


     Modelling and simulation of integrated 
systems in engineering       



     Related titles: 

  Advanced engineering design: An integrated approach  
 (ISBN 978–0–85709–093–5) 
  Advanced engineering design  provides engineers and students with a general framework 
focusing on the processes of designing new engineering products. The book establishes a 
preliminary-design procedure which will lead the reader to the best trade-offs to ensure 
maximum satisfaction of customer needs: meeting the lowest cost expectations; ensuring the 
lowest environmental impact; and maximising profi ts and positioning in the marketplace. 
 Advanced engineering design  begins with an examination of the design process, and the 
relationship of information and entropy to design. The book then moves on to consider 
axiomatic, metric, reliability based and entropy-based design. 

  Mechatronics and manufacturing engineering: Research and development  
 (ISBN 978–0–85709–150–5) 
 Mechatronics is the blending of mechanical, electronic and computer engineering into an 
integrated design, and has an increasing impact on engineering processes, particularly on the 
design, development and operation of manufacturing systems in a wide range of industries. 
 Mechatronics and manufacturing engineering  is the fi rst in the  Woodhead Publishing Reviews: 

Mechanical Engineering Series  and presents high quality articles with a special emphasis on 
research and development in mechatronics and manufacturing engineering. The book is 
divided into eight chapters, covering implementation of light-scattering instrumentation; 
planar micromanipulation on microconveyor platforms; basic active and passive joint torque 
control in a single-axis arm; signal processing for tool condition monitoring; ANN modelling 
of fractal dimension in machining; predicting forces and damage in drilling of polymer 
composites; minimising burr size in drilling; and single point incremental forming of 
polymers. 

  Materials and surface engineering: Research and development  
 (ISBN 978–0–85709–151–2) 
 Materials science is an interdisciplinary fi eld concerned with the micro and nanostructure of 
materials, and their properties, processing and applications in engineering, technology and 
industry.  Materials and surface engineering  is the second in the  Woodhead Publishing 

Reviews: Mechanical Engineering Series , presenting high quality articles with a special 
emphasis on research and development in materials and surface engineering and the resultant 
applications. The book is divided into eight chapters, covering scratch resistance of modifi ed 
polymethylmethacrylate nanocomposites; nanomechanical properties and nanoscale 
deformation of engineering materials and alloys; analysis of large-strain microindentation of 
crystalline polymers; nanocomposite coatings; thermal sprayed Wc-Co coatings; tribological 
performance of electroless Ni-P coatings, tribological response of materials during sliding; 
and temperature and stress fi elds in laser straight cutting of Ti-6Al-4V alloy. 

 Details of these and other Woodhead Publishing books can be obtained by:

   •   visiting our web site at  www.woodheadpublishing.com   
  •   contacting Customer Services (e-mail: sales@woodheadpublishing.com; fax: +44(0) 1223 

832819; tel: +44(0) 1223 499140; address: Woodhead Publishing Limited, 80 High Street, 
Sawston, Cambridge CB22 3HJ, UK)    

 If you would like to receive information on forthcoming titles, please send your address 
details to Customer Services, at the address above. Please confi rm which subject areas you are 
interested in.   



  Modelling and 
simulation of 

integrated systems in 
engineering 

  Issues of methodology, 
quality, testing and 

application  

 D AVID   J . M URRAY -S MITH   



    Published by Woodhead Publishing Limited, 80 High Street, Sawston, 
Cambridge CB22 3HJ, UK 
  www.woodheadpublishing.com  
  www.woodheadpublishingonline.com  

 Woodhead Publishing, 1518 Walnut Street, Suite 1100, Philadelphia, PA 19102–3406, USA 

 Woodhead Publishing India Private Limited, G-2, Vardaan House, 7/28 Ansari Road, 
Daryaganj, New Delhi – 110002, India 
  www.woodheadpublishingindia.com  

 First published in 2012, Woodhead Publishing Limited 
 © D. J. Murray-Smith, 2012 
 The author has asserted his moral rights. 

 This book contains information obtained from authentic and highly regarded sources. 
Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts 
have been made to publish reliable data and information, but the authors and the publisher 
cannot assume responsibility for the validity of all materials. Neither the authors nor the 
publisher, nor anyone else associated with this publication, shall be liable for any loss, 
damage or liability directly or indirectly caused or alleged to be caused by this book. 

 Neither this book nor any part may be reproduced or transmitted in any form or by any 
means, electronic or mechanical, including photocopying, microfi lming and recording, or by 
any information storage or retrieval system, without permission in writing from Woodhead 
Publishing Limited. 

 The consent of Woodhead Publishing Limited does not extend to copying for general 
distribution, for promotion, for creating new works, or for resale. Specifi c permission must 
be obtained in writing from Woodhead Publishing Limited for such copying. 

 Trademark notice: Product or corporate names may be trademarks or registered 
trademarks, and are used only for identifi cation and explanation, without intent to 
infringe. 

 British Library Cataloguing in Publication Data 
 A catalogue record for this book is available from the British Library. 

 Library of Congress Control Number 2012933912 

 Woodhead Publishing ISBN 978-0-85709-078-2 (print) 
  ISBN 978-0-85709-605-0 (online) 

 Typeset by Refi neCatch Limited, Bungay, Suffolk 
 Printed in the UK and USA.  



v

  Contents 

  List of fi gures  xi 

  List of tables  xix 

  List of abbreviations  xxi 

  Acknowledgements  xxiii 

  Preface  xxvii 

  About the author  xxxi 

  1 The principles of system modelling  1 

   1.1  General issues in the development and 

 application of models 1 

   1.2  Classes of model for engineering applications 6 

   1.3  Questions of model quality 10 

   1.4  Methods of experimental modelling 12 

   1.5  Model reuse and generic models 14 

   1.6  Modelling within the procurement process 15 

   1.7  References 16 

  2  Integrated systems and their signifi cance for 

system modelling  19 

   2.1  An introduction to integrated systems 20 

   2.2  Sequential and concurrent design procedures 24 

   2.3  References 32 

  3 Problem organisation  35 

   3.1  Model organisation for engineering 

 systems design 36 

   3.2  The physical component layer 38 



vi

Modelling and simulation of integrated systems in engineering

   3.3  The physical concept layer 38 

   3.4  The mathematical description layer 51 

   3.5  Software for modelling and simulation 71 

   3.6  New developments in the modelling and

 simulation of micro- and nano-mechanical

 systems 80 

   3.7  References  81 

  4  Inverse simulation for system modelling 

and design  87 

   4.1  An introduction to inverse modelling and 

 inverse simulation 87 

   4.2  Methods of inverse simulation 91 

   4.3  Example: inverse simulation applied to a linear 

 model 105 

   4.4  Case study: an application involving a 

 nonlinear unmanned underwater vehicle 

 (UUV) system model 109 

   4.5  Discussion 123 

   4.6  References 124 

  5  Methods and applications of parameter 

sensitivity analysis  129 

   5.1  Fundamental concepts of parameter 

 sensitivity analysis 129 

   5.2  The sensitivity function 131 

   5.3  Methods of sensitivity analysis involving 

 repeated solutions 132 

   5.4  Methods of sensitivity analysis involving 

 sensitivity models 133 

   5.5  Case study: sensitivity analysis applied to 

 the unmanned underwater vehicle (UUV) 

 model 141 



vii

Contents

   5.6  Sensitivity analysis using bond graphs 149 

   5.7  Sensitivity analysis in inverse simulation 151 

   5.8  References 161 

  6  Experimental modelling: system identifi cation, 

parameter estimation and model optimisation 

techniques  165 

   6.1  The use of system identifi cation and optimisation 

 techniques in the development of physically 

 based dynamic models 166 

   6.2  Applications of conventional methods of system 

 identifi cation and parameter estimation to 

 physically based models 170 

   6.3  System identifi cation and parameter estimation 

 applied to helicopter fl ight mechanics models 176 

   6.4  Some selected methods of local and global 

 parameter optimisation 188 

   6.5  Genetic programming (GP) for model structure 

 estimation 197 

   6.6  Some practical issues in global parameter 

 optimisation 202 

   6.7  Further examples of system identifi cation, 

 parameter estimation and model optimisation 

 techniques in integrated systems applications 205 

   6.8  References 207 

  7  Issues of model quality and the validation 

of dynamic models  215 

   7.1  An introduction to the issues of model quality 

 and validation 215 

   7.2  Model quality concepts, model uncertainties 

 and modelling errors 217 

   7.3  Model testing, verifi cation and validation 219 



viii

Modelling and simulation of integrated systems in engineering

   7.4  Issues of model validation and model quality 

 in typical applications 234 

   7.5  Issues of model quality in model reduction 247 

   7.6  Discussion 257 

   7.7  References 261  

  8  Real-time simulation, virtual prototyping and 

partial-system testing  269 

   8.1  Virtual prototyping through simulation 269 

   8.2  Real-time simulation methods 270 

   8.3  Hardware-in-the-loop simulation 276 

   8.4  Multi-rate simulation techniques 280 

   8.5  Some new developments in real-time 

 simulation 285 

   8.6  References 286  

  9 Model management  291 

   9.1  Issues of model management 292 

   9.2  Tools for model management 295 

   9.3  Multi-formalism in simulation and modelling 303 

   9.4  Generic models 304 

   9.5  Validation of library sub-models and 

 generic models 305 

   9.6  Educational issues 307 

   9.7  References 309 

  10 Further discussion  313 

   10.1 A summary of some strategic issues in 

 the modelling and simulation of integrated 

 systems 313 

   10.2 Research and development work on modelling 

 and simulation methods for integrated system 

 applications 317 



ix

Contents

  Appendix A1: models of an unmanned underwater 

vehicle (UUV)  321 

 A1.1 An outline description of the basic nonlinear 

model of the vehicle 321 

 A1.2 A linearised model describing diving motion 326 

 A1.3 A model of the electrical drive system 329 

 A1.4 References 330 

  Appendix A2: numerical methods for the solution 

of ordinary differential equations  333 

 A2.1 Introduction 333 

 A2.2 Single-step integration methods 334 

 A2.3 Multiple-step methods 336 

 A2.4 Problems of stiffness 337 

 A2.5 References 337 

  Index    339   





xi

  List of fi gures 

   2.1   Block diagram of the conventional design 
process involving sequential design stages 25  

  2.2   Block diagram for the concurrent design 
approach with a virtual prototyping stage 27  

  3.1   Representation of a power bond carrying 
an effort and fl ow signal pair 42  

  3.2   Representation of active bonds carrying either 
effort or fl ow that can act as a link between 
a bond-graph model and a block diagram 43  

  3.3   A capacitor and a resistor connected in series 
so that the two components carry the same 
current (fl ow) and have the same voltage 
(effort) 45  

  3.4   Example illustrating connection of 
components (a) in parallel and (b) in series 46  

  3.5   Examples of bond-graph coupling components 47  
  3.6   The representation of causality in bond-graph 

components 49  
  3.7   Electrical circuit example involving inductance 

 L , capacitance  C  and two resistors ( R  and  r ) 56  
  3.8   Schematic diagram of pendulum system 61  
  3.9   Block diagram of sampled data system involving 

digital control of a continuous dynamic system 70  
  4.1   Electrical circuit example involving inductance 

 L , capacitance  C  and two resistors ( R  and  r ) 97  
  4.2   Block diagram for feedback solution to model 

inversion problem 99  



xii

Modelling and simulation of integrated systems in engineering

  4.3   Block diagram illustrating the use of feedback 
principles for a multi-input, multi-output 
system model in standard state-space format 101  

  4.4   Required time histories of model outputs 107  
  4.5   Input time histories found from inverse 

simulation model using gain factors of 1,000 107  
  4.6   Time histories obtained from forward 

simulation using the given model when 
subjected to inputs of Figure 4.5 found 
from inverse simulation 108  

  4.7   Errors between desired outputs and outputs 
from forward model subjected to inputs 
found from inverse simulation 109  

  4.8   Results for a single-loop feedback arrangement 
to generate the propeller input needed to 
produce a specifi ed pattern of output involving 
a demanded surge velocity of 3.88 m/s from time 
 t  = 0 until time  t  = 20 s, followed by a 
negative-going ramp in terms of surge 
velocity change 111  

  4.9   Trajectory of the UUV in the earth-fi xed axis 
system when subjected to the input shown 
in Figure 4.8 (a) 113  

  4.10   Results showing the propeller input for a 
demanded surge velocity of 5 m/s from time 
 t  = 0 until time  t  = 15 s, followed by a 
negative-going ramp in terms of surge 
velocity change 115  

  4.11   Results obtained by inverse 
simulation in terms of the rudder defl ection 
time history to give constant yaw rate of zero 
initially and –0.05 rad/s from time  t  = 50 s 116  

  4.12   Trajectory for the case presented in 
Figure 4.11, shown in the earth axis system 118  



xiii

List of fi gures

  4.13   This case shows the combined effects of two 
inputs on the channels considered in 
Figures 4.8 and 4.11 119  

  4.14   Trajectory for the case presented in 
Figure 4.13, shown in the earth axis system 122  

  5.1   Block diagram illustrating the relationship 
between the system model and the 
corresponding sensitivity model for the 
general case of a multi-input 
multi-output system model 135  

  5.2   Block diagram showing system model in 
state-space form together with the 
corresponding sensitivity model 137  

  5.3   Block diagram for linear system transfer 
function  G ( s ) for the forms of 
numerator and denominator given in 
Equation (5.19) 139  

  5.4   Block diagram for sensitivity model for 
denominator coeffi cients of the transfer 
function represented in Figure 5.3 140  

  5.5   Generation of sensitivity functions for 
the numerator coeffi cients of the transfer 
function represented in Figure 5.3 141  

  5.6   Block diagram of the linearised state-space 
system model of the UUV, corresponding to 
Equation (5.22) 145  

  5.7   System model and sensitivity model for the 
linearised model of the UUV 145  

  5.8   Block diagram of the part of the sensitivity 
model for system model of Figure 5.6 for 
the variable  θ  146  

  5.9   Sensitivity function    generated using the 

sensitivity model approach for the case of a 
step change of stern plane defl ection 147  



xiv

Modelling and simulation of integrated systems in engineering

  5.10   Sensitivity function    generated using the 

sensitivity model approach for the case of a 
step change of stern plane defl ection 148  

  5.11   Sensitivity function    generated using the 

parameter perturbation approach 149  
  5.12   Block diagram illustrating the feedback 

system approach to inverse simulation 152  
  5.13   Block diagram for inverse sensitivity using a 

sensitivity model approach 153  
  5.14   Desired model output (dimensionless) 

plotted against time (s) 154  
  5.15   Input (dimensionless) generated using inverse 

simulation to produce the model output 
shown in Figure 5.14 154  

  5.16   Sensitivity function for parameter  T  2  as a 
function of time found using the sensitivity 
model approach 155  

  5.17   Stern-plane input signal found from inverse 
simulation for required trajectory 
involving sinusoidal change of 
pitch angle 157  

  5.18   Pitch angle record found from application of 
stern-plane defl ection signal of Figure 5.17 
to the forward model of the UUV 157  

  5.19   Sensitivity function found from sensitivity 
model for parameter  a  11  158  

  5.20   Sensitivity function found from sensitivity 
model for parameter  a  12  159  

  5.21   Sensitivity function found using fi nite 
difference approximation approach for 
the case of parameter  a  11  160  



xv

List of fi gures

  5.22   Sensitivity function found using fi nite 
difference approximation approach for 
the case of parameter  a  12  161  

  6.1   Flight data (continuous lines) and 
corresponding model responses (dashed 
lines) for typical test inputs 177  

  6.2   Examples of BO105 fl ight test data showing 
three different types of control input 
(3-2-1-1, frequency sweep and doublet), 
together with roll rate and pitch rate 
responses 184  

  6.3   Autospectra and roll rate data in response 
to three types of test input signal (doublet, 
3-2-1-1 and frequency sweep) applied 
through the lateral cyclic control for 
BO105 helicopter 186  

  6.4   Flow diagram illustrating the operations 
involved in applying the Metropolis Criterion 192  

  6.5   Flow diagram illustrating the operations 
involved in the simulated annealing (SA) 
process 193  

  6.6   Flow diagram illustrating the operations 
involved in the genetic algorithm (GA) 196  

  6.7   Structure of GP tree representing the 
function  y  =    − ( ν  +  u  + 3) 198  

  6.8   Schematic diagram illustrating the GP 
modelling procedure (from [6.54]) 199  

  6.9   Illustration of a GP tree for a typical block 
diagram function (from [6.54]) 201  

  7.1   Example of polygon representation for 
model validation results 227  

  7.2   Helicopter identifi cation and verifi cation 
results 237  



xvi

Modelling and simulation of integrated systems in engineering

  7.3   Parameter values for two different fl ight 
conditions showing trends in predictions 
from a physically based nonlinear simulation 
model (HELISTAB) and corresponding 
trends in estimates from fl ight experiments 
using system identifi cation methods  239  

  7.4   Comparison of fl ight data and inverse 
simulation for a Lynx helicopter fl ying a 
‘quick-hop’ longitudinal manoeuvre  241  

  7.5   Results for simulated open-loop manoeuvring 
test using two models of 190,000 dwt tanker 
vessel 246  

  7.6   Frequency responses of a single-input 
two-output eighth-order model of a fi ghter 
aircraft and an equivalent third-order 
model over the frequency range 0.1 rad/s 
<  ω  < 100 rad/s 250  

  7.7   Schematic diagram of the hydro-turbine 
system 252  

  7.8   Polygon diagram for the comparison of 
experimental and simulation results for 
the hydro-turbine simulation model 256  

  7.9   Block diagram of iterative processes of model 
development showing the stages from 
formulation of modelling objectives to 
external validation and testing of model 
adequacy 259  

  8.1   Block diagram for a simulation involving 
two segments having different frame times 281  

  8.2   Block diagram representation of UUV model 
with the electrical drive system 283  

  A1.1   Simulated response of vehicle from an initial 
condition with all state variables set to zero 



xvii

List of fi gures

and a propeller input of 1,500 rpm applied 
at time  t  = 0 s 325  

  A1.2   Earth-axis representation in terms of 
position for transient responses shown 
in Figure A1.1 326  

  A1.3   Typical response of the linearised UUV model 
showing the change of pitch angle  θ  
following a step change of stern plane 
defl ection  δ   s   328  

  A1.4   Schematic diagram of the complete UUV 
system model showing interactions 
between the sub-models 330    





xix

  List of tables 

   3.1   Analogous signals 42  
  3.2   Analogous components with one energy port, 

corresponding to the analogous signals of 
Table 3.1 43    





xxi

  List of abbreviations 

   BDF    backward difference formula   
  CAD    computer aided design   
  CAMP-G     Computer Aided Modelling Program with 

Graphical Input   
  CSCWD     Conference on Computer Supported 

Cooperative Work in Design   
  CSP    communicating sequential processes   
  DAE    differential algebraic equation   
  DE    differential evolution   
  DEVS    Discrete-Event System Specifi cation   
 DLR    Deutsches Zentrum für Luft- und Raumfahrt  
  DSP    digital signal processor   
  ESA    European Space Agency   
  ESL    European Simulation Language   
  FPGA    fi eld programmable gate array   
  GA    genetic algorithm   
  GP    genetic programming   
  IEEE     Institute of Electrical and Electronics Engineers   
  INRIA     Institut Nationale de Récherche en 

Informatique et en Automatique   
  MATLAB®    MATrix LABoratory program   
  MD    molecular dynamics   
  MEMS    micro-electromechanical systems   
  MIMO    multi-input multi-output   
  MIT    Massachusetts Institute of Technology   
  NEMS    nano-electromechanical systems   



xxii

Modelling and simulation of integrated systems in engineering

  NM    Nelder-Mead   
  NPS    US Naval Postgraduate School   
  NR    Newton-Raphson   
  NSHEB    North of Scotland Hydro-Electric Board   
  ODEs    ordinary differential equations   
  ONR    US Offi ce of Naval Research   
  PI    proportional plus integral   
  PTB    Project Test Bed   
  PWM    pulse-width modulated   
  QSS    quantised state system   
  RAE    Royal Academy of Engineering   
  RCM    resistive companion method   
  SA    simulated annealing   
  SCS    The Society for Computer Simulation   
  SISO    single-input single-output   
  SSA    segmented simulated annealing   
  TIC    Theil’s Inequality Coeffi cient   
  UML    Unifi ed Modelling Language   
  UUV    unmanned underwater vehicle   
  V&V    verifi cation and validation   
  VHDL     Very High Speed Integrated Circuit Hardware 

Description Language   
  VTB    Virtual Test Bed   
  VV&A    verifi cation, validation and accreditation     



xxiii

  Acknowledgements 

  Copyright acknowledgements 

 The following organisations are gratefully acknowledged for 
granting permission to use previously published material: 

 North Atlantic Treaty Organisation (NATO), Research 
and Technology Organisation (RTO) for permission to 
reproduce diagrams which are included in this volume as 
Figures 6.1, 6.2, 6.3 and 7.2. The original version of this 
material was published by the Advisory Group for Aerospace 
Research and Development, North Atlantic Treaty 
Organisation (AGARD/NATO) in  AGARD Advisory Report 
280  in September 1991. 

 SAGE Publications for permission to reproduce diagrams 
previously published in the  Transactions of the Institute of 
Measurement and Control  (Figures 7.3, 7.4 and 7.6). 

 Elsevier Ltd for permission to reproduce diagrams 
previously published in  Control Engineering Practice  and 
 Automatica  (Figures 6.8, 6.9 and 7.40).  

  Product and trademark 
acknowledgements 

 acslX® is a product of AEgis Technologies Group Inc, USA. 
 Autodesk® Inventor® is a product of Autodesk Inc, USA. 
 CAMP-G is a product of Cadsim Engineering, USA. 



xxiv

Modelling and simulation of integrated systems in engineering

 Cell Architecture was developed at IBM Research, USA. 
 COMSOL Multiphysics® is a product of the COMSOL 

Group, Sweden. 
 Control Systems Toolbox is a product of MathWorks 

Inc, USA. 
 Creo Parametric® (formerly ProENGINEER®) is a product 

of Parametric Technology Corp, USA. 
 dSPACE Prototyping Systems is a product of dSPACE 

Inc, USA. 
 Dymola is a product of Dassault Systèmes Corp, France. 
 ESL is a product of ISIM International Simulation Ltd, UK. 
 LabVIEW Real-Time, is a product of National Instruments 

Corp, USA. 
 Maple™ and Maplesim™ are products of Maplesoft, a 

division of Waterloo Maple Inc. 
 Mathematica® is a product of Wolfram Research, USA. 
 Matlab® is a product of MathWorks Inc, USA. 
 MATLAB® Control Systems Toolbox™ is a product of 

MathWorks Inc, USA. 
 MATLAB® Frequency Domain System Identifi cation Toolbox 

is a product of MathWorks Inc, USA. 
 Modelica® is a product of the Modelica Association, Sweden. 
 Opteron™ is a product of Advanced Micro Devices, Inc 

(AMD), USA. 
 Playstation® 3 is a product of Sony Corp, Japan. 
 PowerPC was originally a product of IBM Corp, USA, now 

licensed by other companies. 
 Red Hawk Linux is a product of Concurrent Computer 

Corp, USA. 
 RT-LAB™ is a product of Opal-RT Technologies Inc, 

Canada. 
 Simscape™ is a product of MathWorks Inc, USA. 
 Simulink® is a product of MathWorks Inc, USA. 
 Simulink Coder™ is a product of MathWorks Inc, USA. 



xxv

Acknowledgements

 SolidWorks® is a product of Dassault Systèmes SolidWorks 
Corp, France. 

 Statefl ow® is a product of MathWorks Inc, USA. 
 System Identifi cation Toolbox is a product of MathWorks 

Inc, USA. 
 Virtual Test Bed (VTB) is a product developed at the 

University of South Carolina, USA. 
 Visual Basic® is a product of the Microsoft Corp, USA. 
 Windows® is a product of the Microsoft Corp, USA. 
 20-Sim is a product of ControlLab Products BV, Enschede, 

the Netherlands.   





xxvii

  Preface 

 My interests in modelling and simulation began during my 
period as an undergraduate and Master’s degree student at 
the University of Aberdeen, and developed further in industry 
at Ferranti Ltd (Edinburgh) where I worked on electronic 
and mechanical elements of inertial navigation and related 
aircraft systems. This was my fi rst experience of working on 
highly integrated and multidisciplinary systems, although 
terms such as those were not in common usage then. For 
such design applications, issues of model accuracy were of 
critical importance and simulation techniques also had a 
central role. Interests in the application of modelling and 
simulation continued throughout my period of PhD study at 
the University of Glasgow and were further extended as a 
result of many years of teaching control engineering topics 
within the Department of Electronics and Electrical 
Engineering in that same university. My research since the 
1970s has involved modelling and control systems 
applications in a variety of different areas, including 
biomedical engineering, electrical power generation, system 
identifi cation applied to helicopter fl ight mechanics modelling 
and fl ight control, ship control systems and other applications 
involving underwater vehicles. 

 Topics such as experimental modelling methods, issues of 
model quality and model testing, parameter sensitivity 
analysis and inverse simulation are treated in some detail 
within this book, as they have proved very important to me 
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in much of the work that I have been engaged in over the 
years. This, I believe, forms an important and timely 
contribution in the context of the complex problems that can 
arise in design applications involving integrated systems. 
Issues of model management, such as documentation and the 
development of model libraries and generic descriptions, are 
also emphasised. Although mentioned as examples of what 
is available, specifi c simulation tools are not given special 
emphasis in the book, as information of that kind inevitably 
becomes out of date very quickly. The emphasis is on 
principles of modelling and simulation and methods of 
approach that are, in my opinion, especially relevant to the 
problems of integrated systems. I hope that others will fi nd 
some of the content useful in the context of their own work. 

 It is impossible to mention everyone who, over a period of 
many years, has had a direct infl uence on the ideas and 
material presented in this book but I owe many people my 
deepest thanks. I am especially grateful to Dr Euan McGookin 
(University of Glasgow) for collaborative work involving 
ship and underwater applications and to Professor Gareth 
Padfi eld (now of the University of Liverpool), with whom I 
collaborated closely on helicopter fl ight mechanics and fl ight 
control applications over a long period of time while he was 
at the Royal Aircraft Establishment (Bedford) and later the 
UK Defence Evaluation and Research Agency. Others who 
must also be mentioned include Dr Douglas Thomson 
(University of Glasgow), who has been responsible for my 
interest in inverse simulation techniques and Professor Roy 
Crosbie (California State University, Chico) for valuable 
discussions, especially on real-time applications. Many 
others have infl uenced the work and, in particular, I must 
mention that I have benefi tted from useful general discussions 
about modelling principles, methods and applications with 
Professor Peter Gawthrop (University of Glasgow), Dr Moira 
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Smith (Waterfall Solutions Ltd), Professor Jay Rosenberg 
(University of Glasgow) and Mr Terry Ericsen (US Offi ce of 
Naval Research). 

 I must also acknowledge the assistance provided by 
Professor George Moore (University of Southern California) 
and Professor Felix Breitenecker (Technical University of 
Vienna) in the arrangement of sabbatical visits to their 
universities. Through these periods in other universities I 
was provided with important new opportunities that were of 
long term benefi t to me in terms of my research. 

 Many of my students have undoubtedly contributed to the 
work presented here and their contributions are refl ected 
individually through references to their published work. I 
have also had very helpful feedback from experienced 
engineers during postgraduate short courses that I have 
presented in the UK, other parts of Europe, the USA, China 
and Brazil and at various pre-conference tutorial sessions 
that I have been involved in from time to time. 

 David Murray-Smith, September 2011. 
 Emeritus Professor, 
 School of Engineering, 
 Rankine Building, 
 The University of Glasgow, 
 Glasgow G12 8LT.  
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 The principles of system 
modelling  

   Abstract:    This chapter provides an introductory review 
of processes involved in developing models for 
engineering applications. Current trends in the design of 
integrated, multidisciplinary and embedded systems, and 
the associated consequences for modelling and simulation, 
are emphasised. Ways of classifying models are presented 
and the experimental approach to model development 
through system identifi cation and optimisation is 
introduced. Issues of model quality are emphasised, 
together with model reuse, the development of libraries of 
sub-models, the potential of generic descriptions and use 
of modelling within procurement. These topics are all 
considered in more detail in later chapters.  

   Key words:    modelling objectives, classes of model, 
quality, reuse.   

    1.1  General issues in the 
development and application 
of models 

 For scientifi c applications, the purpose of a model is usually 
to explain a complex set of behaviours or to help in the 

                 1 
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design of experiments as part of the process of hypothesis 
testing. In such fi elds, modelling is a central element of the 
scientifi c method. Similarly, in some engineering applications 
a model may be used to describe, analyse or explain the 
behaviour of a highly complex system, but it is more common 
to fi nd models being used to support design, to assist in 
decision-making processes in the context of a specifi c 
application, or as a basis for simulators to be used in training 
or in further engineering developments. A properly tested 
and well-proven model can reduce development times and 
costs for many applications. 

  Integrated systems  arise in many application areas 
including fl y-by-wire aircraft, ships, land-based vehicles, 
energy conversion systems including electrical power 
generation and distribution systems, chemical plants and 
even in some household appliances. They typically involve 
a number of different aspects, disciplines or ‘domains’ 
(e.g. mechanical, electrical, electronic, control and software) 
which, ideally, are considered concurrently. For some 
applications, special forms of integrated system involve 
digital processors and software in addition to other physical 
hardware. The fi elds of aeronautical engineering, automatic 
control, road and rail vehicle engineering, marine engineering 
and robotics can provide many examples of such embedded 
systems. 

 The importance of integrated systems has been emphasised 
by the publication by the UK Royal Academy of Engineering 
(RAE) of a guide entitled ‘Creating Systems that Work – 
Principles of Engineering Systems for the 21st Century’ [1]. 
In the press release marking the publication of this guide in 
2007, it is stated that the ‘. . . aim is to demystify the design 
of large integrated systems, and to give educators, students 
and practitioners alike six guiding principles that will help 
them to understand how large projects can be better 
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conceived, designed and delivered’. These six principles can 
be summarised as:

   1.   debate, defi ne, revise and pursue the purpose;  

  2.   think holistic;  

  3.   follow a disciplined procedure;  

  4.   be creative;  

  5.   take account of the people; and  

  6.   manage the project and the relationships.    

 All sections of the RAE report make direct or indirect 
reference to the importance of appropriate tools for 
analysis, design and optimisation and the section dealing 
with the fourth of these principles (‘be creative’) puts special 
emphasis on modelling and simulation tools and methods. 
Simulation tools are vital for systems engineers in tackling 
the trade-offs within the design process, starting from the 
basic requirements in terms of performance, cost and 
timescale. 

 Models can have many benefi ts in the integrated systems 
approach to system design, including early assessment of 
performance, both within and beyond the normal operating 
envelope. Understanding of parameter inter-dependencies 
and knowledge of key sensitivities can also be very valuable 
for design optimisation. The use of simulation models is 
particularly important and leads to the concept of a virtual 
prototype which is a software-based implementation of the 
design, developed prior to any hardware prototype. 

 The success of virtual prototyping depends on the model 
quality. A successful model usually results from trade-offs 
involving several aspects of model performance such as the 
trade-off between the level of detail included in a model and 
the speed of solution in the corresponding computer 
simulation. 
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 The level of detail is linked to model performance and as 
models are made more detailed, they inevitably become more 
complex. However, model complexity should never be 
confused with model quality and a simple description can 
often be better, in terms of quality measures, than a more 
complex one. It is also important to separate the processes of 
modelling from simulation. The development of a computer 
simulation is one common outcome of a modelling exercise 
but there are other potential applications for a model, some 
involving analysis carried out independently of any computer. 

 Whatever the use made of a model, it is important that 
its development should build upon previous experience. 
Attention must be given both to tools available for the 
development of computer-based modelling and simulation 
programs, and also to support systems for model management. 
Reuse of model components is important and some 
commercial modelling and simulation systems provide 
libraries of reusable models. Model management is also very 
important for applications involving large teams of 
developers, especially when these include multidisciplinary 
groups and geographically distributed teams. New 
developments in cloud computing are likely to have a 
signifi cant infl uence on how simulation models are used 
within many organisations in future, but this is an area in 
which rapid changes are taking place and it is not possible, 
at the time of writing, to make more detailed predictions. 

 Developing a model requires careful examination of 
information about the real system. From this, inconsistencies 
or gaps in the available knowledge can be found which may 
result in further testing of the real system or a prototype, or 
some reconsideration of requirements. Donald Rumsfeld’s 
much-quoted statement, made during a US Department of 
Defense news briefi ng in February 2002 [2], has direct 
relevance to issues of model quality and uncertainties:
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  . . . as we know, there are known knowns; there 
are things we know we know. We also know there are 
known unknowns; that is to say we know there are 
some things we do not know. But there are also 
unknown unknowns – the ones we don’t know we 
don’t know.   

 His statement was much ridiculed at the time but those 
words certainly apply to the processes of developing models. 
The ‘unknown unknowns’ in modelling are vitally important 
and have to be exposed by whatever means possible, 
including experimentation and testing. 

 Since a model is only an abstraction of the system it 
represents, perfect accuracy is impossible. The key issue is 
one of determining the model quality levels needed for the 
application in question. This implies reducing errors to 
defi ned levels for specifi ed regions of the operating envelope 
of the system and balancing appropriate measures of 
accuracy against other measures of performance, such as 
solution speed. 

 In applications involving design, it is usual to base the 
structure of models on prior physical, chemical or biological 
knowledge. However, some sub-models may be based purely 
on input–output descriptions derived from tests on the 
corresponding elements of the real system (i.e. ‘black box’ 
models). Models thus range from completely ‘transparent’ 
descriptions, based on the application of recognised and 
accepted scientifi c or engineering principles, to purely 
empirical ‘black box’ forms, which are opaque. Between 
these extremes there is an important group, sometimes 
referred to as ‘grey box’ models, involving some empirical 
information found experimentally but with the structure of 
the model based on well-established physical laws and 
principles. 
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 In summary, therefore, it can be said that mathematical 
modelling is an important tool for decision making and for 
engineering design. If models are developed correctly, they 
can then be applied over the range of conditions for which 
the descriptions are held to be accurate representations of 
the real system. An extensive programme of system testing 
and the creation of a solid base of experimental data are 
important steps in establishing how a given model may be 
used. When used within the concurrent approach to design, 
well-proven and tested models can lead to useful virtual 
prototype systems based on simulation software or to 
hardware-in-the-loop simulation involving a combination of 
simulation models and real system hardware.  

   1.2  Classes of model for 
engineering applications 

 Models used in science and engineering often involve 
variables that are continuous functions of time, such as 
position, velocity, acceleration, temperature or pressure. 
These are  continuous-variable models  and involve ordinary 
or partial differential equations or differential-algebraic 
equations. This is the main class of model considered in this 
book. 

 A second type of model that can be important in engineering 
involves what are known as  discrete-event  descriptions. In 
discrete-event models, all the variables remain constant 
between events that mark changes in the model. These 
changes take place at discrete time instants, either periodically 
or in a random fashion. A digital processor or computer used 
for real-time control is a good engineering example of a 
discrete system involving periodic changes. In this case, a 
continuous variable is sampled periodically through an 
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analogue-to-digital converter and calculations are carried 
out using the discrete values obtained from the converter. 
Output from the processor may be converted back to 
continuous variable form using a digital-to-analogue 
converter. In modelling this type of component within some 
larger engineering system, we cannot use differential 
equations because of the discrete nature of the events within 
the processor and the associated converters and a difference-
equation based approach is necessary. 

 Problems in which events occur in a more random 
fashion, as in road traffi c fl ow or communications network 
modelling, lead to another approach known as  discrete-event 
simulation . This is an important area, especially in engineering 
manufacturing and production, but this book is more 
concerned with modelling and simulation of continuous 
systems. Hybrid systems involving representations that 
are mainly continuous but do involve some discrete-
event elements are discussed. Further details of discrete-
event modelling and simulation techniques and their 
applications may be found in texts that deal with this area 
(see e.g. [3], [4]). 

   1.2.1  Conventional continuous-variable 
models 

 Within the class of continuous variable models we can 
distinguish between  models of data  and  physically based 
models of systems . 

 A model of data involves a description fi tted to measured 
responses, usually from a real physical system, leading to a 
model that expresses an observed relationship between two 
or more variables. It consists of mathematical functions that 
may have no direct link to recognisable elements of the real 
system. Such models are important in fi elds such as control 
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engineering where input-output descriptions such as transfer 
functions or artifi cial neural net models may be used and can 
be derived from measurements. They can provide a starting 
point for design but give little information about internal 
processes. If such models are derived exclusively from 
experiments, their validity is restricted to the conditions for 
those experiments. 

 Physically based models, on the other hand, are developed 
using established scientifi c principles, such as the laws of 
physics and chemistry. Hypotheses about the structure and 
function of the system are used and appropriate simplifying 
assumptions are applied. Such models are more explanatory 
than the experimentally derived ‘black box’ descriptions 
within models of data. They include all relevant knowledge 
about the structure and parameters of the system, and 
involve internal variables that have measurable counterparts 
within the real hardware. The models and sub-models 
being considered in this book thus range from completely 
transparent descriptions based on physical principles, 
through intermediate ‘grey-box’ descriptions, to the entirely 
empirical black-box form of experimentally derived model. 

 Another important distinction is between  linear  and 
 nonlinear  models. Linear models are attractive because they 
are open to analysis and can be incorporated conveniently 
into design procedures. However, linear descriptions may be 
incapable of capturing aspects of the behaviour of the real 
physical system and issues of nonlinearity should be 
considered at an early stage in modelling. Assumptions of 
linearity should not be made without justifi cation and the 
range of linear operation of the system always needs to be 
evaluated when a linear description is used. 

 As with questions of linearity,  time invariance  needs to 
be proved rather than assumed. A time-invariant description 
is one in which the performance of the system being 
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modelled is independent of the times at which observations 
are made. 

 Models that are linear and time invariant receive particular 
attention in introductory engineering textbooks on topics 
such as electrical circuit theory, automatic control, dynamics 
and signal processing. Many systems have properties 
that allow them to be described by linear time-invariant 
models for some operating conditions and are attractive 
because they can be analysed using simple linear methods. 
Although nonlinear and time-varying dynamic models 
are more general, they are harder to deal with using 
classical mathematical methods, and numerical and computer 
simulation techniques are therefore very important for such 
cases. Simulation can provide solutions for cases for which 
no analytical approach can be used and this approach thus 
offers valuable insight for problems that would otherwise be 
intractable.  

   1.2.2  Inverse models and inverse 
simulation techniques 

 Although dynamic models or computer simulations are 
conventionally used to predict an ‘output’ time response 
from an ‘input’ time history, it can be very helpful to make 
use of a model in the opposite direction so that the user can 
specify the desired behaviour and the model or simulation 
provides an inverse solution. An example of an engineering 
design situation where this is important involves the design 
of actuators, where the inverse solution can reduce the need 
for an iterative approach. In such a case the  inverse model  
provides information about the time history of the input 
needed to obtain that desired system output in a very 
straightforward fashion. Inverse simulation techniques of 
this kind are discussed in  Chapter 4 .   
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   1.3  Questions of model quality 

 As pointed out in Section 1.1, the quality of a model has a 
direct infl uence on any design or strategy based on that 
model. Although models may be developed using physical, 
chemical or biological principles in the initial stages, the use 
of experimentation can be important for estimating 
appropriate sets of parameters if these are not known  a priori . 

 This experimental approach to modelling is also of central 
importance in establishing the suitability (or otherwise) of a 
given model for an intended application (the so-called 
‘model validation’ problem) and discussion of this topic (in 
 Chapter 7 ) forms an important part of this book. Use of the 
word ‘validation’ may give a false impression of model 
capabilities and terms such as ‘model testing’ or ‘model 
evaluation’ may be more appropriate. Theories can be 
proved to be wrong but cannot ever be proved to be right, 
and there is always a risk of false confi dence in model-based 
predictions if the model involved has been subjected to some 
form of ‘validation’. Models that can be shown to provide 
accurate predictions of reality in some circumstances cannot 
be assumed to be capable of giving good predictions in all 
cases. The ‘unknown unknowns’ mean that there can never 
be a simple conclusion in the processes that we conventionally 
call ‘model validation’. 

 Model testing, verifi cation and validation can also be 
regarded as part of the process of defi ning boundaries within 
which a model and the related computer simulations should 
operate. As has been pointed out by Sargent (e.g. [5]), Balci 
(e.g. [6], [7] and [8]), Ören ([9]), Brade ([10] and [11]) and 
many others, validation is an integral part of the iterative 
process of model building. If testing is applied appropriately 
at each stage, confi dence in the model should increase steadily 
during the model development process. 
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 Early in an engineering design project, simplifi ed models 
allow ‘what if’ situations to be examined and permit design 
trade-offs. At that stage little formal model validation is 
possible and the error bounds on model predictions can be 
large. Assessment of quality and fi tness for purpose is thus 
likely to be based on previous design experience and on 
comparisons with models of earlier systems. As the work 
progresses, more detailed models may be integrated into the 
design process and more data should become available for 
testing of the model. Such testing is likely to be based on 
components to start with, then data resulting from tests on 
larger blocks and, much later on, data from the testing of 
complete prototype systems. 

 Thus, as test results become available, information begins 
to fl ow from the real system to the model. This contrasts 
with the start of the design process where the fl ow is almost 
entirely from the model to the system being designed. 
Bidirectional information transfer is a highly desirable 
characteristic of the later stages of the design process and 
ensures that the model is updated as knowledge about the 
real system is accumulated. 

 An example of this type of iterative model development 
may be found in a recently published account [12] of work 
on the design of a pumped heat electricity storage system by 
engineers employed at Isentropic, a company which is based 
in Cambridge in the UK. The concept, which is being 
developed for renewable energy schemes, uses a reversible 
heat engine to pump heat between two storage vessels 
containing a mineral in particulate form. Gas circulates 
through the system and is compressed to store energy, thus 
raising its temperature before passing through one of the 
vessels and heating the particles. This process results in 
cooling of the gas which then expands, producing further 
cooling. The gas is next passed to the second storage vessel 
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where the mineral is cooled and the gas is brought back to a 
temperature close to the original value. The energy for this 
charging process comes from an electrical source. The 
discharge, which is the reverse of the charging process 
outlined above, releases energy which drives an electrical 
generator. High effi ciency, of the order of 72 per cent to 
85 per cent overall, is achieved by innovative design which 
minimises losses. These effi ciency values are competitive with 
other methods for large-scale energy storage, such as pumped-
hydro schemes. To prove the concept and validate performance 
predictions, engineers at Isentropic have designed small-scale 
demonstrator systems and this has involved an iterative 
process of modelling, simulation and testing. In this particular 
case, test results from the fi rst prototype were not quite what 
were hoped for, so the model had to be refi ned and a second 
prototype built. Further testing led to further improvements 
in the model and a third prototype system [12]. 

 The example outlined above is typical of modelling and 
simulation for innovative design situations where there are no 
systems of the same kind in existence. The system is an 
integrated one and the model, in this particular case, involves 
a mix of mechanics, thermodynamics and electro-mechanical 
energy conversion. Through careful application of modelling 
and simulation techniques and the cautious application of 
experimentally validated models, design engineers can identify 
strong and weak points of a proposal and refi ne the design in 
a stepwise fashion to an eventual successful realisation.  

   1.4  Methods of experimental 
modelling 

  System identifi cation , which is the term used to describe 
experimental modelling, is generally considered to be a 
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mature fi eld and classical methods of identifi cation involve 
linear discrete-time models within a stochastic framework. 
The aspects of identifi cation, parameter estimation and 
optimisation techniques discussed in this book (mainly in 
 Chapter 6 ) relate to the development of models for 
engineering applications. Objectives include real-time 
simulator development as well as models for engineering 
system design. 

 In some forms of model there can be a direct physical 
interpretation of the structure and parameters, with 
important benefi ts. Together with issues involving 
experimental design and the choice of test signals for the 
estimation of parameters, the selection of the model structure 
can contribute in an important way to the overall robustness 
of models that are established experimentally. This aspect of 
modelling and related issues of structural and parameter 
sensitivity and identifi ability receive attention within 
 Chapter 6 . The process of extracting data from system and 
sub-system tests is not a trivial task, and the whole iterative 
process of development in the presence of uncertainties 
raises many important issues and emphasises the fact that 
there are no generally accepted standard approaches to 
model validation. 

 The use of  optimisation  techniques within the model 
development process has much in common with the use of 
optimisation in design and it is therefore helpful to apply 
experience gained in design applications for modelling 
situations. Although gradient-based optimisation methods 
remain important, the complexity of many practical problems 
means that it is impossible to establish a global optimum 
using gradient methods alone and more general techniques 
such as simulated annealing, genetic algorithms and genetic 
programming can provide benefi ts. These global optimisation 
tools are likely to become even more important as large 
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integrated systems become more commonplace. The relevant 
methodologies are reviewed in  Chapter 6 . 

 Another important topic, closely related to optimisation, 
is  parameter sensitivity analysis , which was the subject of 
much research in Eastern Europe in the 1960s and 1970s but 
has been rather neglected elsewhere. It has been found that 
insight gained from parameter sensitivity information can be 
of considerable value in the development and refi nement of 
system models through investigation of model robustness 
and the design of appropriate test inputs. This topic is 
considered in detail in  Chapter 5 .  

   1.5  Model reuse and generic models 

 In industrial applications of modelling and simulation there 
is much interest in  modularisation  and  component reuse , as 
these are key productivity factors in software development. 
In both industry and the academic world, until recently at 
least, simulation models were often started from scratch 
for each new project. This is clearly time-consuming and 
wasteful, and recent advances in object-oriented design and 
programming methods allow for repositories of reusable 
objects that can help to reduce the problems associated with 
the generation of new simulation models for new objectives. 
Modularity and component reuse are therefore concepts that 
are important in modelling. These ideas mean that, if we 
wish to build a new model for new given objectives, we can 
select established and proven sub-models from a model base 
to serve as elements of the new model [13]. 

 Another signifi cant development in recent years has been 
the development of a more  generic  approach to modelling in 
several industrial areas, including power electronic systems 
(e.g. [14] and [15]) and gas turbine systems (e.g. [16]). Here 
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the word ‘generic’ is taken to mean ‘general’ or ‘not specifi c’ 
and implies adoption of a standard structure and standard 
building blocks within a model. These ideas are likely to 
become more widely used in future and this topic is explored 
in greater detail in  Chapter 9 , along with ideas relating to 
modularisation and libraries of sub-models.  

   1.6  Modelling within the 
procurement process 

 The ideas of ‘verifi cation, validation and accreditation’ 
methodologies (VV&A), ‘smart procurement’ methods and 
the concept of ‘the model as a specifi cation’ are currently 
being emphasised in the defence procurement area on both 
sides of the Atlantic. Requirements ideally emerge from an 
iterative process which involves all the stakeholders coming 
together to state what is wanted and design engineers then 
assessing possible ways of doing this using the available 
technology and the broader implications of different 
approaches in terms of lifetime costs. 

 Books and technical reports on modelling and simulation 
applied to very large and complex systems (e.g. [13]) are 
appearing in ever-increasing numbers from government 
laboratories and agencies due – in part at least – to concerns 
about excessive cost and time overruns in major projects. 
There appears to be a growing understanding that, in many 
cases, project failures can be traced back to failure to use 
modelling and simulation in appropriate ways at relevant 
phases of system development. Such interest in model testing 
and model quality for the design and development of very 
large and complex systems is to be welcomed but, even in 
cases of relatively simple models, there are many aspects of 
model validation, model optimisation and model tuning that 
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require very careful consideration. Inadequate attention 
to model quality at an early stage, however simple the 
application, can lead to inappropriate design decisions that 
are diffi cult and probably expensive to correct at a later 
stage. The importance of these issues is not confi ned to large 
projects and careful consideration of simulation model 
quality issues can pay dividends whatever the application. In 
general, the more integrated the system being considered, the 
greater these benefi ts are likely to be.   
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 Integrated systems and their 
signifi cance for system 

modelling  

   Abstract:    As engineering systems become more complex 
and include major elements of software as well as 
hardware, the approach to design has changed. Sequential 
design methods are being replaced by concurrent design 
processes. This has been apparent for some time in 
engineering applications where ‘control-confi gured’ 
solutions involving system integration, embedded 
controllers and multidisciplinary design issues are 
important, such as in the aircraft industry. Similar 
developments can also be found in other fi elds, such as 
automotive engineering and robotics. The introduction of 
integrated systems and the multidisciplinary processes of 
concurrent design have important implications for system 
modelling and simulation. Design processes of this kind 
are usually strongly model-dependent and involve 
optimisation at a system level. Models used as a basis for 
design must be of proven quality as model limitations and 
errors have direct implications in terms of the performance 
of the resulting system.  

   Key words:    multidisciplinary, complexity, system 
integration, concurrent design.   

                 2 
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    2.1  An introduction to integrated 
systems 

 The widespread introduction of embedded systems and other 
forms of computer-based control in recent years has led to a 
rapid increase in the complexity of engineering systems. For 
example, digital ‘fl y-by-wire’ control systems are now 
commonplace, both in civil and military aircraft, and this 
leads to new levels of interaction within the on-board systems 
of the aircraft, between the pilot and the vehicle, and between 
different vehicles. Multidisciplinary issues involving the 
elastic airframe, the fl ight control system, the propulsive 
control system and physiological ‘biodynamic’ factors 
involving the pilot are combining to an extent not previously 
encountered. For example, low-frequency modes of structural 
vibration may necessitate use of active structural mode 
control systems that are fully integrated with the primary 
fl ight control system, since the frequency ranges of these two 
systems are likely to overlap. Novel design features for 
aircraft, such as ‘carefree manoeuvring’, can assist aircrew 
in avoiding potentially hazardous situations and thus help 
to improve safety margins or avoid potential hazards. In 
extreme cases, for military aircraft applications, the 
integration of aircraft systems has led to designs which, 
without the stability augmentation inherent in the fl ight 
control systems, are essentially impossible to fl y. In such 
cases, fl ight control issues have to be addressed during the 
design process from the earliest stages and similar issues can 
arise with other applications (see e.g. [1], [2]). 

 Although many good examples of integrated system design 
can be found in aeronautical engineering, similar situations 
involving multidisciplinary design, system integration, 
‘control-confi gured’ solutions and embedded controllers can 
be found in other fi elds, such as automotive engineering, 
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robotics, wind turbine generators and biomedical engineering. 
Satellite and space vehicle design is another area where 
integration of systems is essential due to the importance of 
satisfying overall design requirements in terms of the energy 
usage and total mass. 

 Taking modern road vehicles as an example, it is clear that 
a car or truck involves many component parts and these 
cannot be designed in isolation. The engine and transmission 
characteristics have to be chosen to take account of the mass 
and other physical dimensions of the vehicle, along with the 
performance requirements in terms of quantities such as 
maximum acceleration and fuel consumption (both of which 
are largely market-driven). The suspension is designed to suit 
the mass of the vehicle and the engine characteristics and, 
once again, must satisfy the demands of the market. Any 
change in one element of the system leads, inevitably, to 
changes elsewhere so the whole vehicle must be looked at as 
a single integrated system. 

 In a similar way, modern wind turbine systems exhibit 
complex dynamics involving interactions between the turbine 
and generator elements (involving the rotor, drive train, 
generator, converter and electrical load), and other dynamic 
elements such as the tower, substructure and foundations. As 
wind turbines become larger and involve rotor systems with 
lower natural frequencies, the interactions between these 
different dynamic elements become more signifi cant, leading 
to a need for better models, the use of analysis and design 
methods that take full account of the integrated nature of 
the system and the application of more advanced methods 
of control (see e.g. [3]). 

 Another rapidly developing application area where system 
integration is very important involves micro-electromechanical 
systems (MEMS) and nano-electromechanical systems 
(NEMS). The potential of very small (micro), nano and, 
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more recently, molecular-sized machines has been recognised 
for some time and specialised sensor devices such as miniature 
accelerometers and tuning fork rate gyroscopes with 
electrostatic actuation are now widely available. Many 
MEMS and NEMS developments involve medical 
applications such as blood cell separation and biochemical 
analysis. Dynamic models have an important role in new 
developments of this new technology and modelling and 
simulation methods can help not only in the design process 
but also in providing a better understanding of performance 
limitations. These systems are very highly integrated and 
frequently involve physics, chemistry and biology as well as 
electronics, control and mechanical engineering. A recent 
review of modelling, simulation and control aspects of 
micro- and nano-electromechanical systems has been 
provided by Ferreira and Aphale [4]. 

 There are many ways in which  complexity  can be defi ned 
and one useful way to approach this is to consider complexity 
in the context of engineering systems using a number of 
 levels  (see e.g. [5]). The lowest level of complexity involves 
components or sub-systems from a single engineering 
discipline and usually involving one organisation. A simple 
example at this level is an electric motor or generator. At the 
second level, more than one engineering discipline is involved 
and there is likely to be more than one organisation concerned 
with the processes of design, operation or maintenance. A 
complete electrical power station is an example of a system 
at this second level of complexity. At the third (and top) 
level, we are dealing with a system of systems and this can 
involve many different disciplines and has an impact on 
non-technical factors involving social, economic and 
environmental issues. An example at this level of complexity 
is a complete electrical supply network, involving electrical 
power generation and distribution. 
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 Whatever the fi eld of application, unless appropriate 
design methods are applied, the development of hybrid 
systems, involving mechanical elements, electrical elements, 
electronics, control and software inevitably introduces 
additional complexity that can lead to delays, unexpected 
extra development costs or products that do not meet their 
specifi cation. These design methods are usually model-driven 
and involve optimisation at the level of the overall system. 

 In the design and development of industrial processes, 
such as those found in chemical engineering and electrical 
power generation and distribution, an integrated approach 
supported by effi cient modelling and simulation methods 
and tools is also recognised now as being important (see e.g. 
[6]). Although the adoption of modelling and simulation in 
the fi eld of engineering processes has been slower than in 
other application areas, this may be because modelling and 
simulation activities in that fi eld are often separated from 
other aspects of engineering. Simulation should be seen as 
being of central importance throughout the whole life cycle 
of an industrial process. In a large process, models may be 
developed many years before the construction begins. The 
construction may take years and the expected life of the 
plant may be several decades, once commissioning has been 
completed. Simulation models should therefore be recognised 
as being of central importance for a wide range of activities 
including the specifi cation stage and investigation of options 
before detailed design is started, for overall optimisation of 
the system and for controller development. Once the 
commissioning stage has been reached, models and associated 
real-time simulators may be of great value for operator 
training and also for investigation of possible problems 
encountered during commissioning. When the plant becomes 
operational, models and simulations continue to be of value 
for investigation of operational issues and sustainability, for 
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accident investigation and for investigation of possible plant 
modifi cations and upgrading. 

 In engineering products and processes, the introduction 
of closely integrated systems involving several distinct 
engineering disciplines is leading to new trends in design and 
development. In the past, different aspects of a system were 
usually designed in a number of distinct and separate phases 
– involving mechanical elements initially and ending with 
the electronics, control and software aspects. Problems 
encountered at a late stage could not be corrected without 
signifi cant additional cost and delays, and it became common 
to attempt to deal with such problems through modifi cations 
of the software, adding to its complexity and often failing to 
address underlying issues.  Model-driven design  attempts to 
overcome some of the problems of traditional sequential 
design procedures through the introduction of a more 
concurrent approach.  

   2.2  Sequential and concurrent design 
procedures 

  Figure 2.1  shows the traditional  sequential approach  to 
design. Here the system specifi cation is the starting point for 
the process and this usually involves mechanical design as a 
fi rst stage, typically using computer aided design (CAD) 
tools. Once that part of the design has been optimised as a 
separate sub-system, the mechanical engineers pass the 
design on to their electrical engineering colleagues, who start 
work on the electrical aspects of the project; this may 
typically involve selection of motors and drive components, 
other types of actuators and sensors. Again, use is made of 
design tools that are specifi c to the domain in question and 
the sub-system under consideration is optimised in isolation. 
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  Block diagram of the conventional design 

process involving sequential design stages. Note 

that between the fi ve blocks that involve design, 

there may be many hidden communication links 

and iterative cycles of design modifi cation. 

There is also likely to be feedback from the 

prototype testing stage to each of the earlier 

design stages in order to optimise the overall 

system     

   Figure 2.1  
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At this stage, those involved with the control systems and 
any embedded hardware and software begin to play a part. 
Generally, the last aspect of design that is fi nalised in this 
sequential approach involves control laws and tuning of the 
control algorithm. This leads to construction of a prototype 
system and to testing. Once the testing has been completed 
successfully, the work progresses to the manufacturing stage 
but, if the testing process throws up problems, it is clear that 
the engineers responsible for those aspects must reassess 
their designs and make changes. These changes are then 
evaluated in a new or modifi ed prototype system. 

 As work progresses in the sequential approach of 
 Figure 2.1 , the more diffi cult and expensive it becomes to 
make changes in the stages represented by the fi rst blocks 
in this diagram. Rectifying problems can produce long 
delays and signifi cant additional costs, or lead to acceptance 
of features of the design that do not fully satisfy the 
specifi cation. 

 In the model-driven integrated systems approach, a more 
 concurrent  type of design procedure is adopted. This is 
illustrated in  Figure 2.2 , which shows that this is a  parallel  
design process in which the mechanical, electrical, electronic 
and control aspects of the design are considered together. A 
virtual prototype is produced using a computer simulation 
model. This simulation may involve both continuous and 
discrete-event techniques and such combined simulation 
models are discussed in  Chapter 3 . As confi dence is built up 
about some aspects of the design, the virtual prototype 
may move increasingly towards a ‘hardware-in-the-loop’ 
simulation where available prototype hardware operates in 
conjunction with a simulation model to represent parts of 
the system that are not available at that stage. After successful 
testing of the virtual prototype and completion of any further 
design iterations necessary, the work progresses to completion 
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of a physical prototype and further evaluation of performance. 
By making use of multidisciplinary models, engineers are 
able to reason about system-level properties from a very 
early stage in a project. The effect of each design decision 
becomes immediately apparent to all involved, thus lessening 
the risk of misunderstandings between engineers within 
different specialist teams. 

  Block diagram for the concurrent design 

approach with a virtual prototyping stage. Here 

communication links between the different 

design processes are shown explicitly since the 

design processes for all the sub-systems 

progress more or less in parallel. There are also 

important communication links, which are not 

shown, between the virtual prototype and the 

design blocks     

   Figure 2.2  
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 One of the most important features of the integrated 
systems approach involving concurrent design is that the 
success of the design depends on the quality of the models 
being used by the different design teams. Another issue is the 
need to integrate the design tools used by the teams, allowing 
them to work together and share information even if the 
tools are from different vendors and are intended for specifi c 
disciplines within engineering. 

 The concurrent approach should allow engineers to 
interact continuously and to discuss how each part of the 
overall system design is affected by others. Not only does 
this improve communication links between the designers, 
but it also helps ensure that there is good communication 
with the customer. There is increased confi dence at an early 
stage in design that the requirements are fully understood 
and this helps to reduce the risk of serious errors or oversights 
and can therefore reduce the development time. 

 It is clear that, with integrated design, the systems that 
have to be brought together do not exist in hardware terms 
when initial design decisions are being made. This contrasts 
strongly with traditional approaches in some fi elds, such as 
control systems engineering. Traditional control system 
design procedures have usually involved the development of 
a controller for a ‘plant’ that already exists, or a plant that 
has been designed in detail prior to control being considered. 
In that traditional approach, direct comparisons between the 
plant model and the system are often possible. In contrast, 
within the integrated approach to design, control is no longer 
a second stage in the design process and the design of the 
control systems cannot be separated from other aspects of 
the design. 

 Although this requires a new approach, it need not produce 
insuperable diffi culties, because it is normal to start the 
design process for an integrated system using some form of 
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highly simplifi ed initial model that only includes essential 
features. This initial description is intended to provide a 
basis for the evaluation of major design options and for 
making preliminary decisions. As soon as more detailed and 
tested models become available, they are used in place of this 
initial description and, inevitably, this introduces further 
complexities. 

 Within multidisciplinary design teams, the concurrent 
consideration of critical constraints is central to this 
integrated design process and this implies a need for models 
of the highest possible quality for each stage of the 
development. There is also a need for software tools that 
allow each team to work within a familiar environment but 
still produce a complete model that can be understood by 
everyone concerned and that is accessible to all. Full design 
integration also requires design teams that are organised so 
that technical and economic factors may be traded. This, in 
turn, allows the overall performance to be more fully 
optimised and design cycle times to be reduced. 

 The steady increase in complexity of models being used for 
these new and demanding applications and the computational 
speed regarded as necessary are introducing new demands 
on those responsible for the development of modelling and 
simulation tools. Among the consequences of adopting a 
concurrent approach to design and the growing importance 
of embedded systems is that virtual prototyping and 
hardware-in-the-loop simulation techniques are now 
commonplace. This means that the fi nal stage of the 
development process involving a complete prototype system 
can be delayed. Provided the models involved in the virtual 
prototype are accurate, it can be used to identify features 
that could be regarded as weak points within the overall 
design and steps can be taken to improve the design before 
the more costly physical prototype is built. Such a process of 
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stepwise refi nement from the virtual prototype stage reduces 
overall costs and helps to reduce the risk of major problems 
at later stages. 

 Within multidisciplinary design teams, the concurrent 
consideration of critical constraints is central to this 
integrated design process and this implies a need for models 
of the highest possible quality for each stage of the 
development. There is also a need for software tools for 
dynamic modelling and simulation that can be integrated 
with other design software. 

 As an illustration, methods of computational fl uid dynamics 
and fi nite element modelling are widely used in many areas 
of engineering. When such tools are used for the modelling 
of elements within a larger system involving a number of 
sub-systems, it may be essential to derive reduced-order 
descriptions to help avoid the effects of major computational 
overheads when sub-models are being combined to provide a 
more integrated description of the larger system. This model 
reduction process, inevitably, introduces approximations and 
simplifi cations which must be assessed carefully. 

 Often the need for reduced models arises because of the 
inevitable diffi culties produced by computational timescales 
that are much greater than timescales convenient for human 
analysis and decision-making. Sub-system models should 
also be capable of running in time-scales that are well 
matched to the thought processes of human designers. 
Models are never unique and, at each stage of a project, 
whether it involves engineering design or open-ended 
scientifi c investigation, it is important that models are being 
properly matched to the intended application, not only in 
terms of quality but also in terms of computational issues 
such as speed. 

 The model-centred approach, concurrent methods of 
design and the development of virtual prototypes by domain-
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specifi c design teams that may be geographically distributed 
across the world all represent aspects of a trend towards 
what has been termed  computer-supported cooperative 
work . This is concerned with issues of collaborative design, 
coordination methods and virtual prototyping, and prototype 
to product transition. One example of an annual conference 
relating to computer supported cooperative work is the IEEE 
(Institute of Electrical and Electronics Engineers) International 
Conference on Computer Supported Cooperative Work in 
Design (CSCWD) [7]. A special issue of the IEEE Transactions 
on Systems, Man and Cybernetics has been devoted recently 
to the theme of systems integration and collaboration in 
design, manufacturing and services [8]. In some fi elds, such 
as the design of integrated electronic circuits and systems 
and digital signal processor systems, tools already exist that 
are being used for virtual prototyping, such as VHDL (Very 
High Speed Integrated Circuit Hardware Description 
Language) (see e.g. [9]) and UML (Unifi ed Modelling 
Language) (see e.g. [10]). For systems involving a wider 
range of engineering disciplines, no single tool appears to 
provide a solution at present. 

 A distinction also has to be made between the design of 
high-volume products which are of relatively low cost 
but which may require short development times and the 
design of low-volume, higher-cost products, for which 
much longer development times may be acceptable. For 
the fi rst group, the requirements may include fast modelling 
tools and access to good libraries of well-documented 
and fully validated sub-models or even existing and 
properly documented generic models. In the second case, 
there may well be time to embark on more extensive 
simulation studies from fi rst principles, provided the potential 
gains are seen to justify the inevitable high costs of such a 
strategy.   
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 Problem organisation  

   Abstract:    Models used in engineering design are refi ned as 
the design moves forward and as uncertainties are 
eliminated. This modelling process can involve tiers, 
starting with descriptions that are of relatively low fi delity 
and leading to a model at the fi nal tier that is a detailed 
description of the system in service. At every stage within 
this process of stepwise refi nement, models may be 
developed using a layered structure, starting with a 
description of the physical components and leading to a 
network-based representation and then to mathematical 
and computer-based descriptions. This chapter introduces 
methods and tools for model organisation and 
development. Aspects covered include bond graph 
descriptions, differential equations and differential 
algebraic equation descriptions, state-variable models, 
transfer function models, models involving distributed 
parameter elements and an introduction to some 
commonly used modelling and simulation software tools.  

   Key words:    tier, layers, bond graph, state-space, transfer 
function, discrete-event, discontinuity, software.   
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    3.1  Model organisation for 
engineering systems design 

 Issues of problem organisation for system modelling are 
diffi cult to separate from issues relating to the choice of 
software tools. Some tools allow users to consider the overall 
problem before becoming involved in equations and 
numerical solutions, while others are aimed at effi cient 
simulation but lack facilities for analysis of the physical 
problem. The modelling and analysis stage is particularly 
important for multi-domain systems and tools that provide a 
unifi ed environment for modelling and simulation of 
multidisciplinary systems are particularly valuable. 

 Models used for design, like the design process itself, can 
be described in terms of tiers within a procedure that involves 
 stepwise refi nement . Tier 1 involves  concept design  and, at 
this stage, models are of relatively low fi delity but capture 
the essential features of the systems. Such models provide 
approximate estimates of performance, but are nevertheless 
useful for comparing initial design options. Tier 2 involves 
 preliminary design  and uses intermediate-level models based 
on design information from the fi rst phase. Tier 3 involves 
 detailed design . Thus, in most design projects, models are 
developed with different levels of complexity for each of 
these tiers. 

 The modelling of an engineering system usually starts with 
a schematic diagram showing the system components and 
their interconnections. This can be linked to text discussing 
assumptions made and factors that have been deliberately 
ignored or regarded as being of minor importance. This is 
also a starting point for the development of a layered 
structure for a model for each of the design tiers. This layered 
structure provides a valuable framework around which 
documentation can be prepared. 
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 The fi rst layer (Layer 1) involves separately identifi able 
physical components such as coils, amplifi ers, electric 
motors, gear trains, etc. Each component or sub-system 
usually involves one engineering discipline and one 
organisation. The second layer (Layer 2) involves a network 
based on the elements of the fi rst layer but viewed in terms 
of physically based idealisations involving concepts such as 
resistance, inductance, moment of inertia or friction. The 
third and fi nal layer (Layer 3) involves a representation in 
mathematical terms where the idealised elements of the 
second layer are translated into a set of linked mathematical 
equations. It is important to note that the real-world objects 
of Layer 1 have no properties assigned  a priori  and these are 
defi ned in Layer 2, where account is taken of the intended 
application of the model. For example, for any application, 
an electrical coil is likely to have properties that include 
inductance and resistance, but if it is to be used in a high-
frequency application, it may also have capacitance. 

 Models for use at the Tier 1 of design are usually simple in 
form and, although there may be a recognisable layered 
structure, the three layers at this initial stage contain far less 
detail than at the Tier 3 stage of design. Initially, the 
component representations and associated sub-models in 
each layer may involve many uncertainties and include only 
essential features of the real-world elements. However, the 
models provide enough information to allow preliminary 
design decisions to be made. As the iterative process of design 
moves through Tier 2 to Tier 3, the developers’ attention 
becomes focused on specifi c options and on refi nement of the 
features of the models that are most relevant for the design 
objective. Modelling uncertainties are identifi ed and 
strategies are established for model reduction using data 
from component manufacturers or from tests on the 
hardware. These steps are considered in more detail in 
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 Chapters 6  and  7  and, at Tier 3 in the design process, lead 
eventually to a complete description in each layer. 

 One topic that is not considered in detail in this book is 
 qualitative  modelling. Traditional models are quantitative 
and involve variables that take values that can be represented 
numerically. Qualitative models lack the precision of 
quantitative models and variables are discretised using broad 
categories such as very large, large, medium, small and very 
small to produce a form of  fuzzy  description. Further details 
of qualitative modelling techniques may be found elsewhere 
(see e.g. [1]).  

   3.2  The physical component layer 

 The fi rst of these layers (Layer 1) involves a description of 
the system as a set of separately identifi able real-world 
objects such as resistors, motors, gear trains, etc., along with 
the information about how we observe or obtain data from 
that system and the environment within which it operates.  

   3.3  The physical concept layer 

 For each component of the system, we need to establish 
physical mechanisms that are relevant. For example, for the 
modelling of an electrical coil, as discussed in the introductory 
section of this chapter, it is necessary to establish whether or 
not capacitance should be included. We need, however, to 
retain fl exibility in developing physically based descriptions 
of the real-world elements and this is particularly important 
in considering models that involve more than one physical 
domain (such as the electrical and mechanical domains). A 
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system involving an electric motor, an associated gear train 
and a mechanical load is an example of a system involving 
multiple domains. One way of dealing with such cases is to 
use physical analogies to gain insight about overall behaviour, 
together with a network approach involving energy. 

 Ideally, when a decision is made to use a model, questions 
arise about the level of detail necessary. For example, in an 
electrical circuit the choice of a model element for a physical 
resistor should raise questions about the application and the 
frequency range over which the resistor is used. Essentially 
we need to decide whether resistance is the only property of 
importance or, because of the frequency range of interest, 
whether we should add additional physical effects such as 
capacitance or inductance. A specifi c physical resistor may 
thus have different forms of model to represent it, depending 
on the application. Similar issues arise with other physical 
components, mechanical as well as electrical. For example, 
the choice of model for a shaft involves decisions about 
whether or not internal damping and torsional stiffness 
effects are included. 

   3.3.1  Bond-graph representations 

 In the preliminary stages of modelling, details of interactions 
between physical components are not available. Various 
different levels of detail can be provided at interfaces between 
elements and refi nement of sub-models inevitably leads to 
refi nement of the interfaces. For the physical process layer, a 
natural way of handling sub-model interactions is provided 
by  bond graphs . The interface often involves  ports  at which 
there is exchange of energy or information and these ports 
can be regarded as a refi nement of the interface elements 
discussed in connection with the physical component layer. 
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Ports also defi ne the link between the physical process layer 
and the mathematical layer using what are termed  port 
variables . 

 The bond-graph approach is widely used and has origins 
in the mathematical theory of linear graphs and the 
nineteenth-century work of Kirchhoff on electrical networks. 
Bond graphs are based primarily on energy and power, and 
are particularly useful for interdisciplinary projects. Energy 
ports for components of a model are connected using bonds 
and these specify energy transfer. The system structure is 
kept separate from the equations through the graphical 
representation used in bond-graph models and this assists in 
establishing a qualitative physical understanding of a model 
(see e.g. [2]). 

 Bond graph ideas were devised by Professor Henry Paynter 
at the Massachusetts Institute of Technology (MIT) in the 
late 1950s [3]. Former PhD students of Professor Paynter 
developed the approach further, including D.C. Karnopp, 
D.L. Margolis and R.C. Rosenberg [4], and many research 
papers have since appeared. Special issues on aspects of 
bond-graph modelling have appeared in many journals (see 
e.g. [5], [6] and [7]) and an extended tutorial on bond-graph 
methods by P.J. Gawthrop and G.P. Bevan was published in 
the  IEEE Control Systems Magazine  in 2007 [8]. A useful 
report providing an introduction to bond graphs has been 
published by J.F. Broenink of the University of Twente in the 
Netherlands [9]. Links between bond graphs, linear graph 
theory and graph-theoretic modelling methods are described 
in a paper by Birkett  et al . [2]. 

 The relationships between elements of a model in bond-
graph form are highlighted in a very direct fashion at a very 
early stage in the modelling process rather than through 
equations or a simulation program on a computer. Indeed, 
the initial stages of model development using a bond-graph 
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approach can be carried out entirely with pencil and paper, 
and from this starting point information can be found about 
algebraic loops, constrained variables, the effects of possible 
simplifi cations of the model and other qualitative insights. In 
the case of complex models, computer-based modelling tools 
can be useful for generating bond graphs and some of these 
are discussed later in this section. 

 Bond-graph modelling depends on the fact that analogies 
exist between dynamic systems of different kinds. Electrical, 
fl uid and mechanical systems can all involve similar forms of 
differential equation description and bond-graph modelling 
is based on three specifi c types of analogy: signal analogies, 
component analogies and connection analogies. 

  Signal analogies 

 Bond graphs involve effort and fl ow variables, and depend 
on signal analogies to provide links between variables in 
different physical domains. Effort signals include mechanical 
forces and electrical voltages, whereas fl ow signals include 
electrical currents and mechanical velocities. The product of 
effort and fl ow in both of the electrical and mechanical 
domains is power. This is also true in other domains and, in 
general, it is always possible to write:

 effort × fl ow = power (3.1)  

 In bond graphs, effort signals are conventionally 
represented by the generic symbol  e  and fl ow signals by the 
generic symbol  f . Integrated fl ow signals include electrical 
charge and mechanical displacements, and are represented 
using the generic symbol  q . Integrated effort signals include 
electrical lines of fl ux and mechanical momentum.  Table 3.1  
shows analogous signals for translational and rotational 
mechanical systems, electrical systems and hydraulic systems. 
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   Representation of a power bond carrying an 

effort and fl ow signal pair     
  Figure 3.1  

  Analogous signals    Table 3.1  

  Bond 

graph  

  Electrical    Mechanical 

rotation  

  Mechanical 

translation  

  Hydraulic  

 Effort 

 e 

 N Voltage 

  V  V 

 Torque 

 τ N-m 

 Force 

  F  

 Pressure 

  P  Pa 

 Flow 

  f  

 Current 

  I  A 

 Angular velocity 

 Ω rad s −1  

 Velocity 

  v  ms −1  

 Flow 

  Q  m 3 s −1  

 Integrated 
effort 

 Lines of 
fl ux 

 λ V-s 

 Angular 
momentum 

  h  kg m 2  rad s −1  

 Momentum 

  p  kg ms −1  

 Momentum 
per unit area 

  p  kg-ms −1  

 Integrated 
fl ow 

 Charge 

  q  C 

 Angle 

  θ  rad 

 Position 

  x  m 

 Volume 

  V  m 3  

 Effort and fl ow signal pairs are represented by a single 
power bond, as shown in  Figure 3.1 . The direction of the 
half arrow in this diagram shows that the positive direction 
of energy fl ow is from left to right. Power bonds such as this 
must be distinguished from active bonds which resemble 
signals in block diagrams and can carry either effort or fl ow. 
 Figure 3.2  shows an active bond carrying fl ow and elements 
such as this provide a useful interface between a bond graph 
sub-model and a block diagram. 

   Component analogies 

  Table 3.2  shows analogous components with a single energy 
port from the mechanical, electrical and hydraulic domains. 
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  Representation of active bonds carrying either 

effort or fl ow that can act as a link between a 

bond-graph model and a block diagram     

   Figure 3.2  

  Analogous components with one energy port, 

corresponding to the analogous signals of 

 Table 3.1 . The fi rst column shows the generic 

bond-graph component while other columns 

show domain-specifi c components  

  Table 3.2  

  Bond 

graph  

  Electrical    Mechanical 

rotation  

  Mechanical 

translation  

  Hydraulic  

  Se  

  De  

 Applied 
voltage 

 Voltmeter 

  V  V 

 Applied 
torque 

 Torque 
sensor 

  T  N m 

 Applied force 

 Force sensor 

  F  N 

 Applied 
pressure 

 Pressure 
sensor 

  P  Pa 

  Sf  

  Df  

 Applied 
current 

 Ammeter 

  I  A 

 Angular 
velocity 

 Tachometer 

 Ω rads −1  

 Applied velocity 

 Speedometer 

  v  ms −1  

 Flow 

 Flow meter 

  Q  m 3 s −1  

  C   Capacitor 

  C  F 

 Torsional 
spring 

  K  N m rad −1  

 Spring 

  K  N m −1  

 Accumulator 

  K  Pa m −3  

  I   Inductor 

  L H 

 Moment of 
inertia 

 I NMs 2  rad  −1  

 Mass 

  m  kg 

 Flow inertia 

  I Pa  m −3   s 2 

  R   Resistor 

  R  Ω 

 Torsional 
damper 

  d  N m s rad −1   

 Damper 

  D N s m  −1  

 Restrictor 

  K  Pa s m −3  
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Here the generic  Se  component is a source of effort and could 
represent, for example, an ideal voltage source or an ideal 
applied force. The  Sf  component, similarly, is a generic fl ow 
source component representing an ideal current source or an 
applied velocity. The two generic detectors,  De  and  Df , are 
detectors of effort or fl ow, respectively. A  De  component 
could therefore represent a voltmeter or force sensor while a 
 Df  component could represent an ammeter or a tachometer. 
A  C  component stores energy and corresponds to an electrical 
capacitor or mechanical spring. An  I  component also stores 
energy and could represent an electrical inductor or a 
mechanical mass or moment of inertia. The  R  type of 
component dissipates energy, as in a resistor or a mechanical 
damper. In addition to the components that appear in  Table 
3.2 , there are  SS  components that can be used to model 
co-located sensor-actuator pairs represented as  Se-Df  or 
 Sf-De . 

 Due to the fact that a particular type of component is likely 
to occur many times within a given complex model, it is 
essential to be able to distinguish between different instances 
of each component type. Thus  R:r   1   is used to refer to a 
dissipative component  r   1  . 

 In the case of linear components, the equations 
corresponding to the generic  C, I  and  R  components are:

    (3.2) 

    (3.3) 

    (3.4)  
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 In these three equations, the quantities  c, m  and  r  are 
constants relating to elements of the physical system being 
modelled. In electrical terms the upper relationship in 
Equation (3.2) corresponds to Coulomb’s Law or, in 
mechanical terms, to Hooke’s Law, while the upper statement 
in Equation (3.3) is Newton’s Second Law. The relationship 
in Equation (3.4) represents Ohm’s Law and its equivalents 
for mechanical and hydraulic elements.  

  Connection analogies 

 Any two components can be connected using a power bond. 
 Figure 3.3  shows an example involving a capacitor and a 
resistor, where the components have the same current (fl ow) 
and voltage (effort). The bond graph  C:c  and  R:r  components 
are linked using a power bond as shown in the diagram. The 
colon notation links the label  c  with the  C  component and 
the label  r  with the  R  component. 

  A capacitor and a resistor connected in series so 

that the two components carry the same current 

(fl ow) and have the same voltage (effort). In 

terms of a bond-graph representation, the 

components are connected using the power 

bond shown on the right     

   Figure 3.3  
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  Example illustrating connection of components 

(a) in parallel and (b) in series     
   Figure 3.4  

 In general, connections are either parallel or series and 
 Figure 3.4  provides a simple example. The parallel connection 
obeys Kirchhoff’s voltage law while the series connection 
obeys Kirchhoff’s current law. The corresponding bond-
graph models use what is termed a  0  junction for the parallel 
circuit (involving common effort) and a  1  junction for the 
series circuit (involving common fl ow). The efforts for the 
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bonds associated with a  0  junction are the same but the fl ows 
for these bonds add up to zero. Similarly, the efforts on a  1  
junction sum to zero while the fl ows are all equal.  

  Power conversion in bond graphs 

 Effort and fl ow variables in the physical domains of  Table 3.1  
have different units and it is impossible to connect them directly. 
Since power is common to all physical systems, it is possible to 
connect different physical domains on the basis of power. This 
is done using the power-converting bond-graph components 
 TF  (a generic transformer) and  GY  (a generic gyrator). These 
two generic components are shown in  Figure 3.5 . 

 The  TF  component conserves power and represents a 
generalisation of an electrical transformer. In the linear case 
it has the property that:

  Examples of bond-graph coupling components. 

 (a) Bond-graph representation of a hydraulic 

cylinder and piston (a transformer). 

 (b) Bond-graph representation of a dc electric 

motor (a gyrator)     

   Figure 3.5  

�� �� �� �� �� ��



48

Modelling and simulation of integrated systems in engineering

  e  2  =  ne  1  and  f  1  =  nf  2  (3.5)  

 The  GY  component also conserves power and is similar in 
some respects to a transformer, but the fl ow in a gyrator at 
one port depends on the effort at the other. Thus the equations 
for the linear case are:

  e  2  =  kf  1  and  e  1  =  kf  2  (3.6)  

 where  n  and  k  are non-dimensional constants. Since power is 
conserved for the transformer and for the gyrator, the input 
power and the output power must be the same in both cases, 
so that:

  e  1  f  1  =  e  2  f  2  (3.7)   

  Causality in bond-graph models 

  Causality  is not established in bond-graph models until the 
initial modelling is complete. This is different from block 
diagram models where the diagram represents a set of 
assignment statements instead of equations. A block diagram 
cannot be constructed until inputs and outputs of each 
component have been defi ned. However, in bond-graph 
components, inputs and outputs are determined after 
modelling through the assignment of computational causality. 

 Creation of a-causal bond graphs for a given system can 
provide a complete model. However, this can involve many 
different sets of equations depending on the purpose of the 
modelling exercise and the type of analysis to be carried out. 
The state-space type of representation so widely used in 
continuous system simulation and control systems analysis 
and design involves one particular form of causality, while 
the Lagrangian or Hamiltonian types of representation 
involve other forms of causality. A particular representation 
can be obtained from a bond-graph model by applying a 
specifi c pattern of causal strokes to the a-causal model.  
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  The representation of causality in bond-graph 

components. The top bond graph is a-causal 

and represents the equation relating the 

variables  e  and  i  to the parameter  r , which is 

resistance. The bond graph in the middle has a 

causal stroke indicating that the variable  e  is 

the output. The corresponding block diagram 

element is shown at the middle level on the 

right. The third bond graph has a causal stroke 

showing that  i  is the output and this is refl ected 

again in the block diagram representation at the 

lower right     

   Figure 3.6  

  Advantages and disadvantages of 
bond-graph models 

 One feature of bond-graph models is that they can involve 
several description levels and this is important for hierarchical 
modelling and the recognition that a single physical system 
can be modelled at a variety of different levels or tiers, as 
indicated in Section 3.1. Generation of a bond-graph model 
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starts at the physical components and can lead directly to 
qualitative analysis or to a mathematical description and a 
simulation model. Parameter sensitivity analysis techniques 
based on bond-graph concepts can be applied. This topic, 
discussed in more detail in  Chapter 5 , is important for 
applications involving system optimisation or analysis of the 
effects of model uncertainties on overall performance. 
Inverse models can also be derived using the bi-causality 
concept and this is discussed further in  Chapter 4 . 

 The adaptable form of interface in bond-graph models is 
an important benefi t of this approach. This is particularly 
helpful in making sub-system models reusable and when 
integrating system models. If all the system models are 
in bond-graph form, then all the interfaces transmit power 
and this can signifi cantly simplify the task of bringing a 
set of sub-models together to represent a complete 
system. Another advantage is that causality of interfaces can 
be altered without producing new models and this reduces 
the number of models required in a design project, 
thus reducing the risk of errors and the costs of model 
documentation. 

 The idea of generic components and variables is useful for 
the modelling of multi-domain systems and can expose 
interactions that may otherwise remain hidden. This can be 
particularly helpful in considering possible simplifi cations. 

 Disadvantages of bond-graph models are mainly associated 
with the fact that they are still unfamiliar to many engineers. 
Although some fi nd the terminology and notation diffi cult 
initially, the whole approach is based on concepts of energy 
and power which are familiar to engineers of all disciplines 
and this can be helpful. It should be remembered that some 
engineers also fi nd signal fl ow diagrams and block diagrams 
diffi cult to accept, because those representations do not 
involve energy and power explicitly. Engineers can quickly 
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adapt to the use of bond-graph representations and benefi t 
signifi cantly from their use, especially in multidisciplinary 
problems. Transformation of bond-graph models into other 
forms of representation is straightforward and software 
tools exist to do this.  

  Examples of modelling languages and simulation 
software for handling bond graphs 

 As has already been pointed out in Section 3.3.1, much of 
the initial model development process using a bond-graph 
approach can be carried out using a pencil and paper. 
However, there are computer-based modelling tools that 
allow bond-graph models and similar port-based 
representations to be mapped to code. Examples include 
Dymola [10], CAMP-G (Computer Aided Modeling Program 
with Graphical Input) [11] and 20-sim [12]. Some of these 
software tools are discussed at more length in Section 3.5.    

   3.4  The mathematical 
description layer 

 In physically based models, many variables are treated as 
 continuous variables  that are described mathematically as 
continuous functions of time (and possibly also as continuous 
functions of some other physical quantity such as position). 
A model expressed in terms of continuous variables leads 
usually to a description involving ordinary or partial 
differential equations. 

 In the case of partial differential equations, numerical 
techniques such as fi nite-element modelling or computational 
fl uid dynamics can provide solutions very effectively, but the 
computer time required introduces problems when such 
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methods are used within the engineering design process. 
Computational tools do exist which can provide a stepping 
stone between simulation models and dedicated CAD 
formats for distributed parameter models. One example is 
COMSOL Multiphysics ®  [13] (formerly FEMLAB), which is 
a general-purpose modelling and simulation tool that allows 
a wide range of physical phenomena involving electrical, 
mechanical, thermal, fl uid fl ow and other distributed 
parameter problems to be considered within an integrated 
environment with a convenient user interface and powerful 
graphics for displaying results in two or three dimensions. 
COMSOL Multiphysics ®  also allows users to make 
connections to other software such as MATLAB ®  [14] and 
also some CAD packages including SolidWorks ®  [15], 
Autodesk ®  Inventor ®  [16] and Creo Parametric ®  (formerly 
Pro/ENGINEER ® ) [17]. 

 Even with highly specialised computer hardware and 
software facilities, a signifi cant mismatch may arise between 
the times required to perform simulation runs with complex 
distributed parameter models and the expectations and 
desires of the designer. When overall system design 
optimisation is necessary, the computational overheads of 
modelling complex systems using partial differential 
equations may be prohibitive. 

 Complex physically based descriptions involving 
distributed-parameter models can often be reduced to 
lumped parameter approximations, leading to ordinary 
differential equations, which offer signifi cant computational 
benefi ts without losing physical insight. Examples of this 
type of approach arise in aircraft systems engineering, where 
aircraft models often involve elements which are 
approximations derived from numerical solutions of partial 
differential equations. Such approximations may be useful 
only for a limited set of operating conditions. Other examples 
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include systems that can be described very accurately by pure 
or distributed time-delay models in specifi c types of 
application. 

 Some simulation tools allow lumped-parameter 
mathematical models to be formulated using port-based 
methods that involve fl ow and effort variables together with 
a-causal principles, as discussed in Section 3.3.1 in the 
context of bond-graph models. One example of this is the 
 Virtual Test Bed  (VTB) [18], which is discussed in more 
detail in Section 3.5.3. The VTB allows models to be created 
using  natural coupling , which ensures that the physical laws 
of energy conservation apply at the model ports. This 
is achieved through use of the  resistive companion method  
(RCM) (see e.g. [19]), as defi ned in the VHDL-
AMS simulation standard (see e.g. [20]). The VTB also 
allows signal coupling between model ports when this is 
appropriate. 

 One advantage of natural coupling claimed by the 
developers of the VTB is that naturally coupled models can 
be interconnected very easily to form larger models. Thus, 
the use of natural coupling principles can facilitate the 
development of libraries of sub-models in terms of model 
objects that can be readily coupled together using an object-
oriented type of approach. 

 Object-oriented methods are also emphasised in the case 
of the Modelica ®  language [21]. This is a simulation tool 
that allows a-causal methods to be applied through use of a 
declarative modelling style in which models are based on 
equations rather than assignment statements. In assignment 
statements, variables on the left-hand side of an expression 
are always results of a calculation and variables on the 
right-hand side are quantities that are known at the start of 
the calculation. In an equation, it is not specifi ed which 
quantities are inputs and which are results; causality is 
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therefore initially unspecifi ed and fi xed only when the 
equation is solved. The equation-based approach is well 
suited to representing the physical structure of the system 
being modelled and is a natural approach. One consequence 
of the equation-based methodology is that the equations 
may involve a combination of ordinary differential equations 
and algebraic equations, and this leads to a model described 
by  differential algebraic equations  (DAEs) as outlined in 
Section 3.4.3. 

 In contrast with continuous mechanical, thermal or 
electrical variables, as discussed above, a controller 
implemented using digital logic, or a processor, is likely to be 
described using  discrete-event  modelling methods. This 
normally involves difference equations rather than differential 
equations. Other cases that involve discrete-events and 
discontinuities are found in hydraulic valves and limiters, on/
off switches, logical overrides and many other components 
of practical systems. Combined or hybrid models that 
describe such elements introduce diffi culties, since many 
simulation tools currently available are not well suited to 
describing systems involving discontinuities and where the 
continuous and discrete elements may be tightly coupled. 
One example of a hybrid system is an automatic transmission 
system where there are fi rst, second, third and fourth gears. 
Others can be found in automatic fault detection and 
recovery systems where the way in which a given actuator is 
used may change suddenly when a fault is detected. Interest 
in hybrid systems has grown in recent years (see e.g. [22] and 
[23]) and some software tools, such as Modelica ®  [21], 
provide comprehensive facilities for simulation of 
discontinuous and discrete elements, even involving packet-
switched communications protocols. 

 One interesting development involves the  state quantisation 
approach  proposed initially by Zeigler  et al.  [24] which 
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involves replacing discretisation of time by discretisation of 
state and provides the basis of a new approach to numerical 
integration. One specifi c and powerful discrete-event 
simulation methodology, which is known as the  Discrete-
Event System Specifi cation  (DEVS) formalism, has been 
found to be well suited to implementation of state 
quantisation. The DEVS approach, which is discussed again 
in the context of discrete-event system modelling in Section 
3.5, was introduced by Zeigler [25] and provides a 
methodology for discrete-event simulation that is fi rmly 
based on system theory. In a further development of the ideas 
put forward by Zeigler  et al.  [24], Kofman and Junco [26] in 
2001 introduced the  quantised state system  (QSS) formalism, 
which allowed effi cient discrete-event simulation of large 
and complex continuous time systems using the DEVS type 
of discrete approach. The signifi cant advantage of this is that 
the DEVS formalism allows for asynchronous updates of 
model variables and this can be important in 
the case of models involving a wide range of time-constants 
or natural frequencies, leading to reduced computing costs 
as each variable has its own update rate. A Dymola/
Modelica ®  library known as ModelicaDEVS has been 
developed [27], which implements a number of QSS 
simulation algorithms. 

 Some other issues relating to combined discrete-event and 
continuous system simulation are discussed in Section 3.5 in 
the context of specifi c simulation tools. One interesting 
development is the availability of symbolic computing 
software, such as that provided within the Maplesim ®  [28] 
and Mathematica ®  [29] packages. Symbolic computing 
provides an exact solution in the form of analytical 
expressions and can provide insight into how parameters 
affect solutions. This can complement simulation methods 
but, although symbolic computing can be more effi cient 
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than numerical solutions for relatively simple modelling 
problems, this approach has clear limitations as models 
become more complex. Used as part of the tool-set of 
the system modeller, symbolic computing techniques can be 
very useful. 

   3.4.1  Equation-based and reduced 
form representations for 
lumped-parameter models 

 Once an appropriate model structure has been obtained in 
lumped parameter form, equations can be written down to 
provide an equivalent mathematical description. This process 
can be illustrated using an example involving the simple 
electrical circuit of  Figure 3.7 . This circuit involves an 
Inductance  L , a capacitance  C  and two resistors. One resistor 
( R ) is in series with the inductance while the second resistor 
( r ) is connected in parallel with the capacitance. The voltages 
 e ( t ) and  v ( t ) and the current  i ( t ) are then related according to 
Kirchhoff’s voltage and current laws by the following 
equations:

  Electrical circuit example involving inductance  L , 

capacitance  C  and two resistors ( R  and  r )     
   Figure 3.7  
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    (3.8) 

    (3.9)  

 Equations (3.8) and (3.9) provide a basis for a complete 
description of the behaviour of the circuit, in terms (for 
example) of its response to changes of the voltage  e ( t ) and 
may be combined to form a single second-order ordinary 
differential equation:

    (3.10)  

 Substituting this expression for    in Equation (3.8) then 
gives:

    (3.11)  

 This is an example of a  reduced form  model. Equivalent 
second-order equations could be derived for simple mechanical, 
hydraulic, thermal or process systems. Although such linear 
ordinary differential equations may be solved analytically, a 
reduced form model which is nonlinear can, in general, only 
be solved using numerical methods or simulation software. 

 If we return to the basic equations describing this model 
(Equations (3.8) and (3.9)), it can be seen that these two 
equations could be combined with the algebraic equation 
(3.12) to form a different type of model in which the variables 
 i ( t ) and  e ( t ) are unknowns.

  v ( t ) =  kf ( t ) (3.12)  

 Here, the function  f ( t ) could represent any function of 
time, such as a unit ramp ( t ) or a sinusoid (sin  ω t ), to describe 
the specifi c form of the voltage  v ( t ).
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    (3.13) 

    (3.14) 

  v ( t ) =  kf ( t ) (3.15)  

 The three equations above constitute a differential 
algebraic equation (DAE) which cannot be solved using the 
standard approaches for ordinary differential equations. 
Here the voltage  v ( t ) is being constrained to follow a specifi c 
waveform, such as a ramp or sinusoid, and solution of the 
model equations should allow us to fi nd the form of 
the voltage  e ( t ) and current  i ( t ) to make this possible. The 
properties of differential algebraic equations and methods 
for their solution are discussed further in Section 3.4.3.  

   3.4.2  Models in state-space form 

 Although reduced-form representations are often convenient 
when a linear model is being studied analytically, a 
mathematical representation that is often convenient for 
simulation purposes involves a set of simultaneous fi rst-
order ordinary differential equations. The basic principles of 
the numerical solution of sets of fi rst-order ordinary 
differential equations – a topic of fundamental importance in 
continuous system simulation – are presented briefl y in 
Appendix A2. Further details of these numerical integration 
techniques may be found in many textbooks on modelling 
and simulation (see e.g. [25], [30], [31] and [32]). 

 For an  n th order model in reduced form, there must be  n  
fi rst-order equations and this set of  n  equations forms a 
 state-space  description. Each of the variables of a state-space 
model is a  state-variable  and, in general, the number of state 
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variables must be suffi cient to allow the behaviour of the 
system to be predicted, given information about the initial 
conditions and the input forcing to be applied (the function 
 f ( t ) in the mechanical example above). The general form of 
an  n th order linear state-space model is:

  x
.
  =  Ax  +  Bu  (3.16) 

  y  =  Cx  +  Du  (3.17)  

 where  x  is the column vector of  n  state variables,  u  is a 
column vector of  m  input variables,  y  is a column vector of 
 p  output variables,  A  is an  n × n  square matrix of model 
parameters,  B  is a matrix of parameters involving  n  rows 
and  m  columns ( n × m ), while  C  and  D  are  p × n  and  p × m  
matrices of parameters respectively. Equation (3.16) relates 
the rate of change of the state to the present state and the 
input. It has a form that is especially convenient for 
simulation, since the numerical solution can be obtained for 
each equation within the state-space model simply by 
integration. The quantity on the right-hand side of each of 
the equations within the matrix-vector representation of 
Equation (3.16) is the derivative of a state variable and, for 
the  n th order case,  n  integration operations would be 
required in the corresponding simulation program. 

 For the more general case of a nonlinear model, the state-
space representation would take the form:

    x
.
  =  f  { x ( t ),  u ( t ), t } (3.18) 

  y  =  g { x ( t ),  u ( t ), t } (3.19)  

 where  f  and  g  denote nonlinear functions. 
 For the electrical circuit model of  Figure 3.7 , an equivalent 

state-space representation involves the use of two fi rst-order 
equations in place of the second-order reduced form 
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representation (Equation (3.11)). These equations are based 
upon the  state variables   x  1  and  x  2 , where  x  1  is the current  i ( t ) 
and  x  2  is the voltage  v ( t ), and an input variable  u  which 
represents the input voltage  e ( t ) may be derived by rearranging 
Equations (3.8) and (3.9) to give:

    (3.20) 

    
(3.21)

  

 That is:

    (3.22) 

    (3.23)  

 A further equation must be used to defi ne the output 
variable of interest in terms of the state variables. In this 
case, the output is the voltage  v ( t ) so the output equation in 
this state-variable representation has the form:

  y  =  x  2  (3.24)  

 In matrix form, this state-variable model may be written as:

    

(3.25)

  

 This is not the only possible choice of state variables for 
this problem, but it has the advantage of being physically 
meaningful and involves quantities that could be measured 
in the real physical system. This is an important consideration 
for model validation, as discussed in  Chapter 7 .  
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   3.4.3  Differential algebraic equation 
(DAE) models 

 Differential algebraic equations have been mentioned briefl y 
in Sections 3.4 and 3.4.1. The example discussed in Section 
3.4.1 involving a simple second-order electrical circuit model 
( Figure 3.7 ) illustrates a situation in which a quantity which 
would normally be regarded as a model output is constrained 
to have a particular form and the model may be used to 
determine other variables of the model. This example of a 
differential algebraic equation is a special type of application 
which is closely related to inverse simulation, and situations 
of this kind are discussed further in  Chapter 4 . A more 
common situation in which differential algebraic equations 
are found in engineering applications arises when a dynamic 
system is subjected to physical constraints which are 
described through algebraic relationships. 

  Schematic diagram of pendulum system        Figure 3.8  
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 A very commonly used example (see e.g. [21]) involves the 
simple pendulum system shown in  Figure 3.8 . This can be 
modelled by applying Newton’s Second Law to give the 
following set of equations:

    (3.26) 

    (3.27) 

  x  2  +  y  2  =  R  2  (3.28)  

 Equation (3.18) represents a geometric constraint ensuring 
that the position of the centre of gravity of the mass  M  lies 
on the circumference of a circle of radius  R . This is an 
algebraic equation and involves no derivatives. 

 Equations (3.26) and (3.27) may each be rearranged as a 
pair of fi rst-order equations to give:

    (3.29) 

    (3.30) 

    x
.
  =  v   x   (3.31) 

  y
.
  =  v   y   (3.32)  

 Taken with Equation (3.28), these equations defi ne the 
nonlinear model for the pendulum and a DAE model, such 
as this, can be simulated directly using any simulation tools 
incorporating facilities for handling DAEs (e.g. Modelica ®  
[21]). 

 If a simulation model is developed using a block diagram, 
situations frequently arise involving ‘implicit’ or ‘algebraic’ 
loops that are characterised by closed pathways that do not 
include any integrator or pure delay blocks. This situation is 
clearly another form of DAE model and can be dealt with 
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either by using specialist tools for the solution of DAEs or by 
eliminating the algebraic equation. That may be done by 
changing the DAE into an equivalent differential equation 
with a very short pure delay or by introducing a fi rst-order 
lag element with a time constant that is very small compared 
with time constants of the system being modelled. Advocates 
of bond-graph methods claim that the improved 
understanding of causality that comes from that approach 
allows potential diffi culties with algebraic loops to be 
identifi ed at an early stage in the modelling process. 

 Simulation of a model in the form of a set of DAEs is based 
on implicit methods involving an iterative procedure that 
includes all the algebraic equations as well as ordinary 
differential equations of the model. Solution of a DAE may 
require differentiation as well as integration, since the 
algebraic equations may involve constraints between state 
variables but not necessarily directly between derivatives of 
those state variables (although they may be constrained 
implicitly). In order to make all the constraints explicit, some 
algebraic equations of a given model may have to be 
differentiated. The  differentiation index  of a DAE model is 
defi ned as the number of times that certain given equations 
of the model have to be differentiated in order to reduce the 
model to a set of ODEs (ordinary differential equations) that 
can be solved by conventional methods (i.e. through 
transformation into ODE explicit state-variable form). One 
widely used DAE solver is DASSL [33] which is used in 
Modelica ®  [21] and in other general-purpose simulation 
tools. DASSL uses a  backward difference formula  (BDF) 
approach and a number of variations of the basic solver have 
been produced. 

 One benefi t of working with DAEs rather than ODEs is 
that there is no need to manipulate equations of the model 
into state-space form or to make use of sorting techniques to 
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ensure that statements in a simulation model occur in the 
correct sequence. Also, of course, the problems with algebraic 
loops that occur with ODE-based methods cannot arise with 
DAE-based numerical solutions. 

 The Modelica ®  language makes comprehensive provision 
for discrete and hybrid modelling together with continuous 
system simulation, and discrete variables and discrete state 
transitions are allowed within the basic state-space type of 
model. This means that continuous DAE representations are 
not suffi cient and Modelica ®  allows for  hybrid differential 
and algebraic equations  (hybrid DAEs). These are specifi c to 
the Modelica ®  language and are therefore not discussed 
further in this book, but interested readers can fi nd detailed 
information in the text by Fritzson [21].  

   3.4.4  Transfer function descriptions 

 A linear model in reduced or state-space form can also be 
described using a  transfer function  representation. This is 
defi ned as the ratio of the Laplace transform of the chosen 
model output variable to the Laplace transform of the input 
for the case where all initial conditions are zero. This process 
(details of which may be found in introductory texts on 
system modelling, continuous system simulation or control 
engineering – see e.g. [30] and [34]) transforms the differential 
equation, expressed as a function of time, into an algebraic 
equation in the Laplace variable  s  and subsequent analysis is 
entirely algebraic. 

 For the electrical network example discussed in Section 
3.4.1, Equation (3.11) transforms to:

    (3.33)  
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 so that:

    (3.34)  

 In the general case, a transfer function  G ( s ) relating an 
output  Y ( s ) to an input  U ( s ) may be written as:

    
(3.35)

  
 where  A ( s ) and  B ( s ) are polynomials in  s . Many important 
properties of the model depend upon the transfer function 
denominator,  B ( s ). Roots of the  characteristic equation  
 B  (  s  )  = 0 largely determine initial transients in the model 
response to any given input. These roots are the  poles  of the 
transfer function. Roots of the equation  A  (  s  )  = 0 determine 
the  zeros  of the transfer function which also have an infl uence 
on the form of the transient behaviour. 

 Complex models can be built up using cascaded 
combinations of transfer functions of individual sub-models, 
provided appropriate care is taken in terms of possible loading 
and other interactions between adjacent blocks, which may 
not be fully considered in the sub-model development. Thus, 
with transfer function models, it is still important to consider 
all the implicit assumptions. Viewing a transfer function as an 
idealised mathematical block that can be manipulated without 
regard to the underlying physics is dangerous, especially when 
using modern block-oriented simulation tools. 

 A number of methods are available that allow transfer 
function descriptions to be expressed as a block diagram 
involving cascaded integrator blocks. These techniques also 
allow state-space representations to be developed from 
transfer function models. Details may be found in many 
elementary textbooks on system modelling, continuous 
system simulation and automatic control (see e.g. [30]).  
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   3.4.5  Problems of stiffness 

 Whatever form of mathematical description is used, problems 
can arise when a model involves some responses that are 
very fast compared with others, so that the numerical 
methods being employed must take small steps to obtain 
satisfactory results but the overall behaviour of the model is 
relatively slow. For linear models this corresponds to a 
situation in which the roots of the characteristic equation 
cover a wide range but the phenomenon arises with nonlinear 
models where such analysis in terms of system poles is not 
applicable. Models of this kind are termed ‘stiff’ and the 
diffi culty in simulating a stiff model is that the integration 
step must be small enough to suit the most rapidly changing 
component. This step size may, however, be unacceptably 
small in terms of the total time needed to include the slowest 
components. Stiffness is really an issue of computational 
effi ciency and arises because of the need, in most applications, 
to keep the computation time to a minimum. Widely used 
variable-step integration algorithms may not be capable of 
reducing the computing time suffi ciently for design 
applications and either the form of model being used has to 
be reconsidered or specialised algorithms may have to be 
selected. 

 Redefi ning the model using physical understanding of the 
problem and the intended application may well help to 
eliminate unnecessary features that are contributing to the 
overall stiffness. For example, some fast dynamic components 
(such as sensors in which dynamic effects are included 
initially) might be replaced by a static element involving 
simply a gain constant in the simulation model. Equally 
some long time constants might involve timescales outside 
the range of interest for the intended application and the 
model could be adapted so that these time constants could be 
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considered as infi nite. Situations in which problems of 
stiffness cannot be avoided through adaptations to the model 
may be handled effectively using specialised numerical 
integration algorithms such as the one developed by Gear, 
which is widely available in continuous simulation software 
tools [35].  

   3.4.6  Sub-models involving discrete events 

 Within the context of system modelling, an  event  is something 
that happens in an instantaneous fashion and is the result of 
an event  condition  that changes from  false  to  true . At an 
event, a set of associated variables may be changed in some 
way and conditional equations may become active or may be 
deactivated by the occurrence of the event. By linking an 
event to an instant in time, we can order events to form an 
event history and we can defi ne discrete-time variables that 
only change values at discrete points in time and keep their 
values constant between events. 

 Event-based stochastic system modelling is a separate area 
of study which is important in applications involving the 
operation of servers and queues, and for this a specialised 
modelling formalism has been developed which, as already 
mentioned, is known as the Discrete-Event System 
Specifi cation (DEVS) [36]. Together with other tools, 
such as the Petri Net (see e.g. [21]), this DEVS approach 
(already mentioned in the context of quantised state 
systems) is particularly important in areas such as 
manufacturing or for systems involving packet-switched 
communications networks. Many good textbooks may be 
found that deal with these issues of discrete-event modelling 
(see e.g. [36]). Some modern system simulation tools, such as 
Modelica ®  [21], allow for both the DEVS and Petri Net 
formalisms. 
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 Considering events that can arise in the modelling and 
simulation of continuous-time systems, examples include a 
continuous variable encountering some physical limit (such 
as a maximum mechanical displacement) or the sampling of 
a continuous variable through an analogue-to-digital 
converter. The fi rst example is often associated with a 
discontinuity within an otherwise continuous simulation 
model, while the second arises in the modelling of sampled 
systems where digital processors are linked to external 
hardware. 

  Discontinuities 

 Discontinuities within continuous system simulation models 
can arise in two ways. The fi rst of these is where there is 
more than one set of derivative functions for the model under 
consideration. Switching can occur instantaneously from 
one derivative function value to another when a particular 
variable reaches a threshold value. One very simple example 
of this is a simulation in which the input is a discontinuous 
function such as a square wave. The timing of this switching 
action has to be very precisely represented in the simulation, 
otherwise signifi cant errors may arise. The second type of 
discontinuity arises when an instantaneous change in a state 
variable occurs. This could be, for example, due to the action 
of a valve within a simulation of a hydraulic system or a 
diode within an electrical circuit simulation. There are clear 
trade-offs between the treatment of discontinuities through 
specialised numerical methods that accurately determine the 
timing of a discontinuity and approaches involving more 
detailed physical modelling of the underlying processes. One 
disadvantage of the latter approach is that this might lead to 
stiffer models. Which approach is adopted depends very 
much upon the intended application of the model and the 

�� �� �� �� �� ��



69

Problem organisation

level of interest in the detailed mechanisms associated with 
the switching action. 

 Conditions for switching from one derivative function to 
another or for an instantaneous change in a state variable 
may be determined from a switch function, the zeros of 
which defi ne the events of interest. This involves establishing 
fi rst whether or not an event has occurred within the most 
recent integration interval and then, if it has occurred, 
determining the exact time of that event. In a continuous 
system simulation context, discontinuities can be handled 
using numerical tools devised specifi cally for the solution of 
this two-stage process involving the ‘detection problem’ and 
the subsequent ‘location problem’ (see e.g. [37], [38] and 
[39]).  

  Models of sampled systems 

 The growing importance of systems that involve both 
hardware and software elements means that simulation 
models must be capable of including both continuous 
variables and discrete-event dynamic elements. The modelling 
of digital processors and the associated analogue-to-digital 
and digital-to-analogue converters that allow discrete 
elements of this kind to communicate with the continuous 
elements within the system is important and is an essential 
part of an overall system model. 

 A very common example arises in the use of digital 
processors in automatic control system applications. This is 
illustrated in the block diagram of  Figure 3.9  where the 
discrete elements involve a digital processor, interface units 
and the software used to implement the digital control 
algorithm for the closed-loop system. In modelling this 
system, the analogue-to-digital converter within the interface 
may be replaced by idealised elements in which the sampling 
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process is represented by an ideal switch which closes for a 
very short period of time at regular intervals. The sampled 
value provides the discrete input to the control algorithm 
which is implemented on the digital processor using a 
software program. The numerical output from the digital 
processor is converted back to the form of a continuous 
variable by the digital-to-analogue converter and this may be 
modelled in an idealised way using a zero-order hold. This 
element gives an output which changes periodically but 
maintains a constant value between each output event. 

 The analogue-to-digital and digital-to-analogue converters 
are normally assumed to operate in a synchronous manner 
so that the input and output operations at the associated 
processor occur at the same time. Details of this approach to 
the modelling of digital processors and their interface units 
and the inherent assumptions may be found in many 
textbooks on simulation or automatic control (see e.g. [30] 
and [40]). 

 The algorithm within the digital processor of  Figure 3.9  is 
normally modelled using a difference equation which allows 
the output at time  t  =  kT  to be expressed in terms of the 
input at that time instant and by the input and output at 
previous sample times  t  = ( k -1) T ,  t  = ( k -2) T , . . . etc. Here, 
 T  represents the sample period and the index  k  defi nes the 
sample number being considered. For example, a very simple 

  Block diagram of sampled data system involving 

digital control of a continuous dynamic system     
   Figure 3.9  

�� �� �� �� �� ��



71

Problem organisation

algorithm involving proportional control would be modelled 
using a difference equation:

  O ( kT )= GE ( k T) (3.36)  

 where  O ( kT ) is the signal at the digital-to-analogue converter 
and  E ( kT ) is the signal obtained from the analogue-to-digital 
converter at time  t  =  kT . If, instead of proportional control, 
the control algorithm involved integral control so that the 
error signal was being integrated numerically within the 
control processor, the difference equation would have a more 
complex form and would involve values of the discrete 
variables  O  and  E  at previous sample times as well as the 
current values. Further discussion of the simulation of 
sampled-data systems and the more general issues that 
arise in the modelling and simulation of hybrid systems 
involving combinations of continuous and discrete dynamic 
elements may be found in recent textbooks and papers 
(see e.g. [22]).    

   3.5  Software for modelling 
and simulation 

 In discussing software for modelling and simulation, it is 
important to distinguish between software that is concerned 
primarily with simulation of lumped element dynamic 
systems and software tools that provide general tools for 
system modelling and analysis, and include some facilities 
for simulation. Since the CSSL specifi cation was published in 
1967 [41], many tools used for modelling and continuous 
system simulation have adhered, in part at least, to that 
standard (see e.g. [30] and [42]). In that approach, models 
are defi ned through assignment statements for variables and 
derivatives, and physically based equations have to be 
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changed to a specifi c form that is suitable for calculations. In 
many packages the process has to be carried out largely by 
pencil and paper manipulation, although in many cases there 
is automatic sorting of the statements involved in calculating 
derivatives. One well-known and widely used example of a 
simulation ‘language’ of this kind is acslX [43] from AEgis 
Technologies. 

 In some cases simulation languages have facilities for 
models to be defi ned initially in terms of a block diagram or 
other convenient graphical representation. The complete 
model is translated into the CSSL form prior to execution. 

 Another widely used tool, which includes facilities for 
analysis as well as modelling and simulation of continuous 
systems, is MATLAB ® /Simulink ®  [14]. Although it does 
not conform to the 1967 CSSL specifi cation, it has 
facilities for defi ning models in terms of simple assignment 
statements and also for defi ning models in block diagram 
form. 

 One important development in recent years has been the 
introduction of equation-based object-oriented modelling 
languages such as Modelica ®  [21]. In contrast with other 
simulation tools, these use expressions that are essentially 
the same as the mathematical equations of the underlying 
model. Hierarchical decomposition and model reuse are also 
central to these developments. In addition, some languages 
have provision for the description of physical connections 
and can associate a set of variables with a port, thus allowing 
easy interconnection of sub-models. 

 Issues of combining discrete-event and continuous system 
simulation models were mentioned briefl y in Section 3.3. In 
some cases the approach adopted has involved bringing 
together the necessary features to create a properly integrated 
tool that provides for discrete and continuous representation. 
Modelica, together with the associated simulation tools such 
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as Dymola [10] or Opensource Modelica ®  [21], typifi es this 
approach. The Statefl ow TM  toolbox [44] from MathWorks 
represents a different approach and allows the facilities of 
Simulink ®  to be extended to allow logic elements to be 
described, and this relates directly to previous discussion of 
events and the simulation of discrete-event systems in Section 
3.4. MapleSim ®  [28] is another versatile physical modelling 
and simulation tool that includes many similar features, in 
this case developed on a foundation of symbolic computation 
technology. 

 Many simulation tools now commercially available have 
their origins in engineering research groups in universities. 
Examples include the simulation language ESL, developed 
initially at the University of Salford in England under contract 
to the European Space Agency but now marketed and 
supported commercially by ISIM International Simulation 
Ltd in the UK [45]. One important feature of ESL is the 
provision of powerful numerical tools for handling 
discontinuities. Another widely used simulation package 
which has origins in academia is 20-sim, maintained 
and marketed by the company Controllab Products BV, 
which has roots within Twente University in the 
Netherlands [12]. 

 Another software tool that has its origin within an 
academic research environment is the Virtual Test Bed (VTB) 
which is being developed at the University of South Carolina 
in the USA [18]. This is a particularly interesting development 
in the context of integrated system applications and model-
driven design involving multidisciplinary systems. The VTB 
can accept sub-models created using different simulation 
tools and this is important in creating effi ciently a complete 
system model from elements that come from different teams. 
Each team is likely to have its preferred software tools and 
may be reluctant to move to some unfamiliar tool that would 
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be common to all the teams involved in a multidisciplinary 
project. Adoption of tools such as the VTB permits an 
element of independence to be maintained while allowing an 
overall system model to be created quickly and effi ciently. 
Model reuse may also be facilitated in that existing 
models based on the previously used tools may be integrated 
into new and more complex descriptions of the overall 
system. 

 Simulation tools such as acslX [43], MATLAB ® /Simulink ®  
[14], Modelica ®  [21], 20-sim [12], Maplesim ®  [28], ESL [45] 
and the VTB [18] are mentioned in this book in the context 
of specifi c applications. It should be noted that all these tools 
allow for graphical input, with models described by block 
diagrams or bond graphs. They also all support sub-models 
and thus allow some form of model reuse. They allow output 
visualisation through two-dimensional graphs and some, 
such as 20-sim, the VTB, Simulink ® , Modelica ®  and ESL, 
provide access to three-dimensional animation tools. 
Examples that are presented in this book have mainly 
involved use of MATLAB ® /Simulink ®  (or the open-source 
equivalent, SCilab/Xcos [46]), Modelica ®  and the VTB, and 
a brief introduction to the main features of these software 
packages is provided in the next two sub-sections. Readers 
who are unfamiliar with these tools may wish to consult 
some of the many textbooks available on the use of these 
packages. 

   3.5.1  A brief introduction to 
MATLAB ® /Simulink ®  

 MATLAB ®  (the MATrix LABoratory program) was 
developed to provide an easily accessible and interactive 
version of the powerful LINPACK [47] and EISPACK 
[48] routines which had been developed for solution of 
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linear equations and eigenvalue problems. MATLAB ®  is 
now a general-purpose commercial matrix package that 
provides an interactive programming environment with 
graphical output. Every data object in MATLAB ®  is an 
array. 

 Although MATLAB ®  incorporates standard functions for 
the solution of ordinary differential equations, or can be used 
as a general-purpose programming language for simulation 
applications involving user-written algorithms, much present-
day simulation work involving MATLAB ®  is based upon use 
of the Simulink ®  package. This provides a graphical input to 
allow models to be defi ned in terms of block diagrams and 
through this feature, models can be created using a 
hierarchical structure. This is helpful not only in the 
programming of complex simulation problems, but also in 
the effi cient documentation of such models and to other users 
who need to understand a simulation in detail before 
applying it. 

 Data analysis and visualisation are both very 
straightforward using the facilities available in MATLAB ® /
Simulink ®  and there are many specialist add-on tools, such 
as those for system identifi cation, optimisation and signal 
processing. Symbolic computing results can be generated 
using one of the toolboxes and symbolic results can be 
integrated with MATLAB ®  and Simulink ®  results. Facilities 
for the generation of reports are made available through the 
MATLAB ®  Report Generator. 

 With the additional facilities provided by the Simscape TM  
package [49], the MATLAB ® /Simulink ®  user has access 
to powerful facilities for the integrated modelling of 
systems involving a number of physical domains. Simulink ®  
itself includes some standard library sub-models and 
through Simscape TM  there are additional standard libraries 
involving sub-models for components in specialised fi elds, 
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including mechanics, electronics and hydraulics. There are 
also libraries for mechanical transmission systems and for 
electrical power systems. Using the Simscape TM  language, 
which is based on MATLAB ® , sub-models can be created 
together with equivalent Simulink ®  blocks for new physical 
components that do not appear in the standard libraries. 
Similarly, it is relatively straightforward to create entirely 
new libraries using the facilities of Simscape TM  and to 
extend existing libraries so that specialist models can be 
deployed across an organisation or to sub-contractors in 
large projects. Signals and parameters have units within 
the models in Simscape TM  libraries and there are also 
facilities for the automatic conversion of units. The use of 
the Simscape TM  environment is discussed further in 
 Chapter 9 . 

 The additional Statefl ow ®  [44] tool available from the 
MathWorks extends the Simulink ®  environment to allow 
discrete-event situations to be included. Control, supervisory 
and mode logic can be incorporated into simulations in a 
natural fashion using this extension to Simulink ® . Statefl ow ®  
charts can be created in a drag-and-drop fashion like 
Simulink ®  diagrams and facilities are included for hierarchical 
structures involving sub-charts. 

 Although MATLAB ® /Simulink ®  is very widely used in 
industry, there is an open-source alternative to MATLAB ® /
Simulink ®  known as Scilab/Xcos [46], which is now quite 
commonly found in industrial organisations and in 
universities. This was developed at the Institut Nationale de 
Récherche en Informatique et en Automatique (INRIA) in 
France. Scilab is similar in many respects to MATLAB ®  and 
the simulation tool Xcos provides simulation facilities similar 
to those of Simulink ® . Versions of Scilab/Xcos are readily 
available by download for Linux and Windows ®  operating 
systems. 
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    3.5.2  A brief introduction to Modelica ®  

 The Modelica ®  standard has been under development 
continuously since 1997 [21] by an international non-profi t 
association and this is a modern, object-oriented modelling 
language that is well suited to the solution of problems 
involving a number of different engineering domains. 
Modelica ®  models may be simulated in a number of ways, 
using the Dymola environment [10] or the OpenModelica 
tool. 

 It is important to note that, compared with many other 
modelling and simulation software products, Modelica ®  is a 
modelling language. It has been developed relatively recently 
and incorporates object-oriented features based on the 
principles of  encapsulation, inheritance  and  hierarchy . It 
also builds upon the concept of non-causal modelling, 
with sub-model interfaces being defi ned through pairs of 
variables which are not assigned to be inputs or outputs at 
the outset. 

 The inheritance principle means that Modelica ®  is 
particularly well suited to supporting the reuse of models, 
since a generic sub-model can be defi ned in a broad fashion 
and then refi ned into a number of sub-models of which the 
common elements need be defi ned only once. Modelica ®  also 
has multi-domain modelling capabilities so that components 
from several different domains (e.g. mechanical, electrical, 
thermal, control systems) can be readily described in a unifi ed 
fashion and combined easily. 

 Modelica ®  is based primarily on equations rather than the 
type of assignment statements that are commonly used in 
traditional programming languages and it is this feature that 
allows a-causal modelling with Modelica ®  and facilitates 
model reuse, since equations do not in themselves defi ne a 
specifi c direction of data fl ow.  

�� �� �� �� �� ��



78

Modelling and simulation of integrated systems in engineering

   3.5.3  A brief introduction to the 
Virtual Test Bed (VTB) 

 The Virtual Test Bed (VTB) is a suite of software tools 
intended for use in the development of large-scale dynamic 
systems, usually by multidisciplined teams [18]. The facilities 
within the VTB are intended to assist in the process of 
developing and testing new designs prior to implementation 
as a hardware prototype or in a production system. The 
application area for which the VTB was initially developed 
was electrical power systems in the context of ‘more electric’ 
vehicles for use on land, in the air or in a marine environment. 
It has, however, been used for a variety of other types of 
application such as robotics. 

 Electric and hybrid vehicles of all types have provided an 
excellent application area for evaluation of new modelling 
and simulation software such as the VTB. Although involving 
electrical power systems, this application area differs 
signifi cantly from conventional terrestrial electrical power 
generation and distribution systems since vehicle systems 
can involve distributed energy generation and storage, 
unconventional power sources such as fuel cells and gas 
turbines, much use of power electronics and distribution 
systems that may have to be reconfi gured rapidly. The 
development of new vehicle systems of this kind is likely to 
involve sub-systems that cross conventional disciplinary 
lines to an even greater extent than in other types of projects 
and will certainly involve major elements of mechanical, 
electrical, power electronic, control and software engineering 
that have to be integrated very carefully within the fi nal 
system. Inevitably, a number of different specialist design 
teams are likely to be involved and members of these teams 
must contribute fully and effi ciently to the development of 
an interdisciplinary virtual prototype system. In many cases 
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these teams will have preferred software tools and the VTB 
allows dynamic models from many environments to be 
brought together through the application of coupling laws 
involving signal coupling, data coupling or natural coupling 
principles. The VTB thus strives to provide a pathway to a 
fully inclusive teaming environment. These features of 
the VTB make it particularly interesting as a software 
environment for projects involving integrated systems and 
are considered further in  Chapter 9 . 

 The VTB software suite contains several tools. The fi rst of 
these is the  Schematic Designer , which is the central tool that 
is used in designing and simulating systems. It allows 
component models to be assembled into system models. The 
 Entity Designer  provides the means for developing VTB 
components, known as ‘entities’. An entity is the simplest 
form of component and each entity has its own simulation 
engine. The Entity Designer allows use of a proprietary VTB 
modelling language and also permits the development of 
components using languages such as C++, C#, Visual Basic ®  
and J#. The  Module Designer  is used to defi ne and assemble 
new reusable models, known as modules, which are based 
on one or more existing components. A module is treated as 
a single component but does provide a simulation engine, as 
it makes use of the engines of the components within it. 

 It is important to note that the VTB includes an extensive 
library of simulation components. This has considerable 
value but the fact that the VTB allows import of sub-models 
developed in other simulation environments to be used in 
VTB simulations means that the range of model libraries and 
established sub-models available to VTB users is very large. 
Another feature of the VTB that should be mentioned is the 
fact that it provides a highly interactive environment in 
which the user can change the model topology or parameter 
values while the simulation is executing. High-level 
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visualisation facilities can also be linked to live simulation 
data to allow animation of simulation results.   

   3.6  New developments in the 
modelling and simulation of 
micro- and nano-mechanical systems 

 As mentioned in  Chapter 2 , micro- and nano-
electromechanical systems (MEMS and NEMS) technology 
is one fi eld in which modelling and simulation methods are 
of central importance for the design of highly integrated 
systems. These can involve many types of model, including 
classical physical models, continuum mechanics models (e.g. 
for investigation of elasto-dynamic effects), thermal models, 
magnetic models and electrical models. Computational 
studies may involve not only three-dimensional fi nite element 
analysis, but also atomic-scale descriptions of materials using 
 molecular dynamics (MD)  simulation methods [50]. For 
many practical applications, there is therefore a need to 
reduce the computational complexity by reducing the 
number of variables and parameters in the model. This is 
especially important in applications involving the application 
of feedback principles where control design techniques have 
to be applied. In such cases, the use of model reduction 
methods becomes essential. 

 Issues such as the effects of thermal fl uctuations on NEMS 
device performance leads to situations where physically 
based models are again essential and there is therefore a need 
to be able to move effi ciently from highly detailed, physically 
based models to reduced models for control system design 
and then back to physically based models for further analysis. 
The capability to model effectively at a number of different 
resolutions is therefore vitally important and two categories 
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of multi-scale simulation model are recognised in this 
application area [50]. The fi rst of these involves  sequential 
multi-scale modelling  methods, in which large-scale models 
(such as those used for control system design) use low-
resolution representations derived from more detailed, 
physically based, higher-resolution descriptions. The 
simulations at these different levels run independently of 
each other. The second approach is termed  concurrent multi-
scale modelling  and attempts to link methods together in a 
combined model in which the different scales are 
considered concurrently. Developments of this kind are 
clearly applicable in other fi elds and have considerable 
relevance for all involved in the use of simulation techniques 
in designing highly integrated systems, whatever the area of 
application.   
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 Inverse simulation for system 
modelling and design  

   Abstract:    Inverse simulation is a tool for fi nding inputs such 
that model outputs match predetermined time histories. 
This could, for example, be an aircraft manoeuvre or the 
movement of a robotic arm. Through the inverse solution 
model, behaviour can be investigated in a way that is 
different from conventional simulation methods which 
provide model outputs for given initial conditions and input 
time histories. Several techniques are available for inverse 
simulation and methods described include a so-called 
‘differentiation’ approach, an ‘integration’ approach and 
an approach based on feedback system principles. Case 
studies are used in discussing applications of inverse 
simulation and these involve a process system with two 
coupled tanks of liquid, a dynamic model of an unmanned 
underwater vehicle and an aircraft model. Emphasis is 
given to the feedback system approach in these case studies.  

   Key words:    inverse, differentiation, integration, feedback.   

    4.1  An introduction to inverse 
modelling and inverse simulation 

 An  inverse dynamic model  allows time histories of input 
variables to be found that give model output responses that 

                 4 
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match given time histories. In fi elds such as environmental 
science, ‘inverse modelling’ describes the process of fi tting 
a model to measurements or to fi eld observations (essentially 
the process of system identifi cation and parameter 
estimation), but that is not the meaning used here. 

 The signifi cance of inverse modelling can be understood 
from an example. If a manoeuvre is defi ned for an underwater 
vehicle as a series of positions in three dimensions (in an 
earth-based axis system) and times, inverse modelling 
techniques provide the required time history of thrust values 
and control surface movements to allow that manoeuvre to 
be performed. If, for given maximum thrust values and given 
actuator characteristics, the requirements of this manoeuvre 
are not met, the inverse model may also provide information 
to facilitate design changes. 

 Although inverse models have relevance for any problem, 
the advantages have been found to be particularly signifi cant 
for systems involving a human operator, especially if the 
operator and the system being controlled interact closely. 
Examples include piloting of fi xed-wing aircraft and 
helicopters, crane operation, ship steering and other similar 
man-machine control tasks. Military fi xed-wing aircraft and 
helicopter applications stimulated much early research since 
inverse methods can provide additional insight concerning 
vehicle-handling qualities, which is an important topic. 

 Although inversion techniques for linear models are of 
limited importance for practical applications, the structure 
of linear inverse models can provide useful insight regarding 
limitations of inverse solutions. For example, for single-input 
single-output (SISO) models, a transfer function can be 
inverted directly, provided we ensure that the inverse model 
is realisable or ‘proper’. In other words, since poles and zeros 
are interchanged in the inversion process, additional factors 
may be needed in the denominator of the inverse so that the 
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number of poles is at least as great as the number of zeros. 
The additional poles must lie at points in the s-plane that are 
far from the poles and zeros of the given model. 

 For multi-input multi-output (MIMO) linear models, 
inversion is also possible through simple analytical 
techniques, but practical diffi culties arise for some model 
structures. Details of methods of inversion for linear MIMO 
models may be found in the published work of Brockett [1], 
Dorato [2] and Hirschorn [3]. 

 Analytical techniques of model inversion have been 
developed further by Isidori and his co-workers and others 
(see e.g. [4] and [5]). Nonlinear models require transformation 
to linear and controllable descriptions using nonlinear state 
feedback (see e.g. [6], [7] and [8]) together with concepts 
from differential geometry that are unfamiliar to most 
engineers. Other mathematical techniques, such as 
regularisation, are also relevant. However, although 
successful in applications involving automatic control, these 
methods have not been used more widely in design. 

 The equations of a nonlinear dynamic system for most 
cases of practical importance may be written in the form:

  ẋ  =  f ( x ,  u ) (4.1)  

  y  =  g ( x ) (4.2) 

 where  x  and  u  represent the vector of state variables and 
input variables, respectively, and  y  represents the vector of 
output variables. In Equation (4.2) the output variables are 
functions of the state variables only and there is no direct 
coupling of input variables to the outputs. This is 
representative of most real systems, since changes of input 
seldom produce instantaneous output changes. 

 The essence of the inverse modelling problem is to fi nd the 
input vector  u * that will produce an output  y ( t ) that exactly 
matches a required output  y *( t ). 
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 Differentiating Equation (4.2) with respect to time gives:

  ẏ  =  g    x    ( x ) ẋ  (4.3)  

 and substitution in Equation (4.1) then gives:

  ẏ  =  g    x   ( x ) f ( x ,  u ) (4.4)  

 If this equation is solvable for  u , it gives  u * from the 
solution of the following equation:

  ẏ * =  g   x      ( x ) f ( x ,  u *) (4.5)  

 This may be possible for some functions  g ( x ), but 
further differentiation is usually needed and the additional 
equation:

  ÿ * =  g   xx  ( x ) f ( x ,  u *) 2  +  g   x  ( x )( f   x   ( x ,  u *) f ( x ,  u *)

+  f   u   ( x ,  u *) u̇ * (4.6)  

 must be solved, together with Equation (4.5), for  u * in terms 
of  x  and derivatives of  y *. If this is still impossible, Equation 
(4.6) must be differentiated repeatedly until a solution is 
obtained. 

 The number of differentiation operations needed is termed 
the  relative degree  of the system [4]. The relative degree does 
not exist if the equations cannot be solved, regardless of how 
many differentiations are performed. 

 Many practical system models have a form that is linear in 
the control inputs:

  ẋ  =  f  0 ( x ) +  f  1 ( x ) u  (4.7)  

 This has been applied widely and is appropriate for vehicle 
models, including aircraft. Algebraic manipulation can 
provide straightforward solutions, as demonstrated by 
Bradley for simplifi ed helicopter models [9]. 

 One of the simplest situations involving hard limits arises 
in the modelling of nonlinear actuators, where a simple and 
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widely used actuator model involves a saturation element in 
association with a simple fi rst-order lag. Whether or not a 
given actuator becomes saturated or reaches its rate limit for 
a given demanded output response can be an important 
design issue.  

   4.2  Methods of inverse simulation 

  Inverse simulation  methods avoid analytical complexities 
in the inversion of nonlinear models, just as conventional 
simulation methods do for traditional input-output 
modelling in the nonlinear case [see e.g. [10], [11] 
and [12]). 

 Aeronautical engineers have been using inverse simulation 
since the late 1980s. The techniques are also useful for 
mechatronic systems and other integrated control system 
applications, since they provide insight about actuators, such 
as effects of amplitude and rate limits, that is otherwise more 
diffi cult to obtain. 

 Available techniques may be divided into fi ve categories:

   1.   differentiation methods as developed by Kato and Saguira 
[13] and by Thomson and Bradley at the University of 
Glasgow (e.g. [14] and [15]);  

  2.   integration methods which originated with the work of 
Hess and his colleagues at the University of California, 
Davis (e.g. [16]) and, independently, by Thomson  et al . 
(e.g. [17]);  

  3.   methods which use search-based or evolutionary 
optimisation algorithms in conjunction with the 
integration-based approach (e.g. [18]), together with 
methods based on traditional optimisation algorithms 
(e.g. [19], [20] and [21]);  
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  4.   methods based on the numerical solution of differential 
algebraic equations; and  

  5.   methods based on the application of feedback system 
principles (see e.g. [22]).    

   4.2.1  The differentiation-based approach 

 Inverse simulation methods based on numerical 
differentiation of state variables were quickly adopted for a 
range of aeronautical applications and especially for 
helicopter fl ight mechanics and handling qualities 
investigations, as reported by Thomson and Bradley (e.g. 
[23] and [24]). Liceago-Castro [25] provided an alternative 
approach using symbolic computing methods. 

 When Thomson and Bradley began applying their 
differentiation method to helicopter fl ight mechanics ([15], 
[23] and [24]), Kato and Suguira [13] were using a similar 
approach for fi xed-wing aircraft problems. In both cases the 
algorithm involved discretisation of the fl ight path in terms 
of time and the use of numerical differentiation to fi nd 
angular rates. The equations of motion were then solved as a 
set of algebraic equations at each time step. In this approach, 
equations for the inverse simulation cannot be expressed as 
a set of fi rst-order ordinary differential equations and the 
inverse simulation therefore cannot be separated easily from 
the forward simulation model. Any changes in the model 
that forms the forward description leads to major changes in 
the structure of the inverse simulation. 

 Although it has limitations, as discussed above, this 
approach was adopted by others and applied to practical 
problems. One result was an improved understanding of the 
properties of the constrained system produced by inversion. 
The dynamic characteristics of the inverse simulation model 
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differ greatly from those of the forward model, since the 
dynamics of the inverse involve the zero dynamics of the 
system (see e.g. [5], [12] and [18]).  

   4.2.2  The integration-based approach 

 In 1991 Hess  et al . [16] described an approach that avoided 
the infl exibility inherent in the differentiation method. This 
method is based on numerical integration and involves 
discretisation of the required manoeuvre, as in the 
differentiation method. In the integration-based approach an 
estimate is then made, at each time point, of the amplitude of 
the step displacement needed for each input to move the 
vehicle to the next point in the manoeuvre time history. The 
new position is calculated and the error between the actual 
and required position is found. An iterative procedure then 
minimises the error and the time history of inputs needed to 
move the vehicle to the required position is found. 

 Although computationally more demanding than the 
differentiation method, this approach has some advantages. 
There is fl exibility in terms of the form of the model and 
reorganisation of the program is not required when small 
changes are made in the model structure. Thus any 
conventional forward model can be incorporated within the 
iterative loop to provide an inverse simulation. In recent 
years this has become the most widely used approach to 
inverse simulation (see e.g. [5], [11] and [12]). 

 The fundamental assumption of the integration-based 
method is that inputs are constant over a time interval  T  
which is signifi cantly larger than the integration step time. 
For the interval  T  (starting at time  t  = 0), the inverse simulation 
problem then involves fi nding a constant input  u * such that:

  y * ( T ) =  g ( x ( T )) (4.8)  
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 where:

  x ( T ) =  x (0) + ∫   
T   0   f ( x ,  u *) dt  (4.9)  

 The solution  u * may be found using Newton’s method or 
some similar algorithm. The variation of the output with  u * 
at time  T  may be written as:

  y *  u   ( T ) =  g   x    x   u   ( T ) =  g   x   ∫   
T   0   f   u    dt  (4.10)  

 and numerical differentiation can be used to estimate  y *  u  . The 
time step  T  is then repeated over the whole period under 
investigation, with the output  y ( t ) matching the required 
output  y *( t ) at multiples of that time step. 

 Other methods have involved variations of the integration-
based approach. For example,  sensitivity function  ideas [26] 
have been applied successfully, showing advantages over the 
traditional integration-based method, especially in terms of 
improved accuracy in calculation of the Jacobian matrix. 
Further variations involve the use of  direct-search optimisation  
algorithms [18] and other optimisation methods (see e.g. 
[21]), as discussed further in Section 4.2.3. 

 A  two time-scale approach  to inverse simulation was 
developed by Avanzini and de Matteis (e.g. [27] and [28]). It 
involves partitioning the state variables into two sub-
vectors on physical grounds and reduces the model 
so that a relatively large time step may be used, reducing 
the computer time. Thomson and Bradley [12] have 
also described the use of this approach with a helicopter 
model.  

   4.2.3  Methods involving search-based 
routines and other optimisation algorithms 

 The established methods of inverse simulation, based on the 
differentiation and integration-based approaches, introduce 
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derivative information and involve calculation of Jacobian 
or Hessian matrices. Being derivative-free, optimisation 
methods involving direct search algorithms avoid any 
requirement to determine elements of the Jacobian matrix 
or Hessian matrix and therefore can alleviate problems 
caused by discontinuities and input saturation effects. 
As mentioned in Section 4.2.2, the integration-based 
approach has been used successfully with search-based 
optimisation techniques and a number of other optimisation 
algorithms. 

 The 2008 paper by Lu  et al . [18] provides details of a 
derivative-free method of inverse simulation, involving a 
version of the downhill simplex optimisation method of 
Nelder and Mead [29]. This Nelder-Mead (NM) approach 
involves minimisation of a scalar-valued nonlinear function 
of real variables using function values only and avoiding 
explicit or implicit use of gradient information. Examples of 
the successful application of a pattern-search based approach 
may be found in [18] where a method of inverse simulation 
based on the constrained Nelder-Mead algorithm is described 
in detail. Applications to nonlinear ship models are discussed 
and it is shown that problems of convergence that can arise 
with the gradient-based Newton-Raphson (NR) type of 
approach are avoided using the derivative-free constrained 
Nelder-Mead algorithm. 

 Two case studies are considered in the work of Lu  et al . 
[18] and the fi rst of these involves a relatively simple single-
input single-output ship model which includes rudder 
amplitude and rate limiting. Although results obtained by 
inverse simulation using the gradient-based Newton-
Raphson approach and the constrained NM method agree 
well for ship manoeuvres that involve rudder angles and 
rates that are below the limits, the NM method also 
achieves good convergence and physically meaningful inverse 
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simulation results for cases where the NR algorithm fails to 
converge. 

 The second case study involves a nonlinear container ship 
model with two inputs and three output variables. Turning 
circle and pull-out manoeuvres were considered and, once 
again, the NM method was successful in situations involving 
manoeuvre discontinuities for which the NR algorithm failed 
to converge. 

 It was concluded from the results of these case studies that 
the derivative-free procedure based on the constrained NM 
algorithm could provide important benefi ts in terms of 
convergence and numerical stability compared with the more 
conventional approach involving the NR algorithm. These 
benefi ts were signifi cant in cases involving input saturation 
or discontinuous manoeuvres. 

 Methods of inverse simulation involving other forms of 
optimisation algorithm may be found in the work of de 
Matteis  et al . [19], Lee and Kim [20], and Celi [21]. Those 
three examples all involve aircraft and helicopter 
applications but the optimisation algorithms applied 
are general in form and could readily be applied in other 
areas.  

   4.2.4  Inverse simulation through numerical 
solution of differential algebraic equations 

 Models based on differential algebraic equations (DAEs) are 
discussed briefl y in Section 3.4.1 where it was pointed out 
that using the DAE form of description, a model variable can 
be constrained to have a particular algebraic form, usually 
expressed as a function of time. In that section an example 
was presented using the simple RLC electrical circuit of 
 Figure 4.1 . 
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 The voltages  e ( t ) and  v ( t ) and the current  i ( t ) are then 
related according to Kirchhoff’s voltage and current laws by 
the following equations:

    (4.11)  

    (4.12) 

 These equations may be combined with the algebraic 
equation:

  v ( t ) =  kf ( t ) (4.13)  

 where  f ( t ) is some required function of time such as a ramp 
or sinusoid or triangular wave to form a model in which the 
variables  i ( t ) and  e ( t ) are unknowns, and  v ( t ) is constrained.

    (4.14)  

    (4.15) 

  v ( t ) =  kf ( t ) (4.16) 

  Electrical circuit example involving inductance  L , 

capacitance  C  and two resistors ( R  and  r )     
   Figure 4.1  
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 Equations (4.14), (4.15) and (4.16) constitute a DAE and 
solution of the model equations should allow us to fi nd the 
form of the voltage  e ( t ) and current  i ( t ) to achieve the required 
output  v ( t ). This is an inverse problem and it is clear that 
simulation tools, such as Modelica ®  [30], that have facilities 
for the solution of DAEs provide an immediate basis for 
inverse simulation. 

 The use of Modelica ®  [30] for inverse simulation based on 
the solution of DAEs has produced some potentially 
interesting results (see e.g. [31]). Although such simulation 
tools can, in effect, generate inverse simulation models 
automatically, it has been pointed out [31] that, as with other 
methods for inverse simulation, the inversion process does 
not always lead to the expected results. Issues of stability can 
arise and for a general form of DAE, no stability proof is 
available and many simulations may have to be performed to 
check whether or not a nonlinear inverse simulation is stable 
in the region of the operating space of interest for the 
application. As with other methods of model inversion, 
additional analysis, based usually on a linearised version of 
the model, is essential before inverse simulation is attempted 
using DAE solution methods.  

   4.2.5  A feedback systems approach 

 Feedback principles have for long been used to generate 
inverse functions on analogue computers, as described in the 
simulation literature between the 1950s and 1980s. For 
example, feedback pathways applied to analogue multiplier 
hardware allow these units to carry out division. Similarly, 
feedback can also allow inverse functions to be found from 
conventional analogue function generators (see e.g. [32] and 
[33]). Although some problems of stability and performance 
are reported with these feedback methods, especially for 

�� �� �� �� �� ��



99

Inverse simulation for system modelling and design

high speeds of solution, they have been used with great 
success on general-purpose analogue computers. The same 
principles can be applied more generally for inverse 
simulation and provide a different and potentially very fast 
approach to inverse simulation of linear and nonlinear 
systems. 

  The single-input single-output case 

 The use of feedback to generate inverse solutions is based on 
properties of closed-loop systems. For a linear time-invariant 
SISO model with transfer function  G ( s ), the block diagram 
of  Figure 4.2  illustrates the principles. The reference signal  v  
is the time history to be followed by the model output and 
the signal  w  is the input to the model for that required 
output. Hence if  v  is given, the quantity  w  represents the 

  Block diagram for feedback solution to model 

inversion problem. Here the variable  w  obtained 

from simulation of the system with feedback is 

the input to the model  G  required to produce a 

model output equal to the reference signal  v . 

Although the single-input case is presented in 

this diagram, the approach is also applicable to 

multi-input situations     

   Figure 4.2  
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inverse solution for the model  G , provided the difference 
between the reference  v  and the output from the model is 
suffi ciently small. 

 This approach can be demonstrated using simple linear 
analysis based on Laplace transforms, as in linear control 
theory. For the SISO case, with a simple gain factor  K  in 
cascade with the model  G ( s ), the transfer function relating 
the variable  W ( s ) to the reference input  V ( s ) in  Figure 4.2  is 
given by:

    (4.17)  

    (4.18) 

 For large values of  K , this gives:

    (4.19)  

 Thus the inverse model for  G (s) may be found by applying 
high-gain feedback and taking the input variable for  G ( s ) 
as the output of the inverse model. The variable  V  is therefore 
the output required from the model while  W  is the input 
to the model (under open-loop conditions) that will 
produce that output. Note that the controller block  K  in 
 Figure 4.2  may, in the general case, include dynamic elements 
in addition to a gain factor (see e.g. [22]). Note also that the 
orders of numerator and denominator of the closed-loop 
transfer function are the same as the order of the denominator 
of  G ( s ). The number of poles of the inverse model is thus 
always the same as the number of zeros and issues of 
realisability due to an excess of zeros do not arise [34]. Root 
locus analysis of the closed-loop system allows one to ensure 
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that the additional poles of the inverse model introduced 
through feedback lie far from the other poles and zeros of 
the inverse.  

  The multi-input multi-output case 

 The block diagram of  Figure 4.2  can be extended to 
cover the case of MIMO models involving standard state-
space descriptions (see e.g. [34] and [35]). In this case the 
block  G  is replaced by a standard linear state-space 
representation of the system model as shown in  Figure 4.3  
and we add feedback through a controller block  K . 

 Then, the output  w  of the closed-loop system is given by:

  w  =  K ( v  −( Cx  +  Dw )) (4.20)  

 which gives:

 ( I  +  KD ) w  =  Kv  −  KCx  (4.21)  

 so that:

  w  = −( I  +  KD ) −1   KCx  + ( I  +  KD ) −1   Kv  (4.22)  

  Block diagram illustrating the use of feedback 

principles for a multi-input, multi-output system 

model in standard state-space format     

   Figure 4.3  
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 In terms of the state variables  x , we then have:

  ẋ  =  Ax  +  Bw  (4.23)  

 =  Ax  +  B (−( I  +  KD ) −1   KCx  + ( I  +  KD ) −1   Kv ) (4.24) 

 = ( A  −  B ( I  +  KD ) −1   KC ) x  +  B ( I  +  KD ) −1   Kv  (4.25) 

 So that the inverse model has a system matrix:

  A * = ( A  −  B ( I  +  KD ) −1   KC ) (4.26)  

 an input matrix  B * =  B ( I  +  KD ) −1   K  (4.27) 

 an output matrix  C * = −( I  +  KD ) −1   KC  (4.28) 

 and  D * = ( I  +  KD ) −1   K  (4.29) 

 When the diagonal elements of  KD  are much greater than 
one in Equations (4.26) to (4.29), the elements of the identity 
matrix  I  can be neglected and it is possible to show that, as 
the elements of  K  tend to infi nity:

 lim( I  +  KD ) −1   K  = lim( KD ) −1   K  

= lim  D  −1  K  −1   K  =  D  −1  (4.30)  

 This approach can therefore be employed in cases where 
no inverse of the matrix  D  exists. It should also be noted that 
for  D  =  0 , the inverse model simplifi es to:

  A * = ( A  −  BKC ) (4.31)  

  B * =  BK  (4.32) 

  C * = − KC  (4.33) 

  D * =  K  (4.34) 

 This is important since the feedback approach is then 
applicable to linear models in which the block diagram has 
no direct pathways from the input to the output variables, 
which is very common in practice. 

�� �� �� �� �� ��



103

Inverse simulation for system modelling and design

 Selection of elements of the  K  matrix may present 
diffi culties since the feedback system must be stable. Thinking 
in terms of SISO closed-loop systems, some closed-loop poles 
move towards the positions of open-loop zeros as the loop 
gain is increased, but there are additional closed-loop poles 
that may move into undesirable areas of the s-plane as the 
gain is increased. It is important to understand how these 
closed-loop poles behave and to limit their movement. This 
may require use of other techniques such as root locus 
analysis and pole-placement design.  

  A general procedure for inverse simulation 
through feedback system design 

 Inverse simulation procedures using feedback involve two 
distinct stages. The fi rst of these is the design of the feedback 
system, while the second stage involves the implementation 
of the feedback system to provide the inverse simulation. 

 In the fi rst stage the closed-loop system is designed, by any 
appropriate method, and feedback parameters are adjusted 
so that it meets some given requirements for simple inputs 
such as a step or impulse. The required output is used as 
reference input for this closed-loop system and the inverse 
solution can be found from the signal at the input to the 
model. This is, in control terms, a ‘tracking problem’ for 
which there are many possible solutions. 

 Although linear theory has been used here to introduce the 
problem, tracking principles apply equally to nonlinear 
models. If a linearised description is used in the initial design, 
the performance of the closed-loop system must be checked 
through simulation for several operating conditions, 
preferably using the fully nonlinear model. Limitations must 
be established and noted for the application stage. 

 In the second stage, the feedback system is used to ensure 
that the model output follows a given time history that may 
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be generated by a reference model. The difference between 
the reference input (the time history to be followed by the 
model output variable) and the actual model output should 
be monitored continuously. A measure of this difference (such 
as the integral of the squared error) may be recorded along 
with the time history of the model input (which is the required 
output of the inverse simulation), as shown in  Figure 4.2 . 

 Although the feedback approach to inverse simulation 
is computationally effi cient and potentially faster than 
other methods, it should be noted that closed-loop system 
simulations may involve longer execution times than 
equivalent forward simulations. This is due mainly to the 
fact that the integration step size needed for a model with 
feedback is normally smaller than the integration step size 
for the equivalent forward model due to closed-loop system 
poles that lie far from poles and zeros of the forward model. 
The feedback system is thus stiffer than the forward model 
and integration algorithms for stiff systems may introduce 
extra computational burdens. 

 One application of feedback principles to inverse simulation 
involved model validation tools and was developed by Gray 
and von Grünhagen [36]. Their approach was based on 
explicit model-following methods of closed-loop system 
design and was applied to problems of helicopter fl ight 
control. Inverse simulation techniques were applied, together 
with a so-called ‘open-loop’ simulation procedure, to identify 
weak features within a non-linear MIMO helicopter model. 
The overall conclusion was that the combination of the open-
loop approach and inverse simulation provides insight about 
physical sources of model defi ciencies. The feedback method 
of inverse simulation, as compared with slower techniques 
based on optimisation, clearly helped to match the timescales 
for computation to the thought processes of the investigators 
engaged in the model validation process. 
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 Although Gray and von Grünhagen [36] were concerned 
with model validation and used one feedback structure, their 
work provides useful pointers to the benefi ts of applying 
feedback principles for inverse simulation. Reports by 
Buchholz and von Grünhagen (see [34] and [35]) provide 
other useful information about the use of feedback methods 
for model inversion. 

 There are similarities between the processes of model 
inversion based on feedback principles and procedures used 
for the design of closed-loop control systems, but there are 
also important differences. Most of these differences relate to 
feedback system design requirements. Designing a feedback 
system for model inversion does not involve all the 
requirements that are necessary for control system design. 
One key difference is that in control system design, 
un-modelled or partially known external disturbances must 
be taken into account and model errors and uncertainties 
must also be allowed for, as well as measurement noise. No 
external disturbances or issues of measurement noise apply 
in a feedback system for model inversion and, since the 
requirement is to invert a given model, there can never be any 
modelling error or uncertainties. Thus, methods of design 
that are seldom used for control applications due to issues of 
poor disturbance rejection, susceptibility to measurement 
noise, or lack of robustness to model uncertainties, can be 
used without diffi culty for model inversion (see e.g. [22]).    

   4.3  Example: inverse simulation 
applied to a linear model 

 The system model considered is a two-input two-output 
system having the form:

  ẋ  =  Ax  +  Bu  (4.35)  
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  y  =  Cx  +  Du  (4.36) 

 where:

     

 This system has two complex eigenvalues and one real 
eigenvalue in the left-half plane. There is only one transmission 
zero and this lies in the left half of the complex plane, 
showing that the system is minimum phase. 

 The approach used for this example is the method based 
on feedback system principles. Tests using MATLAB ®  and 
the MATLAB function  lsim  (see [37] and [38]) show that 
gains of 1,000 for both feedback pathways allow a 
satisfactory inverse model to be established. A signal which 
the model must follow, such as a sinusoid or repeated 
ramp signal, is fi rst defi ned. The input signal needed to 
achieve this output is then determined from the inverse 
simulation and this calculated input is applied to the original 
forward simulation to establish whether it meets the 
requirements. Results from such tests are shown in 
 Figures 4.4  to  4.7 . 

  Figures 4.4  to  4.7  show that the feedback approach can 
successfully generate inverse simulations of linear MIMO 
models. The errors depend on the closed-loop dynamics and 
thus on the feedback system, and the number of possible 
inverse simulation models is therefore infi nite as the number 
of designs is unlimited. Analysis functions within MATLAB ®  
(see [37] and [38]) can, however, provide useful information 

�� �� �� �� �� ��



107

Inverse simulation for system modelling and design

  Input time histories found from inverse 

simulation model using gain factors of 1,000. 

The x-axis scale represents time (s). The 

discontinuous trace is for input 1 and the 

smoother trace is for input 2     

   Figure 4.5  

  Required time histories of model outputs. The 

repeated ramp is required at output 1 and the 

sinewave is required at output 2. The x-axis 

scale represents time (s)     

   Figure 4.4  
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about eigenvalues and transmission zeros for the closed-loop 
system, and this provides additional insight for use in 
assessing the inverse simulation. 

 The benefi ts of this approach are mainly in terms of 
computational speed. Overall, the computation time is 
similar to the time required for a conventional forward 
simulation run. However, it should be noted that the range 
of eigenvalues for the inverse simulation may be greater than 
that for the forward simulation model and integration 
methods for stiff systems may be necessary, even if these are 
not needed for the forward simulation. This may increase the 
time needed for the inverse simulation.  

   Figure 4.6  
  Time histories obtained from forward simulation 

using the given model when subjected to inputs 

of Figure 4.5 found from inverse simulation. The 

x-axis represents time (s). The triangular wave is 

the trace for output 1 and the sinusoidal trace is 

at output 2 of the model     
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  Errors between desired outputs and outputs 

from forward model subjected to inputs found 

from inverse simulation. The x-axis scale 

represents time (s). In this case the error 

between the desired output and the output from 

the forward simulation at output 1 is 

represented by the trace with discontinuities, 

while the smoother trace shows the error 

at output 2     

   Figure 4.7  

   4.4  Case study: an application 
involving a nonlinear unmanned 
underwater vehicle (UUV) 
system model 

 Three illustrations of the use of the feedback approach to the 
nonlinear UUV model of Appendix A1 are considered here. 
The fi rst case involves inverse simulation of the model to 
determine the propeller input time history required to achieve 
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a given profi le of surge velocity versus time. This involves 
proportional control with feedback of surge velocity in the 
model and comparison with the desired surge velocity. The 
second case does the same for the yaw rate state variable in 
terms of the required rudder defl ection while the third case 
involves two feedback loops which both incorporate 
proportional control, one with feedback of surge velocity 
and the other yaw rate. 

  Case involving a specifi ed pattern of 
surge velocity 

  Figure 4.8  shows results obtained by inverse simulation for a 
demanded input involving an initial demanded surge velocity 
held at a constant value of 3.88 m/s followed by a negative-
going ramp change in surge velocity starting at time  t  = 20 s. 
The initial condition in the model involves a propeller 
speed of 1039 rpm and an initial surge velocity of 
3.88 m/s. The propeller speed is limited to a maximum of 
1500 rpm. 

 The results in  Figure 4.8  were obtained using proportional 
control with a gain factor of 100 000, which was determined 
using elementary principles of feedback system design, 
together with some further adjustment based on trial and 
error methods. The only input applied involved the propeller 
speed and all other inputs for the forward simulation were 
zero. The results were obtained using a fi xed-step Runge-
Kutta integration method with integration step time of 
0.01 s. The use of larger integration steps can lead to 
problems of numerical instability. Plot (a) shows the inverse 
solution in terms of the propeller speed pattern required to 
perform the manoeuvre. Plot (b) shows that when that 
pattern of propeller speed was applied to the forward 
simulation of the UUV, the surge velocity was (as required) 
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  Results for a single-loop feedback arrangement 

to generate the propeller input needed to 

produce a specifi ed pattern of output involving a 

demanded surge velocity of 3.88 m/s from time 

 t  = 0 until time  t  = 20 s, followed by a negative-

going ramp in terms of surge velocity change. 

The required propeller speed is shown in (a) and 

the plots (b), (c) and (d) show the surge velocity, 

roll angle and yaw angle of the UUV when 

subjected to that pattern of propeller speed     

   Figure 4.8  

(Continued)
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  (Continued)        Figure 4.8  

constant until the start of the negative going ramp at 
time  t  = 20 s. Thereafter the propeller speed started to 
fall, in a linear fashion, following a ramp that matched 
the demanded pattern. The results in plots (c) and (d) 
show respectively the roll and yaw angle time histories 
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of the vehicle in response to the propeller speed input 
pattern generated by inverse simulation. It can be seen 
that the effect of the input on both these variables is very 
small and the same is true of all the other unconstrained 
state variables of the model, such as sway velocity and 
heave velocity. These results show that inverse simulation 
can be used successfully for this case involving a single 
input. 

 As can be seen from the results in  Figure 4.8 , the behaviour 
of the feedback loop used for the inverse simulation is stable 
and shows no unsatisfactory transient behaviour for this the 
chosen gain factor. Coupling to other variables is very small 
and this satisfactory situation is also refl ected in  Figure 4.9 , 

  Trajectory of the UUV in the earth-fi xed axis 

system when subjected to the input shown in 

Figure 4.8 (a)     

   Figure 4.9  
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which shows the trajectory of the vehicle in terms of the 
earth-fi xed axis system. 

 More detailed examination of the response of the model to 
the input generated through inverse simulation shows that 
there is a steady-state error, as would be expected for 
proportional control, but this is very small because of the 
very large value of gain factor used. 

 It should be noted that if the required manoeuvre were 
modifi ed so that it involves a demanded surge velocity of 5.0 
m/s over the initial period from  t  = 0 to  t  = 15 s, with the 
initial condition as before (surge velocity of 3.88 m/s), the 
required propeller speed found from the inverse simulation 
reaches a limiting value of 1500 rpm over the initial part of 
the manoeuvre and the surge velocity takes some time to 
reach the required value, as would be expected. These results 
are shown in  Figure 4.10  and confi rm that the feedback 
approach can be used in situations where input variables 
reach their limiting values. 

   Case involving a specifi ed pattern of yaw rate 

 In this case the rudder is the actuator used in the feedback 
system for inverse simulation, with feedback being taken 
from the yaw rate variable. This produces the inverse 
simulation result shown in plot (a) of  Figure 4.11  in terms of 
the rudder defl ection needed for a demanded yaw rate which 
is initially zero and at  t  = 50 s jumps to a value of −2.86 deg/s 
(−0.05 rad/s). With the chosen gain factor of 50, it may be 
found from plot (b) that the yaw response achieved has the 
correct form but involves a yaw-rate error of 0.06 deg/s, 
approximately. From the forward simulation it is found, as 
would be expected, that transients occur in variables such as 
sway velocity, roll angle (see plot (c)) and pitch rate when the 
rudder is defl ected at time  t  = 50 s. 
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  Results showing the propeller input for a 

demanded surge velocity of 5 m/s from time 

 t  = 0 until time  t  = 15 s, followed by a negative-

going ramp in terms of surge velocity change. The 

required propeller speed (with the limiting value 

of 1500 rpm imposed) is shown in (a) and the 

plot (b) shows the surge velocity of the UUV when 

subjected to that pattern of propeller speed     

   Figure 4.10  
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  Plot (a) shows results obtained by inverse 

simulation in terms of the rudder defl ection 

time history to give constant yaw rate of zero 

initially and – 0.05 rad/s from time  t  = 50 s. 

The gain factor in the yaw-rate feedback loop is 

50 and the integration step size is 0.01 s. Plots 

(b) and (c) show the records of yaw angle and 

roll angle obtained when the rudder defl ection 

input shown in plot (a) is applied to the forward 

simulation of the UUV     

   Figure 4.11  
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  (Continued)        Figure 4.11  

 A fi xed-step Runge-Kutta integration method with 
integration step time of 0.01 s was used to obtain these 
results. As was found for the case involving the propeller 
input, the use of larger integration steps can lead to problems 
of numerical instability. A hard limit of ± 20 degrees is 
applied to rudder defl ections and it can be seen in plot (a) of 
 Figure 4.11  that in the inverse simulation the rudder reaches 
the positive limit instantaneously at  t  = 50 s.  Figure 4.12  
shows the vehicle trajectory in the earth-axis system for this 
demanded manoeuvre. 

 An increased value of feedback path gain can be used to 
reduce the steady-state error in the inverse simulation results 
and values of gain factor as high as 1000 have been used 
successfully. However, it has been found that the use of gain 
factors much larger than 1000 can, in this case, give rise to 
limit cycle phenomena in the nonlinear closed-loop system 
used for inverse simulation and this limits the maximum 
usable gain factor to values signifi cantly smaller than those 
for cases involving the propeller input.  
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  Case involving a combination of demanded surge 
velocity and yaw rate 

 This case requires two feedback loops, one linking the 
required surge velocity to the propeller input and the other 
involving the required pattern of yaw rate and the rudder. 
For a gain of 50 in the rudder loop and 100 000 in the surge 
loop, with an integration step size of 0.01 s, the results from 
inverse simulation are as shown in  Figure 4.13 . 

 Results presented in  Figure 4.13  show that the inverse 
simulation involving two feedback loops generates patterns 
of propeller and rudder inputs that lead to patterns of surge 
velocity and yaw rate that are close to the desired time 
histories. The rudder shows a very large transient at  t  = 50 s 
and it reaches the positive limit on rudder defl ection of 
20 degrees for a very short time. The yaw rate record resulting 
from this rudder input (as shown in plot (d)) is, however, 

  Trajectory for the case presented in Figure 4.11, 

shown in the earth axis system     
   Figure 4.12  
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  This case shows the combined effects of two 

inputs on the channels considered in Figures 

4.8 and 4.11. Plot (a) shows the propeller input 

found through inverse simulation for inputs in 

the form of a demanded surge velocity of 3.88 

m/s followed by negative ramp of surge velocity 

applied at time  t  = 20. This also shows the 

effects of the second demanded variable which 

involved a yaw rate of zero initially, changing 

suddenly to a constant value of −0.05 rad/s at 

time  t  = 50 s. Plot (b) shows the required rudder 

defl ection for the same combination of 

demanded surge velocity and yaw rate. Plots (c) 

and (d) show, respectively, the surge velocity 

(m/s) and yaw angle (deg) resulting from the 

application of the propeller and rudder inputs 

shown in plots (a) and (b)     

   Figure 4.13  

(Continued)
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  (Continued)        Figure 4.13  
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entirely reasonable. It should be noted that there is an 
interesting interaction between the two inputs. When the 
rudder changes position at time  t  = 50 s, there is a transient 
spike in the propeller speed record followed by an upward 
shift in the record over the remaining period. This change 
of propeller speed following the change of heading is 
clearly associated with increased resistance to motion of 
the vehicle and an increase in propeller speed is required 
to allow the demanded pattern of surge velocity to be 
maintained. 

 Although not shown in the results above, the responses of 
the other state variables of the forward model, when 
subjected to the combined propeller and rudder inputs of 
plots (a) and (b) in  Figure 4.13 , have the expected forms for 
these inputs.  Figure 4.14  shows the corresponding earth-axis 
trajectory of the vehicle in response to the combined inputs. 

  (Continued)        Figure 4.13  
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  Trajectory for the case presented in Figure 4.13, 

shown in the earth axis system     
   Figure 4.14  

 The results presented above for the specifi c inverse 
simulation cases that have been considered are encouraging. 
Issues of feedback loop stability limits, interactions between 
inputs, saturation effects and possible limit cycle situations 
have been considered for the cases presented but have not 
given rise to any major problems in applying the feedback 
systems methodology. With proportional control in the 
feedback loops, fi nite steady-state errors are found (as would 
be expected), but these errors are generally predictable and 
could possibly be overcome by the introduction of more 
complex forms of feedback. This is a topic that could justify 
further investigation. 

 One of the most important features of the UUV model is 
that there are six inputs and twelve possible outputs, and 
decisions have to be made by the investigator about which 
actuators should be associated with each output variable in 
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forming feedback loops. Physical understanding of the real 
system is important for this process and, although no 
diffi culties have been encountered in this application, further 
research is needed in order to establish appropriate guidelines 
for the more general case. 

 The closed-loop system inevitably has a longer execution 
time for simulation than the forward model because the 
integration interval, generally, has to be shorter. Investigations 
based on linearised models should provide useful insight 
regarding the optimum choice of loop gain factors, integration 
step size and integration method.   

   4.5  Discussion 

 In summary, this chapter provides a review of inverse 
modelling and simulation methods. A number of iterative 
methods have been presented together with an approach 
based on feedback principles. Case studies have been 
presented illustrating the application of inverse simulation to 
linear and nonlinear SISO and MIMO systems, and showing 
that inverse simulation provides insight complementing that 
gained from conventional simulation. 

 The examples considered involve use of the feedback 
approach and this has been applied because it is believed to 
have considerable potential for modelling and simulation of 
integrated systems. It offers more physical understanding 
and improved solution speed when compared with some 
iterative approaches. 

 The feedback method does involve a trade-off between 
the complications of closed-loop design and possible 
computational benefi ts at run time. For the complex design 
problems that can arise in integrated system applications, in 
which optimisation may be an important part of the design 
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process, those benefi ts in terms of speed of solution may be 
an important factor.   

 4.6   References 

   [1]     Brockett,   R.   ( 1963 ) ‘ Poles, zeros and feedback: 
state space interpretation ’,   IEEE Transactions on 
Automatic Control  , Vol. AC-10, pp.  129 – 35 .  

   [2]     Dorato,   P.   ( 1969 ) ‘ On the inverse of linear dynamical 
systems’ ,   IEEE Transactions on Systems Science and 
Cybernetics  , Vol. SSC-5, No.  1 , pp.  43 – 8 .  

   [3]     Hirschorn,   R.M.   ( 1979 ) ‘ Invertibility of multivariable 
nonlinear control systems’ ,   Journal of Guidance, 
Control and Dynamics  , Vol.  24 , pp.  855 – 65 .  

   [4]     Isidori,   I.   ( 1989 )   Nonlinear Control Systems: An 
Introduction  , Second  Edition , Berlin, Germany, 
Springer.  

   [5]     Lu,   L.   ( 2010 )   Inverse Modelling and Inverse Simulation 
for Engineering Applications  , Lambert, Saarbrücken, 
Germany.  

   [6]     Hunt,   L.R.   and   Meyer,   G.   ( 1997 ) ‘ Stable inversion for 
nonlinear systems’ ,   Automatica  , Vol.  33 , No.  8 , pp. 
 1549 – 54 .  

   [7]     Zou,   Q.   and   Devasia,   S.   ( 2007 ) ‘ Preview-based 
inversion of nonlinear nonminimum-phase systems: 
VTOL example’ ,   Automatica  , Vol.  43 , No.  1 , 
pp.  117 – 27 .  

   [8]     Slotine,   J.-J. E.   and   Li,   W.   ( 1991 )   Applied 
Nonlinear Control  ,  Englewood Cliffs, NJ ,  USA , 
Prentice Hall.  

   [9]     Bradley,   R.   ( 1996 )   The Flying Brick Exposed: Nonlinear 
Control of a Basic Helicopter  ,  Glasgow   Caledonian 
University , TR/MAT/RB/96-51.  

�� �� �� �� �� ��



125

Inverse simulation for system modelling and design

  [10]     Thomson,   D.G.   and   Bradley,   R.   ( 1998 ) ‘ The principles 
and practical application of helicopter inverse 
simulation’ ,   Simulation Practice and Theory  , Vol.  6 , 
pp.  47 – 70 .  

  [11]     Murray-Smith,   D.J.   ( 2000 ) ‘ The inverse simulation 
approach: a focused review of methods and 
applications’ ,   Mathematics and Computers in 
Simulation  , Vol.  53 , pp.  239 – 47 .  

  [12]     Thomson,   D.   and   Bradley,   R.   ( 2006 ) ‘ Inverse simulation 
as a tool for fl ight dynamics research – principles and 
applications’ ,   Progress in Aerospace Sciences  , Vol.  42 , 
pp.  174 – 210 .  

  [13]     Kato,   O.   and   Sugiura,   I.   ( 1986 ) ‘ An interpretation of 
airplane motion and control as an inverse problem’ , 
  Journal of Guidance Control and Dynamics  , Vol.  9 , 
No.  2 , pp.  198 – 204 .  

  [14]     Thomson,   D.G.   and   Bradley,   R.   ( 1990 ) ‘ Development 
and verifi cation of an algorithm for helicopter inverse 
simulation’ ,   Vertica  , Vol.  14 , No.  2 , pp.  185 – 200 .  

  [15]     Thomson,   D.G.   and   Bradley,   R.   ( 1994 ) ‘ The contribution 
of inverse simulation to the assessment of helicopter 
handling qualities’ , in   Proceedings of the 19th ICAS 
Conference, Anaheim, USA, September 1994  , Paper 
7.3.2.  

  [16]     Hess,   R.A.,     Gao,   C.   and   Wang,   S.H.   ( 1991 ) ‘ A 
generalized technique for inverse simulation applied to 
aircraft maneuvers’ ,   Journal of Guidance Control and 
Dynamics  , Vol.  14 , pp.  920 – 6 .  

  [17]     Rutherford,   S.   and   Thomson,   D.G.   ( 1997 ) ‘ Helicopter 
inverse simulation incorporating an individual 
blade rotor model’ ,   AIAA Journal of Aircraft  , Vol.  34 , 
No.  5 .  

  [18]     Lu,   L. ,    Murray-Smith,   D.J.   and   Thomson,   D.G.   ( 2008 ) 
‘ Issues of numerical accuracy and stability in inverse 

�� �� �� �� �� ��



126

Modelling and simulation of integrated systems in engineering

simulation’ ,   Simulation Modelling Practice and Theory  , 
Vol.  16 , pp.  1350 – 64 .  

  [19]     de Matteis,   G. ,    de Socio,   L.M.   and   Leonessa,   A.   ( 1995 ) 
‘ Solution of aircraft inverse problems by local 
optimization’ ,   Journal of Guidance Control and 
Dynamics  , Vol.  18 , No.  3 , pp.  567 – 71 .  

  [20]     Lee,   S.   and   Kim,   Y.   ( 1997 ) ‘ Time-domain fi nite element 
method for inverse problem of aircraft manoeuvres’ , 
  Journal of Guidance, Control and Dynamics  , Vol.  20 , 
No.  1 , pp.  97 – 103 .  

  [21]     Celi,   R.   ( 2000 ) ‘ Optimization-based inverse simulation 
of a helicopter slalom manoeuvre’ ,   Journal 
of Guidance, Control and Dynamics  , Vol.  23 , No.  2 , 
pp.  289 – 97 .  

  [22]     Murray-Smith,   D.J.   ( 2011 ) ‘ Feedback methods for 
inverse simulation of dynamic models for engineering 
systems’ ,   Mathematical and Computer Modelling of 
Dynamical Systems  , Vol.  17 , No.  5 , pp.  515 – 41 .  

  [23]     Thomson,   D.G.   and   Bradley,   R.   ( 1986 ) ‘ An analytical 
method for quantifying helicopter agility. Paper 45’ , in 
  Proceedings of the 12th European Rotorcraft Forum, 
Garmisch-Partenkirchen, Federal Republic of Germany  , 
 September .  

  [24]     Thomson,   D.G.   and   Bradley,   R.   ( 1987 ) ‘ Recent 
developments in the calculation of inverse solutions of 
the helicopter equations of motion’ , in   Proceedings of 
UK Simulation Council Conference, University College 
of North Wales, 9–11 September 1987  , 
pp.  227 – 34 ,  UKSC, Ghent,   Belgium .  

  [25]     Liceago-Castro,   E.   ( 1988 )   A Geometric Control System 
with Application to Helicopters  , PhD Thesis, University 
of Glasgow.  

  [26]     Lu,   L. ,    Murray-Smith,   D.J.   and   Thomson,   D.   ( 2007 ) 
‘ Sensitivity analysis method for inverse simulation ’, 

�� �� �� �� �� ��



127

Inverse simulation for system modelling and design

  Journal of Guidance, Control and Dynamics  , 
Vol.  30 , No.  1 , pp.  114 – 21 .  

  [27]     Avanzini,   G.   and   de Matteis,   G.   ( 1999 )  Two-timescale 
integration method for inverse simulation ,   Journal of 
Guidance, Control and Dynamics  , Vol.  22 , No.  3 , pp. 
 395 – 401 .  

  [28]     Avanzini,   G.   and   de Matteis,   G.   ( 2001 ) ‘ Two-timescale 
inverse simulation of a helicopter model’ ,  Journal of 
Guidance, Control and Dynamics , Vol.  24 , No.  2 , pp. 
 330 – 9 .  

  [29]     Nelder,   J.A.   and   Mead,   R.   ( 1965 ) ‘ A simplex method 
for function minimization’ ,   Computer Journal  , Vol.  7 , 
pp.  308 – 13 .  

  [30]     Fritzson,   P.   ( 2004 )   Principles of Object-Oriented 
Modeling and Simulation with Modelica 2.1  ,  IEEE 
Press, Piscataway NJ,   USA .  

  [31]     Thümmel,   M. ,    Looye,   G. ,    Kurze,   M. ,    Otter,   M.   
and   Bals,   J.   ( 2005 ) ‘ Nonlinear inverse models for control’ , 
in   Schmitz,   G.   (ed.),   Proceedings of the 4th 
International Modelica Conference, Hamburg, March 
7–8, 2005  , pp.  267 – 79 , Modelica Association, 
Linköping, Sweden, 2005 (online):   www.Modelica.org/
events/Conference2005   (accessed 1  January  
 2012 ).  

  [32]     Williams,   R.W.   ( 1961 )   Analogue Computation ,  
p.  215 ,  Heywood ,  London, UK .  

  [33]     Charlesworth,   A.S.   and   Fletcher,   J.R.   ( 1967 ) 
  Systematic Analogue Computer Programming  , 
pp.  117 – 18 ,  London, UK ,  Pitman .  

  [34]     Buchholz,   J.J   and   von Grünhagen,   W.   ( 2004 )   Inversion 
Impossible?  ,  Technical Report, University of Applied 
Sciences, Bremen ,  Germany ,  September .  

  [35]     Buchholz,   J.J   and   von Grünhagen,   W.   ( 2005 )   Inversion 
dynamischer Systeme mit Matlab  ,  Technical Report, 

�� �� �� �� �� ��



128

Modelling and simulation of integrated systems in engineering

University of Applied Sciences, Bremen,   Germany , 
 August .  

  [36]     Gray,   G.J.   and   von Grünhagen,   W.   ( 1998 ) ‘ An 
investigation of open-loop and inverse simulation as 
nonlinear model validation tools for helicopter fl ight 
mechanics’ ,   Mathematical and Computer Modelling of 
Dynamical Systems  , Vol.  4 , No.  1 , pp.  32 – 57 .  

  [37]    Anonymous  ( 1996 )   MATLAB ®  Control Systems 
Toolbox User’s Guide  ,  The Mathworks Inc, Natick, 
MA,   USA .  

  [38]    MATLAB ® /Simulink ®  modelling and simulation 
software , The Mathworks Inc (online):   www.
mathworks.com/products   (accessed 30  June   2011 ).                                                

�� �� �� �� �� ��



1
1
2
3
4
5
6
7
8
9
1010
1
2
3
4
5
6
7
8
9
2020
1
2
3
4
5
6
7
8
9
3030
1
2
3
34R34R

129

 Methods and applications of 
parameter sensitivity analysis  

   Abstract:    Parameter sensitivity analysis provides an 
effi cient way of assessing parametric dependencies in 
mathematical models and computer simulations. This is 
important for design optimisation, for estimating the 
effects of modelling errors and uncertainties in the analysis 
of system performance, for understanding issues such as 
test input design in experimental modelling and in the 
external validation of models. This chapter provides a 
review of methods of parameter sensitivity analysis and 
considers applications involving linear and nonlinear 
lumped parameter models.  

   Key words:    sensitivity function, output sensitivity, 
sensitivity model, sensitivity bond graph.   

    5.1  Fundamental concepts of 
parameter sensitivity analysis 

 Parameter sensitivity analysis techniques are important for 
establishing how responses of a model change when 
parameters are varied and which of its parameters most 

                 5 
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infl uence the model behaviour (see e.g. [1] and [2]). Models 
are never exact and it is important to be able to assess 
parametric dependencies at the model development stage as 
part of an investigation of modelling assumptions, 
simplifi cations and overall credibility. This can lead to an 
understanding of the effects of component tolerances and 
how the system performance may degrade as components 
change with environmental conditions or through the 
processes of ageing. Sensitivity information is also very 
important for system optimisation in design and it should be 
noted that methods of optimisation based on gradient 
methods make direct use of parameter sensitivity measures. 

 For the applications being considered in this book, the 
model may be in lumped parameter or distributed parameter 
form, continuous or discrete, linear or nonlinear. The sensitivity 
may also be characterised in a number of ways. Common 
measures are based on the time domain, but frequency-domain 
measures can also be very important in some fi elds, as are 
measures involving a performance index (see e.g. [2]). 

 Information about parameter sensitivities, when taken 
together with structural information, can also be of 
considerable value in experimental modelling and, more 
generally, in the iterative development and refi nement of 
complex system models. These issues are addressed in 
 Chapters 6  and  7 . In situations where changes in system 
parameters interact with structural issues to cause 
discontinuous changes in the overall behaviour, the sensitivity 
analysis may be termed ‘singular perturbation’ analysis (see 
e.g. [3] and [4]). 

 Early research by Tomovi ć  and others at the Pupin Institute 
in Belgrade (see e.g. [1], [4] and [5]) provided a foundation 
for much published work on sensitivity analysis of dynamic 
models. Important contributions have also been made by 
Frank [2] and by Rosenwasser and Yusupov [6], who used a 
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more mathematical approach which emphasises the fact that 
sensitivity theory can be interpreted as part of a more general 
theory of systems in which parameter variations are 
considered as system inputs. 

 Much of the early literature on sensitivity issues put a 
particular emphasis on properties of feedback systems and 
automatic control, and Bode [7] was responsible for much 
early work on parameter sensitivity in the frequency domain. 
Many of the issues raised originally by Bode in the general 
context of systems with feedback were considered further by 
Horowitz [8] in relation to automatic control system design 
and applications.  

   5.2  The sensitivity function 

 All methods of sensitivity analysis involve the concept of the 
 sensitivity coeffi cient  or  sensitivity function . In the time 
domain, which has special signifi cance in the context of 
state-space models, the sensitivity function is defi ned in terms 
of a Taylor series expansion for a system variable in terms of 
the parameter that is varying. For example, if  y ( t , q  0 ) is a 
model output response to a given input and this is a function 
of time ( t ) as well as a parameter  q , the difference between a 
response  y ( t , q  0 ) where  q  has the particular value  q  0 , and a 
response  y ( t , q  0  + ∆ q ) where the parameter  q  takes a new 
value  q  0  + ∆ q  is given by:

     (5.1)  

 If ∆ q  is suffi ciently small:

     (5.2)  
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 The fi rst-order  output sensitivity function  is the quantity 

   The effective linearisation due to truncation of the series 

after the second term allows the superposition principle to be 
used to fi nd the effect of simultaneous changes of the values 
of several different parameters. This can be extended to the 
trajectory sensitivity function in the case of a state-space 

description    where  x  is the vector of state variables. As in 

the case of output sensitivity, the trajectory sensitivity is 
evaluated for perturbations in the parameter value  q  about a 
specifi c value  q  0 . 

 For quantitative comparisons of the infl uence of particular 
parameters, the  relative sensitivity function  may be a useful 
measure. Where the comparisons all involve the sensitivity of 
one specifi c model variable  x  to a number of different 
parameters  q , an appropriate measure of relative sensitivity 

is   . For cases involving several variables, an entirely 

dimensionless form of relative sensitivity measure    

may be more useful, where the quantity  x   mj   is some 
appropriate measure of the variable  x   j  ( t , q  0 ), such as the 
maximum value or the mean value.  

   5.3  Methods of sensitivity analysis 
involving repeated solutions 

 From Equation (5.2) it is possible to write:

    (5.3)  

 And thus the sensitivity function can be found using a 
fi nite difference approximation. This requires two repeated 
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simulation runs and selection of an appropriate size for the 
perturbation ∆ q . The accuracy of the estimation thus depends 
on that choice and repeated tests may be needed with a 
number of trial values of ∆ q  to fi nd a suitable value. Separate 
sensitivity function evaluations are needed for all the 
parameters of interest. 

 The main objection to the use of this approach, in addition 
to the fact that it requires repeated simulation runs, is one of 
accuracy. Taking the difference between the two solutions 
with inherent numerical errors  ε  1  and  ε  2 , respectively, leads 
to the following:

    (5.4)  

 Since ∆ q  must be small in order to give a small parameter 
perturbation, the resulting error due to the term ( ε  1  −  ε  2 )/∆ q  
may be signifi cant [1]. 

 The relative sensitivity measures corresponding to 
Equation (5.3) are:

    (5.5) 

    (5.6)  

 where  y   m   is a measure of the variable  y ( t , q  0 ), such as the 
maximum value or the mean.  

   5.4  Methods of sensitivity analysis 
involving sensitivity models 

 If a general form of nonlinear dynamic model is described by 
a set of equations:
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  f   i  (x
.      i    ; x  1 ,  x  2 , . . .,  x    n   ;  u  1 ,  u  2 , . . . . . u   r    ; t ; q  0 ) = 0 (5.7) 

  g   i  ( y   i  ; x  1 ,  x  2 , . . .,  x   n        ;  u  1 ,  u  2 , . . . . . u   r    ; t ; q  0 ) = 0 (5.8)  

 where  x  1 ,  x  2 , . . .,  x   n     are state variables,  u  1 ,  u  2 , . . .   u   r       
are inputs and  y  1 ,  y  2 , . . .  y   m   are output variables, it is 
clear from Section 5.1 that the sensitivity of this system to 
variation of the parameter  q  may be obtained by partial 
differentiation with respect to  q . This process gives a set 
of  sensitivity equations  which can also be termed the 
 sensitivity model  or  co-system . These equations have the 
form:

    (5.9) 

    (5.10)  

 These sensitivity equations, when solved in conjunction 
with the system model equations, provide solutions for the 
state variable and output sensitivity functions. They are, in 
general, linear ordinary differential equations with time-
varying coeffi cients and may be solved by analytical or 
simulation methods.  Figure 5.1  is a schematic diagram for 
the generation of sensitivity functions using this approach. 
For a linear model with constant coeffi cients, the structure of 
the sensitivity model is generally very similar to that of the 
system model but, for each output, a given model must have 
as many sensitivity models as the number of parameters of 
interest, although methods have been developed that allow 
simultaneous estimation of many sensitivity functions using 
a single sensitivity model for particular cases. 

 Initial conditions for sensitivity models are, in most 
cases, zero. This issue is considered in detail by Frank [2]. 

�� �� �� �� �� ��



135

Methods and applications of parameter sensitivity analysis

Non-zero initial conditions can arise, for example, in the 
sensitivity models for cases in which the system model has a 
variable structure. 

 One important quantity based on sensitivity functions is 
the  sensitivity matrix . This is defi ned as the matrix of partial 
derivatives of model variables, such as state variables, with 
respect to parameters of interest in a model. For the case of 
 n  variables  y  1 ,  y  2 , . . .  y  n  and  p  parameters of interest  q  1 ,  q  2 , 
. . .  q  p  the sensitivity matrix has the form:

    (5.11)  

 Sensitivity matrices and related quantities are discussed in 
greater detail in  Chapter 6  in the context of system 
identifi cation and parameter estimation techniques. 

  Block diagram illustrating the relationship 

between the system model and the 

corresponding sensitivity model for the general 

case of a multi-input multi-output system model     

   Figure 5.1  
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   5.4.1  Parameter sensitivity analysis of 
models in state-space form 

 Consider a model of order  n  having  m  inputs and  p  outputs, 
and described by a set of linearised state-space equations of 
the form:

  x
.
  =  Ax  +  Bu  (5.12) 

  y  =  Cx  +  Du  (5.13)  

 Then, taking Laplace transforms and assuming initial 
conditions for the state variables  x  to be zero, one can write:

  sX ( s ) =  AX ( s ) +  BU ( s ) (5.14) 

  Y ( s ) =  CX ( s ) +  DU ( s ) (5.15)  

 Then, differentiating with respect to a parameter  q , which 
can affect any or all of the coeffi cients in the matrices  A ,  B , 
 C  and  D , we get the following set of equations:

    (5.16) 

    (5.17)  

 Since  q  is a parameter of the system model and not of any 

of the inputs  U  (  s  ) , it follows that    is zero. Hence the 

solution of the sensitivity equations may be generated from a 
simulation block diagram of the form shown in  Figure 5.2 . 

 The structural similarities between the system model and 
the sensitivity model provide practical benefi ts in the case of 
linear models but, for a nonlinear model, the structural 
relationship between the model and the sensitivity equations 
is more complicated, although some similarities remain. The 
complexity in such cases depends on the parameter of interest 
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and whether or not it is a parameter associated with a 
nonlinearity of the model. Issues arising with nonlinear 
models are considered in more detail by Frank [2]. 

 An example, involving the UUV system of Appendix A1, is 
included in Section 5.5 where it is used to illustrate the 
application of parameter sensitivity analysis to nonlinear 
and linearised models.  

   5.4.2  Parameter sensitivity analysis of 
linear models in transfer function form 

 Sensitivity analysis for system models described by lumped 
parameter linear equations with constant coeffi cients and 
arranged in transfer function form can be handled using an 
approach developed fi rst by Kokotovi ć  [5] which is known 
as the ‘sensitivity points’ method. This work was extended to 
state-space models by Wilkie and Perkins [9]. 

  Block diagram showing system model in 

state-space form together with the 

corresponding sensitivity model. Here, the lines 

connecting blocks can represent either a single 

variable or a vector, depending on the 

application     

   Figure 5.2  
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 If a SISO linear system with input  u ( t ) and output  y ( t ) is 
described by a transfer function  G ( s ) then, in terms of 
Laplace transformed variables, the sensitivity of the output, 
 Y ( s ), to small changes of any parameter  q   i   of the model may 
be described by the equation:

    (5.18)  

 The sensitivity function    can therefore be found if the 

system output  y ( t ) is applied as input to a sensitivity model 

which has transfer function    It has been 

shown by Kokotovi ć  [5] that, for multi-loop linear models, 
the appropriate sensitivity model involving a ratio of two 
polynomials in  s  may be represented by a multi-loop feedback 
structure. This may be demonstrated readily using an 
example for a system described initially by a transfer function 
of order  n  of the form:

    (5.19)  

 where  a   0   =  b  0  = 1. 
 It may then be shown that:

    (5.20)  

  Figure 5.3  shows a block diagram model for the case of 
 m  =  n  = 3 and the corresponding sensitivity model block 
diagram for the denominator coeffi cients is shown in  Figure 
5.4 . The points in the sensitivity model at which sensitivity 
functions are obtained are the outputs of each block involving 
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an integrator element. The sensitivities for all the coeffi cients 
of the denominator of  G ( s ) may thus be found simultaneously. 

 For numerator coeffi cients:

    (5.21)  

 Again, for the third-order example used above,  Figure 5.5  
shows the sensitivity model for the numerator coeffi cients 
and it may be seen that the integrator block outputs (i.e. the 
state variables) within the system model  G ( s ) give the 
sensitivity functions for the numerator coeffi cients directly, 
as shown in  Figure 5.5 . 

  Block diagram for linear system transfer function 

 G ( s ) for the forms of numerator and denominator 

given in Equation (5.19). In this diagram the Σ 

sign indicates the sum (positive) of all the 

incoming signals at that summation point     

   Figure 5.3  
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 Using a block-diagram oriented simulation tool such as 
Simulink ® , it is thus very easy to set up a simulation 
that generates, simultaneously, all of the sensitivity 
functions of the system output with respect to all 
the coeffi cients of the numerator and denominator. The 
sensitivity co-system is linked directly to the output of the 
corresponding simulation models and, for the third-order 
example presented here, the sensitivity model requires three 
integrator blocks. 

 The representation of the system in the block diagram 
form of  Figure 5.3  corresponds to a system state matrix in 
 companion-canonic form  where the output of each integrator 
block is taken as a state variable. It has been shown [9] that 
the sensitivity of each state variable to each parameter is 

  Block diagram for sensitivity model for 

denominator coeffi cients of the transfer function 

represented in  Figure 5.3      

   Figure 5.4  
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directly available from a single sensitivity model for a system 
matrix in companion-canonic form. For multi-input linear 
systems it can be shown [9] that for  p  inputs at most 2 p -1 
 n th order sensitivity models are needed in order to generate 
all of the sensitivity coeffi cients of the state variables with 
respect to any parameter.   

   5.5  Case study: sensitivity analysis 
applied to the unmanned underwater 
vehicle (UUV) model 

 The model of the UUV system of Appendix A1 could, in 
principle, be used to illustrate the application of this 

  Generation of sensitivity functions for the 

numerator coeffi cients of the transfer function 

represented in  Figure 5.3      

   Figure 5.5  
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methodology for nonlinear models. However, for the 
nonlinear case, each parameter has to be considered 
separately and this leads to a very large number of 
sensitivity models in order to analyse the system model 
completely. Given the relatively complex form of the 
UUV model, this would involve a set of sensitivity models 
which would be time-consuming in terms of the setting-up 
process and also in terms of the simulation runs needed 
if the analysis involved more than one or two parameters 
of the model. However, if the system equations can be 
linearised, the process becomes much more straightforward 
since all the sensitivity functions can be found from a 
single sensitivity model and this can also, very often, 
provide useful physical insight that cannot be obtained 
so readily from sensitivity analysis of the full nonlinear 
model. Such insight can be particularly useful when the 
linearised model provides a basis for design or 
optimisation, as often happens with control system design 
and integration. 

 The full nonlinear model may be vital for simulation-based 
assessment of a design at the fi nal stage before implementation, 
but parameter sensitivity analysis may be of secondary 
importance by that stage. In many cases, therefore, parameter 
sensitivity analysis of the linearised model can be as useful 
as simulation results from a nonlinear model. The use of 
linearised models is illustrated through the example that 
follows. 

   5.5.1  Sensitivity analysis of the linearised 
UUV model for diving motion 

 From Section A1.1.1 the linearised dynamics describing 
diving motion of the underwater vehicle model of Appendix 
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A1 involves a third-order model described by the following 
set of fi rst-order equations:

 

   (5.22)  

 The state variables  q ,  θ  and  z  are the pitch rate, pitch angle 
and vertical displacement, as given in Appendix A1, and  δ   s   is 
the stern plane defl ection. The parameters  M   q  ,  M   q̇    and  M   δ   
are hydrodynamic coeffi cients,  I   y   is the moment of inertia of 
the vehicle for pitching motion,  W  is the weight of the vehicle, 
 z   G   −  z   B   is the vertical distance between the centre of gravity 
and the centre of buoyancy, and  u   0   is the forward speed of 
the vehicle. 

 In simplifi ed form these equations may be written as:

    (5.23)  

 It may be seen from Equations (5.22) and (5.23) that the 
parameter  a  11  depends directly on  M   q   and inversely on  I   y   and 
 M   q̇   . Similarly, the parameter  a  12  depends directly upon  W , 
 z   G   and  z   B  , and inversely on  I   y   and  M   q̇   , while  b  1  depends 
directly on  M   δ   and inversely on  I   y   and  M   q̇   . The only other 
signifi cant parameter of Equation (5.23) is − u  0 , which 
represents the forward speed of the vehicle. 

 For typical operating conditions,  a  11  = −0.7,  a  12  = −0.3, 
 u  0  = 1.832 m/s,  b  1  = 0.035. 

 The corresponding sensitivity model has the form:
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 (5.24)  

 For the particular case where the parameter of interest,  γ , 
is the parameter  a  11 , the sensitivity equation (Equation 
(5.24)) becomes:

    
(5.25)

  

 and this model may be represented by the block diagram of 
 Figure 5.6 . 

 This diagram in  Figure 5.7  is a specifi c example of the 
general block diagram shown in  Figure 5.2 . The only 
coupling in this case from the system model to the 
sensitivity model is through the state variables  x . The 
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blocks    and    are all made up of zero elements while 

the block    involves only one non-zero element    which 

is unity. This makes determination of the sensitivity functions 

   for each of the state variables  x   i   very straightforward 

  Block diagram of the linearised state-space 

system model of the UUV, corresponding to 

Equation (5.22)     

   Figure 5.6  

  System model and sensitivity model for the 

linearised model of the UUV     
   Figure 5.7  
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through simulation. For a sensitivity model-based approach, 
either the state-space description (as in  Figure 5.6 ) or a transfer 
function approach may be used. 

  Figure 5.8  shows the block diagram of the sensitivity 

model for determination of the sensitivity functions    and 

  .  Figures 5.9  and  5.10  show the sensitivity functions    

and    for the case of a step change of stern plane defl ection 

 δ   s  . These two sensitivity functions are distinctively different 
in form, with parameter  a  11  infl uencing only the initial 
transient in the pitch  θ  and parameter  a  12  infl uencing both 
the initial transient and the steady-state pitch angle. This can 
be related to the underlying parameters of Equation (5.22) 
where it can be seen that, for the two coeffi cients considered, 

  Block diagram of the part of the sensitivity model 

for system model of  Figure 5.6  for the variable  θ      
   Figure 5.8  
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  Sensitivity function    generated using the 

sensitivity model approach for the case of a 

step change of stern plane defl ection     

   Figure 5.9  

the steady state is infl uenced by the parameters  W ,  z   G   and  z   B   
while other underlying parameters involved in both 
coeffi cients, such as  I   y   and  M   q̇   , only infl uence the transient 
response. For quantitative comparisons, the relative 

sensitivity functions    and    may be more useful 

than the simple un-scaled functions    and    For this 

simple example, the same conclusions could be reached by 
examining the form of the transfer function relating  θ ( s ) to 
 δ   s  ( s ) but the use of the approach based on the sensitivity 
model becomes important in more complex SISO cases and 
for MIMO models. 
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  Figure 5.11  shows results for    obtained using the 

parameter perturbation method presented in Section 5.3 for 
a change of value of parameter  a  11  of 1 per cent. 

 Although the results obtained by the sensitivity model 
and parameter perturbation methods are almost identical 
in this case, it should be noted that the sensitivity model 
approach provides interesting additional information. For 
example, block diagram analysis shows readily that the 

parameter sensitivity functions for    and    have 

exactly the same form. Similarly,    and    are the 

  Sensitivity function    generated using the 

sensitivity model approach for the case of a 

step change of stern plane defl ection     

   Figure 5.10  
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same. Other relationships of this kind can be shown to 
exist between sensitivity functions for different 
combinations of parameters and system variables, and 
such insight could not be gathered using the parameter 
perturbation approach.   

   5.6  Sensitivity analysis using 
bond graphs 

 The bond-graph approach to sensitivity analysis is a 
 component-based approach . Sensitivity models are developed 

  Sensitivity function    generated using the 

parameter perturbation approach     

   Figure 5.11  

�� �� �� �� �� ��



150

Modelling and simulation of integrated systems in engineering

for each component of the system and a system sensitivity 
ordinary differential equation is then derived from the 
component descriptions. It therefore differs fundamentally 
from the standard approach to parameter sensitivity analysis 
outlined in previous sections, which starts from the overall 
equations of the system. 

 This approach, which was used by Cabanellas  et al.  [10] 
for system optimisation, and by Roe and Thoma [11], 
provides physical insight and allows for algebraic generation 
of sensitivity functions as compared with purely numerical 
approximations. With the present-day wide availability of 
symbolic computational tools, this is an attractive feature of 
the approach. 

 Gawthrop [12] has extended the work of Cabanellas  et al.  
[10] and has shown that  sensitivity bond graphs  can be 
created that have a structure identical to that of the system 
bond graph. This means that a sensitivity bond graph can be 
generated in a direct way from the system bond graph. 
Borutzky  et al.  [13] have pointed out that this approach is 
based on  pseudo-bond graph  methods, since the variables 
associated with the bonds are fi rst-order sensitivities of the 
effort and fl ow with respect to a parameter and are therefore 
not power variables. They have suggested another approach 
which involves development, from the initial bond graph, 
with nominal parameters, of an  incremental bond graph  for 
increments of power variables due to small parameter 
changes [13]. Another interesting development has been the 
proposal by Dauphin-Tanguy and Kam [14] for  uncertainty 
bond graphs  for power variables in robustness investigations. 
Borutzky  et al.  [13] have demonstrated that uncertainty 
bond graphs also allow parameter sensitivities to be 
determined.  
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   5.7  Sensitivity analysis in 
inverse simulation 

 In principle, sensitivity analysis can be carried out for all 
methods of inverse simulation. For the iterative methods 
of inverse simulation outlined in Section 4.2., this involves 
using fi nite changes of parameters of the forward model and 
repeated solutions. The problems of accuracy mentioned in 
Section 5.3 therefore apply and, in addition, there are 
inevitable problems of computation time. The feedback 
approach to inverse simulation has obvious advantages 
because the sensitivity model approach can be applied 
directly. 

   5.7.1  Inverse sensitivity using the feedback 
approach to inverse simulation 

  Figure 5.12  shows the block diagram for inverse simulation 
based on the use of feedback system principles, as described 
in Section 4.2.5. 

 In the case of a linear model,  G(s) , which involves a set of 
parameters  q , then for a given parameter  q  i :

    
(5.26)

  

 The sensitivity of the signal  w ( s ), which represents the 
inverse solution, to the parameter  q   i   is therefore found by 
passing the signal through a block having transfer function:
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 This transfer function depends entirely on the characteristics 
of the forward model  G ( s ) and is easily found using analytical 
methods.  

   5.7.2  Example: inverse sensitivity for a 
simple transfer function model 

 Consider a simple linear model:

    (5.27)  

 The structure of the sensitivity model for simultaneous 
determination of the sensitivity functions for the inverse 
model with respect to the parameters of the forward 
model is shown in  Figure 5.13  and the fi lter transfer 
functions for the parameters of the model  G ( s ) are as 
follows:

    (5.28) 

  Block diagram illustrating the feedback system 

approach to inverse simulation     
   Figure 5.12  
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    (5.29) 

    (5.30)  

 For the case where the parameters have values  K  1  = 10, 
 T  1  = 1 s,  T  2  = 2 s and the desired model output signal given 
in  Figure 5.14 , the input found from inverse simulation to 
produce that output is given in  Figure 5.15 . It can be seen 
that for a steady output of one, the required steady input has 
a value of approximately 0.1, as would be expected from the 
value of gain factor  K  1  of 10.0. The peak values of the input 
(0.2 and −0.1) and the associated transients in the input 
signal are needed to overcome the fi rst-order time lag 
characteristics of the model. 

  Block diagram for inverse sensitivity using a 

sensitivity model approach     
   Figure 5.13  
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  Desired model output (dimensionless) plotted 

against time (s)     
   Figure 5.14  

  Input (dimensionless) generated using inverse 

simulation to produce the model output shown 

in  Figure 5.14 . The horizontal axis represents 

time (s)     

   Figure 5.15  
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 The sensitivity function for the parameter  T  2  found using 
the sensitivity model approach is shown in  Figure 5.16 . 
Although the corresponding result obtained by the fi nite 
difference approach for a perturbation ∆ T  2  of magnitude 
0.01 s is so close as to be indistinguishable from that shown 
in  Figure 5.16 , the successful application of the perturbation 
method does require careful choice of ∆ T  2 ; this usually 
involves a trial-and-error approach and therefore requires 
several simulation runs. The sensitivity function shows, as 
would be expected from physical reasoning, that the 
parameter  T  2  infl uences the transient part of the inverse 
solution but does not affect the steady states. 

  Sensitivity function for parameter  T  2  as a 

function of time found using the sensitivity 

model approach     

   Figure 5.16  
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    5.7.3  Example: sensitivity analysis for 
inverse simulation of a linearised model of 
the UUV 

 The linearised dynamics for diving motion of the underwater 
vehicle model of Appendix A1 involves a third-order system 
with the following equation:

    (5.31)  

 This is the linearised model already considered in the 
context of sensitivity analysis in Section 5.5.1. As already 
noted, the state variables  q ,  θ  and  z  are the pitch rate, 
pitch angle and vertical displacement, as given in Appendix 
A1, and  δ   s   is the stern plane defl ection and for typical 
operating conditions  a  11  = −0.7,  a  12  = −0.3,  u  0  = 1.832 m/s 
and  b  1  = 0.035. 

 If we require a sinusoidal trajectory in terms of the pitch 
angle,  θ , the stern plane defl ection time history determined 
from inverse simulation using simple proportional plus rate 
feedback is as shown in  Figure 5.17 . 

 The high frequency oscillation superimposed on the stern 
plane defl ection is due to the presence of lightly damped 
poles in the feedback system used for inverse simulation. 
Despite the presence of these poles, the application of this 
stern plane defl ection signal to the forward model of the 
UUV gives an output which is almost identical to the required 
sinusoid ( Figure 5.18 ). 

 Application of the technique outlined in Section 5.7 for 
determination of the sensitivity of the inverse solution to 
parameters of the given model, such as  a  11  and  a  12 , involves 

the application of appropriate fi lters    to the 
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simulated signal which represents the required control 
surface input  δ  s ( t ). 

 In the case of the parameter  a  11 , the fi lter can be shown to 
have the transfer function:

  Stern-plane input signal found from inverse 

simulation for required trajectory involving 

sinusoidal change of pitch angle     

   Figure 5.17  

  Pitch angle record found from application of 

stern-plane defl ection signal of  Figure 5.17  to 

the forward model of the UUV     

   Figure 5.18  
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    (5.32)  

 while for  a  12  the transfer function is:

    (5.33)  

 Results obtained, using this method of sensitivity analysis 
for the inverse simulation model, are shown in  Figures 5.19  
and  5.20 . It can be seen that (neglecting the short initial 
transient which is an artefact of the inverse simulation 

method being used) the parameter sensitivity function    is 

dominated by a cosine function of amplitude approximately 
0.07 and frequency the same as that of the required pitch 

change signal. The sensitivity function    is sinusoidal in 

  Sensitivity function found from sensitivity model 

for parameter  a  11      
   Figure 5.19  
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form and identical in frequency to that for  a  11  with a peak 
value of approximately 0.82. As would be expected from the 
form of the fi lters given above, the sensitivity function for  a  11  
is shifted in phase compared with that for  a  12  by 90° and 
these two parameters therefore each have greatest infl uence 
on the stern plane defl ection signal at different times. The 
infl uence of each of the parameters can be compared 

quantitatively using the relative sensitivity measures    

and    On that basis, the stern plane defl ection signal 

may be shown to have a maximum sensitivity to parameter 
 a  12  which is approximately fi ve times larger than the 
maximum sensitivity to  a  11 . Such information is potentially 
useful when considering actuator limits and when carrying 
out control system optimisation studies. Similar information 
on inverse sensitivity could be derived in the same way for 
the other parameters of the model. 

  Sensitivity function found from sensitivity model 

for parameter  a  12      
   Figure 5.20  
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 For comparison with the results of  Figures 5.19  and  5.20 , 
 Figure 5.21  and  5.22  show sensitivity functions for the 
parameters  a  11  and  a  12  found directly from the inverse 
simulation results using a perturbation approach. It can 
be seen that the sensitivity functions found by the 
perturbation method and the sensitivity model approach 
are almost identical in both cases, apart from the initial 
transient in the sensitivity function for  a  11 . That transient 
is, of course, associated with the choice of feedback loop 
gain factors and is therefore an artefact of the feedback 
system approach to inverse simulation, as mentioned 
above. As in the case of sensitivity analysis for conventional 
forward models, it is believed that additional physical 
insight and computational simplicity once again give the 
sensitivity model approach advantages when compared with 
perturbation methods.    

  Sensitivity function found using fi nite difference 

approximation approach for the case of 

parameter  a  11      

   Figure 5.21  
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 Experimental modelling: 
system identifi cation, 
parameter estimation 

and model optimisation 
techniques  

   Abstract:    This chapter describes the role of system 
identifi cation and parameter estimation methods and 
related optimisation techniques within the model 
development process. These techniques are central to what 
is termed ‘experimental modelling’ and emphasis is given 
to issues of identifi ability and experimental design. 
Applications considered are drawn mainly from the fi eld of 
helicopter modelling from fl ight test data. Optimisation 
techniques considered include simulated annealing and 
genetic algorithm methods as well as gradient-based and 
search-based techniques. Model structure estimation is 
approached through physical understanding of the system 
and the use of genetic programming methods.  

   Key words:    identifi cation, parameter estimation, 
identifi ability, experimental design, test signal, 
optimisation, fl ight mechanics, helicopter.   

                 6 
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    6.1  The use of system identifi cation 
and optimisation techniques in the 
development of physically based 
dynamic models 

 It has been emphasised in  Chapter 1  that models must 
be appropriate for their intended purpose. Models are 
never unique and their development is an iterative process, 
involving initial formulation and testing, followed by 
repeated modifi cation and retesting. The form of model used 
at a particular stage in a project must therefore take account 
of the objectives, the amount of detail needed at that stage 
and uncertainties in the information about the real system. 
In some situations, particularly when working with existing 
systems or sub-systems, there may be a need for experimental 
investigations before a detailed physically based quantitative 
model can be developed. 

  System identifi cation  and  parameter estimation  are 
established techniques involving use of measured response 
information from a real system to develop a mathematical or 
computer-based dynamic model. In this approach the model 
usually has a general form involving ordinary differential or 
difference equations and an associated set of parameters that 
have to be estimated. In general, the structure (as defi ned by 
the number of differential equations and any associated 
algebraic relationships) also involves uncertainties and the 
most appropriate form may have to be established using 
measured response data. Techniques of system identifi cation 
and parameter estimation are reviewed in many textbooks, 
such as those by Ljung [1], Söderström and Stoica [2], Nelles 
[3] and Raol  et al . [4]. 

 Many approaches to identifi cation and system parameter 
estimation involve optimisation of a specifi ed  cost function  
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involving the difference (error) between a model response 
and the corresponding measured variable. Decisions about 
the most appropriate structure for the model usually require 
background knowledge and physical understanding of the 
system, as well as examination of available experimental 
data and consideration of the intended application. Once an 
initial structure has been established and uncertainties have 
been critically assessed, the parameters of the model can be 
estimated, usually iteratively, through a specifi c cost function 
and optimisation method such as  least-squares minimisation . 
The iterative processes of parameter adjustment continue 
until the responses of the model match those of the system to 
some predefi ned level. For problems that are nonlinear in the 
parameters and involve many unknowns, one important 
issue is the potential presence of large numbers of local 
maxima and minima in the surface that represents the cost 
function. Therefore, it is possible that many sets of locally 
‘optimal’ parameters may be found from test data and care 
should be taken to fi nd the set that corresponds to the global 
optimum. 

 The textbook by Raol  et al . [4] provides a useful review of 
least-squares methods in the context of modelling, system 
identifi cation and parameter estimation. The treatment of 
optimisation methods presented in that book establishes 
links between the properties of classical gradient-based 
optimisation techniques and methods commonly used in the 
application of system identifi cation and parameter estimation 
to engineering systems. These include the  generalised least-
squares  and  nonlinear least-squares  methods, and techniques 
such as the  equation-error  and  output-error  methods that 
have been used extensively in the identifi cation of physically 
based models arising in the modelling of fi xed-wing aircraft, 
helicopters, ships and underwater vehicles (see e.g. [4], [5] 
and [6]). 
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 Model structure optimisation involves optimisation of 
complexity, since the number of separate equations and 
the number of adjustable parameters, which provide a 
crude measure of complexity, depend on the chosen 
structure. Also, with more parameters, a model becomes 
more fl exible since the number of forms of behaviour 
that could be exhibited increases. A model that is too simple 
will not capture the behaviour of the system and will give 
poor predictions. In addition, if the data available for 
parameter estimation and subsequent testing of the model 
are inadequate, even a relatively complex model may perform 
badly. Thus, the complexity of a model must always be 
appropriate for the intended task. Optimising the complexity 
of a model is closely linked to questions of model validation 
(see  Chapter 7 ) which involves critical assessment of the 
model performance for a specifi c application. 

 One approach that is well suited to the system identifi cation 
of physically based continuous system models has been 
presented by Knudsen (e.g. [7] and [8]). This is based on 
parameter sensitivity information (as discussed in  Chapter 5 ) 
which is used in selecting model structures, for experimental 
design and for the validation of models identifi ed from 
experimental data. The essential point of incorporating 
parameter sensitivity information into the identifi cation 
approach is that accurate estimation of any parameter requires 
that the cost function upon which the estimation is based 
should be sensitive to that parameter and the most sensitive 
parameters are likely to be the ones that are estimated most 
accurately. Comprehensive knowledge of parameter sensitivities 
thus provides important information for assessing identifi cation 
results. A MATLAB™ toolkit ‘Senstools’ has been developed 
by Knudsen and is available for downloading [9]. 

 It is important that the performance of a model should be 
assessed using a ‘test’ data set that is not the same as the 
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‘training’ data set that was used in estimating the structure 
and parameters of that model. In this way, the  generalisation  
ability of the identifi ed model may be assessed. ‘Generalisation’ 
describes the capability of the model to predict system 
outputs for experimental situations that are not exactly the 
same as those used at the development stage. 

 The terms ‘under-fi tting’ or ‘over-fi tting’ are widely used. 
If the model is relatively simple but cannot match observed 
behaviour, the situation may involve under-fi tting and the 
model structure should be reviewed. If a relatively complex 
model is used and the training appears satisfactory, but the 
generalisation is poor, there may be over-fi tting. In such cases 
the cause of the problem may be bias on the estimated values 
of model parameters due to noise on the data used for 
identifi cation, or an inappropriate structure. 

 Physically based dynamic models used in practical 
engineering applications are usually  nonlinear in the 
parameters . In such cases iterative methods must be used to 
fi nd the set of parameters to give model responses that match 
experimental data, even if the model structure itself is linear. 
Many nonlinear optimisation techniques and methods for 
iterative solution of nonlinear equations have been developed 
and detailed information about the relevant algorithms may 
be found elsewhere (see e.g. [3] and [10]). 

 Nonlinear optimisation methods can be classifi ed as 
local or global [3]. Although they converge to local 
optima, local methods often settle at points close to the 
initial parameter set, particularly if search directions are 
obtained from fi rst- and second-order derivatives. Such 
algorithms tend to become stuck at local minima or maxima 
and an extremum elsewhere in the parameter space may be 
neglected. Global nonlinear optimisation methods may 
overcome this diffi culty and rely on the inclusion of random 
components that help the algorithm to avoid becoming 
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trapped. Well-known global optimisation techniques include 
 simulated annealing  (SA) (e.g. [11] and [12]) and  evolutionary  
algorithms such as the  genetic algorithm  (GA), the principles 
of which are discussed in more detail in the books by Holland 
[13] and Goldberg [14]. Further information about the 
techniques of simulated annealing and evolutionary 
computing applied to system modelling may be found in 
Sections 6.4 and 6.5.  

   6.2  Applications of conventional 
methods of system identifi cation 
and parameter estimation to 
physically based models 

 As has already been stated, system identifi cation in its most 
general form may be defi ned as the quantitative estimation of 
the structure and parameters of a model using experimental 
measurements from the corresponding real system. Traditionally 
it is applied to the development of self-adaptive control systems 
and other online and self-tuning control techniques. However, 
it may also be regarded as a set of analytical and computational 
tools that provide additional insight at various stages in the 
development of physically based models. 

 In model-based design and development, system 
identifi cation can be helpful for choosing a suitable model 
structure, perhaps from several different candidate 
descriptions. Identifi cation can then provide estimates of 
parameters for that structure. 

 How identifi cation and parameter estimation techniques 
are used depends on the intended application. Different 
models and methods may be appropriate depending on the 
purpose of the model. For example, for many control system 
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applications, linear forms of model may be used since control 
system design methods frequently require linearised plant 
models. However, when system identifi cation and parameter 
estimation methods are used within the process of simulation 
model validation, nonlinear models are often essential. 

 System identifi cation and parameter estimation is a mature 
fi eld and details of methods of identifi cation such as the 
equation error, output error or maximum-likelihood methods 
are not included in this book. Well-documented software for 
system identifi cation and parameter estimation is available 
from a variety of sources, including well-established 
MATLAB ®  toolboxes (e.g. [15], [16] and [9]). Instead of 
repeating information that is readily available elsewhere, 
more attention is given here to ways in which such established 
methods may be applied to the development, validation and 
application of models in a practical engineering context. 

   6.2.1  Issues of identifi ability 

 The precision of any parameter estimate may be expressed in 
terms of the variance of the estimate and this depends both 
on the experiment used for identifi cation and the estimation 
technique. Often the objective is to obtain unique and reliable 
estimates of all of the parameters of a model. It is important 
to investigate whether or not this is theoretically feasible for 
a given model structure and a given experiment. The concept 
of  identifi ability  is central to issues of this kind and tests for 
identifi ability provide an indication of potential problems 
before an identifi cation method is chosen or issues such as 
experimental design are considered. 

  Global  or  structural unidentifi ability  arises if a model has 
an excess of parameters so that some specifi c parameters 
cannot be estimated uniquely for any possible experimental 
design. This depends on the model structure and not on values 
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of parameters or the design of the identifi cation experiment. 
It arises when a model has too many parameters to allow all 
of them to be found for any possible input stimulus. 

 Structural identifi ability is only a minimal necessary 
condition for obtaining unique estimates of model parameters. 
Bellman and  Ǻ ström [17] were among the fi rst to discuss this 
issue. Although their fi ndings were presented in the context 
of biological compartmental models, the results are 
applicable to other problems. They showed that classical 
transfer function theory could be used as a basis for the 
investigation of identifi ability. If each coeffi cient of the 
transfer function matrix is expressed as a combination of 
the unknown parameters, a set of nonlinear equations is 
defi ned and the model is identifi able in a global sense if these 
equations have a unique solution. 

  Pathological  or  numerical unidentifi ability  arises when a 
structurally identifi able model is being used with an 
experimental data set that is inappropriate for the application. 
This could be because the length of the available record is too 
short compared with the dominant time constants or the period 
of oscillatory components of the response. It could also arise if 
the measured response data is very heavily corrupted by noise. 

 Beck and Arnold [18] have shown that model parameters 
can be estimated only if the parameter sensitivity coeffi cients 
for the output variable with respect to each parameter are 
linearly independent over the range of observations. Problems 
of numerical unidentifi ability may be deduced, in simple 
cases, directly from the time histories of sensitivity 
functions (as defi ned in  Chapter 5 ). The problem can also be 
investigated more systematically by examining properties of 
the sensitivity matrix  X  and the closely associated  parameter 
information matrix   M   =   X   T   X . This type of analysis allows 
interdependencies to be investigated that are more complex 
than those found by direct inspection of sensitivity function 
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time histories. Pathological unidentifi ability is linked to 
linear dependence of the columns of  X  and this is refl ected in 
the determinant of matrix  M  or in the condition number of 
the matrix (the ratio of the largest eigenvalue of  M  to the 
smallest eigenvalue of  M ). If the condition number is large, 
or if the determinant is small, the confi dence region for the 
estimates is large and the parameter estimates are therefore 
not well defi ned. 

 The matrix  M  −1  is also important and is known as the 
 dispersion matrix , commonly denoted by  D . The determinant 
of  D  can be shown to be a useful indicator of numerical (or 
pathological) unidentifi ability [18]. 

 Correlations between pairs of parameters can be 
investigated using the  parameter correlation matrix   P . This 
matrix is commonly defi ned in terms of its elements:

    (6.1)  

 where  p   ij   is the element of  P  in row  i  and column  j  and  m    ij    −1  
is the element of  M  −1  in row  i  and column  j . The diagonal 
elements of the matrix  P  have values which are unity and the 
off-diagonal elements all lie between −1 and 1. Conditions 
close to unidentifi ability arise if the modulus of one or more 
of the off-diagonal terms is close to unity, with a value of 
0.95 being regarded as a limiting value [18]. Small values of 
the off-diagonal elements of  P  indicate that the parameters 
are essentially decoupled.  

   6.2.2  Design of experiments and the 
selection of test-input signals 

 In designing experiments and choosing test signals for system 
identifi cation and parameter estimation, we must have a 
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quantitative basis for comparisons. It is also assumed that 
the estimator is effi cient (e.g. [19]) and that these experimental 
aspects are independent of the estimator. Test signal design 
can involve quantities such as the parameter information 
matrix and the dispersion matrix, both of which have 
theoretical origins in the  Cramer-Rao bound  [18], through 
which the variance of parameter estimates may be related to 
elements of the dispersion matrix  D . Since this is based on 
the parameter sensitivity matrix  X , which depends on 
measurements, the elements of  D  can be derived from tests. 
In general terms, inputs giving a dispersion matrix with small 
elements are to be preferred over inputs producing large 
values and this leads to test input design algorithms that 
minimise appropriate functions of the dispersion matrix or 
of the parameter information matrix. 

 The sensitivity matrix  X  and the parameter information 
matrix  M  thus provide a basis for measures of the quality of 
an experiment using relationships which are of the general 
form:

  J  =  f ( M ) (6.2)  

 where  f  is an appropriate scalar function. One widely used 
criterion for experiment design is the so-called  D-optimal 
criterion  [20] which involves the dispersion matrix and has 
the form:

  J   D   = det( D ) = det( M  −1 ) (6.3)  

 This criterion gives a test signal that places equal emphasis 
on the estimation of all of the parameters. In cases where a 
subset of parameters is more important, use of a  truncated 
D-optimal design criterion  has been advocated [21], and this 
has the form:

  J    Dt    = det( M    ii    −1 ) (6.4)  
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 where  M    ii    is a sub-matrix of the full information 
matrix referring only to the  i  parameters of interest. Use of 
this truncated criterion involves elements of the sensitivity 
matrix  X  which themselves depend on values of model 
parameters. Thus it is only possible to use the criterion to 
investigate and compare experimental designs in a general 
way. Use of the criterion to generate a truly optimal 
experiment is impossible because, to do that, exact parameter 
values for the system under test would have to be known 
 a priori . 

 Many accounts exist of applications in which the concepts 
of identifi ability and experiment design have been used to 
good effect. Much early research on identifi ability analysis 
involved biomedical applications, but these techniques have 
also been applied in many other fi elds. One typical application 
has been described by Keskitalo and Leiviskä [22], involving 
calibration of models of activated sludge systems for 
wastewater treatment. Experimental estimation of model 
parameters is essential in matching activated sludge models 
to real processes, but diffi culties arise because the model 
structure does not allow unique estimates to be obtained for 
all the parameters and the available measurements are 
usually of low quality. Experience suggests that models of 
this kind require regular recalibration and Keskitalo and 
Leiviskä have proposed the development of a more automated 
approach, using identifi ability analysis combined with global 
optimisation methods, which avoids much trial-and-error 
work [22]. 

 Although the activated sludge model is typical of problems 
encountered with environmental system models and process 
system models, where there is often very limited scope of 
experimentation, other physical systems may offer more 
fl exibility in the generation of test data sets for identifi cation 
and eventual model validation.   
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   6.3  System identifi cation and 
parameter estimation applied to 
helicopter fl ight mechanics models 

 Applications of system identifi cation and parameter 
estimation techniques to problems of helicopter fl ight 
mechanics modelling and control are important, especially 
for the validation of models developed using physical laws 
and principles. Conventional simulation models derived on a 
physical basis and using wind-tunnel data, taken alone, 
seldom provide a basis for the development of usable models. 
Extensive fl ight testing programmes using prototype vehicles 
are still essential as part of the certifi cation procedures for 
new aircraft, but these test programmes are time-consuming 
and costly. Changes required in the hardware following 
prototype testing are often linked directly to defi ciencies in 
the underlying models used for the initial stages of vehicle 
design. 

  Figure 6.1  illustrates an application of identifi cation 
techniques and comparisons with conventional simulation 
results for a well-established helicopter fl ight mechanics 
model (involving the DLR simulation program SIMH [23]). 
The uppermost traces show test input time histories for 
the lateral and longitudinal cyclic controls, as measured 
in a fl ight experiment on a BO105 helicopter [24]. The 
records below are for roll rate and pitch rate predicted by 
the SIMH simulation model (dashed lines) together with 
the corresponding variables measured in the fl ight test 
programme (continuous lines). Some signifi cant differences 
between the simulation results and the measured results 
are immediately evident. The bottom two sets of results 
show the same fl ight test measurements along with predicted 
outputs for the same variables for a model based on 
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  Flight data (continuous lines) and corresponding 

model responses (dashed lines) for typical test 

inputs. Results under the heading ‘Simulation’ 

show roll rate and pitch rate variables for a 

physically based model in response to measured 

inputs together with the corresponding 

measured variables. The results under the 

heading ‘Identifi cation’ relate to a reduced 

model structure with parameters estimated 

from fl ight data, with model predictions 

compared with the roll and pitch rate variables 

from fl ight. (The original version of this fi gure 

was published by the Advisory Group for 

Aerospace Research and Development, North 

Atlantic Treaty Organisation (AGARD/NATO) in 

AGARD Advisory Report 280 ‘Rotorcraft System 

Identifi cation’, in September 1991)     

   Figure 6.1  
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parameters estimated from fl ight tests. The difference 
between the measured results and model predictions 
are much smaller in this case, showing the increase in 
accuracy possible when using appropriate parameter 
estimates. 

 Although results shown in  Figure 6.1  are encouraging, 
it should be noted that helicopters present special diffi culties 
in terms of the use of identifi cation methods. For linearised 
multi-input multi-output (MIMO) models of the complete 
vehicle, it is normal to be faced with test records that 
are short compared both with the dominant time constants 
and periods of the dominant oscillatory modes. Also, these 
models involve many parameters and a wide range of 
frequencies, and measurements can involve high levels of 
noise. Along with the short test records usually available, 
these are not desirable factors for identifi cation. 

 Within the aircraft industry, the benefi ts of system 
identifi cation relate mainly to reduction in fl ight testing 
for certifi cation of new designs and for fi ne-tuning of 
the vehicle’s agility and handling qualities. Identifi cation 
methods may also be useful for improving engineers’ 
confi dence in physically based models used in design and 
for reducing levels of uncertainty. Estimation of parameters 
from fl ight is now an increasingly important part of prototype 
testing and is especially relevant for some aerodynamic 
stability and control parameters. Although fl ight testing 
is costly, additional tests carried out specifi cally for 
system identifi cation and parameter estimation purposes 
could allow essential design modifi cations to be made 
through virtual prototyping methods more quickly, more 
effi ciently and at a lower cost than by using traditional 
approaches. 

 In the late 1980s and 1990s, active control technology 
began to be applied to helicopters. Essentially, this is the 
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fl y-by-wire approach that had, by then, already been accepted 
for civil and military fi xed-wing aircraft. The improvements 
in performance and capabilities expected from active-control 
technology could only be achieved using accurate and proven 
mathematical models (e.g. [25]). The publication in 1989 
and in 1994, in the USA, of revised handling qualities 
requirements for military helicopters [26] provided an 
additional stimulus to these developments in helicopter 
fl ight control and created new interest in multivariable 
control system analysis and design methods. Enhanced 
performance requirements and developments in materials 
and rotor technology have produced improvements in vehicle 
characteristics which mean that much enhanced performance 
is possible but use of traditional loop-by-loop control 
design methods may present diffi culties and the expected 
performance gains may not be realised in practice. 

 Multivariable control system design techniques, which 
exploit the multivariable structure of vehicles such as 
helicopters, have been applied successfully in several 
investigations (e.g. [27], [28] and [29]). However, ensuring 
accuracy in the MIMO models used for active control system 
design is challenging. Models must perform adequately over 
a defi ned range of frequencies and for a range of manoeuvre 
amplitudes. For example, high-bandwidth model-following 
fl ight control systems may incorporate improved feed-
forward control pathways to provide improved agility for 
large and rapid manoeuvres, but such an approach requires 
accurate models of the vehicle [27]. System identifi cation is 
also increasingly important for validation of ground-based 
simulators for rotorcraft of all types and highly accurate 
mathematical models are needed for simulators that are to 
be used for pilot training (see e.g. [25]). 
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   6.3.1  Some examples of 
rotorcraft applications 

 Before the 1990s, most published accounts of system 
identifi cation techniques applied to helicopters involved 
time-domain methods of identifi cation. However, the use of 
frequency-domain methods is now seen to have advantages. 
In this case the measured response data is transformed 
fi rst into the frequency domain using an appropriate 
implementation of the Fast Fourier Transformation. This 
allows attention to be focused on particular parts of the 
frequency range, and data lying outside the areas of interest 
can be given less emphasis or discarded. Thus, for the 
identifi cation of six-degrees-of-freedom rigid-body models, 
the rotor degrees of freedom, which involve higher 
frequencies, can be excluded. Conversely, for the identifi cation 
of rotor dynamics, the lower frequencies involving the rigid-
body response can be excluded. This procedure allows, in a 
sense, a form of model reduction within the identifi cation 
process [30]. 

 Details of a frequency-domain approach to helicopter 
system identifi cation may be found in a paper by Black 
and Murray-Smith [31] and this approach was one of several 
methods of helicopter system identifi cation successfully 
used by the NATO-supported AGARD Flight Mechanics 
Panel Working Group WG18 for work leading to the 
preparation of the AGARD Advisory Report 280 [32] on 
Rotorcraft System Identifi cation and the associated Lecture 
Series volume [33]. Frequency-domain methods have been 
used widely in the years since publication of that 
AGARD report, especially using the now widely available 
CIFER software developed by Dr Mark Tischler and 
his colleagues at the US Army Aerofl ightdynamics 
Directorate [34]. 
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 Although it may be stated, without question, that 
identifi cation and parameter estimation techniques are 
potentially important for helicopter development and fl ight 
testing, it has to be accepted that the benefi t of these tools 
has not yet been fully realised. Many of the diffi culties are 
associated with issues of robustness and these have been 
classifi ed under the following headings [35]:

   1.   robustness and reliability of  a priori  information;  

  2.   robustness of the identifi ed model structure;  

  3.   robustness of estimated parameters; and  

  4.   robustness of the resulting overall model.    

 In terms of these robustness issues, the properties of 
different estimators are probably less important than 
questions of identifi ability, the quality of measured data 
and experimental design. However, an understanding of the 
properties of different estimators is essential if they are to be 
applied appropriately. 

 Klein has provided a useful account of identifi cation 
techniques for aircraft system identifi cation [36] and the 
theoretical properties of different estimators. For example, 
the maximum likelihood approach, when applied in its 
most general form, allows parameters to be estimated for a 
linearised aircraft model from fl ight data involving 
measurement noise and process noise, such as unmodelled 
disturbances in the form of gusts. Less general forms of 
output-error method involve assumptions that only the 
measurements are corrupted by noise. This means that 
estimates obtained using output-error methods can be 
degraded in the presence of unmeasured and unmodelled 
disturbances giving relatively poor estimates with large 
variances. Similarly, there are problems with equation-error 
methods, since these are not only affected by process noise 
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and by measurement noise, but can produce biased estimates 
even if all the measurement and process noise components 
have zero mean. 

 Although the values of the variances associated with 
parameter estimates are useful indicators of robustness, it is 
important to understand that any comparison of variances 
obtained for different model structures is impossible. Checks 
of residuals can be useful and an interesting measure of the 
robustness of parameter estimates can be obtained from 
plots of each estimated parameter value versus the length of 
the experimental record. 

 Possible dependencies of parameter estimates on record 
lengths are also linked to the relationships between parameter 
estimates and the frequency range of the data. Knowledge of 
how estimates vary with the frequency range of measured 
signals used in the estimation can provide valuable insight 
concerning robustness. Ideally we want to maximise the 
range of frequencies over which parameter estimates are 
more or less constant and any indication of high sensitivity 
of estimates to frequencies over a part of the relevant range 
of frequencies may indicate problems of model structure or 
experiment design. 

 Checks of the overall robustness of an identifi ed model 
must be made using data sets that were not used during the 
original identifi cation process. These additional sets must 
be broadly similar in spectral properties and amplitude 
distribution to sets used for identifi cation. One way of 
using such additional sets is simply to carry out additional 
identifi cation runs and compare the different estimates 
obtained. Clearly the situation would be judged unsatisfactory 
if variations of parameter values obtained in this way were 
greater than could be expected from variance estimates for 
the fi rst set of parameters obtained. Another approach 
involves the identifi ed model being subjected to inputs not 
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used for identifi cation (See e.g. [37]). The predicted output 
from the model must then be compared with the corresponding 
measurements. This is a form of external validation and is 
discussed further in  Chapter 7 .  

   6.3.2  Test inputs and experimental design 
for helicopter system identifi cation and 
parameter estimation 

 Test inputs commonly used for helicopter system identifi cation 
include doublet signals, other forms of multi-step signals 
such ‘3-2-1-1’ pseudo-stochastic signals (see [38] and 
[39]) and frequency-sweep signals. For the 3-2-1-1 the 
numbers used to describe the input refer to time units 
between input signal reversals.  Figure 6.2  shows practical 
doublet, 3-2-1-1 and frequency-sweep test signals, together 
with some typical responses. It may be seen that the 
frequency-sweep signal provides a broader range of 
frequencies, although it should be noted that the record 
length for this input is greater than for the 3-2-1-1 or doublet. 
This could be important for cases where the stability margin 
of the vehicle is small since the use of such a long input 
sequence may limit the length of record permissible during 
the unforced part of the response. 

 Designs of test signals for system identifi cation of a 
helicopter or other system are inevitably based on a model of 
that system. Because of uncertainties within that model, the 
resulting signals are unlikely to be optimal. Indeed, if 
uncertainties were not present, there would be no need to use 
system identifi cation. This means that it is important to 
characterise some appropriate fl ight data from the vehicle in 
question using relatively simple forms of input as a fi rst step 
towards experimental design. 
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 We need a quantitative basis for comparison of test signals 
and, in the approach presented here, this involves quantities 
such as the parameter information matrix and the dispersion 
matrix, as outlined in Section 6.2. It should be noted, 
however, that care must be taken when applying such an 
approach since, unless an effi cient estimator is used, the 
approach may be invalid. Inputs designed using measures 
based on the dispersion matrix have been found to be 
especially useful in cases where long test records are available 
and where maximum-likelihood estimators are being applied, 
since such estimators are asymptotically effi cient. 

 The coherence function may be helpful as a measure of the 
degree to which a given signal provides satisfactory excitation 
[5]. It provides a measure of the fraction of the output 

  Examples of BO105 fl ight test data showing three 

different types of control input (3-2-1-1, frequency 

sweep and doublet), together with roll rate and 

pitch rate responses. (The original version of this 

fi gure was published by the Advisory Group for 

Aerospace Research and Development, North 

Atlantic Treaty Organisation (AGARD/NATO) in 

AGARD Advisory Report 280 ‘Rotorcraft System 

Identifi cation’, in September 1991)     

   Figure 6.2  
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auto-spectrum which may be accounted for by a linear 
relationship with the input auto-spectrum [39]. In the ideal 
case the coherence is unity over the complete frequency range 
of interest. Values of coherency smaller than one may be 
associated with nonlinearity in the system under test, process 
noise (such as turbulence in the case of aircraft applications) 
or lack of input signal power and thus response power [5]. 
 Figure 6.3  shows some typical records and plots of coherency, 
revealing larger coherence values for the frequency-sweep 
data over a wider range of frequencies compared with the 
other test inputs [32]. This is especially noticeable at 
frequencies below 1 rad/s and above 10 rad/s where the 
autospectra for the doublet and 3-2-1-1 show signifi cantly 
reduced power levels. In general, larger and more constant 
coherence values over a wide range of frequencies, coupled 
with relatively smooth input autospectra, are seen as desirable 
for identifi cation purposes [40]. This suggests that the 
frequency sweep has advantages, provided the longer 
duration of this type of test signal can be tolerated. 

 In cases where the aim of identifi cation is validation of 
linearised fl ight mechanics models, the inputs used for testing 
must be consistent with the modelling assumptions. This 
means that input design methods must take account of input 
constraints. In addition, it is important to obtain long test 
records, since parameter estimates then have time to converge 
and effi cient estimation (i.e. minimum variance estimation) 
is possible, thus allowing use of criteria based on the 
dispersion matrix. 

 The broad aim of research by Leith and Murray-Smith 
[41] was to design a test input which would give long test 
records while providing a dispersion matrix that is reasonably 
‘small’. It is important to avoid resonances in the system, 
since an input that excites resonances could rapidly produce 
a nonlinear response and this might require the fl ight 
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  Autospectra and roll rate data in response to 

three types of test input signal (doublet, 3-2-1-1 

and frequency sweep) applied through the lateral 

cyclic control for BO105 helicopter. The results 

reveal larger values of coherence over a wider 

frequency range for the frequency-sweep data 

(continuous line) compared with the doublet or 

3-2-1-1 test inputs. (The original version of this 

fi gure was published by the Advisory Group for 

Aerospace Research and Development, North 

Atlantic Treaty Organisation (AGARD/NATO) in 

AGARD Advisory Report 280 ‘Rotorcraft System 

Identifi cation’, in September 1991)     

   Figure 6.3  
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experiment to be prematurely aborted. Inputs should also 
be chosen to ensure that the signal has no steady-state 
component. A constant component in the input will tend to 
produce a steady-state constant component in the response 
and this can shift the operating point. If the operating point 
is signifi cantly different from that used for linearisation of 
the theoretical model, the parameter estimates obtained 
experimentally will be inconsistent with that model, thus 
making the whole procedure invalid. 

 A method of autospectrum design was developed ([41] 
and [42]) that:

   ■   ensures that resonances are avoided, to give longer test 
records;  

  ■   avoids exciting frequencies around the resonances, to give 
robustness;  

  ■   excites the remaining frequencies, to give a reasonably 
‘small’ dispersion matrix; and  

  ■   allows users to choose inputs that are relatively simple 
in form, so that they can be applied manually by the pilot.    

 An optimal spectrum program was then written to produce 
a binary multi-step input having an auto-spectrum that 
satisfi es a specifi cation of the type outlined above and this 
approach was applied successfully to the design of test inputs 
for a Lynx helicopter. Flight trials were performed for a test 
input applied to the longitudinal cyclic control of the vehicle 
for a fl ight condition of 80 knots level fl ight. The optimal test 
signal design process ensured that the input auto-spectrum 
had no DC component, that it avoided known resonances at 
about 0.3 rad/s and that the input excited frequencies 
between 2 and 3 rad/s but not above 3 rad/s. The upper limit 
of 3 rad/s was imposed because previous experience suggested 
that the theoretical model was useful only for frequencies 
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below about 3 rad/s. At higher frequencies, dynamic effects 
within the rotor sub-system are believed to have a signifi cant 
infl uence and these were not included in the model. 

 A signal consisting of fi ve steps was found to be particularly 
useful. This signal, a double-doublet, allowed long test 
records before the response became nonlinear. Typical record 
lengths for the double doublet with the Lynx helicopter were 
of the order of 30 seconds compared with 10–15 seconds for 
a traditional doublet input and only 3 seconds for the 3-2-1-1 
input. Estimates of seven parameters of the pitching moment 
equation were obtained using the frequency-domain 
equation-error approach [41]. Other forms of multi-step 
input were considered and tested in fl ight, including a 1-2-
2-1 signal. Overall, the double-doublet gave results that were 
consistently better than those obtained from the use of other 
inputs and this also appears to be more robust to errors and 
uncertainties in the theoretical model used in its design [41]. 

 Note that frequency-domain methods were chosen for this 
application, partly because of the physical insight that these 
provide in the subsequent application of the models for fl ight 
control system design and also because the frequency domain 
offers the possibility of separating the six-degrees-of-freedom 
vehicle dynamics from the rotor dynamics. 

 Further discussion of results from the application of system 
identifi cation methods to helicopter fl ight mechanics model 
development are presented in the AGARD Advisory Report 
280 [32] and the associated Lecture Series volume [33].   

   6.4  Some selected methods of local 
and global parameter optimisation 

 The techniques available for the optimisation of physically 
based dynamic models have much in common with methods 
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of optimisation used in other application areas such as 
design. They include gradient methods and other local 
optimisation techniques along with more general search-
based methods for determining global optima. 

 Methods that employ gradient information for local 
optimisation are widely used in system modelling (see e.g. [3] 
and [4]). The simplest gradient-based method is the  steepest-
descent  approach, which does not require second-order 
derivatives of the cost function, but converges slowly. 
 Newton’s method  involves the inverse of the Hessian matrix 
and depends on second-order derivatives resulting in 
additional computational overheads. Newton’s method is 
also computationally demanding because it involves matrix 
inversion but use of the  quasi-Newton method  reduces the 
complexity by using an approximation to the inverse Hessian. 

  Conjugate-gradient  methods, such as the  Fletcher-Reeves  
algorithm, can be less computationally demanding than 
the Newton and quasi-Newton methods. Instead of using 
the Hessian matrix or an approximation to the Hessian, 
conjugate-gradient methods compute an estimate of the 
search direction more directly. Although they usually require 
more iterations than the quasi-Newton and Newton methods 
to converge, the overall speed tends to be better. 

 Nonlinear least-squares methods are preferred for cases in 
which the loss function is of the sum-of-squares type. Two 
well-used nonlinear least-squares methods are the  Gauss-
Newton  method and the  Levenberg-Marquardt  approach. 
As discussed by Söderström and Stoica [2], the Gauss-
Newton algorithm is closely associated with the general and 
modifi ed forms of the  Newton-Raphson  algorithm for 
solution of numerical search problems. The Newton-
Raphson algorithm provides the basis of two of the traditional 
iterative approaches to inverse simulation, as discussed in 
 Chapter 4 . 

�� �� �� �� �� ��



190

Modelling and simulation of integrated systems in engineering

 The simplest general-purpose nonlinear local optimisation 
techniques are termed ‘direct search’ methods and make use 
only of loss function values in their search for local optima. 
Such methods include the  simplex search, Hooke-and-Jeeves  
and  Nelder-Mead  methods. These methods are typically 
rather slow and are often only used if the derivatives of the 
loss function are not available or can be estimated only at 
considerable computational cost. The Nelder-Mead approach 
is also mentioned in  Chapter 4  in the context of one approach 
to inverse simulation. 

   6.4.1  Simulated annealing (SA) 

  Simulated annealing  (SA) is a probabilistic hill-climbing 
technique based on the annealing of metals (see e.g. [11], 
[12] and [43]). This natural process occurs after the heat 
source is removed from molten metal and the temperature of 
the metal starts to fall as heat passes to the environment. At 
each temperature level, the energy of the metal molecules 
decreases and the metal becomes more solid. This continues 
until the temperature of the metal equals the temperature of 
the surroundings and, at this stage, the energy has reached its 
minimum. The simulated annealing process mimics this 
natural annealing process as it searches for an optimum. 

 In the SA algorithm, the solution space is searched by 
imposing perturbations on the estimates of the parameters 
that are being optimised. These perturbations depend on a 
‘temperature’ index T and their magnitudes at any stage in 
the process are given by:

  pert ( T ) =  k  ×  T  ×  rand  (6.5)  

 where  pert ( T ) is the perturbation at temperature index  T, k  
is a scaling constant and  rand  is a uniformly distributed 
random number lying between 0 and 1. In this algorithm the 
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temperature index  T  becomes smaller with each step, thus 
reducing the size of the parameter perturbation as conditions 
come close to the optimum. Each set of parameters arising 
from this procedure is substituted into the equations of the 
model and the performance is evaluated through simulation. 
This performance evaluation involves comparison of the 
desired and simulated responses, and is quantifi ed using the 
relative cost ( C ). If the cost value is smaller than the previous 
best cost, the new parameter set replaces the previous set. If 
the new cost is not smaller, the new set of parameters is not 
immediately discarded and the cost value is subjected to a 
check in which the probability,  P , of the cost associated with 
the new parameters ( C    new   ) is compared with the previous 
best cost ( C    prev   ) through the equation:

    (6.6)  

 This has the same form as Boltzmann’s Equation and the 
result obtained from its application is compared with a 
threshold number,  n . If  P  >  n , the new parameter values are 
accepted in the same way as if  C    new    <  C    prev   , but the new values 
are rejected if  P  >  n . This so-called  Metropolis Criterion  [43] 
ensures that the SA avoids premature convergence to a local 
optimum. The criterion is illustrated diagrammatically by 
the fl ow diagram of  Figure 6.4 . 

 Following this step, the temperature index is reduced by 
the  annealing schedule  involving an equation:

  AS ( T ) =  T    d    =  γ     d    T  0  (6.7)  

 where  T    0    is the initial temperature,  γ  is the reduction constant 
and  d  is the number of iterations. The whole process is 
repeated until either the cost has reached some preset 
threshold level or the temperature value has become so small 
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    Flow diagram illustrating the operations involved 

in applying the Metropolis Criterion     
   Figure 6.4

that the parameters are no longer being perturbed 
signifi cantly. If the cost value has reached the minimum level, 
it follows that the SA should provide the optimum set of 
parameters but if the temperature is too small, the results 
may not be optimal. 

 The complete simulated annealing process outlined above 
may be summarised in the fl ow diagram of  Figure 6.5 . 

 A modifi ed form of simulated annealing approach, known 
as  segmented simulated annealing  (SSA), involves a number 
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  Flow diagram illustrating the operations involved 

in the simulated annealing (SA) process     
   Figure 6.5  

Random process to generate initial values

Simulate and find cost value

Perturb values using temperature index

Simulate and find cost value

Apply the Metropolis Criterion

Reduce the temperature using the
annealing schedule

Repeat until temperature is low

End

of SA processes applied consecutively (see e.g. [44] and [45]). 
The limited convergence properties of the SA method may be 
overcome through this approach since the search space is 
segmented into a number of smaller regions. The fi nal cost 
values arising from the separate runs are sorted and the 
parameter values corresponding to the best cost value 
form the result. The SSA approach has been shown to 
provide practical benefi ts compared with the SA method for 
the optimisation of nonlinear controllers in a marine 
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engineering context [45] and these advantages apply also to 
optimisation problems in system modelling.  

   6.4.2  Genetic algorithms (GA) 

 The  genetic algorithm  (GA) approach to optimisation is 
based upon the concept of survival of the fi ttest (see [13] and 
[14]). The GA emulates the processes of evolution and is 
therefore an  evolutionary algorithm . In such a process the 
strongest elements become stronger while the weakest 
elements are eliminated. 

 The solution of an optimisation problem using the GA 
methodology involves a stochastic search of the solution 
space using strings of integers, known as  chromosomes , 
which represent the parameters being optimised. Each integer 
within these chromosomes is known as a  gene  and, for these 
modelling applications, each gene has a decimal value 
between 0 and 9. It should be noted that this is not the 
traditional GA approach where genes are binary quantities. 
The advantage of the decimal representation for this type of 
application is that it allows a wider range of possible values 
in smaller chromosomes and is particularly suitable for both 
model and design optimisation. 

 An initial population of chromosomes is generated at 
random and these are decoded to obtain the corresponding 
parameters. These parameter values are then introduced into 
the system model. A simulation is run and results are obtained 
for each set of parameters within the population, using a 
measure of performance based on a cost function similar to 
that used in simulated annealing. When the cost values are 
all found, they are sorted into ascending order along with the 
corresponding chromosomes. As before, the smallest cost 
values are chosen as the best and are then subjected to 
operations involving  reproduction, crossover  and  mutation . 
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 The  reproduction  procedure involves retaining the best 
chromosomes (say 20 per cent) for the next population. The 
other chromosomes are replaced by new chromosomes formed 
through processes of crossover and mutation. This reproduction 
process is termed ‘rank-based selection’ and allows only the 
elite chromosomes to proceed to the next iteration. This 
method is therefore an  elite genetic algorithm  [46]. 

  Crossover  is a process in which two chromosomes from 
the current generation ( parent  chromosomes) engage in a 
procedure in which some genes from one chromosome are 
interchanged with genes from the corresponding positions in 
the other. This process produces two new chromosomes 
( offspring ) and the procedure is repeated until there are 
suffi cient offspring to replace the 80 per cent of the present 
population that have the worst cost values. 

  Mutation  involves selection, on a random basis, of a 
certain number of the genes in the current population and 
random alterations are then made to their values. This 
provides a random element within the GA search process so 
that more of the search space is considered. 

 Once the chromosomes have been changed to form the 
new population they have to be evaluated, as were the 
previous generation. The whole procedure is then repeated 
for a predefi ned number of iterations ( generations ) to 
produce a fi nal solution. This complete procedure is 
illustrated by the fl ow diagram of  Figure 6.6 . 

 It should be noted that, as well as being useful for 
optimisation of nonlinear physically based models, genetic 
algorithms and simulated annealing are also useful for system 
modelling directly from empirical data and for linearisation 
of models [47]. 

 The work of Keskitalo and Leiviskä [22], discussed in the 
context of system identifi cation and parameter estimation in 
Section 6.2.2, involved the use of genetic algorithms and 
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  Flow diagram illustrating the operations involved 

in the genetic algorithm (GA)     
   Figure 6.6  

another evolutionary technique, known as  differential 
evolution  (DE), for global optimisation of complex nonlinear 
models [48]. Like the GA approach, differential evolution is 
based on a population of evolving solutions but the DE 
method is real-coded and is more directly applicable to 
parameter optimisation problems. As with the GA approach, 
there are many variations on DE methods and those 
considered in the activated sludge model application of 
Keskitalo and Leiviskä are detailed in [22].   
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   6.5  Genetic programming (GP) for 
model structure estimation 

   6.5.1  Principles of the genetic 
programming approach 

 Unlike the GA approach where, in a control engineering 
context, the objective is parameter optimisation, the 
methodology known as  genetic programming  (GP) involves no 
prior specifi cation of the size, shape or structure of the solution, 
and algebraic expressions evolve from a database of nonlinear 
algebraic functional elements [49]. Like the GA it is an 
evolutionary optimisation method but, unlike the GA, it does 
not require a structure that is rigid in form. While the problems 
to which the GA has been applied involve a set number 
of tuning parameters and a fi xed-length string representation 
for the solutions, the GP algorithm leads to a situation in 
which the size and shape of solutions evolve dynamically 
and can thus provide structure as well as an optimal set of 
parameters. 

 The GP approach allows optimisation of a tree structure 
representation of a symbolic expression. The tree structure 
has a variable length and is made up of a series of 
nodes. These can be  terminal nodes , representing an input 
variable or a constant, but they may also be  non-terminal 
nodes  representing functions involving some form of 
operation on one or more variables of the system and could 
take the form of a block diagram element (such as a 
Simulink® function block).  Figure 6.7  shows an example of 
a tree structure and, in this particular case, the terminal 
nodes are system inputs, variables of the system under 
investigation or constants. The non-terminal nodes represent 
the operations of forming a square root, addition and 
subtraction. 
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 The GP algorithm chooses possible elements from a library 
to build trees of this kind and each tree is evaluated as an 
algebraic expression to provide a fi tness function value. A 
population of trees is established and this population evolves 
through the processes of crossover, selection and mutation 
towards a structure that is optimum for the chosen fi tness 
function. The process is not deterministic and repeated runs 
therefore produce different solutions. Some analysis of runs 
must be carried out before an expression that is potentially 
useful can be found.  

   6.5.2  Nonlinear model structure estimation 
using the GP algorithm 

 The GP approach can be used to introduce an element of 
automation within experimental modelling. A set of possible 
model structures evolves through many generations and, at 
each stage, equations generated through genetic programming 

  Structure of GP tree representing the function 

 y  =    − ( v  +  u  + 3). Here the circles represent 

non-terminal nodes whereas the rectangular 

blocks are terminal nodes     

   Figure 6.7  
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to represent part of the model structure are combined with 
other well-established equations involved in the model 
description to produce a simulated time response which must 
be compared with experimental data to give a fi tness value 
for that model.  Figure 6.8  is a schematic diagram illustrating 
this procedure. 

  Schematic diagram illustrating the GP modelling 

procedure (from [6.54])     
   Figure 6.8  
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 The parameters of the candidate models can be estimated 
using other numerical optimisation methods involving 
simulated annealing, or simulated annealing combined with 
Nelder-simplex optimisation [10]. It should be noted that 
gradient methods of optimisation cannot be used in the 
parameter estimation process because many models 
generated through the GP process contain linearly dependent 
parameters or parameters that have no effect on the model 
output. The fi tness function value from the best parameter fi t 
is then used by the GP algorithm to defi ne the fi tness of that 
specifi c function tree. 

 Experimental design is of particular importance in the case 
of nonlinear systems, since the system must be excited over 
the whole frequency range of interest and also, in terms of 
amplitude, over the range of all the nonlinearities within the 
system. A large training data set is therefore needed. However, 
large data sets imply additional experimental costs and also 
signifi cant computational demands in terms of the chosen 
optimisation process, so there are inevitable trade-offs 
between model accuracy, optimisation time and cost. 

 Genetic programming methods have been applied 
successfully to the estimation of nonlinear model structures 
for continuous-time models for a number of application 
areas (e.g. [50], [51], [52], [53] and [54]). These range from 
simple simulated systems to chemical process system models, 
solid oxide fuel cell models and a model of a system for 
engine and rotor speed control in an MBB BO 105 helicopter. 
The candidate models may be described in a number of ways, 
including block-diagram or ordinary differential equation-
based representations and prior knowledge of the physical 
system can be incorporated within those descriptions. 
Aspects of the model that involve unknowns evolve in the 
GP approach as expressions within the set of equations that 
make up the model. 
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 The GP algorithm builds the models from a library of 
available functions. This library is very important and must 
be suffi ciently fl exible to allow for a wide range of functions, 
but not so general that a purely empirical representation can 
evolve which lacks any physical foundation. It should include 
basic algebraic operations (such as addition, subtraction, 
multiplication, squaring) together with functions that 
represent common forms of dynamic characteristics (such as 
fi rst- or second-order linear sub-models) that might be 
expected to appear as elements within a model.  Figure 6.9  
shows an example involving a block diagram type of 
description. Note that any model structure found using the 
GP approach needs to be validated using a data set that is 
different from the data set used for the optimisation. 

 Results obtained from published applications suggest that 
genetic programming can be used to fi t a model intelligently, 
in terms of the topology and block structure employed, while 
parameters can be estimated through the application of the 

  Illustration of a GP tree for a typical block 

diagram function (from [6.54])     
   Figure 6.9  
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GA or simulated annealing. With suitable constraints, this 
approach could provide additional insight regarding 
physically based model structures or could be used to validate 
a given nonlinear model using experimental data. This 
approach thus provides an automated and more systematic 
version of the trial-and-error processes generally used for 
model structure estimation. It allows poor features to be 
eliminated and good features to be combined to give new 
forms of sub-model, and it also allows more candidate model 
structures and components to be evaluated than would be 
possible in any manually directed procedure. A model 
structure that has evolved from the application of the GP 
approach can often reveal new information about the system 
under investigation or lead to additional experimental testing 
that may, in turn, throw new light on the physical processes 
involved. 

 Although the process of selection of the optimum 
description from among the candidate models is automated 
in this approach, the human skill in the choice of fi tness 
function is vitally important for the ultimate success of the 
method. Physical understanding of the real system is also 
essential in the selection of the set of candidate models. In 
addition, it should be noted that the simulation methods 
used should be numerically effi cient and fast, because each 
evaluation of the fi tness function involves one simulation run 
and many evaluations may be needed, thus requiring a very 
large number of simulation runs in total.   

   6.6  Some practical issues in global 
parameter optimisation 

 Although evolutionary techniques such as the GA and GP 
approaches can be very much more effi cient than any kind of 
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exhaustive search algorithm, the computational costs may 
still be very signifi cant. In practical terms this means that, for 
complex problems, decisions must be made about the extent 
to which extensive global optimisation can be justifi ed and 
the accuracy required in solutions. If a near-optimal solution 
can be found quickly, the question must be asked about 
whether further searching of the solution space is necessary. 

 From the discussion in Sections 6.4 and 6.5, it is clear that 
evolutionary techniques, such as the GA, can produce different 
solutions in repeated optimisation runs for the same set of 
initial conditions and the same fi tness functions. This is 
inevitable because of the processes of mutation that are an 
essential feature of these methods. In some situations it is 
appropriate to compare a number of near-optimal solutions of 
this kind and, if they are all found to be similar, an average 
may be used. In other cases, however, this multiplicity of 
solutions can be to the user’s advantage and there may be 
benefi ts in choosing one solution from this set of acceptable 
solutions using additional factors, such as ease of 
implementation or robustness, along with the fi tness function 
value. Additional factors of this kind are often diffi cult to 
include within an objective measure and, in some applications, 
a solution with slightly poorer performance may be preferred. 
One approach to simulation model optimisation which 
develops this idea is based on multimodal optimisation 
methods and aims to fi nd several local optima in a search 
space through a single optimisation run using the  Crowding 
Clustering Genetic Algorithm  [55]. 

 Although evolutionary algorithms offer a potentially 
important element of automation for optimisation procedures, 
both for model development and for design, their application 
requires good understanding of the likely physical phenomena 
in the system under investigation and therefore does not, in 
any way, imply a fully automated approach. For example, 
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the success of the GP approach most widely used for model 
structure identifi cation depends critically on the selection of 
appropriate functions for a function library. Examples of the 
information needed in establishing this function library and 
the initial form of model may include the following: fi rst 
estimates of the order of the model, fi rst estimates of the 
forms of nonlinearity most likely to be involved, known 
interactions between variables of the system and the form 
and limitations of existing models of similar systems. It is 
also important for the investigator to have an understanding 
of the availability of experimental data, the limitations of 
experimental design and the possibility that the resulting 
experimental data could be unevenly distributed over the 
operating range. 

 The role of the investigator is still vitally important and 
interaction between the user and the evolutionary 
optimisation tools is essential at various stages. Similar 
conclusions can be reached in the context of artifi cial neural 
networks and the closely associated methods involving local 
model networks and multiple models [56]. In those 
approaches, factors such as the choice of sub-models, the 
number of hidden layers and the number of neurons in a 
neural network, the choice of learning rates and other factors 
have to be chosen by the user, mostly on the basis of previous 
experience. Indeed, virtually all methods of system modelling 
involve issues of this kind where manual intervention by the 
user is essential. 

 In some cases, intervention involves the selection of 
adjustable parameters which are essentially ‘fi ddle factors’, 
whereas in others the manual process involves more 
fundamental choices involving changes of model structure. 
Usually, however, the reason for undertaking these procedures 
manually is the fact that available algorithms for the more 
automated aspects of the system identifi cation and model 
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development process are not sophisticated enough to allow 
the optimisation to be completed automatically. It may not 
even be possible to express the objectives of the optimisation 
in a suffi ciently simple fashion. In many applications, 
constraints have to be considered and there may also be a 
number of different objectives that have to be satisfi ed 
simultaneously.  

   6.7  Further examples of system 
identifi cation, parameter estimation 
and model optimisation techniques in 
integrated systems applications 

 The applications to helicopter fl ight mechanics modelling 
discussed in the sections above are, in many ways, also 
typical of system identifi cation, parameter estimation and 
model optimisation techniques for the development of 
models in other application areas. For example, the issues of 
identifi ability, test input design and global optimisation 
described in the context of helicopter applications are equally 
important in other areas involving integrated systems such as 
wind turbines [57], bipedal robots [58] and surface and 
underwater vehicles [59]. 

 The key issue in the helicopter system identifi cation work 
and in these other types of application is uncertainty 
concerning the structure or parameters within a physically 
based model. For example, a recent tutorial paper by Pao 
and Johnson [57] provides useful insight regarding problems 
encountered in modelling wind turbines. The tower dynamics, 
substructure dynamics and foundation dynamics must all be 
taken into account and, in the case of offshore turbines, 
hydrodynamic effects also become important. External 
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conditions in terms of turbulent air infl ow, sea waves and 
sea currents may also have to be represented. If the wind 
turbine operates along with other turbines in a wind farm, 
there can be additional complications due to aerodynamic 
interactions. Because of the inherent diffi culties in modelling 
wind turbine dynamics on an entirely physical basis 
from fi rst principles, due to uncertainties in the details of 
many aspects of the physical model, there is growing 
interest in the use of system identifi cation techniques for 
establishing linear time-varying models, especially for use in 
the design and development of improved turbine control 
systems (e.g. [60]). Further discussion of issues relating to 
the modelling of wind turbines and wind farms may be found 
in [61]. 

 As a second illustration, a recent paper by Park  et al . [58] 
provides a very interesting account of the use of system 
identifi cation and parameter estimation techniques in the 
design of a bipedal robot. The physics-based model that 
provides the basis for the design involves many model 
parameters for which reliable estimates were not available  a 
priori . Motor torque constants, rotor inertias, spring stiffness 
and preload values, cable stretch stiffness values and damping 
coeffi cients and various friction coeffi cients all had to be 
estimated from experiments carried out on sub-systems or 
on the complete robot. The improved model led to 
development of improved controllers and thus to signifi cant 
enhancements of the robot’s performance, especially in terms 
of the robustness of a walking gait [58]. 

 The issues that arise in helicopter fl ight mechanics 
modelling and in the other engineering applications 
mentioned above are typical of the reasons why experimental 
modelling techniques based on system identifi cation, 
parameter estimation and optimisation methods are 
increasingly being recognised as important for the 
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development and enhancement of models for integrated 
systems applications. However, experimentally determined 
models are not necessarily fi t for purpose and it is always 
important that models are subjected to appropriate checking 
procedures to ensure that they are appropriate and fully 
satisfy the requirements of the application. These issues of 
verifi cation, validation and accreditation of models are 
considered in detail in  Chapter 7 .   
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 Issues of model quality and the 
validation of dynamic models  

   Abstract:    The aim of this chapter is to review some 
important issues concerning model quality and sources of 
errors in models, and to present some methods for testing, 
internal verifi cation and external validation of simulation 
models. Questions of quality and validation are then 
considered in more detail through applications. Case 
studies illustrate external validation and model quality 
issues in helicopter and ship models. Issues relating to 
reduced models are considered using applications 
concerning aircraft and a hydro-turbine generator model.  

   Key words:    quality, credibility, accuracy, errors, testing, 
internal verifi cation, external validation, model reduction, 
helicopter, ship, aircraft, hydro-turbine.   

    7.1  An introduction to the issues of 
model quality and validation 

 A model is an abstraction of a real system and perfect 
accuracy should never be expected. The key question is the 
quality needed for the application and the adequacy of the 
chosen model in each case. Errors must be kept within 
specifi ed limits for parts of the operating envelope and 

                 7 
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testing, verifi cation and validation can be viewed as processes 
that defi ne boundaries so that the necessary accuracy is 
achieved. 

 As already discussed in  Chapter 2 , many modern 
developments in engineering involve ‘systems of systems’ 
and require several teams working together. Such 
collaborative development means that there is no single 
‘designer’ and soundly based models that are well understood 
and well documented are essential if all involved in the design 
process are to work together in an effective fashion. 

 Model building is an iterative procedure and many, 
including Sargent (e.g. [1]), Ören [2], Balci (e.g. [3], [4] and 
[5]) and Brade ([6], [7]) have all pointed out that model 
validation is inseparable from the processes of model 
building. Confi dence in a model should increase steadily if 
appropriate methods are used and if correct methods of 
testing are applied. 

 Simple models are often used initially to investigate ‘what 
if’ situations and to assist in design trade-off studies. Error 
bounds on model predictions at this stage are usually large 
and little formal validation is possible. Assessments of model 
quality and fi tness-for-purpose depend on experience and 
comparisons made with earlier models of similar systems. As 
the work progresses, more refi ned models are used and more 
data become available for testing. This usually involves data 
from component testing at fi rst, followed by data from tests 
on larger blocks and, fi nally, data from tests on complete 
prototype systems. 

 Hence, with more test data becoming available as the 
design progresses, quantitative information begins to fl ow 
from the real system to the model. This contrasts with the 
initial situation when the fl ow is entirely from the model to 
the system being designed. Bidirectional information transfer 
characterises the later stages of any model-based design 

�� �� �� �� �� ��



217

Issues of model quality and the validation of dynamic models

process, with model updates being applied as real system 
information becomes available. 

 All models have limitations and one important objective of 
validation is to properly defi ne and understand those 
limitations. However, any practical validation investigation 
can cover only a fi nite, and often relatively small, number of 
test cases. Thus, one should never attempt to prove that a 
model is correct under all sets of conditions. Instead, a degree 
of confi dence should be established in the model so that its 
results can be recognised as being reasonable for the objective 
for which it has been developed. General statements about 
the validity or quality of a model are therefore inappropriate 
without reference to its application and the range of 
conditions considered. One of the inherent problems is the 
fact that quantitative measures of model credibility are hard 
to defi ne and as models become more complex, there are 
increasing problems of visualisation.  

   7.2  Model quality concepts, model 
uncertainties and modelling errors 

 There are good examples, often in  safety-critical  application 
areas, such as the nuclear, aerospace, defence, marine and 
off-shore sectors, where rigorous model testing and formal 
approval schemes are routinely applied. However, in other 
fi elds of application, model development within many 
engineering organisations often involves surprisingly little 
systematic assessment of the quality of models in terms of 
their useful range and limits of accuracy. Also, there may be 
cases where a model has a spurious justifi cation, possibly on 
the grounds that it ‘has always been used’ or is ‘based on 
well-known physical principles so must be right’ or is ‘based 
on an industry standard’. 
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 The use of models that are inadequate for an application 
can often lead to expensive redesign at late stages in the 
development cycle. The more complex the system being 
developed, the more likely it is that problems of this kind 
will arise. 

 Reasons for  uncertainties  and  errors  in models include 
incorrect assumptions, errors in  a priori  information (such as 
parameter values), errors in numerical solutions and errors 
in experimental procedures and measurements. Although 
much attention has been given to separating different aspects 
of the model development, testing and checking process, and 
to categorising simulation model errors, uncertainty is 
inevitable since we never have a complete understanding of 
the real system and our measurements and calculations are 
limited in accuracy. 

 An untested model produces results with unknown and 
potentially unbounded errors. Even if the user has confi dence 
that a model gives satisfactory results much of the time, the 
cases for which it produces inaccurate output cannot readily 
be predicted or immediately recognised unless great care is 
taken in using the model only within the bounds for which it 
has been tested successfully and found acceptable for the 
intended application. 

 Confi dence in predictions depends on confi dence in sub-
system models as well as in the complete system model and 
this is particularly important when sub-system models can 
be tested experimentally. Comprehensive and detailed 
testing at the sub-model level, together with detailed 
documentation, helps to establish overall confi dence. This 
allows a complex model to be extended from less well-
understood situations, in a gradual way, until it can be tested 
successfully over the whole range of conditions likely to be 
encountered in service.  
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   7.3  Model testing, verifi cation 
and validation 

 Care must be taken about the words chosen to describe the 
assessment of model quality. For example, the process of 
deriving a computer simulation from a mathematical model 
can give rise to errors, but these are not the same as the types 
of error that arise in developing the model itself. The word 
‘verifi cation’ is commonly used to describe the process of 
establishing that a simulation is consistent with the underlying 
mathematical model, while the word ‘validation’ describes 
the process of demonstrating that the mathematical model 
representing the real system is appropriate for the application. 
Addition of the word ‘internal’ so that ‘internal verifi cation’ 
is used to describe the process of establishing whether or not 
the model is simulated correctly can help to clarify the 
meaning. Similarly, the words ‘external validation’ can help 
in describing the processes of establishing the correctness of 
the structure, logic and parameters of the model itself [8]. 
These conventions are consistent with recommendations 
established in 1979 by the SCS Technical Committee on 
Model Credibility [9]. Although the SCS recommendations 
are now widely used, the words ‘verifi cation’ and ‘validation’ 
are often applied very loosely and without the necessary 
precision. In addition, there are also specialist areas (for 
example, in missile system modelling) where common usage 
by some engineers has, unfortunately, interchanged the 
meanings for these two words. 

 Sargent [10] used a narrower defi nition of validation to 
emphasise the accuracy needed for useful model-based 
predictions for a specifi c application, and external validation 
may be viewed as a process leading to  confi rmation  that the 
model output has a level of accuracy consistent with the 
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intended use. To carry out this process of confi rmation, it is 
essential that the accuracy requirements of the model should 
be established before any external validation is undertaken 
and not as part of that process. Results of external validation 
are thus also best expressed in terms of the suitability of the 
model for a planned application instead of as a ‘good’ or 
‘bad’ description. Indeed, strictly speaking, one can never 
prove that a model is valid; a model can only be proved to be 
invalid. Available evidence can be assembled to suggest that 
a model is suitable for an application, but more general 
assertions of ‘validity’ must be avoided. 

 Whatever approach to external validation is adopted in a 
particular application, there are issues concerned with 
 identifi ability  and  robustness  that must be considered. 
Identifi ability has been discussed in  Chapter 6  in connection 
with system identifi cation and parameter estimation methods, 
and especially in connection with experimental design. 
Robustness in the context of model quality relates to the 
magnitude of error bounds on model parameter estimates, 
the accuracy and repeatability of model predictions, the 
effect of test input magnitudes and how the length of 
experimental records affects the accuracy of system 
identifi cation. 

 It is thus necessary to distinguish carefully between the 
processes of system identifi cation and parameter estimation 
that are applied in the initial stages of model development, 
the tuning procedures used in subsequent model optimisation 
and the processes applied in establishing the quality of the 
resulting model. The term ‘model calibration’ may be used to 
describe the repeated processes of optimisation and 
interactive tuning applied to a model during its development. 
Model calibration is not the same as model validation, as 
these processes take place at different points within the 
iterative cycle of model development. 
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   7.3.1  Methods of internal verifi cation and 
external validation 

 As discussed above, the words ‘internal verifi cation’ describe 
the process of establishing that a computer simulation is 
consistent with the underlying mathematical model, whereas 
‘external validation’ is a more open-ended task that involves 
comparisons between the model behaviour and the behaviour 
of the real system for chosen conditions. This can involve 
quantitative comparisons of the model’s performance with 
the real system or a more subjective assessment made by 
someone who has a deep and thorough practical 
understanding of the real system. 

  Internal verifi cation 

 The procedures for the internal verifi cation of a simulation 
model resemble processes applied more generally in the 
testing of software and some well-established principles of 
software engineering can be used. 

 Factors that are important in internal verifi cation are:

   ■   demonstration of internal consistency of the simulation 
program and the model upon which it is based, showing 
that there are no contradictions in terms of mathematics, 
logic or internal organisation; and  

  ■   demonstration of the simulation software in terms of the 
numerical algorithms being used and the associated 
numerical accuracy.    

 Internal verifi cation procedures are needed at every stage 
of the development of a simulation. Every change within a 
model must lead to further internal verifi cation of the 
associated simulation program. 

 Procedures of internal verifi cation at the most basic level 
must include line-by-line checks of the simulation program 
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or of connections between block diagram elements if the 
simulation is developed using a graphical user-interface. 
Connections must also be checked carefully if existing 
accepted (and thus internally verifi ed and externally 
validated) sub-models are used. Checks should also be 
performed for special cases involving particular static or 
equilibrium conditions that can often be investigated from 
the underlying model using pencil-and-paper calculations. 
Simple checks may also be made, usually for dynamic 
conditions, of the appropriateness of the user’s options in 
terms of the selected integration method and the integration 
time step. For example, use of an inappropriate integration 
method or integration step interval may result in numerical 
instability. This could be interpreted, incorrectly, as a feature 
of the model rather than an artefact of the simulation 
program. Similarly, the communication interval used for 
plots of output variables and for control of data fl ow between 
the simulation and external hardware or the operator is very 
important. An incorrect communication interval could lead 
to some transients being lost in the link between the 
simulation and the world outside. 

 Simple internal verifi cation tests involving changes of 
integration method, integration step size or communication 
interval can often help to establish the true nature of any 
problem. For example, if small changes of integration step 
cause large changes in the overall behaviour of the model, it 
is likely that the underlying problem is numerical and is a 
feature of the simulation program rather than an error in the 
model.  

  External validation 

 External validation of simulation models is complicated by 
the fact that most models intended for practical engineering 
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applications involve dozens or even hundreds of quantities 
provided by the user (e.g. as model parameters), leading to a 
large problem space. Similarly, many models can produce, as 
outputs, dozens or even hundreds of variables, each of which 
may contain different levels of error which may vary with 
time. Thus, it is important to establish,  a priori , which output 
variables of a model are of greatest interest for the given 
application. Different users will be interested in different 
performance measures in different modelling studies and this 
emphasises that the model must be matched to the application 
at the outset and the errors that can be tolerated must be 
established  a priori . 

 For external validation, a distinction should be made 
between ‘functional’ validation and ‘physical’ validation. 
 Functional validation  involves establishing the correctness, 
or otherwise, of a model that mimics the input-output 
behaviour of the real system.  Physical validation , on the 
other hand, involves establishing the acceptability of the 
underlying assumptions and approximations [11] in 
addition to investigating the agreement between model and 
system variables. It has been pointed out by Hemez [12] 
that perfect matching of all available measured response 
data is unrealistic and that models should match available 
test data only to a level of accuracy appropriate for the 
application. This ensures that model responses match test 
data to an acceptable degree, while also showing satisfactory 
robustness to uncertainties associated with factors, such as 
modelling assumptions, environmental and model parameter 
variability or ignorance in terms of initial conditions in the 
real system. In model development, as in control system 
design, there must be a trade-off between performance and 
robustness. 

 External validation, whether of the functional or physical 
kind, involves two distinct stages. The fi rst of these is 
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concerned with establishing the range of conditions over 
which a model can be used for a specifi c accuracy level. This 
accuracy level can be defi ned generally in terms of frequency 
and amplitude. The second stage is concerned with 
establishing defi ciencies in the model and the upgrades that 
would be necessary in order to achieve a level of performance 
appropriate for the intended application. 

 As has already been mentioned, external validation is a 
continuing exercise within the modelling process and is not a 
procedure that is performed only once at the end of the 
development cycle. It is also important to distinguish between 
holistic approaches that attempt to validate a complete 
model externally and model-component approaches in which 
much external validation is carried out at the sub-model 
level. Both depend on the same general principles of external 
validation, but the model component approach may also 
involve comparisons with test data (possibly from component 
manufacturers). 

 The procedures within the external validation process used 
to compare observed and simulated behaviour can be divided 
into subjective and objective categories. The subjective 
approach is based mainly on graphical analysis or experience 
using real-time simulations, while the objective approach 
involves quantifying the process through specifi c measures 
and statistical procedures. 

  Graphical methods  are characterised by plots of simulated 
values (often continuous and represented by a line) and 
observed or measured values (usually discrete and represented 
by points) against an independent variable (often time). One 
issue sometimes missed by inexperienced observers is that 
the deviation between simulated and measured values is the 
vertical separation between corresponding points on the 
graphs and not simply the apparent distance between 
simulated and measured time history curves. 
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 Another commonly used form of graph involves simulated 
values plotted against the corresponding measured or 
observed values. Ideally this plot should be a straight line at 
an angle of 45 degrees to the axes. Deviations from the ideal 
are shown by the vertical distance between the points and 
the 45-degree line. Points above the 45-degree line are clearly 
overestimated in the simulation while any points below the 
line are underestimated. 

 Although subjective, graphical methods are very useful in 
model validation and complement quantitative measures. 
Different graphical methods for displaying information 
about a model may provide different types of insight [13]. 

  Quantitative measures  for system and model comparison 
are clearly very important [14]. The most used deviance 
measures are the mean-square or mean absolute errors. For 
the case of  n  sets of measured and simulated values, the mean 
absolute error is expressed as the difference between observed 
values  y   i   and simulated values    ŷ    i  , by:

    (7.1)  

 or using the closely related mean absolute percentage error, 
given by:

    (7.2)  

 This is a relative error and is inapplicable if any of the 
observed values happens to equal zero. An obvious 
disadvantage of these two measures is their sensitivity to 
single extreme values. 

 Such an approach can be extended to include some form 
of weighting function. This means that errors arising in 
specifi c sections of the time history can be given special 
emphasis. One such cost function is:
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(7.3)

  

 where  w  is a weighting factor and the superscript    T   indicates 
the transpose. 

 A measure that has received particular attention for 
external validation applications in a number of different 
application areas is Theil’s Inequality Coeffi cient (TIC), 
which is defi ned as:

    

(7.4)

  

 This measure has an advantage in providing values that lie 
between zero and unity, with values of TIC close to one 
indicating sets of model and system data that are very 
different. Values of TIC close to zero indicate small differences 
between the model and the system time histories. 

 Other scaled measures are also commonly used for 
comparing model and measured system time histories. One 
example is the normed root mean square output error 
adopted by Knudsen [15] in his approach to identifi cation 
and system parameter estimation based on sensitivity 
functions. This measure is similar in most respects to the TIC 
measure, but with normalisation involving the sum of the 
squared values of experimental response samples only. 
Measures based on statistical techniques have also received 
attention, particularly in the context of model structure 
assessment. 

 One approach, which can be used with benefi t in cases 
where relatively complex models are being considered, 
involves taking a number of key measured system or sub-
system quantities and plotting these as radial lines on an 
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appropriately scaled polar diagram of the type shown in 
 Figure 7.1 . By creating a polygon of model results and a 
polygon of corresponding measurements on the same polar 
diagram, an indication of the validity of the complete 
model is obtained. Closely similar polygonal shapes 
indicate that the model is suitable for the application. 
Aspects of the system that are represented accurately are 
immediately apparent and areas requiring further analysis 
are highlighted. 

  Example of polygon representation for model 

validation results. Here, solid lines represent 

model results for eight different quantities while 

the dashed lines indicate the corresponding 

measured values. This could, for example, 

involve parameter values within some physically-

based model being compared with parameter 

estimates from system identifi cation tests on 

the corresponding real system     

   Figure 7.1  
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 Such diagrams also provide a basis for sensitivity analysis. 
The distortion of the model polygon following a specifi c 
change in the model provides a clear indication of sensitivities 
and interactions, as discussed in papers by Smith  et al . ([16] 
and [17]). Shape-processed visualisation methods such as 
these lend themselves to image processing techniques for 
quantifi cation and a number of approaches have been 
considered (see [18] and [19]). Using this kind of graphical 
comparison, it should be clear which aspects of a system are 
represented most accurately and which areas of the 
corresponding model require further investigation. 

 Polar diagrams such as these have been used successfully 
in the context of model testing for electro-optic sensor 
models ([16] and [17]) and have been considered in the 
context of fault detection applications as well as in other 
model-testing situations ([18] and [19]). Although they 
have been developed independently for model validation 
purposes, these diagrams have many features that are similar 
to those of the  Kiviat diagrams  ([17] and [19]), which are 
applied in the software engineering fi eld for visualisation of 
metrics in computer software and hardware performance 
evaluation. 

 Diagrams of this kind are clearly applicable to problems in 
many areas where there is a need to display relationships 
involving several channels of results. One advantage of the 
polygon diagram approach to visualisation is that it is 
extremely fl exible in terms of the comparisons that can be 
made. It is also appropriate for use with deterministic 
measures of performance such as the size of a system response 
overshoot or the frequencies of observed oscillations. 

 In the last ten years, there has been a growing interest in a 
move away from accuracy-centred assessment of models 
towards forms of assessment that are based more broadly on 
model quality (see e.g. [20]). Other discussions about the 
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quantifi cation of model credibility may be found in many 
sections of the book edited by Cloud and Rainey [21], in 
the textbook on the theory of modelling and simulation by 
Zeigler  et al . [22] and in the work of Brade and Köster 
[23] and Brade  et al . [24]. Specifi c suggestions have 
included the idea that the processes of testing and eventual 
accreditation of models should be based more closely on 
software quality assurance from the fi eld of software 
engineering (see e.g. [23], [25] and [26]). Certainly, the 
model development procedures that are used in many 
organisations need to incorporate improved procedures, in 
terms of version control and documentation, that are 
now almost universally applied in software engineering and 
lead to proven benefi ts in terms of project management (see 
e.g. [18]).   

   7.3.2  Upgrading of models 

 Having made appropriate comparisons between the model 
behaviour and the corresponding behaviour of the real 
system, it is necessary to perform some analysis of the 
discrepancies and to propose upgrades for the model. Any 
changes in the structure or parameters of the model must be 
implemented through simulation and their signifi cance 
evaluated in a systematic fashion, leading to further iterations 
within the model development cycle. In general terms, 
parametric changes are usually investigated before structural 
changes are contemplated. In lumped representations, a 
model parameter commonly provides an approximation to 
some more complex effect and there must be a limit to the 
range of conditions over which this approximation is valid. 
Tuning of model parameters to improve the functional 
validity of a model is an appropriate approach, provided 
constraints are introduced to ensure that the adjustment is 
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within the range of uncertainties for each parameter. 
Parameter adjustment using global optimisation methods 
without regard to known uncertainties and physical limits 
can be very misleading. Often, when parameter values are 
found that appear physically meaningless, we are dealing 
with a situation where the model has an inappropriate 
structure. In this context, establishing the range of frequencies 
over which discrepancies occur can be very useful and a 
variety of frequency-domain techniques, such as analysis of 
coherence and partial coherence, can be applied. Defi ciencies 
in model structure are generally more diffi cult to investigate 
and rectify, but once dealt with successfully, the upgraded 
model should have a broader range of applicability. 

 In some cases it may be possible to associate defi ciencies in 
the model with particular state variables of the model or with 
specifi c physical phenomena. This may be attempted through 
statistical correlation of comparison errors with measured 
variables and inputs. Correlation of an error formed from 
the difference between a model output and the corresponding 
system output with a specifi c state variable may suggest that 
a more complex representation of the sub-system associated 
with that state variable would be appropriate. Padfi eld and 
Du Val [27] discuss the use of this type of approach in the 
context of helicopter fl ight mechanics model validation and 
point out that, for example, correlation of an output error 
with helicopter rotor speed could suggest that a more 
sophisticated representation of the coupled sub-system 
involving the engine, drive train and rotor is needed. 

 Correlation of model errors with derivatives of state 
variables of the model may also indicate that a higher-order 
description would be appropriate. When regression 
techniques cannot be used to associate such errors with 
specifi c state variables, their derivatives or some linear 
combination, it may be appropriate to consider possible 
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nonlinear combinations of model states, but this should be 
approached (as far as possible) on a physical basis.  

   7.3.3  Experimental data for 
external validation 

 The choice of data sets to be used for testing models that involve 
parameters or structures identifi ed using other experimental 
data raises some interesting issues. Data sets used for model 
testing need to be broadly similar to the sets used for 
identifi cation, in terms of their spectral properties and amplitude 
distributions. It is also clear that data sets used for testing must 
not be too similar to those used for identifi cation and parameter 
estimation during the development of the model. Responses 
obtained from inputs different from those used at the 
identifi cation and parameter estimation stage are bound to be 
different in terms of amplitude, frequency and energy 
distribution. However, provided the spectral and amplitude 
distributions of the data from identifi cation experiments and 
the data used for testing are not too different, the results of tests 
carried out with different inputs may still be very helpful in 
assessing the quality and limitations of the model. 

 One important point is that test data used for external 
validation must be matched to the intended application of 
the model. Otherwise it will not be possible to make decisions 
about the suitability and quality of the model for that 
application, and use of the model may be restricted. 

 In the case of linear models, the issue becomes one of 
obtaining experimental test records that are signifi cantly 
different in form from the records used in the parameter 
estimation process but that are similar in terms of their 
amplitude and frequency ranges. Issues concerning the choice 
of experimental records for validation of identifi ed models 
have been discussed in a number of papers and reports, some 
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relating specifi cally to helicopter system identifi cation 
(e.g. [27]). 

 For the validation of nonlinear models, the task of choosing 
appropriate test records is complex since the system must be 
excited so that all the signifi cant nonlinearities are fully 
explored, while also covering the entire frequency range of 
interest. Ideally, what we need is some way of producing 
confi dence intervals for model predictions. Although this 
goal may be elusive in the case of general nonlinear physics-
based parametric simulation models, it is interesting to note 
that in the Gaussian Process type of nonlinear non-parametric 
model, such additional information is readily available (see 
e.g. [28]). Also, for linear models, the use of coherence 
estimates within frequency-domain descriptions of system 
outputs allows determination of the range of frequencies 
over which the linear model is applicable (see e.g. [29] and 
[30]). More research is needed concerning the application of 
such techniques to practical engineering problems and the 
development of better ways for assessing the accuracy of 
predictions from nonlinear physics-based models.  

   7.3.4  Additional issues in the external 
validation of nonlinear models 

 The external validation of nonlinear simulation models, in 
the general case, involves a number of important issues that 
depend on the nature of the nonlinearities and the intended 
application. For example, techniques for the identifi cation of 
linear models from measured experimental data can provide 
insight through establishing models for different operating 
points across the operating envelope of the system. The 
trends in terms of the values of key parameters of the 
identifi ed models can then be compared with trends in 
the values of corresponding parameters of linearised models 
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derived from the nonlinear simulation model for the same 
operating conditions. Differences between the values of 
parameters of the identifi ed models and the parameters of 
linear models derived from the nonlinear description can 
provide useful insight. Similarly, comparisons of trends in 
these parameter sets as operating conditions are changed are 
important indicators of the performance of the nonlinear 
model and may lead to its credibility being questioned. An 
example of this in the context of helicopter fl ight mechanics 
model validation may be found in Section 7.4.1. 

 If the level of agreement between the identifi ed and 
theoretical models is considered adequate, a second stage of 
the external validation process can be attempted. This 
involves comparison of responses of the nonlinear model 
with the responses of the real system for larger perturbations 
and is based on the direct comparison type of approach 
discussed in Section 7.3.1, including the polygon type of 
graphical display. If, once again, the level of agreement is 
judged to be acceptable over an appropriate range of 
conditions, the model can be considered for release for the 
intended application. It can continue to be used until 
additional information or data give cause for concern. In 
some cases, external validation of nonlinear models may be 
attempted directly using simple graphical comparisons and 
methods involving the quantitative measures of Equations 
(1) to (4). However, preliminary investigations based on 
system identifi cation and parameter estimation techniques 
can provide useful insight that may otherwise be missing. 

 When large inputs are applied to models having signifi cant 
nonlinearities (e.g. helicopter fl ight mechanics models when 
large and aggressive control inputs are applied), traditional 
methods of validation based on direct comparisons of models 
and system have been found to have practical limitations, 
whether based on graphical methods or quantitative 
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measures. Methods involving the opinions of experts 
involved with the real system (e.g. pilots in the case of aircraft 
or operators in the case of industrial systems) may provide 
valuable insight concerning model limitations in such cases.  

   7.3.5  Inverse simulation methods for the 
external validation of models 

 The use of inverse simulation methods, as discussed in 
 Chapter 4 , offers insight of a different kind from that found 
using conventional validation methods. This is especially 
true in the case of systems in which the immediate response 
to inputs involves integration. Drift is almost inevitably 
present in such systems and is due to small biases and offsets. 
Such offsets are unlikely to be the same in the system and the 
model, and can cause considerable diffi culties when making 
model and system response comparisons, as the drift effects 
may have magnitudes similar to responses to the applied test 
inputs. This issue has been examined in detail in the context 
of simulated helicopter manoeuvres, where a strong case is 
made for the development of a validation strategy that 
integrates forward and inverse simulation [31]. Sensitivity 
analysis methods, as outlined in  Chapter 5 , can help in 
establishing the dependency of inverse simulation results on 
parameters of the model and may allow defi ciencies in the 
model structure or parameter values to be established.   

   7.4  Issues of model validation and 
model quality in typical applications 

 There are cases, mainly involving safety-critical applications, 
such as in the nuclear industry and in the aerospace, defence 
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and marine sectors, where rigorous model testing and formal 
approval schemes are routinely applied. However, the model 
development process used within many engineering 
organisations involves surprisingly little systematic 
investigation of model quality in terms of the useful range 
and accuracy limits of models. 

 The real system and the associated models should mature 
together, and model fi delity should increase as a design 
progresses. Whatever the approach being used for design, 
experience gained with the real system should feed into the 
modelling process at every stage. 

 Helicopter fl ight control system design is an example 
where model limitations can seriously affect the achievable 
performance. Until now, the success of modern design 
methods has been limited by the quality of the vehicle models 
available (see e.g. [29] and [32]). Similar situations apply in 
other application areas where the performance limits of a 
new system relate directly to the accuracy of the mathematical 
model upon which the design is based. 

 As mentioned in Section 7.3, the term ‘model calibration’ 
describes the processes of parameter estimation and other 
forms of interactive tuning that may be applied to a model 
during its development. As already mentioned, this is different 
from model validation and these two types of procedure are 
applied at different stages in the model development cycle. 

 For engineering applications, modelling is often associated 
with design, but models are also used in engineering for 
other purposes. For example, they form the basis for system 
simulators for operator training or education; they are used 
within automatic fault detection schemes and also in accident 
investigations. All such applications impose important 
requirements in terms of model quality. The sections that 
follow provide examples illustrating the application of 
external validation methods. 
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   7.4.1  Case study 1: helicopter fl ight 
mechanics model development 

 The validation of helicopter fl ight mechanics models is 
important both for fl ight control system design and for 
human-factors investigations concerning fl ying qualities (see 
e.g. [33]). Important issues include the frequency range over 
which model quality needs to be assessed and the amplitude 
range for each variable. Frequency requirements extend 
beyond the range of human pilot control (0–5 rad/s 
approximately) to cover the whole range of frequencies that 
could be involved in active control of the vehicle (up to about 
20 rad/s). Amplitudes, specifi ed through translational and 
rotational velocities and accelerations, depend largely upon 
how the model is to be used. 

 System identifi cation, parameter estimation and model 
optimisation techniques, discussed in  Chapter 6 , have been 
applied successfully to the development of linear helicopter 
models valid for small changes in fl ight conditions about a 
given trimmed state. 

 Checks of the overall robustness of models identifi ed from 
fl ight data in this way must involve use of data sets that were 
not applied during the identifi cation process. However, as 
discussed in Section 7.3.3, these additional data sets must be 
broadly similar in terms of their spectral properties and 
amplitude distribution to those used for identifi cation. One 
approach simply involves carrying out more identifi cation 
runs and comparing the different estimates. The situation 
would be judged unsatisfactory if variations in the values of 
parameters were greater than expected from variance 
estimates from the original identifi cation. A slightly different 
approach is illustrated in  Figure 7.2 , where an identifi ed 
model of a SA-330 Puma helicopter was assessed through a 
second (verifi cation) stage involving an input that was not 
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  Helicopter identifi cation and verifi cation results. 

An identifi ed model of a Puma helicopter was 

tested at the verifi cation stage by subjecting 

that model to an input that was not used in the 

identifi cation process. The predicted output from 

the model was then compared with the 

corresponding measurements. Two cases are 

considered, both involving lateral control inputs. 

(The original version of this fi gure was published 

by the Advisory Group for Aerospace Research 

and Development, North Atlantic Treaty 

Organisation (AGARD/NATO) in AGARD Advisory 

Report 280 ‘Rotorcraft System Identifi cation’, in 

September 1991.)     

   Figure 7.2  

used in the identifi cation process ([34] and [35]). In this 
verifi cation stage, output from the model was compared 
with the corresponding measurements. Although an almost 
perfect fi t was obtained between fl ight data and the identifi ed 
model output, the fi t was less good when the identifi ed model 
was subjected to the new input. It is interesting to note that 
there is an asymmetry in these results and that the verifi cation 
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results are closer to the ideal (for all three variables 
considered) for the lateral left cyclic control input compared 
with those for the lateral right cyclic input. This could suggest 
that the model requires further fi ne-tuning in terms of 
responses to lateral cyclic inputs and the next step might well 
involve further sensitivity analysis to check for parameter 
inter-dependencies and other issues. 

 Nonlinear models of helicopters based mainly on physical 
principles can also be optimised using data from fl ight 
testing. One approach involves estimation of parameters of 
linearised models from fl ight data for different fl ight 
conditions (as suggested in Section 7.3.4). Subsequent 
analysis of these models for a range of fl ight conditions 
provides direct comparisons of estimated parameter values 
with equivalent theoretical values found by linearisation of 
the physically based nonlinear fl ight mechanics model [31]. 
Although such comparisons are valid only for small 
perturbations from a given trimmed condition, insight may 
be gained about the quality of the underlying nonlinear 
mathematical model from the comparisons at different 
operating points. Any consistent changes in the estimated 
value of a specifi c parameter when the fl ight condition (such 
as the forward speed of the vehicle) is changed can help in 
checking the credibility of the nonlinear model. Any 
difference between the trend in theoretical model parameter 
values and the trend in the estimated values for that parameter 
should lead to further investigations and possible changes in 
the nonlinear model.  Figure 7.3  shows results of this kind for 
a series of fl ight experiments in which the aerodynamic 
derivatives  L   v  ,  L   p   and  N   r   were estimated for an Aerospatiale 
Puma helicopter for forward speeds of 60 and 100 knots. It 
can be seen that for the parameters  L   v   and  N   r  , there is a 
fairly close match between theoretical and estimated values, 
and these were judged to be similar, within the precision of 
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  Parameter values for two different fl ight 

conditions showing trends in 

predictions from a physically based 

nonlinear simulation model (HELISTAB) 

and corresponding trends in estimates 

from fl ight experiments using system 

identifi cation methods (from [7.31])     

   Figure 7.3  
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the estimation process used. On the other hand, the results 
for the parameter  L   p   show a similarity in trend but a 
difference in terms of absolute values, and this might justify 
further investigation of the nonlinear model. 

 Particular problems in experimental modelling of 
helicopters include the fact that these vehicles involve a high-
vibration environment, allow only short test records due to 
marginally stable or unstable dynamics under open-loop test 
conditions, involve strong nonlinearities and operate in a 
non-uniform fl ow fi eld. If the underlying reasons for any 
lack of agreement between estimated and theoretical trends 
are to be understood, it is also important to be able to relate 
parameters of the identifi ed models to more fundamental 
quantities within the vehicle model, such as moments of 
inertia and aerodynamic parameters. There are also implicit 
relationships between parameters of linearised models and 
these must be properly understood if useful physical insight 
is to be gained. 

 One aspect of external validation that has been emphasised 
in helicopter fl ight mechanics modelling is that the 
external validation process may be viewed, as mentioned in 
earlier sections, as a form of model calibration aimed at 
establishing the range of operating conditions over which a 
model may be used successfully. Outside that range, the 
suitability of the model may be open to question. The 
external validation process can then address issues of 
model refi nement or correction in order to extend the range 
of applicability. 

 As outlined in Section 7.3.5, it is believed that inverse 
simulation methods can provide additional useful information 
for external validation. For some output variables, the 
response of the vehicle to the pilot’s control inputs initially 
involves integration and signifi cant drift may therefore be 
present in measured responses. Divergence of simulated 
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responses from equivalent fl ight data causes problems with 
conventional approaches to external validation, based on 
comparisons of measured and model responses. Recasting 
the problem so that it involves inverse simulation models (as 
discussed in  Chapter 4 ) provides a possible way to avoid this 
diffi culty, because comparisons between the system and the 
model are then being made of the system and model inputs 
needed to perform a specifi ed manoeuvre.  Figure 7.4  shows 
a comparison of fl ight data and inverse simulation results for 
a Lynx helicopter fl ying a longitudinal manoeuvre involving 
translation from an initial hover state to a hover state at 

  Comparison of fl ight data and inverse simulation 

for a Lynx helicopter fl ying a ‘quick-hop’ 

longitudinal manoeuvre involving translation 

from an initial hover state to a hover state at 

another point close by, using the full available 

performance of the helicopter and with constant 

height and a fi xed heading maintained 

throughout (from [7.31])     

   Figure 7.4  

�� �� �� �� �� ��



242

Modelling and simulation of integrated systems in engineering

another point close by, using the full available performance 
of the helicopter and with constant height and a fi xed heading 
maintained throughout [31]. This is very different from 
tests involving small deviations about trimmed fl ight 
conditions and the results shown by the continuous lines of 
 Figure 7.4  indicate a high level of pilot activity on all four 
controls. For inverse simulation, the desired fl ight path is 
defi ned and the heading is a constrained variable while other 
variables such as the pitch and roll angles are free to change 
with time. The results of the inverse simulation (discontinuous 
lines) show that these take realistic values, as do the control 
displacements. Although agreement between the fl ight data 
and the inverse simulation results are far from exact, they are 
suffi ciently close to provide a basis for parameter estimation 
or optimisation, and sensitivity analysis of the inverse model, 
as discussed in  Chapter 5 , could provide a useful starting 
point.  

   7.4.2  Case study 2: model limitations in 
helicopter fl ight control system design 

 Good fl ight vehicle models are essential for the successful 
design of high-bandwidth full-authority active fl ight control 
systems for fi xed-wing aircraft, helicopters and other forms 
of rotorcraft, such as tilt-rotor aircraft. Published examples 
show that the achievable performance of fl ight control 
systems may, in some cases, have been overestimated in 
initial design studies because of limitations in the fl ight 
mechanics models of the vehicle [33]. These problems may 
not be apparent until the fl ight testing stage, leading perhaps 
to costly redesign, extended fl ight test programmes and 
delays in certifi cation. Improved modelling procedures and 
improved models offer signifi cant benefi ts since, although 
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control system designs can be made robust to compensate 
for poor model accuracy, this is usually achieved at the 
expense of performance. 

 Accurate linearised models are especially important in the 
early stages of helicopter fl ight control system design, as 
exemplifi ed in the work of Manness and Murray-Smith [36] 
involving eigenstructure assignment methods. That paper 
shows clearly that confi dence in the available model of a 
vehicle can allow demanding performance requirements to 
be satisfi ed. For high-performance fl ight control systems, it is 
vitally important to have highly accurate models of the 
vehicle in a frequency range that includes the frequencies 
where the phase lag of the forward path system transfer 
function approaches 180 degrees (the so-called ‘crossover’ 
region). Model uncertainties within that range lead to 
diffi culties in guaranteeing stability and performance 
requirements in the closed-loop system design. Similar 
situations also apply in other applications in which the 
performance limits of a new system relate directly to the 
accuracy of the mathematical model upon which the design 
is based and where the success of control system design 
methods has been limited by the accuracy of the plant model. 

 Helicopters show signifi cantly nonlinear behaviour over 
much of their useful fl ight envelopes and there is a need both 
for linearised models for the initial stages of control system 
design and for externally validated nonlinear simulation 
models to be used in assessing overall performance at a later 
stage. Issues of experimental design for external validation 
are important in this context. For example, as has already 
been pointed out, the frequency content of test input signals 
for a model intended for control system design applications 
must be chosen to give due emphasis to frequencies close to 
the nominal crossover frequency.  
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   7.4.3  Case study 3: model quality 
issues in the design of a ship steering 
control system 

 Accurate navigation and autopilot system design are 
important issues for engineers in the marine fi eld. Ship 
steering systems provide an interesting illustration. In order 
to make a large manoeuvre, a large turning moment must be 
generated by the fl ow of water over the defl ected rudder. The 
magnitude of this depends on the rudder dimensions and the 
forward speed of the vessel. The rudder and associated 
actuators therefore need to be represented accurately in any 
model being used in the design of a ship steering control 
system. As the size of vessels has increased, as in the case of 
oil tankers and container ships, new problems have arisen in 
terms of the rudder dimensions in relation to the size of the 
vessel. 

 One established rudder model is based on equations 
developed by Fossen [37] using data from a paper by 
van Berlekom and Goddard [38]. An aspect of that 
model which has been the subject of debate relates to the 
representation of water fl ow over the rudder surface and 
the fact that the model has limitations for very large vessels. 
The importance of this limitation of the model became more 
apparent when it was used by Çimen and Banks [39] as a 
possible basis for the design of a nonlinear optimal controller 
for a large oil tanker. As pointed out by McGookin and 
Murray-Smith [40], the rudder sub-model used by Çimen 
and Banks involved terms which made the turning moment 
too large for a vessel of the size considered. The heading 
dynamics were then unrealistically sensitive to changes of 
rudder angle so that, in simulation studies, the vessel 
responded much more rapidly than it should to controller 
commands. 
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  Figure 7.5(a)  shows results obtained in a test involving a 
standard zigzag type of open-loop manoeuvrability test for a 
simulation based on the form of model used by Çimen and 
Banks. The manoeuvre involves a 20-degree step applied to the 
rudder position until the heading angle changes by 20 degrees. 
Then the rudder angle is changed to −20 degrees and the process 
is repeated until a steady oscillation is produced in the heading 
angle. The data of van Berlekom and Goddard [38] for a 
vessel of this size shows a sinusoidal trajectory in heading angle 
of a period of 8 minutes and peak magnitude of 33 degrees. 
The simulated results for the case of  Figure 7.5 (a) show a 
heading angle response with a period of only 2.2 minutes and 
amplitude about 75 degrees. The period is therefore much 
smaller than that found by van Berlekom and Goddard, and 
the amplitude of the oscillation are too large. A modifi ed 
model [40], which better represents the manoeuvring capability 
of a vessel of this size [41], produces results shown in  Figure 
7.5(b) . Comparing these results with those for the unmodifi ed 
model, it can be seen that the heading angle has an oscillation 
period of about 7.7 minutes and the peak magnitude is 34 
degrees. These values are now similar to those reported by van 
Berlekom and Goddard [38] for a real vessel of this size. 
These simulation results suggest that the modifi ed open-loop 
ship model is signifi cantly more realistic than the original 
description. 

 This case study shows that, although advanced controller 
design methodologies represent a potentially useful step, 
such developments must involve use of a model that is fi t for 
purpose. Simulated results for controllers designed with an 
inappropriate model may be viewed by design engineers with 
real ship steering experience as unrealistic and this may give 
rise to unnecessary and unjustifi ed doubts about other 
marine applications of advanced control system design 
methods.   
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  Results for simulated open-loop manoeuvring 

test using two models of 190,000 dwt tanker 

vessel: (a) results for the unmodifi ed model 

and (b) results for modifi ed model (from 

[7.40]). The dashed lines represent the 

rudder angle and continuous lines represent 

the Heading angle      

   Figure 7.5  
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   7.5  Issues of model quality in 
model reduction 

 The graphical techniques and quantitative measures 
mentioned in Section 7.3.1 can be applied to situations in 
which one model is being related to another, as well as for 
comparisons with data from real systems. This is really a 
form of model comparison and can arise in situations where 
complex, computationally demanding and externally 
validated models are available but simpler simulation models 
which have shorter run times on the computer are needed for 
use in system design applications or real-time simulation. 

 For many applications, it is useful to retain a physically 
based interpretation and, recently, energy-based metrics have 
begun to appear which can be applied to nonlinear as well as 
linear descriptions. This energy-based approach and links 
with bond-graph structures have also been associated with 
the concept of a  proper  model which, in this particular 
context, is defi ned as the model with the minimal set of 
physical parameters required to predict dominant system 
dynamics ([42], [43] and [44]). Proper models tend to be 
more effi cient in computational terms, which is helpful when 
models have to be simulated repeatedly. They have been 
associated with the concept of  model order deduction , rather 
than the idea of order reduction, which starts with a given 
high-order description. 

 Energy-based modelling metrics can be linked to bond-
graph methods of model development and analysis, and help 
ensure that physical insight is retained when using the model 
for design. In this approach the removal of physical 
phenomena that are unimportant for a proposed application 
is based on the power associated with each element of the 
model. It is argued that any element dissipating or storing a 
signifi cant part of the total power supplied to the system 
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contributes signifi cantly to the overall behaviour. A suitable 
metric is based on the energy fl ows into and out of a given 
element over a given time interval. The larger the energy 
metric, the greater the contribution of the element to the 
system behaviour and this energy metric thus provides a 
form of sensitivity measure. An interesting account of the 
application of this energy-based approach to the reduction 
of models of integrated hybrid vehicle systems may be found 
in the work of Louca and Yildir [45], where it was established 
that a reduced model for a medium-sized military truck 
could give predictions very similar to those from a full model 
but running 2.5 times faster. 

 Reduced-order models are valuable in many fi elds. For 
example, when investigating aircraft handling qualities, the 
model of the vehicle must have appropriate accuracy over a 
defi ned frequency range that is important for interactions 
between the pilot and the vehicle. Similarly, as already 
discussed, it is often important to ensure that the plant model 
in control system design applications is accurate for 
frequencies near the gain crossover frequency, but lower 
levels of accuracy may be tolerated at frequencies far from 
that critical range. 

 As mentioned in Section 3.6, another fi eld in which model 
reduction is very important is in the development of micro- 
and nano-electromechanical systems (MEMS and NEMS). 
Finite element and molecular dynamics models are commonly 
used for some aspects of MEMS and NEMS systems analysis, 
but in practical applications some form of model reduction is 
usually essential for the later stages of the design in order to 
avoid excessive computational complexity [46]. System 
identifi cation and parameter estimation techniques have been 
applied successfully in fi tting lower-order lumped dynamic 
descriptions based on grey-box ideas to the more detailed 
underlying physically based model (see e.g. [47] and [48]). 
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Model optimisation methods, involving genetic algorithms 
and artifi cial neural networks, have been used successfully and 
other approaches such as model predictive control (see e.g. 
[49]) have also been applied with reduced models. Being able 
to move effi ciently from highly detailed physically based 
models to reduced models and then back to physically based 
models for further analysis is important. In Section 3.6 it was 
mentioned that multi-scale modelling concepts have been 
developed for this application area. One approach involves 
 sequential multi-scale modelling  methods, in which large-scale 
models (such as those used for control system design) use low-
resolution representations derived through model reduction 
from detailed higher-resolution descriptions. The simulations 
at these different levels run independently of each other (see 
e.g. [50]). Another approach is termed  concurrent multi-scale 
modelling , involving a combined model in which the different 
scales are considered at the same time (see e.g. [51]). 

   7.5.1  Case study 1: frequency-domain 
methods applied to aircraft models 

 One example of a relatively simple model reduction method 
for MIMO systems involves a frequency-domain complex 
curve-fi tting approach and has been applied to the 
development of MIMO models for fl ight control system 
design [52]. The approach is based on transfer function 
models and uses a modifi ed least-squares approach to fi t 
transfer functions to the target frequency response data. The 
method involves minimisation of a sum of the squares of the 
differences between the absolute magnitudes of the frequency 
response values for the high-order system and the reduced 
model over a specifi c range of frequencies. 

 A frequency-weighted cost function is used for optimisation, 
allowing errors in chosen parts of the frequency range to be 

�� �� �� �� �� ��



250

Modelling and simulation of integrated systems in engineering

  Frequency responses of a single-input two-

output eighth-order model of a fi ghter aircraft 

and an equivalent third-order model over the 

frequency range 0.1 rad/s <  ω  < 100 rad/s. In 

(a) the responses are for pitch rate to elevator 

stick force, while (b) shows responses for normal 

acceleration to elevator stick force. The 

responses of the higher-order model are shown 

by the continuous curve and the dashed lines 

show the corresponding response for the 

reduced-order description (from [7.52])     

   Figure 7.6  

given particular emphasis. Results for the case of a large 
transport aircraft model are presented in  Figure 7.6  and show 
frequency responses of a two-input two-output fourth-order 
model together with the corresponding results for a two-input 
two-output second order description for the frequency range 
0.1–100 rad/s. It can be seen that, for the lower part of the 
range of frequencies used (<10 rad/s), the response of 
reduced-order model agrees well with that of the original 
model. The transfer functions from rudder and aileron 
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defl ection to yaw rate, sideslip and roll rate all have the same 
denominator since the high-order model is derived from a state 
variable description and the eigenvalues of the state matrix 
determine the denominators for all the transfer functions.  

   7.5.2  Case study 2: a simulation of a hydro 
turbine and electrical generator system 

 A further illustration of model reduction involves the 
development and application of a model of a hydro-electric 
generator system [53], which is also discussed in the context 
of real-time simulation in  Chapter 8 . The purpose of the 
model was to provide a basis for the design of a new faster-
acting electronic governor for speed control of a 35.75 MW 
hydro-turbine generator. A number of different types of 
electronic governor were to be investigated as candidates to 
replace an existing and slower type of mechanical-hydraulic 
governor system. An accurate, physically based model of the 
plant, capable of being operated in real time, was required. 

 Although some tests on the real system were permitted 
during the model development process, dynamic tests on the 
pipeline system, which is a vitally important part of the 
overall model of the system, were severely restricted for 
safety reasons. Extensive modelling of the pipeline network 
had been undertaken previously by engineers employed by 
the North of Scotland Hydro-Electric Board (NSHEB) and a 
well-proven fi nite-element model existed, although this 
relatively complex and numerically intensive model could 
not be implemented within a real-time simulation. 

 A decision was made to develop a lumped-parameter model 
of relatively low order that could capture the main features of 
the more complex fi nite-element pipeline model over the most 
important part of the frequency range for turbine control. 
Several lumped-parameter descriptions were tested against 
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the fi nite-element description using frequency-domain plots to 
fi nd a model of acceptable accuracy that could be implemented 
easily, in real-time, using available computing facilities. 

  Figure 7.7  shows a schematic diagram of the system. At 
the power station there are four turbines and generators, and 
below the surge shaft the penstock divides initially into two 
and then into four pipelines. Any disturbance in terms of 
head (pressure) or fl ow will be transmitted along the pipeline, 
with refl ections occurring at discontinuities. Resonance 
phenomena can be expected at the characteristic frequencies 
of the complete pipe system. 

 Equations can be derived by considering momentum 
balance and continuity of fl ow for an infi nitesimal length of 
pipe along with a relationship describing the change of fl uid 
density with change of pressure (the bulk modulus) and a 

  Schematic diagram of the hydro-turbine system. 

Control of the water turbine is through guide-

vanes and associated linkages, but is 

represented for simplicity in this diagram by a 

simple inlet control valve     

   Figure 7.7  
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stress-strain relationship for the pipeline [54]. The basic 
equations are:

    (7.7) 

    (7.8)  

 where  H  is the head of water relative to the exit from the 
turbine,  V  is the velocity of water,  x  is the position along the 
pipe,  D  is the pipe diameter,  g  is the gravitational constant and 
 t  is time. The quantity  V   p   is the velocity of travelling waves 
within the pipe and the quantity  f  is the surface friction 
coeffi cient of the pipeline section. The cross-sectional area ( A ) 
relates the fl ow,  Q , to the velocity  V  through the equation  Q  = 
 AV . It should be noted that the absolute value sign in 
Equation (7.7) is introduced to ensure that friction opposes 
the motion. 

 After a simplifi cation process in which small terms are 
neglected, these equations become:

    (7.9) 

    (7.10)  

 It should be noted that if the surface friction effect in the 
pipe were represented by a linear function, Equations (7.9) 
and (7.10) would be similar in structure to the voltage and 
current relationships for an electrical transmission line 
section, and useful analogies may be drawn between pipeline 
and transmission line models. One particularly important 
analogy involves the concept of hydraulic impedance, which 
is defi ned for the pipeline, in a similar way to electrical 
impedance, as:
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    (7.11)  

 A lumped parameter model for a simple pipe section was 
derived by defi ning a number of internal points along the 
pipe and transforming the spatial derivatives into fi rst-order 
difference functions. This lumped model involved a pipe 
section having one interior point and two end points, with 
friction effects lumped at the centre point. For situations 
involving one active turbine (as in the site tests), it was found 
that fi ve pipe section models, each involving four integrator 
blocks, provided a pipeline model that was suitable for the 
intended application. The number of sections used was 
justifi ed by carrying out an impedance test on this lumped 
model and comparing the results with an equivalent test 
using the fi nite element model based on Equations (7.9) and 
(7.10). Over the frequency range from 0 to 1 Hz, the reduced 
model was found to capture the frequency peaks of the 
impedance diagram of the full fi nite-element model with 
suffi cient accuracy. 

 The reduced representation of the pipeline was then 
integrated into the overall model and external validation was 
applied using data from dynamic tests on the complete 
system. Initial testing for the purposes of external validation 
involved frequency responses over a range that included the 
fi rst peak in the hydraulic impedance diagram (frequencies 
up to 0.37 Hz). These tests had to be performed for a number 
of input amplitudes due to the nonlinearities within the 
model, especially backlash in the guide-vane linkages and 
rate and amplitude limits within the main servomotor that 
controls the guide vanes. 

 Some adjustments of the model took place following 
critical assessments of the frequency response test results and 
the complete simulation was then also subjected to detailed 
evaluation and testing for conditions involving larger 
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disturbances. This involved system-splitting tests in which 
part of the local distribution system was confi gured so that 
the generator, together with an associated load, was 
connected to the rest of the grid through a single circuit 
breaker. Current transfer through that circuit breaker could 
be monitored and the system could be split when an 
appropriate transfer had been achieved. This allowed a form 
of step testing to be carried out. Tests were performed at 
various loading levels of up to 25 MW with export or import 
levels at the time of splitting which approximated to a step 
of the order of 1.5 MW, and results from the tests on the real 
system and equivalent tests on the simulation model were 
found to be similar in broad terms. 

 Certain features of the system behaviour were of particular 
interest, such as the effect of backlash in the guide-vane linkage 
mechanism, which has a very direct effect on limit cycle 
behaviour when the system is operating under isolated load 
conditions. The backlash not only infl uences the amplitude and 
period of the limit cycle, but also the transient characteristics of 
the closed-loop system. Also of particular importance was the 
fact that the results showed that no large pressure fl uctuations 
occurred within the system for the operating conditions 
and governor types considered, and that the damping of 
disturbances was satisfactory. However, the system-splitting 
test on the real system resulted in a power change which was 
only a rough approximation to a step function and repeated 
trials had to be performed for each test condition for power 
import and power export, to provide a good basis for 
quantitative comparisons of the model and the real system. 

 Although not used in the original application, the polygon 
type of graphical display discussed in Section 7.3.1 could 
have relevance in this complex type of situation where 
particular features of the response are of interest rather than 
the exact time histories.  Figure 7.8  shows a polygon that 
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could provide a basis for comparing key information 
obtained from testing of this kind. In this case, only four 
quantities are being compared. These are the peak value in 
terms of the transient change of frequency (Hz) following the 
step import or export of power, the time of occurrence of the 
peak (s), the time to the peak value following the application 
of the step, the amplitude of limit cycle (Hz peak to peak) 
observed in the frequency record under steady-state 
conditions following the step and the period of the limit 
cycle. 

 Such diagrams could allow investigation of the sensitivity 
of key features of the model behaviour for changes in model 
parameters, or structure, or for different types of governor. 

 At an early stage in the external validation of the model, 
an evaluation was made of the real-time simulation with the 

  Polygon diagram for the comparison of 

experimental and simulation results for the 

hydro-turbine simulation model     

   Figure 7.8  
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existing mechanical-hydraulic governor by experienced 
operators from the power station. They were able to provide 
subjective feedback which was very helpful and allowed 
improvements to be made to the model, especially in terms 
of fi ne-tuning of some nonlinear characteristics that could 
otherwise lead to unrealistic limit cycles for some operating 
conditions. This is one example of the possible benefi ts of 
subjective assessment in the external validation of a 
simulation model. An experienced operator may detect 
aspects of a simulation, especially when operated in real 
time, which are not typical of the real physical system but 
may not be obvious from an examination of plant and 
simulation records over a short period within a single test. 
Under some specifi c conditions, the ‘feel’ of the real-time 
simulation may differ signifi cantly from the system itself and 
establishing the reasons for this can often pinpoint defi ciencies 
in the model. 

 The eventual approval of the simulation by the NSHEB 
engineers allowed it to be used in real time as a basis for 
evaluation of a number of novel analogue and digital 
electronic governor systems under a wide range of operating 
conditions prior to their installation and testing on-site, as 
discussed in the case study in Section 8.3.1.   

   7.6  Discussion 

 In some applications, such as helicopter fl ight mechanics, 
diffi culties can be encountered due to the presence of close 
coupling of variables and parameters within the system. The 
fact that such systems are inherently multi-input multi-
output in form means also that a number of output variables 
of the system have to be considered simultaneously and this 
introduces additional problems. Although quantitative 
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measures of model performance are appropriate for 
applications of this kind, the use of such criteria reduces the 
model quality assessment process to consideration of values 
of a single index, which masks the true complexity of the 
situation and provides little or no physical insight. Improved 
visualisation methods are needed for multi-output situations 
and for models where there can be strong interactions 
between parameters. 

 The polygon diagrams discussed in Sections 7.3.1 and 
7.5.2 represent a potentially interesting development in 
terms of visualisation. Such diagrams provide a basis for 
comparing different results from different models and this 
means that such an approach has potential for interrelating 
results obtained from models at different levels of resolution. 
It can thus provide insight about the consistency of simple 
descriptions used for conceptual design at the initial stages of 
a project and highly detailed models that are used at a much 
later stage. One advantage of the polygon diagram approach 
to visualisation is that it is extremely fl exible in terms of 
the comparisons that can be made. For example, it allows 
results of sensitivity analysis to be displayed in a simple and 
effi cient fashion and is applicable to problems in many areas 
where there is a need to depict relationships among 
multivariable data. 

  Figure 7.9  provides a summary of the processes of model 
development and testing, including internal verifi cation and 
external validation, and attempts to summarise the main 
steps involved in that cyclic process. The blocks associated 
with the real system and system test data are shown by 
shadowed boxes. Steps concerned directly with the model, 
its purpose, modelling techniques used, processes of external 
validation, decisions on model adequacy for the intended 
application and documentation are represented by simple 
blocks with a white background. 
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  Block diagram of iterative processes of model 

development showing the stages from 

formulation of modelling objectives to 

external validation and testing of model 

adequacy. Blocks associated with the real 

system and system test data are shown by 

shadowed boxes. Blocks relating to the 

model, its purpose, modelling techniques 

used, external validation processes and 

documentation are shown as simple blocks 

with a white background     

   Figure 7.9  
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 The structure of the diagram emphasises the iterative 
nature of the procedures, starting from the statement of 
modelling objectives and the  a priori  assumptions being 
made, and ending with a model that is credible and fi t 
for purpose in terms of the intended application. Although 
it represents the processes in terms of comparisons of 
selected model variables and equivalent measured variables, 
most features of this diagram could apply equally to 
comparisons of reduced models with established high-order 
descriptions. 

 What is particularly attractive about this form of diagram 
is that it emphasises the vitally important role of external 
validation and the importance of prior knowledge about the 
real system. If a model proves inadequate for the intended 
application when subjected to the rigorous processes of 
external validation, there is a possibility of correction 
through feedback. Feedback pathways lead not only to the 
blocks representing the model but also, through the block 
representing knowledge of the real system, to the blocks 
showing involving experimental design and thus to further 
tests to collect additional data from the real system. 

 Confi dence in a model prediction depends on the level of 
confi dence in sub-models and each sub-system model could 
be subjected to the development and testing procedures of 
 Figure 7.9 . Exhaustive testing of sub-models allows 
confi dence to be established at that level fi rst and then 
extended gradually to involve evaluation of the complete 
system model for a number of experimental situations. 

 In the development of entirely new systems, experimental 
data from the complete system are not available at the design 
stage. However, in some cases, historical data from earlier 
systems of a similar kind can sometimes be used in reviewing 
proposals for a model for some new projects and for 
comparing initial design options. Successful application of 
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this approach depends on good documentation of models of 
existing systems and of the tests carried out in evaluating 
them, as discussed in  Chapter 9 .   
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 Real-time simulation, 
virtual prototyping and 
partial-system testing  

   Abstract:    This chapter deals mainly with development of 
virtual prototypes and with testing procedures in which 
equipment from a real system is evaluated within a 
simulation environment. This leads to requirements for 
real-time performance and to ‘hardware-in-the-loop’ 
simulation in which some elements of the system are 
represented only in software. Real-time simulation 
methods, including multi-rate simulation techniques, are 
described and examples considered include real-time 
simulation of a hydro-turbine generator system and an 
unmanned underwater vehicle.  

   Key words:    partial system testing, real-time simulation, 
multi-rate simulation, hardware-in-the-loop testing, 
emulation.   

    8.1  Virtual prototyping through 
simulation 

 The sequential and concurrent approaches to design outlined 
in  Chapter 2  both involve the development of prototype 
systems. Virtual prototyping is involved, especially in the 

                 8 
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concurrent approach, as well as the development of a physical 
prototype. Simulation is central to this and a procedure 
known as  partial-system testing  is applied, which involves 
use of a computer simulation model operating in conjunction 
with hardware from the real engineering system. This is 
known as  hardware-in-the-loop  simulation and, in this 
approach, execution of the model must match exactly the 
timing of events within the real-world system. As well as 
these cases where a simulation model operates with external 
hardware,  real-time  situations are also important for 
applications in which the simulation model runs with a 
human operator as part of a manually operated system.  

   8.2  Real-time simulation methods 

 Real-time operation imposes important demands in terms of 
numerical integration, since the computational resource 
available for each integration time step is fi xed. Variable-step 
integration methods are therefore inappropriate for real-
time simulation (see e.g. [1]) and concepts of numerical error 
control for variable-step algorithms become irrelevant. Any 
fi xed-step integration method used for real-time simulation 
must achieve real-time performance while also keeping 
numerical errors as small as possible. 

 Simple  fi xed-step  techniques, such as rectangular or 
trapezoidal integration, are widely used for real-time 
applications. Analysis of the underlying mathematical 
models may have to be carried out to fi nd the model 
eigenvalues for chosen operating conditions before the 
integration step size can be chosen. Informed decisions may 
then be taken about any simplifi cations for the real-time 
version of the model. Time constants that are small compared 
with others might be neglected and a dynamic sub-model 
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could be replaced by one without dynamics. Methods for 
handling discontinuities which are associated with variable-
step integration methods clearly cannot be used and other 
approaches have been suggested (see e.g. [2] and [3]). 

 In addition to the choice of integration method and time 
step, questions can arise about the  communication interval  
appropriate for a real-time problem. Clearly, for real-time 
operation,  synchronisation  to an external clock is essential. 
If the simulation can be run faster than real time on the 
chosen computer, a delay can be introduced until each clock 
interrupt occurs. The communication interval may represent 
the update interval for  external data  being input through 
analogue-to-digital converters or output to external hardware 
through digital-to-analogue converters, or being output for 
graphical display. This communication interval is, usually, 
considerably larger than the integration step length. For 
hardware-in-the-loop situations, external data thus changes 
value only at the communication times and the choice of 
communication interval must depend on the dynamic 
characteristics of the external hardware elements. In some 
applications, such as a fl ight simulator, there may be a 
number of different (but related) communication intervals, 
since different parts of the external hardware may involve 
different dynamic characteristics. One example of such 
 multi-rate  simulation methods in a real-time application may 
be found in the generation of force feedback for the pilot’s 
controls to provide tactile information about the response of 
a simulated aircraft to the pilot’s commands [8.4]. These 
channels involve smaller communication intervals than those 
applied elsewhere in the simulator because the human tactile 
system is sensitive to high frequencies and use of inappropriate 
communication intervals would be immediately apparent to 
an experienced pilot through the absence of the expected 
sensory feedback. 
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 Real-time simulation applications date back to times 
before digital computers had the necessary computational 
power.  Analogue computer  technology (see e.g. [1] and [5]) 
was widely used for real-time problems during the period 
from the 1950s until the late 1970s. However, as the 
performance of digital computers improved, the inherent 
parallelism of analogue computers was combined with the 
general-purpose computational power of digital processors 
in a new type of simulation facility known as a  hybrid 
computer  (see e.g. [1] and [6]). Although relatively 
expensive, hybrid computers were capable of providing 
highly effective solutions for complex real-time problems 
and were applied successfully in a number of areas, especially 
in aerospace and defence, until the 1980s. An interesting 
recent development has been a VLSI analogue computer/
math co-processor by Cowan and his colleagues at Columbia 
University [7]. This is capable of handling nonlinear 
ordinary differential equations of up to 80th order and 
occupies an area of integrated circuit of 1 cm 2 . It has 
an interface which provides facilities for automated 
programming and calibration, and a demonstration version 
of this modern analogue computer, implemented in 0.25 µm 
CMOS, has been shown to provide solutions of differential 
equations up to 400 times faster than a modern workstation 
running MATLAB ®  while dissipating only 300 mW [8.7]. 
Whether or not innovations of this kind will lead to a 
new generation of commercial analogue/hybrid computers 
remains to be seen, but this development is certainly of 
potential interest for specialised real-time applications 
involving large simulation models. 

 In tackling real-time simulation problems using methods 
involving general-purpose digital computers, one must 
understand the trade-offs between computer hardware 
performance, software capabilities and model accuracy. For 
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most real-time applications the communication interval and 
the integration step size should be as small as possible, since 
the discretisation inherent in digital simulation introduces an 
effective time delay which can have a destabilising effect. 
Another factor to be considered in the choice of integration 
step size and communication interval is the time required for 
other numerical processes, such as  multivariable function 
generation , which may be as signifi cant as the time for 
numerical integration. In such situations it is pointless to try 
to improve the integration accuracy unless these other issues 
are fully taken into account. 

 Error measures involving quantitative comparisons 
between model behaviour and the real system are more 
important in real-time situations than the error analysis and 
convergence tests applied for other simulation applications. 
For example, it is important in real-time simulation to ensure 
that, for a given operating condition, the eigenvalues of the 
simulation model closest to the imaginary axis in the complex 
plane are represented accurately. It is also important to check 
that spurious high-frequency oscillations do not appear 
which have no counterpart in the real system. 

 The possibility of linking simulations to rapid prototyping 
equipment means that new designs in fi elds such as 
mechatronics, robotics and automatic control can now be 
tested on hardware in minutes where, previously, equivalent 
tasks could have taken weeks. In such specialist applications, 
where much use is also made of  embedded processors , 
commercial systems such as the MathWorks Simulink 
Coder™ (formerly the Real-Time Workshop™) [8] and the 
National Instruments (NI) LabVIEW Real-Time™ system 
[9], allow generation of C or C++ code directly from 
simulation diagrams. This avoids the time-consuming and 
error-prone process of converting algorithms from languages 
such as MATLAB ®  into C code by hand for real-time 
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implementations. Similar facilities are available for other 
simulation software systems, including the 20-sim modelling 
and simulation tool developed by ControlLab Product BV in 
the Netherlands [10]. Another widely used system for 
embedded system development and real-time simulation is 
available from dSPACE Inc [11] and products are also 
available from other vendors which offer broadly similar 
solutions. 

 In addition to the plant which is being controlled, 
embedded systems involve software elements and hardware 
elements that include both computer hardware and input/
output interfacing hardware. Modelling of the complete 
system must involve modelling of all three aspects and, 
ideally, it should be possible not only to simulate each part of 
the system independently of the others, but also to simulate 
the computer and interface hardware together with the 
software and the computer and interface hardware along 
with the plant. As a fi nal step it should be possible to 
investigate all the hardware and software elements of the 
system when operating together. Broenink and his colleagues 
from the University of Twente in the Netherlands advocate 
a building-block approach for embedded system design, 
along with an object-oriented approach to modelling [12]. 
The specifi c object-oriented methods proposed involve 
bond-graph modelling for the system to be controlled, VHDL 
[13] for the input/output hardware and algebraic techniques 
for describing the embedded software in terms of 
communicating processes through the application of the 
CSP (communicating sequential processes) approach of 
Hoare [14]. 

 Systems based on general-purpose  digital signal processing 
(DSP) boards  and digital  fi eld programmable gate array 
(FPGA) hardware  are providing new possibilities in terms of 
low-cost interfacing and control, and have considerable 
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potential for new developments in hardware-in-the-loop 
simulation [15]. The account by Jovanovie  et al . [16] of 
an inexpensive prototyping system for mechatronic 
systems provides an interesting example where the 20-sim 
modelling and simulation tool (with C-code generation 
functionality) was used to support system design for an 
electro-mechanical servo system. An example of FPGA-based 
real-time simulation may be found in the 2008 paper 
by Crosbie [15], where use was made of an RT-LAB™ 
system from Opal-RT [17] for a real-time simulation of a 
power-electronic system. The RT-LAB™ system provided 
two dual-core Opteron™ processors operating under the 
Red Hawk real-time Linux operating system and a FPGA 
which can provide interfacing to external hardware or 
perform high-speed simulation of part of the complete 
system. 

 In Crosbie’s application [15], the FPGA simulates part of a 
power-electronic system involving two three-phase converters 
connected by a DC link with simple AC generator/load units 
at each end of the network. The simulation, which provides 
a benchmark for evaluating different simulation approaches, 
can thus represent an AC generator feeding a converter that 
provides three-phase rectifi cation to produce direct current, 
which is then supplied to the second convertor for 
conversion back to alternating form for an AC load. Filters 
are included on the DC side of each converter. 
Each converter has six switches operated by timing 
pulses from controllers involving pulse-width modulated 
(PWM) control for voltage, current and power fl ow. The 
model involves a total of 23 fi rst-order ordinary differential 
equations in addition to switching logic and other features 
that further increase the computational demands. In 
the RT-LAB implementation, one converter was simulated 
on the FPGA while the rest of the model was implemented 

�� �� �� �� �� ��



276

Modelling and simulation of integrated systems in engineering

on the dual Opteron™ processors. With an appropriate 
choice of FPGA, simulation frame times as small as 400 ns 
have been achieved [15]. This suggests that, for applications 
such as power electronics, the FPGA approach allows 
simulation of quite complex sub-models on a single 
chip. The FPGA approach also has signifi cant advantages in 
terms of cost compared with DSP boards, although the 
programming task for simulation applications can be 
signifi cant.  

   8.3  Hardware-in-the-loop simulation 

 A good example of hardware-in-the-loop simulation is an 
aircraft fl ight simulator (see e.g. [4]) where elements of the 
cockpit, such as the pilot’s controls, may be the same as 
hardware in the real aircraft. Similarly, training simulators 
for chemical process plant or electrical power facilities may 
involve control room displays or other hardware used in the 
real plant. Often a training simulator is built before the 
corresponding real plant is completed and the simulator may 
then be very helpful for the plant commissioning process as 
well as for training operators. 

 Hardware-in-the-loop techniques can provide a form of 
rapid prototyping in which we start with a virtual prototype 
and move in stages towards a real prototype system involving 
the hardware and software of the fi nal design. For example, 
a controller for a chemical process plant could be tested 
initially by coupling the controller hardware to a real-time 
simulation of the plant based entirely on software. Once 
testing of the controller showed that the performance was 
satisfactory when used with the simulator, the same controller 
hardware could be tested further by coupling it to the real 
plant. The benefi ts of this incremental ‘divide and conquer’ 
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type of approach include the fact that the performance can 
be investigated safely for a wide range of normal and fault 
conditions. 

 One point, often overlooked, is that differences exist 
between training simulators and real-time simulators 
designed to support engineering activities. Although the 
problems being tackled may have similarities, the behaviour 
of a training simulator need match that of the real system 
only at the operator interface and the emphasis is therefore 
on  emulation . Thus, some components of the simulation 
may be input-output descriptions representing reduced-order 
models, fi tted in a purely mathematical fashion, to more 
complex underlying descriptions. Sub-models may thus have 
little or no physical basis, but may be entirely suitable for the 
training application, provided they are used within the limits 
for which they have acceptable accuracy. Development of a 
training simulator may therefore be regarded as a top-down 
process in which details from the real system are added until 
the simulator’s performance is adequate. This is usually 
inappropriate for a real-time simulation intended for 
engineering system development and rapid-prototyping 
applications. In that case, the role of the real-time simulation 
is usually to test a proposed system up to, or even beyond, 
the normal design limits and it is important that as much as 
possible of the model is developed on a physical basis in 
order to enhance understanding of the real system and the 
model. One example of a situation in which a physically 
based simulation model is important is in testing for fault 
conditions and fault recovery strategies. The intentional 
introduction of faults in the testing of the real plant is often 
unacceptable for reasons of safety or plant integrity, and the 
use of real-time simulation for such investigations becomes 
essential. 
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   8.3.1  Case study: hardware-in-the-loop 
simulation for development of a 
speed-control system for a hydro-turbine 
and generator 

 Although not an example of concurrent design, the 
development and commissioning of the fast-acting speed 
governor system for the hydro-electric generator system 
discussed in Section 7.5.2 provides an illustration of partial-
system testing and hardware-in-the-loop simulation. This 
study involved the redesign of a control system for an existing 
plant to meet an entirely new set of performance requirements 
and it was a truly multidisciplinary undertaking involving 
control systems specialists, mechanical engineers and 
electrical power systems engineers. 

 The project involved development of a real-time simulation 
for one generating unit at the Sloy Power Station operated, at 
that time, by the North of Scotland Hydro Electric Board. The 
work formed part of a broader investigation concerning the 
possible replacement of existing mechanical/hydraulic speed 
governors for hydro-turbines in power stations in Scotland by 
faster-acting electronic governors. The requirement for faster 
governors was associated with a changing role for hydro-
electric power generation in Scotland as it moved away from 
base-load supply to provide standby generation capacity that 
could provide sources of additional power to compensate very 
rapidly for failures of large nuclear, coal or gas-fi red stations 
elsewhere in the distribution network. The electronic control 
hardware developed for the project had to be tested initially in 
conjunction with an accurate real-time simulation of the 
hydraulic, mechanical and electrical components of the system 
before testing of the controller on site. 

 Initial site tests on the complete hydro-turbine and 
generator system with the existing governor hardware 
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provided results that were used in developing the 
model, which included water pipeline dynamics (as 
discussed in Section 7.5.2), a nonlinear representation 
of the hydraulic and mechanical elements of the turbine, a 
detailed representation of the generator and simplifi ed 
models of the associated electrical system for various different 
network confi gurations. New controller hardware was 
coupled to the real-time simulation through an interface that 
involved all the continuous and logical signals that would 
appear in the interface between that controller and the 
real plant. 

 The real-time simulation was developed initially using a 
hybrid computer [18], but was subsequently implemented as 
a digital simulation. It allowed investigation of a number of 
different situations on the system, including start-up, normal 
steady-state operation for different electrical loading 
conditions, transients following sudden electrical load 
changes, fault situations and system shutdown. The quality 
of the real-time simulation model was assessed initially 
by making comparisons with non-real-time models and by 
comparisons with data from initial site tests. 

 Once the electronic controller within the hardware-in-the-
loop simulation of the combined turbine, generator and 
control system was judged to be operating appropriately (as 
outlined in Section 7.5.2), it was moved on site for 
commissioning tests. On-site testing initially involved 
relatively benign cases that had been investigated previously 
using the real-time simulation and then moved, in an 
incremental fashion, to include situations requiring faster 
governor action. The project led to a prolonged programme 
of work involving evaluation, on site, of fast-acting analogue 
governors [19] and also microprocessor-based digital 
governor systems ([20] and [21]).   
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   8.4  Multi-rate simulation techniques 

 Many models involve sub-systems that have a wide range of 
time constants. Since variable step algorithms are clearly 
inappropriate for real-time applications, one approach in 
such cases involves grouping the sub-models according to 
dynamic properties so that different integration steps can be 
used in different sub-models. The total number of calculations 
is then smaller and the simulation is potentially faster. This is 
known as  multiple frame rate  or  multi-rate simulation . 
Although this reduces computational demands, it also raises 
issues in terms of the overall accuracy and stability of the 
simulation (see e.g. [15]). 

   8.4.1  Fundamentals of multi-rate 
simulation 

 With fi xed-step integration methods, an integration step 

length of  h  seconds gives a frame rate of    frames 

per second. A simple multi-rate situation is shown in  Figure 
8.1  where there are two integration step lengths,  h  1  and  h  2 , 
where is  h  2  related to  h  1  through an integer  N  according to 
the equation:

  h  2  =  Nh  1  (8.1)  

 Thus Segment 1 of the model, as illustrated in  Figure 8.1 , 
gives results at a frame rate of:

    (8.2)  

 while Segment 2 gives results at the slower rate of:

    (8.3)  
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 Communication between segments can be handled in 
several ways. For the case shown in  Figure 8.1 , the simplest 
is based on a zero-order hold for transfer from Segment 2 to 
Segment 1. Segment 1 thus uses the last value received from 
Segment 2 for  N  steps until the value from Segment 2 is 
updated. Outputs from Segment 1 being communicated to 
Segment 2 must be averaged, possibly by simple fi ltering, 
over  N  steps before being transferred. Large differences of 
step sizes may require use of anti-aliasing fi lters. 

 Although introduced here using only two segments and 
two frame rates, the principles of multi-rate simulation can 
be applied to situations involving more segments and more 
frame rates. The ratios of these different frame rates are 
normally integer quantities.  

   8.4.2  Case study: multi-rate simulation of 
an unmanned underwater vehicle 

 Electrical drive systems for surface ships and underwater 
vehicles involve sub-systems having a wide range of time 
constants. The complete model may involve mechanical, 
thermodynamic, hydrodynamic, electrical, electronic and 
software elements. Time constants for sub-systems involving 

  Block diagram for a simulation involving two 

segments having different frame times. The slow 

frame time is an integer multiple of the faster 

frame time and communication takes place at 

the slower frame rate     

   Figure 8.1  

�� �� �� �� �� ��



282

Modelling and simulation of integrated systems in engineering

electronic components may well be many orders of magnitude 
smaller than the dominant time constants of the six-
degrees-of-freedom model of the vehicle involving the hull, 
propellers and control surfaces. Simulation of the complete 
system using a single program requires integration step sizes 
consistent with the smallest time constants, leading to a very 
‘stiff’ simulation problem and, probably, very long solution 
times, as discussed in  Chapter 3  and Section 8.2. This 
situation is clearly one for which multi-rate simulation offers 
possible advantages [22]. 

 Development of a simulation for an unmanned underwater 
vehicle (UUV) capable of running in real time (or in a 
timescale faster than real-time for multi-run optimisation 
studies) has been the subject of a recent study ([23] and [24]) 
and provides an illustration of multi-rate simulation 
techniques. The vehicle is the one described in Appendix A1 
and the specifi cation requires that the model should be 
capable of representing the power electronic sub-system for 
events involving time intervals of less than 10 µs, over time 
periods of minutes or longer while running in real time or in 
even faster timescales. The system divides naturally into sub-
systems with several ranges of frame time.  Figure 8.2  is a 
schematic diagram of the complete underwater vehicle 
system showing the interactions between these different sub-
systems. 

 In  Figure 8.2 , the model is split into fi ve blocks involving 
four different frame rates. The DC to AC converter model 
involves the fastest frame rate, the feedback controller is a 
slow-medium speed component, the electric motor model is 
a fast-medium component and the battery, the vehicle and 
its control surfaces are all grouped together and have the 
slowest frame rate. The graphics interface, which provides 
an animated display showing the vehicle motion in three 
dimensions, also involves the slowest frame rate. The specifi c 
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frame times used for these four areas involve integration 
periods of 2µs for the converter, 100 µs for the motor, 800 µs 
for the feedback controller and 100 ms for the battery, vessel 
and graphical output. 

 The simulation has been implemented using the Virtual 
Test Bed (VTB) environment (discussed briefl y in  Chapter 3 ), 
together with the associated VXE graphics software for 
displaying graphical output and 3-D animations. Both of 
these software tools were developed at the University of 
South Carolina [25]. The VTB provides a fl exible simulation 
environment which allows sub-system models developed 
initially using different simulation tools to be combined. The 
VTB software also has a model library which contains many 
mechanical and electrical component models. 

 Funding for an investigation of multi-rate simulation 
techniques, including the development of the multi-rate 
simulation of the UUV, was provided by the U.S. Offi ce of 
Naval Research (ONR) through grants to California State 
University, Chico, and the University of Glasgow, and 
different programming approaches were used in developing 
the sub-system models because these were developed by 
different groups in different locations. For example, the 

  Block diagram representation of UUV model with 

the electrical drive system     
   Figure 8.2  

�� �� �� �� �� ��



284

Modelling and simulation of integrated systems in engineering

electrical and electronic sub-models were the responsibility 
of a research group at California State University, Chico, and 
were programmed using C++ code while adaptation of an 
established MATLAB ®  six degrees-of-freedom vehicle model 
to suit this application was undertaken by researchers at the 
University of Glasgow in the United Kingdom. The DC 
power source was represented using native VTB battery 
models. 

 Although the converter model was coded using C++, it 
was implemented as a native VTB simulation model and in 
this sub-model the DC input connection and the AC output 
connections are natural couplings (as outlined in  Chapter 3 ), 
while the connections to the controller are signal couplings. 
The converter involves Euler integration for the input DC 
fi lter capacitor and trapezoidal integration for the fi lter 
components at the output. The sine and triangular waveforms 
of the controller are found by a table look-up method. The 
motor simulation was implemented in C++ as a native VTB 
simulation using trapezoidal integration. The six-degrees-of-
freedom simulation model of the vehicle involved a fi xed-
step fourth-order Runge-Kutta integration algorithm and the 
original MATLAB ®  simulation was translated to C++ and 
implemented in the multi-rate simulation as a native VTB 
model. Fin defl ection and propeller shaft inputs are applied 
by the user. 

 A multi-rate solver was developed initially by bringing 
together the models to be run at different rates within a 
single VTB ‘super-model’. The VTB would then run at the 
rate of the slowest model and the individual model step sizes 
are integral divisors of the VTB time step. An internal 
scheduler calls the internal models at the correct times within 
each VTB time step and returns values to the VTB at the start 
of the next VTB step. Results can be displayed at the user 
interface at each VTB time step. 
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 Execution in a timescale faster than real-time, with the 
VXE 3-D graphical output, has been achieved on a typical 
laptop computer. The European Simulation Language (ESL) 
[26] was used to provide comparisons with conventional 
simulation results. ESL, which was developed at the 
University of Salford for the European Space Agency, 
supports multi-rate simulations. One of the important 
features of ESL, which has recently been integrated into the 
VTB [27], is that it can automatically locate switching 
points, accurately integrate up to the discontinuity and 
then continue from that exact point. The effects of taking 
fi xed-time steps in a fast multi-rate simulation can thus be 
investigated and errors associated with different step lengths 
can be assessed.   

   8.5  Some new developments in 
real-time simulation 

 Steady progress continues to be made in the computing 
power provided within conventional personal computers, 
workstations and specialised digital signal processors and 
FPGAs. These developments have a direct and positive effect 
on the real-time computing fi eld in general and on simulation 
in particular. Crosbie [15] has also suggested that the IBM 
Cell Architecture, which involves one PowerPC type of 
processor coupled to eight synergistic processing elements 
and a very high-speed bus, might well be appropriate for 
simulation applications. A version of this processor is used 
within the Sony Playstation 3 ®  and has been shown to have 
signifi cant speed advantages. Other developments in terms 
of specialised hardware, such as developments based on 
FPGAs and the VLSI analogue computer developed at 
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Columbia University, may also have an effect on real-time 
simulation practice in the longer term. 

 While developments in terms of hardware are important, 
other developments in terms of simulation methods and 
simulation software are also signifi cant. The current interest 
in multi-rate simulation is a good example and there are 
areas where additional research effort may well produce 
benefi ts. One example of this could be systematic investigation  
of the infl uence on the overall stability of a simulation model 
of the methods used to provide communication of data 
between modules operating at different frame rates. Crosbie 
[8.15] has also pointed out that  quantised state system 
(QSS) methods  ([28] and [29]) could be useful for high-speed 
real-time simulation applications and that further research 
on this might yield dividends. In that approach the process 
advances until one state variable reaches the next quantisation 
level instead of using the conventional idea of a time frame. 
Advantages are claimed for this quantised approach in terms 
of accuracy and stability, but few applications have been 
reported so far.   
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  Simulation and Modelling of Continuous Systems  , 
 Prentice Hall ,  London, UK .  

   [7]     Cowan,   G.E.R.,     Melville,   R.C.   and   Tsividis,   Y.P.   ( 2006 ) 
‘ A VLSI Analog Computer/Digital Computer 
Accelerator ’,   IEEE J. Solid–State Circuits  , Vol.  41 , No. 
 1 , pp.  42 – 53 .  

   [8]    Mathworks/Simulink Coder™  (online):   www.
mathworks.com/products   (accessed 30  June   2011 ).  

   [9]    LabVIEW Real-Time™, National Instruments Corp, 
Austin, USA  (online):   www.ni.com/realtime   (accessed 
30  June   2011 ).  

  [10]    20-sim, modelling and simulation package, ControlLab 
Products BV, Enschede, the Netherlands  (online): 
  www.20sim.com   (accessed 30  June   2011 ).  

  [11]    dSPACE Prototyping Systems, dSPACE Inc, Novi, USA  
(online):   www.dspaceinc.com   (accessed 30 June 2011).  

  [12]     Broenink,   J.F. ,    Groothuis,   M.A. ,    Visser,   P.M.   
and   Orlic,   B.   ( 2007 ) ‘ A model-driven approach to 
embedded control system implementation ’, in 
  Proceedings of the 2007 International Conference 
on High Level Simulation Languages and Applications 
(HLSLA ’07), part of the 2007 Western Multiconference 
on Modeling and Simulation (WMC ’07), 14–18 
January 2007, San Diego, California, USA  ,  the Society 
for Modeling and Simulation International ,  San Diego 
CA, USA , pp.  137 – 44 .  

�� �� �� �� �� ��



288

Modelling and simulation of integrated systems in engineering

  [13]     Yalamanchili,   S.   ( 2000 )   Introductory VHDL: From 
Simulation to Synthesis  ,  Prentice Hall, Upper Saddle 
River NJ ,  USA .  

  [14]     Hoare,   C.A.R.   ( 1985 )   Communicating Sequential 
Processes  ,  Prentice Hall ,  London, UK .  

  [15]     Crosbie,   R.E.   ( 2008 ) ‘ Advances in high-speed 
real-time simulation ’, in   Proceedings of the Second 
UKSIM European Symposium on Computer Modelling 
and Simulation  .  

  [16]     Jovanovic,   D. ,    Orlic,   B. ,    Broenink,   J.   and   van 
Amerongen,   J.   ( 2003 ) ‘ Inexpensive prototyping for 
mechatronic systems ’, in   Proceedings of the 5th 
Workshop on European Scientifi c and Industrial 
Collaboration (WESIC 2003), 28–30 May 2003, 
Miskolc, Hungary  , Vol.  II , pp.  431 – 8 , University of 
Miskolc, Hungary (ISBN 963-661-570-5).  

  [17]    RT-LAB™, Opal-RT Technologies Inc, Canada  (online): 
  www.opal-rt.com/product/rt-lab-professional   (accessed 
30  June   2011 ).  

  [18]     Bryce,   G.W.,     Foord,   T.R,     Murray-Smith,   D.J.   and 
  Agnew,   P.W.   ( 1976 ) ‘ Hybrid simulation of water-
turbine governors ’, in   Crosbie,   R.E.   and   Hay,   J.L.   (eds), 
  Simulation Councils Proceedings Series  , Vol.  6 , No.  1 , 
pp.  35 – 44 ,  Simulation Councils Inc, La Jolla CA ,  USA .  

  [19]     Bryce,   G.B. ,    Agnew,   P.W. ,    Foord,   T.R. ,    Winning,   D.J.   
and   Marshall,   A.G.   ( 1977 ) ‘ On-site investigation of 
electrohydraulic governors for water turbines ’, 
  Proceedings IEE  , Vol.  124 , No.  2 , pp.  147 – 53 .  

  [20]     Winning,   D.J. ,    Marshall,   A.G. ,    Findlay,   D.G.E. ,    Aitken,  
 K.H.   and   Grant,   N.F.   ( 1980 ) ‘ Controller testing facility 
on 32.5MW water turbine ’,   Proceedings IEE  , Vol.  127 , 
Part C, No.  6 , pp.  357 – 9 .  

  [21]     Findlay,   D. ,    Davie,   H. ,    Foord,   T.R. ,    Marshall,   A.G.   and 
  Winning,   D.J.   ( 1980 ) ‘ Microprocessor-based adaptive 

�� �� �� �� �� ��



289

Real-time simulation, virtual prototyping and partial-system testing

water-turbine governor ’,   Proceedings IEE  , Vol.  127 , 
Part C, No.  6 , pp.  360 – 9 .  

  [22]     Word,   D. ,    Bednar,   R.  ,   Zenor,   J.J.   and   Hingorani,  
 N.G.   ( 2008 ) ‘ High-speed real-time simulation for 
power electronic systems ’,   Simulation  , Vol.  84 , 
pp.  441 – 56 .  

  [23]     Zenor,   J.J. ,    Bednar,   R. ,    Word,   D. ,    Hingorani,   N.G.   and 
  McGookin,   E.   ( 2007 ) ‘ Simulation of an unmanned 
underwater vehicle (UUV): a multi-rate simulation ’, 
  Proceedings of the Summer Computer Simulation 
Conference 2007 (SCSC 2007)  , San Diego, CA, July 
2007, pp.  204 – 8 ,  Society for Computer Simulation 
International, San Diego CA,   USA .  

  [24]     Zenor,   J.J. ,    Murray-Smith,   D.J. ,    McGookin,   E. W.   and 
  Crosbie,   R.E.   ( 2009 ) ‘ Development of a multi-rate 
simulation model of an unmanned underwater vehicle 
for real-time application ’, in   Troch,   I.   and   Breitenecker,  
 F.   (eds),   Proceedings MATHMOD 09, Vienna, 9–13 
February 2009  , pp.  1951 – 7 ,  Argesim/Asim, Vienna , 
 Austria .  

  [25]    VTB, modelling and simulation package, the 
University of South Carolina,  The Virtual Test Bed   
(online):   http://vtb.engr.sc.edu/vtbwebsite   (accessed 
30  June   2011 ).  

  [26]    ESL, modelling and simulation package, ISIM 
International Simulation Ltd  (online):   www.
isimsimulation.com   (accessed 30  June   2011 ).  

  [27]     Pearce,   J.G   ( 2007 ) ‘ Interfacing the ESL simulation 
language to the Virtual Test Bed ’, in   Proceedings of the 
2007 Western Simulation Multiconference, San Diego, 
CA, January 2007  ,  Society for Computer Simulation 
International, San Diego CA ,  USA .  

  [28]     Kofman,   E.   and   Junco,   S.   ( 2001 ) ‘ Quantised state 
systems: a DEVS approach for continuous system 

�� �� �� �� �� ��



290

Modelling and simulation of integrated systems in engineering

simulation ’,   Transactions of Society for Computer 
Simulation  , Vol.  18 , No.  3 , pp.  123 – 32 .  

  [29]     Beltrame,   T.   and   Cellier,   F.E.   ( 2006 ) ‘ Quantised 
state system simulation in Dymola/Modelica using the 
DEVS formalism ’, in   Proceedings of the 5th 
International Modelica Conference, 4–5 September 
2006, Vienna, Austria  , Vol.  1 , pp.  73 – 82 , 
the Modelica Association, Linköping, Sweden (online): 
  www.modelica.org/events/modelica2006/Proceedings/
proceedings/Proceedings2006_Vol1.pdf   (accessed 30 
 June   2011 ).          

�� �� �� �� �� ��



1
1
2
3
4
5
6
7
8
9
1010
1
2
3
4
5
6
7
8
9
2020
1
2
3
4
5
6
7
8
9
3030
1
2
3
34R34R

291

 Model management  

   Abstract:    The model-driven concurrent approach to the 
design and development of engineering systems allows 
early detection and correction of design errors, and offers 
new opportunities for optimisation at the level of the 
complete system. Tools for the effi cient development 
and testing of physically based dynamic models are 
of central importance for this and include forward and 
inverse simulation, parameter sensitivity analysis, system 
identifi cation, parameter estimation, optimisation and 
partial system testing through hardware-in-the-loop 
simulation. Fitness for purpose, quality, reusability and the 
integration of simulation methods with other design and 
analysis tools are vitally important. Libraries of models and 
models that are generic in structure are also important. 
Dealing successfully with all of these aspects of modelling 
and simulation requires the application of good management 
principles and the development of good documentation 
and appropriate updating procedures at all stages in a 
project. It is argued that the education and training of most 
engineers does not at present give suffi cient emphasis to 
many of these broader issues that are of vital importance 
for the successful application of simulation methods and 
model-driven design.  

   Key words:    documentation, tool integration, model reuse, 
sub-model, model library, model sharing, generic model, 
internal verifi cation, external validation, education.   

                 9 
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    9.1  Issues of model management 

 As pointed out in  Chapters 1  and  2 , systems involving closely 
integrated elements from a number of different engineering 
disciplines have become increasingly important in recent 
years. Integrated systems applications in aircraft, in the 
automotive industry, in electrical power generation and 
distribution, in robotics and in chemical and pharmaceutical 
process engineering are becoming commonplace. In all of 
these and many other areas, a multidisciplinary and model-
driven concurrent approach to design is also taking 
over from traditional sequential design procedures and this 
is now recognised as important for successful integrated 
system design. Benefi ts from the model-driven concurrent 
approach, if applied correctly, include earlier detection and 
correction of design fl aws, and new possibilities for system-
level optimisation. 

 Because of the central role of modelling and simulation 
techniques in integrated system design, a strategy is needed 
to ensure that these methods are applied properly and more 
effort is needed in this area if we are to be successful in 
meeting design requirements while also reducing development 
times and costs. Unfortunately, this is not yet true in general. 
Current practice in system modelling and simulation within 
many organisations is often lacking in terms of systematic 
processes, in surprising contrast with accepted procedures 
within the more general software engineering fi eld where 
more rigorous testing, documentation and version control 
are an integral part of project management. 

 Modelling objectives in different areas can differ greatly 
and prior knowledge of the real system and understanding 
of design requirements are both important. A full statement 
of how the model is to be used is particularly important 
when an integrated system design and development project 
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involves a number of different teams, perhaps drawn from 
different engineering disciplines. The purpose of a model 
infl uences the type of model needed and, if the goal is to 
provide further insight about the corresponding real system, 
the required form of the model may differ from many models 
conventionally used for quantitative prediction, simulation 
or system design. Physically based forms of model may be 
particularly helpful in a multidisciplinary design environment 
where engineers have widely different backgrounds and 
where models and computer simulations can provide a 
natural means of communication about technical issues. 

 One feature of present-day research on simulation is 
an increased emphasis on the broader aspects of the 
model development process (such as bond-graph and other 
energy-based modelling procedures), enhanced computing 
environments (especially in terms of the user interface), 
libraries of sub-models and systematic processes for assessing, 
correcting and documenting models. More effort must be 
directed towards further developing and maintaining 
libraries of validated simulation models and commonly used 
sub-models. This is important if we are to exploit fully the 
benefi ts of model reuse and the development of reliable 
generic models, and is a signifi cant part of the move towards 
developing more effi cient model-driven design techniques 
and more effective methods for model management. 

 Inverse systems receive considerable attention in this book 
and inverse simulation methods, developed initially for use 
in handling-qualities studies for fi xed-wing aircraft and 
helicopters, have been shown to be of value in modelling and 
simulation of complex systems of a more general kind. 
Different physical insight may result from examining the 
input needed to allow a specifi c form of output to be achieved 
and this is especially signifi cant in areas such as actuator 
design. It is believed that combining forward and inverse 
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simulation processes within a modelling and simulation 
strategy can be potentially very valuable. 

 Confi dence in a prediction is a function of the confi dence 
demonstrated in sub-system models as well as in the complete 
model. This is particularly important where sub-system 
models can be tested experimentally. Exhaustive testing of 
sub-models allows confi dence to be established at that level 
fi rst and then extended gradually to less well-defi ned 
situations involving testing of the complete system model 
over a range of experimental conditions. The main aim in 
using modelling, simulation and prototyping techniques in 
engineering design and development is to make sure that 
when the system is built, tested and put into service, there are 
no surprises. This aim is seldom completely satisfi ed, but the 
more comprehensively that models are checked and tested, 
the more likely it is that the resulting system will be acceptable 
in service from an early stage. 

 In the development of entirely new systems, experimental 
data from the complete system cannot be available at the 
design stage. In some cases, historical data from earlier 
systems of a similar kind can be helpful in evaluating the 
model of the new system. Successful application of this 
approach depends on good documentation of models of the 
earlier systems and of the experimental data and tests used to 
evaluate those previous models. 

 If simulation and modelling methods are applied in a 
highly focused fashion, with the right questions in mind, 
they can help to produce new insight that would be very 
diffi cult to obtain in other ways. For example, as pointed out 
in  Chapter 7  in the context of reduced-order models, 
developments taking place in the fi eld of micro- and nano-
electromechanical systems (MEMS and NEMS) are throwing 
up many interesting and challenging problems relating to 
modelling and simulation. It must also be recognised that 
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those working in that fi eld are also making important 
contributions in terms of methodological developments, 
many of which have signifi cance for all involved in modelling 
and simulation of integrated systems. In addition, MEMS 
and NEMS developments often involve problems of multi-
scale physically based modelling that have much relevance 
for engineers in other application areas.  

   9.2  Tools for model management 

 Developers of computer-based tools for modelling and 
simulation must strive to achieve a good balance between 
effi ciency of numerical solutions and user-friendly software 
tools for model construction, testing, external validation, 
documentation and maintenance. Good planning of systems 
for documentation and the management of models is 
especially important when models may be reused, and well-
maintained libraries of reusable models can assist greatly in 
the development of models for new applications. Good tools 
for the management of models also allow the user to focus 
attention on issues of model quality and testing. The potential 
for integration of simulation models with other design and 
analysis tools is another important area. Effi cient, user-
friendly and reliable version handling for models is essential 
and, as pointed out by Brade [1], this must form part of a 
more general stepwise procedure for model development in 
which verifi cation, validation and documentation are of 
central importance. 

   9.2.1  Documentation and reuse of models 

 Models are often developed for engineering applications on 
a one-off basis for a specifi c task and new projects, often 
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very similar to earlier ones, frequently involve completely 
new models. This is not only costly and time-consuming, but 
it is also true that models developed in this way are not 
always subjected to rigorous validation and documentation 
processes. 

 A poorly documented model of questionable validity 
is seldom helpful, whereas a model of proven fi tness, 
together with good documentation, can provide an excellent 
starting point for a new application. This applies even if an 
established model is to be used in a new way since, although 
the model may need changes for the new application, 
examination of a proven model may still be the best starting 
point. There must, however, be information about how 
the earlier model was developed and used, about its range 
of validity, and about the underlying assumptions and 
constraints. 

 Items recorded about a model or sub-model should include:

   1.   the purpose of the model and the intended application;  

  2.   assumptions used in developing the model and any 
constraints that may result;  

  3.   details of tests on the real system carried out for model 
development, including model structure estimation and 
parameter estimation;  

  4.   the computer simulation code for the model, if 
appropriate;  

  5.   details of internal verifi cation checks carried out to 
ensure that the computer-based representation matches 
the mathematical description; and  

  6.   details of external validation processes for the complete 
simulation model, along with the reasons for accepting 
or rejecting the model, together with statements about 
the range of applicability of each accepted model.    
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 As pointed out in  Chapter 7 , model development does not 
end when a model or sub-model is accepted for a specifi c 
application or for inclusion in a library of models following 
successful internal verifi cation and external validation. Model 
development continues throughout the life of the real 
engineering system or product. Indeed, understanding of the 
limitations of a given model should grow throughout 
the application phase of a project. The process is not 
complete when the decision is made to accept a model for a 
particular application, and model management systems and 
documentation procedures must allow for this.  Regressive 
testing  of models within the iterative process of model 
development is as important as regressive testing of any other 
software (see e.g. [2]) and model documentation systems 
must allow for possible changes and updating throughout the 
life cycle of the system represented by the model. 

 Model documentation must take account of the needs 
of those encountering that specifi c model or sub-model for 
the fi rst time. Diagrams are needed and these must be 
consistent with documentation of the corresponding real 
system. Brade [1], as well as emphasising the need for 
more meaningful documentation and criticising the present 
lack of quality assurance as an integral part of the model 
development process, discusses the potential and current 
limits of existing guidelines, such as the Verifi cation, 
Validation and Accreditation Recommended Practices Guide 
of the US Defense Modeling and Simulation Offi ce [3]. 
He believes that a structured approach to the collection 
of information and documentation during the model 
development process can provide a stable foundation for 
verifi cation and validation and opportunities for effective 
and effi cient reuse of models. These ideas are closely linked 
to the concept of the ‘Verifi cation and Validation (V&V) 
Triangle’ which Brade has presented as a central part of 
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his doctoral thesis [1]. The V&V Triangle provides a 
foundation for planning and implementing all aspects of 
verifi cation and validation, and provides an overview of 
desirable verifi cation and validation objectives and possible 
techniques that can be used to achieve those objectives. This 
methodology also allows features of an executable model to 
be traced back systematically to the model requirements 
specifi cation. 

 Many tools for modelling and simulation provide only 
basic facilities for the processes of model entry and the 
running of simulations. Documentation within models 
developed from these tools usually consists of comment lines 
within code or annotations in graphical models. Recently 
developed simulation and modelling tools put more emphasis 
on model management issues and allow access to published 
libraries of sub-models and the creation of new libraries. 
 Object-oriented methods  are relevant for this and object-
oriented software environments may offer some advantages 
for the development of reusable and readily extendable 
models. 

 Brade [1] suggests that, for documentation to be 
fully effective at reasonable cost, software is needed that 
automatically records changes made at each stage of model 
development since it has to be accepted that, if attempted 
manually, documentation of the model development process 
is often ineffective, usually incomplete and frequently full of 
errors. 

 The  assessment of overall model credibility  remains a 
problem even after the successful application of internal 
verifi cation and external validation methods, and this 
presents problems for documentation of overall model 
quality and the model testing procedures. V&V methods do 
not  prove  that a model and the corresponding simulation 
results are suitable for the intended application; they merely 
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suggest that one can apply the model until new evidence is 
found that indicates a further problem. Extensive statistical 
data evaluation of simulation model output may be helpful 
in identifying problems that were not detected in earlier 
external validation processes and, in future, more highly 
automated methods of error detection may prove to be 
helpful. Brade and Waldner have described a tool of this 
kind for automatic detection of violations of desired 
behaviour within a model [4]. Although developments that 
may lead to a more automated approach to external 
validation are of considerable interest, the current view is 
that automated methods of analysis cannot entirely replace 
human review and ‘face’ validation techniques, in which 
experts familiar with the behaviour of the real system carry 
out more subtle and intuitive testing procedures on the 
simulation model. Adequate and detailed documentation of 
the results of these manual testing procedures is, of course, 
of vital importance.  

   9.2.2  Model libraries and their organisation 

 A  library of sub-models  for a specifi c fi eld of application 
must be designed not only to meet current requirements but 
also possible future requirements [5]. A collection of sub-
models should be built up, each of which can be tested 
separately for a range of conditions, documented and made 
available for wider use. Thus sub-models are best designed, 
from the outset, as building blocks for a family of applications 
rather than for a single project with internal verifi cation and 
external validation processes applied, initially, at the sub-
model level. 

 Establishing a taxonomy of models within a library 
becomes important if the number of models is large [6]. 
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This commonly involves generic classes and specifi c sub-
classes of models, and the chosen structures should also, 
ideally, allow movement between energy domains. This 
could, for example, allow one to change easily from 
consideration of electrical motors to hydraulic motors in a 
design application. 

 Model reuse can reduce the development time of new 
models and a model library may allow engineers to choose 
sub-models from a number of possible representations 
involving different levels of detail. Those who use a library 
for development of a new model must be offered a limited 
number of reasonable alternatives for the representation of a 
particular element so that they can make an informed 
decision about the sub-model that best meets their needs [7]. 
Any library of models must therefore be fully supported by 
adequate documentation in order to allow full confi dence in 
a modelling process based on model reuse to be established. 

 As with other aspects of model documentation, the 
information about a library sub-model should include the 
theory used in the development of the model (with sources 
referenced properly), the assumptions made, testing and 
external validation procedures applied, and information 
about the range of applicability. Although models are always 
developed with a particular application in mind and therefore 
involve some subjective elements, they can be made 
potentially useful for other applications if assumptions and 
limitations are clearly stated. This information must all be 
accessible to others. Also, awareness of model limitations 
inevitably fades with time and good documentation is 
essential for the developer, even if others are not immediately 
involved. 

 There are also broader issues of software design that can 
facilitate reuse of sub-models. One example is the extent to 
which the object-oriented approach of general purpose 
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programming languages can be applied in specialised 
packages for modelling and simulation. Also, some 
simulation software such as Modelica® [8] and associated 
packages such as Dymola allow non-causal modelling and 
facilitate the creation of models in declarative style. This 
may allow an interface to be defi ned for a sub-model in terms 
of a pair of variables which are not specifi cally associated 
with an input or an output. 

 In addition to environments, such as Modelica® [8], which 
provide standard model libraries and facilities for developing 
new libraries, other widely used software packages can be 
extended with tools for physical modelling in various 
domains. One example is the Simscape™ package [9], which 
provides the MATLAB®/Simulink® [10] user with access to 
powerful facilities for the integrated modelling of systems 
involving a number of physical domains. Simulink® itself 
includes some standard library sub-models and through 
Simscape™ there are additional standard libraries involving 
sub-models for components in specialised fi elds, including 
mechanics, electronics and hydraulics. There are also 
libraries for mechanical transmission systems and for 
electrical power systems. Using the Simscape™ language, 
which is based on MATLAB®, sub-models can be created 
together with equivalent Simulink® blocks for new physical 
components that do not appear in the standard libraries. 
Similarly, it is relatively straightforward to create entirely 
new libraries using the facilities of Simscape™ and to extend 
existing libraries so that specialist models can be deployed 
across an organisation or made available to subcontractors 
in large projects. Signals and parameters can have units 
within the models in Simscape™ libraries and there are also 
facilities for the automatic conversion of units which can be 
important for multidisciplinary projects involving several 
design teams. Additional facilities that can provide links 
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with other widely used design tools may be included. 
For example, in the case of the mechanics library 
(SimMechanics™), the facilities include translators for 
SolidWorks®, Autodesk®Inventor® and Creo Parametric® 
(formerly ProENGINEER®) to allow use of well-established 
CAD tools in the defi nition of models. 

 In using a model library, the model developer has to 
keep the intended application fi rmly in mind. A model is 
assembled in an iterative way using the three-layered 
structure discussed in  Chapter 3  and selecting appropriate 
sub-models at each layer. The layered approach also has 
signifi cance in terms of model documentation and Breunese 
 et al . [6] describe an approach that could allow more useful 
forms of documentation to be developed. Those authors 
advocate an approach based on the layered type of model 
structure outlined in  Chapter 3 , involving a top layer in 
which the system is considered as a set of physical components 
or real-world objects, a second layer in which the system is 
viewed as a set of physical concepts and the third level 
that depends on mathematical relationships. These three 
layers can be seen as representing three different viewpoints 
that are all important in the context of modelling. As 
discussed in Section 3.3, the detail necessary for descriptions 
at the physical-concept level depends on the application. 
Factors to be considered might involve, for example, 
the range of frequencies or magnitudes over which a 
high level of fi delity is required for certain variables of 
the model. 

 Within an organisation, guidelines are needed for 
formalising the information that must be provided before 
a model or sub-model is accepted for inclusion in a library. 
This should be consistent with the guidelines for 
documentation discussed in Section 9.2.1.   
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   9.3  Multi-formalism in simulation 
and modelling 

 As mentioned in  Chapter 3 , it is often useful, especially 
in large and complex projects involving several design 
teams, to be able to use  different tools and languages  to build 
models of different sub-systems. Individuals may then 
develop and apply a sub-model using tools available within 
their own discipline and introduce that as an element within 
some larger model. The Virtual Test Bed (VTB) [11], 
discussed in  Chapter 3  and mentioned again in the context of 
real-time simulation in  Chapter 8 , facilitates integration of 
sub-models developed using widely used tools. Entities 
can thus be exported from other software environments 
and incorporated into more complex system models within 
the VTB. 

 In one approach available with the VTB, there is no need 
for translation since the process is based on the use of 
‘wrappers’. Wrapped models based on sub-models created 
using software tools such as MATLAB®/Simulink® or ESL 
retain their original behaviour after being imported into the 
VTB environment. 

 It is also possible to bring sub-models into the VTB 
environment from Modelica® or VHDL-AMS using the 
Modlying software application [11], which involves a 
translation process. Modlying fi rst uses software known as 
the Multi-Translator to convert the given sub-model into a 
universal XML-based specifi cation. That XML specifi cation 
is then translated into the form required by the VTB. 

 A third option for integrating sub-models from 
other software environments uses the COM interface 
provided by some software tools (such as MATLAB®) to 
integrate models into the VTB using a co-simulation 
approach (see e.g. [12]).  
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   9.4  Generic models 

 Generic models are a development of the concept of a model 
library. A structure that is  generic  allows reuse of simulation 
software for a wide range of different projects with relatively 
minor reorganisation. Established examples of such a generic 
modelling approach can be found in application areas such 
as automotive engineering (e.g. [13] and [14]), gas turbines 
(e.g. [15] and [16]), electro-optic sensor system models ([17] 
and [18]) and spacecraft [19]. 

 One example that illustrates the use of generic models very 
clearly is the European Space Agency (ESA) Generic Project 
Test Bed (PTB), which involves creation of reusable simulator 
architectures for spacecraft design [19]. In addition to 
spacecraft sub-system models, the architecture allows for 
ground-station models and also some aspects of the 
environment. The PTB is capable of real-time simulation and 
hardware-in-the-loop operation. 

 Making a model generic, even in a specialist application 
area, can present diffi culties. The essential requirements of a 
generic description must be identifi ed fi rst and a suitable 
framework established to give the necessary fl exibility to 
allow a number of more specifi c needs to be satisfi ed by that 
generic representation. 

 As already discussed, a system may need to be represented 
at several different levels of detail at different stages of a 
design project and this must also be possible with the generic 
approach. This means that sub-models, representing specifi c 
parts of the complete physical system, may be needed at a 
number of levels of complexity, ranging from purely 
functional forms at the initial stage to highly detailed and 
fully validated models in the later stages of the project. The 
models at different levels of resolution need to be mutually 
calibrated in some way. Ideally, the structures for the different 
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levels of model will be directly related and the models at 
different resolutions will form an integrated group. The 
relationship between the different levels of each sub-model 
within the generic structure must be fully understood 
by users. 

 The most important benefi t of the generic approach is 
likely to be a faster and less costly development process for 
new models compared with the traditional approach, which 
involves the development, on a one-off basis, of a specifi c 
new model for each new design task. Other benefi ts are likely 
because the development and application of a generic model 
demands a more systematic and rigorous approach to issues 
of model validation, together with better documentation.  

   9.5  Validation of library sub-models 
and generic models 

 Issues of model quality and model validation cannot be 
separated from other processes of model development. The 
modelling of a real system is an iterative process in which 
testing, evaluation and tuning are of central importance and, 
whatever the context, it is essential to ensure that the model 
being used is appropriate for the purpose. An application 
based on a model that does not have the necessary quality is 
bound to lead to diffi culties. 

 Clearly, the elements within model libraries must have 
information about their purpose and limitations. Without 
good documentation, such libraries are of little value. In 
some types of commercial or defence-related applications, 
libraries may involve precompiled sub-models for which 
source code is not provided. This necessitates the use of a 
simulation language having special features and one 
example of such a language is the experimental OOSlim 
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object-oriented simulation language ([20] and [21]). Good 
documentation is clearly very important in such cases as 
there is no opportunity for users to investigate directly the 
details of internal organisation of the sub-models. 

 Some general issues of validation for generic models 
are considered in [18] where the validation of a generic 
electro-optic sensor system model [17] is discussed. The 
generic model is, in this case, intended for use in the design 
of specifi c types of electro-optic systems such as infrared 
search and track systems, missile warning systems and 
thermal imager systems. Although this generic model appears 
quite specialised in terms of the application, the central ideas 
and methodology used in its development are applicable to 
generic models in many other fi elds. 

 The approach adopted for the development of the 
generic model for electro-optic sensor systems involved 
developing models of some specifi c electro-optic sensor 
system applications as an integral part of the process of 
developing the generic model. Particular confi gurations of 
the generic model could then be evaluated and tested against 
these self-contained specifi c models for the same application. 
As confi dence in the generic model increases, new modules 
may be added to the generic structure, but such modifi cations 
have to be comprehensively tested for the particular 
confi guration of the model investigated in the earlier tests 
and this should be based on regressive testing methods. 

 In applying a generic approach to model development, a 
need may arise for a model of a new application, not 
previously considered, using an available generic structure. 
This introduces new challenges which encourage reuse of 
established sub-models but further test the generic philosophy. 
If the approach fails at any point with a new application, 
then either a fl aw has been found in the engineering design or 
a limitation has been found in the generic model. In the latter 
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case, the generic model has to be modifi ed and its capabilities 
extended.  

   9.6  Educational issues 

 Engineers are usually introduced to mathematical modelling 
and encounter computer-based modelling and simulation 
methods early in their university education. However, topics 
relating to model management are completely neglected in 
many courses and most students seldom have to give serious 
thought to what constitutes a simulation model that is fi t for 
purpose. Indeed, all issues of model quality are often glossed 
over in a superfi cial fashion and the teaching often stops 
with the formulation of equations from physical laws and 
principles or with linear models obtained experimentally by 
system identifi cation and parameter estimation methods. 
Also, students often do not make the vitally important link 
between design success and model quality and fail to 
appreciate that correction for model inadequacies at a late 
stage in a project can lead to major additional costs and 
delays in completion. 

 In the words of Hardy Cross, a former Professor of Civil 
Engineering at Yale, ‘. . . an important duty of teachers is to 
force students repeatedly back into the fi eld of reality and, 
even more, to teach them to force themselves back into 
reality’ [22]. In a modelling and simulation context, 
students must develop an understanding of the limitations of 
models and this has to begin at an early stage in their 
education and training. As part of that process, they must be 
introduced to the idea that models need to be properly 
managed and they must get into the habit of documenting 
models and the details of all the model testing processes that 
they apply. 
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 The guide produced in 2007 by the UK Royal Academy of 
Engineering [23] and mentioned in  Chapter 1  puts particular 
emphasis on the importance of integrated system design 
skills for all engineers. It presents a challenge to 
universities to develop courses that not only teach the 
fundamentals of an engineering discipline but also give their 
graduates the abilities to apply sound engineering principles 
to complex design problems involving more than that one 
specialist area. 

 Degree courses must cross traditional boundaries and 
include not only a sound foundation of theory but also 
realistic design exercises involving real engineering 
applications that have the potential to break down human 
barriers and encourage creative and innovative solutions. 
Modelling and simulation methods are of central importance 
for this approach to engineering education, just as they are 
for practical integrated system design. 

 Student exposure to modelling should range from 
initial scoping of problems, involving back-of-the-envelope 
investigations, through combined experimental and simulation 
studies of laboratory-scale hardware, to group project activities 
with students who have other specialisations. This may involve, 
in the later years of their courses, design projects based on 
truly integrated systems and may include virtual prototyping, 
embedded system design and hardware-in-the-loop simulation 
with due attention given to the use of model libraries and 
generic models. Careful management of the modelling process 
becomes vital to the success of the project and needs to be 
maintained throughout the design and development phase, 
through to prototype testing or commissioning. Students must 
start thinking in these terms from an early stage in their training 
and this means that they must be exposed to modelling and 
simulation repeatedly and creatively from the earliest stages of 
their engineering education.   
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                 10 

 Further discussion  

   Abstract:    This chapter brings together ideas presented and 
discussed in earlier chapters and discusses some areas for 
further research. It is concluded that tools for the effi cient 
development and testing of physically based dynamic 
models are of central importance for a model-based 
concurrent approach to the design of integrated engineering 
systems. These tools include methods for forward and 
inverse simulation, model management, sensitivity 
analysis, system identifi cation, parameter estimation, 
model optimisation and partial-system testing. Topics for 
further research within some of those areas are identifi ed.  

   Key words:    model management, research, model 
limitations, model quality.   

    10.1  A summary of some strategic 
issues in the modelling and simulation 
of integrated systems 

 Complex engineering systems, involving closely integrated 
elements from different engineering disciplines, became 
increasingly important during the last two or three decades 
of the twentieth century, initially in the aerospace and defence 
sectors but increasingly in other areas as well. Now integrated 

�� �� �� �� �� ��



314

Modelling and simulation of integrated systems in engineering

systems applications are becoming commonplace in fi elds 
such as the automotive industry, marine engineering, 
electrical power generation and distribution, and chemical 
and pharmaceutical process engineering. Within all these 
areas a multidisciplinary and model-driven concurrent 
approach to design is taking over from traditional sequential 
design procedures. Benefi ts arising from this more concurrent 
approach, if applied correctly, include earlier detection and 
correction of design fl aws, and new possibilities for 
optimisation at the level of the complete system. 

 Because of the central role of modelling and simulation 
techniques in integrated system design and within computer-
aided engineering in general, a strategy is needed to ensure 
that model-based design methods are applied appropriately 
so that system development times and costs can be reduced. 
Simulation techniques do already offer advantages in the 
development of new products through providing a faster and 
more cost-effective approach compared with the use of 
physical prototypes alone. However, current practice in 
system modelling and simulation within many organisations 
still lacks coherence and clarity in terms of strategy. The 
 ad hoc  approach often adopted contrasts strongly with 
accepted procedures in software engineering where rigorous 
processes of testing, documentation and version control are 
an integral part of the development cycle in most 
organisations. As pointed out in Chapter 9, universities have 
an important part to play in properly preparing young 
engineers for careers in which modelling and simulation 
methods will be of central importance and major changes are 
needed in the approach to modelling and simulation within 
most present-day engineering courses. 

 One key issue is that, in the modelling and simulation of 
any complex system, it is essential for all involved to have a 
full understanding of how the model is to be applied. This is 
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especially important when a project includes several teams 
and involves people from different engineering disciplines. 

 The purpose of a model may also infl uence the type of 
description needed. It is usually important in engineering 
applications to retain as much information as possible about 
the corresponding real system and physically based models 
may therefore be preferred. This is especially true in a 
multidisciplinary design environment where engineers have 
widely different backgrounds and experience, and where 
models and computer simulations provide an important 
means of communication about technical issues. 

 The types of applications mentioned in this book show 
that, in addition to displaying nonlinear behaviour, most 
credible physically based models of engineering systems 
involve signifi cant uncertainties in the early stages of their 
development. Important simplifi cations may also have to be 
introduced, often for reasons of computational complexity, 
if the model is to be useful for a design application or in the 
development of a real-time system simulator. Internal 
verifi cation, external validation and testing of such models 
then become important issues. 

 Although experimental modelling techniques and the ideas 
of system identifi cation and parameter estimation are usually 
associated with the modelling of an existing system, these 
methods can also be useful within the processes of design. 
When used as a tool for refi nement of physically based 
models, system identifi cation techniques also need to provide 
an indication of the accuracy of parameter estimates and of 
the validity of the model structure. In parametric models, 
questions of accuracy can be closely linked to issues of 
numerical identifi ability and thus to experimental design. 
However, in many cases, especially with nonlinear parametric 
models, establishing the accuracy of estimated quantities is 
not straightforward. In the case of non-parametric models, 
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useful insight concerning the range of validity of an overall 
model can be gained from the use of frequency-domain 
measures such as coherence. 

 Following the successful application of identifi cation and 
parameter estimation methods, simulation tools can be used 
in the evaluation of the resulting models and for the 
assessment of competing hypotheses, even in cases where 
model uncertainties remain. Such an approach can lead to 
the formulation of new experiments and to a further stage of 
model refi nement, if that is considered necessary for the 
intended application. 

 All models have limitations and one aim in applying 
external validation procedures must be to defi ne properly 
and attempt to understand those limitations. Practical 
validation investigations can cover only a fi nite, and often 
relatively small, number of test cases. Attempts should 
therefore be made to establish confi dence in a model so that 
its performance can be recognised as being reasonable for 
the specifi c objectives associated with the application, rather 
than trying to establish its validity or quality in a general 
way. An additional practical problem is the fact that 
quantitative measures of model credibility are hard to defi ne 
for complex multi-input multi-output models and, as models 
become more complex, there are increasing problems of 
visualisation of model and system behaviour. New methods 
are needed for displaying results effi ciently for multi-output 
situations and for models where there can be strong 
interactions between parameters. It is believed that the type 
of polygon diagram discussed in Chapter 7 may offer 
interesting opportunities for new types of display. One 
advantage of that approach to visualisation is that it is very 
fl exible in terms of the comparisons that are possible. For 
example, these diagrams can allow results of sensitivity 
analysis to be displayed in a simple and effi cient fashion, and 
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are also appropriate for use with deterministic measures of 
performance, such as overshoot magnitudes or frequencies 
of oscillations. 

 In addition to specifi c modelling techniques and simulation 
methods mentioned previously, some emphasis has also been 
given in this book to the reuse of sub-models and to ideas 
associated with generic models. These topics are particularly 
important in the modelling of complex systems, especially 
when the model is being developed using physical principles. 
Many of the topics mentioned in earlier chapters are still the 
subject of ongoing research and development work, and it is 
appropriate to highlight a few that may be particularly 
signifi cant in future.  

   10.2  Research and development work 
on modelling and simulation methods 
for integrated system applications 

 Traditionally, most research in the fi eld of continuous system 
simulation has been concerned with improved numerical 
methods and with the development of enhanced simulation 
environments. These topics are still important and areas 
where there is signifi cant research of this kind include the 
development of improved methods for the numerical solution 
of ordinary differential equations and differential algebraic 
equations, effi cient treatment of discontinuities, improved 
methods for model reduction and the development of 
improved methods for user-computer interaction at run time. 

 However, one important feature of present-day research 
on simulation is an increased emphasis on some of the 
broader aspects of the model development process (such as 
bond-graph and other energy-based modelling procedures, 
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issues of causality in simulation models, model validation 
methods and systematic processes for assessing, correcting 
and documenting models that are used in engineering design). 
These topics are all important in the move towards more 
effi cient model-driven design methods. 

 Issues of experimental design, which are already recognised 
as being very important for the successful identifi cation of 
systems, are also of value elsewhere within the model 
development process and especially in the external validation 
of simulation models. Assessing the adequacy of a model for 
a specifi c use is a diffi cult task and the problem of upgrading 
or tuning a model which is shown to be inadequate for a 
specifi c application raises many questions. Terms such as 
‘model testing’ or ‘model evaluation’ are probably more 
appropriate than the word ‘validation’, which may give a 
false impression of model capabilities. As mentioned earlier, 
theories can be proved to be wrong but cannot ever be proved 
to be right and the ‘unknown unknowns’ mean that there 
can never be a simple conclusion in the processes that we 
conventionally call ‘model validation’. This is not a problem 
that can be ‘solved’ through further research, but there is 
nevertheless valuable insight that can be gained from further 
research and development work in this general area, and this 
is an area still attracting much attention in the aerospace and 
defence sectors. 

 Inverse systems also receive signifi cant attention in this 
book and are the subject of ongoing research. Areas that 
require further attention include improving the computational 
effi ciency and speed of inverse simulation methods, and 
ensuring that inverse simulation tools are more user-friendly 
and can be applied successfully by non-specialists. 

 Issues of robustness and convenience of the user interface 
also arise in the context of evolutionary optimisation 
methods. For example, genetic algorithms are potentially 
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important for the automation of optimisation procedures in 
model development. However, these methods could, at their 
present stage of development, only be applied routinely in an 
industrial design environment if there was a signifi cant 
period of training for those involved. Similarly, the successful 
application of the genetic programming approach depends 
critically on choosing appropriate functions within a function 
library and this requires good understanding of the likely 
physical phenomena in the system under investigation. 
Therefore, at present, genetic programming is unlikely to 
provide any kind of fully automated approach to the 
development of complex models, and more research on this 
topic is needed. 

 Good management of models is essential for the success of 
design projects and user-friendly methods for building up 
system and model documentation are very important. Some 
human-factor issues that arise in model management at 
present could well be reduced or eliminated by the use of 
layered structures in documentation systems where an 
individual could seek information at different levels of detail 
and for different levels of prior knowledge. Development of 
appropriate management systems for this might well 
necessitate research collaboration between design engineers, 
computer scientists, psychologists, educationalists and 
management specialists. Potential benefi ts of improved 
systems for model management within a model-based design 
process could be a reduction in design risks, especially in 
terms of cost infl ation during the design and development 
process, and possible late delivery. 

 It is generally accepted that an integrated approach to 
design should, ideally, involve use of generic forms of 
description and reusable sub-models. Much remains to be 
done in many application areas to make these ideas more 
widely applicable. As outlined in Chapter 9, established 
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examples of such a generic modelling approach can already 
be found in a number of application areas, but there are 
many fi elds where little has been achieved in this respect. 
Object-oriented methods are relevant both for this and for 
assisting with sub-model reuse, and some specifi c software 
environments may offer signifi cant advantages for the 
development of reusable and readily extendable models. 
Further research and development work is clearly needed on 
the principles of generic models. The practical advantage of 
adopting a generic approach also needs to be evaluated 
through additional applications in new areas.     
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                 Appendix A1: models 
of an unmanned underwater 

vehicle (UUV)   

    A1.1  An outline description of 
the basic nonlinear model of the 
vehicle 

 The equations of motion of an underwater vehicle may be 
represented either in body-fi xed or earth-fi xed frames of 
reference (see e.g. [A1.1]). Using standard notation, the 
general body-fi xed vector representation involves the 
nonlinear equations [A1.1]:

  M  υ.  +  C ( υ ) υ  +  D ( υ ) υ  +  g ( η ) =  τ  (A1.1) 

    η.
  =  J ( η ) υ  (A1.2)  

 Here the matrix  M  is the inertia matrix, with added mass 
effects included. The matrix  C ( υ ) involves Coriolis and 
centripetal terms, again with added mass effects included. 
The matrix  D ( υ ) represents damping terms,  g ( η ) is the vector 
of gravitational forces and moments,  τ  is the vector involving 
all externally applied forces and moments and  J ( η ) is the 
transformation matrix which relates the body-fi xed and 
earth-fi xed coordinate systems. 

 The body-fi xed frame involves the six translational and 
rotational velocity variables, as defi ned by the vector  υ ( t ) = 
[ u ( t ),  v ( t ),  w ( t ),  p ( t ),  q ( t ),  r ( t )]    T  , relative to a constant velocity 
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coordinate frame which moves with the ocean current 
velocity vector  u   c  . 

 The six components in the global reference frame are 
defi ned by the vector  η ( t ) = [ x ( t ),  y ( t ),  z ( t ),  φ ( t ),  θ ( t ),  ψ ( t )]   T   . 
Here the angles  φ ( t ),  θ ( t ) and  ψ ( t ) are related to the body roll, 
pitch and yaw variables through the Euler transformations. 
The external forces and moments given by the vector 
 τ  = [ X ,  Y ,  Z ,  K ,  M ,  N ]  T   include gravitational, buoyancy, 
hydrodynamic and propulsive terms and the inputs providing 
the external forces and moments for control of the vehicle 
are generated by control surface defl ections at the rudder 
( δ   r  ( t )), port bow plane ( δ   bp  ( t )) and starboard bow plane 
( δ   bs  ( t )), the stern plane ( δ   s  ( t )), and forces proportional to the 
propeller speed ( n ( t )) and buoyancy adjustment ( B ( t )) ([A1] 
and [A2]). 

 A set of six nonlinear equations for surge, sway, heave, roll 
pitch and yaw motion can then be derived. The parameters 
for the specifi c case of the U.S. Naval Postgraduate School 
(NPS) AUV II vehicle are as given by Fossen [A1] and these 
values are, in turn, based on information provided by Healey 
and Lienard [A2]. This vehicle has a length of 5.3 m and 
mass 5454.54 kg, and the total number of mechanical and 
hydrodynamic parameters for the model is well in excess of 
100. Relevant software developed by Fossen and his 
colleagues at the Norwegian University of Science and 
Technology is available for downloading [A3]. 

 The UUV model may be converted into standard state 
space form from Equations (A1.1) and (A1.2) to give:

    (A1.3)  

 This equation is in the standard state-space form for a 
nonlinear model, i.e.:
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  x
.
  =  F ( x,u ) (A1.4)  

 where  x  is the state vector and  u  is the input vector [A4]. 
 Changes to the model given by Healey and Lienard [A2] 

had to be introduced to make the simulation model behave 
appropriately for the operating conditions and manoeuvres 
of interest. These changes in the model of Healey and Lienard 
are associated with the fact that the published model 
equations were intended originally for use in the development 
of nonlinear control systems for manoeuvres involving 
specifi c ranges of forward speed [A2]. Use of the same model 
for open-loop and manual control investigations over a 
greater speed range led to diffi culties and reinforces points 
made elsewhere in this book about problems likely to be 
encountered when a model developed for one application is 
used in other investigations. 

 For the purposes of modelling, it has been assumed that 
the UUV has one propulsive force, although the vehicle has 
two propellers. The thrust produced is represented by the 
 bilinear thruster model  suggested by Fossen [A1]. This 
involves a relationship for propeller thrust of the form:

  T  =  T   nn  | n | n  +  T   nu  | n | u  (A1.5)  

 where:

  T   nn   =  ρD  4  α  1  (A1.6) 

  T   nu   =  ρD  3  α  2  (A1.7) 

  α  1  = 0.12 − 0.5 α  2  (A1.8)  

 and where  D  (propeller diameter) = 0.3 m,  α  2  = −0.16 and 
the corresponding value of  α  1  = 0.019. These values were 
chosen to provide the surge velocity profi le required for the 
NPS AUVII [A2]. Since the effi ciency of the propeller is likely 
to be of the order of 70 per cent, the force developed by the 
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propeller along the longitudinal axis of the vehicle is 
given by:

  X   prop   = 0.7 T  = 0.7( T   nn  | n | n  +  T   nu  | n | u ) (A1.9)  

 Since the two propellers operate together in a counter-
balancing fashion, the rotational effects of the propellers are 
assumed to be negligible in the model. 

 The model has been further extended by my colleague Dr 
E. McGookin to include the load on the motor shaft due to 
rotation of the propeller in the water [A4]. This representation 
involves considering the propeller as a rotating disc. The 
input is the torque to be applied to the propeller to balance 
its drag and inertia components. Both this torque and the 
drag torque can be combined to give an equation of motion 
for the propeller of the form:

    (A1.10)  

 where  R   DISC   is the radius of the disc used in the rotating disc 
approximation referred to above, the parameter  C   D   is the 
associated drag coeffi cient,  I   0   is the moment of inertia of the 
propeller,  n  is the rotational speed of the propeller and  ρ  is 
the density of water. Therefore, the load torque on the 
propeller,  T   LOAD  , is calculated as:

    (A1.11)  

 This expression, which provides the load on the shaft, 
involves only one uncertain parameter which is the drag 
coeffi cient,  C   D  . However, a disc rotating about its longitudinal 
axis has a drag coeffi cient of 1.369 × 10 −3  [A5] and, in the 
absence of any more precise value, this has been adopted. 
Note that this representation is approximate because it takes 
no account of added mass or the shaft dynamics [A4]. 
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  Figures A1.1  and  A1.2  show how the vehicle responds when 
it starts from an initial condition with all state variables set to 
zero and a propeller input of 1500 rpm applied at time  t  = 0 s. 
As may be seen in  Figure A1.1 , the surge velocity increases 
from zero to a steady value of about 3.8 m/s. At time  t  = 10 s, 
a rudder defl ection of 20 degrees is applied as a step function 
and an immediate response that can be seen in terms of the 
yaw rate and yaw variables. The sway velocity also starts 
to change at that time and reaches a steady value of about 
0.9 m/s. It should be noted that because there are no inputs 
applied to the other control surfaces, the pitch changes in 
response to the propeller and the rudder inputs, and reaches a 
steady value of about 20 degrees, with an associated steady 
heave velocity of about −0.05 m/s. This means that in the 

  Simulated response of vehicle from an initial 

condition with all state variables set to zero 

and a propeller input of 1,500 rpm applied at 

time  t  = 0 s    

  Figure A1.1  
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earth-axis system the vehicle is moving upwards at a constant 
rate from about time  t  = 20 s and this may be seen in  Figure 
A1.2  where the vehicle trajectory is seen to take the form of a 
rising spiral. 

    A1.2  A linearised model describing 
diving motion 

 A linearised dynamic model describing diving motion of the 
underwater vehicle model involves a third-order system with 
the following equations [A1]:

     (A1.12)  

  Earth-axis representation in terms of position for 

transient responses shown in  Figure A1.1     
  Figure A1.2  
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 where  M   q  ,  M   q.  , and  M   δ   are hydrodynamic constants,  I   y   is 
moment of inertia vehicle about the  y  axis,  W  is the weight 
of the vehicle,   B

—
G
–
   z    is the vertical distance between the centre 

of buoyancy and the centre of gravity of the vehicle, and  u   0   
is the forward speed of the vehicle. The state variables  q ,  θ  
and  z  have the conventional meanings, as given in Section 
A1.1 above, and represent pitch rate, pitch angle and vertical 
displacement respectively. The variable  δ   s   represents the 
stern plane defl ection. 

 In simplifi ed form, this equation becomes:

    (A1.13)  

 and for typical operating conditions, using parameter values 
derived from [A1] and [A2],  a  11  = −0.7,  a  12  = −0.3,  u  0  = 1.832 
m/s and  b  1  = 0.035.  Figure A1.3  shows a typical response 
from this model in terms of the change of pitch angle  θ  
following a step change of stern plane defl ection  δ   s  . 

 The relationship between the stern plane defl ection input, 
 δ   s  , and pitch angle,  θ (s), may be expressed [A1] as a transfer 
function:

    (A1.14)  

 and similarly, for the pitch rate:

    (A1.15)  
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 and for the depth:

    (A1.16)  

 The transfer functions for the pitch and pitch rate variables 
involve the characteristic equation:

    (A1.17)  

 and the natural frequency for pitching motion is therefore 
given by:

  Typical response of the linearised UUV model 

showing the change of pitch angle  θ   following a 

step change of stern plane defl ection  δ   s      

  Figure A1.3  
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    (A1.18)  

 with relative damping factor for pitching motion given by:

    (A1.19)  

 Thus the period of pitching oscillations will be affected 
directly by the effective moment of inertia term ( I   y   −  M    q́    ) 
and inversely by the weight of the vehicle  W  and the 
distance between the centre of buoyancy and the centre of 
gravity (  BG   z   ). A reduction of the effective moment of inertia 
or an increase in either of the other two factors will thus 
increase the natural frequency of the oscillations. The 
damping of the pitch response depends directly on the 
hydrodynamic coeffi cient  M   q   and inversely on the terms 
( I   y   −  M     q́       ),  W  and (  BG   z   ).  

   A1.3  Model of the electrical drive 
system 

 The model of the underwater vehicle, outlined above, was 
combined with a model of an appropriate electrical drive 
system.  Figure A1.4  is a schematic diagram of the complete 
UUV system model, showing the interactions between the 
electrical sub-models and the vehicle model [A4]. 

 The electrical sub-model of  Figure A1.4  includes a battery 
which is connected to a DC to AC inverter, involving a three-
phase six-switch network producing a variable-frequency 
AC waveform. This inverter is, in turn, coupled to an 
induction motor. The controlled switches in the inverter are 
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operated by a pulse-width modulated controller switching at 
a frequency of 5kHz and the controller incorporates 
proportional plus integral (PI) control for pulse timing of the 
converter switches in order to maintain a set current level in 
the motor. Switch timings are determined through comparison 
of sinusoidal and triangular waves. The relative amplitudes 
of the two waveforms are adjusted by the feedback system 
and switching occurs when the sine and triangular waves 
intersect. High-frequency harmonics in the AC output from 
the converter are fi ltered out and the result is then supplied 
to the induction motor as input. The motor is connected 
directly to the propeller. 

     A1.4 References 
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  Schematic diagram of the complete UUV system 

model showing interactions between the 

sub-models    

  Figure A1.4  
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                 Appendix A2: numerical 
methods for the solution of 

ordinary differential equations   

    A2.1  Introduction 

 Although it is assumed that readers of this book have some 
knowledge of numerical analysis methods, a brief summary 
of some of the essential concepts of numerical integration is 
provided here. Readers requiring more detailed information 
about numerical analysis methods and especially the 
numerical solution of ordinary differential equations should 
use one of the many texts on the fundamentals of continuous 
system simulation (e.g. [A1] to [A5]). Online user handbooks 
and help systems provided with most modern software 
provide information about methods available within specifi c 
simulation tools. 

 Single-step integration methods, which are the basis of 
many widely used algorithms, depend on approximating 
derivative terms in a Taylor series by evaluating fi rst 
derivatives at a number of points within the current 
integration step. If  x ( t ) is the value of the variable  x  of interest 
within a given fi rst-order ordinary differential equation at 
the start of the integration step and  x ( t  +  h ) is the value at the 
end of the step, then:
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    (A2.1)  

 where  x ′,  x ″ and  x   n   are the fi rst, second and  n th derivatives 
of  x ( t ). The value of the variable  x  at the end of the time 
interval  h  is thus given by the value of  x  at the start of the 
interval plus components from each of the derivatives of  x . 

 Many methods of numerical integration are based on 
Taylor series approximations which involve fi nite-difference 
representations for the second-order and higher derivatives. 
Methods may be classifi ed, broadly, depending on whether 
they are  single-step  or  multi-step  techniques and whether 
they involve  explicit  or  implicit  formulae. In the explicit 
approach, one pass through the formulae produces all the 
required values, whereas in the implicit case, iterative 
methods must be used to fi nd a solution.  Semi-implicit  
methods are also available where the iterative approach 
applies only to a sub-set of the values to be found. The  order  
of the method depends upon how the Taylor series is 
truncated and this truncation gives rise to the  truncation 
error .  

   A2.2  Single-step integration methods 

 Single-step integration methods are widely used and involve 
approximating the derivative terms in the Taylor series by 
the fi rst-derivative at a number of points within the 
integration interval and taking a weighted average of those 
values. The fi rst-order Runge-Kutta formula (also known as 
the ‘forward Euler’ method) is a simple example and is 
obtained from a Taylor series with terms involving  h  2  and 
above removed. For this the derivative is evaluated at the 
start of the step and is applied over the whole interval to 
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provide the increment to be applied to  x  to give the 
approximate value at the end of the step. An implicit 
algorithm that is similar to this is the backward Euler method 
where the derivative is a function of the variable  x  at the end 
of the integration interval rather than at the beginning .  These 
ideas can be applied to more complex approximations. For 
example, the second-order Runge-Kutta formula involves 
removal of the Taylor series terms after the third (i.e. terms 
involving  h  3  and above), but in this case the derivative is 
evaluated at the start of the step and at another point within 
the integration interval. Implicit methods inevitably introduce 
additional computational demands compared with the 
explicit approach, but may have advantages in terms of 
accuracy. 

 It should be noted that for methods that have a starting 
point that is the start of the integration step, the initial value 
of the relevant variable ( x ) and the initial value of the time ( t ) 
are both known. This means that no information is required 
about values in previous steps and such algorithms are said 
to be  self-starting . One benefi t of a self-starting algorithm is 
that the integration step size can be adjusted without 
reference to the step size in previous intervals, leading to 
 variable-step  integration methods. 

 The truncation error depends on the integration step 
size  h  and the error may be controlled through the choice of 
this quantity. However,  numerical stability  issues also have 
to be taken into account. As well as being more accurate, 
implicit integration methods are also usually more stable 
than explicit methods. Most single-step methods that involve 
automatic variation of step-length give error bounds that 
are more restricting than the corresponding bounds in terms 
of stability. Explicit formulae can often give rise to problems 
if the step size is too great and automatic variation of step 
size can result in very slow speeds of solution. It should be 
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noted that, although variable step length methods are 
commonly used for many applications,  fi xed-step  integration 
is important for real-time simulation, as discussed in 
 Chapter 8 .  

   A2.3  Multiple-step methods 

 Multiple-step integration methods use values from previous 
integration steps as well as values from the current step. First 
derivative evaluations from previous steps are stored and 
provide a basis for estimating higher-order terms in the 
Taylor series. One example of the multiple step approach is 
the Adams-Bashforth method, which can involve either 
explicit or implicit formulae. In most situations, use of an 
implicit formula with a multiple-step method provides 
improved accuracy compared with the corresponding 
solution using an explicit formula. 

 One refi nement of the multiple-step approach involves 
use of a  predictor-corrector  approach. In such methods an 
explicit formula (the  predictor ) is used to obtain a fairly 
close approximation, which is then refi ned using an implicit 
 corrector  formula. 

 Multiple-step methods are not self-starting as they require 
values from previous integration intervals. Starting can be 
achieved by using a single-step method for the fi rst few 
integration intervals before switching to the multiple step 
approach. One benefi t of the multiple-step approach is more 
accurate assessment of the error, since stored information 
from past steps can be used to provide improved error 
estimates. 

 Variable-step integration presents more problems with 
multiple-step integration methods than with single-step 
methods, since stored values from previous steps may relate 
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to a period when a different step size was being used. 
Interpolation is needed to allow new values to be found that 
are suited to the new integration interval.  

   A2.4  Problems of stiffness 

 Diffi culties arise with models that involve both very fast and 
very slow dynamics (i.e. models that have a wide range of 
eigenvalues). Such models are said to be  stiff  and a number 
of specialised integration algorithms are available for such 
problems (see e.g. [A4]). The degree of stiffness in a model 
depends on the ratio of the largest to the smallest eigenvalue 
and, in a simple model involving a cascade of fi rst-order sub-
models, this is represented simply by the ratio of the largest 
to the smallest time constants. One widely used approach to 
the solution of stiff problems is  Gear’s method , which is a 
predictor-corrector algorithm [A6].   

 A2.5     References 

  [A1]     Gear ,  C.W.   ( 1971 )   Numerical Initial Value Problems 
in Ordinary Differential Equations  ,  Prentice Hall , 
 Englewood Cliffs NJ, USA .  

  [A2]     Bennett ,  B.S.   ( 1995 )   Simulation Fundamentals  , 
 Prentice Hall ,  Hemel Hempstead, UK .  

  [A3]     Matko ,  D.,     Karba ,  R.   and   Zupančič ,  B.   ( 1992 ) 
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