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preface 

This book is intended for anyone who is interested in the computation of sound 
propagation in the atmosphere. In some simple cases the computation can 
be performed analytically. In most cases, however, the computation must be 
performed numerically, as the atmosphere is a complex medium for sound waves. 
The book describes current computational methods for sound propagation in the 
atmosphere. 

The book is based on many excellent articles from the literature of atmo­
spheric acoustics. Articles presented at the International Symposia on Long 
Range Sound Propagation have been particularly valuable. 

The book was written 'on week-ends', but the inspiring atmosphere on 
week-days at the TNO Institute of Applied Physics has very much contributed 
to the book. 

The author is grateful to Andrew Thean and Niels Salomons for many valu­
able comments on the text. Above all, the author is grateful to Marga Salomons, 
Michelle Salomons, and Lisa Salomons for help and support in writing the book. 

Erik M. Salomons 
TNO Institute of Applied Physics 
May 2001 
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Chapter 1 

Introduction 

1.1 Atmospheric acoustics 

Atmospheric acoustics is the science of sound propagation in the atmosphere. 
The basic geometry with a source and a receiver is illustrated in Fig. 1.1. Sound 
waves are generated by a source and travel through the atmosphere to a receiver. 
The source may be a whistling bird, as in Fig. 1.1. Other important examples 
of sources are cars, trains, and airplanes. 

The atmosphere is a complex medium for sound propagation. Wind and 
temperature distributions in the atmosphere play an important role in the prop­
agation. The influence of wind is illustrated by the fact that the sound from a 
source near the ground is often louder on the downwind side of the source than 
on the upwind side of the source. Sound propagation is affected not only by the 
distributions of the mean wind and temperature, but also by rapid fluctuations 
of wind and temperature, i.e. atmospheric turbulence. 

The ground surface can be considered as the boundary of the propagation 
medium. Reflection of sound waves by the ground surface plays an impor­
tant role in the propagation. One distinguishes hard grounds and absorbing 

receiver 
source 

atmosphere 

ground 

Figure 1.1. Basic geometry of sound propagation in the atmosphere. 
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2 Chapter 1 

grounds. A hard ground reflects a sound wave completely. An absorbing ground 
partly reflects and partly absorbs a sound wave. Many natural grounds, such 
as grassland, can be described as sandy soil covered with vegetation. These 
grounds are absorbing. Concrete is an example of a hard ground. A water 
surface can also be considered as a hard surface. Not only the ground material 
but also the terrain profile, i. e. the spatial variation of the ground level, has an 
effect on the propagation of sound waves. 

General descriptions of the effects of the atmosphere and the ground on 
sound propagation can be found in Refs. [66, 124, 75, 108, 40, 51, 146]. Exper­
imental results can be found in Refs. [157, 101, 102, 20, 115]. 

1.2 Scope of the book 

During the past two decades, several accurate computational models have been 
developed for sound propagation in the atmosphere. These models take into 
account the complex effects of the atmosphere and the ground. The models are 
based on analogous models used in underwater acoustics, electromagnetics, and 
seismology. 

The objective of this book is to present a self-contained description of com­
putational models that are currently employed in atmospheric acoustics. The 
description includes a derivation of the models from basic acoustic principles. As 
meteorological effects play an important role in atmospheric acoustics, selected 
topics from boundary layer meteorology and wave propagation in turbulent me­
dia are also presented. 

The models described in this book can be used for a wide variety of situa­
tions. The propagation distance may vary between a distance of the order of 
one meter and a distance of the order of ten kilometers. The source height and 
the receiver height may also vary. Emphasis will be on situations with source 
and receiver heights of the order of a few meters, but the models can also be 
used for high sources, e.g. a flying airplane. 

The models described in this book take into account various effects of the 
atmosphere and the ground surface on sound propagation. Some models even 
take into account the complex effects of atmospheric turbulence and irregular 
terrain. In practice, detailed information about the state of the atmosphere and 
the state of the ground surface is always limited. Consequently, computational 
studies of atmospheric sound propagation are restricted to relatively idealized 
systems. A challenge in computational atmospheric acoustics is to find accept­
able idealizations of real systems. The idealizations presented in this book are 
based on the author's experience. It should be noted that comparisons of model 
predictions with experimental results are not presented in this book. 

With the models described in this book, both the amplitude and the phase 
of a sound wave can be computed. Emphasis will be on the amplitude, however, 
as the amplitude determines the loudness of a sound wave. The phase of a 
sound wave is relatively unimportant, in particular for propagation distances of 
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Figure 1.2. Illustration of the structure of the book. Chapters 2 to 7 describe 
sound propagation in systems of increasing complexity. In Chap. 2, an un­
bounded homogeneous atmosphere is considered. In Chaps. 3 to 7, the follow­
ing elements are included successively: ground surface, wind and temperature 
distributions, turbulence, terrain, and a noise barrier. 

the order of a kilometer or more. 
The models are based on the theory of linear acoustics. This implies that 

the models are valid for most types of sound that occur in the atmosphere, but 
not for very loud sounds such as strong blast waves from explosions or sonic 
booms from supersonic airplanes. In all models, it is assumed that the source is 
a point source. A real source with finite dimensions can always be represented 
by a set of point sources. 

1.3 Structure of the book 

The main text of the book focuses on physical phenomena in atmospheric acous­
tics, and gives brief descriptions of the computational models; detailed mathe­
matical descriptions of the models are presented in the appendices. In this way, 
the reader can first get a quick impression of a model from the main text , and 
next study the complete description of the model in an appendix. 

The main text consists of the present introductory chapter followed by six 
chapters, which describe sound propagation in systems of increasing complexity 
(see Fig. 1.2). 

Chapter 2 describes sound propagation in the simplest system: an un­
bounded homogeneous atmosphere, i. e. a homogeneous atmosphere without a 
ground surface. Chapter 3 describes sound propagation over a flat ground sur­
face in a homogeneous atmosphere. Chapter 4 describes sound propagation 
over a flat ground surface in a refracting atmosphere, i.e. an atmosphere with 
inhomogeneous distributions of the temperature and the wind velOcity. Chap­
ters 5 to 7 describe the effects on sound propagation of atmospheric turbulence, 
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irregular terrain, and a noise barrier, respectively. 
Chapter 2 is based on Appendices A and B. Appendix A presents the basic 

equations of linear acoustics. Appendix B introduces the sound pressure level 
and the sound power level, and describes spherical spreading and atmospheric 
absorption of sound waves. 

Chapter 3 is based on Appendices C and D, which introduce the acoustic 
impedance of a ground surface and describe the reflection of spherical sound 
waves by a ground surface. 

Chapter 4 is based on Appendices E, F, G, H, L, and N. Appendix E 
presents linear acoustic equations for moving inhomogeneous atmospheres. Ap­
pendices F, G, H, and L describe four computational models for atmospheric 
sound propagation (the FFP model, the CNPE model, the GFPE model, and 
the ray model). In Appendix N, wind and temperature profiles in the atmo­
spheric surface layer are described. 

Chapter 5 is based on Appendices I, J, and K. Appendix I presents an 
outline of the mathematical theory of atmospheric turbulence. Appendices J and 
K describe the incorporation of atmospheric turbulence in sound propagation 
models. 

Chapter 6 is based on Appendix M, which describes computational methods 
for sound propagation over irregular terrain. 

Chapter 7 is based on Appendix 0, which describes computational methods 
for sound propagation over a noise barrier. 



Chapter 2 

Unbounded homogeneous 
atmosphere 

2.1 Introduction 

Sound in the atmosphere is produced by a sound source. The source may be a 
rapidly vibrating object, e.g. the membrane of a loudspeaker. A vibrating object 
generates a sequence of compressions and rarefactions in the air surrounding it. 
The corresponding local fluctuations in air pressure travel away from the source, 
in all directions. Such a traveling pressure fluctuation is called a sound wave. 
The difference between the fluctuating pressure and the average pressure, i.e. the 
variation of the pressure, is called the acoustic pressure or the sound pressure. 
A sound wave travels with a finite speed of about 340 m/s. This is experienced 
most clearly for sound pulses: it takes some time before a sound pulse generated 
by a source reaches a distant receiver. 

A pure tone is a sound wave in which the sound pressure oscillates sinusoidally 
with time. The sound wave is called a harmonic sound wave in this case. The 
number of oscillations per unit time is called the frequency, which is expressed 
in units of hertz, abbreviated as Hz; 1 Hz equals 1 oscillation per second. The 
pitch of the tone is determined by the frequency. Most sound signals are mix­
tures of pure tones with different frequencies. The human ear is sensitive to 
frequencies in the range from roughly 20 Hz to 20 kHz. 

The loudness of a pure tone is determined by the amplitude of the sinusoidal 
pressure oscillation. In acoustics, loudness is represented by the sound pressure 
level, which is directly related to the amplitude of the pressure oscillation, as 
will be explained in this chapter. The sound pressure level is expressed in 
decibels, abbreviated as dB. The decibel scale is defined in such a way that 0 dB 
corresponds roughly to the hearing threshold of a person with acute hearing, 
and 130 dB roughly to the threshold of pain. 

In practice, sound pressures are often small in comparison with the total 
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Figure 2.1. Left: cross-section of the sound pressure field of a plane harmonic 
sound wave, at fixed time t. A grey level scale is used, with the maximum 
positive and negative sound pressures indicated as white and black, respectively. 
Right: corresponding graph of the sound pressure as a function of propagation 
distance x. The wavelength A is indicated in the graph. 

pressure in the atmosphere, typically 0.1% or smaller. This fact is used in 
the mathematical description of sound that is called linear acoustics. In linear 
acoustics, only terms linear in the sound pressure are retained in the equations; 
quadratic and higher-order terms are neglected. The basic equations of linear 
acoustics, including the wave equation, are derived in Appendix A. 

In the derivation of the equations of linear acoustics, the atmosphere is mod­
eled as a compressible fluid, i.e. a gaseous medium in which local pressure fluc­
tuations cause local density fluctuations. When a sound wave travels through 
this medium, alternating local compressions and rarefactions occur. The corre­
sponding movement of air is represented by a (fluctuating) fluid velocity. The 
time average of the fluid velocity is equal to zero, as there is no net transport 
of air in a sound wave (here we ignore the effect of wind in the atmosphere) . 

2.2 Plane waves 

The sound pressure at a point in the atmosphere is defined as the instantaneous 
pressure minus the time-averaged pressure at the point. The sound pressure is 
a function of position r and time t, and is denoted as p(r, t). We use boldfaced 
symbols for vectors in this book, so r represents a three-dimensional vector, e.g. 
r = (x, y, z) if a rectangular xyz coordinate system is used. 

As an example, we consider a harmonic sound wave traveling in the x direc­
tion, with sound pressure 

p(r, t) = Acos(kx - wt), (2.1) 

where A is the amplitUde and kx - wt is the phase, which depends on the 
angular frequency w and the wave number k. The corresponding fluid velocity 
has an x component only, which is equal to A' cos(kx - wt), with amplitude A'. 
A sound wave with sound pressure given by Eq. (2.1) is called a plane wave, as 
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the sound pressure is constant within each plane perpendicular to the x axis. 
This is illustrated in Fig. 2.l. 

Plane waves do not occur frequently in the open air, but are useful for 
illustrating wave propagation. Equation (2.1) shows that the sound pressure 
of a harmonic wave is a periodic function of time, with period T = 27r Iw, at 
each point in the atmosphere. The number of oscillations per unit time is the 
frequency I = liT, so we have w = 27rJ. Equation (2.1) also shows that the 
sound pressure at fixed time t is a periodic function of x, with spatial period 
A = 27rlk, which is called the wavelength. Further, the sound pressure appears 
constant to an observer moving in the x direction with speed c = wi k, as the 
argument (kx - wt) = k(x - ct} of the cosine function in Eq. (2.1) is constant 
for the receiver. In other words, acoustic pressure fluctuations travel with speed 
c = wi k, or c = AI, which is called the sound speed. The sound speed is 
sometimes called the adiabatic sound speed, as sound propagation in air can 
be considered as an adiabatic process, i.e. a process without heat flow. The 
(adiabatic) sound speed in air is evaluated in Sec. A.2. 

The sound speed in air is a function of the temperature of the air. At a 
temperature of 15°C we have c = 340 m/s. The sound speed increases with 
increasing temperature. A variation of the temperature by 1°C corresponds to 
a variation of the sound speed by about 0.6 mis, within the temperature range 
between -20°C and +40°C. The temperature usually varies with position in 
the atmosphere, in particular with height above the ground. In the daytime, 
the temperature usually decreases with increasing height above the ground; at 
night, the temperature usually increases with increasing height. 

A spatial variation of the sound speed causes an effect that is called 
atmospheric refraction: a sound wave is bent (refracted) toward regions where 
the sound speed is low. This is illustrated in Fig. 2.2, which shows two examples 
of a moving wave front. A wave front is defined as a surface on which the phase 
of a sound wave is constant. With increasing time, a wave front moves in the 
direction of sound propagation. The propagation direction at a point is defined 
as the direction of the vector normal to the wave front through the point. In the 
example of a plane wave with sound pressure given by Eq. (2.1), the wave fronts 
are plane surfaces perpendicular to the x axis, and the propagation direction is 
everywhere in the positive x direction. In the examples shown in Fig. 2.2, how­
ever, the upper part of the wave front travels slower or faster than the lower part, 
corresponding to upward and downward refraction, respectively. Consequently, 
the propagation direction follows the curves indicated in the figure. 

The influence of wind on sound propagation makes the description of atmo­
spheric refraction more complex. Wind can be taken into account approximately 
by treating wind speed as a contribution to the sound speed: sound waves travel 
faster in downwind directions and slower in upwind directions. Therefore, spa­
tial variations of both the temperature and the wind speed contribute to atmo­
spheric refraction. Atmospheric refraction is an important effect in atmospheric 
acoustics. A consequence of refraction is that a sound source often generates 
higher levels in downwind directions than in upwind directions (see Chap. 4). 
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Figure 2.2. Top: illustration of upward refraction of sound, in a situation in 
which the sound speed decreases with increasing height z above the ground 
surface. Bottom: illustration of downward refraction of sound, in a situation 
in which the sound speed increases with increasing height z above the ground 
surface. A wave front moving to the right is shown at four successive times. 
The thick curve shows the propagation direction, defined at each point as the 
direction of the vector normal to the wavefront. 

In the remainder of this chapter and the next, we will ignore the effect of 
refraction and assume a non-refracting, or homogeneous, atmosphere, with a 
constant sound speed. In subsequent chapters we will consider the effect of 
refraction. 

2.3 Complex notation for harmonic waves 

A sound signal p(t) at a point in the atmosphere can always be written as a 
sum of harmonic components of the form 

p(t) = A cos (4) - wt). (2.2) 

The harmonic components have different values of the amplitude A, the phase 
angle 4>, and the angular frequency w. The decomposition of a sound signal 
into harmonic components is called spectral decomposition (see Sec. BA). Con­
versely, a sound field can be calculated by summing over all harmonic contri­
butions. This is very useful in computational atmospheric acoustics, as many 
computational methods assume a harmonic sound field. Figure 2.3 shows a sim-
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pIe example of the spectral decomposition of a sound signal with three harmonic 
components. In practice the number of harmonic components is much larger 
than three, typically a few thousands. 

In the example considered in the previous section, with the sound pressure 
given by Eq. (2.1), the amplitude A was a constant and the phase angle fjJ was 
equal to kx. In general, however, both A and fjJ are functions of position r in 
the atmosphere. Equation (2.2) can be written as 

per, t) = Re [Peer) exp( -iwt)], (2.3) 

where Re(z) denotes the real part of complex number z and Peer) is given by 

Peer) = A(r) exp[ifjJ(r)]. (2.4) 

The quantity Peer) is called the complex pressure amplitude. 

2.4 Spherical waves 

In the computational models described in this book we assume that the sound 
source is a monopole source. A monopole source is a point source which gener­
ates spherical waves, at least if the atmosphere is unbounded and homogeneous. 
In a spherical sound wave, the sound pressure (at a given time) is constant 
within each spherical surface with the source at the center. This is illustrated 
in Fig. 2.4, for a harmonic monopole source. 

The sound pressure of a harmonic spherical wave can be represented by Eq. 
(2.3), with complex pressure amplitude given by (see Sec. A.4) 

( ) _ S exp(ikr) 
Pc r - , 

r 
(2.5) 

where r is the radial distance from the source and S is a constant. From 
Eqs. (2.4) and (2.5) we find that the amplitude of a spherical wave is given 
by A(r) = Sir. The amplitude decreases with increasing distance from the 
source. At fixed position, the sound pressure oscillates between the values A(r) 
and -A(r) (see Fig. 2.4). 

2.5 Atmospheric absorption 

In the previous sections we assumed an ideal atmosphere. We found that the 
amplitude of a plane wave is a constant and the amplitude of a spherical wave 
decreases as 1/r with increasing distance r from the source. In a real atmo­
sphere, however, the amplitude of a plane wave also decreases, and the decrease 
of the amplitude of a spherical wave is larger than in an ideal atmosphere. This 
is due to the effect of atmospheric absorption: a sound wave loses energy by 
dissipative processes in the atmosphere (see Sec. B.5). Atmospheric absorption 
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Figure 2.3. Simple example of the spectral decomposition of a sound signal. 
The signal p(t) (upper graph) consists of three harmonic components Pl(t), 
P2(t), and P3(t), with frequencies of 100 Hz, 200 Hz, and 300 Hz, respectively 
(lower three graphs). We have p(t) = Pl(t) + P2(t) + P3(t). The calculation of 
the sound pressure levels on the right of the graphs is explained in Sec. 2.6. 



Unbounded homogeneous atmosphere 

I I 
I 
, I 

J \ 

position 

11 

Figure 2.4. Left: cross-section of the spherical sound pressure field of a harmonic 
monopole source (the source is located at the center) . Right: corresponding 
graph of the sound pressure along a line through the source. The dashed line 
in the graph represents the amplitude, which diverges at the source. 

depends on the frequency of the sound wave, and on the temperature and the 
humidity of the atmosphere. 

Atmospheric absorption causes an exponential decrease of the amplitude 
with distance (see Sec. B.5) . This decrease can be taken into account by includ­
ing a small imaginary term iki in the wave number k. Thus, we replace k by 
k + iki' so the complex pressure amplitude given by Eq. (2.5) becomes 

exp(ikr) 
pc(r) = S exp(-kir). 

r 
(2.6) 

The factor exp( -kir) represents the exponential decrease of the amplitude with 
distance r due to atmospheric absorption. 

Atmospheric absorption also has an effect on the phase of a sound wave [106J. 
This effect varies with frequency, so waves with different frequencies travel with 
different speeds (this is called dispersion) . Phase effects can be represented by 
including not only a small imaginary term but also a small real term in the wave 
number. For most practical applications, however, phase effects of atmospheric 
absorption can be neglected. 

2.6 Sound pressure level and spectrum 

The time average of the sound pressure of a harmonic sound signal, performed 
over an integral number of harmonic periods, is equal to zero [see Eq. (2.2)J . 
The time average of the squared sound pressure p2 is not equal to zero, unless 
we have p = 0 for all times t . This time average is denoted as (P2)av. 

For an arbitrary sound signal, the quantity (P2)av is a measure of the loudness 
of the signal. We assume that the averaging period is sufficiently long, so (P2)av 
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is independent of the averaging period. The sound pressure level is defined as 

Lp = 10lg ((P:)av) 
Pref 

(2.7) 

with reference pressure Pref = 2x10-5 Pa (or 20 JLPa), where Pa is the symbol 
for pascals, the units of pressure (1 Pa = 1 N/m2 ). For example, (P2)av = 1 Pa2 
corresponds to Lp = 94 dB, where we recall that dB stands for decibels. An 
increase of the sound pressure level by 1 dB corresponds to an increase of (p2)av 
by a factor of 10°·1 :=:;;j 1.26. The choice Pref = 2x 10.5 Pa determines the zero 
point of the decibel scale: (P2)av = P;ef corresponds to Lp = 0 dB. 

For a harmonic sound signal, the time average in Eq. (2.7) can be performed 
over a single harmonic period. From Eq. (2.3) we find (P2)av = ~lpc(rW (see 
Sec. B.3). Substitution into Eq. (2.7) gives 

(2.8) 

For a harmonic point source we find from Eqs. (2.6) and (2.8) the following 
expression for the sound pressure level as a function of distance r from the 
source (see Sec. B.5): 

Lp = Lw - 10 19 47rr2 - ar, (2.9) 

where Lw is the sound power level and a is the atmospheric absorption coef­
ficient (in dB per unit length). The sound power level Lw is a measure of the 
'strength' of the sound source. The term ar is negligible for small r, so Lw is 
equal to the sound pressure level Lp at distance r = (411")-1/2 :=:;;j 0.3 m. 

The term ar in Eq. (2.9) represents the attenuation of sound waves due to 
atmospheric absorption. The absorption coefficient a is related to the imaginary 
term ik j used in Sec. 2.5 by a = k j 20 19 e. 

The term 10 19411"r2 in Eq. (2.9) represents the attenuation due to the factor 
1/r in Eq. (2.6) (the factor 411" is explained in Sec. B.3). This attenuation 
is called the geometrical attenuation, corresponding to spherical spreading of 
sound waves from a point source. 

In the derivation of Eq. (2.9) we assumed that the source is harmonic. IT 
the source is not harmonic, we decompose the sound pressure signal p(t) into 
harmonic components: p(t) = 'EPf{t), where Pf(t) is the sound pressure signal 
of a harmonic component with frequency f (see Fig. 2.3 and Sec. B.4). Equation 
(2.9) can be applied to the harmonic components: 

Lp (J) = Lw (J) - 10 19 47rr2 - a(J)r. (2.10) 

The sound pressure level Lp(J) is related to the harmonic signal Pf{t) by Eq. 
(2.7): Lp(J) = 1OIg((P})avlP;ef)' The quantities (P})av satisfy the important 
relation (P2)av = 'E(P})av, where the sum is over all harmonic components (this 
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Figure 2.5. lllustration of frequency scales: narrow band scale, 1/3-octave band 
scale, and octave band scale. Each octave band covers several narrow bands. 
We assume that the narrow band width is a constant on a linear scale (for 
example equal to 1 Hz), so the number of narrow bands in an octave band 
increases with increasing octave band center frequency. Each octave band covers 
three l/3-octave bands, with center frequencies that are approximately equal 
to 2-1/ 3 Ie, Ie, and 21/ 3 Ie, where Ie is the octave band center frequency. The 
octave band with center frequency 125 Hz, for example, covers the 1/3-octave 
bands with center frequencies 100 Hz, 125 Hz, and 160 Hz. 

follows from Parseval's theorem; see Sec. B.4). The corresponding relation in 
decibels is Lp = 10 Ig(E lOLp(f)/10). We will call this logarithmic summation 
of the levels Lp(J). In this context, the level Lp is called the broadband sound 
pressure level and the function Lp (f) is called the spectrum of the sound pressure 
level (or narrow band spectrum of the sound pressure level, as will be explained 
later). The broadband level Lp is the logarithmic sum ofthe levels Lp(J) of the 
spectrum. We assume here that the frequencies I of the harmonic components 
are equidistant on a linear scale (see Fig. 2.5). 

The sound power level Lw was identified above as the sound pressure level at 
distance r = (411")-1/2, so we also have the expression Lw = 101g(E lOLw(J)/10) 

for the broadband sound power level Lw. The function Lw(J) is called the 
spectrum of the sound power level. Equation (2.10) can be considered as the 
definition of Lw(J). 

Logarithmic summation is illustrated by the example shown in Fig. 2.3, 
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with three harmonic components. As indicated in the figure, the signal p(t) 
corresponds to (P2)av = 1.0 Pa2 and, by Eq. (2.7), Lp = 94 dB. The three 
harmonic components Pj(t) with {= 1,2,3 correspond to (P;)av = 0.1, 0.5, 
0.4 Pa2 and Lpj = 84, 91, 90 dB. These values agree with the relations (P2)av = 
(P~)av + (P~)av + (P~)av and Lp = 10 Ig(lOLpl/lO + lOLp2/10 + lOLpg /lO), which 
represent logarithmic summation. 

In practice the number of harmonic components is much larger than three, 
typically a few thousands. The frequencies of the harmonic components may 
be, for example, f = 1,2, ... ,5000 Hz. The spectrum Lp(f) is often a rather 
irregular function of frequency (an example will be shown in Fig. 2.6 later in 
this section). Therefore one replaces the large number of levels Lp(f) by a 
much smaller number of octave band levels Lp(fe). Octave bands are contigu­
ous frequency intervals that cover the complete frequency range (see Fig. 2.5). 
Each octave band is characterized by a center frequency, denoted by the sym­
bol fe. In atmospheric acoustics one uses the octave bands with the center 
frequencies 16, 31.5, 63, 125, 250, 500, 1000, 2000, 4000, and 8000 Hz. An 
octave band level Lp(fe) is calculated by logarithmic summation of the lev­
els Lp(f) of the harmonic components with frequencies in the octave band: 
Lp(fe) = 10 Ig(E' lOLp (J)/lO), where the prime indicates that the sum is over 
the frequencies in the octave band. We assume here that the frequencies are 
equidistant on a linear scale (see Fig. 2.5 and Sec. B.4). The function Lp(fe) is 
called the octave band spectrum of the sound pressure level and, in this context, 
the function Lp(f) is called the narrow band spectrum of the sound pressure 
level. 

It is straightforward to show that logarithmic summation of the octave band 
levels Lp(fc) yields the broadband level Lp, so we have Lp = 10 Ig(E lOLp (Jc)/lO), 

where the sum is over the octave bands. This implies that the octave band spec­
trum can be considered as an intermediate stage in the logarithmic summation 
of the narrow band spectrum to the broadband level. Of course many details of 
the narrow band spectrum are lost in the octave band spectrum. 

The octave band spectrum of the sound power level, denoted as Lw(fc), 
is defined in the same way as the octave band spectrum of the sound pressure 
level. An octave band sound power level is calculated from the narrow band 
spectrum Lw(f) with the relation Lw(fc) = IOlg(E'lOLw (J)/lO), where the 
sum is over the frequencies in the octave band. 

Sometimes octave bands are too wide, and the narrower 1/3-octave bands, 
or one-third-octave bands, are used (see Fig. 2.5). A I/3-octave band spec­
trum contains more details of the narrow band spectrum than an octave band 
spectrum does. 

Equation (2.10) is a relation between the narrow band spectra Lp(f) and 
Lw(f). An analogous relation holds for the I/3-octave or octave band spectra 
Lp(fc) and Lw(fc). If Lw(f) is constant over a 1/3-octave or octave band we 
have Lw(fc) = 10Ig(NlOLw (J)/1O), where N is the number of frequencies in 
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the band; logarithmic summation of Eq. (2.10) over the band gives 

(2.11) 

where -a(fc)r = 10 19( *' 2::' lO-a (J)r/lO) is the logarithmic average of the func­
tion -a(f)r over the band. In general, Lw (f) is not constant over the band, 
but Eq. (2.11) is still used as an approximation, with Lw(fc) given by the log­
arithmic sum 1OIg(2::' lOLw (f)/lO). Thus, while the 1/3-octave or octave band 
levels Lp(fc) and Lw(fc) are calculated from the narrow band spectra Lp(f) 
and Lw(f) by logarithmic summation, the term -a(fe)r is calculated from 
the function -a(f)r by logarithmic averaging. In practice, however, the term 
-a(fc)r is often approximated by the function -a(f)r evaluated at I = Ie (see 
Sec. B.5). 

It should be noted that the spectrum Lp(fc) and the broadband level Lp 
are calculated most accurately by logarithmic summation of the narrow band 
spectrum Lp(f) given by Eq. (2.10). In practice one uses Eq. (2.11), however, 
because the sound emission of a source is usually represented by the 1/3-octave 
or octave band spectrum Lw(fc). 

Equations (2.10) and (2.11) are important relations in atmospheric acoustics. 
The relations show that there is a clear distinction between sound emission and 
sound propagation. Sound emission is represented by the spectrum of the sound 
power level, i.e. the first term on the right-hand side of Eqs. (2.10) and (2.11). 
Sound propagation is represented by the remaining terms on the right-hand 
side. In this case we have an unbounded homogeneous atmosphere and the 
propagation terms are easily calculated; in the next chapter we will include an 
additional propagation term on the right-hand side to represent the effects of 
ground reflections, atmospheric refraction, and other propagation effects; we will 
describe numerical methods for the computation of this additional propagation 
term. After the computation of all propagation terms, Eq. (2.10) or Eq. (2.11) 
can be used to calculate the spectrum of the sound pressure level at the receiver, 
for an arbitrary source with a given spectrum of the sound power level. 

In applications in which human perception is involved, one often applies the 
A-weighting to spectra of the sound pressure level. There are also B- and C­
weightings, but these are rarely used. The A-weighting approximately represents 
the 'filter' that the human ear applies to sound (see Sec. BA). The human ear is 
most sensitive to frequencies around 1 kHz. Therefore, the A-weighting assigns 
a larger weight to the part of a spectrum around 1 kHz than to the part of the 
spectrum around 100 Hz, for example. The broadband sound pressure level that 
results from logarithmic summation of an A-weighted spectrum of the sound 
pressure level is often called simply the sound level, denoted by the symbol LA 
and expressed in dB(A) ('A-weighted decibels'). 

Figure 2.6 shows an example of the spectral decomposition of a sound signal. 
The upper graph shows the sound pressure as a function of time, over a period of 
1 s. Narrow band, 1/3-octave band, and octave band spectra are shown for the 
(unweighted, or linear) sound pressure level (left column) and the A-weighted 
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sound pressure level (right column). The broadband levels Lp and LA are also 
indicated in the graphs. 

Figures 2.7 and 2.8 show examples of A-weighted octave band spectra of 
the sound pressure level at various distances from a noise source. Spectra are 
shown for three types of noise source: a passenger car, a heavy truck, and a jet 
airplane. The spectra have been calculated with Eq. (2.11), using representa­
tive (experimental) sound power spectra for the sources and a temperature of 
lOoC and a relative humidity of 80% for the calculation of atmospheric absorp­
tion. The effects of ground reflections and atmospheric refraction are obviously 
not included in the spectra. These effects are studied in Chaps. 3 and 4. The 
graphs in Figs. 2.7 and 2.8 show that the frequency range from roughly 125 Hz 
to 4 kHz is most important for human perception of traffic noise and airplane 
noise. Frequencies below 125 Hz and above 4 kHz are relatively unimportant. 
With increasing distance from the source, low frequencies become increasingly 
important (see Fig. 2.8), due to the effect of atmospheric absorption: atmo­
spheric absorption is larger at high frequency than at low frequency. 

The spectrum of sound received from a moving source is affected by the 
motion of the source: frequencies are shifted by the Doppler effect (see Sec. B.6). 
In practice the Doppler frequency shift is often small and can be neglected. For 
a car with a speed of 100 km/h, for example, the frequency shift is less than 
10%. 
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Figure 2.6. Example of the spectral decomposition of a sound signal (broad­
band noise). The figure shows the time signal (upper graph) and narrow band, 
1/3-octave band, and octave band spectra of the unweighted (left column) and 
A-weighted (right column) sound pressure level. 
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Figure 2.7. A-weighted octave band spectra of the sound pressure level of a 
noise source, at four distances from the source (see legend). The upper graph 
represents the noise from a passenger car with a speed of 120 km/h. The lower 
graph represents the noise from a heavy truck with a speed of 90 km/h. The 
spectra have been calculated with Eq. (2.11), so the effects of ground reflections 
and atmospheric refraction are not included. We used sound power spectra 
from Ref. [153], and a temperature of lOoe and a relative humidity of 80% for 
the calculation of atmospheric absorption. The term -a(fc)r in Eq. (2.11) was 
approximated by the function -a(f)r evaluated at f = fc' 
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Figure 2.8. As Fig. 2.7, for the noise from a typical jet airplane, with a sound 
power spectrum from Ref. [110] and a broadband A-weighted sound power level 
of 160 dB(A). With increasing distance from the source, the maximum of the 
spectrum shifts to lower frequency due to the effect of atmospheric absorption. 



Chapter 3 

Homogeneous atmosphere 
above a ground surface 

3.1 Introduction 

In the previous chapter we have seen that a point source generates spherical 
waves in an unbounded homogeneous atmosphere. We showed that the sound 
pressure level at a receiver in the spherical sound field can be calculated from the 
sound power level of the source, taking into account the geometrical attenuation 
due to spherical spreading and the attenuation due to atmospheric absorption. 

In practice the source or the receiver, or both, are often close to a ground 
surface. In this case the calculation of the sound pressure level at the receiver is 
more complex, as will be described in this chapter. The ground surface reflects 
sound waves, so there are not only direct sound waves from the source to the 
receiver but also reflected sound waves. The interference between direct waves 
and reflected waves has a considerable effect on the sound field (see Fig. 3.1). 
In Chaps. 4 and 5 we will see that the interference is affected by atmospheric 
gradients and atmospheric turbulence. For small distances between the source 
and the receiver, however, these atmospheric effects can be neglected. 

For an acoustically hard ground surface, e.g. concrete, the calculation of the 
sound pressure level is relatively simple. For an acoustically absorbing ground 
surface, e.g. grassland, the calculation is more complex. 

3.2 Reflection of spherical waves by a ground 
surface 

We consider the geometry shown in Fig. 3.2, with a harmonic monopole source 
and a receiver in a homogeneous atmosphere above a ground surface. We use an 
rz coordinate system in the vertical plane through the source and the receiver; 
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sound pressure sound pressure level 

Figure 3.1. Fields of the sound pressure (left) and the sound pressure level 
(right), generated by a harmonic monopole source at a height of three wave­
lengths (3)') above an acoustically hard ground surface, in a homogeneous at­
mosphere. Regions of low amplitude corresponding to destructive interference 
are clearly visible as dark regions in the field of the sound pressure level, but are 
also visible in the field of the sound pressure. The fields have been calculated 
with Eq. (3.2), using Q = 1 for a hard ground surface. 

height Z 

receiver 
Z 

Zs 

reflected ray 

O+-~~------~------------~--~rnnger 
ground rs=O r 

-Zs 0" 
image source 

Figure 3.2. Geometry with a source and a receiver above a ground surface. Also 
indicated is the image source below the ground surface. 
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r is the horizontal range measured from the source and z is the height above 
the ground surface. The source is at position (rs = O,zs) and the receiver is at 
position (r ,z ). 

The source is characterized by the free field, i. e. the sound field of the source 
in an unbounded homogeneous atmosphere. The complex pressure amplitude 
of the free field is (see Sec. 2.4) 

S exp(ikRd 
Pfree = Rl' (3.1) 

where S is a constant, k is the wave number, and Rl is the distance from the 
source. 

The complex pressure amplitude at the receiver in the geometry shown in 
Fig. 3.2 can be written as (see Sec. D.4) 

- S exp(ikRd QS exp(ikR2 ) 
Pc - Rl + R 2 ' 

(3.2) 

with Rl = Jr2 + (z - zs)2 and R2 = Jr2 + (z + zs)2. The quantity Q in this 
equation is called the spherical-wave reflection coefficient; this quantity can be 
calculated with Eq. (D.54), Eq. (D.58), or Eq. (D.72) in Appendix D. The value 
of Q is a complex number, in general. Equation (3.2) can be interpreted in terms 
of two sound rays: the direct ray and the ray reflected by the ground surface 
(see Fig. 3.2). The path length of the direct ray is Rl and the path length of 
the reflected ray is R2 • Equation (3.2) can also be interpreted in terms of two 
sources: the real source above the ground surface and the image source below 
the ground surface (see Fig. 3.2). The distance between the receiver and the 
real source is Rl and the distance between the receiver and the image source is 
R2 • 

Atmospheric absorption is taken into account in Eqs. (3.1) and (3.2) by 
including a small imaginary term in the wave number (see Sec. 2.5). 

The complex pressure amplitude given by Eq. (3.2) is unaffected if the posi­
tions of the source and the receiver are interchanged. This is called the princi­
ple of reciprocity [121, 106], which holds also in an inhomogeneous atmosphere 
without wind (and even in an inhomogeneous atmosphere with wind if the wind 
direction is reversed). 

3.3 Spherical-wave reflection coefficient and 
ground impedance 

The spherical-wave reflection coefficient Q in Eq. (3.2) is a function of the fol­
lowing four quantities (see Sec. D.4): 

• wave number k (or frequency f = kc/27r), 

• distance R2 , 
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• reflection angle {} (see Fig. 3.2), 

• normalized ground impedance Z. 

The normalized ground impedance Z is a quantity that characterizes the ground 
surface acoustically (see Appendix C). The value of Z is a complex number, 
which depends on the frequency of the sound waves and on the structure of 
the ground. Various models exist for the calculation of the normalized ground 
impedance from parameters that characterize the structure of the ground. The 
most important parameter is the flow resistivity, denoted by the symbol u. 

To define the flow resistivity, we consider a situation in which a pressure 
difference over a slab of porous material forces air to flow through the slab. 
The flow resistivity is equal to the ratio of the pressure difference to the flow 
velocity, divided by the thickness of the slab. This is analogous to the definition 
of electric resistance. We express flow resistivity in units of kPa·s·m-2 . 

The concept of flow resistivity is also used for natural grounds such as grass­
land. Thus, grassland is modeled as a porous medium. A typical value of 
the flow resistivity for grassland is u = 200 kPa·s·m-2 • The flow resistivity of 
a material can be measured directly, but is often determined indirectly from 
acoustic measurements [6, 8, 31, 32, 37, 15, 48, 50, 96, 127, 87]. In the latter 
case the flow resistivity is treated as an adjustable parameter, and is called 
the effective flow resistivity. Values of the effective flow resistivity of natural 
absorbing grounds, such as grassland, forest floors, and sandy grounds, range 
roughly from u = 10 kPa·s·m-2 to u = 1000 kPa·s·m-2 . 

Delany and Bazley [39] developed an empirical model for the calculation 
of the impedance of fibrous absorbing materials. This model works well also 
for natural grounds such as grassland. Zwikker and Kosten [161] and Atten­
borough [4, 5, 6, 7, 10, 11] developed theoretical models for the calculation 
of the impedance. In the theoretical models, the ground is approximated as 
a semi-infinite porous medium, or as a porous layer with a rigid backing. In 
the numerical examples in this book, we model absorbing ground as a semi­
infinite porous medium; unless indicated otherwise, we use the four-parameter 
model developed by Attenborough [5] for the calculation of the impedance; the 
parameters of the model are specified in Sec. C.4. 

To gain insight into the ground reflection of spherical waves, we note that at 
high frequency the spherical-wave reflection coefficient Q is approximately equal 
to the plane-wave reflection coefficient Rp, which is given by (see Sec. D.2) 

R _ Zcos{}-1 
p- Zcos{}+I· (3.3) 

For an acoustically hard ground surface we have Z = 00 (and u = 00) so we 
find Rp = 1. In this case we also have Q = 1 (see Sec. D.4). An acoustically 
hard surface is usually referred to as a rigid surface. Examples are a concrete 
surface and a water surface. 

An acoustically absorbing ground surface has a finite impedance. Let us 
consider a situation in which the ground surface has a finite impedance and 
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both the source height and the receiver height are very small compared with 
the horizontal distance between the source and the receiver. In this case the 
reflection angle () approaches 1r/2 (see Fig. 3.3). The limit () -t 1r/2 is called 
the limit of grazing incidence. It follows from Eq. (3.3) that Rp approaches -1 
in the limit of grazing incidence. Hence, the spherical-wave reflection coefficient 
at high frequency also approaches -1 in the limit of grazing incidence. The 
path lengths of the direct ray and the reflected ray are approximately equal 
in this case (Rl ::::: R2), so the two terms on the right-hand side of Eq. (3.2) 
have approximately equal magnitudes but opposite signs. This corresponds to a 
destructive interference between direct sound waves and sound waves reflected 
by the ground surface. Thus, the sound pressure above a finite-impedance 
ground surface is very low in the limit of grazing incidence. 

direct ra receiver 

~~ 
~ 

ground 

Figure 3.3. The reflection angle () approaches 1r /2 in the limit of grazing inci­
dence. 

3.4 Relative sound pressure level 

From Eqs. (3.1) and (3.2) we have 

Pc = Pfree [1 + Q ~~ exp(ikR2 - ikRl)] . (3.4) 

This relation between Pc and Pfree can also be expressed in terms of the corre­
sponding sound pressure levels Lp and Lp,free, respectively. From Eq. (2.8) we 
have Lp = 1OIg(!lpcI2/P~ef) and Lp,free = 1OIg(!IPfreeI2/P~ef)' This gives 

Lp = Lp,free + 6.L, (3.5) 

with 

(3.6) 

The quantity 6.L will be referred to as the relative sound pressure level, and 
plays an important role in this book. From Eqs. (3.4) and (3.6) we find 

(3.7) 
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The relative sound pressure level t1L represents the deviation from the free field 
sound pressure level due to the presence of the ground surface. Both positive 
and negative values of t1L occur. 

Negative values of t1L occur in the case of destructive interference between 
direct sound waves and reflected sound waves. Complete destructive interference 
(t1L = -00) occurs if the second term in the argument of the logarithmic 
function in Eq. (3.7) is equal to -l. 

Positive values of t1L occur in the case of constructive interference between 
direct and reflected sound waves. For a rigid ground we have Q = 1 and the 
maximum value of t1L is 10 19 22 ~ 6 dB, as follows from Eq. (3.7) for Rl ~ R2. 
For absorbing ground we often have IQI < 1, so the maximum value of t1L is 
lower than 6 dB. In some situations, however, we have IQI > 1 and values of 
t1L higher than 6 dB occur; this can be attributed to the so-called surface wave 
[108,51, 146) (see also Sec. H.5), which is contained implicitly in the expressions 
for the spherical-wave reflection coefficient Q given in Sec. DA. 

As noted before, atmospheric absorption is taken into account by including 
a small imaginary term in the wave number (see Sec. 2.5). In many practi­
cal situations, however, we have Rl ~ R2, and atmospheric absorption can be 
neglected in Eq. (3.7). Only in situations with a high source and a high re­
ceiver, the distances Rl and R2 may be considerably different, and atmospheric 
absorption should be taken into account in Eq. (3.7). 

Substitution of Eq. (2.9) for Lp,free into Eq. (3.5) gives 

Lp = Lw - 101g47l"Ri - oR l + t1L. (3.8) 

This equation, with relative sound pressure level t1L defined by Eq. (3.6), is not 
restricted to the geometry shown in Fig. 3.2. Any deviation from the free field 
of a source can be represented by t1L defined by Eq. (3.6). If the deviation is 
due to a ground reflection in a homogeneous atmosphere, t1L is given by Eq. 
(3.7). The deviation may also be due to other effects. In Chaps. 4 to 7 we will 
use the relative sound pressure level to represent deviations due to atmospheric 
refraction, atmospheric turbulence, irregular terrain, and noise barriers. 

Instead of the relative sound pressure level t1L, the equivalent quantity 'ex­
cess attenuation' is also used in atmospheric acoustics. The excess attenuation 
is equal to -t1L. 

The quantities Lp, Lw, 0, and t1L in Eq. (3.8) are functions of frequency, 
in general. The function Lw(f), for example, is the narrow band spectrum 
of the sound power level of the source (see Sec. 2.6). The function t1L(f) is 
the corresponding spectrum of the relative sound pressure level. The spectrum 
t1L(f) should not be considered as a narrow band spectrum, as the value of 
t1L(f) does not depend on a narrow band width [whereas the values of Lp(f) and 
Lw(f) do depend on the narrow band width). The term 'continuous' spectrum 
is more appropriate for the spectrum t1L(f). 

The narrow band or continuous spectra in Eq. (3.8) can be converted to 
octave band spectra or 1/3-octave band spectra. Logarithmic summation of 
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Figure 3.4. Example of logarithmic summation of the sound pressure level 
(left) and logarithmic averaging of the relative sound pressure level (right). The 
summation and averaging may be over the frequencies in an octave band or a 
1/3-octave band. 

Eq. (3.8) over a 1/3-octave or octave band yields the approximate relation 

The quantities Lp(Jc) , Lw(Jc), and a(Jc)Rl in this relation have been de­
fined in Sec. 2.6 and the quantity 6.L(Jc) is equal to the 'logarithmic average' 
1OIg{-k L:/I0~L(f)/lO), where the sum is over N frequencies in the band; we 
assume that the frequencies are equidistant on a linear scale (see Fig. 2.5 and 
Sec. B.4). To derive Eq. (3.9) from the narrow band relation (3.8) one neglects 
the variation of Lw(J) and -a(J)R1 over the band. This variation can usually 
not be neglected, but Eq. (3.9) is still used as an approximation (see Sec. 2.6). 
Figure 3.4 shows an example of logarithmic summation of the sound pressure 
level and logarithmic averaging of the relative sound pressure level. The loga­
rithmic average is dominated by the highest levels. 

3.5 Examples 

In this section we present graphs of the relative sound pressure level, calculated 
with Eq. (3.7) for the geometry shown in Fig. 3.2. We use the rz coordinate 
system shown in Fig. 3.2 to denote the positions of the source and the receiver. 
We use the following notation above the graphs: 

• source (rs = O,zs), where Zs is expressed in meters, 

• receiver (r,z), where rand z are expressed in meters, 

• frequency f in Hz, 

• flow resistivity (j of the ground surface in kPa·s·m-2 . 
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Figure 3.5 shows the field of the relative sound pressure level D..L for a 
harmonic monopole source of 500 Hz at a height of 2 m above a rigid ground 
surface (u = 00). The field contains distinct regions where the level D..L is low 
(lower than the lower limit of -20 dB of the grey level scale). These regions 
correspond to destructive interference between direct sound waves and sound 
waves reflected by the ground surface. For a rigid ground surface we have Q = 1, 
and it follows from Eq: (3.7) that the minima of the relative sound pressure level 
occurfor exp(ikR2-ikRd = -1, or k(R2-Rd = (2n+1)1I", with n = 0, 1,2, .... 
Using k = 211"1/ c, we find that the minima occur for 

(3.10) 

where A = c/ I is the wavelength. Thus, destructive interference occurs if the 
path length difference R2 - Rl between the direct sound ray and the reflected 
sound ray is equal to (n + ~)A, so that direct waves and reflected waves have 
a phase difference of 1800 • With increasing height in Fig. 3.5, one successively 
passes the regions corresponding to n = 0,1,2, .... 

Figure 3.6 demonstrates the effect of 1/3-octave band averaging, both for a 
rigid ground surface and for an absorbing ground surface. For the rigid ground 
surface, deep interference minima occur in the continuous spectrum D..L(f) , 
while the minima in the 1/3-octave band spectrum are considerably less deep 
(cf. Fig. 3.4). For the absorbing ground surface, the interference minima in the 
continuous spectrum are considerably less pronounced than for the rigid ground 
surface, and consequently the effect of 1/3-octave band averaging on the minima 
is smaller than for the rigid ground surface. 

For the rigid ground surface, the relative sound pressure level in Fig. 3.6 
approaches 6 dB below a frequency of about 100 Hz (see Sec. 3.4). For the 
absorbing ground surface, the relative sound pressure level in Fig. 3.6 approaches 
6 dB at very low frequencies, below about 16 Hz (at very low frequency the 
reflection coefficient Q approaches unity and the absorbing ground surface can 
be considered as a rigid ground surface); at frequencies around 100 Hz the 
relative sound pressure level is considerably lower for the absorbing ground 
surface than for the rigid ground surface. With increasing frequency in the 
graphs in Fig. 3.6, one successively passes the interference minima corresponding 
to n = 0,1,2, ... (see above). 

In Fig. 3.6, and in many practical situations, we have z « r and Zs « r. In 
this case the frequencies of the interference minima can be calculated with Eqs. 
(3.11) and (3.12) below. Equation (3.11) is valid for a rigid ground surface and 
Eq. (3.12) is valid for an absorbing ground surface. 

For a rigid ground surface we have from Eq. (3.10) the relation R2 - Rl = 
(n + ~)A at the interference minima, with n = 0,1,2, .... From z « r and 
Zs « r we find R2 - Rl ~ 2zzs/r. Using A = c/ I, we find that the interference 
minima for a rigid ground surface occur at the frequencies 

1 rc 
In = (n + -2)-2 -. 

zZs 
(3.11) 
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Substitution of the values Zs = 2 m, Z = 2 m, and r = 30 m, which were used for 
Fig. 3.6, gives the relation In = (2n + 1)/0 with 10 = 637.5 Hz. The interference 
minima in Fig. 3.6 for the rigid ground surface occur at frequencies that agree 
with this relation. 

For the absorbing ground surface, the interference minima occur at slightly 
lower frequencies. This is due to the fact that the reflection by a finite-impedance 
ground surface causes a phase change of a sound wave. The spherical-wave 
reflection coefficient Q in Eq. (3.7) is a complex number, and can be written as 
Q = IQI exp(i-a), where IQI is the absolute value and -a is the argument. For an 
absorbing ground surface, it follows from Eq. (3.7) that the minima of the level 
f:l.L occur for exp(ikR2 - ikRl + i-a) = -1, or k(R2 - R1 ) + -a = (2n + 1)7r, with 
n = 0,1,2, .... Using R2 - Rl ~ 2zzs/r, we find that the interference minima 
for an absorbing ground surface occur at the frequencies 

1 -a rc 
In=(n+---)-. 

2 27r 2zzs 
(3.12) 

The argument -a is a positive quantity; this can be seen from Eq. (3.3), using 
Q ~ Rp and the fact that the imaginary part of the normalized impedance Z is 
positive (see Sec. CA). Consequently, the interference minima for an absorbing 
ground surface occur at lower frequencies than for a rigid ground surface. 

The interference minima in Fig. 3.6 are deeper for the rigid ground surface 
than for the absorbing ground surface. This can be explained as follows. For 
the rigid ground surface, direct waves and reflected waves have approximately 
equal amplitudes, so the waves cancel each other almost completely in regions 
where the phases are opposite. For the absorbing ground surface, the amplitude 
of reflected waves is smaller than the amplitude of direct waves, due to the ab­
sorption of acoustic energy by the ground, so only a partial cancellation occurs. 
This can also be seen from Eq. (3.7). For the rigid ground surface we have 
Q = 1, and the second term in the argument of the logarithm is approximately 
equal to -1 at the interference minima (using Rl ~ Rz). For the absorbing 
ground surface we have IQI < 1 at the interference minima, and the term is 
smaller (less negative) than -l. 

Figure 3.7 illustrates the effect of the choice of the impedance model (see 
Sec. 3.3) on the spectrum of the relative sound pressure level. The model de­
veloped by Delany and Bazley [39] yields a slightly different spectrum than the 
model developed by Attenborough [5] does. 

Figures 3.8 and 3.9 illustrate the effect of receiver range r (i. e. the horizontal 
distance between the source and the receiver) on the spectrum of the relative 
sound pressure level, for a rigid ground surface and an absorbing ground surface, 
respectively. For the rigid ground surface, the interference minima shift to 
higher frequency with increasing range r, in agreement with Eq. (3.11). For 
the absorbing ground surface, the first interference minimum becomes broader 
and deeper with increasing range r. This is a consequence of the destructive 
interference between direct sound waves and reflected sound waves, which occurs 
for grazing incidence on a finite-impedance ground surface (see Sec. 3.3). 
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Figures 3.10 and 3.11 illustrate the effect of receiver height z on the spectrum 
of the relative sound pressure level, for a rigid ground surface and an absorb­
ing ground surface, respectively. For the rigid ground surface, the interference 
minima shift to lower frequency with increasing height z, in agreement with 
Eq. (3.11). For the absorbing ground surface, the first interference minimum 
becomes broader and deeper with decreasing height z. Again, this is a conse­
quence of the destructive interference for grazing incidence on a finite-impedance 
ground surface. 

Figure 3.12 illustrates the effect of flow resistivity u of the ground surface on 
the spectrum of the relative sound pressure level. With increasing u, the first 
interference minimum shifts to higher frequency. 

Figure 3.13 illustrates the effect of finite dimensions of a sound source on 
the spectrum of the relative sound pressure level. For this figure we use a 
rectangular xyz coordinate system, where x and yare horizontal coordinates 
and z is the height above the ground surface. Source positions are denoted 
as (xs = 0, Ys, zs) and the receiver position is (x = 100, y = 0, z = 2), where 
coordinates are expressed in meters. The figure shows three spectra: 

• a spectrum for a point source at position (0,0,2), 

• a spectrum for a set of 256 incoherent point sources distributed uniformly 
over a square of 4 m2 in the yz plane, with -1 :::; Ys :::; 1 and 1 :::; Zs :::; 3, 

• a spectrum for a set of 100 incoherent point sources distributed uniformly 
over a line segment with a length of 200 m, located above the y axis, with 
Xs = 0, -100:::; Ys :::; 100, and Zs = 2. 

By 'incoherent point sources' we mean that the contributions of the point sources 
to the received sound pressure level are summed logarithmically (see Sec. 2.6), 
corresponding to logarithmic averaging of t::.L. This approach is reasonable 
if the point sources have no phase relations with each other, or if the phase 
differences between the sources show random fluctuations. The set of point 
sources distributed uniformly over the line segment, for example, can be used 
to calculate the average noise from cars on a road, as the cars have no phase 
relations with each other. A continuous distribution of point sources over a line 
is called an incoherent line source [75]. The representation of a car by a point 
source is studied in Refs. [59, 60]. 

The differences between the three spectra shown in Fig. 3.13 are small. The 
second interference minimum in the spectrum for the single point source is 
absent in the spectrum for the set of point sources distributed over the square. 
In other situations, however, the effect of finite dimensions of a sound source 
may be larger. 
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Figure 3.5. Field of relative sound pressure level t1L as a function of receiver 
range r and receiver height z. The grey level represents the value of t1L in dB, 
as indicated by the vertical bar. The geometry is shown above the graph. The 
source is a harmonic source with a frequency of 500 Hz. The source is located 
at range r = 0 and height z = 2 m. The ground surface is rigid (a = 00) and 
the atmosphere is homogeneous. The notation above the graph is explained in 
Sec. 3.5. 
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Figure 3.6. Continuous spectrum and one-third-octave band spectrum of the 
relative sound pressure level, for a rigid ground surface (upper graph) and an 
absorbing ground surface (lower graph). The impedance of the absorbing ground 
surface was calculated with a model developed by Attenborough [5], using a flow 
resistivity of 200 kPa·s·m-2 . 
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Figure 3.7. One-third-octave band spectrum of the relative sound pressure level, 
for an absorbing ground surface with a flow resistivity of 200 kPa·s·m-2 . The 
ground impedance was calculated from the flow resistivity with a model devel­
oped by Delany and Bazley [39] ('model 1') and a model developed by Atten­
borough [5] ('model 2'). 
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Figure 3.8. One-third-octave band spectrum of the relative sound pressure level, 
for five receiver ranges T (see legend) and a rigid ground surface. 
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Figure 3.9. As Fig. 3.8, for an absorbing ground surface. 
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Figure 3.10. One-third-octave band spectrum of the relative sound pressure 
level, for five receiver heights z (see legend) and a rigid ground surface. 
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Figure 3.11. As Fig. 3.10, for an absorbing ground surface. 
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Figure 3.12. One-third-octave band spectrum of the relative sound pressure 
level, for five values of the flow resistivity a of the ground surface (see legend). 
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Figure 3.13. Example of the effect of finite dimensions of a source on the 
1f3-octave band spectrum of the relative sound pressure level (see the text). 
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Atmospheric refraction 

4.1 Introduction 

In the previous chapter we studied sound propagation in a non-refracting at­
mosphere over a ground surface. In general, the assumption of a non-refracting 
atmosphere is justified only for small propagation distances. For propagation 
distances of the order of 100 m or more, atmospheric refraction often has large 
effects on received sound pressure levels, in particular if the source and the 
receiver are close to the ground, at heights of a few meters or less. 

In this chapter we study sound propagation in a refracting atmosphere over 
a ground surface. In Sec. 4.2 we describe the physical process of atmospheric 
refraction, which is caused predominantly by vertical gradients of the temper­
ature and the wind speed. Empirical relations for the vertical profiles of the 
temperature and the wind speed in the atmospheric surface layer are given in 
Appendix N. In Sec. 4.3 we introduce the profile of the effective sound speed, 
which depends on the profiles of the temperature and the wind speed. 

In Sec. 4.4 we describe the ray model for sound propagation in a refracting 
atmosphere. The ray model is useful for a qualitative understanding of atmo­
spheric sound propagation. It is less useful for accurate computations of sound 
pressure levels, in particular in situations with irregular sound speed profiles, 
owing to complex effects such as the focusing of sound rays at so-called caustic 
points. A ray model for smooth sound speed profiles is described in Appendix L. 

In Sec. 4.5 we describe three accurate numerical methods for sound propa-
gation in a refracting atmosphere over a ground surface: 

• the Fast Field Program (FFP), 

• the Crank-Nicholson Parabolic Equation (CNPE) method, 

• the Green's Function Parabolic Equation (GFPE) method. 

The three methods are described in detail in Appendices F, G, and H, respec­
tively. 
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Figure 4.1. Refraction of a plane wave in an atmosphere with sound speed Cl 

for Z ~ Zt and sound speed C2 for Z > Zt. Line segment AB is a wave front 
of the incident wave. Secondary sources (solid circles) at the interface Z = Zl 

generate spherical waves which form wave front A'B' of the refracted wave. 
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Figure 4.2. Refracted sound ray from a point source to a receiver, in the same 
atmosphere as in Fig. 4.1. The origin of the xz coordinate system is chosen at 
the position of the source. Point P is at position (x, zd and the receiver is at 
position (x" zr). 
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In Sec. 4.6 we present numerical examples. The examples illustrate the 
accuracy of the computational methods in various situations. 

4.2 Atmospheric refraction 

Atmospheric refraction was described in Sec. 2.2 as a change of the propagation 
direction of a sound wave due to a sound speed gradient in the atmosphere. 
The propagation direction at a point was defined as the direction of the vector 
normal to the wave front through the point. The wave fronts of a plane wave 
in a non-refracting atmosphere are plane surfaces; in this case the propagation 
direction is independent of position. Refraction of a plane wave is illustrated in 
Fig. 4.1, for an atmosphere in which the sound speed c is a simple function of 
height z: 

c(Z) = {C1 for Z ~ Z1 
C2 for Z > Z1, 

(4.1) 

where C1 and C2 are constants and Z1 is the height indicated in Fig. 4.1. In 
general, the function c(z) is called the (vertical) sound speed profile. The figure 
shows a plane wave in the region z < Z1 incident on the interface at height Zl. 

The elevation angle of a plane wave is defined as the angle between the propa­
gation direction and the (horizontal) x axis; the elevation angle of the incident 
plane wave is '/'1. All points of the interface at height Zl can be considered as 
secondary point sources (this is Huygen's principle [106]). Spherical waves gen­
erated by the secondary sources form a plane wave in the region Z > Zl, with 
elevation angle '/'2. 

We consider line segment AB of the wave front at time t, which has moved 
to A'B' at time t + at. The time interval 1St is equal to I AA' I / C1, and also equal 
to IBB'I/C2, where IAA'I and IBB'I are the lengths of line segments AA' and 
BB', respectively. From IAA'I = IA'BI cos '/'1 and IBB'I = IA'BI cos '/'2, where 
IA'BI is the length of line segment A'B, we find 

cos '/'1 cos '/'2 (4.2) 

This is Snell's law of refraction (see also Sec. D.3). For an atmosphere with a 
continuous sound speed profile c(z), instead of the discontinuous profile given 
by Eq. (4.1), Snell's law states that the elevation angle,/, of a plane wave varies 
with Z in such a way that the ratio cos,/,(z)/c(z) is constant. 

In Fig. 4.1 we have '/'2 < '/'1, corresponding to C2 > C1; the atmosphere is 
called a downward refracting atmosphere in this case. In the opposite case with 
'/'2 > '/'1 and C2 < C1, the atmosphere is called an upward refracting atmosphere. 

The wave fronts of a point source in a non-refracting atmosphere are spheres. 
In a refracting atmosphere, the spheres are deformed by the effect of refraction. 
A curved wave front can be approximated locally by a plane wave front. The 
propagation of such a plane wave front obeys Snell's law of refraction. An 
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equivalent statement is that the curved sound rays from a point source, i.e. the 
curves perpendicular to the wave fronts of the point source, obey Snell's law for 
sound rays: 

cos')'(z} 
C(z} = constant along a sound ray, (4.3) 

where ,),(z} = arctan(dz/dx} is the elevation angle of the sound ray at height z. 
This is illustrated in Fig. 4.2 for an atmosphere with the sound speed profile 
given by Eq. (4.1). The sound ray consists of two straight segments, with a 
discontinuous slope at z = Zl. In an atmosphere with a continuous sound speed 
profile c(z}, instead of the discontinuous profile given by Eq. (4.1), the sound 
rays are curves with a continuous slope. 

The travel time of a sound wave along the path represented by a sound ray 
is always smaller than the travel time along a slightly deformed path. In other 
words, a sound wave follows the path between the source and the receiver that 
corresponds to a (local) minimum of the travel time. This is Fermat's principle 
of minimum travel time (a more general statement is that a sound wave follows 
the path that corresponds to a stationary travel time; see Ref. [106]). 

To illustrate Fermat's principle we consider a deformation of the path shown 
in Fig. 4.2 by varying the x coordinate of point P. The travel time t is given 
by t = rI/cl + r2/c2, with rl = VX2 + z~ and r2 == V(xr - x)2 + (zr - Zl}2. 
The derivative of the travel time with respect to the x coordinate of point P is 
at/ax == (x/rd/Cl - [(xr - x}/r2]/c2, or at/ax == COS')'I/Cl - COS')'2/C2. From 
Fermat's principle we have at/ax = 0, which gives COS')'I/Cl = COS')'2/C2, i.e. 
Snell's law. 

4.3 Effective sound speed 
In a non-moving atmosphere, i.e. an atmosphere without wind, sound waves 
travel with the adiabatic sound speed, which is a function of the temperature 
of the atmosphere (see Secs. 2.2 and A.2). An atmosphere with wind is called 
a moving atmosphere. The computation of sound propagation in a moving at­
mosphere is more complex than the computation of sound propagation in a 
non-moving atmosphere. Fortunately, a moving atmosphere can be approxi­
mated by a non-moving atmosphere with an effective sound speed Ceff = C + u, 
where C is the adiabatic sound speed and 1.£ is the (horizontal) component of 
the wind velocity in the direction of sound propagation. The idea behind this 
approximation is that a sound wave travels faster if the atmosphere moves in 
the propagation direction (1.£ > 0) and slower if the atmosphere moves in the op­
posite direction (1.£ < 0) [40]. A more rigorous justification ofthe effective sound 
speed approximation is given in Sec. E.3. In general, the effective sound speed 
approximation is valid in situations in which sound waves travel with relatively 
small elevation angles, such as situations with the source and the receiver near 
the ground. For large elevation angles, the effective sound speed approximation 
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is not valid. The effective sound speed Ceff will often be referred to simply as 
the sound speed c. 

Spatial variations of the temperature and the wind velocity in the atmo­
sphere correspond to spatial variations of the effective sound speed. These 
variations cause atmospheric refraction. In situations with a flat, homogeneous 
ground surface, it is usually a good approximation to assume that the temper­
ature, the wind velocity, and the effective sound speed are functions of height z 
only: 

Cetr(z) = c(z) + u(z). (4.4) 

The atmosphere is called a layered atmosphere or a stratified atmosphere in this 
case. The function Cetr(z) is called the (effective) sound speed profile. 

Empirical expressions for the vertical profiles of the temperature and the 
wind speed are given in Appendix N. These profiles should be considered as 
average profiles, averaged over a period of typically ten minutes (variations of 
the profiles on smaller time scales are considered in Chap. 5). The expressions 
given in Appendix N are valid for the atmospheric surface layer, which has 
a height of typically 100 m. The profiles are characterized by large vertical 
gradients near the ground surface. At the ground surface, the wind speed is 
approximately zero, due to friction at the ground surface. With increasing 
height, the wind speed increases while the vertical derivative of the wind speed 
decreases. The variation of the wind speed is largest in the first few meters 
above the ground surface. The shape of the wind speed profile depends on the 
roughness of the ground surface. Air flowing over a ground surface is 'slowed 
down' more effectively by a rough surface, e.g. grassland, than by a smooth 
surface, e.g. a water surface. 

The shape of the temperature profile is similar to the shape of the wind speed 
profile. The variation of the temperature is largest near the ground surface 
and decreases with increasing height. In the daytime, the temperature usually 
decreases with increasing height. At night, the temperature usually increases 
with increasing height. 

A realistic profile of the effective sound speed in the atmospheric surface 
layer is the logarithmic profile 

(4.5) 

with parameters Co, b, and zoo Parameter Co is the sound speed at the ground 
surface; the precise value of Co is unimportant, and we use Co = 340 m/s. 
Parameter Zo is called the (aerodynamic) roughness length of the ground surface; 
typical values are between 0.01 m and 0.1 m for grassland and between 10-4 m 
and 10-3 m for a water surface. We use Zo = 0.1 m, unless indicated otherwise. 
Typical values of parameter b in Eq. (4.5) are 1 mls for a downward refracting 
atmosphere and -1 mls for an upward refracting atmosphere. Figure 4.3 shows 
the logarithmic profile (4.5) for Co = 340 mis, Zo = 0.1 m, and b = 1 m/s. For an 
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Figure 4.3. Logarithmic profile (4.5) of the effective sound speed, for 
Co = 340 mis, Zo = 0.1 m, and b = 1 m/s. 

atmosphere with a constant temperature, the values b = 1 mls and Zo = 0.1 m 
correspond to a wind speed (component) of 4.6 mls at a height of 10 m. 

4.4 Ray model 

Atmospheric sound propagation can be modeled with sound rays. Basically, the 
approach of a ray model consists of two steps: 

i) calculation of the paths of all sound rays between the source and the 
receiver, 

ii) calculation of the received sound pressure by summation of the contribu­
tions of all sound rays. 

This approach is called geometrical acoustics. The principles of geometrical 
acoustics are described in Refs. [2, 17, 106]. 

The model described in Chap. 3 for sound propagation in a non-refracting 
atmosphere can be considered as a simple ray model. The complex pressure 
amplitude Pc was written in Eq. (3.2) as a sum of two terms: 

2 

Pc = LAm exp(irpm), (4.6) 
m=l 

with phases rpm = kRm and amplitudes Am that follow by comparison with 
Eq. (3.2). In general, A2 is complex, so rp2 is not the total phase of the second 
term. The two terms can be interpreted as the contributions of sound rays. 
The first term represents the direct ray and the second term represents the ray 
reflected by the ground surface. In this case the ray model can be considered as 
a representation of the exact solution of the wave equation for a system with a 
non-refracting atmosphere and a finite-impedance ground surface (see Sec. D.4). 
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Figure 4.4. Direct ray and ray reflected by the ground surface, in a downward 
refracting atmosphere (left) and an upward refracting atmosphere (right). The 
dashed lines represented the straight rays in a non-refracting atmosphere. 

In general, the assumption of a non-refracting atmosphere is justified only 
for small propagation distances, of the order of a few tens of meters. For larger 
distances, the effects of atmospheric refraction must be taken into account. In 
a refracting atmosphere, sound rays are curved and the number of rays is often 
different from two. 

For small source-receiver distances, the number of rays is still equal to two, 
but the rays are curved as shown in Fig. 4.4. A solution of the wave equation for 
this situation, analogous to the exact solution for a non-refracting atmosphere, 
can be found in Ref. [82]. 

For larger distances, the number of rays is often different from two. This 
is illustrated in Figs. 4.5 and 4.6, for an upward refracting atmosphere and 
a downward refracting atmosphere, respectively. The figures show sound rays 
emitted by a point source within a limited interval of the elevation angle (a 
point source emits sound rays in all directions, but for graphical clarity we have 
omitted rays with large elevation angles in the figures). The rays were calculated 
for the logarithmic sound speed profile (4.5), with b = -1 mls for Fig. 4.5 and 
b = 1 mls for Fig. 4.6. 

In an upward refracting atmosphere (Fig. 4.5), a region exists where no 
sound rays arrive. This region is called the shadow region. The location of the 
shadow region depends on the source height and the sound speed profile. The 
ray model predicts a vanishing sound pressure in a shadow region. In reality, 
the sound pressure is small but not zero, due to the effect of diffraction and the 
effect of scattering by atmospheric turbulence [89] (see Sec. 4.6.4 and Chap. 5). 

In a downward refracting atmosphere (Fig. 4.6), sound rays with multiple 
ground reflections occur, so the number of rays arriving at a distant receiver 
is often much larger than two. The calculation of all ray paths to a receiver is 
called 'ray tracing'. One needs in general an iterative computational algorithm 
to 'trace' all ray paths. A ray tracing algorithm consists basically of the compu­
tation of many ray paths and the selection of those ray paths that arrive at the 
receiver. A ray path is computed by numerical integration of Snell's law (4.3), 
i. e. by making small steps along the ray path in such a way that the elevation 
angle satisfies Snell's law (4.3) at all points of the ray path. Figure 4.7 shows 
that the number of rays increases with increasing distance between the source 
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Figure 4.5. Sound rays in an upward refracting atmosphere. 

source (0,2) b = 1 mls 

Figure 4.6. Sound rays in a downward refracting atmosphere. 



Atmospheric refraction 

source (O,2) receiver (r,2) b = 1 m/s 
4 r---------------------~--------------------~ 

2 rays 

10.-------------------.-------------------~ 

500 
range (m) 

12 rays 

1000 

45 

Figure 4.7. Sound rays between a source at position (0,2) and a receiver at 
position (r,2), for r = 80 m (top), r = 300 m (middle), and r = 1000 m 
(bottom), in a downward refracting atmosphere with logarithmic sound speed 
profile (4.5) with b = 1 m/s. The lower graph for r = 1000 m illustrates the 
grouping of rays in sets of four rays. 
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Figure 4.8. The ray tube diameter D is the normal distance between two sound 
rays emitted by the source with a small difference in elevation angle. 

and the receiver, for a logarithmic sound speed profile. The figure also shows 
that the rays are grouped in sets of four rays [49], except for small distances 
between the source and the receiver. 

The generalization of Eq. (4.6) for a situation with two or more sound rays 
in a downward refracting atmosphere is [17, 81, 135] 

Nraya 

Pc = 2: Am exp(itPm), (4.7) 
m=l 

where Nrays is the number of sound rays. The phase tPm of ray m is given by 
tPm = J k(z)ds, where s is the path length along the ray; we assume a layered 
atmosphere here, with k = k(z). This can also be written as tPm = wtm, where 
tm = J c-1(z)ds is the travel time along the ray. The amplitude Am of ray m 
can be written as (see Sec. L.3) 

N S 
Am = 1mCmm Rl' (4.8) 

where 1m is a focusing factor, Cm is a reflection coefficient, and Nm is the num­
ber of ground reflections. For the reflection coefficient Cm we use the spherical­
wave reflection coefficient (see Sec. 1.3.4). The focusing factor 1m accounts 
for the fact that, in a refracting atmosphere with curved sound rays, there are 
regions where the 'concentration' of sound rays is high and regions where the 
'concentration' of sound rays is low (see Fig. 4.6). A measure of the ray con­
centration is the ray tube diameter D, which is defined as the normal distance 
between two sound rays emitted by the source with a small difference in ele­
vation angle (see Fig. 4.8). The ray tube diameter is small in regions of high 
ray concentration (the rays are focused here) and the ray tube diameter is large 
in regions of low ray concentration (the rays are defocused here). The focusing 
factor is equal to JD free / D, where Dfree is the ray tube diameter in the free 
field, i.e. the field in an unbounded homogeneous atmosphere (see Sec. L.3.6). 
The focusing factor is equal to unity in the free field. 

A problem with the ray model is caustics [18, 17, 106]. A caustic is a set 
of points where the ray tube diameter vanishes. In other words, two sound 
rays emitted by the source with a small (infinitesimal) difference in elevation 
angle, cross each other at a caustic point (see Fig. 4.6). Hence, the focusing 
factor diverges at a caustic point, and geometrical acoustics predicts an infinite 
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turning points 

Figure 4.9. Example of a sound ray with two turning points (n = 2). The 
maximum height of the ray, denoted as h, is indicated. 

amplitude at a caustic point. In reality, the amplitude of the sound pressure 
at a caustic point is relatively high but not infinite of course. The difference 
between the real sound pressure field and the geometrical acoustics prediction is 
called a caustic diffraction field. Caustic diffraction fields eliminate the infinite 
amplitudes. The computation of caustic diffraction fields is complex [85, 73], 
which makes the ray model less attractive for accurate computations of sound 
propagation, in particular for irregular sound speed profiles. 

In Appendix L we describe a ray model that takes into account caustic 
diffraction fields . The model assumes a smooth sound speed profile, with a sound 
speed that increases monotonically with height; an example is the logarithmic 
profile (4.5). The rays shown in Figs. 4.6 and 4.7 for a downward refracting 
atmosphere were computed with this model (the rays shown in Fig. 4.5 for an 
upward refracting atmosphere were computed by straightforward integration of 
Snell's law). 

In the remainder of this section we will use the ray model to provide insight 
into sound propagation in situations such as shown in the lower graph in Fig. 4.7 
(for r = 1000 m), with a large distance between the source and the receiver and 
a large number of sound rays. The sound rays are grouped in sets of four rays. 
In the example shown in the lower graph in Fig. 4.7, there is a group of four 
rays that reach a height of about 22 m, a second group of four rays that reach 
a height of about 11 m, and so on. In general, the highest point of a sound 
ray is called the turning point, and the height of the turning point is called the 
maximum height of the ray; the maximum height is denoted as h (see Fig. 4.9) . 
The four rays of a group have an equal number of turning points, which is 
denoted as n (n = 1,2, ... ). The maximum height h is approximately equal for 
the four rays of a group, and we denote the value of h for a group of rays with n 
turning points as hn . For the logarithmic profile (4.5) we have (see Sec. L.3.1) 

(4.9) 

For r = 1000 m and b = 1 mls we find hn ~ 22/n m. Thus, we have hI ~ 22 m, 
h2 ~ 11 m, and so on. These values are in agreement with the maximum heights 
of the rays shown in the lower graph in Fig. 4.7. 
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Equation (4.9) for the maximum height hn is valid if the source height Zs 

and the receiver height Z are small compared with hn . With increasing n, the 
maximum height hn decreases and deviations occur from Eq. (4.9). At a certain 
value of n, hn given by Eq. (4.9) becomes smaller than Zs or z, and Eq. (4.9) 
should not be used anymore, as there are no sound rays with a maximum height 
smaller than Zs or z. 

If we neglect the deviations from Eq. (4.9) and use this equation for all rays 
with hn larger than Zs and z, we find that the total number of groups is given 
approximately by hI / Zsn where Zsr is, for example, the average of the source 
height and the receiver height. Each group consists of four rays, so the total 
number of rays is N rays ~ 4hI / Zsr. In the example in the lower graph in Fig. 4.7, 
4hd Zsr is equal to 44, in good agreement with the actual number of rays (40). 

The relation Nrays ~ 4hI / Zsr can be used to derive a simple expression for 
the relative sound pressure level fl.L for the case of sound propagation over 
a water surface in a downward refracting atmosphere with logarithmic sound 
speed profile (4.5). As the reflection coefficient for a water surface is equal to 
unity, all rays have approximately equal amplitudes at a distant receiver; here 
we neglect the effects of focusing and caustics. We further neglect the effects 
of interference between the rays, so we assume that the phases of the rays are 
random. In the free field there is only one ray, so we have IPcl 2 ~ NraysiPfreel2 

in the definition (3.6) of fl.L. This gives 

(4.10) 

where N rays = 4hd Zsr is the number of rays. It follows from Eq. (4.9) that N rays 

is proportional to the receiver range r, so it follows from Eq. (4.10) that fl.L 
increases linearly with 19 r. In Sec. 4.6.4 we will illustrate this linear increase by 
a numerical example. In Chap. 6 we will see that the increase is not unlimited, 
as a consequence of the roughness of a water surface. 

In the case of sound propagation over an absorbing ground surface, e.g. 
grassland, the above linear increase of fl.L with 19r does not occur. In this 
case, rays with many ground reflections have a small amplitude at a distant 
receiver. Consequently, most of the sound energy flows along the highest sound 
rays [131]. In this case the relative sound pressure level fl.L at a distant receiver 
is dominated by the highest sound rays. 

4.5 FFP and PE methods 
In this section we describe three accurate numerical methods for sound propa­
gation in a refracting atmosphere over a ground surface: 

• the Fast Field Program (FFP), 

• the Crank-Nicholson Parabolic Equation (CNPE) method, 

• the Green's Function Parabolic Equation (GFPE) method. 
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Figure 4.10. Rectangular xyz coordinates and cylindrical rz¢ coordinates. In 
the axisymmetric approximation we neglect the variation of the sound field with 
azimuthal angle ¢. 

The three methods are described in detail in Appendices F, G, and H, respec­
tively. References to the literature are given in the appendices. The three 
methods will be referred to as the FFP method, the CNPE method, and the 
GFPE method, respectively. 

In general, the three methods yield a solution of the wave equation, or an 
approximation of the wave equation, for a system with a monopole source above 
an absorbing or rigid ground surface. The computation is performed in the fre­
quency domain, i.e. for a harmonic sound field. The computation of a complete 
spectrum requires separate computations for all frequencies of the spectrum. 
In general, the computing time increases with increasing frequency, and the 
computing time for a complete spectrum is often considerable. 

To keep the computing time acceptably small, the computations are usually 
performed in two dimensions, in the vertical plane through the source and the 
receiver. This approach is based on the axisymmetric approximation, which 
corresponds to a neglect of the variation of the sound field with azimuthal angle 
¢ around the vertical axis through the source (see Fig. 4.10; see also Sec. E.4). 
The axisymmetric approximation is a good approximation in many practical 
situations, as wind and temperature variations with azimuthal angle are usu­
ally considerably smaller than wind and temperature variations with height. 
An example that illustrates the accuracy of the axisymmetric approximation is 
presented in Sec. 4.6.3. 

The Fast Field Program (FFP method) is based on a Fourier transformation 
of the wave equation from the horizontal spatial domain to the horizontal wave 
number domain. The transformed wave equation is solved numerically, and 
the solution is transformed back to the spatial domain by an inverse Fourier 



50 Chapter 4 

source 

ground 

Figure 4.11. The PE method is valid for sound waves with elevation angles, 
between -,max and ,max' 

transformation. Thus, the solution in the spatial domain is an inverse Fourier 
integral over horizontal wave numbers. Therefore, the FFP method is sometimes 
called the 'wave number integration method' [69]. The FFP method is widely 
used in ocean acoustics. For simple sound speed profiles, the wave equation in 
the horizontal wave number domain can be solved analytically with the method 
of normal modes [69, 120, 9]. 

In Appendix F we describe a generalized formulation of the FFP method, 
which can be applied to both axisymmetric (two-dimensional) systems and 
three-dimensional systems, with either a non-moving atmosphere or a moving 
atmosphere with an arbitrary field ofthe (horizontal) wind vector. Results of the 
generalized FFP method will be used in Sec. 4.6.1 to illustrate moving-medium 
effects and the accuracy of the effective sound speed approximation. 

As a consequence of the Fourier transformation to the horizontal wave num­
ber domain, the FFP method is restricted to systems with a layered atmosphere 
and a homogeneous ground surface. Systems with a range-dependent sound 
speed profile or a range-dependent ground impedance cannot be modeled with 
the FFP method. 

In contrast to the FFP method, the Parabolic Equation (PE) method is 
not restricted to systems with a layered atmosphere and a homogeneous ground 
surface. The PE method is based on a parabolic equation, which is an ap­
proximate form of the wave equation. As described in Appendix G, different 
parabolic equations exist. A parabolic equation is valid for elevation angles that 
do not exceed a limiting angle ,max' In other words, PE results are accurate 
only for receivers at elevation angles smaller than ,max (see Fig. 4.11). This 
angular limitation will be studied quantitatively in Sec. 4.6.2. 

For a moving atmosphere, the effective sound speed approximation is used 
in the PE method. Since the effective sound speed approximation is not valid 
for large elevation angles, the PE method should not be used for moving atmo­
spheres and large elevation angles. 

Back scattering of sound waves, i. e. scattering by sound speed gradients in 
the direction back to the source, is neglected by a parabolic equation. In other 
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Figure 4.12. Grid in the rz plane used in two-dimensional PE methods, with 
horizontal grid spacing 6.r and vertical grid spacing 6.z. The amplitude of the 
sound pressure at a grid point is represented schematically by the size of the 
circle at the grid point. 

words, a parabolic equation is a one-way wave equation, taking into account 
only sound waves traveling in the direction from the source to the receiver. As 
the sound speed is usually a smooth function of position in the atmosphere, the 
one-way wave propagation approximation is usually a good approximation. 

The Crank-Nicholson Parabolic Equation (CNPE) method and the Green's 
Function Parabolic Equation (GFPE) method are two different methods of solv­
ing a parabolic equation. Two-dimensional CNPE and GFPE methods are based 
on the axisymmetric approximation, so the solution is performed in two dimen­
sions, in the rz plane through the source and the receiver. Both methods make 
use of a rectangular grid in the rz plane (see Fig. 4.12). The source is repre­
sented by a starting function pc(r = 0, z) of the complex pressure amplitude at 
range r = O. This starting function is extrapolated step-wise on the grid, in the 
positive r direction. An extrapolation step from range r to range r + 6.r can be 
expressed as 

pc(r, z) -+ pc(r + 6.r, z). (4.11) 

By repeating this extrapolation step many times, the complete field Pc (r, z) of 
the complex pressure amplitude is computed. 

In the CNPE method, a Crank-Nicholson finite-difference scheme is used for 
the numerical evaluation of an extrapolation step. The horizontal and vertical 
grid spacings 6.r and 6.z in the CNPE method are limited to a maximum value 
of about A/lO, where A is an average wavelength. Consequently, the number of 
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Figure 4.13. In the three-dimensional GFPE method, the field is computed in a 
pie slice region. Periodic boundary conditions are imposed on the straight sides 
at 4> = 0 and 4> = 8. 

grid points, and hence the computing time, increases with increasing frequency. 
In the GFPE method, the vertical grid spacing is also limited to about ,\/10, but 
the horizontal grid spacing (or range step) may be chosen considerably larger, 
up to about 50'\. Consequently, computing times of the GFPE method are 
considerably smaller than computing times of the CNPE method. 

As indicated before, the PE method is not restricted to systems with a 
layered atmosphere and a homogeneous ground surface. A range dependence 
of the sound speed profile or the ground impedance is taken into account by 
changing the profile or the impedance during the extrapolation of the field in 
the positive r direction. In Chap. 5 we will see that we can even take into 
account the effect of atmospheric turbulence with the PE method. 

A three-dimensional GFPE method is described in Sec. H.12. In this case we 
compute the field in a pie slice region (see Fig. 4.13), by a step-wise extrapolation 
of the field in the positive r direction. Periodic boundary conditions are imposed 
on the straight sides at 4> = 0 and 4> = 8. This approach is obviously correct for 
8 = 3600 • For 8 < 3600 it is an approximate approach. By choosing a low value 
for 8 we keep the computation efficient. 

4.6 Examples 

In this section we present results that illustrate the application of the FFP 
method, the PE methods, and the ray model. Results are represented by the 
relative sound pressure level AL = 10Ig(lpcI2 /IPfreeI2 ), in the same way as in 
Chap. 3 for a non-refracting atmosphere. Parameters are indicated above the 
graphs using the same notation as in Sec. 3.5. Unless indicated otherwise, we 
use the logarithmic sound speed profile (4.5) with Co = 340 mls and Zo = 0.1 m. 
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4.6.1 Moving-medium effects 

The generalized formulation of the FFP method described in Appendix F can 
be used to study moving-medium effects and the accuracy of the effective sound 
speed approximation. In the three-dimensional FFP method, the atmosphere is 
represented by three profiles: the (adiabatic) sound speed profile c(z) and the 
profiles u(z) and v(z) of horizontal wind velocity components; u and v are the 
components parallel and perpendicular to the direction of sound propagation, 
respectively. In the two-dimensional FFP method, the atmosphere is repre­
sented by the profiles c(z) and u(z). In this example, the profiles are given by 
logarithmic functions: 

c(z) = Co + btln (~ + 1) 
u(z) = buln (:0 + 1) 
v(z) = bvln (:0 + 1) 

(4.12) 

(4.13) 

(4.14) 

with Co = 340 mls and Zo = 0.1 m. We consider different combinations of the 
parameters bt , bu, and bv. For the two-dimensional FFP method we consider 

i) bt = 1 mis, bu = 0 mls (non-moving atmosphere), 

ii) bt = 0 mis, bu = 1 mls (moving atmosphere). 

Both combinations correspond to the effective sound speed profile Ceff(Z) = 
Co + bln(l + zlzo) with b = 1 m/s. For the three-dimensional FFP method we 
consider 

iii) bt = 1 mis, bu = 0 mis, bv = 0 mls (non-moving atmosphere), 

iv) bt = 0 mis, bu = 1 mis, bv = 0 mls (moving atmosphere), 

v) bt = 0 mis, bu = 1 mis, bv = 1 mls (moving atmosphere with cross-wind). 

These three combinations also correspond to the effective sound speed profile 
Ceff(Z) = Co + bln(l + zlzo) with b = 1 m/s. lithe combinations i) and ii) give 
equal results, and if the combinations iii), iv), and v) give equal results, we 
can conclude that the effective sound speed approximation is an accurate ap­
proximation. IT two-dimensional results are equal to three-dimensional results, 
we can conclude that two-dimensional modeling, based on the axisymmetric 
approximation, is an accurate approach. 

In this example the source height is 2 m, the frequency is 400 Hz, and the flow 
resistivity of the ground surface is 200 kPa·s·m-2 • Results are shown in Fig. 4.14 
for a receiver height of 2 m and in Fig. 4.15 for a receiver height of 50 m, for 
the combinations i) to v) of the parameters bt , bu, and bv' As a reference, the 
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Figure 4.14. Relative sound pressure level as a function ofrange, computed with 
the two-dimensional FFP method and the three-dimensional FFP method, for 
a situation with Zs = 2 m, f = 400 Hz, (1 = 200 kPa·s·m-2 , and Z = 2 m. The 
legend shows values of the parameters used in Eqs. (4.12), (4.13), and (4.14) 
for the atmospheric profiles. The thick solid line represents a non-refracting 
atmosphere. The other lines and the symbols represent downward refracting 
atmospheres, which all correspond to the effective sound speed profile Ceff(Z) = 
Co + bln(l + z/zo) with b = 1 m/s. The dashed line is indistinguishable from 
the thin solid line. 
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figures show also the result for a non-refracting atmosphere, represented by a 
thick solid line. 

Figure 4.14 shows that, for a receiver height of 2 m, the combinations i) to 
11) of bt , bu , and bv give equal results. Consequently, the effective sound speed 
approximation is accurate and two-dimensional modeling is accurate. 

Figure 4.15 shows that, for a receiver height of 50 m, small deviations occur 
between the results for the different combinations of bt , bu , and bv • The effective 
sound speed approach gives slightly inaccurate results, in this case. Neverthe­
less, cross-wind has no effect and two-dimensional modeling is accurate. 

4.6.2 Angular limitation of the PE method 

In this section we present results that illustrate the angular limitation of the PE 
method (see Fig. 4.11). We first investigate how accurate the CNPE and GFPE 
methods can reproduce the exact field of the relative sound pressure level shown 
in Fig. 3.5, for a rigid ground surface and a non-refracting atmosphere (b := 0). 
The CNPE field is shown in Fig. 4.16 and the GFPE field is shown in Fig. 4.17. 
We see that the GFPE method is accurate up to high elevation angles, while 
the CNPE method is accurate only up to about 30° or 40°. Figure 4.18 shows 
the relative sound pressure level along a horizontal line at a height of 50 m in 
the fields shown in Figs. 3.5, 4.16, and 4.17. 

It should be noted that we used a high-order starting function for the GFPE 
field (order 8, see Sec. H.lD). The accuracy for large elevation angles decreases 
with decreasing order of the starting function. 

From Figs. 4.16 to 4.18 we conclude that, for a non-refracting atmosphere, 
the GFPE method is more accurate than the CNPE method, at high elevation 
angles. Figure 4.19 shows an example which suggests that this conclusion is 
valid also for a refracting atmosphere. The figure shows a graph of the relative 
sound pressure level as a function of elevation angle, for a fixed receiver range of 
400 m. In this example we used a linear sound speed profile c(z) := Co +az, with 
Co := 340 mJs and a = 0.1 s-l. For comparison, the result for a non-refracting 
atmosphere (a = 0) is also included. FFP results and GFPE results agree up 
to high angles, while CNPE results deviate for angles larger than about 30°. 

4.6.3 Accuracy of the axisymmetric approximation 

With the three-dimensional GFPE method we can study the accuracy of the 
axisymmetric approximation, which is used in the two-dimensional methods 
(c/. Sec. 4.6.1). As an example, Fig. 4.20 shows the field of the relative sound 
pressure level at a height of 2 m, in a horizontal circular region around the 
source at position (x, y) = (0,0) and a height of 2 m. We assumed a wind 
vector in the positive x direction (as indicated in the figure) and a logarithmic 
wind speed profile u(z) = bu ln(l + zJzo), with bu = 1 mJs and Zo = 0.1 m. 
The corresponding effective sound speed profile is c(z) = Co + u(z) cos ¢, where 
¢ := arctan(yJx) is the azimuthal angle of the source-receiver line. The profile 
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is downward refracting for receivers in the region x > 0 and upward refracting 
for receivers in the region x < O. This results in an acoustic shadow in the 
region x < 0, with low sound pressure levels, and higher levels in the region 
x > O. In the shadow very low levels occur, much lower than the lower limit of 
the grey level scale of -30 dB. In Chap. 5 we will see that in reality the levels 
in the shadow are much higher, typically AL ~ -20 dB, as a consequence of 
atmospheric turbulence. 

The sound pressure field shown in Fig. 4.20 is clearly not axisymmetric. To 
study the effect of the axisymmetric approximation, we have also computed the 
field with the two-dimensional GFPE method. In this case the three-dimensional 
field was determined by combining two-dimensional fields in vertical rz planes 
with azimuthal angle ¢ varying between ¢ = 00 and ¢ = 3600 • If we ignore levels 
below -30 dB in the shadow region, the maximum deviation from the three­
dimensional field shown in Fig. 4.20 is 0.4 dB. Therefore, the axisymmetric 
approximation is an accurate approximation in this case. In situations with 
larger azimuthal sound speed gradients, the axisymmetric approximation may 
be less accurate (c/. Sec. K.4). 

4.6.4 Atmospheric refraction 

Figure 4.21 shows the field of the relative sound pressure level for the logarithmic 
sound speed profile (4.5) with b = 1 mis, computed with the GFPE method. 
The deviation from the field for b = 0 shown in Fig. 4.17 is small, except near 
the ground surface. Atmospheric refraction has large effects near the ground 
surface. 

Figure 4.22 shows the field for the same situation with b = -1 m/s. In this 
case the atmosphere is upward refracting, which results in a sound shadow. 
In practice, the low levels in the shadow region are considerably affected by 
atmospheric turbulence (see Chap. 5). 

Figure 4.23 shows 1/3-octave band spectra of AL for four receiver ranges 
(30, 100, 300, and 1000 m) and an absorbing ground surface. Figure 4.24 shows 
corresponding spectra for a rigid ground surface. We used the logarithmic sound 
speed profile (4.5) with b = 1 mis, b = 0 mis, and b = -1 m/s. For the absorbing 
ground surface we see that downward refraction has a considerable effect on the 
interference minimum. For the rigid ground surface we see that downward 
refraction causes high levels at the ranges 300 and 1000 m. Upward refraction 
causes low levels in the shadow region, both for the absorbing ground surface 
and for the rigid ground surface. 

Figure 4.25 shows an example of the variation of the relative sound pressure 
level up to a range of 10 km, for an absorbing and a rigid ground surface, and 
b = ° and b = 1 m/s. For the rigid ground surface and b = 1 mls we see that the 
relative sound pressure level increases linearly with 19r. This was explained at 
the end of Sec. 4.4 by the fact that the number of sound rays increases linearly 
with r. The figure shows also the simple prediction represented by Eq. (4.10): 
AL = 10lgNrays , where Nrays = 4hl/zs is the number of rays. The simple 
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prediction is in fair agreement with the PE result for b = 1 m/s. 

4.6.5 Accuracy of the ray model 

Figures 4.26 and 4.27 show comparisons between PE results and results of the 
ray model described in Appendix L [135]. The CNPE and GFPE methods give 
equal results in this case. The PE results can be considered accurate, so the 
comparisons give an indication of the accuracy of the ray model. 

Figure 4.26 shows 1/3-octave band spectra of ilL for an absorbing ground 
surface and a downward refracting atmosphere with a linear sound speed profile 
c(z) = Co + az, with a = 0.1 S·l. The agreement between the PE results and the 
results of the ray model is good. 

Figure 4.27 shows 1/3-octave band spectra of ilL for a linear sound speed 
profile (the same profile as used for Fig. 4.26) and a logarithmic sound speed 
profile [given by Eq. (4.5) with b = 1 m/s and Zo = 0.1 m]. Again the agreement 
between PE results and results of the ray model is good for the linear profile, 
but for the logarithmic profile the results of the ray model deviate from the PE 
results below a frequency of about 300 Hz. The fact that the ray model is more 
accurate for the linear profile than for the logarithmic profile can be attributed 
to the large gradients of the logarithmic profile near the ground surface. The 
gradient of the logarithmic profile at z = 0 is 10 S·l, which is a factor of 100 
larger than the gradient a = 0.1 S·l of the linear profile. 
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Figure 4.16. Field of the relative sound pressure level for b = 0, computed with 
the CNPE method. The level in dB is represented by the grey level scale. 
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Figure 4.17. Field of the relative sound pressure level for b = 0, computed with 
the GFPE method. 
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Figure 4.18. Relative sound pressure level as a function of range, for a receiver 
height of 50 m. 
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Figure 4.19. Relative sound pressure level as a function of elevation angle 
'Y = arctan[(z - zs)/r], for receiver range r = 400 m. 



Atmospheric refraction 

-400 

- 400 o 
x(m) 

400 

61 

Figure 4.20. Field of the relative sound pressure level computed with the three­
dimensional GFPE method, at a height of 2 m, in a horizontal circular region 
around the source at (x,y) = (0,0). The source height is 2 m, the frequency 
is 400 Hz, and the flow resistivity of the ground surface is 200 kPa·s·m-2 . The 
effective sound speed profile is c(z) = Co + u(z) cos¢, where ¢ = arctan(yjx) is 
the azimuthal angle and u(z) = bu In(l + zj zo) is the wind speed profile, with 
bu = 1 mjs and Zo = 0.1 m. This profile corresponds to a wind vector in the 
positive x direction, as indicated in the figure. 
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Figure 4.21. Field of the relative sound pressure level for b = 1 mis, computed 
with the GFPE method. 
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Figure 4.22. Field of the relative sound pressure level for b = -1 mis, computed 
with the GFPE method. Note that the range scale is larger than in Fig. 4.21. 
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Figure 4.23. One-third-octave band spectra of the relative sound pressure level 
for an absorbing ground surface, computed with the CNPE method. 
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Figure 4.24. One-third-octave band spectra of the relative sound pressure level 
for a rigid ground surface, computed with the CNPE method. 
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Figure 4.25. Relative sound pressure level as a function of range, computed 
with the CNPE method for the 125 Hz octave band. Thick lines are for a rigid 
ground surface and thin lines are for an absorbing ground surface, as indicated 
in the legends. The dotted line represents Eq. (4.10) for b = 1 mls and a rigid 
ground surface. For the rigid ground surface we assumed a roughness length of 
Zo = 0.001 m, appropriate for a water surface, instead of Zo = 0.1 m. 
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Figure 4.26. One-third-octave band spectra of the relative sound pressure level, 
computed with the ray model and with the PE method (the CNPE and GFPE 
methods give equal results), for a linear sound speed profile. 

10 
:!:!. 0 
-' <I 

-10 

-20 

10 

source (0.3) receiver(1000.5) c(z) = Co + a z (a = 0.1 S-l) 

20 ~ -"A. 
10'" -~"... 

0 

I=~ll a= -10 

300 kPa s m-2 0'=00 

16 63 250 1k 
-20 

16 63 250 1k 

10 

;r-ur~ce_(~O,_3)_re~ce_iv_e_r(_1000 __ .5_) ...,c(z) = Co ;ob l~n(1+zlZO> (b = 1 mis, Zo = 0.1 m) 

:!:!. 0 0 
-' 
<I 

-10 

16 63 250 1k 
frequency (Hz) 

-10 
0'=00 

-20L...16--63--2~5O--1-k -'-' 

frequency (Hz) 

Figure 4.27. One-third-octave band spectra of the relative sound pressure level, 
computed with the ray model and with the PE method, for a linear sound speed 
profile (upper graphs) and a logarithmic sound speed profile (lower graphs). 



Chapter 5 

Atmospheric turbulence 

5.1 Introduction 

In the previous chapter we described sound propagation in a refracting atmo­
sphere. For the vertical profiles of the temperature, the wind velocity, and the 
(effective) sound speed we used smooth functions of height [see Eqs. (4.5), (4.12), 
(4.13), and (4.14); see also Appendix N]. These profiles should be considered as 
average profiles, averaged over a period of typically ten minutes. 

On time scales of seconds or minutes, the temperature and the wind velocity 
show considerable fluctuations around the average values. These fluctuations 
are commonly referred to as atmospheric turbulence (see Appendix I). Due to 
atmospheric turbulence, the instantaneous profiles of the temperature and the 
wind velocity are not smooth functions of height. The turbulent fluctuations of 
the temperature and the wind velocity have a considerable effect on atmospheric 
sound propagation, as will be described in this chapter. 

In Sec. 5.2 we describe the effect of atmospheric turbulence on sound propa­
gation in a non-refracting atmosphere. The description is based on an analytical 
model for sound propagation in a non-refracting turbulent atmosphere, which is 
described in detail in Appendix K. In Sec. 5.3 we study the effect of turbulence 
on sound propagation in a refracting atmosphere. We describe qualitatively how 
turbulence is taken into account in the PE method. A detailed description of 
the PE method for a turbulent atmosphere is given in Appendix J. In Sec. 5.4 
we present numerical examples that illustrate the effects of turbulence on sound 
propagation. 

5.2 Non-refracting turbulent atmosphere 

In a non-refracting turbulent atmosphere, the average atmosphere (averaged 
over a period of typically ten minutes) is non-refracting, so the average (effective) 
sound speed is independent of position in the atmosphere. Turbulence causes 
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fluctuations of the instantaneous sound speed around the average value. 
In Chaps. 3 and 4 we have seen that sound propagation in a non-refracting 

non-turbulent atmosphere can be modeled with two sound rays, the direct ray 
from the source to the receiver and the ray reflected by the ground surface (see 
Fig. 3.2). The interference between the direct ray and the reflected ray causes 
characteristic minima in the spectrum of the relative sound pressure level (see 
Sec. 3.5). Atmospheric turbulence reduces the depth of the interference minima 
[67], as will be explained in the following two paragraphs. 

We assume that sound propagation in a non-refracting turbulent atmosphere 
can still be modeled with a straight direct sound ray and a straight reflected 
sound ray. This means that we neglect small deformations of the straight rays 
due to refraction by turbulent sound speed fluctuations. 'Thrbulence is taken into 
account only by phase and amplitude fluctuations of the sound waves traveling 
along the ray paths. 

The turbulent phase fluctuations are particularly important for the interfer­
ence minima in the spectrum. An interference minimum occurs at a frequency 
for which direct and reflected waves have a phase difference of 1800 , which means 
that the waves (partially) cancel each other. The phase fluctuations of the direct 
and reflected waves cause fluctuations of the frequency of the interference min­
imum. In other words, the interference minimum shifts more or less randomly 
within a limited frequency interval. Logarithmic averaging (see Sec. 3.4) over 
time results in a reduction of the depth of the interference minimum. 

In Appendix K we describe an analytical model for the computation of the 
time-averaged sound pressure level in a non-refracting turbulent atmosphere. 
The model is based on a statistical method for averaging over the turbulent 
phase and amplitude fluctuations of the direct and reflected sound waves. 

5.3 Refracting turbulent atmosphere 

In the previous section we explained that, in a non-refracting atmosphere, atmo­
spheric turbulence causes a reduction of the depth of the interference minima. 
In a downward refracting atmosphere, the effect of turbulence is similar. In a 
downward refracting atmosphere, the spectrum of the sound pressure level also 
has characteristic interference minima, due to interference between sound rays 
from the source to the receiver. The number of rays in a downward refracting 
atmosphere, however, is usually considerably larger than two. 

Thus, the effect of turbulence in a downward refracting turbulent atmo­
sphere is also a reduction of the depth of the interference minima. The ana­
lytical two-rays model for a non-refracting turbulent atmosphere described in 
Appendix K can be generalized to a multi-rays model for a downward refracting 
turbulent atmosphere [81, 131] (see Sec. L.5). 

In an upward refracting atmosphere, the effect of turbulence is completely 
different. Upward refraction results in a shadow region, i.e. a region where no 
sound rays arrive (see Fig. 4.5). Figures 4.20 and 4.22 show that the relative 
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Figure 5.1. Diffraction of sound into a refractive shadow region is analogous to 
diffraction of sound into a shadow region behind a hill. 

V shadow region 

source V turbulence V --'~_ 
~ scattered sound 

Figure 5.2. Scattering of sound into a refractive shadow region. Four turbulent 
inhomogeneities (eddies) are shown. 

sound pressure level in a refractive shadow region in a non-turbulent atmosphere 
is very low; in fact, the level well inside the shadow region is much lower than the 
lower limit of -30 dB of the grey level scale used in the figures. Sound penetrates 
into a refractive shadow region in a non-turbulent atmosphere only by sound 
waves that can be considered as diffracted sound waves, as the penetration of 
sound waves into the refractive shadow region is analogous to the diffraction of 
sound waves into the shadow region behind a hill (see Fig. 5.1). 

Atmospheric turbulence causes a large increase of the low levels in a re­
fractive shadow region. The mechanism responsible for the effect of turbulence 
in a refractive shadow is usually described as scattering by turbulent inhomo­
geneities in the atmosphere (see Fig. 5.2). The scattering can be considered 
as small-scale refraction. Sound waves are scattered into a refractive shadow 
region by small random changes of the propagation direction. 

The effect of turbulence in a refractive shadow region will be illustrated in 
Sec. 5.4 by numerical examples. Typically, we find relative sound pressure levels 
around -20 dB in a refractive shadow region, instead of the levels well below 
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-30 dB in a non-turbulent atmosphere. Experimental data confirm the typical 
value of -20 dB [157, 101, 102J. 

The PE methods described in Chap. 4 for sound propagation in a refracting 
non-turbulent atmosphere can also be applied to sound propagation in a refract­
ing turbulent atmosphere. This is described in detail in Appendix J. Basically, 
the approach is as follows. 

Using a random number generator, we calculate random fluctuations of the 
sound speed and add these to the average sound speed values corresponding 
to the average, smooth sound speed profile. In this way we generate random 
realizations of the fluctuating sound speed field in the turbulent atmosphere. 
The random realizations can be considered as 'snapshots' of the turbulent at­
mosphere. 

First we compute sound propagation for the different random realizations 
with the PE method. Next we calculate average sound pressure levels by log­
arithmic averaging of the sound pressure levels computed for the different re­
alizations. Thus, averaging over time is replaced by ensemble averaging over 
random realizations of the turbulent atmosphere. 

For the calculation of the random realizations we make use of a quantity 
that is equivalent to the (effective) sound speed: the (acoustic) refractive index 
n = Co/c, where c is the sound speed and Co is a constant sound speed. As 
sound speed fluctuations are relatively small, the value of the refractive index is 
of the order of unity and fluctuations of the refractive index are small compared 
to unity. 

A statistical description of the refractive-index fluctuations is given in Ap­
pendix 1. An important statistical quantity is the spatial correlation function 
of refractive-index fluctuations. In the literature on wave propagation in the 
turbulent atmosphere, various mathematical forms are given for this correla­
tion function. The correlation function is used in the calculation of random 
realizations of the turbulent atmosphere (see Appendix J). 

5.4 Exam pIes 

Figure 5.3 illustrates the effect of turbulence on sound propagation in a non­
refracting atmosphere. The figure shows a graph of the relative sound pressure 
level as a function of receiver range, with a characteristic interference minimum 
(analogous to the interference minimum in the spectrum, i.e. the relative sound 
pressure level as a function of frequency). The interference minimum is con­
siderably reduced by turbulence, as explained in Sec. 5.2. For the turbulence 
we used the Gaussian correlation function B(r) = J.l6 exp( _r2 /a2) ofrefractive­
index fluctuations, with the values a = 1.1 m and J.l6 = 10-5 , which represent 
relatively strong turbulence (see Secs. 1.7.1 and 1.7.2). The figure shows both 
PE results and analytical results. The PE results for the turbulent atmosphere 
were computed with the CNPE method, and were averaged over 500 random 
realizations [139J. The analytical results for the turbulent atmosphere were cal-
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culated with the model described in Appendix K [Equation (K.6)]. The figure 
shows good agreement between PE results and analytical results. 

Figures 5.4 and 5.5 illustrate the effect of turbulence on 1/3-octave band 
spectra of the relative sound pressure level in a non-refracting atmosphere, for a 
rigid ground surface and an absorbing ground surface, respectively. The spectra 
were calculated with the analytical model described in Appendix K [Equation 
(K.6)]. For the turbulence we used the von Karman spectrum of refractive-index 
fluctuations, with parameters K(j\ C}/T6, and C;/~ (see Sec. 1.7.2). 

Figure 5.6 illustrates the effect of turbulence for an upward refracting at­
mosphere with a shadow region. Comparison with the corresponding graph in 
Fig. 4.22 for a non-turbulent atmosphere shows that the level in the shadow 
region is enhanced by turbulence. The field was averaged over 50 random real­
izations of the turbulent atmosphere. 

Figure 5.7 shows a graph of the relative sound pressure level along a hor­
izontal line in the field shown in Fig. 5.6, at height z = 2 m. In the shadow 
region, the relative sound pressure level is constant, in good approximation. For 
comparison, the result for a non-turbulent atmosphere (from Fig. 4.22) is also 
shown. 

Figure 5.8 shows a similar graph for the frequency of 125 Hz. For the com­
putation of the levels shown in this graph we used the CNPE method with a 
range step ~r of 0.25 m and the GFPE method with two values of ~r: 10 and 
20 m. All results are in good agreement with each other. The advantage of the 
GFPE method over the CNPE method that larger range steps are possible (see 
Sec. 4.5) is preserved in a turbulent atmosphere. 

Figure 5.9 illustrates the effect of atmospheric turbulence on l/3-octave band 
spectra that were presented for non-turbulent atmospheres in Figs. 4.23 and 
4.24. In general, the effect of turbulence is larger for low levels than for high 
levels. 
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Figure 5.3. Relative sound pressure level as a function of range, for a non­
refracting atmosphere with and without turbulence. Analytical results for the 
turbulent atmosphere were calculated with Eq. (K.6). PE results for the tur­
bulent atmosphere were averaged over 500 random realizations. For the turbu­
lence we used the Gaussian correlation function B(r) = p.~ exp( _r2/a2) with 
a = 1.1 m and p.~ = 10-5 • 
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Figure 5.4. One-third-octave band spectra of the relative sound pressure level, 
for a non-refracting atmosphere and a rigid ground surface. The thick curve is 
for a non-turbulent atmosphere. The thin curves are for turbulent atmospheres 
with a von Karman spectrum for a moving atmosphere with C; / ~ = 2Cj. /TJ . 
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Figure 5.5. As Fig. 5.4, for an absorbing ground surface. 
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Figure 5.6. Field of the relative sound pressure level computed with the GFPE 
method for the logarithmic sound speed profile (4.5) with b = -1 m/s. The field 
was averaged over 50 random realizations of a turbulent atmosphere, with a von 
Karman spectrum with parameters K;l = 10 m, C}/TJ = 2.5x 10-7 m-2/ 3 , and 
C;/c5 = 1 X 10-6 m-2/ 3 . 
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Figure 5.7. Relative sound pressure level along a horizontal line at height z = 2 m 
in the field shown in Fig. 5.6 for a turbulent atmosphere (thin line) and the field 
shown in Fig. 4.22 for a non-turbulent atmosphere (thick line). 
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Figure 5.8. Relative sound pressure level as a function of range, computed with 
the CNPE and GFPE methods for different values of the range step Ar. The 
levels were averaged over 50 random realizations of a turbulent atmosphere with 
the same parameters as for Fig. 5.6. 
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Figure 5.9. One-third-octave band spectra of the relative sound pressure level, 
computed with the CNPE method for an absorbing ground surface (upper 
graphs) and a rigid ground surface (lower graphs). Spectra are shown for turbu­
lent atmospheres with the same turbulence parameters as for Fig. 5.6 (averaged 
over 16 random realizations) and for non-turbulent atmospheres (from Figs. 4.23 
and 4.24). For the sound speed profile we used Eq. (4.5), with values of the pa­
rameter b indicated in the legend. 
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Irregular terrain 

6.1 Introduction 

In the previous chapters we assumed that the ground surface is perfectly flat. In 
practice, a ground surface is never perfectly flat. Natural ground surfaces, e.g. 
grassland, always show small variations of the ground level, and sometimes larger 
variations, such as hills. In this chapter we study the effect of smooth variations 
of the ground level. In Appendix M we describe computational methods for 
sound propagation over a ground surface with a smooth terrain profile. 

In Sec. 6.2 we describe qualitatively the effects of a terrain profile on sound 
propagation. In Sec. 6.3 we present numerical examples that illustrate the 
effects. 

6.2 Hills and other terrain profiles 

The effect of a hill on sound propagation from a source near the ground is 
illustrated in Fig. 6.1. The hill can be considered as a barrier for sound waves, 
with a shadow region behind the hill. The shadow region is limited by the 
shadow boundary, which is also shown in Fig. 6.1. 

The sound pressure levels in the shadow region depend on the dimensions 
of the hill, the position of the source, the frequency, and the atmospheric con­
ditions. In general, the levels are enhanced by downward atmospheric refrac­
tion: sound waves travel along curved paths over the hill if the atmosphere is 
downward refracting. The levels are also enhanced by atmospheric turbulence: 
sound waves are scattered into the shadow region by atmospheric turbulence 
(cf. Sec. 5.3). In Sec. 6.3 we will illustrate these atmospheric effects by a nu­
merical example. 

The effect of a hill can also be considered in a different way. The hill shown 
in Fig. 6.2 consists of two concave ground segments and one convex ground 
segment. The convex curvature and the concave curvature have opposite effects 

77 

E. M. Salomons, Computational Atmospheric Acoustics
© Springer Science+Business Media Dordrecht 2001



78 

bOundarY ~- ' 
sbado~ ~ ___ --- -- - -------

shadow region 

Figure 6.1. Shadow region behind a hill . 

flat . . . concave. , . , . convex 
. 

:concave: flat 

Chapter 6 

Figure 6.2. Hill consisting of two concave segments and one convex segment. 
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Figure 6.3. Ray illustration of the conformal mapping method for computing 
sound propagation over a curved ground surface. A convex ground curvature 
is transformed to an upward refracting contribution to the atmospheric sound 
speed profile; a concave ground curvature is transformed to a downward re­
fracting contribution. To demonstrate the effect of the transformation on the 
sound speed profile, the figure shows the straight direct sound ray in the original 
systems and the corresponding curved sound rays in the transformed systems. 
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on sound propagation. This follows from the conformal mapping method, which 
is described in detail in Sec. M.2. 

The conformal mapping method is based on a coordinate transformation that 
is called a conformal mapping. The conformal mapping transforms a system 
with a curved ground surface to a system with a flat ground surface and a 
modified sound speed profile. A convex curvature is transformed to an upward 
refracting contribution to the sound speed profile and a concave curvature is 
transformed to a downward refracting contribution to the sound speed profile. 
This is illustrated in Fig. 6.3. 

Consequently, sound propagation over a convex or concave ground surface 
can be computed with the computational methods described in the previous 
chapters (the PE methods for example); first a conformal mapping is applied 
and next sound propagation is computed for the transformed system with a flat 
ground surface. This approach can also be applied to a terrain profile consisting 
of a 'chain' of convex and concave segments (e.g. the hill shown in Fig. 6.2), by 
applying a series of conformal mappings [43]. 

An alternate method for computing sound propagation over a smooth terrain 
profile is the Generalized Terrain PE (GTPE) method [129]. For a flat ground 
surface, the GTPE method is identical to the CNPE method (which is described 
in Appendix G). The GTPE method is described in Sec. M.3. 

6.3 Examples 

Figure 6.4 shows a comparison between results of the GTPE method and results 
of the conformal mapping method in combination with the GFPE method. The 
figure shows the relative sound pressure level as a function of receiver range, 
for sound propagation over a hill with a height of 10 m. The logarithmic sound 
speed profile (4.5) with b = 1 mls was used (with height measured with respect 
to local ground level). This profile represents a downward refracting atmosphere. 
Other parameters are given in the figure. For comparison, the figure shows also 
results for the situation without the hill, i.e. for a flat ground surface. The 
agreement between the GTPE method and the conformal mapping method is 
good. 

Figure 6.5 shows fields of the relative sound pressure level, computed with 
the conformal mapping method in combination with the GFPE method. The 
fields demonstrate that both downward refraction and atmospheric turbulence 
enhance sound pressure levels in the shadow region behind a hill. 

Figure 6.6 illustrates the effect of surface roughness on sound propagation 
over water in a downward refracting atmosphere. For a flat water surface, the 
figure shows that the relative sound pressure level increases linearly with the 
logarithm of the range, as predicted by Eq. (4.10) (the curve for the flat surface 
in Fig. 6.6 was also shown in Fig. 4.25). For the rough surface we used a 
periodic oscillation with a wavelength of 25 m between z = 0 and z = -0.5 m. 
For ranges larger than about 1 km, the relative sound pressure level above the 
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rough surface is considerably lower than above the flat surface. This can be 
explained as follows. High levels above a flat surface are due to the fact that 
many rays with multiple reflections arrive at receiver positions near the surface. 
An example of such a ray is shown in Fig. 6.7. Above a rough surface the levels 
are lower, because many of the rays do not arrive at the receiver positions near 
the surface: rays that hit a surface section with a positive slope are reflected 
with large elevation angles. This is illustrated in Fig. 6.7. 
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Figure 6.4. Comparison between results of the GTPE method and results of the 
conformal mapping method in combination with the GFPE method, for sound 
propagation over a hill. The geometry with the hill is indicated below the graph. 
For comparison, results for the situation without the hill (flat ground) are also 
shown. For a flat ground, the GTPE method is identical to the CNPE method. 
The receiver height is 2 m, measured with respect to local ground level. 
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Figure 6.5. Fields of the relative sound pressure level, computed with the 
conformal mapping method in combination with the GFPE method, for a 
non-refracting non-turbulent atmosphere (upper graph), a downward refract­
ing non-turbulent atmosphere (middle graph), and a non-refracting turbulent 
atmosphere (lower graph). For the refracting atmosphere we used the loga­
rithmic profile (4.5) with b = 1 m/s. The sound field for the turbulent atmo­
sphere was computed by averaging over 50 random realizations, using a von 
Karman spectrum with parameters Kr;l = 10 m, C}/T6 = 2.5x 10-7 m-2/ 3 , and 
C;'/C6 = 1xlO-6 m-2/ 3 . 
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Figure 6.6. Relative sound pressure level as a function of range, averaged over 
the 125 Hz octave band, for propagation over a rigid flat surface and a rigid 
rough surface (e. g. water surfaces) . For the rough surface we used a periodic 
oscillation with a wavelength of 25 m between z = 0 and z = -0.5 m. For the 
sound speed profile we used the logarithmic profile (4.5) with b = 1 mJs and 
Zo = 0.001 m. For the computation we used the GTPE method . 

• receiver 

Figure 6.7. Top: example of a ray that reaches the receiver by two reflections at 
a flat surface. Bottom: the ray does not reach the receiver in a situation with 
a rough surface. 
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Noise barriers 

7.1 Introduction 

Noise from a source near the ground can be reduced by means of a barrier 
between the source and the receiver. Noise barriers are widely used for the re­
duction of traffic noise. The simplest noise barrier is a vertical screen, e.g. a thin 
wall. In this chapter we describe computational methods for sound propagation 
over a vertical screen. In Appendix 0 we describe the computational methods 
in more detail. Experimental results for sound propagation over barriers can be 
found in Refs. [114, 71, 38,117,12]. 

In Sec. 7.2 we describe an analytical model for sound propagation over a 
screen in a non-refracting atmosphere. In Sec. 7.3 we describe the application 
of the PE method to sound propagation over a screen in a refracting atmosphere. 
In general, atmospheric refraction has large effects on sound propagation over a 
screen. The complex wind speed profile near a screen plays an important role in 
the refraction. This profile is also described in Sec. 7.3. In Sec. 7.4 we present 
numerical examples. 

7.2 Non-refracting atmosphere 

In Chap. 3 we have seen that sound propagation in a non-refracting atmosphere 
over a flat ground surface can be described with two sound rays: a direct ray 
and a ray reflected by the ground surface (see Fig. 3.2). We denote these rays 
as follows: 
ray 1: source -+ receiver 
ray 2: source -+ ground -+ receiver. 
In a similar way, sound propagation over a screen on a ground surface, in a 
non-refracting atmosphere, can be described with four sound rays (see Fig. 7.1): 
ray 1: source -+ screen top -+ receiver 
ray 2: source -+ ground -+ screen top -+ receiver 
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source screen 

Figure 7.1. Four sound rays contributing to sound propagation over a screen on 
a ground surface, in a non-refracting atmosphere. 

ray 3: source -+ screen top -+ ground -+ receiver 
ray 4: source -+ ground -+ screen top -+ ground -+ receiver. 
All four rays are diffracted by the screen top. Rays 2 and 3 are reflected once by 
the ground surface; ray 4 is reflected twice by the ground surface. In Sec. 0.2 we 
give expressions for the contributions of the four rays to the complex pressure 
amplitude at the receiver. These expressions are based on a combination of the 
theory of reflection of spherical waves by a finite-impedance ground surface and 
the theory of diffraction of spherical waves by a screen. 

We assume here that the receiver is below the shadow boundary of the 
source, i.e. the line through the source and the screen top. If the receiver is 
above the shadow boundary of the source, the direct ray (source -+ receiver) also 
contributes to the complex pressure amplitude at the receiver. If the receiver 
is above the shadow boundary of the image source (see Sec. 0.2), the reflected 
ray (source -+ ground -+ receiver) also contributes. 

7.3 Refracting atmosphere 
In Chap. 4 we have seen that sound propagation in a refracting atmosphere over 
a ground surface can be computed with the PE method. Sound propagation over 
a screen on a ground surface, in a refracting atmosphere, can also be computed 
with the PE method. Both the CNPE method and the GFPE method can be 
used. 

The basic approach of the PE method is a step-wise extrapolation of the field 
on a rectangular grid in the vertical plane through the source and the receiver. 
The effect of the screen can be taken into account by setting the field equal to 
zero at the grid points covered by the screen. This is equivalent to the Kirchhoff 
approximation of diffraction [142]. The application of the PE method to sound 
propagation over a screen is described in detail in Sec. 0.3. 

A noise screen has an effect not only on sound waves but also on the wind 
speed profile in the atmosphere. Wind speeds are low in the region behind the 
screen (on the downwind side) and high in the region just above the screen. 
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Figure 7.2. Wind speed profiles at ranges 0, 12, 24 ... , 144 m near a screen on 
a ground surface. The screen is located at range 30 m and has a height of 6 m. 
The profiles have been calculated with approximate relations given in Sec. 0.4, 
for Zo = 0.1 m and UIO = 4 m/s. The undisturbed logarithmic profile at range 
zero corresponds to a wind speed of 4 mls at a height of 10 m. 

This effect of a screen on the wind speed profile has an indirect effect on sound 
propagation over the screen. 

Figure 7.2 shows an example of wind speed profiles near a screen. The 
profiles have been calculated with approximate analytical relations for the wind 
speed field near a screen [137], which are given in Sec. 0.4. Far from the screen, 
an undisturbed logarithmic profile is assumed; this profile is shown in Fig. 7.2 
at range zero. Near the screen, the profiles are disturbed by the screen. The 
profiles show large vertical wind speed gradients in the region near the screen 
top. These screen-induced wind speed gradients have a significant effect on 
sound propagation over a screen [118, 136, 137]. 

Sound propagation over a screen is also affected by atmospheric turbulence. 
The effect of turbulence is particularly important deep in the shadow region 
behind a screen [34, 53, 54]. This is analogous to the effect of turbulence in a 
refractive shadow (see Chap. 5). The PE method for a turbulent atmosphere 
(see Chap. 5) can be used to study the effect of turbulence on sound propagation 
over a screen. 

7.4 Examples 

Figure 7.3 shows 1/3-octave band spectra of the relative sound pressure level 
for sound propagation in a non-refracting atmosphere over a screen on a rigid 
ground surface. Figure 7.4 shows corresponding spectra for an absorbing ground 
surface. The figures show spectra for two screen heights, H = 4 m and H = 8 m. 
For comparison, the figures show also spectra for the situation without the 
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screen, indicated as H = O. The spectra for H > 0 were computed with the 
analytical model described in Secs. 7.2 and 0.2; the spectra for H = 0 were 
computed with the method described in Chap. 3. 

As expected, the relative sound pressure levels for H > 0 are lower than for 
H = O. In other words, the levels are reduced by the screens. The reduction is 
larger for H = 8 m than for H = 4 m (except in a narrow frequency interval 
in Fig. 7.3). At high frequency, the relative sound pressure level decreases with 
increasing frequency by (on average) 3 dB per octave; this simple behavior at 
high frequency can be derived from the diffraction solution used in the ana­
lytical model described in Sec. 0.2 [106, 74], and also from well-known scale 
model results presented by Maekawa [86]. At lower frequency, around 250 Hz, 
the spectra show various interference minima, corresponding to interference be­
tween the four sound rays shown in Fig. 7.1. At very low frequency, all spectra 
approach the limiting value tl.L = 6 dB, corresponding to a doubling of the 
acoustic pressure; in this frequency range, the wavelength is large compared 
with the screen height, so the screen is nearly 'invisible' for sound waves. 

Figure 7.5 illustrates the effect of screen-induced wind speed gradients on 
sound propagation over a screen (see end of Sec. 7.3). The figure shows the 
relative sound pressure level as a function of range, computed with the CNPE 
method for three different sound speed profiles, indicated as (i), (ii), and (iii). 
Profile (i) is the profile shown in Fig. 7.2, with large wind speed gradients in 
the region near the screen top. Profile (ii) is the undisturbed logarithmic profile 
(also shown in Fig. 7.2, at range zero); profile (ii) ignores the effect ofthe screen 
on the wind speed profile. Profile (iii) represents a non-refracting atmosphere. 
For comparison, analytical results for the non-refracting atmosphere are also 
shown in Fig. 7.5; the analytical results are in good agreement with the PE 
results for the non-refracting atmosphere. 

The PE results for the profiles (i) and (ii) deviate considerably from the 
results for the non-refracting atmosphere. This implies that atmospheric re­
fraction has a significant effect on the propagation over the screen. Moreover, 
screen-induced wind speed gradients have a significant effect on the propaga­
tion over the screen, as the levels for profile (i) are considerably higher than 
the levels for profile (ii) (except for the 125 Hz octave band). The acronym 
RESWING (REfraction by Screen-induced WINd speed Qradients) is used for 
this effect [136]. 
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Figure 7.3. One-third-octave band spectrum of the relative sound pressure level, 
for sound propagation in a non-refracting atmosphere over a rigid ground surface 
with a screen. Results are shown for three screen heights H: 0, 4, and 8 m (see 
legend). 
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Figure 7.4. As Fig. 7.3, for an absorbing ground surface. 
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Figure 7.5. Relative sound pressure level as a function of range, for sound 
propagation over a screen on a ground surface [137]. PE results are shown for 
four octave bands and three sound speed profiles (see legend): (i) the profile 
c(z) = Co + u(z) shown in Fig. 7.2, (ii) an 'undisturbed' logarithmic profile 
c(z) = Co + uo(z), and (iii) the profile c(z) = Co representing a non-refracting 
atmosphere. The functions u{z) and uo(z), with parameters UlO and Zo, are 
given in Sec. 0.4. A value of 340 mls was used for Co. For comparison, analytical 
results for the non-refracting atmosphere are also shown. The distance between 
the source and the screen is 30 m and the screen has a height of 6 m, as indicated 
above the graphs. 



Appendix A 

Basic acoustic equations for 
a homogeneous atmosphere 

A.1 Introduction 

The models described in this book are based on linear acoustics. In linear 
acoustics one assumes that the pressure fluctuations generated by a sound wave 
are small compared with the average pressure in the atmosphere. This is usually 
a good assumption. Nonlinear terms are important only for very loud sounds, 
such as the sound generated by an explosion. 

In this appendix we derive the basic equations of linear acoustics for a ho­
mogeneous atmosphere [106, 107]. In Sec. A.2 we derive the linear acoustic 
equations and the wave equation, and we develop an expression for the adia­
batic sound speed. In Sec. A.3 we derive the Helmholtz equation for harmonic 
sound waves. In Sec. AA we derive the inhomogeneous Helmholtz equation, 
which includes a Dirac delta function for a monopole source. 

A.2 The linear acoustic equations and the wave 
equation 

The atmosphere is modeled as a compressible fluid, i.e. a gaseous medium in 
which local pressure fluctuations cause local density fluctuations. When a sound 
wave travels through this medium, local pressure fluctuations and local density 
fluctuations are generated. The corresponding movement of the fluid is repre­
sented by a (fluctuating) fluid velocity. 

The mathematical description of sound waves in the atmosphere follows from 
the equations of mass conservation and momentum conservation in a fluid. The 
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equation of mass conservation is 

apa ( ) at + V· Pa V a = 0, (A.!) 

where Pa is the density of the atmosphere (mass per unit volume), Va is the fluid 
velocity of the atmosphere, and t is the time. The index 'a', for 'atmosphere', 
is used to distinguish Pa and Va from the quantities P and v used below. The 
derivation ofEq. (A.!) is a matter of keeping track of the mass in an infinitesimal 
fluid volume, and can be found in textbooks on fluid dynamics. The term aPa/at 
represents the rate of change of the density of the volume. The term V· (Pa va) 
represents the net flow of fluid out of the volume. 

The equation of momentum conservation is 

DVa 
Pa Dt = -Vpa, (A.2) 

where Pa is the pressure in the atmosphere and the operator D / Dt == a/at + 
Va . V is the time derivative in a frame moving with the local fluid velocity. 
This equation is of the form 'mass x acceleration = force', and represents the 
acceleration of the fluid by local pressure gradients. 

In a sound wave in the atmosphere, the fluctuations of the pressure and the 
density are usually small compared with the average values (i.e. time averages) 
of these quantities. For example, the fluctuation of the pressure is typically 
smaller than 100 Pa, which is only o.! % of the average pressure in the atmo­
sphere. The velocity fluctuation is linearly related to the pressure and density 
fluctuations, in the linear acoustic approximation, so the velocity fluctuation 
can also be considered as a small quantity. 

We assume that the atmosphere is homogeneous, so the average pressure, 
the average density, and the average velocity are independent of position in 
the atmosphere (a generalization to inhomogeneous atmospheres is presented 
in Appendix E). We assume that there is no wind in the atmosphere, so the 
average velocity is zero everywhere in the fluid. We write 

Pa = Pay +p 
Pa = Pay + P 
Va =Vay +V, 

(A.3) 

where Pay, Pay, and Vay are the constant average values, with Vay = 0, and 
p, p, and v are the small fluctuating contributions, referred to as the acoustic 
contributions. The fluctuation P is called the acoustic pressure or sound pres­
sure. We substitute Eqs. (A.3) into Eqs. (A.!) and (A.2), retain only terms 
linear in the small fluctuating contributions, and find 

ap 
Pay V . V = - at 

8v 
Pay at = - Vp. 

(AA) 

(A.5) 
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Equations (A.4) and (A.5) are called the linear acoustic equations. To proceed, 
we have to specify the thermodynamic relation between the pressure Pa and the 
density Pa in the atmosphere. The fluctuations caused by a sound wave are so 
rapid that sound propagation can be considered as an adiabatic process, i.e. a 
process without heat flow. In adiabatic processes, the pressure and the density 
satisfy the relation 

Pa = KpJ, (A.6) 

where K is a constant and 'Y = Cp/Cv is the specific-heat ratio; cp and Cv are 
the specific-heat coefficients of air at constant pressure and constant volume, 
respectively. A relation between the pressure fluctuation P and the density 
fluctuation P is found from a first-order Taylor expansion of the function Pa(Pa): 

( 8pa ) Pa(Pay + p) = Pay + a p, 
Pa ay 

(A.7) 

where the derivative is evaluated under adiabatic conditions and at density Pay. 
Using P = Pa - Pay and Eq. (A.6), we find 

(A.8) 

with 

2 (8pa) Pay 
c == 8pa ay = 'Y Pay· 

(A.9) 

The constant c will be identified later as the sound speed. From the ideal-gas 
law 

Pay = PayR:I' (A.10) 

we find 

(A.U) 

Here T is the absolute temperature and R is a constant. Using Eq. (A.8), we 
write the linear acoustic equations (A.4) and (A.5) as 

18p 
pV·v=--­

c2 8t 

8v 
P 8t = -Vp, 

(A.12) 

(A.13) 

where we have omitted the subscript of Pay; the subscript of Pay will be omitted 
when it is clear from the context that P represents the average atmospheric 
density (this is the case in all appendices except in Appendix E). We take the 
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time derivative of Eq. (A.12) and take the divergence of Eq. (A.13), eliminate 
a('\l . v) I at from the two resulting equations, and find the wave equation 

2 1 a2p _ 
'\l p - c2 at2 - O. (A.14) 

From this equation we can identify the constant c as the sound speed. To 
show this, we consider the solution p = g(x - ct) of Eq. (A.14), where 9 is 
an arbitrary function. This solution represents a plane wave traveling in the 
positive x direction, with constant values of the pressure p within planes normal 
to the x axis. As the solution depends only on x - ct, the pressure appears 
constant to an observer moving in the positive x direction with speed c. In 
other words, the wave travels with speed c. 

For dry air we have 1 = 1.4 and R = 287 J·kg-1·K-1 , and we find from 
Eq. (A.H) a sound speed of 331 mls at temperature 273 K, i.e. O°C. Equation 
(A.ll) can be written as 

c = eovTITo, (A.15) 

where we use To = 273 K and eo = 331 mls (one may also use, for example, 
To = 288 K and eo = 340 m/s). Values of the sound speed calculated with 
Eq. (A.15) agree with experimental values, which confirms our assumption that 
sound propagation can be considered as an adiabatic process. The sound speed 
given by Eq. (A.ll) or Eq. (A.15) is referred to as the adiabatic sound speed. 
For comparison, the isothermal sound speed is a factor of 1-1/ 2 ~ 0.85 smaller 
than the adiabatic sound speed. 

The value eo = 331 mls for To = 273 K was derived for dry air. The effect of 
humidity is a small increase of the sound speed, by a factor of (1 +0.16h), where 
h is the molar concentration of water vapour in the atmosphere (0 ~ h ~ 1; 
cf Sec. B.5). At 20°C, an upper limit for h is about 0.02, corresponding to an 
increase of the sound speed by 0.3%. 

For future reference we note that the ideal-gas law (A.lO) gives the following 
expression for the density of air at a pressure of 1 atm (1 atm = 1.01325 x 105 Pal: 

P = PoToIT, (A.16) 

where Po = 1.29 kg·m-3 is the density at temperature To = 273 K. 

A.3 Helmholtz equation for harmonic waves 

A sound wave is harmonic if the time dependence of the sound pressure is given 
by a factor cos( 4> - wt), where w = 27r f is the angular frequency (f is the 
frequency) and 4> is a constant phase angle. The factor can also be written 
as sin(4)' - wt), with 4>' = 4> + ~7r. In this case, the sound pressure and the 
other acoustic variables oscillate sinusoidally with time, at each position. This 
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is perceived as a pure tone. We write in this case 

P = Re (PCe- iwt ) 

v = Re (vce-iwt) , 

95 

(A.17) 

where Pc and vc are complex amplitudes and Re(z) is the real part of a complex 
number z. To explain this notation, we write the complex amplitude Pc as 
Aei </> , where A and ¢ are real numbers. Substitution into Eq. (A.17) gives 
p = A cos(¢ - wt). The factor A is called the amplitude of the sound field and 
¢ - wt is called the phase. The amplitude and the phase vary with position in 
the atmosphere, in general. A surface on which the phase is constant is called 
a wave front. In Sec. AA we will see that the wave fronts of a point source are 
spheres. 

For harmonic sound waves we can simplify the linear acoustic equations 
(A.12) and (A.13) and the wave equation (A.14). From Eqs. (A.17) we have 
that the pressure p and the velocity v depend on time only through the factor 
e-iwt . Consequently, the time derivative in Eqs. (A.12) to (A.14) reduces to 
a multiplication by the factor -iw. For example, substitution of Eqs. (A.17) 
into Eq. (A.12) gives Re [(p~'V . vc - iwpc)e-iwt ] = O. This should hold for all 
values of time t, which implies ~'V . v c - iwpc = O. The same arguments can 
be used in Eqs. (A.13) and (A.14). The linear acoustic equations (A.12) and 
(A.13) become 

(A.18) 

(A.19) 

and the wave equation (A.14) becomes 

'V2pc + k2pc = 0, (A.20) 

where k = w/c is the wave number. Equation (A.20) is called the Helmholtz 
equation. 

A.4 Inhomogeneous Helmholtz equation for a 
harmonic monopole source 

We consider a sound field generated by a point source, and assume that the 
field has spherical symmetry with respect to the source, i.e. depends only on 
the radial distance r from the source. In this case the source is called a monopole 
source. The Helmholtz equation (A.20) becomes 

(A.21) 
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This implies that the product rpc satisfies the one-dimensional Helmholtz equa­
tion 82(rpc)/8r2 + k2(rpc) = o. The solution is 

Pc = S exp(ikr) , 
r 

(A.22) 

where S is a constant; we assume that S is real, for simplicity. This solution 
represents an 'outgoing' wave, i.e. a wave that travels away from the point 
source. This can be seen as follows. Substitution of Eq. (A.22) into Eq. (A.17) 
gives p = S cos(kr - wt)/r. The corresponding wave fronts, i.e. surfaces of 
constant phase kr - wt, are spheres with radius r. The phase kr - wt of a wave 
front remains constant in time only if the radius r increases with increasing 
time t. 

A second solution of Eq. (A.21) is Pc = S exp( -ikr)/r. This solution is non­
physical, as it represents a wave in which the radius of a wave front decreases 
with increasing time. 

The amplitude of the spherical sound field represented by Eq. (A.22) is 
S/r, which decreases with increasing r. The corresponding sound pressure 
p = S cos(kr - wt)/r is a periodic function of time with period 271" /w = 1/ j 
and a periodic function of r with 'spatial period' 271"/k = c/ j, which is called 
the wavelength. 

The field given by Eq. (A.22) diverges for r -+ O. This divergence can be 
represented by including a term -471"Sc5(r - rs) on the right-hand side of Eq. 
(A.20): 

(A.23) 

where rs = (xs, Ys, zs) denotes the source position in a rectangular xyz coor­
dinate system and c5(r - rs) = c5(x - xs)c5(y - ys)c5(z - zs) is the product of 
three Dirac delta functions. The Dirac delta function is defined by the relation 
f g(x)c5(x - a)dx = g(a), where g(x) is an arbitrary function and the integration 
interval includes x = a [91]. 

To prove Eq. (A.23), we integrate Eq. (A.23) over the volume of a sphere 
with radius t around the source: 

(A.24) 

In the first term on the left-hand side we have used Gauss' theorem 

III V·FdV= II F·ndSc, (A.25) 

v Sc 

where F(r) is an arbitrary vector field, Sc is a closed surface, V is the volume 
enclosed by the surface Sc, and n is the outward unit normal vector at the 
surface Sci in this case we have F = Vpc and VPc = (8pcl8r)n, as we have 
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Pc = Peer) in a spherically symmetric field. We substitute Eq. (A.22) into Eq. 
(A.24) and take the limit to -t O. This gives an identity. Equation (A.23) 
is called an inhomogeneous Helmholtz equation, while Eq. (A.20) is called a 
homogeneous Helmholtz equation. 



Appendix B 

Free field of a point source 

B.1 Introduction 

The sound field of a source in an unbounded homogeneous atmosphere is called 
the free field of the source. The atmosphere is unbounded if there are no 
boundaries, such as a ground surface. The atmosphere is homogeneous, or 
non-refracting, if the sound speed is constant, i.e. independent of position in 
the atmosphere. 

In this appendix we describe the free field of a point source. This field is 
used as a reference field in the definition of the relative sound pressure level (see 
Sec. 3.4). 

The 'strength' of a source is represented by the acoustic power, which is 
defined in Sec. B.2. In Sec. B.3 we introduce the sound pressure level, and 
we derive a relation between the sound pressure level and the sound power 
level, taking into account the geometrical attenuation corresponding to spherical 
spreading of sound waves. In Sec. B.4 we describe the spectral decomposition 
of the sound field, using the mathematical technique of Fourier transformation. 
In Sec. B.5 we include the effect of atmospheric absorption in the description of 
the sound field. In Sec. B.6 we describe the Doppler effect for a moving source. 

B.2 Acoustic power of a source 

The sound field of a source is represented by the acoustic pressure per, t) and 
the fluid velocity vCr, t), where r denotes position in the field and t denotes 
time. We assume that the source is harmonic, and write p = Re (Pce-iwt) and 
v = Re (vce-iwt) with complex amplitudes Pc = Pr + ipj and Vc = Vr + iVi (see 
Sec. A.3). The acoustic intensity is defined as I = pv, which can be written as 
follows in this case: 

1= (Pr coswt + Pi sinwt)(vr coswt + Vi sinwt). (B.1) 
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The intensity is a function of time. The time average of the intensity, denoted 
as lay, is given by 

as follows from Eq. (B.1) and the relation (cos 2wt) av = (sin 2wt) ay = o. 
the average is performed over an integral number of harmonic periods. 

The average acoustic power of the source is defined as 

Way = II lay·n dBc , 

Se 

(B.2) 

Here 

(B.3) 

where Be is an arbitrary surface that encloses the source and n is the outward 
unit normal vector at the surface. The integral in Eq. (B.3) is independent of 
the choice of the surface Be, as long as it encloses the source. An equivalent 
statement is that the integral vanishes if the surface encloses no sources. This 
can be shown as follows. We have V· 1= (Vp)· v + pV· v. Substitution of the 
linear acoustic equations (A.12) and (A.13) gives the relation V . I = -ow/at, 
where w = tpv2 + tp2 / pc? is called the acoustic energy density [106]. This re­
lation is valid at all positions except source positions (at source positions, p and 
v diverge). As w depends on time through v2 and p2, we have (OW/ot)ay = 0, 
where the average is performed over an integral number of harmonic periods 
[from p = Pr coswt + Pi sinwt we find (op2/ot)ay = 0]. Consequently, we have 
V . lay = 0 at all positions except source positions. With Gauss' theorem (A.25) 
we find that the integral in Eq. (B.3) vanishes if the surface encloses no sources. 

B.3 Sound pressure level and geometrical atten­
uation 

We assume that the sound field has spherical symmetry with respect to the 
source, so the complex pressure amplitude Pc and the complex velocity ampli­
tude Vc depend on position only through the radial distance T from the source. 
In this case Eq. (B.3) gives 

Way 
lay = -4 2' 

1fT 
(BA) 

where lay = lay· n is the magnitude of the average intensity, which has only a 
radial component in this case. 

In practice the field of a sound source is often not spherical. The field 
is usually a smooth function of the direction of sound emission. In this case 
the analysis presented in this section can still be applied. The power Way is a 
function of the direction of sound emission in this case, and Eq. (B A) represents 
the decrease with distance T of the intensity within a cone, with the source at 
the apex of the cone. 
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The complex pressure amplitude is given by Eq. (A.22): 

Pc = S exp(ikr) , 
r 
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(B.5) 

where S is a constant. The corresponding fluid velocity has only a radial com­
ponent, which follows from Eq. (A.19): 

lOPe 
ve =--· 

iwp or (B.6) 

This gives 

( i) Pc 
Ve= l+ kr pc· (B.7) 

For large r we have kr » 1, and we find Vc ~ pel pc. As pc is a real number, this 
implies that the pressure and the fluid velocity are in phase with each other, 
at large distance from the source. For plane waves, the relation Ve = pel pc 
holds exactly, as follows from Eq. (A.19) (see Sec. C.3). Thus, a spherical wave 
behaves locally as a plane wave, at large distance from the source. The region 
where we have kr » 1 is called the far-field region. 

The average acoustic intensity given by Eq. (B.2) becomes, from Eq. (B.7), 

lav = ! IPcl2 . 
2 pc 

(B.B) 

The near-field term i/kr in Eq. (B.7) does not contribute to lay. Equation (B.B) 
can also be written as 

I _ (P2)av 
av - , (B.9) 

pc 

where (P2)av is the squared sound pressure averaged over an integral number 
of harmonic periods. The proof that (P2)av is equal to !IPcI2 is analogous to 
the derivation of Eq. (B.2) from Eq. (B.l). From Eqs. (B.5) and Eq. (B.B) we 
find that lav is proportional to r- 2 , in agreement with Eq. (B.4)j the quantity 
Way in Eq. (B.4) is related to the constant S by the relation Way = 27rS2 / pc. 
Equations (B.4) and (B.9) give the relation 

2) Way (P av = pC-4 2 • 
7rr 

The sound pressure level is defined as 

Lp = WIg <r}av 
Pref 

(B.lO) 

(B.Il) 
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with reference sound pressure Pref = 2 X 10-5 Pa (or 20 I'Pa). The sound power 
level is defined as 

Lw = WIg Way 
Wref 

(B.I2) 

with reference sound power W ref = 1 X 10-12 W (or 1 p W). The values of Pref 

and Wref satisfy the relation 

(B.I3) 

From Eqs. (B.lO) to (B.I3) we find 

L" = Lw - 1OIg47rr2. (B.I4) 

The term 10 19 47rr2 represents the attenuation of a spherical sound wave with 
increasing distance from the source, as a consequence of the spherical spreading 
of acoustic intensity. This attenuation is called geometrical attenuation. 

The sound pressure level is a dimensionless number, but to indicate that the 
level is calculated with Eq. (B.ll) one writes dB (re 20 I'Pa) after the number, 
where dB stands for decibel and re for 'reference'. For (P2)av = 1 Pa, for exam­
ple, we have L" = 94 dB (re 20 I'Pa). Analogously, one writes dB (re 1 pW) 
after a sound power level calculated with Eq. (B.I2). 

B.4 Spectral decomposition 
The foregoing was restricted to a harmonic source, but the results can also be 
used for a non-harmonic source by decomposing the sound pressure signal p(t) 
(at an arbitrary position) into harmonic components: 

(B.I5) 
n 

where Pe,n are the complex pressure amplitudes and Wn are the angular fre­
quencies of the harmonic components, for n = 0,1,2, .... In this section we will 
derive Eq. (B.I5), using the mathematical technique of Fourier transformation 
[112]. 

The Fourier transform P(f) of a time signal p(t) is defined as 

00 

P(f) = I p(t)ei21rlt dt. (B.I6) 

-00 

The inverse transform is 

00 

p(t) = I P(f)e-i21rlt dJ. (B.I7) 

-00 
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The variable I in these expressions will be identified later as the frequency of a 
harmonic component. As pet) is real, we have P( - f) = P*(f). The functions 
pet) and P(f) satisfy the relation 

00 00 

j p2(t) dt = jIP(fW dl, (B.I8) 
-00 -00 

which is known as Parseval's theorem [112]. 
In practice one works with a sampled signal, i.e. a set of values of the signal 

pet) at discrete times tj given by 

tj = jT, with j = 0,1, ... , N - 1, (B.I9) 

where T is the sample time and N is the number of samples; we assume that N 
is even. We define N frequencies 

n. 1 1 1 In = -N ' wIth n = --N + 1, --N + 2, ... , -N. 
T 2 2 2 

(B.20) 

For a sampled signal, the infinite time integration interval in Eqs. (B.I6) 
and (B.I8) is replaced by the finite 'measurement period' from to to tN-I. We 
assume that the signal is nonzero only in a finite time interval that is contained 
in the measurement period. The signal is zero at the boundaries of the measure­
ment period, i. e. at the times to and t N -1. For a continuous time signal this 
is not true; in this case one forces the signal to go to zero at the boundaries, 
by multiplying the signal by a 'time window' function; this function is equal 
to unity except in narrow regions near the boundaries, where the function goes 
continuously to zero. 

The signal pet) is accurately represented by the N samples p(tj) only if the 
measurement period NT is sufficiently long and if the sample frequency I/T is 
sufficiently high. It proves that the sample frequency should be at least twice 
the highest frequency present in the signal. The infinite frequency integration 
interval in Eqs. (B.I7) and (B.I8) is replaced by the finite interval from -I/2T 
to 1/2T. 

The discrete approximation of the Fourier transform (B.I6) for a sampled 
signal is 

(B.2I) 

with 

N-I 
Pn = L p(tj)ei27rjn/N. (B.22) 

j=O 

The quantity Pn is called the Discrete Fourier Transform (DFT) of the signal 
p(tj). If we use a power of 2 for the number N, e.g. N = 210 = 1024, the sum in 



104 Appendix B 

Eq. (B.22) can be evaluated efficiently with the Fast Fourier Transform (FFT) 
algorithm [112]. 

The discrete approximation of the inverse Fourier transform (B.17) is 

(B.23) 

where Eq. (B.21) has been used. From Eq. (B.22) we have Pn = Pn+N, which 
implies that the set n = -~N + 1, -~N + 2, ... ,~N is equivalent to the set 
n = 0,1, ... ,N - 1. From Eq. (B.23) we have p(tj) = p(tj+N). In particular, 
we have p(to) = P(tN). This is the reason why we assumed p(to) = p(tN-d = 0 
below Eq. (B.20); for p(to) =f:. p(tN-d we would have a pressure jump between 
tN-l and tN, which introduces spurious high-frequency components in the spec­
trum. 

As pet) is real, we have P-n = P~. This implies that Eq. (B.23) can also be 
written as 

!N 
p(tj) = L Re (Pe,ne- i2"jn/N) (B.24) 

n=O 

with 

P, {~Pe,n for n = 1,2, ... ,~N - 1 
;; = Pe,n for n = 0 and n = ~N 

~P;,-n for n = -1, -2, ... ,-~N + 1. 
(B.25) 

Equation (B.24) is of the same form as Eq. (B.15) if we set Wn = 21f In and use 
Eqs. (B.19) and (B.20); we identify Wn as the angular frequency and In as the 
frequency of Fourier component n. Thus, we have shown that a time signal can 
always be decomposed into harmonic Fourier components. 

We will now use Fourier decomposition to introduce the spectrum of the 
sound pressure level. The discrete form of Parseval's theorem (B.18) is 

N-l !N 
T L p2(tj) = ~T L IP(fn)12 . 

j=O n=-!N+l 
(B.26) 

Replacing the left-hand side by TN(P2)av and using Pn from Eq. (B.21) on the 
right-hand side, we find 

(B.27) 

This can be written as 

(P2) _ 1P012 !~l 21Pnl2 IP!NI2 
av - N2 + ~ N2 + N2 . 

n=l 

(B.28) 
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The first term on the right-hand side represents the DC component, i.e. the 
component that is independent of time; this term is usually zero as the sound 
pressure is defined as the deviation from the DC component. The remaining 
terms represent the contributions to (P2)av from the Fourier components with 
frequencies In with n = 1,2, ... ,!N. The last term on the right-hand side 
for n = ! N can be neglected if the number of samples N is sufficiently large. 
For the contributions 21Pn12/N2 from components n = 1,2, ... , !N -1 we find 
from Eq. (B.25) 

(B.29) 

or 

21Pnl2 = (p2) (B.30) N2 n av 

with Pn(tj) = Re (pc,ne-i21rjn/N). Substitution of Eq. (B.30) into Eq. (B.28) 
gives 

!N-1 

(P2)av = L (P;)av, (B.31) 
n=O 

where we have included the contribution (P~)av = PJ /N2 of the DC component 
Po(tj) = Pc,o = Po/N, with real Po, and the last term on the right-hand side 
of Eq. (B.28) has been neglected. The quantity (P2)av has been decomposed 
into contributions ~)av of the Fourier components with frequencies In. The 
contributions ~)av are related to the Fourier coefficients Pn by Eq. (B.30). 
The Fourier coefficients Pn are obtained from the signal p(t) by the Discrete 
Fourier Transform (B.22). 

The quantity (p2)av is related to the sound pressure level Lp by Eq. (B.ll). 
The spectrum of the sound pressure level is defined as 

Lp{fn) = 10 19 ~)av , 
Pref 

(B.32) 

so we have 

Lp = 10 19 L lOL ,,(I .. )/10. (B.33) 
n 

We use the notation Lp{fn) for the spectrum and Lp for the broadband level. 
From Eq. (B.14) we have Lw = Lp + 1OIg47rr2, so we define the spectrum of 
the sound power level as Lw{fn) = Lp{fn) + 1OIg47rr2, which is independent 
of r. We use here the spectrum Lp{fn) at a relatively small distance r from 
the source (for large r the effect of atmospheric absorption should be taken into 
account; see Sec. B.5). We have 

(B.34) 
n 
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The frequencies !n are given by !n = n/NT, with n = 0,1, ... , ~N - 1. The 
frequencies are equidistant on a linear scale (see Fig. 2.5). A frequency interval 
between!n and !n+1 is called a nalTOw frequency band. The width !n+1 -!n = 
I/NT of a narrow frequency band is typically 1 Hz or smaller (for example, 
I/NT ~ 1 Hz for N = 1024 and T = 1 ms). 

In practice one often uses 1/3-octave (one-third-octave) and octave bands. 
Each 1/3-octave band and each octave band is characterized by a center fre­
quency, an upper frequency, and a lower frequency (see Fig. 2.5). The center fre­
quencies are given approximately by !c,m ~ !c,302-10+m/3 with !c,30 = 1000 Hz, 
where the band number m is a positive integer. For the 1/3-octave bands m 
runs over all positive integers (m = 1,2,3, ... ), while for the octave bands m is 
a multiple of 3 (m = 3,6,9, ... ). The center frequencies of two successive octave 
bands differ by a factor of 2. The upper and lower frequencies of an octave band 
m are 21/2 !c,m and 2-1/2 !c,m, respectively, so the octave bands are contiguous. 
The center frequencies of two successive 1/3-octave bands differ by a factor of 
21/3. The upper and lower frequencies of a 1/3-octave band m are 21/6 !c,m and 
2-1/6 !c,m, respectively, so the 1/3-octave bands are also contiguous. 

A problem with the approximate relation !c,m ~ !c,302-10+m/3 is that it 
does not give round numbers for the center frequencies. For m = 20, for exam­
ple, we find !c,20 = 99.2 Hz. One can also calculate the center frequencies with 
the relation !c,m = lOm/10 Hz, as follows from 210/3 ~ 10; the center frequencies 
calculated with this relation are sometimes referred to as the 'exact' center fre­
quencies, for example in the International Standard lEe 651 (1993-09). Also the 
exact center frequencies are not all round numbers; only the frequencies 1, 10, 
100, 1000, and 10 000 Hz are round numbers. For m = 24, for example, we find 
251.2 Hz. In practice one often uses round numbers for all center frequencies. 
These round numbers are referred to as the 'preferred' center frequencies, and 
are specified in the International Standard ISO 266-1976(E}. 

The 'preferred' 1/3-octave band center frequencies between 10 Hz and 10 kHz 
are 

10, 12.5, 16, 20, 25, 31.5, 40, 50, 63, 80 Hz 
100, 125, 160, 200, 250, 315, 400, 500, 630, 800 Hz 
1, 1.25, 1.6, 2, 2.5, 3.15, 4, 5, 6.3, 8, 10 kHz 

(m = 10, 11, ... , 19) 
(m = 20, 21, ... , 29) 
(m = 30, 31, ... , 40). 

The 'preferred' octave band center frequencies between 10 Hz and 10 kHz are 

16, 31.5, 63, 125, 250, 500 Hz 
1,2,4,8 kHz 

(m = 12, 15, ... , 27) 
(m = 30, 33, ... , 39). 

There are also 'preferred' frequencies for the upper and lower frequencies of 
the 1/3-octave and octave bands. For most practical applications, however, the 
approximations 21/2 !c,m and 2-1/2 !c,m for the octave bands, and 21/6 !c,m and 
2-1/6 !c,m for the 1/3-octave bands, are sufficiently accurate. 

Narrow-band spectra Lp{fn} are converted to 1/3-octave or octave band 
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spectra with the relation 

Lp(fc,m) = 10 19 E'lOLp(fn)/lO, (B.35) 
n 

where the prime indicates that the sum is over all narrow bands in If3-octave 
or octave band m (if only a fraction of a narrow band is covered by band m, the 
contribution of this narrow band in the sum should be multiplied by this frac­
tion). Consequently, Eq. (B.33) also applies with a summation over If3-octave 
or octave bands, instead of narrow bands: Lp = 10 Ig(Lm lOLp(fc,~)/lO). The 
conversion of narrow-band sound power spectra Lw (f n) to If3-octave or octave 
band spectra is analogous. 

The human ear is most sensitive to frequencies in the range between about 
1 kHz and 6 kHz. A pure tone of 1 kHz, for example, appears about equally loud 
as a pure tone of 100 Hz with a 20 dB higher value of the sound pressure level. 
To account for this effect one employs the A-weighting, in applications in which 
human perception of sound is involved, e.g. noise control. The A-weighting is 
represented by the function WA (fn) given in the International Standard IEC 
651 (1993-09): 

(B.36) 

with 

122002 f4 
RA(f) = (J2 + 20.62)(J2 + 122002)(f2 + 107.72)1/2(J2 + 737.92)1/2' (B.37) 

where f is expressed in Hz and RA,lOOO is the value of RA(fn) at fn = 1000 Hz. 
The A-weighted spectrum LA(fn) is defined as 

(B.38) 

Pure tones with equal values of LA(fn) are perceived with about equal loudness. 
From the A-weighted spectrum LA (fn) the A-weighted sound pressure level LA 
is calculated with the relation 

(B.39) 
n 

The level LA is often referred to simply as the sound level. As an approxima­
tion, one can apply the A-weighting to the If3-octave or octave band spectrum 
(instead of the narrow-band spectrum). In this case one uses Eq. (B.38) with 
the frequency fn replaced by a center frequency fc,m and calculates the sound 
level LA from the A-weighted levels LA(fc,m). The values of the A-weighting 
WA(fc,m) for the 'preferred' center frequencies are given in Table B.l. 
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Table B.1. The A-weighting WA(fc,m) (in dB) for the 'preferred' l/3-octave 
band center frequencies fc,m (in Hz). 

12.5 25 50 100 200 400 800 1600 3150 6300 
fc,m 16 31.5 63 125 250 500 1000 2000 4000 8000 

20 40 80 160 315 630 1250 2500 5000 10k 
-63.6 -44.8 -30.3 -19.1 -10.8 -4.8 -0.8 1.0 1.2 -0.1 

WA -56.4 -39.5 -26.2 -16.2 -8.7 -3.2 0.0 1.2 1.0 -1.1 
-50.4 -34.5 -22A -13.2 -6.6 -1.9 0.6 1.3 0.6 -2.5 

B.5 Atmospheric absorption 

In the foregoing we have ignored the fact that a sound wave loses energy by 
atmospheric absorption. Atmospheric absorption originates from two effects [92, 
106]: 

i) thermal conduction and viscosity of air, 

ii) relaxation losses of oxygen and nitrogen molecules in air. 

Both effects cause an attenuation of a sound wave. 
The attenuation due to the first effect is called classical attenuation. Tem­

perature gradients present in a sound wave are partly reduced by heat flow, 
which depends on the thermal conductivity of air. Analogously, velocity gradi­
ents present in a sound wave are partly reduced by momentum transfer, which 
depends on the viscosity of air. In both processes the sound wave loses energy, 
which is converted into heat. As the gradients are proportional to the frequency 
of the sound wave, the attenuation is larger at high frequency than at low fre­
quency. The classical attenuation of a sound wave can be derived from the 
equations of fluid dynamics including viscosity and thermal conductivity. 

An analysis based on statistical mechanics is required for the attenuation 
due to molecular relaxation losses. A sound wave causes periodic compression 
and expansion of air. During the compression stage, the diatomic oxygen and 
nitrogen molecules in the air are brought into excited vibrational and rotational 
states. During the expansion stage, the molecules relax to their original states. 
In this process some energy is lost, which is converted into heat. Water molecules 
play an important role as a catalyst in these internal molecular processes of exci­
tation and relaxation. Consequently, the attenuation by atmospheric absorption 
depends on the humidity of the air. 

A spherical sound wave is attenuated by atmospheric absorption, in addition 
to the geometrical attenuation by spherical spreading described in Sec. B.3. The 
relative change in average acoustic intensity layover an infinitesimal propagation 
distance dr can be written as 

dlay 2 I 
-- = - -dr - a dr, 
lay r 

(BAO) 
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where the first term on the right-hand side represents spherical spreading [this 
term follows from Eq. (B.4)] and the second term represents atmospheric ab­
sorption; 0:' is the fraction of acoustic intensity that the wave loses per unit 
propagation distance due to atmospheric absorption. Integration of this equa­
tion gives 

I Way -a'r 
av = -4 2 e , 

1rT 
(B.41) 

which agrees with Eq. (B.4) for 0:' = O. Using Eqs. (B.9) and (B.11) to (B.13) 
we find the following expression for the sound pressure level: 

Lp = Lw - 10 19 41rT2 - O:T, (B.42) 

where 0: = 0:'10 19 e is the attenuation in dB per unit length. The term -O:T is 
negligible for short distance T. For distances of the order of a hundred meters 
or more, however, this term can usually not be neglected, in particular at high 
frequencies. It should be noted that molecular relaxation losses affect not only 
the amplitude but also the phase of a sound wave [106]. The effect on the phase 
is small, however, and is neglected here. 

The attenuation of a sound wave by atmospheric absorption varies consid­
erably with the frequency I of the wave. We distinguish three regions in the 
frequency range, separated by the relaxation frequencies Ir,N and Ir,o of nitro­
gen and oxygen, respectively. At low frequency, I < Ir,N, the attenuation is 
dominated by nitrogen relaxation. For Ir,N < I < Ir,o, oxygen relaxation dom­
inates. At high frequency, I > Ir,o, the attenuation approaches the classical 
attenuation. The three regions in the frequency range are clearly visible in a 
double-logarithmic graph of the absorption coefficient 0: versus frequency; an 
example is shown in Fig. B.1, for a temperature of 10°C, a relative humidity of 
80%, and a pressure of 1 atm. In each region, the curve approaches a straight 
line with a slope equal to 2. A slope of 2 means that the absorption coefficient 
is proportional to the square of the frequency. 

The curve shown in Fig. B.1 was calculated with the International Standard 
ISO 9613-1:1993(E). The formulas from this Standard are given below. The 
absorption coefficient is calculated from three atmospheric parameters: the ab­
solute temperature T in K, the relative humidity Th in %, and the atmospheric 
pressure Pa in Pa. The absorption coefficient in dB per meter is given by 

(B.43) 

where Tr = T /T20 and Pr = Pa/Pr are dimensionless quantities, with T20 = 
293.15 K and Pr = 101 325 Pa; the quantities bi and b2 are given by 

bi = 0.1068exp( -3352/T)/(fr,N + 12/ Ir,N) (B.44) 

~ = 0.01275exp( -2239.1/T)/(fr,0 + 12/ Ir,o), (B.45) 
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Figure B.1. Absorption coefficient 0: as a function of frequency I, calculated 
with the International Standard ISO 9613-1:1993(E) for a temperature of lOoC, 
a relative humidity of 80%, and a pressure of 1 atm. The relaxation frequencies 
Ir,N and Ir,o of nitrogen and oxygen, respectively, are also indicated. 

where Ir,N and Ir,o are the relaxation frequencies of nitrogen and oxygen, re­
spectively, which are given by 

Ir,N = PrTr-1/2 (9 + 280hexp(-4.17[Tr- 1/ 3 -1])) (B.46) 

Ir,o = Pr [24 + 40400h(0.02 + h)/(0.391 + h)]. (B.47) 

The quantity h in these expressions is the molar concentration of water vapour in 
the atmosphere, expressed as a percentage. The relative humidity rh is defined 
as the ratio, expressed as a percentage, of the water vapour pressure in the 
atmosphere to the saturation vapour pressure Psat. We have 

h = rhPsat/ Pr 

with Psat = Psat/Pr. The quantity Psat is written as 

Psat = 10c ••• 

(B.48) 

(BA9) 
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with 

Csat = -6.8346(Tol /T)1.261 + 4.6151, (B.50) 

where TOl = 273.16 K is the triple-point temperature of water. The accuracy 
of the absorption coefficient a calculated with these expressions is estimated 
to be ±10% for 0.05% < h < 5%, 253 < T < 323 K, Pa < 200 kPa, and 
4 x 10-4 < I/Pa < 10 Hz/Pa. 

The above expressions are valid for pure-tone sounds, but the expressions can 
also be used for broadband sounds by spectral decomposition (it is indicated in 
Ref. [146] that the spectral decomposition into 1/3-octave or octave bands causes 
small errors in the calculation of atmospheric absorption). As an approximation, 
the absorption for a 1/3-octave or octave band can be calculated by evaluating 
the absorption coefficient at the center frequency of the band. Table B.2 gives 
the values of the absorption coefficient for a temperature of lOoe and a relative 
humidity of 80%, calculated with Eqs. (B.43) to (B.50) for the 1/3-octave band 
center frequencies. 

Table B.2. Atmospheric absorption coefficient a (in dB per kilometer) at 
T = 283.15 K (IO°C), Th = 80%, and Pa = 1.01325 X 105 Pa (1 atm), for the 
'preferred' 1/3-octave band center frequencies Ic,m (in Hz). 

12.5 25 50 100 200 400 800 1600 3150 6300 
fc,m 16 31.5 63 125 250 500 1000 2000 4000 8000 

20 40 80 160 315 630 1250 2500 5000 10k 
0.005 0.018 0.07 0.25 0.77 1.63 2.88 6.3 18.8 67 

a 0.007 0.028 0.11 0.37 1.02 1.96 3.57 8.8 29.0 105 
0.011 0.045 0.17 0.55 1.31 2.36 4.58 12.6 43.7 157 

B.6 Doppler effect 
The frequency of sound received from a moving harmonic source is affected by 
the motion of the source. This is the Doppler effect. As illustrated in Fig. B.2, 
the distance between wave fronts emitted at constant time intervals by a moving 
source is reduced in the region in front of the source (to the right in the figure) 
and enhanced in the region behind the source (to the left in the figure), simply 
because successive wave fronts are emitted at different source positions. The 
frequency of the sound at a stationary receiver is inversely proportional to the 
distance between successive wave fronts. Therefore, the frequency is enhanced 
in the region in front of the source and reduced in the region behind the source. 

It is straightforward to show [46, 106] that source motion changes the ob­
served frequency by a factor In = c/(c - vr ), where c is the sound speed and Vr 

is the radial component of the source velocity, i.e. the component along the line 
from the source to the receiver (see Fig. B.2). The radial velocity component 
Vr is positive for a receiver in the region in front of the source and negative for 
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source v 

~ 
receiver 

Figure B.2. Dlustration of the Doppler effect. The circles represent spherical 
wave fronts emitted at constant time intervals by a moving source. The distance 
between the wave fronts is reduced in the region in front of the source and 
enhanced in the region behind the source. Also shown is the radial velocity 
component Vr , which determines the Doppler frequency shift at a receiver. 

a receiver in the region behind the source; for positive Vr we have fo > 1 and 
for negative Vr we have fo < l. 

The amplitude is changed by the same factor fo [46]. The compressed waves 
in the region in front of the source have an enhanced amplitude, while the 
decompressed waves in the region behind the source have a reduced amplitude. 

In practice the Doppler effect can often be neglected. For Vr = 100 km/h, 
for example, we have fo = 1.09, so the frequency and amplitude are enhanced 
by only 9%. 
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Acoustic impedance 

C.l Introduction 

In computational models for atmospheric sound propagation, the ground surface 
is usually taken into account by a mathematical boundary condition to the 
solution for the field above the ground surface. This condition contains the 
acoustic impedance of the ground surface as a parameter. In this appendix we 
describe the concept of acoustic impedance of a ground surface. 

In Sec. C.2 we introduce the impedance of a ground surface and explain the 
relation to the characteristic impedance of the ground material. Not only the 
impedance of the ground material but also the impedance of air plays a role 
in the interaction of sound waves with the ground. The impedance of air is 
evaluated in Sec. C.3. Many natural grounds can be modeled as porous media. 
In Sec. C.4 we describe various impedance models for porous media. 

In Sec. C.5 we describe the normal reflection of plane waves, as a simple 
example of the use of ground impedance. In Appendix D we will describe the 
ground reflection of plane waves for an arbitrary angle of incidence, and the 
ground reflection of spherical waves. 

Some grounds can be modeled as a homogeneous medium of porous material 
with a top layer that consists of a different porous material. The impedance of 
such a layered ground is described in Sec. C.6. 

C.2 Impedance of a ground surface 

When a sound wave strikes a ground surface, part of the wave is reflected and 
part of the wave is transmitted into the ground (see Fig. C.1). In general, the 
propagation speed of the wave in the ground is different from the sound speed 
in the air above the ground. The sound speed in the ground is often smaller 
than the sound speed in air. In Appendix D we will see that this implies 0' < Oi 
(see Fig. C.1). We will also see that we have Oi = Or. 
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'.' 
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Figure C.l. Reflection of a sound wave by a ground surface. 

Many natural grounds can be described as porous media. A sound wave 
causes a vibration of the air in the pores of a porous ground medium. Solid or 
liquid material in the ground may also vibrate. 

In general, the ground is modeled as a continuous propagation medium for 
sound waves, i.e. as a fluid, so a sound pressure and a fluid velocity can be 
defined in the ground medium [92]. At the air-ground interface, i.e. at the 
ground surface, the sound pressure and the fluid velocity component normal 
to the ground surface are continuous, i.e. have equal values just above and 
just below the ground surface. This follows from mechanical equilibrium and 
mass conservation at the interface. The fluid velocity component parallel to the 
ground surface may be discontinuous at the ground surface. 

The sound pressure and the normal velocity component at the ground surface 
depend of course on the incident sound field . If the amplitude of the incident 
field is doubled, for example, the amplitudes of the sound pressure and the 
normal velocity component at the ground surface are also doubled. The ratio of 
the sound pressure to the normal velocity component, however, is independent of 
the amplitude of the incident sound field, and is therefore a convenient quantity 
for the acoustic characterization of the ground surface. The ratio depends on 
the frequency of the sound field, but this is not a problem as we can always 
decompose a sound field into harmonic components. 

We consider a harmonic sound field in the system shown in Fig. C.I, with 
complex pressure amplitude Pc and normal component Vc.n of the complex ve­
locity amplitude (vc•n is the normal component in downward direction). The 
quantities Pc and Vc.n are functions of the (vertical) position. The (acoustic) 
impedance of the ground surface is defined as the ratio pc/vc.n evaluated at the 
ground surface. The ratio pc/vc.n is continuous at the ground surface, i.e. has 
equal values just above and just below the ground surface; this provides the 
boundary condition to the sound field above the ground surface. 

The value of the ratio pc/vc ,n just below the ground surface is related to the 
characteristic impedance of the ground material. The characteristic impedance 
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of a medium is defined as the ratio pclvc, where Pc and Vc are the complex 
pressure and velocity amplitudes, respectively, of a single harmonic sound wave 
traveling in the medium. It should be noted that in the system shown in Fig. C.l 
there are two waves in the region above the ground surface (the incident wave 
and the reflected wave) and a single wave below the ground surface (the trans­
mitted wave). 

If the propagation direction of the incident wave is normal to the ground 
surface (8j = 0 in Fig. C.I), the propagation direction of the transmitted wave 
is also normal to the ground surface (8' = 0). In this case we have Vc = vc,n. 
Consequently, the impedance of a ground surface for normal incidence is equal 
to the value of Pc/vc for the transmitted wave, i.e. the characteristic impedance 
of the ground material, evaluated at the surface. In general, the characteristic 
impedance is a function of depth in the ground, and the characteristic impedance 
should be evaluated at the surface; only if the ground medium is homogeneous, 
the characteristic impedance is independent of depth in the ground. 

If the propagation direction of the incident wave is not normal to the ground 
surface, the propagation direction of the transmitted wave is also not normal 
to the ground surface, in general. For many ground surfaces, however, it is a 
good approximation to assume that the propagation direction of the transmitted 
wave is normal to the ground surface, irrespective of the propagation direction 
of the incident wave. These ground surfaces are called locally reacting ground 
surfaces (see also Sec. D.3). Thus we have Vc ~ vc,n for a locally reacting ground 
surface. Consequently, the impedance of a locally reacting ground surface is 
approximately equal to the characteristic impedance of the ground material. In 
Sec. D.3 we will derive a general relation between the impedance of a ground 
surface and the characteristic impedance of the ground material. 

The impedance of an acoustically absorbing surface is a complex number (or 
rather, a complex function of frequency), as the pressure and the fluid velocity 
are not in phase with each other, in general. The impedance of an acoustically 
hard surface is infinite, as normal movement of air is not possible at a hard sur­
face (vc,n = 0). Thus, the impedance of a surface is a measure of the resistance 
of the surface against normal movement of air. 

Not only the characteristic impedance of the ground material but also the 
characteristic impedance of air, i.e. the propagation medium above the ground 
surface, plays a role in the ground reflection of sound waves. The character­
istic impedance of air is evaluated in Sec. C.3. Models for the characteristic 
impedance of porous ground media are described in Sec. CA. 



116 Appendix C 

C.3 Impedance of air 

We consider a harmonic plane sound wave traveling in air. The sound pressure 
p is written as 

p(x, t) = Re[pc(x) exp( -iwt)] 

with Pc(x) = Poexp(ikx), 
(C.l) 

where x is the propagation distance and Po is a constant. The function p(x, t) 
satisfies the one-dimensional wave equation 

82p _ ~ 82p _ 0 
8x2 c2 8t2 - , 

(C.2) 

where c = w / k is the adiabatic sound speed. This equation follows from the 
three-dimensional wave equation (A.14) and ,Pp = 8 2p/8x2 • In this one­
dimensional case, the linear acoustic equations (A.12) and (A.13) become 

8v 1 8p 
= 8x pc2 8t 

(C.3) 

8v 8p 
p 8t = - 8x' (C.4) 

where p is the density of air (p == Pav) and v = v(x, t) is the fluid velocity. 
The sound pressure given by Eq. (C.l) corresponds to a fluid velocity v given 

by 

v(x, t) = Re [vc(x) exp( -iwt)] 

with vc(x) = Vo exp(ikx), 
(C.5) 

where Vo is a constant. This follows from the wave equation (C.2) with p 
replaced by v, which can be derived from the linear acoustic equations (C.3) and 
(C.4). From Eqs. (C.l) and (C.5) we see that the ratio Pc (x)/vc(x) is constant, 
i.e. independent of x. This ratio is called the (specific) acoustic impedance ( 
of the medium, air in this case. The value of the acoustic impedance of air, 
denoted as (air, can be derived from the linear acoustic equations (C.3) and 
(C.4). Substitution of Eqs. (C.1) and (C.5) in either Eq. (C.3) or Eq. (C.4) 
yields 

(air = pC. (C.6) 

This equation can also be derived directly from Eqs. (A.19) and (C.l). From 
Eqs. (A.15) and (A.16) we find (air = 427 kg.m-2 ·s-1 at temperature To = 273 K. 

For spherical waves, the ratio pclvc approaches the value pc in the far-field 
region (see Sec. B.3). Thus, the impedance for spherical waves is equal to the 
impedance for plane waves, except at small distance from the source. 
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C.4 Impedance of porous media 
Many natural grounds can be modeled as porous media. The (specific) acoustic 
impedance ( of a porous medium is defined in the same way as the impedance 
of the medium 'air' was defined in the previous section, i.e. as the ratio Pc/vc, 
where Pc and Vc are the complex pressure and velocity amplitudes, respectively, 
of a harmonic plane wave traveling in the medium. The normalized (specific) 
acoustic impedance Z is defined as Z = (/(air. This quantity plays an important 
role in the reflection of sound waves by a ground surface (see Sec. C.5 and 
Appendix D). 

Zwikker and Kosten [161) and Attenborough [4, 5, 6, 7) developed various 
models for the impedance of porous materials. In this section we first follow 
the derivation by Zwikker and Kosten of the impedance of a porous material 
with a rigid frame. Next we give an expression for the impedance developed 
by Attenborough, and finally an empirical expression developed by Delany and 
Bazley [39). 

We consider a plane sound wave traveling in a porous material with a rigid 
frame. The sound wave causes a vibration of the air in the pores of the material, 
while the rigid frame does not vibrate. The expressions (C.1) and (C.5) are also 
valid in this case, but the value of the wave number k is different from its value 
in free air. The wave number contains an imaginary part, which depends on the 
flow resistance, i.e. the resistance that the frame offers to an air flow through 
the material. The imaginary part corresponds to a reduction of the amplitude 
of the sound wave with increasing propagation distance, i. e. an attenuation of 
the sound wave. 

The linear acoustic equations (C.3) and (C.4) can be generalized as follows 
for the porous material (Zwikker and Kosten [161)): 

av 0. ap 
-ax = pc2 at 

~ av ap -p-+uv=--
0. at ax' 

(C.7) 

(C.S) 

where 0. is the porosity, ~ is the structure constant, and u is the flow resistivity 
of the porous material. The porosity 0. is defined as the volume fraction of air 
in the material. Equation (C.7) shows that the pressure fluctuations generated 
by a velocity gradient au/ax are a factor of 1/0. larger in the porous material 
than in free air, simply because the available volume is a factor of 0. smaller. 
We assume that the air vibrations in the porous material are approximately 
adiabatic, so the constant c in Eq. (C.7) can be approximated by the adiabatic 
sound speed in free air, which is given by Eq. (A.9). The flow resistivity u 
of a porous material is defined as the ratio -(ap/ax)/v in a situation with a 
steady flow through the material, as follows from Eq. (C.S) with au/at = O. 
The first term on the left-hand side of Eq. (C.S) differs from the corresponding 
term in Eq. (C.4) by the factor ~/o.. The factor 1/0. accounts for the reduced 
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available volume in the porous material. The structure constant c,. accounts 
for the specific structure of the pores and the frame of the material. Zwikker 
and Kosten [161] indicated that experimental values of c,. are often in the range 
between 3 and 7. 

Substitution of Eqs. (C.l) and (C.5) into Eqs. (C.7) and (C.8) gives 

(C.9) 

z = v'qc!n (C.lO) 

with 

c,. . (1 

qc = 0, + 1 {JVJ • (C.ll) 

We give here not only the expression for the impedance Z but also the expression 
for the complex wave number k, because the impedance of a layered ground 
depends on k and Z (see Sec. C.6). 

If the sound propagation in the porous material is better approximated as an 
isothermal process than as an adiabatic process, the adiabatic sound speed c in 
Eq. (C.9) should be replaced by the isothermal sound speed cy-l/2. Figure C.2 
shows two examples of the impedance as a function of frequency, calculated 
with Eqs. (C.lO) and (C.ll). For this figure we used the adiabatic sound speed, 
and the values c,. = 3, 0, = 0.3, and p = 1.19 kg.m-3 . The figure shows also the 
impedance calculated with two other models, which are described below. 

We note that the sign of the imaginary parts of k and Z is related to the 
(arbitrary) choice of the signs of the arguments of the exponential functions 
in Eqs. (C.l) and (C.5). One can also choose the opposite signs: p(x, t) = 
Re [Pc (x) exp( +iwt)] with Pc(x) = Po exp( -ikx), and similarly for the velocity. 
Both choices correspond to a wave traveling in the positive x direction. If 
the opposite signs are chosen instead of the signs chosen in Eqs. (C.l) and 
(C.5), then Eqs. (C.9) and (C.lO) are obtained with qc replaced by its complex 
conjugate q~, i.e. with opposite imaginary part. 

Attenborough [4, 5, 7, 10, 11] developed various more refined models for the 
impedance of porous materials (see also Ref. [144]). Here we give the expressions 
of Attenborough's four-parameter model [5]: 

(C.12) 

Z = (4q2 .S;(1) w/c 
30, + 1 {JVJ k' (C.13) 

where Npr ~ 0.7 is the Prandtl number, Sf is the pore shape factor ratio, and 
q2 == 0,-9 is the square of the tortuosity q, where 9 is a grain shape factor. 
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Figure C.2. Real and imaginary parts of the normalized impedance Z as a 
function of frequency, for flow resistivity a = 200 kPa·s·m-2 (left column) and 
a = 50 kPa·s·m-2 (right column). Model 1 represents Eq. (C.15) due to De­
lany and Bazley [39). Model 2 represents Eq. (C.13) due to Attenborough [5). 
Model 3 represents Eq. (C.lO) due to Zwikker and Kosten [161). 

Attenborough presents several comparisons of the four-parameter model with 
experimental data for grassland, sandy soil, and forest floors, treating the four 
parameters a, g, Sf, and n as more or less adjustable parameters. The val­
ues of the parameters vary considerably for different types of natural ground. 
Typical values are 9 = 0.5, Sf = 0.75, and n = 0.3, while a varies in the 
range between roughly 10 and 1000 kPa·s·m-2 . For the numerical examples 
presented in this book we used the values g = 0.5, n = 0.3, Npr = 0.7, and 
sNp = 0.752/1.19 m3 ·kg-1 in Eqs. (C.12) and (C.13). 

An empirical impedance model for fibrous absorbing materials, e.g. glass­
fiber and mineral-wool materials, was developed by Delany and Bazley [39): 

[ ( ) 0.70 ( )0.59] 
k = ~ 1 + 0.0858 7- + i 0.175 7- (C.14) 

( )
0." ( )~n 

Z = 1 + 0.0511 7- + i 0.0768 7- (C.15) 
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Figure C.3. Normal reflection of a plane wave by a ground surface. 

These empirical relations are based on experimental data for values of f /u rang­
ing from 0.01 to 1.0 m3 ·kg- l . Chessel [23] showed that the relations also give 
good agreement with experimental data for grassland, with the flow resistiv­
ity u varying between 100 and 300 kPa·s·m-2 , and f / u ranging from 10-4 to 
0.1 m3 ·kg-1 (see also Ref. [146]). 

C.5 Normal reflection by a ground surface 

The normalized impedance Z introduced in the previous section is used for 
the modeling of the reflection of sound waves by ground surfaces and other 
surfaces. As an example we consider the reflection of a harmonic plane wave 
by a homogeneous ground surface, with the propagation direction normal to 
the ground surface (see Fig. C.3). We choose the x axis along the propagation 
direction, with the ground surface at x = O. In the air above the ground surface 
there is an incident wave and a reflected wave. In the (porous) ground there is 
only a transmitted wave. 

The complex pressure amplitude Pc in the air above the ground surface is 
equal to the sum of the complex pressure amplitude of the incident wave and 
the complex pressure amplitude of the reflected wave: 

Pc(x} = Po[exp(ikx} + Rpexp(-ikx}], (C.16) 

where Rp is a complex quantity that is called the plane-wave reflection coefficient 
and Po is a constant. The corresponding complex velocity amplitude Vc in the 
air above the ground surface follows from Eq. (C.4): 

Vc(x} = Po [exp(ikx} - Rp exp( -ikx}] . 
pc 

{C.17} 

The ratio Pc(x}/vc(x} is continuous at x = 0, so Pc(x}/vc(x} just above the 
ground surface is equal to Pc{x}/vc{x} just below the ground surface. The 
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Figure C.4. Normal reflection of a plane wave by a layer with thickness d 
and normalized impedance Z, backed by a second material with normalized 
impedance Z2. The waves traveling in the layer in the positive and negative x 
directions are labeled with 1 and 2, respectively. 

ratio Pc(x}/vc(x} just below the ground surface is equal to the characteristic 
impedance pcZ of the ground. From Eqs. (C.16) and (C.17) for x = 0 we find 

which implies 

Z= I+Rp 
1- Rp ' 

Z -1 
Rp =--. 

Z+1 

(C. IS} 

(C.19) 

We see that the plane-wave reflection coefficient for normal incidence depends 
only on the normalized ground impedance. 

C.6 Normal reflection by a layered ground 

In the previous section we modeled a ground surface as a semi-infinite porous 
material. One can also model a ground surface (or any other reflecting surface) 
as a layer of porous material with normalized impedance Z, backed by a second 
material with normalized impedance Z2 (see Fig. C.4) . In this case we will see 
that the ratio Pc(x}/vc(x} varies with x, in the layer between x = 0 and x = d 
(d is the thickness of the layer) . We denote this ratio as PCZlayer(X} . While 
the normalized impedance Z is a (frequency-dependent) material constant, the 
normalized impedance Ziayer is not a material constant, as Ziayer varies with x . 

The normalized impedance Z in expression (C.19) for the reflection coef­
ficient should now be replaced by the normalized impedance Zlayer(X = 0) at 
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the ground surface at x = O. An expression for Zlayer(X = 0) is derived in the 
remainder of this section. 

The incident wave in Fig. CA is a harmonic plane wave traveling in the 
positive x direction. Part of the wave is reflected at the interface at x = 0 and 
part of the wave is transmitted into the porous material. Part of the transmitted 
wave is reflected at the interface at x = d. The total complex pressure amplitude 
in the layer between x = 0 and x = d is written as 

Pc(x) = Pl exp(ik[x - dj) + P2 exp( -ik[x - dj), (C.20) 

where Pl and P2 are constants and k is the (complex) wave number in the layer 
[given by Eq. (C.9), Eq. (C.12), or Eq. (C.14), for example]. The corresponding 
complex velocity amplitude is 

Vc(x) = P1Z exp(ik[x - dj) - P2Z exp( -ik[x - dj). 
pc pc 

(C.21) 

At x = d we have Pc(d)/vc(d) = PCZ2. Substitution of Pc (d) and vc(d) from 
Eqs. (C.20) and (C.21) gives the relation 

(C.22) 

The impedance of the layer PCZlayer was defined as the ratio Pc(x)/vc(x). From 
Eqs. (C.20) to (C.22) we find 

Z (- 0) _ Z Z2 cosh ( -ikd) + Z sinh( -ikd) 
layer X - - Z2 sinh ( -ikd) + Z cosh( -ikd) . (C.23) 

For a rigid backing we have Z2 = 00 and we find Zlayer(X = 0) = Z coth( -ikd) 
from Eq. (C.23). 

For d -+ 00, we find Zlayer(X = 0) -+ Z from Eq. (C.23). In practice the 
difference between Zlayer(X = 0) and Z is negligible for layers with a thickness 
larger than typically 0.1 m. For thin layers (d < 0.1 m), however, the normalized 
impedance Zlayer(X = 0) may deviate considerably from Z. 
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Reflection of sound waves 

D.I Introduction 

The reflection of sound waves by a ground surface in a non-refracting atmosphere 
can be described with a reflection coefficient, which is a function of the ground 
impedance. The reflection coefficient for plane waves is called the plane-wave 
reflection coefficient; the reflection coefficient for spherical waves is called the 
spherical-wave reflection coefficient. In this appendix we derive expressions for 
these reflection coefficients. 

In Sec. D.2 we describe the reflection of plane waves by a ground surface. 
We derive an expression for the plane-wave reflection coefficient for an arbitrary 
angle of incidence [in Secs. C.5 and C.6 we described the reflection of plane 
waves for normal incidence]. 

In Sec. D.3 we describe the local reaction approximation, which was men­
tioned before in Sec. C.2. The impedance of a locally reacting ground surface is 
equal to the characteristic impedance of the ground medium, evaluated at the 
surface. IT the local reaction approximation is not valid, the ground surface is 
called an extended reacting ground surface. For many natural ground surfaces, 
however, the local reaction approximation is a good approximation. 

In Sec. DA we describe the reflection of spherical waves by a ground surface; 
in Sec. DA.1 we consider a locally reacting ground surface and in Sec. DA.2 
we consider an extended reacting ground surface. The derivation presented in 
Sec. DA can be considered as an analytical application of the FFP method (see 
Appendix F) for the case of a non-refracting atmosphere. 

D.2 Reflection of plane waves 

In this section we describe the ground reflection of a harmonic plane sound 
wave for an arbitrary angle of incidence. We use a rectangular xyz coordinate 
system with the ground surface at x = 0 and the propagation direction in the 

123 
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Figure D.l. Oblique reflection of a plane wave by a ground surface. 

xy plane (see Fig. D.1). 
We write the complex pressure amplitude of the incident sound wave as 

Pc,; (r) = Po exp( iks), where Po is a constant, k = w / c is the wave number, and s 
is the propagation distance. We have s = r· n, where r = (x, y, z) is the position 
vector and n = (cosO;, sin 0;, 0) is the unit vector in the propagation direction; 
0; is the angle of incidence. This gives 

Pc,; = Po exp(ikzx + iklly) (D.1) 

with kz = kcosO; and kll = ksinO;. 
The incident wave is partly reflected and partly transmitted into the ground, 

in general. The complex pressure amplitude of the reflected wave is denoted as 
Pc,r(r). The total complex pressure amplitude in the air above the ground is 
Pc = Pc,; + Pc,r' As the incident wave satisfies the Helmholtz equation (A.20), 
the reflected wave must also be a solution of the Helmholtz equation. 

We first consider a rigid ground surface. In this case no fluid movement is 
possible in the direction normal to the surface. Therefore the x component of 
the fluid velocity amplitude, denoted as vc,z, vanishes at the surface. Equation 
(A.S) gives in this case 8pe/8x = 0, or 8Pc,r/8x = -8Pc,;/8x, for x = 0. We 
find 

(D.2) 

for x = 0. The solution Pc,r must satisfy this equation and the Helmholtz 
equation. We write 

, ('k' 'k') Pc,r = Po exp -t zX + t IIY (D.3) 

with k~ = k cos Or and k~ = k sin 0., where p~ is a constant and Or is the angle 
of reflection (see Fig. D.1). As we have k~ 2 + k~ 2 = k 2 , the complex pressure 
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amplitude Pc,r given by Eq. (D.3) satisfies the Helmholtz equation. Substitution 
of Eq. (D.3) into Eq. (D.2) gives 

(D.4) 

This equation and the equation k~ 2 + k~ 2 = k2 can only be satisfied for arbitrary 
Y if we have k~ = kx, k~ = ky, and P~ = Po. This implies (Jj = (Jr, so the angle 
of incidence is equal to the angle of reflection. Equation (D.3) becomes 

Pc,r = Po exp( -ik;tx + ikyY). (D.S) 

It should be noted that we assume here that the surface is perfectly flat. In the 
case of a rough surface, sound is reflected in all directions instead of a single 
direction [68, 143, 154]. As described in Refs. [10, 11], surface roughness can be 
taken into account by using an effective impedance. 

For a ground surface that is not rigid, e.g. the surface of a porous material, 
the boundary condition vc,x = 0 is replaced by the condition that the com­
plex pressure amplitude Pc and the x component vc,x of the complex velocity 
amplitude must be continuous at x = O. This implies 

(D.6) 

with f > 0, f ~ O. In Sec. C.2 we defined the right-hand side of Eq. (D.6) as 
the impedance of the ground surface. We denote this impedance as (s = Zspc, 
where Zs is the normalized impedance of the ground surface. The boundary 
condition (D.6) becomes 

( Pc) - = Zspc 
vc,z Z=-E 

(D.7) 

with f > 0, f ~ O. 
For many natural ground surfaces we have (J' ~ 0 (see Fig. D.l). These 

surfaces are called locally reacting surfaces (see Sec. D.3). From (J' ~ 0 we have 
Vc,x ~ Vc for x > O. This implies that the impedance Zspc of a locally react­
ing ground surface is equal to the characteristic impedance Zpc of the ground 
medium [which can be calculated with Eq. (C.lO), Eq. (C.13), Eq. (C.lS), or 
Eq. (C.23)]. 

With Eq. (A.19) and Pc = PC,j + Pc,r, Eq. (D.7) gives 

. + _ ZsPC (8Pc,j + 8Pc,r) 
Pc" Pc,r - . 8 8 zwp x x 

(D.S) 

for x = O. Substitution of Eq. (D.l) into this equation gives 

Po exp(ikyY) + Pc,r(x = 0) = Zs cos(JjPo exp(ikyY) + ~ks (88Pc,r) . (D.9) 
1 x x=o 
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As before, the solution Pc,r must satisfy this equation and the Helmholtz equa­
tion. We write 

Pc,r = PoRp exp( -ik~x + ik~y) (D.1O) 

with k~ = k cos Or and k~ = k sin Or. The quantity Rp is called the plane-wave 
reflection coefficient, which will be determined below (the plane-wave reflection 
coefficient has already been introduced in Sec. C.5 for the special case of normal 
reflection of a plane wave). Substitution of Eq. (D.1O) into Eq. (D.9) gives 

Po exp( ikyY) + PoRp exp( ik~y) = 
Zs cosOjPo exp(ikyY) - Zs cosOrPoRp exp(ik~y). (D.ll) 

This can only be satisfied for arbitrary Y if we have k~ = ky, so we find again 
OJ = Or· The angles OJ and Or will be denoted as O. Equation (D.ll) gives 

which implies 

z __ 1_ l+Rp 
s - cosO 1 - Rp' 

R _ Zs cos 0 - 1 
p - Zs cos 0 + 1 . 

(D.12) 

(D.13) 

We see that the reflection coefficient Rp varies with the angle of incidence. The 
reflection coefficient approaches -1 if 0 approaches ~7r (grazing incidence). For 
a rigid ground surface we have Zs = 00 and Rp = 1. 

D.3 Local reaction approximation 

From the previous section we have the following expression for the complex 
pressure amplitude Pc in the region above the ground surface (x < 0): 

Pc = Po [exp(ikzx + ikyY) + Rp exp( -ikzx + ikyY)] for x < O. (D.14) 

The corresponding complex amplitude of the normal velocity follows from Eq. 
(A.19): 

cos 0 .. .. 
vc,z = PcPo[exp(tkzx + tkyY) - Rp exp( -tkzx + tkyY)] for x < O. (D.15) 

In the region below the ground surface (x > 0), the transmitted wave travels at 
an angle Of with the x axis (see Fig. D.1). We write the complex amplitudes of 
the pressure and the normal velocity of the transmitted wave as follows: 

Pc = PoTp exp(ik~x + ik~y) for x > 0 (D.16) 
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Vc,x = c;~ :' PoTp exp( ik~x + ik~y} for x > 0 (D.I7) 

with k~ = k' cosO' and k~ = k'sinO'; we have used Eq. (A.19) to derive Eq. 
(D.17) from Eq. (D.16). The quantity Tp is called the plane-wave transmission 
coefficient. We have introduced here a density p', a wave number k', and a sound 
speed c' for the ground material, with k' = w / c!. We assume that p', k', and c! 
are real quantities, so the characteristic impedance p'c' of the ground material 
is also real. Later we will generalize the results for grounds with a complex 
wave number and a complex impedance, such as the porous media considered 
in Sec. CA. 

Continuity of the pressure at x = 0 implies that Eqs. (D.I4) and (D.I6) 
should give equal values of Pc at x = O. This yields 

(D.I8) 

Continuity of the normal velocity at x = 0 implies that Eqs. (D.I5) and (D.I7) 
should give equal values of vc,x at x = O. This yields 

cos 0 . cos 0' . , 
--(1 - Rp) exp(tkyy) = --Tp exp(tkyY}' 

pc p'c 
(D.I9) 

Equations (D.I8) and (D.19) should hold for arbitrary y, which implies ky = k~, 
or 

sin 0 sin 0' 
= (D.20) 

c C 

This is Snell's law of refraction. Using ky = k~ in Eqs. (D.I8) and (D.I9), we 
find 

R - p'c' cosO - pc cos 0' (D.2I) 
p - p' c cos 0 + pc cos 0' . 

The normalized impedance of the ground surface, Zs = (pc/vc,x)/ pc, follows 
from Eqs. (D.16) and (D.I7): 

1 p'c' 
Zs = --. (D.22) 

cosO' pc 

If we use Eq. (D.22), we find that Eqs. (D.2I) and (D.I3) for the reflection 
coefficient are identical. 

In the case of normal incidence (0 = 0 and 0' = O), the normalized impedance 
Zs of the ground surface is equal to the normalized characteristic impedance Z 
of the ground material (see Sec. C.2). Hence, Eq. (D.22) implies Z = p'c'jpc 
and Zs = ZjcosO'. From Snell's law (D.20) we have sinO' = (kjk') sinO, and 
we find 

(D.23) 
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We assume a homogeneous ground medium here, with normalized characteristic 
impedance Z. If the ground consists of a thin layer on top of a different material, 
the normalized impedance Z in Eq. (D.23) should be replaced by the normalized 
impedance Zlayer(X = 0), as described in Sec. C.6. 

It is instructive to consider the trivial case in which there is no difference 
between the ground medium and the air above the ground, so that we have 
p' = p and c' = c. In this case, Eqs. (D.18) to (D.21) imply ()' = (), Rp = 0, 
and Tp = 1, so there is no reflected wave and the transmitted wave is equal to 
the incident wave. In all other cases, with p' i:- p or c' i:- c (or both), there is a 
reflected wave (Rp i:- 0) and the transmitted wave is different from the incident 
wave (Tp i:- 1). 

If the sound speed c' in the ground material is small compared with the sound 
speed c in the air above the ground, Eq. (D.20) implies ()' ~ 0, so the propagation 
direction of the transmitted wave is approximately parallel to the x axis. In 
this case the ground surface is called a locally reacting ground surface [92]. 
Equation (D.22) implies that the normalized impedance of a locally reacting 
ground surface is Zs = p' c' / pc, which is independent of the angle of incidence (). 

In general, however, the normalized impedance of a ground surface depends 
on the angle of incidence, as follows from Eq. (D.23). This means that the 
incident wave causes a 'reaction' at a point on the ground surface that depends 
on the pressure distribution in a region around this point. Such a reaction is 
called an extended reaction. 

If the normalized impedance of a ground surface is independent of the angle 
of incidence, the 'reaction' at a point on the ground surface depends only on 
the pressure at this point, i.e. the local pressure. This explains the name local 
reaction. 

The above results can be generalized for a ground with complex characteristic 
impedance pcZ and complex wave number k'. These complex quantities can 
be calculated with the models described in Sec. C.4 for porous media (k' was 
denoted as k in Sec. C.4). We define a complex sound speed c' = w/k' and 
a complex density p' = pcZ / c' of the ground, so we have Z = p' c' / pc. The 
derivation of Eqs. (D.20) to (D.23) remains valid if we consider cos()' and sin()' 
as complex quantities that satisfy the relation cos2 ()' + sin2 ()' = 1. From Snell's 
law (D.20) we have ky = k~, so k~ is real, as ky = ksin() is real. The relation 
k~ 2 + k~ 2 = k,2 implies that k~ is complex, as k' is complex. If we write k~ = 
Rek~ + iImk~, the imaginary part Imk~ yields an exponential attenuation factor 
exp( -x Imk~) in Eqs. (D.16) and (D.17). The propagation angle of the plane 
attenuating wave below the ground surface is equal to arctan(k~/Rek~), which 
differs from ()' unless k~ is real. The plane-wave reflection coefficient is given 
by Eq. (D.21), or by Eq. (D.13) with normalized impedance Zs of the ground 
surface given by Eq. (D.23). The local reaction approximation corresponds to 
the approximation Ik/k'i « 1 in this case. For many natural ground surfaces 
this is a good approximation, as can be verified with the models described in 
Sec. C.4. 

Unless indicated otherwise, we will assume that the ground surface is locally 
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Figure D.2. Point source and receiver above a ground surface. Rl is the length of 
the direct path from the source to the receiver. R2 is the length of the reflected 
path, which is equal to the distance from the image source to the receiver. 

reacting, so that we have Zs = Z. 

D.4 Reflection of spherical waves 

In this section we develop an analytical solution for the sound field of a point 
source in a non-refracting atmosphere above a ground surface. We consider a 
locally reacting ground surface in Sec. D.4.1 and an extended reacting ground 
surface in Sec. D.4.2. 

D.4.1 Locally reacting ground surface 

We consider the geometry shown in Fig. D.2. We use a rectangular xyz coor­
dinate system, with horizontal x and y coordinates; the z coordinate represents 
height above the ground surface. The source is at position rs = (0,0, zs) and 
the receiver is at position r = (x, y, z) (Figure D.2 shows the geometry for the 
case y = 0). The source is a harmonic monopole source, with angular fre­
quency w. The source is characterized by the free field, with complex pressure 
amplitude Pc = S exp(ikRd/ R1 , where RI = Ir - rsl is the radial distance from 
the source. We choose S = 1 Pa·m, so we have Pc = exp( ikRd / RI ; we note 
that the right-hand side has not the dimension of a pressure, due to the omission 
of S. Atmospheric absorption is ignored (see Sec. 3.4). 

In this section, the wave number, sound speed, and density in the air above 
the ground are denoted as kl' CI, and PI, respectively; we have CI = w / k l . The 
ground is characterized by wave number k2 and normalized impedance Z. We 
define C2 == w/k2 as the complex sound speed in the ground, and P2 == ZPICI!C2 
as the complex density of the ground, so we have Z = P2C2/ PI CI (cf. Sec. D.3). 
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The complex pressure amplitude Pc(x, y, z) == pc(r) is written as 

_ {Pl for z ~ 0 
Pc - P2 for z ::; 0 (D.24) 

with Pl = Pl (x, y, z) and P2 = P2(x, y, z). We have (see Sees. A.3 and AA) 

('\72 + k;)Pl = -41r8(r - rs) for z ~ 0 (D.25) 

('\72 + k~)P2 = 0 for z ::; O. (D.26) 

We apply a double Fourier transformation (x, y) -t (k"" ky) to these equations: 

for z ~ 0 (D.27) 

for z ::; 0, (D.28) 

where the Fourier transform pairs (pj,Pj ) with j = 1,2 are defined by 

00 00 

Pj(k"" ky, z) = / / exp( -ik",x - ikyy)pj(x, y, z) dxdy (D.29) 
-00 -00 

00 00 

pj(x, y, z) = (2!)2/ / exp(ik",x + ikyy)Pj(k"" ky, z) dk", dky. (D.30) 
-00 -00 

The solution of Eqs. (D.27) and (D.28) must satisfy four boundary conditions: 

(D.31) 

(D.32) 

(D.33) 

(D.34) 

with € > 0, € -t O. Equation (D.31) represents continuity of the pressure at the 
ground surface. Equation (D.32) represents continuity of the normal velocity at 
the ground surface; here Eq. (A.19) has been used. Equation (D.33) represents 
continuity of the pressure at the source height. Equation (D.34) shows that 
the fluid velocity is discontinuous at the source height, as the directions of the 
velocities just above the source and just below the source are opposite to each 
other. To prove Eq. (D.34), we integrate Eq. (D.27) over z from Zs - € to Zs + €: 

(D.35) 
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For € -t 0, the second term on the left-hand side vanishes and we find Eq. (D.34). 
We write the solution of Eqs. (D.27) and (D.28) as follows: 

PI = CI exp(iklzz) 

PI = C2 exp(iklzZ) + C3 exp( -iklzZ) 
P2 = C4 exp( -ik2zZ) 

for Z 2: Zs 

for ° :::; Z :::; Zs 
for Z :::; 0, 

(D.36) 

where CI , C2 , C3 , and C4 are constants and the vertical wave number compo­
nents klz and k2z are defined by 

(D.37) 

for j = 1, 2. The constants CI , C2 , C3 , and C4 follow from the boundary 
conditions (D.31) to (D.34), and Eq. (D.36) becomes 

PI = A {exp(iklzlz - zsl) + R(klz) exp(iklz[z + zs])} 

P2 = A[1 + R(klz )] exp(iklzZs - ik2zZ) 

with 

and 

R(klz) = P2 klz - P1 k2z . 
P2 k1z + P1 k2z 

for Z 2: ° (D.38) 

for Z :::; ° (D.39) 

(D.40) 

(D.41) 

The local reaction approximation corresponds to k2z ~ k2' and we find 

R(klz) = P2 k1z - P1 k2 
P2kIz + PIk2 

(D.42) 

or 

R(k ) = kIz - kd Z 
1z k Iz + kdZ' 

(D.43) 

where Z = P2C2/ PI ci is the normalized ground impedance. It is easily verified 
that we have Pj/Vn,j = Zpc, where Vn,j = -(oPj/oz)/(iwpj) is the Fourier 
transform of the component of the complex velocity amplitude in the negative 
Z direction; this is in agreement with Eq. (D.7). 

We write Eq. (D.38) as 

with 

Ps = Aexp(ikIzlz - zsl) 

I1s = AR(kIz ) exp(iklz[z + zs]). 

(D.44) 

(D.45) 

(D.46) 
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The term Ps represents the direct field of the source (indicated by index's' for 
source), so the term .Rs must represent the contribution ofthe ground reflection 
to the field, or equivalently, the contribution of the image source (indicated by 
index 'is'). The quantity R(k1z ) is identified as a reflection coefficient. 

If we apply the inverse Fourier transformation (k""ky) -t (x,y) to Eq. 
(D.45), we find of course the solution for a spherical wave in an unbounded 
atmosphere: 

(D.47) 

with r2 = x2 +y2. The inverse Fourier transformation cannot be applied directly 
to Eq. (D.46), owing to the factor R(klz). 

Therefore we write the reflection coefficient R(k1z ) as a Laplace transform 
[83, 84, 42]: 

00 

R(k1z ) = ! s(q) exp( -qk1z)dq, 
o 

where s(q) is an image source distribution, which is given by 

kl (qkl) s(q) = J(q) - 22 exp -z- . 

(D.48) 

(D.49) 

Equation (D.48) agrees with Eq. (D.43), as follows from substitution of Eq. 
(D.49) into Eq. (D.48). 

Substitution of Eq. (D.48) into Eq. (D.46) gives 

00 

.Rs = ! s(q)Aexp(ik1z[z + (zs + iq)J)dq. 
o 

(D.50) 

Now the inverse Fourier transformation can be performed, by using the fact that 
the dependence on klz is through an exponential factor similar to the factor in 
Eq. (D.45). The result is 

00 ! ( ) exp(ikl Jr2 + (z + Zs + iq)2) d 
Pis = s q q, Jr2 + (z + Zs + iq)2 

o 

(D.51) 

where the square root is in the first quadrant of the complex plane. The inverse 
Fourier transformation and the Laplace transformation have been interchanged. 
The field given by Eq. (D.51) can be interpreted as the field of an image line 
source distribution s(q) in a complex space, located at (0,0, -Zs - iq). By 
substitution of Eq. (D.49) into Eq. (D.51) we find the following expression for 
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the complex pressure amplitude PI = Ps + Pis: 

exp(ikIRt} exp(ikI R2) 
PI = RI + R2 

00 
2kl/ (qkl) exp(ikl Jr2 + (z + Zs + iq)2)d - - exp -- q 

Z Z Jr2 + (z + Zs + iq)2 
o 

(D.52) 

with RI = Jr2 + (z - zs)2 and R2 = Jr2 + (z + zs)2. We write this expression 
as 

(D.53) 

where 

Q = 1 _ 2kl ~2 /00 exp (_ qkl ) exp(ikl Jr2 + (z + Zs + iq)2) dq 
Z exp(zkIR2) Z Jr2 + (z + Zs + iq)2 

o 
(D.54) 

is the spherical-wave reflection coefficient. 
As kl is real and Z is a complex number with a positive real part, the 

integral in Eq. (D.54) is dominated by relatively small values of q. For numerical 
calculations the upper limit of the integral can be set at qmax = )"(Z; + Zn/Zr, 
where).. is the wavelength and Zr and Zi are the real and imaginary parts of Z, 
respectively [42]. 

In practice we often have R2 » Z + Zs. This corresponds to a reflection angle 
o ::::: 7r /2 (see Fig. D.2). The limit (z + zs)/ R2 -t 0 and 0 -t 7r /2 is called the 
limit of grazing incidence. In this limiting case we can simplify Eq. (D.54). In 
the numerator of the integrand in Eq. (D.54) we use the approximation 

2 

Jr2 + (z + Zs + iq)2 ::::: R2 + iqcosO - 2~2 (D.55) 

with cos 0 = (z + zs) R 2 • In the denominator of the integrand in Eq. (D.54) we 
use r2 + (z + Zs + iq)2 ::::: R2 • Equation (D.54) becomes 

Q = 1- 2~ exp(-d') 1 exp [- (qJ ;i, -;d) Th!, (D.56) 

where 

d JiklR2 (1 (J) = -- -+cos 
2 Z 

(D.57) 
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is called the numerical distance. Equation (D.56) can also be written as 

where 

Q = Rp + (1 - Rp)F(d), 

R _ Z cosO - 1 
p- ZcosO+1 

is the plane-wave reflection coefficient (D.13) and 

F(d) = 1 + idy'1r exp( -d2 )erfc( -id) 

(D.58) 

(D.59) 

(D.60) 

is called the boundary loss factor; here erfc(z) = 271"-1/2 Jzoo exp( -t2 )dt is the 
complementary error function [1]. 

The spherical-wave reflection coefficient for a locally reacting ground sur­
face can be calculated with Eq. (D.54) or Eq. (D.58). Equation (D.54) is a 
general expression and Eq. (D.58) is valid only in the limit of grazing incidence 
(R2 » z + zs). In many situations, even situations with R2 '" z+zs, the grazing 
incidence approximation (D.58) proves to be sufficiently accurate. The grazing 
incidence approximation (D. 58) has been derived by several authors (see the 
review article [3]); the derivation presented here is based on Ref. [42]. 

For the calculation of the boundary loss factor F(d) one can use series expan­
sions of the complementary error function [1]. For small values of I~I, smaller 
than 8 for example, the series 

2 00 (-1) n z2n+ 1 

erfc(z) = 1 - y7r?; n!(2n + 1) 

can be used. This gives 

[ 
2·d 00 (~)n 1 

F(d)=1+idy'1rexp(-d2 ) 1+ In:?; n!(2n + 1) . 

(D.61) 

(D.62) 

The series can be truncated at the point where the summand is smaller than 
10-6 , for example. For large values of I~ I, larger than 8 for example, the series 

(D.63) 

can be used. This series is valid for z ~ 00 and I argzl < i7l". For z ~ -00 we 
use the relation erfc(-z) = 2 - erfc(z). This gives 

F(d) = 2idy'1rexp( -d2 )H( -Imd) _ f 1·3· ~;~~:m - 1) , 
m=1 

(D.64) 

where H is the Heaviside step function [H(x) = 1 for x ~ 0 and H(x) = 0 
for x < 0] and Imd is the imaginary part of d. In practice the series can be 
truncated at m = 8. 
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D.4.2 Extended reacting ground surface 

For an extended reacting ground surface, the approach is similar to the ap­
proach for a locally reacting ground surface, but the local reaction approxi­
mation k2z ~ k2 is not used in Eq. (D.41). Instead, we use Snell's law in the 
form 

(D.65) 

which follows from Eq. (D .37) and the pressure continuity condition PI (x, y, 0) = 
P2(x,y,O), where PI and P2 are given by Eq. (D.30) (ef. Sec. D.3). Hence, Eq. 
(D.41) can be written as [83, 84, 42] 

R(k ) = P2klz - PI v(k~ - kn + k~z 
lz . / 2 2) 2 P2ktz + PI V (k2 - kI + kIz 

_ P2(fkIz ) - PI V(fkIz )2 + 1 

- P2(fktz ) + PI V(fkIz )2 + 1 

with f = 1/ Jk~ - kl. This can also be written as 

(D.66) 

(D.67) 

with "I = pt/ J P~ - p~. The Laplace transform (D.48) is replaced by the fol­
lowing Laplace transform: 

00 

R(kIz) = J seq) exp( -q fkIz)dq. 

o 

(D.68) 

The inverse Laplace transform of the function R(kIz) given by Eq. (D.67) yields 
the following expression for seq) [84, 1]: 

q , 

() P2 - PI ( ) P2 P2 - PI . P2 J' [( ')] J2(q)d ' s q = ---8 q - "1---- smh("fq) + 2"1- smh "I q - q --, - q, 
P2 + PI PI P2 + PI PI q 

o 
(D.69) 

where J 2 is the Bessel J-function of order 2. Substitution of Eq. (D.68) into 
Eq. (D.46) gives 

00 

l'is = J s(q)Aexp(ikIz[z + (zs + i fq)])dq. 

o 

(D.70) 
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The inverse Fourier transformation gives 

00 f ( ) exp(ikI Jr2 + (z + Zs + i fq)2) d 
Pis = s q q. 

Jr2 + (z + Zs + i fq)2 
o 

Appendix D 

(D.71) 

The solution is given by PI = Ps + Pis, where Ps is given by Eq. (D.47) and Pis is 
given by Eq. (D.71). The solution can be written as in Eq. (D.53), if we write 
the spherical-wave reflection coefficient Q as 

R2 
Q = Pis ('k R )' exp Z I 2 

(D.72) 

where Pis is given by Eq. (D.71). The image source distribution s(q) in Eq. 
(D.71) is given by Eq. (D.69), which contains an integral, so the calculation of 
Q requires the calculation of a double integral. 

As an example, Fig. D.3 shows a spectrum of the relative sound pressure level 
calculated with the above (general) solution for an extended reacting ground 
surface, and the corresponding spectrum calculated with the solution based on 
the local reaction approximation, which was described in Sec. D.4.1 [Equations 
(D.54) and (D.58) give equal results in this case]. The spectra were calculated 
for a situation with Zs = 2 m, z = 2 m, and r = 100 m. For the ground 
impedance we used the four-parameter model developed by Attenborough (see 
Sec. C.4), with a flow resistivity (J = 200 kPa·s·m-2 . The figure shows that the 
effect of the local reaction approximation is small. In general, the local reaction 
approximation is a good approximation for ground surfaces. 

The solution for the extended reacting ground surface shown in Fig. D.3 was 
calculated by straightforward numerical evaluation of the double integral in the 
expression for Pis. In some cases, however, straightforward numerical integration 
gives inaccurate results; more accurate numerical approaches are described in 
Ref. [84]. Alternately, one can use the FFP method for an extended reacting 
ground surface (see Appendix F). 
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Figure D .3. Relative sound pressure level as a function of frequency, for an 
absorbing ground surface with a flow resistivity of 200 kPa·s·m-2 • The dots 
represent the solution described in Sec. D.4.2 for an extended reacting ground 
surface. The line represents the solution described in Sec. D.4.1 for a locally 
reacting ground surface. The differences between the dots and the line are small, 
so the local reaction approximation is a good approximation in this case. 



Appendix E 

Basic acoustic equations for 
a layered refracting 
atmosphere 

E.1 Introduction 

In Appendix A we derived the basic equations of linear acoustics for a homo­
geneous non-moving atmosphere. The atmosphere was homogeneous because 
we assumed that the average pressure Pay and the average density Pay are con­
stants (i.e. independent of position); the atmosphere was non-moving because 
we assumed that the average fluid velocity Vay is zero. The atmosphere was also 
non-refracting, as the adiabatic sound speed 

C = '/-YPay / Pay (E.1) 

(see Sec. A.2) is a constant in a homogeneous atmosphere. 
In this appendix we derive linear acoustic equations for a refracting moving 

atmosphere. In such an atmosphere, the quantities Pay, Pay, Yay, and c are 
functions of position in the atmosphere. We assume that the quantities Pay, 
Pay, V ay , and c are functions of height only; the atmosphere is called a layered 
atmosphere or a stratified atmosphere in this case. The assumption of a layered 
atmosphere is a reasonable approximation for the atmospheric surface layer, as 
horizontal variations of atmospheric parameters are usually much smaller than 
vertical variations. Furthermore, we assume that the wind vector is horizontal, 
as vertical wind velocity components are usually much smaller than horizontal 
wind velocity components. 

In Sec. E.2 we derive general linear acoustic equations for a refracting mov­
ing atmosphere. In Sec. E.3 we describe how a moving atmosphere can be 
represented approximately by a non-moving atmosphere with an effective sound 
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speed. In Secs. E.4 and E.5 we describe the axisymmetric approximation, which 
is the basis of a two-dimensional representation of the three-dimensional atmo­
sphere. In Sec. E.6 we describe how atmospheric absorption can be included in 
the equations. 

E.2 Moving atmosphere 

E.2.1 Helmholtz equation in the horizontal wave number 
domain 

In this section we derive a Helmholtz equation for a layered moving atmosphere 
[113, 98]. We use a rectangular xyz coordinate system, with horizontal x and y 
axes and a vertical Z axis. 

We write ref. Eqs. (A.3)) 

Pa = Pav(z) + P 
Pa = Pav(z) + P 
Va = (uav(z) + u, vav(z) + V, w) 

(E.2) 

for the total pressure, density, and fluid velocity, respectively. The average 
quantities Pay, Pay, U av , and Vav are functions of height Z only. The acoustic 
fluctuations P, P, u, v, and w are functions of position r and time t. 

The equation of mass conservation is 

OPa at + \7. (Pava) = 0, 

and the first-order approximation for linear acoustics is 

Op op op 0Pav (au aVow) at + uav ax + Vav oy + wfu + Pay ax + oy + OZ = O. 

The equation of momentum conservation is 

DVa 
Pa Dt = -\7pa - Pagez, 

(E.3) 

(E.4) 

(E.5) 

where D / Dt == 0/ at + Va • \7 is the derivative in a frame that follows the flow, 
9 is the gravitational acceleration (g ~ 9.8 m/s2), and ez = (0,0,1) is the unit 
vector in the Z direction. The second term on the right-hand side represents 
the gravitational force per unit volume, which accelerates a fluid element in the 
negative Z direction. If we take P = 0, P = 0, u = 0, v = 0, and w = 0 in Eq. 
(E.5) we find the following equilibrium equations for the average pressure: 

°Pav = 0 
ox ' 

°Pav _ 0 oy - , (E.6) 

Hence, gravity causes a decrease of the average atmospheric pressure Pay with 
increasing height z. For sound propagation this vertical pressure variation can 
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usually be neglected; we will come back to this neglect later in this section. The 
first-order approximation of Eq. (E.5) is 

()u ()u ()u ()uav 1 ()p 
$:It +uav~+vav~+w~+ -~ =0 
u ux uy uZ Pay uX 

(E.7) 

()v ()V ()V ()Vav 1 ()p 
!It +uaV!l" +vav -;:;- +w~ + --;:;- = 0 
u uX uy uZ Pay uy 

(E.8) 

()w ()w ()w 1 ()p P 
~t +uav~+vav~ + --;:;- + -g=O. 
U uX UY Pay uZ Pay 

(E.9) 

Pressure fluctuations and density fluctuations are related to each other by the 
fact that sound propagation can be considered as an adiabatic process. For a 
homogeneous non-moving atmosphere we have from p = r? P (see Sec. A.2) the 
relation 

(E.lO) 

For an inhomogeneous moving atmosphere this relation is replaced by the rela­
tion 

(E.11) 

or, using Eqs. (E.2), 

(E.12) 

as the pressure and the density of a volume element moving through an inho­
mogeneous atmosphere are also affected by spatial variations of Pa and Pa. For 
a non-moving atmosphere (va = 0), Eq. (E.12) agrees with Eq. (E.lO). The 
first-order approximation of Eq. (E.12) is 

()p ()p ()p ()Pav 2 (()p ()p ()p ()pav) 
()t + U av ()X + Vav ()y + W ()Z. = c ()t + U av ()X + Vav ()y + W ()Z . 

(E.13) 

We consider a harmonic sound field, with sound pressure 

p(X, y, z, t) = Re [Pc (X, y, z)e-iwt ] • (E.14) 

We apply a double Fourier transformation from the spatial domain (x, y, z) to 
the horizontal wave number domain (kz, kll , z): 

00 00 

Pc(X,y,z) = (2!)2/ / exp(ikzx+iklly)P(kz,kll,z)dkzdkll' (E.15) 

-00 -00 
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where P(kz , ky, z) is the Fourier transform of Pc(x, y, z). We write Eqs. (E.I4) 
and (E.I5) symbolically as 

P-+ P. (E.I6) 

The Fourier transformation is also applied to the other acoustic variables: 

p-+O 
u-+U 
v-+V 
w-+W. 

(E.I7) 

Application of the Fourier transformation to Eqs. (E.4), (E.7), (E.8), (E.9), and 
(E.I3) gives 

110 + P~v W + Pav(ikzU + iky V + W') = 0 

11U + u~vW + p;;vlikzP = 0 

11V + v~v W + p;;v1ikyP = 0 

11W + p~l pI + gp;;v10 = 0 

11P - PavgW = c2(110 + p~vW), 

(E.I8) 

(E.I9) 

(E.20) 

(E.2I) 

(E.22) 

where we have introduced 11 = -iw + ikzuav + ikyvav , the derivative dgjdz of a 
function 9 is denoted as g', and Eq. (E.6) has been used. From Eqs. (E.I9) to 
(E.22) we find expressions for U, V, W, and 0 in terms of P; substitution into 
Eq. (E.I8) gives 

p" - {! In [112Pav(I - gQ)] } p' - {~ + (1 - gQ)(k~ + k;) 

+ ~ ! In [112C2 (I - gQ)] } P = 0, (E.23) 

where we have introduced Q = 11-2 (gc- 2 + p~yp;vl). In this equation, gQ can 
be neglected with respect to unity and the term gc-2 :z In(1122) can also be 
neglected; this will be shown in the following two paragraphs. 

We have 

gQ = _.!L (!!... + p~v) (1- kz U ay _ ky vay) -2 , 

w2 c2 Pay k eke 
(E.24) 

with k = wjc. The last factor on the right-hand side can be approximated 
by unity, as we have Uay « c and Vav « c in practice, and the Fourier integral 
(E.I5) is dominated by values of kz and ky with k; +k~ .:s k2 (see Sec. E.3). The 
second factor on the right-hand side of Eq. (E.24) contains the term p~yj Pay· 
To estimate the order of magnitude of this term we note that the ideal-gas law 
(A.IO) implies 

p~y P~v T' 
Pay - Pay - T· (E.25) 



Basic acoustic equations for a layered refracting atmosphere 143 

For an ideal atmosphere with only hydrostatic pressure gradients, i.e. pressure 
gradients given by Eq. (E.6), we find from Eq. (E.l) 

P~v g'Y 
P-a-v = - c2' (E.26) 

which is of the order of 10-4 m-I . The term T'IT is usually largest near the 
ground surface; we assume an upper limit of 0.1 m- I for IT'ITI, corresponding to 
a temperature change of 3°e over a height interval of 10 cm. A safe upper limit 
for IgQI is therefore of the order of w-2 if w is expressed in S-1. For frequencies 
above 10 Hz this implies IgQI $ 3 x 10-4 , so gQ can be neglected with respect 
to unity. 

The term gc-2 tz In(112c2) in Eq. (E.23) can be written as 

1L~ In(112c2) = 2g (11' +~) . 
c2 dz c2 11 c 

(E.27) 

We have 111' 1111 ~ (u~v + v~v)/c from k~ + k~ ~ k2 (see Sec. E.3). The gradients 
u~v, v~v' and d are usually largest near the ground surface; we assume an upper 
limit of 0.1 m-I for the ratios IU~v/el, IV~v/el, and Id lei. From Eq. (E.27) we 
find an upper limit of the order of 6 x 10-5 m-2 for the magnitude of the term 
ge-2 d~ In(112c2), so this term can be neglected in Eq. (E.23). 

Equation (E.23) becomes 

(E.28) 

or 

p" _ ( 2k:n _ 'Yg) p' + k 2 P = 0 km c2 mz , (E.29) 

where wave number km is defined by 

km = k - k:em:e - kymy (E.30) 

with m:e = U av Ie and my = Vav Ie, and wave number kmz is defined by 

k 2 - k 2 k2 k2 mz - m - :e - II' (E.3l) 

In practice the term 'Yglc2 in Eq. (E.29) can be neglected. We find 

p" - 2:: p' + k!zP = O. (E.32) 

This equation can also be written as 

(E.33) 
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Equations (E.32) and (E.33) can be considered as Helmholtz equations in the 
horizontal wave number domain. The corresponding inhomogeneous Helmholtz 
equation for a monopole source of unit amplitude at position rs = (0,0, zs) is 
(see Sec. D.4) 

(E.34) 

This is the basic equation of the FFP method described in Appendix F. 

E.2.2 Alternate derivation 
Equations (E.28) and (E.29) can also be derived from the following generalized 
wave equation for an inhomogeneous moving atmosphere [105]: 

1 1 D 2 t/ly 
Pay V· (Pay Vt/ly) - Cl Dt2 = 0, (E.35) 

where f/Jy is the velocity potential, which is related to the acoustic pressure P by 

Df/Jy 
P = -PaY Dt ' (E.36) 

where D / Dt == () / {)t + Vay . V is the derivative in a frame that moves with 
fluid velocity Vay = (uay , Vay , O). We apply a Fourier transformation to Eqs. 
(E.35) and (E.36), as in Eqs. (E.14) to (E.16). With t/ly --4 iJiy and D/Dt --4 'fI, 
Eq. (E.35) becomes 

(E.37) 

and Eq. (E.36) becomes 

P 
iJiy = ---. (E.38) 

'fIPaY 

Substitution of Eq. (E.38) into Eq. (E.37) yields Eq. (E.28) if one neglects second 
derivatives and squared first derivatives of Vay and Pay; this neglect is consistent 
with the derivation of Eq. (E.35) in Ref. [105]. 

E.2.3 Helmholtz equation in the spatial domain 

For a non-moving atmosphere we can derive a Helmholtz equation for Peer) in 
the spatial domain from Eq. (E.33). In this case we have mx = 0, my = 0, and 
km = k. Equation (E.33) becomes 

k2i. (k-2{)P) + (k2 _ k2 - k2)P = 0. 
{)z {)z x y 

(E.39) 
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We multiply this equation by (211")-2 exp(ik:rx + ikyY) and integrate over k:r and 
kyo Using Eq. (E.15) we find 

(E.40) 

For a moving atmosphere, with wave number k replaced by krn, this approach 
does not work, as krn depends on k:r and kyo 

For a non-moving isobaric atmosphere Eq. (E.40) reduces to 

(E.41) 

where we have used Eq. (E.1). This equation is also valid if the density Pay is a 
function of x, Y, and z, instead of a function of Z only [13, 106]. 

E.3 Non-moving atmosphere with an effective 
sound speed 

To gain insight into the solution of Eqs. (E.32) to (E.34) we first consider the 
case of a homogeneous non-moving atmosphere. In this case we have krn = k 
and k:n = 0, so k~z == k2 - k; - k; is a constant. We ignore the ground surface 
for the moment. The solution of Eq. (E.34) is then (see Sec. D.4) 

p == k27Ti exp(ikrnzlz - zsl). 
rnz 

(E.42) 

Substitution of this expression into Eq. (E.15) gives 

00 00 

== ~ II exp[ig(kz,ky,z)] dk dk 
Pc 2 k z 1/' 7T rnz 

(E.43) 

-00 -00 

where 

(E.44) 

is a phase function. The right-hand side of Eq. (E.43) is of course equal to 
exp(ikR)/R, with R == JX2+y2+(Z-zs)2. The integral in Eq. (E.43) is 
dominated by values of kz and k1/ near the point of stationary phase, i.e. the 
point where we have 

8g 8g 
8k:r == 0 and 8ky == 0 (E.45) 

(see Appendix P). From Eq. (E.44) we find kz == kx/R, ky == ky/R, and 
k; + k; == k2(X2 + y2)/ R2 at the point of stationary phase. In the case of sound 

propagation under relatively small elevation angles we have Iz-z81 « Jx2 + y2, 
so we have k; + k; ::::::l P at the point of stationary phase. 
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We choose the xyz coordinate system in such a way that the receiver is 
located in the xz plane, so we have y = O. We assume Iz - zsl « x and x> O. 
In this case we find 

kz ~ k and ky = 0 (E.46) 

at the point of stationary phase. 
For an inhomogeneous moving atmosphere above a ground surface the solu­

tion of Eq. (E.34) is not given by Eq. (E.42), but the conclusion (E.46) remains 
approximately valid. This implies that km = k - kzmz - kymy can be replaced 
by km = k - kmz (we still assume y = 0), or 

W (Uav) W W 
km = ~ 1 - -;;- ~ c + Uav = Ceff = keff' (E.47) 

where Ceff = C + Uav is called the effective sound speed and keff is the corre­
sponding wave number. Consequently, for sound propagation calculations one 
can replace a moving layered atmosphere by a non-moving atmosphere with an 
effective sound speed, which is the sum of the adiabatic sound speed c and the 
wind velocity component U av in the direction of sound propagation. This is an 
approximate approach [98, 99), which is valid for small elevation angles (as we 
assumed Iz - zsl « Jx2 + y2). Equation (E.32) becomes 

p" _ 2k~ff pI + (k2 _ k 2 _ k2 )P = 0 
keff eff z y • 

(E.48) 

The inverse Fourier transformation yields the following Helmholtz equation for 
the complex pressure amplitude Peer) (see Sec. E.2.3): 

(E.49) 

E.4 Axisymmetric approximation 

In this section we describe the axisymmetric approximation for sound fields in 
a layered atmosphere with an effective sound speed accounting for wind. This 
approximation is the basis of a two-dimensional representation of the atmo­
sphere, which is used in the two-dimensional computational methods described 
in Appendices F, G, and H. 

We assume that the sound field is generated by a point source, and use 
cylindrical rz¢ coordinates with the Z axis along the vertical line through the 
source (see Fig. E.1). Equation (E.49) becomes 

(E.50) 



Basic acoustic equations for a layered refracting atmosphere 147 

z 

~--~--~----------~ x 

y r 

Figure E.l. Rectangular xyz coordinates and cylindrical rz¢> coordinates. In 
the axisymmetric approximation we neglect the variation of the sound field with 
the azimuthal angle ¢>. 

In the axisymmetric approximation we neglect the variation of the sound field 
with the azimuthal angle ¢>, so the third term on the left-hand side of Eq. (E. 50) 
vanishes. We replace Pc by the quantity 

qc = Pc";;, (E.51) 

(E.52) 

We apply the far-field approximation r » k;i, so the second term on the left­
hand side can be neglected, and we find the two-dimensional Helmholtz equation 

(E.53) 

This is the basic equation of the two-dimensional PE methods described in Ap­
pendices G and H. In the remainder of this section we derive the correspond­
ing inhomogeneous Helmholtz equation in the horizontal wave number domain, 
which is the basic equation of the two-dimensional FFP method described in 
Appendix F. 

For the field of a monopole source we have from Eq. (E.34) 

(E.54) 
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where Fourier transform P is given by 

00 00 

P(kz,ky,z) = ! ! exp(-ikzx - ikyy)pc(r)dxdy. (E. 55) 

-00 -00 

In the axisymmetric approximation, Pc is a function of r and z only. With 
x = r cos r/J and y = r sin r/J, Eq. (E.55) becomes 

2".00 

P(kz,ky,Z) = ! ! exp(-ikzrcosr/J-ikyrsinr/J)pc(r)rdrdr/J. 
o 0 

Substitution into Eq. (E. 54) gives, with qc = PcVr, 

(E.56) 

2".00 ! ! exp(-ikzr cos r/J - ikyrsinr/J) [k:ff :Z (k;i~~) + (k:ff - k~ - k;)qc] 
o 0 

x Vr dr dr/J = -471"8(z - z.). (E.57) 

We write kz = kr cos t/J and ky = kr sin t/J. This gives 

00 k ! [k:ff :Z (k;i~~) + (k:ff - k~)qc] Vr ! exp(-ikrrcos[r/J - t/J])dr/Jdr 
o 0 

= -47r8(z - zs). (E.58) 

The integral over r/J can be written as 

2". ! exp(-ikrrcosa)da = 271"Jo(krr), 
o 

(E.59) 

where Jo is the Bessel J-function of order zero [1]. For large krr we have the 
asymptotic relation 

J2 1 
Jo(krr) = V;k,; cos(krr - 471")· 

Equation (E.58) becomes, for large krr, 

(E.60) 
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With the definition 

00 00 

Q(kr, z) = I qc cos(krr - ~7r) dr = I [~ cos(krr) + ~ Sin(krr)] dr 
o 0 

(E.62) 

we find 

(E.63) 

The function Q(kr, z) can be computed by numerically solving this equation 
with the FFP method (see Appendix F). The field qc(r,z) is obtained from 
Q(kr' z) by the inverse Fourier transformation corresponding to Eq. (E.62): 

(E.64) 

-00 -00 

We have reduced the three-dimensional problem to a two-dimensional prob­
lem by evaluating the integral over the azimuthal angle ¢ in Eq. (E.58) an­
alytically. In the derivation we have assumed that Pc is independent of the 
angle ¢. This assumption is valid for a non-moving layered atmosphere. The 
assumption is not valid for a moving atmosphere, i. e. an atmosphere with wind, 
as sound waves travel faster in downwind directions than in upwind directions. 
As an approximation, however, the moving atmosphere can be replaced by a 
non-moving atmosphere with an effective sound speed, so that the assumption 
of axial symmetry can still be used. 

An alternate approximate approach for a moving atmosphere is as follows. 
We assume that the variation of Pc with the azimuthal angle ¢ is small, so 
Eq. (E.58) can still be used as an approximation, with keff replaced by km = k­
k",uav/c-kyVav/c. As shown in Sec. E.3, the field is dominated by wave numbers 
k", and ky near the stationary phase values kx/R and ky/R, respectively, where 
R = ..jX2 + y2 + (z - zs)2 is the distance between the source at position (0,0, zs) 
and the receiver at position (x,y,z). Using k~ = k; + k~ we find kr = kr/R 
at the stationary phase point, where r = ..j x 2 + y2 is the horizontal distance 
between the source and the receiver. This gives km = k - kr(uavx/r + vavy/r)/c 
at the stationary phase point, where (uavx/r + vavy/r) is the wind velocity 
component in the direction from the source to the receiver. H we choose the 
xyz coordinate system in such a way that the receiver is located in the xz 
plane, so that the receiver is at position (x, 0, z), we have km = k - kruav/c 
at the stationary phase point. Hence, Eqs. (E.62) to (E.64) can be used as an 
approximation for a moving atmosphere if we replace keff by km = k - kruav/c. 
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E.5 Alternate approach 

In the previous section we derived the inhomogeneous Helmholtz equation (E.63) 
in the horizontal wave number domain by using the axisymmetric approximation 
and the asymptotic relation (E.60). An alternate approach is to replace Eqs. 
(E.51) and (E.62) by the Fourier-Bessel transform 

00 

Q(kr, z) = / Peer, z)Jo(krr) r dr 
o 

(E.65) 

(see Ref. [55]). One starts from Eq. (E.50) with 82Pe/8¢2 = 0 and replaces the 
right-hand side by the monopole source term in cylindrical coordinates, which 
is -411"r-18(r)8(¢)8(z - zs). The resulting equation is integrated over ¢ from 0 
to 211", and as Pe is independent of ¢ this gives 

(E.66) 

With the Fourier-Bessel transform given by Eq. (E.65), we find from Eq. (E.66) 

(E.67) 

To prove this, Eq. (E.66) is multiplied by Jo(krr)r and integrated over r from 
r = 0 to r = 00, as in Eq. (E.65). Integration by parts yields Eq. (E.67). 
Equation (E.67) differs from Eq. (E.63) only by a factor J2/1l"kr on the right­
hand side. The function Q(kr, z) can be computed by numerically solving Eq. 
(E.67) with the FFP method. The field Peer, z) is given by the inverse transform: 

00 

Peer, z) = / Q(kr, z)Jo(krr) kr dkr. 
o 

(E.68) 

To calculate the integral in this equation one replaces Jo(krr) by a far-field 
approximation; the resulting expression is equivalent to Eq. (E.64). 

E.6 Representation of atmospheric absorption 

In the previous sections of this appendix we ignored the effect of atmospheric 
absorption. This effect can be included, however, simply by replacing the wave 
number k by k + i{3, with (3 = a/(20Ige), where a is the absorption coefficient 
in dB per unit length (see Sec. B.5). The imaginary term i{3 yields a factor 
exp( -s(3) in the sound pressure amplitude, where s is the propagation distance. 
This correspbnds to a contribution -sa to the sound pressure level. One might 
even include phase effects of atmospheric absorption [106] by using a complex 
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term i{3 + , instead of the imaginary term i{3. In general, the coefficients (3 
and , vary with height z, so the profile k(z) should be replaced by the profile 
k(z) + i{3(z) + ,(z). 

In many practical situations it is sufficiently accurate to account for the effect 
of atmospheric absorption by a simple reduction of the sound pressure level by 
so:, where s is the distance between the source and the receiver and 0: is an 
average absorption coefficient. In these situations it is not necessary to include 
atmospheric absorption in the numerical computation of sound propagation. 
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Generalized Fast Field 
Program (FFP) 

F.1 Introd uction 

The Fast Field Program (FFP) is a numerical method for computing the sound 
field of a monopole source in a layered atmosphere above a ground surface. The 
ground surface is characterized by the ground impedance and the atmosphere 
is represented by the vertical profiles of the wind velocity and the temperature. 
The profiles are approximated by dividing the atmosphere into a number of 
horizontal homogeneous layers with constant wind velocity and temperature. 
The sound field in each layer is computed in the horizontal wave number do­
main, taking into account the appropriate continuity equations at the interfaces 
between the layers. The sound field in the spatial domain is computed from 
the field in the horizontal wave number domain by an inverse Fourier trans­
formation. Therefore the FFP method is sometimes called the 'wave number 
integration method' [69]. 

The FFP method was originally developed for underwater acoustics [45, 69]. 
Raspet et al. [119] and Lee et al. [79] developed an FFP method for atmospheric 
acoustics (see also Refs. [55, 155]); this is a two-dimensional method, for an ax­
isymmetric atmosphere, with the effective sound speed accounting for wind (see 
Sec. E.3). Nijs and Wapenaar [94] and Wilson [158] developed three-dimensional 
computational methods for a moving atmosphere, which can be considered as 
generalized FFP methods. 

In this appendix we describe a generalized FFP method, which can be ap­
plied both in three dimensions to a moving atmosphere and in two dimensions 
to an axisymmetric non-moving atmosphere with the effective sound speed ac­
counting for wind. 

153 
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F.2 Solution of the Helmholtz equation 
Equation (E.34) is the basic equation of the FFP method for a monopole source 
in a layered moving atmosphere. Equation (E.63) is the corresponding equation 
for a layered non-moving atmosphere with the effective sound speed accounting 
for wind. Equation (E.34) corresponds to a three-dimensional representation of 
the atmosphere and Eq. (E.63) corresponds to a two-dimensional representation 
of the atmosphere. Both equations can be written as 

2 {) (-2{)P) 2 k {)z k {)z + kzP = -Sot5(z - Zs), 

where we have 

So = 411" and k~ = k2 - k; - k; with k == km 

in the three-dimensional case, and 

So = V211"kr and k~ = k2 - k~ with k == keff 

(F.1) 

(F.2) 

(F.3) 

in the two-dimensional case; P represents the quantity Q in the two-dimensional 
case. The wave number in the three-dimensional case is km = w/c - kzuav/c­

kyvav/c, where U av and Vav are the x and y components of the wind velocity, 
respectively. The wave number in the two-dimensional case is keff = W/Ceff, 
where Ceff = C + Uav is the effective sound speed; Uav is now the wind velocity 
component in the r direction, i. e. the direction from the source to the receiver. 
As described in Sec. EA, moving-medium effects can be studied approximately 
in the two-dimensional case by using k == km = w/c-kruav/c instead of k == keff. 

The atmosphere is represented by the vertical profile of the wave number 
k(z). We approximate the profile by dividing the atmosphere into a number of 
horizontal homogeneous layers with constant wave number k (see Fig. F.1). The 
heights of the interfaces between the layers are denoted as Zj (j = 1, 2, ... ,N), 
where Zl = 0 is the height of the ground surface. The source is at height zs, 
which coincides with the height of interface m, so we have Zs = Zm. 

As the wave number k is constant within a layer, Eq. (F.1) reduces to 

{)2 P 
{)z2 + k;P = -Sot5(z - zs)· (FA) 

The effect of wave number gradients in the first term on the left-hand side of Eq. 
(F.1) is taken into account in the FFP method only by wave number differences 
between the layers; rapid variations of the wave number with height require thin 
layers. The solution of Eq. (FA) in layer j is written as 

Pj = Aj exp(ikzjz) + B j exp( -ikzjz) for Zj ~ Z ~ Zj+l, (F.5) 

where kzj is the value of kz in the layer and Aj and Bj are constants. At the 
top of the highest layer between ZN-l and ZN we assume BN-l = 0, so only an 
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Figure F.l. The profile k(z) is approximated by dividing the atmosphere into a 
number of horizontal homogeneous layers with constant wave number k. 

upward traveling wave is present here. This implies that the highest layer must 
be chosen above the region where sound is refracted downward to the receiver; 
the height of this region usually increases with increasing distance between the 
source and the receiver. The solution of Eq. (FA) in the region below the ground 
surface (z :::; 0) is written as 

Po = Bo exp( -ikoz) for Z :::; 0, (F.6) 

where Bo is a constant and ko is the (complex) wave number in the ground (el 
Sec. DA). 

The constants Ai and Bi follow from the boundary conditions at the inter­
faces. The acoustic pressure and normal velocity are continuous at all interfaces, 
except at the interface at the source height Zs = Zm, where the pressure is con­
tinuous but the normal velocity is discontinuous (see Sec. DA). The Fourier 
transform W of the normal velocity is given by W = -1/-1p;} pI, as follows 
from Eq. (E.21) with gravity neglected. This gives the following boundary con­
ditions: 

Pi(Zj) = Pj- 1 (Zi) for j = 1,2, ... ,N, (F.7) 

-1 -I 8Pi (Zj) _ -I -I OPi-I(Zj) 
1/j Pi 8z - 7]j-I Pi-1 oz for j = 2,3, ... , N (j ::J m), (F.8) 

8Pj (zj) = 8Pi - l (zj) _ So 
OZ 8z 

for j = m, (F.9) 

-I 8Pj (zj) -I OPj_I(Zj) 
Pi oz = Pj-I OZ for j = 1, (F. 10) 

where 1/j is the value of 7] in layer j (see below), Pj is the value of Pay in 
layer j, and Po is the (complex) density of the ground material (see Sec. DA). 
The derivation of Eq. (F.9) is analogous to the derivation of Eq. (D.34); the 
discontinuity at Z = Zm of the 'staircase approximation' of the profile k(z) (see 
Fig. F.1) is ignored in the derivation, as the real profile is continuous at Z = Zm· 
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The effect of the factors Tf;l, Tf;.!l' p;l, and P;!l in Eqs. (F.8) and (F.10) 
is often small, so these factors may be omitted. In the two-dimensional case of 
a non-moving atmosphere with an effective sound speed we have Tf = -iw and 
Tf;l = Tf;.!l' In the three-dimensional case we have Tf = -ickm, and Tf;l ~ Tf;.!l 
from U av « c and Vav «c. Equation (F.lO) is consistent with Eq. (F.8) as we 
have Tf1 = Tfo from U av = Vav = 0 at Zl = O. 

The boundary conditions for Zl = 0 give the relation 

(F. 11) 

where 

(F.12) 

is the plane-wave reflection coefficient (see Appendix D)j Zs is the normalized 
impedance of the ground surface. For a locally reacting ground surface, Zs is 
equal to the normalized characteristic impedance Z of the ground material. For 
an extended reacting ground surface, Zs is given by Eq. (D.23). 

The other boundary conditions can be used to derive a set of equations that 
can be solved for the constants Aj and Bj . It is easier, however, to follow a 
different approach. From Eq. (F.5) we find the relations 

Pj(Z + Az) = cos(kzjAz)Pj(z) + k-;/ sin(kzjAz)Pj(z) 
Pj(z + Az) = -kzj sin(kzjAz)Pj(z) + cos(kzjAz)Pj(z) 

(F.13) 

for z and z + Az in layer j, where cos w and sin w are defined for complex w as 
~(eiW + e-iw ) and ~(eiw - e-iw ), respectively. These relations will be used to 
determine the quantities Pj(Zj). 

F.3 Extrapolation from the ground and the top 
to the source 

We start at the ground surface at height Zl = O. We arbitrarily set B1 = 1 for 
the moment. From Eqs. (F.5) and (F.ll) we find 

PI (zd = R(kzd + 1 

P{(zd = ikz1 [R(kzd - 1]. 
(F.14) 

The values of the quantities Pj -1 (Zj) and Pj -1 (Zj) are determined successively 
for j = 2,3, ... ,m by using Eqs. (F.14), Eqs. (F.13) with Z = Zj and Az = 
Zj+l -Zj, and Eqs. (F.7) and (F.8). The final values of Pm-1 (zm) and P.'n-1 (zm) 
at the source height Zm are denoted as Pm' and P.'n" respectively, where index 
'1' denotes 'lower region', i.e. region below the source. 
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Next we start at the top at height ZN. Here we choose PN-l(ZN) = I for 
the moment. From Eq. (F.5) with BN-l = 0 we find 

PN-1(ZN) = I 
Pfv_l(ZN) = ikzN. 

(F.15) 

The values of the quantities Pj(Zj) and Pj(Zi) are determined successively for 
j = N -1,N - 2, ... ,m by using Eqs. (F.15), Eqs. (F.13) with Z = zi+l and 
~z = zi - Zj+l, and Eqs. (F.7) and (F.8). The final values of Pm(zm) and 
P:"(Zm) at the source height Zm are denoted as Pmu and P:"u, respectively, 
where index 'u' denotes 'upper region'. 

F.4 Field at the receiver 
Numerical values of Pi and Pj are not yet correct, only the ratios Pj/ Pi are 
correct, as we have arbitrarily set Bl = I and PN-dzN) = 1. At the source 
height Zm we have from Eq. (F .9) 

( P:"u) p. - (P:"I) P. =-8 D m D m 6, rmu rml 
(F.16) 

where Pm is the correct value of P at the source height Zm. This gives 

-86 
Pm = (P:"u/Pmu ) - (P:"I/Pml)· 

(F.17) 

Now the values of Pj, as determined by the calculation described in Sec. F.3, 
can be scaled to the correct values, by multiplication of Pi by the factor 

(Pm/Pmu) for Zj > Zm, 
(Pm / Pmt) for Zj < Zm. 

(F.18) 

Finally, an inverse Fourier transformation of the quantities Pi yields the complex 
pressure amplitude in the spatial domain. In the three-dimensional case we have 

00 00 

Pc(x,y,Z) = (2!)2// exp(ikzx+ikyy)P(kz,ky,z)dkzdky. (F.19) 

-00 -00 

In the two-dimensional case we have from Eq. (E.64), returning to the notation 
Q instead of P, 

00 

qc(r,z) = 11"~ / [exp(ikrr) +exp(-ikrr)]Q(kr,z)dkr . (F.20) 

-00 

Numerical aspects of these Fourier integrals are discussed in the next section. 
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Figure F.2. Integration path that avoids the poles at kr = ±k on the real axis. 

F.5 Deformation of the integration path 

We first consider Eq. (F.20) for the two-dimensional case. The integrand has 
poles on the integration path near kr = -k and kr = k. This can be seen from 
the analytical solution for a homogeneous atmosphere without a ground surface 
(see Sec. F.7): 

Q(k" z) = i~ ~ exp(ikzlz - zsl) (F.2I) 

with k~ = k2 - k;. The solution is of course (slightly) different for an inhomo­
geneous atmosphere, but the regions near the poles still dominate the integral 
in Eq. (F.20). To avoid the poles we do not integrate along the real axis in Eq. 
(F.20) but along the integration path shown in Fig. F.2. For positive kr we in­
clude a small imaginary term -ikt, and for negative kr we include the opposite 
imaginary term +ikt, where kt is a small positive number. This choice corre­
sponds to a positive imaginary part of kz for k; > k2 , so that we have Q ~ 0 for 
kr -t ±oo [see Eq. (F.2I)]. It should be noted that the factors exp(±ktr) can 
be taken out of the integrals J exp(±ikrr)Q dkr in Eq. (F.20), so the integrals 
can still be performed with standard Fourier techniques (see Sec. B.4). 

The integral in Eq. (F.20) can be transformed to an integral over positive 
wave numbers kr only, by using the relation Q(-k"z) = ±iQ(kr,z), which fol­
lows from Eqs. (F.3) and (F.4). It follows from the analytical example presented 
in Sec. F.7 that we must use the minus sign here. Equation (F.20) can therefore 
be written as 

00 I-if qc(r,z) = 7rV2 [exp(ikrr) + exp(-ikrr)]Q(k"z)dkr. (F.22) 

o 

For the numerical evaluation of this integral we discretize the integration vari­
able kr as follows: 

kr,n = ks,n - ikt (n = 1,2, ... ,M), (F.23) 
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where kt is the small positive number described before, and 

1 3 
ks,n = 2~k, 2~k, ... ,ks,M (F.24) 

is the real partj ~k is the wave number spacing. The solution qc given by 
Eq. (F.22) becomes periodic in r by the discretization, with periodic distance 
211" / ~k. The wave number spacing ~k should be chosen small enough to ensure 
that the value of qc at the receiver is not affected by this periodicitYj one can 
use, for example, 211" / ~k ~ 3r. The choice of the maximum wave number ks,M 
depends on the frequency, as we have seen that the integral is dominated by 
wave numbers near the pole at kr = k = W/Ceff. One can use ks,M ~ 3w/C{), 
where C{) is the sound speed at z = O. For the small positive number kt one can 
use the value of ~k. 

The truncation of the integration interval in Eq. (F .22) at the maximum wave 
number ks,M induces small, rapid oscillations of qc as a function of r. These are 
easily eliminated by including a window function as a factor in the integrand 
of Eq. (F.22)j this function is equal to unity except near the integration limits 
where the function goes smoothly to zero. 

Next we consider the integral (F.19) for the three-dimensional case. As in 
the two-dimensional case, the solution for a homogeneous atmosphere is pro­
portional to k;l (see Sec. D.4). This implies that there are poles in the real 
kzky integration plane. The location of the poles depends on the receiver coor­
dinates x and y. For y = 0 the poles are on the kz axis, at (kz, ky) = (-k, 0) 
and (kz, ky) = (k,O). In this case the kz integration interval can be chosen as 
[-3ko,3ko] and the ky integration interval as [-ko,ko], with ko = w/C{). As in 
the two-dimensional case, the integration variables are discretized and the poles 
must be avoided by including a small imaginary term in kz and ky • For y = 0 
the poles are on the kz axis and we know from the two-dimensional case that 
the imaginary part of kz must be negative for kz > 0 and positive for kz < 0 
(see Fig. F.2). A possible choice is therefore [158] 

kz ,m = ksz ,m - ikt cos Omn 
ky,n = ksy,n - ikt sin Omn, 

(F.25) 

where ksz,m and ksy,n are the discretized variables in the real kzky plane, Omn = 
arctan(ksy,n/ksz,m) is the polar angle of the vector (ksz,m, ksy,n) running from 
o to 211", and kt is a small positive number. As in the two-dimensional case, a 
window function must be used to eliminate spurious effects from the truncation 
of the integration intervals. 

F.6 Improvement of numerical accuracy 
The efficiency of the computational method described in the previous sections 
depends on the number of horizontal layers that is used. This number depends 
on the vertical profiles of the adiabatic sound speed and the wind velocity. 
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At heights where the vertical gradients are large (near the ground surface for 
example), thin layers must be used. At heights where the gradients are small, 
thick layers can be used. In the case of a homogeneous atmosphere, two layers 
are sufficient (see Sec. D.4). 

If the number of layers is large, one should be aware of numerical errors in the 
calculation of the quantities Pj by repeated application of Eqs. (F.13). These 
errors originate predominantly from the factors exp(±ikziboz) in Eqs. (F.13). In 
the calculation of the (unscaled) quantities Pi for j = 2,3, ... , m (see Sec. F.3), 
Pj may become large with increasing j owing to the factors exp( -ikziboz) with 
imaginary kzi . Similarly, in the calculation of Pj for j = N - 1, N - 2, ... ,m, 
Pi may become large near the source owing to the factors exp( +ikzjboz) with 
imaginary kzj . This problem can be solved by multiplying the quantities Pi and 
Pi by a factor 

exp(ikzoboz) for boz > 0 
exp( -ikzob.z) for b.z < 0 

(F.26) 

after each step z -t z + b.z (see Sec. F.3). These factors do not affect the ratios 
Pi / Pi· In the final scaling to the correct values of Pi, the reciprocal factors 
should be included; this gives an additional factor exp(ikzolz - zsD in the scale 
factors (F.18). For the wave number kzo one can use, for example, the vertical 
wave number at the source height. An even better approach can be applied in 
the layers above the highest location where the field is to be computed. Here 
one can simply divide Pi and Pi by Pi after the downward calculation in a 
layer, so Pi and Pi are replaced by 1 and Pi / Pi, respectively. This approach is 
equivalent to the admittance extrapolation approach described in Ref. [155]. 

F.7 Analytical example 

As an example we will calculate the FFP solution for the two-dimensional case 
with a homogeneous atmosphere. In this case we use only two layers: layer 1 
between ZI = 0 and Z2 = Zs (m = 2), and layer 2 between Z2 and Z3 > Z2 
(N = 3). 

Equations (F.14) are written as Ql (ZI) = R + 1 and Q~ (zt} = ikz(R - 1). 
Application of Eqs. (F.13) with Z = ZI and boz = Zs - ZI = Zs gives 

Qml = exp(ikzzs)R + exp( -ikzzs) 
Q:nl = ikz[exp(ikzzs)R - exp( -ikzzs)]. 

(F.27) 

Equations (F.15) are written as QN-l(ZN) = 1 and QN_l(ZN) = ikz. Applica­
tion of Eqs. (F.13) with z = ZN and b.z = Zs - ZN gives 

Qmu = exp[ikz(zs - ZN)] 
Q~u = ikz exp[ikz (zs - ZN )]. 

(F.28) 
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Equation (F.I7) gives 

Qm = i~ v:: [1 + Rexp(2ikzzs)]. (F.29) 

With the scale factors (F.I8), the correct values of Qj(Zj) become 

Qj(Z) = i~ v:: {exp[ikzlz - zsll + Rexp[ikz(z + zs)]}. (F.30) 

This expression is valid for arbitrary z > O. 
We consider the case without a ground surface, so we have R = O. Equation 

(F.30) becomes 

(F.3I) 

Equation (F.22) gives 

00 

i(I - i) J .. Jk,. 
qc = 2../ii exp(tkrr + tkzlz - zsl)k;dkr 

o 

We first consider the first integral on the right-hand side, which we write as 

h = 100 exp[iF(kr)]G(kr)dkr (F.33) 

with F(kr) = krr + Iz - zslVk2 - k; and G(kr ) = Jk,./Vk2 - k;. For large 
krr, the integral (F.33) can be calculated with the method of stationary phase 
(see Appendix P): 

(F.34) 

with /-L = sign[P'(kr,o)]' where sign (x) is 1 for x > 0 and -1 for x < OJ the 
quantity kr,o is the wave number at the stationary phase point, i.e. the solution 
of the equation F'(kr,o) = O. We find kr,o = rk/ Rl with Rl = vr2 + (z - zs)2, 
and the integral becomes 

I - '-(1 .) cexp(ikRd 
1 - y7r - t yr Rl . (F.35) 

The second integral on the right-hand side of Eq. (F .32) can be treated in a 
similar way. In this case the stationary phase point is at kr,o = -rk/R1 , which 
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is outside the integration interval. This means that the integral can be neglected 
with respect to the first integral on the right-hand side of Eq. (F.32). Equations 
(F.32) and (F.35) give 

r.:exp( ikR1 ) 
qc = yT Rl ' (F.36) 

which is the correct expression for qc, corresponding to Pc = exp(ikRd/R1 . 

Thus, we have shown that the FFP solution agrees with the analytical solution 
for the two-dimensional case with a homogeneous atmosphere. 
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Parabolic Equation (PE) 
method 

G .1 Introduction 

The Parabolic Equation (PE) method is a numerical method for computing 
the sound field of a monopole source in a refracting atmosphere above a ground 
surface. In contrast to the Fast Field Program (see Appendix F), the PE method 
is not limited to a layered atmosphere and a homogeneous ground surface. In 
the PE method, the sound speed profile and the ground impedance may vary 
along the propagation path. Furthermore, effects of atmospheric turbulence and 
irregular terrain can be taken into account in the PE method. 

In the PE method, the sound field is computed by solving a parabolic 
equation, which follows from the wave equation by neglecting contributions to 
the field from sound waves with large elevation angles. Consequently, the PE 
method gives accurate results in a region limited by a maximum elevation angle 
(see Fig. 4.11). The value of the maximum elevation angle ranges from typically 
10° to 70° or higher, depending on the small-angle approximation used in the 
derivation of the parabolic equation [69) (cf. Secs. 4.6 and G.12). A maximum 
elevation angle of 10° is often sufficient for situations with the source and the 
receiver near the ground. 

The PE method has been widely used in underwater acoustics [148, 45, 
69, 78]. In 1989, Gilbert and White presented a PE method for atmospheric 
acoustics [56). This method is called the Crank-Nicholson PE (CNPE) method. 
In this appendix we describe the CNPE method, following a description by West 
et al. [156). In Appendix H we describe an alternate PE method: the Green's 
Function PE (GFPE) method [58). 

Both PE methods are two-dimensional methods, based on the axisymmetric 
approximation (see Sec. E.4). Recently a three-dimensional GFPE method has 
been developed [44], which is also described in Appendix H. Three-dimensional 
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CNPE methods are described in Refs. [41,22, 77]. 
The CNPE method yields a finite-difference solution of a wide-angle parabolic 

equation; the solution is accurate up to elevation angles of about 35°. The GFPE 
method is less accurate than the CNPE method in situations with wide-angle 
propagation and large sound speed gradients; for most applications, however, 
the GFPE method is sufficiently accurate. The advantage of the GFPE method 
is that this method is more efficient, i.e. faster, than the CNPE method. 

A fiat, locally reacting ground surface is assumed in the PE methods de­
scribed in this appendix and in Appendix H. In Appendix M we describe the 
application of the PE methods to propagation over hills and other terrain pro­
files. In Appendix J we describe how the effect of atmospheric turbulence can 
be taken into account in the PE methods. 

G.2 Basic approach of the CNPE method 

The CNPE method described in this appendix is based on the axisymmetric 
approximation, which was described in Sec. EA. The axisymmetric approxima­
tion implies that the three-dimensional Helmholtz equation (EA9) reduces to 
the two-dimensional Helmholtz equation (E.53): 

o2qc o2qc 2 
or2 + OZ2 + keffqc = 0, (G.1) 

where we use the rz coordinates shown in Fig. E.1. The term o~qc in Eq. (G.1) is 
an approximation of the term k~ffoz(k;iozqc) in Eq. (E.53) (with the notation 
Oz == %z). This approximation is often used in the PE method; numerical 
computations show that the effect of the approximation is usually negligible. In 
Sec. G.lO we will show how the term k~ffoz(k;iozqc) can be implemented in the 
PE method. 

We recall that the quantity qc(r, z) in Eq. (G.1) is related to the complex 
pressure amplitude pc(r,z) by Eq. (E.51): 

(G.2) 

The wave number keff in Eq. (G.1) is equal to W/Ceff, where W is the angular fre­
quency and Ceff is the effective sound speed. The subscript 'eff' will be omitted, 
so we have keff == k and Ceff == c. The subscript 'c' of qc will also be omitted, so 
we have qc == q. 

In the CNPE method, the field q(r, z) is computed on a grid in the rz plane 
(see Fig. G.1). The computation starts at r = 0 with a starting function q(O, z), 
which represents a monopole source. This function is extrapolated step-wise in 
the positive r direction, which yields the complete field q(r, z). An extrapolation 
step from range r to range r + /).r is written as 

q(r, z) ~ q(r + /).r, z). (G.3) 
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Figure G.1. Grid in the rz plane used in the PE method, with horizontal 
grid spacing ar, vertical grid spacing az, a ground surface at z = 0, and an 
absorbing layer at the top (Zt ~ z ~ ZM). The amplitude of the sound pressure 
at a grid point is represented schematically by the size of the circle at the grid 
point. In practice the number of grid points along the z axis is typically 1000 
or more (see Sec. G.9). 

Thus, the values of q at the grid points at range r + ar are computed from 
the values at range r . Accurate results are obtained only if the horizontal grid 
spacing ar and the vertical grid spacing az do not exceed about ,\/10, where 
,\ is an average wavelength. 

The grid has a finite height. At the top of the grid we use an artificial 
absorbing layer to eliminate reflections from the top of the grid. The ground 
surface is taken into account by a boundary condition, with the complex ground 
impedance as a parameter. 

The range dependence of the wave number k in Eq. (G.1) is taken into 
account step-wise. Within an extrapolation step, the range dependence is ne­
glected, so k is a function of z only. 

G.3 Narrow-angle parabolic equation 
We write the solution of Eq. (G.1) as 

q(r, z) = 1/J(r, z) exp(ikar), (G.4) 

where ka is the value of the wave number k(z) at some average height or at the 
ground surface; for the numerical examples in this book we used the value at 
the ground surface. The factor exp(ikar) in Eq. (G.4) represents a plane wave 
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traveling in the positive r direction, and oscillates rapidly as a function of rj the 
function t/J(r, z) usually varies slowly with r. Substitution of Eq. (G.4) into Eq. 
(G.l) gives 

(G.5) 

As t/J usually varies slowly with r, the first term on the left-hand side can be 
neglected with respect to the second term, so we find 

. 8t/J 82 t/J 2 2) 
21ka 8r + 8z2 + (k - ka t/J = O. (G.6) 

This equation is called the narrow-angle parabolic equation. 

G.4 Alternate derivation of the narrow-angle 
parabolic equation 

The narrow-angle parabolic equation can be derived in a different way. We write 
Eq. (G.l) as 

(G.7) 

where we use the notation 8r == 8/8r and the operator H2 (z) is defined as 

H2(Z) = k2(z) + 8~. (G.8) 

We define the quantity 8k2(z) as 

8k2(z) = k2(z) - k~, (G.9) 

so we have 

(G.lO) 

with 

8 = k~28k2(z) + k~28~. (G.ll) 

Equation (G. 7) can be written as 

(G.12) 

where 

(G.13) 

is the square-root operator. The square-root of the differential operator 1 + 8 

is defined by the expansion Jf+S = 1 + 18 -l82 + ... , which is analogous to 
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the expansion of a common square-root function [26]. It is readily verified that, 
with this definition, HI satisfies H'f = H2. We will consider different ways of 
truncating the expansion of the square-root operator. 

In the derivation of Eq. (G.12) from Eq. (G.7) we have assumed that the 
operators HI and Or commute, which means that we have Hlor = OrHI. Strictly 
speaking this is valid only for a layered atmosphere with k = k(z). For an 
atmosphere with a range-dependent wave number k(r, z) it is an approximation. 

The factor [Or - iHI(z)] in Eq. (G.12) represents waves traveling in the 
positive r direction and the factor [Or + iHI (z)] represents waves traveling in 
the negative r direction, as we assume a harmonic time factor exp( -iwt) (see 
Sees. A.3 and AA). In the PE method we choose the source at r = 0 and the 
receiver at r > 0, and we take into account only waves traveling in the positive r 
direction; back scattering is neglected. Equation (G.12) reduces to the one-way 
wave equation 

(G.14) 

If we approximate the square-root operator (G.13) by 

(G.15) 

we find the narrow-angle parabolic equation 

orq - ikaq - 2~a (0; + 8k2(z») q = O. (G.16) 

If we replace the quantity q by the quantity 'I/J defined by Eq. (GA) we find 

or'I/J= ~ikaS'I/J, 

which is equivalent to Eq. (G.6). 

G.5 Wide-angle parabolic equation 

(G.17) 

The approximation (G.1S) for the square-root operator is accurate only for prop­
agation at small elevation angles, up to about 10°. A more accurate expansion 
of the square-root operator is [26] 

1 + ~s 
HI(z) = ka--f-, 

1 + 4"s 
(G.18) 

where 1/(1 + is) is the inverse of the operator 1 + is. This expansion has 
quadratic accuracy in s, while Eq. (G.1S) has linear accuracy in s. This can 
be verified by showing that (1 + is)2 H2q agrees to second order in s with 
(1 + is)2 H'fq. The reason for writing HI as a quotient instead of the expansion 
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HI = ka(l + ~s - kS2) is that Eq. (G.18) leads to a tridiagonal matrix equation 
for a PE step (see Sec. G.6), which is easily solved, while HI = ka(l + ~s - kS2) 
would lead to a matrix equation with more nonzero elements. With Eq. (G.18), 
the one-way wave equation (G.14) becomes 

(1 + ~s)arq = ika(1 + ~s)q. (G.19) 

This is the wide-angle parabolic equation. The corresponding equation for the 
quantity 1/J defined by Eq. (G.4) is 

(G.20) 

G.6 Finite-difference solution of the narrow­
angle parabolic equation 

The narrow-angle and wide-angle parabolic equations derived in the previous 
sections can be solved numerically by approximating the derivatives in the equa­
tions with finite differences [156]. We first describe the finite-difference solution 
of the narrow-angle parabolic equation (G.6), which we write as 

(G.21) 

with a = ~i/ka and /3 = ~i(k2 - k~)/ka = ~i 8k2/ka. We use the grid shown in 
Fig. G.1, with grid points at heights 

Zi = jfl.z with j = 1,2, ... , M. (G.22) 

We denote the field 1/J at range r as a vector tP(r) with elements 1/Ji = 1/J(r,zi)· 
Using the central difference formula 

(G.23) 
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we can write Eq. (G.21) as 

'lj;1 -2 1 
'lj;2 1 -2 1 
'lj;3 1 -2 1 

Or , + 

'lj;M-1 1 -2 1 
'lj;M 1 -2 

(G.24) 
{31 'lj;1 'lj;o 

{32 'lj;2 0 
{33 'lj;3 0 

+, 

{3M-1 'lj;M-1 0 
{3M 'lj;M 'lj;M+1 

with'Y = a./(t1z)2 and {3j = (3(Zj); in the matrices on the right-hand side we have 
indicated only the nonzero elements. The vector equation (G.24) represents a set 
of M equations; each equation relates an element or'lj;j to the elements 'lj;j-1, 'lj;j, 
and 'lj;j+1. The last term on the right-hand side of Eq. (G.24) contains the field 
'lj;o at the ground level Zo = 0 and the field 'lj;M+1 at height ZMH = (M + l)t1z. 
This term accounts for the two terms that are 'missing' in the first term on the 
right-hand side. 

For the field 'lj;o at the ground level we use the relation 

(G.25) 

with coefficients 0"1 and 0"2, which depend on the ground impedance (see Sec. 
G.8). For the field 'lj;MH we use the relation 

(G.26) 

with coefficients 71 and 72 (see Sec. G.9). 
Using Eqs. (G.25) and (G.26), we write Eq. (G.24) as 

(G.27) 

where T is a tridiagonal matrix and D is a diagonal matrix; T is given by 

T= 

-2 + 0"1 

1 
1 + 0"2 

-2 1 
1 -2 1 

1 

(G.28) 

-2 1 
1 + 72 -2 + 71 
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and D is given by 

(31 

D= (G.29) 

Integration of Eq. (G.27) from range r to range r + ~r gives 

r+Ar 

-,t -,t I -,t tP (r + ~r) - tP (r) = (-yT + D) tP dr. (G.30) 

r 

We approximate the integral on the right-hand side by ~r1t (r+ ~r) + 1P (r)]~r, 
i. e. the product of the average value of the integrand and the integration interval 
~r. This approximation is called the Crank-Nicholson approximation. We find 

M 2 1P(r + ~r) = M 1 1P(r), (G.31) 

where Ml and M2 are tridiagonal matrices given by 

Ml = 1 + ~~r(-yT + D) 

M2 = 1- ~~r(-yT + D). 
(G.32) 

A PE step 1P (r) --+ 1P (r + ~r) is reduced to the solution of Eq. (G.31), which 
is a set of M linear equations for M unknowns 1/Jj(r + ~r). As Ml and M2 
are tridiagonal matrices, the solution can be performed efficiently by Gauss 
elimination [112]. 

G.7 Finite-difference solution of the wide-angle 
parabolic equation 

The wide-angle parabolic equation (G.20) differs from the narrow-angle parabolic 
equation (G.17) by the factor (1 + is) on the left-hand side. Comparison of Eqs. 
(G .17) and (G. 27) shows that the finite-difference matrix form of the operator 
~ikas is ,T + D. Consequently, the factor (1 + is) in the wide-angle parabolic 
equation yields a factor [1 +(-yT +D)/(2ika )] on the left-hand side of Eq. (G.30). 
This leads to the matrix equation (G.31) with modified matrices Ml and M2 
given by 

1 ,T+D 
Ml = 1 + 2~r(-yT + D) + 2ika 

1 ,T+D 
M2 = 1- 2~r(,T +D) + 2ika . 

(G.33) 
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The PE method based on Eqs. (G.31) and (G.33) is called the Crank-Nicholson 
PE (CNPE) method. 

G.B Boundary condition at the ground surface 
In this section we determine the coefficients 0"1 and 0"2 in Eq. (G.25). At the 
ground surface we have the boundary condition (see Sec. D.2) 

( Pc) z - = pc, 
Ve•n %=0 

(G.34) 

where Z is the normalized impedance of the locally reacting ground surface, 
pc is the impedance of air (evaluated just above the ground surface), Pc is the 
complex pressure amplitude, and ve•n is the normal component of the complex 
fluid velocity amplitude; the normal component is the component in the negative 
Z direction. From Eq. (A.19) we have 

1 8Pe 
Ven = --. ---. . zwp 8z 

(G.35) 

If we use the first-order finite-difference approximation 

8Pe PI - Po 
= 8z ~z 

(G.36) 

with the notation Pi = Pe(zi) and Zo = 0, we find from Eqs. (G.34) and (G.35) 
the following relation between Po and PI: 

( .k ~ )-1 
Po = 1 - z ~ Z PI, (G.37) 

where 11:0 is the wave number at the ground surface. For the wide-angle parabolic 
equation it is preferable to use a second-order approximation for 8pc/8z, instead 
of the first-order approximation (G.36). Equation (G.36) represents a first-order 
estimate of the derivative centered at z = !~z. For a second-order estimate 
we use the second derivative 82Pe/8z2 ~ ~ - 2P1 + Po)/(~z)2 to estimate the 
change of the first derivative over the height interval from z = !~z to z = 0: 

8Pe = PI - Po _ ~~z P2 - 2P1 + Po = -~Po + 2P1 - !P2. (G.38) 
8z ~z 2 (~Z)2 ~z 

This gives the following relation between Po, PI. and P2: 

( 2iko~z)-1 
Po = 3 - -Z- (4p1 - P2). (G.39) 

This relation also holds with Pi replaced by "pi, so the coefficients 0"1 and 0"2 in 
Eq. (G.25) follow from this relation. 

We assume that the impedance is constant within a range step. A range 
dependence of the ground impedance is taken into account in the PE method 
by changing the impedance between successive range steps [123, 30]. 
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G.9 Boundary condition at the top of the grid 

The numerical grid is truncated at height Z = ZM. In this section we describe 
how the effects of the truncation are minimized. 

At the top surface at Z = Z M we use a similar boundary condition as at 
the ground surface. Instead of the ground impedance we use Z = 1 for the 
normalized impedance of the top surface (Z = 1 is the normalized impedance 
of air). From Eq. (G.39) we find 

(G.40) 

The coefficients 71 and 72 in Eq. (G.26) follow from this relation. 
The impedance Z = 1 at the top surface corresponds to a vanishing reflection 

coefficient only for vertically traveling plane waves. Other waves are partially 
reflected back into the region Z < ZM. An absorbing layer just below the top 
surface, between Z = Zt and Z = ZM (see Fig. G.l), eliminates these reflections. 
We add an imaginary term to the wave number k(z) for Zt ~ Z ~ ZM, so that 
waves are gradually attenuated in the absorbing layer. Numerical tests show 
that a good choice for the imaginary term is iAt(z - zd 2 /(ZM - Zt)2, where At 

is a constant. The optimum choice for At varies with frequency. Good results 
are obtained with At = 1, 0.5, 0.4, 0.2 at the frequencies 1000, 500, 125,30 Hz, 
respectively; for intermediate frequencies, linear interpolation can be used. A 
safe value for the thickness ZM - Zt of the absorbing layer is 50 wavelengths. An 
alternate boundary condition at the top surface is described in Ref. [122]. 

The sound field should not be influenced by the absorbing layer, so the height 
ZM of the top surface should not be chosen too small. A general rule for the 
choice of ZM cannot be given. The optimum choice depends on the geometry, 
the frequency, and the sound speed profile [134]. Usually ZM is at least equal 
to 1000 vertical grid spacings. 

In the case of a downward refracting atmosphere, all curved sound rays from 
the source to the receiver should have their maximum heights below the ab­
sorbing layer. As an example we consider the logarithmic sound speed profile 
c(z) = Co+bln(l+z/zo) [see Eq. (4.5)], where the roughness length Zo should not 
be confused with the height Zo = 0 used in previous sections. Downward refrac­
tion corresponds to b > O. If the source and the receiver are close to the ground 
surface, the maximum height of the highest ray is given by h ~ r / J27rCo/b [see 
Eq. (4.9)]. A typical value of b is 1 mis, so we find h ~ 0.02r. For r = 10 km, 
for example, this gives h = 200 m. 

G.lO Density profile 

In Eq. (G. 1) we used the approximation {); q for the term k2 {) z (k - 2 {) z q) (we recall 
that we use the notation k == keff and q == qc). It is straightforward to repeat 
the formulation of the PE method, presented in the previous sections, for the 
case that the term k 2{)z(k- 2{)zq) is not approximated by {);q. For a non-moving 
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isobaric atmosphere, k20z(k-20zq} is equal to pOz(p-10zq}, where P = p(z} is 
the vertical density profile in the atmosphere [this follows from k = w / c and Eq. 
(A.9)]. In this section we describe how the PE method is modified if o;q in Eq. 
(G.1) is replaced by pOz(p-10zq}: 

02q 0 ( _10q) 2 
or2 + p oz P oz + k q = O. (G.41) 

If the term k20z(k-20zq} is used instead of poz(p-lozq}, the density p should 
be replaced by k2 in the equations in this section. 

Equation (G.41) differs from Eq. (G.1) by the replacement of the differential 
operator 0; by the differential operator pOz(p-loz}' The finite-difference form 
of the operator pOz(p-10z} is given by 

pOZ(p-l oz'I/J}Zj = 

1 [1 ( p.) 1 ( p' p' ) 1 ( p.) ] --2 - 1 + _1_ 'l/Jj+! - - _1_ + 2 + _1_ 'l/Jj + - 1 + _1_ 'l/Jj-1 . 
(~z) 2 PHI 2 PHI Pj-l 2 Pj-l 

(G.42) 

The only effect of the replacement of 0; by poz(p-10z) is that the matrix T in 
Eqs. (G.32) and (G.33) is modified: 

T= 

with 

-2'YO,1 
'Y-1,2 

'Y1,1 
-2'YO,2 
'Y-l,3 

'Y1,2 
-2'YO,3 'Y1,3 

'Y-l,M-l -2'YO,M-l 'Yl,M-l 
'Y-l,M -2'YO,M 

'Y-1,10"1 'Y-1,10"2 
o 0 0 

o 0 0 

o o o 

'Y1,j = - 1 + _1_ 1 ( p.) 
2 PHI 

'Yo,j = - _1_ + 2 + _1_ 1 ( p' p' ) 
4 Pj+! Pj-l 

'Y-1,j = - 1 + _1_ . 
1 ( p.) 
2 pj-l 

+ 

(G.43) 

(G.44) 
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Numerical computations show that the effect of the approximation of the 
term Paz (p-1azq) in Eq. (GAl) by a;q is very small. The effect of atmospheric 
gradients on sound propagation is determined almost completely by the term 
k2q in Eq. (GAl). 

G.11 Finite-element solution 

In the previous sections we described a finite-difference approach to the solution 
of the wide-angle parabolic equation. Gilbert and White [56) presented a slightly 
more accurate finite-element approach; with this approach it is possible to use a 
non-uniform vertical grid spacing, which means that Zj - Zj-l may vary with j. 
The finite-element approach is based on Eq. (GAl), so density gradients are 
included in the solution. 

The finite-difference approach resulted in the tridiagonal matrix equation 
(G.31). The finite-element approach also leads to a tridiagonal matrix equation 
of the form (G.31), which we write as 

_--:t +--:t 
M 'Ijj (r + ~r) = M 'Ijj (r). (GA5) 

The tridiagonal matrices M± of the finite-element approach are given by (see 
Ref. [56)) 

where the quantities M;,j are given by 

3 

000 
MtMT2 Mt" MTI 

M ± - '"' ±H(n) 
m,j - L., en j,j+m 

n=l 

+ 

(GA6) 

(GA7) 
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for m = -1,0,1 and j = 1,2, ... , M. The coefficients c; are given by 

± 3 I'k A c1 = 4 =F 4z aur 
± 1 ± I'k A C2 = 4 4Z aur (GA8) 

c~ = 4'/k~. 

The quantities HJ~~m for n = 1,2 are given by 

HJ~) = 112 [(Zj - Zj-I)!n(Zj-d + 3(ZHI - Zj_I)!n(Zj) + (ZHI - Zj)!n(zHd] 

HJ~~I = ±112 (fn(Zj) + !n(Zj±I)] (Zj±1 - Zj) 
(GAg) 

and for n = 3 by 

(G.50) 

with h(z) = p-I(Z) and h(z) = p-l(z)k2(z)/k~. 
As indicated in Sec. G.lO, the density p should be replaced by k2 in the 

above expressions if the second term in Eq. (GAl) is replaced by the term 
k28z (k- 28z q). 

G.12 Starting field 

The numerical solution of the narrow-angle or wide-angle parabolic equation 
has been reduced to the repeated solution of the tridiagonal matrix equation 
(G.31) for a PE step 1P(r) ~ 1P(r+~r). The computation starts at the source 
at r = 0, where a starting field 1t (0) == ,¢,(O, z) is required. The starting field 
should represent a monopole source. • 

From Eq. (GA) we have '¢'(O, z) = q(O, z). The exact expression for the field 
q(r, z) of a monopole source in an unbounded non-refracting atmosphere is 

( ) exp(ikR) t= 
q r,z = R v r , (G.51) 

where R is the radial distance from the source. We cannot use this expression 
for the starting field, for two reasons: i) the expression diverges at the source, 
and ii) the expression produces sound waves with large elevation angles (outside 
the interval for which the PE method is valid), which generate numerical errors 
in a PE computation. 

In Sec. G.12.1 we derive a starting field for the narrow-angle parabolic equa­
tion and in Sec. G.12.2 we derive a starting field for the wide-angle parabolic 
equation. In the derivation we assume a non-refracting atmosphere. The start­
ing field is chosen in such a way that a PE computation for a non-refracting 
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atmosphere yields a far field that agrees with Eq. (G.51). In Sec. G.12.3 we 
include the effect of the ground surface in the starting field. 

The derivation of the starting field in Secs. G.12.1 and G.12.2 is based on 
the work of Greene [62]. A different approach was presented by Collins [28]. 

G.12.1 Narrow-angle parabolic equation 

In this section we derive a starting field for the narrow-angle parabolic equation. 
The ground surface is ignored and the source is located at (r,z) = (0,0). 

We assume that k(z) is a constant, so we have k(z) = ka . The narrow-angle 
parabolic equation (G.16) reduces to 

orq - ikaq - 2!a o;q = O. (G.52) 

We write the solution as a plane-wave expansion: 

00 

q = ! S(kz) exp(ikzz + ikrr)dkz, (G.53) 

-00 

where kz is an integration variable and kr and S(kz) will be determined below. 
Substitution of Eq. (G.53) into Eq. (G.52) gives 

We write Eq. (G.53) as 

with 

k2 

kr = ka - 2~a' 

00 

q = ! S(kz) exp[iF(kz)]dkz 
-00 

(G.54) 

(G.55) 

(G.56) 

where we have used Eq. (G.54). To evaluate the integral in Eq. (G.55) we use 
the method of stationary phase (see Appendix P). At the stationary phase point 
we have F'(kz,o) = 0, which gives 

(G.57) 

The stationary phase approximation of Eq. (G.55) is 

(G.58) 
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and we find 

1 J27rka q ~ r- -.-S(kz 0) exp(ikaR) 
yr t ' 

(G.59) 

with R = v'r2 + z2 ~ r(1 + !Z2/r2). IT we compare this with the exact expres­
sion q = ..;r exp( ikaR) / R for a monopole source we find 

or, from Eq. (G.57), 

Therefore we use 

(Tr 
S(kz,o) = V ~R' 

t zO {;k ( k2) -1/2 
S(kz,o) = 27rka 1 + k~ 

(G.60) 

(G.61) 

(G.62) 

Using (1 + X)-1/2 ~ 1 - !X ~ exp(-!x) for x « 1, this expression can be 
approximated as 

(G.63) 

Substitution of this expression into Eq. (G.53) for r = 0 gives a standard inte­
gral, and we find 

f7L 1 q(O,z) = ytkaexp(-2k~z2). (G.64) 

This is a well-known Gaussian starting field for the PE method [148]. 
One may use a higher-order approximation of Eq. (G.62) instead of the 

first-order approximation (G.63). We will not do this here for the narrow-angle 
parabolic equation, but we will do this in the next section for the wide-angle 
parabolic equation. 

G.12.2 Wide-angle parabolic equation 

For an atmosphere with a constant wave number k(z) = ka, the wide-angle 
parabolic equation (G.19) reduces to 

( 1 -282)8 . ( 3 -282) 1 + 4ka z rq - tka 1 + 4 ka z q = O. (G.65) 
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Substitution of the plane-wave expansion (G.53) into Eq. (G.65) gives 

1 - 'J.k2 /k2 
k k 4 z a 

r - a 1 _ lP/P' 
4 z a 

(G.66) 

We proceed as in the previous section. For the function F(kz) in Eq. (G.55) we 
find 

(G.67) 

This gives 

(G.68) 

and 

(G.69) 

At the stationary phase point we have F'(kz,o) = O. This gives 

kz,o/ka ~ z/r, (G.70) 

where terms of the order of (z/r)3 and higher-order terms have been neglected. 
The stationary phase approximation of Eq. (G.55) becomes 

1 J21rka (1 - iz2/r2)3/2 . 
q ~,;r -i - (1 + ~z2 /r2)l/2 S(kz,o) exp(zkaR) , (G.71) 

where we have used R = Vr2 + z2 ~ r(l + ~z2 /r2 - ~z4/r4 ... ) in the expo­
nential, neglecting terms of the order of r(z/r)6 and higher-order terms. This 
agrees with the exact expression q = ,;r exp( ikaR) / R if we use 

Ii 1 (1 + ~k~/kDl/2 
S(kz) = V hla (1 + k~/k'Dl/2 (1- ik~/ki)3/2' (G.72) 

This function can be represented approximately by the expression 

S(kz) = J 2:ka (1 + a2 ~D exp ( -b2 ~D (G.73) 

with adjustable parameters a2 and b2. If we choose a2 = 0 we find the following 
expression for the starting field: 

(G.74) 
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For b2 = ~ we find the starting field derived in the previous section, given by 
Eq. (G.64). Equations (G.72) and (G.73) with a2 = 0 and b2 = ~ agree with 
each other only for kz between zero and about 0.2ka, corresponding to elevation 
angles between zero and about lO° [the elevation angle is arctan(z/r), which 
is equal to arctan(kz/ka) from Eq. (G.70)]. With increasing k z , the agreement 
decreases. The agreement can be improved by choosing a smaller value of b2 , but 
if b2 is chosen too small, high-angle waves are generated which cause errors in a 
PE computation. A better approach is to improve the agreement by adjusting 
the parameter a2. For a2 = 1.02 and b2 = 0.75, Eqs. (G.72) and (G.73) agree 
with each other up to elevation angles of about 30°. This corresponds to the 
starting field 

q(O, z) = .Jik:"(Ao + A2k;z2) exp ( _ k~2) 

with Ao = 1.3717, A2 = -0.3701, and B = 3. 

(G.75) 

Use of the second-order starting field (G.75) instead of the zeroth-order start­
ing field (G. 74) is expected to improve the accuracy of the computed sound pres­
sure field, but the improvement proves to be very small (see end of Sec. G.12.3). 
Apparently, the high-angle accuracy of CNPE results is not limited by the start­
ing field but by the small-angle approximation used in the derivation of the 
CNPE method. The disagreement between Eqs. (G.72) and (G.73) for eleva­
tion angles between about lO° and about 30° has a relatively small effect on the 
sound pressure field. 

The situation is different for the GFPE method described in Appendix H. 
The high-angle accuracy of GFPE results is limited by the starting field, and 
use of a higher-order starting field improves the accuracy of GFPE results (see 
Sec. H.lO). 

G.12.3 Source near a finite-impedance ground surface 

If the source is at position (r,z) = (O,zs) above a finite-impedance ground 
surface at z = 0, the following starting field can be used: 

q(O, z) = qo(z - zs) + Cqo(z + zs), (G.76) 

where the function qo(z) is defined as the starting field for a source at position 
(r, z) = (0,0) in an unbounded atmosphere, and C is a reflection coefficient. 
For the narrow-angle parabolic equation we have shown that Eq. (G.64) can be 
used for the function qo(z). For the wide-angle parabolic equation, Eq. (G.74) 
or Eq. (G.75) can be used. 

The first term on the right-hand side of Eq. (G.76) represents the direct 
field of the source; the second term represents the field reflected by the ground 
surface or, equivalently, the field of the image source at position (0, -zs). For 
the reflection coefficient C in Eq. (G.76) one usually employs the plane-wave 
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reflection coefficient for normal incidence: 

Z-1 
Cp = Z + l' (G.77) 

where Z is the normalized ground impedance. The most obvious choice for C, 
however, is the spherical-wave reflection coefficient Cs, which is given by the 
general integral expression (D.54) (Q == Cs), with R2 = ..jr2 + (z + zs)2. For 
the PE starting field we must set r = 0 in this expression, so we have R2 = Z+Zs 

and find 

00 

C = 1- 2ka R2j exp[-qka(Z + 1)/Zl dq 
S Z i q + R2/i 

(G.78) 

o 

or 

C = 1 _ 2 ka R2 (k Z + 1 R2) E (k Z + 1 R2 ) 
S Z i exp a Z i 1 a Z i ' (G.79) 

where El is the exponential integral function (see Eq. 5.1.28 in Ref. [1]). This 
expression for Cs is easily evaluated numerically. 

A relation between Cp and Cs for r = 0 follows from the following asymptotic 
expansion of Eq. (G.78): 

(G.80) 

which can be derived by repeated integration by parts in Eq. (G.78). Equation 
(G.80) implies Cs ~ Cp for ka(z + zs) » 1, or (z + zs) » A/27r, where A is 
the wavelength. Numerical computations indicate, however, that Cs ~ Cp is 
a reasonable approximation for the PE starting field even when the condition 
(z + zs) » A/27r is not met. 

For the field shown in Fig. 4.16 in Chap. 4 we used Eq. (G.74) with ~ = ~ 
for qo{z} and the plane-wave reflection coefficient Cpo We found no significant 
change of the field when we used Eq. {G.75} for qo(z} and the spherical-wave 
reflection coefficient Cs . 
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Green's Function Parabolic 
Equation (GFPE) method 

H.I Introduction 

In this appendix we describe the Green's Function Parabolic Equation (GFPE) 
method, which was developed by Gilbert and Di [58] (see Sec. G.1). The GFPE 
method is more efficient, i.e. faster, than the Crank-Nicholson Parabolic Equa­
tion (CNPE) method, because in the GFPE method considerably larger extrap­
olation steps (i. e. range steps tl.r) can be used than in the CNPE method. An 
alternate Parabolic Equation method with large extrapolation steps is described 
in Ref. [130]. 

The GFPE method developed in Ref. [58] is a two-dimensional method, 
based on the axisymmetric approximation. Recently a three-dimensional GFPE 
method was developed [44]. The two-dimensional GFPE method is described 
in Secs. H.2 to H.ll and the three-dimensional GFPE method is described in 
Sec. H.12. 

The derivation of the basic equations of the two-dimensional GFPE method 
starts with Eq. (G.1), which we repeat here: 

82 q 82q 
8r2 + 8z2 + k 2q = 0, (H. 1) 

with q = q(r,z) and k = k(z). We have omitted the subscripts of qc and ke/f, as 
in Appendix G. 

H.2 Unbounded non-refracting atmosphere 

It is instructive to formulate the GFPE method first for the trivial case of an 
unbounded non-refracting atmosphere. In this case the wave number k is a 
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constant. We apply a Fourier transformation z -+ kz to Eq. (H.l), i.e. we 
multiply the equation by exp( -ikzz) and integrate over z from -00 to 00. This 
gives 

(H.2) 

where 

00 

Q(r,kz) = I exp(-ikzz)q(r,z)dz (H.3) 

-00 

is the Fourier transform of q. We write Eq. (H.2) as 

(~ - iJk2 - k2) (~ + iJk2 - k 2 ) Q = O. ar z ar z 
(H.4) 

The first factor yields the solution Q(r, kz) = Q(O, kz) exp(irJk2 - k~), which 
represents waves traveling in the positive r direction [as we assume a har­
monic time factor exp( -iwt)]. The second factor yields the solution Q(r, kz) = 
Q(O, kz) exp( -irJk2 - k~), which represents waves traveling in the negative r 
direction. We restrict ourselves to sound propagation in the positive r direction, 
so we use the solution Q(r, kz) = Q(O, kz) exp(irJk2 - kn. This solution can 
also be written as 

(H.5) 

The function q(r + Llr, z) is obtained by an inverse Fourier transformation: 

00 

q(r + Llr, z) = 2~ I exp(ikzz) exp(iLlrJk2 - k~)Q(r, kz) dkz· (H.6) 
-00 

Thus, the field is extrapolated from range r to range r + Llr by a forward 
Fourier transformation [Equation (H.3)] and an inverse Fourier transformation 
[Equation (H.6)]. In Sec. H.8 we will show that Eq. (H.6) is closely related to 
the Fourier split-step algorithm for the parabolic equation. This algorithm is 
used in underwater acoustics. 

Equation (H.6) is valid for an unbounded non-refracting atmosphere. Gilbert 
and Di [58] generalized Eq. (H.6) for a refracting atmosphere above a finite­
impedance ground surface. The derivation by Gilbert and Di is based on the 
spectral theorem of functional analysis (see Sec. H. 7). Here we present a different 
approach that leads to the same result [134]. This approach is based on the 
two-dimensional version of the Kirchhoff-Helmholtz integral equation, which is 
derived in the next section. 
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H.3 Kirchhoff-Helmholtz integral equation 

The complex pressure amplitude P(RI) at a point RI = (Xl, YI, zd in a three­
dimensional volume V without sources, enclosed by a surface Be, can be calcu­
lated with the Kirchhoff-Helmholtz integral equation [91] 

peRl) = 4~ II [93(R,RI)V'p(R) - p(R)V'93(R,RI)]· ndBe , (H.7) 

Sc 

where the integral is over positions R = (x,y,z) on the surface Be, the operator 
V' is 8j8R = (8j8x,8j8y,8j8z), n is the outward unit normal vector at the 
surface Be, the Green's function 93(R, Rd is a solution of the inhomogeneous 
Helmholtz equation 

and the complex pressure amplitude peR) in the volume V satisfies the homo­
geneous Helmholtz equation 

(H.9) 

To prove Eq. (H. 7), the surface integral is converted to a volume integral with 
Gauss' theorem 

(H.IO) 

where F is an arbitrary vector field. If we use Eqs. (H.8) and (H.9) in the 
resulting equation we find an identity. 

There is still a considerable freedom for the choice of the Green's function 93. 
The only condition is that 93 must satisfy Eq. (H.8), so that 93 contains a 
contribution from a monopole source at position R I . We may include additional 
contributions from sources outside the volume V; these contributions satisfy Eq. 
(H.9) within V, so 93 still satisfies Eq. (H.8). 

The two-dimensional version of the Kirchhoff-Helmholtz integral equation in 
the xz plane is 

p(rd = 4~ I [92(r,rl}V'p(r) - p(r}V'92(r,rd]· nds, 
c 

(H.11) 

with r = (x,z) and rl = (xI,zd; the operator V' is 8j8r = (8j8x,8j8z), 
the integral is over positions r on the closed contour C, and 92 (r, rd is a two­
dimensional Green's function. Equation (H.11) can be derived as follows from 
the three-dimensional Kirchhoff-Helmholtz integral equation (H.7). We assume 
that peR) and k(R) are independent of the y coordinate. For the surface Be 
we choose the surface illustrated in Fig. H.l (the figure is for the special case 
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z 

}------~y 

x 

Figure H.I. Example of the closed surface Se for the case that the contour C 
is a circle. The surface Se consists of the cylindrical surface Sl and the two 
circular surfaces S2 at y = -00 and y = +00. The projection of the surface Sl 
on the xz plane is the closed contour C. 

that the contour C is a circle). The closed surface Se consists of the cylindrical 
surface Sl and the two surfaces S2 at y = -00 and y = +00. The projection of 
the cylindrical surface Sl on the xz plane is the contour C. We write the unit 
normal vector in Eq. (H.7) as n = (n."ny,nz ), so Eq. (H.7) can be written as 

p(Rd = 

4~ II [9a(n.,8.,p + n y8yp + n z 8z p) - p(n.,8.,9a + ny8y9a + n z 8z 9a)] dSc , 

So 
(H.12) 

with 8., == 8/8x, 8y == 8/8y, and 8z == 8/8z. At the surface Sl we have ny = O. 
The contribution to the integral from the two surfaces S2 vanishes, as we have 
9a(R, Rd -t 0 for y -t ±oo. If we choose Yl = 0, Eq. (H.12) reduces to Eq. 
(H.ll) with the two-dimensional Green's function 92 defined by 

00 

92(r,rt} = 19a(R,r1)dy. (H.13) 

-00 

As we assumed that p(R) is independent of y, Eq. (H.9) gives the following 
two-dimensional Helmholtz equation for p(r): 

(H.14) 

The Green's function 92 defined by Eq. (H.13) satisfies the two-dimensional 
inhomogeneous Helmholtz equation 

V292(r,rd + k2(r)92(r,rt} = -4m5(r - rd, (H.15) 
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z 

~------~----------------~ x 
x=xo 

Figure H.2. Geometry for the two-dimensional Kirchhoff-Helmholtz integral 
equation. The contour C consists of line segment Co at x = Xo and circular 
curve CI with radius R -t 00 and point rl at the center. In the text we use 
a Green's function that corresponds to a monopole source at point rl and an 
opposite monopole source at point r2, so the Green's function vanishes on Co· 
The points rl and r2 are at equal distances from Co. 

as follows from integration of Eq. (H.8) over y from y = -00 to y = +00, using 
J~oo 8~g3dy = [8yg3eoo = o. As an example we consider the three-dimensional 
Green's function for a homogeneous atmosphere: 

g3(R, RJ) = exp(ikr)/r (H.16) 

with r = IR - RII. To derive the corresponding two-dimensional Green's func­
tion, we substitute Eq. (H.16) into Eq. (H.13) and use r = J p2 + (y - YI)2 with 
p = Ir - rII· This gives 

(H.17) 

where H~I) is the Hankel function of the first kind and order zero [1]. 
Now we choose the geometry shown in Fig. H.2 for the two-dimensional 

Kirchhoff-Helmholtz equation (H.ll). The contour C consists of the line seg­
ment Co at x = Xo and the circular curve C I with radius R -t 00 and point 
rl at the center. The contribution from the curve CI to the contour integral 
in Eq. (H.ll) vanishes, as we have p -t 0 and g2 -t 0 for R -t 00. As in 
the three-dimensional case, there is a considerable freedom for the choice of the 
Green's function g2; the only condition is that g2 must satisfy Eq. (H.15), so 
that g2 contains a contribution from a (two-dimensional) monopole source at 
position rl. We may include additional contributions from sources outside the 
region enclosed by the contour C. Here we choose the Green's function g2 so 
that we have g2 = 0 on Co. This is achieved by using the field of two opposite 



186 Appendix H 

z 

L-__ ~L-____ ~ __________ ~ r 

Figure H.3. Geometry for Eq. (H.20), which gives the field at point (rl' Zl) as 
an integral over the line r = ro. 

monopole sources at the points rl and r2: 

g2(r,rd = g(r,rd - g(r,r2), (H.18) 

where g(r,rd is the field of a monopole source at rl and -g(r,r2) is the field 
of the opposite monopole source at r2. The field g(r,rd is a solution of Eq. 
(H.15). The field g(r, r2) is a solution of Eq. (H.15) with rl replaced by r2. 
For the field g(r, r2) we assume that the atmosphere, represented by the wave 
number k(r), is symmetric with respect to the line x = Xo. 

As we have g2 = 0 on Co, the first term in the integrand of Eq. (H.l1) 
vanishes. In the second term we have \1g2 . n = -ozg2 = -20zg on Co, where 
we have used Eq. (H.18). Equation (H.l1) becomes 

00 

() 1 I ( ( )og(r,rd ) d p rl = 2 pro z. 
7r X Z=Zo 

(H.19) 

-00 

This integral is known as a Rayleigh integral [106, 14] (see also Sec. 278 of 
Rayleigh's book 'The Theory of Sound' [121]). 

H.4 General Green '8 function approach to wave 
propagation 

We return to the notation q(r,z) for the field, as used in Sec. H.2. For the 
geometry shown in Fig. H.3, with a ground surface at z = 0, Eq. (H.19) becomes 

00 

( ) _ 1 I ( )og(r,Z;rlozd ) d qrl,Zl -- qr,z!l z. 
27r ~ ~~ 

o 

(H.20) 
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The lower integration limit is z = 0 as the effect of the ground reflection will 
be represented by a term in the Green's function (see Sec. H.5); the ground 
reflection corresponds to an image atmosphere below the ground surface. The 
Green's function g(r, z; rl, Zl) is the field at (r, z) generated by a monopole 
source at (rl, zd, and satisfies the equation 

(H.21) 

The wave number k is a function of z only. The range dependence of the wave 
number is taken into account by changing the function k(z) between successive 
range steps, as indicated in Sec. G.2. Consequently, the Green's function de­
pends on rand rl only through the difference D.r = rl -T. Therefore the Green's 
function will be denoted as g(D.r, z, Zl). We introduce the Fourier transform 

00 

G(K,Z,Zl) = f g(D.r,z,zdexp(-iKD.r)d(D.r), 
-00 

where K is a horizontal wave number. The inverse Fourier transform is 
00 

g(D.r, z, Zl) = ..!... f G(K, z, Zl) exp(iKD.r) dK. 
211" 

-00 

(H.22) 

(H.23) 

Substitution of Eq. (H.23) into Eq. (H.20) gives, with 8r = -8~r and the 
notation z for Zl and z, for z, 

00 00 

q(r+D.r,z) = 4:2i f exp(iKD.r)KdK f G(K,z',z)q(r,z')dz'. (H.24) 

-00 0 

The Green's function G(K, z', z) is the solution of the Fourier transformed ver­
sion of Eq. (H.21), which we find by multiplying this equation by exp( -iKD.r) 
and integrating over D.r: 

(H.25) 

From Eqs. (H.24) and (H.25) we will derive the basic equations of the GFPE 
method. In Sec. H.5 we present the derivation for a non-refracting atmosphere 
above a finite-impedance ground surface. In Sec. H.6 we take atmospheric re­
fraction into account. 

H.5 N on-refracting atmosphere 

For a non-refracting atmosphere we have k(z) = ko, where ko is a constant. In 
this case the solution of Eq. (H.25) for a system with a finite-impedance ground 
surface at z = 0 is (see Sec. D.4) 

G(K,Z',Z) = 2:i {exp(ikvlz - z'l} + R(kv)exp(ikv[z + z'])}, (H.26) 
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Imw 

,..-_.L--~ Re w 

Figure HA. Integration path in the complex w plane for x > o. The poles are 
at w = -k and w = k. 

Imw 

w=-k w=k 
"'---r-~ Re w 

Figure H.5. Integration path in the complex w plane for x < O. The poles are 
at w = -k and w = k. 
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where the vertical wave number kv is defined by 

and 

R(kv) = kv Z - ko 
kvZ + ko 

189 

(H.27) 

(H.28) 

is the plane-wave reflection coefficient; Z is the normalized impedance of the 
locally reacting ground surface. Substitution of Eq. (H.26) into Eq. (H.24) gives 

00 00 

q(r+~r,z)= :i! exp(iK~r)KdK! 2!v {exp(ikvlz-z'j) 
-00 0 

+R(kv) exp(ikv[z + z'))} q(r, z') dz'. (H.29) 

We introduce two identities: 

00 

_i_ ('k I _ 'I) - ~ ! exp[ikz(z - z')] dk 
2kv exp t v Z Z - 27r k; _ k~ z (H.30) 

-00 

and 

00 

~R(k ) ['k ( ')] = ~ ! R(k )exp[ikz(z + z')] dk 2k v exp t v Z + z 2 z k 2 _ k2 z 
v 7r z v 

-00 

2 '(3exp[ -i(3(z + z')] 
+ t (32-k; , (H.31) 

with (3 = ko/Z. The integration paths along the real axis are deformed near the 
poles, as indicated in the following proof of Eqs. (H.30) and (H.31). 

We consider the integral 

00 

I(x) = ~ ! exp(iwx) dw 
27ri w2 - k2 ' 

(H.32) 

-00 

which is of the form of the integral on the right-hand side of Eq. (H.30). The 
integrand has two poles, at w = k and w = -k. The integration path along the 
real w axis is deformed by inserting two small semicircles around the poles, and 
the path is closed by a semicircle Co with radius Ro --1 00 (see Figs. H.4 and 
H.5). 

For x > 0 we choose the path shown in Fig. H.4, with the semicircle Co in 
the upper half plane. The integrand vanishes at Co as the radius approaches 
infinity, so the contribution from Co to the integral vanishes. The integration 
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path encloses only the pole at w = k. The integral can be evaluated with the 
residue theorem. The residue theorem is 

f J(z) dz = 27ri 2: Ck, (H.33) 
c k 

where the function J(z) has poles at z = ak, which are enclosed by the counter­
clockwise integration path along the contour C, and Ck are the residues at the 
poles: 

(H.34) 

This gives 

1 . 
I(x) = 2k exp(tkx), for x> O. (H.35) 

For x < 0 we choose the path shown in Fig. H.5, with the semicircle Co in the 
lower half plane. Again, the integrand vanishes at Co as the radius approaches 
infinity, so the contribution from Co to the integral vanishes. The integration 
path encloses only the pole at w = -k. The residue theorem gives 

1 . 
I(x) = 2k exp( -tkx), for x < 0 (H.36) 

(the contour is traversed clockwise, which yields a minus sign). Equations (H.35) 
and (H.36) can be written as 

1 . 
I(x) = 2k exp(tklxl), (H.37) 

which is valid for both x > 0 and x < O. This completes the proof of Eq. (H.30). 
It should be noted that the value of the integral I(x) depends on the choice of 
the integration path. 

The proof of Eq. (H.31) is an analogous application of the residue theorem. 
The only difference is that the reflection coefficient introduces an additional pole 
at w = -ko/Z. 

We substitute Eqs. (H.30) and (H.31) into Eq. (H.29) and rearrange the 
integration order: 

q(r + ~r,z) = 
00 00 00 

1 1 ( 1 '" 1 1 exp(il\:~r) 27r exp ikzz )dkz exp( -ikzz )q(r, z )dz 7ri k~ _ k~ I\: dl\: 
-00 0 -00 

00 00 00 

1 1 () ( ) 1 ( ') ')' 1 1 exp(il\:~r) d + 27r R kz exp ikzz dkz exp ikzz q(r, z dz 7ri k; _ k~ I\: I\: 

-00 0 -00 

00 00 

.(3 (. )1 ') ,),1 1 exp(il\:~r) d + 2t exp -t(3z exp( -i(3z q(r, z dz 7ri (32 _ k~ I\: 1\:. (H.38) 

o -00 



Green's Function Parabolic Equation (GFPE) method 191 

The integrals over", in the first two terms on the right-hand side can be evaluated 
with the residue theorem: 

00 00 

~ ! exp(i"'~r) "'d.,. = ~! exp(i"'~r) - (. V 2 _ 2) 
k2 k2 "' "' ",2 _ (k~ _ kn ",d", - exp z~r ko kz' 7ri z- v 7ri 

-00 -00 

(H.39) 

where the integration path is closed in the upper complex half plane as in 
Fig H.4; the path encloses only the positive pole at '" = Jk~ - k~. The choice 
of the integration path is justified by the fact that the result, Eq. (H.40) below, 
agrees with the result (H.6) for the situation without a ground surface. The 
integral over", in the third term on the right-hand side of Eq. (H.38) follows 
from Eq. (H.39) with kz replaced by /3. Equation (H.38) becomes 

q(r + ~r,z) = 
00 00 

2~ ! exp(i~rVk~ - k~) exp(ikzz)dkz ! exp( -ikz;z')q(r, z')dz' 
-00 0 

00 00 

+ 2~ ! R(kz ) exp(i~rJk~ - k~) exp(ikz;z)dkz ! exp(ikzz')q(r, z')dz' 
-00 0 

00 

+ 2i/3 exp( -i/3z) exp(i~rJk~ - /32 ) ! exp( -i/3z')q(r, z')dz'. (H.40) 

o 

The three terms on the right-hand side represent three different sound waves. 
The first term represents the direct wave, the second term represents the wave 
reflected by the ground surface, and the third term represents a wave that is 
called the surface wave. For the situation without a ground surface, the second 
and third term vanish, and Eq. (H.40) is identical to Eq. (H.6) if the lower 
integration limit z' = 0 is replaced by z' = -00. 

H.6 Refracting atmosphere 

We return to Eq. (H.1) for a refracting atmosphere, so the wave number k varies 
with the height z. As in Sec. G.4, we write this equation as 

8;q(r, z) = -H2(z)q(r, z), 

where the operator H 2 (z) is defined as 

H 2 (z) = k 2 (z) + 8~. 
The corresponding one-way wave equation is 

8r q(r,z) = iH1(z)q(r,z), 

(H.41) 

(H.42) 

(H.43) 
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for waves traveling in the positive r direction. The square-root operator Ht (z) 
satisfies H~ = H2• As in Sec. G.4, we write 

(H.44) 

where ka is a constant wave number and 6k2 is a function of the height z. For 
the constant wave number ka one may use the value of the wave number k(z) 
at some average height or the value ko == k(O) at the ground surface; for the 
numerical examples in this book we used ka = leo. Equation (H.42) becomes 

H2(z) = H2a + 6k2(z) 

with H2a = k~ + o~. The square-root operator can be approximated as 

6k2 (z) 
Ht(z) = JH2a + 6k2(z) ~ Hta + 2ka 

(H.45) 

(H.46) 

with Hla = H2a , where we have used H2a ~ k~. Substitution into the one-way 
wave equation (H.43) gives 

orq(r, z) = iHtaq(r, z) + iO~:~z) q(r, z). (H.47) 

The two terms on the right-hand side of the one-way wave equation (H.47) can 
be interpreted as follows: 

i) the first term represents propagation in a non-refracting atmosphere with 
constant wave number k(z) = ka, 

ii) the second term represents the effect of atmospheric refraction. 

Integration of Eq. (H.47) from range r to range r + ~r gives 

q(r + ~r, z) = exp (i~r 6~:~Z») exp(iHta~r)q(r, z). (H.4S) 

The factor exp(iHta~r)q(r, z) is a formal expression for the solution of Eq. 
(H.47) for a non-refracting atmosphere. We have seen in the previous section 
that the solution for a non-refracting atmosphere is given by Eq. (H.40). From 
Eq. (H.4S) we see that atmospheric refraction can be taken into account by 
multiplication of the solution by a phase factor, after each extrapolation step. 

We replace q(r, z) by t/J(r, z) = exp( -ikar)q(r, z), for improved accuracy in 
numerical computations (see Sec. G.3). Equation (H.40) becomes, with the 
refraction factor given in Eq. (H.4S) included, 

.p(r Hr, z) = exp (oar 6~~:») { ~ Z ['I'(r, k.) + R(k.) 'I' (r, -k.)l 

x exp (i~r [Jk~ - k~ - ka]) exp(ik",z)dk", 

+2i,81li(r,,8)exp (i~r [Jk~ _,82 - ka]) exp(-i,8z)}, (H.49) 
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where 
00 

W(r, kz) = J exp( -ikzz')t/J(r, z')dz' 
o 
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(H.50) 

is the spatial Fourier transform of t/J(r, z). Equations (H.49) and (H.50) are the 
basic equations of the GFPE method. 

H.7 Alternate derivation 
We have derived the basic equations (H.49) and (H.50) of the GFPE method 
from Eq. (H.24), which we derived from the Kirchhoff-Helmholtz integral equa­
tion. Equation (H.24) can also be derived from the spectral theorem of func­
tional analysis [58], which gives the following expression for a general function 
F of an operator Q: 

F(Q) = ~ ( F(r) dr. 
211"' lc 1'- Q 

(H.51) 

The operator (1' - Q)-l is the inverse of (1' - Q). The integral over l' is along 
a contour C that encloses the poles of the integrand, i.e. the eigenvalues l' 

in the equation QUT = rUT' where UT are the associated eigenfunctions which 
satisfy the boundary conditions [58]. Equation (H.51) is analogous to the residue 
theorem for ordinary functions. 

To derive Eq. (H.24) we note that 

q(r + Ar, z) = exp(iAr H~/2) q(r, z) (H.52) 

is a formal solution of the one-way wave equation 8r q = iH~/2q, with H2 = 
8; + k2. Application of Eq. (H.51) with Q = H2 and F(x) = exp(iArxl/2) 
gives 

1 [ exp(iArr l / 2) 
q(r + Ar, z) = -2 . H q(r, z) dr. 

11"' C 1'- 2 
(H.53) 

With l' = /\,2 and G(/\"z',z) defined by Eq. (H.25) we find Eq. (H.24), where 
the integral over /\, is along the real axis, with small deviations near the poles 
(see Sec. H.5). 

H.8 Relation to the Fourier split-step method 
For a system without a ground surface, Eq. (H.49) reduces to 

00 

t/J(r + Ar, z) = exp (iAr 8~:~») 2~ J w(r, kz) exp (-iAr :lJ exp(ikzz)dkz, 
-00 

(H.54) 
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where we have used the small-angle approximation 

(H.55) 

Equation (H.54) is known as the Fourier split-step algorithm for the parabolic 
equation. This algorithm is used in underwater acoustics [45]. 

Equation (H.54) can be derived directly from the narrow-angle parabolic 
equation [see Eq. (G.6)] 

(H.56) 

by treating the two terms on the right-hand side separately in an extrapolation 
step; this explains the name "split-step algorithm". The first term leads to the 
integral in Eq. (H.54) (see Sec. H.2). The second term leads to the refraction 
factor in Eq. (H.54). 

H.9 Alternate refraction factor 

Equation (HA9) contains the refraction factor 

(H. 57) 

with 8k2(z) = k2 (z) - k;'. An alternate refraction factor is 

exp[i~r 8k(z)] (H.58) 

with 8k(z) = k(z) - ka . This factor follows from the following expansion of the 
square-root operator 

H1 (z) = Jk2(z) +8; 
= J(ka + 8k)2 + 8; 
~ Jk;' + 8; + 2ka8k 

~ Jk;' + 8; + 15k. 

(H.59) 

If this expansion is used in the derivation of the basic GFPE equations (HA9) 
and (H.50) in Sec. H.6, we find the refraction factor (H.58). Alternately, the 
refraction factor (H.58) follows directly from the refraction factor (H.57) if we 
neglect the term (8k)2 in the relation 8k2 = 2ka8k + (8k)2. Numerical computa­
tions show that the refraction factor (H.58) gives slightly more accurate results 
than the factor (H.57) does [152, 134]. 
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H.lO Starting field 
In this section we derive a starting field for the GFPE method. The derivation is 
similar to the derivation ofthe starting field for the CNPE method in Sec. G.12. 
In Sec. G.12.3 we showed that the expression 

q(O, z) = qo(z - zs) + Cqo(z + zs) (H.60) 

can be used for a source at position (r, z) = (0, zs) above a finite-impedance 
ground surface at z = O. Here C is a reflection coefficient (see Sec. G.12.3) and 
qo(z) is the starting field for a source at position (r, z) = (0,0) in an unbounded 
atmosphere. The function qo(z) for the GFPE method will be derived in this 
section. 

As in Sec. G.12, we assume a constant wave number k = ka in Eq. (H.l) 
and write the solution as a plane-wave expansion 

00 

q = I S(kz} exp(ikzz + ikrr)dkz. (H.61) 

-00 

Substitution into Eq. (H.l) gives 

(H.62) 

where we have chosen the positive square-root, corresponding to waves traveling 
in the positive r direction. 

We write Eq. (H.61) as 

00 

q = I S(kz) exp [iF(kz)] dkz (H.63) 

-00 

with 

(H.64) 

where we have used Eq. (H.62). To evaluate the integral in Eq. (H.63) we use 
the method of stationary phase (see Appendix P). At the stationary phase point 
we have F'(kz •o) = 0, which gives 

(H.65) 

with R = v'r2 + Z2. The stationary phase approximation of Eq. (H.61) is 

(H.66) 
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and we find 

1 (2;k:( 2)3/4 
q = vrY -T 1- ~2 S(kz,o)exp(ikaR). (H.67) 

If we compare this with the exact expression q = vr exp( ikaR) / R for a monopole 
source we find 

Ii( 2)-1/4 
S(kz,o) = Y ~ 1 - ~2 (H.68) 

Using Eq. (H.65) we find 

Ii ( k2)-1/4 
S(kz) = Y ~ 1- k~ (H.69) 

This expression diverges for kz -+ ka , corresponding to waves traveling vertically 
upward. For the PE method, however, we are interested in waves traveling with 
limited elevation angles. Therefore we approximate Eq. (H.69) by the following 
expression 

(H. 70) 

with adjustable parameters a2, a4, a6, as, and b2. 
For a2 = a4 = a6 = as = 0 and b2 = ~ this leads to the Gaussian starter 

(G.64). In this case the agreement between Eqs. (H.69) and (H.70) is limited 
to elevation angles 'Y between zero and about 'Ymax = 10°. Here the elevation 
angle is defined as 'Y = arcsin(z/ R); from Eq. (H.65) we find 'Y:::::: arcsin(kz/ka). 

By using nonzero parameters aj with j = 2,4,6,8 in Eq. (H.70), the maxi­
mum elevation angle 'Ymax can be enhanced. Optimized values of the parameters 
aj are given in Table H.I, for b2 = 0.75. For the orders 2,4, and 8, the maximum 
elevation angle 'Ymax is approximately equal to 30°, 40°, and 60°, respectively. 

From Eqs. (H.70) and (H.61) we find the following expressions for the GFPE 
starting field: 

q(O, z) = Vik:,. (Ao + A2k~Z2 + A4k!Z4 + A6k~z6 + Ask:z8 ) exp ( _ k~2) . 
(H.71) 

The coefficients Ai and B are given in Table H.2. Here we have used the 
expressions 

10 = Eexp(-~) y b; 4b2 

12 = [v + X2 ]10 

14 = [3v2 + 6vX2 + X4]10 
(H.72) 

h = [I5v3 + 45v2 X2 + 15vX4 + X6]10 

Is = [105v4 + 420v3 X2 + 21Ov2X4 + 28vX6 + XS]10 
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for the integral 

00 

In = I k n exp(ikz - b2 k 2 ) dk, (H.73) 

-00 

with V = (2b2)-1 and X = izv. The expressions (H.72) follow by repeated 
integration by parts of the integral (H.73). 

Numerical computations indicate that the starting field of order 4 gives ac­
curate results up to an elevation angle of about 40°, not only for a non-refracting 
atmosphere but also for refracting atmospheres with a linear or a logarithmic 
sound speed profile. Apparently, the small-angle approximation used for the 
derivation of the refraction factor of the GFPE method (see Sec. H.6) works 
well for relatively large elevation angles. The starting field of order 8 gives 
accurate results for elevation angles higher than 40°, but also generates small 
numerical errors if the source is close to the ground surface. The starting field 
of order 2 is identical to the starting field (G.75) for the CNPE method. For 
the GFPE method, the starting field of order 4 is a good choice. 

Table H.1. Optimized values of the parameters aj in Eq. (H.70). 

order a2 a4 a6 as ~ 
0 0 0 0 0 0.5 
2 1.02 0 0 0 0.75 
4 1.02 0.55 0 0 0.75 
8 1.01 0.52 0.60 0.33 0.75 

Table H.2. Values of the parameters Aj and B in Eq. (H.71). 

order Ao A2 A4 A6 As B 
0 1 0 0 0 0 2 
2 1.3717 -0.3701 0 0 0 3 
4 1.9705 -1.1685 0.0887 0 0 3 
8 9.6982 -20.3785 6.0191 -0.4846 0.0105 3 

H.II Discretization of the Fourier integrals 

The computation of the sound field with the GFPE method is basically a step­
wise extrapolation of the field 'I/J(r, z) in the positive r direction; the extrapo­
lation is based on Eqs. (HA9) and (H.50). As in the CNPE method, we use a 
rectangular grid in the rz plane, with grid spacings ~r and ~z (see Fig. G.1). 
The vertical grid spacing ~z should not exceed about ,\/10, where ,\ is an 
average wavelength. The horizontal grid spacing ~r, however, can be chosen 
considerably larger, with a maximum value of typically 10'\ [58, 134]. As in the 
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CNPE method, we use an absorbing layer at the top of the grid (see Fig. G.1 
and Sec. G.9). 

The Fourier integrals in Eqs. (H.49) and (H.50) are approximated by discrete 
Fourier sums, which are efficiently evaluated with the Fast Fourier Transform 
(FFT) algorithm (see Sec. B.4). We will consider two approaches for this ap­
proximation (the second approach is more accurate). 

In the first approach we discretize the height z' and the wave number kz [the 
two integration variables in Eqs. (H.49) and (H.50)) as follows: 

Z' -+ Zj = jilz, with j = 0,1, ... ,N - 1, 
kz -+ kn = nilk, with n = 0,1, ... ,~N, -~N + 1, -~N + 2, ... ,-1, 

(H.74) 

where we have N = 2M, and ilk = 211"/ (N ilz) is the wave number spacing; the 
reason for using N = 2M is indicated below. The Fourier integral (H.50) can 
be approximated as follows: 

(H.75) 

The factor in rectangular brackets is the Discrete Fourier Transform (DFT) 
of 'IjJ(r, z). This is the usual method of approximating a Fourier integral by a 
Discrete Fourier Transform. For w(r, -kn }, Eq. (H.75) holds with kn replaced 
by -kn . The 'vector' with elements w(r, kn ) and the 'vector' with elements 
W(r, -kn } are related to each other by a simple permutation of elements. There­
fore, W(r, kn} and W(r, -kn) can be obtained from a single FFT of size N = 2M. 
For the function W(r,{3) in Eq. (H.49), Eq. (H.75) is used with kn replaced by {3. 
The evaluation of w(r, {3) requires a single summation of N terms. After the 
quantities W(r, kn}, W(r, -kn), and W(r, {3) have been calculated, 'IjJ(r, Zj) can 
be calculated by the evaluation of the integral in Eq. (H.49). This requires 
an inverse FFT of size N. For the inverse Fourier integral in Eq. (HA9), an 
approximation analogous to Eq. (H.75) can be used. 

An alternate approach for computing the Fourier integrals is based on the 
midpoint rule for numerical integration [112). This rule yields the following 
approximation for the Fourier integral (H.50): 

w(r,kn) ~ [:~>xp(-ikn[Zj + ~ilz])'IjJ(r,zj + ~ilZ)l ilz 

= [Ntl exp(-iknzj ) 'IjJ(r, Zj + ~ilZ)l exp(-ikn~ilz)ilz. 
1=0 

(H.76) 

The last factor in rectangular brackets is the Discrete Fourier Transform of 
'I/J(r, Zj + ~ilz). Numerical computations show that Eq. (H.76) yields more 
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z 

source 

Figure H.6. Pie slice region used in the three-dimensional GFPE method. An 
extrapolation step from range r to range r + t:l.r is indicated. 

accurate results than Eq. (H.75) does . In some cases the difference in accuracy 
between Eqs. (H.75) and (H.76) is very large [134]. The accuracy of Eq. (H.76) 
originates from the choice of the Z coordinates at the centers of the integration 
intervals [Zj,zj+d; in Eq. (H.76) we use the heights Z = ~t:l.z, ~t:l.z, ~t:l.z, ... , 
while in Eq. (H.75) we use the heights Z = 0, t:l.z, 2t:l.z, .... Therefore the lower 
limit Z = 0 of the Fourier integral (H.50) is represented more accurately by Eq. 
(H.76) than by Eq. (H.75). For the inverse Fourier integral in Eq. (HA9), an 
approximation analogous to Eq. (H.76) can be used. 

After each extrapolation step we set 'I/J(r,zj) = 0 at the grid points with 
j = M, M + 1, ... ,N -1, to eliminate the coupling between the top surface and 
the ground surface introduced by the periodicity inherent to the Discrete Fourier 
Transform. This can also be understood from the fact that the heights Zj with 
j = M, M + 1, ... ,N - 1 correspond to negative heights, by the periodicity; we 
need only positive heights since the lower limit of the integral in Eq. (H.50) is 
Z =0. 

H.12 Three-dimensional G FPE method 

In this section we describe a three-dimensional GFPE method [44]. For axisym­
metric systems this method is identical to the two-dimensional GFPE method 
described in the previous sections. 

In the three-dimensional GFPE method, the sound field of a point source 
is computed in a pie slice region (see Fig. H.6). Periodic boundary conditions 
are imposed on the straight sides of the slice at <I> = 0 and <I> = 8. By choosing 
a low value for 8 we keep the computation efficient. As in the two-dimensional 
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GFPE method, we use an impedance condition at the ground surface at z = 0, 
and an absorbing layer at the top of the slice. 

The computation is basically a repetition of extrapolation steps in the pos­
itive r direction. In an extrapolation step, the field on the curved surface at 
range r + ~r is computed from the field on the curved surface at range r (see 
Fig. H.6). It will be shown that an extrapolation step in the three-dimensional 
GFPE method requires the evaluation of a forward two-dimensional FFT and 
an inverse two-dimensional FFT, whereas an extrapolation step in the two­
dimensional GFPE method requires the evaluation of a forward one-dimensional 
FFT and an inverse one-dimensional FFT. 

We start from the following far-field Helmholtz equation in cylindrical npz 
coordinates: 

(H.77) 

This equation differs from Eq. (H.I), i.e. the starting equation of the two­
dimensional GFPE method, by the presence of the term r-28~q. Equation 
(H.77) follows from the general Helmholtz equation (E.50), with the approxi­
mation 8;q for k28z (k- 28z q) as before. 

In agreement with the far-field approximation (see Sec. E.4), we neglect the 
curvature of the curved surface of the pie slice (see Fig. H.6). Consequently, we 
can use the two-dimensional analogue of the one-dimensional Rayleigh integral 
(H.I9) in rectangular xyz coordinates: 

(H.78) 

where we have R = (x,y,z) and Rl = (Xl,Yl,Zl), and the Green's function g 
satisfies the Helmholtz equation 

(H.79) 

The derivation presented in Sec. H.4 for the two-dimensional GFPE method can 
be generalized for the three-dimensional geometry shown in Fig. H.6. This gives 

q(r + ~r, ¢, z) = 
00 0 00 

4:2i J exp(ill:~r)lI:dll: J rd¢' J dz'G(II:,¢',¢,z',z)q(r,¢',z'), (H.80) 
-00 0 0 

where the Green's function G satisfies the equation 

[r- 28; + 8; + k2(z) - 11:2] G(II:, ¢', ¢, z',z) = -47r6(r¢ - r¢')6(z - z'). (H.8I) 
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Equations (H.80) and (H.81) correspond to Eqs. (H.24) and (H.25) for the two­
dimensional GFPE method. Equations (H.80) and (H.81) can also be derived 
from the spectral theorem of functional analysis (see Sec. H.7). 

We first assume a non-refracting atmosphere, as in Sec. H.5. The wave 
number k in Eq. (H.81) is a constant in this case, so the Green's function 
G(K,,</i,¢,z',z) depends on ¢ and ¢' only through the difference ¢ - ¢'. We 
apply a Fourier transformation r¢ - r¢' --t kr</>, so that we have 

00 

G(K,,¢',¢,z',z) = 2~ ! exp(ikr</>[r¢-r¢'])G</>(K"kr</>,z',z)dkr</>, 
-00 

where G</> is the Fourier transform of G. Substitution of the relation 

00 

6(r¢ - r¢') = ~ ! exp(ikr</>[r¢ - r¢']) dkr</> 
2rr 

-00 

and Eq. (H.82) into Eq. (H.81) gives 

(H.82) 

(H.83) 

(H.84) 

The solution G</> of this equation is given by Eq. (H.26) with vertical wave 
number kv given by 

(H.85) 

Proceeding as in Sec. H.5, we find 

00 

q(r + D.r, ¢, z) = 2~ ! eik .. </> dk</> 
-00 

x {2~ I eikzZdkzei~rvlkg-k~-kVr2 i e-ik .. </>' d¢' I e-ikzz' q(r, ¢', z')dz' 

-00 0 0 

00 Ii 00 

+ 2~ ! R(kz)eikzZdkzei~rJkg-k~-k~/r2 ! e-ik.,</>' d¢' ! eikzz' q(r, ¢', z')dz' 

-00 0 0 

+2i.Be-i/3Zei~rJkg-/32-k!/r2 i e-ik .,</>' d¢' 7 e-i/3z' q(r, ¢', Z')dZ'} (H.86) 

o 0 

with k</> == kr</>r. Equation (H.86) corresponds to Eq. (HAO) for the two­
dimensional GFPE method. 
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For a refracting atmosphere we follow the derivation presented in Secs. H.6 
and H.9. This yields 

1jJ(r + ~r, ¢>, z) = exp(i~r 15k)...!... J exp(ikq,¢» dkq, ...!... J exp(ikzz)dkz 
00 {oo 

2~ 2~ 
-00 -00 

x ("Ilt(r, kq" kz) + R(kz)"Ilt(r, kq" -kz)] exp (i~r [Jk~ - k~ - k;/r2 - ka]) 

+2i/3 exp( -i/3z)"Ilt(r, kq" /3) exp (i~r [Jk~ - /32 - k;/r2 - kaD } , (H.87) 

where 

<5 00 

"Ilt(r, kq" kz ) = J exp( -ikq,¢>')d¢>' J exp( -ikzz')1jJ(r, ¢>', z')dz' (H.88) 

o 0 

is the two-dimensional Fourier transform of 'Ij;(r, ¢>, z). Equations (H.87) and 
(H.88) are the basic equations of the three-dimensional GFPE method. In the 
case of axial symmetry, k and 1jJ are independent of ¢> and Eqs. (H.87) and (H.88) 
are equivalent to Eqs. (HA9) and (H.50) for the two-dimensional GFPE method, 
with the refraction factor replaced by the factor (H.58). The equivalence follows 
by using the relation 2~J(k¢) = J; exp( -ik¢¢>')d¢>' in Eq. (H.88). 

The integration variables z' and kz in Eqs. (H.87) and (H.88) are discretized 
as described in Sec. H.ll. The integration variables ¢>' and kq, are discretized 
as follows: 

¢>' -+ ¢>j = j~¢>, with j = 0,1, ... ,K - 1, 
k¢ -+ kn = n~k¢, with n = 0, 1, ... ,K - 1, 

(H.89) 

with ~¢> = 15/ K and ~k¢ = 2~ /15. In this way, the integrals over ¢>' and k¢ can 
be evaluated efficiently by forward and inverse FFT's of size K. To avoid the 
divergence of k;/r2 in Eq. (H.87) in the first step from r = 0 to r = ~r, one 
can use k;/ (r + ~r /2)2 instead of k;/r2. 

The choice of the angular spacing ~¢> depends on the variation of the field 'Ij; 
with the angle ¢>. In the limiting case of axial symmetry, the field 1jJ is indepen­
dent of the angle ¢>, and the result of Eqs. (H.87) and (H.88) is independent of 
the angular spacing ~¢>. In the opposite case in which there is a large variation 
of the field 1jJ with the angle ¢>, the angular spacing should satisfy the condition 
r~¢> :s A/1O. 
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Atmospheric turbulence 

1.1 Introduction 

In the computational models described in Appendices F, G, and H, the at­
mosphere was represented by the vertical profiles of the temperature and the 
wind velocity. We assumed that the profiles are independent of time. In reality, 
however, the profiles change continuously. There are slow variations, on a time 
scale of hours or longer. There are also faster variations, or fluctuations, on 
time scales of seconds or minutes. The latter fluctuations are usually referred 
to as atmospheric turbulence [145]. 

The term turbulence is also used to indicate that the flow in a fluid is 
'irregular' (see Fig. 1.1). In a laminar flow, fluid 'particles' move parallel to 
each other in the flow direction. This occurs, for example, in a flow through 
a pipe at low speed. If the speed of the flow is increased, fluid particles devi­
ate from the straight paths and the flow becomes turbulent. The atmospheric 
boundary layer is nearly always in a turbulent state. 

The paths of fluid particles in a turbulent flow often contain 'loops', as shown 
in Fig. 1.1. The loops correspond to swirls in the fluid, which are called eddies. 
Not only the paths deviate from a straight line, also the speeds of the particles 
deviate from the mean speed. If a fluid particle moves faster than neighboring 
particles, it soon encounters other particles which force the particle to deviate 

) ~ ) 

) ~ 
) 

~ ) 

Figure 1.1. Illustration of laminar flow (left) and turbulent flow (right). The 
curves represent the paths of fluid 'particles'. 
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from its straight path. This deviation corresponds to the development of eddies 
in a turbulent flow. 

The term eddy is also used in general for a velocity fluctuation in a limited 
region in a turbulent flow. The size of the region is called the eddy size. An eddy 
moves through a fluid as a more or less 'frozen' fluctuation [145]. Consequently, 
the eddy size is related to a characteristic period of the fluctuation (at a fixed 
point in the fluid) by the relation I = VTt, where I is the eddy size, v is the mean 
flow velocity in the fluid, and Tt is the characteristic period. The temperature 
of an eddy may differ from the temperature of the surrounding fluid, so the 
eddy corresponds not only to a velocity fluctuation but also to a temperature 
fluctuation. 

The eddy sizes that occur in a turbulent flow depend on a characteristic di­
mension of the flow. In a pipe, for example, eddies larger than the pipe diameter 
do not occur. In the atmospheric boundary layer, a characteristic dimension is 
the height above the ground surface. With increasing height, larger eddies oc­
cur. We will see in Sec. 1.3 that the largest eddies break down into smaller 
eddies, which break down into even smaller eddies, and so on. Consequently, 
there is a broad distribution of eddy sizes in the atmosphere. This distribu­
tion corresponds to a broad distribution of characteristic periods of turbulent 
fluctuations. Small eddies correspond to rapid fluctuations and large eddies 
correspond to slow variations of the wind velocity and the temperature. 

1.2 Turbulence in sound propagation models 

In models of atmospheric sound propagation, the turbulent atmosphere is usu­
ally described as a medium with a randomly fluctuating effective sound speed. 
The effective sound speed was defined in Sec. E.3 as Ceff = C + u, where c is 
the adiabatic sound speed and u is the horizontal wind velocity component in 
the direction of s~und propagation. The adiabatic sound speed is related to the 
temperature T by the relation c = Co JT ITo, where Co is the sound speed at tem­
perature To. In Appendix A we used the values Co = 331 mls and To = 273 K. 
In this appendix and Appendix J, however, To is some average temperature and 
Co is the corresponding sound speed. Turbulent fluctuations of the temperature 
T and the wind velocity component u correspond to turbulent fluctuations of 
the effective sound speed Ceff. 

A quantity that is equivalent to the effective sound speed is the (acoustic) 
refractive index n = Co/ceff. In a turbulent atmosphere, the refractive index 
fluctuates at each point around an average value, which is of the order of unity. 
The average value is denoted as n and the fluctuation is denoted as J-t. Thus, 
we have 

n=n+J-t, (1.1) 

with J-t « n and Ii = O. In a non-refracting turbulent atmosphere we have n = 1. 
In a refracting turbulent atmosphere n is a function of position. The fluctuation 
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II. is related to the turbulent temperature fluctuation Tt and the turbulent wind 
velocity fluctuation Ut by the expression 

Tt Ut 
11.=----, 

2To eo 
(I.2) 

which follows from n = eo/CefT and CefT = eoVT/To + u. A more rigorous 
derivation of this expression can be found in Ref. [98]. 

We are interested in sound pressure fields averaged (logarithmically) over 
turbulent fluctuations in a short period, for example a period of ten minutes. 
We assume that such an average sound pressure field can be approximated by 
a (logarithmic) average of a set of sound pressure fields computed for a set of 
random realizations of the turbulent atmosphere. Each realization represents a 
'snapshot' of the atmosphere. This approach is known as the frozen medium 
approach, and is based on the fact that sound waves travel so fast that the 
medium can be considered as a 'frozen' medium. 

The random realizations of the turbulent atmosphere are represented by 
random fields of the refractive-index fluctuations 11.. The sound pressure fields 
for different random fields can be computed with the PE method, as described 
in Appendix J. The random fields are calculated with the aid of a random 
number generator; this is also described in Appendix J. The calculation takes 
into account the condition that the correlation function of the refractive-index 
fluctuations should have the correct value. The correlation function, and the 
related spectral density, are introduced in the remainder of this appendix. 

1.3 Reynolds number and onset of turbulence 

An important parameter of a fluid is the viscosity. To define the viscosity, we 
consider an infinitesimal rectangular volume element in a fluid in which the 
horizontal velocity U increases with the height z (see Fig. 1.2). The velocity 
gradient results in a deformation, or shear, of the element: the upper face 
moves faster than the lower face. Friction in the fluid tends to reduce the 
velocity gradient over the element. The gradient can only be sustained by a 
shear stress 7" as indicated in Fig. I.2. The shear stress corresponds to two equal 
but opposite forces on the upper and lower faces. The force on either face is 
equal to 7" dx dy, where dx dy is the area of the face. In most fluids, the shear 
stress is proportional to the velOcity gradient: 7" = TJdu/dz. The constant TJ is 
called the viscosity. 

The work done by the shear stress in the deformation is irreversible, i.e. 
converted into heat. The displacement of the upper face with respect to the 
lower face, per unit time, is equal to (du/dz) dz, where dz is the height of the 
volume element. The irreversible work per unit time per unit mass is therefore 
equal to v(du/dz)2, where v = TJ/ p is called the kinematic viscosity; p is the 
mass density of the fluid. 
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u 

Figure 1.2. Deformation of a small volume element in a fluid in which the 
horizontal velocity u increases with the height z. 

A fluid flow can be characterized by three parameters: 

• the kinematic viscosity v, 

• a characteristic velocity v, 

• a characteristic length L. 

For the characteristic velocity v we can use some average velocity of the flow. 
For the characteristic length L we can use the pipe diameter in the case of flow 
through a pipe, or the height above the ground in the case of the atmospheric 
boundary layer. In general, L is determined by the boundary conditions of the 
flow. 

The Reynolds number NR is defined as NR = vLlv. If NR is smaller than 
a critical value NR,crit, the flow is laminar. If NR is increased to values larger 
than the critical value, the flow becomes turbulent. This is explained in the 
remainder of this section, where we follow Tatarski [149]. 

We consider a velocity fluctuation v, in a region of size 1 (i.e. an eddy of 
size I) in an initially laminar flow in a viscous fluid (the prime indicates that 
v, is a fluctuation of the velocity, which is smaller than the mean velocity v, in 
general). The time required for the development of the fluctuation is 71 = Ilv,. 
Here one may think of a row of particles moving parallel to each other with 
equal velocities; if the velocity of one of the particles is suddenly enhanced 
by an amount v" it takes the particle a time llv, to move a distance 1 away 
from the other particles. The energy per unit mass of the fluctuation is of the 
order of V,2. It follows that the amount of energy, per unit mass and per unit 
time, which goes over from the laminar flow to the fluctuation is of the order of 

/21 /311 v, 71 = v, . 
Local velocity gradients are of the order of vUI. From the above discussion 

of viscosity it follows that the fluctuation dissipates an amount of energy, per 
unit time and per unit mass, of the order of f = VV,2 I l2. 

We find that velocity fluctuations v, of size 1 are easily created if we have 
v: 3 Ii > vv,2/12. This condition can also be expressed as NR,I > 1, where 
NR,1 = v,ilv is the 'inner' Reynolds number of fluctuations of size I, which 
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differs from the Reynolds number NR = vLlv. Since we ignored numerical 
factors, the condition is in fact N R ,/ > NR,crit, where NR,crit is some critical 
value. 

In general we have v, < v. Hence, if NR is only a little larger than NR,crit, 

only large fluctuations are created. If NR is increased further, smaller fluctu­
ations are also created. In fact, a cascade process occurs: large eddies create 
smaller eddies, which create even smaller eddies, and so on. The creation of an 
eddy by a larger eddy can be attributed to the velocity gradient in the larger 
eddy. The cascade process begins with the creation of the largest eddies, by 
velocity gradients in the atmosphere; these gradients are commonly referred to 
as wind shear. Wind shear is large near the ground surface and near obstacles. 

Eddies of size l receive an amount of energy vl31l per unit mass and per 
unit time from larger eddies, and pass this energy on to smaller eddies. The 
dissipation of all eddies, except for the smallest eddies, is small compared with 
the energy they receive from larger eddies. It follows that the energy v:3 II is 
constant for all eddies. In the smallest eddies of size lo, with velocity fluctuation 
vo, this energy is converted into heat, at a rate f '"" vv5ll~. Hence we have 
f '" v,3ll for alll ~ lo, or 

(1.3) 

From Vo '" (dO)I/3 and f '" vv~/l~ it follows that the size 10 of the smallest 
eddies is given by lo '" (v3 If)I/4. The size lo can also be related to the size 
L of the largest eddies. From € '" vi!L we find 10 '"" LIN:/4. From the value 
v'" 0.15 cm2 Is for air we find NR '"" 105 for L '"" 1 m and VL '"" 1 m/s. Hence, the 
smallest eddies are at least three orders of magnitude smaller than the largest 
eddies; the size lo of the smallest eddies is typically 1 mm. 

1.4 Random fields 
The wind velocity components and the temperature in the turbulent atmosphere 
are rapidly fluctuating functions of position and time. These functions are 
called random functions. The fields of the wind velocity components and the 
temperature are called random fields. Random fields can be characterized by a 
correlation function or a structure function [149, 150, 125,68]. These functions 
are introduced in this section. 

The time average of a random function f(r) is denoted as f(r). We will 
consider only random functions with f (r) = O. An example of a random function 
with f(r) = 0 is the deviation of the temperature from the average temperature. 

The correlation function of a random function f(r) is defined as 

(1.4) 

A random function f(r) is called homogeneous if the correlation function B 
depends on rl and r2 only through the difference r = rl - r2, so that we have 
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B(rl,r2) = B(r). A homogeneous function f(r) is called isotropic if B depends 
only on the length r of the vector r, so that we have B(r) = B(r). 

If the correlation function depends not only on the vector r = rl - r2 but also 
on the position in the atmosphere, the random function is not homogeneous. In 
this case one can use the structure function, which is defined as 

(1.5) 

Since the structure function contains the difference between the values of the 
random function at two points, gradual changes in the random field have a 
smaller effect on the structure function than on the correlation function. A 
random function f(r) is called locally homogeneous if we have D(rl, r2) = D(r), 
with r = rl - r2. If we have D(r) = D(r), the random function is called locally 
isotropic. 

The correlation function B(r) and the structure function D(r) of an isotropic 
random function f(r) are related to each other: 

D(r) = 2B(0) - 2B(r), (1.6) 

as follows from Eqs. (1.4) and (1.5). In practice we always have B(oo) = 0, so 
we find D(oo) = 2B(0). This gives 

1 1 
B(r) = "2D(oo) - "2 D(r). (1.7) 

The foregoing applies to scalar functions, such as the temperature fluctuation 
in the atmosphere. The wind velocity fluctuation in the atmosphere, however, 
is a vector function. A homogeneous vector function v(r) can be characterized 
by a set of nine correlation functions 

(1.8) 

and a set of nine structure functions 

(1.9) 

with r = rl - r2 and i,j = 1,2,3, where VI, V2, and V3 are the x, y, and z 
components of the vector v, respectively. If the vector field is isotropic, the nine 
correlation functions Bij can all be expressed in two functions, the longitudinal 
structure function Brr (r) and the transverse correlation function Btt (r): 

(I.10) 

with r = (rl,r2,r3), and ~ij = 1 for i = j and ~ij = 0 for i i- j [150,98]. 
Analogously, the nine structure functions Dij for locally isotropic turbulence can 
all be expressed in the longitudinal structure function Drr(r) and the transverse 
structure function Dtt(r): 

(1.11) 
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Examples of the longitudinal structure function are Du (ez )' D22 (elf)' and 
D33 (e:;}, where ez , elf' and ez are the unit vectors in the x, y, and z direc­
tions, respectively. Equation (1.11) gives Du (ez ) = D22 (elf) = D33(ez ). An 
example of the transverse structure function is Du (elf). 

If one assumes that the flow is incompressible (V· v = 0), one can derive a 
relation between Brr(r) and Btt(r), and a relation between Drr(r) and Dtt{r) 
[149]: 

Btt{r) = ;r! [r2 Brr(r)] , 

Dtt(r) = ;r! [r2 Drr(r)] . 

(1.12) 

(I.l3) 

In this case, the nine correlation functions can all be expressed in a single 
function, either Brr(r) or Btt(r), and the nine structure functions can all be 
expressed in a single function, either Drr(r) or Dtt(r). 

1.5 The 'two-thirds law' 
We consider the longitudinal structure function Drr(r) = [vr{rl + r) - vr {rdJ2· 
If we have 10 « r « L, where 10 and L are the sizes of the smallest and 
largest eddies, respectively, the velocity difference vr(r1 + r) - vr(rd between 
the points r1 + r and r1 is mainly determined by eddies of size r. Therefore we 
have Drr ,.... v~, where Vr is the velocity fluctuation corresponding to an eddy of 
size r. From Eq. (1.3) we have Vr ,.... (fr)l/3, so we find Drr{r) = C(fr)2/3, where 
C is a dimensionless constant of the order of unity. This result, the 'two-thirds 
law' of Kolmogorov and Obukhov [149], is valid for 10 « r «L. For r « 10 
the flow can be considered as laminar, and one can derive Drr = 115 fr2 /v [149]. 
Hence we have 

Drr(r) = {C(fr)2/3 for 10 « r « L, 
115 fr2 /v for r « 10 . 

(I.l4) 

In the context of this equation, the length scales Lo and L are called the inner 
and outer scales of turbulence, respectively. The inner scale of turbulence Lo can 
be defined as the value of r where the two branches in Eq. (1.14) intersect: 

10 = [(15Cv)3 /f]1/4 . (1.15) 

This expression can be used to replace f in Eq. (1.14) by Lo: 

{ C2r2/3 for Lo « r « L, 
Drr(r) = C2L~/3(r/Lo)2 for r« 10 , 

(1.16) 

where the factor C3(15v)2L~8/3 has been redefined as C2. As 10 is typically of 
the order of 1 mm, the region r « 10 is usually unimportant in acoustics (cJ. 
Sec. 1.7.1). 



210 Appendix I 

1.6 Spectral density 
The spectral density of a homogeneous random function fer) is the spatial 
Fourier transform of the correlation function B(r) [149, 150, 68]. One distin­
guishes one-, two-, and three-dimensional spectral densities, to describe corre­
lation along a line, in a plane, and in a volume, respectively. 

In the one-dimensional case, the Fourier transform pair is 
00 

B(r) = I exp(ikr)V(k) dk (1.17) 
-00 

00 

V(k) = 2~ I exp( -ikr)B(r) dr, (1.18) 
-00 

where V(k) is the one-dimensional spectral density of the random function. In 
the three-dimensional case, the Fourier transform pair is 

00 

B(r) = I I I exp( ik . r ) ill (k) dk (1.19) 

-00 

00 

iIl(k) = (2!)3 III exp(-ik·r)B(r)dr, (1.20) 
-00 

where iIl(k) is the three-dimensional spectral density of the random function 
and r and k are three-dimensional vectors. If the field is isotropic, we have 
B(r) = B(r), and Eq. (1.20) reduces to 

00 

iIl(k) = 2:2k I sin(kr)B(r) r dr, 
o 

(1.21) 

so we have iIl(k) = iIl(k). To prove Eq. (1.21) one uses spherical rO</> coordinates 
for the vector r in Eq. (1.20), with k· r = krcosO and dr = r2 dr sinO dO d</>. 

Comparison of Eqs. (1.18) and (1.21) yields the relation 

iIl(k) = __ 1_ dV(k) (1.22) 
21rk dk . 

With this relation we can derive the three-dimensional spectral density of an 
isotropic random function from the one-dimensional spectral density. 

In the two-dimensional case, the Fourier transform pair is 
00 

B(r) = II exp(ik . r)F(k) dk (1.23) 

-00 

00 

F(k) = (2!)2 II exp( -ik· r)B(r) dr, (1.24) 
-00 
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where F(k) is the two-dimensional spectral density ofthe random function and r 
and k are two-dimensional vectors, e.g. r = (x, z) and k = (k"" kz ). Comparison 
of Eqs. (U9) and (1.23) for r = 0 yields the relation 

00 

F(k", , kz) = f ~(kx, ky, kz) dky, (1.25) 

-00 

and analogous relations for F(k", , ky) and F(ky, kz). If the field is isotropic, Eq. 
(1.24) reduces to 

00 

F(k) = 2- f Jo(kr)B(r)r dr, 
21r 

o 

so we have F(k) = F(k). Here we have used Eq. (E.59). 

(1.26) 

The structure function D(r) is also related to the spectral density. In the 
one-dimensional case we have 

00 

D(r) = 2 f [1 - exp(ikr)]V(k) dk, (1.27) 

-00 

as follows from Eqs. (1.6) and (I.17). Analogous relations hold in the two- and 
three-dimensional cases. 

For vector functions we defined a set of nine correlation functions Bij (r) in 
Eq. (1.8). Each correlation function Bij (r) corresponds to a three-dimensional 
spectral density ~ij(k) defined by Eq. (1.20) (with ~ij = ~ and Bij = B), and 
a two-dimensional spectral density Fij(k) defined by Eq. (1.24) (with Fij = F 
and Bij = B). 

1.7 Gaussian, Kolmogorov, and von Karman 
spectra 

In the previous sections we introduced the following statistical functions to 
describe a random field: 

• correlation function B(r), 

• structure function D(r), 

• one-dimensional spectral density V (k), 

• two-dimensional spectral density F(k), 

• three-dimensional spectral density ~(k). 
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In atmospheric acoustics, turbulence is represented by the random field of 
refractive-index fluctuations (see Sec. I.2). The refractive-index fluctuation J..l is 
related to the temperature fluctuation Tt and the wind velocity fluctuation Ut by 
the expression J..l = -~Tt/To -ut/eo, in the effective sound speed approximation 
[see Eq. (I.2)]. 

In the acoustic literature [98], various mathematical functions have been 
used to approximate the statistical functions B(r), D(r), V(k), F(k), and cl>(k) 
of the refractive-index fluctuation J..l. A Gaussian function has been widely used. 
A Gaussian correlation function corresponds to Gaussian spectral densities, as 
will be shown in Sec. I.7.1. In this case the atmosphere is referred to as an 
atmosphere with a Gaussian spectrum of refractive-index fluctuations. A more 
realistic representation is the von Karman spectrum, which is related to the 
Kolmogorov spectrum. 

In Secs. I.7.1 and I.7.2 we give expressions for the statistical functions B(r), 
D(r), V(k), F(k), and cl>(k) of the refractive-index fluctuation J..l, for the Gaus­
sian spectrum, the Kolmogorov spectrum, and the von Karman spectrum. In 
Sec. I.7.1 we give expressions for an isotropic turbulent atmosphere with only 
temperature fluctuations, so we have Ut = 0 [149, 150]. In Sec. I.7.2 we give 
expressions for an isotropic turbulent atmosphere with temperature and wind 
fluctuations [98]. 

1.7.1 Atmosphere with temperature fluctuations 

For an atmosphere with only temperature fluctuations we have Ut = 0, and we 
find from Eq. (I.2) the relation J..l = -~Tt/To. This implies B(r) = iBT(r)/TJ, 
where BT(r) is the correlation function of the temperature fluctuations. For 
isotropic turbulence we have BT(r) = BT(r), which implies B(r) = B(r). In 
the same way we find D(r) = D(r), F(k) = F(k), and cl>(k) = cl>(k). 

For the Gaussian spectrum, the statistical functions of the refractive-index 
fluctuations are given by the following expressions: 

B(r) = J..l~ exp( _r2 /a2) (I.28) 

D(r) = 2J..l~ [1 - exp( _r2 /a2)] (1.29) 

V(k) = J..l~ ar.; exp( _k2a2 /4) 
2y1l'" 

(I.30) 

a2 
F(k) = J..l~ 411'" exp( _k2a2 /4) (I.31) 

2 a3 2 2 
cl>(k) = J..lo 811'"3/2 exp( -k a /4), (I.32) 

where a is the correlation length and J..lo is the standard deviation of J..l. The 
standard deviation J..lo is related to the standard deviation aT of the temperature 
fluctuations by the expression J..lo = ~aT/To, which follows from the expression 
J..l = -~Tt/To. If we assume that the correlation function B(r) is given by Eq. 
(I.28), the expressions in Eqs. (I.29) to (I.32) for the other functions follow by 
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using the relations given in the previous sections. Equation (1.29) follows from 
Eq. (1.6). Equation (1.30) follows by substitution of Eq. (1.28) into Eq. (1.18): 

00 00 ( 2) J-t2 r2 J-t2 r ika k2a2 
V(k) = -2. ! exp (-ikr - -) dr = -2. ! exp - [- + -] - - dr, 

2~ a2 2~ a 2 4 
-00 -00 

(1.33) 

and deformation ofthe integration path along the real axis to the line Im(r/a) = 
-ika/2. Using the relation J~oo exp( -x2 ) dx = ..;:;r we obtain the well-known 
result that the Fourier transform of a Gaussian is a Gaussian. Equations (1.31) 
and (1.32) follow from Eqs. (1.22) and (1.25). The Gaussian spectrum has been 
widely used in atmospheric acoustics, with a value of about 1 m for the corre­
lation length a and values ranging from about 10-6 to 10-5 for the variance J-t~ 
[33,35, 159] (ef. Sec. 1.7.2). 

For the Kolmogorov spectrum the expressions are [see Eq. (1.16)] 

(1.34) 

(1.35) 

(1.36) 

(1.37) 

with p = 2/3; here f is the gamma function [1]. The correlation function 
B(r) is undefined in this case, as follows from Eq. (1.7). To prove that Eq. 
(1.35) corresponds to Eq. (1.34), one substitutes Eq. (1.35) into Eq. (1.27); by 
integration by parts one finds Eq. (1.34), using the relation (see Eq. 3.764 of 
Ref. [61]) 

00 ! xPsin(ax+b)dx=a-P-lr(l+p)cos(b+~/2), (a>O, -1 <p<O) 
o 

(1.38) 

and tbe relation f(x)f(1 - x) = ~/ sinx~, or f(1 + x)f(1 - x) = x~/ sinx~ 
from rex + 1) = xf(x). Equations (1.36) and (1.37) follow from Eqs. (1.22) and 
(1.25). 
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For the von Karman spectrum the expressions are 

22/3 (T)1/3 (T) 
B(T) = 1L6 r(1/3) ~ K 1/ 3 ~ (1.39) 

[ 22/3 (T)1/3 (T)] 
D(T) = 21L~ 1- r(1/3) ~ K 1/ 3 ~ (1.40) 

2 f(5/6) a 
V(k) = 1L0 r(1/3)y'1r (1 + k2a2)5/6 (1.41 ) 

2 f(8/6) a2 

F(k) = 1L0 r(1/3)1l" (1 + k2a2)8/6 (1.42) 

2 f(11/6) a3 

~(k) = lLo f (1/3)1l"3/2 (1 + k2a2)1l/6' (1.43) 

where a is the correlation length, 1L0 is the standard deviation of IL, and K 1/ 3 

is a modified Bessel function of order 1/3 [1]. For T « a the structure function 
(1.40) reduces to 

2 y'1r (T)2/3 
D(T) ~ 1L0 f(7/6) ~ . (1.44) 

Hence, for T « a the von Karman spectrum is of the same form as the Kol­
mogorov spectrum. Equation (1.40) follows from Eqs. (1.39) and (1.6). To prove 
that Eq. (1.41) corresponds to Eq. (1.39), one substitutes Eq. (1.41) into Eq. 
(1.17), which yields Eq. (1.39) if one uses the relation (see Eq. 3.771 of Ref. [61]) 

(1.45) 

and the relation f(x)f(l- x) = 1l"/sinx1l". Equation (1.43) follows then from 
Eq. (1.22), if one uses f(x+ 1) = xr(x). Next, Eq. (1.42) follows from Eq. (1.25), 
by using the relation 

(1.46) 

which follows from Eq. 3.251 of Ref. [61]. 
It should be noted that for electromagnetic wave propagation one usually 

includes an exponential cut-off factor exp( _k2 / k~ax) in the expression (1.43) 
for ~(k), with krnax = 5.48/10, where 10 is the inner scale of turbulence [149]. 
This factor represents a rapid decay of the spectral density ~(k) for k > krnax , 
and corresponds to the branch T « 10 in Eq. (1.16). The corresponding cut-off 
factor for F(k) is exp( _k2/k~ax)' with krnax = 4.60/10 . The cut-off factor can 
be omitted in acoustics, since 10 is typically of the order of 1 mm and the effect of 
sound scattering by inhomogeneities with sizes of the order of 1 mm is negligible 
[98]. 
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I. 7.2 Atmosphere with wind and temperature fluctuations 

In this section we give expressions for the statistical functions of refractive-index 
fluctuations in an isotropic turbulent atmosphere with wind and temperature 
fluctuations (Ut :f. 0). These expressions were developed by Ostashev [98]. 

From Eq. (1.2) we have the relation J.l = - ~ Ttl To - uti Co. Consequently, the 
correlation function B(r) of the refractive-index fluctuation J.l is related to the 
correlation function BT(r) of the temperature fluctuation Tt and the correlation 
function Ell (r) of the wind velocity fluctuation Ut [see Eq. (1.8)), by the equation 

B( ) _ BT(r) Bll(r) 
r- 4T.2 + d· 

o 0 

(1.47) 

The analogous equations for the spectral densities are F(k) = FT(k)/(4TJ) + 
Fll (k) Ic5 and cI>(k) = cI>T(k) I( 4TJ) + cI>ll (k) Ic5. The indices 11 of Bll , Fll , 
and cI>1l corresponds to the x coordinate of a rectangular xyz coordinate sys­
tem, where the x direction is the direction of sound propagation. The functions 
B (r ), F (k), and cI> (k) are anisotropic in this case (in Sec. I. 7.1 the functions were 
isotropic), due to the anisotropy of the functions Bll (r), Fll (k), and cI>1l (k). Al­
though the wind and temperature fluctuations are still assumed to be isotropic, 
the effective sound speed for propagation in the x direction and the correspond­
ing refractive-index fluctuations are anisotropic. Below we give the functions 
B(x, y, z), F(k", , kz) = F(k", , ky), F(ky, kz), and cI>(k", , ky, kz) for the GaussHl.ll 
spectrum and the von Karman spectrum. Because of the anisotropy we indi­
cate the components of the vectors r and k explicitly in the arguments of the 
functions. The functions B(x, y, z), F(k", , kz), and cI>(k"" ky, kz) will be used 
in Appendix J for the calculation of sound propagation in a turbulent atmo­
sphere. For the derivation of the expressions given below, the reader is referred 
to Ref. [98]. It should be noted that in Ref. [98] the expression for cI>(k", , ky, kz) 
is given for the case k", = OJ this case corresponds to the so-called Markov 
approximation [cf. Eq. (K.9)]. 

For the Gaussian spectrum, with a Gaussian temperature correlation func­
tion BT(r) = cr} exp( _r2 la2) and a Gaussian longitudinal wind velocity corre­
lation function Brr(r) = cr; exp( _r2 /a2), the correlation function of refractive­
index fluctuations follows from Eqs. (1.10), (1.12), and (1.47): 

B(x,y,z) = [:h + ~ (1- ::)] exp(-r2Ia2), (1.48) 

where a is the correlation length, crT and crv are the standard deviations of the 
temperature and wind velocity fluctuations, respectively, and the distances r 
and p are given by r2 = x2 + y2 + z2 and p2 = y2 + Z2. The two-dimensional 
spectral densities F(k", , kz) and F(ky, kz) for the Gaussian spectrum are given 
by 

F(k k) - a2 ( cr} cr; [k;a2 + 2]) (_k2 2/4) (1.49) 
"', z - 41r 4TJ + 4C5 exp a 
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a2 ((72 (72 k2a2 ) 
F(ky, kz) = - T2 + ~ exp( _k2a2 /4) 

471" 4To 4CO 
(1.50) 

with k2 = k; + k;. The three-dimensional spectral density for the Gaussian 
spectrum is given by 

~(kz,ky,kz) = 8::/2 (:k + (7~::t2 [1- ~~]) exp(-k2a2/4) (1.51) 

with k2 = k~ + k; + k;. 
For the von Karman spectrum, the correlation function of refractive-index 

fluctuations is given by the expression 

where Ko = 271"/ L is related to the size L of the largest eddies, Cf. and C; 
are the structure parameters of the temperature and wind velocity fluctuations, 
respectively, and the distances r and p are given by r2 = x2 + y2 + Z2 and 
p2 = y2 + z2. The two-dimensional spectral densities F(kz,kz) and F(ky,kz) 
for the von Karman spectrum are given by 

F(kz, kz) = 

A (r(~)r(~) Cf. [r(~)r(~) k; r(~)rUt)] 22C;) 
(k2 + KJ)8/6 re61 ) 4TJ + reD + k2 + KJ r( ~) 1220 

(1.53) 

F(ky, kz) = 

A (r(~)r(~) Cf. [r(vr(~) k2 r(t)r(!t)] 22C;) 
(k2 + KJ)8/6 re61 ) 4TJ + reD + k2 + KJ red) 1220 

(1.54) 

with k2 = k; + k;. Here we have introduced the constant A = 5/[1871"r(1/3)] ~ 
0.0330. The three-dimensional spectral density for the von Karman spectrum 
is given by 

(1.55) 
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with k2 = k~ + k~ + k;. These expressions agree with the expressions given 
in Sec. 1.7.1 for an atmosphere with only temperature fluctuations if we set 
I"~ = r 2 (1/3) (7r24/ 3 K~/3V3)-1 C}/(4T~), Cv = 0, and Ko = l/a. 

For the parameters a and I"~ == o}/(4T~) of the Gaussian spectrum the 
following empirical values are used in the acoustic literature: a value of about 
1 m for a and values ranging from about 10-6 to 10-5 for I"~. Wilson [159] 
indicated that these values are not well justified from a meteorological point of 
view. The values give a reasonable 'fit', however, of the Gaussian spectrum to 
the 'actual' spectrum in a limited wave number range, which may be just the 
range that is most relevant for an acoustic experiment. Actual turbulent length 
scales are often larger than 1 m and values of I"~ are often larger than 10-5 . 

The von Karman spectrum gives a better fit to the actual spectrum, over a 
broader wave number range. In Ref. [98] the following ranges of values are given 
for the normalized structure parameters C} /T~ and C; / c5 near the ground on 
a summer day: 

2 x 10-10 m-2/ 3 

1 x 10-9 m-2/ 3 
< 
< 

6 X 10-7 m-2/ 3 

2 x 10-6 m-2 / 3 . 
(1.56) 

If we use the von Karman correlation function (1.52) with C}/TJ = 6x10-7 m-2/ 3 

and C;/c5 = 2xlO-6 m-2/ 3 , we find B(O) = 1.1x10-6 , 5.2x10-6 , and 24x10-6 

for Kr;l = 1, 10, and 100 m, respectively. Figure 1.3 shows the von Karman 
spectral density cp(O,ky,kz ) for C}/TJ = 6x10-7 m-2/ 3 , C~/c5 = 2x10-6 m-2/ 3 , 

and Kr;l = 10 m. Also shown is the Gaussian spectral density for a = 1 m, 
I"~ = 10-5 , and a~ = O. The Gaussian spectrum agrees with the von Karman 
spectrum only in a narrow wave number region. 

1.8 Limitations of the statistical description of 
turbulence 

The turbulent atmosphere was described in Secs. 1.1 and 1.3 as a 'mixture' of 
eddies, with a wide range of length scales (cf. Ref. [95]). The size of the largest 
eddies is of the order of the height above the ground. The size of the smallest 
eddies is of the order of 1 mm. The sizes of the largest and smallest eddies are 
called the outer and inner scale of turbulence, respectively. 

Based on the picture of the cascade process, Kolmogorov derived the 'two­
thirds law' for the velocity structure function (see Sec. 1.5). This law is valid 
for eddy sizes between the inner and outer scale of turbulence, which will be 
denoted here as Lin and Lout. respectively. The corresponding Kolmogorov 
spectral density is valid only in the wave number range L;;';t < k < L;;,t. This 
range is called the inertial subrange. The range k < L;;';t is called the energy­
containing subrange, and the range k > L-::;.l is called the dissipation subrange. 
The three subranges are indicated in Fig. 1.3. 

The von Karman spectrum is related to the Kolmogorov spectrum. In the 
inertial subrange, the von Karman spectral density satisfies cP '" k- ll / 3 and 
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Figure 1.3. Example of a Gaussian spectrum and a von Karman spectrum. The 
graph shows the spectral density <t>(k", , ky, kz) for k", = o. The wave number 

along the horizontal axis is k = J k~ + k;. The Gaussian spectrum is given by 

Eq. (1.51) or (1.32), with parameters a = 1 m, 0"}/(4TJ) == JL6 = 10-5 , and 0"; = O. 
The von Karman spectrum is given by Eq. (1.55), including an exponential cut­
off factor exp( _k2 /k!ax), with parameters Kol = 10 m, C}/TJ = 6x 10-7 m-2/ 3 , 

C;/c6 = 2xlO-6 m-2/ 3 , and kmax = 5.48/10 with 10 = 0.001 m. Also shown are 
the three spectral subranges: the energy-containing subrange (k < L;;u\) , the 
inertial subrange (L;;u\ < k < Lh,I) , and the dissipation subrange (k > Lh,I), 
where Lout'" Kol is the outer scale of turbulence and Lin'" 10 is the inner 
scale of turbulence. 

agrees with the Kolmogorov spectral density. In the energy-containing subrange, 
the von Karman spectral density levels off (see Fig. 1.3). This represents the fact 
that the occurrence of eddies larger than the outer scale Lout is limited by the 
boundary conditions of the flow. While the form of the von Karman functions 
for F(k) and <t>(k) in the inertial subrange is justified by the Kolmogorov model 
of turbulence, the form of the von Karman functions for F(k) and <t>(k) in the 
energy-containing subrange is more uncertain. This is related to the variation 
of the value of the outer scale Lout with atmospheric conditions, height above 
the ground, terrain topology, and other factors [159]. 

The influence of atmospheric turbulence on sound propagation is dominated 
by eddies with sizes of the order of the wavelength of the sound waves. De­
pending on the geometry and the atmospheric conditions, this size is in the 
energy-containing subrange or in the inertial subrange. Eddies in the dissipa-
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tion subrange are very small compared with acoustic wavelengths. 
As noted before, with proper values of the parameters, the Gaussian spec­

trum may agree with the actual spectrum in the relevant wave number range. 
With the von Karman spectrum, however, agreement can be expected over a 
broader range, although the choice of the numerical parameters of the spectrum 
is difficult. 

Moreover, the Gaussian and von Karman spectra are valid only if the tur­
bulence is homogeneous and isotropic. This condition is usually not met. Tur­
bulence is inhomogeneous for example because the outer scale of turbulence 
increases with height above the ground. Turbulence is anisotropic for example 
because the correlation length parallel to the wind vector is larger than the 
correlation length perpendicular to the wind vector. 
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Atmospheric turbulence 
the PE method 

J.l Introduction 

• In 

In Appendix I, atmospheric turbulence was represented by a random field of 
refractive-index fluctuations. Refractive-index fluctuations correspond to fluc­
tuations of the (effective) sound speed. Sound propagation in a turbulent atmo­
sphere can be computed by using a sound speed profile c(z) that includes these 
fluctuations. The fluctuations induce a range-dependence of the sound speed 
profile. The CNPE and GFPE methods can be used for an atmosphere with a 
range-dependent sound speed profile (see Appendices G and H). 

In this appendix we describe the incorporation of atmospheric turbulence in 
the CNPE and GFPE methods [57,43, 25]. We also describe the calculation of 
the random fields of refractive-index fluctuations, which are used in the CNPE 
and GFPE methods. Two-dimensional fields of refractive-index fluctuations 
are used in the two-dimensional CNPE and GFPE methods; three-dimensional 
fields are used in the three-dimensional GFPE method (see Sec. H.12). The 
fields can be considered as 'frozen' realizations of the turbulent atmosphere. 
The realizations are calculated with the aid of a random number generator. 

PE computations for different random realizations yield different sound pres­
sure fields. We are interested in a sound pressure field averaged (logarithmically) 
over turbulent fluctuations in a short period, for example a period of ten min­
utes. We assume that this average field can be approximated by a (logarithmic) 
average of a set of sound pressure fields computed for a set of random realiza­
tions. In other words, averaging over time is replaced by ensemble averaging 
over random realizations of the turbulent atmosphere. 

In principle, the refractive-index fluctuations can be included directly in the 
sound speed profile used in the PE method. This is not very efficient, however, as 
the modification of the profile between successive range steps is time-consuming. 

221 
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A more efficient method is described in Sec. J.2. The calculation of the random 
fields of refractive-index fluctuations is described in Sec. J.3 

Sections J.2 and J.3 apply to the two-dimensional PE methods. Section J.4 
describes the incorporation of atmospheric turbulence in the three-dimensional 
GFPE method. 

The axisymmetric approximation used in the two-dimensional PE methods 
has a spurious effect on computed sound pressure fields. This effect will be 
described in Appendix K (Section K.4). 

J.2 Turbulent phase factor in the PE method 
In the two-dimensional PE methods, the sound field is represented by the com­
plex pressure amplitude p(r, z) in the rz plane through the source and the 
receiver (see Appendices G and H). The computation of the field is based on 
the following one-way wave equation for the quantity q(r, z) = p(r, z)vr: 

8r q(r, z) - iHl (z)q(r, z) = 0, (J.l) 

where 

(J.2) 

is the square-root operator. The formal solution of Eq. (J.l) is 

q(r + ~r, z) = exp(iHl~r)q(r, z). (J.3) 

The corresponding expression for the quantity 'Ij;(r, z) = q(r, z) exp( -ikar) is 

'Ij;(r + ~r,z) = exp(iHl~r - ika~r)'Ij;(r,z), (J.4) 

where ka is some average wave number (see Sec. G.3). 
The acoustic refractive index n is defined as n = eo/c, where c is the effective 

sound speed (c == Cefr) and eo is some average sound speed (see Sec. 1.2). In a 
turbulent atmosphere, the refractive index fluctuates at each point around an 
average value, which is of the order of unity. The average value is denoted as n 
and the fluctuation is denoted as JJ. Thus, we have 

n = n+ JJ, 

with JJ « n and 11 = 0. From the relation n :::::: k / ka we find 

k = k + kaJJ 

(J.5) 

(J.6) 

with k = kan. In the PE method we assume that nand k are functions of the 
height z only (within a range step). Substitution of Eq. (J.6) into Eq. (J.2) 
gives 

(J.7) 
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where we have neglected a term of the order of J1.2. A first-order expansion of 
the square-root function gives 

(J.8) 

with 

(J.9) 

In Eq. (J.8) we have used Hl ~ ka. Substitution of Eq. (J.8) into Eq. (J.4) gives 

1jJ(r + ~r, z) = exp(iHl~r - ika~r) exp(ikaJ1.~r)1jJ(r, z). (J.I0) 

The first exponential factor on the right-hand side represents the solution for a 
non-turbulent atmosphere. The second exponential factor represents the effect 
of atmospheric turbulence. As J1. is real, the second factor is a phase factor. 

Hence, turbulence is taken into account by multiplication of the field by a 
z-dependent phase factor after each PE range step. This is computationally 
more efficient than changing the sound speed profile after each PE step. 

A slightly more accurate approach is to split the turbulent phase factor into 
two factors [45, 57]: 

1jJ(r + ~r, z) = exp(~ikaJ1.~r) exp(iHl~r - ika~r) exp(~ikaJ1.~r)1jJ(r, z). 

(J.1l) 

Thus, half of the turbulent phase shift is applied before the 'non-turbulent PE 
step' and the other half is applied after the step. In a sequence of PE steps, 
a step from range r to range r + ~r ends with multiplication by the turbulent 
phase factor exp[!ikaJ1.(r, z)~r], and the next step from range r + ~r to range 
r + 2~r begins with multiplication by the factor expl!ikaJ1.(r + ~r, z)~r]. This 
is equivalent to multiplication by a single factor 

exp(ikaJ1.2~r) (J.12) 

between the two successive PE steps, where J1.2 is given by 

(J.13) 

In the CNPE method, the range step ~r is usually small compared with the 
turbulent correlation length, so turbulent fluctuations are accurately sampled. 
In the GFPE method, however, the range step ~r can be chosen considerably 
larger than the correlation length. In this case the following phase factor gives 
more accurate results than the phase factor (J.12) does: 

exp(i6), (J.14) 
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where 

r+Ar 

0=ka Ip,(r,z)dr (J.15) 

r 

is the turbulent phase fluctuation integrated over a range step. The use of 
Eq. (J.14) is called the 'phase screen' method [88]. We note that the phase 
factor (J.14) reduces to the phase factor (J.12) if the integral in Eq. (J.15) is 
approximated by P,2 ~r. 

J.3 Random realizations of the field of refractive­
index fluctuations 

The expressions derived in the previous section for the turbulent phase factor 
contain the field of refractive-index fluctuations p,(r, z) in the rz plane. In this 
section we show that realizations of the random field p,(r, z) can be calculated 
with a random number generator, in such a way that the field has the correct 
value of the correlation function B(s) == p,(r + s)p,(r) [25, 72]. We assume that 
the random field p,(r,z) is homogeneous (see Sec. 1.4). 

We have from Eq. (1.23) 

00 

B(s) = II cos(k . s)F(k) dk, (J.16) 

-00 

where F(k) is the two-dimensional spectral density of the refractive-index fluc­
tuations in the rz plane; with the notation used in Sec. 1.7.2 we have F(k) = 
F(kx, kz) (the horizontal r coordinate used here corresponds to the horizontal x 
coordinate used in Sec. 1.7.2). We have replaced the exponential function in Eq. 
(1.23) by a cosine function, as F(k) is an even function of the components of 
the vector k (see Sec. 1.7). We introduce polar kB coordinates for the vector k, 
so Eq. (J.16) can be written as 

211" 00 

B(s) = II cos(k· s)F(k) k dk dB 
o 0 

(J.l7) 

with k = (k cos (}, k sin (}). The integration over the angle (} can be replaced by 
271" times the average over (}: 

00 

B(s) = 271" < I cos(k . s)F(k) k dk >0, 
o 

(J.18) 
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where the brackets < . >u denote the average over the angle O. The integral is 
approximated by a finite sum: 

B(s) = 271" < tlk L cos(kn . s)F(kn) kn >u, (J.19) 
n 

with discrete wave number vectors kn. We will show below that random re­
alizations of the corresponding random field J.L(r) can be calculated with the 
following expression: 

J.L(r) = vi 471" tlk L cos(kn . r + anh/ F(kn)kn, (J.20) 
n 

with kn = (kn cos On, kn sinOn) and kn = n tlk for n = 1,2, ... ,N; here On and 
an are random angles between 0 and 271". Thus, the field J.L(r) is calculated by 
superposition of N harmonic functions, or 'modes', with regularly spaced wave 
numbers kn' random polar angles On, and random phase angles an. 

We will now prove that the field given by Eq. (J.20) corresponds to the 
correlation function (J.19). From the definition of the correlation function we 
have 

B(s) =< J.L(r + s)J.L(r) >u,cr, (J.21) 

where the brackets < . >u,cr denote an average over the random angles 0 and a, 
i.e. an average over random realizations of the field J.L(r). Substitution of Eq. 
(J.20) into Eq. (J.21) gives 

n 

x L cos(km . r + amh/F(km)km >u,cr. (J.22) 
m 

The average of a term 

cos(kn · r + an + kn · sh/F(kn)kn cos(km • r + amh/F(km)km 

vanishes unless we have n = m. The average of a term with n = m can be 
written as follows: 

< cos(kn . r + an + kn · s) cos(kn . r + an)F(kn)kn >u,cr= 
< cos2 (kn . r + an) cos(kn . s )F(kn)kn 

- sin(kn . r + an) cos(kn . r + an) sin(kn . s)F(kn)kn >u,cr 
1 = 2 < cos(kn . s)F(kn)kn >u, (J.23) 

where we have used the goniometrical relations cos2 x = ! + ! cos 2x and 
sinx cos x = ! sin 2x. Substitution of Eq. (J.23) into Eq. (J.22) gives Eq. (J.19), 
which completes the proof. 
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J .3.1 Refractive-index fluctuations in the CNPE method 

In the CNPE method we use a rectangular grid in the rz plane through the 
source and the receiver. Turbulence is incorporated by multiplication of the field 
1j;(r,zj) at the grid points (r,zj) by the phase factor given by Eq. (J.12), after 
each range step. This requires the evaluation of the refractive-index fluctuations 
J.L(r,zj) at the grid points. From Eq. (J.20) we have 

J.L(r, Zj) = L G(kn) cos(r knr + Zj knz + an) (J.24) 
n 

with G(kn) = J47rDokF(kn)kn, knr = kncosBn, and knz = knsinBn. As the 
calculation of the cosine function for all grid points is time-consuming, we write 

cos(r knr + Zj knz + an) = Re {exp(iknrr + ion)[exp(iknzDoz)]j} , (J.25) 

where we have used Zj = jDoz. The two exponential factors on the right­
hand side are independent of Zj, so the cosine factors for fixed r and n can be 
calculated efficiently for all Zj by repeated multiplication by the constant factor 
exp(iknzDoz). 

J.3.2 Refractive-index fluctuations in the GFPE method 
In the two-dimensional GFPE method we also use a rectangular grid in the rz 
plane, but the horizontal grid spacing can be considerably larger than in the 
CNPE method. Therefore we use the turbulent phase factor (J.14) in the GFPE 
method, instead of the phase factor (J.12) used in the CNPE method. 

The refractive-index fluctuations J.L(r,zj) at the grid points are given by Eq. 
(J.24). Substitution into Eq. (J.15) gives 

e = T(r + Dor, Zj) - T(r, Zj), (J.26) 

with 

'" G(kn) . T(r, Zj) = ka ~ -k- sm(r knr + Zj knz + an). 
n nr 

(J.27) 

For an efficient calculation of the sine factors in this expression, an approach 
analogous to the approach described in Sec. J.3.1 can be used. 

J .3.3 Numerical parameters 
Figure J.l shows an example of the variation of the refractive-index fluctuation 
J.L(r, z) along a horizontal line in the r direction, calculated with Eq. (J.24) 
for a Gaussian spectrum and for a von Karman spectrum. The corresponding 
function G(k) in Eq. (J.24) is also shown in the figure (for kz = 0); this function 
can be considered as a 'mode amplitude'. For the Gaussian spectrum, the 
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Figure J.l. Example of the variation of the refractive-index fluctuation p,(r, z) 
along a horizontal line in the r direction (top) and the corresponding 'mode 
amplitude' G(k) in Eq. (J.24) for k., = 0 (bottom), for a Gaussian spectrum and 
for a von Karman spectrum. The Gaussian spectral density F(k) is given by Eq. 
(1.49), with parameters a = 1 m, a-}/TJ = 10-5 , and u; = O. The von Karman 
spectral density F(k) is given by Eq. (1.53), with parameters Kill = 10 m, 
C'f/TJ = 1x1O-7 m-2j3 , and C;,/~ = 1x1O-6 m-2/ 3 • For both spectra we used 
N = 200 and kn,max = 10 m- l . 

function G(k) is negligible for wave numbers k > 7 m- l , in this example. For 
the von Karman spectrum, however, the function G(k) still has a finite value 
at k = 10 m- l . The representation of the von Karman spectrum up to wave 
numbers where the function G(k) is negligible requires a large number (N) of 
'modes', as the wave number spacing ilk should be chosen sufficiently small to 
properly sample the range of small wave numbers. This problem can be solved 
by using a variable wave number spacing ilkn, instead of the constant wave 
number spacing ilk used in Eq. (J.19). For the examples in this book, however, 
we used a constant wave number spacing ilk, with a value of 10 m- l for the 
maximum wave number kn,max and a value of 100 for the number of modes N 
(except for Fig. J.1, where we used N = 200). Modes with wave numbers larger 
than 10 mol represent relatively small fluctuations of the refractive index, so the 
cut-off of the spectrum at kn,max = 10 mol is a reasonable approximation. 



J.4 Turbulence in the three-dimensional GFPE 
method 

In this section we describe the incorporation of atmospheric turbulence in the 
three-dimensional GFPE method, which was described in Sec. H.12. 

In Sec. J.2 we derived the turbulent phase factor for the two-dimensional 
PE methods. It is straightforward to generalize the derivation for the three­
dimensional GFPE method. The square-root operator given by Eq. (J.2) be-

comes Hl = Jk2(z) + T-28~ + 8;. The resulting turbulent phase factor for the 

three-dimensional GFPE method is given by Eq. (J.14) with 

r+.1r 

e = ka I p.(T,~,z)dT. (J.28) 

r 

The only difference from Eq. (J.15) is that p. is a function of the azimuthal angle 
~ in this case. 

In Sec. J.3 we described the calculation of random realizations of two­
dimensional fields of refractive-index fluctuations. The calculation is modified 
as follows for three-dimensional fields. We have from Eq. (1.19) 

00 

B(s) = III cos(k· s)~(k) dk, (J.29) 

-00 

where ~(k) is the three-dimensional spectral density of refractive-index fluctu­
ations. We introduce spherical k8ep coordinates for the vector k, so Eq. (J.29) 
can be written as 

2". ". 00 

B(s) = I I I cos(k· s)~(k) k2 dk sin8d8dep. (J.30) 
000 

The integration over the angles 8 and ep can be replaced by 471" times the angular 
average: 

00 

B(s) = 471" < I cos(k . s)~(k) k2 dk >6,<{)· 

o 
The integral is approximated by a finite sum: 

B(s) = 471" < 6.k E cos(kn . s)~(kn) k~ >6,<{), 
n 

(J.31) 

(J.32) 

with discrete wave number vectors kn. Random realizations of the correspond­
ing random field p.(r) can be calculated with the following expression: 

p.(r) = V871"6.k E cos(kn . r + an)J~(kn)k;, (J.33) 
n 
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with kn = (kn cos 'Pn sin On, kn sin 'Pn sin On, kn cos On) and kn = n A.k for n = 
1,2, ... ,N; here 'Pn and an are random angles between 0 and 211', and On is a 
random angle chosen in such a way that values of cos On are distributed uniformly 
over the interval between 1 and -1 [as we have sinOdO = dcosO in Eq. (J.30)). 
The proof that J.'(r) given by Eq. (J.33) corresponds to the correlation function 
B(s) given by Eq. (J.32) is analogous to the proof given in Sec. J.3 for two­
dimensional fields J.'(r). 

In the three-dimensional GFPE method we use a cylindrical grid in the pie 
slice region shown in Fig. H.6. The refractive-index fluctuations p.(r, rPk, Zj) at 
the grid points follow from Eq. (J.33): 

p.(r, rPk, Zj) = L: G(kn) cos(r cos rPk knz + r sin rPk kny + Zj knz + an), (J.34) 
n 

with G(kn) = J87rA.k4i(kn)k~, knz = kn COS'Pn sinOn, kny = knsin'PnsinOn, 
and knz = kn cos On. Substitution of Eq. (J.34) into Eq. (J.28) gives 

(J.35) 

with 

'V'( A.. .) _ k ~ G(kn) sin(r cos rPk knz + r sin rPk kny + Zj knz + an) 
.L r''I'k,zJ - a~ • • 

cos rPk knz + sm rPk kny 
n 

(J.36) 



Appendix K 

Analytical model for a 
non-refracting turbulent 
atmosphere 

K.l Introd uction 

Sound propagation in a turbulent atmosphere can be computed numerically 
with the PE method, as described in Appendix J. If the (average) atmosphere 
is non-refracting, i.e. if we have n = 1 in Eq. (1.1), sound propagation can also 
be computed analytically. In this appendix we present an analytical model for 
sound propagation in a non-refracting turbulent atmosphere above a ground 
surface. The model is based on work of Daigle et al. [33, 35], Clifford and 
Lataitis [27], Ostashev et al. [100], and Salomons et al. [139]. 

Daigle et al. [33, 35] developed a model that can be considered as a heuris­
tic extension of analytical solutions for an unbounded non-refracting turbulent 
atmosphere [150, 68, 98]. Clifford and Lataitis [27] developed a more rigorous 
analytical model, which was improved by Ostashev et al. [lOOJ and Salomons et 
al. [139J. 

The model presented in this appendix can be used to study the effects of 
turbulence on sound propagation over relatively short distances (for large dis­
tances the effects of refraction can usually not be neglected). The model can 
also be used to study the accuracy of numerical computations performed with 
the PE method, by comparison of analytical results with PE results for a non­
refracting turbulent atmosphere. An example of such a comparison is presented 
in Chap. 5. 

In Sec. K.2 we describe the model. In Sec. K.3 we describe the application of 
the model for Gaussian and von Karman spectra of turbulence. In Sec K.4 we 
describe the spurious effect of the axisymmetric approximation, which is used 
in the two-dimensional PE methods. This effect should be taken into account 
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in comparisons of analytical results with PE results. 

K.2 Model 
We consider a harmonic monopole source and a receiver in a non-refracting 
turbulent atmosphere above a ground surface. For a non-refracting turbulent 
atmosphere, the fluctuating refractive index n can be written as n = 1 + IL, 
with 7I = ° (see Sec. 1.2). We use an rz coordinate system in the vertical plane 
through the source and the receiver; r is the horizontal range measured from the 
source and z is the height above the ground surface. The source is at position 
(O,zs) and the receiver is at position (L,z). We assume L» ZS and L » z. 

The (fluctuating) complex pressure amplitude Pc at the receiver is written 
as the sum of the contribution PI of the direct field and the contribution QP2 
of the field reflected by the ground surface: 

(K.l) 

where Q is the spherical-wave reflection coefficient (see Sec. DA) and PI and P2 
are given by 

. - Sexp(ikRi + 'l/Ji ) £ . - 1 2 p, - or J - , , Rj 
(K.2) 

where RI = .)£2 + (zs - z)2 and R2 = .)£2 + (zs + z)2 are the direct and 
reflected path lengths, respectively, S is a constant, k = w/c is the wave number, 
and the quantity 'l/Jj is called the complex phase fluctuation. The effect of 
turbulence is represented by the factor exp( 'l/Ji). For a non-turbulent atmosphere 
we have 'l/Jj = 0, so Eq. (K.l) reduces to Eq. (3.2). From Eq. (K.2) we have 

(K.3) 

where Pj.o is the value of Pi in a non-turbulent atmosphere. We write 

(KA) 

where Xj is called the log-amplitude fluctuation and Sj is called the phase 
fluctuation. 

The sound pressure as a function of time is given by pet) = Re(pce-iwt). 
The variation of the sound pressure with time consists of two contributions: 
harmonic oscillations with period Tw = 27r/w and turbulent fluctuations with a 
characteristic period Tt. We assume that the (relevant) turbulent fluctuations 
are slow compared with the harmonic variations of the sound pressure, so we 
have Tw «Tt [27]. 

The (fluctuating) short-time average of the squared sound pressure, denoted 
as (P2)av' is defined as an average over a time TI, with Tw « TI «Tt. From 
Sec. B.3 we have the relation (P2)av = tpcp~. The corresponding (fluctuating) 
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relative sound pressure level is 6.L = 10Ig[(p2)av/(pi,o)av], where (Pi,o)av is 
given by ~S2/ Ri. The long-time average of the squared sound pressure, de­

noted as (P2)av = ~Pcp~, is defined as an average over a time T2, with T2 » Tt. 

The corresponding long-time average of the relative sound pressure level is 
6.L = 1OIg[(p2)av/(Pi,o)av]. 

With the notation Q = IQlei19 we find 

6.L = 10 19 { exp(2Xl) + IQI2 ~~ exp(2X2) 

1 
R1 . ] + QI R2 exp(l[kRl - kR2 - {} )exp(7/Jl + 7/J;) 

+IQI ~~ exp( -i[kRl - kR2 - {}])exp(7/Ji + 7/J2) }. (K.5) 

Conservation of energy implies (p2)av = (p2o)av, which gives exp(2Xj) = 1 
J .~J,~~ __ ~ 

for j = 1,2 [27]. To evaluate the factors exp(7/Jl + 7/J2) and exp(7/Ji + 7/J2) in 
Eq. (K.5) we use the fact that Gaussian distributions can be assumed for Xj 
and Sj [68, 126]. For a fluctuating variable y with a Gaussian distribution we 
have the relation exp(y) = exp( ~a~ + y), where a~ = (y - yF is the variance 

of y [150, 27]. Using exp(2Xj) = 1 we find Xj = -a~i. A more complex 

derivation yields Sj = -XjSj, where terms of the order of p,4 and higher-order 
terms have been neglected [150, 100] (a term like Xj Sj = a~i Xj Sj is of the order 

of p,\ as the fluctuations Xj and Sj are of the order of p,). Using the relation 
exp(y) = exp( ~a~ + y) for y = 7/Jl + 7/J2 and y = 7/Ji + 7/J2, and neglecting terms 
of the order of p,4 and higher-order terms, we find 

where 

(K.7) 

is called the coherence factor. The terms X2S1 and X1S2 in Eq. (K.6) are small 
for weak fluctuations [27, 139]' and will be neglected. The calculation of 6.L 
has been reduced to the calculation of the correlation functions XjXm and SjSm 
(j, m = 1,2). In the remainder of this section we describe a model for the 
calculation of the correlation functions [33, 35, 81, 139]. 

The physical system with a single receiver above a ground surface is replaced 
by an unbounded system with two receivers (see Fig. K.l). The direct and 
reflected rays in the physical system are replaced by two direct rays to the 
receivers in the unbounded system. Consequently, we can apply the theory 
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of wave propagation in unbounded turbulent media [150, 68, 126, 98]. In this 
theory, the correlation functions XjXm and SjSm are usually denoted as Bx(p) 
and Bs(p), respectively, where p is the vertical separation between the two 
receivers in the unbounded system (see Fig. K.l). We have X~ ::::: X~ ::::: Bx(O) 
and Sf ::::: S5 ::::: Bs(O), using the assumption L » Zs and L »z. Equation (K.7) 
becomes 

r(p) = exp[Bx(p) - Bx(O) + Bs(p) - Bs(O)]. (K.8) 

For the argument p we use the maximum vertical separation 2zsz/(zs + z) be­
tween the two sound rays in the physical system (see Fig. K.l). The mean 
vertical separation between the two rays is then equal to zsz/(zs + z), both in 
the physical system and in the unbounded system. A more rigorous approach is 
presented in Refs. [100, 139], based on the work described in Ref. [27]. With this 
more rigorous approach it can be verified that the heuristic approach described 
here gives accurate results. 

It should be noted that we replace the physical system by the unbounded 
system only for the approximation of the coherence factor r in Eq. (K.6) by the 
expression given in Eq. (K.8). For the other quantities in Eq. (K.6) we use the 
physical system. 

The calculation of !:l.L has been reduced to the calculation of the correlation 
functions Bx(p) and Bs(p) for an unbounded turbulent atmosphere. General 
expressions for the correlation functions for homogeneous turbulence can be 
derived with Rytov's perturbation method, which is valid for weak fluctuations 
(see, for example, Chaps. 17 and 18 of Ref. [68]). With the notation Bl (r) == 
Bx(r) = X(R)x(R + r) and B2(r) == Bs(r) = S(R)S(R + r), with R = (L, 0, 0) 
and r = (0, y, z), these expressions can be represented as follows (m = 1,2): 

1 00 00 

Bm(r) =27rL I dT II exp(iTk.r)H';'(LT-LT2,lkl)4>(k)dky dkz , (K.9) 
o -00-00 

where we have k = (O,ky,kz ), Ikl = .Jk~ + k~, H1(x,,,,) = ksin(tx",2/k), and 

H2 (x,,,,) = kcOS(tx",2/k) (with k = w/c), and 4>(k) is the three-dimensional 
spectral density of refractive-index fluctuations (see Sec. 1.6). Equation (K.9) 
is valid for L » Irl = Jy2 + z2. The Gaussian and von Karman spectral 
densities 4>(k) given in Sec. I. 7 satisfy 4>(k) = 4>(lkl) for k = (0, ky , kz), so Eq. 
(K.9) implies Bm(r) = Bm(lrl). Therefore the correlation functions Bx(p) and 
Bs(p) in Eq. (K.8) follow from Eq. (K.9) with p = Irl. In the next section we 
evaluate the coherence factor given by Eq. (K.8) for Gaussian and von Karman 
spectra. 
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Figure K.l. For the calculation of the coherence factor r in Eq. (K.6) we replace 
the physical system (top) by an unbounded system with two receivers (bottom). 
The vertical separation p between the two receivers in the unbounded system 
is equal to the maximum vertical separation between the two sound rays in the 
physical system. 

K.3 Coherence factor for Gaussian and von 
Karman spectra 

We first consider a turbulent atmosphere with the Gaussian spectral density 
given by Eq. (I.32): ~(Ikl) = J.I~a3 exp( - lkl2a2 /4)/(81r3/ 2), which is valid for an 
atmosphere with only temperature fluctuations. Substitution of this expression 
into Eq. (K.9) gives integral expressions for B1(p) == B)((p) and B2(P) == Bs(p). 
After substitution of these integral expressions into Eq. (K.8), the integrals can 
be performed analytically. In this way we find the following expression for the 
coherence factor [98, 97, 139): 

(K.1O) 

where erf(x) = (2/ Vii) J; exp( _72 ) d7 is the error function [1). 

Next we consider a turbulent atmosphere with the von Karman spectral 
density given by Eq. (1.55), which is valid for an atmosphere with wind and 
temperature fluctuations. In this case we find the following expression for the 
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coherence factor [100]: 

{ 
2L KjOP[ (21/6t5/6 ) 

r(p) = exp - Kop 0 'YT 1 - r(5/6) K5/6(t) 

+'Yv (1 - ~;;~~)6 [K5/6(t) - ~Kl/6(t)]) ] dt} , (K.11) 

with 'YT = 311"2 Ak2 K~5/3Cf/(10T~) and 'Yv = 611"2 Ak2 K~5/3C?J(5~). 
It should be noted that Eq. (K.9) is valid only for small turbulent fluctua­

tions. With increasing distance L, the turbulent fluctuations increase. Equation 
(K.9) predicts that the correlation functions increase linearly with L, for large L 
[the integral in Eq. (K.9) is approximately constant for large L]. In reality this 
occurs only for the correlation function Bs of phase fluctuations. The corre­
lation function Bx. of log-amplitude fluctuations increases up to a value of the 
order of unity and then remains constant for larger distances. In other words, 
the log-amplitude fluctuations saturate for large distances [150, 35, 139]. 

The saturation of log-amplitude fluctuations can be taken into account ap­
proximately by neglecting the contributions from the log-amplitude fluctuations 
to the coherence factor, i.e. by using Bx. = 0 in Eq. (K.8), for large distances 
[35] (this has not been done for the examples presented in Chap. 5). The corre­
lation functions given by Eq. (K.9) satisfy the relation Bs(p) ::::: Bx.(p) for large 
distances [68, 98], so using Bx. = 0 in Eq. (K.8) is equivalent to replacing r by 
the square root v'r. 

K.4 Axisymmetric turbulence 
The two-dimensional PE methods for sound propagation in a turbulent atmo­
sphere (see Appendix J) are based on the axisymmetric approximation (see 
Sec. E.4). The axisymmetric approximation corresponds to the assumption 
that the system has axial symmetry around the vertical axis through the source 
(or rather that the variation of the sound field with the azimuthal angle can 
be neglected; see Sec. E.4). Consequently, sound propagation can be computed 
in two dimensions, in the vertical plane through the source and the receiver. 
The assumption of axial symmetry, however, also affects the turbulence: fluctu­
ations are constant along horizontal circles around the source, such as the circle 
shown in Fig. E.l. This has a spurious effect on sound fields computed with the 
two-dimensional PE methods for a turbulent atmosphere. 

The analytical model for a non-refracting turbulent atmosphere, which was 
described in the previous sections of this appendix, can be used to study the spu­
rious effect of the axisymmetric approximation on PE results [138]. Application 
of the analytical model requires an expression for the spectral density fJ.)(k) [the 
spectral density determines the coherence factor r in Eq. (K.6), through Eqs. 
(K.8) and (K.9)]. The spectral density for axisymmetric turbulence is different 
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from the spectral density for isotropic turbulence. This difference should also be 
taken into account in comparisons of PE results with analytical results. Below 
we derive an expression for the spectral density for axisymmetric turbulence 
[138]. 

We use a rectangular xyz coordinate system, with the source and the re­
ceiver in the xz plane. We represent the axisymmetric turbulent atmosphere 
by a field JL(r) that is independent of y and isotropic in the xz plane. In the 
far field, the independence of y is equivalent to the axisymmetric approxima­
tion. Hence, the correlation function B(r) == JL(R)Jl(R + r) can be written as 
B(r) = B( v'X2 + Z2), with r = (x, y, z). From Eq. (1.20) we find the following 
expression for the spectral density for axisymmetric turbulence: 

C)(k) = F( Jki + k~)c5(ky) (K.12) 

with k = (k"" ky, kz); here c5(ky) is the Dirac delta function and 

00 

F( v'k~ + kn = (2!)2// exp( -ik", x - ikzz)B( v' x 2 + z2) dx dz (K.13) 

-00 

is the two-dimensional spectral density of refractive-index fluctuations [see Eq. 
(1.24)]. 

To calculate the coherence factor r for axisymmetric turbulence, one sub­
stitutes Eq. (K.12) into Eq. (K.9) (with k", = 0) and substitutes the result­
ing expressions for the correlation functions B-x. and Bs into Eq. (K.8). For 
the Gaussian correlation function B(p) = JL~ exp( _p2 /a2), the two-dimensional 
spectral density is given by F(k) = Jl~a2exp(-k2a2/4)/(41r) (see Sec. 1.7.1); in 
this case one finds that the coherence factor for axisymmetric turbulence is iden­
tical to the coherence factor (K.1O) for isotropic turbulence [139]. In general, 
however, the coherence factor for axisymmetric turbulence is different from the 
coherence factor for isotropic turbulence. 
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Ray model including caustic 
diffraction fields 

L.l Introduction 

The ray model for sound propagation in a refracting medium has been widely 
used, both in ocean acoustics and in atmospheric acoustics. The modeling of 
sound propagation by means of sound rays is called geometrical acoustics. The 
principles of geometrical acoustics are described In Refs. [2, 17, 106]. 

Sound rays in a downward refracting atmosphere are curved toward the 
ground, so rays with mUltiple ground reflections occur (see Figs. 4.6 and 4.7). 
The number of rays between a source near the ground and a distant receiver 
near the ground is typically a few tens, in a downward refracting atmosphere. 
The sound pressure at the receiver is equal to the sum of the contributions of 
all rays. 

Curved sound rays focus at certain points in the atmosphere, analogously to 
focusing of light rays at focal points. A set of such points is called a caustic. In 
two dimensions, i.e. in the vertical plane through the source and the receiver, 
a caustic is a curve. Sound rays focus on one side of a caustic curve; this side 
is called the illuminated side. The focusing rays are absent on the other side of 
the caustic curve; this side is called the shadow side. In other words, a caustic 
curve is a boundary between an illuminated region and a shadow region. 

Geometrical acoustics predicts that the sound pressure is infinite at a caus­
tic. In reality the sound pressure is always finite of course. This implies that 
geometrical acoustics fails at a caustic. Ludwig [85] and Kravtsov [73] developed 
a theory for the field in the vicinity of a caustic. This theory yields finite ampli­
tudes at caustics. The effects of caustics are represented by caustic diffraction 
fields in this theory. 

In this appendix we describe a ray model that employs the theory of Ludwig 
and Kravtsov for the effects of caustics [135]. We assume a downward refracting 
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layered atmosphere with a smooth vertical profile of the effective sound speed, 
e.g. the logarithmic profile given by Eq. (4.5). 

It should be emphasized that caustic diffraction fields are very important in 
a ray model. To illustrate this we note that if caustic diffraction fields in caustic 
shadow regions are ignored, discontinuities of about 10 dB may occur in the 
sound pressure field [135]. 

In Sec. L.2 we describe the setup of the model, with a distinction between 
the geometrical acoustics solution and the effects of caustics on the solution. 
In Sec. L.3 we describe the geometrical acoustics solution and in Sec. LA we 
describe the effects of caustics. In Sec. L.5 we include the effects of atmospheric 
turbulence in the geometrical acoustics solution, by generalizing the analytical 
model for a non-refracting atmosphere that was described in Appendix K. 

L.2 Setup of the model 

L.2.1 System 

We consider a system with a monopole source and a receiver in a downward 
refracting atmosphere above a homogeneous finite-impedance ground surface. 
We assume a layered non-moving atmosphere; the effect of wind is taken into 
account by the effective sound speed (see Sec. E.3). The system is axisymmetric 
with respect to the vertical axis through the source, so we can describe the 
sound field in two dimensions, in the vertical plane through the source and the 
receiver. We use a rectangular rz coordinate system in this plane, where r is 
the horizontal range measured from the source and z is the height above the 
ground surface. The source position is (O,zs) and the receiver position is (r,zr). 
The ground surface is at height Zg = O. 

The model described in this appendix is valid for smooth sound speed profiles 
c(z) with c'(z) > O. The condition c'(z) > 0 implies that the sound speed 
increases monotonically with height. The set of profiles for which the model 
is valid is defined indirectly by the fact that all profiles have the same caustic 
structure. Examples of this caustic structure are shown in Fig. L.7 in Sec. L.3. 
From various other examples we concluded that the profiles for which the model 
is valid have no change of sign of the second derivative d' (z). Examples are the 
logarithmic profile c( z) = Co + b In (1 + z / zo) and the linear profile c( z) = Co + az. 

L.2.2 Sound pressure field 

The sound pressure field is represented by the complex pressure amplitude Peer) 
as a function of the receiver position r = (r, zr). We use the symbol P for the 
normalized amplitude PcllPfreel, where IPfreel is the amplitude of the free-field 
sound pressure; with the notation used in Chap. 3 we have IPfreel = S / R I . We 
write 

P = Pillum + Pshadow· (L.!) 
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Figure L.l. Schematic illustration of the sound pressure contribution of two 
sound rays focusing at a caustic point. The thin line represents the geometrical 
acoustics solution, which has an infinite discontinuity at the caustic. The thick 
line represents the real continuous solution, including the caustic diffraction 
field. 

The term Pillum is the sum of the geometrical acoustics field and caustic diffrac­
tion fields in caustic illuminated regions. The term Pshadow is the sum of caustic 
diffraction fields in caustics shadow regions. In the geometrical acoustics ap­
proximation, Pshadow vanishes and Pillum reduces to the geometrical acoustics 
solution. 

In the geometrical acoustics approximation, the field P = Pillum has an infi­
nite discontinuity at the caustic, due to the appearance of two sound rays in the 
illuminated region, which are absent in the shadow region (see Fig. L.1). The 
two rays have infinite amplitudes at the caustic, in the geometrical acoustics 
approximation. By including the caustic diffraction field in the solution, we 
obtain the correct finite amplitudes and correct phases. 

A caustic diffraction field is largest near the caustic and goes to zero with 
increasing distance from the caustic, both on the illuminated side and on the 
shadow side. The caustic diffraction field on the illuminated side is included in 
the term Pillum and the caustic diffraction field on the shadow side is included 
in the term Pshadow. The contribution of a caustic diffraction field to Pshadow is 
discontinuous at the caustic, with a finite value on the shadow side and zero on 
the illuminated side. The total field P is continuous (see Fig. L.1), as the field 
Pillum has an opposite discontinuity at the caustic. 

In Sec. L.3 we describe the geometrical acoustics solution and caustic pa­
rameters that are used in Sec. L.4. In Sec. L.4 we include caustic diffraction 
fields in the solution. 



L.3 Geometrical acoustics solution 

In the geometrical acoustics approximation, the term Pshadow in Eq. (L.l) van­
ishes and the term Pillum is written as (see Sec. 404) 

Pillum = LAm exp(i¢m), (L.2) 
m 

where the sum is over all rays m, and Am and ¢m are the amplitude and phase, 
respectively, of ray m. The amplitude is given by 

(L.3) 

where fm is a focusing factor, Cm is a ground reflection coefficient, and Nm is 
the number of ground reflections. The phase is given by 

(LA) 

where w is the angular frequency and tm is the travel time along the ray. Equa­
tion (L.3) differs from Eq. (4.8) in Sec. 404 by a factor Sf R1 , because we consider 
the normalized sound pressure here; for simplicity, we use the same symbol Am 
for the amplitude as in Sec. 404. 

For a system with a rigid ground surface, Brekhovskikh [17] presented a rig­
orous derivation of Eqs. (L.2) to (LA). In the derivation, ray theory is developed 
as a high-frequency limit of wave theory, for the case of a monopole source in a 
surface waveguide, i. e. a downward refracting atmosphere above a rigid ground 
surface. 

For a system with a finite-impedance ground surface, Eq. (L.2) was proposed 
by L'Esperance et al. [81]. These authors also presented a method to include 
the effects of atmospheric turbulence (see Sec. L.5). 

In Secs. L.3.1 to L.3.3 we describe the calculation of ray paths and caustic 
curves. In Secs. L.3A to L.3.6 we describe the calculation of the quantities fm, 
Cm, Nm, and tm in Eqs. (L.3) and (LA). 

Figure L.2. Sound ray with two ground reflections between the source and the 
receiver. The maximum height h and the horizontal dimensions c5g , c5s , and c5r 
of ray segments are indicated. 
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L.3.1 Ray paths 

For a given source position and sound speed profile, the path of a sound ray is 
completely determined by the maximum height of the ray, i. e. the height of the 
turning point [17]; we use the symbol h for this maximum height (see Fig. L.2). 
The horizontal distance covered by a ray can be written as 

where index n is the number of turning points of the ray (n = 0,1, ... ), index j 
distinguishes four rays with equal n (j = 1,2,3,4; see Fig. L.3), the quantities 
mxj with x = g, s, r are given in Table L.1, and the function dx(h) is defined as 
(see Fig. L.2) 

h ! dz 
dx(h} = ( )' tan-y z 

(L.6) 

Zx 

where -y(z) is the elevation angle of the ray at height z, so we have tan-y(z} = 
dz/dx. In Eq. (L.5) we use two indices n and j to identify a ray, while in Eq. 
(L.2) we used for simplicity only one index m. 

Table L.1. The quantities mxj for x = g, s, r and j = 1,2,3,4. 

mgj 
msj 
mrj 

j=l j=2 j=3 j=4 
-1 0 0 
1 -1 1 
1 1 -1 

j=lrsz:j 
j=2v-sri 
j=352S\!t 
j = 4+\C\C\J 

1 
-1 
-1 

Figure L.3. The four sound rays with n = 2 and j = 1,2,3,4. 
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Figure LA. The functions Tnj(h) for n = 1,2 and j = 1,2,3,4, with Tnj along the 
horizontal axes and h along the vertical axes. The graphs are for a linear sound 
speed profile c(z) = Co + az, with Co = 340 m/s and a = 0.1 S·l, a source height 
of 1.8 m, and a range of receiver heights: 0.3, 0.8, 1.3, ... , 5.8 m. The curves for 
receiver heights of 0.3, 0.8, and 1.3 m are labeled in the enlarged section in the 
graph for n = 1, j = 2. 
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Figure L.5. Sound rays to a receiver at a distance of 650 m from the source, for 
a linear sound speed profile c(z) = Co + az, with Co = 340 mls and a = 0.1 S-l. 

The dashed line represents a ray with j = 7 and the full lines represent rays 
with j :s 4. 

Ray tracing is now reduced to solving the height h from the equation 

(L.7) 

where r is the horizontal distance between the source and the receiver. Fig­
ure L.4 shows a typical example of the functions rnj(h), for a source height of 
1.8 m and a range of receiver heights. The figure illustrates that, for each n > 0, 
the number of solutions of Eq. (L.7) is zero or one for j = 1, and zero, one, or 
two for j = 2,3,4. For n = 0 the number of solutions is zero or one for all j. 
The solutions are denoted as hni . To distinguish the two solutions for j = 2,3,4 
we extend the range of j to j = 1, ... ,8. For a possible second solution we use 
j + 4 instead of j, so we use j = 6 for j = 2, j = 7 for j = 3, and j = 8 for j = 4. 
We choose hnj > hn(j+4). The points where we have drnjldh = 0 correspond 
to caustic points; here the number of solutions changes from zero to two, with 
increasing range (see Fig. L.4). Figure L.5 shows an example of all rays to a 
receiver, for a linear sound speed profile. 

The ray tracing approach is as follows. For n = 1,2, ... we successively 
determine all solutions of Eq. (L.7) for j = 1, ... ,8. At a certain value of n we 
find for all j that Eq. (L.7) has no solution, so all rays have been found. For 
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computational efficiency we prepare a matrix of values of the function ox(h) for 
a set of maximum heights h (e.g. h = 0,0.1,0.2, ... ,100 m) and a set of heights 
Zx (e.g. Zx = 0,0.1,0.2, ... ,9.9,10,11,12, ... ,100 m). This matrix is denoted 
as o;(h), and is used here for ray tracing but will also be used in the next section 
for the calculation of caustic curves. With the matrix o;(h) we obtain a first 
estimate of the solution of Eq. (L.7). Next we obtain an accurate solution by 
iteratively approaching the zero point of the function rnj(h) - r. 

The case n = 0 is treated separately. This case corresponds to two rays 
without turning points: the direct ray and the ray with a ground reflection. For 
the direct ray we have j = 2 for Zs > Zr and j = 3 for Zs < Zr. Beyond a certain 
value of r, the direct ray has a turning point, so the ray with n = 0 does not 
exist, but is replaced by a ray with n = 1. For the ray with a ground reflection 
we have j = 4. Again, this ray exists only up to a limiting value of r. 

A computational aspect of interest is the numerical evaluation of the integral 
in Eq. (L.6). From Snell's law (4.3) we have cos-y(z)/c(z) = l/c(h), so we find 

h 

o (h) = I c(z)/c(h) dz. 
x VI - c2(z)/c2(h) 

Zx 

(L.8) 

The divergence of the integrand at z = h is eliminated by a change of the 
integration variable to y = [1 - c2(z)/~(hW/2. This gives 

Y(Zx} 

ox(h) = c(h) I dtz) dy, (L.9) 

o 

where the derivative c'(z) is a function of y. The integrand is bounded as we 
assume that the sound speed increases monotonically with height, so we have 
c'(z) > o. The trapezoidal rule can be used for the evaluation of the integral, 
with a typical value of 0.0001 for the integration step dy. We note that Eq. 
(4.9) in Chap. 4 follows from Eq. (L.9) and r ~ 2nog (h). 

L.3.2 Caustic curves 
In the previous section we identified caustic points as points where we have 
drnj/dh = o. In three dimensions, the complete set of caustic points forms a 
set of surfaces, which are called caustic surfaces. The intersection of the caustic 
surfaces and the vertical plane through the source and the receiver is a set of 
curves, which are called caustic curves. Caustic curves play an important role 
in the ray model. 

The caustic curve for indices n and j is calculated as follows. The caustic 
curve is represented by a discrete set of caustic points (r, z). To determine this 
set, we choose a set of heights z (ranging from, for example, z = 0 to z = 100 m)j 
for each height z we determine the corresponding caustic range r by solving the 
equation drnj/dh = 0 (see Fig. L.4). A first estimate is obtained from the 
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Figure L.6. Caustics (thick curves) and sound rays (thin curves), for a source 
height of 1.8 m and a linear sound speed profile c(z) = eo+az, with eo = 340 mls 
and a = 0.1 S-I. The j = 2, j = 3, and j = 4 branches are labeled for n = 1; 
the illuminated sides and shadow sides are indicated for each branch. 

limited set Tnj(h) calculated with the matrix 6;(h) described in the previous 
section. Next, the caustic point is approached iteratively until the variation is 
negligible. For each value of n we determine caustic curves for j = 2, 3, and 4. 
The caustic curves for j = 2, 3, and 4 will be referred to as caustic branches, so 
a caustic curve for index n consists of three caustic branches. Figure L.6 shows 
caustic curves for n = 1,2, and 3; the branches for j = 2, 3, and 4 are labeled 
for n = 1. The j = 2 branch and the j = 3 branch touch each other at one 
point, and the j = 2 branch and the j = 4 branch touch each other at one point. 
The two points of contact are cusps of the corresponding caustic curve. The 
cusp at the point of contact of the j = 2 branch and the j = 3 branch is always 
at the source height. The cusp at the point of contact of the j = 2 branch and 
the j = 4 branch is always at the ground surface. The latter cusp is not a real 
cusp, but is a consequence of the ground reflection; the cusp disappears if the 
j = 4 branch is replaced by its image below the ground surface. 

Figure L.6 shows also three sound rays, with different elevation angles at 
the source. One ray touches the caustic j = 3 branches, one ray touches the 
j = 2 branches, and one ray touches the j = 4 branches. The j = 3 and j = 4 
branches are touched by rays from below; the j = 2 branch is touched by rays 
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Figure L.7. Caustic curves for a logarithmic sound speed profile c(z) = Co + 
bln(z/zo + 1), with Co = 340 m/s, b = 1 m/s, and Zo = 0.1 m, for source heights 
of 3 m (a) and 1 m (b), and for a linear sound speed profile c(z) = Co +az, with 
a = 0.1 S-l, for source heights of 3 m (c) and 1 m (d). 
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from above. This means that there are shadow regions above the j = 3 and 
j = 4 branches and below the j = 2 branch. 

Figure 1. 7 shows caustic curves for a linear sound speed profile and for a 
logarithmic sound speed profile, for source heights of 1 m and 3 m. The four 
sets of caustic curves shown in the figure have a similar structure. The caustic 
structure was used in Sec. 1.2 to define the set of sound speed profiles for which 
the ray model described in this appendix is valid. 

In this section we have represented a caustic curve by a set of points. The 
(r, z) coordinates of these points will be used in Sec. L.4 for the calculation of 
caustic diffraction fields. 

L.3.3 Indices of caustic rays 

A ray touches each caustic curve (n = 1,2, ... ) at one point. These points will 
be referred to as caustic contact points. Let "Is denote the elevation angle of the 
ray at the source. For "Is = 0 the caustic contact point is exactly at the caustic 
cusp at the source height, for all n. With increasing "Is > 0, the caustic contact 
point moves up along the j = 3 branch. With decreasing "Is < 0, the caustic 
contact point moves first down along the j = 2 branch and next up along the 
j = 4 branch. 

We consider a receiver with a variable range and a constant height. With 
increasing range, the receiver crosses caustic branches from the shadow side to 
the illuminated side. If we have Zr > zs, the j = 3 and j = 4 branches are 
crossed alternately. If we have Zr < zs, the j = 2 and j = 4 branches are crossed 
alternately. Each time a branch is crossed, two new rays appear. These rays 
will be referred to as the caustic rays of the caustic branch. Table 1.2 gives 
the indices (n, j) of the caustic rays of the branches j = 2,3,4. The indices 
of caustic rays will be used in Sec. L.4 for the calculation of caustic diffraction 
fields. 

Table 1.2. Indices of the two caustic rays of the branches j = 2,3,4. 

caustic branch 
j=2 
j=3 
j=4 

(n,j) ofray 1 
(n,2) 
(n,3) 
(n,4) 

(n, j) of ray 2 
(n,6) or (n + 1,1) 
(n,7) or (n + 1,1) 
(n,8) or (n + 1,2) if Zr > Zs 

(n,8) or (n + 1,3) if Zr < Zs 

Figure 1.8 shows an example of the caustic rays of j = 3 branches. The 
caustic rays of the first branch near r = 350 m have indices (n,j) = (1,3) and 
(1,7) at the point of intersection near the branch. At the second branch near 
r = 700 m the indices are (2,3) and (3,1). This illustrates the fact that, with 
increasing distance from the caustic, the second caustic ray develops a turning 
point in front of the receiver, so that its indices change from (n, 7) to (n + 1, 1) 
(see Table 1.2). 
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Figure 1.8. Two caustic rays crossing each other at receiver positions (dots) 
in the illuminated regions of the j = 3 caustic branches. The source height is 
1.8 m and the sound speed profile is c(z) = Co + az, with Co = 340 mls and 
a = 0.1 S-l. 

For the j = 2 branch the indices of the second caustic ray change from (n,6) 
to (n + 1,1) with increasing range (see Table L.2). This change corresponds to 
the fact that the caustic contact point moves from the j = 2 branch through 
the cusp to the j = 3 branch. 

For the j = 4 branch the indices of the second caustic ray are different for 
Zr > Zs and Zr < Zs. For Zr > Zs the indices change from (n,8) to (n + 1,2) 
with increasing range, corresponding to the development of a turning point in 
front of the receiver. For Zr < Zs the indices change from (n,8) to (n + 1,3) 
with increasing range, corresponding to the fact that the caustic contact point 
moves from the j = 2 branch through the cusp to the j = 3 branch. 

The description of the ordered set of rays is now complete. The number 
of rays increases with increasing range. Figure L.9 shows the set of rays as a 
function of range for receiver heights of 1 m and 3 m, a source height of 1.8 m, 
and a linear sound speed profile. Single rays with index j = 1, 2, 3, or 4 are 
represented by open circles. Ray pairs j = (2,6), (3,7), or (4,8) are represented 
by filled circles. 

The graph in Fig. 1.9 for a receiver height of 3 m illustrates the case Zr > Zs· 

In this case new rays appear each time a j = 3 or j = 4 caustic branch is crossed. 
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Figure 1.9. Sets of sound rays as a function of range, for receiver heights of 
3 m (top) and 1 m (bottom), a source height of 1.8 m, and a linear sound speed 
profile c(z) = Co +az, with Co = 340 mls and a = 0.1 S-l. Single rays with index 
j = 1, 2,3, or 4 are represented by open circles. Ray pairs with j = (2,6), (3,7), 
or (4,8) are represented by filled circles. 

Up to range T = 350 m there are only two rays. At range T = 360 m the first 
j = 3 branch has been crossed (cf. Fig. L.8) and two new rays have appeared, 
with indices (n,j) = (1,3) and (1,7). At range r = 380 m the indices of the 
latter ray have changed to (2,1). At range r = 460 m the first j = 4 branch 
has been crossed and again two new rays have appeared, with indices (n,j) = 
(1,4) and (1,8). At range T = 490 m the indices of the latter ray have changed 
to (2,2). The cycle starts again at range r = 650 m for n = 2. 

The graph in Fig. L.9 for a receiver height of 1 m illustrates the case Zr < Zs. 

In this case j = 2 and j = 4 caustic branches are crossed. New rays appear in 
a different order than in the case Zr > Zs. 

L.3.4 Ground reflections 

In a downward refracting atmosphere, sound rays with multiple ground reflec­
tions occur. The contribution of a sound ray with indices n and j to the geo­
metrical acoustics field Pillum depends on the number of ground reflections Nni 
and the reflection coefficient Cni . This dependence is represented by Eqs. (1.2) 
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and (L.3) with index m replaced by indices n and j. The number of ground 
reflections N nj is given by 

(L.1O) 

where the quantity mgi has been defined in Sec. L.3.I. An exact expression for 
the reflection coefficient eni for a refracting atmosphere is not available. As 
an approximation we use the spherical-wave reflection coefficient (see Sec. D.4), 
which represents an analytical solution for a non-refracting atmosphere. The 
spherical-wave reflection coefficient is a function of the ground impedance, the 
reflection angle, and the distance [r2 + (zs + Zr)2j1/2, i.e. the path length of 
the reflected ray in a non-refracting atmosphere. The use of the spherical-wave 
reflection coefficient in Eq. (L.3) was also proposed by L'Esperance et al. [81]. 
The theoretical justification of this approach was studied by Li [82]. 

L.3.5 Phases of the rays 

The phase of a sound ray with indices n and j depends on the travel time tni 
along the ray, as represented by Eq. (L.4) with index m replaced by indices n 
and j. The travel time is given by 

(L.ll) 

where Tx is the travel time along the ray segment between height Zx and the 
turning point (see Fig. L.2; x = g, s, r): 

h I dz 
Tx(h) = -.-. 

CSlll 'Y 
(L.12) 

Zx 

By a change of the integration variable to y = [1- c2(z)/c2(h)j1/2 [see Eq. (L.9)] 
we find 

lI(Zx) 

Tx(h) = I c'(z)(: _ y2) dy. (L.13) 

o 

In Sec. LA we will see that the phase of a ray changes discontinuously by 
-7r /2 each time the ray touches a caustic (see also end of Sec. L.3.6). Therefore, 
the number of touched caustics between the source and the receiver will be 
required. This number depends on the indices n and j of the sound ray, and is 
denoted as K ni . We have 

Knj = n -1 for j = 1,2,3,4 
Kni = n for j = 6,7,8. 

(L.14) 
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source 
receiver 1 receiver 2 

Figure L.lO. The ray tube diameter D is the normal distance between two rays 
with slightly different elevation angles at the source. 

L.3.6 Focusing factors 

The focusing factor 1m in Eq. (L.3) accounts for the fact that, in a refracting 
atmosphere with curved sound rays, there are regions where the 'concentration' 
of sound rays is high and regions where the 'concentration' of sound rays is low 
(see Sec. 4.4). The focusing factor is calculated from the spatial divergence of 
two rays with slightly different elevation angles at the source. A measure of the 
spatial divergence is the ray tube diameter D, which is defined as the normal 
distance between the two rays (see Fig. L.lO). The system is axisymmetric with 
respect to the vertical axis through the source, so the sound pressure is inversely 
proportional to the square root of the ray tube diameter. As the focusing factor 
should be unity in the free field, i.e. the field in an unbounded non-refracting 
atmosphere, we find 1m = y'Dfree/D, where Dfree is the ray tube diameter in 
the free field. 

The ray tube diameter for ray m is calculated as follows. After ray m to the 
receiver at position (r, zr) has been traced, a second ray is traced to a receiver at 
position (r + r Pr, zr), with Pr « 1 (we use typically Pr = 10-5 ). The elevation 
angle at the source is denoted as 1's for the original ray and as 1'~ for the second 
ray; the corresponding elevation angles at the receiver are denoted as 1'r and ,:, 
respectively. We have 1's ~ 1'~ and 1'r ~ 1':. The ray tube diameter is given by 
D = rPrl sin 1'rl (see Fig. L.lO). For small1's (near-horizontal propagation), the 
ray tube diameter in the free field is given by Dfree ~ rlhsl with 81's = 1's -1'~. 
This gives the following expression for the focusing factor 

f - 1's ( 
18 1 ) 1/2 

m - Prl sin 1'rl 
(L.15) 

For small1's and Izs - zrl « r, this expression agrees with the general expres­
sion [17] 

(L.16) 

which follows from Dfree = [r2 + (zs - Zr)2]r- 1 cos'slhsl. Equation (L.16) gives 
the correct result 1m = 1 in the free field. 
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Geometrical acoustics fails near caustic points. At a caustic point the focus­
ing factor given by Eq. (L.16) diverges (we must use Pr ~ 0 here), corresponding 
to an infinite amplitude of the field in the geometrical acoustics approximation. 
The theory of caustics yields an improved approximation for the field near caus­
tic points; this will be described in Sec. L.4. 

The diverging focusing factor at a caustic point corresponds to a vanishing 
ray tube diameter. The two rays used for the calculation of the ray tube diameter 
cross each other at a caustic point. The phase change of -71"/2 at a caustic 
point (see end of Sec. L.3.5) can be interpreted as a change of sign of the ray 
tube diameter D, as the focusing factor is proportional to 1/v75 and we have 
l/A = exp(-i7l"/2). We ignore the sign of D, however, and take the phase 
change of -71"/2 into account through the phase of a ray. 

L.4 Caustic diffraction fields 

L.4.1 Theory of caustics 

In this section we describe the theory of caustics developed by Ludwig [85) and 
Kravtsov [73). 

Ludwig [85) presents asymptotic expansions in k- 1 of the solution of the 
Helmholtz equation "\l2p + k 2p = O. In general the solution can be written as a 
superposition of plane waves [17): 

p(x) = J eikq,(x,/3) Z(x, (3)d{3, (L.17) 

where k4> is a phase function, Z is an amplitude function, x represents the 
position coordinates (r and z for example), and {3 is an integration variable; {3 
can be considered as a horizontal wave number (see Appendix E). 

At most points x, the method of stationary phase can be applied (see Ap­
pendix P). This gives the solution, for high frequency, as a sum of terms of the 
following form (we will see later in this section that each term corresponds to a 
sound ray): 

(L.18) 

with 4>m (x) = 4>( x, {3m (x}), where {3m is the value of {3 at a point of stationary 
phase, i.e. (3m is a solution of the equation 

a4>(x,{3m(x» = A. ( {3 ( }) = 0 a{3 - 'f'/3 x, m X , (L.19) 

and Zm is given by 

(L.20) 
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with!J = sign(¢f3f3(x,f3m». This solution breaks down near points where we 
have ¢f3f3(x,f3m) = 0, i.e. points where two stationary phase points coincide. 
These points are the caustic points introduced in Sec. L.3. To derive a solution 
that is valid near caustics, Ludwig follows Chester et al. (24) and introduces 
functions ~(x,f3), O(x), and p(x) such that ¢(x,f3) is given by 

1 3 
¢(x,f3)=8+p~-3~ . (L.21) 

This expression is substituted into Eq. (L.17) and the integration variable is 
changed to ~. From the resulting expression only the terms most significant for 
large k are retained. This gives [85, 24) 

p(x) = eik() (go! eik(pf.-e /3ldf. + gl I ~eik(pf.-e / 3ldf.) (L.22) 

where go = go(x) and gl = gl (x) are functions that will be determined later in 
this section. Equation (L.22) can be written as 

p(x) = 21reik()(zl [go(x)k- 1/ 3 Ai( _k2/3 p(x)) + gl (x)ik-2/3 Ai' (_k2/3 p(x»] , 

(L.23) 

where Ai(t) is the Airy function of t and Ai'(t) is the derivative. The Airy 
function is defined as [1) 

(1.24) 

-00 

The integration path in this expression must be deformed near infinity into the 
complex plane to obtain a convergent integral [1). 

Ludwig substitutes the solution (1.23) into the Helmholtz equation \,12p + 
k 2p = 0 and derives differential equations that can be used to determine the 
functions 8(x), p(x), go(x), and gl(X). Ludwig shows that, to first order, 0 is 
a measure of arc length along the caustic curve and p is equal to (2/ RcY/3y , 
where Rc is the local radius of curvature of the caustic curve and y is the normal 
distance to the caustic curve. 

A caustic is identified as a set of points where we have simultaneously ¢f. = 0 
and ¢f.f. = O. From Eq. (1.21) we find, after elimination of ~, that we have 
p = 0 at the caustic. We have p > 0 in the illuminated region and p < 0 in the 
shadow region. In the illuminated region, Eq. (L.23) reduces to the geometrical 
acoustics approximation if the method of stationary phase is applied. The field 
in the shadow region can formally be described with complex rays [140, 141), i.e. 
rays with a complex phase. The complex rays represent a field that decreases 
exponentially with increasing distance from the caustic. 

The solution (L.23) is valid only for smooth caustics. Ludwig presents a 
higher-order solution for the field near a cusp of a caustic curve (see Fig. L.6). 



256 Appendix L 

The solution (L.23) for smooth caustics, however, is sufficiently accurate for the 
representation of the effects of caustics in the ray model (see Sec. L.4.3) [135]. 
Local effects of the cusps are neglected. 

Kravtsov [73] presents a practical method to determine the functions (), p, 
90, and 91. This method is described in the remainder of this section. 

From Eqs. (L.21) and (L.22) we have 

p(x) = I eil,,/>(z'~)(90 + gl€)d(,. (L.25) 

We consider a point x far from the caustic, on the illuminated side. We will 
evaluate the solution (L.25) at this point with the stationary phase method and 
equate the resulting expression to the geometrical acoustics solution. 

The value of € at the stationary phase point, denoted as €m(x), is determined 
by the equation 

(L.26) 

Substitution of Eq. (L.21) into Eq. (1.26) gives a quadratic equation for €m, 
which has two solutions: €m = ±pl/2. We use m = 1 for the solution _pl/2 and 
m = 2 for the solution pl/2. The stationary phase approximation of Eq. (L.25) 
is 

2 

p(x) = L Pm(x) (L.27) 
m=1 

with 

(L.28) 

From Eq. (L.2) we have the following expression for the geometrical acoustics 
field of a caustic ray pair: 

2 

p(x) = L Am(x)eikt/>m(Z). (L.29) 
m=1 

Comparison of Eqs. (L.27) and (L.29) gives 

(L.30) 

(L.31) 
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Substitution of ~m = ±p1/2 into Eq. (1.30) gives ¢>m = 8 ± ~p3/2, where we 
have used Eq. (1.21). This gives 

(1.32) 

(1.33) 

From Eq. (L.31) we find 

(L.34) 

f§·k P- 1/ 4 • 
gl(X) = ---(A2 + tAl). 

7r 2 
(1.35) 

The functions 8, p, go, and gl at point x are calculated with Eqs. (L.32) to 
(L.35) from the parameters ¢>1, ¢>2, AI, and A2 of the geometrical acoustics 
solution at point x. The field at point x is then given by Eq. (L.23), which 
replaces the geometrical acoustics solution. Kravtsov shows that the solution 
(L.23) is also valid at points x close to a caustic, both on the illuminated side 
and on the shadow side. 

The two stationary phase points corresponding to m = 1 and m = 2 repre­
sent two rays touching the caustic in the vicinity of the receiver (see Fig. 1.8). 
The ray with m = 1 has yet to touch the caustic and the ray with m = 2 has 
already touched it. Close to the caustic, the sound pressure contributions of the 
two rays differ only by a phase shift of 1[/2, as can be seen from Eqs. (1.18) and 
(L.20). Thus, the phase of a ray drops by 7r /2 upon touching a caustic. Conse­
quently, we have A2 ~ exp( -i7r /2)A1 = -iAl near the caustic. Therefore the 
second term on the right-hand side of Eq. (L.23), with gl given by Eq. (L.35), 
is small near the caustic. 

L.4.2 Extrapolation into the shadow region 

With the approach of Kravtsov we can calculate the field on the illuminated side 
of a caustic. First the geometrical acoustics solution is determined, including 
the phases ¢>m and amplitudes Am of the rays touching the caustic. Next the 
quantities 8, p, go, and gl are determined, and Eq. (L.23) is used for the modified 
sound pressure contribution of the rays touching the caustic. This approach 
works only for receivers in the illuminated region. To calculate the caustic 
diffraction field at a receiver in the shadow region we have to extrapolate the 
quantities 8, p, go, and gl from the illuminated region into the shadow region. 
The field in the shadow region is still given by Eq. (L.23), with the extrapolated 
values of the quantities 8, p, go, and gl. 

Since the quantities 8, p, go, and gl are regular functions of the position x, 
linear extrapolation can be used for receivers close to the caustic [1351. With 
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increasing distance from the caustic, linear extrapolation becomes inaccurate, 
but this is not a problem, since the diffraction field goes to zero with increasing 
distance from the caustic. 

L.4.3 Application of caustic theory in the ray model 
In this section we use the caustic theory described in the previous sections to 
incorporate the effects of caustics in the ray model [135]. 

We distinguish two types of rays contributing to the sum in Eq. (L.2), caustic 
rays and non-caustic rays (see Sec. L.3.3). There are at most four non-caustic 
rays, two with index n = 0 and two with index n = 1. Caustic rays are the 
new rays that appear when a receiver crosses a caustic branch from the shadow 
side to the illuminated side. These rays appear in pairs. Each caustic branch is 
touched by a single ray pair. 

Caustics affect the contribution of a caustic ray pair to the field in two ways: 

• the phase along a ray shifts by -71"/2 each time a caustic is touched, 

• the field of the ray pair is modified in the vicinity of a caustic. 

The calculation of these two effects is described in the remainder of this section. 
It follows from the last paragraph of Sec. LA.l that the phase shifts of -71"/2 

should be included in the amplitudes Am. Therefore Eq. (L.3) is replaced by 

(L.36) 

where Km is the number of touched caustics. This number is given directly 
by Eq. (L.14), which is an advantage of the ray tracing algorithm described in 
Sec. L.3. Rays and caustics are ordered in this algorithm, and for each ray the 
number of touched caustics between the source and the receiver follows directly 
from the order indices of the ray. It is not necessary to count the number of 
touched caustics numerically. 

With the phases rpm given by Eq. (LA) and the modified amplitudes Am 
given by Eq. (L.36), the quantities e, p, go, and gl follow from Eqs. (L.32) to 
(L.35), and the modified field contributions of the caustic ray pairs follow from 
Eq. (L.23). Each contribution replaces two terms in the sum in Eq. (L.2). 

Next we consider the calculation of the field Pshadow in Eq. (L.1). This field 
is the sum of all caustic diffraction fields in caustic shadow regions. The cal­
culation of a caustic diffraction field in the caustic shadow region requires the 
extrapolation of the quantities e, p, go, and g1 into the caustic shadow region. 
We assume Zr > Zs; for systems with Zr < Zs we apply the principle of reci­
procity. Figure L.ll illustrates two different extrapolation methods: horizontal 
extrapolation at constant receiver height and vertical extrapolation at constant 
receiver range. As shown in Ref. [135], horizontal extrapolation gives more ac­
curate results than vertical extrapolation. Therefore, we choose two points at 
the receiver height on the illuminated side of the caustic branch, at distances 
of typically 10 and 20 m from the caustic; to locate these points we use the 
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range 

Figure L.11. Illustration of horizontal and vertical extrapolation into the shadow 
region of a caustic j = 3 branch. 

representation of a caustic curve by a discrete set of caustic points, which was 
described in Sec. 1.3.2. First we calculate the quantities (), p, 90, and 91 at the 
two points on the illuminated side of the caustic branch, and next we deter­
mine the quantities (), p, 90, and 91 at the receiver position by linear horizontal 
extrapolation. 

Finally we mention four practical points about the implementation of the ray 
model, as described in Ref. [135]. First, the horizontal extrapolation range into 
caustic shadow regions was limited to 400 mj to avoid small discontinuities at 
400 m from the caustic, the field was linearly tapered to zero in a range interval 
of 50 m. Second, only the diffraction fields of the two nearest j = 3 branches and 
the two nearest j = 4 branches were taken into account. These two limitations 
were included in the model for computational efficiency, and have an effect on 
the field only at low frequency. At high frequency, a caustic diffraction field goes 
rapidly to zero with increasing distance from the caustic, and the two limitations 
have no effect. Third, the ground reflections of the caustic diffraction fields of 
the j = 2 branches were neglected. The corresponding error is minimized by the 
choice Zr > Zs mentioned before. The fourth point concerns the caustic cusps 
(see Fig. 1.6). Although the effects of caustic cusps are neglected, it was found 
that the accuracy in the region close to a cusp can be improved by the following 
(empirical) approach: the diffraction field above a cusp is linearly tapered to 
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zero in a range interval between rcusp - 8r and rcusp + 8r, where rcusp is the 
range of the cusp and 8r = 50 m. The same approach is applied to the end 
points at the ground surface of the j = 4 branches. 

L.5 Effects of atmospheric turbulence 

In the previous sections of this appendix we ignored the effects of atmospheric 
turbulence. In general, atmospheric turbulence causes a reduction of the depth 
of interference minima in spectra of the sound pressure level (see Chap. 5). In 
this section we describe how the effects of atmospheric turbulence can be taken 
into account in the ray model for a downward refracting atmosphere, which was 
described in the previous sections [81). The model presented in this section is 
a generalization of the ray model for a non-refracting turbulent atmosphere, 
which was described in Appendix K. The effects of caustics are ignored, except 
for the phase shift of -7r /2 at a caustic (see end of this section). 

As before, we use the symbol P for the normalized complex pressure ampli­
tude, i.e. the complex pressure amplitude divided by the amplitude IPfreel of 
the free-field sound pressure. Atmospheric turbulence causes fluctuations of the 
sound pressure. The fluctuating normalized complex pressure amplitude at the 
receiver is the sum of the contributions of all sound rays: 

N 

P= LPm, 
m=l 

where N is the number of rays and Pm is given by 

Pm = Am exp(irPm + '¢m) 

with rPm = wtm, Am = fmC:/.= (see Sec. L.3), and 

'¢m = Xm + iSm, 

(L.37) 

(1.38) 

(1.39) 

where Xm is the log-amplitude fluctuation and Sm is the phase fluctuation (see 
Appendix K). We write 

(L.40) 

and 

(L.41) 

with Um = ICmIN= and f3m = NmCi.m. 
The time-averaged relative sound pressure level is given by I:!.L = 10 Ig(lpI2). 

For weak turbulence we find (see Appendix K) 

( 
N N m-l ) 

I:!.L = 10lg 1; u!.f;" + 2 ~2 ~ UmfmUnfn cos(rPm - rPn + f3m - f3n}r mn , 

(L.42) 
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where the coherence factor r mn of ray pair (m, n) is given by 

( 1- 1- -- 1- 1-) 
rmn = exp -X X - -X2 - _X2 + S S - -S2 - -S2 . m n 2 m 2 n m n 2 m 2 n 
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(L.43) 

Following the arguments given in Appendix K, we approximate the coherence 
factor by 

(L.44) 

where Bx and Bs are the correlation functions of the log-amplitude fluctua­
tions and phase fluctuations, respectively. For the argument Pmn, twice the 
mean vertical separation between rays m and n should be used. This can be 
approximated by Pmn ~ /hm - hn/, where hm and hn are the maximum heights 
of rays m and n, respectively. 

The phase shift of -7r /2 at a caustic (see Sees. L.3 and L.4) can be taken into 
account in Eq. (L.42) by replacing the phases <Pm and <Pn by <Pm - K m7r/2 and 
<Pn - K n7r /2, respectively. It is less obvious how the effects of caustic diffraction 
fields can be taken into account in Eq. (L.42). 
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Computational methods for 
irregular terrain 

M.I Introduction 

In the computational models described in Appendices F, G, H, and L we as­
sumed a flat ground surface. In practice there are always local variations of the 
ground level. These variations have a considerable effect on sound propagation. 

In this appendix we describe two methods for the computation of sound 
propagation over more or less smooth terrain profiles: the conformal mapping 
method [43] and the Generalized Terrain PE (GTPE) method [129]. The con­
formal mapping method is described in Sec. M.2 and the GTPE method is 
described in Sec. M.3. Both methods are two-dimensional methods, based on 
the axisymmetric approximation (see Sec. EA). 

In the conformal mapping method we approximate the terrain profile by a 
chain of circle segments. The system with the terrain profile is transformed to a 
system with a flat ground surface and a modified sound speed profile, by a coor­
dinate transformation that is called a conformal mapping. The CNPE method 
or the GFPE method can be used for the computation of sound propagation in 
the transformed system. 

The conformal mapping method is illustrated in Fig. M.l. The figure shows 
the effect of the conformal mapping on the straight sound ray from the source 
to the receiver in a non-refracting atmosphere above a curved ground surface. IT 
the curvature is convex, the straight ray is transformed to an upward refracted 
ray; if the curvature is concave, the straight ray is transformed to a downward 
refracted ray. In other words, a convex curvature of the ground surface is 
transformed to an upward refracting contribution to the sound speed profile 
and a concave curvature of the ground surface is transformed to a downward 
refracting contribution to the sound speed profile. 

The GTPE method is a generalization of the CNPE method for a system 
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source receiver 
source receiver 

-----------. 

_...j~.. so~iver 

, .> 

Figure M.l. Ray illustration of the conformal mapping method. A convex 
curvature of the ground surface is transformed to an upward refracting contri­
bution to the sound speed profile; a concave curvature of the ground surface is 
transformed to a downward refracting contribution to the sound speed profile. 

with a smooth terrain profile. The terrain profile introduces several terms in the 
PE matrices, which vanish for a flat ground surface. The boundary condition 
at the ground surface is formulated with the local slope of the ground surface 
as a parameter. 

Both the conformal mapping method and the GTPE method are limited to 
smooth terrain profiles. In the conformal mapping method, the local radii of 
curvature of the terrain profile should be larger than the height of the numerical 
grid, which is typically 100 m. Therefore, terrain profiles with local radii of 
curvature smaller than typically 100 m cannot be modeled with the conformal 
mapping method. In the GTPE method, the local slope of the terrain profiles 
that can be handled is limited. Numerical computations show that the GTPE 
method gives accurate results if the local slope does not exceed about 30°. 

M.2 The conformal mapping method 

In this section we describe the conformal mapping method [43]. The terrain 
profile in the vertical plane through the source and the receiver is approximated 
by a chain of circle segments (see Fig. M.2). The radius of curvature of a circle 
segment is denoted as Re. To make a distinction between convex and concave 
circle segments, we add a sign to the radius of curvature: we use Re > 0 for 
convex segments and Re < 0 for concave segments. For each segment we apply a 
different coordinate transformation (see Fig. M.3). The transformation replaces 
a subsystem with a curved ground segment by a subsystem with a flat ground 
segment and a modified sound speed profile. Sound propagation is computed 
in the transformed subsystems, with the CNPE method or the GFPE method. 
The starting field for a subsystem is obtained from the final field of the previous 
subsystem. For the first subsystem we use a PE starting field for a monopole 
source. 
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Figure M.2. Approximation of a terrain profile by a chain of circle segments. 

y convex 

y concave 

source 

z 

Z 
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sourcer--+--~~~~~ 

.... r 

Figure M.3. lllustration of the coordinate transformation (x,y) -+ (r,z) in the 
conformal mapping method. In the rz domain we use a rectangular grid for the 
PE method. The corresponding grid in the xy domain is not rectangular. For 
a convex ground surface (top) the radius of curvature Rc and the starting angle 
1>0 are positive. For a concave ground surface (bottom) Rc and 1>0 are negative. 
For the field at r = 0 we use a PE starting field for a point source (shown here) 
or the field from a previous subsystem. 
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The vertical grid spacing in a transformed subsystem is a constant. In the 
original subsystem, however, the vertical grid spacing increases exponentially 
with height for a convex ground surface and decreases exponentially with height 
for a concave ground surface. Neighbouring subsystems have different vertical 
grid spacings, so interpolation is required to calculate the starting field for a 
subsystem from the final field of the previous subsystem. 

For each subsystem we use a local rectangular xy coordinate system (see 
Fig. M.3). The origin of the coordinate system is at the center of the circle 
segment that represents the ground surface. We assume that the system is ax­
isymmetric with respect to the vertical axis through the source (within a limited 
sector of azimuthal angle; see Sec. EA). Consequently, the three-dimensional 
Helmholtz equation reduces to the two-dimensional Helmholtz equation 

(M.I) 

with q = p..;x, where p is the complex pressure amplitude (we omit the sub­
scripts of qe, Pe, and keff' as in Appendices G and H). 

We apply a coordinate transformation (x,y) ~ (r,z) given by 

x = IRel exp (~) cos (-~ + ¢o) 
Y = IRel exp (~) sin ( - ~ + ¢o) , 

(M.2) 

where ¢o is the angle between the positive x axis and the starting radial line (see 
Fig. M.3). The coordinate transformation (M.2) is a conformal mapping, i.e. a 
transformation that preserves angles. The Helmholtz equation (M.I) becomes 

(M.3) 

where 

J == I ax ay _ ay ax I = exp ( 2z ) 
ar az ar az Re 

(MA) 

is the Jacobian of the transformation. The transformed Helmholtz equation 
(M.3) still has the form of a two-dimensional Helmholtz equation, with a wave 
number equal to JI/2k, corresponding to a sound speed J- 1/2C, where c is the 
original sound speed. 

The inverse transformation (r, z) ~ (x, y) is given by 

r = Re [¢o - arctan ( ~ ) ] 

( JX2 + y2) 
z = ReIn IReI . 

(M.5) 
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z TJ =z-H(x) 

'-----"'--------~x '---------------~ ~ = x 
H(x) 

Figure MA. Coordinate transformation (x,z) -+ (~,TJ) in the GTPE method. 

The first expression in Eq. (M.5) shows that r is the distance from the starting 
radial line measured along the surface. The second expression in Eq. (M.5) 
implies that z is related to the normal distance h from the curved surface by 

( Re +h) 
z = ReIn -e:- . (M.6) 

For h« Re we have z ~ h. 
If a source term is included on the right-hand side of the Helmholtz equa­

tion (M.1) (see Sec. AA), this term appears in Eq. (M.3) multiplied by the 
Jacobian J. For a source close to the ground, however, the Jacobian is approx­
imately equal to unity, so the modification of the source term can be neglected. 
Consequently, we can use the PE starting field in the rz domain without mod­
ification, for a source close to the ground. 

The ground impedance Z pc is an invariant of the transformation. This 
follows from the definition Z pc = p/vn , where Vn the normal component of 
the complex fluid velocity amplitude, and the relations Vn = -(up/uh) / (iwp) 
and (dz/dh}h=O = 1. Consequently, we can use the ground impedance without 
modification in the PE computation in the rz domain. 

M.3 Generalized Terrain PE (GTPE) method 

In this section we describe the Generalized Terrain PE (GTPE) method [129] . 
This method is not limited to circular ground segments, but works for arbitrary 
terrain profiles, provided the local slope does not exceed about 30°. 

M.3.1 Terrain following coordinates 

We use a rectangular xz coordinate system in the vertical plane through the 
source and the receiver; x is the horizontal range and z is the height with respect 
to an arbitrary, constant level (see Fig. MA). The terrain profile in the xz plane 
is represented by the function z = H(x}, which gives the local height of the 
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ground surface at each point x. In the next section we will apply a coordinate 
transformation (x, z) -+ (~, 17) to the Helmholtz equation; the transformation is 
given by 

~=x 

17 = z - H(x). 
(M.7) 

This coordinate transformation is not applied to transform the Helmholtz equa­
tion to an equivalent Helmholtz equation for a system with a flat ground surface, 
as in the conformal mapping method (see Sec. M.2). The coordinates ~ and 17 
are used only to denote the position of a point in the atmosphere with respect 
to the local ground level. 

The boundary condition at the ground surface yields a relation between the 
pressure and the fluid velocity component normal to the ground surface. We 
will use the local slope of the ground surface to determine the normal fluid 
velocity component at each point. The local slope is given by the deriva­
tive dH/dx = dH/~, which will be denoted as HI. The second derivative 
cPH/dx2 = cPH/de, denoted as H", also plays a role in the aTPE method. 

M.3.2 Transformation of the Helmholtz equation 

We assume that the system is axisymmetric with respect to the vertical axis 
through the source (within a limited sector of azimuthal angle; see Sec. EA). 
Consequently, the three-dimensional Helmholtz equation reduces to the two­
dimensional Helmholtz equation 

(M.8) 

with q = PVx, where p is the complex pressure amplitude. The Helmholtz 
equation (M.8) will be transformed to the ~17 coordinate system. We will use 
the notation ax = a/ax and a~ = 02 /ax2 , and similarly for the variables z, ~, 
and 17. 

From Eqs. (M.7) we find 

az = a." 
02 = 02 

z ." 

ax = of. -H'a." 
02 = 02 - 2H'a2 - Hila + H I2 a2 

x f. f.." ." .". 

(M.9) 

From Eqs. (M.8) and (M.9) we find the Helmholtz equation in the ~17 coordinate 
system: 

(M.lD) 
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For improved numerical accuracy we write the solution as (see Sec. G.3) 

q(~, 11) = ~(~, 11) exp(ika~), (M.ll) 

where ka is the wave number at some average height or at the ground surface. 
The quantity ~ usually varies slowly with~. Substitution of Eq. (M.ll) into 
Eq. (M.1O) gives 

aN + 2ikaa£.~ - 2H'(ail1~ + ikaal1~) - H"al1~ + (H,2 + l)a~~ 
+ (k2 - k~)~ = 0. (M.12) 

M.3.3 First-order GTPE 

A first-order GTPE is obtained by neglecting the terms ai~ and ail1~ in Eq. 
(M.12): 

where the operator Ll is given by 

with 

a(O = H,2 + 1 

(J(~) = 2ikaH' + H" 

,,/(11) = k2 (11) - k~. 

(M.13) 

(M.14) 

(M.15) 

For a flat ground surface we have a = 1 and (J = 0, and Eq. (M.13) reduces to 
the narrow-angle PE (G.6). 

M.3.4 Second-order GTPE 
In this section we derive a second-order GTPE from Eq. (M.12). In the deriva­
tion we use the first-order solution (M.13) to estimate the term ai~ in Eq. 
(M.12). For a flat ground surface, the second-order GTPE solution reduces to 
the wide-angle CNPE solution (see Sec. M.3.5). Therefore the derivation of the 
GTPE solution is an alternate derivation of the CNPE solution [128]. 

Equation (M.12) is integrated over one range step from { = a to { = b, with 
b = a + .6.{. For the integral of the term ai~ we use the first-order solution 
(M.13). The term ail1~ is integrated by parts. This gives the second-order 
GTPE: 

(M.16) 
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with 

b 

1", = f a(O a~1j; d~ 
a 

(M.I7) 

a 
b 

1')' = f ,(TJ)1/J~, 
a 

where a and, are given by Eqs. (M.I5) and X is given by 

X(~) = H" - 2ikaH'. (M.I8) 

The three integrals in Eqs. (M.I7) can be written as 

b 

1R = f R(~) a;1/J ~ (M.I9) 

a 

with n = 2 for R = a, n = I for R = X, and n = 0 for R = ,. The three 
integrals 1R are approximated by assuming a linear variation of a;1/J with ~ over 
the range step from ~ = a to ~ = b: 

a;1/J(O = b ;;/ a;1j;(a) + ~ ;;t a;1/J(b). (M.20) 

Substitution of Eq. (M.20) into Eq. (M.I9) gives 

1R = ARa;1/J(a) + BR a;1/J(b) (M.2I) 

with 

b 

AR = ~~ f(b - ~)R(O ~ 
a 

b 
(M.22) 

BR = ~~ f (~ -a)R(~)~. 
a 

These integrals are approximated by assuming a linear variation of R with ~ 
over the range step from ~ = a to ~ = b: 

R(O = b;;/ R(a) + ~;;t R(b). (M.23) 
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This gives 

AR = A{ [~R(a) + ~R(b)] 

BR = A{ [~R(a) + ~R(b)] . 

M.3.5 Finite-difference solution 
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(M.24) 

The second-order GTPE (M.16) can be solved numerically by approximating 
the vertical derivatives 8~tP and 81/tP with finite differences. We use the grid 
shown in Fig. M.4, with grid points a heights 

""j = j A"., with j = 1,2, ... ,M, (M.25) 

where An is the vertical grid spacing. We denote the field tP at range { as a 
vector 11 ({) with elements tPj = tP({,""j). Using the central difference formulas 

(8 .1,) . = tPj+1 - tPj-l 
1/'¥ 1/, 2A"., 

(82•1,) = tPj+1 - 2tPj + tPj-l 
1/'¥ 1/; (A".,)2 ' 

we write Eq. (M.16) as 

M211 (b) = M11l (a), 

where M2 and Ml are tridiagonal matrices given by 

M2 = C302 + C20 + Cl 

Ml = d302 + d20 + d1 . 

The quantities Cl, C2, and C3 are given by 

C3 = 2ika tA".,)2 (;:a + Bo) 
C2 = - 2ik: A"., (;~a + 2H' - Bx) 

'Y B-y 
Cl = 1 + 4k~ + 2ika ' 

(M.26) 

(M.27) 

(M.28) 

(M.29) 

where a, (3, and H' are evaluated at { = b. The quantities d1 , d2 , and d3 are 
given by 

1 (ia ) 
d3 = 2ika (A".,)2 2ka - Ao 

1 ( i(3 I A) 
d2 = - 2ika A"., 2ka + 2H + x 

(M.30) 

'Y A-y 
d1 = 1 + 4k~ - 2ika ' 
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where Q, {3, and H' are evaluated at { = a. The quantities 'Y, A'Y' B'Y' ell and 
d1 are diagonal matrices. The quantities 62 and 6 are tridiagonal matrices given 
by 

-2 1 
1 -2 1 

1 -2 1 
62 = (M.31) 

1 -2 1 
1 -2 

0 1 
-1 0 1 

6= ! 
-1 0 1 

2 
(M.32) 

-1 0 1 
-1 0 

Here we have ignored the boundary conditions at the ground surface and at the 
top of the grid. These conditions will be taken into account in the next section. 

For a flat ground surface we have Q = 1, {3 = 0, and X = 0, and the 
tridiagonal matrices (M.28) reduce to the tridiagonal CNPE matrices (G.33). 

M.3.6 Boundary conditions at the ground and the top 

At the ground surface we use the local reaction boundary condition (see Ap­
pendices C and D) 

(p) - = Zpc, 
Vn 1)=0 

(M.33) 

where Z is the normalized ground impedance, pc is the impedance of air (eval­
uated just above the ground surface), P is the complex pressure amplitude 
(p == Pc), and Vn is the component of the complex velocity amplitude normal 
to the ground surface, in downward direction (vn == vc,n). From Eq. (A.19) we 
have 

1 8p 
Vn =--

iwp8n 
(M.34) 

with 

(M.35) 
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z 

Figure M.5. Unit normal vector n and local elevation angle aH of the ground 
surface, used for the boundary condition at the ground surface. 

where n = (nz, n z ) is the unit normal vector at the ground surface, in downward 
direction (see Fig. M.5). We write 

n = (sinaH, - cosaH), (M.36) 

where aH is the local elevation angle of the ground surface, which satisfies 

tanaH = H'(x). (M.37) 

Using Eqs. (M.9) we find 

8p . 8p 1 8p 
- = SlllaH- - ----. an o{ cos a H 011 

(M.38) 

The boundary condition (M.33) becomes 

iko . (8P) 1 (8p) -Po =SlllaH - - --- - , 
Z o{ '7=0 cos a H 811 '7=0 

(M.39) 

with Po = P'7=o· Using q = py'X and q = 'l/Jexp(ika{) we find 

iko . [(8'l/J) . 1 1 (8'l/J) Z'l/Jo = SlllaH -8 + zka'I/Jo - --- -8 ' 
{ '7=0 cos aH 11 '7=0 

(M.40) 

where we have neglected a term -~'l/Jo/{ in the factor in square brackets. 
From Eq. (M.40) we will derive expressions for 'l/Jo(a) and'l/Jo(b). Using these 

expressions we will modify the tridiagonal matrices Ml and M2 given by Eqs. 
(M.28), to take the boundary condition at the ground surface into account. For 
matrix M2 we will use the expression for 'l/Jo(b); for matrix Ml we will use the 
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expression for 'l/Jo(a). Analogously, we will use expressions for 'l/JM+1 (a) and 
'l/JM+1 (b) to take the boundary condition at the top of the grid into account. 

We first consider 'l/Jo(b) for matrix M2 • The first-order finite-difference ap­
proximations of the derivatives in Eq. (M.40) are 

(~~) 1]=0 = ~~ ['l/Jo(b) - t/Jo(a») 

( ~t/J) =} ['l/Jl (b) - t/Jo(b»). 
ul1 1]=0 L.l.11 

(M.41) 

These approximations are centered at ~ = b - t~~ and 11 = t~l1, respectively. 
For second-order approximations, we estimate the change of the derivatives 
over the intervals ~ = [b - ~~~, b) and 11 = [0, ~~11J, respectively, using central­
difference approximations of the second derivatives 8i'I/J and 8~t/J, respectively 
(cf. Sec. G.8). This gives 

(~~) 1]=0 = 2!~ [-4'I/Jo(a) + 3'I/Jo(b) + t/Jo(a») 

( ~'I/J) = 2! [4t/JI (b) - 3t/Jo(b) - t/J2(b») 
ul1 1]=0 L.l.11 

(M.42) 

with a = a-~~. From Eqs. (M.40) and (M.42) we find the expression for 'l/Jo(b): 

(M.43) 

where u, v, w, and y are given by 

4 u 2sinaH w 
u = df' V = - 4"' w = d ~~ ,y = - 4"' (M.44) 

with 

f = 2~11 cos aH (M.45) 

and 

iko 3 (3/2 . ) . d=--Z+;+ ~~ +zka smaH· (M.46) 

It should be noted that the term! / ~~ in Eq. (M.46) is erroneously represented 
as 1/ ~~ in Ref. [129). The normalized ground impedance Z and the elevation 
angle aH are evaluated at ~ = b in these expressions. 

Next we consider t/Jo(a) for matrix MI. From Eq. (M.43) we find directly 

(M.47) 

with a = a - 2~~; the quantities u, v, w, and y are given by Eqs. (M.44) to 
(M.46), where Z and aH are now evaluated at ~ = a. 
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At the top of the grid we apply an analogous boundary condition, with 
normalized impedance Z = 1. From Eq. (MA3) we find, by the substitutions 
sinG:H -+ -sinG:H and COSG:H -+ -COSG:H (from n -+ -n), t:..1J -+ -t:..1J, 
ko -+ kM+1' and Z -+ 1: 

(M.48) 

where Ut, Vt, Wt, and Yt are given by 

(MAg) 

with 

tOt = 2t:..1J cos G:H (M.50) 

and 

-I ·k 3 (3/2 ·k)· ut = -z M+l + ~ - t:..( + Z a smG:H· (M.51) 

The elevation angle G:H of the ground surface is evaluated at ( = b in these 
expressions. The expression for 1/JM+l (a) follows directly from Eq. (MA8): 

(M.52) 

Here the quantities Ut, Vt, Wt, and Yt are given by Eqs. (MAg) to (M.51), where 
G:H is now evaluated at ( = a. As in the CNPE method for a flat ground surface, 
we use an absorbing layer just below the top of the grid to eliminate reflections 
from the top surface (see Sec. G.g). 

The implementation of the boundary conditions in the GTPE matrices 
(M.28) will be described in the remainder of this section. 

We first consider the left-hand side M 2 1(b) of Eq. (M.27). In the column 
vector /j21(b), the term 1/Jo(b) is 'missing' in the first element and the term 
1/JM+1 (b) is 'missing' in the last element. In the column vector 01 (b), the term 
-!1/Jo(b) is 'missing' in the first element and the term !1/JM+1 (b) is 'missing' in 
the last element. To correct for the 'missing' terms we make use of the boundary 
conditions (MA3) and (MA8). The result is that the boundary conditions at 
the ground and the top can be taken into account in the left-hand side M21 (b) 
of Eq. (M.27) by 

• replacing 021 (b) by T31 (b) + k3, 

• replacing 01 (b) by T21 (b) + k2' 



276 

-2+u l+v 
1 -2 1 

1 -2 1 

1 -2 1 
l+vt -2+ut 

W1Po (a) + Y1Po (a) 
o 
o 

o 
Wt1PM+l (a) + Yt1PM+l (a) 

-u I-v 
-1 0 1 

-1 0 1 

-1 o 1 
-1 + Vt Ut 

-w1Po(a) - Y1Po(O,) 
o 
o 

o 
Wt1P M+I (a) + Yt1PM+I (a) 

Appendix M 

(M.53) 

(M.54) 

(M.55) 

(M.56) 

The quantities u, v, W, y, Ut, Vt, Wt, and Yt in these expressions are evaluated 
at ~ = b. The left-hand side M2 ~ (b) of Eq. (M.27) becomes 

-:t 
(C3T3 + C2T2 + cd tjj (b) + C3k3 + C2k2· (M.57) 

The approach for the right-hand side Ml1P (a) ofEq. (M.27) is analogous. In 
the column vector 82 1P(a), the term 1Po(a) is 'missing' in the first element and 
the term 1PM+I(a) is 'missing' in the last element. In the column vector 61P(a), 
the term -~1Po(a) is 'missing' in the first element and the term ~1PM+I (a) is 
'missing' in the last element. To correct for the 'missing' terms we make use of 
the boundary conditions (M.47) and (M.52). The result is that the boundary 
conditions at the ground and the top can be taken into account in the right-hand 
side Ml1P (a) of Eq. (M.27) by 
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• replacing 82 ""t(a) by S3 ""tea) + m3, 

• replacing 8""t (a) by S2 ""t (a) + m2. 

The expressions for the matrices S3 and S2 are identical to the expressions 
(M.53) and (M.55) for T3 and T2 , respectively; the quantities u, v, Ut, and Vt 

in Eqs. (M.53) and (M.55) are now evaluated at ~ = a instead of ~ = b. The 
expressions for the vectors m3 and m2 are 

w1/Jo (a) + YtPo (~.) 
o 
o 

o 
Wt tP M +1 (a) + Yt tP M +1 (a) 

-wtPo(a) - YtPo(a) 
o 
o 

o 
WttPM+1 (a) + YttPM+1 (0,) 

(M.58) 

(M.59) 

where w, Y, Wt, and Yt are evaluated at ~ = a. The right-hand side Ml ""tea) of 
Eq. (M.27) becomes 

(M.60) 
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Wind and temperature 
profiles in the atmosphere 

N.1 Introd uction 

In computational models for atmospheric sound propagation, the atmosphere 
is represented by vertical profiles of the temperature and the wind velocity. 
The profiles are usually combined into a profile of the effective sound speed 
(see Sec. E.3). In this appendix we present a meteorological description of the 
temperature and wind velocity profiles. 

The profiles represent time averages of the temperature and the wind ve­
locity, over a period of typically ten minutes. The profiles do not represent 
turbulent fluctuations of the temperature and the wind velocity. The effect of 
atmospheric turbulence on sound propagation is taken into account separately, 
as described in Appendices I, J, and K. 

The profiles are often rather irregular above a height of typically 100 m. 
Below 100 m the profiles are more predictable and repeatable. Consequently, 
meteorologists have been able to develop empirical expressions for the temper­
ature and wind velocity profiles in the atmospheric surface layer, which has a 
height of typically 100 m. The expressions are based on so-called similarity 
relations, and are presented in Sec. N .6. Meteorological quantities and concepts 
used in the description of similarity relations are introduced in Secs. N.2 to N.5. 

The similarity relations give a realistic representation of the atmospheric sur­
face layer in many situations, but not in all situations. The similarity relations 
are not valid above heterogeneous grounds or above areas consisting of land and 
water [145]. The similarity relations are also not valid above hills or in valleys 
[151, 63]. In other words, the similarity relations are not valid if the ground 
surface is not flat and homogeneous. Moreover, deviations from the similarity 
relations occur also for flat and homogeneous ground surfaces. Nevertheless, 
the similarity relations give a realistic illustration of the variation of wind and 

279 
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temperature profiles in the atmospheric surface layer. 

N.2 Boundary layer and surface layer of the at­
mosphere 

The atmospheric boundary layer is the part of the atmosphere that is directly 
influenced by the earth's surface, and responds to surface effects on a time 
scale of about an hour or less [145). The surface effects include friction forces 
on moving air in the atmosphere and heat transfer from the ground to the 
atmosphere. 

The height of the boundary layer varies considerably with time and also with 
horizontal position. The height varies between a few hundred meters and a few 
kilometers. The lower 10% of the boundary layer is called the surface layer. 

The wind velocity in the atmosphere is represented by a vector with three 
components, in general. The mean wind velocity is usually represented by a 
horizontal vector, with only two components, as the vertical component of the 
mean wind velocity is usually small. Fluctuations of the vertical wind velocity, 
however, are not small, and play an important role in the vertical transport of 
heat and momentum in the boundary layer. 

The wind velocity profile in the boundary layer depends on the roughness of 
the ground surface. Friction forces at the surface 'slow down' moving air near 
the surface. Consequently, the wind speed is zero (or negligibly small) at the 
surface, and increases with increasing height above the surface. 

The direction of the mean wind velocity vector is called the wind direction. 
The wind direction usually varies with height above the ground. This is a 
consequence of the rotation of the earth; the corresponding pseudo-force is called 
the Coriolis force. The variation of the wind direction with increasing height 
is clockwise in the northern hemisphere and counter-clockwise in the southern 
hemisphere (on a 'clock' with East = 3 o'clock, South = 6 o'clock, West = 
9 o'clock, and North = 12 o'clock). The variation of the wind direction with 
height may be as large as 45° in the boundary layer. In the surface layer, the 
variation is smaller. 

The temperature profile in the boundary layer is determined predominantly 
by heating of the ground due to solar radiation in the daytime, and cooling of 
the ground at night. Clouds play an important role in this periodic cycle, which 
is called the diurnal cycle. Heat exchange between the ground and the air is 
due to various transport processes. One of the transport processes is mixing of 
air by wind velocity fluctuations, i.e. by atmospheric turbulence. 

We distinguish two types of turbulence in the boundary layer: turbulence 
driven by temperature gradients and turbulence driven by wind velocity gradi­
ents. 

Buoyancy and gravity playa role in turbulence driven by temperature gra­
dients. A volume of air that is warmer, and therefore less dense, than the 
surrounding air, rises as a consequence of buoyancy. Such a rising volume of 
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warm air is called a thermal. The upward movement of warm air is accompa­
nied by a downward movement of cool air. Hence, thermals can be considered 
as large turbulent eddies (eddies are described in Sec. 1.1). 

Turbulence driven by wind velocity gradients is called mechanical turbulence. 
The term wind shear is often used for wind velocity gradients in this context. 
The generation of turbulent eddies by wind shear is described in Sec. 1.3. Wind 
shear in the boundary layer is usually large near the ground surface and near 
obstacles, e.g. buildings. Consequently, mechanical turbulence is created near 
the ground and near obstacles. 

As a consequence of the cascade process described in Sec. 1.3, the boundary 
layer contains a mixture of eddies with various sizes. The size of the smallest 
eddies is of the order of 1 mm. The size of the largest eddies in the boundary 
layer is of the order of the height of the boundary layer. 

N.3 Potential temperature 

The pressure in the boundary layer decreases with increasing height above the 
ground, due to gravity (see Sec. E.2). From Eqs. (A.6) and (A.lO) we have 

T 
p(-y-l)/'r = constant (N.l) 

for an adiabatic ideal gas, where p is the pressure, T is the temperature, and 
, is the specific-heat ratio (r = 1.4 for air). Consequently, the temperature 
in the boundary layer also decreases with increasing height, in the adiabatic 
approximation. From Eqs. (E.6) and (N.l) we find 

dT , -1 pT 
ao == - = ----g, dz , p 

(N.2) 

where p is the density and 9 ~ 9.8 m·s-2 is the gravitational acceleration. Sub­
stitution of p = 1.2 kg·m-3 , p = 105 Pa, and T = 300 K gives ao ~ -0.01 K·m-1 . 

Hence, the temperature decreases with increasing height at a rate of 1 degree 
per 100 m. Humidity causes deviations from Eq. (N.2). The quantity ao is 
called the dry adiabatic lapse rate. 

The potential temperature e is defined as 

e = T (~) (-y-l)/'r (N.3) 

with Po = 105 Pa. From Eqs. (N.l) to (N.3) we find, using p ~ Po + (dp/dz}z, 

e ~ T - aoz. (N.4) 

Consequently, the potential temperature e is constant as a function of height in 
a dry adiabatic atmosphere, while the absolute temperature T decreases with 
height by 1 degree per 100 m. 
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One also uses the virtual potential temperature, which depends on the hu­
midity of the atmosphere. The virtual potential temperature ()y of moist air 
is defined as the potential temperature () of dry air with the same density and 
pressure. For unsaturated air we have the relation ()y = ()(1 + O.61r), where r is 
the mixing ratio, i.e. the mass ratio of water vapour to dry air in the atmosphere 
[145]. The difference between ()y and () is small and is neglected here. 

N.4 Mean and turbulent parts 

The wind velocity in the atmosphere is represented by a vector with compo­
nents u, v, and w in a rectangular coordinate system; u and v are horizontal 
components and w is the vertical component. The wind velocity components 
are split into mean parts u, V, w and turbulent parts u' , Vi, Wi: 

u = u+u' 
V =v+v' 
w=w+w'. 

(N.5) 

The mean vertical component w is small compared with the mean horizontal 
components u and V, in general. The potential temperature () is also split into 
a mean part 0 and a turbulent part ()/: 

(N.6) 

By definition, the time averages of the turbulent parts u/, Vi, Wi, and ()' are zero. 

N.5 Heat flux and momentum flux 
The flux of a quantity (e.g. mass, heat, momentum, moisture) is the amount of 
the quantity that passes through a unit area per unit time. In meteorology, the 
fluxes of heat and momentum play an important role. 

We distinguish advective fluxes and eddy fluxes. Advective fluxes are fluxes 
associated with the mean wind velocity components; eddy fluxes are fluxes as­
sociated with the turbulent wind velocity components. 

The quantity wO is an example of an advective heat flux, corresponding to 
the mean vertical transport of heat. It is not a true heat flux, which has the 
dimensions of energy per unit area per unit time, but is called a kinematic heat 
flux [145]. The three mean wind velocity components U, V, and w correspond 
to the advective kinematic heat fluxes uO, vO, and wO. 

The quantity wu is an example of an advective momentum flux, correspond­
ing to the mean vertical transport of horizontal momentum (but also to the hor­
izontal transport of vertical momentum, as we have wu = uw). The quantity 
wu is not a true momentum flux, which has the dimensions of mass times veloc­
ity per unit area per unit time, but is called a kinematic momentum flux. The 
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three mean wind velocity components 'iL, 'ii, and tv correspond to nine advective 
kinematic momentum fluxes. 

The quantity w'8' is an example of a kinematic eddy heat flux. It represents 
the vertical transport of the turbulent part of the potential temperature by the 
turbulent wind velocity component w'. The quantity w'u' is an example of a 
kinematic eddy momentum flux. It represents the vertical transport of u' mo­
mentum by the turbulent wind velocity component w'. The three turbulent 
wind velocity components u', v', and w' correspond to three kinematic eddy 
heat fluxes and nine kinematic eddy momentum fluxes. 

The vertical kinematic eddy heat flux w'8' is of particular importance in 
meteorology. This flux is a measure of atmospheric stability [145]. To explain 
this we distinguish the atmosphere in the daytime and the atmosphere at night. 

In the daytime, the temperature 8 usually decreases with increasing height 
(above land). An air volume moving upward (w' > 0) ends up being warmer 
than its surroundings (8' > 0), so we have w'8' > O. An air volume moving 
downward (w' < 0) ends up being cooler than its surroundings (8' < 0), so 
we have again w'8' > O. The positive sign of w'8' in the daytime corresponds 
to a net upward heat flux. Thermals occur frequently in this case, and the 
atmosphere is called unstable. 

At night, the temperature 8 usually increases with increasing height. Similar 
arguments as above show that this corresponds to w'8' < 0, and a net downward 
heat flux. The atmosphere is called stable in this case. 

N.6 Similarity relations 
In this section we present expressions for the vertical profiles of the mean po­
tential temperature 7i and the mean wind speed 'iL in the atmospheric surface 
layer; we represent the mean wind speed by the single velocity component 'iL, 
by assuming tv = 0 and choosing the coordinate system in such a way that 
we have 'ii = O. The profiles will be derived from empirical relations between 
dimensionless groups of meteorological quantities, which are called similarity 
relations [145]. 

For atmospheric sound propagation we need the vertical profiles of the abso­
lute temperature, the wind speed, and the wind direction. The absolute temper­
ature can be calculated from the potential temperature with the approximate 
relation (N.4). For the wind direction in the surface layer one may assume a 
constant value, as an approximation. 

We define the dimensionless wind speed derivative 

cP - K,Z au 
w - u. dz 

and the dimensionless temperature derivative 

K,Z dO 
cPt = 8. dz' 

(N.7) 

(N.8) 
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where K, = 0.41 is the von Karman constant, U. is the friction velocity defined 
by 

[---2 ---2] 1/2 
u; = (u'w')s + (v'w')s , (N.9) 

and the temperature 8. is defined by 

-(w'8'). 
8. = . (N.10) 

u. 

The subscript's' in Eqs. (N.9) and (N.lO) indicates that the eddy fluxes are 
evaluated near the ground surface. We define the Obukhov length L by 

K.g( w'8'). 
L= (N.ll) 

From Eqs. (N.lO) and (N.ll) we find the relation L = BU:/(K.g8.). In Sec. N.5 
we indicated that the eddy flux w'O' is a measure of atmospheric stability. Con­
sequently, the reciprocal Obukhov length L -1 is also a measure of atmospheric 
stability. We have L -1 < 0 for an unstable atmosphere and L -1 > ° for a stable 
atmosphere. If we have L -1 ::::J 0 the atmosphere is called neutral. 

Similarity relations between the dimensionless quantities <Pw, <Pt, and z / L 
have been developed by several meteorologists [145, 103, 19,47]. For an unstable 
atmosphere, with L -1 < 0, we have the similarity relations 

<Pw = (1-16z/L)-1/4 
<Pt = (1- 16z/L)-1/2 . 

For a stable atmosphere, with L-1 > 0, we have the similarity relations 

<Pw=<pt=1+5z/L. 

(N.12) 

(N.13) 

The relations (N.12) and (N.13) are called Businger-Dyer relations. It should be 
noted that slightly varying versions of the Businger-Dyer relations are used in 
the meteorological literature. From the Businger-Dyer relations we will derive 
expressions for the wind speed profile u(z) and the potential temperature profile 
B(z)j the profiles are called Businger-Dyer profiles. 

We integrate Eqs. (N.7) and (N.8) from a height Zo close to the ground 
surface to an arbitrary height z: 

-() -( )_ u. LIZ 1 d , IZ 
l-<pw(Z'/L)d'] uz-uZo-- -z- z 

K, z, z' 
o Zo 

(N.14) 

B(z) _ B(zo) = o. LIZ ..!..dz' _Iz 
1- <pt(z'/L) dZ'] , 

K, z, z, 
o Zo 

(N.15) 
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where the functions <Pw(z/L) and </Jt(z/L) are given by Eqs. (N.12) and (N.13). 
Close to the ground surface the wind speed is approximately zero. Therefore 
we set u(zo) = 0 in Eq. (N.14). With the notation (Jo = 8(zo) we find 

u(z) = u. [In ~ - 'l/Jw] 
K, zo 

(N.16) 

- (J. [z ] (J(z) = (Jo + - In - - 'l/Jt 
K, Zo 

(N.17) 

with 

(N.18) 

z/L 

'l/Jt = / 1 - ~t(() dC (N.19) 

o 

where we have approximated the lower integration limit z Zo by z = O. 
Substitution of the similarity relations (N.12) and (N.13) into Eqs. (N.18) and 
(N .19) gives 

and 

1 + x 1 + x 2 7r 
'l/Jw = 21n -2 - + In -2- - 2 arctan x + 2" for L-1 < 0 

for L-1 > 0 'l/Jw = -5z/L 

'l/Jt = 21n 1 + x2 

2 
'l/Jt = -5z/L 

for L-1 < 0 

for L-1 > 0 

with x = (1-16z/L)1/4. 

(N.20) 

(N.21) 

(N.22) 

(N.23) 

Holtslag [64] found that the following relations for L -1 > 0 are more accurate 
than relations (N.13): 

<Pw=<pt=1+5z/L 
4.25 1 

<Pw =<Pt =8- z/L + (z/L)2 

for z/L:::; 0.5 

for z/L > 0.5. 

(N.24) 

(N.25) 

If we use Eqs. (N.24) and (N.25) for the functions <Pw and <Ptl we find the 
following expressions for 'l/Jw and 'l/Jt for L -1 > 0: 

'l/Jw = 'l/Jt = -5z/L for z/ L :::; 0.5 (N.26) 

( /) 4.25 0.5 
'l/Jw = 'l/Jt = -71n z L - z/L + (z/L)2 - 0.852 for z / L > 0.5. (N .27) 
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Figure N.l. Businger-Dyer profiles of the wind speed u and the temperature T, 
for Zo = 0.1 m, UlO = 4 mls (the wind speed for z = 10 m), and three values 
of the reciprocal Obukhov length L-1 (see legend). The profiles have been 
calculated with Eqs. (N.16), (N.17), (N.20), (N.22), (N.26), and (N.27). Also 
shown are the corresponding profiles of the downwind sound speed c + u and the 
upwind sound speed c - u. Here c is the (mean) adiabatic sound speed, which 
is a function of T. 
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For a neutral atmosphere, with L -1 = 0, we have 'l/Jw = 'l/Jt = O. In this case the 
profiles u(z) and O(z) given by Eqs. (N.16) and (N.17) are logarithmicfunctions. 

The height Zo is called the (aerodynamic) roughness length of the ground 
surface [145]. The roughness length is an average quantity for a relatively large 
area of the ground surface. Typical values for an open field of grassland are be­
tween 0.01 m and 0.1 m. Obstacles like trees or buildings enhance the roughness 
length. The roughness length of a water surface is typically between 10-4 m and 
10-3 m. 

The profiles given by Eqs. (N.16) and (N.17) are not valid for z < Zo (sub­
stitution of z = 0 gives u = 0 = -00). In sound propagation models, however, 
we usually choose the ground surface at z = 0, so we need the profiles down to 
z = O. As Zo is relatively small, we can approximate z by z + Zo in the argument 
ofthe logarithmicfunctions in Eqs. (N.16) and (N.17). With this approximation 
we can use the profiles down to z = 0, and we have u(z) = 0 and O(z) = 00 for 
z =0. 

The parameters u., 0., 90 , zo, and L of the Businger-Dyer profiles can be 
considered as adjustable parameters. The parameters may be determined by 
fitting the profiles to measured values of the temperature and the wind speed 
at a few heights. 

Figure N.1 shows examples of Businger-Dyer profiles of the wind speed and 
the temperature, for an unstable atmosphere (L -1 = -0.1 m-1), a neutral at­
mosphere (L -1 = 0), and a stable atmosphere (L -1 = 0.1 m-1). Also shown are 
corresponding profiles of the effective sound speed c + u for downwind sound 
propagation and the effective sound speed c - u for upwind sound propaga­
tion. Here c is the (mean) adiabatic sound speed, which is a function of T (see 
Sec. A.2). 

The graphs in Fig. N.1 have logarithmic vertical axes. Consequently, the 
logarithmic wind speed profile for a neutral atmosphere is represented by a 
straight line. The temperature profile for a neutral atmosphere is given by 
T(z) = To + aoz, where ao ~ -0.01 K-m-1 is the dry adiabatic lapse rate and 
To is the surface temperature (we assumed To = 283 K). The figure shows that 
the temperature in the unstable atmosphere decreases with height more rapidly 
than in the neutral atmosphere. The temperature in the stable atmosphere 
increases with height. The wind speed always increases with height. The wind 
speed derivative dU/dz is smaller in the unstable atmosphere than in the neutral 
atmosphere, and larger in the stable atmosphere than in the neutral atmosphere. 
The large positive wind speed gradients in the stable atmosphere dominate the 
downwind sound speed profile in the stable atmosphere. 
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Sound propagation over a 
screen 

0.1 Introduction 

Noise barriers are used for the reduction of noise from sources near the ground. 
The simplest noise barrier is a vertical screen, e.g. a thin wall. In this appendix 
we describe computational models for sound propagation over a vertical screen 
on a ground surface. 

In Sec. 0.2 we describe an analytical model for sound propagation over a 
rigid screen in a non-refracting atmosphere [70, 106, 52). The sound pressure at a 
receiver is calculated as a sum of contributions of sound rays diffracted at the top 
of the screen. Similar models have been developed for more complex situations 
with wedge-shaped barriers, absorbing barriers, and impedance discontinuities 
[80, 76, 90, 93, 109, 71, 16, 21, 65, 36, 116, 133). The term 'geometrical theory of 
diffraction' is sometimes used for this analytical approach for a non-refracting 
atmosphere [52). The model presented here is based on an analytical diffraction 
solution developed by Pierce [104, 106), but other solutions can also be used 
(see Ref. [133)). 

In Sec. 0.3 we describe the application of the PE method to sound propaga­
tion over a screen in a refracting atmosphere. In general, atmospheric refraction 
has large effects on sound propagation over a screen. Therefore, the computa­
tion of sound propagation over a screen requires an accurate representation of 
the wind and temperature profiles near the screen. The wind field near a screen 
is a complex field, with large wind speed gradients in the region near the screen 
top. These screen-induced wind speed gradients may have a large effect on 
sound propagation over the screen [118, 136, 137). 

In Sec. 0.4 we present an approximate analytical representation of the wind 
speed field near a screen. This analytical representation can be used for compu­
tations of sound propagation over a screen with the PE method. A theoretical 
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Figure 0.1. Geometry with a screen on a ground surface. The screen is infinitely 
long in the direction normal to the paper. The distances from the screen top 
to the source, image source, receiver, and image receiver are indicated as d." 
dis, d., and di., respectively. The diffraction angles 1>8' 1>i8, 1>r, and 1>ir and the 
reflection angles Os and Or are also indicated. 

model for the calculation of the wind speed field near an obstacle is described 
in Ref. [29]. 

An alternate method for the computation of sound propagation over a barrier 
in a refracting atmosphere is described in Refs. [111, 147]. This method is based 
on the Kirchhoff-Helmholtz integral equation [Equation (H.7)] in combination 
with a Green's function for a refracting atmosphere, which is calculated with a 
numerical method such as the FFP or PE method. 

0.2 Analytical model for a non-refracting atmo­
sphere 

We consider the geometry shown in Fig. 0.1, with a rigid screen on a finite­
impedance ground surface. The source and the receiver are located in a vertical 
plane perpendicular to the screen (for the case of oblique propagation over a 
screen, see Refs. [104, 106]). We assume a non-refracting atmosphere in this 
section. 

The source is represented by the complex pressure amplitude of the free field, 
which is given by (see Chap. 2) 

S exp(ikR) 
Pfree = R' (0.1) 

where R is the distance from the source. The complex pressure amplitude at 



Sound propagation over a screen 291 

the receiver in the geometry shown in Fig. 0.1 is given by [70, 106, 52, 133] 

SD exp(ikRl) SQ D exp(ikR2 ) 
Pc = 1 Rl + S 2 R2 

SQ D exp(ikR3) SQ Q D exp(ikR4) 
+ r 3 R3 + S r 4 R4 . (0.2) 

The four terms on the right-hand side represent the contributions from four 
sound paths, or sound rays, 
ray 1: source -t screen top -t receiver 
ray 2: source -t ground -t screen top -t receiver 
ray 3: source -t screen top -t ground -t receiver 
ray 4: source -t ground -t screen top -t ground -t receiver. 
The four rays are illustrated in Fig. 7.1. The path lengths of the four rays, 
denoted as Rl, R2 , R3, and R4, respectively, are given by (see Fig. 0.1) 
ray 1: Rl = ds + dr 
ray 2: R2 = dis + dr 

ray 3: R3 = ds + dir 

ray 4: ~ = dis + dir . 

The factors D1 , D2, D3, and D4 in Eq. (0.2) are spherical-wave diffraction 
coefficients for the four rays, and are specified below. The factors Qs and Qr in 
Eq. (0.2) are spherical-wave reflection coefficients (see Chap. 3 and Sec. D.4), 
corresponding to the ground reflections near the source and near the receiver, 
respectively (see Fig. 0.1). For the calculation of Qs we use the geometrical 
arguments dis and Os, and for the calculation of Qr we use dir and Or (in Chap. 3 
and Sec. D.4 these arguments are denoted as R2 and 0, respectively). 

We have assumed here that the receiver is below the shadow boundary of 
the source, i.e. the line through the source and the screen top. If the receiver is 
above the shadow boundary of the source, the direct ray (source -t receiver) also 
contributes to the complex pressure amplitude at the receiver. If the receiver 
is above the shadow boundary of the image source (see Fig. 0.1), the reflected 
ray (source -t ground -t receiver) also contributes. 

The spherical-wave diffraction coefficients are given by 

Dl = D(cPs, cPr, dg, dr ) 

D2 = D( cPis, cPr> dis, dr ) 

D3 = D(cPs, cPir> dg, dir) 
D4 = D(cPis,cPir,dis,dir), 

(0.3) 

where the function D is defined by the expression [104, 106] 

eirr / 4 

D(cPs, cPr> ds, dr ) = v'2 {AD [X (cPr + cPr)] + AD[X (cPr - cPr)]} . (0.4) 

The function X in this expression is given by 

X(cP) = -2cos(cPj2) (0.5) 
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where k is the wave number. The function AD(X) is given by 

AD(X) = sign(X) [f(lXI) - ig(IXI)] , (0.6) 

where sign(X) is 1 for X ~ 0 and -1 for X < 0, and I(X) and g(X) are the 
auxiliary Fresnel functions, which can be calculated with the following expres­
sions [I}: 
I(X) = (1 + 0.926X)/(2 + 1.792X + 3.104X2) and 
g(X) = 1/(2 + 4.142X + 3.492X2 + 6.67X3). 
For X ~ 2 these expressions reduce to I(X) = l/(7rX) and g(X) = I/(7r2 X3), 
in good approximation. 

The sound pressure level at the receiver can be represented by a relative 
sound pressure level, analogous to the case of sound propagation over a ground 
surface described in Chaps. 3 and 4. The relative sound pressure level is given 
by the expression 6.L = 10 Ig(IPcI2 /IPfreeI2), where Pc is given by Eq. (0.2) and 
Prree is given by Eq. (0.1). 

0.3 PE method for a refracting atmosphere 

In Appendices G and H we described the CNPE and GFPE methods for sound 
propagation in a refracting atmosphere over a flat ground surface. In this section 
we describe the application of the two PE methods to sound propagation over 
a ground surface with a vertical screen [I32}. 

The basic approach of the two PE methods is as follows (see Appendices G 
and H for details). Based on the axisymmetric approximation (see Sec. E.4), 
the sound field of a harmonic monopole source is computed in the rz plane, 
where r is the horizontal range and z is the height (see Fig. E.l). The field 
is represented by the variable 1/1(r,z), which is related to the complex pressure 
amplitude by Eqs. (G.2) and (G.4). The source is represented by a starting 
function 1/1(O,z) at range r = O. The field t/J(r,z) is computed on a rectangular 
grid in the rz plane, by a step-wise extrapolation in the positive r direction. 

A vertical screen on the ground surface, at range r = rt, is taken into account 
as follows. For r < rt the field t/J is computed as usual. At r = rt we set t/J = 0 
at all grid points located on the screen; in other words, we set t/J(rt, z) = 0 for 
z < H, where H is the screen height. For r > rt the computation of the field 
continues as usual. Thus, the part of the sound field that falls on the screen is 
eliminated. 

This simple approach gives accurate results in the region behind the screen 
(r > rt), as follows from comparisons of PE results with analytical results for a 
non-refracting atmosphere (see Chap. 7). It should be noted that the computed 
field shows small spurious oscillations as a function of range. The spatial period 
of the oscillations is of the order of the acoustic wavelength. The oscillations can 
be eliminated by averaging the field over a range interval of a few wavelengths. 

The reflection of sound waves by the screen is not taken into account in 
the PE computation. The good agreement of PE results with analytical results 
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implies that the effect of the reflection on the field behind the screen is small 
and can be neglected. The effect of the reflection on the field in the region 
between the source and the screen (0 < r < rt) is not negligible, in general. A 
PE method that takes the reflection into account is described in Ref. [160). 

Not only the reflection, but also the reflective properties of the screen mate­
rial are ignored in the PE computation. Therefore the screen can be considered 
neither as a rigid screen nor as an absorbing screen. In general, the reflective 
properties of a screen are of minor importance for sound propagation over the 
screen [74). 

The approach of setting the field equal to zero at the grid points located 
on the screen is equivalent to setting the field equal to zero on the back side of 
the screen, i.e. the side not 'seen' by the source. This approach is called the 
Kirchhoff approximation [142). 

The angular limitation of the PE method (see Secs. 4.5 and 4.6.2) implies 
that the PE method cannot be used if the source or the receiver are close to the 
screen. The minimum distance is typically a few screen heights. In general, the 
screen top should be well inside the region of validity of the PE method (see 
Fig. 4.11). This condition is satisfied in many practical situations. 

The assumption of axial symmetry in the PE method implies that we model 
in fact a circular screen, i.e. a screen on a horizontal circle with the source at the 
center. The effect of the curvature of the circular screen, however, is negligible 
in practical situations; this follows from the above mentioned comparisons with 
analytical results for a non-refracting atmosphere, as the analytical results are 
valid for a straight screen. 

In the three-dimensional GFPE method (see Sec. H.12), the effect of a screen 
can be taken into account in a similar way as in the two-dimensional PE meth­
ods. In the three-dimensional GFPE method we use cylindrical r¢z coordinates 
and compute the field 'I/J(r, ¢, z) in a pie slice region (see Fig. H.6), by a step-wise 
extrapolation in the positive r direction. We assume that the screen is located 
on a circle segment at range r = rt, in the angular sector ¢l ::; ¢ ::; ¢2. The 
angles ¢l and ¢2 correspond to the vertical edges of the screen. The length of 
the screen is rt(¢2 - ¢d. The effect of the screen is taken into account in the 
PE computation by setting the field equal to zero at the grid points located on 
the screen, i.e. grid points with z < H and ¢l < ¢ < ¢2 at range r = rt. This 
approach corresponds to the Kirchhoff approximation, and is analogous to the 
approach described before for the two-dimensional PE methods. 

0.4 Wind field near a screen 

In this section we describe an approximate analytical representation of the wind 
speed field near a vertical screen (e.g. a thin wall) on a ground surface [137]. 
The analytical representation was developed on the basis of measurements of 
wind speed profiles in a wind tunnel, and numerical computations of air flow 
over a screen. Far from the screen we assume a logarithmic wind speed profile. 
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We assume that the wind direction is normal to the screen. 
The screen is located at x = 0 on a horizontal x axis. The height of the 

screen is H. The wind vector is in the positive x direction. The effect of the 
screen on the wind speed profile is restricted to the region (-3H ~ x ~ 20H, 
o ~ z ~ lOH). Outside this region we assume an undisturbed logarithmic 
profile given by (see Sec. N.6) 

uo{z) = u. In (.::.. + 1) , 
K Zo 

(0.7) 

where Zo is the roughness length, u. is the friction velocity, and K = 0.41 is the 
von Karman constant. For a given value of zo, the profile uo{z) is determined 
by the value of the friction velocity u •. Instead of u. we use the value of the 
wind speed uo{z) at height z = 10 m, which we denote as UlO. 

The 'disturbed' profiles in the region (-3H ~ x ~ 20H, 0 ~ z ~ lOH), which 
are specified below, are valid for undisturbed wind speeds UlO between zero and 
about 15 m/s. Figure 0.2 shows the profiles for UlO = 4 mis, Zo = 0.1 m, and 
H = 6 m, at the positions x = -5H, -3H, -H, H, 3H, ... ,19H. 

The disturbed profiles in the region (-3H ~ x ~ 20H, 0 ~ z ~ lOH) are 
calculated from six profiles, at x = -3H, -H, 0, H, 5H, and 20H, respec­
tively. For intermediate values of x we use linear interpolation. The profiles at 
x = -3H and 20H are equal to the undisturbed logarithmic profile uo{z) given 
by Eq. (0.7). The profiles at x = -H, 0, H, and 5H are given by 

for z ~ Z2 

u{z) = for Z2 < Z ~ Z3 (0.8) 

~(U3 + U4) + ~(U3 - U4) cos (7[' z - Z3 ) 
Z4 - Z3 

for Z3 < Z ~ Z4 

with Z4 = lOH and U4 = Uo{Z4)i the parameters Z2, U2, Z3, and U3 are given in 
Table 0.1, where Sa, Sb, Se, and Sd are the values ofthe fractional speed-up factor 
s{z) = u{z)luo{z) at height z = Z3 and x = -H, 0, H, and 5H, respectively. 
These values are calculated from the equation of mass conservation 

I u{z) dz = I uo{z) dz. (0.9) 

The integration intervals in this equation can be restricted to the interval be­
tween z = 0 and Z4 = lOH, since we have u = Uo for z > 10H. Substitution of 
Eqs. (0.7) and (0.8) into Eq. (0.9) gives 

Sa = [(6 + zol H)vo{lOH) - 1O]/[5vo{2H)] 
Sb = [(5.65 + zol H)vo(lOH) - 1OJ/[4.5vo{1.3H)] 
Se = [(6 + 0.1(27['-1 + 0.5) + zol H)vo(lOH) - 1OJ/[4.5vo{2H)] 

(0.10) 

Sd = [(6.5 + 0.3(7['-1 + 1.25) + zol H)vo(lOH) - 1O]/[4.75vo(3H)] 
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with vo(z) = In(l + zlzo). The values of the speed-up factors given by Eqs. 
(0.10) are typically between 1.2 and 1.4. 

Table 0.1. Parameters Z2, U2, Z3, and U3 for the wind speed profiles at x = -H, 
0, H, and 5H. 

x=-H x=O x=H x=5H 
Z2 0 H H 0.5H 
U2 0 0 -0. luo(z4) -0.3UO(Z4) 
Z3 2H 1.3H 2H 3H 
U3 SaUO(Z3) SbUO(Z3) ScUO(Z3) Sd UO(Z3) 

-5 -3 -1 3 5 7 9 11 13 15 17 19 
normalized range 

Figure 0.2. Wind speed profiles at horizontal positions x = -5H, -3H, -H, 
H, 3H, ... , 19H, calculated for H = 6 m, Zo = 0.1 m, and UIO = 4 m/s. 
Normalized range is x I H and normalized height is z I H . 
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The method of stationary 
phase 

The method of stationary phase gives an approximation for large k of the integral 

b 

I = ! g(t)eikh(t) dt, (P.I) 

a 

where a, b, and k are real numbers, h(t) is a real function that is twice contin­
uously differentiable, and get) is a continuous function. 

For large k the integrand in Eq. (P.I) is a rapidly oscillating function of t. 
Figure P.I shows an example for get) = 1, k = 2, and h(t) = t2 - 4t. The upper 
graph shows the real part of the integrand F == g(t)eikh(t) as a function of t. 

y 

The lower graph shows the real part of the function J(y) = f g(t)eikh(t) dt. We 
a 

have 1= J(b). The figure illustrates that the integral is dominated by a narrow 
integration interval around the point of stationary phase at t = to, which is 
defined by the relation hl(to) = o. In this case we have hl(t) = 2t - 4, so the 
point of stationary phase is at to = 2. 

The stationary phase approximation of Eq. (P.I) for large k is (see, for 
example, Ref. [52]) 

1= get )eikh(to) ( 27r ) 1/2 eiwrr/4 
o klhl/(to)1 

(P.2) 

with /1 = sign[hl/(to)), where sign(x) is 1 for x > 0 and -1 for x < O. In 
the above example with get) = 1, k = 2, and h(t) = t 2 - 4t, Eq. (P.2) gives 
1= 0.75 - 1.0Ii. The real part 0.75 agrees with the graph of ReJ in Fig. P.I, 
which gives ReJ ~ 0.75 at y = 10. 

Equation (P.2) is valid if there is only one stationary phase point in the 
integration interval [a, b]. If there are several stationary phase points in the 
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interval [a, b], each point has a contribution given by Eq. (P.2) to the integral 
in Eq. (P.I). 
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Figure P.l. Illustration of the stationary phase method of approximating the 
integral I = J: g(t)eikh(tldt, for the case g(t) = 1, k = 2, h(t) = t2 - 4t, 
a = -5, and b = 10. The upper graph shows the real part of the integrand 
F == g(t)eikh(tl as a function of t. The point of stationary phase, i.e. the point 
where we have h'(to) = 0, is at to = 2 in this example. The lower graph shows 
the real part of the function J(y) = J: g(t)eikh(tl dt. The integral I = J(b) is 
dominated by a narrow integration interval around the stationary phase point. 
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314 List of symbols 

List of symbols 
Notation for time averages (see Sees. A.2, B.2, B.3, 1.4, K.2, N.4) 
A time average over acoustic fluctuations is denoted by a subscript 'av', for 
example in (P2)av. 
A time average over turbulent fluctuations is denoted by a line above the 
symbol, for example in X. 

Notation for vectors 
Boldfaced symbols are used for vectors, for example r = (x,y,z). 

Notation for derivatives 
8z I == 81/ 8x partial derivative of function I. 
8;1 == 82 f/ 8x2 second derivative off unction I· 
f'(x) == dl/dx derivative of function I(x). 
D/Dt == 8/8t + v· V (total) time derivative in frame moving with velocity v. 
V == (8z , 8y , 8z ) (in rectangular xyz coordinates). 

V 1= (8z/, 8y/, 8z!) gradient of scalar function f. 
V . v = 8zvz + 8yv1l + 8z vz divergence of vector function v = (vz, VY' vz ). 

Roman symbols 
a sound speed gradient in linear sound speed profile c(z) = Co + az, 

correlation length of turbulent refractive-index fluctuations, 
initial value of e coordinate in GTPE range step. 

a quantity defined below Eq. (M.42). 
a quantity defined below Eq. (M.47). 
a2, a4, a6, as constants in PE starting field (Sees. G.12 and H.1O). 
ak pole in residue theorem (H.33). 
arg(z) argument of complex number z, arg(z) = arctan[Im(z)/Re(z)]. 
A amplitude of sound wave, 

quantity defined in Eq. (D.40), 
quantity defined below Eq. (1.53). 

Ao,A2,A4,A6,As constants in PE starting field (Sees. G.12 and H.IO). 
Aj constant in Eq. (F.5). 
Am (complex) amplitude of sound ray m. 
At absorption parameter for top layer in PE grid (Sec. G.g). 
AD(X) function defined in Eq. (0.6). 
AR coefficient defined in Eq. (M.24). 
Ai(t) Airy function, defined in Eq. (L.24) 
b parameter of logarithmic sound speed profile (4.5), 



List of symbols 

b final value of ~ coordinate in GTPE range step. 
b1, b2 quantities defined in Eqs. (BA4) and (BA5). 
b2 , B constants in PE starting field (Secs. G.12 and H.I0). 
bt,bu,bv parameters in profiles (4.12), (4.13), and (4.14). 
B correlation function of random function, 

correlation function of refractive-index fluctuations. 
Bij correlation function of components i and j of random vector function, 
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correlation function of components i and j of wind velocity fluctuations. 
B j constant in Eq. (F.5). 
Bm correlation functions Bl == Bx and B2 =- Bs in Eq. (K.9). 
Brr longitudinal correlation function. 
Btt transverse correlation function. 
BR coefficient defined in Eq. (M.24). 
Bs correlation function of phase fluctuations. 
BT correlation function of temperature fluctuations. 
Bx correlation function of log-amplitude fluctuations. 
C (adiabatic) sound speed, 

effective sound speed (c == Celf). 

c' sound speed in ground (Sec. D.3). 
CO sound speed at ground surface (z = 0), 

sound speed at temperature To (e.g. CO = 331 mls at To = 273 K), 
average sound speed in turbulence models (see Sec. I.2). 

Cl, C2 sound speeds indicated in Figs. 4.1 and 4.2, 
sound speeds above and below ground surface, respectively (Sec. DA). 

Cl, C2, C3 quantities defined in Eq. (M.29). 
Celf effective sound speed. 
Ck residue in residue theorem (H.33). 
c; quantities defined in Eq. (GA8). 
cp specific-heat coefficient of air at constant pressure. 
Cs structure constant of porous medium. 
Cv specific-heat coefficient of air at constant volume. 
C closed integration contour, 

constant in Kolmogorov spectrum in Appendix 1. 
C, Cp , Cs reflection coefficients in PE starting field. 
C1 ,C2 ,C3 ,C4 constants in Eq. (D.36). 
Cm reflection coefficient for sound ray m. 
Csat quantity defined in Eq. (B.50). 
C; structure parameter of turbulent wind velocity fluctuations. 
Ct structure parameter of turbulent temperature fluctuations. 
d thickness of porous layer (Fig. CA), 

numerical distance defined in Eq. (D.57), 
quantity defined in Eq. (MA6). 

d1 , d2 , d3 quantities defined in Eq. (M.30). 
ds,d.,d;s,d;r diffraction distances in Fig. O.I. 
dt quantity defined in Eq. (M.51). 
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dz , dy , dz finite dimensions of source in Fig. 3.13. 
D ray tube diameter, 

diagonal PE matrix (G.29), 
structure function of random function, 
structure function of refractive-index fluctuations, 
diffraction coefficient (Sec. 0.2). 

D1 , D2 , D3 , D4 diffraction coefficients (Sec. 0.2). 
Dfree ray tube diameter in free field. 

List of symbols 

Dij structure function of components i and j of random vector function, 
structure function of components i and j of wind velocity fluctuations. 

Drr longitudinal structure function. 
Dtt transverse structure function. 
ez , ey, ez unit vectors in positive x, y, and z directions, respectively. 
erf(x) error function. 
erfc(x) complementary error function. 
E1 (z) exponential integral function (Sec. G.12.3). 
I frequency. 
I(x) general notation for function. 
I(X) auxiliary Fresnel function. 
Ie center frequency of l/3-octave or octave band. 
le,m center frequency of 1/3-octave or octave band m. 
1m focusing factor for sound ray m. 
In frequency of interference minimum, Eqs. (3.11) and (3.12), 

frequency of harmonic component n in spectral decomposition, 
functions defined below Eq. (G.50). 

Ir,N,/r,o relaxation frequencies of nitrogen and oxygen, respectively. 
In Doppler factor in Sec. B.6. 
F function in spectral theorem (H.51), 

two-dimensional spectral density of random function, 
two-dimensional spectral density of refractive-index fluctuations. 

F(d) boundary loss factor defined in Eq. (D.60). 
F(kr ) function defined below Eq. (F.33). 
F(kz ) phase function in Eqs. (G.55) and (H.63). 
Fij two-dimensional spectral density of components i and j of random vector 

function, 
two-dimensional spectral density of components i and j of wind velocity 

fluctuations. 
FT two-dimensional spectral density of temperature fluctuations [below 

Eq. (1.47)]. 
9 grain shape factor of porous medium, 

gravitational acceleration, 
Green's function, 
phase function defined in Eq. (E.44). 

g(x) general notation for function. 
g(X) auxiliary Fresnel function. 



List of symbols 

90,91 functions in Eq. (1.22). 
92 two-dimensional Green's function (Sec. H.3). 
93 three-dimensional Green's function (Sec. H.3). 
G spatial Fourier transform of Green's function 9, 

'mode amplitude' in Eqs. (J.24) and (J.34). 
G(kr ) function defined below Eq. (F.33). 
h maximum height of sound ray (Fig. 4.9), 

humidity, molar concentration of water vapour in the atmosphere, 
normal distance from curved ground surface (Sec. M.2). 

hn maximum height of sound ray with n turning points [Equation (4.9)]. 
hnj maximum height of sound ray with indices n and j. 
H height of noise screen. 
H(x) Heaviside step function in Sec. DA, 

terrain profile in GTPE method. 
HI square-root operator defined in Eq. (G.13). 
H2 operator defined in Eq. (G.8). 
HI (x, It), H 2 (x, It) functions defined below Eq. (K.9). 
H la operator defined below Eq. (HA6). 
H2a operator defined below Eq. (HA5). 
H~I)(X) Hankel function of first kind and order zero. 
HJJ~m quantities defined in Eqs. (GA9) and (G.50). 
I general symbol for integral. 
I acoustic intensity, I = pv. 
lay average acoustic intensity. 
lay magnitude of lay, lay = Ilayl. 
IR integral defined in Eq. (M.21). 
IQ,Tx.,!., integrals defined in Eq. (M.17). 
Im(z) imaginary part of complex number z. 
j integral number. 
J Jacobian defined in Eq. (MA). 
In(x) Bessel function of order n. 
k wave number (k = w/c in air; for porous media, see Sec. CA), 

effective wave number k == keff' 
wave number k == km, see Eq. (F.2). 

k wave number vector, for example in Eq. (1.19). 
k' wave number in ground (Sec. D.3). 
ko wave number in ground in Appendix F, 

wave number at ground surface in PE methods. 
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k}, k2 wave numbers above and below ground surface, respectively (Sec. DA). 
k2, k3 vectors (M.56) and (M.54). 
ka reference value of wave number k(z) at some average height or at ground 

surface, in PE methods (Secs. G.3 and H.6). 
keff effective wave number, keff = W/Ceff (often k == keff). 
ki small imaginary part of wave number (Sec. 2.5). 
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k jz wave number defined in Eq. (0.37). 
km generalized wave number for moving atmosphere, defined in Eq. (E.30). 
kmax wave number in exponential cut-off factor (Sec. 1.7.1). 
kmz wave number defined in Eq. (E.31). 
kn,max maximum wave number defined in Sec. J.3.3. 
knz, kny , knz' knr components of wave number vector kn (Secs. J.3 and JA). 
kr.p wave number corresponding to rep - rep' by Fourier transformation, in 

Eq. (H.82). 
ks real part of kr in Eq. (F.23). 
ksz real part of kz in Eq. (F.25). 
ksy real part of ky in Eq. (F.25). 
kt small positive number in Eqs. (F.23) and (F.25). 
lev vertical wave number defined in Eqs. (H.27) and (H.85). 
kz, ky, kr wave numbers corresponding to x, y, r by Fourier transformation. 
kz, ky quantities defined below Eq. (0.1). 
k~, k~ quantities defined below Eq. (0.3). 
kz, ky, kz components of vector k in Eq. (1.25). 
kz wave number corresponding to z by Fourier transformation, 

wave number related to kz and ky or kr by Eqs. (F.2) and (F.3), 
integration variable in Eq. (G.53). 

k.p wave number related to kr.p by k.p = kr.pr. 
K integral number, 

constant in Eq. (A.6). 
Ko parameter of von Karman turbulence spectrum. 
Km number of touched caustics in Eq. (L.36). 
Knj number of caustics touched by ray with indices n and j. 
Kv(x) modified Bessel function of order v. 
I size of turbulent eddy. 
10 size of smallest eddies, inner scale of turbulence. 
Ig(x) logarithm of x to the base 10. 
In(x) logarithm of x to the base e (natural logarithm). 
L characteristic length (Sec. 1.3), 

size of largest eddies, outer scale of turbulence, 
horizontal distance between source and receiver (Appendix K), 
Obukhov length. 

L1 operator (M.14). 
Lin inner scale of turbulence. 
Lout outer scale of turbulence. 
Lp sound pressure level. 
Lp,free sound pressure level of free field. 
LA A-weighted sound pressure level. 
Lw sound power level. 
m index of 1/3-octave or octave band, 

index of sound ray, e.g. in Eq. (4.7). 
m2, m3 vectors (M.59) and (M.58). 



List of symbols 

m"" my quantities defined below Eq. (E.30). 
mxj quantities given in Table L.l. 
M integral number. 
M I , M2 tridiagonal PE matrices. 
M-, M+ tridiagonal PE matrices. 
M~,j matrix elements (G.47). 
n integral number, 

acoustic refractive index, 
index of harmonic component in spectral decomposition, 
number of turning points of sound ray. 

n unit normal vector. 
N integral number. 
Nm number of ground reflections of sound ray m. 
Nnj number of ground reflections of sound ray with indices n and j. 
Npr Prandtl number. 
Nrays number of sound rays. 
NR Reynolds number. 
P acoustic pressure or sound pressure, 

in Appendices H and M: complex pressure amplitude P == Pc, 
in Appendix L: normalized complex pressure amplitude Pe/IPfreel, 
in Appendix N: total pressure of atmosphere, 
exponent P = 2/3 in Sec. I. 7. 

319 

Pl,P2 complex pressure amplitudes of direct and reflected fields in Eq. (K.l), 
complex pressure amplitudes above and below ground surface (Sec. D.4). 

Pa total pressure of atmosphere, Pa = Pay + p. 
Pay average pressure of atmosphere. 
Pc complex amplitude of acoustic pressure (complex pressure amplitude). 
Pe,i complex pressure amplitude of incident wave. 
Pc,r complex pressure amplitude of reflected wave. 
Pfree complex pressure amplitude of free field. 
Pillum contribution to field P in Appendix L, defined below Eq. (L.l). 
Pj complex pressure amplitude at height Zj, Pj = Pe(Zj) (Secs. G.8 and G.9). 
Pm contribution of ray m to field p, given by Eqs. (L.28) and (L.38). 
Pr atmospheric pressure Pr = 101 325 Pa (Sec. B.5). 
Pr,Pi real and imaginary parts of Pc = Pr + iPi (Sec. B.2). 
Pref reference sound pressure (20 JLPa). 
Ps,Pis source and image source contributions to PI, above Eq. (D.52). 
Psat saturation vapour pressure (Sec. B.5). 
Pshadow contribution to field P in Appendix L, defined below Eq. (L.l). 
P Fourier transform of time signal p(t), 

(spatial) Fourier transform of Pe(r). 
PI, P2 Fourier transforms of PI and P2 (Sec. D.4). 
Pe,n Fourier coefficients related to Pn by Eq. (B.25). 
Pj value of P in layer j [Equation (F.5)]. 
PJ derivative of Pj . 
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Pmu , Pml values of P at source height in FFP method, defined in Sec. F.3. 
Pn Discrete Fourier Transform of time signal p(t), defined in Eq. (B.22). 
Ps, l'is source and image source contributions to PI [Equation (D.44)]. 
q tortuosity of porous medium, 

integration variable (Sec. Do4), 
quantity defined in Eq. (G.2) (q == qe). 

qo(z) PE starting function for unbounded atmosphere. 
qc quantity defined in Eq. (C.lI), 

quantity defined in Eq. (G.2) (q == qe). 
Q spherical-wave reflection coefficient, 

Fourier transform of quantity qc (Appendix H), 
quantity defined below Eq. (E.23), 
operator in spectral theorem (H.51). 

Qj value of Q in layer j (Sec. F.7). 
Qj derivative of Qj (Sec. F.7). 
Qmu, Qml values of Q at source height in FFP method, defined in Sec. F.7. 
Qs, Qr spherical-wave reflection coefficients in Sec. 0.2. 
r distance, 

horizontal range. 
r position vector. 
TI, T2 distances indicated in Fig. 4.2. 
Th relative humidity (in %). 
Tnj horizontal distance covered by ray with indices n and j. 
Ts source range (Ts = 0). 
rs source position vector. 
Tt range of screen in Fig. O.I. 
R distance, 

radius of circle (segment), 
constant in ideal-gas law (A.lO), 
plane-wave reflection coefficient (Sec. F.7), 
quantity R = 0:, X, 'Y (Sec. M.3.4). 

R position vector. 
RI distance between source and receiver (Fig. D.2). 
R2 distance between image source and receiver (Fig. D.2). 
RI ,R2 ,R3,14 path lengths of diffracted rays in Eq. (0.2). 
Be radius of curvature. 
D.p, R(kz ) plane-wave reflection coefficient. 
RA quantity defined in Eq. (B.37). 
Re(z) real part of complex number z. 
s path length along sound ray, 

(propagation) distance, 
operator defined in Eq. (G.ll). 

s(q) image source distribution (Sec. Do4). 
s(z) fractional speed-up factor (Sec. 004). 
s separation vector (Sees. J.3 and Jo4). 



List of symbols 

Sa, Sb, Se, Sd speed-up factors given by Eq. (0.10). 
Sf pore shape factor ratio of porous medium. 
S constant in expression Pc = S exp(ikr)/r for spherical wave, 

turbulent phase fluctuation. 
S(kz) amplitude in Eqs. (G.53) and (H.61). 
S2, S3 tridiagonal matrices in Eq. (M.60). 
Sc closed surface, for example in Gauss' theorem (A.25). 
Sm turbulent phase fluctuation of ray m. 
So factor in Eq. (F.l). 
t time. 
tm acoustic travel time along sound ray m. 
tnj acoustic travel time along sound ray with indices n and j. 
T period of harmonic sound wave, 

absolute temperature, 
tridiagonal PE matrices (G.28) and (G.43). 

To constant temperature in Eq. (A.15) (To = 273 K), 
average temperature in turbulence models (see Sec. 1.2). 

To! triple-point temperature of water (Sec. B.5). 
T20 temperature T20 = 293.15 K (Sec. B.5). 
T2 , T3 tridiagonal matrices (M.55) and (M.53). 
Tp plane-wave transmission coefficient. 
Tt turbulent temperature fluctuation. 
u horizontal component of wind velocity (in the direction of sound 

propagation) , 
horizontal component of acoustic fluid velocity v, 
quantity defined in Eq. (M.44). 

u' turbulent wind velocity component (Appendix N). 
u* friction velocity defined in (N.9). 
u(z) horizontal wind speed profile. 
Uo (z ) horizontal wind speed profile (0.7). 
UlO wind speed at a height of 10 m (Chap. 7 and Appendix 0). 
U2, U3, U4 wind speeds defined below Eq. (0.8). 
U av horizontal component of average fluid velocity Yay. 

Ut quantity defined in Eq. (M.49), 
turbulent wind velocity fluctuation. 

U Fourier transform of velocity u, defined in Eq. (E.17). 
Um quantity defined below Eq. (L.41). 
v horizontal component of wind velocity, 

horizontal component of acoustic fluid velocity v, 
velocity of moving source in Fig. B.2, 
fluid velocity in x direction (Appendix C), 
characteristic velocity (Sec. 1.3), 
quantity defined in Eq. (M.44). 

v acoustic fluid velocity, v = (u, v, w). 
Vi turbulent wind velocity component (Appendix N). 
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Vo(z) function defined below Eq. (0.10). 
Va fluid velocity, Va = Vav + v. 
Vav average fluid velocity, Vav = (uav , Vav , Way ). 

Vav horizontal component of average fluid velocity Yay· 

List of symbols 

V c complex amplitude of acoustic fluid velocity (complex fluid velocity 
amplitude, complex velocity amplitude). 

Vc magnitude of Vc (Sec. B.3), 
complex fluid velocity amplitude in x direction (Appendix C). 

Vc,n component of V c normal to ground surface, in downward direction. 
vc,z x component of Vc (Appendix D). 
Vi velocity components in Eq. (1.9). 
v: fluctuation of velocity in Sec. 1.3. 
Vn quantity Vn == vc,n (Sec. M.3.6). 
Vr radial component of velocity of moving source in Fig. B.2. 
Vr longitudinal component of velocity (Sec. 1.5). 
Vr , Vi real and imaginary parts of Vc = Vr + iVi (Sec. B.2). 
Vt quantity defined in Eq. (M.49). 
V Fourier transform of velocity v, defined in Eq. (E.17), 

(integration) volume, 
one-dimensional spectral density of random function, 
one-dimensional spectral density of refractive-index fluctuations. 

W vertical component of wind velocity, 
vertical component of acoustic fluid velocity v, 
acoustic energy density (Sec. B.2), 
integration variable in Eq. (H.32), 
quantity defined in Eq. (M.44). 

w' turbulent wind velocity component (Appendix N). 
Way vertical component of average fluid velocity Yay. 

Wt quantity defined in Eq. (M.49). 
W Fourier transform of velocity W, defined in Eq. (E.17). 
Way average acoustic power. 
Wref reference acoustic power (1 pW). 
WA A-weighting function, defined in Eq. (B.36). 
x coordinate of xyz coordinate system, 

x coordinate of receiver, 
symbol for position in Sec. L.4, 
quantity defined below Eq. (N.23). 

Xr x coordinate of receiver in Fig. 4.2. 
Xs x coordinate of source. 
X function defined in Eq. (0.5). 
y coordinate of xyz coordinate system, 

y coordinate of receiver, 
integration variable in Eq. (L.9), 
quantity defined in Eq. (M.44). 

Ys Y coordinate of source. 



List of symbols 

Yt quantity defined in Eq. (M.49). 
Z height above ground surface, 

coordinate of xyz coordinate system, 
Z coordinate of receiver, receiver height. 

Zo roughness length of ground sudace, 
height of ground surface, Zo = 0 (Appendix G). 

ZI height indicated in Figs. 4.1 and 4.2. 
Z2, Z3, Z4 heights defined below Eq. (0.8). 
Zg Z coordinate of ground sudace, Zg = 0 (Appendix L). 
Zr Z coordinate of receiver (Fig. 4.2 and Appendix L). 
ZS Z coordinate of source, source height. 
Zsr average of source height and receiver height, defined below Eq. (4.9). 
Zt height of bottom of absorbing layer in PE grid (Fig. G.1). 

screen height in Fig. 0.1. 
ZM height of PE grid, ZM = M D.z (Fig. G.1). 
Z normalized (specific) acoustic impedance, Z = (/(air. 
Z(x, (3) amplitude function in Eq. (L.17). 
Z2 normalized impedance of backing of porous layer (Fig. C.4). 
Zlayer normalized impedance of porous layer (Sec. C.6). 
Zm quantity defined in Eq. (L.20). 
Zs normalized acoustic impedance of (ground) surface. 

Greek symbols 
a atmospheric absorption coefficient (in dB per unit length), 

integration variable in Eq. (E. 59), 
quantity defined below Eq. (G.21), 
random angle for calculation of turbulent refractive-index field. 

a(~} function defined in Eq. (M.15). 
a' atmospheric absorption coefficient related to a by a' = a/(lOlge}. 
ao dry adiabatic lapse rate, defined in Eq. (N.2). 
am phase angle in Eq. (L.40). 
aH local slope of curved ground surface, defined in Eq. (M.37). 
f3 imaginary part of wave number (Sec. E.6), 

quantity defined below Eq. (G.21), 
quantity defined below Eq. (H.31), 
integration variable in Eq. (1.17). 

f3(~} function defined in Eq. (M.15). 
f3m phase angle in Eq. (L.41). 
"( elevation angle, "( = arctan(dz/dx), 

specific-heat ratio cp/Cv ("( = 1.4 for air), 
quantity defined below Eq. (D.67), 
contribution to wave number from atmospheric absorption (Sec. E.6), 
quantity defined below Eq. (G.24). 

"(-'7) function defined in Eq. (M.15). 
"(1, "(2 elevation angles indicated in Figs. 4.1 and 4.2. 

323 



324 List of symbols 

'Yl,j,'YO,j,'Y-l,j matrix elements (G.44). 
'Ymax maximum elevation angle for validity of PE method (Fig. 4.11). 
'Y., 'Y: elevation angles at receiver (Sec. L.3.6). 
'Ys, 'Y~ elevation angles at source (Sec. L.3.6). 
'YT, 'Yv quantities defined below Eq. (K.11). 
r coherence factor. 
r(x) gamma function. 
8 azimuthal angle of pie slice region in Figs. 4.13 and H.6, 

matrix (M.32). 
82 matrix (M.31). 
8(x) Dirac delta function. 
8(r) product of Dirac delta functions, 8(r) = 8(x)8(y)8(z) for r = (x, y, z). 
8ij Kronecker delta, 8ij = 1 for i = j, 8ii = 0 for i t- j. 
88 ,8., 8g horizontal dimensions of ray segments, defined in Eq. (L.6). 
oz partial derivative oz == 0/ ox. 
8x (h), 8~(h) functions defined in Sec. L.3.1. 
8k(z) quantity defined below Eq. (H.58). 
8k2 (z) quantity defined in Eqs. (G.9) and (H.44). 
8t time interval. 
8'Ys quantity defined above Eq. (L.15). 
il.k wave number spacing. 
il.k¢ spacing of wave numbers k¢ in three-dimensional GFPE method. 
il.r horizontal grid spacing (or range step) in PE method. 
il.z vertical grid spacing in FFP and PE methods. 
il.L relative sound pressure leveL 
il.¢ spacing of azimuthal angles ¢ in three-dimensional GFPE method. 
il.1] grid spacing along 1] coordinate in GTPE method. 
il.~ grid spacing along ~ coordinate in GTPE method. 
€ quantity defined below Eq. (D.66), 

energy dissipation rate of smallest turbulent eddies, 
quantity defined in Eq. (M.45), 
general symbol for 'small' number. 

€t quantity defined in Eq. (M.50). 
¢ phase angle, 

azimuthal angle in cylindrical coordinate system (Figs. 4.10 and E.1), 
spherical coordinate below Eq. (1.21), 
random angle for calculation of turbulent refractive-index field. 

¢(x, (3) factor of phase function k¢(x, (3) in Eq. (L.17). 
¢o angle indicated in Fig. M.3. 
¢l, ¢2 azimuthal angles of vertical edges of finite screen (Sec. 0.3). 
¢m phase angle of sound ray m. 
¢s, ¢ .. ¢is, tPir diffraction angles indicated in Fig. O.I. 
¢t dimensionless temperature derivative (N.8). 
¢V velocity potential (Sec. E.2.2). 
¢W dimensionless wind speed derivative (N. 7). 



List of symbols 

<P three-dimensional spectral density of random function, 
three-dimensional spectral density of refractive-index fluctuations. 
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<Pij three-dimensional spectral density of components i and j of random vector 
function, 

three-dimensional spectral density of components i and j of wind velocity 
components. 

<Py Fourier transform of velocity potential ¢y (Sec. E.2.2). 
<PT three-dimensional spectral density of temperature fluctuations [below 

Eq. (1.47)]. 
cp random angle for calculation of turbulent refractive-index field. 
X turbulent log-amplitude fluctuation, 

quantity defined below Eq. (H.73). 
X(~) function defined in Eq. (M.18). 
Xm turbulent log-amplitude fluctuation of ray m. 
"1 quantity defined below Eq. (E.22), 

viscosity, 
vertical coordinate in GTPE method. 

K, von Karman constant (K, = 0.41), 
wave number corresponding to !:1r by Fourier transformation, Eq. (H.22). 

A wavelength. 
fL turbulent fluctuation of acoustic refractive index n, 

quantity defined below Eqs. (F.34), (L.20), and (P.2). 
fLo standard deviation of refractive-index fluctuations. 
fL2 average refractive-index fluctuation defined in Eq. (J.13). 
1/ kinematic viscosity, 

quantity defined below Eq. (H.73). 
() reflection angle (Fig. D.2, ()j = ()r = ()), 

spherical coordinate below Eq. (1.21), 
random angle for calculation of turbulent refractive-index field, 
variable in phase function (L.21), 
potential temperature. 

()' turbulent fluctuation of potential temperature, 
angle in Figs. C.1 and D.l. 

(). quantity defined in Eq. (N.10). 
()o surface potential temperature, defined above Eq. (N.16). 
()j, ()r angles of incidence and reflection, respectively, in Figs. C.1 and D.l. 
()mn angle defined below Eq. (F.25). 
()s, ()r reflection angles in Fig. 0.1. 
()y virtual potential temperature. 
e average turbulent phase fluctuation defined in Eq. (J.15). 
iJ argument of spherical-wave reflection coefficient Q = IQI exp(iiJ). 
P (acoustic) density of atmosphere (see Pa and Pay), 

distance, 
distance defined below Eqs. (1.48) and (1.52), 
variable in phase function (L.21). 



326 List of symbols 

p' density of ground (Sec. D.3). 
Po density of air at temperature To = 273 K (Po = 1.29 kg·m-3 ). 

PI, P2 densities above and below ground surface, respectively (Sec. D.4). 
Pa density of atmosphere (mass per unit volume), Pa = Pay + p. 
Pay average density of atmosphere (subscript 'av' omitted except in 

Appendices A and E; see Sec. A.2). 
Pr quantity defined below Eq. (B.43) , 

quantity defined in Sec. L.3.6. 
Psat quantity defined below Eq. (B.48). 
U (effective) flow resistivity of ground. 
U1, U2 coefficients in Eq. (G.25). 
UV standard deviation of wind speed fluctuations. 
UT standard deviation of temperature fluctuations. 
T sample time, 

time interval, 
integration variable in spectral theorem (H.51), 
shear stress (Fig. 1.2), 
integration variable in Eq. (K.9). 
integration variable in Eq. (L.24). 

Tt, T2 coefficients in Eq. (G.26). 
TI period of turbulent fluctuation. 
Tr quantity defined below Eq. (B.43). 
Ts , Tr, Tg travel times along ray segments, defined in Eq. (L.12). 
Tt period of turbulent fluctuation. 
Tw period of harmonic oscillation. 
w angular frequency. 
n porosity of porous medium, 

Fourier transform of density p, defined in Eq. (E.17). 
~ variable in phase function (L.21), 

horizontal coordinate in GTPE method. 
tP quantity defined in Eqs. (G.4) and (M.ll), 

angle defined above Eq. (E.58), 
turbulent complex phase fluctuation. 

-,+ 
tfj (r) vector defined below Eq. (G.22). 
tt W vector defined below Eq. (M.25). 
tP; value of tP at height z;, tP; = tP(Zj), with tPo = tP(O) (Appendix G), 

value oftP at height z;, tPj = tP(~,Zj), with tPo = tP(~,O) (Appendix M). 
tPm turbulent complex phase fluctuation of ray m. 
tPw, tPt functions defined in Eqs. (N .18) and (N .19). 
"IJ1 Fourier transform of tP defined in Eq. (H.50). 
r function defined in Eqs. (J.27) and (J.36). 
( (specific) acoustic impedance of propagation medium. 
(air (specific) acoustic impedance of air, (air = pC. 
(s (specific) acoustic impedance of (ground) surface. 



Index 

A-weighting, 15, 107 
Absorbing 

ground, 2, 21, 24, 48, 115 
layer in PE method, 165, 172, 

198, 200, 275 
Absorption coefficient, 12, 109, 150 
Acoustic 

energy density, 100 
impedance, 23, 113-119, 125, 

127, see Impedance 
for spherical waves, 116 
normalized, 24, 117, 127 
of air, 115, 116 
of ground surface, 113-115, 

125,127,153,156,163,165, 
171, 189, 267, 272 

of porous medium, 117-119 
intensity, 99, 108 
power of a source, 99, 100 
pressure, 5, 92 
refractive index, 70, 204, 222 
shadow, 43, 57, 68, 71, 77,87 

Adiabatic 
ideal gas, 281 
lapse rate, 281, 287 
process, 7, 93, 94, 141 
sound speed, 7, 40, 94, 287 

Advective flux, 282 
Aerodynamic roughness length, 41, 

287, 294 
Airplane, see Noise sources 
Amplitude, 2, 6, 95 

complex, 9, 95 
fluctuations, 68, 232, 236, 260 

Angular 
frequency, 6, 94 
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limitation of PE method, 56, 
179,293 

Atmospheric 
absorption, 9, 23, 26, 108, 150 
absorption coefficient, 12, 109, 

150 
acoustics, 1 
boundary layer, 203, 280 

height, 280 
refraction, 7, 26, 37, 39, 43, 57 
stability, 283, 284 
surface layer, 37, 41, 139, 279, 

280, 283 
height, 280 

turbulence, 1, 26, 57, 67, 77, 
87,163,203,221,231,260, 
279, 280 

Auxiliary Fresnel functions, 292 
A verage profile, 67 
Axisymmetric 

approximation, 49, 56, 146, 153, 
163,164,181,199,236,240, 
263, 266, 268 

turbulence, 236 
Azimuthal angle, 49 

Back scattering, 50, 167 
Barrier, 26, 77, 85, 289 
Blast wave, 3 
Boundary layer, 203, 280 

height, 280 
meteorology, 2 

Boundary loss factor, 134 
Broadband level, 13, 105 
Buoyancy, 280 
Businger-Dyer 
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profiles, 284, 287 
relations, 284 

Car, see Noise sources 
Cascade process, 207, 217, 281 
Caustic, 46, 239, 254 

branch, 247 
curve, 246, 255 
cusp, 247, 255, 259 
diffraction field, 47, 239, 241, 

258 
effect on phase, 252, 254, 257, 

258, 261 
extrapolation into shadow, 257, 

258 
illuminated region, 239, 241, 255 
point, 37,46,245,246,254,255 
ray, 249, 258 
shadow region, 239-241, 249, 255 
surface, 246 

Center frequency, 14, 106 
'exact', 106 
'preferred', 106 

Central difference formula, 168 
Characteristic impedance, 114, 127, 

156 
Classical attenuation, 108 
Clouds, 280 
CNPE method, 37, 48, 163, 171,221, 

223, 226, 263, 264, 269 
Coherence factor, 233, 235, 261 

for axisymmetric turbulence, 237 
Complex 

amplitude, 9, 95 
notation for harmonic waves, 8 
phase fluctuation, 232 
pressure amplitude, 9 
ray, 255 

Computing time, 49, 52 
Concave, 77, 264 
Conformal mapping, 79, 263, 264, 

266 
Conservation 

of energy, 233 
of mass, 294 

Index 

of mass and momentum, 91, 92, 
140 

Convex, 77, 264 
Coriolis force, 280 
Correlation function 

Gaussian, 70, 212, 215 
of log-amplitude fluctuations, 233 
of phase fluctuations, 233 
of random function, 207 
of refractive-index fluctuations, 

70, 205, 211, 215, 224 
of temperature fluctuations, 215 
of wind velocity fluctuations, 215 

Correlation length, 212, 214 
Crank-Nicholson, 37, 48, 163, 170, 

171 
Cross-wind, 53 
Cusp, 247, 255, 259 
Cut-off factor for turbulence spec-

trum, 214 
Cylindrical coordinates, 49, 146, 150 

Daytime, 7,280,283 
Decibel, 5, 12, 102 
Density, 91-94 
Density profile in PE method, 172 
DFT, 103, 198 
Diffraction, 69, 86, 289, 291 

coefficient for spherical wave, 291 
geometrical theory, 289 
into caustic shadow region, 240 
into shadow region, 43, 69 

Dirac delta function, 96 
Discrete Fourier Transform, 103, 198 
Dispersion, 11 
Dissipation subrange, 217 
Diurnal cycle, 280 
Doppler effect, 16, 111 
Downward refraction, 39, 41, 43, 68, 

77, 239, 240, 260, 263 
Downwind 

sound propagation, 1, 287 
sound speed profile, 287 

Dry adiabatic lapse rate, 281, 287 

Eddy, 203, 217, 281 



Index 

flux, 282 
Effective 

flow resistivity, 24 
sound speed, 37, 40, 145, 146, 

149,154,164,204,240,279, 
287 

sound speed approximation, 40, 
50, 53 

sound speed profile, see Sound 
speed profile 

Electromagnetics, 2, 214 
Elevation angle, 39, 50, 56, 145, 146, 

163, 167, 179, 196, 243 
Energy density, 100 
Energy-containing subrange, 217 
Ensemble averaging, 70, 221 
Excess attenuation, 26 
Experimental results, 2, 70, 85, 119, 

120 
Explosion, 3, 91 
Extended reaction, 123, 128, 135, 

136, 156 
Extrapolation into caustic shadow 

region, 257, 258 

Far-field 
approximation, 147, 150, 200 
region, 101 

Fast Field Program, see FFP method 
Fast Fourier Transform, 104, 198 
Fermat's principle, 40 
FFP method, 37, 48, 136, 144, 147, 

149, 150, 153 
FFT, 104, 198 
Finite dimensions of source, 3, 30 
Finite-difference, 164, 168, 170, 271 
Finite-element, 174 
Finite-impedance ground surface, 24, 

25, see Absorbing ground 
Flow resistivity, 24, 30, 117, 120 
Fluid, 6, 91, 205 

dynamics, 92 
velocity, 6, 91, 92 

Flux, 282 
advective, 282 

eddy, 282 
kinematic, 282 

Focusing, 37, 239 
factor, 46, 242, 253 

Forest floor, 24, 119 
Fourier 
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split-step algorithm, 182, 193, 
194 

transform, 102, 130 
transformation, 49, 99, 102, 130, 

141 
Fourier-Bessel transform, 150 
Free field, 23, 99 
Frequency, 5, 7 

domain, 49 
Fresnel functions (auxiliary), 292 
Friction velocity, 284, 294 
Frozen medium approach, 205 

Gauss elimination, 170 
Gauss' theorem, 96 
Gaussian 

correlation function, 70, 212, 215 
spectrum, 211, 212, 215, 217, 

226,235 
Generalized FFP method, 50, 153 
Generalized Terrain PE method, 79, 

263, 267 
Geometrical 

acoustics, 42, 239, 241, 242, 254, 
256, 257 

attenuation, 12, 100, 102, 108 
theory of diffraction, 289 

GFPE method, 37, 48, 163, 181,221, 
223, 226, 263, 264 

Grain shape factor, 118 
Grassland, 2, 21, 24, 41, 77, 119, 

120 
Gravity, 140, 155, 280, 281 
Grazing incidence, 25, 29, 126, 133 
Green's function, 183, 200, 290 
Green's Function PE method, 37, 

48, 163, 181, see GFPE method 
Grid, 51, 164, 168, 172, 265, 272 

spacing, 51, 165, 197, 266 
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non-uniform, 174 
Ground 

impedance, 23, 113-115, 117-
119,125,127,153,156,163, 
165,171,189,267,272,see 
Impedance 

normalized, 24, 117, 127 
layered, 121 
reflection, 21, 26, 43, 80, 113, 

123, 239, 251, see Reflec­
tion 

surface, 1, 21, 263 
extended reacting, 128, 135, 

136, 156 
locally reacting, 115, 125, 126, 

128,129,136,156,164,171, 
189, 272 

Ground impedance, see Impedance 
GTPE method, 79, 263, 267 

Hard ground, 2, 21, 24, 115 
Harmonic, 5, 8, 49, 94, 95 
Heat flux, 282 
Helmholtz equation, 94, 95, 144, 146, 

147,164,254,266,268 
in cylindrical coordinates, 200 
in horizontal wave number do­

main, 144, 147, 150, 154 
inhomogeneous,95,97,147,150, 

183 
Hertz, 5 
Heterogeneous ground, 279 
Hill, 77, 79, 279 
Homogeneous 

atmosphere, 3, 5, 8, 21, 91, 92, 
99 

ground surface, 50 
random function, 207,224 
turbulence, 219, 234 

Horizontal wave number domain, 140, 
141, 144, 150, 153 

Human 
ear, 5, 15, 107 
perception, 15, 107 

Humidity, 11, 94, 108, 281 

relative, 109, 110 
Huygen's principle, 39 

Index 

Hydrostatic pressure gradients, 143 

Ideal-gas law, 93 
Illuminated region of caustic, 239, 

241, 255 
Image source, 23 

distribution, 132, 136 
Impedance, 23, 113-119, 125, 127 

characteristic, 114, 127, 156 
discontinuity, 289 
for spherical waves, 116 
models, 24, 29, 117 

Attenborough, 118 
Delany and Bazley, 119 
Zwikker and Kosten, 117 

normalized, 24, 117, 127 
of air, 115, 116 
of ground surface, 113-115, 125, 

127,153,156,163,165,171, 
189, 267, 272 

of porous medium, 117-119 
Incoherent 

line source, 30 
point sources, 30 

Inertial subrange, 217 
Inhomogeneous Helmholtz equation, 

95, 97, 183 
in horizontal wave number do-

main, 147, 150 
Inner scale of turbulence, 209, 217 
Intensity, 99, 108 
Interference, 21, 25, 26, 28 

minima, 28, 29, 68, 70, 260 
Irregular terrain, 26, 77, 163, 263 
Isothermal sound speed, 94 
Isotropic 

random function, 208 
turbulence, 219 

Jacobian, 266 

Kinematic 
eddy heat flux, 283 



Index 

eddy momentum flux, 283 
heat flux, 282 
momentum flux, 282 
viscosity, 205 

Kirchhoff approximation, 86, 293 
Kirchhoff-Helmholtz integral equa­

tion, 183, 290 
Kolmogorov spectrum, 211, 213 

Laminar flow, 203, 206, 209 
Laplace transform, 132, 135 
Layered 

atmosphere, 41, 50, 139, 146, 
149,153,154,163,167,240 

ground,121 
Linear acoustic 

approximation, 92 
equations, 91, 93, 95 

for porous medium, 117 
Linear acoustics, 3, 6, 91, 140 
Linear sound speed profile, 56, 58, 

240 
Local reaction, 115, 125, 126, 128, 

129,136,156,164,171,189, 
272 

approximation, 123, 126, 131, 
136 

Locally 
homogeneous random function, 

208 
isotropic random function, 208 

Log-amplitude fluctuations, 232, 236, 
260 

Logarithmic 
average, 15, 27, 68, 70 
profile, 41, 52,58,240, 287,294 
sum, 13,26 

Long-time average, 233 
Longitudinal 

correlation function, 208 
structure function, 208, 209 

Loudness, 5, 11 

Maekawa's scale model results, 88 
Markov approximation, 215 

Mass conservation, 92, 140, 294 
Mean and turbulent parts, 282 
Mechanical turbulence, 281 
Midpoint rule, 198 
Mixing ratio, 282 
Mode amplitude, 226 
Momentum 

conservation, 92, 140 
flux, 282 
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Monopole source, 9, 49, 95, 129, 144, 
147,150,154,164,175,196, 
240, 264 

Moving 
atmosphere, 40, 50, 139, 140, 

145, 146, 149, 153, 154 
source, 16, 111 

Moving-medium effects, 53 

Narrow band spectrum, 14, 15, 26, 
106 

Narrow frequency band, 13, 106 
Neutral atmosphere, 284, 287 
Night, 7, 280, 283 
Noise, 85, 289 

barrier, 26, 85, 289 
absorbing, 289 
wedge-shaped, 289 

control, 107 
screen, 85, 289 
sources 

airplane, 1, 2, 16 
car, 1, 16, 30 
train, 1 
truck, 16 

Non-moving 
atmosphere, 40, 50, 139, 144, 

145, 149, 153, 154, 240 
isobaric atmosphere, 145 

Non-refracting atmosphere, 8, 37, 42, 
67, 99, 129, 139, 231, 289, 
290 

Normal modes, 50 
Normalized acoustic impedance, see 

Acoustic impedance 
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Normalized ground impedance, see 
Ground impedance 

Numerical distance, 134 

Obukhov length, 284 
Ocean acoustics, 50, 239, see Un­

derwater acoustics 
Octave band, 14, 106 

spectrum, 14, 26, 107 
One-third-octave band, 14, 106 

spectrum, 14, 26, 107 
One-way wave equation, 51, 167, 191, 

222 
Outer scale of turbulence, 209, 217 

Parabolic equation, 50, 163 
narrow-angle, 165-168, 176 
wide-angle, 164, 167, 170, 177 

Parabolic Equation method, see PE 
method 

Parseval's theorem, 13, 103, 104 
PE method, 37, 48, 147, 163, 181 

propagation over screen, 86, 292 
propagation over terrain, 79, 263 
propagation through turbulence, 

67, 221, 236 
Periodic boundary conditions, 52, 199 
Phase, 2, 6, 95 

fluctuations, 68, 232, 236, 260 
screen method, 224 

Pie slice region, 52, 199, 229 
Plane wave, 6 
Plane-wave reflection coefficient, see 

Reflection coefficient 
Plane-wave transmission coefficient, 

127 
Point source, 3, 30, 39, 95, 99, 129 
Poles, 158, 190, 193 
Pore shape factor ratio, 118 
Porosity, 117 
Porous 

layer, 24, 121 
medium, 24, 117 

Potential temperature, 281 
profile, 283 

Power of a source, 99, 100 
Prandtl number, 118 

Index 

Pressure, 91, 92, 140, 281 
Principle of reciprocity, 23, 258 
Propagation direction, 7, 39 
Pure tone, 5, 95 

Random 
field, 207 
function, 207 
number generator, 70, 205, 221, 

224 
realizations, 70, 205, 221, 224, 

228 
Range, 23 
Range dependence 

of ground impedance, 52, 171 
of sound speed profile, 52, 165, 

167, 187, 221 
Ray, see Sound ray 

model, 37, 42, 58, 239 
path, 243 
tracing, 43, 245, 258 
tube diameter, 46, 253 

Rayleigh integral, 186, 200 
Reciprocity principle, 23, 258 
Reflection, 21, 113, 123, see Ground 

reflection 
angle, 24 
coefficient, 46, 179, 195, 242, 

252 
plane wave, 24, 120, 121, 123, 

126, 134, 180, 189 
spherical wave, 23, 29, 123, 

133, 180, 232, 252, 291 
normal, 120, 121 
plane wave, 123 
spherical wave, 21, 24, 129 

Refracting atmosphere, 139 
Refraction, 7, 26, 37, 39, 43, 57 

factor in GFPE method, 194, 
202 

Refractive 
index, 70, 204, 222 
shadow, see Shadow region 
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Refractive-index fluctuations, 70, 204, 
205,212,215,221,222,224, 
226 

Relative 
humidity, 109, 110 
sound pressure level, 25, 26, 52, 

99, 233, 292 
Relaxation 

frequencies, 109 
losses, 108 

Residue theorem, 190 
RESWING,88 
Reynolds number, 205, 206 
Rigid 

frame of porous medium, 117 
ground surface, 24, see Hard ground 

Roughness 
length (aerodynamic), 41, 287, 

294 
of ground surface, 41, 125, 280 
of water surface, 48, 79 

Rytov's perturbation method, 234 

Saturation of log-amplitude fluctu-
ations, 236 

Scattering by turbulence, 43, 69, 77 
Screen, 85, 289 
Screen-induced wind speed gradients, 

87, 88, 289 
Seismology, 2 
Shadow 

boundar~ 77, 86, 291 
region, 43, 57, 68, 71, 77, 87 

caustic, 239-241, 249, 255 
Shear stress, 205 
Sign convention, 118 
Similarity relations, 279, 283, 284 
Snell's law, 39, 40, 47, 127, 246 
Solar radiation, 280 
Sonic boom, 3 
Sound 

level, 15, 107 
power, 99, 100 
power level, 12, 102 
pressure, 5, 92 
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pressure level, 5, ll, 100, 101 
pulse, 5 
ray, 23, 40, 42, 85, 239, 291 
source, 5, 9 
speed, 5, 7, 93, 94 
speed profile, 39, 40, 67, 279 

downwind, 287 
upwind, 287 

wave, 5 
Source, see Noise sources 

motion, 16, 111 
power, 99, 100 
strength, 99 

Specific acoustic impedance, see Acous­
tic impedance 

Specific-heat ratio, 93, 281 
Spectral 

decomposition, 8, 102 
density, 205, 210, 211, 224 
theorem of functional analysis, 

193, 201 
Spectrum, 11 

narrow band, 15, 26, 106 
octave band, 14, 26, 107 
ofrelative sound pressure level, 

26 
of sound power level, 14, 105 
of sound pressure level, 14, 105 
of turbulence, 211 
one-third-octave band, 14, 26, 

107 
Speed-up factor, 294 
Spherical 

spreading, 12, 102, 108 
wave, 9 

Spherical-wave diffraction coefficient, 
291 

Spherical-wave reflection coefficient, 
see Reflection coefficient 

Square-root operator, 166, 167, 192, 
194, 222, 228 

Stability of atmosphere, 283, 284 
neutral, 284, 287 
stable, 283, 284, 287 
unstable, 283, 284, 287 
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Stable atmosphere, 283, 284, 287 
Starting field, 51, 56, 164, 175, 195, 

264, 266, 267 
Starting function, see Starting field 
Stationary phase, 145, 149, 161, 176, 

178, 195,254,256,297 
Stratified atmosphere, 41, 139 
Structure 

constant, 117 
function of random function, 208 
function of refractive-index fluc-

tuations, 211 
Surface 

layer, 37, 41, 139,279,280,283 
height, 280 

wave, 26, 191 
waveguide, 242 

Temperature, 1, 7, 11, 109 
absolute, 283 
gradients, 37 
potential, 281 
profile, 41, 67, 153, 203, 279, 

283 
virtual potential, 282 

Terrain, 26, 77, 163, 263 
profile, 2, 77, 263, 264, 267 

Thermal conduction, 108 
Thermals, 281, 283 
Three-dimensional 

CNPE method, 164 
GFPEmethod, 52, 56,163,181, 

199, 221, 228, 293 
Tortuosity, 118 
Traffic noise, 30, 85 
Train, see Noise sources 
Transverse 

correlation function, 208 
structure function, 208 

Travel time, 40, 46, 242, 252 
Turbulence, 1, 26, 57, 67, 77, 87, 

163,203,221,231,260,279, 
280 

mechanical, 281 
spectrum 

Index 

Gaussian, 211, 212, 215, 217, 
226, 235 

Kolmogorov, 211,213 
von Karman, 71, 211, 214, 

216,217,226,235 
Turbulent 

eddy, see Eddy 
phase factor, 222, 223, 228 

Turning point, 47, 243 
Two-dimensional representation of 

the atmosphere, 146 
Two-thirds law, 209, 217 

Unbounded atmosphere, 3, 5, 99 
Underwater acoustics, 2, 153, 163, 

182, 194, see Ocean acous­
tics 

Undisturbed logarithmic profile, 87, 
294 

Unstable atmosphere, 283, 284, 287 
Upward refraction, 39, 41, 43, 68, 

263 
Upwind 

sound propagation, 1, 287 
sound speed profile, 287 

Velocity potential, 144 
Virtual potential temperature, 282 
Viscosity, 108, 205 
Von Karman 

constant, 284, 294 
spectrum, 71,211,214,216,217, 

226, 235 

Water surface, 2, 24, 41, 48, 64 
aerodynamic roughness, 41, 287 
roughness, 48, 79 

Wave 
equation, 6, 49, 91, 94, 95 

one-dimensional, 116 
front, 7, 39, 95 
number, 6, 95 

in porous medium, 117 
number domain, 49 
number integration method, 50, 

153 



Index 

propagation in turbulent media, 
2,70 

Wavelength, 6, 7, 96 
Wind, 1, 6, 7, 23, 40, 139, 146, 149, 

154 
direction, 280, 283 
field near a screen, 85, 87, 289, 

293 
shear, 207, 281 
speed gradients, 37 

screen-induced, 87, 88, 289 
speed profile, 41, 53, 67, 153, 

203, 279, 283 
logarithmic, 53, 287, 294 
near a screen, 85, 86, 289, 

293 
tunnel,293 
velocity profile, see Wind speed 

profile 

335 


