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Preface

My interests in modelling and simulation began during my
period as an undergraduate and Master’s degree student at
the University of Aberdeen, and developed further in industry
at Ferranti Ltd (Edinburgh) where I worked on electronic
and mechanical elements of inertial navigation and related
aircraft systems. This was my first experience of working on
highly integrated and multidisciplinary systems, although
terms such as those were not in common usage then. For
such design applications, issues of model accuracy were of
critical importance and simulation techniques also had a
central role. Interests in the application of modelling and
simulation continued throughout my period of PhD study at
the University of Glasgow and were further extended as a
result of many years of teaching control engineering topics
within the Department of Electronics and Electrical
Engineering in that same university. My research since the
1970s has involved modelling and control systems
applications in a variety of different areas, including
biomedical engineering, electrical power generation, system
identification applied to helicopter flight mechanics modelling
and flight control, ship control systems and other applications
involving underwater vehicles.

Topics such as experimental modelling methods, issues of
model quality and model testing, parameter sensitivity
analysis and inverse simulation are treated in some detail
within this book, as they have proved very important to me

XXvii
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in much of the work that I have been engaged in over the
years. This, 1 believe, forms an important and timely
contribution in the context of the complex problems that can
arise in design applications involving integrated systems.
Issues of model management, such as documentation and the
development of model libraries and generic descriptions, are
also emphasised. Although mentioned as examples of what
is available, specific simulation tools are not given special
emphasis in the book, as information of that kind inevitably
becomes out of date very quickly. The emphasis is on
principles of modelling and simulation and methods of
approach that are, in my opinion, especially relevant to the
problems of integrated systems. I hope that others will find
some of the content useful in the context of their own work.

It is impossible to mention everyone who, over a period of
many years, has had a direct influence on the ideas and
material presented in this book but I owe many people my
deepest thanks. I am especially grateful to Dr Euan McGookin
(University of Glasgow) for collaborative work involving
ship and underwater applications and to Professor Gareth
Padfield (now of the University of Liverpool), with whom I
collaborated closely on helicopter flight mechanics and flight
control applications over a long period of time while he was
at the Royal Aircraft Establishment (Bedford) and later the
UK Defence Evaluation and Research Agency. Others who
must also be mentioned include Dr Douglas Thomson
(University of Glasgow), who has been responsible for my
interest in inverse simulation techniques and Professor Roy
Crosbie (California State University, Chico) for valuable
discussions, especially on real-time applications. Many
others have influenced the work and, in particular, I must
mention that I have benefitted from useful general discussions
about modelling principles, methods and applications with
Professor Peter Gawthrop (University of Glasgow), Dr Moira

XXVviii
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Smith (Waterfall Solutions Ltd), Professor Jay Rosenberg
(University of Glasgow) and Mr Terry Ericsen (US Office of
Naval Research).

I must also acknowledge the assistance provided by
Professor George Moore (University of Southern California)
and Professor Felix Breitenecker (Technical University of
Vienna) in the arrangement of sabbatical visits to their
universities. Through these periods in other universities I
was provided with important new opportunities that were of
long term benefit to me in terms of my research.

Many of my students have undoubtedly contributed to the
work presented here and their contributions are reflected
individually through references to their published work. I
have also had very helpful feedback from experienced
engineers during postgraduate short courses that I have
presented in the UK, other parts of Europe, the USA, China
and Brazil and at various pre-conference tutorial sessions
that I have been involved in from time to time.

David Murray-Smith, September 2011.
Emeritus Professor,

School of Engineering,

Rankine Building,

The University of Glasgow,

Glasgow G12 8LT.
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The principles of system
modelling

Abstract: This chapter provides an introductory review
of processes involved in developing models for
engineering applications. Current trends in the design of
integrated, multidisciplinary and embedded systems, and
the associated consequences for modelling and simulation,
are emphasised. Ways of classifying models are presented
and the experimental approach to model development
through system identification and optimisation is
introduced. Issues of model quality are emphasised,
together with model reuse, the development of libraries of
sub-models, the potential of generic descriptions and use
of modelling within procurement. These topics are all
considered in more detail in later chapters.

Key words: modelling objectives, classes of model,
quality, reuse.

1.1 General issues in the
development and application
of models

For scientific applications, the purpose of a model is usually
to explain a complex set of behaviours or to help in the
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design of experiments as part of the process of hypothesis
testing. In such fields, modelling is a central element of the
scientific method. Similarly, in some engineering applications
a model may be used to describe, analyse or explain the
behaviour of a highly complex system, but it is more common
to find models being used to support design, to assist in
decision-making processes in the context of a specific
application, or as a basis for simulators to be used in training
or in further engineering developments. A properly tested
and well-proven model can reduce development times and
costs for many applications.

Integrated systems arise in many application areas
including fly-by-wire aircraft, ships, land-based vehicles,
energy conversion systems including electrical power
generation and distribution systems, chemical plants and
even in some household appliances. They typically involve
a number of different aspects, disciplines or ‘domains’
(e.g. mechanical, electrical, electronic, control and software)
which, ideally, are considered concurrently. For some
applications, special forms of integrated system involve
digital processors and software in addition to other physical
hardware. The fields of aeronautical engineering, automatic
control, road and rail vehicle engineering, marine engineering
and robotics can provide many examples of such embedded
systems.

The importance of integrated systems has been emphasised
by the publication by the UK Royal Academy of Engineering
(RAE) of a guide entitled ‘Creating Systems that Work —
Principles of Engineering Systems for the 21st Century’ [1].
In the press release marking the publication of this guide in
2007, it is stated that the . . . aim is to demystify the design
of large integrated systems, and to give educators, students
and practitioners alike six guiding principles that will help
them to understand how large projects can be better
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conceived, designed and delivered’. These six principles can
be summarised as:

debate, define, revise and pursue the purpose;
think holistic;

follow a disciplined procedure;

1

2

3

4. be creative;
5. take account of the people; and
6

manage the project and the relationships.

All sections of the RAE report make direct or indirect
reference to the importance of appropriate tools for
analysis, design and optimisation and the section dealing
with the fourth of these principles (‘be creative’) puts special
emphasis on modelling and simulation tools and methods.
Simulation tools are vital for systems engineers in tackling
the trade-offs within the design process, starting from the
basic requirements in terms of performance, cost and
timescale.

Models can have many benefits in the integrated systems
approach to system design, including early assessment of
performance, both within and beyond the normal operating
envelope. Understanding of parameter inter-dependencies
and knowledge of key sensitivities can also be very valuable
for design optimisation. The use of simulation models is
particularly important and leads to the concept of a virtual
prototype which is a software-based implementation of the
design, developed prior to any hardware prototype.

The success of virtual prototyping depends on the model
quality. A successful model usually results from trade-offs
involving several aspects of model performance such as the
trade-off between the level of detail included in a model and
the speed of solution in the corresponding computer
simulation.
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The level of detail is linked to model performance and as
models are made more detailed, they inevitably become more
complex. However, model complexity should never be
confused with model quality and a simple description can
often be better, in terms of quality measures, than a more
complex one. It is also important to separate the processes of
modelling from simulation. The development of a computer
simulation is one common outcome of a modelling exercise
but there are other potential applications for a model, some
involving analysis carried out independently of any computer.

Whatever the use made of a model, it is important that
its development should build upon previous experience.
Attention must be given both to tools available for the
development of computer-based modelling and simulation
programs,and also to supportsystems for model management.
Reuse of model components is important and some
commercial modelling and simulation systems provide
libraries of reusable models. Model management is also very
important for applications involving large teams of
developers, especially when these include multidisciplinary
groups and geographically distributed teams. New
developments in cloud computing are likely to have a
significant influence on how simulation models are used
within many organisations in future, but this is an area in
which rapid changes are taking place and it is not possible,
at the time of writing, to make more detailed predictions.

Developing a model requires careful examination of
information about the real system. From this, inconsistencies
or gaps in the available knowledge can be found which may
result in further testing of the real system or a prototype, or
some reconsideration of requirements. Donald Rumsfeld’s
much-quoted statement, made during a US Department of
Defense news briefing in February 2002 [2], has direct
relevance to issues of model quality and uncertainties:
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...as we know, there are known knowns; there
are things we know we know. We also know there are
known unknowns; that is to say we know there are
some things we do not know. But there are also
unknown unknowns — the ones we don’t know we
don’t know.

His statement was much ridiculed at the time but those
words certainly apply to the processes of developing models.
The ‘unknown unknowns’ in modelling are vitally important
and have to be exposed by whatever means possible,
including experimentation and testing.

Since a model is only an abstraction of the system it
represents, perfect accuracy is impossible. The key issue is
one of determining the model quality levels needed for the
application in question. This implies reducing errors to
defined levels for specified regions of the operating envelope
of the system and balancing appropriate measures of
accuracy against other measures of performance, such as
solution speed.

In applications involving design, it is usual to base the
structure of models on prior physical, chemical or biological
knowledge. However, some sub-models may be based purely
on input—-output descriptions derived from tests on the
corresponding elements of the real system (i.e. ‘black box’
models). Models thus range from completely ‘transparent’
descriptions, based on the application of recognised and
accepted scientific or engineering principles, to purely
empirical ‘black box’ forms, which are opaque. Between
these extremes there is an important group, sometimes
referred to as ‘grey box’ models, involving some empirical
information found experimentally but with the structure of
the model based on well-established physical laws and
principles.
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In summary, therefore, it can be said that mathematical
modelling is an important tool for decision making and for
engineering design. If models are developed correctly, they
can then be applied over the range of conditions for which
the descriptions are held to be accurate representations of
the real system. An extensive programme of system testing
and the creation of a solid base of experimental data are
important steps in establishing how a given model may be
used. When used within the concurrent approach to design,
well-proven and tested models can lead to useful virtual
prototype systems based on simulation software or to
hardware-in-the-loop simulation involving a combination of
simulation models and real system hardware.

1.2 Classes of model for
engineering applications

Models used in science and engineering often involve
variables that are continuous functions of time, such as
position, velocity, acceleration, temperature or pressure.
These are continuous-variable models and involve ordinary
or partial differential equations or differential-algebraic
equations. This is the main class of model considered in this
book.

A second type of model that can be important in engineering
involves what are known as discrete-event descriptions. In
discrete-event models, all the variables remain constant
between events that mark changes in the model. These
changes take place at discrete time instants, either periodically
or in a random fashion. A digital processor or computer used
for real-time control is a good engineering example of a
discrete system involving periodic changes. In this case, a
continuous variable is sampled periodically through an
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analogue-to-digital converter and calculations are carried
out using the discrete values obtained from the converter.
Output from the processor may be converted back to
continuous variable form wusing a digital-to-analogue
converter. In modelling this type of component within some
larger engineering system, we cannot use differential
equations because of the discrete nature of the events within
the processor and the associated converters and a difference-
equation based approach is necessary.

Problems in which events occur in a more random
fashion, as in road traffic flow or communications network
modelling, lead to another approach known as discrete-event
simulation. Thisis an importantarea, especially in engineering
manufacturing and production, but this book is more
concerned with modelling and simulation of continuous
systems. Hybrid systems involving representations that
are mainly continuous but do involve some discrete-
event elements are discussed. Further details of discrete-
event modelling and simulation techniques and their
applications may be found in texts that deal with this area

(see e.g. [3], [4]).

1.2.1 Conventional continuous-variable
models

Within the class of continuous variable models we can
distinguish between models of data and physically based
models of systems.

A model of data involves a description fitted to measured
responses, usually from a real physical system, leading to a
model that expresses an observed relationship between two
or more variables. It consists of mathematical functions that
may have no direct link to recognisable elements of the real
system. Such models are important in fields such as control
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engineering where input-output descriptions such as transfer
functions or artificial neural net models may be used and can
be derived from measurements. They can provide a starting
point for design but give little information about internal
processes. If such models are derived exclusively from
experiments, their validity is restricted to the conditions for
those experiments.

Physically based models, on the other hand, are developed
using established scientific principles, such as the laws of
physics and chemistry. Hypotheses about the structure and
function of the system are used and appropriate simplifying
assumptions are applied. Such models are more explanatory
than the experimentally derived ‘black box’ descriptions
within models of data. They include all relevant knowledge
about the structure and parameters of the system, and
involve internal variables that have measurable counterparts
within the real hardware. The models and sub-models
being considered in this book thus range from completely
transparent descriptions based on physical principles,
through intermediate ‘grey-box’ descriptions, to the entirely
empirical black-box form of experimentally derived model.

Another important distinction is between [linear and
nonlinear models. Linear models are attractive because they
are open to analysis and can be incorporated conveniently
into design procedures. However, linear descriptions may be
incapable of capturing aspects of the behaviour of the real
physical system and issues of nonlinearity should be
considered at an early stage in modelling. Assumptions of
linearity should not be made without justification and the
range of linear operation of the system always needs to be
evaluated when a linear description is used.

As with questions of linearity, time invariance needs to
be proved rather than assumed. A time-invariant description
is one in which the performance of the system being
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modelled is independent of the times at which observations
are made.

Models that are linear and time invariant receive particular
attention in introductory engineering textbooks on topics
such as electrical circuit theory, automatic control, dynamics
and signal processing. Many systems have properties
that allow them to be described by linear time-invariant
models for some operating conditions and are attractive
because they can be analysed using simple linear methods.
Although nonlinear and time-varying dynamic models
are more general, they are harder to deal with using
classical mathematical methods, and numerical and computer
simulation techniques are therefore very important for such
cases. Simulation can provide solutions for cases for which
no analytical approach can be used and this approach thus
offers valuable insight for problems that would otherwise be
intractable.

1.2.2 Inverse models and inverse
simulation techniques

Although dynamic models or computer simulations are
conventionally used to predict an ‘output’ time response
from an ‘input’ time history, it can be very helpful to make
use of a model in the opposite direction so that the user can
specify the desired behaviour and the model or simulation
provides an inverse solution. An example of an engineering
design situation where this is important involves the design
of actuators, where the inverse solution can reduce the need
for an iterative approach. In such a case the inverse model
provides information about the time history of the input
needed to obtain that desired system output in a very
straightforward fashion. Inverse simulation techniques of
this kind are discussed in Chapter 4.
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1.3 Questions of model quality

As pointed out in Section 1.1, the quality of a model has a
direct influence on any design or strategy based on that
model. Although models may be developed using physical,
chemical or biological principles in the initial stages, the use
of experimentation can be important for estimating
appropriate sets of parameters if these are not known a priori.

This experimental approach to modelling is also of central
importance in establishing the suitability (or otherwise) of a
given model for an intended application (the so-called
‘model validation’ problem) and discussion of this topic (in
Chapter 7) forms an important part of this book. Use of the
word ‘validation’ may give a false impression of model
capabilities and terms such as ‘model testing’ or ‘model
evaluation’” may be more appropriate. Theories can be
proved to be wrong but cannot ever be proved to be right,
and there is always a risk of false confidence in model-based
predictions if the model involved has been subjected to some
form of ‘validation’. Models that can be shown to provide
accurate predictions of reality in some circumstances cannot
be assumed to be capable of giving good predictions in all
cases. The ‘unknown unknowns’ mean that there can never
be a simple conclusion in the processes that we conventionally
call ‘model validation’.

Model testing, verification and validation can also be
regarded as part of the process of defining boundaries within
which a model and the related computer simulations should
operate. As has been pointed out by Sargent (e.g. [5]), Balci
(e.g. [6], [7] and [8]), Oren ([9]), Brade ([10] and [11]) and
many others, validation is an integral part of the iterative
process of model building. If testing is applied appropriately
at each stage, confidence in the model should increase steadily
during the model development process.

10
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Early in an engineering design project, simplified models
allow ‘what if” situations to be examined and permit design
trade-offs. At that stage little formal model validation is
possible and the error bounds on model predictions can be
large. Assessment of quality and fitness for purpose is thus
likely to be based on previous design experience and on
comparisons with models of earlier systems. As the work
progresses, more detailed models may be integrated into the
design process and more data should become available for
testing of the model. Such testing is likely to be based on
components to start with, then data resulting from tests on
larger blocks and, much later on, data from the testing of
complete prototype systems.

Thus, as test results become available, information begins
to flow from the real system to the model. This contrasts
with the start of the design process where the flow is almost
entirely from the model to the system being designed.
Bidirectional information transfer is a highly desirable
characteristic of the later stages of the design process and
ensures that the model is updated as knowledge about the
real system is accumulated.

An example of this type of iterative model development
may be found in a recently published account [12] of work
on the design of a pumped heat electricity storage system by
engineers employed at Isentropic, a company which is based
in Cambridge in the UK. The concept, which is being
developed for renewable energy schemes, uses a reversible
heat engine to pump heat between two storage vessels
containing a mineral in particulate form. Gas circulates
through the system and is compressed to store energy, thus
raising its temperature before passing through one of the
vessels and heating the particles. This process results in
cooling of the gas which then expands, producing further
cooling. The gas is next passed to the second storage vessel

11
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where the mineral is cooled and the gas is brought back to a
temperature close to the original value. The energy for this
charging process comes from an electrical source. The
discharge, which is the reverse of the charging process
outlined above, releases energy which drives an electrical
generator. High efficiency, of the order of 72 per cent to
85 per cent overall, is achieved by innovative design which
minimises losses. These efficiency values are competitive with
other methods for large-scale energy storage, such as pumped-
hydro schemes. To prove the conceptand validate performance
predictions, engineers at Isentropic have designed small-scale
demonstrator systems and this has involved an iterative
process of modelling, simulation and testing. In this particular
case, test results from the first prototype were not quite what
were hoped for, so the model had to be refined and a second
prototype built. Further testing led to further improvements
in the model and a third prototype system [12].

The example outlined above is typical of modelling and
simulation for innovative design situations where there are no
systems of the same kind in existence. The system is an
integrated one and the model, in this particular case, involves
a mix of mechanics, thermodynamics and electro-mechanical
energy conversion. Through careful application of modelling
and simulation techniques and the cautious application of
experimentally validated models, design engineers can identify
strong and weak points of a proposal and refine the design in
a stepwise fashion to an eventual successful realisation.

1.4 Methods of experimental
modelling

System identification, which is the term used to describe
experimental modelling, is generally considered to be a

12
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mature field and classical methods of identification involve
linear discrete-time models within a stochastic framework.
The aspects of identification, parameter estimation and
optimisation techniques discussed in this book (mainly in
Chapter 6) relate to the development of models for
engineering applications. Objectives include real-time
simulator development as well as models for engineering
system design.

In some forms of model there can be a direct physical
interpretation of the structure and parameters, with
important  benefits. Together with issues involving
experimental design and the choice of test signals for the
estimation of parameters, the selection of the model structure
can contribute in an important way to the overall robustness
of models that are established experimentally. This aspect of
modelling and related issues of structural and parameter
sensitivity and identifiability receive attention within
Chapter 6. The process of extracting data from system and
sub-system tests is not a trivial task, and the whole iterative
process of development in the presence of uncertainties
raises many important issues and emphasises the fact that
there are no generally accepted standard approaches to
model validation.

The use of optimisation techniques within the model
development process has much in common with the use of
optimisation in design and it is therefore helpful to apply
experience gained in design applications for modelling
situations. Although gradient-based optimisation methods
remain important, the complexity of many practical problems
means that it is impossible to establish a global optimum
using gradient methods alone and more general techniques
such as simulated annealing, genetic algorithms and genetic
programming can provide benefits. These global optimisation
tools are likely to become even more important as large

13
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integrated systems become more commonplace. The relevant
methodologies are reviewed in Chapter 6.

Another important topic, closely related to optimisation,
is parameter sensitivity analysis, which was the subject of
much research in Eastern Europe in the 1960s and 1970s but
has been rather neglected elsewhere. It has been found that
insight gained from parameter sensitivity information can be
of considerable value in the development and refinement of
system models through investigation of model robustness
and the design of appropriate test inputs. This topic is
considered in detail in Chapter 5.

1.5 Model reuse and generic models

In industrial applications of modelling and simulation there
is much interest in modularisation and component reuse, as
these are key productivity factors in software development.
In both industry and the academic world, until recently at
least, simulation models were often started from scratch
for each new project. This is clearly time-consuming and
wasteful, and recent advances in object-oriented design and
programming methods allow for repositories of reusable
objects that can help to reduce the problems associated with
the generation of new simulation models for new objectives.
Modularity and component reuse are therefore concepts that
are important in modelling. These ideas mean that, if we
wish to build a new model for new given objectives, we can
select established and proven sub-models from a model base
to serve as elements of the new model [13].

Another significant development in recent years has been
the development of a more generic approach to modelling in
several industrial areas, including power electronic systems
(e.g. [14] and [15]) and gas turbine systems (e.g. [16]). Here

14
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the word ‘generic’ is taken to mean ‘general’ or ‘not specific’
and implies adoption of a standard structure and standard
building blocks within a model. These ideas are likely to
become more widely used in future and this topic is explored
in greater detail in Chapter 9, along with ideas relating to
modularisation and libraries of sub-models.

1.6 Modelling within the
procurement process

The ideas of ‘verification, validation and accreditation’
methodologies (VV&A), ‘smart procurement’ methods and
the concept of ‘the model as a specification’ are currently
being emphasised in the defence procurement area on both
sides of the Atlantic. Requirements ideally emerge from an
iterative process which involves all the stakeholders coming
together to state what is wanted and design engineers then
assessing possible ways of doing this using the available
technology and the broader implications of different
approaches in terms of lifetime costs.

Books and technical reports on modelling and simulation
applied to very large and complex systems (e.g. [13]) are
appearing in ever-increasing numbers from government
laboratories and agencies due — in part at least — to concerns
about excessive cost and time overruns in major projects.
There appears to be a growing understanding that, in many
cases, project failures can be traced back to failure to use
modelling and simulation in appropriate ways at relevant
phases of system development. Such interest in model testing
and model quality for the design and development of very
large and complex systems is to be welcomed but, even in
cases of relatively simple models, there are many aspects of
model validation, model optimisation and model tuning that
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require very careful consideration. Inadequate attention
to model quality at an early stage, however simple the
application, can lead to inappropriate design decisions that
are difficult and probably expensive to correct at a later
stage. The importance of these issues is not confined to large
projects and careful consideration of simulation model
quality issues can pay dividends whatever the application. In
general, the more integrated the system being considered, the
greater these benefits are likely to be.
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Integrated systems and their
significance for system
modelling

Abstract: As engineering systems become more complex
and include major elements of software as well as
hardware, the approach to design has changed. Sequential
design methods are being replaced by concurrent design
processes. This has been apparent for some time in
engineering applications where ‘control-configured’
solutions involving system integration, embedded
controllers and multidisciplinary design issues are
important, such as in the aircraft industry. Similar
developments can also be found in other fields, such as
automotive engineering and robotics. The introduction of
integrated systems and the multidisciplinary processes of
concurrent design have important implications for system
modelling and simulation. Design processes of this kind
are usually strongly model-dependent and involve
optimisation at a system level. Models used as a basis for
design must be of proven quality as model limitations and
errors have direct implications in terms of the performance
of the resulting system.

Key words: multidisciplinary, complexity, system
integration, concurrent design.
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2.1 An introduction to integrated
systems

The widespread introduction of embedded systems and other
forms of computer-based control in recent years has led to a
rapid increase in the complexity of engineering systems. For
example, digital ‘fly-by-wire’ control systems are now
commonplace, both in civil and military aircraft, and this
leads to new levels of interaction within the on-board systems
of the aircraft, between the pilot and the vehicle, and between
different vehicles. Multidisciplinary issues involving the
elastic airframe, the flight control system, the propulsive
control system and physiological ‘biodynamic’ factors
involving the pilot are combining to an extent not previously
encountered. For example, low-frequency modes of structural
vibration may necessitate use of active structural mode
control systems that are fully integrated with the primary
flight control system, since the frequency ranges of these two
systems are likely to overlap. Novel design features for
aircraft, such as ‘carefree manoeuvring’, can assist aircrew
in avoiding potentially hazardous situations and thus help
to improve safety margins or avoid potential hazards. In
extreme cases, for military aircraft applications, the
integration of aircraft systems has led to designs which,
without the stability augmentation inherent in the flight
control systems, are essentially impossible to fly. In such
cases, flight control issues have to be addressed during the
design process from the earliest stages and similar issues can
arise with other applications (see e.g. [1], [2]).

Although many good examples of integrated system design
can be found in aeronautical engineering, similar situations
involving multidisciplinary design, system integration,
‘control-configured’ solutions and embedded controllers can
be found in other fields, such as automotive engineering,
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robotics, wind turbine generators and biomedical engineering.
Satellite and space vehicle design is another area where
integration of systems is essential due to the importance of
satisfying overall design requirements in terms of the energy
usage and total mass.

Taking modern road vehicles as an example, it is clear that
a car or truck involves many component parts and these
cannot be designed in isolation. The engine and transmission
characteristics have to be chosen to take account of the mass
and other physical dimensions of the vehicle, along with the
performance requirements in terms of quantities such as
maximum acceleration and fuel consumption (both of which
are largely market-driven). The suspension is designed to suit
the mass of the vehicle and the engine characteristics and,
once again, must satisfy the demands of the market. Any
change in one element of the system leads, inevitably, to
changes elsewhere so the whole vehicle must be looked at as
a single integrated system.

In a similar way, modern wind turbine systems exhibit
complex dynamics involving interactions between the turbine
and generator elements (involving the rotor, drive train,
generator, converter and electrical load), and other dynamic
elements such as the tower, substructure and foundations. As
wind turbines become larger and involve rotor systems with
lower natural frequencies, the interactions between these
different dynamic elements become more significant, leading
to a need for better models, the use of analysis and design
methods that take full account of the integrated nature of
the system and the application of more advanced methods
of control (see e.g. [3]).

Another rapidly developing application area where system
integrationisveryimportantinvolvesmicro-electromechanical
systems (MEMS) and nano-electromechanical systems
(NEMS). The potential of very small (micro), nano and,
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more recently, molecular-sized machines has been recognised
for some time and specialised sensor devices such as miniature
accelerometers and tuning fork rate gyroscopes with
electrostatic actuation are now widely available. Many
MEMS and NEMS developments involve medical
applications such as blood cell separation and biochemical
analysis. Dynamic models have an important role in new
developments of this new technology and modelling and
simulation methods can help not only in the design process
but also in providing a better understanding of performance
limitations. These systems are very highly integrated and
frequently involve physics, chemistry and biology as well as
electronics, control and mechanical engineering. A recent
review of modelling, simulation and control aspects of
micro- and nano-electromechanical systems has been
provided by Ferreira and Aphale [4].

There are many ways in which complexity can be defined
and one useful way to approach this is to consider complexity
in the context of engineering systems using a number of
levels (see e.g. [5]). The lowest level of complexity involves
components or sub-systems from a single engineering
discipline and usually involving one organisation. A simple
example at this level is an electric motor or generator. At the
second level, more than one engineering discipline is involved
and there is likely to be more than one organisation concerned
with the processes of design, operation or maintenance. A
complete electrical power station is an example of a system
at this second level of complexity. At the third (and top)
level, we are dealing with a system of systems and this can
involve many different disciplines and has an impact on
non-technical factors involving social, economic and
environmental issues. An example at this level of complexity
is a complete electrical supply network, involving electrical
power generation and distribution.
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Whatever the field of application, unless appropriate
design methods are applied, the development of hybrid
systems, involving mechanical elements, electrical elements,
electronics, control and software inevitably introduces
additional complexity that can lead to delays, unexpected
extra development costs or products that do not meet their
specification. These design methods are usually model-driven
and involve optimisation at the level of the overall system.

In the design and development of industrial processes,
such as those found in chemical engineering and electrical
power generation and distribution, an integrated approach
supported by efficient modelling and simulation methods
and tools is also recognised now as being important (see e.g.
[6]). Although the adoption of modelling and simulation in
the field of engineering processes has been slower than in
other application areas, this may be because modelling and
simulation activities in that field are often separated from
other aspects of engineering. Simulation should be seen as
being of central importance throughout the whole life cycle
of an industrial process. In a large process, models may be
developed many years before the construction begins. The
construction may take years and the expected life of the
plant may be several decades, once commissioning has been
completed. Simulation models should therefore be recognised
as being of central importance for a wide range of activities
including the specification stage and investigation of options
before detailed design is started, for overall optimisation of
the system and for controller development. Once the
commissioning stage has been reached, models and associated
real-time simulators may be of great value for operator
training and also for investigation of possible problems
encountered during commissioning. When the plant becomes
operational, models and simulations continue to be of value
for investigation of operational issues and sustainability, for
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accident investigation and for investigation of possible plant
modifications and upgrading.

In engineering products and processes, the introduction
of closely integrated systems involving several distinct
engineering disciplines is leading to new trends in design and
development. In the past, different aspects of a system were
usually designed in a number of distinct and separate phases
— involving mechanical elements initially and ending with
the electronics, control and software aspects. Problems
encountered at a late stage could not be corrected without
significant additional cost and delays, and it became common
to attempt to deal with such problems through modifications
of the software, adding to its complexity and often failing to
address underlying issues. Model-driven design attempts to
overcome some of the problems of traditional sequential
design procedures through the introduction of a more
concurrent approach.

2.2 Sequential and concurrent design
procedures

Figure 2.1 shows the traditional sequential approach to
design. Here the system specification is the starting point for
the process and this usually involves mechanical design as a
first stage, typically using computer aided design (CAD)
tools. Once that part of the design has been optimised as a
separate sub-system, the mechanical engineers pass the
design on to their electrical engineering colleagues, who start
work on the electrical aspects of the project; this may
typically involve selection of motors and drive components,
other types of actuators and sensors. Again, use is made of
design tools that are specific to the domain in question and
the sub-system under consideration is optimised in isolation.
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System
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product support stages

Block diagram of the conventional design
process involving sequential design stages. Note
that between the five blocks that involve design,
there may be many hidden communication links
and iterative cycles of design modification.
There is also likely to be feedback from the
prototype testing stage to each of the earlier
design stages in order to optimise the overall
system
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At this stage, those involved with the control systems and
any embedded hardware and software begin to play a part.
Generally, the last aspect of design that is finalised in this
sequential approach involves control laws and tuning of the
control algorithm. This leads to construction of a prototype
system and to testing. Once the testing has been completed
successfully, the work progresses to the manufacturing stage
but, if the testing process throws up problems, it is clear that
the engineers responsible for those aspects must reassess
their designs and make changes. These changes are then
evaluated in a new or modified prototype system.

As work progresses in the sequential approach of
Figure 2.1, the more difficult and expensive it becomes to
make changes in the stages represented by the first blocks
in this diagram. Rectifying problems can produce long
delays and significant additional costs, or lead to acceptance
of features of the design that do not fully satisfy the
specification.

In the model-driven integrated systems approach, a more
concurrent type of design procedure is adopted. This is
illustrated in Figure 2.2, which shows that this is a parallel
design process in which the mechanical, electrical, electronic
and control aspects of the design are considered together. A
virtual prototype is produced using a computer simulation
model. This simulation may involve both continuous and
discrete-event techniques and such combined simulation
models are discussed in Chapter 3. As confidence is built up
about some aspects of the design, the virtual prototype
may move increasingly towards a ‘hardware-in-the-loop’
simulation where available prototype hardware operates in
conjunction with a simulation model to represent parts of
the system that are not available at that stage. After successful
testing of the virtual prototype and completion of any further
design iterations necessary, the work progresses to completion

26



Integrated systems and their significance for system modelling I

N Meche_mical |
design
N Electrical
design
Sy.‘:'.te”t". I Virtual Physical
specification prototype )
Control | testing and p:g;?itxpe
—» system — optimisation g
design l
I Manufacturing
test system
Embedded design and
—» hzrdvyare — evaluation
esign l
I To manufacture and product
Embedded support stages
—» software —
design

m Block diagram for the concurrent design

approach with a virtual prototyping stage. Here
communication links between the different
design processes are shown explicitly since the
design processes for all the sub-systems
progress more or less in parallel. There are also
important communication links, which are not
shown, between the virtual prototype and the
design blocks

of a physical prototype and further evaluation of performance.
By making use of multidisciplinary models, engineers are
able to reason about system-level properties from a very
early stage in a project. The effect of each design decision
becomes immediately apparent to all involved, thus lessening
the risk of misunderstandings between engineers within
different specialist teams.
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One of the most important features of the integrated
systems approach involving concurrent design is that the
success of the design depends on the quality of the models
being used by the different design teams. Another issue is the
need to integrate the design tools used by the teams, allowing
them to work together and share information even if the
tools are from different vendors and are intended for specific
disciplines within engineering.

The concurrent approach should allow engineers to
interact continuously and to discuss how each part of the
overall system design is affected by others. Not only does
this improve communication links between the designers,
but it also helps ensure that there is good communication
with the customer. There is increased confidence at an early
stage in design that the requirements are fully understood
and this helps to reduce the risk of serious errors or oversights
and can therefore reduce the development time.

It is clear that, with integrated design, the systems that
have to be brought together do not exist in hardware terms
when initial design decisions are being made. This contrasts
strongly with traditional approaches in some fields, such as
control systems engineering. Traditional control system
design procedures have usually involved the development of
a controller for a ‘plant’ that already exists, or a plant that
has been designed in detail prior to control being considered.
In that traditional approach, direct comparisons between the
plant model and the system are often possible. In contrast,
within the integrated approach to design, control is no longer
a second stage in the design process and the design of the
control systems cannot be separated from other aspects of
the design.

Although this requires a new approach, it need not produce
insuperable difficulties, because it is normal to start the
design process for an integrated system using some form of
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highly simplified initial model that only includes essential
features. This initial description is intended to provide a
basis for the evaluation of major design options and for
making preliminary decisions. As soon as more detailed and
tested models become available, they are used in place of this
initial description and, inevitably, this introduces further
complexities.

Within multidisciplinary design teams, the concurrent
consideration of critical constraints is central to this
integrated design process and this implies a need for models
of the highest possible quality for each stage of the
development. There is also a need for software tools that
allow each team to work within a familiar environment but
still produce a complete model that can be understood by
everyone concerned and that is accessible to all. Full design
integration also requires design teams that are organised so
that technical and economic factors may be traded. This, in
turn, allows the overall performance to be more fully
optimised and design cycle times to be reduced.

The steady increase in complexity of models being used for
these new and demanding applications and the computational
speed regarded as necessary are introducing new demands
on those responsible for the development of modelling and
simulation tools. Among the consequences of adopting a
concurrent approach to design and the growing importance
of embedded systems is that virtual prototyping and
hardware-in-the-loop simulation techniques are now
commonplace. This means that the final stage of the
development process involving a complete prototype system
can be delayed. Provided the models involved in the virtual
prototype are accurate, it can be used to identify features
that could be regarded as weak points within the overall
design and steps can be taken to improve the design before
the more costly physical prototype is built. Such a process of
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stepwise refinement from the virtual prototype stage reduces
overall costs and helps to reduce the risk of major problems
at later stages.

Within multidisciplinary design teams, the concurrent
consideration of critical constraints is central to this
integrated design process and this implies a need for models
of the highest possible quality for each stage of the
development. There is also a need for software tools for
dynamic modelling and simulation that can be integrated
with other design software.

As an illustration, methods of computational fluid dynamics
and finite element modelling are widely used in many areas
of engineering. When such tools are used for the modelling
of elements within a larger system involving a number of
sub-systems, it may be essential to derive reduced-order
descriptions to help avoid the effects of major computational
overheads when sub-models are being combined to provide a
more integrated description of the larger system. This model
reduction process, inevitably, introduces approximations and
simplifications which must be assessed carefully.

Often the need for reduced models arises because of the
inevitable difficulties produced by computational timescales
that are much greater than timescales convenient for human
analysis and decision-making. Sub-system models should
also be capable of running in time-scales that are well
matched to the thought processes of human designers.
Models are never unique and, at each stage of a project,
whether it involves engineering design or open-ended
scientific investigation, it is important that models are being
properly matched to the intended application, not only in
terms of quality but also in terms of computational issues
such as speed.

The model-centred approach, concurrent methods of
design and the development of virtual prototypes by domain-
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specific design teams that may be geographically distributed
across the world all represent aspects of a trend towards
what has been termed computer-supported cooperative
work. This is concerned with issues of collaborative design,
coordination methods and virtual prototyping, and prototype
to product transition. One example of an annual conference
relating to computer supported cooperative work is the IEEE
(Institute of Electrical and Electronics Engineers) International
Conference on Computer Supported Cooperative Work in
Design (CSCWD) [7]. A special issue of the IEEE Transactions
on Systems, Man and Cybernetics has been devoted recently
to the theme of systems integration and collaboration in
design, manufacturing and services [8]. In some fields, such
as the design of integrated electronic circuits and systems
and digital signal processor systems, tools already exist that
are being used for virtual prototyping, such as VHDL (Very
High Speed Integrated Circuit Hardware Description
Language) (see e.g. [9]) and UML (Unified Modelling
Language) (see e.g. [10]). For systems involving a wider
range of engineering disciplines, no single tool appears to
provide a solution at present.

A distinction also has to be made between the design of
high-volume products which are of relatively low cost
but which may require short development times and the
design of low-volume, higher-cost products, for which
much longer development times may be acceptable. For
the first group, the requirements may include fast modelling
tools and access to good libraries of well-documented
and fully validated sub-models or even existing and
properly documented generic models. In the second case,
there may well be time to embark on more extensive
simulation studies from first principles, provided the potential
gains are seen to justify the inevitable high costs of such a
strategy.
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Problem organisation

Abstract: Models used in engineering design are refined as
the design moves forward and as uncertainties are
eliminated. This modelling process can involve tiers,
starting with descriptions that are of relatively low fidelity
and leading to a model at the final tier that is a detailed
description of the system in service. At every stage within
this process of stepwise refinement, models may be
developed using a layered structure, starting with a
description of the physical components and leading to a
network-based representation and then to mathematical
and computer-based descriptions. This chapter introduces
methods and tools for model organisation and
development. Aspects covered include bond graph
descriptions, differential equations and differential
algebraic equation descriptions, state-variable models,
transfer function models, models involving distributed
parameter elements and an introduction to some
commonly used modelling and simulation software tools.

Key words: tier, layers, bond graph, state-space, transfer
function, discrete-event, discontinuity, software.
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3.1 Model organisation for
engineering systems design

Issues of problem organisation for system modelling are
difficult to separate from issues relating to the choice of
software tools. Some tools allow users to consider the overall
problem before becoming involved in equations and
numerical solutions, while others are aimed at efficient
simulation but lack facilities for analysis of the physical
problem. The modelling and analysis stage is particularly
important for multi-domain systems and tools that provide a
unified environment for modelling and simulation of
multidisciplinary systems are particularly valuable.

Models used for design, like the design process itself, can
be described in terms of tiers within a procedure that involves
stepwise refinement. Tier 1 involves concept design and, at
this stage, models are of relatively low fidelity but capture
the essential features of the systems. Such models provide
approximate estimates of performance, but are nevertheless
useful for comparing initial design options. Tier 2 involves
preliminary design and uses intermediate-level models based
on design information from the first phase. Tier 3 involves
detailed design. Thus, in most design projects, models are
developed with different levels of complexity for each of
these tiers.

The modelling of an engineering system usually starts with
a schematic diagram showing the system components and
their interconnections. This can be linked to text discussing
assumptions made and factors that have been deliberately
ignored or regarded as being of minor importance. This is
also a starting point for the development of a layered
structure for a model for each of the design tiers. This layered
structure provides a valuable framework around which
documentation can be prepared.
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The first layer (Layer 1) involves separately identifiable
physical components such as coils, amplifiers, electric
motors, gear trains, etc. Each component or sub-system
usually involves one engineering discipline and one
organisation. The second layer (Layer 2) involves a network
based on the elements of the first layer but viewed in terms
of physically based idealisations involving concepts such as
resistance, inductance, moment of inertia or friction. The
third and final layer (Layer 3) involves a representation in
mathematical terms where the idealised elements of the
second layer are translated into a set of linked mathematical
equations. It is important to note that the real-world objects
of Layer 1 have no properties assigned a priori and these are
defined in Layer 2, where account is taken of the intended
application of the model. For example, for any application,
an electrical coil is likely to have properties that include
inductance and resistance, but if it is to be used in a high-
frequency application, it may also have capacitance.

Models for use at the Tier 1 of design are usually simple in
form and, although there may be a recognisable layered
structure, the three layers at this initial stage contain far less
detail than at the Tier 3 stage of design. Initially, the
component representations and associated sub-models in
each layer may involve many uncertainties and include only
essential features of the real-world elements. However, the
models provide enough information to allow preliminary
design decisions to be made. As the iterative process of design
moves through Tier 2 to Tier 3, the developers’ attention
becomes focused on specific options and on refinement of the
features of the models that are most relevant for the design
objective. Modelling uncertainties are identified and
strategies are established for model reduction using data
from component manufacturers or from tests on the
hardware. These steps are considered in more detail in
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Chapters 6 and 7 and, at Tier 3 in the design process, lead
eventually to a complete description in each layer.

One topic that is not considered in detail in this book is
qualitative modelling. Traditional models are quantitative
and involve variables that take values that can be represented
numerically. Qualitative models lack the precision of
quantitative models and variables are discretised using broad
categories such as very large, large, medium, small and very
small to produce a form of fuzzy description. Further details
of qualitative modelling techniques may be found elsewhere

(see e.g. [1]).

3.2 The physical component layer

The first of these layers (Layer 1) involves a description of
the system as a set of separately identifiable real-world
objects such as resistors, motors, gear trains, etc., along with
the information about how we observe or obtain data from
that system and the environment within which it operates.

3.3 The physical concept layer

For each component of the system, we need to establish
physical mechanisms that are relevant. For example, for the
modelling of an electrical coil, as discussed in the introductory
section of this chapter, it is necessary to establish whether or
not capacitance should be included. We need, however, to
retain flexibility in developing physically based descriptions
of the real-world elements and this is particularly important
in considering models that involve more than one physical
domain (such as the electrical and mechanical domains). A
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system involving an electric motor, an associated gear train
and a mechanical load is an example of a system involving
multiple domains. One way of dealing with such cases is to
use physical analogies to gain insight about overall behaviour,
together with a network approach involving energy.

Ideally, when a decision is made to use a model, questions
arise about the level of detail necessary. For example, in an
electrical circuit the choice of a model element for a physical
resistor should raise questions about the application and the
frequency range over which the resistor is used. Essentially
we need to decide whether resistance is the only property of
importance or, because of the frequency range of interest,
whether we should add additional physical effects such as
capacitance or inductance. A specific physical resistor may
thus have different forms of model to represent it, depending
on the application. Similar issues arise with other physical
components, mechanical as well as electrical. For example,
the choice of model for a shaft involves decisions about
whether or not internal damping and torsional stiffness
effects are included.

3.3.1 Bond-graph representations

In the preliminary stages of modelling, details of interactions
between physical components are not available. Various
different levels of detail can be provided at interfaces between
elements and refinement of sub-models inevitably leads to
refinement of the interfaces. For the physical process layer, a
natural way of handling sub-model interactions is provided
by bond graphs. The interface often involves ports at which
there is exchange of energy or information and these ports
can be regarded as a refinement of the interface elements
discussed in connection with the physical component layer.
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Ports also define the link between the physical process layer
and the mathematical layer using what are termed port
variables.

The bond-graph approach is widely used and has origins
in the mathematical theory of linear graphs and the
nineteenth-century work of Kirchhoff on electrical networks.
Bond graphs are based primarily on energy and power, and
are particularly useful for interdisciplinary projects. Energy
ports for components of a model are connected using bonds
and these specify energy transfer. The system structure is
kept separate from the equations through the graphical
representation used in bond-graph models and this assists in
establishing a qualitative physical understanding of a model
(see e.g. [2]).

Bond graph ideas were devised by Professor Henry Paynter
at the Massachusetts Institute of Technology (MIT) in the
late 1950s [3]. Former PhD students of Professor Paynter
developed the approach further, including D.C. Karnopp,
D.L. Margolis and R.C. Rosenberg [4], and many research
papers have since appeared. Special issues on aspects of
bond-graph modelling have appeared in many journals (see
e.g. [5], [6] and [7]) and an extended tutorial on bond-graph
methods by P.J. Gawthrop and G.P. Bevan was published in
the IEEE Control Systems Magazine in 2007 [8]. A useful
report providing an introduction to bond graphs has been
published by J.F. Broenink of the University of Twente in the
Netherlands [9]. Links between bond graphs, linear graph
theory and graph-theoretic modelling methods are described
in a paper by Birkett ez al. [2].

The relationships between elements of a model in bond-
graph form are highlighted in a very direct fashion at a very
early stage in the modelling process rather than through
equations or a simulation program on a computer. Indeed,
the initial stages of model development using a bond-graph
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approach can be carried out entirely with pencil and paper,
and from this starting point information can be found about
algebraic loops, constrained variables, the effects of possible
simplifications of the model and other qualitative insights. In
the case of complex models, computer-based modelling tools
can be useful for generating bond graphs and some of these
are discussed later in this section.

Bond-graph modelling depends on the fact that analogies
exist between dynamic systems of different kinds. Electrical,
fluid and mechanical systems can all involve similar forms of
differential equation description and bond-graph modelling
is based on three specific types of analogy: signal analogies,
component analogies and connection analogies.

Signal analogies

Bond graphs involve effort and flow variables, and depend
on signal analogies to provide links between variables in
different physical domains. Effort signals include mechanical
forces and electrical voltages, whereas flow signals include
electrical currents and mechanical velocities. The product of
effort and flow in both of the electrical and mechanical
domains is power. This is also true in other domains and, in
general, it is always possible to write:

effort x flow = power (3.1)

In bond graphs, effort signals are conventionally
represented by the generic symbol e and flow signals by the
generic symbol f. Integrated flow signals include electrical
charge and mechanical displacements, and are represented
using the generic symbol g. Integrated effort signals include
electrical lines of flux and mechanical momentum. Table 3.1
shows analogous signals for translational and rotational
mechanical systems, electrical systems and hydraulic systems.
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Table 3.1 Analogous signals

Bond Electrical | Mechanical Mechanical | Hydraulic

graph rotation translation

Effort N Voltage | Torque Force Pressure

e VvV 7 N-m F P Pa

Flow Current Angular velocity | Velocity Flow

f 1A Qrad st vms? Q mds?

Integrated | Lines of | Angular Momentum | Momentum

effort flux momentum p kg mst per unit area
A V-s h kg m? rad s p kg-mst

Integrated | Charge Angle Position Volume

flow gC O rad xm Vm?3

Effort and flow signal pairs are represented by a single

power bond, as shown in Figure 3.1. The direction of the

half arrow in this diagram shows that the positive direction

of energy flow is from left to right. Power bonds such as this

must be distinguished from active bonds which resemble

signals in block diagrams and can carry either effort or flow.

Figure 3.2 shows an active bond carrying flow and elements

such as this provide a useful interface between a bond graph

sub-model and a block diagram.

Component analogies

Table 3.2 shows analogous components with a single energy

port from the mechanical, electrical and hydraulic domains.

Figure 3.1

€4

/1
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Table 3.2

f

v

»
»

Representation of active bonds carrying either
effort or flow that can act as a link between a

bond-graph model and a block diagram

Analogous components with one energy port,
corresponding to the analogous signals of

Table 3.1. The first column shows the generic
bond-graph component while other columns

show domain-specific components

Bond Electrical Mechanical | Mechanical Hydraulic
graph rotation translation
Se Applied Applied Applied force Applied
De voltage torque Force sensor pressure
Voltmeter | Torque EN Pressure
vV sensor sensor
TNm P Pa
Sf Applied Angular Applied velocity | Flow
Df current velocity Speedometer Flow meter
Ammeter Tachometer | mgt Q m3st
1A Qrads™
C Capacitor Torsional Spring Accumulator
CF spring KNm? K Pam3
KN mrad?
! Inductor Moment of Mass Flow inertia
LH inertia m kg I Pa m-3 s2
I NMs? rad ~*
R Resistor Torsional Damper Restrictor
RQ damper DNsm™ KPasm™
dNmsrad™?
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Here the generic Se component is a source of effort and could
represent, for example, an ideal voltage source or an ideal
applied force. The Sf component, similarly, is a generic flow
source component representing an ideal current source or an
applied velocity. The two generic detectors, De and Df, are
detectors of effort or flow, respectively. A De component
could therefore represent a voltmeter or force sensor while a
Df component could represent an ammeter or a tachometer.
A C component stores energy and corresponds to an electrical
capacitor or mechanical spring. An I component also stores
energy and could represent an electrical inductor or a
mechanical mass or moment of inertia. The R type of
component dissipates energy, as in a resistor or a mechanical
damper. In addition to the components that appear in Table
3.2, there are SS components that can be used to model
co-located sensor-actuator pairs represented as Se-Df or
Sf-De.

Due to the fact that a particular type of component is likely
to occur many times within a given complex model, it is
essential to be able to distinguish between different instances
of each component type. Thus R:r1 is used to refer to a
dissipative component 71.

In the case of linear components, the equations
corresponding to the generic C, I and R components are:

_4q
cl 7% (3.2)
f
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In these three equations, the quantities ¢, 7 and r are
constants relating to elements of the physical system being
modelled. In electrical terms the upper relationship in
Equation (3.2) corresponds to Coulomb’s Law or, in
mechanical terms, to Hooke’s Law, while the upper statement
in Equation (3.3) is Newton’s Second Law. The relationship
in Equation (3.4) represents Ohm’s Law and its equivalents
for mechanical and hydraulic elements.

Connection analogies

Any two components can be connected using a power bond.
Figure 3.3 shows an example involving a capacitor and a
resistor, where the components have the same current (flow)
and voltage (effort). The bond graph C:c and R:r components
are linked using a power bond as shown in the diagram. The
colon notation links the label ¢ with the C component and
the label » with the R component.

Fr=1h Sfa=1
3 3
c r
€4 (=2}
er=n - Cc — 7 Rr
€2=V2 /i S

A capacitor and a resistor connected in series so

m that the two components carry the same current
(flow) and have the same voltage (effort). In
terms of a bond-graph representation, the
components are connected using the power
bond shown on the right
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A4
A4

e
c r
e<> S ; 7 O

(a) Parallel connection Ccc

e
.
e C) Vr[ S i 1

(b) Series connection C:c

Figure 3.4 Exa.mple illustrating ccl)nnec'tlon of components
(a) in parallel and (b) in series

In general, connections are either parallel or series and
Figure 3.4 provides a simple example. The parallel connection
obeys Kirchhoff’s voltage law while the series connection
obeys Kirchhoff’s current law. The corresponding bond-
graph models use what is termed a 0 junction for the parallel
circuit (involving common effort) and a 1 junction for the
series circuit (involving common flow). The efforts for the
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bonds associated with a 0 junction are the same but the flows
for these bonds add up to zero. Similarly, the efforts on a 1
junction sum to zero while the flows are all equal.

Power conversion in bond graphs

Effort and flow variables in the physical domains of Table 3.1
have different units and it is impossible to connect them directly.
Since power is common to all physical systems, it is possible to
connect different physical domains on the basis of power. This
is done using the power-converting bond-graph components
TF (a generic transformer) and GY (a generic gyrator). These
two generic components are shown in Figure 3.5.

The TF component conserves power and represents a
generalisation of an electrical transformer. In the linear case
it has the property that:

\'% T
Y ?:l TQ ——ay — -~
| Q

m Examples of bond-graph coupling components.
(a) Bond-graph representation of a hydraulic
cylinder and piston (a transformer).

(b) Bond-graph representation of a dc electric
motor (a gyrator)

A4
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e, = ne; and f, = nf, (3.5)

The GY component also conserves power and is similar in
some respects to a transformer, but the flow in a gyrator at
one port depends on the effort at the other. Thus the equations
for the linear case are:

e, = kf, and e, = kf, (3.6)

where 7 and k are non-dimensional constants. Since power is
conserved for the transformer and for the gyrator, the input
power and the output power must be the same in both cases,
so that:

eif1 = ef; (3.7)

Causality in bond-graph models

Causality is not established in bond-graph models until the
initial modelling is complete. This is different from block
diagram models where the diagram represents a set of
assignment statements instead of equations. A block diagram
cannot be constructed until inputs and outputs of each
component have been defined. However, in bond-graph
components, inputs and outputs are determined after
modelling through the assignment of computational causality.
Creation of a-causal bond graphs for a given system can
provide a complete model. However, this can involve many
different sets of equations depending on the purpose of the
modelling exercise and the type of analysis to be carried out.
The state-space type of representation so widely used in
continuous system simulation and control systems analysis
and design involves one particular form of causality, while
the Lagrangian or Hamiltonian types of representation
involve other forms of causality. A particular representation
can be obtained from a bond-graph model by applying a
specific pattern of causal strokes to the a-causal model.
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Figure 3.6 The representation of causality in bond-graph
components. The top bond graph is a-causal

and represents the equation relating the
variables e and i to the parameter r, which is
resistance. The bond graph in the middle has a
causal stroke indicating that the variable e is
the output. The corresponding block diagram
element is shown at the middle level on the
right. The third bond graph has a causal stroke
showing that i is the output and this is reflected
again in the block diagram representation at the
lower right

Advantages and disadvantages of
bond-graph models

One feature of bond-graph models is that they can involve
several description levels and this is important for hierarchical
modelling and the recognition that a single physical system
can be modelled at a variety of different levels or tiers, as
indicated in Section 3.1. Generation of a bond-graph model
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starts at the physical components and can lead directly to
qualitative analysis or to a mathematical description and a
simulation model. Parameter sensitivity analysis techniques
based on bond-graph concepts can be applied. This topic,
discussed in more detail in Chapter 5, is important for
applications involving system optimisation or analysis of the
effects of model uncertainties on overall performance.
Inverse models can also be derived using the bi-causality
concept and this is discussed further in Chapter 4.

The adaptable form of interface in bond-graph models is
an important benefit of this approach. This is particularly
helpful in making sub-system models reusable and when
integrating system models. If all the system models are
in bond-graph form, then all the interfaces transmit power
and this can significantly simplify the task of bringing a
set of sub-models together to represent a complete
system. Another advantage is that causality of interfaces can
be altered without producing new models and this reduces
the number of models required in a design project,
thus reducing the risk of errors and the costs of model
documentation.

The idea of generic components and variables is useful for
the modelling of multi-domain systems and can expose
interactions that may otherwise remain hidden. This can be
particularly helpful in considering possible simplifications.

Disadvantages of bond-graph models are mainly associated
with the fact that they are still unfamiliar to many engineers.
Although some find the terminology and notation difficult
initially, the whole approach is based on concepts of energy
and power which are familiar to engineers of all disciplines
and this can be helpful. It should be remembered that some
engineers also find signal flow diagrams and block diagrams
difficult to accept, because those representations do not
involve energy and power explicitly. Engineers can quickly
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adapt to the use of bond-graph representations and benefit
significantly from their use, especially in multidisciplinary
problems. Transformation of bond-graph models into other
forms of representation is straightforward and software
tools exist to do this.

Examples of modelling languages and simulation
software for handling bond graphs

As has already been pointed out in Section 3.3.1, much of
the initial model development process using a bond-graph
approach can be carried out using a pencil and paper.
However, there are computer-based modelling tools that
allow bond-graph models and similar port-based
representations to be mapped to code. Examples include
Dymola [10], CAMP-G (Computer Aided Modeling Program
with Graphical Input) [11] and 20-sim [12]. Some of these
software tools are discussed at more length in Section 3.5.

3.4 The mathematical
description layer

In physically based models, many variables are treated as
continuous variables that are described mathematically as
continuous functions of time (and possibly also as continuous
functions of some other physical quantity such as position).
A model expressed in terms of continuous variables leads
usually to a description involving ordinary or partial
differential equations.

In the case of partial differential equations, numerical
techniques such as finite-element modelling or computational
fluid dynamics can provide solutions very effectively, but the
computer time required introduces problems when such
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methods are used within the engineering design process.
Computational tools do exist which can provide a stepping
stone between simulation models and dedicated CAD
formats for distributed parameter models. One example is
COMSOL Multiphysics® [13] (formerly FEMLAB), which is
a general-purpose modelling and simulation tool that allows
a wide range of physical phenomena involving electrical,
mechanical, thermal, fluid flow and other distributed
parameter problems to be considered within an integrated
environment with a convenient user interface and powerful
graphics for displaying results in two or three dimensions.
COMSOL Multiphysics® also allows users to make
connections to other software such as MATLAB® [14] and
also some CAD packages including SolidWorks® [15],
Autodesk® Inventor® [16] and Creo Parametric® (formerly
Pro/ENGINEER®) [17].

Even with highly specialised computer hardware and
software facilities, a significant mismatch may arise between
the times required to perform simulation runs with complex
distributed parameter models and the expectations and
desires of the designer. When overall system design
optimisation is necessary, the computational overheads of
modelling complex systems wusing partial differential
equations may be prohibitive.

Complex physically based descriptions involving
distributed-parameter models can often be reduced to
lumped parameter approximations, leading to ordinary
differential equations, which offer significant computational
benefits without losing physical insight. Examples of this
type of approach arise in aircraft systems engineering, where
aircraft models often involve elements which are
approximations derived from numerical solutions of partial
differential equations. Such approximations may be useful
only for a limited set of operating conditions. Other examples
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include systems that can be described very accurately by pure
or distributed time-delay models in specific types of
application.

Some simulation tools allow lumped-parameter
mathematical models to be formulated using port-based
methods that involve flow and effort variables together with
a-causal principles, as discussed in Section 3.3.1 in the
context of bond-graph models. One example of this is the
Virtual Test Bed (VIB) [18], which is discussed in more
detail in Section 3.5.3. The VTB allows models to be created
using natural coupling, which ensures that the physical laws
of energy conservation apply at the model ports. This
is achieved through use of the resistive companion method
(RCM) (see e.g. [19]), as defined in the VHDL-
AMS simulation standard (see e.g. [20]). The VTB also
allows signal coupling between model ports when this is
appropriate.

One advantage of natural coupling claimed by the
developers of the VTB is that naturally coupled models can
be interconnected very easily to form larger models. Thus,
the use of natural coupling principles can facilitate the
development of libraries of sub-models in terms of model
objects that can be readily coupled together using an object-
oriented type of approach.

Object-oriented methods are also emphasised in the case
of the Modelica® language [21]. This is a simulation tool
that allows a-causal methods to be applied through use of a
declarative modelling style in which models are based on
equations rather than assignment statements. In assignment
statements, variables on the left-hand side of an expression
are always results of a calculation and variables on the
right-hand side are quantities that are known at the start of
the calculation. In an equation, it is not specified which
quantities are inputs and which are results; causality is
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therefore initially unspecified and fixed only when the
equation is solved. The equation-based approach is well
suited to representing the physical structure of the system
being modelled and is a natural approach. One consequence
of the equation-based methodology is that the equations
may involve a combination of ordinary differential equations
and algebraic equations, and this leads to a model described
by differential algebraic equations (DAEs) as outlined in
Section 3.4.3.

In contrast with continuous mechanical, thermal or
electrical variables, as discussed above, a controller
implemented using digital logic, or a processor, is likely to be
described using discrete-event modelling methods. This
normally involves difference equations rather than differential
equations. Other cases that involve discrete-events and
discontinuities are found in hydraulic valves and limiters, on/
off switches, logical overrides and many other components
of practical systems. Combined or hybrid models that
describe such elements introduce difficulties, since many
simulation tools currently available are not well suited to
describing systems involving discontinuities and where the
continuous and discrete elements may be tightly coupled.
One example of a hybrid system is an automatic transmission
system where there are first, second, third and fourth gears.
Others can be found in automatic fault detection and
recovery systems where the way in which a given actuator is
used may change suddenly when a fault is detected. Interest
in hybrid systems has grown in recent years (see e.g. [22] and
[23]) and some software tools, such as Modelica® [21],
provide comprehensive facilities for simulation of
discontinuous and discrete elements, even involving packet-
switched communications protocols.

One interesting development involves the state quantisation
approach proposed initially by Zeigler et al. [24] which

54



Problem organisation I

involves replacing discretisation of time by discretisation of
state and provides the basis of a new approach to numerical
integration. One specific and powerful discrete-event
simulation methodology, which is known as the Discrete-
Event System Specification (DEVS) formalism, has been
found to be well suited to implementation of state
quantisation. The DEVS approach, which is discussed again
in the context of discrete-event system modelling in Section
3.5, was introduced by Zeigler [25] and provides a
methodology for discrete-event simulation that is firmly
based on system theory. In a further development of the ideas
put forward by Zeigler et al. [24], Kofman and Junco [26] in
2001 introduced the quantised state system (QSS) formalism,
which allowed efficient discrete-event simulation of large
and complex continuous time systems using the DEVS type
of discrete approach. The significant advantage of this is that
the DEVS formalism allows for asynchronous updates of
model variables and this can be important in
the case of models involving a wide range of time-constants
or natural frequencies, leading to reduced computing costs
as each variable has its own update rate. A Dymola/
Modelica® library known as ModelicaDEVS has been
developed [27], which implements a number of QSS
simulation algorithms.

Some other issues relating to combined discrete-event and
continuous system simulation are discussed in Section 3.5 in
the context of specific simulation tools. One interesting
development is the availability of symbolic computing
software, such as that provided within the Maplesim® [28]

® [29] packages. Symbolic computing

and Mathematica
provides an exact solution in the form of analytical
expressions and can provide insight into how parameters
affect solutions. This can complement simulation methods

but, although symbolic computing can be more efficient
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than numerical solutions for relatively simple modelling
problems, this approach has clear limitations as models
become more complex. Used as part of the tool-set of
the system modeller, symbolic computing techniques can be
very useful.

3.4.1 Equation-based and reduced
form representations for
lumped-parameter models

Once an appropriate model structure has been obtained in
lumped parameter form, equations can be written down to
provide an equivalent mathematical description. This process
can be illustrated using an example involving the simple
electrical circuit of Figure 3.7. This circuit involves an
Inductance L, a capacitance C and two resistors. One resistor
(R) is in series with the inductance while the second resistor
(r) is connected in parallel with the capacitance. The voltages
e(t) and v(¢) and the current i(¢) are then related according to
Kirchhoff’s voltage and current laws by the following

equations:
L
i R 6 6 6 6
c___
e r v

Figure 3.7 Electrical circuit example involving inductance L,
capacitance C and two resistors (R and r)

56



Problem organisation I

di(t)

e(t)=Ri(t)+ L——+v(t) (3.8)
dt
_dvit) 1
(t)=C o +rv(t) (3.9)

Equations (3.8) and (3.9) provide a basis for a complete
description of the behaviour of the circuit, in terms (for
example) of its response to changes of the voltage e(¢) and
may be combined to form a single second-order ordinary
differential equation:

di(t) _ C d*v(t) . 1 du(t)

- (3.10)
dt dt r dt

Substituting this expression for di(t) i Equation (3.8) then
gives: dt
2
LC d Uit) + L +RC dvit) + R +1|vt)=e(t) (3.11)
dt 7 dt r

This is an example of a reduced form model. Equivalent
second-order equations could be derived for simple mechanical,
hydraulic, thermal or process systems. Although such linear
ordinary differential equations may be solved analytically, a
reduced form model which is nonlinear can, in general, only
be solved using numerical methods or simulation software.

If we return to the basic equations describing this model
(Equations (3.8) and (3.9)), it can be seen that these two
equations could be combined with the algebraic equation
(3.12) to form a different type of model in which the variables
i(t) and e(¢) are unknowns.

u(t) = kf(t) (3.12)

Here, the function f(¢) could represent any function of
time, such as a unit ramp (¢) or a sinusoid (sin wt), to describe
the specific form of the voltage v(z).
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dit)_ 0 pir
L o =e(t)— Ri(t)—v(t) (3.13)
dvit) .. 1

C7—z(t) rv(t) (3.14)
v(t) = kf(2) (3.15)

The three equations above constitute a differential
algebraic equation (DAE) which cannot be solved using the
standard approaches for ordinary differential equations.
Here the voltage v(t) is being constrained to follow a specific
waveform, such as a ramp or sinusoid, and solution of the
model equations should allow us to find the form of
the voltage e(t) and current i(¢) to make this possible. The
properties of differential algebraic equations and methods
for their solution are discussed further in Section 3.4.3.

3.4.2 Models in state-space form

Although reduced-form representations are often convenient
when a linear model is being studied analytically, a
mathematical representation that is often convenient for
simulation purposes involves a set of simultaneous first-
order ordinary differential equations. The basic principles of
the numerical solution of sets of first-order ordinary
differential equations — a topic of fundamental importance in
continuous system simulation — are presented briefly in
Appendix A2. Further details of these numerical integration
techniques may be found in many textbooks on modelling
and simulation (see e.g. [25], [30], [31] and [32]).

For an nth order model in reduced form, there must be #
first-order equations and this set of 7 equations forms a
state-space description. Each of the variables of a state-space
model is a state-variable and, in general, the number of state
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variables must be sufficient to allow the behaviour of the
system to be predicted, given information about the initial
conditions and the input forcing to be applied (the function
f(t) in the mechanical example above). The general form of
an nth order linear state-space model is:

%= Ax + Bu (3.16)

y=Cx + Du (3.17)

where x is the column vector of # state variables, u is a
column vector of m input variables, y is a column vector of
p output variables, A is an 7 x n square matrix of model
parameters, B is a matrix of parameters involving # rows
and m columns (n x m), while C and D are p x n and p x m
matrices of parameters respectively. Equation (3.16) relates
the rate of change of the state to the present state and the
input. It has a form that is especially convenient for
simulation, since the numerical solution can be obtained for
each equation within the state-space model simply by
integration. The quantity on the right-hand side of each of
the equations within the matrix-vector representation of
Equation (3.16) is the derivative of a state variable and, for
the nth order case, n integration operations would be
required in the corresponding simulation program.

For the more general case of a nonlinear model, the state-
space representation would take the form:

x = flx(2), u(t),t) (3.18)

y = glx(2), u(t),t} (3.19)

where fand g denote nonlinear functions.

For the electrical circuit model of Figure 3.7, an equivalent
state-space representation involves the use of two first-order
equations in place of the second-order reduced form
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representation (Equation (3.11)). These equations are based
upon the state variables x, and x,, where x, is the current #(z)
and x, is the voltage v(¢), and an input variable # which
represents the input voltage e(¢) may be derived by rearranging
Equations (3.8) and (3.9) to give:

%:%e(t)—%i(t)—%v(t) (3.20)
d;ff) =%i(t) —év(t) (3.21)
That is:

i, = —%xl - %xz + %u(t) (3.22)
xzzéx]—cl—sz (3.23)

A further equation must be used to define the output
variable of interest in terms of the state variables. In this
case, the output is the voltage v(¢) so the output equation in
this state-variable representation has the form:

y =%, (3.24)

In matrix form, this state-variable model may be written as:

wn | [ R 1

dt _ L L i(t) + Z e(t) (3.25)
dv(t) l _L v(t) 0

dt C CR

This is not the only possible choice of state variables for
this problem, but it has the advantage of being physically
meaningful and involves quantities that could be measured
in the real physical system. This is an important consideration
for model validation, as discussed in Chapter 7.
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3.4.3 Differential algebraic equation
(DAE) models

Differential algebraic equations have been mentioned briefly
in Sections 3.4 and 3.4.1. The example discussed in Section
3.4.1 involving a simple second-order electrical circuit model
(Figure 3.7) illustrates a situation in which a quantity which
would normally be regarded as a model output is constrained
to have a particular form and the model may be used to
determine other variables of the model. This example of a
differential algebraic equation is a special type of application
which is closely related to inverse simulation, and situations
of this kind are discussed further in Chapter 4. A more
common situation in which differential algebraic equations
are found in engineering applications arises when a dynamic
system is subjected to physical constraints which are
described through algebraic relationships.

mg

PN CICE- B Schematic diagram of pendulum system
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A very commonly used example (see e.g. [21]) involves the
simple pendulum system shown in Figure 3.8. This can be
modelled by applying Newton’s Second Law to give the
following set of equations:

d*x

. x
MFZ—F Sll’lq):—FE (326)
2
%:—F cosq)—mg:—F%—mg (3.27)
x> +y*=R? (3.28)

Equation (3.18) represents a geometric constraint ensuring
that the position of the centre of gravity of the mass M lies
on the circumference of a circle of radius R. This is an
algebraic equation and involves no derivatives.

Equations (3.26) and (3.27) may each be rearranged as a
pair of first-order equations to give:

Mv,_=-F sin(p=—F% (3.29)
Mv,= —Fcos(p—mg:—F%—mg (3.30)
X=v, (3.31)
y=v, (3.32)

Taken with Equation (3.28), these equations define the
nonlinear model for the pendulum and a DAE model, such
as this, can be simulated directly using any simulation tools
incorporating facilities for handling DAEs (e.g. Modelica®
[21]).

If a simulation model is developed using a block diagram,
situations frequently arise involving ‘implicit” or ‘algebraic’
loops that are characterised by closed pathways that do not
include any integrator or pure delay blocks. This situation is
clearly another form of DAE model and can be dealt with
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either by using specialist tools for the solution of DAEs or by
eliminating the algebraic equation. That may be done by
changing the DAE into an equivalent differential equation
with a very short pure delay or by introducing a first-order
lag element with a time constant that is very small compared
with time constants of the system being modelled. Advocates
of bond-graph methods claim that the improved
understanding of causality that comes from that approach
allows potential difficulties with algebraic loops to be
identified at an early stage in the modelling process.

Simulation of a model in the form of a set of DAEs is based
on implicit methods involving an iterative procedure that
includes all the algebraic equations as well as ordinary
differential equations of the model. Solution of a DAE may
require differentiation as well as integration, since the
algebraic equations may involve constraints between state
variables but not necessarily directly between derivatives of
those state variables (although they may be constrained
implicitly). In order to make all the constraints explicit, some
algebraic equations of a given model may have to be
differentiated. The differentiation index of a DAE model is
defined as the number of times that certain given equations
of the model have to be differentiated in order to reduce the
model to a set of ODEs (ordinary differential equations) that
can be solved by conventional methods (i.e. through
transformation into ODE explicit state-variable form). One
widely used DAE solver is DASSL [33] which is used in
Modelica® [21] and in other general-purpose simulation
tools. DASSL uses a backward difference formula (BDF)
approach and a number of variations of the basic solver have
been produced.

One benefit of working with DAEs rather than ODEs is
that there is no need to manipulate equations of the model
into state-space form or to make use of sorting techniques to
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ensure that statements in a simulation model occur in the
correct sequence. Also, of course, the problems with algebraic
loops that occur with ODE-based methods cannot arise with
DAE-based numerical solutions.

The Modelica® language makes comprehensive provision
for discrete and hybrid modelling together with continuous
system simulation, and discrete variables and discrete state
transitions are allowed within the basic state-space type of
model. This means that continuous DAE representations are
not sufficient and Modelica® allows for hybrid differential
and algebraic equations (hybrid DAEs). These are specific to
the Modelica® language and are therefore not discussed
further in this book, but interested readers can find detailed
information in the text by Fritzson [21].

3.4.4 Transfer function descriptions

A linear model in reduced or state-space form can also be
described using a transfer function representation. This is
defined as the ratio of the Laplace transform of the chosen
model output variable to the Laplace transform of the input
for the case where all initial conditions are zero. This process
(details of which may be found in introductory texts on
system modelling, continuous system simulation or control
engineering —see e.g. [30] and [34]) transforms the differential
equation, expressed as a function of time, into an algebraic
equation in the Laplace variable s and subsequent analysis is
entirely algebraic.

For the electrical network example discussed in Section
3.4.1, Equation (3.11) transforms to:

Lcszws)+(£+Rc]sv<s)+(5+1]v<s)=E<s; (3.33)
r r
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so that:
Vis) 1
B 3.34
E(s) LCs* +(L+RC]5+[R+1) ( )
7 r

In the general case, a transfer function G(s) relating an
output Y(s) to an input U(s) may be written as:

YO _ ()= A6 (3.35)

U(s) B(s)
where A(s) and B(s) are polynomials in s. Many important
properties of the model depend upon the transfer function
denominator, B(s). Roots of the characteristic equation
B(s) = 0 largely determine initial transients in the model
response to any given input. These roots are the poles of the
transfer function. Roots of the equation A(s) = 0 determine
the zeros of the transfer function which also have an influence
on the form of the transient behaviour.

Complex models can be built up wusing cascaded
combinations of transfer functions of individual sub-models,
provided appropriate care is taken in terms of possible loading
and other interactions between adjacent blocks, which may
not be fully considered in the sub-model development. Thus,
with transfer function models, it is still important to consider
all the implicit assumptions. Viewing a transfer function as an
idealised mathematical block that can be manipulated without
regard to the underlying physics is dangerous, especially when
using modern block-oriented simulation tools.

A number of methods are available that allow transfer
function descriptions to be expressed as a block diagram
involving cascaded integrator blocks. These techniques also
allow state-space representations to be developed from
transfer function models. Details may be found in many
elementary textbooks on system modelling, continuous
system simulation and automatic control (see e.g. [30]).
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3.4.5 Problems of stiffness

Whatever form of mathematical description is used, problems
can arise when a model involves some responses that are
very fast compared with others, so that the numerical
methods being employed must take small steps to obtain
satisfactory results but the overall behaviour of the model is
relatively slow. For linear models this corresponds to a
situation in which the roots of the characteristic equation
cover a wide range but the phenomenon arises with nonlinear
models where such analysis in terms of system poles is not
applicable. Models of this kind are termed ‘stiff” and the
difficulty in simulating a stiff model is that the integration
step must be small enough to suit the most rapidly changing
component. This step size may, however, be unacceptably
small in terms of the total time needed to include the slowest
components. Stiffness is really an issue of computational
efficiency and arises because of the need, in most applications,
to keep the computation time to a minimum. Widely used
variable-step integration algorithms may not be capable of
reducing the computing time sufficiently for design
applications and either the form of model being used has to
be reconsidered or specialised algorithms may have to be
selected.

Redefining the model using physical understanding of the
problem and the intended application may well help to
eliminate unnecessary features that are contributing to the
overall stiffness. For example, some fast dynamic components
(such as sensors in which dynamic effects are included
initially) might be replaced by a static element involving
simply a gain constant in the simulation model. Equally
some long time constants might involve timescales outside
the range of interest for the intended application and the
model could be adapted so that these time constants could be
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considered as infinite. Situations in which problems of
stiffness cannot be avoided through adaptations to the model
may be handled effectively using specialised numerical
integration algorithms such as the one developed by Gear,
which is widely available in continuous simulation software
tools [35].

3.4.6 Sub-models involving discrete events

Within the context of system modelling, an event is something
that happens in an instantaneous fashion and is the result of
an event condition that changes from false to true. At an
event, a set of associated variables may be changed in some
way and conditional equations may become active or may be
deactivated by the occurrence of the event. By linking an
event to an instant in time, we can order events to form an
event history and we can define discrete-time variables that
only change values at discrete points in time and keep their
values constant between events.

Event-based stochastic system modelling is a separate area
of study which is important in applications involving the
operation of servers and queues, and for this a specialised
modelling formalism has been developed which, as already
mentioned, is known as the Discrete-Event System
Specification (DEVS) [36]. Together with other tools,
such as the Petri Net (see e.g. [21]), this DEVS approach
(already mentioned in the context of quantised state
systems) is particularly important in areas such as
manufacturing or for systems involving packet-switched
communications networks. Many good textbooks may be
found that deal with these issues of discrete-event modelling
(see e.g. [36]). Some modern system simulation tools, such as
Modelica® [21], allow for both the DEVS and Petri Net
formalisms.
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Considering events that can arise in the modelling and
simulation of continuous-time systems, examples include a
continuous variable encountering some physical limit (such
as a maximum mechanical displacement) or the sampling of
a continuous variable through an analogue-to-digital
converter. The first example is often associated with a
discontinuity within an otherwise continuous simulation
model, while the second arises in the modelling of sampled
systems where digital processors are linked to external
hardware.

Discontinuities

Discontinuities within continuous system simulation models
can arise in two ways. The first of these is where there is
more than one set of derivative functions for the model under
consideration. Switching can occur instantaneously from
one derivative function value to another when a particular
variable reaches a threshold value. One very simple example
of this is a simulation in which the input is a discontinuous
function such as a square wave. The timing of this switching
action has to be very precisely represented in the simulation,
otherwise significant errors may arise. The second type of
discontinuity arises when an instantaneous change in a state
variable occurs. This could be, for example, due to the action
of a valve within a simulation of a hydraulic system or a
diode within an electrical circuit simulation. There are clear
trade-offs between the treatment of discontinuities through
specialised numerical methods that accurately determine the
timing of a discontinuity and approaches involving more
detailed physical modelling of the underlying processes. One
disadvantage of the latter approach is that this might lead to
stiffer models. Which approach is adopted depends very
much upon the intended application of the model and the

68



Problem organisation I

level of interest in the detailed mechanisms associated with
the switching action.

Conditions for switching from one derivative function to
another or for an instantaneous change in a state variable
may be determined from a switch function, the zeros of
which define the events of interest. This involves establishing
first whether or not an event has occurred within the most
recent integration interval and then, if it has occurred,
determining the exact time of that event. In a continuous
system simulation context, discontinuities can be handled
using numerical tools devised specifically for the solution of
this two-stage process involving the ‘detection problem’ and
the subsequent ‘location problem’ (see e.g. [37], [38] and
[39]).

Models of sampled systems

The growing importance of systems that involve both
hardware and software elements means that simulation
models must be capable of including both continuous
variables and discrete-event dynamic elements. The modelling
of digital processors and the associated analogue-to-digital
and digital-to-analogue converters that allow discrete
elements of this kind to communicate with the continuous
elements within the system is important and is an essential
part of an overall system model.

A very common example arises in the use of digital
processors in automatic control system applications. This is
illustrated in the block diagram of Figure 3.9 where the
discrete elements involve a digital processor, interface units
and the software used to implement the digital control
algorithm for the closed-loop system. In modelling this
system, the analogue-to-digital converter within the interface
may be replaced by idealised elements in which the sampling
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Reference
input  + Digital Continuous| Output
ADC | processor —» DAC % dynamic >
system

Figure 3.9 Block diagram of sampled data system involving
digital control of a continuous dynamic system

process is represented by an ideal switch which closes for a
very short period of time at regular intervals. The sampled
value provides the discrete input to the control algorithm
which is implemented on the digital processor using a
software program. The numerical output from the digital
processor is converted back to the form of a continuous
variable by the digital-to-analogue converter and this may be
modelled in an idealised way using a zero-order hold. This
element gives an output which changes periodically but
maintains a constant value between each output event.

The analogue-to-digital and digital-to-analogue converters
are normally assumed to operate in a synchronous manner
so that the input and output operations at the associated
processor occur at the same time. Details of this approach to
the modelling of digital processors and their interface units
and the inherent assumptions may be found in many
textbooks on simulation or automatic control (see e.g. [30]
and [40]).

The algorithm within the digital processor of Figure 3.9 is
normally modelled using a difference equation which allows
the output at time ¢ = kT to be expressed in terms of the
input at that time instant and by the input and output at
previous sample times ¢ = (k-1)T, t = (k-2)T, . . . etc. Here,
T represents the sample period and the index k defines the
sample number being considered. For example, a very simple
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algorithm involving proportional control would be modelled
using a difference equation:

O(kT)=GE(LT) (3.36)

where O(kT) is the signal at the digital-to-analogue converter
and E(kT) is the signal obtained from the analogue-to-digital
converter at time ¢t = kT. If, instead of proportional control,
the control algorithm involved integral control so that the
error signal was being integrated numerically within the
control processor, the difference equation would have a more
complex form and would involve values of the discrete
variables O and E at previous sample times as well as the
current values. Further discussion of the simulation of
sampled-data systems and the more general issues that
arise in the modelling and simulation of hybrid systems
involving combinations of continuous and discrete dynamic
elements may be found in recent textbooks and papers
(see e.g. [22]).

3.5 Software for modelling
and simulation

In discussing software for modelling and simulation, it is
important to distinguish between software that is concerned
primarily with simulation of lumped element dynamic
systems and software tools that provide general tools for
system modelling and analysis, and include some facilities
for simulation. Since the CSSL specification was published in
1967 [41], many tools used for modelling and continuous
system simulation have adhered, in part at least, to that
standard (see e.g. [30] and [42]). In that approach, models
are defined through assignment statements for variables and
derivatives, and physically based equations have to be
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changed to a specific form that is suitable for calculations. In
many packages the process has to be carried out largely by
pencil and paper manipulation, although in many cases there
is automatic sorting of the statements involved in calculating
derivatives. One well-known and widely used example of a
simulation ‘language’ of this kind is acsIX [43] from AEgis
Technologies.

In some cases simulation languages have facilities for
models to be defined initially in terms of a block diagram or
other convenient graphical representation. The complete
model is translated into the CSSL form prior to execution.

Another widely used tool, which includes facilities for
analysis as well as modelling and simulation of continuous
systems, is MATLAB®/Simulink® [14]. Although it does
not conform to the 1967 CSSL specification, it has
facilities for defining models in terms of simple assignment
statements and also for defining models in block diagram
form.

One important development in recent years has been the
introduction of equation-based object-oriented modelling
languages such as Modelica® [21]. In contrast with other
simulation tools, these use expressions that are essentially
the same as the mathematical equations of the underlying
model. Hierarchical decomposition and model reuse are also
central to these developments. In addition, some languages
have provision for the description of physical connections
and can associate a set of variables with a port, thus allowing
easy interconnection of sub-models.

Issues of combining discrete-event and continuous system
simulation models were mentioned briefly in Section 3.3. In
some cases the approach adopted has involved bringing
together the necessary features to create a properly integrated
tool that provides for discrete and continuous representation.
Modelica, together with the associated simulation tools such
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as Dymola [10] or Opensource Modelica® [21], typifies this
approach. The Stateflow™ toolbox [44] from MathWorks
represents a different approach and allows the facilities of
Simulink® to be extended to allow logic elements to be
described, and this relates directly to previous discussion of
events and the simulation of discrete-event systems in Section
3.4. MapleSim® [28] is another versatile physical modelling
and simulation tool that includes many similar features, in
this case developed on a foundation of symbolic computation
technology.

Many simulation tools now commercially available have
their origins in engineering research groups in universities.
Examples include the simulation language ESL, developed
initially at the University of Salford in England under contract
to the European Space Agency but now marketed and
supported commercially by ISIM International Simulation
Ltd in the UK [45]. One important feature of ESL is the
provision of powerful numerical tools for handling
discontinuities. Another widely used simulation package
which has origins in academia is 20-sim, maintained
and marketed by the company Controllab Products BV,
which has roots within Twente University in the
Netherlands [12].

Another software tool that has its origin within an
academic research environment is the Virtual Test Bed (VTB)
which is being developed at the University of South Carolina
in the USA [18]. This is a particularly interesting development
in the context of integrated system applications and model-
driven design involving multidisciplinary systems. The VTB
can accept sub-models created using different simulation
tools and this is important in creating efficiently a complete
system model from elements that come from different teams.
Each team is likely to have its preferred software tools and
may be reluctant to move to some unfamiliar tool that would
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be common to all the teams involved in a multidisciplinary
project. Adoption of tools such as the VIB permits an
element of independence to be maintained while allowing an
overall system model to be created quickly and efficiently.
Model reuse may also be facilitated in that existing
models based on the previously used tools may be integrated
into new and more complex descriptions of the overall
system.

Simulation tools such as acsIX [43], MATLAB®/Simulink®
[14], Modelica® [21], 20-sim [12], Maplesim® [28], ESL [45]
and the VTB [18] are mentioned in this book in the context
of specific applications. It should be noted that all these tools
allow for graphical input, with models described by block
diagrams or bond graphs. They also all support sub-models
and thus allow some form of model reuse. They allow output
visualisation through two-dimensional graphs and some,
such as 20-sim, the VTB, Simulink®, Modelica® and ESL,
provide access to three-dimensional animation tools.
Examples that are presented in this book have mainly
involved use of MATLAB®/Simulink® (or the open-source
equivalent, SCilab/Xcos [46]), Modelica® and the VTB, and
a brief introduction to the main features of these software
packages is provided in the next two sub-sections. Readers
who are unfamiliar with these tools may wish to consult
some of the many textbooks available on the use of these
packages.

3.5.1 A brief introduction to
MATLAB®/Simulink®

MATLAB® (the MATrix LABoratory program) was
developed to provide an easily accessible and interactive
version of the powerful LINPACK [47] and EISPACK
[48] routines which had been developed for solution of
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linear equations and eigenvalue problems. MATLAB® is
now a general-purpose commercial matrix package that
provides an interactive programming environment with
graphical output. Every data object in MATLAB® is an
array.

Although MATLAB® incorporates standard functions for
the solution of ordinary differential equations, or can be used
as a general-purpose programming language for simulation
applications involving user-written algorithms, much present-
day simulation work involving MATLAB® is based upon use
of the Simulink® package. This provides a graphical input to
allow models to be defined in terms of block diagrams and
through this feature, models can be created using a
hierarchical structure. This is helpful not only in the
programming of complex simulation problems, but also in
the efficient documentation of such models and to other users
who need to understand a simulation in detail before
applying it.

Data analysis and visualisation are both very
straightforward using the facilities available in MATLAB®/
Simulink® and there are many specialist add-on tools, such
as those for system identification, optimisation and signal
processing. Symbolic computing results can be generated
using one of the toolboxes and symbolic results can be
integrated with MATLAB® and Simulink® results. Facilities
for the generation of reports are made available through the
MATLAB® Report Generator.

With the additional facilities provided by the Simscape™
package [49], the MATLAB®/Simulink® user has access
to powerful facilities for the integrated modelling of
systems involving a number of physical domains. Simulink®
itself includes some standard library sub-models and
through Simscape™ there are additional standard libraries
involving sub-models for components in specialised fields,
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including mechanics, electronics and hydraulics. There are
also libraries for mechanical transmission systems and for
electrical power systems. Using the Simscape™ language,
which is based on MATLAB®, sub-models can be created
together with equivalent Simulink® blocks for new physical
components that do not appear in the standard libraries.
Similarly, it is relatively straightforward to create entirely
new libraries using the facilities of Simscape™ and to
extend existing libraries so that specialist models can be
deployed across an organisation or to sub-contractors in
large projects. Signals and parameters have units within
the models in Simscape™ libraries and there are also
facilities for the automatic conversion of units. The use of
the Simscape™ environment is discussed further in
Chapter 9.

The additional Stateflow® [44] tool available from the
MathWorks extends the Simulink® environment to allow
discrete-event situations to be included. Control, supervisory
and mode logic can be incorporated into simulations in a
natural fashion using this extension to Simulink®. Stateflow®
charts can be created in a drag-and-drop fashion like
Simulink® diagrams and facilities are included for hierarchical
structures involving sub-charts.

Although MATLAB®/Simulink® is very widely used in
industry, there is an open-source alternative to MATLAB®/
Simulink® known as Scilab/Xcos [46], which is now quite
commonly found in industrial organisations and in
universities. This was developed at the Institut Nationale de
Récherche en Informatique et en Automatique (INRIA) in
France. Scilab is similar in many respects to MATLAB® and
the simulation tool Xcos provides simulation facilities similar
to those of Simulink®. Versions of Scilab/Xcos are readily
available by download for Linux and Windows® operating
systems.
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3.5.2 A brief introduction to Modelica®

The Modelica® standard has been under development
continuously since 1997 [21] by an international non-profit
association and this is a modern, object-oriented modelling
language that is well suited to the solution of problems
involving a number of different engineering domains.
Modelica® models may be simulated in a number of ways,
using the Dymola environment [10] or the OpenModelica
tool.

It is important to note that, compared with many other
modelling and simulation software products, Modelica® is a
modelling language. It has been developed relatively recently
and incorporates object-oriented features based on the
principles of encapsulation, inheritance and hierarchy. It
also builds upon the concept of non-causal modelling,
with sub-model interfaces being defined through pairs of
variables which are not assigned to be inputs or outputs at
the outset.

The inheritance principle means that Modelica® is
particularly well suited to supporting the reuse of models,
since a generic sub-model can be defined in a broad fashion
and then refined into a number of sub-models of which the
common elements need be defined only once. Modelica® also
has multi-domain modelling capabilities so that components
from several different domains (e.g. mechanical, electrical,
thermal, control systems) can be readily described in a unified
fashion and combined easily.

Modelica® is based primarily on equations rather than the
type of assignment statements that are commonly used in
traditional programming languages and it is this feature that
allows a-causal modelling with Modelica® and facilitates
model reuse, since equations do not in themselves define a
specific direction of data flow.

77



I Modelling and simulation of integrated systems in engineering

3.5.3 A brief introduction to the
Virtual Test Bed (VTB)

The Virtual Test Bed (VTB) is a suite of software tools
intended for use in the development of large-scale dynamic
systems, usually by multidisciplined teams [18]. The facilities
within the VIB are intended to assist in the process of
developing and testing new designs prior to implementation
as a hardware prototype or in a production system. The
application area for which the VTB was initially developed
was electrical power systems in the context of ‘more electric’
vehicles for use on land, in the air or in a marine environment.
It has, however, been used for a variety of other types of
application such as robotics.

Electric and hybrid vehicles of all types have provided an
excellent application area for evaluation of new modelling
and simulation software such as the VTB. Although involving
electrical power systems, this application area differs
significantly from conventional terrestrial electrical power
generation and distribution systems since vehicle systems
can involve distributed energy generation and storage,
unconventional power sources such as fuel cells and gas
turbines, much use of power electronics and distribution
systems that may have to be reconfigured rapidly. The
development of new vehicle systems of this kind is likely to
involve sub-systems that cross conventional disciplinary
lines to an even greater extent than in other types of projects
and will certainly involve major elements of mechanical,
electrical, power electronic, control and software engineering
that have to be integrated very carefully within the final
system. Inevitably, a number of different specialist design
teams are likely to be involved and members of these teams
must contribute fully and efficiently to the development of
an interdisciplinary virtual prototype system. In many cases
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these teams will have preferred software tools and the VTB
allows dynamic models from many environments to be
brought together through the application of coupling laws
involving signal coupling, data coupling or natural coupling
principles. The VIB thus strives to provide a pathway to a
fully inclusive teaming environment. These features of
the VIB make it particularly interesting as a software
environment for projects involving integrated systems and
are considered further in Chapter 9.

The VTB software suite contains several tools. The first of
these is the Schematic Designer, which is the central tool that
is used in designing and simulating systems. It allows
component models to be assembled into system models. The
Entity Designer provides the means for developing VTB
components, known as ‘entities’. An entity is the simplest
form of component and each entity has its own simulation
engine. The Entity Designer allows use of a proprietary VTB
modelling language and also permits the development of
components using languages such as C++, C#, Visual Basic®
and J#. The Module Designer is used to define and assemble
new reusable models, known as modules, which are based
on one or more existing components. A module is treated as
a single component but does provide a simulation engine, as
it makes use of the engines of the components within it.

It is important to note that the VTB includes an extensive
library of simulation components. This has considerable
value but the fact that the VIB allows import of sub-models
developed in other simulation environments to be used in
VTB simulations means that the range of model libraries and
established sub-models available to VTB users is very large.
Another feature of the VTB that should be mentioned is the
fact that it provides a highly interactive environment in
which the user can change the model topology or parameter
values while the simulation is executing. High-level
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visualisation facilities can also be linked to live simulation
data to allow animation of simulation results.

3.6 New developments in the
modelling and simulation of
micro- and nano-mechanical systems

As mentioned in Chapter 2, micro- and nano-
electromechanical systems (MEMS and NEMS) technology
is one field in which modelling and simulation methods are
of central importance for the design of highly integrated
systems. These can involve many types of model, including
classical physical models, continuum mechanics models (e.g.
for investigation of elasto-dynamic effects), thermal models,
magnetic models and electrical models. Computational
studies may involve not only three-dimensional finite element
analysis, but also atomic-scale descriptions of materials using
molecular dynamics (MD) simulation methods [50]. For
many practical applications, there is therefore a need to
reduce the computational complexity by reducing the
number of variables and parameters in the model. This is
especially important in applications involving the application
of feedback principles where control design techniques have
to be applied. In such cases, the use of model reduction
methods becomes essential.

Issues such as the effects of thermal fluctuations on NEMS
device performance leads to situations where physically
based models are again essential and there is therefore a need
to be able to move efficiently from highly detailed, physically
based models to reduced models for control system design
and then back to physically based models for further analysis.
The capability to model effectively at a number of different
resolutions is therefore vitally important and two categories
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of multi-scale simulation model are recognised in this
application area [50]. The first of these involves sequential
multi-scale modelling methods, in which large-scale models
(such as those used for control system design) use low-
resolution representations derived from more detailed,
physically based, higher-resolution descriptions. The
simulations at these different levels run independently of
each other. The second approach is termed concurrent multi-
scale modelling and attempts to link methods together in a
combined model in which the different scales are
considered concurrently. Developments of this kind are
clearly applicable in other fields and have considerable
relevance for all involved in the use of simulation techniques
in designing highly integrated systems, whatever the area of
application.
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Inverse simulation for system
modelling and design

Abstract: Inverse simulation is a tool for finding inputs such
that model outputs match predetermined time histories.
This could, for example, be an aircraft manoeuvre or the
movement of a robotic arm. Through the inverse solution
model, behaviour can be investigated in a way that is
different from conventional simulation methods which
provide model outputs for given initial conditions and input
time histories. Several techniques are available for inverse
simulation and methods described include a so-called
‘differentiation” approach, an ‘integration’ approach and
an approach based on feedback system principles. Case
studies are used in discussing applications of inverse
simulation and these involve a process system with two
coupled tanks of liquid, a dynamic model of an unmanned
underwater vehicle and an aircraft model. Emphasis is
given to the feedback system approach in these case studies.

Key words: inverse, differentiation, integration, feedback.

4.1 An introduction to inverse
modelling and inverse simulation

An inverse dynamic model allows time histories of input
variables to be found that give model output responses that
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match given time histories. In fields such as environmental
science, ‘inverse modelling’ describes the process of fitting
a model to measurements or to field observations (essentially
the process of system identification and parameter
estimation), but that is not the meaning used here.

The significance of inverse modelling can be understood
from an example. If a manoeuvre is defined for an underwater
vehicle as a series of positions in three dimensions (in an
earth-based axis system) and times, inverse modelling
techniques provide the required time history of thrust values
and control surface movements to allow that manoeuvre to
be performed. If, for given maximum thrust values and given
actuator characteristics, the requirements of this manoeuvre
are not met, the inverse model may also provide information
to facilitate design changes.

Although inverse models have relevance for any problem,
the advantages have been found to be particularly significant
for systems involving a human operator, especially if the
operator and the system being controlled interact closely.
Examples include piloting of fixed-wing aircraft and
helicopters, crane operation, ship steering and other similar
man-machine control tasks. Military fixed-wing aircraft and
helicopter applications stimulated much early research since
inverse methods can provide additional insight concerning
vehicle-handling qualities, which is an important topic.

Although inversion techniques for linear models are of
limited importance for practical applications, the structure
of linear inverse models can provide useful insight regarding
limitations of inverse solutions. For example, for single-input
single-output (SISO) models, a transfer function can be
inverted directly, provided we ensure that the inverse model
is realisable or ‘proper’. In other words, since poles and zeros
are interchanged in the inversion process, additional factors
may be needed in the denominator of the inverse so that the
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number of poles is at least as great as the number of zeros.
The additional poles must lie at points in the s-plane that are
far from the poles and zeros of the given model.

For multi-input multi-output (MIMO) linear models,
inversion is also possible through simple analytical
techniques, but practical difficulties arise for some model
structures. Details of methods of inversion for linear MIMO
models may be found in the published work of Brockett [1],
Dorato [2] and Hirschorn [3].

Analytical techniques of model inversion have been
developed further by Isidori and his co-workers and others
(seee.g.[4]and [5]). Nonlinear models require transformation
to linear and controllable descriptions using nonlinear state
feedback (see e.g. [6], [7] and [8]) together with concepts
from differential geometry that are unfamiliar to most
engineers. Other mathematical techniques, such as
regularisation, are also relevant. However, although
successful in applications involving automatic control, these
methods have not been used more widely in design.

The equations of a nonlinear dynamic system for most
cases of practical importance may be written in the form:

x = flx, u) (4.1)

y = g(x) (4.2)

where x and u represent the vector of state variables and
input variables, respectively, and y represents the vector of
output variables. In Equation (4.2) the output variables are
functions of the state variables only and there is no direct
coupling of input variables to the outputs. This is
representative of most real systems, since changes of input
seldom produce instantaneous output changes.

The essence of the inverse modelling problem is to find the
input vector #* that will produce an output y(¢) that exactly
matches a required output y*(z).
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Differentiating Equation (4.2) with respect to time gives:

V=8, (x)x (4.3)

and substitution in Equation (4.1) then gives:

V= g (x)f(x, u) (4.4)

If this equation is solvable for u, it gives u* from the
solution of the following equation:

V= gu(x)f(x, u*) (4.5)

This may be possible for some functions g(x), but
further differentiation is usually needed and the additional
equation:

5 = g x)fe, 1) + g (2, (x, )i, )
+ f, (o, u*)u* (4.6)

must be solved, together with Equation (4.5), for #* in terms
of x and derivatives of y*. If this is still impossible, Equation
(4.6) must be differentiated repeatedly until a solution is
obtained.

The number of differentiation operations needed is termed
the relative degree of the system [4]. The relative degree does
not exist if the equations cannot be solved, regardless of how
many differentiations are performed.

Many practical system models have a form that is linear in
the control inputs:

%= folx) + f(x)u (4.7)

This has been applied widely and is appropriate for vehicle
models, including aircraft. Algebraic manipulation can
provide straightforward solutions, as demonstrated by
Bradley for simplified helicopter models [9].

One of the simplest situations involving hard limits arises
in the modelling of nonlinear actuators, where a simple and
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widely used actuator model involves a saturation element in
association with a simple first-order lag. Whether or not a
given actuator becomes saturated or reaches its rate limit for
a given demanded output response can be an important
design issue.

4.2 Methods of inverse simulation

Inverse simulation methods avoid analytical complexities
in the inversion of nonlinear models, just as conventional
simulation methods do for traditional input-output
modelling in the nonlinear case [see e.g. [10], [11]
and [12]).

Aeronautical engineers have been using inverse simulation
since the late 1980s. The techniques are also useful for
mechatronic systems and other integrated control system
applications, since they provide insight about actuators, such
as effects of amplitude and rate limits, that is otherwise more
difficult to obtain.

Available techniques may be divided into five categories:

1. differentiation methods as developed by Kato and Saguira
[13] and by Thomson and Bradley at the University of
Glasgow (e.g. [14] and [15]);

2. integration methods which originated with the work of
Hess and his colleagues at the University of California,
Davis (e.g. [16]) and, independently, by Thomson et al.
(e.g. [17]);

3. methods which wuse search-based or evolutionary
optimisation algorithms in conjunction with the
integration-based approach (e.g. [18]), together with
methods based on traditional optimisation algorithms

(e.g. [19], [20] and [21]);
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4. methods based on the numerical solution of differential
algebraic equations; and

5. methods based on the application of feedback system
principles (see e.g. [22]).

4.2.1 The differentiation-based approach

Inverse simulation methods based on numerical
differentiation of state variables were quickly adopted for a
range of aeronautical applications and especially for
helicopter flight mechanics and handling qualities
investigations, as reported by Thomson and Bradley (e.g.
[23] and [24]). Liceago-Castro [25] provided an alternative
approach using symbolic computing methods.

When Thomson and Bradley began applying their
differentiation method to helicopter flight mechanics ([15],
[23] and [24]), Kato and Suguira [13] were using a similar
approach for fixed-wing aircraft problems. In both cases the
algorithm involved discretisation of the flight path in terms
of time and the use of numerical differentiation to find
angular rates. The equations of motion were then solved as a
set of algebraic equations at each time step. In this approach,
equations for the inverse simulation cannot be expressed as
a set of first-order ordinary differential equations and the
inverse simulation therefore cannot be separated easily from
the forward simulation model. Any changes in the model
that forms the forward description leads to major changes in
the structure of the inverse simulation.

Although it has limitations, as discussed above, this
approach was adopted by others and applied to practical
problems. One result was an improved understanding of the
properties of the constrained system produced by inversion.
The dynamic characteristics of the inverse simulation model
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differ greatly from those of the forward model, since the
dynamics of the inverse involve the zero dynamics of the
system (see e.g. [5], [12] and [18]).

4.2.2 The integration-based approach

In 1991 Hess et al. [16] described an approach that avoided
the inflexibility inherent in the differentiation method. This
method is based on numerical integration and involves
discretisation of the required manoeuvre, as in the
differentiation method. In the integration-based approach an
estimate is then made, at each time point, of the amplitude of
the step displacement needed for each input to move the
vehicle to the next point in the manoeuvre time history. The
new position is calculated and the error between the actual
and required position is found. An iterative procedure then
minimises the error and the time history of inputs needed to
move the vehicle to the required position is found.

Although computationally more demanding than the
differentiation method, this approach has some advantages.
There is flexibility in terms of the form of the model and
reorganisation of the program is not required when small
changes are made in the model structure. Thus any
conventional forward model can be incorporated within the
iterative loop to provide an inverse simulation. In recent
years this has become the most widely used approach to
inverse simulation (see e.g. [5], [11] and [12]).

The fundamental assumption of the integration-based
method is that inputs are constant over a time interval T
which is significantly larger than the integration step time.
For the interval T (starting at time ¢ = 0), the inverse simulation
problem then involves finding a constant input #* such that:

y* (T) = g(x(T)) (4.8)
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where:
x(T) = x(0) + [} fix, u*)dt (4.9)

The solution #* may be found using Newton’s method or
some similar algorithm. The variation of the output with #*
at time T may be written as:

yi(T) =g, x, (T) =g, [, f, dt (4.10)

and numerical differentiation can be used to estimate y*. The
time step T is then repeated over the whole period under
investigation, with the output y(#) matching the required
output y*(¢) at multiples of that time step.

Other methods have involved variations of the integration-
based approach. For example, sensitivity function ideas [26]
have been applied successfully, showing advantages over the
traditional integration-based method, especially in terms of
improved accuracy in calculation of the Jacobian matrix.
Further variations involve the use of direct-search optimisation
algorithms [18] and other optimisation methods (see e.g.
[21]), as discussed further in Section 4.2.3.

A two time-scale approach to inverse simulation was
developed by Avanzini and de Matteis (e.g. [27] and [28]). It
involves partitioning the state variables into two sub-
vectors on physical grounds and reduces the model
so that a relatively large time step may be used, reducing
the computer time. Thomson and Bradley [12] have
also described the use of this approach with a helicopter
model.

4.2.3 Methods involving search-based
routines and other optimisation algorithms

The established methods of inverse simulation, based on the
differentiation and integration-based approaches, introduce
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derivative information and involve calculation of Jacobian
or Hessian matrices. Being derivative-free, optimisation
methods involving direct search algorithms avoid any
requirement to determine elements of the Jacobian matrix
or Hessian matrix and therefore can alleviate problems
caused by discontinuities and input saturation effects.
As mentioned in Section 4.2.2, the integration-based
approach has been used successfully with search-based
optimisation techniques and a number of other optimisation
algorithms.

The 2008 paper by Lu et al. [18] provides details of a
derivative-free method of inverse simulation, involving a
version of the downhill simplex optimisation method of
Nelder and Mead [29]. This Nelder-Mead (NM) approach
involves minimisation of a scalar-valued nonlinear function
of real variables using function values only and avoiding
explicit or implicit use of gradient information. Examples of
the successful application of a pattern-search based approach
may be found in [18] where a method of inverse simulation
based on the constrained Nelder-Mead algorithm is described
in detail. Applications to nonlinear ship models are discussed
and it is shown that problems of convergence that can arise
with the gradient-based Newton-Raphson (NR) type of
approach are avoided using the derivative-free constrained
Nelder-Mead algorithm.

Two case studies are considered in the work of Lu et al.
[18] and the first of these involves a relatively simple single-
input single-output ship model which includes rudder
amplitude and rate limiting. Although results obtained by
inverse simulation using the gradient-based Newton-
Raphson approach and the constrained NM method agree
well for ship manoeuvres that involve rudder angles and
rates that are below the limits, the NM method also
achieves good convergence and physically meaningful inverse
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simulation results for cases where the NR algorithm fails to
converge.

The second case study involves a nonlinear container ship
model with two inputs and three output variables. Turning
circle and pull-out manoeuvres were considered and, once
again, the NM method was successful in situations involving
manoeuvre discontinuities for which the NR algorithm failed
to converge.

It was concluded from the results of these case studies that
the derivative-free procedure based on the constrained NM
algorithm could provide important benefits in terms of
convergence and numerical stability compared with the more
conventional approach involving the NR algorithm. These
benefits were significant in cases involving input saturation
or discontinuous manoeuvres.

Methods of inverse simulation involving other forms of
optimisation algorithm may be found in the work of de
Matteis et al. [19], Lee and Kim [20], and Celi [21]. Those
three examples all involve aircraft and helicopter
applications but the optimisation algorithms applied
are general in form and could readily be applied in other
areas.

4.2.4 Inverse simulation through numerical
solution of differential algebraic equations

Models based on differential algebraic equations (DAEs) are
discussed briefly in Section 3.4.1 where it was pointed out
that using the DAE form of description, a model variable can
be constrained to have a particular algebraic form, usually
expressed as a function of time. In that section an example
was presented using the simple RLC electrical circuit of
Figure 4.1.
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N Electrical circuit example involving inductance L,
Figure 4.1 . .
capacitance C and two resistors (R and r)

The voltages e(#) and v(#) and the current i(¢) are then
related according to Kirchhoff’s voltage and current laws by
the following equations:

di(t)

e(t)= Ri(t) + L2 4 p() (4.11)
dt
n=c® 1,y (4.12)
dt r
These equations may be combined with the algebraic
equation:
u(1) = k(1) (4.13)

where f(#) is some required function of time such as a ramp
or sinusoid or triangular wave to form a model in which the
variables i(¢) and e(t) are unknowns, and v(¢) is constrained.

di(t)

L=—"=¢(t)-Ri(t) - v(t) (4.14)
dt

cPY iy~ Lo (4.15)
dt r

u(t) = kf(t) (4.16)
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Equations (4.14), (4.15) and (4.16) constitute a DAE and
solution of the model equations should allow us to find the
form of the voltage e(t) and current i(¢) to achieve the required
output v(¢). This is an inverse problem and it is clear that
simulation tools, such as Modelica® [30], that have facilities
for the solution of DAEs provide an immediate basis for
inverse simulation.

The use of Modelica® [30] for inverse simulation based on
the solution of DAEs has produced some potentially
interesting results (see e.g. [31]). Although such simulation
tools can, in effect, generate inverse simulation models
automatically, it has been pointed out [31] that, as with other
methods for inverse simulation, the inversion process does
not always lead to the expected results. Issues of stability can
arise and for a general form of DAE, no stability proof is
available and many simulations may have to be performed to
check whether or not a nonlinear inverse simulation is stable
in the region of the operating space of interest for the
application. As with other methods of model inversion,
additional analysis, based usually on a linearised version of
the model, is essential before inverse simulation is attempted
using DAE solution methods.

4.2.5 A feedback systems approach

Feedback principles have for long been used to generate
inverse functions on analogue computers, as described in the
simulation literature between the 1950s and 1980s. For
example, feedback pathways applied to analogue multiplier
hardware allow these units to carry out division. Similarly,
feedback can also allow inverse functions to be found from
conventional analogue function generators (see e.g. [32] and
[33]). Although some problems of stability and performance
are reported with these feedback methods, especially for
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high speeds of solution, they have been used with great
success on general-purpose analogue computers. The same
principles can be applied more generally for inverse
simulation and provide a different and potentially very fast
approach to inverse simulation of linear and nonlinear
systems.

The single-input single-output case

The use of feedback to generate inverse solutions is based on
properties of closed-loop systems. For a linear time-invariant
SISO model with transfer function G(s), the block diagram
of Figure 4.2 illustrates the principles. The reference signal v
is the time history to be followed by the model output and
the signal w is the input to the model for that required
output. Hence if v is given, the quantity w represents the

—————» error

v
<

<
+

- Block diagram for feedback solution to model
Figure 4.2 inversion problem. Here the variable w obtained

from simulation of the system with feedback is
the input to the model G required to produce a
model output equal to the reference signal v.
Although the single-input case is presented in
this diagram, the approach is also applicable to
multi-input situations
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inverse solution for the model G, provided the difference
between the reference v and the output from the model is
sufficiently small.

This approach can be demonstrated using simple linear
analysis based on Laplace transforms, as in linear control
theory. For the SISO case, with a simple gain factor K in
cascade with the model G(s), the transfer function relating
the variable W(s) to the reference input V(s) in Figure 4.2 is

given by:
W) K
V(s) 1+KG(s) (+17)
B 1
- 4.18
16w (+18)
K
For large values of K, this gives:
W) 1 (4.19)
Vis) G(s)

Thus the inverse model for G(s) may be found by applying
high-gain feedback and taking the input variable for G(s)
as the output of the inverse model. The variable V is therefore
the output required from the model while W is the input
to the model (under open-loop conditions) that will
produce that output. Note that the controller block K in
Figure 4.2 may, in the general case, include dynamic elements
in addition to a gain factor (see e.g. [22]). Note also that the
orders of numerator and denominator of the closed-loop
transfer function are the same as the order of the denominator
of G(s). The number of poles of the inverse model is thus
always the same as the number of zeros and issues of
realisability due to an excess of zeros do not arise [34]. Root
locus analysis of the closed-loop system allows one to ensure
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that the additional poles of the inverse model introduced
through feedback lie far from the other poles and zeros of
the inverse.

The multi-input multi-output case

The block diagram of Figure 4.2 can be extended to
cover the case of MIMO models involving standard state-
space descriptions (see e.g. [34] and [35]). In this case the
block G is replaced by a standard linear state-space
representation of the system model as shown in Figure 4.3
and we add feedback through a controller block K.

Then, the output w of the closed-loop system is given by:

w = K(v -(Cx + Dw)) (4.20)

which gives:

(I + KD)w = Kv - KCx (4.21)
so that:
w = —-(I+ KD)'KCx + (I + KD)! Kv (4.22)
................................................................. > w

Fi 4.3 Block diagram illustrating the use of feedback
principles for a multi-input, multi-output system

model in standard state-space format
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In terms of the state variables x, we then have:

x=Ax + Bw (4.23)
= Ax + B(~(I + KD)-! KCx + (I + KD)-! Kv) (4.24)
- (A - B(I + KD)-! KC)x + B(I + KD)-! Kv (4.25)

So that the inverse model has a system matrix:

A* = (A - B(I + KD)-! KC) (4.26)
an input matrix B* = B(I + KD)-' K (4.27)
an output matrix C* = —(I + KD)-! KC (4.28)
and D* = (I + KD)-' K (4.29)

When the diagonal elements of KD are much greater than
one in Equations (4.26) to (4.29), the elements of the identity
matrix I can be neglected and it is possible to show that, as
the elements of K tend to infinity:

lim(I + KD)-' K = lim(KD)-' K
- limD-'K-' K = D-! (4.30)
This approach can therefore be employed in cases where

no inverse of the matrix D exists. It should also be noted that
for D = 0, the inverse model simplifies to:

A* = (A - BKC) (4.31)
B* = BK (4.32)
C* = -KC (4.33)
D* =K (4.34)

This is important since the feedback approach is then
applicable to linear models in which the block diagram has
no direct pathways from the input to the output variables,
which is very common in practice.
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Selection of elements of the K matrix may present
difficulties since the feedback system must be stable. Thinking
in terms of SISO closed-loop systems, some closed-loop poles
move towards the positions of open-loop zeros as the loop
gain is increased, but there are additional closed-loop poles
that may move into undesirable areas of the s-plane as the
gain is increased. It is important to understand how these
closed-loop poles behave and to limit their movement. This
may require use of other techniques such as root locus
analysis and pole-placement design.

A general procedure for inverse simulation
through feedback system design

Inverse simulation procedures using feedback involve two
distinct stages. The first of these is the design of the feedback
system, while the second stage involves the implementation
of the feedback system to provide the inverse simulation.

In the first stage the closed-loop system is designed, by any
appropriate method, and feedback parameters are adjusted
so that it meets some given requirements for simple inputs
such as a step or impulse. The required output is used as
reference input for this closed-loop system and the inverse
solution can be found from the signal at the input to the
model. This is, in control terms, a ‘tracking problem’ for
which there are many possible solutions.

Although linear theory has been used here to introduce the
problem, tracking principles apply equally to nonlinear
models. If a linearised description is used in the initial design,
the performance of the closed-loop system must be checked
through simulation for several operating conditions,
preferably using the fully nonlinear model. Limitations must
be established and noted for the application stage.

In the second stage, the feedback system is used to ensure
that the model output follows a given time history that may
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be generated by a reference model. The difference between
the reference input (the time history to be followed by the
model output variable) and the actual model output should
be monitored continuously. A measure of this difference (such
as the integral of the squared error) may be recorded along
with the time history of the model input (which is the required
output of the inverse simulation), as shown in Figure 4.2.

Although the feedback approach to inverse simulation
is computationally efficient and potentially faster than
other methods, it should be noted that closed-loop system
simulations may involve longer execution times than
equivalent forward simulations. This is due mainly to the
fact that the integration step size needed for a model with
feedback is normally smaller than the integration step size
for the equivalent forward model due to closed-loop system
poles that lie far from poles and zeros of the forward model.
The feedback system is thus stiffer than the forward model
and integration algorithms for stiff systems may introduce
extra computational burdens.

One application of feedback principles to inverse simulation
involved model validation tools and was developed by Gray
and von Griinhagen [36]. Their approach was based on
explicit model-following methods of closed-loop system
design and was applied to problems of helicopter flight
control. Inverse simulation techniques were applied, together
with a so-called ‘open-loop’ simulation procedure, to identify
weak features within a non-linear MIMO helicopter model.
The overall conclusion was that the combination of the open-
loop approach and inverse simulation provides insight about
physical sources of model deficiencies. The feedback method
of inverse simulation, as compared with slower techniques
based on optimisation, clearly helped to match the timescales
for computation to the thought processes of the investigators
engaged in the model validation process.
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Although Gray and von Griinhagen [36] were concerned
with model validation and used one feedback structure, their
work provides useful pointers to the benefits of applying
feedback principles for inverse simulation. Reports by
Buchholz and von Griinhagen (see [34] and [35]) provide
other useful information about the use of feedback methods
for model inversion.

There are similarities between the processes of model
inversion based on feedback principles and procedures used
for the design of closed-loop control systems, but there are
also important differences. Most of these differences relate to
feedback system design requirements. Designing a feedback
system for model inversion does not involve all the
requirements that are necessary for control system design.
One key difference is that in control system design,
un-modelled or partially known external disturbances must
be taken into account and model errors and uncertainties
must also be allowed for, as well as measurement noise. No
external disturbances or issues of measurement noise apply
in a feedback system for model inversion and, since the
requirement is to invert a given model, there can never be any
modelling error or uncertainties. Thus, methods of design
that are seldom used for control applications due to issues of
poor disturbance rejection, susceptibility to measurement
noise, or lack of robustness to model uncertainties, can be
used without difficulty for model inversion (see e.g. [22]).

4.3 Example: inverse simulation
applied to a linear model

The system model considered is a two-input two-output
system having the form:

x=Ax + Bu (4.35)
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y = Cx + Du (4.36)
where:
21 0 10
A=l 0 -1 21|, B=|1 0 |
-1 0 0 I 1
0010 [
Cc-= , b= Y O}
0 0 1 L 00

This system has two complex eigenvalues and one real
eigenvalue in the left-half plane. There is only one transmission
zero and this lies in the left half of the complex plane,
showing that the system is minimum phase.

The approach used for this example is the method based
on feedback system principles. Tests using MATLAB® and
the MATLAB function Isim (see [37] and [38]) show that
gains of 1,000 for both feedback pathways allow a
satisfactory inverse model to be established. A signal which
the model must follow, such as a sinusoid or repeated
ramp signal, is first defined. The input signal needed to
achieve this output is then determined from the inverse
simulation and this calculated input is applied to the original
forward simulation to establish whether it meets the
requirements. Results from such tests are shown in
Figures 4.4 to 4.7.

Figures 4.4 to 4.7 show that the feedback approach can
successfully generate inverse simulations of linear MIMO
models. The errors depend on the closed-loop dynamics and
thus on the feedback system, and the number of possible
inverse simulation models is therefore infinite as the number
of designs is unlimited. Analysis functions within MATLAB®
(see [37] and [38]) can, however, provide useful information
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0 2 4 6 8 10 12 14 16 18 20

Required time histories of model outputs. The

Figure 4.4 repeated ramp is required at output 1 and the

sinewave is required at output 2. The x-axis
scale represents time (s)

- Input time histories found from inverse
Figure 4.5 . . . .
simulation model using gain factors of 1,000.
The x-axis scale represents time (s). The
discontinuous trace is for input 1 and the
smoother trace is for input 2

107



I Modelling and simulation of integrated systems in engineering

1.5 T T T T T T T T T

0.5 +

—0.5

_1-5 T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20

Fi 4.6 Time histories obtained from forward simulation
using the given model when subjected to inputs

of Figure 4.5 found from inverse simulation. The
x-axis represents time (s). The triangular wave is
the trace for output 1 and the sinusoidal trace is
at output 2 of the model

about eigenvalues and transmission zeros for the closed-loop
system, and this provides additional insight for use in
assessing the inverse simulation.

The benefits of this approach are mainly in terms of
computational speed. Overall, the computation time is
similar to the time required for a conventional forward
simulation run. However, it should be noted that the range
of eigenvalues for the inverse simulation may be greater than
that for the forward simulation model and integration
methods for stiff systems may be necessary, even if these are
not needed for the forward simulation. This may increase the
time needed for the inverse simulation.
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- Errors between desired outputs and outputs

from forward model subjected to inputs found
from inverse simulation. The x-axis scale
represents time (s). In this case the error
between the desired output and the output from
the forward simulation at output 1 is
represented by the trace with discontinuities,
while the smoother trace shows the error
at output 2

4.4 Case study: an application
involving a nonlinear unmanned
underwater vehicle (UUV)
system model

Three illustrations of the use of the feedback approach to the
nonlinear UUV model of Appendix A1 are considered here.
The first case involves inverse simulation of the model to
determine the propeller input time history required to achieve

109



I Modelling and simulation of integrated systems in engineering

a given profile of surge velocity versus time. This involves
proportional control with feedback of surge velocity in the
model and comparison with the desired surge velocity. The
second case does the same for the yaw rate state variable in
terms of the required rudder deflection while the third case
involves two feedback loops which both incorporate
proportional control, one with feedback of surge velocity
and the other yaw rate.

Case involving a specified pattern of
surge velocity

Figure 4.8 shows results obtained by inverse simulation for a
demanded input involving an initial demanded surge velocity
held at a constant value of 3.88 m/s followed by a negative-
going ramp change in surge velocity starting at time ¢ = 20 s.
The initial condition in the model involves a propeller
speed of 1039 rpm and an initial surge velocity of
3.88 m/s. The propeller speed is limited to a maximum of
1500 rpm.

The results in Figure 4.8 were obtained using proportional
control with a gain factor of 100000, which was determined
using elementary principles of feedback system design,
together with some further adjustment based on trial and
error methods. The only input applied involved the propeller
speed and all other inputs for the forward simulation were
zero. The results were obtained using a fixed-step Runge-
Kutta integration method with integration step time of
0.01 s. The use of larger integration steps can lead to
problems of numerical instability. Plot (a) shows the inverse
solution in terms of the propeller speed pattern required to
perform the manoeuvre. Plot (b) shows that when that
pattern of propeller speed was applied to the forward
simulation of the UUV, the surge velocity was (as required)
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Results for a single-loop feedback arrangement
to generate the propeller input needed to
produce a specified pattern of output involving a
demanded surge velocity of 3.88 m/s from time
t = 0 until time t = 20 s, followed by a negative-
going ramp in terms of surge velocity change.
The required propeller speed is shown in (a) and
the plots (b), (c) and (d) show the surge velocity,
roll angle and yaw angle of the UUV when
subjected to that pattern of propeller speed
(Continued)
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constant until the start of the negative going ramp at
time ¢ = 20 s. Thereafter the propeller speed started to
fall, in a linear fashion, following a ramp that matched
the demanded pattern. The results in plots (c) and (d)
show respectively the roll and yaw angle time histories
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of the vehicle in response to the propeller speed input
pattern generated by inverse simulation. It can be seen
that the effect of the input on both these variables is very
small and the same is true of all the other unconstrained
state variables of the model, such as sway velocity and
heave velocity. These results show that inverse simulation
can be used successfully for this case involving a single
input.

As can be seen from the results in Figure 4.8, the behaviour
of the feedback loop used for the inverse simulation is stable
and shows no unsatisfactory transient behaviour for this the
chosen gain factor. Coupling to other variables is very small
and this satisfactory situation is also reflected in Figure 4.9,

400

200

100 Xpos (m)

- Trajectory of the UUV in the earth-fixed axis
Figure 4.9 . . .
system when subjected to the input shown in

Figure 4.8 (a)
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which shows the trajectory of the vehicle in terms of the
earth-fixed axis system.

More detailed examination of the response of the model to
the input generated through inverse simulation shows that
there is a steady-state error, as would be expected for
proportional control, but this is very small because of the
very large value of gain factor used.

It should be noted that if the required manoeuvre were
modified so that it involves a demanded surge velocity of 5.0
m/s over the initial period from ¢ = 0 to # = 15 s, with the
initial condition as before (surge velocity of 3.88 m/s), the
required propeller speed found from the inverse simulation
reaches a limiting value of 1500 rpm over the initial part of
the manoeuvre and the surge velocity takes some time to
reach the required value, as would be expected. These results
are shown in Figure 4.10 and confirm that the feedback
approach can be used in situations where input variables
reach their limiting values.

Case involving a specified pattern of yaw rate

In this case the rudder is the actuator used in the feedback
system for inverse simulation, with feedback being taken
from the yaw rate variable. This produces the inverse
simulation result shown in plot (a) of Figure 4.11 in terms of
the rudder deflection needed for a demanded yaw rate which
is initially zero and at ¢ = 50 s jumps to a value of -2.86 deg/s
(=0.05 rad/s). With the chosen gain factor of 50, it may be
found from plot (b) that the yaw response achieved has the
correct form but involves a yaw-rate error of 0.06 deg/s,
approximately. From the forward simulation it is found, as
would be expected, that transients occur in variables such as
sway velocity, roll angle (see plot (c)) and pitch rate when the
rudder is deflected at time # = 50 s.
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Fi 4.10 Results showing the propeller input for a
demanded surge velocity of 5 m/s from time

t = O until time t = 15 s, followed by a negative-
going ramp in terms of surge velocity change. The
required propeller speed (with the limiting value
of 1500 rpm imposed) is shown in (a) and the
plot (b) shows the surge velocity of the UUV when
subjected to that pattern of propeller speed
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S %Ll Plot (a) shows results obtained by inverse

simulation in terms of the rudder deflection
time history to give constant yaw rate of zero
initially and - 0.05 rad/s from time t = 50 s.
The gain factor in the yaw-rate feedback loop is
50 and the integration step size is 0.01 s. Plots
(b) and (c) show the records of yaw angle and
roll angle obtained when the rudder deflection
input shown in plot (a) is applied to the forward
simulation of the UUV
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A fixed-step Runge-Kutta integration method with
integration step time of 0.01 s was used to obtain these
results. As was found for the case involving the propeller
input, the use of larger integration steps can lead to problems
of numerical instability. A hard limit of + 20 degrees is
applied to rudder deflections and it can be seen in plot (a) of
Figure 4.11 that in the inverse simulation the rudder reaches
the positive limit instantaneously at ¢t = 50 s. Figure 4.12
shows the vehicle trajectory in the earth-axis system for this
demanded manoeuvre.

An increased value of feedback path gain can be used to
reduce the steady-state error in the inverse simulation results
and values of gain factor as high as 1000 have been used
successfully. However, it has been found that the use of gain
factors much larger than 1000 can, in this case, give rise to
limit cycle phenomena in the nonlinear closed-loop system
used for inverse simulation and this limits the maximum
usable gain factor to values significantly smaller than those
for cases involving the propeller input.
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Figure 4.12 Trajectory for the case presented in Figure 4.11,
shown in the earth axis system
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Case involving a combination of demanded surge
velocity and yaw rate

This case requires two feedback loops, one linking the
required surge velocity to the propeller input and the other
involving the required pattern of yaw rate and the rudder.
For a gain of 50 in the rudder loop and 100000 in the surge
loop, with an integration step size of 0.01 s, the results from
inverse simulation are as shown in Figure 4.13.

Results presented in Figure 4.13 show that the inverse
simulation involving two feedback loops generates patterns
of propeller and rudder inputs that lead to patterns of surge
velocity and yaw rate that are close to the desired time
histories. The rudder shows a very large transient at ¢ = 50 s
and it reaches the positive limit on rudder deflection of
20 degrees for a very short time. The yaw rate record resulting
from this rudder input (as shown in plot (d)) is, however,
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Figure 4.13 This case shows the combined effects of two

inputs on the channels considered in Figures
4.8 and 4.11. Plot (a) shows the propeller input
found through inverse simulation for inputs in
the form of a demanded surge velocity of 3.88
m/s followed by negative ramp of surge velocity
applied at time t = 20. This also shows the
effects of the second demanded variable which
involved a yaw rate of zero initially, changing
suddenly to a constant value of —0.05 rad/s at
time t = 50 s. Plot (b) shows the required rudder
deflection for the same combination of
demanded surge velocity and yaw rate. Plots (c)
and (d) show, respectively, the surge velocity
(m/s) and yaw angle (deg) resulting from the
application of the propeller and rudder inputs
shown in plots (a) and (b)

(Continued)
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entirely reasonable. It should be noted that there is an
interesting interaction between the two inputs. When the
rudder changes position at time ¢ = 50 s, there is a transient
spike in the propeller speed record followed by an upward
shift in the record over the remaining period. This change
of propeller speed following the change of heading is
clearly associated with increased resistance to motion of
the vehicle and an increase in propeller speed is required
to allow the demanded pattern of surge velocity to be
maintained.

Although not shown in the results above, the responses of
the other state variables of the forward model, when
subjected to the combined propeller and rudder inputs of
plots (a) and (b) in Figure 4.13, have the expected forms for
these inputs. Figure 4.14 shows the corresponding earth-axis
trajectory of the vehicle in response to the combined inputs.
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The results presented above for the specific inverse
simulation cases that have been considered are encouraging.
Issues of feedback loop stability limits, interactions between
inputs, saturation effects and possible limit cycle situations
have been considered for the cases presented but have not
given rise to any major problems in applying the feedback
systems methodology. With proportional control in the
feedback loops, finite steady-state errors are found (as would
be expected), but these errors are generally predictable and
could possibly be overcome by the introduction of more
complex forms of feedback. This is a topic that could justify
further investigation.

One of the most important features of the UUV model is
that there are six inputs and twelve possible outputs, and
decisions have to be made by the investigator about which
actuators should be associated with each output variable in
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forming feedback loops. Physical understanding of the real
system is important for this process and, although no
difficulties have been encountered in this application, further
research is needed in order to establish appropriate guidelines
for the more general case.

The closed-loop system inevitably has a longer execution
time for simulation than the forward model because the
integration interval, generally, has to be shorter. Investigations
based on linearised models should provide useful insight
regarding the optimum choice of loop gain factors, integration
step size and integration method.

4.5 Discussion

In summary, this chapter provides a review of inverse
modelling and simulation methods. A number of iterative
methods have been presented together with an approach
based on feedback principles. Case studies have been
presented illustrating the application of inverse simulation to
linear and nonlinear SISO and MIMO systems, and showing
that inverse simulation provides insight complementing that
gained from conventional simulation.

The examples considered involve use of the feedback
approach and this has been applied because it is believed to
have considerable potential for modelling and simulation of
integrated systems. It offers more physical understanding
and improved solution speed when compared with some
iterative approaches.

The feedback method does involve a trade-off between
the complications of closed-loop design and possible
computational benefits at run time. For the complex design
problems that can arise in integrated system applications, in
which optimisation may be an important part of the design
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process, those benefits in terms of speed of solution may be
an important factor.
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Methods and applications of
parameter sensitivity analysis

Abstract: Parameter sensitivity analysis provides an
efficient way of assessing parametric dependencies in
mathematical models and computer simulations. This is
important for design optimisation, for estimating the
effects of modelling errors and uncertainties in the analysis
of system performance, for understanding issues such as
test input design in experimental modelling and in the
external validation of models. This chapter provides a
review of methods of parameter sensitivity analysis and
considers applications involving linear and nonlinear
lumped parameter models.

Key words: sensitivity function, output sensitivity,
sensitivity model, sensitivity bond graph.

5.1 Fundamental concepts of
parameter sensitivity analysis

Parameter sensitivity analysis techniques are important for
establishing how responses of a model change when
parameters are varied and which of its parameters most
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influence the model behaviour (see e.g. [1] and [2]). Models
are never exact and it is important to be able to assess
parametric dependencies at the model development stage as
part of an investigation of modelling assumptions,
simplifications and overall credibility. This can lead to an
understanding of the effects of component tolerances and
how the system performance may degrade as components
change with environmental conditions or through the
processes of ageing. Sensitivity information is also very
important for system optimisation in design and it should be
noted that methods of optimisation based on gradient
methods make direct use of parameter sensitivity measures.

For the applications being considered in this book, the
model may be in lumped parameter or distributed parameter
form, continuous or discrete, linear or nonlinear. The sensitivity
may also be characterised in a number of ways. Common
measures are based on the time domain, but frequency-domain
measures can also be very important in some fields, as are
measures involving a performance index (see e.g. [2]).

Information about parameter sensitivities, when taken
together with structural information, can also be of
considerable value in experimental modelling and, more
generally, in the iterative development and refinement of
complex system models. These issues are addressed in
Chapters 6 and 7. In situations where changes in system
parameters interact with structural issues to cause
discontinuous changes in the overall behaviour, the sensitivity
analysis may be termed ‘singular perturbation’ analysis (see
e.g. [3] and [4]).

Early research by Tomovi¢ and others at the Pupin Institute
in Belgrade (see e.g. [1], [4] and [5]) provided a foundation
for much published work on sensitivity analysis of dynamic
models. Important contributions have also been made by
Frank [2] and by Rosenwasser and Yusupov [6], who used a
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more mathematical approach which emphasises the fact that
sensitivity theory can be interpreted as part of a more general
theory of systems in which parameter variations are
considered as system inputs.

Much of the early literature on sensitivity issues put a
particular emphasis on properties of feedback systems and
automatic control, and Bode [7] was responsible for much
early work on parameter sensitivity in the frequency domain.
Many of the issues raised originally by Bode in the general
context of systems with feedback were considered further by
Horowitz [8] in relation to automatic control system design
and applications.

5.2 The sensitivity function

All methods of sensitivity analysis involve the concept of the
sensitivity coefficient or sensitivity function. In the time
domain, which has special significance in the context of
state-space models, the sensitivity function is defined in terms
of a Taylor series expansion for a system variable in terms of
the parameter that is varying. For example, if y(t,q,) is a
model output response to a given input and this is a function
of time (¢) as well as a parameter g, the difference between a
response y(t,q,) where g has the particular value g, and a
response y(t,q, + Aq) where the parameter g takes a new
value g, + Aq is given by:

dy 1 9%y
y(t,q, + Aq) = y(t, q0)+$Aq+ TEra Sl AgP+. (50)
If Aq is sufficiently small:
dy
Y(t,q, + Aq) = ¥(t,q,) + == Aq (5.2)

dq
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The first-order output sensitivity function is the quantity

——. The effective linearisation due to truncation of the series

dq

after the second term allows the superposition principle to be

used to find the effect of simultaneous changes of the values

of several different parameters. This can be extended to the

trajectory sensitivity function in the case of a state-space
.. ox . . .

description % where x is the vector of state variables. As in

q
the case of output sensitivity, the trajectory sensitivity is

evaluated for perturbations in the parameter value g about a
specific value g,,.

For quantitative comparisons of the influence of particular
parameters, the relative sensitivity function may be a useful
measure. Where the comparisons all involve the sensitivity of
one specific model variable x to a number of different

parameters ¢, an appropriate measure of relative sensitivity
. ox . : . :
is g, —. For cases involving several variables, an entirely
. : . o g, ox,
dimensionless form of relative sensitivity measure i/
. X 0,
may be more useful, where the quantity x, is some
appropriate measure of the variable x,(¢,q,), such as the
maximum value or the mean value.

5.3 Methods of sensitivity analysis
involving repeated solutions

From Equation (5.2) it is possible to write:

9y _y(t,q, +Aq) - y(t,q,) (5.3)
94, Aq
And thus the sensitivity function can be found using a

finite difference approximation. This requires two repeated
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simulation runs and selection of an appropriate size for the
perturbation Aq. The accuracy of the estimation thus depends
on that choice and repeated tests may be needed with a
number of trial values of Ag to find a suitable value. Separate
sensitivity function evaluations are needed for all the
parameters of interest.

The main objection to the use of this approach, in addition
to the fact that it requires repeated simulation runs, is one of
accuracy. Taking the difference between the two solutions
with inherent numerical errors €, and &,, respectively, leads
to the following:

9y _Ytd+A9) —y(tq,) & -8, (5.4)
99, Aq Ag

Since Ag must be small in order to give a small parameter
perturbation, the resulting error due to the term (g, - &,)/Aq
may be significant [1].

The relative sensitivity measures corresponding to
Equation (5.3) are:

dy ¥y, +Ag9) - y(t,q,) (5.5)
—=q

aq, Aq

ﬂzi)’(t,qo +AQ)—)’(t,%) (56)
aqO ym Aq

where y, is a measure of the variable y(t,q,), such as the
maximum value or the mean.

5.4 Methods of sensitivity analysis
involving sensitivity models

If a general form of nonlinear dynamic model is described by
a set of equations:
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FlR5X 1y Xy o voy Xy Uy Uy v e e e ust;q,) = 0 (5.7)
BilY3X1s Xy v oy Xy Uy Uy o o oo u,itsqo) = 0 (5.8)
where x,, x,, ..., x, are state variables, u,, u,, ... u,
are inputs and y;, y,, ... v, are output variables, it is

clear from Section 5.1 that the sensitivity of this system to
variation of the parameter ¢ may be obtained by partial
differentiation with respect to g. This process gives a set
of sensitivity equations which can also be termed the
sensitivity model or co-system. These equations have the

form:
a—f’%+(—j—f’%+ ............. GO, O g (59)
ax:’ aqo axl aqo axn qu aqo

%, 08t B 0% O (5.10)
dy, dq, 0Jx, 0q, dx, d9q, 9q,

These sensitivity equations, when solved in conjunction
with the system model equations, provide solutions for the
state variable and output sensitivity functions. They are, in
general, linear ordinary differential equations with time-
varying coefficients and may be solved by analytical or
simulation methods. Figure 5.1 is a schematic diagram for
the generation of sensitivity functions using this approach.
For a linear model with constant coefficients, the structure of
the sensitivity model is generally very similar to that of the
system model but, for each output, a given model must have
as many sensitivity models as the number of parameters of
interest, although methods have been developed that allow
simultaneous estimation of many sensitivity functions using
a single sensitivity model for particular cases.

Initial conditions for sensitivity models are, in most
cases, zero. This issue is considered in detail by Frank [2].

134



Methods and applications of parameter sensitivity analysis I

Inputs Outputs

System
model

Sensitivity
functions

\ Sensitivity
—\/ model

Figure 5.1 Block diagram illustrating the relationship

between the system model and the
corresponding sensitivity model for the general
case of a multi-input multi-output system model

Non-zero initial conditions can arise, for example, in the
sensitivity models for cases in which the system model has a
variable structure.

One important quantity based on sensitivity functions is
the sensitivity matrix. This is defined as the matrix of partial
derivatives of model variables, such as state variables, with
respect to parameters of interest in a model. For the case of
n variables y, y,, . . . y, and p parameters of interest ¢, ¢,,
.+« q, the sensitivity matrix has the form:

aq, aq,

X=| : . (5.11)
9y, 9,
i

Sensitivity matrices and related quantities are discussed in
greater detail in Chapter 6 in the context of system
identification and parameter estimation techniques.
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5.4.1 Parameter sensitivity analysis of
models in state-space form

Consider a model of order # having m inputs and p outputs,
and described by a set of linearised state-space equations of

the form:
x=Ax + Bu (5.12)
y=Cx + Du (5.13)

Then, taking Laplace transforms and assuming initial
conditions for the state variables x to be zero, one can write:

sX(s) = AX(s) + BU(s) (5.14)
Y(s) = CX(s) + DU(s) (5.15)

Then, differentiating with respect to a parameter g, which
can affect any or all of the coefficients in the matrices A, B,
C and D, we get the following set of equations:

oX 0X 0A oU 0B
22 A x4+ B+ P (5.16)
s oq doq * oq * doq * doq
Y X oC oU oD
—=C—+—X+D—+—U (5.17)
oq oq * oq * 9q " dq

Since g is a parameter of the system model and not of any
of the inputs Uls), it follows that v is zero. Hence the

solution of the sensitivity equations may be generated from a
simulation block diagram of the form shown in Figure 5.2.
The structural similarities between the system model and
the sensitivity model provide practical benefits in the case of
linear models but, for a nonlinear model, the structural
relationship between the model and the sensitivity equations
is more complicated, although some similarities remain. The
complexity in such cases depends on the parameter of interest
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0B
@ ox
X(s) | 0A W(s) oq

_> JR—
aq g—xz Ag—x + W —
U(s) x=Ax+ Bu 87/ 8?(
y=Cx+ Du aC Z(s) £=C@ +z_>
L » et

Y(s) |_°9 g_y
q

oD

aq

m Block diagram showing system model in
state-space form together with the
corresponding sensitivity model. Here, the lines
connecting blocks can represent either a single

variable or a vector, depending on the
application

and whether or not it is a parameter associated with a
nonlinearity of the model. Issues arising with nonlinear
models are considered in more detail by Frank [2].

An example, involving the UUV system of Appendix A1, is
included in Section 5.5 where it is used to illustrate the
application of parameter sensitivity analysis to nonlinear
and linearised models.

5.4.2 Parameter sensitivity analysis of
linear models in transfer function form

Sensitivity analysis for system models described by lumped
parameter linear equations with constant coefficients and
arranged in transfer function form can be handled using an
approach developed first by Kokotovi¢ [5] which is known
as the ‘sensitivity points’ method. This work was extended to
state-space models by Wilkie and Perkins [9].
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If a SISO linear system with input #(#) and output y(#) is
described by a transfer function G(s) then, in terms of
Laplace transformed variables, the sensitivity of the output,
Y(s), to small changes of any parameter gi of the model may
be described by the equation:

() _ 3GLs) 1 9GlS)y, (5.18)
aq, aq, G(s) dqi

The sensitivity function 9Y(t)) can therefore be found if the

aq,
system output y(¢) is applied as input to a sensitivity model
which has transfer function Lwi/(s), It has been
G(s) og,

shown by Kokotovié¢ [5] that, for multi-loop linear models,
the appropriate sensitivity model involving a ratio of two
polynomials in s may be represented by a multi-loop feedback
structure. This may be demonstrated readily using an
example for a system described initially by a transfer function
of order n of the form:

sz ) m—i sz . m—n—i
G(S) — nO azi_j — Onazs_i (5.19)
0b;s 0b;s

where a, = b, = 1.
It may then be shown that:

aY(s) _—s"Y(s) (5.20)
ob,  Zibs”

Figure 5.3 shows a block diagram model for the case of
m = n = 3 and the corresponding sensitivity model block
diagram for the denominator coefficients is shown in Figure
5.4. The points in the sensitivity model at which sensitivity
functions are obtained are the outputs of each block involving
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a4

a

az

ol—=
ol—=

Y(s)

_b3

m Block diagram for linear system transfer function
G(s) for the forms of numerator and denominator
given in Equation (5.19). In this diagram the X

sign indicates the sum (positive) of all the
incoming signhals at that summation point

an integrator element. The sensitivities for all the coefficients
of the denominator of G(s) may thus be found simultaneously.
For numerator coefficients:

dY(s) Ks"™7U(s) (5.21)

da ng,.s-f

r

Again, for the third-order example used above, Figure 5.5
shows the sensitivity model for the numerator coefficients
and it may be seen that the integrator block outputs (i.e. the
state variables) within the system model G(s) give the
sensitivity functions for the numerator coefficients directly,
as shown in Figure 5.5.
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Using a block-diagram oriented simulation tool such as
Simulink®, it is thus very easy to set up a simulation
that generates, simultaneously, all of the sensitivity
functions of the system output with respect to all
the coefficients of the numerator and denominator. The
sensitivity co-system is linked directly to the output of the
corresponding simulation models and, for the third-order
example presented here, the sensitivity model requires three
integrator blocks.

The representation of the system in the block diagram
form of Figure 5.3 corresponds to a system state matrix in
companion-canonic form where the output of each integrator
block is taken as a state variable. It has been shown [9] that
the sensitivity of each state variable to each parameter is

Y (s)
4E)
NPT
CINES 1 |1 |1 AC)
S S S Bbs
A
—b;
b, e
by e

Figure 5.4 Block diagram for sensitivity model for

denominator coefficients of the transfer function
represented in Figure 5.3
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a4
a
1 1
5 5 as
Y(s)
Y (s) aY (s) aY(s)
da, [T 0a, [T Toa
_b3

m Generation of sensitivity functions for the
numerator coefficients of the transfer function

represented in Figure 5.3

directly available from a single sensitivity model for a system
matrix in companion-canonic form. For multi-input linear
systems it can be shown [9] that for p inputs at most 2p-1
nth order sensitivity models are needed in order to generate
all of the sensitivity coefficients of the state variables with
respect to any parameter.

5.5 Case study: sensitivity analysis
applied to the unmanned underwater
vehicle (UUV) model

The model of the UUV system of Appendix A1l could, in
principle, be used to illustrate the application of this

141



I Modelling and simulation of integrated systems in engineering

methodology for nonlinear models. However, for the
nonlinear case, each parameter has to be considered
separately and this leads to a very large number of
sensitivity models in order to analyse the system model
completely. Given the relatively complex form of the
UUV model, this would involve a set of sensitivity models
which would be time-consuming in terms of the setting-up
process and also in terms of the simulation runs needed
if the analysis involved more than one or two parameters
of the model. However, if the system equations can be
linearised, the process becomes much more straightforward
since all the sensitivity functions can be found from a
single sensitivity model and this can also, very often,
provide useful physical insight that cannot be obtained
so readily from sensitivity analysis of the full nonlinear
model. Such insight can be particularly useful when the
linearised model provides a basis for design or
optimisation, as often happens with control system design
and integration.

The full nonlinear model may be vital for simulation-based
assessment of a design at the final stage before implementation,
but parameter sensitivity analysis may be of secondary
importance by that stage. In many cases, therefore, parameter
sensitivity analysis of the linearised model can be as useful
as simulation results from a nonlinear model. The use of
linearised models is illustrated through the example that
follows.

5.5.1 Sensitivity analysis of the linearised
UUV model for diving motion

From Section A1.1.1 the linearised dynamics describing
diving motion of the underwater vehicle model of Appendix
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A1 involves a third-order model described by the following
set of first-order equations:

g 1114}1\/1 _(z;_—zzdw O a IMjw

o |=| > R I

21 R B
(5.22)

The state variables g, 6 and z are the pitch rate, pitch angle
and vertical displacement, as given in Appendix A1, and &, is
the stern plane deflection. The parameters M, M, and M,
are hydrodynamic coefficients, I, is the moment of inertia of
the vehicle for pitching motion, W is the weight of the vehicle,
Zc — zp is the vertical distance between the centre of gravity
and the centre of buoyancy, and #, is the forward speed of
the vehicle.

In simplified form these equations may be written as:

b 5.23
o 6w O
0

N

It may be seen from Equations (5.22) and (5.23) that the
parameter a;; depends directly on M, and inversely on I and
M, . Similarly, the parameter a,, depends directly upon W,
Zg and z, and inversely on I, and M, while b; depends
directly on M and inversely on I, and M, . The only other
significant parameter of Equation (5.23) is -#, which
represents the forward speed of the vehicle.

For typical operating conditions, a,, = -0.7, a,, = -0.3,
uy=1.832 m/s, b, = 0.035.

The corresponding sensitivity model has the form:
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9q 9q
ay ay
90 T P
Zl=l 1 0 o | = |+
I 0 —u 0| ¥
0z 9%
oy I oy |
I da,, da, |
oy oy 0 g ? (5.24)
o 0 o0l o |+ ° |6
N I
dy

For the particular case where the parameter of interest, v,
is the parameter a,,, the sensitivity equation (Equation
(5.24)) becomes:

_%_ _a_q_
I a a 0 %

96 1 12 90 1 0 O q s
=7l 1 0 o = |f 000l (5.25)
v 0 —u, 0 T {]0oo0o0] 2

2 o

oy Iy

and this model may be represented by the block diagram of
Figure 5.6.

This diagram in Figure 5.7 is a specific example of the
general block diagram shown in Figure 5.2. The only
coupling in this case from the system model to the
sensitivity model is through the state variables x. The
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q(s) 0(s)
34(8) z(s)
» UO

0=
0=
0l—

ai

Figure 5.6 Block diagram of the linearised state-space

system model of the UUV, corresponding to
Equation (5.22)

; I
| Sensitivity |

I model !

| x

5 | X w I
System L oA J| 9X= p9X Ly !

’ model | oy 9 oy |

! |

! I

! I

! I

! I

! I

Figure 5.7 S_yster.n model and sensitivity model for the
linearised model of the UUV

0B dC oD

blocks —, — and — are all made up of zero elements while

dy 9y dy

. da .
the block — involves only one non-zero element — which

Iy da,,
is unity. This makes determination of the sensitivity functions

9%, for each of the state variables x; very straightforward

dy

145



I Modelling and simulation of integrated systems in engineering

through simulation. For a sensitivity model-based approach,
either the state-space description (as in Figure 5.6) or a transfer
function approach may be used.

Figure 5.8 shows the block diagram of the sensitivity

o . . 20
model for determination of the sensitivity functions — and
a
11

ﬁ. Figures 5.9 and 5.10 show the sensitivity functions 96
a,, a4

and 88_9 for the case of a step change of stern plane deflection
alZ

0, These two sensitivity functions are distinctively different
in form, with parameter a,, influencing only the initial
transient in the pitch 6 and parameter a,, influencing both
the initial transient and the steady-state pitch angle. This can
be related to the underlying parameters of Equation (5.22)
where it can be seen that, for the two coefficients considered,

20 (s)
0a44

6(s)

- 20 (s)
da;

0|

0=

ayq

ayp

A

Figure 5.8 Block diagram of the part of the sensitivity model
. for system model of Figure 5.6 for the variable 6
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0-16 T T T T T T T T T

0.14 ~ R

0.12 ~ i

0.1+ i

0.08 + R

0.06 4

0.04 R

0.02 + R

Sensitivity function for theta wrt to a4

—0.02 i

_0.04 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Time (s)

IR Sensitivity function 88_6 generated using the

all

sensitivity model approach for the case of a
step change of stern plane deflection

the steady state is influenced by the parameters W, z and z;
while other underlying parameters involved in both
coefficients, such as I, and Mg, only influence the transient
response. For quantitative comparisons, the relative

00

. . 20
sensitivity functions 4,, — and a,, 5, may be more useful
a
11 12

than the simple un-scaled functions — and 8_9 For this
da,, da,,

simple example, the same conclusions could be reached by

examining the form of the transfer function relating 6(s) to

O,(s) but the use of the approach based on the sensitivity

model becomes important in more complex SISO cases and

for MIMO models.
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STCE OV Sensitivity function Gl generated using the

da,,
sensitivity model approach for the case of a
step change of stern plane deflection

26
Figure 5.11 shows results for Pl obtained using the
11

parameter perturbation method presented in Section 5.3 for
a change of value of parameter a,, of 1 per cent.

Although the results obtained by the sensitivity model
and parameter perturbation methods are almost identical
in this case, it should be noted that the sensitivity model
approach provides interesting additional information. For
example, block diagram analysis shows readily that the

20

parameter sensitivity functions for —— and %9 have
da,, da,,

. 0 oz
exactly the same form. Similarly, uoa— and — are the
a,, da,
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0.08 - b
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—-0.02 1 E

Sensitivity function (finite diff.) for theta wrt to a4

_0-04 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Time (s)

GETCER KM Scnsitivity function 99 generated using the
aall

parameter perturbation approach

same. Other relationships of this kind can be shown to
exist between sensitivity functions for different
combinations of parameters and system variables, and
such insight could not be gathered using the parameter
perturbation approach.

5.6 Sensitivity analysis using
bond graphs

The bond-graph approach to sensitivity analysis is a
component-based approach. Sensitivity models are developed
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for each component of the system and a system sensitivity
ordinary differential equation is then derived from the
component descriptions. It therefore differs fundamentally
from the standard approach to parameter sensitivity analysis
outlined in previous sections, which starts from the overall
equations of the system.

This approach, which was used by Cabanellas et al. [10]
for system optimisation, and by Roe and Thoma [11],
provides physical insight and allows for algebraic generation
of sensitivity functions as compared with purely numerical
approximations. With the present-day wide availability of
symbolic computational tools, this is an attractive feature of
the approach.

Gawthrop [12] has extended the work of Cabanellas et al.
[10] and has shown that sensitivity bond graphs can be
created that have a structure identical to that of the system
bond graph. This means that a sensitivity bond graph can be
generated in a direct way from the system bond graph.
Borutzky et al. [13] have pointed out that this approach is
based on pseudo-bond graph methods, since the variables
associated with the bonds are first-order sensitivities of the
effort and flow with respect to a parameter and are therefore
not power variables. They have suggested another approach
which involves development, from the initial bond graph,
with nominal parameters, of an incremental bond graph for
increments of power variables due to small parameter
changes [13]. Another interesting development has been the
proposal by Dauphin-Tanguy and Kam [14] for uncertainty
bond graphs for power variables in robustness investigations.
Borutzky et al. [13] have demonstrated that uncertainty
bond graphs also allow parameter sensitivities to be
determined.
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5.7 Sensitivity analysis in
inverse simulation

In principle, sensitivity analysis can be carried out for all
methods of inverse simulation. For the iterative methods
of inverse simulation outlined in Section 4.2., this involves
using finite changes of parameters of the forward model and
repeated solutions. The problems of accuracy mentioned in
Section 5.3 therefore apply and, in addition, there are
inevitable problems of computation time. The feedback
approach to inverse simulation has obvious advantages
because the sensitivity model approach can be applied
directly.

5.7.1 Inverse sensitivity using the feedback
approach to inverse simulation

Figure 5.12 shows the block diagram for inverse simulation
based on the use of feedback system principles, as described
in Section 4.2.5.

In the case of a linear model, G(s), which involves a set of
parameters ¢, then for a given parameter g;:

dG(s)
dls) i C(s)v(s)C(s) Tq, 526
dg.  (1+C(s)G(s)) '
C(s) aG(s) _ 1 9G(s)
=-w(s) =—w(s) ————
(1+C(s)G(s)) g, G(s) og,

The sensitivity of the signal w(s), which represents the
inverse solution, to the parameter g; is therefore found by
passing the signal through a block having transfer function:

1 9G(s)

G(s) 9q,
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——» error

v
<

v

K G(s)

m Block diagram illustrating the feedback system
approach to inverse simulation

This transfer function depends entirely on the characteristics
of the forward model G(s) and is easily found using analytical
methods.

5.7.2 Example: inverse sensitivity for a
simple transfer function model

Consider a simple linear model:

G(g)= KU+sT) (5.27)

1+ T,

The structure of the sensitivity model for simultaneous
determination of the sensitivity functions for the inverse
model with respect to the parameters of the forward
model is shown in Figure 5.13 and the filter transfer
functions for the parameters of the model G(s) are as
follows:

(5.28)

1
G(s) K K
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F(8)  —>

Fr(s) —»

Fp(S) +—»

K G(s)

v

Figure 5.13 Blocll( .d{agram for inverse sensitivity using a
sensitivity model approach

()= 9G __s (5.29)
” G(s) oT, 1+sT,

1 oG _ s (5.30)
G(s)oT, 1+sT,

TZ(S) =

For the case where the parameters have values K, = 10,
T,=1s,T, =2 s and the desired model output signal given
in Figure 5.14, the input found from inverse simulation to
produce that output is given in Figure 5.15. It can be seen
that for a steady output of one, the required steady input has
a value of approximately 0.1, as would be expected from the
value of gain factor K, of 10.0. The peak values of the input
(0.2 and -0.1) and the associated transients in the input
signal are needed to overcome the first-order time lag
characteristics of the model.
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1.5 T T T T T

Required output
o
()]

_0-5 T T T T
0 2 4 6 8 10 12

Time (s)

Figure 5.14 Desired model output (dimensionless) plotted

against time (s)
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Input needed for required output

—0.05 R

_01 T T T T
0 2 4 6 8 10 12

Time (s)

Figure 5.15 Input (dimensionless) generated using inverse

simulation to produce the model output shown
in Figure 5.14. The horizontal axis represents
time (s)
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The sensitivity function for the parameter T, found using
the sensitivity model approach is shown in Figure 5.16.
Although the corresponding result obtained by the finite
difference approach for a perturbation AT, of magnitude
0.01 s is so close as to be indistinguishable from that shown
in Figure 5.16, the successful application of the perturbation
method does require careful choice of AT,; this usually
involves a trial-and-error approach and therefore requires
several simulation runs. The sensitivity function shows, as
would be expected from physical reasoning, that the
parameter T, influences the transient part of the inverse
solution but does not affect the steady states.

0.1 T T T T T
0.08 ]
0.06 1
= 0.04- 1
8
5§ 0.024 1
3
S oo -
2z
2 —0.02-
‘@
o
& -0.04
-0.061
-0.08+
_0-1 T T T T T
0 2 4 6 8 10 12

Time (s)

Figure 5.16 Sensitivity function for parameter T, as a

function of time found using the sensitivity
model approach
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5.7.3 Example: sensitivity analysis for
inverse simulation of a linearised model of
the UUV

The linearised dynamics for diving motion of the underwater
vehicle model of Appendix A1 involves a third-order system
with the following equation:

q ay  apy q b]
6 1= 1 0 01| 6 [+ o [6.02) (5.31)
2 0 —u, 0 Z 0

This is the linearised model already considered in the
context of sensitivity analysis in Section 5.5.1. As already
noted, the state variables g, 6 and z are the pitch rate,
pitch angle and vertical displacement, as given in Appendix
A1, and 6, is the stern plane deflection and for typical
operating conditions a,, = -0.7, a;, = -0.3, u, = 1.832 m/s
and b, = 0.035.

If we require a sinusoidal trajectory in terms of the pitch
angle, 6, the stern plane deflection time history determined
from inverse simulation using simple proportional plus rate
feedback is as shown in Figure 5.17.

The high frequency oscillation superimposed on the stern
plane deflection is due to the presence of lightly damped
poles in the feedback system used for inverse simulation.
Despite the presence of these poles, the application of this
stern plane deflection signal to the forward model of the
UUV gives an output which is almost identical to the required
sinusoid (Figure 5.18).

Application of the technique outlined in Section 5.7 for
determination of the sensitivity of the inverse solution to
parameters of the given model, such as a; and a,,, involves

the application of appropriate filters __1 3Gl the
G(s) og,
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o
1

Control surface deflection (rad)
s 4
PR
1 1

_0-3 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Time (s)

Figure 5.17 Stern-plane input signal found from inverse

simulation for required trajectory involving
sinusoidal change of pitch angle
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Figure 5.18 Pitch angle record found from application of

stern-plane deflection signal of Figure 5.17 to
the forward model of the UUV

simulated signal which represents the required control
surface input §,(¢).

In the case of the parameter a,,, the filter can be shown to
have the transfer function:
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—s
— (5.32)
while for a,, the transfer function is:
-1
(5.33)

2
S —as—ap,

Results obtained, using this method of sensitivity analysis
for the inverse simulation model, are shown in Figures 5.19
and 5.20. It can be seen that (neglecting the short initial
transient which is an artefact of the inverse simulation

method being used) the parameter sensitivity function — is
a
11

dominated by a cosine function of amplitude approximately
0.07 and frequency the same as that of the required pitch

change signal. The sensitivity function — is sinusoidal in
a
12

0.15 T T T T T T T T T
& i
§ 0.1+
c
o
©
§ 0.05 A
2
=
7 0 -
c
[0}
)
]
5 —0.054
>
=
-0.1 T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 5.19 Sensitivity function found from sensitivity model
for parameter a,,

158



Methods and applications of parameter sensitivity analysis I

Inverse sensitivity function for a;,
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0 10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 5.20 Sensitivity function found from sensitivity model
for parameter a,,

form and identical in frequency to that for a,, with a peak
value of approximately 0.82. As would be expected from the
form of the filters given above, the sensitivity function for a,
is shifted in phase compared with that for a,, by 90° and
these two parameters therefore each have greatest influence
on the stern plane deflection signal at different times. The
influence of each of the parameters can be compared

o . . - 90
quantitatively using the relative sensitivity measures a,, —-
a
11

o) . o
and a,, —>. On that basis, the stern plane deflection signal
12
may be shown to have a maximum sensitivity to parameter

a,, which is approximately five times larger than the
maximum sensitivity to a;,. Such information is potentially
useful when considering actuator limits and when carrying
out control system optimisation studies. Similar information
on inverse sensitivity could be derived in the same way for
the other parameters of the model.
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Figure 5.21 Sensitivity function found using finite difference
approximation approach for the case of

parameter a,,

For comparison with the results of Figures 5.19 and 5.20,
Figure 5.21 and 5.22 show sensitivity functions for the
parameters a,, and a,, found directly from the inverse
simulation results using a perturbation approach. It can
be seen that the sensitivity functions found by the
perturbation method and the sensitivity model approach
are almost identical in both cases, apart from the initial
transient in the sensitivity function for a,,. That transient
is, of course, associated with the choice of feedback loop
gain factors and is therefore an artefact of the feedback
system approach to inverse simulation, as mentioned
above. As in the case of sensitivity analysis for conventional
forward models, it is believed that additional physical
insight and computational simplicity once again give the
sensitivity model approach advantages when compared with
perturbation methods.
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Experimental modelling:
system identification,
parameter estimation

and model optimisation

techniques

Abstract: This chapter describes the role of system
identification and parameter estimation methods and
related optimisation techniques within the model
development process. These techniques are central to what
is termed ‘experimental modelling’ and emphasis is given
to issues of identifiability and experimental design.
Applications considered are drawn mainly from the field of
helicopter modelling from flight test data. Optimisation
techniques considered include simulated annealing and
genetic algorithm methods as well as gradient-based and
search-based techniques. Model structure estimation is
approached through physical understanding of the system
and the use of genetic programming methods.

Key words: identification, parameter estimation,

identifiability,  experimental  design, test signal,
optimisation, flight mechanics, helicopter.
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6.1 The use of system identification
and optimisation techniques in the
development of physically based
dynamic models

It has been emphasised in Chapter 1 that models must
be appropriate for their intended purpose. Models are
never unique and their development is an iterative process,
involving initial formulation and testing, followed by
repeated modification and retesting. The form of model used
at a particular stage in a project must therefore take account
of the objectives, the amount of detail needed at that stage
and uncertainties in the information about the real system.
In some situations, particularly when working with existing
systems or sub-systems, there may be a need for experimental
investigations before a detailed physically based quantitative
model can be developed.

System identification and parameter estimation are
established techniques involving use of measured response
information from a real system to develop a mathematical or
computer-based dynamic model. In this approach the model
usually has a general form involving ordinary differential or
difference equations and an associated set of parameters that
have to be estimated. In general, the structure (as defined by
the number of differential equations and any associated
algebraic relationships) also involves uncertainties and the
most appropriate form may have to be established using
measured response data. Techniques of system identification
and parameter estimation are reviewed in many textbooks,
such as those by Ljung [1], Soderstrom and Stoica [2], Nelles
[3] and Raol et al. [4].

Many approaches to identification and system parameter
estimation involve optimisation of a specified cost function
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involving the difference (error) between a model response
and the corresponding measured variable. Decisions about
the most appropriate structure for the model usually require
background knowledge and physical understanding of the
system, as well as examination of available experimental
data and consideration of the intended application. Once an
initial structure has been established and uncertainties have
been critically assessed, the parameters of the model can be
estimated, usually iteratively, through a specific cost function
and optimisation method such as least-squares minimisation.
The iterative processes of parameter adjustment continue
until the responses of the model match those of the system to
some predefined level. For problems that are nonlinear in the
parameters and involve many unknowns, one important
issue is the potential presence of large numbers of local
maxima and minima in the surface that represents the cost
function. Therefore, it is possible that many sets of locally
‘optimal’ parameters may be found from test data and care
should be taken to find the set that corresponds to the global
optimum.

The textbook by Raol et al. [4] provides a useful review of
least-squares methods in the context of modelling, system
identification and parameter estimation. The treatment of
optimisation methods presented in that book establishes
links between the properties of classical gradient-based
optimisation techniques and methods commonly used in the
application of system identification and parameter estimation
to engineering systems. These include the generalised least-
squares and nonlinear least-squares methods, and techniques
such as the equation-error and output-error methods that
have been used extensively in the identification of physically
based models arising in the modelling of fixed-wing aircraft,
helicopters, ships and underwater vehicles (see e.g. [4], [5]

and [6]).
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Model structure optimisation involves optimisation of
complexity, since the number of separate equations and
the number of adjustable parameters, which provide a
crude measure of complexity, depend on the chosen
structure. Also, with more parameters, a model becomes
more flexible since the number of forms of behaviour
that could be exhibited increases. A model that is too simple
will not capture the behaviour of the system and will give
poor predictions. In addition, if the data available for
parameter estimation and subsequent testing of the model
are inadequate, even a relatively complex model may perform
badly. Thus, the complexity of a model must always be
appropriate for the intended task. Optimising the complexity
of a model is closely linked to questions of model validation
(see Chapter 7) which involves critical assessment of the
model performance for a specific application.

One approach that is well suited to the system identification
of physically based continuous system models has been
presented by Knudsen (e.g. [7] and [8]). This is based on
parameter sensitivity information (as discussed in Chapter 5)
which is used in selecting model structures, for experimental
design and for the validation of models identified from
experimental data. The essential point of incorporating
parameter sensitivity information into the identification
approach is that accurate estimation of any parameter requires
that the cost function upon which the estimation is based
should be sensitive to that parameter and the most sensitive
parameters are likely to be the ones that are estimated most
accurately. Comprehensive knowledge of parameter sensitivities
thus provides important information for assessing identification
results. A MATLAB™ toolkit ‘Senstools’ has been developed
by Knudsen and is available for downloading [9].

It is important that the performance of a model should be
assessed using a ‘test’ data set that is not the same as the
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‘training’ data set that was used in estimating the structure
and parameters of that model. In this way, the generalisation
ability of theidentified model may be assessed. ‘Generalisation’
describes the capability of the model to predict system
outputs for experimental situations that are not exactly the
same as those used at the development stage.

The terms ‘under-fitting” or ‘over-fitting’ are widely used.
If the model is relatively simple but cannot match observed
behaviour, the situation may involve under-fitting and the
model structure should be reviewed. If a relatively complex
model is used and the training appears satisfactory, but the
generalisation is poor, there may be over-fitting. In such cases
the cause of the problem may be bias on the estimated values
of model parameters due to noise on the data used for
identification, or an inappropriate structure.

Physically based dynamic models used in practical
engineering applications are usually nonlinear in the
parameters. In such cases iterative methods must be used to
find the set of parameters to give model responses that match
experimental data, even if the model structure itself is linear.
Many nonlinear optimisation techniques and methods for
iterative solution of nonlinear equations have been developed
and detailed information about the relevant algorithms may
be found elsewhere (see e.g. [3] and [10]).

Nonlinear optimisation methods can be classified as
local or global [3]. Although they converge to local
optima, local methods often settle at points close to the
initial parameter set, particularly if search directions are
obtained from first- and second-order derivatives. Such
algorithms tend to become stuck at local minima or maxima
and an extremum elsewhere in the parameter space may be
neglected. Global nonlinear optimisation methods may
overcome this difficulty and rely on the inclusion of random
components that help the algorithm to avoid becoming
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trapped. Well-known global optimisation techniques include
simulated annealing (SA) (e.g.[11] and [12]) and evolutionary
algorithms such as the genetic algorithm (GA), the principles
of which are discussed in more detail in the books by Holland
[13] and Goldberg [14]. Further information about the
techniques of simulated annealing and evolutionary
computing applied to system modelling may be found in
Sections 6.4 and 6.5.

6.2 Applications of conventional
methods of system identification
and parameter estimation to
physically based models

As has already been stated, system identification in its most
general form may be defined as the quantitative estimation of
the structure and parameters of a model using experimental
measurements from the corresponding real system. Traditionally
it is applied to the development of self-adaptive control systems
and other online and self-tuning control techniques. However,
it may also be regarded as a set of analytical and computational
tools that provide additional insight at various stages in the
development of physically based models.

In model-based design and development, system
identification can be helpful for choosing a suitable model
structure, perhaps from several different candidate
descriptions. Identification can then provide estimates of
parameters for that structure.

How identification and parameter estimation techniques
are used depends on the intended application. Different
models and methods may be appropriate depending on the
purpose of the model. For example, for many control system
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applications, linear forms of model may be used since control
system design methods frequently require linearised plant
models. However, when system identification and parameter
estimation methods are used within the process of simulation
model validation, nonlinear models are often essential.
System identification and parameter estimation is a mature
field and details of methods of identification such as the
equation error, output error or maximum-likelihood methods
are not included in this book. Well-documented software for
system identification and parameter estimation is available
from a variety of sources, including well-established
MATLAB® toolboxes (e.g. [15], [16] and [9]). Instead of
repeating information that is readily available elsewhere,
more attention is given here to ways in which such established
methods may be applied to the development, validation and
application of models in a practical engineering context.

6.2.1 Issues of identifiability

The precision of any parameter estimate may be expressed in
terms of the variance of the estimate and this depends both
on the experiment used for identification and the estimation
technique. Often the objective is to obtain unique and reliable
estimates of all of the parameters of a model. It is important
to investigate whether or not this is theoretically feasible for
a given model structure and a given experiment. The concept
of identifiability is central to issues of this kind and tests for
identifiability provide an indication of potential problems
before an identification method is chosen or issues such as
experimental design are considered.

Global or structural unidentifiability arises if a model has
an excess of parameters so that some specific parameters
cannot be estimated uniquely for any possible experimental
design. This depends on the model structure and not on values
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of parameters or the design of the identification experiment.
It arises when a model has too many parameters to allow all
of them to be found for any possible input stimulus.

Structural identifiability is only a minimal necessary
condition for obtaining unique estimates of model parameters.
Bellman and Astrém [17] were among the first to discuss this
issue. Although their findings were presented in the context
of biological compartmental models, the results are
applicable to other problems. They showed that classical
transfer function theory could be used as a basis for the
investigation of identifiability. If each coefficient of the
transfer function matrix is expressed as a combination of
the unknown parameters, a set of nonlinear equations is
defined and the model is identifiable in a global sense if these
equations have a unique solution.

Pathological or numerical unidentifiability arises when a
structurally identifiable model is being used with an
experimental data set that is inappropriate for the application.
This could be because the length of the available record is too
short compared with the dominant time constants or the period
of oscillatory components of the response. It could also arise if
the measured response data is very heavily corrupted by noise.

Beck and Arnold [18] have shown that model parameters
can be estimated only if the parameter sensitivity coefficients
for the output variable with respect to each parameter are
linearly independent over the range of observations. Problems
of numerical unidentifiability may be deduced, in simple
cases, directly from the time histories of sensitivity
functions (as defined in Chapter 5). The problem can also be
investigated more systematically by examining properties of
the sensitivity matrix X and the closely associated parameter
information matrix M = X'X. This type of analysis allows
interdependencies to be investigated that are more complex
than those found by direct inspection of sensitivity function
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time histories. Pathological unidentifiability is linked to
linear dependence of the columns of X and this is reflected in
the determinant of matrix M or in the condition number of
the matrix (the ratio of the largest eigenvalue of M to the
smallest eigenvalue of M). If the condition number is large,
or if the determinant is small, the confidence region for the
estimates is large and the parameter estimates are therefore
not well defined.

The matrix M~! is also important and is known as the
dispersion matrix, commonly denoted by D. The determinant
of D can be shown to be a useful indicator of numerical (or
pathological) unidentifiability [18].

Correlations between pairs of parameters can be
investigated using the parameter correlation matrix P. This
matrix is commonly defined in terms of its elements:

My (6.1)

where p; is the element of P in row i and column j and ;!
is the element of M™! in row 7 and column ;. The diagonal
elements of the matrix P have values which are unity and the
off-diagonal elements all lie between -1 and 1. Conditions
close to unidentifiability arise if the modulus of one or more
of the off-diagonal terms is close to unity, with a value of
0.95 being regarded as a limiting value [18]. Small values of
the off-diagonal elements of P indicate that the parameters
are essentially decoupled.

6.2.2 Design of experiments and the
selection of test-input signals

In designing experiments and choosing test signals for system
identification and parameter estimation, we must have a
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quantitative basis for comparisons. It is also assumed that
the estimator is efficient (e.g. [19]) and that these experimental
aspects are independent of the estimator. Test signal design
can involve quantities such as the parameter information
matrix and the dispersion matrix, both of which have
theoretical origins in the Cramer-Rao bound [18], through
which the variance of parameter estimates may be related to
elements of the dispersion matrix D. Since this is based on
the parameter sensitivity matrix X, which depends on
measurements, the elements of D can be derived from tests.
In general terms, inputs giving a dispersion matrix with small
elements are to be preferred over inputs producing large
values and this leads to test input design algorithms that
minimise appropriate functions of the dispersion matrix or
of the parameter information matrix.

The sensitivity matrix X and the parameter information
matrix M thus provide a basis for measures of the quality of
an experiment using relationships which are of the general
form:

] =fiM) (6.2)

where f is an appropriate scalar function. One widely used
criterion for experiment design is the so-called D-optimal
criterion [20] which involves the dispersion matrix and has
the form:

Jp = det(D) = det(M~!) (6.3)

This criterion gives a test signal that places equal emphasis
on the estimation of all of the parameters. In cases where a
subset of parameters is more important, use of a truncated
D-optimal design criterion has been advocated [21], and this
has the form:

Jp, = det(M;) (6.4)
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where M, is a sub-matrix of the full information
matrix referring only to the 7 parameters of interest. Use of
this truncated criterion involves elements of the sensitivity
matrix X which themselves depend on values of model
parameters. Thus it is only possible to use the criterion to
investigate and compare experimental designs in a general
way. Use of the criterion to generate a truly optimal
experiment is impossible because, to do that, exact parameter
values for the system under test would have to be known
a priori.

Many accounts exist of applications in which the concepts
of identifiability and experiment design have been used to
good effect. Much early research on identifiability analysis
involved biomedical applications, but these techniques have
also been applied in many other fields. One typical application
has been described by Keskitalo and Leiviskad [22], involving
calibration of models of activated sludge systems for
wastewater treatment. Experimental estimation of model
parameters is essential in matching activated sludge models
to real processes, but difficulties arise because the model
structure does not allow unique estimates to be obtained for
all the parameters and the available measurements are
usually of low quality. Experience suggests that models of
this kind require regular recalibration and Keskitalo and
Leiviskd have proposed the development of a more automated
approach, using identifiability analysis combined with global
optimisation methods, which avoids much trial-and-error
work [22].

Although the activated sludge model is typical of problems
encountered with environmental system models and process
system models, where there is often very limited scope of
experimentation, other physical systems may offer more
flexibility in the generation of test data sets for identification
and eventual model validation.
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6.3 System identification and
parameter estimation applied to
helicopter flight mechanics models

Applications of system identification and parameter
estimation techniques to problems of helicopter flight
mechanics modelling and control are important, especially
for the validation of models developed using physical laws
and principles. Conventional simulation models derived on a
physical basis and using wind-tunnel data, taken alone,
seldom provide a basis for the development of usable models.
Extensive flight testing programmes using prototype vehicles
are still essential as part of the certification procedures for
new aircraft, but these test programmes are time-consuming
and costly. Changes required in the hardware following
prototype testing are often linked directly to deficiencies in
the underlying models used for the initial stages of vehicle
design.

Figure 6.1 illustrates an application of identification
techniques and comparisons with conventional simulation
results for a well-established helicopter flight mechanics
model (involving the DLR simulation program SIMH [23]).
The uppermost traces show test input time histories for
the lateral and longitudinal cyclic controls, as measured
in a flight experiment on a BO105 helicopter [24]. The
records below are for roll rate and pitch rate predicted by
the SIMH simulation model (dashed lines) together with
the corresponding variables measured in the flight test
programme (continuous lines). Some significant differences
between the simulation results and the measured results
are immediately evident. The bottom two sets of results
show the same flight test measurements along with predicted
outputs for the same variables for a model based on
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Figure 6.1 Flight data (continuous lines) and corresponding

model responses (dashed lines) for typical test
inputs. Results under the heading ‘Simulation’
show roll rate and pitch rate variables for a
physically based model in response to measured
inputs together with the corresponding
measured variables. The results under the
heading ‘Identification’ relate to a reduced
model structure with parameters estimated
from flight data, with model predictions
compared with the roll and pitch rate variables
from flight. (The original version of this figure
was published by the Advisory Group for
Aerospace Research and Development, North
Atlantic Treaty Organisation (AGARD/NATO) in
AGARD Advisory Report 280 ‘Rotorcraft System
Identification’, in September 1991)
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parameters estimated from flight tests. The difference
between the measured results and model predictions
are much smaller in this case, showing the increase in
accuracy possible when wusing appropriate parameter
estimates.

Although results shown in Figure 6.1 are encouraging,
it should be noted that helicopters present special difficulties
in terms of the use of identification methods. For linearised
multi-input multi-output (MIMO) models of the complete
vehicle, it is normal to be faced with test records that
are short compared both with the dominant time constants
and periods of the dominant oscillatory modes. Also, these
models involve many parameters and a wide range of
frequencies, and measurements can involve high levels of
noise. Along with the short test records usually available,
these are not desirable factors for identification.

Within the aircraft industry, the benefits of system
identification relate mainly to reduction in flight testing
for certification of new designs and for fine-tuning of
the vehicle’s agility and handling qualities. Identification
methods may also be useful for improving engineers’
confidence in physically based models used in design and
for reducing levels of uncertainty. Estimation of parameters
from flight is now an increasingly important part of prototype
testing and is especially relevant for some aerodynamic
stability and control parameters. Although flight testing
is costly, additional tests carried out specifically for
system identification and parameter estimation purposes
could allow essential design modifications to be made
through virtual prototyping methods more quickly, more
efficiently and at a lower cost than by using traditional
approaches.

In the late 1980s and 1990s, active control technology
began to be applied to helicopters. Essentially, this is the
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fly-by-wire approach that had, by then, already been accepted
for civil and military fixed-wing aircraft. The improvements
in performance and capabilities expected from active-control
technology could only be achieved using accurate and proven
mathematical models (e.g. [25]). The publication in 1989
and in 1994, in the USA, of revised handling qualities
requirements for military helicopters [26] provided an
additional stimulus to these developments in helicopter
flight control and created new interest in multivariable
control system analysis and design methods. Enhanced
performance requirements and developments in materials
and rotor technology have produced improvements in vehicle
characteristics which mean that much enhanced performance
is possible but use of traditional loop-by-loop control
design methods may present difficulties and the expected
performance gains may not be realised in practice.

Multivariable control system design techniques, which
exploit the multivariable structure of vehicles such as
helicopters, have been applied successfully in several
investigations (e.g. [27], [28] and [29]). However, ensuring
accuracy in the MIMO models used for active control system
design is challenging. Models must perform adequately over
a defined range of frequencies and for a range of manoeuvre
amplitudes. For example, high-bandwidth model-following
flight control systems may incorporate improved feed-
forward control pathways to provide improved agility for
large and rapid manoeuvres, but such an approach requires
accurate models of the vehicle [27]. System identification is
also increasingly important for validation of ground-based
simulators for rotorcraft of all types and highly accurate
mathematical models are needed for simulators that are to
be used for pilot training (see e.g. [25]).
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6.3.1 Some examples of
rotorcraft applications

Before the 1990s, most published accounts of system
identification techniques applied to helicopters involved
time-domain methods of identification. However, the use of
frequency-domain methods is now seen to have advantages.
In this case the measured response data is transformed
first into the frequency domain using an appropriate
implementation of the Fast Fourier Transformation. This
allows attention to be focused on particular parts of the
frequency range, and data lying outside the areas of interest
can be given less emphasis or discarded. Thus, for the
identification of six-degrees-of-freedom rigid-body models,
the rotor degrees of freedom, which involve higher
frequencies, can be excluded. Conversely, for the identification
of rotor dynamics, the lower frequencies involving the rigid-
body response can be excluded. This procedure allows, in a
sense, a form of model reduction within the identification
process [30].

Details of a frequency-domain approach to helicopter
system identification may be found in a paper by Black
and Murray-Smith [31] and this approach was one of several
methods of helicopter system identification successfully
used by the NATO-supported AGARD Flight Mechanics
Panel Working Group WG18 for work leading to the
preparation of the AGARD Advisory Report 280 [32] on
Rotorcraft System Identification and the associated Lecture
Series volume [33]. Frequency-domain methods have been
used widely in the vyears since publication of that
AGARD report, especially using the now widely available
CIFER software developed by Dr Mark Tischler and
his colleagues at the US Army Aeroflightdynamics
Directorate [34].
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Although it may be stated, without question, that
identification and parameter estimation techniques are
potentially important for helicopter development and flight
testing, it has to be accepted that the benefit of these tools
has not yet been fully realised. Many of the difficulties are
associated with issues of robustness and these have been
classified under the following headings [35]:

1. robustness and reliability of a priori information;
2. robustness of the identified model structure;

3. robustness of estimated parameters; and
4

robustness of the resulting overall model.

In terms of these robustness issues, the properties of
different estimators are probably less important than
questions of identifiability, the quality of measured data
and experimental design. However, an understanding of the
properties of different estimators is essential if they are to be
applied appropriately.

Klein has provided a useful account of identification
techniques for aircraft system identification [36] and the
theoretical properties of different estimators. For example,
the maximum likelihood approach, when applied in its
most general form, allows parameters to be estimated for a
linearised aircraft model from flight data involving
measurement noise and process noise, such as unmodelled
disturbances in the form of gusts. Less general forms of
output-error method involve assumptions that only the
measurements are corrupted by noise. This means that
estimates obtained using output-error methods can be
degraded in the presence of unmeasured and unmodelled
disturbances giving relatively poor estimates with large
variances. Similarly, there are problems with equation-error
methods, since these are not only affected by process noise
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and by measurement noise, but can produce biased estimates
even if all the measurement and process noise components
have zero mean.

Although the values of the variances associated with
parameter estimates are useful indicators of robustness, it is
important to understand that any comparison of variances
obtained for different model structures is impossible. Checks
of residuals can be useful and an interesting measure of the
robustness of parameter estimates can be obtained from
plots of each estimated parameter value versus the length of
the experimental record.

Possible dependencies of parameter estimates on record
lengths are also linked to the relationships between parameter
estimates and the frequency range of the data. Knowledge of
how estimates vary with the frequency range of measured
signals used in the estimation can provide valuable insight
concerning robustness. Ideally we want to maximise the
range of frequencies over which parameter estimates are
more or less constant and any indication of high sensitivity
of estimates to frequencies over a part of the relevant range
of frequencies may indicate problems of model structure or
experiment design.

Checks of the overall robustness of an identified model
must be made using data sets that were not used during the
original identification process. These additional sets must
be broadly similar in spectral properties and amplitude
distribution to sets used for identification. One way of
using such additional sets is simply to carry out additional
identification runs and compare the different estimates
obtained. Clearly the situation would be judged unsatisfactory
if variations of parameter values obtained in this way were
greater than could be expected from variance estimates for
the first set of parameters obtained. Another approach
involves the identified model being subjected to inputs not
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used for identification (See e.g. [37]). The predicted output
from the model must then be compared with the corresponding
measurements. This is a form of external validation and is
discussed further in Chapter 7.

6.3.2 Test inputs and experimental design
for helicopter system identification and
parameter estimation

Testinputs commonly used for helicopter system identification
include doublet signals, other forms of multi-step signals
such ‘3-2-1-1 pseudo-stochastic signals (see [38] and
[39]) and frequency-sweep signals. For the 3-2-1-1 the
numbers used to describe the input refer to time units
between input signal reversals. Figure 6.2 shows practical
doublet, 3-2-1-1 and frequency-sweep test signals, together
with some typical responses. It may be seen that the
frequency-sweep signal provides a broader range of
frequencies, although it should be noted that the record
length for this input is greater than for the 3-2-1-1 or doublet.
This could be important for cases where the stability margin
of the vehicle is small since the use of such a long input
sequence may limit the length of record permissible during
the unforced part of the response.

Designs of test signals for system identification of a
helicopter or other system are inevitably based on a model of
that system. Because of uncertainties within that model, the
resulting signals are unlikely to be optimal. Indeed, if
uncertainties were not present, there would be no need to use
system identification. This means that it is important to
characterise some appropriate flight data from the vehicle in
question using relatively simple forms of input as a first step
towards experimental design.
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We need a quantitative basis for comparison of test signals
and, in the approach presented here, this involves quantities
such as the parameter information matrix and the dispersion
matrix, as outlined in Section 6.2. It should be noted,
however, that care must be taken when applying such an
approach since, unless an efficient estimator is used, the
approach may be invalid. Inputs designed using measures
based on the dispersion matrix have been found to be
especially useful in cases where long test records are available
and where maximume-likelihood estimators are being applied,
since such estimators are asymptotically efficient.

The coherence function may be helpful as a measure of the
degree to which a given signal provides satisfactory excitation
[5]. It provides a measure of the fraction of the output
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auto-spectrum which may be accounted for by a linear
relationship with the input auto-spectrum [39]. In the ideal
case the coherence is unity over the complete frequency range
of interest. Values of coherency smaller than one may be
associated with nonlinearity in the system under test, process
noise (such as turbulence in the case of aircraft applications)
or lack of input signal power and thus response power [5].
Figure 6.3 shows some typical records and plots of coherency,
revealing larger coherence values for the frequency-sweep
data over a wider range of frequencies compared with the
other test inputs [32]. This is especially noticeable at
frequencies below 1 rad/s and above 10 rad/s where the
autospectra for the doublet and 3-2-1-1 show significantly
reduced power levels. In general, larger and more constant
coherence values over a wide range of frequencies, coupled
with relatively smooth input autospectra, are seen as desirable
for identification purposes [40]. This suggests that the
frequency sweep has advantages, provided the longer
duration of this type of test signal can be tolerated.

In cases where the aim of identification is validation of
linearised flight mechanics models, the inputs used for testing
must be consistent with the modelling assumptions. This
means that input design methods must take account of input
constraints. In addition, it is important to obtain long test
records, since parameter estimates then have time to converge
and efficient estimation (i.e. minimum variance estimation)
is possible, thus allowing use of criteria based on the
dispersion matrix.

The broad aim of research by Leith and Murray-Smith
[41] was to design a test input which would give long test
records while providing a dispersion matrix that is reasonably
‘small’. It is important to avoid resonances in the system,
since an input that excites resonances could rapidly produce
a nonlinear response and this might require the flight
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Autospectra and roll rate data in response to
three types of test input signal (doublet, 3-2-1-1
and frequency sweep) applied through the lateral
cyclic control for BO105 helicopter. The results
reveal larger values of coherence over a wider
frequency range for the frequency-sweep data
(continuous line) compared with the doublet or
3-2-1-1 test inputs. (The original version of this
figure was published by the Advisory Group for
Aerospace Research and Development, North
Atlantic Treaty Organisation (AGARD/NATO) in
AGARD Advisory Report 280 ‘Rotorcraft System
Identification’, in September 1991)
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experiment to be prematurely aborted. Inputs should also
be chosen to ensure that the signal has no steady-state
component. A constant component in the input will tend to
produce a steady-state constant component in the response
and this can shift the operating point. If the operating point
is significantly different from that used for linearisation of
the theoretical model, the parameter estimates obtained
experimentally will be inconsistent with that model, thus
making the whole procedure invalid.

A method of autospectrum design was developed ([41]
and [42]) that:

m ensures that resonances are avoided, to give longer test
records;

m avoids exciting frequencies around the resonances, to give
robustness;

m excites the remaining frequencies, to give a reasonably
‘small’ dispersion matrix; and

m allows users to choose inputs that are relatively simple
in form, so that they can be applied manually by the pilot.

An optimal spectrum program was then written to produce
a binary multi-step input having an auto-spectrum that
satisfies a specification of the type outlined above and this
approach was applied successfully to the design of test inputs
for a Lynx helicopter. Flight trials were performed for a test
input applied to the longitudinal cyclic control of the vehicle
for a flight condition of 80 knots level flight. The optimal test
signal design process ensured that the input auto-spectrum
had no DC component, that it avoided known resonances at
about 0.3 rad/s and that the input excited frequencies
between 2 and 3 rad/s but not above 3 rad/s. The upper limit
of 3 rad/s was imposed because previous experience suggested
that the theoretical model was useful only for frequencies
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below about 3 rad/s. At higher frequencies, dynamic effects
within the rotor sub-system are believed to have a significant
influence and these were not included in the model.

A signal consisting of five steps was found to be particularly
useful. This signal, a double-doublet, allowed long test
records before the response became nonlinear. Typical record
lengths for the double doublet with the Lynx helicopter were
of the order of 30 seconds compared with 10-15 seconds for
a traditional doublet input and only 3 seconds for the 3-2-1-1
input. Estimates of seven parameters of the pitching moment
equation were obtained using the frequency-domain
equation-error approach [41]. Other forms of multi-step
input were considered and tested in flight, including a 1-2-
2-1 signal. Overall, the double-doublet gave results that were
consistently better than those obtained from the use of other
inputs and this also appears to be more robust to errors and
uncertainties in the theoretical model used in its design [41].

Note that frequency-domain methods were chosen for this
application, partly because of the physical insight that these
provide in the subsequent application of the models for flight
control system design and also because the frequency domain
offers the possibility of separating the six-degrees-of-freedom
vehicle dynamics from the rotor dynamics.

Further discussion of results from the application of system
identification methods to helicopter flight mechanics model
development are presented in the AGARD Advisory Report
280 [32] and the associated Lecture Series volume [33].

6.4 Some selected methods of local
and global parameter optimisation

The techniques available for the optimisation of physically
based dynamic models have much in common with methods
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of optimisation used in other application areas such as
design. They include gradient methods and other local
optimisation techniques along with more general search-
based methods for determining global optima.

Methods that employ gradient information for local
optimisation are widely used in system modelling (see e.g. [3]
and [4]). The simplest gradient-based method is the steepest-
descent approach, which does not require second-order
derivatives of the cost function, but converges slowly.
Newton’s method involves the inverse of the Hessian matrix
and depends on second-order derivatives resulting in
additional computational overheads. Newton’s method is
also computationally demanding because it involves matrix
inversion but use of the guasi-Newton method reduces the
complexity by using an approximation to the inverse Hessian.

Conjugate-gradient methods, such as the Fletcher-Reeves
algorithm, can be less computationally demanding than
the Newton and quasi-Newton methods. Instead of using
the Hessian matrix or an approximation to the Hessian,
conjugate-gradient methods compute an estimate of the
search direction more directly. Although they usually require
more iterations than the quasi-Newton and Newton methods
to converge, the overall speed tends to be better.

Nonlinear least-squares methods are preferred for cases in
which the loss function is of the sum-of-squares type. Two
well-used nonlinear least-squares methods are the Gauss-
Newton method and the Levenberg-Marquardt approach.
As discussed by Soderstrom and Stoica [2], the Gauss-
Newton algorithm is closely associated with the general and
modified forms of the Newton-Raphson algorithm for
solution of numerical search problems. The Newton-
Raphson algorithm provides the basis of two of the traditional
iterative approaches to inverse simulation, as discussed in
Chapter 4.
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The simplest general-purpose nonlinear local optimisation
techniques are termed ‘direct search’ methods and make use
only of loss function values in their search for local optima.
Such methods include the simplex search, Hooke-and-Jeeves
and Nelder-Mead methods. These methods are typically
rather slow and are often only used if the derivatives of the
loss function are not available or can be estimated only at
considerable computational cost. The Nelder-Mead approach
is also mentioned in Chapter 4 in the context of one approach
to inverse simulation.

6.4.1 Simulated annealing (SA)

Simulated annealing (SA) is a probabilistic hill-climbing
technique based on the annealing of metals (see e.g. [11],
[12] and [43]). This natural process occurs after the heat
source is removed from molten metal and the temperature of
the metal starts to fall as heat passes to the environment. At
each temperature level, the energy of the metal molecules
decreases and the metal becomes more solid. This continues
until the temperature of the metal equals the temperature of
the surroundings and, at this stage, the energy has reached its
minimum. The simulated annealing process mimics this
natural annealing process as it searches for an optimum.

In the SA algorithm, the solution space is searched by
imposing perturbations on the estimates of the parameters
that are being optimised. These perturbations depend on a
‘temperature’ index T and their magnitudes at any stage in
the process are given by:

pert(T) =k x T x rand (6.5)

where pert(T) is the perturbation at temperature index T, k
is a scaling constant and rand is a uniformly distributed
random number lying between 0 and 1. In this algorithm the
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temperature index T becomes smaller with each step, thus
reducing the size of the parameter perturbation as conditions
come close to the optimum. Each set of parameters arising
from this procedure is substituted into the equations of the
model and the performance is evaluated through simulation.
This performance evaluation involves comparison of the
desired and simulated responses, and is quantified using the
relative cost (C). If the cost value is smaller than the previous
best cost, the new parameter set replaces the previous set. If
the new cost is not smaller, the new set of parameters is not
immediately discarded and the cost value is subjected to a
check in which the probability, P, of the cost associated with

the new parameters (C,,,) is compared with the previous

new)

best cost (C,,,,) through the equation:

(Cprev - Cnew ]
p=exp| ————
I (6.6)

This has the same form as Boltzmann’s Equation and the
result obtained from its application is compared with a
threshold number, 7. If P > 7, the new parameter values are
accepted in the same way as if C,,,,, < C,,,,, but the new values
are rejected if P > n. This so-called Metropolis Criterion [43]
ensures that the SA avoids premature convergence to a local
optimum. The criterion is illustrated diagrammatically by
the flow diagram of Figure 6.4.

Following this step, the temperature index is reduced by
the annealing schedule involving an equation:

AS(T) = T, = T, (6.7)

where T, is the initial temperature, yis the reduction constant
and d is the number of iterations. The whole process is
repeated until either the cost has reached some preset
threshold level or the temperature value has become so small
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in applying the Metropolis Criterion

that the parameters are no longer being perturbed
significantly. If the cost value has reached the minimum level,
it follows that the SA should provide the optimum set of
parameters but if the temperature is too small, the results
may not be optimal.

The complete simulated annealing process outlined above
may be summarised in the flow diagram of Figure 6.5.

A modified form of simulated annealing approach, known
as segmented simulated annealing (SSA), involves a number
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v

of SA processes applied consecutively (see e.g. [44] and [45]).
The limited convergence properties of the SA method may be
overcome through this approach since the search space is
segmented into a number of smaller regions. The final cost
values arising from the separate runs are sorted and the
parameter values corresponding to the best cost value
form the result. The SSA approach has been shown to
provide practical benefits compared with the SA method for
the optimisation of nonlinear controllers in a marine
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engineering context [45] and these advantages apply also to
optimisation problems in system modelling.

6.4.2 Genetic algorithms (GA)

The genetic algorithm (GA) approach to optimisation is
based upon the concept of survival of the fittest (see [13] and
[14]). The GA emulates the processes of evolution and is
therefore an evolutionary algorithm. In such a process the
strongest elements become stronger while the weakest
elements are eliminated.

The solution of an optimisation problem using the GA
methodology involves a stochastic search of the solution
space using strings of integers, known as chromosomes,
which represent the parameters being optimised. Each integer
within these chromosomes is known as a gene and, for these
modelling applications, each gene has a decimal value
between 0 and 9. It should be noted that this is not the
traditional GA approach where genes are binary quantities.
The advantage of the decimal representation for this type of
application is that it allows a wider range of possible values
in smaller chromosomes and is particularly suitable for both
model and design optimisation.

An initial population of chromosomes is generated at
random and these are decoded to obtain the corresponding
parameters. These parameter values are then introduced into
the system model. A simulation is run and results are obtained
for each set of parameters within the population, using a
measure of performance based on a cost function similar to
that used in simulated annealing. When the cost values are
all found, they are sorted into ascending order along with the
corresponding chromosomes. As before, the smallest cost
values are chosen as the best and are then subjected to
operations involving reproduction, crossover and mutation.
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The reproduction procedure involves retaining the best
chromosomes (say 20 per cent) for the next population. The
other chromosomes are replaced by new chromosomes formed
through processes of crossover and mutation. This reproduction
process is termed ‘rank-based selection’ and allows only the
elite chromosomes to proceed to the next iteration. This
method is therefore an elite genetic algorithm [46].

Crossover is a process in which two chromosomes from
the current generation (parent chromosomes) engage in a
procedure in which some genes from one chromosome are
interchanged with genes from the corresponding positions in
the other. This process produces two new chromosomes
(offspring) and the procedure is repeated until there are
sufficient offspring to replace the 80 per cent of the present
population that have the worst cost values.

Mutation involves selection, on a random basis, of a
certain number of the genes in the current population and
random alterations are then made to their values. This
provides a random element within the GA search process so
that more of the search space is considered.

Once the chromosomes have been changed to form the
new population they have to be evaluated, as were the
previous generation. The whole procedure is then repeated
for a predefined number of iterations (generations) to
produce a final solution. This complete procedure is
illustrated by the flow diagram of Figure 6.6.

It should be noted that, as well as being useful for
optimisation of nonlinear physically based models, genetic
algorithms and simulated annealing are also useful for system
modelling directly from empirical data and for linearisation
of models [47].

The work of Keskitalo and Leiviska [22], discussed in the
context of system identification and parameter estimation in
Section 6.2.2, involved the use of genetic algorithms and
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Fi 6.6 Flow diagram illustrating the operations involved
in the genetic algorithm (GA)

another evolutionary technique, known as differential
evolution (DE), for global optimisation of complex nonlinear
models [48]. Like the GA approach, differential evolution is
based on a population of evolving solutions but the DE
method is real-coded and is more directly applicable to
parameter optimisation problems. As with the GA approach,
there are many variations on DE methods and those
considered in the activated sludge model application of
Keskitalo and Leiviska are detailed in [22].
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6.5 Genetic programming (GP) for
model structure estimation

6.5.1 Principles of the genetic
programming approach

Unlike the GA approach where, in a control engineering
context, the objective is parameter optimisation, the
methodology known as genetic programming (GP) involves no
prior specification of the size, shape or structure of the solution,
and algebraic expressions evolve from a database of nonlinear
algebraic functional elements [49]. Like the GA it is an
evolutionary optimisation method but, unlike the GA, it does
not require a structure that is rigid in form. While the problems
to which the GA has been applied involve a set number
of tuning parameters and a fixed-length string representation
for the solutions, the GP algorithm leads to a situation in
which the size and shape of solutions evolve dynamically
and can thus provide structure as well as an optimal set of
parameters.

The GP approach allows optimisation of a tree structure
representation of a symbolic expression. The tree structure
has a variable length and is made up of a series of
nodes. These can be terminal nodes, representing an input
variable or a constant, but they may also be non-terminal
nodes representing functions involving some form of
operation on one or more variables of the system and could
take the form of a block diagram element (such as a
Simulink® function block). Figure 6.7 shows an example of
a tree structure and, in this particular case, the terminal
nodes are system inputs, variables of the system under
investigation or constants. The non-terminal nodes represent
the operations of forming a square root, addition and
subtraction.
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Fi 6.7 Structure of GP tree representing the function
y =+/x = (v + u + 3). Here the circles represent

non-terminal nodes whereas the rectangular
blocks are terminal nodes

The GP algorithm chooses possible elements from a library
to build trees of this kind and each tree is evaluated as an
algebraic expression to provide a fitness function value. A
population of trees is established and this population evolves
through the processes of crossover, selection and mutation
towards a structure that is optimum for the chosen fitness
function. The process is not deterministic and repeated runs
therefore produce different solutions. Some analysis of runs
must be carried out before an expression that is potentially
useful can be found.

6.5.2 Nonlinear model structure estimation
using the GP algorithm

The GP approach can be used to introduce an element of
automation within experimental modelling. A set of possible
model structures evolves through many generations and, at
each stage, equations generated through genetic programming
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to represent part of the model structure are combined with
other well-established equations involved in the model
description to produce a simulated time response which must
be compared with experimental data to give a fitness value
for that model. Figure 6.8 is a schematic diagram illustrating
this procedure.

What do we know What do we suspect
about the model? about the model?
* *
! !
! : !
I Basic model Experimental GP function I
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Figure 6.8 Schematic diagram illustrating the GP modelling
procedure (from [6.54])
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The parameters of the candidate models can be estimated
using other numerical optimisation methods involving
simulated annealing, or simulated annealing combined with
Nelder-simplex optimisation [10]. It should be noted that
gradient methods of optimisation cannot be used in the
parameter estimation process because many models
generated through the GP process contain linearly dependent
parameters or parameters that have no effect on the model
output. The fitness function value from the best parameter fit
is then used by the GP algorithm to define the fitness of that
specific function tree.

Experimental design is of particular importance in the case
of nonlinear systems, since the system must be excited over
the whole frequency range of interest and also, in terms of
amplitude, over the range of all the nonlinearities within the
system. A large training data set is therefore needed. However,
large data sets imply additional experimental costs and also
significant computational demands in terms of the chosen
optimisation process, so there are inevitable trade-offs
between model accuracy, optimisation time and cost.

Genetic programming methods have been applied
successfully to the estimation of nonlinear model structures
for continuous-time models for a number of application
areas (e.g. [50], [51], [52], [53] and [54]). These range from
simple simulated systems to chemical process system models,
solid oxide fuel cell models and a model of a system for
engine and rotor speed control in an MBB BO 105 helicopter.
The candidate models may be described in a number of ways,
including block-diagram or ordinary differential equation-
based representations and prior knowledge of the physical
system can be incorporated within those descriptions.
Aspects of the model that involve unknowns evolve in the
GP approach as expressions within the set of equations that
make up the model.
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The GP algorithm builds the models from a library of
available functions. This library is very important and must
be sufficiently flexible to allow for a wide range of functions,
but not so general that a purely empirical representation can
evolve which lacks any physical foundation. It should include
basic algebraic operations (such as addition, subtraction,
multiplication, squaring) together with functions that
represent common forms of dynamic characteristics (such as
first- or second-order linear sub-models) that might be
expected to appear as elements within a model. Figure 6.9
shows an example involving a block diagram type of
description. Note that any model structure found using the
GP approach needs to be validated using a data set that is
different from the data set used for the optimisation.

Results obtained from published applications suggest that
genetic programming can be used to fit a model intelligently,
in terms of the topology and block structure employed, while
parameters can be estimated through the application of the

Model output: T
X = exp(uv) + sin(u)

sin exp

Non-terminal
node *

Terminal
node

Figure 6.9 Il!ustratlon of ? GP tree for a typical block
diagram function (from [6.54])
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GA or simulated annealing. With suitable constraints, this
approach could provide additional insight regarding
physically based model structures or could be used to validate
a given nonlinear model using experimental data. This
approach thus provides an automated and more systematic
version of the trial-and-error processes generally used for
model structure estimation. It allows poor features to be
eliminated and good features to be combined to give new
forms of sub-model, and it also allows more candidate model
structures and components to be evaluated than would be
possible in any manually directed procedure. A model
structure that has evolved from the application of the GP
approach can often reveal new information about the system
under investigation or lead to additional experimental testing
that may, in turn, throw new light on the physical processes
involved.

Although the process of selection of the optimum
description from among the candidate models is automated
in this approach, the human skill in the choice of fitness
function is vitally important for the ultimate success of the
method. Physical understanding of the real system is also
essential in the selection of the set of candidate models. In
addition, it should be noted that the simulation methods
used should be numerically efficient and fast, because each
evaluation of the fitness function involves one simulation run
and many evaluations may be needed, thus requiring a very
large number of simulation runs in total.

6.6 Some practical issues in global
parameter optimisation

Although evolutionary techniques such as the GA and GP
approaches can be very much more efficient than any kind of
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exhaustive search algorithm, the computational costs may
still be very significant. In practical terms this means that, for
complex problems, decisions must be made about the extent
to which extensive global optimisation can be justified and
the accuracy required in solutions. If a near-optimal solution
can be found quickly, the question must be asked about
whether further searching of the solution space is necessary.

From the discussion in Sections 6.4 and 6.5, it is clear that
evolutionary techniques, such as the GA, can produce different
solutions in repeated optimisation runs for the same set of
initial conditions and the same fitness functions. This is
inevitable because of the processes of mutation that are an
essential feature of these methods. In some situations it is
appropriate to compare a number of near-optimal solutions of
this kind and, if they are all found to be similar, an average
may be used. In other cases, however, this multiplicity of
solutions can be to the user’s advantage and there may be
benefits in choosing one solution from this set of acceptable
solutions using additional factors, such as ease of
implementation or robustness, along with the fitness function
value. Additional factors of this kind are often difficult to
include within an objective measure and, in some applications,
a solution with slightly poorer performance may be preferred.
One approach to simulation model optimisation which
develops this idea is based on multimodal optimisation
methods and aims to find several local optima in a search
space through a single optimisation run using the Crowding
Clustering Genetic Algorithm [55].

Although evolutionary algorithms offer a potentially
important element of automation for optimisation procedures,
both for model development and for design, their application
requires good understanding of the likely physical phenomena
in the system under investigation and therefore does not, in
any way, imply a fully automated approach. For example,
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the success of the GP approach most widely used for model
structure identification depends critically on the selection of
appropriate functions for a function library. Examples of the
information needed in establishing this function library and
the initial form of model may include the following: first
estimates of the order of the model, first estimates of the
forms of nonlinearity most likely to be involved, known
interactions between variables of the system and the form
and limitations of existing models of similar systems. It is
also important for the investigator to have an understanding
of the availability of experimental data, the limitations of
experimental design and the possibility that the resulting
experimental data could be unevenly distributed over the
operating range.

The role of the investigator is still vitally important and
interaction between the wuser and the evolutionary
optimisation tools is essential at various stages. Similar
conclusions can be reached in the context of artificial neural
networks and the closely associated methods involving local
model networks and multiple models [56]. In those
approaches, factors such as the choice of sub-models, the
number of hidden layers and the number of neurons in a
neural network, the choice of learning rates and other factors
have to be chosen by the user, mostly on the basis of previous
experience. Indeed, virtually all methods of system modelling
involve issues of this kind where manual intervention by the
user is essential.

In some cases, intervention involves the selection of
adjustable parameters which are essentially ‘fiddle factors’,
whereas in others the manual process involves more
fundamental choices involving changes of model structure.
Usually, however, the reason for undertaking these procedures
manually is the fact that available algorithms for the more
automated aspects of the system identification and model
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development process are not sophisticated enough to allow
the optimisation to be completed automatically. It may not
even be possible to express the objectives of the optimisation
in a sufficiently simple fashion. In many applications,
constraints have to be considered and there may also be a
number of different objectives that have to be satisfied
simultaneously.

6.7 Further examples of system
identification, parameter estimation
and model optimisation techniques in
integrated systems applications

The applications to helicopter flight mechanics modelling
discussed in the sections above are, in many ways, also
typical of system identification, parameter estimation and
model optimisation techniques for the development of
models in other application areas. For example, the issues of
identifiability, test input design and global optimisation
described in the context of helicopter applications are equally
important in other areas involving integrated systems such as
wind turbines [57], bipedal robots [58] and surface and
underwater vehicles [59].

The key issue in the helicopter system identification work
and in these other types of application is uncertainty
concerning the structure or parameters within a physically
based model. For example, a recent tutorial paper by Pao
and Johnson [57] provides useful insight regarding problems
encountered in modelling wind turbines. The tower dynamics,
substructure dynamics and foundation dynamics must all be
taken into account and, in the case of offshore turbines,
hydrodynamic effects also become important. External
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conditions in terms of turbulent air inflow, sea waves and
sea currents may also have to be represented. If the wind
turbine operates along with other turbines in a wind farm,
there can be additional complications due to aerodynamic
interactions. Because of the inherent difficulties in modelling
wind turbine dynamics on an entirely physical basis
from first principles, due to uncertainties in the details of
many aspects of the physical model, there is growing
interest in the use of system identification techniques for
establishing linear time-varying models, especially for use in
the design and development of improved turbine control
systems (e.g. [60]). Further discussion of issues relating to
the modelling of wind turbines and wind farms may be found
in [61].

As a second illustration, a recent paper by Park et al. [58]
provides a very interesting account of the use of system
identification and parameter estimation techniques in the
design of a bipedal robot. The physics-based model that
provides the basis for the design involves many model
parameters for which reliable estimates were not available a
priori. Motor torque constants, rotor inertias, spring stiffness
and preload values, cable stretch stiffness values and damping
coefficients and various friction coefficients all had to be
estimated from experiments carried out on sub-systems or
on the complete robot. The improved model led to
development of improved controllers and thus to significant
enhancements of the robot’s performance, especially in terms
of the robustness of a walking gait [58].

The issues that arise in helicopter flight mechanics
modelling and in the other engineering applications
mentioned above are typical of the reasons why experimental
modelling techniques based on system identification,
parameter estimation and optimisation methods are
increasingly being recognised as important for the
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development and enhancement of models for integrated
systems applications. However, experimentally determined
models are not necessarily fit for purpose and it is always
important that models are subjected to appropriate checking
procedures to ensure that they are appropriate and fully
satisfy the requirements of the application. These issues of
verification, validation and accreditation of models are
considered in detail in Chapter 7.
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Issues of model quality and the
validation of dynamic models

Abstract: The aim of this chapter is to review some
important issues concerning model quality and sources of
errors in models, and to present some methods for testing,
internal verification and external validation of simulation
models. Questions of quality and validation are then
considered in more detail through applications. Case
studies illustrate external validation and model quality
issues in helicopter and ship models. Issues relating to
reduced models are considered using applications
concerning aircraft and a hydro-turbine generator model.

Key words: quality, credibility, accuracy, errors, testing,
internal verification, external validation, model reduction,
helicopter, ship, aircraft, hydro-turbine.

7.1 An introduction to the issues of
model quality and validation

A model is an abstraction of a real system and perfect
accuracy should never be expected. The key question is the
quality needed for the application and the adequacy of the
chosen model in each case. Errors must be kept within
specified limits for parts of the operating envelope and
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testing, verification and validation can be viewed as processes
that define boundaries so that the necessary accuracy is
achieved.

As already discussed in Chapter 2, many modern
developments in engineering involve ‘systems of systems’
and require several teams working together. Such
collaborative development means that there is no single
‘designer’ and soundly based models that are well understood
and well documented are essential if all involved in the design
process are to work together in an effective fashion.

Model building is an iterative procedure and many,
including Sargent (e.g. [1]), Oren [2], Balci (e.g. [3], [4] and
[5]) and Brade ([6], [7]) have all pointed out that model
validation is inseparable from the processes of model
building. Confidence in a model should increase steadily if
appropriate methods are used and if correct methods of
testing are applied.

Simple models are often used initially to investigate ‘what
if’ situations and to assist in design trade-off studies. Error
bounds on model predictions at this stage are usually large
and little formal validation is possible. Assessments of model
quality and fitness-for-purpose depend on experience and
comparisons made with earlier models of similar systems. As
the work progresses, more refined models are used and more
data become available for testing. This usually involves data
from component testing at first, followed by data from tests
on larger blocks and, finally, data from tests on complete
prototype systems.

Hence, with more test data becoming available as the
design progresses, quantitative information begins to flow
from the real system to the model. This contrasts with the
initial situation when the flow is entirely from the model to
the system being designed. Bidirectional information transfer
characterises the later stages of any model-based design
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process, with model updates being applied as real system
information becomes available.

All models have limitations and one important objective of
validation is to properly define and understand those
limitations. However, any practical validation investigation
can cover only a finite, and often relatively small, number of
test cases. Thus, one should never attempt to prove that a
model is correct under all sets of conditions. Instead, a degree
of confidence should be established in the model so that its
results can be recognised as being reasonable for the objective
for which it has been developed. General statements about
the validity or quality of a model are therefore inappropriate
without reference to its application and the range of
conditions considered. One of the inherent problems is the
fact that quantitative measures of model credibility are hard
to define and as models become more complex, there are
increasing problems of visualisation.

7.2 Model quality concepts, model
uncertainties and modelling errors

There are good examples, often in safety-critical application
areas, such as the nuclear, aerospace, defence, marine and
off-shore sectors, where rigorous model testing and formal
approval schemes are routinely applied. However, in other
fields of application, model development within many
engineering organisations often involves surprisingly little
systematic assessment of the quality of models in terms of
their useful range and limits of accuracy. Also, there may be
cases where a model has a spurious justification, possibly on
the grounds that it ‘has always been used’ or is ‘based on
well-known physical principles so must be right” or is ‘based
on an industry standard’.
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The use of models that are inadequate for an application
can often lead to expensive redesign at late stages in the
development cycle. The more complex the system being
developed, the more likely it is that problems of this kind
will arise.

Reasons for wuncertainties and errors in models include
incorrect assumptions, errors in a priori information (such as
parameter values), errors in numerical solutions and errors
in experimental procedures and measurements. Although
much attention has been given to separating different aspects
of the model development, testing and checking process, and
to categorising simulation model errors, uncertainty is
inevitable since we never have a complete understanding of
the real system and our measurements and calculations are
limited in accuracy.

An untested model produces results with unknown and
potentially unbounded errors. Even if the user has confidence
that a model gives satisfactory results much of the time, the
cases for which it produces inaccurate output cannot readily
be predicted or immediately recognised unless great care is
taken in using the model only within the bounds for which it
has been tested successfully and found acceptable for the
intended application.

Confidence in predictions depends on confidence in sub-
system models as well as in the complete system model and
this is particularly important when sub-system models can
be tested experimentally. Comprehensive and detailed
testing at the sub-model level, together with detailed
documentation, helps to establish overall confidence. This
allows a complex model to be extended from less well-
understood situations, in a gradual way, until it can be tested
successfully over the whole range of conditions likely to be
encountered in service.
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7.3 Model testing, verification
and validation

Care must be taken about the words chosen to describe the
assessment of model quality. For example, the process of
deriving a computer simulation from a mathematical model
can give rise to errors, but these are not the same as the types
of error that arise in developing the model itself. The word
‘verification’ is commonly used to describe the process of
establishing that a simulation is consistent with the underlying
mathematical model, while the word ‘validation’ describes
the process of demonstrating that the mathematical model
representing the real system is appropriate for the application.
Addition of the word ‘internal’ so that ‘internal verification’
is used to describe the process of establishing whether or not
the model is simulated correctly can help to clarify the
meaning. Similarly, the words ‘external validation’ can help
in describing the processes of establishing the correctness of
the structure, logic and parameters of the model itself [8].
These conventions are consistent with recommendations
established in 1979 by the SCS Technical Committee on
Model Credibility [9]. Although the SCS recommendations
are now widely used, the words ‘verification’ and ‘validation’
are often applied very loosely and without the necessary
precision. In addition, there are also specialist areas (for
example, in missile system modelling) where common usage
by some engineers has, unfortunately, interchanged the
meanings for these two words.

Sargent [10] used a narrower definition of validation to
emphasise the accuracy needed for useful model-based
predictions for a specific application, and external validation
may be viewed as a process leading to confirmation that the
model output has a level of accuracy consistent with the
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intended use. To carry out this process of confirmation, it is
essential that the accuracy requirements of the model should
be established before any external validation is undertaken
and not as part of that process. Results of external validation
are thus also best expressed in terms of the suitability of the
model for a planned application instead of as a ‘good’ or
‘bad’ description. Indeed, strictly speaking, one can never
prove that a model is valid; a model can only be proved to be
invalid. Available evidence can be assembled to suggest that
a model is suitable for an application, but more general
assertions of ‘validity’ must be avoided.

Whatever approach to external validation is adopted in a
particular application, there are issues concerned with
identifiability and robustness that must be considered.
Identifiability has been discussed in Chapter 6 in connection
with system identification and parameter estimation methods,
and especially in connection with experimental design.
Robustness in the context of model quality relates to the
magnitude of error bounds on model parameter estimates,
the accuracy and repeatability of model predictions, the
effect of test input magnitudes and how the length of
experimental records affects the accuracy of system
identification.

It is thus necessary to distinguish carefully between the
processes of system identification and parameter estimation
that are applied in the initial stages of model development,
the tuning procedures used in subsequent model optimisation
and the processes applied in establishing the quality of the
resulting model. The term ‘model calibration’ may be used to
describe the repeated processes of optimisation and
interactive tuning applied to a model during its development.
Model calibration is not the same as model validation, as
these processes take place at different points within the
iterative cycle of model development.
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7.3.1 Methods of internal verification and
external validation

As discussed above, the words ‘internal verification” describe
the process of establishing that a computer simulation is
consistent with the underlying mathematical model, whereas
‘external validation’ is a more open-ended task that involves
comparisons between the model behaviour and the behaviour
of the real system for chosen conditions. This can involve
quantitative comparisons of the model’s performance with
the real system or a more subjective assessment made by
someone who has a deep and thorough practical
understanding of the real system.

Internal verification

The procedures for the internal verification of a simulation
model resemble processes applied more generally in the
testing of software and some well-established principles of
software engineering can be used.

Factors that are important in internal verification are:

m demonstration of internal consistency of the simulation
program and the model upon which it is based, showing
that there are no contradictions in terms of mathematics,
logic or internal organisation; and

®m demonstration of the simulation software in terms of the
numerical algorithms being used and the associated
numerical accuracy.

Internal verification procedures are needed at every stage
of the development of a simulation. Every change within a
model must lead to further internal verification of the
associated simulation program.

Procedures of internal verification at the most basic level
must include line-by-line checks of the simulation program
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or of connections between block diagram elements if the
simulation is developed using a graphical user-interface.
Connections must also be checked carefully if existing
accepted (and thus internally verified and externally
validated) sub-models are used. Checks should also be
performed for special cases involving particular static or
equilibrium conditions that can often be investigated from
the underlying model using pencil-and-paper calculations.
Simple checks may also be made, usually for dynamic
conditions, of the appropriateness of the user’s options in
terms of the selected integration method and the integration
time step. For example, use of an inappropriate integration
method or integration step interval may result in numerical
instability. This could be interpreted, incorrectly, as a feature
of the model rather than an artefact of the simulation
program. Similarly, the communication interval used for
plots of output variables and for control of data flow between
the simulation and external hardware or the operator is very
important. An incorrect communication interval could lead
to some transients being lost in the link between the
simulation and the world outside.

Simple internal verification tests involving changes of
integration method, integration step size or communication
interval can often help to establish the true nature of any
problem. For example, if small changes of integration step
cause large changes in the overall behaviour of the model, it
is likely that the underlying problem is numerical and is a
feature of the simulation program rather than an error in the
model.

External validation

External validation of simulation models is complicated by
the fact that most models intended for practical engineering
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applications involve dozens or even hundreds of quantities
provided by the user (e.g. as model parameters), leading to a
large problem space. Similarly, many models can produce, as
outputs, dozens or even hundreds of variables, each of which
may contain different levels of error which may vary with
time. Thus, it is important to establish, a priori, which output
variables of a model are of greatest interest for the given
application. Different users will be interested in different
performance measures in different modelling studies and this
emphasises that the model must be matched to the application
at the outset and the errors that can be tolerated must be
established a priori.

For external validation, a distinction should be made
between ‘functional’ validation and ‘physical’ validation.
Functional validation involves establishing the correctness,
or otherwise, of a model that mimics the input-output
behaviour of the real system. Physical validation, on the
other hand, involves establishing the acceptability of the
underlying assumptions and approximations [11] in
addition to investigating the agreement between model and
system variables. It has been pointed out by Hemez [12]
that perfect matching of all available measured response
data is unrealistic and that models should match available
test data only to a level of accuracy appropriate for the
application. This ensures that model responses match test
data to an acceptable degree, while also showing satisfactory
robustness to uncertainties associated with factors, such as
modelling assumptions, environmental and model parameter
variability or ignorance in terms of initial conditions in the
real system. In model development, as in control system
design, there must be a trade-off between performance and
robustness.

External validation, whether of the functional or physical
kind, involves two distinct stages. The first of these is
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concerned with establishing the range of conditions over
which a model can be used for a specific accuracy level. This
accuracy level can be defined generally in terms of frequency
and amplitude. The second stage is concerned with
establishing deficiencies in the model and the upgrades that
would be necessary in order to achieve a level of performance
appropriate for the intended application.

As has already been mentioned, external validation is a
continuing exercise within the modelling process and is not a
procedure that is performed only once at the end of the
development cycle. It is also important to distinguish between
holistic approaches that attempt to validate a complete
model externally and model-component approaches in which
much external validation is carried out at the sub-model
level. Both depend on the same general principles of external
validation, but the model component approach may also
involve comparisons with test data (possibly from component
manufacturers).

The procedures within the external validation process used
to compare observed and simulated behaviour can be divided
into subjective and objective categories. The subjective
approach is based mainly on graphical analysis or experience
using real-time simulations, while the objective approach
involves quantifying the process through specific measures
and statistical procedures.

Graphical methods are characterised by plots of simulated
values (often continuous and represented by a line) and
observed or measured values (usually discrete and represented
by points) against an independent variable (often time). One
issue sometimes missed by inexperienced observers is that
the deviation between simulated and measured values is the
vertical separation between corresponding points on the
graphs and not simply the apparent distance between
simulated and measured time history curves.
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Another commonly used form of graph involves simulated
values plotted against the corresponding measured or
observed values. Ideally this plot should be a straight line at
an angle of 45 degrees to the axes. Deviations from the ideal
are shown by the vertical distance between the points and
the 45-degree line. Points above the 45-degree line are clearly
overestimated in the simulation while any points below the
line are underestimated.

Although subjective, graphical methods are very useful in
model validation and complement quantitative measures.
Different graphical methods for displaying information
about a model may provide different types of insight [13].

Quantitative measures for system and model comparison
are clearly very important [14]. The most used deviance
measures are the mean-square or mean absolute errors. For
the case of 7 sets of measured and simulated values, the mean
absolute error is expressed as the difference between observed
values y; and simulated values y,, by:

1 .
Ji= ;Zb}i —Yi
i-1

or using the closely related mean absolute percentage error,

(7.1)

given by:
_ 1003y, =5
n g |)/,~‘

B (7.2)

This is a relative error and is inapplicable if any of the
observed values happens to equal zero. An obvious
disadvantage of these two measures is their sensitivity to
single extreme values.

Such an approach can be extended to include some form
of weighting function. This means that errors arising in
specific sections of the time history can be given special
emphasis. One such cost function is:
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]3=2(3’,-_5’,-)TW,-()/,»_5’,») (73)
i=1
where w is a weighting factor and the superscript” indicates
the transpose.
A measure that has received particular attention for
external validation applications in a number of different

application areas is Theil’s Inequality Coefficient (TIC),
which is defined as:
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This measure has an advantage in providing values that lie
between zero and unity, with values of TIC close to one
indicating sets of model and system data that are very
different. Values of TIC close to zero indicate small differences
between the model and the system time histories.

Other scaled measures are also commonly used for
comparing model and measured system time histories. One
example is the normed root mean square output error
adopted by Knudsen [15] in his approach to identification
and system parameter estimation based on sensitivity
functions. This measure is similar in most respects to the TIC
measure, but with normalisation involving the sum of the
squared values of experimental response samples only.
Measures based on statistical techniques have also received
attention, particularly in the context of model structure
assessment.

One approach, which can be used with benefit in cases
where relatively complex models are being considered,
involves taking a number of key measured system or sub-
system quantities and plotting these as radial lines on an

226



Issues of model quality and the validation of dynamic models I

appropriately scaled polar diagram of the type shown in
Figure 7.1. By creating a polygon of model results and a
polygon of corresponding measurements on the same polar
diagram, an indication of the validity of the complete
model is obtained. Closely similar polygonal shapes
indicate that the model is suitable for the application.
Aspects of the system that are represented accurately are
immediately apparent and areas requiring further analysis
are highlighted.

- Example of polygon representation for model
validation results. Here, solid lines represent
model results for eight different quantities while
the dashed lines indicate the corresponding
measured values. This could, for example,
involve parameter values within some physically-
based model being compared with parameter
estimates from system identification tests on
the corresponding real system
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Such diagrams also provide a basis for sensitivity analysis.
The distortion of the model polygon following a specific
change in the model provides a clear indication of sensitivities
and interactions, as discussed in papers by Smith et al. ([16]
and [17]). Shape-processed visualisation methods such as
these lend themselves to image processing techniques for
quantification and a number of approaches have been
considered (see [18] and [19]). Using this kind of graphical
comparison, it should be clear which aspects of a system are
represented most accurately and which areas of the
corresponding model require further investigation.

Polar diagrams such as these have been used successfully
in the context of model testing for electro-optic sensor
models ([16] and [17]) and have been considered in the
context of fault detection applications as well as in other
model-testing situations ([18] and [19]). Although they
have been developed independently for model validation
purposes, these diagrams have many features that are similar
to those of the Kiviat diagrams ([17] and [19]), which are
applied in the software engineering field for visualisation of
metrics in computer software and hardware performance
evaluation.

Diagrams of this kind are clearly applicable to problems in
many areas where there is a need to display relationships
involving several channels of results. One advantage of the
polygon diagram approach to visualisation is that it is
extremely flexible in terms of the comparisons that can be
made. It is also appropriate for use with deterministic
measures of performance such as the size of a system response
overshoot or the frequencies of observed oscillations.

In the last ten years, there has been a growing interest in a
move away from accuracy-centred assessment of models
towards forms of assessment that are based more broadly on
model quality (see e.g. [20]). Other discussions about the
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quantification of model credibility may be found in many
sections of the book edited by Cloud and Rainey [21], in
the textbook on the theory of modelling and simulation by
Zeigler et al. [22] and in the work of Brade and Koster
[23] and Brade er al. [24]. Specific suggestions have
included the idea that the processes of testing and eventual
accreditation of models should be based more closely on
software quality assurance from the field of software
engineering (see e.g. [23], [25] and [26]). Certainly, the
model development procedures that are used in many
organisations need to incorporate improved procedures, in
terms of version control and documentation, that are
now almost universally applied in software engineering and
lead to proven benefits in terms of project management (see

e.g. [18]).

7.3.2 Upgrading of models

Having made appropriate comparisons between the model
behaviour and the corresponding behaviour of the real
system, it is necessary to perform some analysis of the
discrepancies and to propose upgrades for the model. Any
changes in the structure or parameters of the model must be
implemented through simulation and their significance
evaluated in a systematic fashion, leading to further iterations
within the model development cycle. In general terms,
parametric changes are usually investigated before structural
changes are contemplated. In lumped representations, a
model parameter commonly provides an approximation to
some more complex effect and there must be a limit to the
range of conditions over which this approximation is valid.
Tuning of model parameters to improve the functional
validity of a model is an appropriate approach, provided
constraints are introduced to ensure that the adjustment is
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within the range of uncertainties for each parameter.
Parameter adjustment using global optimisation methods
without regard to known uncertainties and physical limits
can be very misleading. Often, when parameter values are
found that appear physically meaningless, we are dealing
with a situation where the model has an inappropriate
structure. In this context, establishing the range of frequencies
over which discrepancies occur can be very useful and a
variety of frequency-domain techniques, such as analysis of
coherence and partial coherence, can be applied. Deficiencies
in model structure are generally more difficult to investigate
and rectify, but once dealt with successfully, the upgraded
model should have a broader range of applicability.

In some cases it may be possible to associate deficiencies in
the model with particular state variables of the model or with
specific physical phenomena. This may be attempted through
statistical correlation of comparison errors with measured
variables and inputs. Correlation of an error formed from
the difference between a model output and the corresponding
system output with a specific state variable may suggest that
a more complex representation of the sub-system associated
with that state variable would be appropriate. Padfield and
Du Val [27] discuss the use of this type of approach in the
context of helicopter flight mechanics model validation and
point out that, for example, correlation of an output error
with helicopter rotor speed could suggest that a more
sophisticated representation of the coupled sub-system
involving the engine, drive train and rotor is needed.

Correlation of model errors with derivatives of state
variables of the model may also indicate that a higher-order
description would be appropriate. When regression
techniques cannot be used to associate such errors with
specific state variables, their derivatives or some linear
combination, it may be appropriate to consider possible
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nonlinear combinations of model states, but this should be
approached (as far as possible) on a physical basis.

7.3.3 Experimental data for
external validation

The choice of data sets to be used for testing models that involve
parameters or structures identified using other experimental
data raises some interesting issues. Data sets used for model
testing need to be broadly similar to the sets used for
identification, in terms of their spectral properties and amplitude
distributions. It is also clear that data sets used for testing must
not be too similar to those used for identification and parameter
estimation during the development of the model. Responses
obtained from inputs different from those used at the
identification and parameter estimation stage are bound to be
different in terms of amplitude, frequency and energy
distribution. However, provided the spectral and amplitude
distributions of the data from identification experiments and
the data used for testing are not too different, the results of tests
carried out with different inputs may still be very helpful in
assessing the quality and limitations of the model.

One important point is that test data used for external
validation must be matched to the intended application of
the model. Otherwise it will not be possible to make decisions
about the suitability and quality of the model for that
application, and use of the model may be restricted.

In the case of linear models, the issue becomes one of
obtaining experimental test records that are significantly
different in form from the records used in the parameter
estimation process but that are similar in terms of their
amplitude and frequency ranges. Issues concerning the choice
of experimental records for validation of identified models
have been discussed in a number of papers and reports, some
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relating specifically to helicopter system identification
(e.g. [27]).

For the validation of nonlinear models, the task of choosing
appropriate test records is complex since the system must be
excited so that all the significant nonlinearities are fully
explored, while also covering the entire frequency range of
interest. Ideally, what we need is some way of producing
confidence intervals for model predictions. Although this
goal may be elusive in the case of general nonlinear physics-
based parametric simulation models, it is interesting to note
that in the Gaussian Process type of nonlinear non-parametric
model, such additional information is readily available (see
e.g. [28]). Also, for linear models, the use of coherence
estimates within frequency-domain descriptions of system
outputs allows determination of the range of frequencies
over which the linear model is applicable (see e.g. [29] and
[30]). More research is needed concerning the application of
such techniques to practical engineering problems and the
development of better ways for assessing the accuracy of
predictions from nonlinear physics-based models.

7.3.4 Additional issues in the external
validation of nonlinear models

The external validation of nonlinear simulation models, in
the general case, involves a number of important issues that
depend on the nature of the nonlinearities and the intended
application. For example, techniques for the identification of
linear models from measured experimental data can provide
insight through establishing models for different operating
points across the operating envelope of the system. The
trends in terms of the values of key parameters of the
identified models can then be compared with trends in
the values of corresponding parameters of linearised models
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derived from the nonlinear simulation model for the same
operating conditions. Differences between the values of
parameters of the identified models and the parameters of
linear models derived from the nonlinear description can
provide useful insight. Similarly, comparisons of trends in
these parameter sets as operating conditions are changed are
important indicators of the performance of the nonlinear
model and may lead to its credibility being questioned. An
example of this in the context of helicopter flight mechanics
model validation may be found in Section 7.4.1.

If the level of agreement between the identified and
theoretical models is considered adequate, a second stage of
the external validation process can be attempted. This
involves comparison of responses of the nonlinear model
with the responses of the real system for larger perturbations
and is based on the direct comparison type of approach
discussed in Section 7.3.1, including the polygon type of
graphical display. If, once again, the level of agreement is
judged to be acceptable over an appropriate range of
conditions, the model can be considered for release for the
intended application. It can continue to be used until
additional information or data give cause for concern. In
some cases, external validation of nonlinear models may be
attempted directly using simple graphical comparisons and
methods involving the quantitative measures of Equations
(1) to (4). However, preliminary investigations based on
system identification and parameter estimation techniques
can provide useful insight that may otherwise be missing.

When large inputs are applied to models having significant
nonlinearities (e.g. helicopter flight mechanics models when
large and aggressive control inputs are applied), traditional
methods of validation based on direct comparisons of models
and system have been found to have practical limitations,
whether based on graphical methods or quantitative
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measures. Methods involving the opinions of experts
involved with the real system (e.g. pilots in the case of aircraft
or operators in the case of industrial systems) may provide
valuable insight concerning model limitations in such cases.

7.3.5 Inverse simulation methods for the
external validation of models

The use of inverse simulation methods, as discussed in
Chapter 4, offers insight of a different kind from that found
using conventional validation methods. This is especially
true in the case of systems in which the immediate response
to inputs involves integration. Drift is almost inevitably
present in such systems and is due to small biases and offsets.
Such offsets are unlikely to be the same in the system and the
model, and can cause considerable difficulties when making
model and system response comparisons, as the drift effects
may have magnitudes similar to responses to the applied test
inputs. This issue has been examined in detail in the context
of simulated helicopter manoeuvres, where a strong case is
made for the development of a validation strategy that
integrates forward and inverse simulation [31]. Sensitivity
analysis methods, as outlined in Chapter 5, can help in
establishing the dependency of inverse simulation results on
parameters of the model and may allow deficiencies in the
model structure or parameter values to be established.

7.4 Issues of model validation and
model quality in typical applications

There are cases, mainly involving safety-critical applications,
such as in the nuclear industry and in the aerospace, defence
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and marine sectors, where rigorous model testing and formal
approval schemes are routinely applied. However, the model
development process used within many engineering
organisations involves surprisingly little systematic
investigation of model quality in terms of the useful range
and accuracy limits of models.

The real system and the associated models should mature
together, and model fidelity should increase as a design
progresses. Whatever the approach being used for design,
experience gained with the real system should feed into the
modelling process at every stage.

Helicopter flight control system design is an example
where model limitations can seriously affect the achievable
performance. Until now, the success of modern design
methods has been limited by the quality of the vehicle models
available (see e.g. [29] and [32]). Similar situations apply in
other application areas where the performance limits of a
new system relate directly to the accuracy of the mathematical
model upon which the design is based.

As mentioned in Section 7.3, the term ‘model calibration’
describes the processes of parameter estimation and other
forms of interactive tuning that may be applied to a model
during its development. As already mentioned, this is different
from model validation and these two types of procedure are
applied at different stages in the model development cycle.

For engineering applications, modelling is often associated
with design, but models are also used in engineering for
other purposes. For example, they form the basis for system
simulators for operator training or education; they are used
within automatic fault detection schemes and also in accident
investigations. All such applications impose important
requirements in terms of model quality. The sections that
follow provide examples illustrating the application of
external validation methods.
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7.4.1 Case study 1: helicopter flight
mechanics model development

The validation of helicopter flight mechanics models is
important both for flight control system design and for
human-factors investigations concerning flying qualities (see
e.g. [33]). Important issues include the frequency range over
which model quality needs to be assessed and the amplitude
range for each variable. Frequency requirements extend
beyond the range of human pilot control (0-5 rad/s
approximately) to cover the whole range of frequencies that
could be involved in active control of the vehicle (up to about
20 rad/s). Amplitudes, specified through translational and
rotational velocities and accelerations, depend largely upon
how the model is to be used.

System identification, parameter estimation and model
optimisation techniques, discussed in Chapter 6, have been
applied successfully to the development of linear helicopter
models valid for small changes in flight conditions about a
given trimmed state.

Checks of the overall robustness of models identified from
flight data in this way must involve use of data sets that were
not applied during the identification process. However, as
discussed in Section 7.3.3, these additional data sets must be
broadly similar in terms of their spectral properties and
amplitude distribution to those used for identification. One
approach simply involves carrying out more identification
runs and comparing the different estimates. The situation
would be judged unsatisfactory if variations in the values of
parameters were greater than expected from variance
estimates from the original identification. A slightly different
approach is illustrated in Figure 7.2, where an identified
model of a SA-330 Puma helicopter was assessed through a
second (verification) stage involving an input that was not
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Helicopter identification and verification results.
An identified model of a Puma helicopter was
tested at the verification stage by subjecting
that model to an input that was not used in the
identification process. The predicted output from
the model was then compared with the
corresponding measurements. Two cases are
considered, both involving lateral control inputs.
(The original version of this figure was published
by the Advisory Group for Aerospace Research
and Development, North Atlantic Treaty
Organisation (AGARD/NATO) in AGARD Advisory
Report 280 ‘Rotorcraft System Identification’, in
September 1991.)

Figure 7.2

used in the identification process ([34] and [35]). In this
verification stage, output from the model was compared
with the corresponding measurements. Although an almost
perfect fit was obtained between flight data and the identified
model output, the fit was less good when the identified model
was subjected to the new input. It is interesting to note that
there is an asymmetry in these results and that the verification
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results are closer to the ideal (for all three variables
considered) for the lateral left cyclic control input compared
with those for the lateral right cyclic input. This could suggest
that the model requires further fine-tuning in terms of
responses to lateral cyclic inputs and the next step might well
involve further sensitivity analysis to check for parameter
inter-dependencies and other issues.

Nonlinear models of helicopters based mainly on physical
principles can also be optimised using data from flight
testing. One approach involves estimation of parameters of
linearised models from flight data for different flight
conditions (as suggested in Section 7.3.4). Subsequent
analysis of these models for a range of flight conditions
provides direct comparisons of estimated parameter values
with equivalent theoretical values found by linearisation of
the physically based nonlinear flight mechanics model [31].
Although such comparisons are valid only for small
perturbations from a given trimmed condition, insight may
be gained about the quality of the underlying nonlinear
mathematical model from the comparisons at different
operating points. Any consistent changes in the estimated
value of a specific parameter when the flight condition (such
as the forward speed of the vehicle) is changed can help in
checking the credibility of the nonlinear model. Any
difference between the trend in theoretical model parameter
values and the trend in the estimated values for that parameter
should lead to further investigations and possible changes in
the nonlinear model. Figure 7.3 shows results of this kind for
a series of flight experiments in which the aerodynamic
derivatives L, L, and N, were estimated for an Aerospatiale
Puma helicopter for forward speeds of 60 and 100 knots. It
can be seen that for the parameters L, and N,, there is a
fairly close match between theoretical and estimated values,
and these were judged to be similar, within the precision of
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the estimation process used. On the other hand, the results
for the parameter L, show a similarity in trend but a
difference in terms of absolute values, and this might justify
further investigation of the nonlinear model.

Particular problems in experimental modelling of
helicopters include the fact that these vehicles involve a high-
vibration environment, allow only short test records due to
marginally stable or unstable dynamics under open-loop test
conditions, involve strong nonlinearities and operate in a
non-uniform flow field. If the underlying reasons for any
lack of agreement between estimated and theoretical trends
are to be understood, it is also important to be able to relate
parameters of the identified models to more fundamental
quantities within the vehicle model, such as moments of
inertia and aerodynamic parameters. There are also implicit
relationships between parameters of linearised models and
these must be properly understood if useful physical insight
is to be gained.

One aspect of external validation that has been emphasised
in helicopter flight mechanics modelling is that the
external validation process may be viewed, as mentioned in
earlier sections, as a form of model calibration aimed at
establishing the range of operating conditions over which a
model may be used successfully. Outside that range, the
suitability of the model may be open to question. The
external validation process can then address issues of
model refinement or correction in order to extend the range
of applicability.

As outlined in Section 7.3.5, it is believed that inverse
simulation methods can provide additional useful information
for external validation. For some output variables, the
response of the vehicle to the pilot’s control inputs initially
involves integration and significant drift may therefore be
present in measured responses. Divergence of simulated
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responses from equivalent flight data causes problems with
conventional approaches to external validation, based on
comparisons of measured and model responses. Recasting
the problem so that it involves inverse simulation models (as
discussed in Chapter 4) provides a possible way to avoid this
difficulty, because comparisons between the system and the
model are then being made of the system and model inputs
needed to perform a specified manoeuvre. Figure 7.4 shows
a comparison of flight data and inverse simulation results for
a Lynx helicopter flying a longitudinal manoeuvre involving
translation from an initial hover state to a hover state at
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. Comparison of flight data and inverse simulation
Figure 7.4 . . .
for a Lynx helicopter flying a ‘quick-hop’

longitudinal manoeuvre involving translation
from an initial hover state to a hover state at
another point close by, using the full available
performance of the helicopter and with constant
height and a fixed heading maintained
throughout (from [7.31])
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another point close by, using the full available performance
of the helicopter and with constant height and a fixed heading
maintained throughout [31]. This is very different from
tests involving small deviations about trimmed flight
conditions and the results shown by the continuous lines of
Figure 7.4 indicate a high level of pilot activity on all four
controls. For inverse simulation, the desired flight path is
defined and the heading is a constrained variable while other
variables such as the pitch and roll angles are free to change
with time. The results of the inverse simulation (discontinuous
lines) show that these take realistic values, as do the control
displacements. Although agreement between the flight data
and the inverse simulation results are far from exact, they are
sufficiently close to provide a basis for parameter estimation
or optimisation, and sensitivity analysis of the inverse model,
as discussed in Chapter 5, could provide a useful starting
point.

7.4.2 Case study 2: model limitations in
helicopter flight control system design

Good flight vehicle models are essential for the successful
design of high-bandwidth full-authority active flight control
systems for fixed-wing aircraft, helicopters and other forms
of rotorcraft, such as tilt-rotor aircraft. Published examples
show that the achievable performance of flight control
systems may, in some cases, have been overestimated in
initial design studies because of limitations in the flight
mechanics models of the vehicle [33]. These problems may
not be apparent until the flight testing stage, leading perhaps
to costly redesign, extended flight test programmes and
delays in certification. Improved modelling procedures and
improved models offer significant benefits since, although
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control system designs can be made robust to compensate
for poor model accuracy, this is usually achieved at the
expense of performance.

Accurate linearised models are especially important in the
early stages of helicopter flight control system design, as
exemplified in the work of Manness and Murray-Smith [36]
involving eigenstructure assignment methods. That paper
shows clearly that confidence in the available model of a
vehicle can allow demanding performance requirements to
be satisfied. For high-performance flight control systems, it is
vitally important to have highly accurate models of the
vehicle in a frequency range that includes the frequencies
where the phase lag of the forward path system transfer
function approaches 180 degrees (the so-called ‘crossover’
region). Model uncertainties within that range lead to
difficulties in guaranteeing stability and performance
requirements in the closed-loop system design. Similar
situations also apply in other applications in which the
performance limits of a new system relate directly to the
accuracy of the mathematical model upon which the design
is based and where the success of control system design
methods has been limited by the accuracy of the plant model.

Helicopters show significantly nonlinear behaviour over
much of their useful flight envelopes and there is a need both
for linearised models for the initial stages of control system
design and for externally validated nonlinear simulation
models to be used in assessing overall performance at a later
stage. Issues of experimental design for external validation
are important in this context. For example, as has already
been pointed out, the frequency content of test input signals
for a model intended for control system design applications
must be chosen to give due emphasis to frequencies close to
the nominal crossover frequency.
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7.4.3 Case study 3: model quality
issues in the design of a ship steering
control system

Accurate navigation and autopilot system design are
important issues for engineers in the marine field. Ship
steering systems provide an interesting illustration. In order
to make a large manoeuvre, a large turning moment must be
generated by the flow of water over the deflected rudder. The
magnitude of this depends on the rudder dimensions and the
forward speed of the vessel. The rudder and associated
actuators therefore need to be represented accurately in any
model being used in the design of a ship steering control
system. As the size of vessels has increased, as in the case of
oil tankers and container ships, new problems have arisen in
terms of the rudder dimensions in relation to the size of the
vessel.

One established rudder model is based on equations
developed by Fossen [37] using data from a paper by
van Berlekom and Goddard [38]. An aspect of that
model which has been the subject of debate relates to the
representation of water flow over the rudder surface and
the fact that the model has limitations for very large vessels.
The importance of this limitation of the model became more
apparent when it was used by Cimen and Banks [39] as a
possible basis for the design of a nonlinear optimal controller
for a large oil tanker. As pointed out by McGookin and
Murray-Smith [40], the rudder sub-model used by Cimen
and Banks involved terms which made the turning moment
too large for a vessel of the size considered. The heading
dynamics were then unrealistically sensitive to changes of
rudder angle so that, in simulation studies, the vessel
responded much more rapidly than it should to controller
commands.
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Figure 7.5(a) shows results obtained in a test involving a
standard zigzag type of open-loop manoeuvrability test for a
simulation based on the form of model used by Cimen and
Banks. The manoeuvre involves a 20-degree step applied to the
rudder position until the heading angle changes by 20 degrees.
Then the rudder angle is changed to =20 degrees and the process
is repeated until a steady oscillation is produced in the heading
angle. The data of van Berlekom and Goddard [38] for a
vessel of this size shows a sinusoidal trajectory in heading angle
of a period of 8 minutes and peak magnitude of 33 degrees.
The simulated results for the case of Figure 7.5(a) show a
heading angle response with a period of only 2.2 minutes and
amplitude about 75 degrees. The period is therefore much
smaller than that found by van Berlekom and Goddard, and
the amplitude of the oscillation are too large. A modified
model [40], which better represents the manoeuvring capability
of a vessel of this size [41], produces results shown in Figure
7.5(b). Comparing these results with those for the unmodified
model, it can be seen that the heading angle has an oscillation
period of about 7.7 minutes and the peak magnitude is 34
degrees. These values are now similar to those reported by van
Berlekom and Goddard [38] for a real vessel of this size.
These simulation results suggest that the modified open-loop
ship model is significantly more realistic than the original
description.

This case study shows that, although advanced controller
design methodologies represent a potentially useful step,
such developments must involve use of a model that is fit for
purpose. Simulated results for controllers designed with an
inappropriate model may be viewed by design engineers with
real ship steering experience as unrealistic and this may give
rise to unnecessary and unjustified doubts about other
marine applications of advanced control system design
methods.
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Figure 7.5 Results for simulated open-loop manoeuvring

test using two models of 190,000 dwt tanker
vessel: (a) results for the unmodified model
and (b) results for modified model (from
[7.40]). The dashed lines represent the
rudder angle and continuous lines represent
the Heading angle
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7.5 Issues of model quality in
model reduction

The graphical techniques and quantitative measures
mentioned in Section 7.3.1 can be applied to situations in
which one model is being related to another, as well as for
comparisons with data from real systems. This is really a
form of model comparison and can arise in situations where
complex, computationally demanding and externally
validated models are available but simpler simulation models
which have shorter run times on the computer are needed for
use in system design applications or real-time simulation.

For many applications, it is useful to retain a physically
based interpretation and, recently, energy-based metrics have
begun to appear which can be applied to nonlinear as well as
linear descriptions. This energy-based approach and links
with bond-graph structures have also been associated with
the concept of a proper model which, in this particular
context, is defined as the model with the minimal set of
physical parameters required to predict dominant system
dynamics ([42], [43] and [44]). Proper models tend to be
more efficient in computational terms, which is helpful when
models have to be simulated repeatedly. They have been
associated with the concept of model order deduction, rather
than the idea of order reduction, which starts with a given
high-order description.

Energy-based modelling metrics can be linked to bond-
graph methods of model development and analysis, and help
ensure that physical insight is retained when using the model
for design. In this approach the removal of physical
phenomena that are unimportant for a proposed application
is based on the power associated with each element of the
model. It is argued that any element dissipating or storing a
significant part of the total power supplied to the system
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contributes significantly to the overall behaviour. A suitable
metric is based on the energy flows into and out of a given
element over a given time interval. The larger the energy
metric, the greater the contribution of the element to the
system behaviour and this energy metric thus provides a
form of sensitivity measure. An interesting account of the
application of this energy-based approach to the reduction
of models of integrated hybrid vehicle systems may be found
in the work of Louca and Yildir [45], where it was established
that a reduced model for a medium-sized military truck
could give predictions very similar to those from a full model
but running 2.5 times faster.

Reduced-order models are valuable in many fields. For
example, when investigating aircraft handling qualities, the
model of the vehicle must have appropriate accuracy over a
defined frequency range that is important for interactions
between the pilot and the vehicle. Similarly, as already
discussed, it is often important to ensure that the plant model
in control system design applications is accurate for
frequencies near the gain crossover frequency, but lower
levels of accuracy may be tolerated at frequencies far from
that critical range.

As mentioned in Section 3.6, another field in which model
reduction is very important is in the development of micro-
and nano-electromechanical systems (MEMS and NEMS).
Finite element and molecular dynamics models are commonly
used for some aspects of MEMS and NEMS systems analysis,
but in practical applications some form of model reduction is
usually essential for the later stages of the design in order to
avoid excessive computational complexity [46]. System
identification and parameter estimation techniques have been
applied successfully in fitting lower-order lumped dynamic
descriptions based on grey-box ideas to the more detailed
underlying physically based model (see e.g. [47] and [48]).
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Model optimisation methods, involving genetic algorithms
and artificial neural networks, have been used successfully and
other approaches such as model predictive control (see e.g.
[49]) have also been applied with reduced models. Being able
to move efficiently from highly detailed physically based
models to reduced models and then back to physically based
models for further analysis is important. In Section 3.6 it was
mentioned that multi-scale modelling concepts have been
developed for this application area. One approach involves
sequential multi-scale modelling methods, in which large-scale
models (such as those used for control system design) use low-
resolution representations derived through model reduction
from detailed higher-resolution descriptions. The simulations
at these different levels run independently of each other (see
e.g. [50]). Another approach is termed concurrent multi-scale
modelling, involving a combined model in which the different
scales are considered at the same time (see e.g. [51]).

7.5.1 Case study 1: frequency-domain
methods applied to aircraft models

One example of a relatively simple model reduction method
for MIMO systems involves a frequency-domain complex
curve-fitting approach and has been applied to the
development of MIMO models for flight control system
design [52]. The approach is based on transfer function
models and uses a modified least-squares approach to fit
transfer functions to the target frequency response data. The
method involves minimisation of a sum of the squares of the
differences between the absolute magnitudes of the frequency
response values for the high-order system and the reduced
model over a specific range of frequencies.

A frequency-weighted cost function is used for optimisation,
allowing errors in chosen parts of the frequency range to be
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given particular emphasis. Results for the case of a large
transport aircraft model are presented in Figure 7.6 and show
frequency responses of a two-input two-output fourth-order
model together with the corresponding results for a two-input
two-output second order description for the frequency range
0.1-100 rad/s. It can be seen that, for the lower part of the
range of frequencies used (<10 rad/s), the response of
reduced-order model agrees well with that of the original
model. The transfer functions from rudder and aileron
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Frequen(.:y responses of a single:input tvtlo-
output eighth-order model of a fighter aircraft
and an equivalent third-order model over the
frequency range 0.1 rad/s < w < 100 rad/s. In
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responses of the higher-order model are shown
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show the corresponding response for the
reduced-order description (from [7.52])
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deflection to yaw rate, sideslip and roll rate all have the same
denominator since the high-order model is derived from a state
variable description and the eigenvalues of the state matrix
determine the denominators for all the transfer functions.

7.5.2 Case study 2: a simulation of a hydro
turbine and electrical generator system

A further illustration of model reduction involves the
development and application of a model of a hydro-electric
generator system [53], which is also discussed in the context
of real-time simulation in Chapter 8. The purpose of the
model was to provide a basis for the design of a new faster-
acting electronic governor for speed control of a 35.75 MW
hydro-turbine generator. A number of different types of
electronic governor were to be investigated as candidates to
replace an existing and slower type of mechanical-hydraulic
governor system. An accurate, physically based model of the
plant, capable of being operated in real time, was required.

Although some tests on the real system were permitted
during the model development process, dynamic tests on the
pipeline system, which is a vitally important part of the
overall model of the system, were severely restricted for
safety reasons. Extensive modelling of the pipeline network
had been undertaken previously by engineers employed by
the North of Scotland Hydro-Electric Board (NSHEB) and a
well-proven finite-element model existed, although this
relatively complex and numerically intensive model could
not be implemented within a real-time simulation.

A decision was made to develop a lumped-parameter model
of relatively low order that could capture the main features of
the more complex finite-element pipeline model over the most
important part of the frequency range for turbine control.
Several lumped-parameter descriptions were tested against
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the finite-element description using frequency-domain plots to
find a model of acceptable accuracy that could be implemented
easily, in real-time, using available computing facilities.

Figure 7.7 shows a schematic diagram of the system. At
the power station there are four turbines and generators, and
below the surge shaft the penstock divides initially into two
and then into four pipelines. Any disturbance in terms of
head (pressure) or flow will be transmitted along the pipeline,
with reflections occurring at discontinuities. Resonance
phenomena can be expected at the characteristic frequencies
of the complete pipe system.

Equations can be derived by considering momentum
balance and continuity of flow for an infinitesimal length of
pipe along with a relationship describing the change of fluid
density with change of pressure (the bulk modulus) and a

Surge

R .
eservoir shaft

and dam

Electrical
enerator
L Turbine inlet 9
Tunnel and pipeline control valve and load

sections (grid)

Pipeline \

Water
turbine

Water outlet

Figure 7.7 Schematic diagram of the hydro-turbine system.
. Control of the water turbine is through guide-

vanes and associated linkages, but is
represented for simplicity in this diagram by a
simple inlet control valve
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stress-strain relationship for the pipeline [54]. The basic
equations are:

oH 0V _aV fV\V\

AgS-+ Vit =0 .
Sox Vax T T (7.7)
yoH  oH V2 oV
L _vsing+ -2 —0 .
Bx " ot " g ox (7.8)

where H is the head of water relative to the exit from the
turbine, V is the velocity of water, x is the position along the
pipe, D is the pipe diameter, g is the gravitational constant and
t is time. The quantity V), is the velocity of travelling waves
within the pipe and the quantity f is the surface friction
coefficient of the pipeline section. The cross-sectional area (A)
relates the flow, O, to the velocity V through the equation O =
AV. It should be noted that the absolute value sign in
Equation (7.7) is introduced to ensure that friction opposes
the motion.

After a simplification process in which small terms are
neglected, these equations become:

9H 20 3V fOl0|

Ag 0 .
8 " ax o  2DA (7.9)
2
oH VYV, 00 _, (7.10)
ot gA ox

It should be noted that if the surface friction effect in the
pipe were represented by a linear function, Equations (7.9)
and (7.10) would be similar in structure to the voltage and
current relationships for an electrical transmission line
section, and useful analogies may be drawn between pipeline
and transmission line models. One particularly important
analogy involves the concept of hydraulic impedance, which
is defined for the pipeline, in a similar way to electrical
impedance, as:
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H
7 =— 7.11
0 ( )

A lumped parameter model for a simple pipe section was
derived by defining a number of internal points along the
pipe and transforming the spatial derivatives into first-order
difference functions. This lumped model involved a pipe
section having one interior point and two end points, with
friction effects lumped at the centre point. For situations
involving one active turbine (as in the site tests), it was found
that five pipe section models, each involving four integrator
blocks, provided a pipeline model that was suitable for the
intended application. The number of sections used was
justified by carrying out an impedance test on this lumped
model and comparing the results with an equivalent test
using the finite element model based on Equations (7.9) and
(7.10). Over the frequency range from 0 to 1 Hz, the reduced
model was found to capture the frequency peaks of the
impedance diagram of the full finite-element model with
sufficient accuracy.

The reduced representation of the pipeline was then
integrated into the overall model and external validation was
applied using data from dynamic tests on the complete
system. Initial testing for the purposes of external validation
involved frequency responses over a range that included the
first peak in the hydraulic impedance diagram (frequencies
up to 0.37 Hz). These tests had to be performed for a number
of input amplitudes due to the nonlinearities within the
model, especially backlash in the guide-vane linkages and
rate and amplitude limits within the main servomotor that
controls the guide vanes.

Some adjustments of the model took place following
critical assessments of the frequency response test results and
the complete simulation was then also subjected to detailed
evaluation and testing for conditions involving larger
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disturbances. This involved system-splitting tests in which
part of the local distribution system was configured so that
the generator, together with an associated load, was
connected to the rest of the grid through a single circuit
breaker. Current transfer through that circuit breaker could
be monitored and the system could be split when an
appropriate transfer had been achieved. This allowed a form
of step testing to be carried out. Tests were performed at
various loading levels of up to 25 MW with export or import
levels at the time of splitting which approximated to a step
of the order of 1.5 MW, and results from the tests on the real
system and equivalent tests on the simulation model were
found to be similar in broad terms.

Certain features of the system behaviour were of particular
interest, such as the effect of backlash in the guide-vane linkage
mechanism, which has a very direct effect on limit cycle
behaviour when the system is operating under isolated load
conditions. The backlash not only influences the amplitude and
period of the limit cycle, but also the transient characteristics of
the closed-loop system. Also of particular importance was the
fact that the results showed that no large pressure fluctuations
occurred within the system for the operating conditions
and governor types considered, and that the damping of
disturbances was satisfactory. However, the system-splitting
test on the real system resulted in a power change which was
only a rough approximation to a step function and repeated
trials had to be performed for each test condition for power
import and power export, to provide a good basis for
quantitative comparisons of the model and the real system.

Although not used in the original application, the polygon
type of graphical display discussed in Section 7.3.1 could
have relevance in this complex type of situation where
particular features of the response are of interest rather than
the exact time histories. Figure 7.8 shows a polygon that
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could provide a basis for comparing key information
obtained from testing of this kind. In this case, only four
quantities are being compared. These are the peak value in
terms of the transient change of frequency (Hz) following the
step import or export of power, the time of occurrence of the
peak (s), the time to the peak value following the application
of the step, the amplitude of limit cycle (Hz peak to peak)
observed in the frequency record under steady-state
conditions following the step and the period of the limit
cycle.

Such diagrams could allow investigation of the sensitivity
of key features of the model behaviour for changes in model
parameters, or structure, or for different types of governor.

At an early stage in the external validation of the model,
an evaluation was made of the real-time simulation with the
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existing mechanical-hydraulic governor by experienced
operators from the power station. They were able to provide
subjective feedback which was very helpful and allowed
improvements to be made to the model, especially in terms
of fine-tuning of some nonlinear characteristics that could
otherwise lead to unrealistic limit cycles for some operating
conditions. This is one example of the possible benefits of
subjective assessment in the external validation of a
simulation model. An experienced operator may detect
aspects of a simulation, especially when operated in real
time, which are not typical of the real physical system but
may not be obvious from an examination of plant and
simulation records over a short period within a single test.
Under some specific conditions, the ‘feel’ of the real-time
simulation may differ significantly from the system itself and
establishing the reasons for this can often pinpoint deficiencies
in the model.

The eventual approval of the simulation by the NSHEB
engineers allowed it to be used in real time as a basis for
evaluation of a number of novel analogue and digital
electronic governor systems under a wide range of operating
conditions prior to their installation and testing on-site, as
discussed in the case study in Section 8.3.1.

7.6 Discussion

In some applications, such as helicopter flight mechanics,
difficulties can be encountered due to the presence of close
coupling of variables and parameters within the system. The
fact that such systems are inherently multi-input multi-
output in form means also that a number of output variables
of the system have to be considered simultaneously and this
introduces additional problems. Although quantitative
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measures of model performance are appropriate for
applications of this kind, the use of such criteria reduces the
model quality assessment process to consideration of values
of a single index, which masks the true complexity of the
situation and provides little or no physical insight. Improved
visualisation methods are needed for multi-output situations
and for models where there can be strong interactions
between parameters.

The polygon diagrams discussed in Sections 7.3.1 and
7.5.2 represent a potentially interesting development in
terms of visualisation. Such diagrams provide a basis for
comparing different results from different models and this
means that such an approach has potential for interrelating
results obtained from models at different levels of resolution.
It can thus provide insight about the consistency of simple
descriptions used for conceptual design at the initial stages of
a project and highly detailed models that are used at a much
later stage. One advantage of the polygon diagram approach
to visualisation is that it is extremely flexible in terms of
the comparisons that can be made. For example, it allows
results of sensitivity analysis to be displayed in a simple and
efficient fashion and is applicable to problems in many areas
where there is a need to depict relationships among
multivariable data.

Figure 7.9 provides a summary of the processes of model
development and testing, including internal verification and
external validation, and attempts to summarise the main
steps involved in that cyclic process. The blocks associated
with the real system and system test data are shown by
shadowed boxes. Steps concerned directly with the model,
its purpose, modelling techniques used, processes of external
validation, decisions on model adequacy for the intended
application and documentation are represented by simple
blocks with a white background.
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The structure of the diagram emphasises the iterative
nature of the procedures, starting from the statement of
modelling objectives and the a priori assumptions being
made, and ending with a model that is credible and fit
for purpose in terms of the intended application. Although
it represents the processes in terms of comparisons of
selected model variables and equivalent measured variables,
most features of this diagram could apply equally to
comparisons of reduced models with established high-order
descriptions.

What is particularly attractive about this form of diagram
is that it emphasises the vitally important role of external
validation and the importance of prior knowledge about the
real system. If a model proves inadequate for the intended
application when subjected to the rigorous processes of
external validation, there is a possibility of correction
through feedback. Feedback pathways lead not only to the
blocks representing the model but also, through the block
representing knowledge of the real system, to the blocks
showing involving experimental design and thus to further
tests to collect additional data from the real system.

Confidence in a model prediction depends on the level of
confidence in sub-models and each sub-system model could
be subjected to the development and testing procedures of
Figure 7.9. Exhaustive testing of sub-models allows
confidence to be established at that level first and then
extended gradually to involve evaluation of the complete
system model for a number of experimental situations.

In the development of entirely new systems, experimental
data from the complete system are not available at the design
stage. However, in some cases, historical data from earlier
systems of a similar kind can sometimes be used in reviewing
proposals for a model for some new projects and for
comparing initial design options. Successful application of
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this approach depends on good documentation of models of
existing systems and of the tests carried out in evaluating
them, as discussed in Chapter 9.
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Real-time simulation,
virtual prototyping and
partial-system testing

Abstract: This chapter deals mainly with development of
virtual prototypes and with testing procedures in which
equipment from a real system is evaluated within a
simulation environment. This leads to requirements for
real-time performance and to ‘hardware-in-the-loop’
simulation in which some elements of the system are
represented only in software. Real-time simulation
methods, including multi-rate simulation techniques, are
described and examples considered include real-time
simulation of a hydro-turbine generator system and an
unmanned underwater vehicle.

Key words: partial system testing, real-time simulation,
multi-rate  simulation, hardware-in-the-loop  testing,
emulation.

8.1 Virtual prototyping through
simulation

The sequential and concurrent approaches to design outlined
in Chapter 2 both involve the development of prototype
systems. Virtual prototyping is involved, especially in the

269



I Modelling and simulation of integrated systems in engineering

concurrent approach, as well as the development of a physical
prototype. Simulation is central to this and a procedure
known as partial-system testing is applied, which involves
use of a computer simulation model operating in conjunction
with hardware from the real engineering system. This is
known as hardware-in-the-loop simulation and, in this
approach, execution of the model must match exactly the
timing of events within the real-world system. As well as
these cases where a simulation model operates with external
hardware, real-time situations are also important for
applications in which the simulation model runs with a
human operator as part of a manually operated system.

8.2 Real-time simulation methods

Real-time operation imposes important demands in terms of
numerical integration, since the computational resource
available for each integration time step is fixed. Variable-step
integration methods are therefore inappropriate for real-
time simulation (see e.g. [1]) and concepts of numerical error
control for variable-step algorithms become irrelevant. Any
fixed-step integration method used for real-time simulation
must achieve real-time performance while also keeping
numerical errors as small as possible.

Simple fixed-step techniques, such as rectangular or
trapezoidal integration, are widely used for real-time
applications. Analysis of the underlying mathematical
models may have to be carried out to find the model
eigenvalues for chosen operating conditions before the
integration step size can be chosen. Informed decisions may
then be taken about any simplifications for the real-time
version of the model. Time constants that are small compared
with others might be neglected and a dynamic sub-model
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could be replaced by one without dynamics. Methods for
handling discontinuities which are associated with variable-
step integration methods clearly cannot be used and other
approaches have been suggested (see e.g. [2] and [3]).

In addition to the choice of integration method and time
step, questions can arise about the communication interval
appropriate for a real-time problem. Clearly, for real-time
operation, synchronisation to an external clock is essential.
If the simulation can be run faster than real time on the
chosen computer, a delay can be introduced until each clock
interrupt occurs. The communication interval may represent
the update interval for external data being input through
analogue-to-digital converters or output to external hardware
through digital-to-analogue converters, or being output for
graphical display. This communication interval is, usually,
considerably larger than the integration step length. For
hardware-in-the-loop situations, external data thus changes
value only at the communication times and the choice of
communication interval must depend on the dynamic
characteristics of the external hardware elements. In some
applications, such as a flight simulator, there may be a
number of different (but related) communication intervals,
since different parts of the external hardware may involve
different dynamic characteristics. One example of such
multi-rate simulation methods in a real-time application may
be found in the generation of force feedback for the pilot’s
controls to provide tactile information about the response of
a simulated aircraft to the pilot’s commands [8.4]. These
channels involve smaller communication intervals than those
applied elsewhere in the simulator because the human tactile
system is sensitive to high frequencies and use of inappropriate
communication intervals would be immediately apparent to
an experienced pilot through the absence of the expected
sensory feedback.
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Real-time simulation applications date back to times
before digital computers had the necessary computational
power. Analogue computer technology (see e.g. [1] and [5])
was widely used for real-time problems during the period
from the 1950s until the late 1970s. However, as the
performance of digital computers improved, the inherent
parallelism of analogue computers was combined with the
general-purpose computational power of digital processors
in a new type of simulation facility known as a hybrid
computer (see e.g. [1] and [6]). Although relatively
expensive, hybrid computers were capable of providing
highly effective solutions for complex real-time problems
and were applied successfully in a number of areas, especially
in aerospace and defence, until the 1980s. An interesting
recent development has been a VLSI analogue computer/
math co-processor by Cowan and his colleagues at Columbia
University [7]. This is capable of handling nonlinear
ordinary differential equations of up to 80th order and
occupies an area of integrated circuit of 1 cm? It has
an interface which provides facilities for automated
programming and calibration, and a demonstration version
of this modern analogue computer, implemented in 0.25 pm
CMOS, has been shown to provide solutions of differential
equations up to 400 times faster than a modern workstation
running MATLAB® while dissipating only 300 mW [8.7].
Whether or not innovations of this kind will lead to a
new generation of commercial analogue/hybrid computers
remains to be seen, but this development is certainly of
potential interest for specialised real-time applications
involving large simulation models.

In tackling real-time simulation problems using methods
involving general-purpose digital computers, one must
understand the trade-offs between computer hardware
performance, software capabilities and model accuracy. For
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most real-time applications the communication interval and
the integration step size should be as small as possible, since
the discretisation inherent in digital simulation introduces an
effective time delay which can have a destabilising effect.
Another factor to be considered in the choice of integration
step size and communication interval is the time required for
other numerical processes, such as multivariable function
generation, which may be as significant as the time for
numerical integration. In such situations it is pointless to try
to improve the integration accuracy unless these other issues
are fully taken into account.

Error measures involving quantitative comparisons
between model behaviour and the real system are more
important in real-time situations than the error analysis and
convergence tests applied for other simulation applications.
For example, it is important in real-time simulation to ensure
that, for a given operating condition, the eigenvalues of the
simulation model closest to the imaginary axis in the complex
plane are represented accurately. It is also important to check
that spurious high-frequency oscillations do not appear
which have no counterpart in the real system.

The possibility of linking simulations to rapid prototyping
equipment means that new designs in fields such as
mechatronics, robotics and automatic control can now be
tested on hardware in minutes where, previously, equivalent
tasks could have taken weeks. In such specialist applications,
where much use is also made of embedded processors,
commercial systems such as the MathWorks Simulink
Coder™ (formerly the Real-Time Workshop™) [8] and the
National Instruments (NI) LabVIEW Real-Time™ system
[9], allow generation of C or C++ code directly from
simulation diagrams. This avoids the time-consuming and
error-prone process of converting algorithms from languages
such as MATLAB® into C code by hand for real-time
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implementations. Similar facilities are available for other
simulation software systems, including the 20-sim modelling
and simulation tool developed by ControlLab Product BV in
the Netherlands [10]. Another widely used system for
embedded system development and real-time simulation is
available from dSPACE Inc [11] and products are also
available from other vendors which offer broadly similar
solutions.

In addition to the plant which is being controlled,
embedded systems involve software elements and hardware
elements that include both computer hardware and input/
output interfacing hardware. Modelling of the complete
system must involve modelling of all three aspects and,
ideally, it should be possible not only to simulate each part of
the system independently of the others, but also to simulate
the computer and interface hardware together with the
software and the computer and interface hardware along
with the plant. As a final step it should be possible to
investigate all the hardware and software elements of the
system when operating together. Broenink and his colleagues
from the University of Twente in the Netherlands advocate
a building-block approach for embedded system design,
along with an object-oriented approach to modelling [12].
The specific object-oriented methods proposed involve
bond-graph modelling for the system to be controlled, VHDL
[13] for the input/output hardware and algebraic techniques
for describing the embedded software in terms of
communicating processes through the application of the
CSP (communicating sequential processes) approach of
Hoare [14].

Systems based on general-purpose digital signal processing
(DSP) boards and digital field programmable gate array
(FPGA) hardware are providing new possibilities in terms of
low-cost interfacing and control, and have considerable
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potential for new developments in hardware-in-the-loop
simulation [15]. The account by Jovanovie et al. [16] of
an inexpensive prototyping system for mechatronic
systems provides an interesting example where the 20-sim
modelling and simulation tool (with C-code generation
functionality) was used to support system design for an
electro-mechanical servo system. An example of FPGA-based
real-time simulation may be found in the 2008 paper
by Crosbie [15], where use was made of an RT-LAB™
system from Opal-RT [17] for a real-time simulation of a
power-electronic system. The RT-LAB™ system provided
two dual-core Opteron™ processors operating under the
Red Hawk real-time Linux operating system and a FPGA
which can provide interfacing to external hardware or
perform high-speed simulation of part of the complete
system.

In Crosbie’s application [15], the FPGA simulates part of a
power-electronic system involving two three-phase converters
connected by a DC link with simple AC generator/load units
at each end of the network. The simulation, which provides
a benchmark for evaluating different simulation approaches,
can thus represent an AC generator feeding a converter that
provides three-phase rectification to produce direct current,
which is then supplied to the second convertor for
conversion back to alternating form for an AC load. Filters
are included on the DC side of each converter
Each converter has six switches operated by timing
pulses from controllers involving pulse-width modulated
(PWM) control for voltage, current and power flow. The
model involves a total of 23 first-order ordinary differential
equations in addition to switching logic and other features
that further increase the computational demands. In
the RT-LAB implementation, one converter was simulated
on the FPGA while the rest of the model was implemented
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on the dual Opteron™ processors. With an appropriate
choice of FPGA, simulation frame times as small as 400 ns
have been achieved [15]. This suggests that, for applications
such as power electronics, the FPGA approach allows
simulation of quite complex sub-models on a single
chip. The FPGA approach also has significant advantages in
terms of cost compared with DSP boards, although the
programming task for simulation applications can be
significant.

8.3 Hardware-in-the-loop simulation

A good example of hardware-in-the-loop simulation is an
aircraft flight simulator (see e.g. [4]) where elements of the
cockpit, such as the pilot’s controls, may be the same as
hardware in the real aircraft. Similarly, training simulators
for chemical process plant or electrical power facilities may
involve control room displays or other hardware used in the
real plant. Often a training simulator is built before the
corresponding real plant is completed and the simulator may
then be very helpful for the plant commissioning process as
well as for training operators.

Hardware-in-the-loop techniques can provide a form of
rapid prototyping in which we start with a virtual prototype
and move in stages towards a real prototype system involving
the hardware and software of the final design. For example,
a controller for a chemical process plant could be tested
initially by coupling the controller hardware to a real-time
simulation of the plant based entirely on software. Once
testing of the controller showed that the performance was
satisfactory when used with the simulator, the same controller
hardware could be tested further by coupling it to the real
plant. The benefits of this incremental ‘divide and conquer’
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type of approach include the fact that the performance can
be investigated safely for a wide range of normal and fault
conditions.

One point, often overlooked, is that differences exist
between training simulators and real-time simulators
designed to support engineering activities. Although the
problems being tackled may have similarities, the behaviour
of a training simulator need match that of the real system
only at the operator interface and the emphasis is therefore
on emulation. Thus, some components of the simulation
may be input-output descriptions representing reduced-order
models, fitted in a purely mathematical fashion, to more
complex underlying descriptions. Sub-models may thus have
little or no physical basis, but may be entirely suitable for the
training application, provided they are used within the limits
for which they have acceptable accuracy. Development of a
training simulator may therefore be regarded as a top-down
process in which details from the real system are added until
the simulator’s performance is adequate. This is usually
inappropriate for a real-time simulation intended for
engineering system development and rapid-prototyping
applications. In that case, the role of the real-time simulation
is usually to test a proposed system up to, or even beyond,
the normal design limits and it is important that as much as
possible of the model is developed on a physical basis in
order to enhance understanding of the real system and the
model. One example of a situation in which a physically
based simulation model is important is in testing for fault
conditions and fault recovery strategies. The intentional
introduction of faults in the testing of the real plant is often
unacceptable for reasons of safety or plant integrity, and the
use of real-time simulation for such investigations becomes
essential.
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8.3.1 Case study: hardware-in-the-loop
simulation for development of a
speed-control system for a hydro-turbine
and generator

Although not an example of concurrent design, the
development and commissioning of the fast-acting speed
governor system for the hydro-electric generator system
discussed in Section 7.5.2 provides an illustration of partial-
system testing and hardware-in-the-loop simulation. This
study involved the redesign of a control system for an existing
plant to meet an entirely new set of performance requirements
and it was a truly multidisciplinary undertaking involving
control systems specialists, mechanical engineers and
electrical power systems engineers.

The project involved development of a real-time simulation
for one generating unit at the Sloy Power Station operated, at
that time, by the North of Scotland Hydro Electric Board. The
work formed part of a broader investigation concerning the
possible replacement of existing mechanical/hydraulic speed
governors for hydro-turbines in power stations in Scotland by
faster-acting electronic governors. The requirement for faster
governors was associated with a changing role for hydro-
electric power generation in Scotland as it moved away from
base-load supply to provide standby generation capacity that
could provide sources of additional power to compensate very
rapidly for failures of large nuclear, coal or gas-fired stations
elsewhere in the distribution network. The electronic control
hardware developed for the project had to be tested initially in
conjunction with an accurate real-time simulation of the
hydraulic, mechanical and electrical components of the system
before testing of the controller on site.

Initial site tests on the complete hydro-turbine and
generator system with the existing governor hardware
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provided results that were used in developing the
model, which included water pipeline dynamics (as
discussed in Section 7.5.2), a nonlinear representation
of the hydraulic and mechanical elements of the turbine, a
detailed representation of the generator and simplified
models of the associated electrical system for various different
network configurations. New controller hardware was
coupled to the real-time simulation through an interface that
involved all the continuous and logical signals that would
appear in the interface between that controller and the
real plant.

The real-time simulation was developed initially using a
hybrid computer [18], but was subsequently implemented as
a digital simulation. It allowed investigation of a number of
different situations on the system, including start-up, normal
steady-state operation for different electrical loading
conditions, transients following sudden electrical load
changes, fault situations and system shutdown. The quality
of the real-time simulation model was assessed initially
by making comparisons with non-real-time models and by
comparisons with data from initial site tests.

Once the electronic controller within the hardware-in-the-
loop simulation of the combined turbine, generator and
control system was judged to be operating appropriately (as
outlined in Section 7.5.2), it was moved on site for
commissioning tests. On-site testing initially involved
relatively benign cases that had been investigated previously
using the real-time simulation and then moved, in an
incremental fashion, to include situations requiring faster
governor action. The project led to a prolonged programme
of work involving evaluation, on site, of fast-acting analogue
governors [19] and also microprocessor-based digital
governor systems ([20] and [21]).

279



I Modelling and simulation of integrated systems in engineering

8.4 Multi-rate simulation techniques

Many models involve sub-systems that have a wide range of
time constants. Since variable step algorithms are clearly
inappropriate for real-time applications, one approach in
such cases involves grouping the sub-models according to
dynamic properties so that different integration steps can be
used in different sub-models. The total number of calculations
is then smaller and the simulation is potentially faster. This is
known as multiple frame rate or multi-rate simulation.
Although this reduces computational demands, it also raises
issues in terms of the overall accuracy and stability of the
simulation (see e.g. [15]).

8.4.1 Fundamentals of multi-rate
simulation

With fixed-step integration methods, an integration step

length of b seconds gives a frame rate of f =% frames

per second. A simple multi-rate situation is shown in Figure
8.1 where there are two integration step lengths, 4, and b,,
where is b, related to b, through an integer N according to
the equation:

b, = Nb, (8.1)

Thus Segment 1 of the model, as illustrated in Figure 8.1,
gives results at a frame rate of:

1
&=y, (8.2)

while Segment 2 gives results at the slower rate of:

, N (8.3)
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A4

Segment 1 Segment 2
(High-speed segment) y (Low-speed segment)

A

Block diagram for a simulation involving two
g - segments having different frame times. The slow
frame time is an integer multiple of the faster

frame time and communication takes place at
the slower frame rate

Communication between segments can be handled in
several ways. For the case shown in Figure 8.1, the simplest
is based on a zero-order hold for transfer from Segment 2 to
Segment 1. Segment 1 thus uses the last value received from
Segment 2 for N steps until the value from Segment 2 is
updated. Outputs from Segment 1 being communicated to
Segment 2 must be averaged, possibly by simple filtering,
over N steps before being transferred. Large differences of
step sizes may require use of anti-aliasing filters.

Although introduced here using only two segments and
two frame rates, the principles of multi-rate simulation can
be applied to situations involving more segments and more
frame rates. The ratios of these different frame rates are
normally integer quantities.

8.4.2 Case study: multi-rate simulation of
an unmanned underwater vehicle

Electrical drive systems for surface ships and underwater
vehicles involve sub-systems having a wide range of time
constants. The complete model may involve mechanical,
thermodynamic, hydrodynamic, electrical, electronic and
software elements. Time constants for sub-systems involving
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electronic components may well be many orders of magnitude
smaller than the dominant time constants of the six-
degrees-of-freedom model of the vehicle involving the hull,
propellers and control surfaces. Simulation of the complete
system using a single program requires integration step sizes
consistent with the smallest time constants, leading to a very
‘stiff” simulation problem and, probably, very long solution
times, as discussed in Chapter 3 and Section 8.2. This
situation is clearly one for which multi-rate simulation offers
possible advantages [22].

Development of a simulation for an unmanned underwater
vehicle (UUV) capable of running in real time (or in a
timescale faster than real-time for multi-run optimisation
studies) has been the subject of a recent study ([23] and [24])
and provides an illustration of multi-rate simulation
techniques. The vehicle is the one described in Appendix A1
and the specification requires that the model should be
capable of representing the power electronic sub-system for
events involving time intervals of less than 10 ps, over time
periods of minutes or longer while running in real time or in
even faster timescales. The system divides naturally into sub-
systems with several ranges of frame time. Figure 8.2 is a
schematic diagram of the complete underwater vehicle
system showing the interactions between these different sub-
systems.

In Figure 8.2, the model is split into five blocks involving
four different frame rates. The DC to AC converter model
involves the fastest frame rate, the feedback controller is a
slow-medium speed component, the electric motor model is
a fast-medium component and the battery, the vehicle and
its control surfaces are all grouped together and have the
slowest frame rate. The graphics interface, which provides
an animated display showing the vehicle motion in three
dimensions, also involves the slowest frame rate. The specific
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Motor current Motor current feedback
reference input pathway
Controller
—_—»
sub-model
Battery Converter Motor Vehicle
sub-model | | sub-model | | sub-model sub-model

Figure 8.2 Block diagram representation of UUV model with
the electrical drive system

frame times used for these four areas involve integration
periods of 2ps for the converter, 100 ps for the motor, 800 ps
for the feedback controller and 100 ms for the battery, vessel
and graphical output.

The simulation has been implemented using the Virtual
Test Bed (VTB) environment (discussed briefly in Chapter 3),
together with the associated VXE graphics software for
displaying graphical output and 3-D animations. Both of
these software tools were developed at the University of
South Carolina [25]. The VTB provides a flexible simulation
environment which allows sub-system models developed
initially using different simulation tools to be combined. The
VTB software also has a model library which contains many
mechanical and electrical component models.

Funding for an investigation of multi-rate simulation
techniques, including the development of the multi-rate
simulation of the UUV, was provided by the U.S. Office of
Naval Research (ONR) through grants to California State
University, Chico, and the University of Glasgow, and
different programming approaches were used in developing
the sub-system models because these were developed by
different groups in different locations. For example, the

283



I Modelling and simulation of integrated systems in engineering

electrical and electronic sub-models were the responsibility
of a research group at California State University, Chico, and
were programmed using C++ code while adaptation of an
established MATLAB® six degrees-of-freedom vehicle model
to suit this application was undertaken by researchers at the
University of Glasgow in the United Kingdom. The DC
power source was represented using native VIB battery
models.

Although the converter model was coded using C++, it
was implemented as a native VIB simulation model and in
this sub-model the DC input connection and the AC output
connections are natural couplings (as outlined in Chapter 3),
while the connections to the controller are signal couplings.
The converter involves Euler integration for the input DC
filter capacitor and trapezoidal integration for the filter
components at the output. The sine and triangular waveforms
of the controller are found by a table look-up method. The
motor simulation was implemented in C++ as a native VTB
simulation using trapezoidal integration. The six-degrees-of-
freedom simulation model of the vehicle involved a fixed-
step fourth-order Runge-Kutta integration algorithm and the
original MATLAB® simulation was translated to C++ and
implemented in the multi-rate simulation as a native VIB
model. Fin deflection and propeller shaft inputs are applied
by the user.

A multi-rate solver was developed initially by bringing
together the models to be run at different rates within a
single VTB ‘super-model’. The VIB would then run at the
rate of the slowest model and the individual model step sizes
are integral divisors of the VIB time step. An internal
scheduler calls the internal models at the correct times within
each VTB time step and returns values to the VTB at the start
of the next VTB step. Results can be displayed at the user
interface at each VTB time step.
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Execution in a timescale faster than real-time, with the
VXE 3-D graphical output, has been achieved on a typical
laptop computer. The European Simulation Language (ESL)
[26] was used to provide comparisons with conventional
simulation results. ESL, which was developed at the
University of Salford for the European Space Agency,
supports multi-rate simulations. One of the important
features of ESL, which has recently been integrated into the
VTB [27], is that it can automatically locate switching
points, accurately integrate up to the discontinuity and
then continue from that exact point. The effects of taking
fixed-time steps in a fast multi-rate simulation can thus be
investigated and errors associated with different step lengths
can be assessed.

8.5 Some new developments in
real-time simulation

Steady progress continues to be made in the computing
power provided within conventional personal computers,
workstations and specialised digital signal processors and
FPGAs. These developments have a direct and positive effect
on the real-time computing field in general and on simulation
in particular. Crosbie [15] has also suggested that the IBM
Cell Architecture, which involves one PowerPC type of
processor coupled to eight synergistic processing elements
and a very high-speed bus, might well be appropriate for
simulation applications. A version of this processor is used
within the Sony Playstation 3® and has been shown to have
significant speed advantages. Other developments in terms
of specialised hardware, such as developments based on
FPGAs and the VLSI analogue computer developed at
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Columbia University, may also have an effect on real-time
simulation practice in the longer term.

While developments in terms of hardware are important,
other developments in terms of simulation methods and
simulation software are also significant. The current interest
in multi-rate simulation is a good example and there are
areas where additional research effort may well produce
benefits. One example of this could be systematic investigation
of the influence on the overall stability of a simulation model
of the methods used to provide communication of data
between modules operating at different frame rates. Crosbie
[8.15] has also pointed out that quantised state system
(OSS) methods ([28] and [29]) could be useful for high-speed
real-time simulation applications and that further research
on this might yield dividends. In that approach the process
advances until one state variable reaches the next quantisation
level instead of using the conventional idea of a time frame.
Advantages are claimed for this quantised approach in terms
of accuracy and stability, but few applications have been
reported so far.
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Abstract: The model-driven concurrent approach to the
design and development of engineering systems allows
early detection and correction of design errors, and offers
new opportunities for optimisation at the level of the
complete system. Tools for the efficient development
and testing of physically based dynamic models are
of central importance for this and include forward and
inverse simulation, parameter sensitivity analysis, system
identification, parameter estimation, optimisation and
partial system testing through hardware-in-the-loop
simulation. Fitness for purpose, quality, reusability and the
integration of simulation methods with other design and
analysis tools are vitally important. Libraries of models and
models that are generic in structure are also important.
Dealing successfully with all of these aspects of modelling
and simulation requires the application of good management
principles and the development of good documentation
and appropriate updating procedures at all stages in a
project. It is argued that the education and training of most
engineers does not at present give sufficient emphasis to
many of these broader issues that are of vital importance
for the successful application of simulation methods and
model-driven design.

Key words: documentation, tool integration, model reuse,

sub-model, model library, model sharing, generic model,
internal verification, external validation, education.

291



I Modelling and simulation of integrated systems in engineering

9.1 Issues of model management

As pointed out in Chapters 1 and 2, systems involving closely
integrated elements from a number of different engineering
disciplines have become increasingly important in recent
years. Integrated systems applications in aircraft, in the
automotive industry, in electrical power generation and
distribution, in robotics and in chemical and pharmaceutical
process engineering are becoming commonplace. In all of
these and many other areas, a multidisciplinary and model-
driven concurrent approach to design is also taking
over from traditional sequential design procedures and this
is now recognised as important for successful integrated
system design. Benefits from the model-driven concurrent
approach, if applied correctly, include earlier detection and
correction of design flaws, and new possibilities for system-
level optimisation.

Because of the central role of modelling and simulation
techniques in integrated system design, a strategy is needed
to ensure that these methods are applied properly and more
effort is needed in this area if we are to be successful in
meeting design requirements while also reducing development
times and costs. Unfortunately, this is not yet true in general.
Current practice in system modelling and simulation within
many organisations is often lacking in terms of systematic
processes, in surprising contrast with accepted procedures
within the more general software engineering field where
more rigorous testing, documentation and version control
are an integral part of project management.

Modelling objectives in different areas can differ greatly
and prior knowledge of the real system and understanding
of design requirements are both important. A full statement
of how the model is to be used is particularly important
when an integrated system design and development project
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involves a number of different teams, perhaps drawn from
different engineering disciplines. The purpose of a model
influences the type of model needed and, if the goal is to
provide further insight about the corresponding real system,
the required form of the model may differ from many models
conventionally used for quantitative prediction, simulation
or system design. Physically based forms of model may be
particularly helpful in a multidisciplinary design environment
where engineers have widely different backgrounds and
where models and computer simulations can provide a
natural means of communication about technical issues.

One feature of present-day research on simulation is
an increased emphasis on the broader aspects of the
model development process (such as bond-graph and other
energy-based modelling procedures), enhanced computing
environments (especially in terms of the user interface),
libraries of sub-models and systematic processes for assessing,
correcting and documenting models. More effort must be
directed towards further developing and maintaining
libraries of validated simulation models and commonly used
sub-models. This is important if we are to exploit fully the
benefits of model reuse and the development of reliable
generic models, and is a significant part of the move towards
developing more efficient model-driven design techniques
and more effective methods for model management.

Inverse systems receive considerable attention in this book
and inverse simulation methods, developed initially for use
in handling-qualities studies for fixed-wing aircraft and
helicopters, have been shown to be of value in modelling and
simulation of complex systems of a more general kind.
Different physical insight may result from examining the
input needed to allow a specific form of output to be achieved
and this is especially significant in areas such as actuator
design. It is believed that combining forward and inverse
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simulation processes within a modelling and simulation
strategy can be potentially very valuable.

Confidence in a prediction is a function of the confidence
demonstrated in sub-system models as well as in the complete
model. This is particularly important where sub-system
models can be tested experimentally. Exhaustive testing of
sub-models allows confidence to be established at that level
first and then extended gradually to less well-defined
situations involving testing of the complete system model
over a range of experimental conditions. The main aim in
using modelling, simulation and prototyping techniques in
engineering design and development is to make sure that
when the system is built, tested and put into service, there are
no surprises. This aim is seldom completely satisfied, but the
more comprehensively that models are checked and tested,
the more likely it is that the resulting system will be acceptable
in service from an early stage.

In the development of entirely new systems, experimental
data from the complete system cannot be available at the
design stage. In some cases, historical data from earlier
systems of a similar kind can be helpful in evaluating the
model of the new system. Successful application of this
approach depends on good documentation of models of the
earlier systems and of the experimental data and tests used to
evaluate those previous models.

If simulation and modelling methods are applied in a
highly focused fashion, with the right questions in mind,
they can help to produce new insight that would be very
difficult to obtain in other ways. For example, as pointed out
in Chapter 7 in the context of reduced-order models,
developments taking place in the field of micro- and nano-
electromechanical systems (MEMS and NEMS) are throwing
up many interesting and challenging problems relating to
modelling and simulation. It must also be recognised that
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those working in that field are also making important
contributions in terms of methodological developments,
many of which have significance for all involved in modelling
and simulation of integrated systems. In addition, MEMS
and NEMS developments often involve problems of multi-
scale physically based modelling that have much relevance
for engineers in other application areas.

9.2 Tools for model management

Developers of computer-based tools for modelling and
simulation must strive to achieve a good balance between
efficiency of numerical solutions and user-friendly software
tools for model construction, testing, external validation,
documentation and maintenance. Good planning of systems
for documentation and the management of models is
especially important when models may be reused, and well-
maintained libraries of reusable models can assist greatly in
the development of models for new applications. Good tools
for the management of models also allow the user to focus
attention on issues of model quality and testing. The potential
for integration of simulation models with other design and
analysis tools is another important area. Efficient, user-
friendly and reliable version handling for models is essential
and, as pointed out by Brade [1], this must form part of a
more general stepwise procedure for model development in
which verification, validation and documentation are of
central importance.

9.2.1 Documentation and reuse of models

Models are often developed for engineering applications on
a one-off basis for a specific task and new projects, often
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very similar to earlier ones, frequently involve completely
new models. This is not only costly and time-consuming, but
it is also true that models developed in this way are not
always subjected to rigorous validation and documentation
processes.

A poorly documented model of questionable validity
is seldom helpful, whereas a model of proven fitness,
together with good documentation, can provide an excellent
starting point for a new application. This applies even if an
established model is to be used in a new way since, although
the model may need changes for the new application,
examination of a proven model may still be the best starting
point. There must, however, be information about how
the earlier model was developed and used, about its range
of validity, and about the underlying assumptions and
constraints.

Items recorded about a model or sub-model should include:

—_

the purpose of the model and the intended application;

2. assumptions used in developing the model and any
constraints that may result;

3. details of tests on the real system carried out for model
development, including model structure estimation and
parameter estimation;

4. the computer simulation code for the model, if
appropriate;
5. details of internal verification checks carried out to

ensure that the computer-based representation matches
the mathematical description; and

6. details of external validation processes for the complete
simulation model, along with the reasons for accepting
or rejecting the model, together with statements about
the range of applicability of each accepted model.
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As pointed out in Chapter 7, model development does not
end when a model or sub-model is accepted for a specific
application or for inclusion in a library of models following
successful internal verification and external validation. Model
development continues throughout the life of the real
engineering system or product. Indeed, understanding of the
limitations of a given model should grow throughout
the application phase of a project. The process is not
complete when the decision is made to accept a model for a
particular application, and model management systems and
documentation procedures must allow for this. Regressive
testing of models within the iterative process of model
development is as important as regressive testing of any other
software (see e.g. [2]) and model documentation systems
must allow for possible changes and updating throughout the
life cycle of the system represented by the model.

Model documentation must take account of the needs
of those encountering that specific model or sub-model for
the first time. Diagrams are needed and these must be
consistent with documentation of the corresponding real
system. Brade [1], as well as emphasising the need for
more meaningful documentation and criticising the present
lack of quality assurance as an integral part of the model
development process, discusses the potential and current
limits of existing guidelines, such as the Verification,
Validation and Accreditation Recommended Practices Guide
of the US Defense Modeling and Simulation Office [3].
He believes that a structured approach to the collection
of information and documentation during the model
development process can provide a stable foundation for
verification and validation and opportunities for effective
and efficient reuse of models. These ideas are closely linked
to the concept of the “Verification and Validation (V&V)
Triangle’ which Brade has presented as a central part of
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his doctoral thesis [1]. The V&V Triangle provides a
foundation for planning and implementing all aspects of
verification and validation, and provides an overview of
desirable verification and validation objectives and possible
techniques that can be used to achieve those objectives. This
methodology also allows features of an executable model to
be traced back systematically to the model requirements
specification.

Many tools for modelling and simulation provide only
basic facilities for the processes of model entry and the
running of simulations. Documentation within models
developed from these tools usually consists of comment lines
within code or annotations in graphical models. Recently
developed simulation and modelling tools put more emphasis
on model management issues and allow access to published
libraries of sub-models and the creation of new libraries.
Object-oriented methods are relevant for this and object-
oriented software environments may offer some advantages
for the development of reusable and readily extendable
models.

Brade [1] suggests that, for documentation to be
fully effective at reasonable cost, software is needed that
automatically records changes made at each stage of model
development since it has to be accepted that, if attempted
manually, documentation of the model development process
is often ineffective, usually incomplete and frequently full of
errors.

The assessment of overall model credibility remains a
problem even after the successful application of internal
verification and external validation methods, and this
presents problems for documentation of overall model
quality and the model testing procedures. V&V methods do
not prove that a model and the corresponding simulation
results are suitable for the intended application; they merely
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suggest that one can apply the model until new evidence is
found that indicates a further problem. Extensive statistical
data evaluation of simulation model output may be helpful
in identifying problems that were not detected in earlier
external validation processes and, in future, more highly
automated methods of error detection may prove to be
helpful. Brade and Waldner have described a tool of this
kind for automatic detection of violations of desired
behaviour within a model [4]. Although developments that
may lead to a more automated approach to external
validation are of considerable interest, the current view is
that automated methods of analysis cannot entirely replace
human review and ‘face’ validation techniques, in which
experts familiar with the behaviour of the real system carry
out more subtle and intuitive testing procedures on the
simulation model. Adequate and detailed documentation of
the results of these manual testing procedures is, of course,
of vital importance.

9.2.2 Model libraries and their organisation

A library of sub-models for a specific field of application
must be designed not only to meet current requirements but
also possible future requirements [5]. A collection of sub-
models should be built up, each of which can be tested
separately for a range of conditions, documented and made
available for wider use. Thus sub-models are best designed,
from the outset, as building blocks for a family of applications
rather than for a single project with internal verification and
external validation processes applied, initially, at the sub-
model level.

Establishing a taxonomy of models within a library
becomes important if the number of models is large [6].
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This commonly involves generic classes and specific sub-
classes of models, and the chosen structures should also,
ideally, allow movement between energy domains. This
could, for example, allow one to change easily from
consideration of electrical motors to hydraulic motors in a
design application.

Model reuse can reduce the development time of new
models and a model library may allow engineers to choose
sub-models from a number of possible representations
involving different levels of detail. Those who use a library
for development of a new model must be offered a limited
number of reasonable alternatives for the representation of a
particular element so that they can make an informed
decision about the sub-model that best meets their needs [7].
Any library of models must therefore be fully supported by
adequate documentation in order to allow full confidence in
a modelling process based on model reuse to be established.

As with other aspects of model documentation, the
information about a library sub-model should include the
theory used in the development of the model (with sources
referenced properly), the assumptions made, testing and
external validation procedures applied, and information
about the range of applicability. Although models are always
developed with a particular application in mind and therefore
involve some subjective elements, they can be made
potentially useful for other applications if assumptions and
limitations are clearly stated. This information must all be
accessible to others. Also, awareness of model limitations
inevitably fades with time and good documentation is
essential for the developer, even if others are not immediately
involved.

There are also broader issues of software design that can
facilitate reuse of sub-models. One example is the extent to
which the object-oriented approach of general purpose
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programming languages can be applied in specialised
packages for modelling and simulation. Also, some
simulation software such as Modelica® [8] and associated
packages such as Dymola allow non-causal modelling and
facilitate the creation of models in declarative style. This
may allow an interface to be defined for a sub-model in terms
of a pair of variables which are not specifically associated
with an input or an output.

In addition to environments, such as Modelica® [8], which
provide standard model libraries and facilities for developing
new libraries, other widely used software packages can be
extended with tools for physical modelling in various
domains. One example is the Simscape™ package [9], which
provides the MATLAB®/Simulink® [10] user with access to
powerful facilities for the integrated modelling of systems
involving a number of physical domains. Simulink® itself
includes some standard library sub-models and through
Simscape™ there are additional standard libraries involving
sub-models for components in specialised fields, including
mechanics, electronics and hydraulics. There are also
libraries for mechanical transmission systems and for
electrical power systems. Using the Simscape™ language,
which is based on MATLAB®, sub-models can be created
together with equivalent Simulink® blocks for new physical
components that do not appear in the standard libraries.
Similarly, it is relatively straightforward to create entirely
new libraries using the facilities of Simscape™ and to extend
existing libraries so that specialist models can be deployed
across an organisation or made available to subcontractors
in large projects. Signals and parameters can have units
within the models in Simscape™ libraries and there are also
facilities for the automatic conversion of units which can be
important for multidisciplinary projects involving several
design teams. Additional facilities that can provide links
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with other widely used design tools may be included.
For example, in the case of the mechanics library
(SimMechanics™), the facilities include translators for
SolidWorks®, Autodesk®nventor® and Creo Parametric®
(formerly ProENGINEER®) to allow use of well-established
CAD tools in the definition of models.

In using a model library, the model developer has to
keep the intended application firmly in mind. A model is
assembled in an iterative way using the three-layered
structure discussed in Chapter 3 and selecting appropriate
sub-models at each layer. The layered approach also has
significance in terms of model documentation and Breunese
et al. [6] describe an approach that could allow more useful
forms of documentation to be developed. Those authors
advocate an approach based on the layered type of model
structure outlined in Chapter 3, involving a top layer in
which the system is considered as a set of physical components
or real-world objects, a second layer in which the system is
viewed as a set of physical concepts and the third level
that depends on mathematical relationships. These three
layers can be seen as representing three different viewpoints
that are all important in the context of modelling. As
discussed in Section 3.3, the detail necessary for descriptions
at the physical-concept level depends on the application.
Factors to be considered might involve, for example,
the range of frequencies or magnitudes over which a
high level of fidelity is required for certain variables of
the model.

Within an organisation, guidelines are needed for
formalising the information that must be provided before
a model or sub-model is accepted for inclusion in a library.
This should be consistent with the guidelines for
documentation discussed in Section 9.2.1.
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9.3 Multi-formalism in simulation
and modelling

As mentioned in Chapter 3, it is often useful, especially
in large and complex projects involving several design
teams, to be able to use different tools and languages to build
models of different sub-systems. Individuals may then
develop and apply a sub-model using tools available within
their own discipline and introduce that as an element within
some larger model. The Virtual Test Bed (VIB) [11],
discussed in Chapter 3 and mentioned again in the context of
real-time simulation in Chapter 8, facilitates integration of
sub-models developed using widely used tools. Entities
can thus be exported from other software environments
and incorporated into more complex system models within
the VTB.

In one approach available with the VTB, there is no need
for translation since the process is based on the use of
‘wrappers’. Wrapped models based on sub-models created
using software tools such as MATLAB®/Simulink® or ESL
retain their original behaviour after being imported into the
VTB environment.

It is also possible to bring sub-models into the VTB
environment from Modelica® or VHDL-AMS using the
Modlying software application [11], which involves a
translation process. Modlying first uses software known as
the Multi-Translator to convert the given sub-model into a
universal XML-based specification. That XML specification
is then translated into the form required by the VTB.

A third option for integrating sub-models from
other software environments uses the COM interface
provided by some software tools (such as MATLAB®) to
integrate models into the VTB using a co-simulation
approach (see e.g. [12]).
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9.4 Generic models

Generic models are a development of the concept of a model
library. A structure that is generic allows reuse of simulation
software for a wide range of different projects with relatively
minor reorganisation. Established examples of such a generic
modelling approach can be found in application areas such
as automotive engineering (e.g. [13] and [14]), gas turbines
(e.g. [15] and [16]), electro-optic sensor system models ([17]
and [18]) and spacecraft [19].

One example that illustrates the use of generic models very
clearly is the European Space Agency (ESA) Generic Project
Test Bed (PTB), which involves creation of reusable simulator
architectures for spacecraft design [19]. In addition to
spacecraft sub-system models, the architecture allows for
ground-station models and also some aspects of the
environment. The PTB is capable of real-time simulation and
hardware-in-the-loop operation.

Making a model generic, even in a specialist application
area, can present difficulties. The essential requirements of a
generic description must be identified first and a suitable
framework established to give the necessary flexibility to
allow a number of more specific needs to be satisfied by that
generic representation.

As already discussed, a system may need to be represented
at several different levels of detail at different stages of a
design project and this must also be possible with the generic
approach. This means that sub-models, representing specific
parts of the complete physical system, may be needed at a
number of levels of complexity, ranging from purely
functional forms at the initial stage to highly detailed and
fully validated models in the later stages of the project. The
models at different levels of resolution need to be mutually
calibrated in some way. Ideally, the structures for the different
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levels of model will be directly related and the models at
different resolutions will form an integrated group. The
relationship between the different levels of each sub-model
within the generic structure must be fully understood
by users.

The most important benefit of the generic approach is
likely to be a faster and less costly development process for
new models compared with the traditional approach, which
involves the development, on a one-off basis, of a specific
new model for each new design task. Other benefits are likely
because the development and application of a generic model
demands a more systematic and rigorous approach to issues
of model validation, together with better documentation.

9.5 Validation of library sub-models
and generic models

Issues of model quality and model validation cannot be
separated from other processes of model development. The
modelling of a real system is an iterative process in which
testing, evaluation and tuning are of central importance and,
whatever the context, it is essential to ensure that the model
being used is appropriate for the purpose. An application
based on a model that does not have the necessary quality is
bound to lead to difficulties.

Clearly, the elements within model libraries must have
information about their purpose and limitations. Without
good documentation, such libraries are of little value. In
some types of commercial or defence-related applications,
libraries may involve precompiled sub-models for which
source code is not provided. This necessitates the use of a
simulation language having special features and one
example of such a language is the experimental OOSlim
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object-oriented simulation language ([20] and [21]). Good
documentation is clearly very important in such cases as
there is no opportunity for users to investigate directly the
details of internal organisation of the sub-models.

Some general issues of validation for generic models
are considered in [18] where the validation of a generic
electro-optic sensor system model [17] is discussed. The
generic model is, in this case, intended for use in the design
of specific types of electro-optic systems such as infrared
search and track systems, missile warning systems and
thermal imager systems. Although this generic model appears
quite specialised in terms of the application, the central ideas
and methodology used in its development are applicable to
generic models in many other fields.

The approach adopted for the development of the
generic model for electro-optic sensor systems involved
developing models of some specific electro-optic sensor
system applications as an integral part of the process of
developing the generic model. Particular configurations of
the generic model could then be evaluated and tested against
these self-contained specific models for the same application.
As confidence in the generic model increases, new modules
may be added to the generic structure, but such modifications
have to be comprehensively tested for the particular
configuration of the model investigated in the earlier tests
and this should be based on regressive testing methods.

In applying a generic approach to model development, a
need may arise for a model of a new application, not
previously considered, using an available generic structure.
This introduces new challenges which encourage reuse of
established sub-models but further test the generic philosophy.
If the approach fails at any point with a new application,
then either a flaw has been found in the engineering design or
a limitation has been found in the generic model. In the latter
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case, the generic model has to be modified and its capabilities
extended.

9.6 Educational issues

Engineers are usually introduced to mathematical modelling
and encounter computer-based modelling and simulation
methods early in their university education. However, topics
relating to model management are completely neglected in
many courses and most students seldom have to give serious
thought to what constitutes a simulation model that is fit for
purpose. Indeed, all issues of model quality are often glossed
over in a superficial fashion and the teaching often stops
with the formulation of equations from physical laws and
principles or with linear models obtained experimentally by
system identification and parameter estimation methods.
Also, students often do not make the vitally important link
between design success and model quality and fail to
appreciate that correction for model inadequacies at a late
stage in a project can lead to major additional costs and
delays in completion.

In the words of Hardy Cross, a former Professor of Civil
Engineering at Yale, ‘. . . an important duty of teachers is to
force students repeatedly back into the field of reality and,
even more, to teach them to force themselves back into
reality’ [22]. In a modelling and simulation context,
students must develop an understanding of the limitations of
models and this has to begin at an early stage in their
education and training. As part of that process, they must be
introduced to the idea that models need to be properly
managed and they must get into the habit of documenting
models and the details of all the model testing processes that

they apply.
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The guide produced in 2007 by the UK Royal Academy of
Engineering [23] and mentioned in Chapter 1 puts particular
emphasis on the importance of integrated system design
skills for all engineers. It presents a challenge to
universities to develop courses that not only teach the
fundamentals of an engineering discipline but also give their
graduates the abilities to apply sound engineering principles
to complex design problems involving more than that one
specialist area.

Degree courses must cross traditional boundaries and
include not only a sound foundation of theory but also
realistic design exercises involving real engineering
applications that have the potential to break down human
barriers and encourage creative and innovative solutions.
Modelling and simulation methods are of central importance
for this approach to engineering education, just as they are
for practical integrated system design.

Student exposure to modelling should range from
initial scoping of problems, involving back-of-the-envelope
investigations, through combined experimental and simulation
studies of laboratory-scale hardware, to group project activities
with students who have other specialisations. This may involve,
in the later years of their courses, design projects based on
truly integrated systems and may include virtual prototyping,
embedded system design and hardware-in-the-loop simulation
with due attention given to the use of model libraries and
generic models. Careful management of the modelling process
becomes vital to the success of the project and needs to be
maintained throughout the design and development phase,
through to prototype testing or commissioning. Students must
start thinking in these terms from an early stage in their training
and this means that they must be exposed to modelling and
simulation repeatedly and creatively from the earliest stages of
their engineering education.
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10

Further discussion

Abstract: This chapter brings together ideas presented and
discussed in earlier chapters and discusses some areas for
further research. It is concluded that tools for the efficient
development and testing of physically based dynamic
models are of central importance for a model-based
concurrent approach to the design of integrated engineering
systems. These tools include methods for forward and
inverse simulation, model management, sensitivity
analysis, system identification, parameter estimation,
model optimisation and partial-system testing. Topics for
further research within some of those areas are identified.

Key words: model management, research, model
limitations, model quality.

10.1 A summary of some strategic
issues in the modelling and simulation
of integrated systems

Complex engineering systems, involving closely integrated
elements from different engineering disciplines, became
increasingly important during the last two or three decades
of the twentieth century, initially in the aerospace and defence
sectors but increasingly in other areas as well. Now integrated
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systems applications are becoming commonplace in fields
such as the automotive industry, marine engineering,
electrical power generation and distribution, and chemical
and pharmaceutical process engineering. Within all these
areas a multidisciplinary and model-driven concurrent
approach to design is taking over from traditional sequential
design procedures. Benefits arising from this more concurrent
approach, if applied correctly, include earlier detection and
correction of design flaws, and new possibilities for
optimisation at the level of the complete system.

Because of the central role of modelling and simulation
techniques in integrated system design and within computer-
aided engineering in general, a strategy is needed to ensure
that model-based design methods are applied appropriately
so that system development times and costs can be reduced.
Simulation techniques do already offer advantages in the
development of new products through providing a faster and
more cost-effective approach compared with the use of
physical prototypes alone. However, current practice in
system modelling and simulation within many organisations
still lacks coherence and clarity in terms of strategy. The
ad hoc approach often adopted contrasts strongly with
accepted procedures in software engineering where rigorous
processes of testing, documentation and version control are
an integral part of the development cycle in most
organisations. As pointed out in Chapter 9, universities have
an important part to play in properly preparing young
engineers for careers in which modelling and simulation
methods will be of central importance and major changes are
needed in the approach to modelling and simulation within
most present-day engineering courses.

One key issue is that, in the modelling and simulation of
any complex system, it is essential for all involved to have a
full understanding of how the model is to be applied. This is
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especially important when a project includes several teams
and involves people from different engineering disciplines.

The purpose of a model may also influence the type of
description needed. It is usually important in engineering
applications to retain as much information as possible about
the corresponding real system and physically based models
may therefore be preferred. This is especially true in a
multidisciplinary design environment where engineers have
widely different backgrounds and experience, and where
models and computer simulations provide an important
means of communication about technical issues.

The types of applications mentioned in this book show
that, in addition to displaying nonlinear behaviour, most
credible physically based models of engineering systems
involve significant uncertainties in the early stages of their
development. Important simplifications may also have to be
introduced, often for reasons of computational complexity,
if the model is to be useful for a design application or in the
development of a real-time system simulator. Internal
verification, external validation and testing of such models
then become important issues.

Although experimental modelling techniques and the ideas
of system identification and parameter estimation are usually
associated with the modelling of an existing system, these
methods can also be useful within the processes of design.
When used as a tool for refinement of physically based
models, system identification techniques also need to provide
an indication of the accuracy of parameter estimates and of
the validity of the model structure. In parametric models,
questions of accuracy can be closely linked to issues of
numerical identifiability and thus to experimental design.
However, in many cases, especially with nonlinear parametric
models, establishing the accuracy of estimated quantities is
not straightforward. In the case of non-parametric models,
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useful insight concerning the range of validity of an overall
model can be gained from the use of frequency-domain
measures such as coherence.

Following the successful application of identification and
parameter estimation methods, simulation tools can be used
in the evaluation of the resulting models and for the
assessment of competing hypotheses, even in cases where
model uncertainties remain. Such an approach can lead to
the formulation of new experiments and to a further stage of
model refinement, if that is considered necessary for the
intended application.

All models have limitations and one aim in applying
external validation procedures must be to define properly
and attempt to understand those limitations. Practical
validation investigations can cover only a finite, and often
relatively small, number of test cases. Attempts should
therefore be made to establish confidence in a model so that
its performance can be recognised as being reasonable for
the specific objectives associated with the application, rather
than trying to establish its validity or quality in a general
way. An additional practical problem is the fact that
quantitative measures of model credibility are hard to define
for complex multi-input multi-output models and, as models
become more complex, there are increasing problems of
visualisation of model and system behaviour. New methods
are needed for displaying results efficiently for multi-output
situations and for models where there can be strong
interactions between parameters. It is believed that the type
of polygon diagram discussed in Chapter 7 may offer
interesting opportunities for new types of display. One
advantage of that approach to visualisation is that it is very
flexible in terms of the comparisons that are possible. For
example, these diagrams can allow results of sensitivity
analysis to be displayed in a simple and efficient fashion, and
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are also appropriate for use with deterministic measures of
performance, such as overshoot magnitudes or frequencies
of oscillations.

In addition to specific modelling techniques and simulation
methods mentioned previously, some emphasis has also been
given in this book to the reuse of sub-models and to ideas
associated with generic models. These topics are particularly
important in the modelling of complex systems, especially
when the model is being developed using physical principles.
Many of the topics mentioned in earlier chapters are still the
subject of ongoing research and development work, and it is
appropriate to highlight a few that may be particularly
significant in future.

10.2 Research and development work
on modelling and simulation methods
for integrated system applications

Traditionally, most research in the field of continuous system
simulation has been concerned with improved numerical
methods and with the development of enhanced simulation
environments. These topics are still important and areas
where there is significant research of this kind include the
development of improved methods for the numerical solution
of ordinary differential equations and differential algebraic
equations, efficient treatment of discontinuities, improved
methods for model reduction and the development of
improved methods for user-computer interaction at run time.

However, one important feature of present-day research
on simulation is an increased emphasis on some of the
broader aspects of the model development process (such as
bond-graph and other energy-based modelling procedures,
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issues of causality in simulation models, model validation
methods and systematic processes for assessing, correcting
and documenting models that are used in engineering design).
These topics are all important in the move towards more
efficient model-driven design methods.

Issues of experimental design, which are already recognised
as being very important for the successful identification of
systems, are also of value elsewhere within the model
development process and especially in the external validation
of simulation models. Assessing the adequacy of a model for
a specific use is a difficult task and the problem of upgrading
or tuning a model which is shown to be inadequate for a
specific application raises many questions. Terms such as
‘model testing’ or ‘model evaluation’ are probably more
appropriate than the word ‘validation’, which may give a
false impression of model capabilities. As mentioned earlier,
theories can be proved to be wrong but cannot ever be proved
to be right and the ‘unknown unknowns’ mean that there
can never be a simple conclusion in the processes that we
conventionally call ‘model validation’. This is not a problem
that can be ‘solved’ through further research, but there is
nevertheless valuable insight that can be gained from further
research and development work in this general area, and this
is an area still attracting much attention in the aerospace and
defence sectors.

Inverse systems also receive significant attention in this
book and are the subject of ongoing research. Areas that
require further attention include improving the computational
efficiency and speed of inverse simulation methods, and
ensuring that inverse simulation tools are more user-friendly
and can be applied successfully by non-specialists.

Issues of robustness and convenience of the user interface
also arise in the context of evolutionary optimisation
methods. For example, genetic algorithms are potentially
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important for the automation of optimisation procedures in
model development. However, these methods could, at their
present stage of development, only be applied routinely in an
industrial design environment if there was a significant
period of training for those involved. Similarly, the successful
application of the genetic programming approach depends
critically on choosing appropriate functions within a function
library and this requires good understanding of the likely
physical phenomena in the system under investigation.
Therefore, at present, genetic programming is unlikely to
provide any kind of fully automated approach to the
development of complex models, and more research on this
topic is needed.

Good management of models is essential for the success of
design projects and user-friendly methods for building up
system and model documentation are very important. Some
human-factor issues that arise in model management at
present could well be reduced or eliminated by the use of
layered structures in documentation systems where an
individual could seek information at different levels of detail
and for different levels of prior knowledge. Development of
appropriate management systems for this might well
necessitate research collaboration between design engineers,
computer scientists, psychologists, educationalists and
management specialists. Potential benefits of improved
systems for model management within a model-based design
process could be a reduction in design risks, especially in
terms of cost inflation during the design and development
process, and possible late delivery.

It is generally accepted that an integrated approach to
design should, ideally, involve use of generic forms of
description and reusable sub-models. Much remains to be
done in many application areas to make these ideas more
widely applicable. As outlined in Chapter 9, established
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examples of such a generic modelling approach can already
be found in a number of application areas, but there are
many fields where little has been achieved in this respect.
Object-oriented methods are relevant both for this and for
assisting with sub-model reuse, and some specific software
environments may offer significant advantages for the
development of reusable and readily extendable models.
Further research and development work is clearly needed on
the principles of generic models. The practical advantage of
adopting a generic approach also needs to be evaluated
through additional applications in new areas.
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Appendix Al: models
of an unmanned underwater
vehicle (UUV)

Al1.1 An outline description of
the basic nonlinear model of the
vehicle

The equations of motion of an underwater vehicle may be
represented either in body-fixed or earth-fixed frames of
reference (see e.g. [A1.1]). Using standard notation, the
general body-fixed vector representation involves the
nonlinear equations [A1.1]:

Mv+ C(v)v + D)o +gn) =1 (A1.1)
n=J(nv (A1.2)

Here the matrix M is the inertia matrix, with added mass
effects included. The matrix C(v) involves Coriolis and
centripetal terms, again with added mass effects included.
The matrix D(v) represents damping terms, g(7) is the vector
of gravitational forces and moments, 7is the vector involving
all externally applied forces and moments and J(7) is the
transformation matrix which relates the body-fixed and
earth-fixed coordinate systems.

The body-fixed frame involves the six translational and
rotational velocity variables, as defined by the vector v(¢) =
[u(t), v(t), w(t), p(2), q(t), r(t)]7, relative to a constant velocity
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coordinate frame which moves with the ocean current
velocity vector u,.

The six components in the global reference frame are
defined by the vector n(t) = [x(t), y(t), 2(2), @(t), O(¢), w(t)]".
Here the angles ¢(z), 6(¢) and y(#) are related to the body roll,
pitch and yaw variables through the Euler transformations.
The external forces and moments given by the vector
7=1[X,Y, Z, K, M, N|" include gravitational, buoyancy,
hydrodynamic and propulsive terms and the inputs providing
the external forces and moments for control of the vehicle
are generated by control surface deflections at the rudder
(6,(2)), port bow plane (J,,(t)) and starboard bow plane
(Ops(2)), the stern plane (8,(¢)), and forces proportional to the
propeller speed (n(¢)) and buoyancy adjustment (B(z)) ([A1]
and [A2]).

A set of six nonlinear equations for surge, sway, heave, roll
pitch and yaw motion can then be derived. The parameters
for the specific case of the U.S. Naval Postgraduate School
(NPS) AUV 1I vehicle are as given by Fossen [A1] and these
values are, in turn, based on information provided by Healey
and Lienard [A2]. This vehicle has a length of 5.3 m and
mass 5454.54 kg, and the total number of mechanical and
hydrodynamic parameters for the model is well in excess of
100. Relevant software developed by Fossen and his
colleagues at the Norwegian University of Science and
Technology is available for downloading [A3].

The UUV model may be converted into standard state
space form from Equations (A1.1) and (A1.2) to give:

[ n ]= 1 Jmv (A1.3)
v M~ {-(C(v)-D(v))v - g(n)+ 7}

This equation is in the standard state-space form for a
nonlinear model, i.e.:
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x = F(x,u) (A1.4)

where x is the state vector and u is the input vector [A4].

Changes to the model given by Healey and Lienard [A2]
had to be introduced to make the simulation model behave
appropriately for the operating conditions and manoeuvres
of interest. These changes in the model of Healey and Lienard
are associated with the fact that the published model
equations were intended originally for use in the development
of nonlinear control systems for manoeuvres involving
specific ranges of forward speed [A2]. Use of the same model
for open-loop and manual control investigations over a
greater speed range led to difficulties and reinforces points
made elsewhere in this book about problems likely to be
encountered when a model developed for one application is
used in other investigations.

For the purposes of modelling, it has been assumed that
the UUV has one propulsive force, although the vehicle has
two propellers. The thrust produced is represented by the
bilinear thruster model suggested by Fossen [A1]. This
involves a relationship for propeller thrust of the form:

T=T,lnln+T,nlu (A1.5)
where:

T,,=pD%oy (Al.6)

T, =pDa, (A1.7)

o, =0.12 - 0.50, (A1.8)

and where D (propeller diameter) = 0.3 m, o, = -0.16 and
the corresponding value of o = 0.019. These values were
chosen to provide the surge velocity profile required for the
NPS AUVII [A2]. Since the efficiency of the propeller is likely
to be of the order of 70 per cent, the force developed by the
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propeller along the longitudinal axis of the vehicle is
given by:

X

prop = 07T =0.7(T,, Inln + T, |nlu) (A1.9)

Since the two propellers operate together in a counter-
balancing fashion, the rotational effects of the propellers are
assumed to be negligible in the model.

The model has been further extended by my colleague Dr
E. McGookin to include the load on the motor shaft due to
rotation of the propeller in the water [A4]. This representation
involves considering the propeller as a rotating disc. The
input is the torque to be applied to the propeller to balance
its drag and inertia components. Both this torque and the
drag torque can be combined to give an equation of motion
for the propeller of the form:

T

SHAFT

=L +% pC 1R, (A1.10)
where Rp s is the radius of the disc used in the rotating disc
approximation referred to above, the parameter Cj is the
associated drag coefficient, I, is the moment of inertia of the
propeller, 7 is the rotational speed of the propeller and p is
the density of water. Therefore, the load torque on the
propeller, T; 54p, 1s calculated as:

.1
Tooap =~ Tspapr = =171 = zpCDanDISC3 (A1.11)

This expression, which provides the load on the shaft,
involves only one uncertain parameter which is the drag
coefficient, C,. However, a disc rotating about its longitudinal
axis has a drag coefficient of 1.369 x 1073 [AS] and, in the
absence of any more precise value, this has been adopted.
Note that this representation is approximate because it takes
no account of added mass or the shaft dynamics [A4].
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Figures A1.1 and A1.2 show how the vehicle responds when
it starts from an initial condition with all state variables set to
zero and a propeller input of 1500 rpm applied at time # = 0 s.
As may be seen in Figure A1.1, the surge velocity increases
from zero to a steady value of about 3.8 m/s. At time ¢ = 10 s,
a rudder deflection of 20 degrees is applied as a step function
and an immediate response that can be seen in terms of the
yaw rate and yaw variables. The sway velocity also starts
to change at that time and reaches a steady value of about
0.9 m/s. It should be noted that because there are no inputs
applied to the other control surfaces, the pitch changes in
response to the propeller and the rudder inputs, and reaches a
steady value of about 20 degrees, with an associated steady
heave velocity of about -0.05 m/s. This means that in the
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earth-axis system the vehicle is moving upwards at a constant
rate from about time ¢ = 20 s and this may be seen in Figure
A1.2 where the vehicle trajectory is seen to take the form of a
rising spiral.

Al1.2 A linearised model describing
diving motion

A linearised dynamic model describing diving motion of the
underwater vehicle model involves a third-order system with
the following equations [A1]:

M‘Z _ z 0 M5
q I,-M, I,-M, q L,=M, (A1.12)
0 |= 1 0 0 0 |+ 0 0,
3 0 —u, 0 z 0
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where M, M, and M; are hydrodynamic constants, I, is
moment of inertia vehicle about the y axis, W is the weight
of the vehicle, BG . is the vertical distance between the centre
of buoyancy and the centre of gravity of the vehicle, and #,
is the forward speed of the vehicle. The state variables g, 0
and z have the conventional meanings, as given in Section
A1.1 above, and represent pitch rate, pitch angle and vertical
displacement respectively. The variable &, represents the
stern plane deflection.
In simplified form, this equation becomes:

q o, o, 0 q b1
0 1=l 1 0 o] 6 |+ o [6.0)  (AL13)
2 0 —u, 0 2 0

and for typical operating conditions, using parameter values
derived from [A1] and [A2], a4, = -0.7,a,, = -0.3, u,=1.832
m/s and b, = 0.035. Figure A1.3 shows a typical response
from this model in terms of the change of pitch angle 6
following a step change of stern plane deflection 4.

The relationship between the stern plane deflection input,
J,, and pitch angle, 6(s), may be expressed [A1] as a transfer

function:
M5
os) b _ I,-M
55 S-aps—a, , M 5+B—ZW (A1.14)
Iy_ q Iy_Miz

327



I Modelling and simulation of integrated systems in engineering

0.35 T T T T T T T T T

0.3 i

0.25 i

0.2 1 E

0.15 E

Theta (rad)

0.1 .

0.05 - i

O T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Time (s)

Figure AL.3 Typical response of the linearised UUV model
: showing the change of pitch angle #following a
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and for the depth:
Mé
A b _ LM, A1.16
8.(s) s(s*—a,s—a,) , M BG.W (Al.16)
s(s* — T s+ —2 )
I -M., I —-M.
y q y q

The transfer functions for the pitch and pitch rate variables
involve the characteristic equation:

M
M BGW (A1.17)
I-M, I -M,

q

2 -
sT—a,s—a,=s

and the natural frequency for pitching motion is therefore
given by:
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L=+, = BG.W (A1.18)

q

with relative damping factor for pitching motion given by:

7= —d4 _Mq

2a, 2,/BGW(I - M,)

(A1.19)

Thus the period of pitching oscillations will be affected
directly by the effective moment of inertia term (I, - M)
and inversely by the weight of the vehicle W and the
distance between the centre of buoyancy and the centre of
gravity (BG,). A reduction of the effective moment of inertia
or an increase in either of the other two factors will thus
increase the natural frequency of the oscillations. The
damping of the pitch response depends directly on the
hydrodynamic coefficient M, and inversely on the terms
(I, - My), Wand (BG,).

y

A1.3 Model of the electrical drive
system

The model of the underwater vehicle, outlined above, was
combined with a model of an appropriate electrical drive
system. Figure A1.4 is a schematic diagram of the complete
UUV system model, showing the interactions between the
electrical sub-models and the vehicle model [A4].

The electrical sub-model of Figure A1.4 includes a battery
which is connected to a DC to AC inverter, involving a three-
phase six-switch network producing a variable-frequency
AC waveform. This inverter is, in turn, coupled to an
induction motor. The controlled switches in the inverter are
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operated by a pulse-width modulated controller switching at
a frequency of SkHz and the controller incorporates
proportional plus integral (PI) control for pulse timing of the
converter switches in order to maintain a set current level in
the motor. Switch timings are determined through comparison
of sinusoidal and triangular waves. The relative amplitudes
of the two waveforms are adjusted by the feedback system
and switching occurs when the sine and triangular waves
intersect. High-frequency harmonics in the AC output from
the converter are filtered out and the result is then supplied
to the induction motor as input. The motor is connected
directly to the propeller.

Al1.4 References

[A1] Fossen, T.I. (1994) Guidance and Control of Ocean
Vebhicles, Wiley, Chichester, UK.

[A2] Healey, A.]. and Lienard, D. (1993) ‘Multivariable
sliding mode control for autonomous diving and
steering of unmanned underwater vehicles’, IEEE

330



Appendix Al I

Journal of Oceanic Engineering, Vol. 18, No. 3,
pp- 327-39.

[A3] MSS. Marine Systems Simulator (2010) (online):
www.marinecontrol.org (accessed 19 September
2011).

[A4] Zenor, ].J., Murray-Smith, D.]J., McGookin, E.W.
and Crosbie, R.E. (2009) ‘Development of a multi-
rate simulation model of an unmanned underwater
vehicle for real-time applications’, in Troch, 1. and
Breitenecker, F. (eds), Proceedings of the MATHMOD
’09 Symposium, Full Papers CD Volume, pp. 1950-7,
Argesim, Vienna, Austria.

[AS] Hoerner, S.E. (1968) Fluid Dynamics Drag, Hoerner
Publications, New York NY, USA.

331






Appendix A2: numerical
methods for the solution of
ordinary differential equations

A2.1 Introduction

Although it is assumed that readers of this book have some
knowledge of numerical analysis methods, a brief summary
of some of the essential concepts of numerical integration is
provided here. Readers requiring more detailed information
about numerical analysis methods and especially the
numerical solution of ordinary differential equations should
use one of the many texts on the fundamentals of continuous
system simulation (e.g. [A1] to [AS]). Online user handbooks
and help systems provided with most modern software
provide information about methods available within specific
simulation tools.

Single-step integration methods, which are the basis of
many widely used algorithms, depend on approximating
derivative terms in a Taylor series by evaluating first
derivatives at a number of points within the current
integration step. If x(¢) is the value of the variable x of interest
within a given first-order ordinary differential equation at
the start of the integration step and x(¢ + b) is the value at the
end of the step, then:
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’ hz 14 hn
x(t+h)=x(t)+ bx (t)+5x (t)+---+

n!x”(t)+--- (A2.1)
where x’, x” and x” are the first, second and #th derivatives
of x(t). The value of the variable x at the end of the time
interval b is thus given by the value of x at the start of the
interval plus components from each of the derivatives of x.

Many methods of numerical integration are based on
Taylor series approximations which involve finite-difference
representations for the second-order and higher derivatives.
Methods may be classified, broadly, depending on whether
they are single-step or multi-step techniques and whether
they involve explicit or implicit formulae. In the explicit
approach, one pass through the formulae produces all the
required values, whereas in the implicit case, iterative
methods must be used to find a solution. Semi-implicit
methods are also available where the iterative approach
applies only to a sub-set of the values to be found. The order
of the method depends upon how the Taylor series is
truncated and this truncation gives rise to the truncation
error.

A2.2 Single-step integration methods

Single-step integration methods are widely used and involve
approximating the derivative terms in the Taylor series by
the first-derivative at a number of points within the
integration interval and taking a weighted average of those
values. The first-order Runge-Kutta formula (also known as
the ‘forward Euler’ method) is a simple example and is
obtained from a Taylor series with terms involving h* and
above removed. For this the derivative is evaluated at the
start of the step and is applied over the whole interval to
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provide the increment to be applied to x to give the
approximate value at the end of the step. An implicit
algorithm that is similar to this is the backward Euler method
where the derivative is a function of the variable x at the end
of the integration interval rather than at the beginning. These
ideas can be applied to more complex approximations. For
example, the second-order Runge-Kutta formula involves
removal of the Taylor series terms after the third (i.e. terms
involving h® and above), but in this case the derivative is
evaluated at the start of the step and at another point within
the integration interval. Implicit methods inevitably introduce
additional computational demands compared with the
explicit approach, but may have advantages in terms of
accuracy.

It should be noted that for methods that have a starting
point that is the start of the integration step, the initial value
of the relevant variable (x) and the initial value of the time (¢)
are both known. This means that no information is required
about values in previous steps and such algorithms are said
to be self-starting. One benefit of a self-starting algorithm is
that the integration step size can be adjusted without
reference to the step size in previous intervals, leading to
variable-step integration methods.

The truncation error depends on the integration step
size b and the error may be controlled through the choice of
this quantity. However, numerical stability issues also have
to be taken into account. As well as being more accurate,
implicit integration methods are also usually more stable
than explicit methods. Most single-step methods that involve
automatic variation of step-length give error bounds that
are more restricting than the corresponding bounds in terms
of stability. Explicit formulae can often give rise to problems
if the step size is too great and automatic variation of step
size can result in very slow speeds of solution. It should be
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noted that, although variable step length methods are
commonly used for many applications, fixed-step integration
is important for real-time simulation, as discussed in
Chapter 8.

A2.3 Multiple-step methods

Multiple-step integration methods use values from previous
integration steps as well as values from the current step. First
derivative evaluations from previous steps are stored and
provide a basis for estimating higher-order terms in the
Taylor series. One example of the multiple step approach is
the Adams-Bashforth method, which can involve either
explicit or implicit formulae. In most situations, use of an
implicit formula with a multiple-step method provides
improved accuracy compared with the corresponding
solution using an explicit formula.

One refinement of the multiple-step approach involves
use of a predictor-corrector approach. In such methods an
explicit formula (the predictor) is used to obtain a fairly
close approximation, which is then refined using an implicit
corrector formula.

Multiple-step methods are not self-starting as they require
values from previous integration intervals. Starting can be
achieved by using a single-step method for the first few
integration intervals before switching to the multiple step
approach. One benefit of the multiple-step approach is more
accurate assessment of the error, since stored information
from past steps can be used to provide improved error
estimates.

Variable-step integration presents more problems with
multiple-step integration methods than with single-step
methods, since stored values from previous steps may relate
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to a period when a different step size was being used.
Interpolation is needed to allow new values to be found that
are suited to the new integration interval.

A2.4 Problems of stiffness

Difficulties arise with models that involve both very fast and
very slow dynamics (i.e. models that have a wide range of
eigenvalues). Such models are said to be stiff and a number
of specialised integration algorithms are available for such
problems (see e.g. [A4]). The degree of stiffness in a model
depends on the ratio of the largest to the smallest eigenvalue
and, in a simple model involving a cascade of first-order sub-
models, this is represented simply by the ratio of the largest
to the smallest time constants. One widely used approach to
the solution of stiff problems is Gear’s method, which is a
predictor-corrector algorithm [A6].

A2.5 References

[A1]  Gear, C.W. (1971) Numerical Initial Value Problems
in Ordinary Differential Equations, Prentice Hall,
Englewood Cliffs NJ, USA.

[A2] Bennett, B.S. (1995) Simulation Fundamentals,
Prentice Hall, Hemel Hempstead, UK.

[A3] Matko, D., Karba, R. and Zupanci¢, B. (1992)
Simulation and Modelling of Continuous Systems,
Prentice Hall, Hemel Hempstead, UK.

[A4] Murray-Smith, D.J. (1995) Continuous System
Simulation, Chapman and Hall, London, UK.

[AS] Lee, H.]J. and Schiesser, W.E. (2004) Ordinary and
Partial Differential Equation Routines in Fortran,

337



I Modelling and simulation of integrated systems in engineering

[A6]

Java®, Maple®, and MATLAB®, Chapman and Hall/
CRC, Boca Raton FL, USA.

Gear, C.W. (1984) ‘Efficient step size control for

output and discontinuities’, Trams. Society for
Computer Simulation, Vol. 1, pp. 27-31.

338



Index

Page numbers in italic indicate sources of further information

20-sim simulation software xxv,
51,73,74, 82,274,275, 287
acslX simulation software xxiii,
72,74, 85
Activated sludge model 175, 196,
209
Actuator 9, 24, 44, 54, 88, 90, 91,
114, 122, 159, 244, 293
Aeronautical engineering 2, 20,
91, 92, 209
Aircraft
flight control 2, 20, 32, 179,
210, 264
flight mechanics 236-42
fly-by-wire 2, 20, 179, 210
model 52, 87, 181, 249-51
Algebraic (implicit) loop 62, 63
Amplitude limits 90, 91, 95, 159,
254
Analogue computer 98, 99, 127,
272
Analogue-to-digital converter 7,
68,69, 70, 71,271
Analogy
physical 39, 41, 42, 45, 47,253
signal 41-2,
component 41, 42-§
connection 41, 45-7

Annealing schedule 191, 193

Artificial neural network 8, 204,
249

Assignment statement 48, 53, 71,
72,77

Autodesk®Inventor® xxiii, 52,
83, 302

Automotive engineering 19, 20,
292,304, 314

Autospectrum 187

Backward difference formula
(BDF) xxi, 63

Biomedical engineering xxvii,
xxxi, 21, 175

Black box model 5, 8

Block diagram xi, xii, xiii, xiv, XV,
xvi, 25,27, 42,43, 48, 49,
50, 62, 65, 69,70,72,74,75,
99, 101, 102, 135, 136, 137,
138, 139, 140, 144, 145, 146,
148,151, 153, 197, 200, 201,
212,222,259,281,283

Boltzmann’s Equation 191

Bond-graph model vii, xi, 335,
39-51, 53, 63, 74, 81, 82,
129, 149-50, 162, 163, 247,
266,274,293, 309, 317

339



I Modelling and simulation of integrated systems in engineering

CAMP-G xxi, xxiii, 51, 82
Carefree manoeuvre 20
Causal stroke 48, 49
Causality xi, 48, 49, 50, 53, 63,
318
Characteristic equation 63, 66, 328
Chemical engineering 2, 23, 200,
213,276,292, 314
Chromosome 194, 195
Cloud computing 4
Coherence function 184, 185, 186,
230,232, 314, 316
Communicating sequential
processes (CSP) xxi, 274, 288
Complexity 4, 13, 19, 20, 22, 23,
24,29, 36, 80, 136, 168, 189,
248,258,304, 315
Component-based approach 149
Component layer, physical v, 38,
39,
Computational fluid dynamics
(CFD) 30, 51
Computer
-aided design (CAD) xxi, 24
analogue 98, 99, 127,272
control 20
digital 2, 6, 68, 69, 70, 272
hybrid 267, 272,279, 288
-supported cooperative work
xxi, 31, 33
COMSOL Multiphysics® xxiv,
52,82
Concept
design 36, 258
layer, physical vi, 38-51
Concurrent
design v, xi, 2, 6, 19, 24-31,
269,270,278, 291,292, 313,
314

multi-scale modelling methods
81,249
Condition number (of matrix) 173
Conjugate-gradient method 189
Container ship model 96, 244
Continuous
system simulation 48, 55, 58,
64, 65, 68,69,71,72, 84, 85,
262,290, 317, 333, 337
variables v, 6, 7-9, 51, 68, 69,
70
Control
computer-based 20
engineering xxiii, xxvil, 64, 82,
197,207, 213, 266
system application 69, 91
Controller 19, 20, 23, 28, 54, 100,
101, 193, 206, 212, 244, 245,
275,276,278,279, 282,283,
284, 288, 330
Convergence 935, 96, 191, 193,
273
Cooperative work, computer-
supported xxi, 31, 33
Coupling
data 79
natural 53, 79, 284
signal 53, 79, 284
Cramer-Rao bound 174
Crane 88
Credibility (of model) 130, 215,
217,219,229, 233, 238, 262,
264,298,316
Creo Parametric® xxiv, 52, 83,
302
Crossover frequency 243, 248
Crossover (in context of
evolutionary computing
methods) 194, 195, 198

340



Index I

Crowding clustering genetic
algorithm 203
CSSL specification 71, 72

D-optimal criterion 174
DASSL 63,
Data model 7, 8
Declarative modelling
style 53, 301
Design
concurrent approach v, xi, 2, 6,
19, 24-31, 269, 270, 278,
291, 313, 314
model-driven 23, 24, 26, 287,
291,292,293, 314, 318
multidisciplinary xxvii, 1, 4, 19,
20, 29, 30, 36, 51, 73, 74,
278,292,293, 301, 314, 315
object-oriented 14
optimisation 3, 52, 129, 194
preliminary stage 29, 36, 37
prototype 3,4, 6, 11, 12, 25,
26,27, 30,31, 78,79, 176,
178, 216, 269, 270, 276, 308,
314
sequential approach v, xi, 19,
24-31, 81, 249, 269, 292,
314
stepwise refinement 12, 30, 35,
36
teams, geographically
distributed 4, 31
tier 36, 37, 38, 49,
timescale 3
trade-off 3, 11, 216
Detail, level of (in model) 3, 4, 39
Detection problem 69
DEVS formalism xxi, 55, 67, 83,
84, 289, 290

Difference equation 54, 70, 71,
166
Differential
algebraic equations (DAE) xxi,
6,35, 54, 58, 61-4, 84, 92,
96-8, 317
equation, hybrid 64
equation, ordinary (ODE) ix,
xxii, 6, 7, 35, 41, 51, 52, 54,
57,58,63,75,85, 92,134,
150, 166, 200, 272,275, 317,
333-7,337
equation, partial 6, 51, 52, 337
evolution xxi, 196, 212
geometry 89
Differentiation
numerical 63, 87, 91, 92-3,
93, 94
index 63
Digital
computer 2, 6, 68, 69, 70, 272
signal processor (DSP) xxi, 31,
33, 83,274,276, 285
-to-analogue converter 7, 69,
70, 71,271
Discipline, engineering 2, 22, 24,
28,31, 37, 50, 78,292, 293,
308, 303, 313, 315
Discontinuity 35, 68, 85, 285
Discrete-event
model xxi, 6, 7, 16, 26, 35, 54,
55,67,69,72,73,76
simulation, 7, 55
Dispersion matrix 173, 174, 184,
185, 187
Documentation (of models and
simulations) xxviii, 36, 50,
75,218,229, 258,259, 261,
291,292,294, 295, 295-9,

341



I Modelling and simulation of integrated systems in engineering

300, 302, 305, 306, 314,
319
Domain
engineering 2, 24, 30, 36, 38,
39,41, 42,43, 47, 50,75, 77,
301
frequency xxiv, 130, 131, 180,
188, 207, 208, 210, 230, 232,
249-51, 316
time 126, 130, 131, 180, 207
Double doublet 188, 189
Doublet xv, 183, 184, 185, 186,
188
Dymola xxiv, 51, 55, 73, 77, 82,
290, 301

Education viii, 208, 235, 263, 291,
307-8, 319
Effort variable xi, 41, 42, 43, 44,
45,46,47, 53,150
Eigenvalue 75, 106, 108, 173,
251,270,273, 337
EISPACK 74, 86
Electric motor 22, 37, 39, 47, 282
Electrical
circuit xi, 9, 39, 56, 59, 61, 68,
96, 97
engineering Xxi, XXVvil, XXX,
xxxii, 2, 24, 26, 31, 52, 77,
78,278,283
power, generation and
distribution xxvii, xxxii, 2,
22,23,76,78,251-7, 276,
278,292,301, 314
Electro-optic sensor system models
228,263, 304, 306, 311
Elite genetic algorithm 195, 212
Embedded system 1, 2, 19, 20, 26,
29,273,274, 287,308

Encapsulation 77
Energy xix, 2, 11, 12, 21, 39, 40,
42,43, 44, 50, 53, 78, 190,
211,213,231, 247, 248, 293,
300, 317
Engineering
aeronautical 2, 20, 91, 92, 209
automotive 19, 20, 292, 304,
314
biomedical xxvii, xxxi, 21, 175
chemical 2, 23, 200, 213, 276,
292,314
control xxiii, xxvii, 64, 82, 197,
207,213, 266
disciplines 2, 22, 24, 28, 31, 37,
50, 78,292,293, 308,303,
313, 315
domains 2, 24, 30, 36, 38, 39,
41,42, 43,47, 50,75,77,
301
electrical xxi, xxvii, xxxi, Xxxil,
2,24,26,31,52,77,78,278,
283
marine 2, 78, 193, 217, 235,
244-6, 314, 331
mechanical 2, 22, 24, 26, 38,
41,77,278
software 78, 221, 228, 229,
292,314
system v, xxxi, 2, 7, 13, 16, 19,
20, 22, 32, 36-38, 64, 81,
126,167,212, 270, 277, 291,
297,311, 313, 314, 315
Entity (VTB) 79
Entity Designer (VIB) 79
Equation-based representation 54,
56-58,72
Equation-error system
identification 167, 181, 188

342



Index I

Euler
integration 284, 334, 335
transformation 322
European Simulation Language
(ESL) xxi, 73, 74, 85, 285,
289, 303
Event xxi, 6, 7, 16, 26, 35, 54, 55,
67-71,72,73,76,270, 282
Evolution
differential xxi, 196, 212
algorithm 91, 170, 194, 196,
197,202, 203, 204, 209, 318
Experimental
data 6, 167, 168, 169, 172, 199,
202,204, 231-2, 260, 294
design 13, 165, 168, 171,
173-5, 182, 183-8, 200, 204,
220, 243, 260, 315, 318
modelling v, vii, xvii, 12-14,
129, 130, 165-207, 207, 208,
240, 263, 315
Explicit integration 334, 335, 336
External validation xvi, 129, 183,
205, 215, 219, 220, 221-9,
231-2,232-4, 235, 240, 241,
243,247,254,256,257,258,
259,260, 262, 291, 295, 296,
297,298,299, 300, 315, 316,
318

Face validation 299
Fast Fourier transformation 180
Fault
detection 54, 228, 235,277,279
recovery 54, 277
FEMLAB 52
Field programmable gate array
(FPGA) xxi, 274, 275,
276,285

Finite element modelling 248
Fletcher-Reeves algorithm 189
Flight
control 2, 20, 32, 179, 210, 264
mechanics 236-42
Flow variable xxi, 41, 42, 43, 44,
45
Fly-by-wire 2, 20, 179, 210
Frame
rate 280, 281, 282, 286
time xvi, 276, 281, 282, 283
Frequency domain
methods xxiv, ix, 130, 131, 180,
188, 207, 208, 210, 230, 232,
249-51, 316
model reduction ix, 180, 188,
249-51
system identification xxiv, 180,
188, 207, 208, 210, 230, 232
Frequency sweep signal xv, 183,
184, 185, 186
Fuel cell 78, 200, 213
Function generator 98
Functional validity 223, 229
Fuzzy model 38

Gas turbine 14, 18, 78, 304, 310,
311

Gaussian Process models 232, 264

Gauss-Newton algorithm 189

Gene 194, 195

Generalised least-squares
algorithm 167

Generation (in context of
evolutionary algorithms) 195,
198

Generic

components and variables 41,
43, 44,47, 50

343



I Modelling and simulation of integrated systems in engineering

model v, viii, xxviii, 1, 14-13,
18,31,77,263, 291, 293,
300, 304-7, 308, 310, 311,
317, 319, 320

Genetic algorithm,

methods xv, xxi, 13, 165, 170,
194-6, 197, 203, 208, 212,
249, 266, 318

crowding clustering 203

elite 195, 212

Genetic programming vii, xxi, 13,
165, 197-202, 204, 212, 213,
319

Geographically distributed design
teams 4, 31

Global

identifiability 171, 172, 208

optimisation vii, 13, 167, 169,
170, 175, 188-207, 212, 230

Gradient-based optimisation 13,
95,130, 165, 167, 189, 200
Graphical methods for model and
system comparison 224, 225,
227,228,233, 247,255
Grey box model 3, 8, 248
Gyrator, generic 47, 48

Hamiltonian representation 48

Handling qualities, vehicle 88, 92,
125,178,179, 209, 248, 293

Hardware-in-the-loop simulation
viii, 6, 26, 29, 269, 270, 271,
275,276-7,278-9, 291, 304,
308

Helicopter vii, xv, xvi, xxvii,
xxviii, xxxii, 88, 90, 92, 94,
96, 104, 124, 125, 126, 127,
128,165,167, 176-88, 200,
205, 206, 210, 211, 215, 230,

232,233,235,236-43,257,
265,293
Hessian matrix 95, 189
Hierarchy 77
Hooke-and-Jeeves algorithm 190
Human
factors 30, 88, 202, 236, 270,
271,299, 319
operator 88,236,270, 271
Hybrid
computer 267,272,279, 288
differential equation 64
simulation 267, 272,279, 288
systems, models of 7, 23, 54, 64,
71, 83, 266
Hydro turbine xvi, 215, 251-7,
269, 278-9
Hypothesis testing 2

Idealisations, physically-based 37
Identifiability
global 171, 172, 208
numerical 13, 165, 171-3,
175, 181, 205, 208, 220, 315
pathological 13, 165, 171-3,
175, 181, 205, 208, 220, 315
structural 171, 172, 208
Identification, system vii, xvi, Xxiv,
XXV, XXVil, XXX1, xxxii, 1, 12,
13,75, 88, 135, 165-88, 195,
204, 205-7, 207, 208, 209,
210,211, 212, 213,
220,226, 227, 231, 232,
233, 236,237,239, 240,
248, 264, 265, 291, 307,
313, 315, 316, 318
Implicit
integration 334, 335, 336
loop 62, 63

344



Index I

Information matrix 172, 174, 175,
184
Inheritance 77
Integrated systems v, vii, viii,
xxviii, 2, 3, 14, 19, 204,
26,28, 79, 80, 81, 123,
205-7,292, 295, 308,
313-20
Integration
Euler 284, 334, 335
explicit 334, 335, 336
implicit 334, 335, 336
multiple-step ix, 334,
336-7
numerical 55, 58, 67, 93, 270,
273, 333-6
predictor-corrector 336
Runge-Kutta 110, 117, 284,
334, 335
self-starting 335
single-step ix, 333, 334,
334-6, 336
variable step 66, 270, 280, 335,
336
Interface, model 39, 42, 50, 52,
77,222,272,277,279, 282,
284,293, 301, 318
Internal verification 215, 219,
221-2,258, 291, 296, 297,
298,299, 315
Inverse
model vi, 9, 50, 87-91, 100,
101, 102, 106, 123, 124, 127,
152,242
simulation techniques and
applications, vi, vii, xii, xiv,
xvi, XXviil, xxxii, 9, 61,
87-124, 124,125, 126,127,
128,151-61, 189, 190, 234,

240, 241, 242, 291, 293, 313,
318

simulation, differentiation-based
methods 87, 91, 93-4, 94

simulation, integration-based
methods 87, 91, 93-4, 94,
95,127

simulation, optimisation-based
methods 91, 94-6

simulation, DAE-based method
92, 96-8

simulation, feedback methods
92,98-123, 151-61

simulation, sensitivity function
approach 94, 126

simulation, two-timescale
approach 94, 127

Jacobian matrix 94, 95

Kirchhoff’s laws 40, 46, 56, 97
Kiviat diagram 228

Lagrangian representation 48
Laplace transformation 64, 100,
136, 138
Layer
physical component 35, 37, 38,
302
physical concept v, vi, 38-9,
40, 302
Layered structure of model v, vi,
35, 36, 37, 38, 302, 319
Least squares minimisation 167,
189, 249
Levenberg-Marquardt algorithm
189
Library (model) viii, 55, 75, 79,
84, 198, 201, 204, 283, 291,

345



I Modelling and simulation of integrated systems in engineering

297,299-302, 304, 309,
319

Life cycle 23,297

Limits

amplitude 90, 91, 95, 159, 254
rate 90, 91, 95, 254

Linear model vi, vii, ix, xiii, Xvii,
8,9,13,40, 44, 47,48, 57,
58,59, 64, 66,75, 81, 88, 89,
90, 99, 100, 101, 102,103,
105-9, 123, 124,129, 130,
132, 134, 136, 137, 137-41,
142, 142-9, 151, 152,
156-61, 162, 169, 171, 178,
181, 185, 187, 201, 206, 212,
231,232,233, 236, 238, 240,
243,247, 266, 307, 326-9

LINPACK 74, 86

Linux operating system xxiv,
76,275

Location problem 69

Lumped parameter model vi, 52,
53,56-8,129, 130, 137,
229,248,251, 254

Management (of models) x,
xiv, 4, 291-308, 313,
319
Manoeuvre, carefree 20
Manufacturing stage of product
life-cycle 26
Maplesim® xxiv, 55, 73, 74, 84
Marine engineering 2, 78, 193,
217,235, 244-6, 314, 331
Mathematica® xxiv, 55, 84
MATLAB®/Simulink® xxi, xxiv,
52,72,74,74-7, 82, 106,
127,128,168,171,272,273,
284,301, 303, 310, 338

Maximum likelihood identification
171, 181, 184
Mechanical engineering 2, 22, 24,
26, 38, 41, 77, 278
Mechatronic system 91, 273, 275,
288
Metropolis Criterion xv, 191, 192,
193, 211
Micro-electromechanical system
(MEMS) xxi, 21, 22, 80, 248,
262,267, 294, 295
Missile 219, 306
Model
as a specification 15
black box 5, 8
block diagram xi, xii, xiii, xiv,
Xv, xvi, 25, 27, 42, 43, 48, 49,
50, 62, 65, 69, 70, 72, 74, 75,
99,101, 102, 135, 136, 137,
138, 139, 140, 144, 145, 146,
148, 151, 153, 197, 200, 201,
212,222,259,281, 283
bond graph vii, xi, 35, 39-51,
53, 63, 74, 81, 82, 129,
149-150, 162, 163, 247, 266,
++274,293, 309, 317
calibration 175, 209, 220, 235,
240
complexity 4, 13, 19, 22, 23,
29, 36, 80, 136, 168, 304,
315
continuous-variable v, 6, 7, 7-9,
51, 68,69, 70
credibility 130, 215, 217, 219,
229,233, 238, 262, 264, 298,
316
discrete-event xxi, 6, 7, 16,
26, 35, 54, 55, 67, 69, 72,
73,76

346



Index I

distributed parameter 335,
52,130

documentation xxviii, 36, 50,
75,218,229, 258, 259, 261,
291,292,294, 295, 295-9,
300, 302, 305, 306, 314, 319

-driven design 23, 24, 26, 287,
291,292, 293, 314, 318

error vii, 5, 19, 68, 105, 129,
188, 215,217-18, 219, 223,
225,230, 249,

fuzzy 38

generic v, viii, xxviii, 1, 14-15,
18,31,77,263,291, 293,
300, 304-7, 308, 310, 311,
317, 319, 320

grey box 5, 8, 248

hybrid system 7, 23, 54, 64, 71,
83,266

interface 39, 42, 50, 52, 77,
222,272,277,279, 282,284,
293,301, 318

inverse vi, 9, 50, 87-91, 100,
101, 102, 106, 123, 124, 127,
152,242

layered structure v, vi, 35, 36,
37, 38,302, 319

level of detail 3, 4, 39

library viii, 55, 75, 79, 84, 198,
201, 204, 283, 291, 297,
299-302, 304, 309, 319

linear vi, vii, ix, xiii, xvii, 8, 9,
13, 40, 44, 47, 48, 57, 58, 59,
64, 66,75, 81, 88, 89, 90, 99,
100, 101, 102,103, 105-9,
123, 124, 129, 130, 132, 134,
136, 137, 137-41, 142,
142-9, 151, 152, 156-61,
162,169,171, 178, 181, 185,

347

187, 201, 206, 212, 231, 232,
233,236, 238, 240, 243, 247,
266, 307, 326-9

lumped parameter vi, 52, 53,
56-8,129, 130, 137, 229,
248,251, 254

management X, xiv, 4, 291-308,
313, 319

modularisation 14, 15

multi input multi output xii, xiii,
xxi, 89, 101-3, 135, 178,
179, 210, 257, 258, 2635,
316, 330

nonlinear ix, 8, 9, 57, 59, 62,
66, 89, 90, 91, 95, 96, 98, 99,
103, 109-23, 123, 124, 127,
128,129,130, 133, 136, 137,
142, 167, 169, 171, 172, 185,
188, 195, 196, 197, 198-202,
204,207, 213, 231, 232,
232-4,238, 239, 240, 243,
247,254,257,267,272,279,
286,315, 321-30

of data 7, 8

optimisation vii, 15, 165-207,
220, 236, 249, 313

physical component layer v, 38,
39

physical concept layer vi, 38-51

physically-based vii, xvi, 7, 8,
37,38, 51, 52,71, 80, 81,
166-70, 170-5, 177, 178,
188, 195, 202, 205, 227, 238,
239, 247, 248, 249, 251, 277,
291, 293, 295, 313, 315

predictive control 249, 267

qualitative 38, 81

quality iii, v, vii, viii, xxvii, 1, 3,
4,5,10-12, 15, 16, 17, 19,



I Modelling and simulation of integrated systems in engineering

28,29, 30,215-61, 261, 279,
291, 295, 298, 305, 307, 313,
316

reduced form vi, 56-8, 58, 59

reduction viii, 30, 37, 80, 81,
180, 215, 247-57, 266, 267,
317

re-use v, 1, 4, 14-15, 72,74, 77,
291,293, 295, 295-9, 300,
304, 306, 317, 320

robustness 13, 14, 105, 150,
162,181, 182,187,203, 211,
220,223,236, 265

single input single output xxii,
88, 99-101

speed of solution 3, 5, 29, 30,
99,108, 123, 124, 189, 275,
285,286, 288, 289, 318, 335

state space xil, xiii, 35, 48,
58-60, 63, 64, 65, 101, 124,
131, 132, 136-7, 145, 146,
267,322

structure vii, xv, 5, 8, 13, 15,
35, 36, 37, 40, 54, 56, 75, 76,
88, 89,92, 93, 134, 135, 138,
150, 152, 165, 166, 167, 168,
169, 170, 171, 175, 177, 179,
181, 182, 197-202, 204, 205,
207,213,219, 226, 229, 230,
231, 234,253,256, 291, 296,
300, 302, 304, 305, 306, 309,
315,319

testing iii, viii, xvi, xxvii, 5, 10,
11, 12, 15, 166, 168, 215,
216,217, 218, 219-29, 231,
235,254, 256,258,259,
260, 291, 294, 295, 297,
298,299, 300, 305, 306, 307,
313, 315, 318

time-invariant 8, 9, 99
trade-offs 3, 68, 123, 200, 223,
272
transparent 5, 8
uncertainty vii, 4, 13, 35, 37,
50, 105, 129, 150, 163, 166,
167,178, 183, 188, 205, 206,
217-18, 223, 230, 243, 315,
316, 324
validation vii, viii, xv, xvi, xxii,
xxxii, 10, 11, 13, 15, 16, 17,
60, 104, 105, 128, 129, 168,
171,175,176, 179, 183, 185,
207, 210, 215-61, 261, 262,
263, 264,265,291, 295, 296,
297,298,299, 300, 305,
305-7, 309, 311, 315, 316,
318
verification viii, xv, xxii, 10, 15,
17,125,207, 216, 219-20,
221-2,258, 261, 262, 263,
264,291, 295,296,297, 298,
299, 309, 311, 315
Modelica® language xxiv, 53, 54,
55,62,63,64,67,72,73, 74,
77, 83, 84,98, 127,290, 301,
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