relation

Pes = pcWier. (B.13)
From Egs. (B.10) to (B.13) we find
L, = Ly — 101g4nr?. (B.14)

The term 101g4nr? represents the attenuation of a spherical sound wave with
increasing distance from the source, as a consequence of the spherical spreading
of acoustic intensity. This attenuation is called geometrical attenuation.

The sound pressure level is a dimensionless number, but to indicate that the
level is calculated with Eq. (B.11) one writes dB (re 20 uPa) after the number,
where dB stands for decibel and re for ‘reference’. For (p?)ay = 1 Pa, for exam-
ple, we have L, = 94 dB (re 20 uPa). Analogously, one writes dB (re 1 pW)
after a sound power level calculated with Eq. (B.12).

B.4 Spectral decomposition

The foregoing was restricted to a harmonic source, but the results can also be
used for a non-harmonic source by decomposing the sound pressure signal p(t)
(at an arbitrary position) into harmonic components:

p(t) =D Re (pc,ne™"), (B.15)
n
where p. ., are the complex pressure amplitudes and wy, are the angular fre-
quencies of the harmonic components, for n = 0,1,2, ... . In this section we will
derive Eq. (B.15), using the mathematical technique of Fourier transformation
[112].
The Fourier transform P(f) of a time signal p(t) is defined as

o0
P(f) = / p(t)e?™ 7t dt. (B.16)

-0

The inverse transform is

p(t) = / P(f)e~ 2"t df. (B.17)
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The variable f in these expressions will be identified later as the frequency of a
harmonic component. As p(t) is real, we have P(—f) = P*(f). The functions
p(t) and P(f) satisfy the relation

2]

/ P(t) dt = / ()2 df, (B.18)

—00

which is known as Parseval’s theorem [112].
In practice one works with a sampled signal, i.e. a set of values of the signal
p(t) at discrete times t; given by

t; =j7, with 7 =0,1,... ,N -1, (B.19)

where 7 is the sample time and N is the number of samples; we assume that N
is even. We define N frequencies

1

fn , §N. (B.20)

= ]—V"—T with n = —%N+1,—%N+2,...

For a sampled signal, the infinite time integration interval in Egs. (B.16)
and (B.18) is replaced by the finite ‘measurement period’ from t to ty_;. We
assume that the signal is nonzero only in a finite time interval that is contained
in the measurement period. The signal is zero at the boundaries of the measure-
ment period, i.e. at the times ¢y and ¢{y_,. For a continuous time signal this
is not true; in this case one forces the signal to go to zero at the boundaries,
by multiplying the signal by a ‘time window’ function; this function is equal
to unity except in narrow regions near the boundaries, where the function goes
continuously to zero.

The signal p(t) is accurately represented by the N samples p(t;) only if the
measurement period Nt is sufficiently long and if the sample frequency 1/7 is
sufficiently high. It proves that the sample frequency should be at least twice
the highest frequency present in the signal. The infinite frequency integration
interval in Eqgs. (B.17) and (B.18) is replaced by the finite interval from —1/27
to 1/2r.

The discrete approximation of the Fourier transform (B.16) for a sampled
signal is

P(fa) =P, (B.21)
with
N-1 ]
Py =) p(t;)emin/N, (B.22)
=0

The quantity P, is called the Discrete Fourier Transform (DFT) of the signal
p(t;). If we use a power of 2 for the number N, e.g. N = 210 = 1024, the sum in
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Eq. (B.22) can be evaluated efficiently with the Fast Fourier Transform (FFT)
algorithm [112].
The discrete approximation of the inverse Fourier transform (B.17) is

iN

1 .y
pty) = Z Phe~izmin/N, (B.23)
n=—3N+1
where Eq. (B.21) has been used. From Eq. (B.22) we have P, = P, which
implies that the set n = —3N +1,~1N +2,... 1N is equivalent to the set

n=0,1,...,N - 1. From Eq. (B.23) we have p(t;) = p(t;+n~). In particular,
we have p(to) = p(tn). This is the reason why we assumed p(to) = p(ty_1) =0
below Eq. (B.20); for p(to) # p(t~y—-1) we would have a pressure jump between
tn-1 and ¢, which introduces spurious high-frequency components in the spec-
trum.

As p(t) is real, we have P_, = Pz. This implies that Eq. (B.23) can also be
written as

IN
P(t}) = > Re (P ne=2mm/N) (B.24)
n=0
with
iP., forn=12,...,1N -1
P, 276 27
N P . forn=0and n=3N (B.25)

%Pc‘)_n forn=-1,-2,... ,—%N+ 1.
Equation (B.24) is of the same form as Eq. (B.15) if we set w, = 27 f, and use
Egs. (B.19) and (B.20); we identify w,, as the angular frequency and f, as the
frequency of Fourier component n. Thus, we have shown that a time signal can
always be decomposed into harmonic Fourier components.

We will now use Fourier decomposition to introduce the spectrum of the

sound pressure level. The discrete form of Parseval’s theorem (B.18) is

N-1 1 iN
TPt =5 > IPU (B-26)
=0 n=—iN+1

Replacing the left-hand side by 7N(p?),y and using P, from Eq. (B.21) on the
right-hand side, we find

3N 2
P,
(P)av = Z LNT' (B.27)
n=—3IN+1
This can be written as

iN-1 2

Pol? *S 2P.2  |Pywd
(PP)ay = | 1\?2‘ + > IN’;l + 5 (B.28)

n=1
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The first term on the right-hand side represents the DC component, i.e. the
component that is independent of time; this term is usually zero as the sound
pressure is defined as the deviation from the DC component. The remaining
terms represent the contributions to (p?)ay from the Fourier components with
frequencies f, with n = 1,2,... ,%N . The last term on the right-hand side
forn = %N can be neglected if the number of samples N is sufficiently large.
For the contributions 2|P,|?/N? from components n = 1,2,... , 2N —1 we find
from Eq. (B.25)

2P 2 1
|N2| = E|Pc,,,|2 (B.29)
or
2| P, |2
iﬁzi = (P)au (B.30)

with p,(t;) = Re (P,ne™2™"/N). Substitution of Eq. (B.30) into Eq. (B.28)
gives

iNn-

(pz)av = Z (P?.)av, (B31)
n=0

where we have included the contribution (p3)ay = P§/N? of the DC component
po(tj) = Pep = Py/N, with real Py, and the last term on the right-hand side
of Eq. (B.28) has been neglected. The quantity (p?)a, has been decomposed
into contributions (p2)ay of the Fourier components with frequencies fn. The
contributions (p2)ay are related to the Fourier coefficients P, by Eq. (B.30).
The Fourier coefficients P, are obtained from the signal p(t) by the Discrete
Fourier Transform (B.22).

The quantity (p?)ay is related to the sound pressure level L, by Eq. (B.11).
The spectrum of the sound pressure level is defined as

Ly(fa) = 101g Pndax. (B.32)

ref

so we have

L, =101gy_ 105-U/=)/10, (B.33)

We use the notation L,(f») for the spectrum and L, for the broadband level.
From Eq. (B.14) we have Ly = L, + 10lg4nr?, so we define the spectrum of
the sound power level as Lw (fn) = Ly(fn) + 101g4rr?, which is independent
of r. We use here the spectrum L,(f,) at a relatively small distance r from
the source (for large r the effect of atmospheric absorption should be taken into
account; see Sec. B.5). We have

Lw =101gy_ 10tw /10, (B.34)
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The frequencies f,, are given by f, = n/N7, with n = 0,1,... ,%N — 1. The
frequencies are equidistant on a linear scale (see Fig. 2.5). A frequency interval
between f,, and fp4, is called a narrow frequency band. The width fn41 — fn =
1/NT of a narrow frequency band is typically 1 Hz or smaller (for example,
1/Nt~1 Hz for N = 1024 and 7 = 1 ms).

In practice one often uses 1/3-octave (one-third-octave) and octave bands.
Each 1/3-octave band and each octave band is characterized by a center fre-
quency, an upper frequency, and a lower frequency (see Fig. 2.5). The center fre-
quencies are given approximately by fo m & fc 3027 !1%t™/2 with f. 30 = 1000 Hz,
where the band number m is a positive integer. For the 1/3-octave bands m
runs over all positive integers (m = 1,2,3,...), while for the octave bands m is
amultiple of 3 (m = 3,6,9,...). The center frequencies of two successive octave
bands differ by a factor of 2. The upper and lower frequencies of an octave band
m are 21/2f, . and 271/2f_ . respectively, so the octave bands are contiguous.
The center frequencies of two successive 1/3-octave bands differ by a factor of
2!/3. The upper and lower frequencies of a 1/3-octave band m are 21/ fe,m and
2-1/6 fe,m, respectively, so the 1/3-octave bands are also contiguous.

A problem with the approximate relation fe . ~ fc3027'%*™/3 is that it
does not give round numbers for the center frequencies. For m = 20, for exam-
ple, we find fc 20 = 99.2 Hz. One can also calculate the center frequencies with
the relation f, ,, = 10™/10 Hz, as follows from 2!%/3 ~ 10; the center frequencies
calculated with this relation are sometimes referred to as the ‘exact’ center fre-
quencies, for example in the International Standard IEC 651 (1993-09). Also the
exact center frequencies are not all round numbers; only the frequencies 1, 10,
100, 1000, and 10 000 Hz are round numbers. For m = 24, for example, we find
251.2 Hz. In practice one often uses round numbers for all center frequencies.
These round numbers are referred to as the ‘preferred’ center frequencies, and
are specified in the International Standard ISO 266-1976(E).

The ‘preferred’ 1/3-octave band center frequencies between 10 Hz and 10 kHz
are

10, 12.5, 16, 20, 25, 31.5, 40, 50, 63, 80 Hz (m =10,11, ..., 19)
100, 125, 160, 200, 250, 315, 400, 500, 630, 800 Hz (m = 20, 21, ..., 29)
1,1.25,1.6,2, 2.5, 3.15, 4, 5, 6.3, 8, 10 kHz (m = 30, 31, ..., 40).

The ‘preferred’ octave band center frequencies between 10 Hz and 10 kHz are

16, 31.5, 63, 125, 250, 500 Hz  (m = 12, 15, ... , 27)
1,2, 4, 8 kHz (m = 30,33, ..., 39).

There are also ‘preferred’ frequencies for the upper and lower frequencies of
the 1/3-octave and octave bands. For most practical applications, however, the
approximations 2!/2f. ., and 271/2f, ., for the octave bands, and 2!/, ,, and
271/8 f; ., for the 1/3-octave bands, are sufficiently accurate.

Narrow-band spectra Ly,(f,) are converted to 1/3-octave or octave band
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spectra with the relation

Lp(form) = 101g ¥ 105U)/10, (B.35)

where the prime indicates that the sum is over all narrow bands in 1/3-octave
or octave band m (if only a fraction of a narrow band is covered by band m, the
contribution of this narrow band in the sum should be multiplied by this frac-
tion). Consequently, Eq. (B.33) also applies with a summation over 1/3-octave
or octave bands, instead of narrow bands: L, = 101g(3",, 10L#(/<=)/10). The
conversion of narrow-band sound power spectra Ly (f) to 1/3-octave or octave
band spectra is analogous.

The human ear is most sensitive to frequencies in the range between about
1 kHz and 6 kHz. A pure tone of 1 kHz, for example, appears about equally loud
as a pure tone of 100 Hz with a 20 dB higher value of the sound pressure level.
To account for this effect one employs the A-weighting, in applications in which
human perception of sound is involved, e.g. noise control. The A-weighting is
represented by the function W (f,) given in the International Standard IEC
651 (1993-09):

Wa(fa) = 201 j—;f“;—) (B.36)
with
2 rd
Ra(f) = 12200 (B.37)

(2 + 20.62) (2 + 122002)(f2 + 107.72)1/2(f2 + 737.92)1/2’

where f is expressed in Hz and Ra 1000 is the value of Ra(fr) at fn = 1000 Hz.
The A-weighted spectrum Lj (f,,) is defined as

LA(.fn) = Lp(fn) + WA(fn)- (B-38)

Pure tones with equal values of Ly (f,.) are perceived with about equal loudness.
From the A-weighted spectrum L (fn) the A-weighted sound pressure level Ly
is calculated with the relation

La=10lg) _10%aU)/10, (B.39)
n

The level L4 is often referred to simply as the sound level. As an approxima-
tion, one can apply the A-weighting to the 1/3-octave or octave band spectrum
(instead of the narrow-band spectrum). In this case one uses Eq. (B.38) with
the frequency f,, replaced by a center frequency f.m and calculates the sound
level L from the A-weighted levels La(fc,m). The values of the A-weighting
Wa(fe,m) for the ‘preferred’ center frequencies are given in Table B.1.
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Table B.1. The A-weighting Wa (fc,m) (in dB) for the ‘preferred’ 1/3-octave
band center frequencies fc n, (in Hz).

125 25 50 100 200 400 800 1600 3150 6300
fem | 16 315 63 125 250 500 1000 2000 4000 8000
20 40 80 160 315 630 1250 2500 5000 10k

-63.6 -448 -303 -19.1 -108 -48 -08 1.0 1.2 -0.1
Wa | -564 -39.5 -262 -162 -8.7 -32 00 1.2 1.0 -1.1
-504 -345 -224 -132 -66 -19 06 1.3 0.6 -2.5

B.5 Atmospheric absorption

In the foregoing we have ignored the fact that a sound wave loses energy by
atmospheric absorption. Atmospheric absorption originates from two effects [92,
106):

i) thermal conduction and viscosity of air,
i) relaxation losses of oxygen and nitrogen molecules in air.

Both effects cause an attenuation of a sound wave.

The attenuation due to the first effect is called classical attenuation. Tem-
perature gradients present in a sound wave are partly reduced by heat flow,
which depends on the thermal conductivity of air. Analogously, velocity gradi-
ents present in a sound wave are partly reduced by momentum transfer, which
depends on the viscosity of air. In both processes the sound wave loses energy,
which is converted into heat. As the gradients are proportional to the frequency
of the sound wave, the attenuation is larger at high frequency than at low fre-
quency. The classical attenuation of a sound wave can be derived from the
equations of fluid dynamics including viscosity and thermal conductivity.

An analysis based on statistical mechanics is required for the attenuation
due to molecular relaxation losses. A sound wave causes periodic compression
and expansion of air. During the compression stage, the diatomic oxygen and
nitrogen molecules in the air are brought into excited vibrational and rotational
states. During the expansion stage, the molecules relax to their original states.
In this process some energy is lost, which is converted into heat. Water molecules
play an important role as a catalyst in these internal molecular processes of exci-
tation and relaxation. Consequently, the attenuation by atmospheric absorption
depends on the humidity of the air.

A spherical sound wave is attenuated by atmospheric absorption, in addition
to the geometrical attenuation by spherical spreading described in Sec. B.3. The
relative change in average acoustic intensity I,, over an infinitesimal propagation
distance dr can be written as

o _ 2, sar (B.40)
I, T
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where the first term on the right-hand side represents spherical spreading [this
term follows from Eq. (B.4)] and the second term represents atmospheric ab-
sorption; o' is the fraction of acoustic intensity that the wave loses per unit
propagation distance due to atmospheric absorption. Integration of this equa-
tion gives
Way —a'r

B.41
s LI (B.41)
which agrees with Eq. (B.4) for o’ = 0. Using Egs. (B.9) and (B.11) to (B.13)
we find the following expression for the sound pressure level:

I, =

Ly, = Lw — 10lg4nr® — ar, (B.42)

where a = a’10]ge is the attenuation in dB per unit length. The term —ar is
negligible for short distance r. For distances of the order of a hundred meters
or more, however, this term can usually not be neglected, in particular at high
frequencies. It should be noted that molecular relaxation losses affect not only
the amplitude but also the phase of a sound wave [106]. The effect on the phase
is small, however, and is neglected here.

The attenuation of a sound wave by atmospheric absorption varies consid-
erably with the frequency f of the wave. We distinguish three regions in the
frequency range, separated by the relaxation frequencies f;N and fr,0 of nitro-
gen and oxygen, respectively. At low frequency, f < frn, the attenuation is
dominated by nitrogen relaxation. For fi N < f < fr,0, oxygen relaxation dom-
inates. At high frequency, f > fr,0, the attenuation approaches the classical
attenuation. The three regions in the frequency range are clearly visible in a
double-logarithmic graph of the absorption coefficient a versus frequency; an
example is shown in Fig. B.1, for a temperature of 10°C, a relative humidity of
80%, and a pressure of 1 atm. In each region, the curve approaches a straight
line with a slope equal to 2. A slope of 2 means that the absorption coefficient
is proportional to the square of the frequency.

The curve shown in Fig. B.1 was calculated with the International Standard
ISO 9613-1:1993(E). The formulas from this Standard are given below. The
absorption coefficient is calculated from three atmospheric parameters: the ab-
solute temperature T in K, the relative humidity r, in %, and the atmospheric
pressure p, in Pa. The absorption coefficient in dB per meter is given by

o =8.686f2r!/2 (1.84 x 107" pt + 773 [by + b2]) , (B.43)

where 7, = T/Ty and p; = p./p. are dimensionless quantities, with T3 =
293.15 K and p, = 101 325 Pa; the quantities b, and b, are given by

by = 0.1068 exp(—3352/T)/(fen + 2/ frN) (B.44)

by = 0.01275 exp(—2239.1/T)/(fr.0 + F2/ fr.0)s (B.45)
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Figure B.1. Absorption coefficient a as a function of frequency f, calculated
with the International Standard ISO 9613-1:1993(E) for a temperature of 10°C,
a relative humidity of 80%, and a pressure of 1 atm. The relaxation frequencies
Jen and f; o of nitrogen and oxygen, respectively, are also indicated.

where frn and f; o are the relaxation frequencies of nitrogen and oxygen, re-
spectively, which are given by

fon = per 12 (9 + 280h exp(~4.17[r; /3 - 1])) (B.46)

fr.0 = p: [24 + 40400R(0.02 + h)/(0.391 + h)] . (B.47)

The quantity h in these expressions is the molar concentration of water vapour in
the atmosphere, expressed as a percentage. The relative humidity 5, is defined
as the ratio, expressed as a percentage, of the water vapour pressure in the
atmosphere to the saturation vapour pressure pg,c- We have

h= Thpsat/pr (B'48)
With psat = Psat/Pr- The quantity ps,¢ is written as
Psar = 100 (B.49)
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with
Csar = —6.8346(T51/T)' 25! + 4.6151, (B.50)

where Ty, = 273.16 K is the triple-point temperature of water. The accuracy
of the absorption coefficient a calculated with these expressions is estimated
to be £10% for 0.05% < h < 5%, 2563 < T < 323 K, p. < 200 kPa, and
4 x 107 < f/p. < 10 Hz/Pa.

The above expressions are valid for pure-tone sounds, but the expressions can
also be used for broadband sounds by spectral decomposition (it is indicated in
Ref. [146] that the spectral decomposition into 1/3-octave or octave bands causes
small errors in the calculation of atmospheric absorption). As an approximation,
the absorption for a 1/3-octave or octave band can be calculated by evaluating
the absorption coefficient at the center frequency of the band. Table B.2 gives
the values of the absorption coefficient for a temperature of 10°C and a relative
humidity of 80%, calculated with Egs. (B.43) to (B.50) for the 1/3-octave band
center frequencies.

Table B.2. Atmospheric absorption coefficient a (in dB per kilometer) at
T =283.15 K (10°C), r, = 80%, and p, = 1.01325 x 10° Pa (1 atm), for the
‘preferred’ 1/3-octave band center frequencies f. ,, {in Hz).

125 25 50 100 200 400 800 1600 3150 6300
fem | 16 315 63 125 250 500 1000 2000 4000 8000
20 40 80 160 315 630 1250 2500 5000 10k

0.005 0.018 0.07 025 0.77 163 2.88 6.3 18.8 67
a 0.007 0.028 0.11 0.37 102 196 357 8.8 29.0 105
0.011 0.045 0.17 0.55 131 236 458 12.6 43.7 157

B.6 Doppler effect

The frequency of sound received from a moving harmonic source is affected by
the motion of the source. This is the Doppler effect. As illustrated in Fig. B.2,
the distance between wave fronts emitted at constant time intervals by a moving
source is reduced in the region in front of the source (to the right in the figure)
and enhanced in the region behind the source (to the left in the figure), simply
because successive wave fronts are emitted at different source positions. The
frequency of the sound at a stationary receiver is inversely proportional to the
distance between successive wave fronts. Therefore, the frequency is enhanced
in the region in front of the source and reduced in the region behind the source.

It is straightforward to show [46, 106] that source motion changes the ob-
served frequency by a factor fp = ¢/(c — v;), where c is the sound speed and v,
is the radial component of the source velocity, i.e. the component along the line
from the source to the receiver (see Fig. B.2). The radial velocity component
vy is positive for a receiver in the region in front of the source and negative for
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. source v
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Figure B.2. Illustration of the Doppler effect. The circles represent spherical
wave fronts emitted at constant time intervals by a moving source. The distance
between the wave fronts is reduced in the region in front of the source and
enhanced in the region behind the source. Also shown is the radial velocity
component v;, which determines the Doppler frequency shift at a receiver.

a receiver in the region behind the source; for positive v, we have fp > 1 and
for negative v, we have fp < 1.

The amplitude is changed by the same factor fp [46]. The compressed waves
in the region in front of the source have an enhanced amplitude, while the
decompressed waves in the region behind the source have a reduced amplitude.

In practice the Doppler effect can often be neglected. For v, = 100 km/h,
for example, we have fp = 1.09, so the frequency and amplitude are enhanced
by only 9%.
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Acoustic impedance

C.1 Introduction

In computational models for atmospheric sound propagation, the ground surface
is usually taken into account by a mathematical boundary condition to the
solution for the field above the ground surface. This condition contains the
acoustic impedance of the ground surface as a parameter. In this appendix we
describe the concept of acoustic impedance of a ground surface.

In Sec. C.2 we introduce the impedance of a ground surface and explain the
relation to the characteristic impedance of the ground material. Not only the
impedance of the ground material but also the impedance of air plays a role
in the interaction of sound waves with the ground. The impedance of air is
evaluated in Sec. C.3. Many natural grounds can be modeled as porous media.
In Sec. C.4 we describe various impedance models for porous media.

In Sec. C.5 we describe the normal reflection of plane waves, as a simple
example of the use of ground impedance. In Appendix D we will describe the
ground reflection of plane waves for an arbitrary angle of incidence, and the
ground reflection of spherical waves.

Some grounds can be modeled as a homogeneous medium of porous material
with a top layer that consists of a different porous material. The impedance of
such a layered ground is described in Sec. C.6.

C.2 Impedance of a ground surface

When a sound wave strikes a ground surface, part of the wave is reflected and
part of the wave is transmitted into the ground (see Fig. C.1). In general, the
propagation speed of the wave in the ground is different from the sound speed
in the air above the ground. The sound speed in the ground is often smaller
than the sound speed in air. In Appendix D we will see that this implies §’ < 6;
(see Fig. C.1). We will also see that we have 6; = 6,.

113
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Figure C.1. Reflection of a sound wave by a ground surface.

Many natural grounds can be described as porous media. A sound wave
causes a vibration of the air in the pores of a porous ground medium. Solid or
liquid material in the ground may also vibrate.

In general, the ground is modeled as a continuous propagation medium for
sound waves, i.e. as a fluid, so a sound pressure and a fluid velocity can be
defined in the ground medium [92]. At the air-ground interface, i.e. at the
ground surface, the sound pressure and the fluid velocity component normal
to the ground surface are continuous, i.e. have equal values just above and
just below the ground surface. This follows from mechanical equilibrium and
mass conservation at the interface. The fluid velocity component parallel to the
ground surface may be discontinuous at the ground surface.

The sound pressure and the normal velocity component at the ground surface
depend of course on the incident sound field. If the amplitude of the incident
field is doubled, for example, the amplitudes of the sound pressure and the
normal velocity component at the ground surface are also doubled. The ratio of
the sound pressure to the normal velocity component, however, is independent of
the amplitude of the incident sound field, and is therefore a convenient quantity
for the acoustic characterization of the ground surface. The ratio depends on
the frequency of the sound field, but this is not a problem as we can always
decompose a sound field into harmonic components.

We consider a harmonic sound field in the system shown in Fig. C.1, with
complex pressure amplitude p. and normal component v, of the complex ve-
locity amplitude (v is the normal component in downward direction). The
quantities p. and v, are functions of the (vertical) position. The (acoustic)
impedance of the ground surface is defined as the ratio pc/vc n evaluated at the
ground surface. The ratio p./vcn is continuous at the ground surface, i.e. has
equal values just above and just below the ground surface; this provides the
boundary condition to the sound field above the ground surface.

The value of the ratio p. /v, just below the ground surface is related to the
characteristic impedance of the ground material. The characteristic impedance
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of a medium is defined as the ratio p./v., where p. and v, are the complex
pressure and velocity amplitudes, respectively, of a single harmonic sound wave
traveling in the medium. It should be noted that in the system shown in Fig. C.1
there are two waves in the region above the ground surface (the incident wave
and the reflected wave) and a single wave below the ground surface (the trans-
mitted wave).

If the propagation direction of the incident wave is normal to the ground
surface (6; = 0 in Fig. C.1), the propagation direction of the transmitted wave
is also normal to the ground surface (#' = 0). In this case we have v. = v n.
Consequently, the impedance of a ground surface for normal incidence is equal
to the value of p./v. for the transmitted wave, i.e. the characteristic impedance
of the ground material, evaluated at the surface. In general, the characteristic
impedance is a function of depth in the ground, and the characteristic impedance
should be evaluated at the surface; only if the ground medium is homogeneous,
the characteristic impedance is independent of depth in the ground.

If the propagation direction of the incident wave is not normal to the ground
surface, the propagation direction of the transmitted wave is also not normal
to the ground surface, in general. For many ground surfaces, however, it is a
good approximation to assume that the propagation direction of the transmitted
wave s normal to the ground surface, irrespective of the propagation direction
of the incident wave. These ground surfaces are called locally reacting ground
surfaces (see also Sec. D.3). Thus we have v, & v , for a locally reacting ground
surface. Consequently, the impedance of a locally reacting ground surface is
approximately equal to the characteristic impedance of the ground material. In
Sec. D.3 we will derive a general relation between the impedance of a ground
surface and the characteristic impedance of the ground material.

The impedance of an acoustically absorbing surface is a complex number (or
rather, a complex function of frequency), as the pressure and the fluid velocity
are not in phase with each other, in general. The impedance of an acoustically
hard surface is infinite, as normal movement of air is not possible at a hard sur-
face (vc,n = 0). Thus, the impedance of a surface is a measure of the resistance
of the surface against normal movement of air.

Not only the characteristic impedance of the ground material but also the
characteristic impedance of air, i.e. the propagation medium above the ground
surface, plays a role in the ground reflection of sound waves. The character-
istic impedance of air is evaluated in Sec. C.3. Models for the characteristic
impedance of porous ground media are described in Sec. C.4.
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C.3 Impedance of air

We consider a harmonic plane sound wave traveling in air. The sound pressure
p is written as

p(z,t) = Re [pc(z) exp(—iwt)]

with p(z) = po exp(ikz), ©.1)

where z is the propagation distance and py is a constant. The function p(z,t)
satisfies the one-dimensional wave equation

p 10 _
52~ Z o

where ¢ = w/k is the adiabatic sound speed. This equation follows from the
three-dimensional wave equation (A.14) and V?p = 0%°p/dz%. In this one-
dimensional case, the linear acoustic equations (A.12) and (A.13) become

Ov 1913

0, (C.2)

e pc? ot €3
ov Op
—=_ 4
P51 oz’ (C4)

where p is the density of air (p = p,y) and v = v(z, t) is the fluid velocity.
The sound pressure given by Eq. (C.1) corresponds to a fluid velocity v given
by

v(z,t) = Re[ve(z) exp(~iwt)] (C5)
with ve(z) = vy exp(ikz), '

where v is a constant. This follows from the wave equation (C.2) with p
replaced by v, which can be derived from the linear acoustic equations {(C.3) and
(C.4). From Egs. (C.1) and (C.5) we see that the ratio p.(z)/vc(z) is constant,
i.e. independent of . This ratio is called the (specific) acoustic impedance ¢
of the medium, air in this case. The value of the acoustic impedance of air,
denoted as (air, can be derived from the linear acoustic equations (C.3) and
(C.4). Substitution of Egs. (C.1) and (C.5) in either Eq. (C.3) or Eq. (C.4)
yields

Gair = pc. (C6)

This equation can also be derived directly from Egs. (A.19) and (C.1). From
Egs. (A.15) and (A.16) we find (aj; = 427 kg-m 257! at temperature Ty = 273 K.
For spherical waves, the ratio p./v. approaches the value pc in the far-field
region (see Sec. B.3). Thus, the impedance for spherical waves is equal to the
impedance for plane waves, except at small distance from the source.
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C.4 Impedance of porous media

Many natural grounds can be modeled as porous media. The (specific) acoustic
impedance ¢ of a porous medium is defined in the same way as the impedance
of the medium ‘air’ was defined in the previous section, i.e. as the ratio pc/ve,
where p. and v, are the complex pressure and velocity amplitudes, respectively,
of a harmonic plane wave traveling in the medium. The normalized (specific)
acoustic impedance Z is defined as Z = {/(,i;. This quantity plays an important
role in the reflection of sound waves by a ground surface (see Sec. C.5 and
Appendix D).

Zwikker and Kosten [161] and Attenborough {4, 5, 6, 7] developed various
models for the impedance of porous materials. In this section we first follow
the derivation by Zwikker and Kosten of the impedance of a porous material
with a rigid frame. Next we give an expression for the impedance developed
by Attenborough, and finally an empirical expression developed by Delany and
Bazley [39].

We consider a plane sound wave traveling in a porous material with a rigid
frame. The sound wave causes a vibration of the air in the pores of the material,
while the rigid frame does not vibrate. The expressions (C.1) and (C.5) are also
valid in this case, but the value of the wave number k is different from its value
in free air. The wave number contains an imaginary part, which depends on the
flow resistance, i.e. the resistance that the frame offers to an air flow through
the material. The imaginary part corresponds to a reduction of the amplitude
of the sound wave with increasing propagation distance, i.e. an attenuation of
the sound wave.

The linear acoustic equations (C.3) and (C.4) can be generalized as follows
for the porous material (Zwikker and Kosten [161]):

v § Op
AL 4 C7
8z pc2 Ot €D
cs Ov _ 21_)_
Qpat+ov— % (C.8)

where {2 is the porosity, ¢ is the structure constant, and o is the flow resistivity
of the porous material. The porosity € is defined as the volume fraction of air
in the material. Equation (C.7) shows that the pressure fluctuations generated
by a velocity gradient 8v/0z are a factor of 1/ larger in the porous material
than in free air, simply because the available volume is a factor of  smaller.
We assume that the air vibrations in the porous material are approximately
adiabatic, so the constant ¢ in Eq. (C.7) can be approximated by the adiabatic
sound speed in free air, which is given by Eq. (A.9). The flow resistivity o
of a porous material is defined as the ratio —(dp/dz)/v in a situation with a
steady flow through the material, as follows from Eq. (C.8) with dv/dt = 0.
The first term on the left-hand side of Eq. (C.8) differs from the corresponding
term in Eq. (C.4) by the factor ¢;/Q. The factor 1/Q accounts for the reduced



118 Appendix C

available volume in the porous material. The structure constant ¢; accounts
for the specific structure of the pores and the frame of the material. Zwikker
and Kosten [161] indicated that experimental values of ¢; are often in the range
between 3 and 7.

Substitution of Egs. (C.1) and (C.5) into Egs. (C.7) and (C.8) gives

k=220 (C9)

c

Z =g/ (C.10)
with
Cs .o
= — —_ C.11
qc Q +1pw ( )

We give here not only the expression for the impedance Z but also the expression
for the complex wave number k, because the impedance of a layered ground
depends on k and Z (see Sec. C.6).

If the sound propagation in the porous material is better approximated as an
isothermal process than as an adiabatic process, the adiabatic sound speed ¢ in
Eq. (C.9) should be replaced by the isothermal sound speed ¢y~1/2. Figure C.2
shows two examples of the impedance as a function of frequency, calculated
with Egs. (C.10) and (C.11). For this figure we used the adiabatic sound speed,
and the values ¢s = 3, 2 = 0.3, and p = 1.19 kg'm™3. The figure shows also the
impedance calculated with two other models, which are described below.

We note that the sign of the imaginary parts of k and Z is related to the
(arbitrary) choice of the signs of the arguments of the exponential functions
in Egs. (C.1) and (C.5). One can also choose the opposite signs: p(z,t) =
Re [pc{z) exp(+iwt)] with p.(z) = po exp(—ikz), and similarly for the velocity.
Both choices correspond to a wave traveling in the positive z direction. If
the opposite signs are chosen instead of the signs chosen in Egs. (C.1) and
(C.5), then Egs. (C.9) and (C.10) are obtained with g. replaced by its complex
conjugate g7, i.e. with opposite imaginary part.

Attenborough [4, 5, 7, 10, 11] developed various more refined models for the
impedance of porous materials (see also Ref. [144]). Here we give the expressions
of Attenborough’s four-parameter model [5]:

w 4 ~v-1 ¢ .sio
_w 4_ -1y V2, s C.12
k c\/'yﬂ\/<3 > Np)ﬂ+zpw ( )

4¢*  sto\ w/c
_ v/¢ C.13
z (39 +i o (C.13)

where Ny, = 0.7 is the Prandt]l number, s¢ is the pore shape factor ratio, and
g?> = Q79 is the square of the tortuosity g, where g is a grain shape factor.
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Figure C.2. Real and imaginary parts of the normalized impedance Z as a
function of frequency, for flow resistivity ¢ = 200 kPa-s:-m™% (left column) and
o = 50 kPa-s'm™ (right column). Model 1 represents Eq. (C.15) due to De-
lany and Bazley [39]. Model 2 represents Eq. (C.13) due to Attenborough [5].
Model 3 represents Eq. (C.10) due to Zwikker and Kosten [161].

Attenborough presents several comparisons of the four-parameter model with
experimental data for grassland, sandy soil, and forest floors, treating the four
parameters o, g, s, and Q as more or less adjustable parameters. The val-
ues of the parameters vary considerably for different types of natural ground.
Typical values are g = 0.5, sy = 0.75, and = 0.3, while o varies in the
range between roughly 10 and 1000 kPa-s-m2. For the numerical examples
presented in this book we used the values g = 0.5, @ = 0.3, N,; = 0.7, and
s2/p = 0.752/1.19 m3kg™! in Eqs. (C.12) and (C.13).

An empirical impedance model for fibrous absorbing materials, e.g. glass-
fiber and mineral-wool materials, was developed by Delany and Bazley {39]:

) o 0.70 o 0.59
k== [1 +0.0858 (?) +i0.175 (?) ] (C.14)

o 0.75 o 0.73
Z =1+0.0511 <?) +1 0.0768 (?) . (C.15)
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Figure C.3. Normal reflection of a plane wave by a ground surface.

These empirical relations are based on experimental data for values of f/o rang-
ing from 0.01 to 1.0 m®kg!. Chessel [23] showed that the relations also give
good agreement with experimental data for grassland, with the flow resistiv-
ity o varying between 100 and 300 kPa-s-m2, and f/o ranging from 10~ to
0.1 m3.kg! (see also Ref. [146]).

C.5 Normal reflection by a ground surface

The normalized impedance Z introduced in the previous section is used for
the modeling of the reflection of sound waves by ground surfaces and other
surfaces. As an example we consider the reflection of a harmonic plane wave
by a homogeneous ground surface, with the propagation direction normal to
the ground surface (see Fig. C.3). We choose the z axis along the propagation
direction, with the ground surface at £ = 0. In the air above the ground surface
there is an incident wave and a reflected wave. In the (porous) ground there is
only a transmitted wave.

The complex pressure amplitude p. in the air above the ground surface is
equal to the sum of the complex pressure amplitude of the incident wave and
the complex pressure amplitude of the reflected wave:

Pc(z) = polexp(ikz) + Rp exp(—ikx)), (C.16)

where R;, is a complex quantity that is called the plane-wave reflection coefficient
and po is a constant. The corresponding complex velocity amplitude v, in the
air above the ground surface follows from Eq. (C.4):

ve(x) = %[exp(ikz) — R, exp(—ikz)]. (C.17)

The ratio p.(z)/v.(z) is continuous at z = 0, so p.(z)/v.(z) just above the
ground surface is equal to p.(zx)/v.(z) just below the ground surface. The
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Figure C.4. Normal reflection of a plane wave by a layer with thickness d
and normalized impedance Z, backed by a second material with normalized
impedance Z;. The waves traveling in the layer in the positive and negative
directions are labeled with 1 and 2, respectively.

ratio pe(z)/vc(z) just below the ground surface is equal to the characteristic
impedance pcZ of the ground. From Egs. (C.16) and (C.17) for z = 0 we find

1+R
Z= P C.18
R (C18)
which implies
Z -1
= —— C.19
PTZ+1 (C.19)

We see that the plane-wave reflection coefficient for normal incidence depends
only on the normalized ground impedance.

C.6 Normal reflection by a layered ground

In the previous section we modeled a ground surface as a semi-infinite porous
material. One can also model a ground surface (or any other reflecting surface)
as a layer of porous material with normalized impedance Z, backed by a second
material with normalized impedance Z, (see Fig. C.4). In this case we will see
that the ratio pc(x)/vc(z) varies with z, in the layer between x =0 and z = d
(d is the thickness of the layer). We denote this ratio as pcZiayer(z). While
the normalized impedance Z is a (frequency-dependent) material constant, the
normalized impedance Zj,ye, is not a material constant, as Zjayer varies with .

The normalized impedance Z in expression (C.19) for the reflection coef-
ficient should now be replaced by the normalized impedance Zjayer(z = 0) at
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the ground surface at £ = 0. An expression for Zjayer(z = 0) is derived in the
remainder of this section.

The incident wave in Fig. C.4 is a harmonic plane wave traveling in the
positive z direction. Part of the wave is reflected at the interface at £ = 0 and
part of the wave is transmitted into the porous material. Part of the transmitted
wave is reflected at the interface at £ = d. The total complex pressure amplitude
in the layer between £ = 0 and z = d is written as

pe(z) = py exp(ik[z — d)) + p2 exp(—ik[z — dJ), (C-20)

where p; and p, are constants and k is the (complex) wave number in the layer
[given by Eq. (C.9), Eq. (C.12), or Eq. (C.14), for example]. The corresponding
complex velocity amplitude is

)4 . D2 .
(@) = P —d) — P2 exo(—iklz — d)). 21
wle) = 2 explikle — d) = P exp(~ikle —d).  (C21)
At z = d we have pc(d)/vc(d) = pcZ,. Substitution of p.(d) and vc(d) from
Egs. (C.20) and (C.21) gives the relation

pz_Zz—Z

= = . 2
n e+ Z (C.22)

The impedance of the layer pcZjayer was defined as the ratio pc(z)/ve(z). From
Egs. (C.20) to (C.22) we find

Zy cosh(—ikd) + Z sinh(—ikd)
Z, sinh(—ikd) + Z cosh(—ikd)

Z]ayer(x = 0) - Z (0-23)

For a rigid backing we have Z; = oo and we find Zjayer(z = 0) = Z coth(—ikd)
from Eq. (C.23).

For d - oo, we find Zjsyer(z = 0) = Z from Eq. (C.23). In practice the
difference between Zjaye(z = 0) and Z is negligible for layers with a thickness
larger than typically 0.1 m. For thin layers (d < 0.1 m), however, the normalized
impedance Zjayer(z = 0) may deviate considerably from Z.
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Reflection of sound waves

D.1 Introduction

The reflection of sound waves by a ground surface in a non-refracting atmosphere
can be described with a reflection coefficient, which is a function of the ground
impedance. The reflection coefficient for plane waves is called the plane-wave
reflection coefficient; the reflection coefficient for spherical waves is called the
spherical-wave reflection coefficient. In this appendix we derive expressions for
these reflection coefficients.

In Sec. D.2 we describe the reflection of plane waves by a ground surface.
We derive an expression for the plane-wave reflection coefficient for an arbitrary
angle of incidence [in Secs. C.5 and C.6 we described the reflection of plane
waves for normal incidence].

In Sec. D.3 we describe the local reaction approximation, which was men-
tioned before in Sec. C.2. The impedance of a locally reacting ground surface is
equal to the characteristic impedance of the ground medium, evaluated at the
surface. If the local reaction approximation is not valid, the ground surface is
called an extended reacting ground surface. For many natural ground surfaces,
however, the local reaction approximation is a good approximation.

In Sec. D.4 we describe the reflection of spherical waves by a ground surface;
in Sec. D.4.1 we consider a locally reacting ground surface and in Sec. D.4.2
we consider an extended reacting ground surface. The derivation presented in
Sec. D.4 can be considered as an analytical application of the FFP method (see
Appendix F) for the case of a non-refracting atmosphere.

D.2 Reflection of plane waves
In this section we describe the ground reflection of a harmonic plane sound

wave for an arbitrary angle of incidence. We use a rectangular zyz coordinate
system with the ground surface at z = 0 and the propagation direction in the

123
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Figure D.1. Oblique reflection of a plane wave by a ground surface.

zy plane (see Fig. D.1).

We write the complex pressure amplitude of the incident sound wave as
Pc,i(r) = po exp(iks), where py is a constant, k = w/c is the wave number, and s
is the propagation distance. We have s = r-n, where r = (z, y, 2) is the position
vector and n = (cos6;,sin 6;,0) is the unit vector in the propagation direction;
6; is the angle of incidence. This gives

Pe,i = po exp(ikyz + ikyy) (D.1)

with k, = kcos6; and k, = ksin#;.

The incident wave is partly reflected and partly transmitted into the ground,
in general. The complex pressure amplitude of the reflected wave is denoted as
Per(r). The total complex pressure amplitude in the air above the ground is
Pec = Pci + Pcr- As the incident wave satisfies the Helmholtz equation (A.20),
the reflected wave must also be a solution of the Helmholtz equation.

We first consider a rigid ground surface. In this case no fluid movement is
possible in the direction normal to the surface. Therefore the £ component of
the fluid velocity amplitude, denoted as v ;, vanishes at the surface. Equation
(A.5) gives in this case 8p./0z = 0, or Op../0z = —Op.;/dz, for T = 0. We
find

Ope,c/0x = —ikpo exp(iky,y) (D.2)

for = 0. The solution p., must satisfy this equation and the Helmholtz
equation. We write

Per = o exp(—ik,z + ikyy) (D.3)

with k; = kcosf; and k;, = ksin#,, where pj is a constant and 6; is the angle
of reflection (see Fig. D.1). As we have k% + k;2 = k2, the complex pressure
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amplitude p,r given by Eq. (D.3) satisfies the Helmholtz equation. Substitution
of Eq. (D.3) into Eq. (D.2) gives

—ik,py exp(ikyy) = —ikzpo exp(ikyy)- (D)
This equation and the equation k;2+k;2 = k2 can only be satisfied for arbitrary
y if we have k;, = kz, k, = ky, and pj = pp. This implies 6; = 6;, so the angle
of incidence is equal to the angle of reflection. Equation (D.3) becomes

Pe,r = Ppoexp(—ikex + tkyy). (D.5)

It should be noted that we assume here that the surface is perfectly flat. In the
case of a rough surface, sound is reflected in all directions instead of a single
direction [68, 143, 154]. As described in Refs. [10, 11}, surface roughness can be
taken into account by using an effective impedance.

For a ground surface that is not rigid, e.g. the surface of a porous material,
the boundary condition v., = 0 is replaced by the condition that the com-
plex pressure amplitude p. and the z component v, ; of the complex velocity
amplitude must be continuous at z = 0. This implies

(m) =(“> (D.6)
Ue,x ) e Ve,2 ) p=rte

with € > 0, ¢ = 0. In Sec. C.2 we defined the right-hand side of Eq. (D.6) as
the impedance of the ground surface. We denote this impedance as {; = Z;pc,
where Z; is the normalized impedance of the ground surface. The boundary
condition (D.6) becomes

De
= D7
(v) _ caw (1)
with € > 0,¢ = 0.

For many natural ground surfaces we have § ~ O (see Fig. D.1). These
surfaces are called locally reacting surfaces (see Sec. D.3). From 6’ ~ 0 we have
Ve,z & ve for £ > 0. This implies that the impedance Zspc of a locally react-
ing ground surface is equal to the characteristic impedance Zpc of the ground
medium [which can be calculated with Eq. (C.10), Eq. (C.13), Eq. (C.15), or
Eq. (C.23))].

With Eq. (A.19) and p. = Pe,i + Pe,r, Eq. (D.7) gives

Zs i r
Pci + Per = = pe (O, + apc’ (D.8)
iwp \ Oz Oz

for £ = 0. Substitution of Eq. (D.1) into this equation gives

Zs [ Oper
Po exp(ikyy) + pe,r(z = 0) = Z; cosb;po exp(ikyy) + % (—gi—) . (D.9)
z=0



126 Appendix D

As before, the solution p., must satisfy this equation and the Helmholtz equa-
tion. We write

Pe,r = poRy exp(—ikyz + ikyy) (D.10)

with ki = kcos6; and k} = ksin6;. The quantity R, is called the plane-wave
reflection coefficient, which will be determined below (the plane-wave reflection
coefficient has already been introduced in Sec. C.5 for the special case of normal
reflection of a plane wave). Substitution of Eq. (D.10) into Eq. (D.9) gives

po exp(ikyy) + poRp exp(ikyy) =
Zs cos B;po exp(ikyy) — Z, cos O po Rp exp(ikyy). (D.11)

This can only be satisfied for arbitrary y if we have ky, = ky, so we find again
6; = 6. The angles 6; and 6, will be denoted as §. Equation (D.11) gives

1 1+R,
=— D.12
Zs cosf 1-R,’ (D-12)
which implies
Zgcosf —1
- . D.13
By Z.cosf + 1 ( )

We see that the reflection coefficient R, varies with the angle of incidence. The
reflection coefficient approaches -1 if § approaches %w (grazing incidence). For
a rigid ground surface we have Z; = 0o and R, = 1.

D.3 Local reaction approximation

From the previous section we have the following expression for the complex
pressure amplitude p. in the region above the ground surface (z < 0):

Pc = polexp(ik.x + ikyy) + R, exp(—ik,z + tkyy)] for z < 0. (D.14)

The corresponding complex amplitude of the normal velocity follows from Eq.
(A.19):

6
Veg = S:—(;ST;DO[exp(ila:,,alv +ikyy) — Rp exp(—ik.z + ikyy)] for z < 0. (D.15)
In the region below the ground surface (z > 0), the transmitted wave travels at

an angle 6’ with the z axis (see Fig. D.1). We write the complex amplitudes of
the pressure and the normal velocity of the transmitted wave as follows:

pe = poTy exp(ik,z + ikyy) for > 0 (D.16)
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_ cosé
=

poTp exp(ik, x + ikyy) for z >0 (D.17)

with k; = k'cos6’ and k; = k'siné’; we have used Eq. (A.19) to derive Eq.
(D.17) from Eq. (D.16). The quantity T}, is called the plane-wave transmission
coefficient. We have introduced here a density p’, a wave number &', and a sound
speed ¢ for the ground material, with k' = w/c’. We assume that p’, k', and ¢’
are real quantities, so the characteristic impedance p'c’ of the ground material
is also real. Later we will generalize the results for grounds with a complex
wave number and a complex impedance, such as the porous media considered
in Sec. C 4.

Continuity of the pressure at z = 0 implies that Egs. (D.14) and (D.16)
should give equal values of p. at £ = 0. This yields

(1+ Ryp) exp(ikyy) = T;, exp(ikyy). (D.18)

Continuity of the normal velocity at = 0 implies that Eqs. (D.15) and (D.17)
should give equal values of v, at £ = 0. This yields

cosé . cosf'
—l;:—(l — R;) exp(ikyy) = oo

Equations (D.18) and (D.19) should hold for arbitrary y, which implies k, = k;,,
or

T, exp(ikyy).- (D.19)

sinf siné’

c c

This is Snell’s law of refraction. Using ky = k;, in Eqs. (D.18) and (D.19), we
find

(D.20)

_ p'c cosf — pccost’

= . D.21
P~ p'c! cosB + pccosé’ (D-21)

The normalized impedance of the ground surface, Zs = (pc/ve,z)/pc, follows
from Egs. (D.16) and (D.17):

B 1 pc
*7 cosl pc’

If we use Eq. (D.22), we find that Eqs. (D.21) and (D.13) for the reflection
coefficient are identical.

In the case of normal incidence (§ = 0 and 6’ = 0), the normalized impedance
Z, of the ground surface is equal to the normalized characteristic impedance Z
of the ground material (see Sec. C.2). Hence, Eq. (D.22) implies Z = p'c'/pc
and Z; = Z/cos@'. From Snell’s law (D.20) we have siné’ = (k/k')siné, and
we find

(D.22)

Z, = Z (D.23)

/1 - (k/K')? sin 6
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We assume a homogeneous ground medium here, with normalized characteristic
impedance Z. If the ground consists of a thin layer on top of a different material,
the normalized impedance Z in Eq. (D.23) should be replaced by the normalized
impedance Ziayer(z = 0), as described in Sec. C.6.

It is instructive to consider the trivial case in which there is no difference
between the ground medium and the air above the ground, so that we have
p' = pand ¢’ = c. In this case, Eqs. (D.18) to (D.21) imply ¢’ = 4, R, = 0,
and T}, = 1, so there is no reflected wave and the transmitted wave is equal to
the incident wave. In all other cases, with p' # p or ¢’ # ¢ (or both), there is a
reflected wave (R, # 0) and the transmitted wave is different from the incident
wave (T, # 1).

If the sound speed ¢’ in the ground material is small compared with the sound
speed c in the air above the ground, Eq. (D.20) implies ' = 0, so the propagation
direction of the transmitted wave is approximately parallel to the z axis. In
this case the ground surface is called a locally reacting ground surface [92].
Equation (D.22) implies that the normalized impedance of a locally reacting
ground surface is Z; = p'c’ /pc, which is independent of the angle of incidence .

In general, however, the normalized impedance of a ground surface depends
on the angle of incidence, as follows from Eq. (D.23). This means that the
incident wave causes a ‘reaction’ at a point on the ground surface that depends
on the pressure distribution in a region around this point. Such a reaction is
called an eztended reaction.

If the normalized impedance of a ground surface is independent of the angle
of incidence, the ‘reaction’ at a point on the ground surface depends only on
the pressure at this point, i.e. the local pressure. This explains the name local
reaction.

The above results can be generalized for a ground with complex characteristic
impedance pcZ and complex wave number k. These complex quantities can
be calculated with the models described in Sec. C.4 for porous media (k' was
denoted as k in Sec. C.4). We define a complex sound speed ¢’ = w/k’ and
a complex density p' = pcZ/c' of the ground, so we have Z = p'c’/pc. The
derivation of Egs. (D.20) to (D.23) remains valid if we consider cosé’ and sin 6’
as complex quantities that satisfy the relation cos? 8’ +sin? 8’ = 1. From Snell’s
law (D.20) we have k, = ky, so ky, is real, as k, = ksin@ is real. The relation
K2+ k’y2 = k'* implies that k is complex, as k' is complex. If we write k, =
Rek; +ilmk;, the imaginary part Imk’, yields an exponential attenuation factor
exp(—zImk;) in Eqgs. (D.16) and (D.17). The propagation angle of the plane
attenuating wave below the ground surface is equal to arctan(k; /Rek;), which
differs from @' unless k] is real. The plane-wave reflection coefficient is given
by Eq. (D.21), or by Eq. (D.13) with normalized impedance Z; of the ground
surface given by Eq. (D.23). The local reaction approximation corresponds to
the approximation |k/k'| < 1 in this case. For many natural ground surfaces
this is a good approximation, as can be verified with the models described in
Sec. C.4.

Unless indicated otherwise, we will assume that the ground surface is locally
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Figure D.2. Point source and receiver above a ground surface. R is the length of
the direct path from the source to the receiver. R; is the length of the reflected
path, which is equal to the distance from the image source to the receiver.

reacting, so that we have Z; = Z.

D.4 Reflection of spherical waves

In this section we develop an analytical solution for the sound field of a point
source in a non-refracting atmosphere above a ground surface. We consider a
locally reacting ground surface in Sec. D.4.1 and an extended reacting ground
surface in Sec. D.4.2.

D.4.1 Locally reacting ground surface

We consider the geometry shown in Fig. D.2. We use a rectangular xyz coor-
dinate system, with horizontal z and y coordinates; the z coordinate represents
height above the ground surface. The source is at position rs = (0,0, 25) and
the receiver is at position r = (z,y, z) (Figure D.2 shows the geometry for the
case y = 0). The source is a harmonic monopole source, with angular fre-
quency w. The source is characterized by the free field, with complex pressure
amplitude p. = Sexp(ikR,)/R;, where Ry = |r —r| is the radial distance from
the source. We choose S = 1 Pa-m, so we have p. = exp(ikR;)/R,; we note
that the right-hand side has not the dimension of a pressure, due to the omission
of S. Atmospheric absorption is ignored (see Sec. 3.4).

In this section, the wave number, sound speed, and density in the air above
the ground are denoted as k;, ¢;, and p;, respectively; we have ¢; = w/k;. The
ground is characterized by wave number k; and normalized impedance Z. We
define ¢; = w/k, as the complex sound speed in the ground, and p2 = Zpyc1/ce
as the complex density of the ground, so we have Z = paca/p1c1 (cf. Sec. D.3).
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The complex pressure amplitude p.(z,y, z) = p(r) is written as

_fp forz2>0
Pc—{m for 2<0 (D-24)
with p1 = pi(z,y,2) and ps = p2(z,y, z). We have (see Secs. A.3 and A .4)
(V2 +kdp, = —4né(r—r;) forz>0 (D.25)
(V2+k)p, =0 for z < 0. (D.26)
We apply a double Fourier transformation (z,y) — (kz,ky) to these equations:
52
[3 5+ (k? - kz)] P, = —474(z — 25) forz>0 (D.27)
52
[ 57T (k3 — k% - kg)] P,=0 for z < 0, (D.28)
where the Fourier transform pairs (p;, P;) with j = 1, 2 are defined by
[o o 2N <]
Pilkaky2) = [ [ ep(-ibes - ibipi(ay2)dedy  (D29)
—00 ~00

pj(z,yvz) (27")2 / /exp(’tk $+7:kyy)P (kz,ky,Z)dkzdk (D30)

—00 —00

The solution of Egs. (D.27) and (D.28) must satisfy four boundary conditions:

Pl (kzy kyy 0) = P2(kzaky10) (D31)
opP, 1 (0P,
= — [ === .32
(32) =0 P2(az>z=0 858
Pl(kzaky;zs+f) :Pl(kzvkyazs—e) (D33)
8P, oP, .
(E—) e - (-5;) e = —47 (D.34)

with € > 0, € = 0. Equation (D.31) represents continuity of the pressure at the
ground surface. Equation (D.32) represents continuity of the normal velocity at
the ground surface; here Eq. (A.19) has been used. Equation (D.33) represents
continuity of the pressure at the source height. Equation (D.34) shows that
the fluid velocity is discontinuous at the source height, as the directions of the
velocities just above the source and just below the source are opposite to each
other. To prove Eq. (D.34), we integrate Eq. (D.27) over 2 from z, —€ to z, + €

Zst€ zate

OP
/ Bz( l)d + (k2 — k2 - K2) / Pydz = —4n. (D.35)

Zs—€ Z4—€
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For € — 0, the second term on the left-hand side vanishes and we find Eq. (D.34).
We write the solution of Egs. (D.27) and (D.28) as follows:

P, = C exp(iky.2) for z > z
Py = Cy exp(ik1,2) + C3 exp(—ik;,2) for0<2z< 2 (D.36)
P, = Cyexp(—iky,z) for z <0,

where C1, Cy, C3, and Cy are constants and the vertical wave number compo-
nents k;, and kp, are defined by

K, =k —k2— k2 (D.37)

for j = 1, 2. The constants Cy, Cy, Cs, and C, follow from the boundary
conditions (D.31) to (D.34), and Eq. (D.36) becomes

Py, = A{exp(iki.|z — 2|) + R(k1;) exp(ikiz[z + 2s))} forz>0 (D.38)

P, = A[1 + R(ky.)) exp(ik1.2s — ika,2) forz<0 (D.39)
with
2mi
A= (D.40)
klz
and
R(ku) = p2klz - p1k2z (D41)

p2kiz + prka;

The local reaction approximation corresponds to kg, = k;, and we find

p2k1z — prke
R(ky,) = 22Xz~ 172 D.42
(k12) p2k1. + prk2 ( )
or
ki —ki/Z
k z) = — 5 D.43
R(ki.) ki +ki/Z (D-43)

where Z = pacy/p1cy is the normalized ground impedance. It is easily verified
that we have P;/V, ; = Zpc, where V;,; = —(0P;/9z)/(iwp;) is the Fourier
transform of the component of the complex velocity amplitude in the negative
z direction; this is in agreement with Eq. (D.7).

We write Eq. (D.38) as

Pl =Ps +‘I)is (D44)
with

P, = Aexp(iky;|z — z4|) (D.45)
P;s = AR(k1.) exp(iky.[z + 2]). (D.46)
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The term F; represents the direct field of the source (indicated by index ‘s’ for
source), so the term P,; must represent the contribution of the ground reflection
to the field, or equivalently, the contribution of the image source (indicated by
index ‘is’). The quantity R(k;,) is identified as a reflection coefficient.

If we apply the inverse Fourier transformation (k;,k,) — (z,y) to Eq.
(D.45), we find of course the solution for a spherical wave in an unbounded
atmosphere:

_ exp(ik1 /12 + (z — 2)?) (D.47)

. 7t (2= m)

with 2 = z2+y2. The inverse Fourier transformation cannot be applied directly
to Eq. (D.46), owing to the factor R(k,,).

Therefore we write the reflection coefficient R(k;,) as a Laplace transform
(83, 84, 42]:

oo
Rkiz) = [ s(a) exp(-akiz)da, (D.48)
0
where s(g) is an image source distribution, which is given by

5(a) = 8(0) — 252 exp (—%—) . (D.49)

Equation (D.48) agrees with Eq. (D.43), as follows from substitution of Eq.
(D.49) into Eq. (D.48).
Substitution of Eq. (D.48) into Eq. (D.46) gives

Po= [ s@Aexp(ibisle + (s + ig))da (D.50)
0

Now the inverse Fourier transformation can be performed, by using the fact that
the dependence on k;, is through an exponential factor similar to the factor in
Eq. (D.45). The result is

[e o}

exp(ik1\/72 + (2 + 25 + 1iq)?

pis — /S(q) xp(l 1;/7' (Z S. 2q) )dq, (D.51)
J V2 + (z+ 2 + 1)

where the square root is in the first quadrant of the complex plane. The inverse
Fourier transformation and the Laplace transformation have been interchanged.
The field given by Eq. (D.51) can be interpreted as the field of an image line
source distribution s(¢) in a complex space, located at (0,0,—z, — iq). By
substitution of Eq. (D.49) into Eq. (D.51) we find the following expression for
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the complex pressure amplitude p; = ps + pis:

k1 R ik, R,
b= eXP(;Il 1) | exp(ikiRy)

1 R,
(o 0]
: 2 )2
3 25:_1 /exp (_qkl) exp(ik1 /T2 + (2 + zs.+ iq) )dq (D52)
Z0 VA Vi + (z + 2z +ig)?

with Ry = \/r2 4 (2 — z,)? and R, = /2 + (z + 2)2. We write this expression

as
o= exp(ik  R;) + Qexp(zkle)’ (D.53)
Rl R2
where
Q=1-28_F [ (_gﬁ) expliky /7T (2 F =),
Z exp(ikiRs) J z VP + (2 + 25 +iq)?
(D.54)

is the spherical-wave reflection coefficient.

As k is real and Z is a complex number with a positive real part, the
integral in Eq. (D.54) is dominated by relatively small values of g. For numerical
calculations the upper limit of the integral can be set at gmax = AM(Z% + Z2)/Z.,
where ) is the wavelength and Z; and Z; are the real and imaginary parts of Z,
respectively [42].

In practice we often have Ry >> z+z,. This corresponds to a reflection angle
6 ~ m/2 (see Fig. D.2). The limit (z + 25)/R, — 0 and § — ©/2 is called the
limit of grazing incidence. In this limiting case we can simplify Eq. (D.54). In
the numerator of the integrand in Eq. (D.54) we use the approximation

2

VT2 + (2 + 25 + iq)? ~ Ry + igcosf — %2— (D.55)
2

with cosf = (z + z)/R,. In the denominator of the integrand in Eq. (D.54) we
use \/72 + (z + 25 +iq)? & Ry. Equation (D.54) becomes

oo 2
ki 2 1k, .
1 ok o] _ D.56
Q=1 2Zexp(d)/exp[ (q o zd)]dq, (D.56)
1]

ihRy (1
| 1 D.57
d 5 (Z + cos 0) ( )

where
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is called the numerical distance. Equation (D.56) can also be written as

Q=R,+(1—-Rp)F(d), (D.58)
where
Zcosf -1
== D.59
P Zcosf+1 (D-59)
is the plane-wave reflection coefficient (D.13) and
F(d) = 1 + idy/7 exp(—d?®)erfc(—id) (D.60)

is called the boundary loss factor; here erfc(z) = 2r~'/2 [° exp(—t®)dt is the
complementary error function [1].

The spherical-wave reflection coefficient for a locally reacting ground sur-
face can be calculated with Eq. (D.54) or Eq. (D.58). Equation (D.54) is a
general expression and Eq. (D.58) is valid only in the limit of grazing incidence
(R2 > z + z5). In many situations, even situations with Ry ~ z+ 2z, the grazing
incidence approximation (D.58) proves to be sufficiently accurate. The grazing
incidence approximation (D.58) has been derived by several authors (see the
review article [3]); the derivation presented here is based on Ref. [42].

For the calculation of the boundary loss factor F(d) one can use series expan-
sions of the complementary error function [1]. For small values of |d?|, smaller
than 8 for example, the series

( 1)" 2n+1
erfc(z) \/_. Z —m (DG])
can be used. This gives
2 id = (dﬂ)
F(d) = 1 +idv/7 exp(~d?) ’ Z Ty (D.62)

The series can be truncated at the point where the summand is smaller than

10, for example. For large values of |d?|, larger than 8 for example, the series

ml-3:5...2m-1)
(2z%)™

Vrzexp(2?)erfc(z) = 1+ i (-1) (D.63)

can be used. This series is valid for z — co and |argz| < 3. For z = —oo we
use the relation erfc(—z) = 2 — erfc(z). This gives

) 2. 1-3-5...2m-1)
= —d))H(~- - , D.64
F(d) = 2idy/7 exp(—d?)H(~Imd) 2_::1 Gy (D.64)
where H is the Heaviside step function [H(z) = 1 for z > 0 and H(z) = 0
for £ < 0] and Imd is the imaginary part of d. In practice the series can be
truncated at m = 8.
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D.4.2 Extended reacting ground surface

For an extended reacting ground surface, the approach is similar to the ap-
proach for a locally reacting ground surface, but the local reaction approxi-
mation k2, = kp is not used in Eq. (D.41). Instead, we use Snell's law in the
form

kf - k%z = k% - k%z? (D'65)

which follows from Eq. (D.37) and the pressure continuity condition p; (z,y,0) =
p2(z,y,0), where p; and p, are given by Eq. (D.30) (cf. Sec. D.3). Hence, Eq.
(D.41) can be written as [83, 84, 42]

k VIEE =)+ k2,
R(k) = 27—~ ( : ! ;
p2kiz + p1v/ (ks — ki) + ki,
_ p2(ekrz) — pr/(ekr2)? +11 (D.66)
pa(ekrz) + p1y/(ekr )2 + 1

with € = 1/4/k2 — k%. This can also be written as

2

R(l) P2=P _pP2—p1pP2 Y
)=
p2tp1 p2tpip; (6klz)"’—7

s (k) — VR 71 e

14} (eklz)2

with v = p1/v/p2 — p}. The Laplace transform (D.48) is replaced by the fol-
lowing Laplace transform:

R(k,,) = /s(q) exp(—q ek ,)dg. (D.68)
0

The inverse Laplace transform of the function R(k;.) given by Eq. (D.67) yields
the following expression for s(q) [84, 1]:

Jz(‘l)

sla) = 2 Ph5(g) - 422 2P sinn(yg) + 292 / sinh [7(g — 0] 2Ly,

p + pr pLp2+p
(D.69)
where J; is the Bessel J-function of order 2. Substitution of Eq. (D.68) into
Eq. (D.46) gives

P, = / s(q) A exp(ikis[z + (2 + i €q)])da. (D.70)
0
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The inverse Fourier transformation gives

o o]

exp(ik1y/7% + (z + 25 + 1 €g)?

Pis =/8(q) ( 1;/ ( > 2q) ) dg. (D.71)
, V2 + (z+ 25 +i€q)

The solution is given by p; = ps + pis, where p, is given by Eq. (D.47) and p;, is
given by Eq. (D.71). The solution can be written as in Eq. (D.53), if we write
the spherical-wave reflection coefficient Q as

(D.72)

where p;s is given by Eq. (D.71). The image source distribution s(q) in Eq.
(D.71) is given by Eq. (D.69), which contains an integral, so the calculation of
Q requires the calculation of a double integral.

As an example, Fig. D.3 shows a spectrum of the relative sound pressure level
calculated with the above (general) solution for an extended reacting ground
surface, and the corresponding spectrum calculated with the solution based on
the local reaction approximation, which was described in Sec. D.4.1 [Equations
(D.54) and (D.58) give equal results in this case]. The spectra were calculated
for a situation with zz = 2 m, 2 = 2 m, and r = 100 m. For the ground
impedance we used the four-parameter model developed by Attenborough (see
Sec. C.4), with a flow resistivity ¢ = 200 kPa-s-m™2. The figure shows that the
effect of the local reaction approximation is small. In general, the local reaction
approximation is a good approximation for ground surfaces.

The solution for the extended reacting ground surface shown in Fig. D.3 was
calculated by straightforward numerical evaluation of the double integral in the
expression for pis. In some cases, however, straightforward numerical integration
gives inaccurate results; more accurate numerical approaches are described in
Ref. [84]. Alternately, one can use the FFP method for an extended reacting
ground surface (see Appendix F).
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source (0,2) receiver (100,2) o =200kPas m-2
e extended reaction
sl local reaction

300
frequency (Hz)

Figure D.3. Relative sound pressure level as a function of frequency, for an
absorbing ground surface with a flow resistivity of 200 kPa-s-m™2. The dots
represent the solution described in Sec. D.4.2 for an extended reacting ground
surface. The line represents the solution described in Sec. D.4.1 for a locally
reacting ground surface. The differences between the dots and the line are small,
so the local reaction approximation is a good approximation in this case.



Appendix E

Basic acoustic equations for
a layered refracting
atmosphere

E.1 Introduction

In Appendix A we derived the basic equations of linear acoustics for a homo-
geneous non-moving atmosphere. The atmosphere was homogeneous because
we assumed that the average pressure p,, and the average density pay are con-
stants (i.e. independent of position); the atmosphere was non-moving because
we assumed that the average fluid velocity vy is zero. The atmosphere was also
non-refracting, as the adiabatic sound speed

¢ = \/YPav/Pav (E1)

(see Sec. A.2) is a constant in a homogeneous atmosphere.

In this appendix we derive linear acoustic equations for a refracting moving
atmosphere. In such an atmosphere, the quantities pay, Pav, Vav, and c are
functions of position in the atmosphere. We assume that the quantities pay,
Pav, Vav, and ¢ are functions of height only; the atmosphere is called a layered
atmosphere or a stratified atmosphere in this case. The assumption of a layered
atmosphere is a reasonable approximation for the atmospheric surface layer, as
horizontal variations of atmospheric parameters are usually much smaller than
vertical variations. Furthermore, we assume that the wind vector is horizontal,
as vertical wind velocity components are usually much smaller than horizontal
wind velocity components.

In Sec. E.2 we derive general linear acoustic equations for a refracting mov-
ing atmosphere. In Sec. E.3 we describe how a moving atmosphere can be
represented approximately by a non-moving atmosphere with an effective sound

139
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speed. In Secs. E.4 and E.5 we describe the axisymmetric approximation, which
is the basis of a two-dimensional representation of the three-dimensional atmo-
sphere. In Sec. E.6 we describe how atmospheric absorption can be included in
the equations.

E.2 Moving atmosphere

E.2.1 Helmbholtz equation in the horizontal wave number
domain

In this section we derive a Helmholtz equation for a layered moving atmosphere
[113, 98]. We use a rectangular zyz coordinate system, with horizontal z and y
axes and a vertical z axis.

We write [cf. Egs. (A.3)]

Da = paV(Z) +p
Pa = pav(z) +p (E.2)
Va = (Uay(2) + u, vay(2) + v,w)

for the total pressure, density, and fluid velocity, respectively. The average
quantities pay, pav, Uay, and v,, are functions of height z only. The acoustic
fluctuations p, p, u, v, and w are functions of position r and time ¢.

The equation of mass conservation is

9
;a + V- (pava) =0, (E.3)
t
and the first-order approximation for linear acoustics is
Op Op dp Opav ou Ov 8w)
hall o il v— vl=—+=—4+—)=0. E4
ot TUag Ty TV, Tl T eyt s (E-4)
The equation of momentum conservation is
Dv
paTta = —Vpa — page:, (E-5)

where D/Dt = §/0t + v, - V is the derivative in a frame that follows the flow,
g is the gravitational acceleration (g ~ 9.8 m/s?), and e, = (0,0,1) is the unit
vector in the z direction. The second term on the right-hand side represents
the gravitational force per unit volume, which accelerates a fluid element in the
negative z direction. If we take p=0, p =0, 4 = 0, v = 0, and w = 0 in Eq.
(E.5) we find the following equilibrium equations for the average pressure:

Opay

: OPav -0 OPav = —pa. (E-6)
T

oy Oz

Hence, gravity causes a decrease of the average atmospheric pressure p,, with
increasing height z. For sound propagation this vertical pressure variation can

=0,
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usually be neglected; we will come back to this neglect later in this section. The
first-order approximation of Eq. (E.5) is

ou ou ou Ouay + L op

et = E7
ot +uav8 +vav(9 tw 0z Pav OZ 0 (E-7)
ov ov ov Ovay 1 dp
— E.8
gt Tl Ut o5, 0 (E8)
ow ow ow 13 »p
— 24+ F -0 E9
5 vy +Uavay+Pavaz+pavy 0 (E.9)

Pressure fluctuations and density fluctuations are related to each other by the
fact that sound propagation can be considered as an adiabatic process. For a
homogeneous non-moving atmosphere we have from p = c?p (see Sec. A.2) the
relation

op _ 20p
ot ot’

For an inhomogeneous moving atmosphere this relation is replaced by the rela-
tion

(E.10)

Dp, 2 Dpa
= E.11
Dt~ Dt (E1D)
or, using Egs. (E.2),
dp 2 [Op
et = el -Vpal, E.12
8t+va Vpa =¢ (6t+va Vp) ( )

as the pressure and the density of a volume element moving through an inho-
mogeneous atmosphere are also affected by spatial variations of p, and p,. For
a non-moving atmosphere (v, = 0), Eq. (E.12) agrees with Eq. (E.10). The
first-order approximation of Eq. (E.12) is

dp dp Op  Opa _ 5 (0p dp Op apav)
51 Ty ting twpt = g tua g F e WG )

(E.13)

We consider a harmonic sound field, with sound pressure
p(2,y,2,t) = Re [pe(z,y, 2)e "] . (E.14)

We apply a double Fourier transformation from the spatial domain (z,y, z) to
the horizontal wave number domain (kz, ky, 2):

pelz,y,2) = / /exp(zk T + ikyy) P(kz, ky, z) dk, dky, (E.15)

—00 —00

(2 )?
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where P(kz, ky, z) is the Fourier transform of p.(z,y,z). We write Eqgs. (E.14)
and (E.15) symbolically as

p— P (E.16)
The Fourier transformation is also applied to the other acoustic variables:

p— QN

v U

vV (E.17)

w— W

Application of the Fourier transformation to Egs. (E.4), (E.7), (E.8), (E.9), and
(E.13) gives

N+ Py W + pay (ikzU + ik, V + W') =0 (E.18)
nU +ul W + p3 ik, P =0 (E.19)
nV + v, W + plik,P =0 (E.20)
W +p P +gp )2 =0 (E.21)
NP = pavgW = (2 + pf, W), (E-22)
where we have introduced n = —iw + ik, tay + ikyVay, the derivative dg/dz of a

function g is denoted as ¢', and Eq. (E.6) has been used. From Egs. (E.19) to
(E.22) we find expressions for U, V, W, and Q in terms of P; substitution into
Eq. (E.18) gives

2
P { St - 0@} P - { L4 00062+ )

+S L n[rda-g@)}P=0. (E2)

where we have introduced Q = n~%(gc™2 + pl,p5.}). In this equation, gQ can
be neglected with respect to unity and the term gc~2 dzln(n c?) can also be
neglected; this will be shown in the following two paragraphs.

We have
! ky usw Ky vVay -2
9Q=-2 (C%+§E!) (1————“———11) : (E-24)

with ¥k = w/ec. The last factor on the right-hand side can be approximated
by unity, as we have u,, < ¢ and v,y < c in practice, and the Fourier integral
(E.15) is dominated by values of k, and k, with k2 +k2 < k? (see Sec. E.3). The
second factor on the right-hand side of Eq. (E.24) contains the term p},/pay.
To estimate the order of magnitude of this term we note that the ideal-gas law
(A.10) implies

/ !
_Z_ax = %_v - % (E.25)
av av
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For an ideal atmosphere with only hydrostatic pressure gradients, i.e. pressure
gradients given by Eq. (E.6), we find from Eq. (E.1)

P _ _97 E.26

BT, (E.26)
which is of the order of 10* m'!. The term T"/T is usually largest near the
ground surface; we assume an upper limit of 0.1 m! for |T"/T|, corresponding to
a temperature change of 3°C over a height interval of 10 cm. A safe upper limit
for |gQ| is therefore of the order of w2 if w is expressed in s'!. For frequencies
above 10 Hz this implies |gQ| < 3 x 1074, so gQ can be neglected with respect
to unity.

The term gc=2£ In(n2c?) in Eq. (E.23) can be written as

’ '
99 ey =2 (l’_ + 3) : (E.27)
c2dz N c

We have |n' /1] < (v, +v;,)/c from k2 + k2 < k? (see Sec. E.3). The gradients
Uy, Uhy, and ¢’ are usually largest near the ground surface; we assume an upper
limit of 0.1 m™ for the ratios |ul,/c|, |v.,/c|, and |¢'/c|. From Eq. (E.27) we
find an upper limit of the order of 6 x 10> m™2 for the magnitude of the term
gc 224 In(n2c?), so this term can be neglected in Eq. (E.23).

Equation (E.23) becomes

/ ’ 2
P (P P p (T g2\ p=o, (E.28)
n Pav c? ’ y
or
Y/} k:n ’yg ') 2
P'— (22~ =) P +kp, P =0, (E.29)
m

where wave number &, is defined by
km =k — kgmg — kym,y (E.30)
with m; = uay/c and my, = v,y /¢, and wave number kn,, is defined by
K, =k -k -K. (E.31)
In practice the term vg/c? in Eq. (E.29) can be neglected. We find

/
P - 2:—'"13' +k2,P=0. (E.32)

This equation can also be written as

k,%,(,% (k;z%—?) +k2,P=0. (E.33)
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Equations (E.32) and (E.33) can be considered as Helmholtz equations in the
horizontal wave number domain. The corresponding inhomogeneous Helmholtz

equation for a monopole source of unit amplitude at position rg = (0,0, 2;) is
(see Sec. D.4)

k&;% (k;zg—f) + ki, P = —4né(z ~ z). (E.34)

This is the basic equation of the FFP method described in Appendix F.

E.2.2 Alternate derivation

Equations (E.28) and (E.29) can also be derived from the following generalized
wave equation for an inhomogeneous moving atmosphere [105]:

2
'l_v (pavVy) LD

. - S pg = 0, (E.35)

where ¢y is the velocity potential, which is related to the acoustic pressure p by

D
p=—pu 2, (E.36)
where D/Dt = 0/8t + v,y - V is the derivative in a frame that moves with
fluid velocity vay = (uav,vav,0). We apply a Fourier transformation to Egs.
(E.35) and (E.36), as in Egs. (E.14) to (E.16). With ¢, — ®, and D/Dt — 9,
Eq. (E.35) becomes

10 0 7 s s
- =z - (L v =0, E.37
Pav 0z (Pav 0z év) (02 Ttk )2y =0 (E-37)
and Eq. (E.36) becomes
d, = — P . (E.38)
NPav

Substitution of Eq. (E.38) into Eq. (E.37) yields Eq. (E.28) if one neglects second
derivatives and squared first derivatives of v,, and p,y; this neglect is consistent
with the derivation of Eq. (E.35) in Ref. [105].

E.2.3 Helmholtz equation in the spatial domain

For a non-moving atmosphere we can derive a Helmholtz equation for p.(r) in
the spatial domain from Eq. (E.33). In this case we have m; = 0, my = 0, and
kym = k. Equation (E.33) becomes

kz% (k—zg_f) + (K -k - ki)P =0. (E.39)
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We multiply this equation by (27)~2 exp(ik,z + ik,y) and integrate over k; and
ky. Using Eq. (E.15) we find
k*V - (k72Vp.) + k*p. = 0. (E.40)

For a moving atmosphere, with wave number k replaced by kn,, this approach
does not work, as k;, depends on k; and k.
For a non-moving isobaric atmosphere Eq. (E.40) reduces to

PavV - (Pt Vpe) + Kpe = 0, (E41)

where we have used Eq. (E.1). This equation is also valid if the density p.y is a
function of z, ¥, and z, instead of a function of z only [13, 1086].

E.3 Non-moving atmosphere with an effective
sound speed

To gain insight into the solution of Eqs. (E.32) to (E.34) we first consider the
case of a homogeneous non-moving atmosphere. In this case we have kn = k
and k!, =0, so k%, = k? — k2 — k2 is a constant. We ignore the ground surface
for the moment. The solution of Eq. (E.34) is then (see Sec. D.4)

P= :’” exp(ikms|z — 2|). (E42)

Substitution of this expression into Eq. (E.15) gives

Pe = L / / e"p[’g(k” kv DN e dk,, (E.43)
—00 —00
where
g(kz, ky, z) = kot + kyy + |2 — 25| /K2 — k2 — K2 (E.44)

is a phase function. The right-hand side of Eq. (E.43) is of course equal to
exp(ikR)/R, with R = /22 + y?> + (2 — 25)2. The integral in Eq. (E.43) is
dominated by values of k; and k, near the point of stationary phase, i.e. the
point where we have

99 _ana 2

= 4
Bk, Bk, (E-45)

(see Appendix P). From Eq. (E.44) we find k, = kz/R, k, = ky/R, and
2+ k2 = k*(z® + y®)/R? at the point of stationary phase. In the case of sound

propagation under relatively small elevation angles we have |z—z2;| < /1% + ¥2,
so we have k2 + k2 ~ k? at the point of stationary phase.
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We choose the zyz coordinate system in such a way that the receiver is
located in the zz plane, so we have y = 0. We assume |z — z| < z and £ > 0.
In this case we find

ke ~k and k, =0 (E.46)

at the point of stationary phase.

For an inhomogeneous moving atmosphere above a ground surface the solu-
tion of Eq. (E.34) is not given by Eq. (E.42), but the conclusion (E.46) remains
approximately valid. This implies that k;, = k — k;m, — kym, can be replaced
by km = k — km, (we still assume y = 0), or

w w w

U,
k —_ 1 —_ _av ~ = —_——— s E.47
™ c ( c ) C+ Uay Ceff off ( )

where cef = C + uay is called the effective sound speed and keg is the corre-
sponding wave number. Consequently, for sound propagation calculations one
can replace a moving layered atmosphere by a non-moving atmosphere with an
effective sound speed, which is the sum of the adiabatic sound speed c and the
wind velocity component u,, in the direction of sound propagation. This is an
approximate approach [98, 99], which is valid for small elevation angles (as we
assumed |z — z5| € v/z? + y?). Equation (E.32) becomes

!
P"—2-fp (k2 — k2 - kZ)P=0. (E.48)
keﬁ' v
The inverse Fourier transformation yields the following Helmholtz equation for

the complex pressure amplitude p.(r) (see Sec. E.2.3):

kg V - (ke Vpe) + kigpe = 0. (E.49)

E.4 Axisymmetric approximation

In this section we describe the axisymmetric approximation for sound fields in
a layered atmosphere with an effective sound speed accounting for wind. This
approximation is the basis of a two-dimensional representation of the atmo-
sphere, which is used in the two-dimensional computational methods described
in Appendices F, G, and H.

We assume that the sound field is generated by a point source, and use
cylindrical rz¢ coordinates with the z axis along the vertical line through the
source (see Fig. E.1). Equation (E.49) becomes

19 ( Opc 0 (,_»0pc 1 8%p
1o () e (KA + s + Hane 0 830
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y

Figure E.1. Rectangular zyz coordinates and cylindrical rz¢ coordinates. In
the axisymmetric approximation we neglect the variation of the sound field with
the azimuthal angle ¢.

In the axisymmetric approximation we neglect the variation of the sound field
with the azimuthal angle ¢, so the third term on the left-hand side of Eq. (E.50)
vanishes. We replace p. by the quantity

¢c = peV/T, (E.51)
and Eq. (E.50) becomes
quc 1 0 - 0 c
or2 + 2% + kfﬁ& ( o bq;) + kgge = 0. (E.52)

We apply the far-field approximation r >> ke_ﬁl, so the second term on the left-
hand side can be neglected, and we find the two-dimensional Helmholtz equation

62% 2 0 ( -26%

Gz Theag, \ ks 5,

) + kzﬂ‘(Ic =0. (E.53)
This is the basic equation of the two-dimensional PE methods described in Ap-
pendices G and H. In the remainder of this section we derive the correspond-
ing inhomogeneous Helmholtz equation in the horizontal wave number domain,
which is the basic equation of the two-dimensional FFP method described in
Appendix F.

For the field of a monopole source we have from Eq. (E.34)

0 _,0P
Kns (keﬂ? —a——) + (K2 — B2 — K)P = —4n8(z - ), (E.54)
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where Fourier transform P is given by

P(kz,ky,2) = / /exp(—ikzz—ikyy)pc(r) dz dy. (E.55)

—00 —00

In the axisymmetric approximation, p. is a function of r and z only. With
z =rcos¢ and y = rsin ¢, Eq. (E.55) becomes

27 oo

P(ks, ky,z) = / / exp(—ik,r cos ¢ — ikyrsin @) pc(r) r dr dé. (E.56)

Substitution into Eq. (E.54) gives, with g = pey/T,
21 00
, . . 2 0 -2an k2 _ k2 _ k2
exp(—ikzr cos ¢ — ikyT sin ¢) keffé; ki Bz + (kg — kz — ky)gc
00
x rdrdp = —4né(z — z5). (E.57)

We write k; = k. cosy and ky = k, siny. This gives

2n
[keﬁ;’ (k;f? %) + (k2 — kf)qc] \/?O/exp(—ik,r cos[¢ — ¥]) dodr
= —47d(z — 2z5). (E.58)

The integral over ¢ can be written as
27
/exp(—ikrr cosa)da = 2w Jp(k,r), (E.59)
0

where Jp is the Bessel J-function of order zero [1]. For large k,r we have the

as ymptotlc relatl()n
JO krl - cos ‘cr“ ). E 60

Equation (E.58) becomes, for large k,r,

7 dqc 2 1
/ [ 3, ( eﬂ?a—qz) + (K2 - kf)qc] 24/ P cos(k,r — Z1r) dr = —4nd(z — 2).
0

(E.61)
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With the definition

o0

T 1 gc 9c .
Qlk,,2) = | gccos(kyr — =) dr = [— cos(k,r) + —=sin(k,r)| dr
0/ 4 6/ V2 V2

(E.62)

we find
8 [, _,0
kgffa; (keffza—?) + (k2 — k2)Q = —/27k,8(2 — 25). (E.63)

The function Q(k,,z) can be computed by numerically solving this equation
with the FFP method (see Appendix F). The field g.(r,z) is obtained from
Q(ky, z) by the inverse Fourier transformation corresponding to Eq. (E.62):

% - % / Q(kr, z) cos(k,r) dk, = ;lr. / Q(kr,2)sin(kyr) dk,.  (E.64)

We have reduced the three-dimensional problem to a two-dimensional prob-
lem by evaluating the integral over the azimuthal angle ¢ in Eq. (E.58) an-
alytically. In the derivation we have assumed that p. is independent of the
angle ¢. This assumption is valid for a non-moving layered atmosphere. The
assumption is not valid for a moving atmosphere, i.e. an atmosphere with wind,
as sound waves travel faster in downwind directions than in upwind directions.
As an approximation, however, the moving atmosphere can be replaced by a
non-moving atmosphere with an effective sound speed, so that the assumption
of axial symmetry can still be used.

An alternate approximate approach for a moving atmosphere is as follows.
We assume that the variation of p. with the azimuthal angle ¢ is small, so
Eq. (E.58) can still be used as an approximation, with keg replaced by kmy = k—
kzuay fc—kyvay/c. Asshown in Sec. E.3, the field is dominated by wave numbers
k; and ky near the stationary phase values kz/R and ky/R, respectively, where
R = /22 + y2 + (z — z,)? is the distance between the source at position (0,0, z)
and the receiver at position (z,y,z). Using k? = k2 + k;‘; we find k. = kr/R
at the stationary phase point, where r = \/z2 + y? is the horizontal distance
between the source and the receiver. This gives kn, = k — k- (Uavz /7T + vayy/7)/cC
at the stationary phase point, where (u,yz/r + vayy/r) is the wind velocity
component in the direction from the source to the receiver. If we choose the
zyz coordinate system in such a way that the receiver is located in the zz
plane, so that the receiver is at position (z,0,z), we have kyn, = k — kpuay/c
at the stationary phase point. Hence, Eqgs. {E.62) to (E.64) can be used as an
approximation for a moving atmosphere if we replace kesr by km = k — kruav/c.
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E.5 Alternate approach

In the previous section we derived the inhomogeneous Helmholtz equation (E.63)
in the horizontal wave number domain by using the axisymmetric approximation
and the asymptotic relation (E.60). An alternate approach is to replace Eqgs.
(E.51) and (E.62) by the Fourier-Bessel transform

Q(ky,2) = /pc(r, 2)Jo(krr) T dr (E.65)
0

(see Ref. [55]). One starts from Eq. (E.50) with 82p./0¢? = 0 and replaces the
right-hand side by the monopole source term in cylindrical coordinates, which
is —4mwr=18(r)d(¢)8(z — zs). The resulting equation is integrated over ¢ from 0
to 2w, and as p. is independent of ¢ this gives

10 ((0c) 4o O (4000 ga 2505
T or (r ar)+ke“az(e“3z' +keqpe = = 20(r)3(z — ). (E.66)

With the Fourier-Bessel transform given by Eq. (E.65), we find from Eq. (E.66)

Kog (K 52) + (- K)Q = (=) (BSD)
To prove this, Eq. (E.66) is multiplied by Jo(k,r)r and integrated over r from
r=0tor = oo, as in Eq. (E.65). Integration by parts yields Eq. (E.67).
Equation (E.67) differs from Eq. (E.63) only by a factor \/2/7k, on the right-
hand side. The function Q(k,,z) can be computed by numerically solving Eq.
(E.67) with the FFP method. The field p.(r, 2) is given by the inverse transform:

Pe(r, 2) = /Q(kr,z)Jo(k,r) k, dk,. (E.68)
0

To calculate the integral in this equation one replaces Jo(k,r) by a far-field
approximation; the resulting expression is equivalent to Eq. (E.64).

E.6 Representation of atmospheric absorption

In the previous sections of this appendix we ignored the effect of atmospheric
absorption. This effect can be included, however, simply by replacing the wave
number k by k + i3, with 8 = a/(201ge), where a is the absorption coefficient
in dB per unit length (see Sec. B.5). The imaginary term i yields a factor
exp(—sp) in the sound pressure amplitude, where s is the propagation distance.
This corresponds to a contribution —sa to the sound pressure level. One might
even include phase effects of atmospheric absorption [106] by using a complex
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term if + v instead of the imaginary term i3. In general, the coefficients 3
and v vary with height z, so the profile k(z) should be replaced by the profile
k(z) +1B(z) + 7(2).

In many practical situations it is sufficiently accurate to account for the effect
of atmospheric absorption by a simple reduction of the sound pressure level by
sa, where s is the distance between the source and the receiver and « is an
average absorption coefficient. In these situations it is not necessary to include
atmospheric absorption in the numerical computation of sound propagation.



Appendix F

Generalized Fast Field
Program (FFP)

F.1 Introduction

The Fast Field Program (FFP) is a numerical method for computing the sound
field of a monopole source in a layered atmosphere above a ground surface. The
ground surface is characterized by the ground impedance and the atmosphere
is represented by the vertical profiles of the wind velocity and the temperature.
The profiles are approximated by dividing the atmosphere into a number of
horizontal homogeneous layers with constant wind velocity and temperature.
The sound field in each layer is computed in the horizontal wave number do-
main, taking into account the appropriate continuity equations at the interfaces
between the layers. The sound field in the spatial domain is computed from
the field in the horizontal wave number domain by an inverse Fourier trans-
formation. Therefore the FFP method is sometimes called the ‘wave number
integration method’ [69].

The FFP method was originally developed for underwater acoustics [45, 69].
Raspet et al. [119] and Lee et al. [79] developed an FFP method for atmospheric
acoustics (see also Refs. [55, 155]); this is a two-dimensional method, for an ax-
isymmetric atmosphere, with the effective sound speed accounting for wind (see
Sec. E.3). Nijs and Wapenaar [94] and Wilson [158] developed three-dimensional
computational methods for a moving atmosphere, which can be considered as
generalized FFP methods.

In this appendix we describe a generalized FFP method, which can be ap-
plied both in three dimensions to a moving atmosphere and in two dimensions
to an axisymmetric non-moving atmosphere with the effective sound speed ac-
counting for wind.

153
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F.2 Solution of the Helmholtz equation

Equation (E.34) is the basic equation of the FFP method for a monopole source
in a layered moving atmosphere. Equation (E.63) is the corresponding equation
for a layered non-moving atmosphere with the effective sound speed accounting
for wind. Equation (E.34) corresponds to a three-dimensional representation of
the atmosphere and Eq. (E.63) corresponds to a two-dimensional representation
of the atmosphere. Both equations can be written as

0o} oP
(k2 2p=— - F.1
k e (k 6z> + kP Ss5d(z — zg), (F.1)
where we have
S5 = 4m and k? = k* — k2 — k2 with k = kn (F.2)

in the three-dimensional case, and
Ss = \/27k, and k? = k* — k2 with k = keg (F.3)

in the two-dimensional case; P represents the quantity @ in the two-dimensional
case. The wave number in the three-dimensional case is km = w/c — kzuay/c —
kyvav/c, where u,, and v,, are the z and y components of the wind velocity,
respectively. The wave number in the two-dimensional case is kef = w/ces,
where ceg = ¢ + u,y is the effective sound speed; u,, is now the wind velocity
component in the r direction, i.e. the direction from the source to the receiver.
As described in Sec. E.4, moving-medium effects can be studied approximately
in the two-dimensional case by using k = km = w/c—kruay/cinstead of k = keg.
The atmosphere is represented by the vertical profile of the wave number
k(z). We approximate the profile by dividing the atmosphere into a number of
horizontal homogeneous layers with constant wave number k (see Fig. F.1). The
heights of the interfaces between the layers are denoted as z; (j =1, 2, ... ,N),
where 2, = 0 is the height of the ground surface. The source is at height z,
which coincides with the height of interface m, so we have z; = zy,.
As the wave number k is constant within a layer, Eq. (F.1) reduces to
2
%—; + k2P = —S56(z — z5). (F.4)
The effect of wave number gradients in the first term on the left-hand side of Eq.
(F.1) is taken into account in the FFP method only by wave number differences
between the layers; rapid variations of the wave number with height require thin
layers. The solution of Eq. (F.4) in layer j is written as

P; = Ajexp(ik,jz) + Bjexp(—ik,;z) for z; £ z < zj41, (F.5)

where k; is the value of k, in the layer and A; and B; are constants. At the
top of the highest layer between zy_; and zx we assume By_; = 0, so only an
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z= 0

Figure F.1. The profile k(2) is approximated by dividing the atmosphere into a
number of horizontal homogeneous layers with constant wave number k.

upward traveling wave is present here. This implies that the highest layer must
be chosen above the region where sound is refracted downward to the receiver;
the height of this region usually increases with increasing distance between the
source and the receiver. The solution of Eq. (F.4) in the region below the ground
surface (z < 0) is written as

Py = By exp(—ikgz) for 2 <0, (F.6)

where By is a constant and kg is the (complex) wave number in the ground (cf.
Sec. D.4).

The constants A; and B; follow from the boundary conditions at the inter-
faces. The acoustic pressure and normal velocity are continuous at all interfaces,
except at the interface at the source height z; = z,,,, where the pressure is con-
tinuous but the normal velocity is discontinuous (see Sec. D.4). The Fourier
transform W of the normal velocity is given by W = -~ 1p;1 P’ as follows
from Eq. (E.21) with gravity neglected. This gives the following boundary con-
ditions:

P;(z;) = Pj_1(zj) forj=1,2,...,N, (F.7)
_1 _10P;(z; 1 _1 OP;_1(z; . .
jl jl_éi]) = j_ll ]-_11——]512—(—{]—) forj=2,3,..., N (Gj#m), (F.8)
an(Zj) _ 6Pj_1(zj) .
9% - 8, Ss for j =m, (F.9)

'—l aP](‘z]) — T-l aPJ_l(Z])

= | = 1
7 0z i-1 oz for J 17 (F 0)

where n; is the value of 7 in layer j (see below), p; is the value of p,, in
layer j, and pp is the (complex) density of the ground material (see Sec. D.4).
The derivation of Eq. (F.9) is analogous to the derivation of Eq. (D.34); the
discontinuity at z = z,, of the ‘staircase approximation’ of the profile k(z) (see
Fig. F.1) is ignored in the derivation, as the real profile is continuous at z = z,.
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The effect of the factors 17]-"1, nj‘_ll, pj_l, and pj‘_l1 in Eqgs. (F.8) and (F.10)
is often small, so these factors may be omitted. In the two-dimensional case of
a non-moving atmosphere with an effective sound speed we have n = —iw and
17]71 = 1737_11. In the three-dimensional case we have = —ickn, and n]-'l ~ 7’;.11
from u,, < ¢ and v,, < c. Equation (F.10) is consistent with Eq. (F.8) as we
have 9, = 7o from u,, = v,, =0 at z; = 0.

The boundary conditions for z; = 0 give the relation

A, = R(k,1)Bi, (F.11)

where

kzl - k(Zl)/Zs

Rlka) = == k(21)/Zs

(F.12)

is the plane-wave reflection coefficient (see Appendix D); Z; is the normalized
impedance of the ground surface. For a locally reacting ground surface, Z; is
equal to the normalized characteristic impedance Z of the ground material. For
an extended reacting ground surface, Z; is given by Eq. (D.23).

The other boundary conditions can be used to derive a set of equations that
can be solved for the constants A; and Bj. It is easier, however, to follow a
different approach. From Eq. (F.5) we find the relations

P;(z + Az) = cos(k.;Az)Pj(z) + k;jl sin(k.;Az) Pj(2)

F.13
Pj(z + Az) = —k,jsin(k.;Az) P;(2) + cos(k.;Az) Pj(2) ( )

for z and z + Az in layer j, where cosw and sinw are defined for complex w as
(e + ™) and L (e* — e7*), respectively. These relations will be used to
determine the quantities P;(z;).

F.3 Extrapolation from the ground and the top
to the source

We start at the ground surface at height z; = 0. We arbitrarily set By = 1 for
the moment. From Egs. (F.5) and (F.11) we find

Pi(z) = 6(’%1) +1 (F.14)
Pl'(zl) = ‘Lk;l [R(k,l) - 1] .

The values of the quantities Pj_;(z;) and P]_, (z;) are determined successively

for j = 2,3,...,m by using Egs. (F.14), Eqs. (F.13) with z = z; and Az =

zj4+1~—2j, and Egs. (F.7) and (F.8). The final values of Pp,—1(2m) and FPp,_;(zm)

at the source height z,, are denoted as P, and P, respectively, where index

‘I’ denotes ‘lower region’, i.e. region below the source.
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Next we start at the top at height zy. Here we choose Pny_1(2n) = 1 for
the moment. From Eq. (F.5) with By_; = 0 we find

PN—I(ZN) =1

. (F.15
PIIV—I(ZN) = ’l,kzN. )

The values of the quantities P;(z;) and P}(z;) are determined successively for
j=N-1,N-2,...,m by using Egs. (F.15), Egs. (F.13) with z = z;;; and
Az = zj — zj41, and Egs. (F.7) and (F.8). The final values of Pp(2zm,) and
P/.(2m) at the source height z,, are denoted as Pp, and P,,,, respectively,
where index ‘u’ denotes ‘upper region’.

F.4 Field at the receiver

Numerical values of P; and P; are not yet correct, only the ratios Pj/P; are
correct, as we have arbitrarily set B; = 1 and Py_1(zn) = 1. At the source
height 2,, we have from Eq. (F.9)

P, P!

(Pmu) : (Pm,) = 55, (F.16)

where P,, is the correct value of P at the source height z,,. This gives
-Ss

(Prlnu/PmU) - (P:nl/PTHI).

Now the values of P;, as determined by the calculation described in Sec. F.3,
can be scaled to the correct values, by multiplication of P; by the factor

Pm= (F.17)

(Pm/Pmu) for z; > zm,

(F.18)
(Pm/Pm1) for z; < zpm.

Finally, an inverse Fourier transformation of the quantities P; yields the complex
pressure amplitude in the spatial domain. In the three-dimensional case we have

o (o o]
1
pe(@1,2) = / / expliksz + ikyy) Plke, by, 2) dbp dky.  (F.19)

—00 —00

In the two-dimensional case we have from Eq. (E.64), returning to the notation
Q@ instead of P,

ge(r,2) = % / [exp(ikyr) + exp(—ik,7)]Q (K-, 2) dk;. (F.20)

Numerical aspects of these Fourier integrals are discussed in the next section.
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k
—O > Rek,

N,
7

Figure F.2. Integration path that avoids the poles at k, = +k on the real axis.

F.5 Deformation of the integration path

We first consider Eq. (F.20) for the two-dimensional case. The integrand has
poles on the integration path near k. = —k and k, = k. This can be seen from

the analytical solution for a homogeneous atmosphere without a ground surface
(see Sec. F.7):

Qkr,2) = z\/gg exp(ik;|z — z)) (F.21)

with k2 = k% — k2. The solution is of course (slightly) different for an inhomo-
geneous atmosphere, but the regions near the poles still dominate the integral
in Eq. (F.20). To avoid the poles we do not integrate along the real axis in Eq.
(F.20) but along the integration path shown in Fig. F.2. For positive k, we in-
clude a small imaginary term —ik;, and for negative k, we include the opposite
imaginary term +ik;, where k; is a small positive number. This choice corre-
sponds to a positive imaginary part of k, for k2 > k2, so that we have Q — 0 for
kr = *oo [see Eq. (F.21)]. It should be noted that the factors exp(kir) can
be taken out of the integrals [ exp(+ik,7)Q dk, in Eq. (F.20), so the integrals
can still be performed with standard Fourier techniques (see Sec. B.4).

The integral in Eq. (F.20) can be transformed to an integral over positive
wave numbers k, only, by using the relation Q(—k, z) = +iQ(k., z), which fol-
lows from Egs. (F.3) and (F.4). It follows from the analytical example presented
in Sec. F.7 that we must use the minus sign here. Equation (F.20) can therefore
be written as

ge(r,2) = i—:/il 6/ [exp(ik,r) + exp(—ik,)]Q(kr, 2) dk. (F.22)

For the numerical evaluation of this integral we discretize the integration vari-
able k, as follows:

ke = ks,n — ikt (n=12,... , M), (F23)
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where k; is the small positive number described before, and
1 3
ksn = §Ak, iAk"” s M (F.24)

is the real part; Ak is the wave number spacing. The solution g¢. given by
Eq. (F.22) becomes periodic in r by the discretization, with periodic distance
2n/Ak. The wave number spacing Ak should be chosen small enough to ensure
that the value of g. at the receiver is not affected by this periodicity; one can
use, for example, 2r/Ak > 3r. The choice of the maximum wave number ks p
depends on the frequency, as we have seen that the integral is dominated by
wave numbers near the pole at k, = k = w/ces. One can use ks pr =~ 3w/co,
where ¢p is the sound speed at z = 0. For the small positive number k; one can
use the value of Ak.

The truncation of the integration interval in Eq. (F.22) at the maximum wave
number ks ps induces small, rapid oscillations of g. as a function of r. These are
easily eliminated by including a window function as a factor in the integrand
of Eq. (F.22); this function is equal to unity except near the integration limits
where the function goes smoothly to zero.

Next we consider the integral (F.19) for the three-dimensional case. As in
the two-dimensional case, the solution for a homogeneous atmosphere is pro-
portional to k7! (see Sec. D.4). This implies that there are poles in the real
k:k, integration plane. The location of the poles depends on the receiver coor-
dinates z and y. For y = 0 the poles are on the k, axis, at (kz, ky) = (—k,0)
and (kz, ky) = (k,0). In this case the k, integration interval can be chosen as
[—3ko, 3ko] and the k, integration interval as [—ko, ko], with ko = w/cp. As in
the two-dimensional case, the integration variables are discretized and the poles
must be avoided by including a small imaginary term in k; and ky. Fory =0
the poles are on the k, axis and we know from the two-dimensional case that
the imaginary part of k, must be negative for k, > 0 and positive for k; < 0
(see Fig. F.2). A possible choice is therefore [158]

kz,m = ksz,m - lkt Ccos an

kyn = ksy,n — ke sinfpmn, (F.25)

where ksz, ;m and ksy n are the discretized variables in the real k; k, plane, Omn =
arctan(ksy,n/ksz,m) is the polar angle of the vector (ksz,m, ksy,n) running from
0 to 27, and k; is a small positive number. As in the two-dimensional case, a
window function must be used to eliminate spurious effects from the truncation
of the integration intervals.

F.6 Improvement of numerical accuracy

The efficiency of the computational method described in the previous sections
depends on the number of horizontal layers that is used. This number depends
on the vertical profiles of the adiabatic sound speed and the wind velocity.
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At heights where the vertical gradients are large (near the ground surface for
example), thin layers must be used. At heights where the gradients are small,
thick layers can be used. In the case of a homogeneous atmosphere, two layers
are sufficient (see Sec. D.4).

If the number of layers is large, one should be aware of numerical errors in the
calculation of the quantities P; by repeated application of Egs. (F.13). These
errors originate predominantly from the factors exp(+ik,;Az) in Egs. (F.13). In
the calculation of the (unscaled) quantities P; for j = 2,3,...,m (see Sec. F.3),
P; may become large with increasing j owing to the factors exp(—ik,;Az) with
imaginary k,;. Similarly, in the calculation of P; for j = N -1,N —2,...,m,
P; may become large near the source owing to the factors exp(+ik,;Az) with
imaginary k.;. This problem can be solved by multiplying the quantities P; and
P; by a factor

exp(ik,0Az) for Az>0
exp(—ik,0Az) for Az <0 (F.26)
after each step z = 2+ Az (see Sec. F.3). These factors do not affect the ratios
P]f /P;. In the final scaling to the correct values of P;, the reciprocal factors
should be included; this gives an additional factor exp(ik.o|z — z|) in the scale
factors (F.18). For the wave number k,o one can use, for example, the vertical
wave number at the source height. An even better approach can be applied in
the layers above the highest location where the field is to be computed. Here
one can simply divide P; and P; by P; after the downward calculation in a
layer, so P; and P; are replaced by 1 and P;/P;, respectively. This approach is
equivalent to the admittance extrapolation approach described in Ref. [155].

F.7 Analytical example

As an example we will calculate the FFP solution for the two-dimensional case
with a homogeneous atmosphere. In this case we use only two layers: layer 1
between z; = 0 and 2; = 23 (m = 2), and layer 2 between z; and 23 > 2;
(N =3).

Equations (F.14) are written as @1(z1) = R+ 1 and Q(z1) = ik, (R - 1).
Application of Egs. (F.13) with z = z; and Az = z, — 2; = z; gives

Qm = exP(ikzzs)R + exp("ikzzs)

Ql, = ik;[exp(ik;25) R — exp(—ik, z5)]. (F.27)

Equations (F.15) are written as Qn—_1(2n~) = 1 and Q'y_,(2n) = tk.. Applica-
tion of Egs. (F.13) with z = zy and Az = z; — zn gives

Qmu = exp[ikz (Zs - ZN)]

. : (F.28
mu = tkz explik;(zs — zn)). )
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Equation (F.17) gives

[ VE .
=)= ~= . F.29
Qm ) 2 kz z )] ( )
With the scale factors (F.18), the correct values of Q;(z;) become
v : .
Qj(z) = z\/g A 2 . i (F.30)

This expression is valid for arbitrary z > 0.
We consider the case without a ground surface, so we have R = 0. Equation
(F.30) becomes

© VEkr (F.31)

2 k

Equation (F.22) gives
[o 0}
_i(1-1) — vkr
Gc = 2\/7—l-_- eXp(zkrT‘l""kzlz Zsl) k, dk

. 1 _ '3 oo

+ z(2ﬁz) /exp( —ik,r +ik;|z — Zsl)\/—dk (F.32)

We first consider the first integral on the right-hand side, which we write as
L = / exp[iF(k,)]G (k. )dk, (F.33)
0

with F(k,) = k. + |z — 2|/k? — k2 and G(k,) = Vk.//k* — k2. For large
k.r, the integral (F.33) can be calculated with the method of stationary phase
(see Appendix P):

’ 2
I |F"(k )| G(kr 0) exP["F(kr 0) + 1#41] (F34)

with y = sign[F"(kr)], where sign(z) is 1 for z > 0 and -1 for z < 0; the
quantity ko is the wave number at the stationary phase point, i.e. the solution

of the equation F’(k,o) = 0. We find ko = rk/R; with Ry = /T2 + (2 — z)?,
and the integral becomes

exp(ile)

E (F.35)

=Vr(l-i)vr

The second integral on the right-hand side of Eq. (F.32) can be treated in a
similar way. In this case the stationary phase point is at k.o = —rk/R;, which
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is outside the integration interval. This means that the integral can be neglected
with respect to the first integral on the right-hand side of Eq. (F.32). Equations
(F.32) and (F.35) give

- \/_exp(szl) (F.36)

which is the correct expression for g, corresponding to p. = exp(ikR;)/R:.
Thus, we have shown that the FFP solution agrees with the analytical solution
for the two-dimensional case with a homogeneous atmosphere.



Appendix G

Parabolic Equation (PE)
method

G.1 Introduction

The Parabolic Equation (PE) method is a numerical method for computing
the sound field of a monopole source in a refracting atmosphere above a ground
surface. In contrast to the Fast Field Program (see Appendix F), the PE method
is not limited to a layered atmosphere and a homogeneous ground surface. In
the PE method, the sound speed profile and the ground impedance may vary
along the propagation path. Furthermore, effects of atmospheric turbulence and
irregular terrain can be taken into account in the PE method.

In the PE method, the sound field is computed by solving a parabolic
equation, which follows from the wave equation by neglecting contributions to
the field from sound waves with large elevation angles. Consequently, the PE
method gives accurate results in a region limited by a maximum elevation angle
(see Fig. 4.11). The value of the maximum elevation angle ranges from typically
10° to 70° or higher, depending on the small-angle approximation used in the
derivation of the parabolic equation [69] (cf. Secs. 4.6 and G.12). A maximum
elevation angle of 10° is often sufficient for situations with the source and the
receiver near the ground.

The PE method has been widely used in underwater acoustics [148, 45,
69, 78]. In 1989, Gilbert and White presented a PE method for atmospheric
acoustics [56). This method is called the Crank-Nicholson PE (CNPE) method.
In this appendix we describe the CNPE method, following a description by West
et al. [156]. In Appendix H we describe an alternate PE method: the Green’s
Function PE (GFPE) method [58].

Both PE methods are two-dimensional methods, based on the axisymmetric
approximation (see Sec. E.4). Recently a three-dimensional GFPE method has
been developed [44], which is also described in Appendix H. Three-dimensional
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CNPE methods are described in Refs. [41, 22, 77].

The CNPE method yields a finite-difference solution of a wide-angle parabolic
equation; the solution is accurate up to elevation angles of about 35°. The GFPE
method is less accurate than the CNPE method in situations with wide-angle
propagation and large sound speed gradients; for most applications, however,
the GFPE method is sufficiently accurate. The advantage of the GFPE method
is that this method is more efficient, i.e. faster, than the CNPE method.

A flat, locally reacting ground surface is assumed in the PE methods de-
scribed in this appendix and in Appendix H. In Appendix M we describe the
application of the PE methods to propagation over hills and other terrain pro-
files. In Appendix J we describe how the effect of atmospheric turbulence can
be taken into account in the PE methods.

G.2 Basic approach of the CNPE method

The CNPE method described in this appendix is based on the axisymmetric
approximation, which was described in Sec. E.4. The axisymmetric approxima-
tion implies that the three-dimensional Helmholtz equation (E.49) reduces to
the two-dimensional Helmholtz equation (E.53):

a2qc 9%qc

o2 Bzt

+ ke2ﬁ‘qc = O, (G]')

where we use the rz coordinates shown in Fig. E.1. The term 8%¢. in Eq. (G.1) is
an approximation of the term k2:8,(k_28.q.) in Eq. (E.53) (with the notation
8, = 8/8z). This approximation is often used in the PE method; numerical
computations show that the effect of the approximation is usually negligible. In
Sec. G.10 we will show how the term k28, (k7 8,gc) can be implemented in the
PE method.

We recall that the quantity g.(r,2) in Eq. (G.1) is related to the complex
pressure amplitude p.(r, z) by Eq. (E.51):

gc = peVT. (G.2)

The wave number keg in Eq. (G.1) is equal to w/ceq, where w is the angular fre-
quency and ceg is the effective sound speed. The subscript ‘eff” will be omitted,
80 we have ke = k and ceg = ¢. The subscript ‘c’ of g. will also be omitted, so
we have ¢, = q.

In the CNPE method, the field q(r, z) is computed on a grid in the rz plane
(see Fig. G.1). The computation starts at r = 0 with a starting function ¢(0, 2),
which represents a monopole source. This function is extrapolated step-wise in
the positive r direction, which yields the complete field q(r, z). An extrapolation
step from range r to range r + Ar is written as

q(r,z) = q(r + Ar, 2). (G.3)
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Figure G.1. Grid in the rz plane used in the PE method, with horizontal
grid spacing Ar, vertical grid spacing Az, a ground surface at z = 0, and an
absorbing layer at the top (2, < z < zpr). The amplitude of the sound pressure
at a grid point is represented schematically by the size of the circle at the grid
point. In practice the number of grid points along the z axis is typically 1000
or more (see Sec. G.9).

Thus, the values of q at the grid points at range r + Ar are computed from
the values at range r. Accurate results are obtained only if the horizontal grid
spacing Ar and the vertical grid spacing Az do not exceed about A/10, where
A is an average wavelength.

The grid has a finite height. At the top of the grid we use an artificial
absorbing layer to eliminate reflections from the top of the grid. The ground
surface is taken into account by a boundary condition, with the complex ground
impedance as a parameter.

The range dependence of the wave number k in Eq. (G.1) is taken into
account step-wise. Within an extrapolation step, the range dependence is ne-
glected, so k is a function of z only.

G.3 Narrow-angle parabolic equation

We write the solution of Eq. (G.1) as

q(r, 2) = P(r, 2) exp(ikar), (G4)

where k, is the value of the wave number k(z) at some average height or at the
ground surface; for the numerical examples in this book we used the value at
the ground surface. The factor exp(ikar) in Eq. (G.4) represents a plane wave



166 Appendix G

traveling in the positive r direction, and oscillates rapidly as a function of r; the
function (r, z) usually varies slowly with r. Substitution of Eq. (G.4) into Eq.
(G.1) gives

Py o 0 P,
57.—2 + 21’535 + ﬁ + (k - ka)d’ =0. (G5)

As 1 usually varies slowly with r, the first term on the left-hand side can be
neglected with respect to the second term, so we find

Lo O
2’Lka'a—r + 922 + (k k2w =0. (G.6)

This equation is called the narrow-angle parabolic equation.

G.4 Alternate derivation of the narrow-angle
parabolic equation

The narrow-angle parabolic equation can be derived in a different way. We write
Eq. (G.1) as

82q + Ha(2)g =0, (G.7)

where we use the notation 8, = 9/0r and the operator Hy(z) is defined as

Hy(2) = k*(z) + 8% (G.8)
We define the quantity 6k?(z) as
0k%(2) = k2(z) — K2, (G.9)
so we have
Hy(2) = k2 + 6K%(2) + 02 = k2(1 + 8) (G.10)
with
s = k7 26k*(2) + k207 (G.11)

Equation {G.7) can be written as

[6, —1H,; (2)] [6, +iH,; (Z)] q=0, (G12)
where
Hy(2) = kavV1 ¥ 3 (G.13)

is the square-root operator. The square-root of the differential operator 1 + s
is defined by the expansion v/1+s =1+ £s— 1s%+ ..., which is analogous to
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the expansion of a common square-root function [26]. It is readily verified that,
with this definition, H; satisfies H? = H,. We will consider different ways of
truncating the expansion of the square-root operator.

In the derivation of Eq. (G.12) from Eq. (G.7) we have assumed that the
operators H, and 8, commute, which means that we have H,8, = 8- H;. Strictly
speaking this is valid only for a layered atmosphere with k¥ = k(z). For an
atmosphere with a range-dependent wave number k(r, z) it is an approximation.

The factor (9, — iH,(z)] in Eq. (G.12) represents waves traveling in the
positive r direction and the factor [0, + iH;(z)] represents waves traveling in
the negative r direction, as we assume a harmonic time factor exp(—iwt) (see
Secs. A.3 and A.4). In the PE method we choose the source at r = 0 and the
receiver at r > 0, and we take into account only waves traveling in the positive r
direction; back scattering is neglected. Equation (G.12) reduces to the one-way
wave equation

rq — iH1(2)q = 0. (G.14)

If we approximate the square-root operator (G.13) by
Hi(z) = k(1 + 39), (G.15)
we find the narrow-angle parabolic equation
8,q — ikaq E/Z? (2 + 6k2(2)) ¢ = 0. (G.16)
If we replace the quantity q by the quantity 1 defined by Eq. (G.4) we find
B, = %ikasz/), (G.17)

which is equivalent to Eq. (G.6).

G.5 Wide-angle parabolic equation

The approximation (G.15) for the square-root operator is accurate only for prop-
agation at small elevation angles, up to about 10°. A more accurate expansion
of the square-root operator is [26]

1+3s

G.18
e (G.18)

H 1 (Z) = ka 1
ZS

where 1/(1 + is) is the inverse of the operator 1+ gs. This expansion has
quadratic accuracy in s, while Eq. (G.15) has linear accuracy in s. This can
be verified by showing that (1 + §s)?H,q agrees to second order in s with
1+ %s)ZH 29. The reason for writing H; as a quotient instead of the expansion
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H, = ka(1+ 35— %s?) is that Eq. (G.18) leads to a tridiagonal matrix equation
for a PE step (see Sec. G.6), which is easily solved, while Hy = ka(1+ 35— 5?)
would lead to a matrix equation with more nonzero elements. With Eq. (G.18),
the one-way wave equation (G.14) becomes

1+ %s)a,q = ika(1+ Zs)q. (G.19)

This is the wide-angle parabolic equation. The corresponding equation for the
quantity 1 defined by Eq. (G.4) is

(1+ is)aﬂp - %ikasd;. (G-20)

G.6 Finite-difference solution of the narrow-
angle parabolic equation

The narrow-angle and wide-angle parabolic equations derived in the previous
sections can be solved numerically by approximating the derivatives in the equa-
tions with finite differences [156]. We first describe the finite-difference solution
of the narrow-angle parabolic equation (G.6), which we write as

O = aB2y + By (G-21)

with a = Ji/ka and B = Li(k? — k2)/ks = }i8k?/ka. We use the grid shown in
Fig. G.1, with grid points at heights

zj =jAz withj=1,2,... , M. (G.22)

We denote the field v at range r as a vector —J(r) with elements 9; = (7, ;).
Using the central difference formula

_ Vit —2Yi + i
029), = 2 ( A (G.23)
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we can write Eq. (G.21) as

P -2 1
P2 1 -2 1
1 -2 1
¢A/;~1 1 -2 1
M Q)
- (G.24)
I3 i (21 Yo
B2 (2 0
B3 2 0
- : + :
Bum-1 Ym—1 0
Bm /| M Um1

withy = a/(Az)? and B; = B(z;); in the matrices on the right-hand side we have
indicated only the nonzero elements. The vector equation (G.24) represents a set
of M equations; each equation relates an element 0r1; to the elements ¥;_1, ¥,
and ¥;11. The last term on the right-hand side of Eq. (G.24) contains the field
Yo at the ground level 2o = 0 and the field a4 at height zpr4 = (M +1)Az.
This term accounts for the two terms that are ‘missing’ in the first term on the
right-hand side.
For the field 19 at the ground level we use the relation

Yo = 0191 + o292 (G.25)

with coefficients ¢, and g3, which depend on the ground impedance (see Sec.
G.8). For the field 1as4; we use the relation

Yme = 1Py + 2Pma (G.26)

with coefficients 7; and 7, (see Sec. G.9).
Using Egs. (G.25) and (G.26), we write Eq. (G.24) as

— -
0¥ = (T + D), (G.27)
where T is a tridiagonal matrix and D is a diagonal matrix; T is given by

—2+0'1 1+0’2
1 -2 1

T= L (G.28)
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and D is given by

o3}
B2
B
D= P . (G.29)
Bm-1
Bum
Integration of Eq. (G.27) from range r to range r + Ar gives

r+Ar

B +Ar) - B(r) = (T + D) / 7 dr. (G.30)

We approximate the integral on the right-hand side by %[?(r+ Ar)+ E’(r)]Ar,
i.e. the product of the average value of the integrand and the integration interval
Ar. This approximation is called the Crank-Nicholson approximation. We find

My Y (r + Ar) = My P (1), (G-31)
where M; and M, are tridiagonal matrices given by
M, =1+ 1Ar(4T + D)

(G.32)
M; =1-Ar(sT + D).

A PE step —1/—))(1') - ?(r + Ar) is reduced to the solution of Eq. (G.31), which
is a set of M linear equations for M unknowns v;(r + Ar). As M, and M,
are tridiagonal matrices, the solution can be performed efficiently by Gauss
elimination [112).

G.7 Finite-difference solution of the wide-angle
parabolic equation

The wide-angle parabolic equation (G.20) differs from the narrow-angle parabolic
equation (G.17) by the factor (1+ }s) on the left-hand side. Comparison of Egs.
(G.17) and (G.27) shows that the finite-difference matrix form of the operator
%ikas is T + D. Consequently, the factor (1 + %s) in the wide-angle parabolic
equation yields a factor [1+(yT + D)/(2ik,)] on the left-hand side of Eq. (G.30).
This leads to the matrix equation (G.31) with modified matrices M; and M;
given by

~T 4+ D
2ik,
~T + D

2ik,

1
M1 =1+ EAT(’)‘T +D) +
. (G.33)
M; =1-ZAr(yT + D) +
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The PE method based on Egs. (G.31) and (G.33) is called the Crank-Nicholson
PE (CNPE) method.
G.8 Boundary condition at the ground surface

In this section we determine the coefficients o; and o3 in Eq. (G.25). At the
ground surface we have the boundary condition (see Sec. D.2)

( Pe )z=o = Zpe, (G.34)

VUc,n

where Z is the normalized impedance of the locally reacting ground surface,
pc is the impedance of air (evaluated just above the ground surface), p. is the
complex pressure amplitude, and v, is the normal component of the complex
fluid velocity amplitude; the normal component is the component in the negative
z direction. From Eq. (A.19) we have

1 dp.

Uen = —7— 5 (G.35)
twp 0z
If we use the first-order finite-difference approximation
Ope _p1—po (G-36)

0z Az
with the notation p; = p.(z;) and zo = 0, we find from Egs. (G.34) and (G.35)
the following relation between pg and p;:

. -1
Po = (1 - ’k"ZAZ) 1, (G.37)
where kg is the wave number at the ground surface. For the wide-angle parabolic
equation it is preferable to use a second-order approximation for dp./9z, instead
of the first-order approximation (G.36). Equation (G.36) represents a first-order
estimate of the derivative centered at z = %Az. For a second-order estimate
we use the second derivative 8%p. /32 ~ (p; — 2p1 + po)/(Az)? to estimate the
change of the first derivative over the height interval from z = $Az to z = 0:

8p _pi—po_1, Pa—2pi+po _ —3mo+2pm —3m

_Z = G.38
9z~ Az 27 (A2)? Az (G.38)
This gives the following relation between pg, p1, and pa:
2ikoAz\ !
po= (3 - % ) (4p1 — p2). (G.39)

This relation also holds with p; replaced by 1;, so the coefficients o1 and o2 in
Eq. (G.25) follow from this relation.

We assume that the impedance is constant within a range step. A range
dependence of the ground impedance is taken into account in the PE method
by changing the impedance between successive range steps [123, 30].



172 i Appendix G

G.9 Boundary condition at the top of the grid

The numerical grid is truncated at height z = zps. In this section we describe
how the effects of the truncation are minimized.

At the top surface at z = z)s we use a similar boundary condition as at
the ground surface. Instead of the ground impedance we use Z = 1 for the
normalized impedance of the top surface (Z = 1 is the normalized impedance
of air). From Eq. (G.39) we find

Pm+1 = (3 + 2ikoAz) " (4py — Pm-1)- (G.40)

The coefficients 7, and 72 in Eq. (G.26) follow from this relation.

The impedance Z = 1 at the top surface corresponds to a vanishing reflection
coefficient only for vertically traveling plane waves. Other waves are partially
reflected back into the region z < zps. An absorbing layer just below the top
surface, between z = 2, and z = z)s (see Fig. G.1), eliminates these reflections.
We add an imaginary term to the wave number k{z) for z; < z < zu, so that
waves are gradually attenuated in the absorbing layer. Numerical tests show
that a good choice for the imaginary term is iA;(z — 21)%/(z2m — 2:)?, where A;
is a constant. The optimum choice for A; varies with frequency. Good results
are obtained with 4, = 1, 0.5, 0.4, 0.2 at the frequencies 1000, 500, 125, 30 Hz,
respectively; for intermediate frequencies, linear interpolation can be used. A
safe value for the thickness zps — 2, of the absorbing layer is 50 wavelengths. An
alternate boundary condition at the top surface is described in Ref. [122].

The sound field should not be influenced by the absorbing layer, so the height
zpm of the top surface should not be chosen too small. A general rule for the
choice of zps cannot be given. The optimum choice depends on the geometry,
the frequency, and the sound speed profile {134]. Usually zas is at least equal
to 1000 vertical grid spacings.

In the case of a downward refracting atmosphere, all curved sound rays from
the source to the receiver should have their maximum heights below the ab-
sorbing layer. As an example we consider the logarithmic sound speed profile
c(2z) = co+bIn(1+2/20) [see Eq. (4.5)], where the roughness length zg should not
be confused with the height zg = 0 used in previous sections. Downward refrac-
tion corresponds to b > 0. If the source and the receiver are close to the ground
surface, the maximum height of the highest ray is given by h &~ r/1/2mco /b [see
Eq. (4.9)]. A typical value of b is 1 m/s, so we find h = 0.02r. For r = 10 km,
for example, this gives h = 200 m.

G.10 Density profile

In Eq. (G.1) we used the approximation 92q for the term k%8, (k=29,q) (we recall
that we use the notation k¥ = k.g and ¢ = q.). It is straightforward to repeat
the formulation of the PE method, presented in the previous sections, for the
case that the term k20, (k~20.q) is not approximated by 82¢. For a non-moving
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isobaric atmosphere, k29, (k=28,q) is equal to pd,(p~19.q), where p = p(2) is
the vertical density profile in the atmosphere {this follows from k¥ = w/c and Eq.
(A.9)]. In this section we describe how the PE method is modified if 8?q in Eq.
(G.1) is replaced by pd.(p~18.q):

d%q 0 ( -10q

e P\ 5

52 T P3, ) + kg =0. (G.41)

If the term k28,(k~28.q) is used instead of pd,(p~'8,q), the density p should
be replaced by k? in the equations in this section.

Equation (G.41) differs from Eq. (G.1) by the replacement of the differential
operator 82 by the differential operator pd,(p~'8,). The finite-difference form
of the operator pd,(p~18,) is given by

paz (p_laz’l;b)zi =

1 1 Pj) 1(/71' p,-) 1( P:‘) ]
|5 (1+ L) s — = +2+ (14 -
(Az)? [2 ( Pj+1 Vi 2\ pjn Pi-1 vi 2 Pi-1 V-1

(G.42)

The only effect of the replacement of 82 by pd,(p~18,) is that the matrix T in
Egs. (G.32) and (G.33) is modified:

=27, M,
T-12 =272 M2
Y-1.3 —270,3 M.3

T= +
Y-1,M-1 —2%0,M-1 N,M-1
Y-1LM —270.M
Y-1,101 Y-1,102
0 0 0
0 0 0
0 0 0
M ,MT2 MM
(G.43)
with
Mmi==(1+4
’ 2( Pi+1
1( pi Pj )
= +2+ 2L (G.49)
703 4(Pj+1 pj-1
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Numerical computations show that the effect of the approximation of the
term pd,(p~'0,q) in Eq. (G.41) by 82q is very small. The effect of atmospheric
gradients on sound propagation is determined almost completely by the term
k2q in Eq. (G.41).

G.11 Finite-element solution

In the previous sections we described a finite-difference approach to the solution
of the wide-angle parabolic equation. Gilbert and White [56] presented a slightly
more accurate finite-element approach; with this approach it is possible to use a
non-uniform vertical grid spacing, which means that z; — z;_, may vary with j.
The finite-element approach is based on Eq. (G.41), so density gradients are
included in the solution.

The finite-difference approach resulted in the tridiagonal matrix equation
(G.31). The finite-element approach also leads to a tridiagonal matrix equation
of the form (G.31), which we write as

M= (r + Ar) = M* 9 (7). (G.45)

The tridiagonal matrices M* of the finite-element approach are given by (see
Ref. [56])

+ +
MO,I Ml,l

+ + +
M—1,2 M0,2 Ml 2

+ £ +
Mi - M—1,3 A{O,S A{I,S . +

Mitl,lal Mi:l,102
0 0 0

where the quantities M,ﬁ ; are given by

3
ME =S "ctHT), (G.47)
n=1
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form = —1,0,1 and j = 1,2,..., M. The coefficients c& are given by

II

cE LikaAr
&= 1 + Lik,Ar (G.48)
i = 62 /k2

The quantities H J( J)+m for n = 1,2 are given by

H) = %5 (25 = z-1) fal2i-1) + 3(z501 = 2521 fa(z) + (2141 = 2)Fn(251)]
HY,) = £ [fal2) + falzzan)] (2521 - 25)
(G.49)

and for n = 3 by

HE,, = 2L A(z) + filziz)) /(2521 = 25) (G.50)
HY = [H(“’.) +HS). ]

J,i+1

with fi(z) = p71(2) and f2(z) = p~' (2)k?(2) /KZ.

As indicated in Sec. G.10, the density p should be replaced by k? in the
above expressions if the second term in Eq. (G.41) is replaced by the term
k%8,(k~28.q).

G.12 Starting field

The numerical solution of the narrow-angle or wide-angle parabolic equation
has been reduced to the repeated solution of the tridiagonal matrix equation
(G.31) fora PE step ¢ (r) = o ('r+ Ar). The computation starts at the source
at 7 = 0, where a starting field d) 0) = 'w(O,z) is required. The starting field
should represent a monopole source.

From Eq. (G.4) we have (0, z) = (0, z). The exact expression for the field
q(r, z) of a monopole source in an unbounded non-refracting atmosphere is

afr, ) = TR (G.51)

where R is the radial distance from the source. We cannot use this expression
for the starting field, for two reasons: i) the expression diverges at the source,
and ii) the expression produces sound waves with large elevation angles (outside
the interval for which the PE method is valid), which generate numerical errors
in a PE computation.

In Sec. G.12.1 we derive a starting field for the narrow-angle parabolic equa-
tion and in Sec. G.12.2 we derive a starting field for the wide-angle parabolic
equation. In the derivation we assume a non-refracting atmosphere. The start-
ing field is chosen in such a way that a PE computation for a non-refracting
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atmosphere yields a far field that agrees with Eq. (G.51). In Sec. G.12.3 we
include the effect of the ground surface in the starting field.

The derivation of the starting field in Secs. G.12.1 and G.12.2 is based on
the work of Greene [62]. A different approach was presented by Collins [28].

G.12.1 Narrow-angle parabolic equation

In this section we derive a starting field for the narrow-angle parabolic equation.
The ground surface is ignored and the source is located at (r,z) = (0,0).
We assume that k(z) is a constant, so we have k(z) = ka. The narrow-angle
parabolic equation (G.16) reduces to
0, — ikaq — ——8%g = 0. (G.52)
2ka

We write the solution as a plane-wave expansion:
qg= / S(k;) exp(ik,z + ik,r)dk,, (G.53)

where k; is an integration variable and k, and S(k,) will be determined below.
Substitution of Eq. (G.53) into Eq. (G.52) gives

k: G.54
kr = ka - '2Ta. ( .5 )
We write Eq. (G.53) as
0= [ S(k.) expliF (k.)ldk. (G.55)
—00
with
k2

where we have used Eq. (G.54). To evaluate the integral in Eq. (G.55) we use
the method of stationary phase (see Appendix P). At the stationary phase point
we have F'(k, ) = 0, which gives

k.o = kaz/r. (G.57)

The stationary phase approximation of Eq. (G.55) is

2T 1
774 ms(kz o) expliF (kz,0) — i, (G.58)
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and we find

1
q"‘\/;

with R = /12 + 22 ~ r(1 + 122/r?). If we compare this with the exact expres-
sion ¢ = /T exp(ikaR)/R for a monopole source we find

S(ke0) =\ 5 7 (G.60)

K2 -1/2
z,0
. . G.61
B ) e

?1’;‘—35(k,,0)exp(ikaR) (G.59)

or, from Eq. (G.57),

S(ka0) = 4/ 5 (1 +
a

Therefore we use

[ K2\ /2
S(kz) = 2k (1 + Té-) . (G.62)

Using (1 +2)"/2 ~ 1 - Lz ~ exp(—1z) for £ « 1, this expression can be
2 3

approximated as
i K2
=/ — P G.63
S(k:) V27rkaexP( 2k§) (G.63)

Substitution of this expression into Eq. (G.53) for r = 0 gives a standard inte-
gral, and we find

q(0,2) = \/ik, exp(—%kzzz). (G.64)

This is a well-known Gaussian starting field for the PE method [148].

One may use a higher-order approximation of Eq. (G.62) instead of the
first-order approximation (G.63). We will not do this here for the narrow-angle
parabolic equation, but we will do this in the next section for the wide-angle
parabolic equation.

G.12.2 Wide-angle parabolic equation

For an atmosphere with a constant wave number k(z) = ka, the wide-angle
parabolic equation (G.19) reduces to

1

(1+4

k7202)0,q — ika(1+ %kﬁaf)q =0. (G.65)



178 Appendix G

Substitution of the plane-wave expansion (G.53) into Eq. (G.65) gives

1- 3K/

ky = ky ——3——.
RS L

(G.66)

We proceed as in the previous section. For the function F(k,) in Eq. (G.55) we
find

_ 3k2/R2

F(ky) = kyz + rky—222 (G.67)
= Lk2/R2

This gives

k:/ka

Fllk,) =z —r——2l%
k) = 2= Ty

(G.68)

and

w1 1+3K2/K2
P =~ ity (G.69)

At the stationary phase point we have F' (k) = 0. This gives
k:o/ka = z/r, (G.70)

where terms of the order of (z/r)® and higher-order terms have been neglected.
The stationary phase approximation of Eq. (G.55) becomes

1 [omk, (1— }2%/r2)3/2

ISV T s Sz

S(k.,0) exp(ik,R), (G.71)

where we have used R = V72 + 22 = r(1 + 12%2/r? — 12%/r?...) in the expo-
nential, neglecting terms of the order of r(z/r)® and higher-order terms. This
agrees with the exact expression q = /T exp(ik. R)/R if we use

- 312 /12)1/2
S(k,) = [ i 1 (1+ k2 /k3) ‘ (G.72)
2mka (14 k2/k2)/2 (1 — $k2/k2)3/2

This function can be represented approximately by the expression

[ k2 k2
S(kz) - ﬁ <1 + a EZ) exp (—bz;c'g) (G.73)

with adjustable parameters a; and b,. If we choose a; = 0 we find the following
expression for the starting field:

.ka k2 2
q(0,2) = \/;T?exp (— ibzg ) . (G.74)
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For by = % we find the starting field derived in the previous section, given by
Eq. (G.64). Equations (G.72) and (G.73) with a; = 0 and by = 1 agree with
each other only for k, between zero and about 0.2k,, corresponding to elevation
angles between zero and about 10° [the elevation angle is arctan(z/r), which
is equal to arctan(k,/k,) from Eq. (G.70)]. With increasing k,, the agreement
decreases. The agreement can be improved by choosing a smaller value of by, but
if b2 is chosen too small, high-angle waves are generated which cause errors in a
PE computation. A better approach is to improve the agreement by adjusting
the parameter a;. For a2 = 1.02 and b, = 0.75, Egs. (G.72) and (G.73) agree
with each other up to elevation angles of about 30°. This corresponds to the
starting field

kiz

2,2
(0, 2) = V/ika(Ag + Ask2z%) exp (— 33 ) (G.75)

with 49 = 1.3717, A, = —0.3701, and B = 3.

Use of the second-order starting field (G.75) instead of the zeroth-order start-
ing field (G.74) is expected to improve the accuracy of the computed sound pres-
sure field, but the improvement proves to be very small (see end of Sec. G.12.3).
Apparently, the high-angle accuracy of CNPE results is not limited by the start-
ing field but by the small-angle approximation used in the derivation of the
CNPE method. The disagreement between Eqs. (G.72) and (G.73) for eleva-
tion angles between about 10° and about 30° has a relatively small effect on the
sound pressure field.

The situation is different for the GFPE method described in Appendix H.
The high-angle accuracy of GFPE results is limited by the starting field, and
use of a higher-order starting field improves the accuracy of GFPE results (see
Sec. H.10).

G.12.3 Source near a finite-impedance ground surface

If the source is at position (r,z) = (0,2s) above a finite-impedance ground
surface at z = 0, the following starting field can be used:

9(0,2) = qo(z — ) + Cqo(z + 2), (G.76)

where the function go(2) is defined as the starting field for a source at position
(r,z) = (0,0) in an unbounded atmosphere, and C is a reflection coefficient.
For the narrow-angle parabolic equation we have shown that Eq. (G.64) can be
used for the function go(2). For the wide-angle parabolic equation, Eq. (G.74)
or Eq. (G.75) can be used.

The first term on the right-hand side of Eq. (G.76) represents the direct
field of the source; the second term represents the field reflected by the ground
surface or, equivalently, the field of the image source at position (0, —zs). For
the reflection coefficient C in Eq. (G.76) one usually employs the plane-wave
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reflection coefficient for normal incidence:

Z -1

b= 57 (G.77)

where Z is the normalized ground impedance. The most obvious choice for C,
however, is the spherical-wave reflection coefficient Cs, which is given by the
general integral expression (D.54) (Q = Cs), with Ry = /7% + (2 + 2)2. For
the PE starting field we must set 7 = 0 in this expression, so we have R, = z+2;
and find

ka Ry [ exp|—qka(Z +1)/Z]
—1_ofalt2 : d G.7
C. =1 222_/ 7 q (G.78)
0
or
_ ka Ry Z+1R, Z+1R,
Cs=1 2Ziexp(ka 7 i)El(ka 7 i)’ (G.79)

where E), is the exponential integral function (see Eq. 5.1.28 in Ref. [1]). This
expression for Cs is easily evaluated numerically.

A relation between C}, and C; for r = 0 follows from the following asymptotic
expansion of Eq. (G.78):

2 = iz \"
Cs:Cp—Z—H';(—l)"TL! (kaRg m) y (GSO)

which can be derived by repeated integration by parts in Eq. (G.78). Equation
(G.80) implies Cs &~ Cp for ka(z + 2z5) > 1, or (z + z) > A/2m, where X is
the wavelength. Numerical computations indicate, however, that C; = C; is
a reasonable approximation for the PE starting field even when the condition
(z + z5) > A/2r is not met.

For the field shown in Fig. 4.16 in Chap. 4 we used Eq. (G.74) with by =
for go(2) and the plane-wave reflection coefficient C,. We found no significant
change of the field when we used Eq. (G.75) for go(z) and the spherical-wave
reflection coefficient Cs.
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Green’s Function Parabolic
Equation (GFPE) method

H.1 Introduction

In this appendix we describe the Green’s Function Parabolic Equation (GFPE)
method, which was developed by Gilbert and Di [58] (see Sec. G.1). The GFPE
method is more efficient, i.e. faster, than the Crank-Nicholson Parabolic Equa-
tion (CNPE) method, because in the GFPE method considerably larger extrap-
olation steps (i.e. range steps Ar) can be used than in the CNPE method. An
alternate Parabolic Equation method with large extrapolation steps is described
in Ref. [130].

The GFPE method developed in Ref. [58] is a two-dimensional method,
based on the axisymmetric approximation. Recently a three-dimensional GFPE
method was developed [44]. The two-dimensional GFPE method is described
in Secs. H.2 to H.11 and the three-dimensional GFPE method is described in
Sec. H.12.

The derivation of the basic equations of the two-dimensional GFPE method
starts with Eq. (G.1), which we repeat here:

d%q 9%

2
W+3_z§+k g=20, (Hl)

with ¢ = g(r, 2) and k = k(z). We have omitted the subscripts of g. and keg, as
in Appendix G.
H.2 Unbounded non-refracting atmosphere

It is instructive to formulate the GFPE method first for the trivial case of an
unbounded non-refracting atmosphere. In this case the wave number k is a

181
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constant. We apply a Fourier transformation z — k, to Eq. (H.1), i.e. we
multiply the equation by exp(—ik,z) and integrate over z from —oo to co. This
gives

32Q _
87'2 (k2 - kZ)Q - 01 (H2)
where
Qlr,k,) = / exp(—ik,2)q(r, ) dz (H3)

is the Fourier transform of g. We write Eq. (H.2) as

(2-wF=R) (Z+F—E)e-0 (H4)

The first factor yields the solution Q(r,k,) = Q(0, k.) exp(ir\/k? — k2), which
represents waves traveling in the positive r direction [as we assume a har-
monic time factor exp(—iwt)]. The second factor yields the solution Q(r, k) =
Q(0, k;) exp(—iry/k? — k%), which represents waves traveling in the negative r
direction. We restrict ourselves to sound propagation in the positive r direction,
so we use the solution Q(r,k;) = Q(0, k,) exp(ir/k% — kZ). This solution can
also be written as

Q(r + Ar,k;) = Q(r, k) exp(tAr\/k% — k2). (H.5)
The function ¢(r + Ar, 2) is obtained by an inverse Fourier transformation:

(o]

g(r + Ar,z) = % / exp(ik, z) exp(iAr/KE — K3)Q(r,k,)dk,.  (H.6)

—00

Thus, the field is extrapolated from range r to range r + Ar by a forward
Fourier transformation [Equation (H.3)] and an inverse Fourier transformation
[Equation (H.6)]. In Sec. H.8 we will show that Eq. (H.6) is closely related to
the Fourier split-step algorithm for the parabolic equation. This algorithm is
used in underwater acoustics.

Equation (H.6) is valid for an unbounded non-refracting atmosphere. Gilbert
and Di [58] generalized Eq. (H.6) for a refracting atmosphere above a finite-
impedance ground surface. The derivation by Gilbert and Di is based on the
spectral theorem of functional analysis (see Sec. H.7). Here we present a different
approach that leads to the same result [134]. This approach is based on the
two-dimensional version of the Kirchhoff-Helmholtz integral equation, which is
derived in the next section.
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H.3 Kirchhoff-Helmholtz integral equation

The complex pressure amplitude p(R;) at a point Ry = (21,1, 21) in a three-
dimensional volume V' without sources, enclosed by a surface S, can be calcu-
lated with the Kirchhoff-Helmholtz integral equation [91]

p(R) = - [[10s(RR)PR) - p(RIVes (R R)] - mdSe, ()
Se

where the integral is over positions R = (z,y, z) on the surface S, the operator
V is 8/0R = (8/0z,0/0y,d/0z), n is the outward unit normal vector at the
surface S, the Green’s function g3(R,R;) is a solution of the inhomogeneous
Helmholtz equation

VZg(R,R;) + K2(R)g3(R,R;) = —4n6(R — Ry), (H.8)

and the complex pressure amplitude p(R) in the volume V satisfies the homo-
geneous Helmholtz equation

V2p(R) + E*(R)p(R) = 0. (H.9)

To prove Eq. (H.7), the surface integral is converted to a volume integral with

Gauss’ theorem
///V-FdV://F-ndSc, (H.10)
V SC

where F is an arbitrary vector field. If we use Egs. (H.8) and (H.9) in the
resulting equation we find an identity.

There is still a considerable freedom for the choice of the Green’s function gs.
The only condition is that gs must satisfy Eq. (H.8), so that g3 contains a
contribution from a monopole source at position R;. We may include additional
contributions from sources outside the volume V'; these contributions satisfy Eq.
(H.9) within V', so g3 still satisfies Eq. (H.8).

The two-dimensional version of the Kirchhoff-Helmholtz integral equation in
the zz plane is

pr1) = 1= [ 1o m) Vo) = p0)Ven(e,r)] -mds, (D)
C

with r = (z,z) and r; = (z1,21); the operator V is 8/0r = (0/0z,0/0z),
the integral is over positions r on the closed contour C, and ga(r,r;) is a two-
dimensional Green’s function. Equation (H.11) can be derived as follows from
the three-dimensional Kirchhoff-Helmholtz integral equation (H.7). We assume
that p(R) and k(R) are independent of the y coordinate. For the surface S,
we choose the surface illustrated in Fig. H.1 (the figure is for the special case
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X

Figure H.1. Example of the closed surface S, for the case that the contour C
is a circle. The surface S, consists of the cylindrical surface S; and the two
circular surfaces S; at y = —0o and y = +0o. The projection of the surface S;
on the =z plane is the closed contour C.

that the contour C is a circle). The closed surface S consists of the cylindrical
surface S; and the two surfaces Sy at y = —oo and y = +o00. The projection of
the cylindrical surface S; on the zz plane is the contour C. We write the unit
normal vector in Eq. (H.7) as n = (ng,ny,n;), so Eq. (H.7) can be written as

p(R1) =
1
1= [[ 19800200 + 1,00 + 1.0.9) — P22 + yBy05 + 0. 0)] S
Sc

(H.12)

with 8, = 0/0z, 8, = 0/dy, and 9, = §/8z. At the surface S; we have ny, = 0.
The contribution to the integral from the two surfaces Sz vanishes, as we have
93(R,R1) — 0 for y — +o00. If we choose y; = 0, Eq. (H.12) reduces to Eq.
(H.11) with the two-dimensional Green’s function g, defined by
e o)
g2(r,r1) = / g93(R,r1) dy. (H.13)
— 00

As we assumed that p(R) is independent of y, Eq. (H.9) gives the following
two-dimensional Helmholtz equation for p(r):

V2p(r) + k*(r)p(r) = 0. (H.14)

The Green’s function go defined by Eq. (H.13) satisfies the two-dimensional
inhomogeneous Helmholtz equation

V2ga(r,r1) + k2(r)ga(r,r1) = —4nd(r — 1y), (H.15)
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Figure H.2. Geometry for the two-dimensional Kirchhoff-Helmholtz integral
equation. The contour C consists of line segment Cy at £ = zo and circular
curve C) with radius R — oo and point r; at the center. In the text we use
a Green’s function that corresponds to a monopole source at point r; and an
opposite monopole source at point rs, so the Green’s function vanishes on Cj.
The points r; and r; are at equal distances from Cy.

as follows from integration of Eq. (H.8) over y from y = —co to y = +00, using
J2o 02gsdy = [0,95]° = 0. As an example we consider the three-dimensional
Green’s function for a homogeneous atmosphere:

g3(R,Rq) = exp(ikr)/r (H.16)

with 7 = |R — Ry|. To derive the corresponding two-dimensional Green’s func-

tion, we substitute Eq. (H.16) into Eq. (H.13) and use r = \/p? + (y — y1)? with
p = |r —r;|. This gives

92(r,11) = inHS (kp), (H.17)

where Hél) is the Hankel function of the first kind and order zero [1].

Now we choose the geometry shown in Fig. H.2 for the two-dimensional
Kirchhoff-Helmholtz equation (H.11). The contour C consists of the line seg-
ment Cy at £ = z¢ and the circular curve C; with radius R — oo and point
r; at the center. The contribution from the curve C; to the contour integral
in Eq. (H.11) vanishes, as we have p —+ 0 and g = 0 for R — co. As in
the three-dimensional case, there is a considerable freedom for the choice of the
Green'’s function g; the only condition is that g must satisfy Eq. (H.15), so
that g contains a contribution from a (two-dimensional) monopole source at
position r;. We may include additional contributions from sources outside the
region enclosed by the contour C. Here we choose the Green’s function g2 so
that we have g = 0 on Cp. This is achieved by using the field of two opposite
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z
—> $ (r,21)
—>r
n n=rntAr

Figure H.3. Geometry for Eq. (H.20), which gives the field at point (r1,2;) as
an integral over the line r = ry.

monopole sources at the points r; and rs:

92(r7r1) =g(r,r1) —g(l‘,l‘z), (H18)

where g(r,r;) is the field of a monopole source at r; and —g(r,r2) is the field
of the opposite monopole source at ry. The field g(r,r;) is a solution of Eq.
(H.15). The field g(r,r2) is a solution of Eq. (H.15) with r; replaced by r.
For the field g(r,r;) we assume that the atmosphere, represented by the wave
number k(r), is symmetric with respect to the line z = zo.

As we have go = 0 on Cj, the first term in the integrand of Eq. (H.11)
vanishes. In the second term we have Vg, - n = —8,92 = —238,;¢9 on Cp, where
we have used Eq. (H.18). Equation (H.11) becomes

[o9)

_ 1 ag(rarl)
e =5 [ (”(’)T)mod”' (H.19)

—00

This integral is known as a Rayleigh integral [106, 14] (see also Sec. 278 of
Rayleigh’s book ‘The Theory of Sound’ [121)).

H.4 General Green’s function approach to wave
propagation

We return to the notation q(r,z) for the field, as used in Sec. H.2. For the
geometry shown in Fig. H.3, with a ground surface at z = 0, Eq. (H.19) becomes

17 9g(r, z;71,
i) =5 [ (a0 Z0E2) g 0
) T=TQ
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The lower integration limit is z = 0 as the effect of the ground reflection will
be represented by a term in the Green’s function (see Sec. H.5); the ground
reflection corresponds to an image atmosphere below the ground surface. The
Green’s function ¢(r,z;r1,21) is the field at (r,z) generated by a monopole
source at (r,2;), and satisfies the equation

[82 + 82 + K*(2)] g(r, z; 71, 21) = —4md(r — 11)d(2 — 21). (H.21)

The wave number k is a function of z only. The range dependence of the wave
number is taken into account by changing the function k(z) between successive
range steps, as indicated in Sec. G.2. Consequently, the Green’s function de-
pends on r and r; only through the difference Ar = ry —r. Therefore the Green’s
function will be denoted as g(Ar, z, z;). We introduce the Fourier transform

G(k,2,21) = / g(Ar, z, z1) exp(—ikAr) d(Ar), (H.22)

where k is a horizontal wave number. The inverse Fourier transform is

9(Ar,z,21) = -2-1;; / G(k, 2z, z1) exp(ikAr) dk. (H.23)

Substitution of Eq. (H.23) into Eq. (H.20) gives, with 8, = —0a, and the
notation z for z; and 2’ for z,

g(r + Ar,z) = ﬁ / exp(ikAr) ndK,/G(n, 2, 2)q(r,2') dz'. (H.24)
—00 0

The Green’s function G(x, z', z) is the solution of the Fourier transformed ver-
sion of Eq. (H.21), which we find by multiplying this equation by exp(—ikAr)
and integrating over Ar:

[02 + K*(2) — K*] G(k, 7', 2) = —4wé(z — 2'). (H.25)

From Eqs. (H.24) and (H.25) we will derive the basic equations of the GFPE
method. In Sec. H.5 we present the derivation for a non-refracting atmosphere
above a finite-impedance ground surface. In Sec. H.6 we take atmospheric re-
fraction into account.

H.5 Non-refracting atmosphere

For a non-refracting atmosphere we have k(z) = ko, where kg is a constant. In
this case the solution of Eq. (H.25) for a system with a finite-impedance ground
surface at z = 0 is (see Sec. D.4)

G(k,2',2) = 2k—7? {exp(iky|z — 2'|) + R(ky) exp(ik.[z + 2]}, (H.26)
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Figure H.4. Integration path in the complex w plane for z > 0. The poles are
atw=—-kandw=k.

Rew

Figure H.5. Integration path in the complex w plane for z < 0. The poles are
atw=-kandw=k.
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where the vertical wave number k, is defined by

k2 = k%(z2) — K? (H.27)
and
keZ — kg
== H.28
R(kv) kvZ + ko ( )

is the plane-wave reflection coefficient; Z is the normalized impedance of the
locally reacting ground surface. Substitution of Eq. (H.26) into Eq. (H.24) gives

o0

g(r + Ar,z) = % / exp(ikAr) ndn/ o, {exp(iky|z — 2'|)

—00

+R(ky) exp(iky[z + 2]} q(r, 2') d2'. (H.29)

We introduce two identities:

explik,(z — 2’
2k exp(zk lz~2'|) = o / —%?’—)]dkz (H.30)
and
2Ic R(ky) expliky(z + 2')] / R(k;) exp 1k z+z)] dk,

exp[~iB(z + 2')]

+2ip e

(H.31)
with 8 = ko/Z. The integration paths along the real axis are deformed near the
poles, as indicated in the following proof of Eqs. (H.30) and (H.31).

We consider the integral

/ exp(iwz) dw, (H.32)

I(z) = o— w? — k2

-0

which is of the form of the integral on the right-hand side of Eq. (H.30). The
integrand has two poles, at w = k and w = —k. The integration path along the
real w axis is deformed by inserting two small semicircles around the poles, and
the path is closed by a semicircle Cy with radius Ry — oo (see Figs. H.4 and
H.5).

For £ > 0 we choose the path shown in Fig. H.4, with the semicircle Cp in
the upper half plane. The integrand vanishes at Co as the radius approaches
infinity, so the contribution from Cjy to the integral vanishes. The integration
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path encloses only the pole at w = k. The integral can be evaluated with the
residue theorem. The residue theorem is

ff(z) dz = 2xi ch, (H.33)
C k

where the function f(z) has poles at z = a;, which are enclosed by the counter-
clockwise integration path along the contour C, and c are the residues at the
poles:

o = Jim [(z - an)f(2)]. (H.34)
This gives
I(z) = % exp(ikz), for z > 0. (H.35)

For z < 0 we choose the path shown in Fig. H.5, with the semicircle Cy in the
lower half plane. Again, the integrand vanishes at Cy as the radius approaches
infinity, so the contribution from Cj to the integral vanishes. The integration
path encloses only the pole at w = —k. The residue theorem gives

I(z) = % exp(—tkz), forx <0 (H.36)

(the contour is traversed clockwise, which yields a minus sign). Equations (H.35)
and (H.36) can be written as

I(z) = % exp(ik|z|), (H.37)

which is valid for both z > 0 and z < 0. This completes the proof of Eq. (H.30).
It should be noted that the value of the integral I(z) depends on the choice of
the integration path.

The proof of Eq. (H.31) is an analogous application of the residue theorem.
The only difference is that the reflection coefficient introduces an additional pole
at w = —ko/Z.

We substitute Egs. (H.30) and (H.31) into Eq. (H.29) and rearrange the
integration order:

q(r + Ar,2) =
- 0 1 [ exp(irAr)
. . ! ! ! expirar
1 B 2 T kd
o /exp(zkzz)dkz/exl’( ik,2")q(r, 2")dz i / k2 — k2 rar
o 0 s

o0 o0 o0
1 , o | exp(ikAr)
+ o / R(kz)exp(zkzz)dkz/exp(zkzz Yg(r,z")dz — oy rkdk
0

—00 —00

+2iﬂexp(——iﬂz)/exp(—iﬂz')q(r, z,)dZ,wli S’;—(i’i’é‘,ﬂndn. (H.38)

0 —00
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The integrals over  in the first two terms on the right-hand side can be evaluated
with the residue theorem:

17 exp(ikAr) _ 1 T exp(ikAr) 3 ] P
u K2 — k2 kdk = i / PO RN e kg)ndn = exp(tAry/ k¢ — k2),

-00 — 00

(H.39)

where the integration path is closed in the upper complex half plane as in
Fig H.4; the path encloses only the positive pole at & = y/k% — k2. The choice
of the integration path is justified by the fact that the result, Eq. (H.40) below,
agrees with the result (H.6) for the situation without a ground surface. The
integral over & in the third term on the right-hand side of Eq. (H.38) follows
from Eq. (H.39) with k, replaced by 3. Equation (H.38) becomes

g(r + Ar,z) =

—00

o [o
1
7 /exp(iAr kg—kZ)exp(ik,,z)dkz/exp(—ikzz’)q(r, 2')dz’'
0

1 7 T
. : 2 _ 1.2 . . ' ! '
+ o /R(kz)exp(zAr\/kO kz)exp(zkzz)dk,/exp(zkzz )q(r, 2")dz
0

—00
o0

+ 2iB exp(—i0z) exp(iAry/k? —52)/exp(-—iﬂz’)q(r, 2')dz'. (H.40)
0

The three terms on the right-hand side represent three different sound waves.
The first term represents the direct wave, the second term represents the wave
reflected by the ground surface, and the third term represents a wave that is
called the surface wave. For the situation without a ground surface, the second
and third term vanish, and Eq. (H.40) is identical to Eq. (H.6) if the lower
integration limit 2’ = 0 is replaced by 2’ = —o0.

H.6 Refracting atmosphere

We return to Eq. (H.1) for a refracting atmosphere, so the wave number k varies
with the height z. As in Sec. G.4, we write this equation as

97q(r, z) = —Ha(2)q(r, ), (H.41)
where the operator Hy(z) is defined as
Ha(z) = k%(z) + 62 (H.42)
The corresponding one-way wave equation is

ar‘](r’ Z) =1iH (Z)Q(T1 z), (H43)
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for waves traveling in the positive r direction. The square-root operator H;(2)
satisfies HZ = H. As in Sec. G.4, we write

k2(z) = k2 + 6k%(2), (H.44)

where k, is a constant wave number and 8k? is a function of the height 2. For
the constant wave number k, one may use the value of the wave number k(z)
at some average height or the value ko = k(0) at the ground surface; for the
numerical examples in this book we used k, = ko. Equation (H.42) becomes

HQ(Z) = Hy, + 6’62(2) (H.45)
with Ha, = k2 + 82. The square-root operator can be approximated as
ok?
H, (Z) =+v/Hy, + 6’62(2) ~ Hia + _%Z_) (H46)

with Hfa = H,,, where we have used Ha, ~ k2. Substitution into the one-way
wave equation (H.43) gives

2
’;’:az)q(r, 2). (H.47)

The two terms on the right-hand side of the one-way wave equation (H.47) can
be interpreted as follows:

)
arq(ra Z) = iHla‘](r1 Z) +1

i) the first term represents propagation in a non-refracting atmosphere with
constant wave number k(z) = k,,

i) the second term represents the effect of atmospheric refraction.

Integration of Eq. (H.47) from range r to range r + Ar gives

. 0Kk%(2) .
q(r + Ar,z) = exp (zAr % ) exp(iH1,Ar)q(r, 2). (H.48)
a
The factor exp(iH1.Ar)g(r, 2) is a formal expression for the solution of Eq.
(H.47) for a non-refracting atmosphere. We have seen in the previous section
that the solution for a non-refracting atmosphere is given by Eq. (H.40). From
Eq. (H.48) we see that atmospheric refraction can be taken into account by
multiplication of the solution by a phase factor, after each extrapolation step.
We replace q(r, z) by ¥(r,z) = exp(—ikar)q(r, z), for improved accuracy in
numerical computations (see Sec. G.3). Equation (H.40) becomes, with the
refraction factor given in Eq. (H.48) included,

2k, 2r

—o0

X exp (iAr [\/Eg——_kg - ka]) exp(ik;z)dk,
+2if%(r, B) exp (i [\/k_f———ﬁ - k]) exp(~if2)}, (HA9)

Y(r + Ar,z) = exp (iArékz(z)) {i / (®(r,k.) + R(k.)¥(r, —k.)]
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where

o0

U(r,k;) = /exp(—ik,z')w(r, 2')dz' (H.50)
0

is the spatial Fourier transform of 1 (r, z). Equations (H.49) and (H.50) are the
basic equations of the GFPE method.

H.7 Alternate derivation

We have derived the basic equations (H.49) and (H.50) of the GFPE method
from Eq. (H.24), which we derived from the Kirchhoff-Helmholtz integral equa-
tion. Equation (H.24) can also be derived from the spectral theorem of func-
tional analysis [58], which gives the following expression for a general function
F of an operator Q:
1 F(r)
F@ = 2mi Jo T - Q
The operator (7 — Q)~! is the inverse of (1 — Q). The integral over 7 is along
a contour C that encloses the poles of the integrand, i.e. the eigenvalues T
in the equation Qu, = Tu,, where u, are the associated eigenfunctions which
satisfy the boundary conditions [58]. Equation (H.51) is analogous to the residue
theorem for ordinary functions.
To derive Eq. (H.24) we note that

dr. (H.51)

a(r + Ar, z) = exp(iAr Hy'?) q(r, 2) (H.52)

is a formal solution of the one-way wave equation 8, = iH21/ 2q, with Hp =
8% + k2. Application of Eq. (H.51) with Q = H, and F(z) = exp(iArz!/2)
gives

: 1/2
o(r + Ar2) = —— / expEArT ) o 2ydr. (H.53)
2mi Jo T-—H;

With 7 = k2 and G(k, 2/, z) defined by Eq. (H.25) we find Eq. (H.24), where
the integral over « is along the real axis, with small deviations near the poles
(see Sec. H.5).

H.8 Relation to the Fourier split-step method

For a system without a ground surface, Eq. (H.49) reduces to

SR\ 1 [ k2
P(r+ Ar,z) = exp (zAr o, )ﬂ / U(r, k;) exp (—zArzka

— 00

) exp(tk,z)dk,,

(H.54)
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where we have used the small-angle approximation

k2
VR —RZ —ky - (H.55)

2k,

Equation (H.54) is known as the Fourier split-step algorithm for the parabolic
equation. This algorithm is used in underwater acoustics [45].

Equation (H.54) can be derived directly from the narrow-angle parabolic
equation [see Eq. (G.6)]

B = 2_’1;(33 + 6k%)y, (H.56)

by treating the two terms on the right-hand side separately in an extrapolation
step; this explains the name “split-step algorithm”. The first term leads to the
integral in Eq. (H.54) (see Sec. H.2). The second term leads to the refraction
factor in Eq. (H.54).

H.9 Alternate refraction factor

Equation (H.49) contains the refraction factor

2
exp (iAr‘"; k(:)> (H.57)

with 0k%(z) = k%(z) — k2. An alternate refraction factor is
exp[iAr 0k(z)] (H.58)

with 6k(z) = k(z) — ka. This factor follows from the following expansion of the
square-root operator

Hy(2) = Vk2(2) + 82
= \/(ka + 6k)? + 82
~ VkE + 82 + 2kalk
~ k2 + 02 + Sk.

If this expansion is used in the derivation of the basic GFPE equations (H.49)
and (H.50) in Sec. H.6, we find the refraction factor (H.58). Alternately, the
refraction factor (H.58) follows directly from the refraction factor (H.57) if we
neglect the term (6k)? in the relation 6k? = 2k,0k + (6k)2. Numerical computa-
tions show that the refraction factor (H.58) gives slightly more accurate results
than the factor (H.57) does [152, 134].

(H.59)
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H.10 Starting field

In this section we derive a starting field for the GFPE method. The derivation is
similar to the derivation of the starting field for the CNPE method in Sec. G.12.
In Sec. G.12.3 we showed that the expression

9(0,2) = go(z — z5) + Cqgo(z + 2s) (H.60)

can be used for a source at position (r,z) = (0, zs) above a finite-impedance
ground surface at z = 0. Here C is a reflection coefficient (see Sec. G.12.3) and
go(2) is the starting field for a source at position (r, z) = (0,0) in an unbounded
atmosphere. The function go(2) for the GFPE method will be derived in this
section.

As in Sec. G.12, we assume a constant wave number k = k, in Eq. (H.1)
and write the solution as a plane-wave expansion

[o o]
qg= / S(k;) exp(ik,z + ik,r)dk,. (H.61)

—00

Substitution into Eq. (H.1) gives

ke = /K2 — k2

z

(H.62)

where we have chosen the positive square-root, corresponding to waves traveling
in the positive r direction.
We write Eq. (H.61) as

(o]

¢= / S(k.) exp [iF (k)] dk. (H.63)
with
F(k;) = kyz + /K2 — k2, (H.64)

where we have used Eq. (H.62). To evaluate the integral in Eq. (H.63) we use
the method of stationary phase (see Appendix P). At the stationary phase point
we have F'(k; o) = 0, which gives

kzo = kaz/R (H.65)

with R = v/r2 + 22. The stationary phase approximation of Eq. (H.61) is

@~ H IF”?IC )I S(kz 0) €xp I:‘LF(kZ 0) -1 1”] (H66)
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and we find

27k, 22\3/ .
= 7 ; 1- 72l S(k;,0) exp(ik, R). (H.67)

If we compare this with the exact expression g = /7 exp(ik. R) /R for a monopole
source we find

i 2\
Sheo) = /5 (1—ﬁ) . (H.68)

Using Eq. (H.65) we find

; K2\ M4
S(k,) = ,/m (1 - ﬁ) . (H.69)

This expression diverges for k, — k,, corresponding to waves traveling vertically
upward. For the PE method, however, we are interested in waves traveling with
limited elevation angles. Therefore we approximate Eq. (H.69) by the following
expression

[ KK K kS k2
S(k;) = ke (1 +a;:= B2 +as = pr +ag= x +agk8) exp (—bza) (H.70)

with adjustable parameters as, a4, ag, ag, and b.

For a3 = a4 = ag = ag = 0 and by, = 1 this leads to the Gaussian starter
(G.64). In this case the agreement between Egs. (H.69) and (H.70) is limited
to elevation angles y between zero and about ymax = 10°. Here the elevation
angle is defined as v = arcsin(z/R); from Eq. (H.65) we find vy ~ arcsin(k, /ka).

By using nonzero parameters a; with j = 2,4,6,8 in Eq. (H.70), the maxi-
mum elevation angle ymax can be enhanced. Optimized values of the parameters
a; are given in Table H.1, for b2 = 0.75. For the orders 2, 4, and 8, the maximum
elevation angle ymax is approximately equal to 30°, 40°, and 60°, respectively.

From Egs. (H.70) and (H.61) we find the following expressions for the GFPE
starting field:
k222

B

(H.71)

The coefficients A; and B are given in Table H.2. Here we have used the

expressions
2
[ z
I = —_ ———

L=[v+x

I = 3% + 6ux? + X1,

Is = [150° + 450%%% + 150x* + %10

Is = [1050* + 4200%%?% + 21002 x* + 28vx° + x®] 1o

4(0,2) = Vika (Ao + Axk22% + Agktz* + AckS28 + Agklz 8) exp (

(H.72)
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for the integral

o0
I, = / k™ exp(ikz — bok?) dk, (H.73)

—00

with v = (2b;)"! and x = izv. The expressions (H.72) follow by repeated
integration by parts of the integral (H.73).

Numerical computations indicate that the starting field of order 4 gives ac-
curate results up to an elevation angle of about 40°, not only for a non-refracting
atmosphere but also for refracting atmospheres with a linear or a logarithmic
sound speed profile. Apparently, the small-angle approximation used for the
derivation of the refraction factor of the GFPE method (see Sec. H.6) works
well for relatively large elevation angles. The starting field of order 8 gives
accurate results for elevation angles higher than 40°, but also generates small
numerical errors if the source is close to the ground surface. The starting field
of order 2 is identical to the starting field (G.75) for the CNPE method. For
the GFPE method, the starting field of order 4 is a good choice.

Table H.1. Optimized values of the parameters a; in Eq. (H.70).

order | a» a4 as asg bo
0 0 0 0 0 0.5
2 1.02 0 0 0 0.75
4 1.02 055 0 0 0.75
8 1.01 0.52 060 0.33 0.75

Table H.2. Values of the parameters 4; and B in Eq. (H.71).

order Ao A2 A4 As Ag B
0 1 0 0 0 0 2
2 1.3717 -03701 O 0 0 3
4 1.9705 -1.1685 0.0887 0 0 3
8 9.6982 -20.3785 6.0191 -0.4846 0.0105 3

H.11 Discretization of the Fourier integrals

The computation of the sound field with the GFPE method is basically a step-
wise extrapolation of the field ¥(r,z) in the positive r direction; the extrapo-
lation is based on Eqs. (H.49) and (H.50). As in the CNPE method, we use a
rectangular grid in the rz plane, with grid spacings Ar and Az (see Fig. G.1).
The vertical grid spacing Az should not exceed about A/10, where X is an
average wavelength. The horizontal grid spacing Ar, however, can be chosen
considerably larger, with a maximum value of typically 10\ [58, 134]. As in the
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CNPE method, we use an absorbing layer at the top of the grid (see Fig. G.1
and Sec. G.9).

The Fourier integrals in Eqgs. (H.49) and (H.50) are approximated by discrete
Fourier sums, which are efficiently evaluated with the Fast Fourier Transform
(FFT) algorithm (see Sec. B.4). We will consider two approaches for this ap-
proximation {the second approach is more accurate).

In the first approach we discretize the height z' and the wave number k, [the
two integration variables in Eqs. (H.49) and (H.50)] as follows:

z' = zj = jAz, withj=0,1,... ,N -1,
k, = kn =nAk, withn=0,1,... N, -IN+1,-3N+2,...,-1,
(H.74)

where we have N = 2M, and Ak = 27 /(N Az) is the wave number spacing; the
reason for using N = 2M is indicated below. The Fourier integral (H.50) can
be approximated as follows:

N-1

U (r, kn) = zexp(—iknzj)dz(r,zj) Az. (H.75)
Jj=0

The factor in rectangular brackets is the Discrete Fourier Transform (DFT)
of 4(r,z). This is the usual method of approximating a Fourier integral by a
Discrete Fourier Transform. For ¥(r, —k,), Eq. (H.75) holds with k, replaced
by —kn. The ‘vector’ with elements ¥(r,k,) and the ‘vector’ with elements
VU (r, —k,) are related to each other by a simple permutation of elements. There-
fore, ¥(r, k,) and ¥(r, —k,) can be obtained from a single FFT of size N = 2M.
For the function ¥(r, 8) in Eq. (H.49), Eq. (H.75) is used with k, replaced by 3.
The evaluation of ¥(r, 3) requires a single summation of N terms. After the
quantities ¥(r, k,), ¥(r, —k,), and ¥(r, ) have been calculated, ¥(r, z;) can
be calculated by the evaluation of the integral in Eq. (H.49). This requires
an inverse FFT of size N. For the inverse Fourier integral in Eq. (H.49), an
approximation analogous to Eq. (H.75) can be used.

An alternate approach for computing the Fourier integrals is based on the
midpoint rule for numerical integration [112). This rule yields the following
approximation for the Fourier integral (H.50):

Q

U (r, k) [Nil exp(—ikn[z; + 3Az]) ¥(r, z; + %Az)] Az

j=0

N-1
[ Y exp(—iknzj)¥(r, z; + %Az)] exp(—ikn3Az) Az.
j=0
(H.76)

The last factor in rectangular brackets is the Discrete Fourier Transform of
Y(r,z; + %—Az). Numerical computations show that Eq. (H.76) yields more
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Figure H.6. Pie slice region used in the three-dimensional GFPE method. An
extrapolation step from range r to range r + Ar is indicated.

accurate results than Eq. (H.75) does. In some cases the difference in accuracy
between Egs. (H.75) and (H.76) is very large [134]. The accuracy of Eq. (H.76)
originates from the choice of the z coordinates at the centers of the integration
intervals [z;, zj41); in Eq. (H.76) we use the heights z = 1Az, 3Az,5Az,. ..,
while in Eq. (H.75) we use the heights z = 0, Az,2Az,.... Therefore the lower
limit z = 0 of the Fourier integral (H.50) is represented more accurately by Eq.
(H.76) than by Eq. (H.75). For the inverse Fourier integral in Eq. (H.49), an
approximation analogous to Eq. (H.76) can be used.

After each extrapolation step we set ¥(r,z;) = 0 at the grid points with
j=M,M+1,...,N—1, to eliminate the coupling between the top surface and
the ground surface introduced by the periodicity inherent to the Discrete Fourier
Transform. This can also be understood from the fact that the heights z; with
j=M,M+1,...,N — 1 correspond to negative heights, by the periodicity; we
need only positive heights since the lower limit of the integral in Eq. (H.50) is
z=0.

H.12 Three-dimensional GFPE method

In this section we describe a three-dimensional GFPE method [44]. For axisym-
metric systems this method is identical to the two-dimensional GFPE method
described in the previous sections.

In the three-dimensional GFPE method, the sound field of a point source
is computed in a pie slice region (see Fig. H.6). Periodic boundary conditions
are imposed on the straight sides of the slice at ¢ = 0 and ¢ = 4. By choosing
a low value for § we keep the computation efficient. As in the two-dimensional
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GFPE method, we use an impedance condition at the ground surface at z = 0,
and an absorbing layer at the top of the slice.

The computation is basically a repetition of extrapolation steps in the pos-
itive r direction. In an extrapolation step, the field on the curved surface at
range r + Ar is computed from the field on the curved surface at range r (see
Fig. H.6). It will be shown that an extrapolation step in the three-dimensional
GFPE method requires the evaluation of a forward two-dimensional FFT and
an inverse two-dimensional FFT, whereas an extrapolation step in the two-
dimensional GFPE method requires the evaluation of a forward one-dimensional
FFT and an inverse one-dimensional FFT.

We start from the following far-field Helmholtz equation in cylindrical r¢z
coordinates:

%q 109% 62 2

o2 + ;E'W + +kq=0. (H.77)
This equation differs from Eq. (H.1), i.e. the starting equation of the two-
dimensional GFPE method, by the presence of the term r~283¢. Equation
(H.77) follows from the general Helmholtz equation (E.50), w1th the approxi-
mation 82q for k28,(k~28,q) as before.

In agreement with the far-field approximation (see Sec. E.4), we neglect the
curvature of the curved surface of the pie slice (see Fig. H.6). Consequently, we
can use the two-dimensional analogue of the one-dimensional Rayleigh integral
(H.19) in rectangular zyz coordinates:

PRy = - 7/ (p(ma"%g‘—))z:u dydz, (H.78)

where we have R = (z,y,2) and R, = (1,1, 21), and the Green’s function ¢
satisfies the Helmholtz equation

(82 + 33 + 82+ kY)g(R,Ry) = —4né(z — 21)0(y — 11)8(z — 21)- (H.79)

The derivation presented in Sec. H.4 for the two-dimensional GFPE method can
be generalized for the three-dimensional geometry shown in Fig. H.6. This gives

g(r + Ar,¢,2) =
1 (=] ) 00
ywox / exp(ikAr) K dk / rd¢’ / d2' G(k,d',0,2',2)q(r,¢',2"), (H.80)
-00 0 0

where the Green’s function G satisfies the equation

[r285 + 02 + k*(2) — K*) G(k,¢',¢,2',2) = —4nd(re — r¢')d(z — 2'). (H.81)
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Equations (H.80) and (H.81) correspond to Eqs. (H.24) and (H.25) for the two-
dimensional GFPE method. Equations (H.80) and (H.81) can also be derived
from the spectral theorem of functional analysis (see Sec. H.7).

We first assume a non-refracting atmosphere, as in Sec. H.5. The wave
number k in Eq. (H.81) is a constant in this case, so the Green’s function
G(k,¢',¢,2',z) depends on ¢ and ¢' only through the difference ¢ — ¢’. We
apply a Fourier transformation r¢ — r¢' — k4, so that we have

o]

1
G(k,¢',0,2',2) = 3 / exp(ikrglrd — rd')Gy (K, krg, 2', 2) dkry,  (H.82)

— 00

where G4 is the Fourier transform of G. Substitution of the relation

5(ro — 1) = % / exp(ikrslrd — rd']) dkrg (H.83)

and Eq. (H.82) into Eq. (H.81) gives
%Gy + (K* — K2 - kfd,)Gd, = —4né(z ~ 2'). (H.84)

The solution Gy of this equation is given by Eq. (H.26) with vertical wave
number k, given by

k2 =k? — k% — K, (H.85)
Proceeding as in Sec. H.5, we find

oo

1 ,
g{r + Ar,¢,2) = % / e"‘¢¢dk¢
1 e ') [e)
X {Zr- /eik‘zdkzeiA'VkO'kz"k¢/'2/e‘““’d”dtﬁ'/e_ik’ZIQ(r,¢'1Z')dZ'
. 0 0

o] ) o
+§l_ / R(kz)eik,zdkzeiAr,/kg—kf-ki/r'*’/e~ik¢¢’d¢l/eik,z’q(r,¢l,zl)dzl
Us
—0o 0 0

é oo
+2iBeiB2eiAr/R—B7 -k /T2 / e ko9 dg’ / e—"ﬁZ’q(r,¢',z')dz'} (H.86)
0 0

with k3 = k,¢r. Equation (H.86) corresponds to Eq. (H.40) for the two-
dimensional GFPE method.
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For a refracting atmosphere we follow the derivation presented in Secs. H.6
and H.9. This yields

PY(r + Ar, ¢, z) = exp(iAr Jk)%—r / exp(iks o) dkg {517? / exp(ik.z)dk,

—00 ~00

x [0 (r, ks, kz) + R(k:)E(r, kg, —k;)] exp (iAr [, [k2 — k2 —k2/r - k])
+2iBexp(—ifz)¥(r, ks, B) exp (iAr [, [k2 - g2 —k2/r2 - ka] )} . (H.87)

where

o0

P
U(r, kg, k;) = /exp(—z'k¢¢')dd>’/exp(—ikzz’)w(r, ¢',2")dz (H.88)
0 0

is the two-dimensional Fourier transform of ¥(r,¢,z). Equations (H.87) and
(H.88) are the basic equations of the three-dimensional GFPE method. In the
case of axial symmetry, k and 1 are independent of ¢ and Eqs. (H.87) and (H.88)
are equivalent to Eqs. (H.49) and (H.50) for the two-dimensional GFPE method,
with the refraction factor replaced by the factor (H.58). The equivalence follows
by using the relation 2md(ky) = fg exp(—iks¢')d¢’ in Eq. (H.88).

The integration variables 2’ and k, in Eqs. (H.87) and (H.88) are discretized
as described in Sec. H.11. The integration variables ¢' and k, are discretized
as follows:

¢ = ¢; =jA¢p, withj=0,1,... , K-1, (H.89)
ks — kn = nAky, withn=0,1,... K —1, .
with A¢ = §/K and Ak, = 27 /8. In this way, the integrals over ¢’ and ky can
be evaluated efficiently by forward and inverse FFT’s of size K. To avoid the
divergence of k3 /r? in Eq. (H.87) in the first step from r = 0 to r = Ar, one
can use k3/(r + Ar/2)? instead of k3 /r2.

The choice of the angular spacing A¢ depends on the variation of the field v
with the angle ¢. In the limiting case of axial symmetry, the field ¢ is indepen-
dent of the angle ¢, and the result of Eqs. (H.87) and (H.88) is independent of
the angular spacing A¢. In the opposite case in which there is a large variation
of the field ¢ with the angle ¢, the angular spacing should satisfy the condition
rA¢ < A/10.
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Atmospheric turbulence

I.1 Introduction

In the computational models described in Appendices F, G, and H, the at-
mosphere was represented by the vertical profiles of the temperature and the
wind velocity. We assumed that the profiles are independent of time. In reality,
however, the profiles change continuously. There are slow variations, on a time
scale of hours or longer. There are also faster variations, or fluctuations, on
time scales of seconds or minutes. The latter fluctuations are usually referred
to as atmospheric turbulence [145].

The term turbulence is also used to indicate that the flow in a fluid is
‘irregular’ (see Fig. I.1). In a laminar flow, fluid ‘particles’ move parallel to
each other in the flow direction. This occurs, for example, in a flow through
a pipe at low speed. If the speed of the flow is increased, fluid particles devi-
ate from the straight paths and the flow becomes turbulent. The atmospheric
boundary layer is nearly always in a turbulent state.

The paths of fluid particles in a turbulent flow often contain ‘loops’, as shown
in Fig. I.1. The loops correspond to swirls in the fluid, which are called eddies.
Not only the paths deviate from a straight line, also the speeds of the particles
deviate from the mean speed. If a fluid particle moves faster than neighboring
particles, it soon encounters other particles which force the particle to deviate

O
 — @,
- = o=
_ o

Figure I.1. Illustration of laminar flow (left) and turbulent flow (right). The
curves represent the paths of fluid ‘particles’.
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from its straight path. This deviation corresponds to the development of eddies
in a turbulent flow.

The term eddy is also used in general for a velocity fluctuation in a limited
region in a turbulent flow. The size of the region is called the eddy size. An eddy
moves through a fluid as a more or less ‘frozen’ fluctuation [145]. Consequently,
the eddy size is related to a characteristic period of the fluctuation (at a fixed
point in the fluid) by the relation | = v, where ! is the eddy size, v is the mean
flow velocity in the fluid, and T is the characteristic period. The temperature
of an eddy may differ from the temperature of the surrounding fluid, so the
eddy corresponds not only to a velocity fluctuation but also to a temperature
fluctuation.

The eddy sizes that occur in a turbulent flow depend on a characteristic di-
mension of the flow. In a pipe, for example, eddies larger than the pipe diameter
do not occur. In the atmospheric boundary layer, a characteristic dimension is
the height above the ground surface. With increasing height, larger eddies oc-
cur. We will see in Sec. 1.3 that the largest eddies break down into smaller
eddies, which break down into even smaller eddies, and so on. Consequently,
there is a broad distribution of eddy sizes in the atmosphere. This distribu-
tion corresponds to a broad distribution of characteristic periods of turbulent
fluctuations. Small eddies correspond to rapid fluctuations and large eddies
correspond to slow variations of the wind velocity and the temperature.

1.2 Turbulence in sound propagation models

In models of atmospheric sound propagation, the turbulent atmosphere is usu-
ally described as a medium with a randomly fluctuating effective sound speed.
The effective sound speed was defined in Sec. E.3 as ceg = ¢ + u, where ¢ is
the adiabatic sound speed and u is the horizontal wind velocity component in
the direction of sound propagation. The adiabatic sound speed is related to the
temperature T by the relation ¢ = co+/T/To, where ¢y is the sound speed at tem-
perature Tp. In Appendix A we used the values ¢o = 331 m/s and Tp = 273 K.
In this appendix and Appendix J, however, Ty is some average temperature and
co is the corresponding sound speed. Turbulent fluctuations of the temperature
T and the wind velocity component u correspond to turbulent fluctuations of
the effective sound speed cef-

A quantity that is equivalent to the effective sound speed is the (acoustic)
refractive index n = co/ceg. In a turbulent atmosphere, the refractive index
fluctuates at each point around an average value, which is of the order of unity.
The average value is denoted as 7 and the fluctuation is denoted as p. Thus,
we have

—— (L1)

with ¢ < 7@ and Z = 0. In a non-refracting turbulent atmosphere we have 7 = 1.
In a refracting turbulent atmosphere 7 is a function of position. The fluctuation
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4 is related to the turbulent temperature fluctuation 7; and the turbulent wind
velocity fluctuation u; by the expression

p=—at -2 (L2)

which follows from n = c¢p/ceg and ceg = co/T/To + u. A more rigorous
derivation of this expression can be found in Ref. [98].

We are interested in sound pressure fields averaged (logarithmically) over
turbulent fluctuations in a short period, for example a period of ten minutes.
We assume that such an average sound pressure field can be approximated by
a (logarithmic) average of a set of sound pressure fields computed for a set of
random realizations of the turbulent atmosphere. Each realization represents a
‘snapshot’ of the atmosphere. This approach is known as the frozen medium
approach, and is based on the fact that sound waves travel so fast that the
medium can be considered as a ‘frozen’ medium.

The random realizations of the turbulent atmosphere are represented by
random fields of the refractive-index fluctuations p. The sound pressure fields
for different random fields can be computed with the PE method, as described
in Appendix J. The random fields are calculated with the aid of a random
number generator; this is also described in Appendix J. The calculation takes
into account the condition that the correlation function of the refractive-index
fluctuations should have the correct value. The correlation function, and the
related spectral density, are introduced in the remainder of this appendix.

I.3 Reynolds number and onset of turbulence

An important parameter of a fluid is the viscosity. To define the viscosity, we
consider an infinitesimal rectangular volume element in a fluid in which the
horizontal velocity v increases with the height z (see Fig. 1.2). The velocity
gradient results in a deformation, or shear, of the element: the upper face
moves faster than the lower face. Friction in the fluid tends to reduce the
velocity gradient over the element. The gradient can only be sustained by a
shear stress 7 as indicated in Fig. I.2. The shear stress corresponds to two equal
but opposite forces on the upper and lower faces. The force on either face is
equal to 7 dr dy, where dz dy is the area of the face. In most fluids, the shear
stress is proportional to the velocity gradient: 7 = ndu/dz. The constant 7 is
called the viscosity.

The work done by the shear stress in the deformation is irreversible, i.e.
converted into heat. The displacement of the upper face with respect to the
lower face, per unit time, is equal to (du/dz) dz, where dz is the height of the
volume element. The irreversible work per unit time per unit mass is therefore
equal to v(du/dz)?, where v = n/p is called the kinematic viscosity; p is the
mass density of the fluid.
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Figure 1.2. Deformation of a small volume element in a fluid in which the
horizontal velocity u increases with the height z.

A fluid flow can be characterized by three parameters:
e the kinematic viscosity v,

e a characteristic velocity v,

e a characteristic length L.

For the characteristic velocity v we can use some average velocity of the flow.
For the characteristic length L we can use the pipe diameter in the case of flow
through a pipe, or the height above the ground in the case of the atmospheric
boundary layer. In general, L is determined by the boundary conditions of the
flow.

The Reynolds number Ny is defined as Ng = vL/v. If Ny is smaller than
a critical value Ng crit, the flow is laminar. If Ng is increased to values larger
than the critical value, the flow becomes turbulent. This is explained in the
remainder of this section, where we follow Tatarski [149].

We consider a velocity fluctuation v; in a region of size { (i.e. an eddy of
size {) in an initially laminar flow in a viscous fluid (the prime indicates that
v; is a fluctuation of the velocity, which is smaller than the mean velocity v, in
general). The time required for the development of the fluctuation is 11 = {/v;.
Here one may think of a row of particles moving parallel to each other with
equal velocities; if the velocity of one of the particles is suddenly enhanced
by an amount v;, it takes the particle a time [/v; to move a distance | away
from the other particles. The energy per unit mass of the fluctuation is of the
order of v{z. It follows that the amount of energy, per unit mass and per unit
time, which goes over from the laminar flow to the fluctuation is of the order of
u?in =/l

Local velocity gradients are of the order of v;/l. From the above discussion
of viscosity it follows that the fluctuation dissipates an amount of energy, per
unit time and per unit mass, of the order of ¢ = v}’ /I2.

We find that velocity fluctuations v} of size ! are easily created if we have
v,'3 /> V’U,’2 /12. This condition can also be expressed as Ng; > 1, where
Nn,i = v{l/v is the ‘inner’ Reynolds number of fluctuations of size I, which
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differs from the Reynolds number Ng = vL/v. Since we ignored numerical
factors, the condition is in fact Ng; > NR crit, where Vg cri¢ is some critical
value.

In general we have v; < v. Hence, if Ng is only a little larger than NR crit,
only large fluctuations are created. If Ng is increased further, smaller fluctu-
ations are also created. In fact, a cascade process occurs: large eddies create
smaller eddies, which create even smaller eddies, and so on. The creation of an
eddy by a larger eddy can be attributed to the velocity gradient in the larger
eddy. The cascade process begins with the creation of the largest eddies, by
velocity gradients in the atmosphere; these gradients are commonly referred to
as wind shear. Wind shear is large near the ground surface and near obstacles.

Eddies of size I receive an amount of energy 'u,’3 /! per unit mass and per
unit time from larger eddies, and pass this energy on to smaller eddies. The
dissipation of all eddies, except for the smallest eddies, is small compared with
the energy they receive from larger eddies. It follows that the energy v,’3 /lis
constant for all eddies. In the smallest eddies of size Iy, with velocity fluctuation
vo, this energy is converted into heat, at a rate ¢ ~ vv3/l3. Hence we have
€~ vl’s/l for all l > Iy, or

v ~ (el)/3, (1.3)

From vg ~ (elp)/% and € ~ vv} /13 it follows that the size lo of the smallest
eddies is given by lp ~ (v3/€)1/4. The size lo can also be related to the size

L of the largest eddies. From € ~ v} /L we find lo ~ L/Ng/*. From the value
v ~ 0.15 cm? /s for air we find Ng ~ 10° for L ~ 1 m and v ~ 1 m/s. Hence, the
smallest eddies are at least three orders of magnitude smaller than the largest
eddies; the size lp of the smallest eddies is typically 1 mm.

I.4 Random fields

The wind velocity components and the temperature in the turbulent atmosphere
are rapidly fluctuating functions of position and time. These functions are
called random functions. The fields of the wind velocity components and the
temperature are called random fields. Random fields can be characterized by a
correlation function or a structure function [149, 150, 125, 68]. These functions
are introduced in this section. o

The time average of a random function f(r) is denoted as f(r). We will
consider only random functions with f(r) = 0. An example of a random function
with f(r) = 0 is the deviation of the temperature from the average temperature.

The correlation function of a random function f(r) is defined as

B(ry,r2) = f(r1)f(r2). (1.4)

A random function f(r) is called homogeneous if the correlation function B
depends on r; and re only through the difference r = r; — ro, so that we have
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B(r1,r2) = B(r). A homogeneous function f(r) is called isotropic if B depends
only on the length r of the vector r, so that we have B(r) = B(r).

If the correlation function depends not only on the vector r = r; —r; but also
on the position in the atmosphere, the random function is not homogeneous. In
this case one can use the structure function, which is defined as

D(ry,r2) = [f(r1) — f(r2)]?. (I.5)

Since the structure function contains the difference between the values of the
random function at two points, gradual changes in the random field have a
smaller effect on the structure function than on the correlation function. A
random function f(r) is called locally homogeneous if we have D(r,,rz) = D(r),
with r = r; —ry. If we have D(r) = D(r), the random function is called locally
isotropic.

The correlation function B(r) and the structure function D(r) of an isotropic
random function f(r) are related to each other:

D(r) = 2B(0) — 2B(r), (1.6)
as follows from Egs. (I.4) and (1.5). In practice we always have B(oc) = 0, so
we find D(oo) = 2B(0). This gives

B(r) = 3 D(co) ~ 5 D(r). 1L7)

The foregoing applies to scalar functions, such as the temperature fluctuation
in the atmosphere. The wind velocity fluctuation in the atmosphere, however,
is a vector function. A homogeneous vector function v(r) can be characterized
by a set of nine correlation functions

B;j(r) = vi(r1)vj(r2) (1.8)
and a set of nine structure functions
Dij(r) = [vi(r1) — vi(r2)][vs(r1) — vj(r2)], (1.9)

withr = r; —ry and i,j = 1,2,3, where v;, v2, and vz are the z, y, and 2
components of the vector v, respectively. If the vector field is isotropic, the nine
correlation functions B;; can all be expressed in two functions, the longitudinal
structure function B,.(r) and the transverse correlation function By(r):

B (r) = (5

with r = (r1,72,73), and §;; = 1 for ¢ = j and 6,-j = 0 for i # j [150, 98].
Analogously, the nine structure functions D;; for locally isotropic turbulence can
all be expressed in the longitudinal structure function Dy, (r) and the transverse
structure function Dy (r):

D;j(r) = (5ij r,r]) Dy(r

TiTj

22) Bu(r) + "5 Brr(r), (L.10)

Drr(r). (L11)
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Examples of the longitudinal structure function are Dj;(e;), D22(ey), and
Ds3(e;), where e,, e,, and e, are the unit vectors in the z, y, and z direc-
tions, respectively. Equation (I.11) gives D;i(e;) = Daa(e;) = Dss(e;). An
example of the transverse structure function is D1 (ey).

If one assumes that the flow is incompressible (V - v = 0), one can derive a
relation between B,,(r) and By(r), and a relation between D,.(r) and Dy (r)
{149]:

d
Bu(r) = 5+ [P B(r)], (112)
Dulr) = -+ [ Dre(r)]. (L13)

In this case, the nine correlation functions can all be expressed in a single
function, either B,.(r) or By(r), and the nine structure functions can all be
expressed in a single function, either D,,(r) or Dy (r).

1.5 The ‘two-thirds law’

We consider the longitudinal structure function D,.(r) = [ve(r1 + 1) — vr(r1)]2.
If we have lp « r < L, where lp and L are the sizes of the smallest and
largest eddies, respectively, the velocity difference v.(r; + r) — vr(r;) between
the points r{ +r and r; is mainly determined by eddies of size r. Therefore we
have D, ~ vf, where v, is the velocity fluctuation corresponding to an eddy of
size . From Eq. (I.3) we have v, ~ (er)!/3, so we find D,(r) = C(er)?/3, where
C is a dimensionless constant of the order of unity. This result, the ‘two-thirds
law’ of Kolmogorov and Obukhov [149), is valid for [y €« r < L. Forr < lp
the flow can be considered as laminar, and one can derive D,, = jxer?/v [149).
Hence we have

C(er)?/® forlp < r <L,

zer? /v forr < lo. (L14)

D, (T) = {
In the context of this equation, the length scales lp and L are called the inner
and outer scales of turbulence, respectively. The inner scale of turbulence /o can
be defined as the value of r where the two branches in Eq. (I.14) intersect:

lo = [(15Cv)%/¢] "% (1.15)
This expression can be used to replace ¢ in Eq. (I.14) by lo:

C2r2/3 forlg <« r <L,

1.16
0213/3(r/10)2 for r < lp, (1.16)

D) = {

where the factor C3(150)2l; %/ has been redefined as C2. As lo is typically of
the order of 1 mm, the region r < Iy is usually unimportant in acoustics (cf.
Sec. 1.7.1).
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[.6 Spectral density

The spectral density of a homogeneous random function f(r) is the spatial
Fourier transform of the correlation function B(r) [149, 150, 68]. One distin-
guishes one-, two-, and three-dimensional spectral densities, to describe corre-
lation along a line, in a plane, and in a volume, respectively.

In the one-dimensional case, the Fourier transform pair is

B(r) = /exp(ikr)V(k) dk (1.17)
V(k) = ~21; / exp(—tkr)B(r) dr, (1.18)

where V (k) is the one-dimensional spectral density of the random function. In
the three-dimensional case, the Fourier transform pair is

B(r) = ]7/ exp(ik - r)®(k) dk (I.19)
B(k) = (—2%)3 [Z / exp(—ik - r)B(r) dr, (1.20)

where ®(k) is the three-dimensional spectral density of the random function
and r and k are three-dimensional vectors. If the field is isotropic, we have
B(r) = B(r), and Eq. (1.20) reduces to

[ee)

1 .
d(k) = Eyors /sm(kr)B(r)rdr, (1.21)
0
so we have ®(k) = ®(k). To prove Eq. (1.21) one uses spherical r¢ coordinates
for the vector r in Eq. (1.20), with k - r = kr cos# and dr = r2 dr sin6 df d¢.
Comparison of Eqs. (1.18) and (I.21) yields the relation
1 dV(k)
= 1.22
(k) 2rk dk (1-22)
With this relation we can derive the three-dimensional spectral density of an
isotropic random function from the one-dimensional spectral density.
In the two-dimensional case, the Fourier transform pair is

B(r) = // exp(tk - r)F(k) dk (1.23)

F(k) = # // exp(—tk - r)B(r) dr, (1.24)
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where F(k) is the two-dimensional spectral density of the random function and r
and k are two-dimensional vectors, e.g. r = (r, z) and k = (kz, k;). Comparison
of Egs. (I.19) and (1.23) for r = 0 yields the relation

(e}

F(kg, k) = /fb(kz,ky,kz)dky, (1.25)

—00

and analogous relations for F(k;,k,) and F(ky,k.). If the field is isotropic, Eq.
(1.24) reduces to

F(k) = 51; / Jo(kr)B(r)r dr, (1.26)
0

so we have F(k) = F(k). Here we have used Eq. (E.59).
The structure function D(r) is also related to the spectral density. In the
one-dimensional case we have

D(r)y=2 / [1 — exp(ikr)]V (k) dk, (1.27)

as follows from Egs. (1.6) and (1.17). Analogous relations hold in the two- and
three-dimensional cases.

For vector functions we defined a set of nine correlation functions Bj;(r) in
Eq. (1.8). Each correlation function B;;(r) corresponds to a three-dimensional
spectral density ®;;(k) defined by Eq. (1.20) (with ®;; = € and B;; = B), and
a two-dimensional spectral density Fj;(k) defined by Eq. (1.24) (with Fi; = F
and Bij =B )

1.7 Gaussian, Kolmogorov, and von Kéirman
spectra

In the previous sections we introduced the following statistical functions to
describe a random field:

correlation function B(r),

structure function D(r),

¢ one-dimensional spectral density V (k),

two-dimensional spectral density F'(k),

three-dimensional spectral density ®(k).
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In atmospheric acoustics, turbulence is represented by the random field of
refractive-index fluctuations (see Sec. 1.2). The refractive-index fluctuation u is
related to the temperature fluctuation T; and the wind velocity fluctuation u; by
the expression p = —%Tt /To—u/co, in the effective sound speed approximation
[see Eq. (1.2)].

In the acoustic literature [98], various mathematical functions have been
used to approximate the statistical functions B(r), D(r), V(k), F(k), and ®(k)
of the refractive-index fluctuation u. A Gaussian function has been widely used.
A Gaussian correlation function corresponds to Gaussian spectral densities, as
will be shown in Sec. I.7.1. In this case the atmosphere is referred to as an
atmosphere with a Gaussian spectrum of refractive-index fluctuations. A more
realistic representation is the von K4rman spectrum, which is related to the
Kolmogorov spectrum.

In Secs. 1.7.1 and 1.7.2 we give expressions for the statistical functions B(r),
D(r), V(k), F(k), and ®(k) of the refractive-index fluctuation u, for the Gaus-
sian spectrum, the Kolmogorov spectrum, and the von Kdrman spectrum. In
Sec. 1.7.1 we give expressions for an isotropic turbulent atmosphere with only
temperature fluctuations, so we have uy = 0 [149, 150]. In Sec. 1.7.2 we give
expressions for an isotropic turbulent atmosphere with temperature and wind
fluctuations [98].

1.7.1 Atmosphere with temperature fluctuations

For an atmosphere with only temperature fluctuations we have u¢ = 0, and we
find from Eq. (I.2) the relation p = —1T;/To. This implies B(r) = {Br(r)/T¢,
where Br(r) is the correlation function of the temperature fluctuations. For
isotropic turbulence we have Br(r) = Br(r), which implies B(r) = B(r). In
the same way we find D(r) = D(r), F(k) = F(k), and ®(k) = (k).

For the Gaussian spectrum, the statistical functions of the refractive-index
fluctuations are given by the following expressions:

B(r) = u exp(-r?/a®) (1.28)

D(r) = 2u2 [1 — exp(—r?/a?)] (1.29)

V(k) = py>—= 3 \/— exp(—k’a®/4) (1.30)

F(k) = 4 exp( —k?a?/4) (1.31)
3

®(k) = u08 573 exp(—k’a®/4), (1.32)

where a is the correlation length and pug is the standard deviation of u. The
standard deviation pg is related to the standard deviation or of the temperature
fluctuations by the expression po = —O'T /To, which follows from the expression
n= ——Tt /To. If we assume that the correlation function B(r) is given by Eq.
(1.28), the expressions in Eqgs. (1.29) to (I.32) for the other functions follow by
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using the relations given in the previous sections. Equation (I.29) follows from
Eq. (1.6). Equation (1.30) follows by substitution of Eq. (1.28) into Eq. (1.18):

2 B 2 9 oo k 2 k22
=g oo (co-5) -8 [ oo ([ 5] - )+

- - (1.33)

and deformation of the integration path a.long the real axis to the line Im(r/a) =
—tka/2. Using the relation f_ exp(—z2)dz = /m we obtain the well-known
result that the Fourier transform of a Gaussian is a Gaussian. Equations (I.31)
and (1.32) follow from Eqs. (1.22) and (1.25). The Gaussian spectrum has been
widely used in atmospheric acoustics, with a value of about 1 m for the corre-
lation length @ and values ranging from about 10~° to 10~ for the variance u3
[33, 35, 159] (¢f. Sec. 1.7.2).

For the Kolmogorov spectrum the expressions are [see Eq. (1.16)]

D(r) = CPr» (139
V() = X2 o g 2 (1.35)
F(k) = 02?2(—5’2%1—)?1 sin(-ﬂp)|k|_”_2 (1.36)
a(k) = 22D g Lupy -2 (1.37)

with p = 2/3; here ' is the gamma function [1]. The correlation function
B(r) is undefined in this case, as follows from Eq. (I.7). To prove that Eq.
(1.35) corresponds to Eq. (I.34), one substitutes Eq. (I1.35) into Eq. (1.27); by
integration by parts one finds Eq. (1.34), using the relation (see Eq. 3.764 of
Ref. [61])

/z" sin(az + b) dz = a™P~'T'(1 + p) cos(b + pr/2), (a >0, -1 <p<0)
0
(1.38)
and the relation I'(z)['(1 — ) = n/sinzm, or [(1 + z)[(1 — z) = zn/sinzw

from ['(z + 1) = zI'(z). Equations (1.36) and (1.37) follow from Egs. (1.22) and
(L.25).
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For the von Kirman spectrum the expressions are

B(r) = yg% (g)l/ K (3) (1.39)
D) = 248 |1~ s (2) Ko (2)] (L40)
V(E) = r(rl(/f)s/)i)/; o k‘;az)sls (L.41)
(k) = p2 —LLL/6) o’ (143)

°T(1/3)73/2 (1 + k2a2)11/8°

where a is the correlation length, pg is the standard deviation of u, and K, 3
is a modified Bessel function of order 1/3 [1]. For r < a the structure function
(1.40) reduces to

D(r) ~ ug% (%)2/3. (1.44)

Hence, for » < a the von K4rmén spectrum is of the same form as the Kol-
mogorov spectrum. Equation (1.40) follows from Egs. (1.39) and (I1.6). To prove
that Eq. (I1.41) corresponds to Eq. (I.39), one substitutes Eq. (I1.41) into Eq.
(1.17), which yields Eq. (1.39) if one uses the relation (see Eq. 3.771 of Ref. [61])

/(,B2 + 22)¥~Y2 cos(az) dr = —\}—7_; (271-) cos(mv)T'(v + %)K_,,(aﬂ) (1.45)
0

and the relation I'(z)[(1 — z) = 7/sinzw. Equation (1.43) follows then from
Eq. (1.22), if one uses ['(z +1) = zI'(z). Next, Eq. (1.42) follows from Eq. (1.25),
by using the relation

T r(3)
/(a +122)"1/6 gy = o=8/6 22 167 (1.46)
0

which follows from Eq. 3.251 of Ref. [61].

It should be noted that for electromagnetic wave propagation one usually
includes an exponential cut-off factor exp(—k?/kZ,,) in the expression (1.43)
for ®(k), with kmax = 5.48/ly, where Iy is the inner scale of turbulence [149].
This factor represents a rapid decay of the spectral density ®(k) for k£ > kmax,
and corresponds to the branch r < Iy in Eq. (I.16). The corresponding cut-off
factor for F(k) is exp(—k?/kZ ), with kmax = 4.60/lp. The cut-off factor can
be omitted in acoustics, since [g is typically of the order of 1 mm and the effect of
sound scattering by inhomogeneities with sizes of the order of 1 mm is negligible
[98].
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1.7.2 Atmosphere with wind and temperature fluctuations

In this section we give expressions for the statistical functions of refractive-index
fluctuations in an isotropic turbulent atmosphere with wind and temperature
fluctuations (u¢ # 0). These expressions were developed by Ostashev [98].
From Eq. (I1.2) we have the relation p = —%Tt /Ty —u/co. Consequently, the
correlation function B(r) of the refractive-index fluctuation y is related to the
correlation function Br(r) of the temperature fluctuation Ty and the correlation
function By (r) of the wind velocity fluctuation u;, [see Eq. (1.8)], by the equation

_ BT(I‘) Bn (l‘)

Blr) ==+~ (1.47)

The analogous equations for the spectral densities are F(k) = Fr(k)/(4T3) +
Fll(k)/c% and (D(k) = @T(k)/(‘iTg) + Qu(k)/cg The indices 11 of Bll, F]l,
and ®;; corresponds to the z coordinate of a rectangular zyz coordinate sys-
tem, where the z direction is the direction of sound propagation. The functions
B(r), F(k), and ®(k) are anisotropic in this case (in Sec. I.7.1 the functions were
isotropic), due to the anisotropy of the functions By, (r), F11(k), and @13 (k). Al-
though the wind and temperature fluctuations are still assumed to be isotropic,
the effective sound speed for propagation in the = direction and the correspond-
ing refractive-index fluctuations are anisotropic. Below we give the functions
B(z,y,z2), F(kg,k;) = F(kz, ky), F(ky,k;), and ®(kz,ky, k.) for the Gaussian
spectrum and the von Kdrman spectrum. Because of the anisotropy we indi-
cate the components of the vectors r and k explicitly in the arguments of the
functions. The functions B(z,y,2), F(ks,k.), and &(kz,ky,k;) will be used
in Appendix J for the calculation of sound propagation in a turbulent atmo-
sphere. For the derivation of the expressions given below, the reader is referred
to Ref. [98). It should be noted that in Ref. [98] the expression for ®(kz, ky, k)
is given for the case k; = 0; this case corresponds to the so-called Markov
approximation [cf. Eq. (K.9)].

For the Gaussian spectrum, with a Gaussian temperature correlation func-
tion Br(r) = o0 exp(—r?/a?) and a Gaussian longitudinal wind velocity corre-
lation function B,,(r) = o2 exp(—r?/a?), the correlation function of refractive-
index fluctuations follows from Egs. (I.10), (1.12), and (1.47):

B — U%‘ 0121 p2 2 /.2 1.48
(z,y,2) = 4—T—02+—c—%— 1—55 exp(—r*/a®), (1.48)
where a is the correlation length, o7 and o, are the standard deviations of the
temperature and wind velocity fluctuations, respectively, and the distances r
and p are given by r? = z2 + y? + 22 and p? = y® + 2°. The two-dimensional
spectral densities F(k,, k) and F(k,,k.) for the Gaussian spectrum are given
by

2 (ﬁ_ o2[k2a? + 2]

a 2 2
— 4 1.49
F(kg,k;) = 4 \ 312 i3 >9XP( k*a®/4) (1.49)
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with k2 = k2 + k2, and

2 2k2 2

2
Fk, k) = = ( 4"TT0 +54—620—“—) exp(—k2a?/4) (1.50)

with k* = k2 + k2. The three-dimensional spectral density for the Gaussian
spectrum is given by

a3 2 2122 2
or o;k’a kZ 2 2
@(k:,ky,k ) 8 3/2 (4—7-1;2- + -L42(2)—— [1 kz]) exp( k /4) (151)
with k% = k2 + k2 + k2.
For the von Kdrman spectrum, the correlation function of refractive-index
fluctuations is given by the expression

B(l‘,y,z) =
D(1/3)(Kor)!/? c Kop? o
7T22/3Kg/3\/§ KI/S(KOT) 4T2 K1/3(K01‘) o K2/3(K01-) C% ,

(1.52)

where K, = 27/L is related to the size L of the largest eddies, C% and C?
are the structure parameters of the temperature and wind velocity fluctuations,
respectively, and the distances r and p are given by 72 = z% + y® + 2% and
p? = y? + 22. The two-dimensional spectral densities F'(k;,k;) and F(k,,k;)
for the von Karman spectrum are given by

F(ky, k,) =
A (r(%)r(g)_c~i+[r(g)r(g) k2 P(-;—)F(%)] 2203)
R+ k2P \ T a2 " | 1(E) T E+K; (L) | 123
(L.53)

with k2 = k2 + k2, and

F(kyk,) =
A (F(%)F(%)_%+[F(%)F(%) k? F(%)F(%)} 2203)
(k2 + K2)876 \ T(1) 412 () " B+K DY) | 12¢
(1.54)

with k? = k2 + k2. Here we have introduced the constant A = 5/{187I'(1/3)] ~
0.0330. The three-dimensional spectral density for the von Kdrman spectrum
is given by

A C2 K2 k2] 22C2
Blha iy ) = m(zr*m =%l 1g) @9
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with k> = k2 + k2 + k2. These expressions agree with the expressions given
in Sec. 1.7.1 for an atmosphere with only temperature fluctuations if we set
pg = T%(1/3) (n24/3K3/*\/3)~1 C2/(4T2), C, = 0, and K, = 1/a.

For the parameters a and p2 = 02./(47%) of the Gaussian spectrum the
following empirical values are used in the acoustic literature: a value of about
1 m for a and values ranging from about 1076 to 10~ for u2. Wilson [159]
indicated that these values are not well justified from a meteorological point of
view. The values give a reasonable ‘fit’, however, of the Gaussian spectrum to
the ‘actual’ spectrum in a limited wave number range, which may be just the
range that is most relevant for an acoustic experiment. Actual turbulent length
scales are often larger than 1 m and values of p2 are often larger than 10°.

The von Karman spectrum gives a better fit to the actual spectrum, over a
broader wave number range. In Ref. [98] the following ranges of values are given
for the normalized structure parameters C2 /T and C?/c2 near the ground on
a summer day:

2 x 10710 m—2/3
1x107° m—2/3

C2)T} < 6x1077 m~2/3

<
< C?/2 < 2x1075m™2/3

(1.56)

If we use the von Karman correlation function (I.52) with C2/T¢ = 6x10"" m'?/3
and C2/c3 = 2x10® m™?/3, we find B(0) = 1.1x10°6, 5.2x10°, and 24x106
for Ky 1'= 1, 10, and 100 m, respectively. Figure 1.3 shows the von Karméan
spectral density ®(0,ky, k.) for C%/T2 = 6x10°7 m'?/3, C?/c2 = 2x10® m"?/3,
and Ky ! = 10 m. Also shown is the Gaussian spectral density for a = 1 m,
pg = 10°, and 02 = 0. The Gaussian spectrum agrees with the von K4rmén
spectrum only in a narrow wave number region.

I.8 Limitations of the statistical description of
turbulence

The turbulent atmosphere was described in Secs. I.1 and 1.3 as a ‘mixture’ of
eddies, with a wide range of length scales (cf. Ref. [95]). The size of the largest
eddies is of the order of the height above the ground. The size of the smallest
eddies is of the order of 1 mm. The sizes of the largest and smallest eddies are
called the outer and inner scale of turbulence, respectively.

Based on the picture of the cascade process, Kolmogorov derived the ‘two-
thirds law’ for the velocity structure function (see Sec. 1.5). This law is valid
for eddy sizes between the inner and outer scale of turbulence, which will be
denoted here as Li, and Loy, respectively. The corresponding Kolmogorov
spectral density is valid only in the wave number range L, < k < L;;'. This
range is called the inertial subrange. The range k < L) is called the energy-
containing subrange, and the range k > L;.! is called the dissipation subrange.
The three subranges are indicated in Fig. 1.3.

The von Karmén spectrum is related to the Kolmogorov spectrum. In the
inertial subrange, the von Karman spectral density satisfies ® ~ k~''/3 and
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Figure 1.3. Example of a Gaussian spectrum and a von Karman spectrum. The
graph shows the spectral density ®(k;,ky,k.) for k; = 0. The wave number

along the horizontal axis is k = [kZ + k2. The Gaussian spectrum is given by

Eq. (1.51) or (1.32), with parameters a = 1 m, 0%/(47¢) = p3 =10°, and 02 = 0.
The von Kirm4n spectrum is given by Eq. (1.55), including an exponential cut-
off factor exp(—k?/k2,,,), with parameters K5' = 10 m, C%/T¢ = 6x107 m'?/3,
C2%/c2 = 2x10°% m?/3, and kmpax = 5.48/lp with lo = 0.001 m. Also shown are
the three spectral subranges: the energy-containing subrange (k < L), the
inertial subrange (L7} < k < L), and the dissipation subrange (k > Lg!),
where Loy ~ K 1 is the outer scale of turbulence and Lj, ~ lp is the inner
scale of turbulence.

agrees with the Kolmogorov spectral density. In the energy-containing subrange,
the von Kérman spectral density levels off (see Fig. 1.3). This represents the fact
that the occurrence of eddies larger than the outer scale Loyt is limited by the
boundary conditions of the flow. While the form of the von Kdrmén functions
for F(k) and ®(k) in the inertial subrange is justified by the Kolmogorov model
of turbulence, the form of the von K4rmén functions for F(k) and ®(k) in the
energy-containing subrange is more uncertain. This is related to the variation
of the value of the outer scale Ly, with atmospheric conditions, height above
the ground, terrain topology, and other factors [159].

The influence of atmospheric turbulence on sound propagation is dominated
by eddies with sizes of the order of the wavelength of the sound waves. De-
pending on the geometry and the atmospheric conditions, this size is in the
energy-containing subrange or in the inertial subrange. Eddies in the dissipa-
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tion subrange are very small compared with acoustic wavelengths.

As noted before, with proper values of the parameters, the Gaussian spec-
trum may agree with the actual spectrum in the relevant wave number range.
With the von Kirmén spectrum, however, agreement can be expected over a
broader range, although the choice of the numerical parameters of the spectrum
is difficult.

Moreover, the Gaussian and von Kdrman spectra are valid only if the tur-
bulence is homogeneous and isotropic. This condition is usually not met. Tur-
bulence is inhomogeneous for example because the outer scale of turbulence
increases with height above the ground. Turbulence is anisotropic for example
because the correlation length parallel to the wind vector is larger than the
correlation length perpendicular to the wind vector.



Appendix J

Atmospheric turbulence in
the PE method

J.1 Introduction

In Appendix I, atmospheric turbulence was represented by a random field of
refractive-index fluctuations. Refractive-index fluctuations correspond to fluc-
tuations of the (effective) sound speed. Sound propagation in a turbulent atmo-
sphere can be computed by using a sound speed profile ¢(z) that includes these
fluctuations. The fluctuations induce a range-dependence of the sound speed
profile. The CNPE and GFPE methods can be used for an atmosphere with a
range-dependent sound speed profile (see Appendices G and H).

In this appendix we describe the incorporation of atmospheric turbulence in
the CNPE and GFPE methods [57, 43, 25]. We also describe the calculation of
the random fields of refractive-index fluctuations, which are used in the CNPE
and GFPE methods. Two-dimensional fields of refractive-index fluctuations
are used in the two-dimensional CNPE and GFPE methods; three-dimensional
fields are used in the three-dimensional GFPE method (see Sec. H.12). The
fields can be considered as ‘frozen’ realizations of the turbulent atmosphere.
The realizations are calculated with the aid of a random number generator.

PE computations for different random realizations yield different sound pres-
sure fields. We are interested in a sound pressure field averaged (logarithmically)
over turbulent fluctuations in a short period, for example a period of ten min-
utes. We assume that this average field can be approximated by a (logarithmic)
average of a set of sound pressure fields computed for a set of random realiza-
tions. In other words, averaging over time is replaced by ensemble averaging
over random realizations of the turbulent atmosphere.

In principle, the refractive-index fluctuations can be included directly in the
sound speed profile used in the PE method. This is not very efficient, however, as
the modification of the profile between successive range steps is time-consuming.

221
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A more efficient method is described in Sec. J.2. The calculation of the random
fields of refractive-index fluctuations is described in Sec. J.3

Sections J.2 and J.3 apply to the two-dimensional PE methods. Section J.4
describes the incorporation of atmospheric turbulence in the three-dimensional
GFPE method.

The axisymmetric approximation used in the two-dimensional PE methods
has a spurious effect on computed sound pressure fields. This effect will be
described in Appendix K (Section K.4).

J.2 Turbulent phase factor in the PE method

In the two-dimensional PE methods, the sound field is represented by the com-
plex pressure amplitude p(r,z) in the rz plane through the source and the
receiver (see Appendices G and H). The computation of the field is based on
the following one-way wave equation for the quantity ¢(r,z) = p(r, z)/7:

Orq(r,z) — iHy(2)q(r,2) = 0, (J.1)
where
Hi(2) = VE(2) + 62 J.2)
is the square-root operator. The formal solution of Eq. (J.1) is
g(r + Ar,2) = exp(tH; Ar)q(r, 2). (J.3)
The corresponding expression for the quantity ¥(r, z) = q(r, z) exp(—ik,r) is
Y(r + Ar, 2) = exp(iH) Ar — ik, Ar)(r, 2), (J.4)

where k, is some average wave number (see Sec. G.3).

The acoustic refractive index n is defined as n = co/c, where c is the effective
sound speed (c = cer) and cq is some average sound speed (see Sec. 1.2). In a
turbulent atmosphere, the refractive index fluctuates at each point around an
average value, which is of the order of unity. The average value is denoted as 7
and the fluctuation is denoted as p. Thus, we have

n=7n+u, (J.5)
with 4 < % and fi = 0. From the relation n ~ k/k, we find
k=k+kap (J.6)

with k = k,7. In the PE method we assume that @ and % are functions of the
height 2 only (within a range step). Substitution of Eq. (J.6) into Eq. (J.2)

gives
Hy ~\JE + 2Fkap + 02, 3.7)
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where we have neglected a term of the order of u%. A first-order expansion of
the square-root function gives

Hy = Hy + kapt (J.8)

with

H=\F +o2 J.9)

In Eq. (J.8) we have used H; ~ k,. Substitution of Eq. (J.8) into Eq. (J.4) gives
Y(r + Ar, 2) = exp(iH Ar — ik, Ar) exp(ikapAr)Y(r, 2). (J.10)

The first exponential factor on the right-hand side represents the solution for a
non-turbulent atmosphere. The second exponential factor represents the effect
of atmospheric turbulence. As p is real, the second factor is a phase factor.

Hence, turbulence is taken into account by multiplication of the field by a
z-dependent phase factor after each PE range step. This is computationally
more efficient than changing the sound speed profile after each PE step.

A slightly more accurate approach is to split the turbulent phase factor into
two factors [45, 57]:

Y(r+ Ar,z) = exp(-;—ikauAr) exp(iH; Ar — ik, Ar) exp(%ikauAr)w(r, z).
(J.11)

Thus, half of the turbulent phase shift is applied before the ‘non-turbulent PE
step’ and the other half is applied after the step. In a sequence of PE steps,
a step from range r to range r + Ar ends with multiplication by the turbulent
phase factor exp[%ikau(r, z)Ar], and the next step from range r + Ar to range
7+ 2Ar begins with multiplication by the factor exp[}ikapu(r + Ar, z)Ar]. This
is equivalent to multiplication by a single factor

exp(ikap2Ar) (J.12)

between the two successive PE steps, where p» is given by
1
p2 = 5 [u(r, 2) + p(r + &, 2)]. (J.13)

In the CNPE method, the range step Ar is usually small compared with the
turbulent correlation length, so turbulent fluctuations are accurately sampled.
In the GFPE method, however, the range step Ar can be chosen considerably
larger than the correlation length. In this case the following phase factor gives
more accurate results than the phase factor (J.12) does:

exp(i0), (J.14)
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where

r+Ar
0=k, / u(r,z)dr (J.15)

r

is the turbulent phase fluctuation integrated over a range step. The use of
Eq. (J.14) is called the ‘phase screen’ method [88]. We note that the phase
factor (J.14) reduces to the phase factor (J.12) if the integral in Eq. (J.15) is
approximated by us Ar.

J.3 Random realizations of the field of refractive-
index fluctuations

The expressions derived in the previous section for the turbulent phase factor
contain the field of refractive-index fluctuations u(r, z) in the rz plane. In this
section we show that realizations of the random field u(r,z) can be calculated
with a random number generator, in such a way that the field has the correct
value of the correlation function B(s) = u(r + s)u(r) [25, 72]. We assume that
the random field u(r, z) is homogeneous (see Sec. 1.4).

We have from Eq. (1.23)

B(s) = // cos(k - s)F'(k) dk, (J.16)

where F (k) is the two-dimensional spectral density of the refractive-index fluc-
tuations in the rz plane; with the notation used in Sec. 1.7.2 we have F(k) =
F(k;,k;) (the horizontal r coordinate used here corresponds to the horizontal z
coordinate used in Sec. 1.7.2). We have replaced the exponential function in Eq.
(1.23) by a cosine function, as F(k) is an even function of the components of
the vector k (see Sec. 1.7). We introduce polar k coordinates for the vector k,
so Eq. (J.16) can be written as

27 o0

B(s) ://cos(k~s)F(k)kdkd9 (J.17)
o 0

with k = (kcos#, ksin§). The integration over the angle § can be replaced by
2m times the average over 8:

B(s) =2r < /cos(k.s)F(k) kdk >, (J.18)
)
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where the brackets < . >¢ denote the average over the angle 6. The integral is
approximated by a finite sum:

B(s) =21 < Ak Y cos(kn - 5)F(Kn) kn >, (J.19)

with discrete wave number vectors k,,. We will show below that random re-
alizations of the corresponding random field p(r) can be calculated with the
following expression:

p(r) = VarAk )~ cos(kn - © + an)yV/F(kn)kn, (J.20)

with k, = (kn cosbp,knsinfy,) and k, = n Ak forn =1,2,..., N; here 6, and
ay, are random angles between 0 and 2. Thus, the field u(r) is calculated by
superposition of N harmonic functions, or ‘modes’, with regularly spaced wave
numbers k,, random polar angles 0,,, and random phase angles a,.

We will now prove that the field given by Eq. (J.20) corresponds to the
correlation function (J.19). From the definition of the correlation function we
have

B(s) =< p(r +s)p(r) >0.0, (J.21)

where the brackets < . >4 , denote an average over the random angles # and «a,
i.e. an average over random realizations of the field u(r). Substitution of Eq.
(J.20) into Eq. (J.21) gives

B(s) = 472k <) cos(kn - T+ an + Ky - 8)y/F(kn ) kn
X Y cos(km - T + m)VF (km)km >0, - (3.22)
m

The average of a term

cos(kn - T+ an + Ky - 8)V F(kp)kn cos(km - T+ am )V F(km)km

vanishes unless we have n = m. The average of a term with n = m can be
written as follows:

< cos(kp T+ ap +ky -8) cos(ky, -t + an)F(kn)kn >9,0=
< cos?(kn - T + ay) cos(ky, - ) F(kn)kn
—sin(k, - + ap) cos(kn - ¢ + ap) sin{k,, - s)F(kp)kn >0.a
= % < cos(ky - s)F(kp)kn >¢, (J.23)
where we have used the goniometrical relations cos’z = % + %cos 2z and

sinz cosz = }sin2z. Substitution of Eq. (J.23) into Eq. (J.22) gives Eq. (J.19),
which completes the proof.
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J.3.1 Refractive-index fluctuations in the CNPE method

In the CNPE method we use a rectangular grid in the rz plane through the
source and the receiver. Turbulence is incorporated by multiplication of the field
¥(r, z;) at the grid points (r, z;) by the phase factor given by Eq. (J.12), after
each range step. This requires the evaluation of the refractive-index fluctuations
u(r, z;) at the grid points. From Eq. (J.20) we have

u(r, z;) = Z G(kp) cos(r kny + zj knz + i) (J.24)

with G(k,) = /47Ak F(k,)kn, knyr = kncosfy,, and kp; = knsinf,. As the
calculation of the cosine function for all grid points is time-consuming, we write

COS(T knr + 2; knz + @n) = Re {exp(ikn,r + ian)[exp(iknA2)},  (J.25)

where we have used z; = jAz. The two exponential factors on the right-
hand side are independent of z;, so the cosine factors for fixed r and n can be
calculated efficiently for all z; by repeated multiplication by the constant factor
exp(ikn,AZ).

J.3.2 Refractive-index fluctuations in the GFPE method

In the two-dimensional GFPE method we also use a rectangular grid in the rz
plane, but the horizontal grid spacing can be considerably larger than in the
CNPE method. Therefore we use the turbulent phase factor (J.14) in the GFPE
method, instead of the phase factor (J.12) used in the CNPE method.

The refractive-index fluctuations p(r, z;) at the grid points are given by Eq.
(J.24). Substitution into Eq. (J.15) gives

O =T(r + Ar,z;) — T(r,2;), (J.26)
with
Y(r,z;) = ka Z Glgk") sin(r knr + 2j knz + 0n). (J3.27)
n nr

For an efficient calculation of the sine factors in this expression, an approach
analogous to the approach described in Sec. J.3.1 can be used.

J.3.3 Numerical parameters

Figure J.1 shows an example of the variation of the refractive-index fluctuation
u(r,z) along a horizontal line in the r direction, calculated with Eq. (J.24)
for a Gaussian spectrum and for a von K4drman spectrum. The corresponding
function G(k) in Eq. (J.24) is also shown in the figure (for k, = 0); this function
can be considered as a ‘mode amplitude’. For the Gaussian spectrum, the
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Figure J.1. Example of the variation of the refractive-index fluctuation u(r, z)
along a horizontal line in the r direction (top) and the corresponding ‘mode
amplitude’ G(k) in Eq. (J.24) for &k, = 0 (bottom), for a Gaussian spectrum and
for a von Karman spectrum. The Gaussian spectral density F'(k) is given by Eq.
(1.49), with parameters a = 1 m, 02./T¢ = 10, and ¢Z = 0. The von Kdrman
spectral density F(k) is given by Eq. (1.53), with parameters K;' = 10 m,
C%/T¢ = 1x107 m™?/3, and C2%/c3 = 1x10® m'?/3. For both spectra we used
N =200 and ky, max = 10 m™!.

function G(k) is negligible for wave numbers k > 7 m!, in this example. For
the von Karman spectrum, however, the function G(k) still has a finite value
at k = 10 m'!. The representation of the von Karman spectrum up to wave
numbers where the function G(k) is negligible requires a large number (N) of
‘modes’, as the wave number spacing Ak should be chosen sufficiently small to
properly sample the range of small wave numbers. This problem can be solved
by using a variable wave number spacing Ak,, instead of the constant wave
number spacing Ak used in Eq. (J.19). For the examples in this book, however,
we used a constant wave number spacing Ak, with a value of 10 m™ for the
maximum wave number k; max and a value of 100 for the number of modes N
(except for Fig. J.1, where we used N = 200). Modes with wave numbers larger
than 10 m™! represent relatively small fluctuations of the refractive index, so the
cut-off of the spectrum at kp max = 10 m™! is a reasonable approximation.
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J.4 Turbulence in the three-dimensional GFPE
method

In this section we describe the incorporation of atmospheric turbulence in the
three-dimensional GFPE method, which was described in Sec. H.12.

In Sec. J.2 we derived the turbulent phase factor for the two-dimensional
PE methods. It is straightforward to generalize the derivation for the three-
dimensional GFPE method. The square-root operator given by Eq. (J.2) be-
comes H; = \/ k?(z) + r=20; + 02. The resulting turbulent phase factor for the
three-dimensional GFPE method is given by Eq. (J.14) with

r+Ar
O =k, / wir, ¢, z) dr. (J.28)

r

The only difference from Eq. (J.15) is that 4 is a function of the azimuthal angle
¢ in this case.

In Sec. J.3 we described the calculation of random realizations of two-
dimensional fields of refractive-index fluctuations. The calculation is modified
as follows for three-dimensional fields. We have from Eq. (1.19)

B(s) = ]7/ cos(k - s)®(k) dk, (J.29)

where ®(k) is the three-dimensional spectral density of refractive-index fluctu-
ations. We introduce spherical kfp coordinates for the vector k, so Eq. (J.29)
can be written as

2 7w o

B(s) = 0/ O/ 0/ cos(k - s)®(k) k2 dk sin 6d6 dy. (J.30)

The integration over the angles § and ¢ can be replaced by 47 times the angular
average:

oo
B(s)=4r < /cos(k -s)®(k) k2 dk >4, - (J.31)
0
The integral is approximated by a finite sum:

B(s) = 4m < Ak Y _ cos(kn - 5)®(kn) k2 >g,0, (J3.32)

with discrete wave number vectors k,. Random realizations of the correspond-
ing random field u(r) can be calculated with the following expression:

p(r) = VBrAk Y cos(kn - T + an) v/ (kn) k2, (3.33)
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with k, = (knp cosy, siné,, k, sin p, sinby,, k, cosd,,) and k, = nAk for n =
1,2,...,N; here ¢, and a, are random angles between 0 and 27, and 6, is a
random angle chosen in such a way that values of cos 8, are distributed uniformly
over the interval between 1 and —1 [as we have sin8df = dcos in Eq. (J.30)].
The proof that u(r) given by Eq. (J.33) corresponds to the correlation function
B(s) given by Eq. (J.32) is analogous to the proof given in Sec. J.3 for two-
dimensional fields u(r).

In the three-dimensional GFPE method we use a cylindrical grid in the pie
slice region shown in Fig. H.6. The refractive-index fluctuations u(r, ¢k, z;) at
the grid points follow from Eq. (J.33):

wu(r, dr,2;) = Z G(kyp) cos(r cos @k knz + T Sin @k kny + 2j knz + an), (3.34)
with G(kn) = /87 Ak ®(kn)k2, knz = kn cOS @y sinby, kny = knsing,sinfy,,
and ky, = k, cos #,,. Substitution of Eq. (J.34) into Eq. (J.28) gives

0= T(T+AT1 ¢kazj) —T(Tv ¢k;zj)s (J35)
with

G(k,) sin(r cos ¢x kpg + 7 Sin g kny + 2 knz + an)
COS O knz + Sin ¢ kny ’

T(T, ¢kyzj) = ka Z
i (J.36)
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Analytical model for a
non-refracting turbulent
atmosphere

K.1 Introduction

Sound propagation in a turbulent atmosphere can be computed numerically
with the PE method, as described in Appendix J. If the (average) atmosphere
is non-refracting, i.e. if we have @ = 1 in Eq. (I.1), sound propagation can also
be computed analytically. In this appendix we present an analytical model for
sound propagation in a non-refracting turbulent atmosphere above a ground
surface. The model is based on work of Daigle et al. [33, 35], Clifford and
Lataitis [27], Ostashev et al. [100], and Salomons et al. [139].

Daigle et al. [33, 35] developed a model that can be considered as a heuris-
tic extension of analytical solutions for an unbounded non-refracting turbulent
atmosphere [150, 68, 98]. Clifford and Lataitis [27] developed a more rigorous
analytical model, which was improved by Ostashev et al. [100] and Salomons et
al. {139].

The model presented in this appendix can be used to study the effects of
turbulence on sound propagation over relatively short distances (for large dis-
tances the effects of refraction can usually not be neglected). The model can
also be used to study the accuracy of numerical computations performed with
the PE method, by comparison of analytical results with PE results for a non-
refracting turbulent atmosphere. An example of such a comparison is presented
in Chap. 5.

In Sec. K.2 we describe the model. In Sec. K.3 we describe the application of
the model for Gaussian and von K4rmaén spectra of turbulence. In Sec K.4 we
describe the spurious effect of the axisymmetric approximation, which is used
in the two-dimensional PE methods. This effect should be taken into account
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in comparisons of analytical results with PE results.

K.2 Model

We consider a harmonic monopole source and a receiver in a non-refracting
turbulent atmosphere above a ground surface. For a non-refracting turbulent
atmosphere, the fluctuating refractive index n can be written as n = 1 + p,
with = 0 (see Sec. 1.2). We use an rz coordinate system in the vertical plane
through the source and the receiver; r is the horizontal range measured from the
source and z is the height above the ground surface. The source is at position
(0,25) and the receiver is at position (L,z). We assume L > z; and L > 2.

The (fluctuating) complex pressure amplitude p. at the receiver is written
as the sum of the contribution p; of the direct field and the contribution @p2
of the field reflected by the ground surface:

pc = p1 + Qp2, (K.1)

where Q is the spherical-wave reflection coefficient (see Sec. D.4) and p; and p,
are given by

p; = SW) for j = 1,2, (K.2)
il

where Ry = /L% + (2 — 2)? and Ry = /L? + (2 + 2)? are the direct and
reflected path lengths, respectively, S is a constant, k¥ = w/c is the wave number,
and the quantity ; is called the complex phase fluctuation. The effect of
turbulence is represented by the factor exp(y;). For a non-turbulent atmosphere
we have ¢; =0, so Eq. (K.1) reduces to Eq. (3.2). From Eq. (K.2) we have

¥; =In(p;/pj0), (K.3)
where pj o is the value of p; in a non-turbulent atmosphere. We write
¥ = x; +15j, (K.4)

where x; is called the log-amplitude fluctuation and S; is called the phase
fluctuation.

The sound pressure as a function of time is given by p(t) = Re(pce
The variation of the sound pressure with time consists of two contributions:
harmonic oscillations with period 7, = 27 /w and turbulent fluctuations with a
characteristic period .. We assume that the (relevant) turbulent fluctuations
are slow compared with the harmonic variations of the sound pressure, so we
have 1, €« 7, [27].

The (fluctuating) short-time average of the squared sound pressure, denoted
as (p?)ay, is defined as an average over a time 7y, with 7, €« 1 < 7. From
Sec. B.3 we have the relation (p?)., = %pcpg. The corresponding (fluctuating)

—-iwt)‘
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relative sound pressure level is AL = 101g[(p?*)av/(p? g)av], Where (p? 0)av iS
given by 252 /R:. The long-time average of the squared sound pressure, de-

noted as (p?),, = 1Depz, is defined as an average over a time 7y, with 75 > 7.
The corresponding long-time average of the relative sound pressure level is
AL = 101g[(p?)av/ (0} 0)av]-

With the notation Q = |Q|e*? we find

AL=10lg {exp(2xl) vierH exp(m)
+|Q|R—; exp(i[kR; — kR, — 9])exp(v; + ¥3)
+|Ql% exp(—i[kRy — kR — J])exp(¥] + 1/12)} . (K.5)

Conservation of energy implies (p?)av = (p?)o)av, which gives exp(2x;) = 1
for j = 1,2 [27]. To evaluate the factors exp(y; + ¥3) and exp(¢)] + 1) in
Eq. (K.5) we use the fact that Gaussian distributions can be assumed for Xj
and S; (68, 126]. For a ﬂuctuatmg variable y with a Gaussian distribution we
have the relation exp(y) = exp(302 + 7), where 02 = (y — §)? is the variance
of y [150, 27]. Using exp(2x;) = 1 we find X; —aij. A more complex
derivation yields S; = —X;S;j, where terms of the order of u_ and higher-order
terms have been neglected (150, 100] (a term like X;5; = o2 x;5; is of the order

2
y

of 1%, as the ﬂuctuatlons x; and S; are of the order of p) Using the relation
exp(y) = exp( o, 2+y)fory=v1 +¢ andy = ¥} + 12, and neglecting terms
of the order of E and higher-order terms, we find

AL =101g <1+ |le +2|Q|—cos kR, —kR; — 9 + x251 —x152)r) )
(K.6)

where
—_1l= 1= g2 G2
I'=exp{Xx1xz — 5Xi 2X2 + 515 - —5 - —S (K.7)

is called the coherence factor. The terms x2S, and x;S- in Eq. (K.6) are small
for weak fluctuations {27, 139], and will be neglected. The calculation of AL
has been reduced to the calculation of the correlation functions X;Xm and S; S,
(7om = 1,2). In the remainder of this section we describe a model for the
calculation of the correlation functions (33, 35, 81, 139].

The physical system with a single receiver above a ground surface is replaced
by an unbounded system with two receivers (see Fig. K.1). The direct and
reflected rays in the physical system are replaced by two direct rays to the
receivers in the unbounded system. Consequently, we can apply the theory
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of wave propagation in unbounded turbulent media [150, 68, 126, 98]. In this
theory, the correlation functions X;xm and SJ_S,; are usually denoted as By (p)
and Bg(p), respectively, where p is the vertical separation between the two
receivers in the unbounded system (see Fig. K.1). We have x? =~ x3 ~ By(0)
and S? ~ S? ~ Bs(0), using the assumption L >> z; and L > z. Equation (K.7)
becomes

T'(p) = exp[By(p) — Bx(0) + Bs(p) — Bs(0)]- (K.8)

For the argument p we use the maximum vertical separation 2zsz/(zs + z) be-
tween the two sound rays in the physical system (see Fig. K.1). The mean
vertical separation between the two rays is then equal to zsz/(2s + z), both in
the physical system and in the unbounded system. A more rigorous approach is
presented in Refs. [100, 139}, based on the work described in Ref. [27]. With this
more rigorous approach it can be verified that the heuristic approach described
here gives accurate results.

It should be noted that we replace the physical system by the unbounded
system only for the approximation of the coherence factor I' in Eq. (K.6) by the
expression given in Eq. (K.8). For the other quantities in Eq. (K.6) we use the
physical system.

The calculation of AL has been reduced to the calculation of the correlation
functions B, (p) and Bs(p) for an unbounded turbulent atmosphere. General
expressions for the correlation functions for homogeneous turbulence can be
derived with Rytov’s perturbation method, which is valid for weak fluctuations
(see, for example, Chaps. 17 and 18 of Ref. (68]). With the notation B, (r) =
B, (r) = xR)x(R +r) and Ba(r) = Bs(r) = S(R)S(R +r), with R = (L, 0,0)
and r = (0,y, z), these expressions can be represented as follows (m = 1,2):

1 oo
B,.(r) —27rL/dr/
0 —00 —

where we have k = (0, ky, k), |k| = /k2 + k2, Hy(z, &) = ksin(3zx/k), and

Hy(z,k) = kcos(3zk%/k) (with k = w/c), and ®(k) is the three-dimensional
spectral density of refractive-index fluctuations (see Sec. 1.6). Equation (K.9)
is valid for L > |r| = /y%2 + z2. The Gaussian and von Kérman spectral
densities ®(k) given in Sec. 1.7 satisfy ®(k) = ®(|k|) for k = (0, k, k.), so Eq.
(K.9) implies By (r) = By, (|r|). Therefore the correlation functions By (p) and
Bg(p) in Eq. (K.8) follow from Eq. (K.9) with p = |r|. In the next section we
evaluate the coherence factor given by Eq. (K.8) for Gaussian and von Kédrmén
spectra.

exp(itk - r) H2 (L7 — L7%, |k|) (k) dk, dk., (K.9)

8\8
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Figure K.1. For the calculation of the coherence factor I' in Eq. (K.6) we replace
the physical system (top) by an unbounded system with two receivers (bottom).
The vertical separation p between the two receivers in the unbounded system
is equal to the maximum vertical separation between the two sound rays in the
physical system.

K.3 Coherence factor for Gaussian and von
Karman spectra

We first consider a turbulent atmosphere with the Gaussian spectral density
given by Eq. (L32): ®(|k|) = p3a® exp(—|k|?a®/4)/(87%/?), which is valid for an
atmosphere with only temperature fluctuations. Substitution of this expression
into Eq. (K.9) gives integral expressions for B;(p) = By (p) and B2(p) = Bs(p).
After substitution of these integral expressions into Eq. (K.8), the integrals can
be performed analytically. In this way we find the following expression for the
coherence factor [98, 97, 139]:

I'(p) = exp (-ﬁLk2uga [1 - %ﬁgﬁ%@]) , (K.10)

where erf(z) = (2//7) [y exp(—72)dr is the error function [1].

Next we consider a turbulent atmosphere with the von Kérman spectral
density given by Eq. (1.55), which is valid for an atmosphere with wind and
temperature fluctuations. In this case we find the following expression for the
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coherence factor [100]:

Kop
2L 21/6t5/6
['(p) = exp ~Kop 0/ [’YT (1 TG/6) <7 Ksye(t ))

1/645/6
#, (1= Tl Kool - 3K e} kan)

with yr = 372 Ak2K; */C2./(10T2) and v, = 672Ak2K, */3C2/(5c2).

It should be noted that Eq. (K.9) is valid only for small turbulent fluctua-
tions. With increasing distance L, the turbulent fluctuations increase. Equation
(K.9) predicts that the correlation functions increase linearly with L, for large L
[the integral in Eq. (K.9) is approximately constant for large L}. In reality this
occurs only for the correlation function Bs of phase fluctuations. The corre-
lation function B, of log-amplitude fluctuations increases up to a value of the
order of unity and then remains constant for larger distances. In other words,
the log-amplitude fluctuations saturate for large distances [150, 35, 139].

The saturation of log-amplitude fluctuations can be taken into account ap-
proximately by neglecting the contributions from the log-amplitude fluctuations
to the coherence factor, i.e. by using By = 0 in Eq. (K.8), for large distances
[35] (this has not been done for the examples presented in Chap. 5). The corre-
lation functions given by Eq. (K.9) satisfy the relation Bs(p) =~ By(p) for large
distances [68, 98], so using B, = 0 in Eq. (K.8) is equivalent to replacing I by
the square root v/T.

K.4 Axisymmetric turbulence

The two-dimensional PE methods for sound propagation in a turbulent atmo-
sphere (see Appendix J) are based on the axisymmetric approximation (see
Sec. E.4). The axisymmetric approximation corresponds to the assumption
that the system has axial symmetry around the vertical axis through the source
(or rather that the variation of the sound field with the azimuthal angle can
be neglected; see Sec. E.4). Consequently, sound propagation can be computed
in two dimensions, in the vertical plane through the source and the receiver.
The assumption of axial symmetry, however, also affects the turbulence: fluctu-
ations are constant along horizontal circles around the source, such as the circle
shown in Fig. E.1. This has a spurious effect on sound fields computed with the
two-dimensional PE methods for a turbulent atmosphere.

The analytical model for a non-refracting turbulent atmosphere, which was
described in the previous sections of this appendix, can be used to study the spu-
rious effect of the axisymmetric approximation on PE results [138]. Application
of the analytical model requires an expression for the spectral density ®(k) [the
spectral density determines the coherence factor I' in Eq. (K.6), through Egs.
(K.8) and (K.9)]. The spectral density for axisymmetric turbulence is different
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from the spectral density for isotropic turbulence. This difference should also be
taken into account in comparisons of PE results with analytical results. Below
we derive an expression for the spectral density for axisymmetric turbulence
(138].

We use a rectangular zyz coordinate system, with the source and the re-
ceiver in the zz plane. We represent the axisymmetric turbulent atmosphere
by a field p(r) that is independent of y and isotropic in the zz plane. In the
far field, the independence of y is equivalent to the axisymmetric approxima-
tion. Hence, the correlation function B(r) = p(R)u(R +r) can be written as
B(r) = B(vz? + 2?), with r = (z,y, 2). From Eq. (I1.20) we find the following
expression for the spectral density for axisymmetric turbulence:

& (k) = F(\/k2 + k2)d(ky) (K.12)
with k = (kz, ky, k;); here (k) is the Dirac delta function and

F(V/k:+k2) = (—2;—)5 // exp(—ik,z — ik,2)B(V/z? + 22)dzdz  (K.13)

is the two-dimensional spectral density of refractive-index fluctuations [see Eq.
(I.24)}.

To calculate the coherence factor ' for axisymmetric turbulence, one sub-
stitutes Eq. (K.12) into Eq. (K.9) (with k, = 0) and substitutes the result-
ing expressions for the correlation functions B, and Bs into Eq. (K.8). For
the Gaussian correlation function B(p) = u2 exp(—p?/a?), the two-dimensional
spectral density is given by F(k) = p3a? exp(—k%a?/4)/(4r) (see Sec. 1.7.1); in
this case one finds that the coherence factor for axisymmetric turbulence is iden-
tical to the coherence factor (K.10) for isotropic turbulence [139]. In general,
however, the coherence factor for axisymmetric turbulence is different from the
coherence factor for isotropic turbulence.
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Ray model including caustic
diffraction fields

L.1 Introduction

The ray model for sound propagation in a refracting medium has been widely
used, both in ocean acoustics and in atmospheric acoustics. The modeling of
sound propagation by means of sound rays is called geometrical acoustics. The
principles of geometrical acoustics are described in Refs. {2, 17, 106].

Sound rays in a downward refracting atmosphere are curved toward the
ground, so rays with multiple ground reflections occur (see Figs. 4.6 and 4.7).
The number of rays between a source near the ground and a distant receiver
near the ground is typically a few tens, in a downward refracting atmosphere.
The sound pressure at the receiver is equal to the sum of the contributions of
all rays.

Curved sound rays focus at certain points in the atmosphere, analogously to
focusing of light rays at focal points. A set of such points is called a caustic. In
two dimensions, i.e. in the vertical plane through the source and the receiver,
a caustic is a curve. Sound rays focus on one side of a caustic curve; this side
is called the illuminated side. The focusing rays are absent on the other side of
the caustic curve; this side is called the shadow side. In other words, a caustic
curve is a boundary between an illuminated region and a shadow region.

Geometrical acoustics predicts that the sound pressure is infinite at a caus-
tic. In reality the sound pressure is always finite of course. This implies that
geometrical acoustics fails at a caustic. Ludwig [85] and Kravtsov [73] developed
a theory for the field in the vicinity of a caustic. This theory yields finite ampli-
tudes at caustics. The effects of caustics are represented by caustic diffraction
fields in this theory.

In this appendix we describe a ray model that employs the theory of Ludwig
and Kravtsov for the effects of caustics [135]. We assume a downward refracting

239
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layered atmosphere with a smooth vertical profile of the effective sound speed,
e.g. the logarithmic profile given by Eq. (4.5).

It should be emphasized that caustic diffraction fields are very important in
a ray model. To illustrate this we note that if caustic diffraction fields in caustic
shadow regions are ignored, discontinuities of about 10 dB may occur in the
sound pressure field [135].

In Sec. L.2 we describe the setup of the model, with a distinction between
the geometrical acoustics solution and the effects of caustics on the solution.
In Sec. L.3 we describe the geometrical acoustics solution and in Sec. L.4 we
describe the effects of caustics. In Sec. L.5 we include the effects of atmospheric
turbulence in the geometrical acoustics solution, by generalizing the analytical
model for a non-refracting atmosphere that was described in Appendix K.

L.2 Setup of the model
L.2.1 System

We consider a system with a monopole source and a receiver in a downward
refracting atmosphere above a homogeneous finite-impedance ground surface.
We assume a layered non-moving atmosphere; the effect of wind is taken into
account by the effective sound speed (see Sec. E.3). The system is axisymmetric
with respect to the vertical axis through the source, so we can describe the
sound field in two dimensions, in the vertical plane through the source and the
receiver. We use a rectangular rz coordinate system in this plane, where r is
the horizontal range measured from the source and z is the height above the
ground surface. The source position is (0, z5) and the receiver position is (r, z).
The ground surface is at height z; = 0.

The model described in this appendix is valid for smooth sound speed profiles
c(z) with ¢/(z) > 0. The condition ¢’(z) > 0 implies that the sound speed
increases monotonically with height. The set of profiles for which the model
is valid is defined indirectly by the fact that all profiles have the same caustic
structure. Examples of this caustic structure are shown in Fig. L.7 in Sec. L.3.
From various other examples we concluded that the profiles for which the model
is valid have no change of sign of the second derivative ¢”(z). Examples are the
logarithmic profile ¢(z) = ¢ +b1n(1+ 2/2) and the linear profile c(z) = co+az.

L.2.2 Sound pressure field

The sound pressure field is represented by the complex pressure amplitude pc(r)
as a function of the receiver position r = (r,2,). We use the symbol p for the
normalized amplitude pc/|psree|, where |piree| is the amplitude of the free-field
sound pressure; with the notation used in Chap. 3 we have |pfree| = S/R1. We
write

P = Pillum + Pshadow - (L.1)
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sound pressure
contribution

shadow illuminated

1.
caustic

range

Figure L.1. Schematic illustration of the sound pressure contribution of two
sound rays focusing at a caustic point. The thin line represents the geometrical
acoustics solution, which has an infinite discontinuity at the caustic. The thick

line represents the real continuous solution, including the caustic diffraction
field.

The term pijium is the sum of the geometrical acoustics field and caustic diffrac-
tion fields in caustic illuminated regions. The term pspadow iS the sum of caustic
diffraction fields in caustics shadow regions. In the geometrical acoustics ap-
proximation, Pshadow vanishes and pijum reduces to the geometrical acoustics
solution.

In the geometrical acoustics approximation, the field p = pjjjum has an infi-
nite discontinuity at the caustic, due to the appearance of two sound rays in the
illuminated region, which are absent in the shadow region (see Fig. L.1). The
two rays have infinite amplitudes at the caustic, in the geometrical acoustics
approximation. By including the caustic diffraction field in the solution, we
obtain the correct finite amplitudes and correct phases.

A caustic diffraction field is largest near the caustic and goes to zero with
increasing distance from the caustic, both on the illuminated side and on the
shadow side. The caustic diffraction field on the illuminated side is included in
the term pjjum and the caustic diffraction field on the shadow side is included
in the term pghadow. The contribution of a caustic diffraction field to Pshadow iS
discontinuous at the caustic, with a finite value on the shadow side and zero on
the illuminated side. The total field p is continuous (see Fig. L.1), as the field
Pilum has an opposite discontinuity at the caustic.

In Sec. L.3 we describe the geometrical acoustics solution and caustic pa-
rameters that are used in Sec. L.4. In Sec. L.4 we include caustic diffraction
fields in the solution.
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L.3 Geometrical acoustics solution

In the geometrical acoustics approximation, the term pshadow in Eq. (L.1) van-
ishes and the term pjum is written as (see Sec. 4.4)

Dillum = Z Apmexp(iom), (L2)

where the sum is over all rays m, and A,, and ¢,, are the amplitude and phase,
respectively, of ray m. The amplitude is given by

Am = fmcrlxma (L3)

where f, is a focusing factor, C,, is a ground reflection coefficient, and N,, is
the number of ground reflections. The phase is given by

¢m = thy (L.4)

where w is the angular frequency and t,, is the travel time along the ray. Equa-
tion (L.3) differs from Eq. (4.8) in Sec. 4.4 by a factor S/ R;, because we consider
the normalized sound pressure here; for simplicity, we use the same symbol A4,,
for the amplitude as in Sec. 4.4.

For a system with a rigid ground surface, Brekhovskikh [17] presented a rig-
orous derivation of Egs. (L.2) to (L.4). In the derivation, ray theory is developed
as a high-frequency limit of wave theory, for the case of a monopole source in a
surface waveguide, i.e. a downward refracting atmosphere above a rigid ground
surface.

For a system with a finite-impedance ground surface, Eq. (L.2) was proposed
by L’Espérance et al. [81]. These authors also presented a method to include
the effects of atmospheric turbulence (see Sec. L.5).

In Secs. L.3.1 to L.3.3 we describe the calculation of ray paths and caustic
curves. In Secs. L..3.4 to L.3.6 we describe the calculation of the quantities f,,,
Cm, Npm, and t,, in Egs. (L.3) and (L.4).

___________ receiver _ -
source ! : |
h ! : co
! : : Lo
5 + ! + T )
«—> > «—>

6 s 6 g 61’

Figure L.2. Sound ray with two ground reflections between the source and the
receiver. The maximum height h and the horizontal dimensions &g, Js, and &,
of ray segments are indicated.
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L.3.1 Ray paths

For a given source position and sound speed profile, the path of a sound ray is
completely determined by the maximum height of the ray, i.e. the height of the
turning point [17]; we use the symbol k for this maximum height (see Fig. L.2).
The horizontal distance covered by a ray can be written as

Tnj (h) = 2(77' + mgj)(sg(h) + msj(ss (h) + mrj(sr(h)w (L5)

where index n is the number of turning points of the ray (n = 0,1,...), index j
distinguishes four rays with equal n (j = 1,2, 3, 4; see Fig. L.3), the quantities
my; with x = g, s, are given in Table L.1, and the function x(h) is defined as
(see Fig. L.2)

h
dz

Ox (h) =/W, (L.6)

Zx

where 7(z) is the elevation angle of the ray at height z, so we have tan~y(z) =
dz/dz. In Eq. (L.5) we use two indices n and j to identify a ray, while in Eq.
(L.2) we used for simplicity only one index m.

Table L.1. The quantities my; for x =g,s,r and j = 1,2, 3,4.

i=1 j=2 j=3 j=4
Mgj -1 0 0 1
Msj 1 -1 1 -1
my | 1 1 1 -l
j=1

2

~.
n

3k

-.
1]

i

Figure L.3. The four sound rays with n =2 and j = 1,2,3,4.
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Figure L.4. The functions rj(h) forn = 1, 2 and j = 1,2,3,4, with r,; along the
horizontal axes and h along the vertical axes. The graphs are for a linear sound
speed profile ¢(z) = ¢p + az, with ¢co = 340 m/s and a = 0.1 s1, a source height
of 1.8 m, and a range of receiver heights: 0.3, 0.8, 1.3, ..., 5.8 m. The curves for
receiver heights of 0.3, 0.8, and 1.3 m are labeled in the enlarged section in the
graphforn =1, j = 2.
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18

height (m)

®

range (m)

Figure L.5. Sound rays to a receiver at a distance of 650 m from the source, for
a linear sound speed profile ¢(z) = cp + az, with ¢g = 340 m/s and a = 0.1 st
The dashed line represents a ray with j = 7 and the full lines represent rays
with j < 4.

Ray tracing is now reduced to solving the height A from the equation
Tnj(h) =r, (L7)

where r is the horizontal distance between the source and the receiver. Fig-
ure L.4 shows a typical example of the functions r,;(k), for a source height of
1.8 m and a range of receiver heights. The figure illustrates that, for each n > 0,
the number of solutions of Eq. (L.7) is zero or one for j = 1, and zero, one, or
two for j = 2,3,4. For n = 0 the number of solutions is zero or one for all j.
The solutions are denoted as hnj. To distinguish the two solutions forj =2,3,4
we extend the range of j to j = 1,...,8. For a possible second solution we use
j+4instead of j,soweuse j =6for j =2,j=7forj =3, and j =8for j =4.
We choose hyj > hy(j+q)- The points where we have dry;/dh = 0 correspond
to caustic points; here the number of solutions changes from zero to two, with
increasing range (see Fig. L.4). Figure L.5 shows an example of all rays to a
receiver, for a linear sound speed profile.

The ray tracing approach is as follows. For n = 1,2,... we successively
determine all solutions of Eq. (L.7) for j = 1,...,8. At a certain value of n we
find for all j that Eq. (L.7) has no solution, so all rays have been found. For
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computational efficiency we prepare a matrix of values of the function d,(h) for
a set of maximum heights h (e.g. h = 0,0.1,0.2,...,100 m) and a set of heights
2 (e.g. zx = 0,0.1,0.2,...,9.9,10,11,12,...,100 m). This matrix is denoted
as 03 (h), and is used here for ray tracing but will also be used in the next section
for the calculation of caustic curves. With the matrix &2(h) we obtain a first
estimate of the solution of Eq. (L.7). Next we obtain an accurate solution by
iteratively approaching the zero point of the function rp;(h) —r.

The case n = 0 is treated separately. This case corresponds to two rays
without turning points: the direct ray and the ray with a ground reflection. For
the direct ray we have j = 2 for z; > 2, and j = 3 for 25 < z,. Beyond a certain
value of 7, the direct ray has a turning point, so the ray with n = 0 does not
exist, but is replaced by a ray with n = 1. For the ray with a ground reflection
we have j = 4. Again, this ray exists only up to a limiting value of r.

A computational aspect of interest is the numerical evaluation of the integral
in Eq. (L.6). From Snell’s law (4.3) we have cos(z)/c(z) = 1/c(h), so we find

h
Sx(h) = c@)eth) _, (L.8)

JV=e@iem

The divergence of the integrand at z = h is eliminated by a change of the
integration variable to y = [1 — ¢2(2)/c?(h)]'/2. This gives

y(zx)

5u(h) = c(h) / 14, (L.9)
0

¢(z)

where the derivative ¢'(2) is a function of y. The integrand is bounded as we
assume that the sound speed increases monotonically with height, so we have
c'(z) > 0. The trapezoidal rule can be used for the evaluation of the integral,
with a typical value of 0.0001 for the integration step dy. We note that Eq.
(4.9) in Chap. 4 follows from Eq. (L.9) and r = 2ndg(h).

L.3.2 Caustic curves

In the previous section we identified caustic points as points where we have
drp;/dh =0. In three dimensions, the complete set of caustic points forms a
set of surfaces, which are called caustic surfaces. The intersection of the caustic
surfaces and the vertical plane through the source and the receiver is a set of
curves, which are called caustic curves. Caustic curves play an important role
in the ray model.

The caustic curve for indices n and j is calculated as follows. The caustic
curve is represented by a discrete set of caustic points (r, z). To determine this
set, we choose a set of heights z (ranging from, for example, z = 0 to z = 100 m);
for each height z we determine the corresponding caustic range r by solving the
equation dry;/dh = 0 (see Fig. L.4). A first estimate is obtained from the
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Figure L.6. Caustics (thick curves) and sound rays (thin curves), for a source
height of 1.8 m and a linear sound speed profile ¢(z) = cp+az, with ¢p = 340 m/s
and @ = 0.1 s1. The j = 2, j = 3, and j = 4 branches are labeled for n = 1;
the illuminated sides and shadow sides are indicated for each branch.

limited set r,;(h) calculated with the matrix é3(h) described in the previous
section. Next, the caustic point is approached iteratively until the variation is
negligible. For each value of n we determine caustic curves for j = 2, 3, and 4.
The caustic curves for j = 2, 3, and 4 will be referred to as caustic branches, so
a caustic curve for index n consists of three caustic branches. Figure L.6 shows
caustic curves for n = 1, 2, and 3; the branches for j = 2, 3, and 4 are labeled
for n = 1. The j = 2 branch and the j = 3 branch touch each other at one
point, and the j = 2 branch and the j = 4 branch touch each other at one point.
The two points of contact are cusps of the corresponding caustic curve. The
cusp at the point of contact of the j = 2 branch and the j = 3 branch is always
at the source height. The cusp at the point of contact of the j = 2 branch and
the j = 4 branch is always at the ground surface. The latter cusp is not a real
cusp, but is a consequence of the ground reflection; the cusp disappears if the
J = 4 branch is replaced by its image below the ground surface.

Figure L.6 shows also three sound rays, with different elevation angles at
the source. One ray touches the caustic j = 3 branches, one ray touches the
J = 2 branches, and one ray touches the j = 4 branches. The j =3 and j =4
branches are touched by rays from below; the j = 2 branch is touched by rays
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Figure L.7. Caustic curves for a logarithmic sound speed profile ¢(z) = ¢p +
bln(z/z0+ 1), with ¢o = 340 m/s, b = 1 m/s, and 2z = 0.1 m, for source heights
of 3 m (a) and 1 m (b), and for a linear sound speed profile c(z) = ¢p +az, with
a = 0.1 s}, for source heights of 3 m (c) and 1 m (d).
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from above. This means that there are shadow regions above the j = 3 and
j = 4 branches and below the j = 2 branch.

Figure L.7 shows caustic curves for a linear sound speed profile and for a
logarithmic sound speed profile, for source heights of 1 m and 3 m. The four
sets of caustic curves shown in the figure have a similar structure. The caustic
structure was used in Sec. L.2 to define the set of sound speed profiles for which
the ray model described in this appendix is valid.

In this section we have represented a caustic curve by a set of points. The
(r, z) coordinates of these points will be used in Sec. L.4 for the calculation of
caustic diffraction fields.

L.3.3 Indices of caustic rays

A ray touches each caustic curve (n = 1,2,...) at one point. These points will
be referred to as caustic contact points. Let s denote the elevation angle of the
ray at the source. For 75 = 0 the caustic contact point is exactly at the caustic
cusp at the source height, for all n. With increasing s > 0, the caustic contact
point moves up along the j = 3 branch. With decreasing ¥ < 0, the caustic
contact point moves first down along the j = 2 branch and next up along the
j = 4 branch.

We consider a receiver with a variable range and a constant height. With
increasing range, the receiver crosses caustic branches from the shadow side to
the illuminated side. If we have z, > 2, the j = 3 and j = 4 branches are
crossed alternately. If we have z; < zg, the j = 2 and j = 4 branches are crossed
alternately. Each time a branch is crossed, two new rays appear. These rays
will be referred to as the caustic rays of the caustic branch. Table L.2 gives
the indices (n,j) of the caustic rays of the branches j = 2,3,4. The indices
of caustic rays will be used in Sec. L.4 for the calculation of caustic diffraction
fields.

Table L.2. Indices of the two caustic rays of the branches j = 2,3, 4.

caustic branch (n,j) ofray 1 (n,j) of ray 2

j=2 (n,2) (n,6) or (n+1,1)
J=3 (n,3) (n,7) or (n+1,1)
j=4 (n,4) (n,8) or (n+1,2) if z: > 2

(n,8) or (n+1,3)if z: < 2z

Figure L.8 shows an example of the caustic rays of j = 3 branches. The
caustic rays of the first branch near r = 350 m have indices (n,j) = (1,3) and
(1,7) at the point of intersection near the branch. At the second branch near
r = 700 m the indices are (2,3) and (3,1). This illustrates the fact that, with
increasing distance from the caustic, the second caustic ray develops a turning
point in front of the receiver, so that its indices change from (n,7) to (n+1,1)
(see Table L.2).



250 Appendix L

5 T T T

causticn=1 caustic n=2

height (m)

0 200 400 600 800
range (m)

Figure L.8. Two caustic rays crossing each other at receiver positions (dots)
in the illuminated regions of the j = 3 caustic branches. The source height is
1.8 m and the sound speed profile is ¢(z) = ¢o + az, with ¢o = 340 m/s and
a=0.15s",

For the j = 2 branch the indices of the second caustic ray change from (n,86)
to (n + 1,1) with increasing range (see Table L.2). This change corresponds to
the fact that the caustic contact point moves from the j = 2 branch through
the cusp to the j = 3 branch.

For the j = 4 branch the indices of the second caustic ray are different for
Zr > zg and zr < z5. For z; > 2z, the indices change from (n,8) to (n + 1,2)
with increasing range, corresponding to the development of a turning point in
front of the receiver. For z, < 2, the indices change from (n,8) to (n+1,3)
with increasing range, corresponding to the fact that the caustic contact point
moves from the j = 2 branch through the cusp to the j = 3 branch.

The description of the ordered set of rays is now complete. The number
of rays increases with increasing range. Figure L.9 shows the set of rays as a
function of range for receiver heights of 1 m and 3 m, a source height of 1.8 m,
and a linear sound speed profile. Single rays with index j = 1, 2, 3, or 4 are
represented by open circles. Ray pairs j = (2,6), (3,7), or (4,8) are represented
by filled circles.

The graph in Fig. L.9 for a receiver height of 3 m illustrates the case z; > z.
In this case new rays appear each time a j = 3 or j = 4 caustic branch is crossed.
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Figure L.9. Sets of sound rays as a function of range, for receiver heights of
3 m (top) and 1 m (bottom), a source height of 1.8 m, and a linear sound speed
profile ¢(z) = ¢o +az, with ¢co = 340 m/s and a = 0.1 s*. Single rays with index
j =1,2,3, or 4 are represented by open circles. Ray pairs with j = (2,6), (3,7),
or (4,8) are represented by filled circles.

Up to range r = 350 m there are only two rays. At range r = 360 m the first
j = 3 branch has been crossed (cf. Fig. L.8) and two new rays have appeared,
with indices (n,j) = (1,3) and (1,7). At range r = 380 m the indices of the
latter ray have changed to (2,1). At range r = 460 m the first j = 4 branch
has been crossed and again two new rays have appeared, with indices (n,j) =
(1,4) and (1,8). At range r = 490 m the indices of the latter ray have changed
to (2,2). The cycle starts again at range r = 650 m for n = 2.

The graph in Fig. L.9 for a receiver height of 1 m illustrates the case zr < z.
In this case j = 2 and j = 4 caustic branches are crossed. New rays appear in
a different order than in the case z, > z.

L.3.4 Ground reflections

In a downward refracting atmosphere, sound rays with multiple ground reflec-
tions occur. The contribution of a sound ray with indices n and j to the geo-
metrical acoustics field pyum depends on the number of ground reflections Np;
and the reflection coefficient C,,;. This dependence is represented by Eqs. (L.2)
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and (L.3) with index m replaced by indices n and j. The number of ground
reflections N,; is given by

j\anj =n++ Mgj, (Ia.l())

where the quantity mg; has been defined in Sec. L.3.1. An exact expression for
the reflection coefficient Cy; for a refracting atmosphere is not available. As
an approximation we use the spherical-wave reflection coefficient (see Sec. D .4),
which represents an analytical solution for a non-refracting atmosphere. The
spherical-wave reflection coefficient is a function of the ground impedance, the
reflection angle, and the distance [r? + (25 + 2)%]'/2, i.e. the path length of
the reflected ray in a non-refracting atmosphere. The use of the spherical-wave
reflection coefficient in Eq. (L.3) was also proposed by L’Espérance et al. [81].
The theoretical justification of this approach was studied by Li [82].

L.3.5 Phases of the rays

The phase of a sound ray with indices n and j depends on the travel time ¢,;
along the ray, as represented by Eq. (L.4) with index m replaced by indices n
and j. The travel time is given by

tni(h) = 2(n + mg;)7g(h) + mg;Ts(h) + myeiTe(h), (L.11)

where 7y is the travel time along the ray segment between height z, and the
turning point (see Fig. L.2; x = g,s,r):

h
e (h) = / dz_ (L.12)
csinvy

By a change of the integration variable to y = [1 —c?(z)/c?(h)]'/? [see Eq. (L.9)]
we find

y(2x)

wh= [ z=q
0

TR yz)dy. (L.13)

In Sec. L.4 we will see that the phase of a ray changes discontinuously by
—m/2 each time the ray touches a caustic (see also end of Sec. L.3.6). Therefore,
the number of touched caustics between the source and the receiver will be
required. This number depends on the indices n and j of the sound ray, and is
denoted as K,,;. We have

Kpj=n-1 forj=1,273,4

.14
Knj=n for j =6,7,8. (L.14)
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Figure L.10. The ray tube diameter D is the normal distance between two rays
with slightly different elevation angles at the source.

L.3.6 Focusing factors

The focusing factor f,, in Eq. (L.3) accounts for the fact that, in a refracting
atmosphere with curved sound rays, there are regions where the ‘concentration’
of sound rays is high and regions where the ‘concentration’ of sound rays is low
(see Sec. 4.4). The focusing factor is calculated from the spatial divergence of
two rays with slightly different elevation angles at the source. A measure of the
spatial divergence is the ray tube diameter D, which is defined as the normal
distance between the two rays (see Fig. L.10). The system is axisymmetric with
respect to the vertical axis through the source, so the sound pressure is inversely
proportional to the square root of the ray tube diameter. As the focusing factor
should be unity in the free field, i.e. the field in an unbounded non-refracting
atmosphere, we find f;, = \/Dgree/D, where Dy is the ray tube diameter in
the free field.

The ray tube diameter for ray m is calculated as follows. After ray m to the
receiver at position (r, z;) has been traced, a second ray is traced to a receiver at
position (r + rpr, ), With p, <€ 1 (we use typically p, = 107°). The elevation
angle at the source is denoted as v, for the original ray and as +y; for the second
ray; the corresponding elevation angles at the receiver are denoted as ; and ~,
respectively. We have vs ~ . and 7, ~ 7/. The ray tube diameter is given by
D =rp,|siny| (see Fig. L.10). For small s (near-horizontal propagation), the
ray tube diameter in the free field is given by Diree & |87s| With oy = 75 — ;-
This gives the following expression for the focusing factor

1/2
fm = —Ié.%' : (L.15)
pr|sin |

For small s and |25 — 2:| < r, this expression agrees with the general expres-
sion [17)

(4 (25— )? Y2 feos Vs |67 1/2
fm=|—F—" —= (L-16)
r prisiny|

which follows from Dfree = [r2 + (25 — 2:)2]r ! cos ¥s|67s|. Equation (L.16) gives
the correct result f,, =1 in the free field.
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Geometrical acoustics fails near caustic points. At a caustic point the focus-
ing factor given by Eq. (L.16) diverges (we must use p, — 0 here), corresponding
to an infinite amplitude of the field in the geometrical acoustics approximation.
The theory of caustics yields an improved approximation for the field near caus-
tic points; this will be described in Sec. L.4.

The diverging focusing factor at a caustic point corresponds to a vanishing
ray tube diameter. The two rays used for the calculation of the ray tube diameter
cross each other at a caustic point. The phase change of —#/2 at a caustic
point (see end of Sec. L.3.5) can be interpreted as a change of sign of the ray
tube diameter D, as the focusing factor is proportional to 1/v/D and we have
1/v/=1 = exp(—in/2). We ignore the sign of D, however, and take the phase
change of —7/2 into account through the phase of a ray.

L.4 Caustic diffraction fields

L.4.1 Theory of caustics

In this section we describe the theory of caustics developed by Ludwig [85] and
Kravtsov [73].

Ludwig [85] presents asymptotic expansions in k™! of the solution of the
Helmholtz equation V2p + k2p = 0. In general the solution can be written as a
superposition of plane waves [17):

p(z) = / *4(=8) 7 B)d, (L.17)

where k¢ is a phase function, Z is an amplitude function, z represents the
position coordinates (r and z for example), and # is an integration variable; 8
can be considered as a horizontal wave number (see Appendix E).

At most points z, the method of stationary phase can be applied (see Ap-
pendix P). This gives the solution, for high frequency, as a sum of terms of the
following form (we will see later in this section that each term corresponds to a
sound ray):

Pm(z) = X Z,, (L.18)

with ¢, (z) = ¢(z, Bm(x)), where B,, is the value of 3 at a point of stationary
phase, i.e. 3, is a solution of the equation

9¢(z, Bm (2))

Bﬂ = ¢ﬁ($,,3m(l')) = 0! (ng)

and Z,, is given by

2_77 Z(-Ta Bm(z))

k V1dss(@, Bm)l

Zm(z) = e#7/4 (L.20)
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with p = sign(@g(z, Bm)). This solution breaks down near points where we
have ¢gg(z, Bm) = 0, i.e. points where two stationary phase points coincide.
These points are the caustic points introduced in Sec. L.3. To derive a solution
that is valid near caustics, Ludwig follows Chester et al. [24] and introduces
functions £(z, 8), 6(z), and p(z) such that ¢(z, B) is given by

#(z,6) =0+ pt — 36 (L.21)

This expression is substituted into Eq. (L.17) and the integration variable is
changed to . From the resulting expression only the terms most significant for
large k are retained. This gives [85, 24]

p(z) = e*? (go/eik(p5_53/3)d§+gl /éeik(pi-ﬁsﬂ)@) (L.22)

where go = go(z) and ¢; = g;(z) are functions that will be determined later in
this section. Equation (L.22) can be written as

p(z) = 2me*® [go(x)k“/ SAI(~k*2p(z)) + g1 (z)ik =23 AT (— k¥ 3P(z))] :
(L.23)

where Ai(t) is the Airy function of ¢t and Ai'(t) is the derivative. The Airy
function is defined as [1]

[o o]
Ait) = L / T +7°/3) g (L.24)
27

—0o0

The integration path in this expression must be deformed near infinity into the
complex plane to obtain a convergent integral [1].

Ludwig substitutes the solution (L.23) into the Helmholtz equation V2p +
k?p = 0 and derives differential equations that can be used to determine the
functions 6(z), p(z), go(z), and g1(x). Ludwig shows that, to first order, 6 is
a measure of arc length along the caustic curve and p is equal to (2/R.)/3y,
where R, is the local radius of curvature of the caustic curve and y is the normal
distance to the caustic curve.

A caustic is identified as a set of points where we have simultaneously ¢¢ = 0
and ¢¢¢ = 0. From Eq. (L.21) we find, after elimination of &, that we have
p =0 at the caustic. We have p > 0 in the illuminated region and p < 0 in the
shadow region. In the illuminated region, Eq. (L.23) reduces to the geometrical
acoustics approximation if the method of stationary phase is applied. The field
in the shadow region can formally be described with complex rays [140, 141], i.e.
rays with a complex phase. The complex rays represent a field that decreases
exponentially with increasing distance from the caustic.

The solution (L.23) is valid only for smooth caustics. Ludwig presents a
higher-order solution for the field near a cusp of a caustic curve (see Fig. L.6).
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The solution (L.23) for smooth caustics, however, is sufficiently accurate for the
representation of the effects of caustics in the ray model (see Sec. L.4.3) [135].
Local effects of the cusps are neglected.

Kravtsov [73] presents a practical method to determine the functions 6, p,
90, and ¢;. This method is described in the remainder of this section.

From Egs. (L.21) and (L.22) we have

p(z) = / e*¢(=8) (go + g1 £)dE. (L.25)

We consider a point z far from the caustic, on the illuminated side. We will
evaluate the solution (L.25) at this point with the stationary phase method and
equate the resulting expression to the geometrical acoustics solution.

The value of £ at the stationary phase point, denoted as &, (z), is determined
by the equation

0¢(z,&m)
—F— =0. L.26
2 (L.26)
Substitution of Eq. (L.21) into Eq. (L.26) gives a quadratic equation for &,
which has two solutions: &, = +p!/2. We use m = 1 for the solution —p'/2 and

1/2

m = 2 for the solution p!/2, The stationary phase approximation of Eq. (L.25)

18

2
p(z) = Z Pm(T) (L.27)
m=1
with
Pm(2) = |9ee (2, Em)| 7/ 2e7/1 \/%(90 + g1 )e*OEn). (L.28)

From Eq. (L.2) we have the following expression for the geometrical acoustics
field of a caustic ray pair:

2
p(@) = Y Am(z)e™om . (L.29)

m=1

Comparison of Egs. (L.27) and (L.29) gives

¢(T,&m) = dm(z) (L-30)

o+ 916m = ez, &m0 47/ A (). (L3D)
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Substitution of &, = +p'/2 into Eq. (L.30) gives ¢m = 8 + 2p%/2, where we
have used Eq. (L.21). This gives

b(z) = %(dn + ¢2) (L.32)
29/2@) = 5(62 — ). (L.33)
From Eq. (L.31) we find
9o(z) = %#(& —iA) (L.34)
91(z) = \/% "'21/4 (A2 +iA). (L.35)

The functions 6, p, go, and g, at point z are calculated with Eqgs. (L.32) to
(L.35) from the parameters ¢;, ¢2, A1, and A; of the geometrical acoustics
solution at point z. The field at point z is then given by Eq. (L.23), which
replaces the geometrical acoustics solution. Kravtsov shows that the solution
(L.23) is also valid at points z close to a caustic, both on the illuminated side
and on the shadow side.

The two stationary phase points corresponding to m = 1 and m = 2 repre-
sent two rays touching the caustic in the vicinity of the receiver (see Fig. L.8).
The ray with m = 1 has yet to touch the caustic and the ray with m = 2 has
already touched it. Close to the caustic, the sound pressure contributions of the
two rays differ only by a phase shift of 7/2, as can be seen from Eqs. (L.18) and
(L.20). Thus, the phase of a ray drops by 7/2 upon touching a caustic. Conse-
quently, we have A, ~ exp(—in/2)A; = —iA; near the caustic. Therefore the
second term on the right-hand side of Eq. (L.23), with g; given by Eq. (L.35),
is small near the caustic.

L.4.2 Extrapolation into the shadow region

With the approach of Kravtsov we can calculate the field on the illuminated side
of a caustic. First the geometrical acoustics solution is determined, including
the phases ¢,, and amplitudes A,, of the rays touching the caustic. Next the
quantities 8, p, go, and g; are determined, and Eq. (L.23) is used for the modified
sound pressure contribution of the rays touching the caustic. This approach
works only for receivers in the illuminated region. To calculate the caustic
diffraction field at a receiver in the shadow region we have to extrapolate the
quantities 6, p, go, and g, from the illuminated region into the shadow region.
The field in the shadow region is still given by Eq. (L.23), with the extrapolated
values of the quantities 6, p, go, and g;.

Since the quantities 8, p, go, and g, are regular functions of the position z,
linear extrapolation can be used for receivers close to the caustic {135]. With
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increasing distance from the caustic, linear extrapolation becomes inaccurate,
but this is not a problem, since the diffraction field goes to zero with increasing
distance from the caustic.

L.4.3 Application of caustic theory in the ray model

In this section we use the caustic theory described in the previous sections to
incorporate the effects of caustics in the ray model [135].

We distinguish two types of rays contributing to the sum in Eq. (L.2), caustic
rays and non-caustic rays (see Sec. L.3.3). There are at most four non-caustic
rays, two with index n = 0 and two with index n = 1. Caustic rays are the
new rays that appear when a receiver crosses a caustic branch from the shadow
side to the illuminated side. These rays appear in pairs. Each caustic branch is
touched by a single ray pair.

Caustics affect the contribution of a caustic ray pair to the field in two ways:

o the phase along a ray shifts by —m/2 each time a caustic is touched,
e the field of the ray pair is modified in the vicinity of a caustic.

The calculation of these two effects is described in the remainder of this section.
It follows from the last paragraph of Sec. L.4.1 that the phase shifts of —7/2
should be included in the amplitudes A,,. Therefore Eq. (L.3) is replaced by

Am = frnCNme=Km/2, (L.36)

where K., is the number of touched caustics. This number is given directly
by Eq. (L.14), which is an advantage of the ray tracing algorithm described in
Sec. L.3. Rays and caustics are ordered in this algorithm, and for each ray the
number of touched caustics between the source and the receiver follows directly
from the order indices of the ray. It is not necessary to count the number of
touched caustics numerically.

With the phases ¢,, given by Eq. (L.4) and the modified amplitudes A,
given by Eq. (L.36), the quantities 6, p, go, and g; follow from Egs. (L.32) to
(L.35), and the modified field contributions of the caustic ray pairs follow from
Eq. (L.23). Each contribution replaces two terms in the sum in Eq. (L.2).

Next we consider the calculation of the field pshadow it Eq. (L.1). This field
is the sum of all caustic diffraction fields in caustic shadow regions. The cal-
culation of a caustic diffraction field in the caustic shadow region requires the
extrapolation of the quantities 8, p, go, and ¢; into the caustic shadow region.
We assume 2; > z; for systems with z; < z; we apply the principle of reci-
procity. Figure L.11 illustrates two different extrapolation methods: horizontal
extrapolation at constant receiver height and vertical extrapolation at constant
receiver range. As shown in Ref. [135], horizontal extrapolation gives more ac-
curate results than vertical extrapolation. Therefore, we choose two points at
the receiver height on the illuminated side of the caustic branch, at distances
of typically 10 and 20 m from the caustic; to locate these points we use the
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Figure L.11. Tllustration of horizontal and vertical extrapolation into the shadow
region of a caustic j = 3 branch.

representation of a caustic curve by a discrete set of caustic points, which was
described in Sec. L.3.2. First we calculate the quantities 8, p, go, and g, at the
two points on the illuminated side of the caustic branch, and next we deter-
mine the quantities 8, p, go, and g, at the receiver position by linear horizontal
extrapolation.

Finally we mention four practical points about the implementation of the ray
model, as described in Ref. [135]. First, the horizontal extrapolation range into
caustic shadow regions was limited to 400 m; to avoid small discontinuities at
400 m from the caustic, the field was linearly tapered to zero in a range interval
of 50 m. Second, only the diffraction fields of the two nearest j = 3 branches and
the two nearest j = 4 branches were taken into account. These two limitations
were included in the model for computational efficiency, and have an effect on
the field only at low frequency. At high frequency, a caustic diffraction field goes
rapidly to zero with increasing distance from the caustic, and the two limitations
have no effect. Third, the ground reflections of the caustic diffraction fields of
the j = 2 branches were neglected. The corresponding error is minimized by the
choice z; > 2z; mentioned before. The fourth point concerns the caustic cusps
(see Fig. L.6). Although the effects of caustic cusps are neglected, it was found
that the accuracy in the region close to a cusp can be improved by the following
(empirical) approach: the diffraction field above a cusp is linearly tapered to
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zero in a range interval between reysp — 07 and Tcysp + 67, Where Tcysp is the
range of the cusp and ér = 50 m. The same approach is applied to the end
points at the ground surface of the j = 4 branches.

L.5 Effects of atmospheric turbulence

In the previous sections of this appendix we ignored the effects of atmospheric
turbulence. In general, atmospheric turbulence causes a reduction of the depth
of interference minima in spectra of the sound pressure level (see Chap. 5). In
this section we describe how the effects of atmospheric turbulence can be taken
into account in the ray model for a downward refracting atmosphere, which was
described in the previous sections [81]. The model presented in this section is
a generalization of the ray model for a non-refracting turbulent atmosphere,
which was described in Appendix K. The effects of caustics are ignored, except
for the phase shift of —7/2 at a caustic (see end of this section).

As before, we use the symbol p for the normalized complex pressure ampli-
tude, i.e. the complex pressure amplitude divided by the amplitude |pgree| Of
the free-field sound pressure. Atmospheric turbulence causes fluctuations of the
sound pressure. The fluctuating normalized complex pressure amplitude at the
receiver is the sum of the contributions of all sound rays:

N
P=)_ Pm, (L.37)
m=1
where N is the number of rays and py, is given by
Pm = A exp(idm + ¥m) (L.38)
with ¢m = Wi, Am = fmCN™ (see Sec. L.3), and
Ym = Xm + 4Sm, (L.39)

where x, is the log-amplitude fluctuation and Sy, is the phase fluctuation (see
Appendix K). We write

m = |Cm|exp(iam) (L.40)
and
CNm = U,, exp(iBm) (L.41)

with U, = |Cpn |V and B = Nppan.
The time-averaged relative sound pressure level is given by AL = 101g(|p[?).
For weak turbulence we find (see Appendix K)

N m-—1
AL =10lg (Z UZFE+2Y S UnfmUnfncos(ém — én + Bm — 5,,)1‘"".) ;
m=1 m=2 n=1

(L.42)
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where the coherence factor I',,, of ray pair (m,n) is given by

11— 15 — 1= 1=
Fmn = exp (m— §X12n - §X721 + SmSn — 557271 - 55721) : (L43)

Following the arguments given in Appendix K, we approximate the coherence
factor by

Cimn(pmn) = exp[Bx (Pmn) — Bx(o) + Bs(pmn) ~ BS(O)]) (L.44)

where By and Bg are the correlation functions of the log-amplitude fluctua-
tions and phase fluctuations, respectively. For the argument pp,,, twice the
mean vertical separation between rays m and n should be used. This can be
approximated by pmn = |h,;, — hy|, where h,, and h, are the maximum heights
of rays m and n, respectively.

The phase shift of —7/2 at a caustic (see Secs. L.3 and L.4) can be taken into
account in Eq. (L.42) by replacing the phases ¢, and ¢, by ¢y, — Kmm7/2 and
¢n — K,m/2, respectively. It is less obvious how the effects of caustic diffraction
fields can be taken into account in Eq. (L.42).
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Computational methods for
irregular terrain

M.1 Introduction

In the computational models described in Appendices F, G, H, and L we as-
sumed a flat ground surface. In practice there are always local variations of the
ground level. These variations have a considerable effect on sound propagation.

In this appendix we describe two methods for the computation of sound
propagation over more or less smooth terrain profiles: the conformal mapping
method [43] and the Generalized Terrain PE (GTPE) method [129]. The con-
formal mapping method is described in Sec. M.2 and the GTPE method is
described in Sec. M.3. Both methods are two-dimensional methods, based on
the axisymmetric approximation (see Sec. E.4).

In the conformal mapping method we approximate the terrain profile by a
chain of circle segments. The system with the terrain profile is transformed to a
system with a flat ground surface and a modified sound speed profile, by a coor-
dinate transformation that is called a conformal mapping. The CNPE method
or the GFPE method can be used for the computation of sound propagation in
the transformed system.

The conformal mapping method is illustrated in Fig. M.1. The figure shows
the effect of the conformal mapping on the straight sound ray from the source
to the receiver in a non-refracting atmosphere above a curved ground surface. If
the curvature is convex, the straight ray is transformed to an upward refracted
ray; if the curvature is concave, the straight ray is transformed to a downward
refracted ray. In other words, a convex curvature of the ground surface is
transformed to an upward refracting contribution to the sound speed profile
and a concave curvature of the ground surface is transformed to a downward
refracting contribution to the sound speed profile.

The GTPE method is a generalization of the CNPE method for a system

263
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Figure M.1. Ray illustration of the conformal mapping method. A convex
curvature of the ground surface is transformed to an upward refracting contri-
bution to the sound speed profile; a concave curvature of the ground surface is
transformed to a downward refracting contribution to the sound speed profile.

with a smooth terrain profile. The terrain profile introduces several terms in the
PE matrices, which vanish for a flat ground surface. The boundary condition
at the ground surface is formulated with the local slope of the ground surface
as a parameter.

Both the conformal mapping method and the GTPE method are limited to
smooth terrain profiles. In the conformal mapping method, the local radii of
curvature of the terrain profile should be larger than the height of the numerical
grid, which is typically 100 m. Therefore, terrain profiles with local radii of
curvature smaller than typically 100 m cannot be modeled with the conformal
mapping method. In the GTPE method, the local slope of the terrain profiles
that can be handled is limited. Numerical computations show that the GTPE
method gives accurate results if the local slope does not exceed about 30°.

M.2 The conformal mapping method

In this section we describe the conformal mapping method [43]. The terrain
profile in the vertical plane through the source and the receiver is approximated
by a chain of circle segments (see Fig. M.2). The radius of curvature of a circle
segment is denoted as R.. To make a distinction between convex and concave
circle segments, we add a sign to the radius of curvature: we use R. > 0 for
convex segments and R, < 0 for concave segments. For each segment we apply a
different coordinate transformation (see Fig. M.3). The transformation replaces
a subsystem with a curved ground segment by a subsystem with a flat ground
segment and a modified sound speed profile. Sound propagation is computed
in the transformed subsystems, with the CNPE method or the GFPE method.
The starting field for a subsystem is obtained from the final field of the previous
subsystem. For the first subsystem we use a PE starting field for a monopole
source.



Computational methods for irregular terrain 265

Figure M.2. Approximation of a terrain profile by a chain of circle segments.

Figure M.3. Illustration of the coordinate transformation (z,y) — (r,z) in the
conformal mapping method. In the rz domain we use a rectangular grid for the
PE method. The corresponding grid in the zy domain is not rectangular. For
a convex ground surface (top) the radius of curvature R, and the starting angle
¢o are positive. For a concave ground surface (bottom) R. and ¢o are negative.
For the field at r = 0 we use a PE starting field for a point source (shown here)
or the field from a previous subsystem.
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The vertical grid spacing in a transformed subsystem is a constant. In the
original subsystem, however, the vertical grid spacing increases exponentially
with height for a convex ground surface and decreases exponentially with height
for a concave ground surface. Neighbouring subsystems have different vertical
grid spacings, so interpolation is required to calculate the starting field for a
subsystem from the final field of the previous subsystem.

For each subsystem we use a local rectangular =y coordinate system (see
Fig. M.3). The origin of the coordinate system is at the center of the circle
segment that represents the ground surface. We assume that the system is ax-
isymmetric with respect to the vertical axis through the source (within a limited
sector of azimuthal angle; see Sec. E.4). Consequently, the three-dimensional
Helmholtz equation reduces to the two-dimensional Helmholtz equation

2 2
gg+g—§+k2q:0 (M.1)
with ¢ = p\/z, where p is the complex pressure amplitude (we omit the sub-
scripts of gc, Pc, and kes, as in Appendices G and H).
We apply a coordinate transformation (z,y) — (r, z) given by

z = |R.| exp (—;—;) cos (—TRTZ + ¢>o)

Y = |Rc| exp (%) sin (_E’:‘c— + ¢o> )

where ¢ is the angle between the positive z axis and the starting radial line (see
Fig. M.3). The coordinate transformation (M.2) is a conformal mapping, i.e. a
transformation that preserves angles. The Helmholtz equation (M.1) becomes

(M.2)

2
g Ty g 4 kg =0, (M.3)
where
Ozdy 0Oyoz 2z
J= lar 9z oroz| OF (Rc) (M-4)

is the Jacobian of the transformation. The transformed Helmholtz equation
(M.3) still has the form of a two-dimensional Helmholtz equation, with a wave
number equal to J/2k, corresponding to a sound speed J~1/2¢c, where c is the
original sound speed.

The inverse transformation (r,z) — (z,y) is given by

Ao

z=R.In ——\/m M3
B | Rel '
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Figure M.4. Coordinate transformation (z,z) — (£,n) in the GTPE method.

The first expression in Eq. (M.5) shows that r is the distance from the starting
radial line measured along the surface. The second expression in Eq. (M.5)
implies that z is related to the normal distance A from the curved surface by

z=R.n (R°R': h). (M.6)

For h € R; we have z ~ h.

If a source term is included on the right-hand side of the Helmholtz equa-
tion (M.1) (see Sec. A.4), this term appears in Eq. (M.3) multiplied by the
Jacobian J. For a source close to the ground, however, the Jacobian is approx-
imately equal to unity, so the modification of the source term can be neglected.
Consequently, we can use the PE starting field in the rz domain without mod-
ification, for a source close to the ground.

The ground impedance Z pc is an invariant of the transformation. This
follows from the definition Z pc = p/v,, where v, the normal component of
the complex fluid velocity amplitude, and the relations v, = —(8p/0h) / (iwp)
and (dz/dh)p=o = 1. Consequently, we can use the ground impedance without
modification in the PE computation in the rz domain.

M.3 Generalized Terrain PE (GTPE) method

In this section we describe the Generalized Terrain PE (GTPE) method [129].
This method is not limited to circular ground segments, but works for arbitrary
terrain profiles, provided the local slope does not exceed about 30°.

M.3.1 Terrain following coordinates

We use a rectangular zz coordinate system in the vertical plane through the
source and the receiver; z is the horizontal range and z is the height with respect
to an arbitrary, constant level (see Fig. M.4). The terrain profile in the zz plane
is represented by the function z = H(zx), which gives the local height of the
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ground surface at each point z. In the next section we will apply a coordinate
transformation (z,2) = (£,7) to the Helmholtz equation; the transformation is
given by

¢=z (M.7)
n=z—- H(z).

This coordinate transformation is not applied to transform the Helmholtz equa-

tion to an equivalent Helmholtz equation for a system with a flat ground surface,

as in the conformal mapping method (see Sec. M.2). The coordinates £ and n

are used only to denote the position of a point in the atmosphere with respect

to the local ground level.

The boundary condition at the ground surface yields a relation between the
pressure and the fluid velocity component normal to the ground surface. We
will use the local slope of the ground surface to determine the normal fluid
velocity component at each point. The local slope is given by the deriva-
tive dH/dx = dH/d€, which will be denoted as H’. The second derivative
d?H[dz* = d?H/d£?, denoted as H", also plays a role in the GTPE method.

M.3.2 Transformation of the Helmholtz equation

We assume that the system is axisymmetric with respect to the vertical axis
through the source (within a limited sector of azimuthal angle; see Sec. E.4).
Consequently, the three-dimensional Helmholtz equation reduces to the two-
dimensional Helmholtz equation

2
——+T+k2q=0 (MS)

with ¢ = p/z, where p is the complex pressure amplitude. The Helmholtz
equation (M.8) will be transformed to the £n coordinate system. We will use
the notation d; = 8/0z and 82 = §/0z?, and similarly for the variables z, €,
and 7.

From Egs. (M.7) we find

9, = 8,
o=, (M.9)
9, = 9 — H',

02 =982 - 2H'82, — H"8, + H""32.

From Eqgs. (M.8) and (M.9) we find the Helmholtz equation in the &7 coordinate
system:

0%q — 2H'0%,q ~ H"9,q + (H'* + 1)32q + k¢ = 0. (M.10)
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For improved numerical accuracy we write the solution as (see Sec. G.3)

(&, m) = ¥(&,m) exp(ikaf), (M.11)

where k, is the wave number at some average height or at the ground surface.
The quantity ¢ usually varies slowly with £. Substitution of Eq. (M.11) into
Eq. (M.10) gives

O3 + 2ikaOgtp — 2H' (82,9 + ikaOp) — H" 0yt + (H'* +1)02¢
+ (K2 — k%Y =0. (M.12)

M.3.3 First-order GTPE

A first-order GTPE is obtained by neglecting the terms 821/) and 6?,’1/) in Eq.
(M.12):

O = L1(1/)) (M.13)

where the operator L, is given by

Ly =ad2 - B0+ (M.14)
with

alf) = H? +1

B(€) = 2ikH' + H" (M.15)

v(n) = K*(n) -

For a flat ground surface we have a = 1 and 8 = 0, and Eq. (M.13) reduces to
the narrow-angle PE (G.6).

M.3.4 Second-order GTPE

In this section we derive a second-order GTPE from Eq. (M.12). In the deriva-
tion we use the first-order solution (M.13) to estimate the term 8% in Eq.
(M.12). For a flat ground surface, the second-order GTPE solution reduces to
the wide-angle CNPE solution (see Sec. M.3.5). Therefore the derivation of the
GTPE solution is an alternate derivation of the CNPE solution [128].

Equation (M.12) is integrated over one range step from £ = a to £ = b, with
b = a + A{. For the integral of the term 6521/: we use the first-order solution
(M.13). The term 652,,11) is integrated by parts. This gives the second-order
GTPE:

b
———-Ll(zp) + 2k —2H'OY| + I+, +1,=0 (M.16)

a
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with
b

I = / a(€) 02y de

b

- / X(€) Bt de (M.17)

a

b

Iy = /7(n)¢d£,

a

where a and «y are given by Egs. (M.15) and x is given by
x(&) = H" - 2ik,H'. (M.18)

The three integrals in Eqgs. (M.17) can be written as

b
In= / R(€) 87 dt (M.19)

withn =2for R =a,n=1for R = x, and n = 0 for R = . The three
integrals I are approximated by assuming a linear variation of 079 with £ over
the range step from £ =a to £ = b:

GE o) (M20)
Substitution of Eq. (M.20) into Eq. (M.19) gives
Ip = ARd}y(a) + BrOj(b) (M.21)
with
) b
An= 3z [0-0RE &
a (M.22)

b
Br= A% / (€ - a)R(E) dz.

These integrals are approximated by assuming a linear variation of R with ¢
over the range step from £ = a to £ = b:

—-a

RO = ER@ +

R(b). (M.23)
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This gives
Ap = Af [%R(a) + %R(b)]
(M.24)

Br = A€ [%R(a) + %R(b)] .

M.3.5 Finite-difference solution

The second-order GTPE (M.16) can be solved numerically by approximating
the vertical derivatives 92¢ and 8,3 with finite differences. We use the grid
shown in Fig. M.4, with grid points a heights

nj =jAn withj=1,2,... M, (M-25)

where é_)n is the vertical grid spacing. We denote the field ¢ at range { as a
vector ¥ (£) with elements v; = ¢(£,n;). Using the central difference formulas

Yyan = Y5
(O = 55 2=
n (M.26)
(824),, = Yis1 — 205 + Y51
ek @B
we write Eq. (M.16) as
My (b) = M ¥ (a), (M.27)
where M, and M, are tridiagonal matrices given by
M, = 0352 + 0+ (M 28)
M, =d352+d26+d1. ’
The quantities ¢;, ¢2, and ¢3 are given by
1 i
=— (== + B,
= 2k (An)? (21:a + )
1 i
=——— | —+2H'—-B M.29
= "%k An (2ka + ") (M.29)
14X By
a=l+me ¥

where o, (8, and H' are evaluated at £ = b. The quantities d;, d, and d3 are
given by

1 i
U = ik (An)? (ﬂ - A°)

1 iB
1 (2 ogia M.30
d2 5k, A7 (2ka+ + x) (M.30)
1Y A
d=1+ 05 ~ ok
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where o, 8, and H' are evaluated at £ = a. The quantities v, A, B,, ¢1, and
d; are diagonal matrices. The quantities 62 and & are tridiagonal matrices given
by

-2 1
1 -2 1
1 -2 1
5 = o (M.31)
1 -2 1
1 -2
0 1
-1 0 1
1 -1 0 1
5:5 i (M.32)
-1 0 1
-1 0

Here we have ignored the boundary conditions at the ground surface and at the

top of the grid. These conditions will be taken into account in the next section.
For a flat ground surface we have @ = 1, 8 = 0, and x = 0, and the

tridiagonal matrices (M.28) reduce to the tridiagonal CNPE matrices (G.33).

M.3.6 Boundary conditions at the ground and the top

At the ground surface we use the local reaction boundary condition (see Ap-
pendices C and D)

(-p—)nzo = Zpe, (M.33)

Un

where Z is the normalized ground impedance, pc is the impedance of air (eval-
uated just above the ground surface), p is the complex pressure amplitude
(p = pc), and v, is the component of the complex velocity amplitude normal
to the ground surface, in downward direction (v, = v ). From Eq. (A.19) we
have

va= — (M.34)
iwp On
with
op _, 9% . 9p
on %oz tnag (M.35)
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Figure M.5. Unit normal vector n and local elevation angle ay of the ground
surface, used for the boundary condition at the ground surface.

where n = (n.,n,) is the unit normal vector at the ground surface, in downward
direction (see Fig. M.5). We write

n = (sinay, —cosay), (M.36)

where ay is the local elevation angle of the ground surface, which satisfies

tanay = H'(z). (M.37)
Using Egs. (M.9) we find
Op . Op 1 dp
2 _ - _ =, M.38
oo SmaH 0¢ cosay On ( )

The boundary condition (M.33) becomes

iko . 6p) 1 (31))
tho _ op)  _ oy M.39
z P SinaH (8{ p=0 COSOH on =0 ( )
with po = py=o. Using ¢ = py/T and g = 9 exp(ik,§) we find
iko . oY . 1 3¢)
Vb = hibd — b M.40
7 Yo = sinag {( af)nzo + zkailio} po—— (37} . ( )

where we have neglected a term —%1/10 /€ in the factor in square brackets.
From Eq. (M.40) we will derive expressions for ¢o(a) and 1o (b). Using these
expressions we will modify the tridiagonal matrices M, and M; given by Egs.
(M.28), to take the boundary condition at the ground surface into account. For
matrix M, we will use the expression for v (b); for matrix M; we will use the
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expression for 1p(a). Analogously, we will use expressions for ¥ar41(a) and
Y41 (b) to take the boundary condition at the top of the grid into account.

We first consider vp(b) for matrix M,. The first-order finite-difference ap-
proximations of the derivatives in Eq. (M.40) are

(%‘g) - Aiéw;o(b) ~ o(a)]
o0 =0 ) (M.41)
(577> o = A—n[th (b) — Yo(b)).

These approximations are centered at £ = b — 1A and 5 = } A7), respectively.
For second-order approx1mat10ns we estlmate the change of the derivatives
over the intervals £ = [b— 2A¢,b] and 7 = [0, $ A, respectively, using central-
difference approximations of the second derlvatlves 621/: and 82¢, respectively
(cf. Sec. G.8). This gives

3¢
(g_'s)n =5 A L 1491(8) - 390(5) — (b))

(3_¢) - 52_[_4%(,1) + 340(8) + %o(@)]
n=0 (M.42)

with @ = a— A¢. From Egs. (M.40) and (M.42) we find the expression for 1 (b):
Yo(b) = uth1 (b) + vih2(b) + wibo(a) + y¥o(a), (M.43)

where u, v, w, and y are given by

4 u 2sinagy w

=2 p=_2 u= = —— M.44
U= v Y dAf y g ( )
with
€ = 2An cosay (M.45)
and
itko 3 3/2 .
— . M.46
d Z+ +<A£+zk)smay ( )

It should be noted that the term 3/A¢ in Eq. (M.46) is erroneously represented
as 1/A€ in Ref. [129]. The normalized ground impedance Z and the elevation
angle ay are evaluated at £ = b in these expressions.

Next we consider 1(a) for matrix M;. From Eq. (M.43) we find directly

Yo(a) = uh1 (a) + vib2(a) + wibo (@) + y1ho(@), (M.47)

with @ = a — 2A¢; the quantities u, v, w, and y are given by Eqs. (M.44) to
(M.46), where Z and ay are now evaluated at { = a.
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At the top of the grid we apply an analogous boundary condition, with
normalized impedance Z = 1. From Eq. (M.43) we find, by the substitutions
sinag — —sinay and cosagy = —cosay (from n = —n), Anp - —Ap,
ko — kM+ly and Z - 1:

Yar1(0) = uednmr (b) + veyar—1(b) + we¥pr+1(a) + y:¥m+1(a), (M.48)

where uy, v, Wy, and y, are given by

utzdt—t;, vtz—%, wtz—g;—in—Aggi, ym=—%, (M.49)

with
€ = 2An cosay (M.50)

and
dy = —tkpye + % - (1/52 + ik ) sinay. (M.51)

The elevation angle ay of the ground surface is evaluated at £ = b in these
expressions. The expression for ¥pr41(a) follows directly from Eq. (M.48):

Uam+1(a) = uhnm(a) + vehar-1(a) + werr41(@) + vebm+1 (@) (M.52)

Here the quantities us, vy, w;, and y; are given by Egs. (M.49) to (M.51), where
ay is now evaluated at £ = a. As in the CNPE method for a flat ground surface,
we use an absorbing layer just below the top of the grid to eliminate reflections
from the top surface (see Sec. G.9).

The implementation of the boundary conditions in the GTPE matrices
(M.28) will be described in the remainder of this section.

We ﬁrst consider the left-hand side M, z,b (b) of Eq. (M.27). In the column
vector 42 ¢ (b), the term to(b) is ‘missing’ in the first element and the term
Yar+1(b) is ‘missing’ in the last element. In the column vector & 1/} (b) the term
—3%o(b) is ‘missing’ in the first element and the term 3¥m+1(b) is ‘missing’ in
the last element. To correct for the ‘missing’ terms we make use of the boundary
conditions (M.43) and (M.48). The result is that the boundary condltlons at
the ground and the top can be taken into account in the left-hand side M» ¢ (b)
of Eq. (M.27) by

o replacing 829 (b) by Ts T (8) + ks,

e replacing 6?(1)) by Tz?(b) + k2,
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where T3, k3, T2, and k> are given by

—-2+4+u 14w
1 -2 1
1 -2 1
Ty = o (M.53)
1 -2 1
1+ (% -2+ Uy,
wipo(a) + yvo(@)
0
0
ks = . (M.54)
0
we¥myi(a) + ya41(@)
-u 1—-wv
-1 0 1
1 -1 0 1
Ty = 3 (M.55)
-1 0 1
-1+ Uy U
—~wio(a) — yto (@)
0
1 0
ky = 1 _ (M.56)
2 :
0

wi¥m+1(a) + ye¥m41(a)

The quantities u, v, w, y, uy, Vg, W, and y; in these expressions are evaluated
at £ = b. The left-hand side M, ¢ (b) of Eq. (M.27) becomes

(C3T3 + coTs + C])Tﬁ)(b) + c3ks + coks. (M57)

The approach for the right-hand side M, ¢’ (a) of Eq. (M.27) is analogous. In
the column vector 62 3 ¥ (a), the term (a) is ‘missing’ in the first element and
the term v M+1 (a) is mlssmg in the last element. In the column vector é 1/) (a),
the term —-—z/)o(a) is ‘missing’ in the first element and the term 2¢M+1(a) is
‘missing’ in the last element. To correct for the ‘missing’ terms we make use of
the boundary conditions (M.47) and (M.52). The result is that the boundary
condition_)s at the ground and the top can be taken into account in the right-hand
side M, ¢ (a) of Eq. (M.27) by
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e replacing JZE)(a) by Ss @-)(a) + ma,
¢ replacing 6;[?(a) by Szw(a) + ma.

The expressions for the matrices S; and S, are identical to the expressions
(M.53) and (M.55) for T3 and T5, respectively; the quantities u, v, uy, and v,
in Egs. (M.53) and (M.55) are now evaluated at £ = a instead of { = b. The
expressions for the vectors ms and mo, are

wio (@) + yyo(a)
0

0
m3 = . (M.58)

0
weYpm41(3) + ye¥rm41(@)

—wip(a) — yio(a)
0

0
ma = 5 . ) (M'59)

DO =

0
we¥p41(2) + Y ¥m+1(a)

where w, y, wy, and y; are evaluated at £ = a. The right-hand side M 1—13((1) of
Eq. (M.27) becomes

(dsS3 + d2S2 + d1) ¥ (@) + dsms + dams. (M.60)
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Wind and temperature
profiles in the atmosphere

N.1 Introduction

In computational models for atmospheric sound propagation, the atmosphere
is represented by vertical profiles of the temperature and the wind velocity.
The profiles are usually combined into a profile of the effective sound speed
(see Sec. E.3). In this appendix we present a meteorological description of the
temperature and wind velocity profiles.

The profiles represent time averages of the temperature and the wind ve-
locity, over a period of typically ten minutes. The profiles do not represent
turbulent fluctuations of the temperature and the wind velocity. The effect of
atmospheric turbulence on sound propagation is taken into account separately,
as described in Appendices I, J, and K.

The profiles are often rather irregular above a height of typically 100 m.
Below 100 m the profiles are more predictable and repeatable. Consequently,
meteorologists have been able to develop empirical expressions for the temper-
ature and wind velocity profiles in the atmospheric surface layer, which has a
height of typically 100 m. The expressions are based on so-called similarity
relations, and are presented in Sec. N.6. Meteorological quantities and concepts
used in the description of similarity relations are introduced in Secs. N.2 to N.5.

The similarity relations give a realistic representation of the atmospheric sur-
face layer in many situations, but not in all situations. The similarity relations
are not valid above heterogeneous grounds or above areas consisting of land and
water [145]. The similarity relations are also not valid above hills or in valleys
[151, 63]. In other words, the similarity relations are not valid if the ground
surface is not flat and homogeneous. Moreover, deviations from the similarity
relations occur also for flat and homogeneous ground surfaces. Nevertheless,
the similarity relations give a realistic illustration of the variation of wind and
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temperature profiles in the atmospheric surface layer.

N.2 Boundary layer and surface layer of the at-
mosphere

The atmospheric boundary layer is the part of the atmosphere that is directly
influenced by the earth’s surface, and responds to surface effects on a time
scale of about an hour or less [145]. The surface effects include friction forces
on moving air in the atmosphere and heat transfer from the ground to the
atmosphere.

The height of the boundary layer varies considerably with time and also with
horizontal position. The height varies between a few hundred meters and a few
kilometers. The lower 10% of the boundary layer is called the surface layer.

The wind velocity in the atmosphere is represented by a vector with three
components, in general. The mean wind velocity is usually represented by a
horizontal vector, with only two components, as the vertical component of the
mean wind velocity is usually small. Fluctuations of the vertical wind velocity,
however, are not small, and play an important role in the vertical transport of
heat and momentum in the boundary layer.

The wind velocity profile in the boundary layer depends on the roughness of
the ground surface. Friction forces at the surface ‘slow down’ moving air near
the surface. Consequently, the wind speed is zero (or negligibly small) at the
surface, and increases with increasing height above the surface.

The direction of the mean wind velocity vector is called the wind direction.
The wind direction usually varies with height above the ground. This is a
consequence of the rotation of the earth; the corresponding pseudo-force is called
the Coriolis force. The variation of the wind direction with increasing height
is clockwise in the northern hemisphere and counter-clockwise in the southern
hemisphere (on a ‘clock’ with East = 3 o’clock, South = 6 o’clock, West =
9 o’clock, and North = 12 o’clock). The variation of the wind direction with
height may be as large as 45° in the boundary layer. In the surface layer, the
variation is smaller.

The temperature profile in the boundary layer is determined predominantly
by heating of the ground due to solar radiation in the daytime, and cooling of
the ground at night. Clouds play an important role in this periodic cycle, which
is called the diurnal cycle. Heat exchange between the ground and the air is
due to various transport processes. One of the transport processes is mixing of
air by wind velocity fluctuations, i.e. by atmospheric turbulence.

We distinguish two types of turbulence in the boundary layer: turbulence
driven by temperature gradients and turbulence driven by wind velocity gradi-
ents.

Buoyancy and gravity play a role in turbulence driven by temperature gra-
dients. A volume of air that is warmer, and therefore less dense, than the
surrounding air, rises as a consequence of buoyancy. Such a rising volume of
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warm air is called a thermal. The upward movement of warm air is accompa-
nied by a downward movement of cool air. Hence, thermals can be considered
as large turbulent eddies (eddies are described in Sec. I.1).

Turbulence driven by wind velocity gradients is called mechanical turbulence.
The term wind shear is often used for wind velocity gradients in this context.
The generation of turbulent eddies by wind shear is described in Sec. 1.3. Wind
shear in the boundary layer is usually large near the ground surface and near
obstacles, e.g. buildings. Consequently, mechanical turbulence is created near
the ground and near obstacles.

As a consequence of the cascade process described in Sec. 1.3, the boundary
layer contains a mixture of eddies with various sizes. The size of the smallest
eddies is of the order of 1 mm. The size of the largest eddies in the boundary
layer is of the order of the height of the boundary layer.

N.3 Potential temperature

The pressure in the boundary layer decreases with increasing height above the
ground, due to gravity (see Sec. E.2). From Egs. (A.6) and (A.10) we have

- = N.1
e constant (N.1)
for an adiabatic ideal gas, where p is the pressure, T is the temperature, and
~ is the specific-heat ratio (y = 1.4 for air). Consequently, the temperature
in the boundary layer also decreases with increasing height, in the adiabatic
approximation. From Egs. (E.6) and (N.1) we find

— v—1pT

Qg = dz - ~ p 9, (N2)
where p is the density and g = 9.8 m-s? is the gravitational acceleration. Sub-
stitution of p = 1.2 kg-m3, p = 10° Pa, and T = 300 K gives ap ~ —0.01 K-m™.
Hence, the temperature decreases with increasing height at a rate of 1 degree
per 100 m. Humidity causes deviations from Eq. (N.2). The quantity ao is
called the dry adiabatic lapse rate.

The potential temperature 6 is defined as

(v-1)/v
6=T (@) (N.3)
p
with po = 10° Pa. From Egs. (N.1) to (N.3) we find, using p = po + (dp/dz)z,

0=~T - apz. (N.4)

Consequently, the potential temperature 6 is constant as a function of height in
a dry adiabatic atmosphere, while the absolute temperature T decreases with
height by 1 degree per 100 m.
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One also uses the virtual potential temperature, which depends on the hu-
midity of the atmosphere. The virtual potential temperature 6, of moist air
is defined as the potential temperature 8 of dry air with the same density and
pressure. For unsaturated air we have the relation 8, = 8(1 +0.61r), where r is
the mixing ratio, i.e. the mass ratio of water vapour to dry air in the atmosphere
(145]. The difference between 6, and @ is small and is neglected here.

N.4 Mean and turbulent parts

The wind velocity in the atmosphere is represented by a vector with compo-
nents u, v, and w in a rectangular coordinate system; u and v are horizontal
components and w is the vertical component. The wind velocity components
are split into mean parts %, v, W and turbulent parts u', v', w':

+
+' (N.5)

The mean vertical component w is small compared with the mean horizontal
components Z and , in general. The potential temperature 6 is also split into
a mean part 6 and a turbulent part 8':

6=0+¢. (N.6)

By definition, the time averages of the turbulent parts «’, v', w’, and 8’ are zero.

N.5 Heat flux and momentum flux

The flux of a quantity (e.g. mass, heat, momentum, moisture) is the amount of
the quantity that passes through a unit area per unit time. In meteorology, the
fluxes of heat and momentum play an important role.

We distinguish advective fluxes and eddy fluxes. Advective fluxes are fluxes
associated with the mean wind velocity components; eddy fluxes are fluxes as-
sociated with the turbulent wind velocity components.

The quantity w8 is an example of an advective heat flux, corresponding to
the mean vertical transport of heat. It is not a true heat flux, which has the
dimensions of energy per unit area per unit time, but is called a kinematic heat
flux [145]. The three mean wind velocity components @, ¥, and @ correspond
to the advective kinematic heat fluxes w6, 76, and w0.

The quantity W is an example of an advective momentum flux, correspond-
ing to the mean vertical transport of horizontal momentum (but also to the hor-
izontal transport of vertical momentum, as we have W% = w). The quantity
W1 is not a true momentum flux, which has the dimensions of mass times veloc-
ity per unit area per unit time, but is called a kinematic momentum flux. The
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three mean wind velocity components %, 7, and W correspond to nine advective
kinematic momentum fluxes.

The quantity w6’ is an example of a kinematic eddy heat flux. It represents
the vertical transport of the turbulent part of the potential temperature by the
turbulent wind velocity component w’. The quantity w'u’ is an example of a
kinematic eddy momentum flux. It represents the vertical transport of u' mo-
mentum by the turbulent wind velocity component w’. The three turbulent
wind velocity components u’, v/, and w' correspond to three kinematic eddy
heat fluxes and nine kinematic eddy momentum fluxes.

The vertical kinematic eddy heat flux w'6 is of particular importance in
meteorology. This flux is a measure of atmospheric stability [145]. To explain
this we distinguish the atmosphere in the daytime and the atmosphere at night.

In the daytime, the temperature 6 usually decreases with increasing height
(above land). An air volume moving upward (w’ > 0) ends up being warmer
than its surroundings (6’ > 0), so we have w'¢’ > 0. An air volume moving
downward (w' < 0) ends up being cooler than its surroundings (6’ < 0), so
we have again w'@’ > 0. The positive sign of w'8' in the daytime corresponds
to a net upward heat flux. Thermals occur frequently in this case, and the
atmosphere is called unstable.

At night, the temperature 6 usually increases with increasing height. Similar
arguments as above show that this corresponds to w’8’ < 0, and a net downward
heat flux. The atmosphere is called stable in this case.

N.6 Similarity relations

In this section we present expressions for the vertical profiles of the mean po-
tential temperature § and the mean wind speed @ in the atmospheric surface
layer; we represent the mean wind speed by the single velocity component %,
by assuming @ = 0 and choosing the coordinate system in such a way that
we have ¥ = 0. The profiles will be derived from empirical relations between
dimensionless groups of meteorological quantities, which are called similarity
relations [145].

For atmospheric sound propagation we need the vertical profiles of the abso-
lute temperature, the wind speed, and the wind direction. The absolute temper-
ature can be calculated from the potential temperature with the approximate
relation (N.4). For the wind direction in the surface layer one may assume a
constant value, as an approximation.

We define the dimensionless wind speed derivative

kz du
¢w =7 (N7)
u, dz
and the dimensionless temperature derivative
kz df
P (N.8)

= 6—‘-;1;’
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where k = 0.41 is the von Karmén constant, u, is the friction velocity defined
by

1/2
uz = [(u’w’)s2 + (v'w')s 2] R (N.9)
and the temperature 0, is defined by
—fant At
6, = L’Z@— (N.10)

The subscript ‘s’ in Eqs. (N.9) and (N.10) indicates that the eddy fluxes are
evaluated near the ground surface. We define the Obukhov length L by
3,3
L=__ 94 (N.11)
kg(w'0'),

From Egs. (N.10) and (N.11) we find the relation L = u2/(kg6.). In Sec. N.5
we indicated that the eddy flux w6’ is a measure of atmospheric stability. Con-
sequently, the reciprocal Obukhov length L™! is also a measure of atmospheric
stability. We have L™! < 0 for an unstable atmosphere and L~} > 0 for a stable
atmosphere. If we have L=! ~ 0 the atmosphere is called neutral.

Similarity relations between the dimensionless quantities ¢w, ¢¢, and z/L
have been developed by several meteorologists [145, 103, 19, 47]. For an unstable
atmosphere, with L™! < 0, we have the similarity relations

bw =(1-162z/L)"/*

b= (1-162/L)""/%. (N.12)

For a stable atmosphere, with L~! > 0, we have the similarity relations
bw =6 =1+52/L. (N.13)

The relations (N.12) and (N.13) are called Businger-Dyer relations. It should be
noted that slightly varying versions of the Businger-Dyer relations are used in
the meteorological literature. From the Businger-Dyer relations we will derive
expressions for the wind speed profile %(z) and the potential temperature profile
8(z); the profiles are called Businger-Dyer profiles.

We integrate Eqgs. (N.7) and (N.8) from a height zo close to the ground
surface to an arbitrary height z:

z

u(z) —u(z) = 1—;1 l;/ ;1—,dz’ - / l——@:—fﬂldz’] (N.14)

zo

Z’

8(z) — 8(z) = -onl L %dz' - / Mdz’:l , (N.15)

20
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where the functions ¢, (z/L) and ¢;(z/L) are given by Eqgs. (N.12) and (N.13).
Close to the ground surface the wind speed is approximately zero. Therefore
we set %(zg) = 0 in Eq. (N.14). With the notation 6y = 6(z¢) we find

u(z) = ‘-;— [m zio - 1/)“,] (N.16)
B(z) =0+ 22 1 [n;‘% - 1/%] (N.17)
with
1= gu(0)
Yo = | —222d¢ (N.18)
=t
/ (O 120l g, (N.19)
0

where we have approximated the lower integration limit z = 2o by z = 0.
Substitution of the similarity relations (N.12) and (N.13) into Eqs. (N.18) and
(N.19) gives

l+zx 1+ 22

Yw = 2In 5 +1In 7~ 2arctanz + -g for L' <0 (N.20)
Yw =—52/L for L7 >0 (N.21)
and
1 2
P =2In for L' <0 (N.22)
P =-52z/L for L™! >0 (N.23)

with z = (1 — 16 z/L)/4.
Holtslag [64] found that the following relations for L~! > 0 are more accurate
than relations (N.13):

¢w=¢=1+5z/L for z/L < 0.5 (N.24)
425 1
Sw = =8~ /L 7+ GIDE for z/L > 0.5. (N.25)

If we use Eqs. (N.24) and (N.25) for the functions ¢ and ¢, we find the
following expressions for 1y, and v for L=! > 0:

Yo =th = =52z/L for z/L <0.5 (N.26)

Yw =P = —TIn(z/L) - 425 05 859 forz/L >05. (N.27)

Z/L " GIL?
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Figure N.1. Businger-Dyer profiles of the wind speed @ and the temperature 7,
for zo = 0.1 m, Ty = 4 m/s (the wind speed for z = 10 m), and three values
of the reciprocal Obukhov length L~! (see legend). The profiles have been
calculated with Eqgs. (N.16), (N.17), (N.20), (N.22), (N.26), and (N.27). Also
shown are the corresponding profiles of the downwind sound speed ¢+ % and the
upwind sound speed ¢ — u. Here € is the (mean) adiabatic sound speed, which

is a function of T.
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For a neutral atmosphere, with L™! = 0, we have 1/, = ¢, = 0. In this case the
profiles u(z) and 8(z) given by Egs. (N.16) and (N.17) are logarithmic functions.

The height zg is called the (aerodynamic) roughness length of the ground
surface [145]. The roughness length is an average quantity for a relatively large
area of the ground surface. Typical values for an open field of grassland are be-
tween 0.01 m and 0.1 m. Obstacles like trees or buildings enhance the roughness
length. The roughness length of a water surface is typically between 104 m and
103 m.

The profiles given by Egs. (N.16) and (N.17) are not valid for z < zp (sub-
stitution of z = 0 gives @ = § = ~00). In sound propagation models, however,
we usually choose the ground surface at z = 0, so we need the profiles down to
2z = 0. As zg is relatively small, we can approximate z by z + 2p in the argument
of the logarithmic functions in Egs. (N.16) and (N.17). With this approximation
we can use the profiles down to z = 0, and we have %(z) = 0 and 6(z) = 6, for
z=0.

The parameters u., 6., 6g, 20, and L of the Businger-Dyer profiles can be
considered as adjustable parameters. The parameters may be determined by
fitting the profiles to measured values of the temperature and the wind speed
at a few heights.

Figure N.1 shows examples of Businger-Dyer profiles of the wind speed and
the temperature, for an unstable atmosphere (L~! = —0.1 m'!), a neutral at-
mosphere (L~! = 0), and a stable atmosphere (L~! = 0.1 m'!). Also shown are
corresponding profiles of the effective sound speed ¢ + @ for downwind sound
propagation and the effective sound speed ¢ — @ for upwind sound propaga-
tion. Here € is the (mean) adiabatic sound speed, which is a function of T (see
Sec. A.2).

The graphs in Fig. N.1 have logarithmic vertical axes. Consequently, the
logarithmic wind speed profile for a neutral atmosphere is represented by a
straight line. The temperature profile for a neutral atmosphere is given by
T(z) = Tp + agz, where ag ~ —0.01 K-m'! is the dry adiabatic lapse rate and
Tp is the surface temperature (we assumed Ty = 283 K). The figure shows that
the temperature in the unstable atmosphere decreases with height more rapidly
than in the neutral atmosphere. The temperature in the stable atmosphere
increases with height. The wind speed always increases with height. The wind
speed derivative di/dz is smaller in the unstable atmosphere than in the neutral
atmosphere, and larger in the stable atmosphere than in the neutral atmosphere.
The large positive wind speed gradients in the stable atmosphere dominate the
downwind sound speed profile in the stable atmosphere.
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Sound propagation over a
screen

O.1 Introduction

Noise barriers are used for the reduction of noise from sources near the ground.
The simplest noise barrier is a vertical screen, e.g. a thin wall. In this appendix
we describe computational models for sound propagation over a vertical screen
on a ground surface.

In Sec. 0.2 we describe an analytical model for sound propagation over a
rigid screen in a non-refracting atmosphere 70, 106, 52]. The sound pressure at a
receiver is calculated as a sum of contributions of sound rays diffracted at the top
of the screen. Similar models have been developed for more complex situations
with wedge-shaped barriers, absorbing barriers, and impedance discontinuities
[80, 76, 90, 93, 109, 71, 16, 21, 65, 36, 116, 133]. The term ‘geometrical theory of
diffraction’ is sometimes used for this analytical approach for a non-refracting
atmosphere [52]. The model presented here is based on an analytical diffraction
solution developed by Pierce [104, 106], but other solutions can also be used
(see Ref. [133]).

In Sec. 0.3 we describe the application of the PE method to sound propaga-
tion over a screen in a refracting atmosphere. In general, atmospheric refraction
has large effects on sound propagation over a screen. Therefore, the computa-
tion of sound propagation over a screen requires an accurate representation of
the wind and temperature profiles near the screen. The wind field near a screen
is a complex field, with large wind speed gradients in the region near the screen
top. These screen-induced wind speed gradients may have a large effect on
sound propagation over the screen [118, 136, 137].

In Sec. O.4 we present an approximate analytical representation of the wind
speed field near a screen. This analytical representation can be used for compu-
tations of sound propagation over a screen with the PE method. A theoretical
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-Zg -

image source
-Z O

image receiver

Figure O.1. Geometry with a screen on a ground surface. The screen is infinitely
long in the direction normal to the paper. The distances from the screen top
to the source, image source, receiver, and image receiver are indicated as ds,
dis, dr, and di,, respectively. The diffraction angles ¢s, ¢is, ¢r, and ¢ir and the
reflection angles 6; and 6, are also indicated.

model for the calculation of the wind speed field near an obstacle is described
in Ref. [29)].

An alternate method for the computation of sound propagation over a barrier
in a refracting atmosphere is described in Refs. [111, 147]. This method is based
on the Kirchhoff-Helmholtz integral equation [Equation (H.7)] in combination
with a Green’s function for a refracting atmosphere, which is calculated with a
numerical method such as the FFP or PE method.

0.2 Analytical model for a non-refracting atmo-
sphere

We consider the geometry shown in Fig. 0.1, with a rigid screen on a finite-
impedance ground surface. The source and the receiver are located in a vertical
plane perpendicular to the screen (for the case of oblique propagation over a
screen, see Refs. [104, 106]). We assume a non-refracting atmosphere in this
section.

The source is represented by the complex pressure amplitude of the free field,
which is given by (see Chap. 2)

kR
Dfree = 21_)%_), (01)

where R is the distance from the source. The complex pressure amplitude at
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the receiver in the geometry shown in Fig. O.1 is given by [70, 106, 52, 133]

pe = SD, exp(ikR)) + 50,02 exp(tkRy)
R, R,
] ikR
+8Q.D;s %R—z‘) + 5Q4Q: D4 9’3%—4—). (0.2)
3 4

The four terms on the right-hand side represent the contributions from four
sound paths, or sound rays,

ray 1: source — screen top — receiver

ray 2: source — ground — screen top — receiver

ray 3: source — screen top — ground — receiver

ray 4: source — ground — screen top — ground — receiver.

The four rays are illustrated in Fig. 7.1. The path lengths of the four rays,
denoted as Ry, Ry, Rs, and Ry, respectively, are given by (see Fig. 0.1)

ray 1: Ry =ds + d;

ray 2: Ry = d;s + d;

ray 3: Rz =ds + di:

ray 4: R4 = dis + di,.

The factors Dy, D2, D3, and D4 in Eq. (0.2) are spherical-wave diffraction
coefficients for the four rays, and are specified below. The factors Qs and @, in
Eq. (0.2) are spherical-wave reflection coefficients (see Chap. 3 and Sec. D.4),
corresponding to the ground reflections near the source and near the receiver,
respectively (see Fig. 0.1). For the calculation of Qs we use the geometrical
arguments dis and s, and for the calculation of Q. we use di; and #; (in Chap. 3
and Sec. D.4 these arguments are denoted as R; and 6, respectively).

We have assumed here that the receiver is below the shadow boundary of
the source, i.e. the line through the source and the screen top. If the receiver is
above the shadow boundary of the source, the direct ray (source — receiver) also
contributes to the complex pressure amplitude at the receiver. If the receiver
is above the shadow boundary of the image source (see Fig. O.1), the reflected
ray (source = ground — receiver) also contributes.

The spherical-wave diffraction coefficients are given by

Dl = D(¢Sa¢hds7dr)

D2 = D(¢is, ¢r7 dis, dr)

Ds = D(fs, pir,day i) (03)
Dy = D(¢is, dir, dis, dir),

where the function D is defined by the expression [104, 106]

im/4
Digs, o, de) = == {AD[X (g + 90)] + ADIX (6 =8} (09
The function X in this expression is given by

kdsd;

7(ds + dr)’ (0:5)

X(¢) = —2cos(¢/2)
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where £ is the wave number. The function Ap(X) is given by
Ap(X) = sign(X) [f(1X]) - ig(|1X])], (0.6)

where sign(X) is 1 for X > 0 and -1 for X < 0, and f(X) and g(X) are the
auxiliary Fresnel functions, which can be calculated with the following expres-
sions [1]:

f(X)=(1+0926X)/(2+ 1.792X + 3.104X?) and

9(X)=1/(2+4.142X +3.492X% + 6.67X?3).

For X > 2 these expressions reduce to f(X) = 1/(7X) and g(X) = 1/(x%2X?3),
in good approximation.

The sound pressure level at the receiver can be represented by a relative
sound pressure level, analogous to the case of sound propagation over a ground
surface described in Chaps. 3 and 4. The relative sound pressure level is given
by the expression AL = 101g(|pc|?/|psree|?), where p. is given by Eq. (0.2) and
Diree 18 given by Eq. (0.1).

0.3 PE method for a refracting atmosphere

In Appendices G and H we described the CNPE and GFPE methods for sound
propagation in a refracting atmosphere over a flat ground surface. In this section
we describe the application of the two PE methods to sound propagation over
a ground surface with a vertical screen [132)].

The basic approach of the two PE methods is as follows (see Appendices G
and H for details). Based on the axisymmetric approximation (see Sec. E.4),
the sound field of a harmonic monopole source is computed in the rz plane,
where 7 is the horizontal range and z is the height (see Fig. E.1). The field
is represented by the variable t(r, z), which is related to the complex pressure
amplitude by Egs. (G.2) and (G.4). The source is represented by a starting
function (0, z) at range » = 0. The field 1(r, z) is computed on a rectangular
grid in the rz plane, by a step-wise extrapolation in the positive r direction.

A vertical screen on the ground surface, at range r = r, is taken into account
as follows. For r < ry the field 9 is computed as usual. At r = r, we set ¢ =0
at all grid points located on the screen; in other words, we set (ry, z) = 0 for
z < H, where H is the screen height. For 7 > r, the computation of the field
continues as usual. Thus, the part of the sound field that falls on the screen is
eliminated.

This simple approach gives accurate results in the region behind the screen
(r > 1), as follows from comparisons of PE results with analytical results for a
non-refracting atmosphere (see Chap. 7). It should be noted that the computed
field shows small spurious oscillations as a function of range. The spatial period
of the oscillations is of the order of the acoustic wavelength. The oscillations can
be eliminated by averaging the field over a range interval of a few wavelengths.

The reflection of sound waves by the screen is not taken into account in
the PE computation. The good agreement of PE results with analytical results
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implies that the effect of the reflection on the field behind the screen is small
and can be neglected. The effect of the reflection on the field in the region
between the source and the screen (0 < r < r¢) is not negligible, in general. A
PE method that takes the reflection into account is described in Ref. [160).

Not only the reflection, but also the reflective properties of the screen mate-
rial are ignored in the PE computation. Therefore the screen can be considered
neither as a rigid screen nor as an absorbing screen. In general, the reflective
properties of a screen are of minor importance for sound propagation over the
screen [74].

The approach of setting the field equal to zero at the grid points located
on the screen is equivalent to setting the field equal to zero on the back side of
the screen, i.e. the side not ‘seen’ by the source. This approach is called the
Kirchhoff approximation [142)].

The angular limitation of the PE method (see Secs. 4.5 and 4.6.2) implies
that the PE method cannot be used if the source or the receiver are close to the
screen. The minimum distance is typically a few screen heights. In general, the
screen top should be well inside the region of validity of the PE method (see
Fig. 4.11). This condition is satisfied in many practical situations.

The assumption of axial symmetry in the PE method implies that we model
in fact a circular screen, i.e. a screen on a horizontal circle with the source at the
center. The effect of the curvature of the circular screen, however, is negligible
in practical situations; this follows from the above mentioned comparisons with
analytical results for a non-refracting atmosphere, as the analytical results are
valid for a straight screen.

In the three-dimensional GFPE method (see Sec. H.12), the effect of a screen
can be taken into account in a similar way as in the two-dimensional PE meth-
ods. In the three-dimensional GFPE method we use cylindrical r¢z coordinates
and compute the field ¥(r, ¢, z) in a pie slice region (see Fig. H.6), by a step-wise
extrapolation in the positive r direction. We assume that the screen is located
on a circle segment at range r = r, in the angular sector ¢; < ¢ < ¢2. The
angles ¢; and ¢; correspond to the vertical edges of the screen. The length of
the screen is 7¢(¢2 — ¢;). The effect of the screen is taken into account in the
PE computation by setting the field equal to zero at the grid points located on
the screen, i.e. grid points with z < H and ¢, < ¢ < ¢, at range r = r;. This
approach corresponds to the Kirchhoff approximation, and is analogous to the
approach described before for the two-dimensional PE methods.

0.4 Wind field near a screen

In this section we describe an approximate analytical representation of the wind
speed field near a vertical screen (e.g. a thin wall) on a ground surface [137)].
The analytical representation was developed on the basis of measurements of
wind speed profiles in a wind tunnel, and numerical computations of air flow
over a screen. Far from the screen we assume a logarithmic wind speed profile.
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We assume that the wind direction is normal to the screen.

The screen is located at = 0 on a horizontal z axis. The height of the
screen is H. The wind vector is in the positive z direction. The effect of the
screen on the wind speed profile is restricted to the region (—3H < z < 20H,
0 < 2z < 10H). Outside this region we assume an undisturbed logarithmic
profile given by (see Sec. N.6)

z

uo(z) = “: In (% + 1) , (0.7)

where zp is the roughness length, u, is the friction velocity, and k = 0.41 is the
von Kdrmén constant. For a given value of zg, the profile uo(z) is determined
by the value of the friction velocity u,. Instead of u, we use the value of the
wind speed uo(z) at height z = 10 m, which we denote as .

The ‘disturbed’ profiles in the region (~3H < z < 20H,0 < z < 10H), which
are specified below, are valid for undisturbed wind speeds u1o between zero and
about 15 m/s. Figure O.2 shows the profiles for u;o = 4 m/s, zo = 0.1 m, and
H =6 m, at the positions ¢ = —-5H, —-3H, —H, H, 3H, ... , 19H.

The disturbed profiles in the region (-3H < z < 20H,0 < z < 10H) are
calculated from six profiles, at £ = —3H, —H, 0, H, 5H, and 20H, respec-
tively. For intermediate values of  we use linear interpolation. The profiles at
z = —3H and 20H are equal to the undisturbed logarithmic profile ug(z) given
by Eq. (0.7). The profiles at = —H, 0, H, and 5H are given by

) z
( u9 sin (%w—) for 2 < 25
23

u(2) =< 1(uz +u3) + 3 (uz — u3) cos (ﬂ’: —Zzz ) for2s <2<z3 (0.8)
3~ 22

z2—2
3(us + ug) + 1 (uz — uq) cos (7r 3

) forzz3 <2< 24
24 — 23

\

with z4 = 10H and us = ug(24); the parameters 25, us, z3, and u3 are given in
Table O.1, where s,, s, sc, and sq are the values of the fractional speed-up factor
s(z) = u(2)/uo(z) at height z = 23 and = = —H, 0, H, and 5H, respectively.
These values are calculated from the equation of mass conservation

/u(z) dz = /uo(z) dz. (0.9

The integration intervals in this equation can be restricted to the interval be-
tween z = 0 and z4 = 10H, since we have u = up for z > 10H. Substitution of
Egs. (0.7) and (0.8) into Eq. (0.9) gives

8a = [(6 + 20/ H)vo(10H) — 10]/[5v0(2H)]

sb = [(5.65 + 20/ H)vo(10H) — 10}/[4.5v(1.3H))

sc = [(6+0.1(277! + 0.5) + 20/ H)vo(10H) — 10]/[4.5v0(2H))

sa = [(6.5+0.3(r~! + 1.25) + 2o/ H)vo(10H) — 10]/[4.75v(3H))

(0.10)
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with vo(z) = In(1 + z/20). The values of the speed-up factors given by Eqgs.
(0.10) are typically between 1.2 and 1.4.

Table O.1. Parameters z3, u, 23, and u3 for the wind speed profiles at T = —H,
0, H, and 5H.
z=—-H z=0 z=H r=5H
z2 | 0 H H 0.5H
Ug 0 0 -—0.1’U,0(Z4) —0.3’U,0(24)
z3 | 2H 1.3H 2H 3H
u3 | Sauo(23) Spuo(z3) scuo(2s) squo(23)
4 T T T T T T T T T T T T T T

normalized height
N w
T T
1

s
T
1

-5 -3 - 1 3 5 7 9 11 13 15 17 19
normalized range

Figure O0.2. Wind speed profiles at horizontal positions ¢ = ~5H, —3H, —H,
H, 3H, ... , 19H, calculated for H = 6 m, zp = 0.1 m, and ujp = 4 m/s.
Normalized range is £/H and normalized height is z/H.



Appendix P

The method of stationary
phase

The method of stationary phase gives an approximation for large k of the integral

b
I= / g(8)e*m® gt (P.1)

a

where a, b, and k are real numbers, h(t) is a real function that is twice contin-
uously differentiable, and g(t) is a continuous function.

For large k the integrand in Eq. (P.1) is a rapidly oscillating function of ¢.
Figure P.1 shows an example for g(t) = 1, k = 2, and h(t) = t> — 4t. The upper
graph shows the real part of the integrand F = g(t)e’**®) as a function of ¢.

Yy .
The lower graph shows the real part of the function J(y) = [ g(t)e?*"*) dt. We

a
have I = J(b). The figure illustrates that the integral is dominated by a narrow
integration interval around the point of stationary phase at t = to, which is
defined by the relation h'(t) = 0. In this case we have h'(t) = 2t — 4, so the
point of stationary phase is at ty = 2.
The stationary phase approximation of Eq. (P.1) for large k is (see, for
example, Ref. [52])

o 1/2
I = ikh(to) ipm/4 P.2
9(to)e KR ()] e (P2)
with p = sign[h”(to)], where sign(z) is 1 for z > 0 and -1 for £ < 0. In
the above example with g(t) = 1, k = 2, and h(t) = t% — 4t, Eq. (P.2) gives
I =0.75 — 1.01¢. The real part 0.75 agrees with the graph of ReJ in Fig. P.1,
which gives ReJ =~ 0.75 at y = 10.
Equation (P.2) is valid if there is only one stationary phase point in the
integration interval [a,b]. If there are several stationary phase points in the
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interval [a,b], each point has a contribution given by Eq. (P.2) to the integral
in Eq. (P.1).
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Figure P.1. Illustration of the stationary phase method of approximating the
integral I = f:g(t)eikh(’)dt, for the case g(t) = 1, k = 2, h(t) = t* - 4¢,
a = -5, and b = 10. The upper graph shows the real part of the integrand
F = g(t)e**MY) as a function of t. The point of stationary phase, i.e. the point
where we have h'(tg) = 0, is at ¢y = 2 in this example. The lower graph shows
the real part of the function J(y) = [Y g(t)e***(*) dt. The integral I = J(b) is
dominated by a narrow integration interval around the stationary phase point.
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List of symbols

Notation for time averages (see Secs. A.2, B.2, B.3, 1.4, K.2, N.4)

A time average over acoustic fluctuations is denoted by a subscript ‘av’, for
example in (p?)ay.

A time average over turbulent fluctuations is denoted by a line above the
symbol, for example in .

Notation for vectors
Boldfaced symbols are used for vectors, for example r = (z,y, z).

Notation for derivatives
0. f = 0f/0z partial derivative of function f.
02 f = 0°f /9x? second derivative of function f.
f!(z) = df /dz derivative of function f(z).
D/Dt=98/6t+v-V (total) time derivative in frame moving with velocity v.
V = (0, 0y,0;) (in rectangular zyz coordinates).
Vf =(0:f,0,f,0,.f) gradient of scalar function f.
V - v = 8,v; + 8,vy + 0,v, divergence of vector function v = (v, vy, v;).

Roman symbols
a sound speed gradient in linear sound speed profile ¢(z) = ¢ + az,
correlation length of turbulent refractive-index fluctuations,
initial value of ¢ coordinate in GTPE range step.

quantity defined below Eq. (M.42).
quantity defined below Eq. (M.47).
a2,a4,0a¢,ag constants in PE starting field (Secs. G.12 and H.10).
ax pole in residue theorem (H.33).
arg(z) argument of complex number z, arg(z) = arctan{Im(z)/Re(z)].
A amplitude of sound wave,

quantity defined in Eq. (D.40),

quantity defined below Eq. (1.53).
Ao, Aa, Ay, Ag, As constants in PE starting field (Secs. G.12 and H.10).
A; constant in Eq. (F.5).
Ap (complex) amplitude of sound ray m.
A; absorption parameter for top layer in PE grid (Sec. G.9).
Ap(X) function defined in Eq. (O.6).
AR coefficient defined in Eq. (M.24).
Ai(t) Airy function, defined in Eq. (L.24)
b parameter of logarithmic sound speed profile (4.5),

Qll 8l
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b final value of { coordinate in GTPE range step.
b1,b2 quantities defined in Eqgs. (B.44) and (B.45).
b2, B constants in PE starting field (Secs. G.12 and H.10).
by, by, b, parameters in profiles (4.12), (4.13), and (4.14).
B correlation function of random function,
correlation function of refractive-index fluctuations.
B;; correlation function of components i and j of random vector function,
correlation function of components ¢ and j of wind velocity fluctuations.
B; constant in Eq. (F.5).
B, correlation functions B; = B, and B; = Bs in Eq. (K.9).
B,, longitudinal correlation function.
B;; transverse correlation function.
Bp coefficient defined in Eq. (M.24).
Bs correlation function of phase fluctuations.
Br correlation function of temperature fluctuations.
B, correlation function of log-amplitude fluctuations.
¢ (adiabatic) sound speed,
effective sound speed (¢ = cesr).
¢’ sound speed in ground (Sec. D.3).
co sound speed at ground surface (z = 0),
sound speed at temperature Tp (e.g. co = 331 m/s at To = 273 K),
average sound speed in turbulence models (see Sec. 1.2).
c1,co sound speeds indicated in Figs. 4.1 and 4.2,
sound speeds above and below ground surface, respectively (Sec. D.4).
¢1,¢2,¢c3 quantities defined in Eq. (M.29).
cerr effective sound speed.
cr residue in residue theorem (H.33).
¢t quantities defined in Eq. (G.48).
¢p specific-heat coefficient of air at constant pressure.
¢s structure constant of porous medium.
cv specific-heat coefficient of air at constant volume.
C closed integration contour,
constant in Kolmogorov spectrum in Appendix I.
C,C,,Cs reflection coefficients in PE starting field.
C4,Cs,C3,C,4 constants in Eq. (D.36).
C,. reflection coefficient for sound ray m.
Csay  quantity defined in Eq. (B.50).
C? structure parameter of turbulent wind velocity fluctuations.
C2 structure parameter of turbulent temperature fluctuations.
d thickness of porous layer (Fig. C.4),
numerical distance defined in Eq. (D.57),
quantity defined in Eq. (M.46).
dy,ds,ds quantities defined in Eq. (M.30).
ds,dr,dis,dir diffraction distances in Fig. O.1.
dy quantity defined in Eq. (M.51).
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d;,dy,d, finite dimensions of source in Fig. 3.13.
D ray tube diameter,
diagonal PE matrix (G.29),
structure function of random function,
structure function of refractive-index fluctuations,
diffraction coefficient (Sec. 0.2).
D1, D,, D3, Dy diffraction coefficients (Sec. O.2).
Dyree ray tube diameter in free field.
D;; structure function of components 7 and j of random vector function,
structure function of components i and j of wind velocity fluctuations.
D,., longitudinal structure function.
D,; transverse structure function.
e;,€y,€, unit vectors in positive z, y, and z directions, respectively.
erf(z) error function.
erfc(z) complementary error function.
Ei(z) exponential integral function (Sec. G.12.3).
f frequency.
f(z) general notation for function.
f(X) auxiliary Fresnel function.
fc center frequency of 1/3-octave or octave band.
fe,m center frequency of 1/3-octave or octave band m.
fm focusing factor for sound ray m.
fn frequency of interference minimum, Egs. (3.11) and (3.12),
frequency of harmonic component n in spectral decomposition,
functions defined below Eq. (G.50).
fr.N, fr,o relaxation frequencies of nitrogen and oxygen, respectively.
fpo Doppler factor in Sec. B.6.
F function in spectral theorem (H.51),
two-dimensional spectral density of random function,
two-dimensional spectral density of refractive-index fluctuations.
F(d) boundary loss factor defined in Eq. (D.60).
F(k,) function defined below Eq. (F.33).
F(k,) phase function in Egs. (G.55) and (H.63).
F; two-dimensional spectral density of components ¢ and j of random vector
function,
two-dimensional spectral density of components ¢ and j of wind velocity
fluctuations.
Fr two-dimensional spectral density of temperature fluctuations [below
Eq. (1.47)].
g grain shape factor of porous medium,
gravitational acceleration,
Green’s function,
phase function defined in Eq. (E.44).
g(z) general notation for function.
g(X) auxiliary Fresnel function.
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90,91 functions in Eq. (L.22).
g2 two-dimensional Green’s function (Sec. H.3).
g3 three-dimensional Green’s function (Sec. H.3).
G spatial Fourier transform of Green’s function g,
‘mode amplitude’ in Eqs. (J.24) and (J.34).
G(k,) function defined below Eq. (F.33).
h  maximum height of sound ray (Fig. 4.9),
humidity, molar concentration of water vapour in the atmosphere,
normal distance from curved ground surface (Sec. M.2).
h, maximum height of sound ray with n turning points [Equation (4.9)].
hn; maximum height of sound ray with indices n and j.
H height of noise screen.
H(z) Heaviside step function in Sec. D .4,
terrain profile in GTPE method.
H; square-root operator defined in Eq. (G.13).
H, operator defined in Eq. (G.8).
Hi(z,x), Hy(z,k) functions defined below Eq. (K.9).
H,, operator defined below Eq. (H.46).
H,, operator defined below Eq. (H.45).
H((,l)(z) Hankel function of first kind and order zero.
H{". . quantities defined in Egs. (G.49) and (G.50).
I general symbol for integral.
I acoustic intensity, I = pv.
I,, average acoustic intensity.
I, magnitude of Iy, Iy = |Iav|-
Ir integral defined in Eq. (M.21).
I, Iy, I, integrals defined in Eq. (M.17).
Im(z) imaginary part of complex number 2.
j integral number.
J Jacobian defined in Eq. (M.4).
Jn(z) Bessel function of order n.
k wave number (k = w/c in air; for porous media, see Sec. C.4),
effective wave number k = kg,
wave number k = ky,, see Eq. (F.2).
k wave number vector, for example in Eq. (1.19).
k' wave number in ground (Sec. D.3).
ko wave number in ground in Appendix F,
wave number at ground surface in PE methods.
kq, k2 wave numbers above and below ground surface, respectively (Sec. D.4).
ky, k3 vectors (M.56) and (M.54).
k, reference value of wave number k(z) at some average height or at ground
surface, in PE methods (Secs. G.3 and H.6).
ke effective wave number, keg = w/cesr (often k = keg).
ki small imaginary part of wave number (Sec. 2.5).
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k;. wave number defined in Eq. (D.37).

km generalized wave number for moving atmosphere, defined in Eq. (E.30).

kmax Wwave number in exponential cut-off factor (Sec. 1.7.1).

km: wave number defined in Eq. (E.31).

kn.max maximum wave number defined in Sec. J.3.3.

knesknys knz, knr components of wave number vector kn (Secs. J.3 and J 4).

k.4 wave number corresponding to r¢ — r¢’ by Fourier transformation, in

Eq. (H.82).

ks real part of k. in Eq. (F.23).

ksz real part of k. in Eq. (F.25).

ksy real part of ky in Eq. (F.25).

k; small positive number in Egs. (F.23) and (F.25).

k, vertical wave number defined in Eqs. (H.27) and (H.85).

kz,ky, k, wave numbers corresponding to z,y,r by Fourier transformation.

k2, ky quantities defined below Eq. (D.1).

kz,ky, quantities defined below Eq. (D.3).

kz,ky, k., components of vector k in Eq. (I.25).

k. wave number corresponding to z by Fourier transformation,
wave number related to k, and k, or k. by Egs. (F.2) and (F.3),
integration variable in Eq. (G.53).

ks wave number related to k.4 by kg = k7.

K integral number,
constant in Eq. (A.6).

Ky parameter of von Karman turbulence spectrum.

K,, number of touched caustics in Eq. (L.36).

Kp; number of caustics touched by ray with indices n and j.

K,(z) modified Bessel function of order v.

l size of turbulent eddy.

lo size of smallest eddies, inner scale of turbulence.

lg(z) logarithm of z to the base 10.

In(z) logarithm of z to the base e (natural logarithm).

L characteristic length (Sec. 1.3),
size of largest eddies, outer scale of turbulence,
horizontal distance between source and receiver (Appendix K),
Obukhov length.

L; operator (M.14).

L;, inner scale of turbulence.

Loyt outer scale of turbulence.

L, sound pressure level.

Ly free sound pressure level of free field.

La A-weighted sound pressure level.

Lw sound power level.

m index of 1/3-octave or octave band,
index of sound ray, e.g. in Eq. (4.7).

mg, m3 vectors (M.59) and (M.58).
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mz,m, quantities defined below Eq. (E.30).
My; quantities given in Table L.1.
M integral number.
M, M> tridiagonal PE matrices.
M~,M* tridiagonal PE matrices.
M ; matrix elements (G.47).
n integral number,
acoustic refractive index,
index of harmonic component in spectral decomposition,
number of turning points of sound ray.
n unit normal vector.
N integral number.
N,, number of ground reflections of sound ray m.
N,; number of ground reflections of sound ray with indices n and j.
N;: Prandtl number.
Nrays number of sound rays.
Nr Reynolds number.
p acoustic pressure or sound pressure,
in Appendices H and M: complex pressure amplitude p = pc,
in Appendix L: normalized complex pressure amplitude pc/|Pfreel,
in Appendix N: total pressure of atmosphere,
exponent p = 2/3 in Sec. L.7.
p1,p2 complex pressure amplitudes of direct and reflected fields in Eq. (K.1),
complex pressure amplitudes above and below ground surface (Sec. D.4).
pa total pressure of atmosphere, p, = pay + p.
pay average pressure of atmosphere.
pe complex amplitude of acoustic pressure (complex pressure amplitude).
Pei complex pressure amplitude of incident wave.
Pcr complex pressure amplitude of reflected wave.
Prree  cOmplex pressure amplitude of free field.
Pillum contribution to field p in Appendix L, defined below Eq. (L.1).
p; complex pressure amplitude at height z;, p; = pc(z;) (Secs. G.8 and G.9).
pm contribution of ray m to field p, given by Eqgs. (L.28) and (L.38).
p. atmospheric pressure p, = 101 325 Pa (Sec. B.5).
pr,pi real and imaginary parts of p. = pr + ip; (Sec. B.2).
pret  reference sound pressure (20 pPa).
ps,Pis source and image source contributions to p;, above Eq. (D.52).
psat Saturation vapour pressure (Sec. B.5).
Dshadow contribution to field p in Appendix L, defined below Eq. (L.1).
P Fourier transform of time signal p(t),
(spatial) Fourier transform of pe(r).
P,, P, Fourier transforms of p; and pa (Sec. D.4).
P, , Fourier coefficients related to P, by Eq. (B.25).
P; value of P in layer j [Equation (F.5)].
P] derivative of P;.
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Py, P values of P at source height in FFP method, defined in Sec. F.3.
P, Discrete Fourier Transform of time signal p(t), defined in Eq. (B.22).
P., P source and image source contributions to P; [Equation (D.44)].
g tortuosity of porous medium,
integration variable (Sec. D .4),
quantity defined in Eq. (G.2) (¢ = ¢.).
go(z) PE starting function for unbounded atmosphere.
gc quantity defined in Eq. (C.11),
quantity defined in Eq. (G.2) (¢ = ¢.)-
@ spherical-wave reflection coefficient,
Fourier transform of quantity ¢. (Appendix H),
quantity defined below Eq. (E.23),
operator in spectral theorem (H.51).
Q; value of @ in layer j (Sec. F.7).
Q; derivative of Q; (Sec. F.7).
Qmu, @m1 values of Q at source height in FFP method, defined in Sec. F.7.
Qs, Q: spherical-wave reflection coefficients in Sec. O0.2.
r distance,
horizontal range.
r position vector.
r1,T2 distances indicated in Fig. 4.2.
r, relative humidity (in %).
Tn; horizontal distance covered by ray with indices n and j.
rs source range (rs = 0).
rs source position vector.
Ty range of screen in Fig. O.1.
R distance,
radius of circle (segment),
constant in ideal-gas law (A.10),
plane-wave reflection coefficient (Sec. F.7),
quantity R = a, x, (Sec. M.3.4).
R position vector.
R; distance between source and receiver (Fig. D.2).
R, distance between image source and receiver (Fig. D.2).
Ry, Ry, R3, Ry path lengths of diffracted rays in Eq. (0.2).
R. radius of curvature.
Ry, R(k;) plane-wave reflection coefficient.
R quantity defined in Eq. (B.37).
Re(z) real part of complex number z.
s path length along sound ray,
(propagation) distance,
operator defined in Eq. (G.11).
s(g) image source distribution (Sec. D.4).
s(2) fractional speed-up factor (Sec. 0.4).
s separation vector (Secs. J.3 and J.4).
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Sa, Sb, 8¢, 84 speed-up factors given by Eq. (0.10).

s¢ pore shape factor ratio of porous medium.

S constant in expression p. = Sexp(ikr)/r for spherical wave,
turbulent phase fluctuation.

S(k.) amplitude in Eqgs. (G.53) and (H.61).

Ss, 83 tridiagonal matrices in Eq. (M.60).

S. closed surface, for example in Gauss’ theorem (A.25).

S, turbulent phase fluctuation of ray m.

Ss factor in Eq. (F.1).

t time.

t,n acoustic travel time along sound ray m.

tn; acoustic travel time along sound ray with indices n and j.

T period of harmonic sound wave,
absolute temperature,
tridiagonal PE matrices (G.28) and (G.43).

To constant temperature in Eq. (A.15) (Tp = 273 K),
average temperature in turbulence models (see Sec. 1.2).

To1 triple-point temperature of water (Sec. B.5).

Too temperature Tp = 293.15 K (Sec. B.5).

T,, T3 tridiagonal matrices (M.55) and (M.53).

T, plane-wave transmission coefficient.

T. turbulent temperature fluctuation.

u horizontal component of wind velocity (in the direction of sound
propagation),
horizontal component of acoustic fluid velocity v,
quantity defined in Eq. (M.44).

u' turbulent wind velocity component (Appendix N).

u, friction velocity defined in (N.9).

u(z) horizontal wind speed profile.

uo(z) horizontal wind speed profile (0.7).

u1o wind speed at a height of 10 m (Chap. 7 and Appendix O).

ug,u3,us wind speeds defined below Eq. (0.8).

u,, horizontal component of average fluid velocity vay.

ue quantity defined in Eq. (M.49),
turbulent wind velocity fluctuation.

U Fourier transform of velocity u, defined in Eq. (E.17).

U quantity defined below Eq. (L.41).

v horizontal component of wind velocity,
horizontal component of acoustic fluid velocity v,
velocity of moving source in Fig. B.2,
fluid velocity in z direction (Appendix C),
characteristic velocity (Sec. 1.3),
quantity defined in Eq. (M.44).

v acoustic fluid velocity, v = (u,v,w).

v' turbulent wind velocity component (Appendix N).



322 List of symbols

vo(2) function defined below Eq. (0.10).
v, fluid velocity, v, = vy +v.
vav average fluid velocity, vay = (uay, Vav, Wav)-
Uay horizontal component of average fluid velocity v,y.
v, complex amplitude of acoustic fluid velocity (complex fluid velocity
amplitude, complex velocity amplitude).
v magnitude of v, (Sec. B.3),
complex fluid velocity amplitude in x direction (Appendix C).
¥e,n component of v normal to ground surface, in downward direction.
ve,z = component of v, (Appendix D).
v; velocity components in Eq. (1.9).
v fluctuation of velocity in Sec. 1.3.
vp quantity v, = vcn (Sec. M.3.6).
vy radial component of velocity of moving source in Fig. B.2.
vr longitudinal component of velocity (Sec. 1.5).
vr, Vi real and imaginary parts of v. = v, +1v; (Sec. B.2).
vy quantity defined in Eq. (M.49).
V' Fourier transform of velocity v, defined in Eq. (E.17),
(integration) volume,
one-dimensional spectral density of random function,
one-dimensional spectral density of refractive-index fluctuations.
w vertical component of wind velocity,
vertical component of acoustic fluid velocity v,
acoustic energy density (Sec. B.2),
integration variable in Eq. (H.32),
quantity defined in Eq. (M.44).
w' turbulent wind velocity component (Appendix N).
way vertical component of average fluid velocity vay.
wy quantity defined in Eq. (M.49).
W Fourier transform of velocity W, defined in Eq. (E.17).
Wav average acoustic power.
Wier reference acoustic power (1 pW).
Wa A-weighting function, defined in Eq. (B.36).
z coordinate of zyz coordinate system,
x coordinate of receiver,
symbol for position in Sec. L.4,
quantity defined below Eq. (N.23).
z: z coordinate of receiver in Fig. 4.2.
xzs z coordinate of source.
X function defined in Eq. (0.5).
y coordinate of zyz coordinate system,
y coordinate of receiver,
integration variable in Eq. (L.9),
quantity defined in Eq. (M.44).
ys y coordinate of source.
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Yt quantity defined in Eq. (M.49).
z height above ground surface,
coordinate of zyz coordinate system,
z coordinate of receiver, receiver height.
zo roughness length of ground surface,
height of ground surface, zo = 0 (Appendix G).
z1 height indicated in Figs. 4.1 and 4.2.
22, 23,24 heights defined below Eq. (O.8).
zg z coordinate of ground surface, z; = 0 (Appendix L).
2y z coordinate of receiver (Fig. 4.2 and Appendix L).
zs z coordinate of source, source height.
2sr average of source height and receiver height, defined below Eq. (4.9).
2, height of bottom of absorbing layer in PE grid (Fig. G.1).
screen height in Fig. O.1.
zym height of PE grid, 2pr = MAz (Fig. G.1).
Z normalized (specific) acoustic impedance, Z = (/(air-
Z(z,B) amplitude function in Eq. (L.17).
Z, normalized impedance of backing of porous layer (Fig. C.4).
Zyayer normalized impedance of porous layer (Sec. C.6).
Zm quantity defined in Eq. (L.20).
Zs normalized acoustic impedance of (ground) surface.

Greek symbols
a atmospheric absorption coefficient (in dB per unit length),
integration variable in Eq. (E.59),
quantity defined below Eq. (G.21),
random angle for calculation of turbulent refractive-index field.
a(f) function defined in Eq. (M.15).
o' atmospheric absorption coefficient related to a by o’ = a/(101ge).
oo dry adiabatic lapse rate, defined in Eq. (N.2).
o, phase angle in Eq. (L.40).
ay local slope of curved ground surface, defined in Eq. (M.37).
B imaginary part of wave number (Sec. E.6),
quantity defined below Eq. (G.21),
quantity defined below Eq. (H.31),
integration variable in Eq. (L.17).
B(¢) function defined in Eq. (M.15).
Bm phase angle in Eq. (L.41).
v elevation angle, v = arctan(dz/dz),
specific-heat ratio cp/cy (y = 1.4 for air),
quantity defined below Eq. (D.67),
contribution to wave number from atmospheric absorption (Sec. E.6),
quantity defined below Eq. (G.24).
7(n) function defined in Eq. (M.15).
71,72 elevation angles indicated in Figs. 4.1 and 4.2.



324 List of symbols

T.j>70,5>Y-1,; Mmatrix elements (G.44).
Ymax Maximum elevation angle for validity of PE method (Fig. 4.11).
Yy, elevation angles at receiver (Sec. L.3.6).
¥s,7. elevation angles at source (Sec. L.3.6).
YT,y quantities defined below Eq. (K.11).
T" coherence factor.
I'(z) gamma function.
¢ azimuthal angle of pie slice region in Figs. 4.13 and H.6,
matrix (M.32).
62 matrix (M.31).
d(z) Dirac delta function.
d(r) product of Dirac delta functions, é(r) = §(z)d(y)d(z) for r = (z,y, 2).
0;; Kronecker delta, d;; =1 for ¢ = j, §;; = 0 for i # j.
ds,0r, 0 horizontal dimensions of ray segments, defined in Eq. (L.6).
0; partial derivative 8; = 8/0z.
0x(h),d05(h) functions defined in Sec. L.3.1.
0k(z) quantity defined below Eq. (H.58).
0k?(z) quantity defined in Egs. (G.9) and (H.44).
6t time interval.
07s quantity defined above Eq. (L.15).
Ak wave number spacing.
Aky spacing of wave numbers k4 in three-dimensional GFPE method.
Ar horizontal grid spacing (or range step) in PE method.
Az vertical grid spacing in FFP and PE methods.
AL relative sound pressure level.
A¢ spacing of azimuthal angles ¢ in three-dimensional GFPE method.
An grid spacing along 7 coordinate in GTPE method.
A¢ grid spacing along £ coordinate in GTPE method.
€ quantity defined below Eq. (D.66),
energy dissipation rate of smallest turbulent eddies,
quantity defined in Eq. (M.45),
general symbol for ‘small’ number.
€; quantity defined in Eq. (M.50).
¢ phase angle,
azimuthal angle in cylindrical coordinate system (Figs. 4.10 and E.1),
spherical coordinate below Eq. (1.21),
random angle for calculation of turbulent refractive-index field.
¢(z,B) factor of phase function k¢(z,S) in Eq. (L.17).
¢o angle indicated in Fig. M.3.
¢1,¢2 azimuthal angles of vertical edges of finite screen (Sec. 0.3).
¢m Pphase angle of sound ray m.
¢s, ¢r, Pis, ¢ir diffraction angles indicated in Fig. O.1.
¢y dimensionless temperature derivative (N.8).
¢y velocity potential (Sec. E.2.2).
¢w dimensionless wind speed derivative (N.7).
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® three-dimensional spectral density of random function,
three-dimensional spectral density of refractive-index fluctuations.
®;; three-dimensional spectral density of components i and j of random vector
function,
three-dimensional spectral density of components ¢ and j of wind velocity
components.
®, Fourier transform of velocity potential ¢, (Sec. E.2.2).
®r three-dimensional spectral density of temperature fluctuations [below
Eq. (1.47)].
¢ random angle for calculation of turbulent refractive-index field.
x turbulent log-amplitude fluctuation,
quantity defined below Eq. (H.73).
x(&) function defined in Eq. (M.18).
Xm turbulent log-amplitude fluctuation of ray m.
7 quantity defined below Eq. (E.22),
viscosity,
vertical coordinate in GTPE method.
& von Karman constant (k = 0.41),
wave number corresponding to Ar by Fourier transformation, Eq. (H.22).
A wavelength.
g turbulent fluctuation of acoustic refractive index n,
quantity defined below Egs. (F.34), (L.20), and (P.2).
1o standard deviation of refractive-index fluctuations.
pe average refractive-index fluctuation defined in Eq. (J.13).
v kinematic viscosity,
quantity defined below Eq. (H.73).
0 reflection angle (Fig. D.2, 6; = 6, = 9),
spherical coordinate below Eq. (1.21),
random angle for calculation of turbulent refractive-index field,
variable in phase function (L.21),
potential temperature.
@’ turbulent fluctuation of potential temperature,
angle in Figs. C.1 and D.1.
6. quantity defined in Eq. (N.10).
6y surface potential temperature, defined above Eq. (N.16).
6;,6; angles of incidence and reflection, respectively, in Figs. C.1 and D.1.
0mn angle defined below Eq. (F.25).
05,0, reflection angles in Fig. O.1.
6, virtual potential temperature.
© average turbulent phase fluctuation defined in Eq. (J.15).
9 argument of spherical-wave reflection coefficient Q = |@Q| exp(i9).
p (acoustic) density of atmosphere (see p, and pav),
distance,
distance defined below Eqs. (I.48) and (1.52),
variable in phase function (L.21).
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p' density of ground (Sec. D.3).
po density of air at temperature Ty = 273 K (po = 1.29 kg-m™3).
p1,p2 densities above and below ground surface, respectively (Sec. D.4).
pa density of atmosphere (mass per unit volume), p, = pav + p.
pay average density of atmosphere (subscript ‘av’ omitted except in
Appendices A and E; see Sec. A.2).
pr quantity defined below Eq. (B.43),
quantity defined in Sec. L.3.6.
Psat quantity defined below Eq. (B.48).
o (effective) flow resistivity of ground.
01,02 coeflicients in Eq. (G.25).
o, standard deviation of wind speed fluctuations.
or standard deviation of temperature fluctuations.
T sample time,
time interval,
integration variable in spectral theorem (H.51),
shear stress (Fig. 1.2),
integration variable in Eq. (K.9).
integration variable in Eq. (L.24).
71,72 coefficients in Eq. (G.26).
7; period of turbulent fluctuation.
7 quantity defined below Eq. (B.43).
Ts,Tr, Tg travel times along ray segments, defined in Eq. (L.12).
1y period of turbulent fluctuation.
7, period of harmonic oscillation.
w angular frequency.
Q0 porosity of porous medium,
Fourier transform of density p, defined in Eq. (E.17).
¢ variable in phase function (L.21),
horizontal coordinate in GTPE method.
1 quantity defined in Egs. (G.4) and (M.11),
angle defined above Eq. (E.58),
turbulent complex phase fluctuation.
Tﬁ’(r) vector defined below Eq. (G.22).
P (€) vector defined below Eq. (M.25).
¥; value of ¥ at height z;, ¥; = ¥(z;), with ¥ = ¥(0) (Appendix G),
value of ¢ at height z;, ¥; = (£, 2;), with o = ¥(¢,0) (Appendix M).
¥, turbulent complex phase fluctuation of ray m.
1w,y functions defined in Egs. (N.18) and (N.19).
¥ Fourier transform of ¥ defined in Eq. (H.50).
T function defined in Egs. (J.27) and (J.36).
¢ (specific) acoustic impedance of propagation medium.
Cair (specific) acoustic impedance of air, (i = pc.
(s (specific) acoustic impedance of (ground) surface.
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A-weighting, 15, 107
Absorbing
ground, 2, 21, 24, 48, 115
layer in PE method, 165, 172,
198, 200, 275
Absorption coefficient, 12, 109, 150
Acoustic
energy density, 100
impedance, 23, 113-119, 125,
127, see Impedance
for spherical waves, 116
normalized, 24, 117, 127
of air, 115, 116
of ground surface, 113-115,
125,127,153, 156, 163, 165
171, 189, 267, 272
of porous medium, 117-119
intensity, 99, 108
power of a source, 99, 100
pressure, 5, 92
refractive index, 70, 204, 222
shadow, 43, 57, 68, 71, 77, 87
Adiabatic
ideal gas, 281
lapse rate, 281, 287
process, 7, 93, 94, 141
sound speed, 7, 40, 94, 287
Advective flux, 282
Aerodynamic roughness length, 41,
287, 294
Airplane, see Noise sources
Amplitude, 2, 6, 95
complex, 9, 95
fluctuations, 68, 232, 236, 260
Angular
frequency, 6, 94

)
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limitation of PE method, 56,
179, 293
Atmospheric
absorption, 9, 23, 26, 108, 150
absorption coefficient, 12, 109,
150
acoustics, 1
boundary layer, 203, 280
height, 280
refraction, 7, 26, 37, 39, 43, 57
stability, 283, 284
surface layer, 37, 41, 139, 279,
280, 283
height, 280
turbulence, 1, 26, 57, 67, 77,
87,163, 203, 221, 231, 260,
279, 280
Auxiliary Fresnel functions, 292
Average profile, 67
Axisymmetric
approximation, 49, 56, 146, 153,
163, 164, 181, 199, 236, 240,
263, 266, 268
turbulence, 236
Azimuthal angle, 49

Back scattering, 50, 167
Barrier, 26, 77, 85, 289
Blast wave, 3
Boundary layer, 203, 280
height, 280
meteorology, 2
Boundary loss factor, 134
Broadband level, 13, 105
Buoyancy, 280
Businger-Dyer
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profiles, 284, 287
relations, 284

Car, see Noise sources
Cascade process, 207, 217, 281
Caustic, 46, 239, 254
branch, 247
curve, 246, 255
cusp, 247, 255, 259
diffraction field, 47, 239, 241,
258
effect on phase, 252, 254, 257,
258, 261
extrapolation into shadow, 257,
258
illuminated region, 239, 241, 255
point, 37, 46, 245, 246, 254, 255
ray, 249, 258
shadow region, 239-241, 249, 255
surface, 246
Center frequency, 14, 106
‘exact’, 106
‘preferred’, 106
Central difference formula, 168
Characteristic impedance, 114, 127,
156
Classical attenuation, 108
Clouds, 280
CNPE method, 37, 48, 163, 171, 221,
223, 226, 263, 264, 269
Coherence factor, 233, 235, 261
for axisymmetric turbulence, 237
Complex
amplitude, 9, 95
notation for harmonic waves, 8
phase fluctuation, 232
pressure amplitude, 9
ray, 255
Computing time, 49, 52
Concave, 77, 264
Conformal mapping, 79, 263, 264,
266
Conservation
of energy, 233
of mass, 294

Index

of mass and momentum, 91, 92,
140
Convex, 77, 264
Coriolis force, 280
Correlation function
Gaussian, 70, 212, 215
of log-amplitude fluctuations, 233
of phase fluctuations, 233
of random function, 207
of refractive-index fluctuations,
70, 205, 211, 215, 224
of temperature fluctuations, 215
of wind velocity fluctuations, 215
Correlation length, 212, 214
Crank-Nicholson, 37, 48, 163, 170,
171
Cross-wind, 53
Cusp, 247, 255, 259
Cut-off factor for turbulence spec-
trum, 214
Cylindrical coordinates, 49, 146, 150

Daytime, 7, 280, 283

Decibel, 5, 12, 102

Density, 91-94

Density profile in PE method, 172

DFT, 103, 198

Diffraction, 69, 86, 289, 291
coefficient for spherical wave, 291
geometrical theory, 289
into caustic shadow region, 240
into shadow region, 43, 69

Dirac delta function, 96

Discrete Fourier Transform, 103, 198

Dispersion, 11

Dissipation subrange, 217

Diurnal cycle, 280

Doppler effect, 16, 111

Downward refraction, 39, 41, 43, 68,

77, 239, 240, 260, 263

Downwind
sound propagation, 1, 287
sound speed profile, 287

Dry adiabatic lapse rate, 281, 287

Eddy, 203, 217, 281



Index

flux, 282
Effective
flow resistivity, 24
sound speed, 37, 40, 145, 146,
149, 154, 164, 204, 240, 279,
287
sound speed approximation, 40,
50, 53
sound speed profile, see Sound
speed profile
Electromagnetics, 2, 214
Elevation angle, 39, 50, 56, 145, 146,
163, 167, 179, 196, 243
Energy density, 100
Energy-containing subrange, 217
Ensemble averaging, 70, 221
Excess attenuation, 26
Experimental results, 2, 70, 85, 119,
120
Explosion, 3, 91
Extended reaction, 123, 128, 135,
136, 156
Extrapolation into caustic shadow
region, 257, 258

Far-field

approximation, 147, 150, 200

region, 101
Fast Field Program, see FFP method
Fast Fourier Transform, 104, 198
Fermat’s principle, 40
FFP method, 37, 48, 136, 144, 147,

149, 150, 153
FFT, 104, 198
Finite dimensions of source, 3, 30
Finite-difference, 164, 168, 170, 271
Finite-element, 174
Finite-impedance ground surface, 24,
25, see Absorbing ground

Flow resistivity, 24, 30, 117, 120
Fluid, 6, 91, 205

dynamics, 92

velocity, 6, 91, 92
Flux, 282

advective, 282
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eddy, 282
kinematic, 282
Focusing, 37, 239
factor, 46, 242, 253
Forest floor, 24, 119
Fourier
split-step algorithm, 182, 193,
194
transform, 102, 130
transformation, 49, 99, 102, 130,
141
Fourier-Bessel transform, 150
Free field, 23, 99
Frequency, 5, 7
domain, 49
Fresnel functions (auxiliary), 292
Friction velocity, 284, 294
Frozen medium approach, 205

Gauss elimination, 170
Gauss’ theorem, 96
Gaussian
correlation function, 70, 212, 215
spectrum, 211, 212, 215, 217,
226, 235
Generalized FFP method, 50, 153
Generalized Terrain PE method, 79,
263, 267
Geometrical
acoustics, 42, 239, 241, 242, 254,
256, 257
attenuation, 12, 100, 102, 108
theory of diffraction, 289
GFPE method, 37, 48, 163, 181, 221,
223, 226, 263, 264
Grain shape factor, 118
Grassland, 2, 21, 24, 41, 77, 119,
120
Gravity, 140, 155, 280, 281
Grazing incidence, 25, 29, 126, 133
Green’s function, 183, 200, 290
Green’s Function PE method, 37,

48,163, 181, see GFPE method

Grid, 51, 164, 168, 172, 265, 272
spacing, 51, 165, 197, 266
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non-uniform, 174
Ground
impedance, 23, 113-115, 117-
119, 125,127,153, 156, 163,
165,171, 189, 267, 272, see
Impedance
normalized, 24, 117, 127
layered, 121
reflection, 21, 26, 43, 80, 113,
123, 239, 251, see Reflec-
tion
surface, 1, 21, 263
extended reacting, 128, 135,
136, 156
locally reacting, 115, 125, 126,
128,129, 136, 156, 164, 171,
189, 272
Ground impedance, see Impedance
GTPE method, 79, 263, 267

Hard ground, 2, 21, 24, 115
Harmonic, 5, 8, 49, 94, 95
Heat flux, 282
Helmbholtz equation, 94, 95, 144, 146,
147, 164, 254, 266, 268
in cylindrical coordinates, 200
in horizontal wave number do-
main, 144, 147, 150, 154
inhomogeneous, 95, 97, 147, 150,
183
Hertz, 5
Heterogeneous ground, 279
Hill, 77, 79, 279
Homogeneous
atmosphere, 3, 5, 8, 21, 91, 92,
99
ground surface, 50
random function, 207, 224
turbulence, 219, 234
Horizontal wave number domain, 140,
141, 144, 150, 153
Human
ear, 5, 15, 107
perception, 15, 107
Humidity, 11, 94, 108, 281

Index

relative, 109, 110
Huygen’s principle, 39
Hydrostatic pressure gradients, 143

Ideal-gas law, 93
Hluminated region of caustic, 239,
241, 255
Image source, 23
distribution, 132, 136
Impedance, 23, 113-119, 125, 127
characteristic, 114, 127, 156
discontinuity, 289
for spherical waves, 116
models, 24, 29, 117
Attenborough, 118
Delany and Bazley, 119
Zwikker and Kosten, 117
normalized, 24, 117, 127
of air, 115, 116
of ground surface, 113-115, 125,
127,153, 156, 163, 165, 171,
189, 267, 272
of porous medium, 117-119
Incoherent
line source, 30
point sources, 30
Inertial subrange, 217
Inhomogeneous Helmholtz equation,
95, 97, 183
in horizontal wave number do-
main, 147, 150
Inner scale of turbulence, 209, 217
Intensity, 99, 108
Interference, 21, 25, 26, 28
minima, 28, 29, 68, 70, 260
Irregular terrain, 26, 77, 163, 263
Isothermal sound speed, 94
Isotropic
random function, 208
turbulence, 219

Jacobian, 266

Kinematic
eddy heat flux, 283
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eddy momentum flux, 283

heat flux, 282

momentum flux, 282

viscosity, 205
Kirchhoff approximation, 86, 293
Kirchhoff-Helmholtz integral equa-

tion, 183, 290

Kolmogorov spectrum, 211, 213

Laminar flow, 203, 206, 209
Laplace transform, 132, 135
Layered
atmosphere, 41, 50, 139, 146,
149, 153, 154, 163, 167, 240
ground, 121
Linear acoustic
approximation, 92
equations, 91, 93, 95
for porous medium, 117
Linear acoustics, 3, 6, 91, 140
Linear sound speed profile, 56, 58,
240
Local reaction, 115, 125, 126, 128,
129, 136, 156, 164, 171, 189,
272
approximation, 123, 126, 131,
136
Locally
homogeneous random function,
208
isotropic random function, 208
Log-amplitude fluctuations, 232, 236,
260
Logarithmic
average, 15, 27, 68, 70
profile, 41, 52, 58, 240, 287, 294
sum, 13, 26
Long-time average, 233
Longitudinal
correlation function, 208
structure function, 208, 209
Loudness, 5, 11

Maekawa’s scale model results, 88
Markov approximation, 215
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Mass conservation, 92, 140, 294
Mean and turbulent parts, 282
Mechanical turbulence, 281
Midpoint rule, 198
Mixing ratio, 282
Mode amplitude, 226
Momentum
conservation, 92, 140
flux, 282
Monopole source, 9, 49, 95, 129, 144,
147, 150, 154, 164, 175, 196,
240, 264
Moving
atmosphere, 40, 50, 139, 140,
145, 146, 149, 153, 154
source, 16, 111
Moving-medium effects, 53

Narrow band spectrum, 14, 15, 26,
106
Narrow frequency band, 13, 106
Neutral atmosphere, 284, 287
Night, 7, 280, 283
Noise, 85, 289
barrier, 26, 85, 289
absorbing, 289
wedge-shaped, 289
control, 107
screen, 85, 289

sources
airplane, 1, 2, 16
car, 1, 16, 30
train, 1
truck, 16

Non-moving
atmosphere, 40, 50, 139, 144,
145, 149, 153, 154, 240
isobaric atmosphere, 145
Non-refracting atmosphere, 8, 37, 42,
67, 99, 129, 139, 231, 289,
290
Normal modes, 50
Normalized acoustic impedance, see
Acoustic impedance



332

Normalized ground impedance, see
Ground impedance
Numerical distance, 134

Obukhov length, 284
Ocean acoustics, 50, 239, see Un-
derwater acoustics
Octave band, 14, 106
spectrum, 14, 26, 107
One-third-octave band, 14, 106
spectrum, 14, 26, 107
One-way wave equation, 51, 167, 191,
222
Outer scale of turbulence, 209, 217

Parabolic equation, 50, 163
narrow-angle, 165-168, 176
wide-angle, 164, 167, 170, 177

Parabolic Equation method, see PE

method

Parseval’s theorem, 13, 103, 104

PE method, 37, 48, 147, 163, 181
propagation over screen, 86, 292
propagation over terrain, 79, 263
propagation through turbulence,

67, 221, 236

Periodic boundary conditions, 52, 199

Phase, 2, 6, 95
fluctuations, 68, 232, 236, 260
screen method, 224

Pie slice region, 52, 199, 229

Plane wave, 6

Plane-wave reflection coefficient, see

Reflection coefficient

Plane-wave transmission coefficient,

127

Point source, 3, 30, 39, 95, 99, 129

Poles, 158, 190, 193

Pore shape factor ratio, 118

Porosity, 117

Porous
layer, 24, 121
medium, 24, 117

Potential temperature, 281
profile, 283

Index

Power of a source, 99, 100
Prandtl number, 118

Pressure, 91, 92, 140, 281
Principle of reciprocity, 23, 258
Propagation direction, 7, 39
Pure tone, 5, 95

Random
field, 207
function, 207
number generator, 70, 205, 221,
224
realizations, 70, 205, 221, 224,
228
Range, 23
Range dependence
of ground impedance, 52, 171
of sound speed profile, 52, 165,
167, 187, 221
Ray, see Sound ray
model, 37, 42, 58, 239
path, 243
tracing, 43, 245, 258
tube diameter, 46, 253
Rayleigh integral, 186, 200
Reciprocity principle, 23, 258
Reflection, 21, 113, 123, see Ground
reflection
angle, 24
coefficient, 46, 179, 195, 242,
252
plane wave, 24, 120, 121, 123,
126, 134, 180, 189
spherical wave, 23, 29, 123,
133, 180, 232, 252, 291
normal, 120, 121
plane wave, 123
spherical wave, 21, 24, 129
Refracting atmosphere, 139
Refraction, 7, 26, 37, 39, 43, 57
factor in GFPE method, 194,
202
Refractive
index, 70, 204, 222
shadow, see Shadow region
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Refractive-index fluctuations, 70, 204,
205, 212, 215, 221, 222, 224,
226
Relative
humidity, 109, 110
sound pressure level, 25, 26, 52,

99, 233, 292
Relaxation
frequencies, 109
losses, 108
Residue theorem, 190
RESWING, 88
Reynolds number, 205, 206

Rigid
frame of porous medium, 117

ground surface, 24, see Hard ground

Roughness
length (aerodynamic), 41, 287,
294
of ground surface, 41, 125, 280
of water surface, 48, 79
Rytov’s perturbation method, 234

Saturation of log-amplitude fluctu-
ations, 236
Scattering by turbulence, 43, 69, 77
Screen, 85, 289
Screen-induced wind speed gradients,
87, 88, 289
Seismology, 2
Shadow .
boundary, 77, 86, 291
region, 43, 57, 68, 71, 77, 87
caustic, 239-241, 249, 255
Shear stress, 205
Sign convention, 118
Similarity relations, 279, 283, 284
Snell’s law, 39, 40, 47, 127, 246
Solar radiation, 280
Sonic boom, 3
Sound
level, 15, 107
power, 99, 100
power level, 12, 102
pressure, 95, 92
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pressure level, 5, 11, 100, 101
pulse, 5
ray, 23, 40, 42, 85, 239, 291
source, 5, 9
speed, 5, 7, 93, 94
speed profile, 39, 40, 67, 279
downwind, 287
upwind, 287
wave, 9
Source, see Noise sources
motion, 16, 111
power, 99, 100
strength, 99

Specific acoustic impedance, see Acous-

tic impedance
Specific-heat ratio, 93, 281
Spectral
decomposition, 8, 102
density, 205, 210, 211, 224
theorem of functional analysis,
193, 201
Spectrum, 11
narrow band, 15, 26, 106
octave band, 14, 26, 107
of relative sound pressure level,
26
of sound power level, 14, 105
of sound pressure level, 14, 105
of turbulence, 211
one-third-octave band, 14, 26,
107
Speed-up factor, 294
Spherical
spreading, 12, 102, 108
wave, 9
Spherical-wave diffraction coefficient,
291
Spherical-wave reflection coefficient,
see Reflection coefficient
Square-root operator, 166, 167, 192,
194, 222, 228
Stability of atmosphere, 283, 284
neutral, 284, 287
stable, 283, 284, 287
unstable, 283, 284, 287
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Stable atmosphere, 283, 284, 287
Starting field, 51, 56, 164, 175, 195,
264, 266, 267
Starting function, see Starting field
Stationary phase, 145, 149, 161, 176,
178, 195, 254, 256, 297
Stratified atmosphere, 41, 139
Structure
constant, 117
function of random function, 208
function of refractive-index fluc-
tuations, 211
Surface
layer, 37, 41, 139, 279, 280, 283
height, 280
wave, 26, 191
waveguide, 242

Temperature, 1, 7, 11, 109
absolute, 283
gradients, 37
potential, 281
profile, 41, 67, 153, 203, 279,
283
virtual potential, 282
Terrain, 26, 77, 163, 263
profile, 2, 77, 263, 264, 267
Thermal conduction, 108
Thermals, 281, 283
Three-dimensional
CNPE method, 164
GFPE method, 52, 56, 163, 181,
199, 221, 228, 293
Tortuosity, 118
Traffic noise, 30, 85
Train, see Noise sources
Transverse
correlation function, 208
structure function, 208
Travel time, 40, 46, 242, 252
Turbulence, 1, 26, 57, 67, 77, 87,
163, 203, 221, 231, 260, 279,
280
mechanical, 281
spectrum

Index

Gaussian, 211, 212, 215, 217,
226, 235
Kolmogorov, 211, 213
von Karméan, 71, 211, 214,
216, 217, 226, 235
Turbulent
eddy, see Eddy
phase factor, 222, 223, 228
Turning point, 47, 243
Two-dimensional representation of
the atmosphere, 146
Two-thirds law, 209, 217

Unbounded atmosphere, 3, 5, 99
Underwater acoustics, 2, 153, 163,
182, 194, see Ocean acous-
tics
Undisturbed logarithmic profile, 87,
294
Unstable atmosphere, 283, 284, 287
Upward refraction, 39, 41, 43, 68,
263
Upwind
sound propagation, 1, 287
sound speed profile, 287

Velocity potential, 144
Virtual potential temperature, 282
Viscosity, 108, 205
Von Karman
constant, 284, 294
spectrum, 71, 211, 214, 216, 217,
226, 235

Water surface, 2, 24, 41, 48, 64
aerodynamic roughness, 41, 287
roughness, 48, 79

Wave
equation, 6, 49, 91, 94, 95

one-dimensional, 116
front, 7, 39, 95
number, 6, 95
in porous medium, 117
number domain, 49
number integration method, 50,
153
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propagation in turbulent media,
2,70
Wavelength, 6, 7, 96
Wind, 1, 6, 7, 23, 40, 139, 146, 149,
154
direction, 280, 283
field near a screen, 85, 87, 289,
293
shear, 207, 281
speed gradients, 37
screen-induced, 87, 88, 289
speed profile, 41, 53, 67, 153,
203, 279, 283
logarithmic, 53, 287, 294
near a screen, 85, 86, 289,
293
tunnel, 293
velocity profile, see Wind speed
profile



