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Preface

This edited book covers recent developments on fractional dynamics, time-delay
systems, system synchromzatIOn, and neuron dynamIcs.

FractIOnal calculus IS extensIvely used as a powefful tool to mvestigate complex
phenomena in engmeenng and SCIence, and has receIved renewed attention recently.
Chapter I of the book investigates fractional dynamics of complex systems. Some
recent results and applications in fractional dynamics are presented. In Chapter 2,
the synthesIs and applicatIOn of tractIOnal-order controllers are presented. ThIs IS
an active area of research. The tractIOnal-order PID controllers are desIgned for the
velOCity control of an expenmental modular servo system. The system consists of
a digital servomechanism and open-architecture software environment for real-time
implementation. Experimental results of fractional-order controllers are presented
and analyzed. The effectiveness and superior perfonnance of the fractional-order
controls are compared WIth c1asslcalmteger-order PID controllers.

TIme delay IS a common phenomenon in engmeenng, economIcal and bIOlogIcal
systems, and has become a popular research topic in recent years. InChapter 3, equi­
librium stability, Lindsedt's method and Hopf bifurcation, and transient behaviors
in differential-delay equations are presented. Multiple-scale and the center mani­
fold analysIs are addressed. These methods are applied to mvestigate dynamIcal
behavIOrs of a differential-delay system modeling a sectIOn of the DNA molecule.
Chapter 4 focuses on the methodologIes for time-domam solutIOns and control de­
sign of time-delayed systems. Method of semi-discretization and continuous time
approximation are discussed. The spectral properties of the methods will be investi­
gated. A comparative study of stabIlity of time-delayed linear time mvanant systems
IS carned out by the Lyapunov method, Pad approxImatIOn and semI-dIscretizatIOn.
The methods of solutIOn for stochastic dynamIcal systems WIth time delay are also
discussed, and a number of control examples and an experimental validation are
presented.

Chapter 5 develops a theory for synchromzatIOn of multiple dynamIcal systems
under constraints The metric functionals based on the constraints are introduced
to descnbe the synchromCity of two or more dynamIcal systems. The chapter pro-



vi

vides a theoretic framework for designing controllers of slave systems which can be
synchronized with master systems.

Finally in Chapter 6, complex dynamics of neurons with time-delay, stochas­
tICIty and ImpulsIve dIscontmUIty are presented. Complex dynamIcal behavIOrs m­
clude perIOdIC spIkmg, chaotIc spIkmg, perIOdIC and chaotIc burstmg, and synchro­
nization. In this chapter, a comprehensive review on recent developments and new
results in nonlinear neural dynamics are presented.

It is our hope that the book presents a reasonably broad view of the state-of­
the-art of complex systems, and provIdes a useful reference volume to SCIentIsts,
engmeers and students. Furthermore, we hope that the book wIll stImulate more
researches m the rapIdly evolvmg and mterestmg field of complex systems.

EdwardsvIlle, IllInOIS
Merced, CalIforma

Albert C.J. Luo
lIan-QIao Sun

June, 2010
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Chapter 1

New Treatise in Fractional Dynamics

Dumitru Baleauu

Abstract Fractional calculus becomes a powerful tool used to investigate complex
phenomena from vanous fields of SCience and engmeenng. In this context, the re­
searchers paid a lot of attention for the fractional dynamics. However, the fractional
modeling is still at the beginning of its developing. The aim of this chapter is to
present some new results in the area of fractional dynamics and its applications.

1.1 Introduction

FractiOnal calculus deals Withthe generahzatiOn of ddferentlatiOn and mtegratiOn to
non-mteger orders. FractiOnal calculus is as old as the claSSical one and it has gamed
importance dunng the last few decades m vanous fields of SCience and engmeenng
(Oldham and Spanier, 1974; Miller and Ross, 1993; Samko et aI., 1993; Podlubny,
1999; Hilfer, 2000; Zaslavsky, 2005; Magm, 2000; Kilbas et aI., 2006; West et aI.,
2003; Uchaikin, 2008; Lakshmikantham et aI., 2009).

The fractiOnal denvatlves are the mfimtesimal generators of a class of translatiOn
mvanant convolutiOn semigroups which appear umversaIIy as attractors. The frac­
tional derivative at a point x is a local property only when a is an integer. Since the
fractional derivatives represent the generalization of the classical ones, some of the
classical properties are lost, e.g. the fractional Leibniz rule and the chain rule be­
come more comphcated than the claSSical counterparts (Oldham and Spamer, 1974;
Miller and Ross, 1993; Samko et aI., 1993; Podlubny, 1999; Kilbas et aI., 2006).

Several apphcatiOns of fractiOnal calculus were Simply based on replacmg the
time derivative in an evolution equation with a given derivative of fractional order.

Dumitru Baleanu
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Various recent results confirm that fractional derivatives seem to arise for impor­
tant mathematical reasons (Podlubny, 1999; Hilfer, 2000; Zaslavsky, 2005; Magin,
2000; Kilbas et aI., 2006; West et aI., 2003; Uchaikin, 2008; Lakshmikantham et aI.,
2009; Gorenflo and MaInardI, 1997; Heymans and Podlubny, 2006; MaInardI et aI.,
2001; Scalas et aI., 2004; Jesus and Machado, 2008; Chen et aI., 2004; Barbosa et aI.,
2004; Carpinteri and Mainardi, 1997; Solomon et aI., 1993; Fogleman et aI., 2001;
Nigmatullin and Mehaute, 2005; Momani, 2006; Tarasov, 2006, 2005; Zaslavsky,
2002; Lorenzo and Hartley, 2004; Baleanu et aI., 2009a,b; Magin et aI., 2008; Ma­
gIn, 2009; SIlva et aI., 2008; TruJIllo, 1999; Maraaba et aI., 2008a,b; Baleanu et
aI., 2008a; Baleanu and MuslIh, 2005a; Caputo, 2001; LIm and MUnIandy, 2004;
MaInardI et aI., 2001; MaInardI, 1996; Tenrelro Machado, 2003, 2001; Metzler et
aI., 1995).

Based on the fact that the diffusion can be described by fractional differential
equations, we ask the follOWIng questIOns:

Are mathematIcal models WIth tractIOnal space and/or tIme derIvatIves conSIstent
with the fundamenta I laws of nature? How can the fractiona I order of differentiation
be observed experimentally?

Recently the fractional order differential equations started to play an important
role in modeling the anomalous dynamics of various processes related to complex
systems In the most dIverse areas of SCIence and engIneerIng. However, only a few
steps have been taken toward what may be called a coherent theory of these equa­
tions in the applied sciences (Oldham and S'panier, 1974; Miller and Ross, 1993;
Samko et aI., 1993; Podlubny, 1999; HIlfer, 2000; KIlbas, 2006; UchaIkIn, 2008;
Lakshmikantham,2009).

The tractIOnal LagrangIan and HamIltOnIan are typIcal examples of non-local
theOrIeswhIch were InvestIgated In several phySIcal problems (PaISand Ohlenbeck,
1950; Gomls et aI., 2004, 2001; Gomls and Mehen, 2000; Llosa and VIves, 1994;
Bering, online). Besides, a Hamilton formalism for nonlocal Lagrangian was pro­
posed in Llosa and Vives (1994) and Bering (online), an equivalent singular first
order LagrangIan was obtaIned and the correspondIng HamIltOnIanwas pulled back
on the phase space by makIng use of the correspondIng constraInts (Llosa and VIves,
1994). It was shown the space-time non-commutative field theOrIesare acausal and
the unitarity is lost (Seiberg et aI., 2000; Alvarez-Gaume and Barbon, 2001).

The fractional variational principles represent an important part of fractional cal­
culus and It IS connected to the fractIOnal quantIzatIOn procedure (RIewe, 1996,
1997; KlImek, 2001; KlImek, 2002; Agrawal, 2002; Tarasov and Zaslavsky, 2006;
Agrawal and Baleanu, 2007; Agrawal, 2006, 2007; Baleanu and Agrawal, 2006;
Baleanu and Avkar, 2004; Baleanu, 2009; Rabei et aI., 2009; Baleanu et aI., 2008b;
Baleanu, 2006, 2008; Baleanu and TruJIllo, 2008). There are several proposed meth­
ods to obtain the fractional Euler-Lagrange equations and the corresponding Hamil­
tOnIan (Baleanu et aI., 2008a,b; Rabel et aI., 2007; Baleanu and MuslIh, 2005b;
MuslIh and Baleanu, 2005a; Baleanu et aI., 2006). However, thIS Issue has not yet
completely clarIfied and It requires more further analySIS.

Quantization of systems with fractional derivatives is a novel area in the applica­
tion of fractional differential and integral calculus. The interest in fractional quan-
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tization appears simply because it describes both conservative systems and non­
conservative systems (Muslih and Baleanu, 2005b; Lim and Teo, 2009).

Schrodinger equation was considered with the first-order time derivative mod­
died to Caputo fractIOnal ones m Naber (2004), Dong and Xu (2008) and Ju­
mane (2009). However, m this case the obtamed Hamiltoman was found to be non­
Hermitian and non-local in time and the obtained wave functions are not invariant
under the time reversal. The quantization of fractional Klein-Gordon field and frac­
tional electromagnetic potential in the Coulomb gauge and the temporal gauge were
subjected of mtense debate (Lim and Teo, 2009).

The necessary conditions for the optimahty m optimal control problems With
dynamics descnbed by differential equations of fractIOnal order were obtamed
(Agrawal and Baleanu, 2007; Agrawal, 2004; Baleanu et aI., 2009). By making use
of an expansion formula for fractional derivative, optimality conditions and a new
solutIOn scheme is proposed.

It was proved that the fractIOnal calculus models With differential equatIOns can
descnbe more complex bIOlogical systems by extendmg the scales (time and space)
over which the models are effective and thus expand the range of phenomena under
study.

The fractional wavelet transform (Unser and Blu, 2000b, 2002, 1999, 2000a)
represents a new and important mathematical tool for Signal and image analYSiS.
The fractIOnalwavelet analYSiS (Dm~ and Baleanu, 2006, 2010) and the combmatlOn
of this method with some other standard ones (Walczak, 2000; DinG and Baleanu,
2007, 2004b,a; DinG et aI., 2003) were proposed very recently in order to investigate
the composite signals of the components in complex drug mixtures.

ThiS chapter is based mamly on the results obtamed by the author and hiS col­
laborators m vanous fields of fractIOnal calculus and its apphcatlOn. The chapter is
orgamzed as follows:

In Section 1.2 the main definitions and the properties of the fractional calculus
are presented.

SectIOn 1.3 is dedicated to the fractIOnal vanatlOnal pnnciples and their apphca­
tlOns

'"'S-ec--'t~lO-n----'-I--'.4'-c-o-n--'t-a~m-s-a---'-br~i-efr-re-v~ie-w-o--'f"t'-h-e"f-ra-c-'ti-o-n-a'-l-o-pt"i-m-a-'l-c-o-n'-tr-o~l"fo-r-m-u-'l'-a"ti-o-n.

SectIOn 1.5 is devoted to the apphcatlOn of the fractIOnal calculus m nuclear
magnetic resonance.

Fractional wavelet method and its applications in drug analysis are illustrated
bnefly m SectIOn 1.6.

1.2 Basic definitions and properties of fractional derivatives and
integrals

In thiS sectIOn we present the baSiC defimtlOns of the fractIOnal denvatives and m­
tegrals (Oldham and Spamer, 1974; Miller and Ross, 1993; Samko et aI., 1993;
Podlubny, 1999; Kilbas et aI., 2006).
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Definition 1. Riemann-Liouville left-sided fractional integral of order a is given by

1 IXaD;"'¢(x) = r(a) a (x - t)"'-l¢(t)dt, x> a. (1.1)

Definition 2. Riemann-Liouville right-sided fractional integral of order a has the
form

(1.2)

Here a> 0 and r(a) = Jooo s"'-le-sds denotes the Gamma function.

Having defined the fractional integral, define the fractional derivative as the in­
verse operation, namely

(1.3)

(1.4)

where a - N - u, N is the smallest integer bigger than fL and fL > o.
Definition 3. Left Riemann-Liouville fractional derivative of order a is defined as

(1.5)

Definition 4. Right Riemann-Liouville fractional derivative of order a becomes

(1.6)

n - 1 :::; a < n, and a > O.

Note that, tor a = 1, 2, ... we have

( - ddX) C>xDb' =

Definition 5. The left Caputo fractional derivative is defined as

n-l ¢(k)( )
¢(x) - ,,__a (x _ a)kc: k!

k=

or

(1.7)

(1.8)

(1.9)

(1.10)
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Definition 6. The right Caputo fractional derivative IS defined as

5

(1.11)

where 0 < n - 1 < a < nand ¢(x) has n+1 continuous and bounded derivatives
in la, bl.

we notice that

and

C C>A
a D'; = 0, (A = constant) (1.12)

lim ~D~¢ = O.

In an mfimte domam we have the followmg results

(1.13)

(1.14)

Let us consider a function f (Xl,X2).

Definition 7. A partial left Riemann-Liouville fractional derivative of order a2, 0 <
a2 < I, m the second vanable IS defined as

(1.15)

Definition 8. A partial right Riemann-Liouville fractional derivative of order ak

has the form

(1.16)

If the function f is differentiable we obtain

Definition 9. Reflection operator 8 is defined as follows

8¢(x) = ¢(a + b - x)

and it has the following properties

(1.17)

(1.18)

(1.19)

(1.20)
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In addition, we have other properties of fractional derivatives and integrals, namely:
SemI-group property

D - a D (3.1, D a (3.1,x b x b 'I-' - x b '1-',

where a > 0, f3 > 0.

Reciprocity

In the more general case we have

Da D-(3.h - Da-(3.h
a xa x 0/ - a x 0/'

Composition Rules

d
n

[ Da.h] = Dn+a.hdx" a x 'I-' a x '1-', a ~ 0,

Da[ dn .h(x)] = Dn+a.h(x) _~ ¢(j)(a)(x - a)j-a-n
a x dxn'l-' a x 'I-' ~ r(1 + j _ a - n) ,

T1 -1 < a < T1.

d~nn and aD';; are commutative only if ¢(j) (a) = °for j = 0, 1, ... , n - 1.

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

aD~[aD~¢(x)] = aD~+(3¢(x) - f[aD~-j¢(X)]x=a ;~I-~j-~-~), (1.27)
J=1

m -1 < (3 < m.

In particular, the fractional derivatives commute

if
laD~ j¢(x)lx=a = 0, j = 1, ... ,n

(1.28)

(1.29)

(1.30)[aD~ j¢(x)]x=a = 0, j = 1, ... , m.

Chain Rule has the following form:
For¢(x) = F(h(x)) we obtain

a (x-a)-a oo (a) k!(x-a)k-a dk
aDxF(h(x)) = r(l-a)¢(x)+t; k r(k_a+l)dxk F(h(x)), (1.31)

and It IS obtamed WIth the help of Faa dl Bruno formula given below:
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dk k k (hCrl ( ))ar
-F(h(x)) = k! '" FCml(h(x)) '" II~ __x ,
dt k ~ ~ ar! r!

m-] r-]

7

(1.32)

k

2::rar = k,
r-l

k

r-l

(1.33)

Lelbnzz Rule has a comphcated formula as given below

aD~(¢(x)1j;(x)) = f (~) ¢Ckl(x)aD~-k1j;(x), (1.34)
k-O

where ¢(x) and 1j;(x) have continuous derivatives in la, tl.
Definition 10. Mittag-Leffler function IS defined as

00 tk

e; = L r(ak + 1)' a> 0, a E lR.
k-O

By usmg Eq. (1.35) we observe that

EI(t) = exp(t),

Definition 11. The two-parameter Mittag-Leffler function has the form:

(1.35)

(1.36)

(1.37)

oo tk

Ea ,{3 (t ) = L r(ak + (3)' a> 0; (3 > 0, a, (3 E lR. (1.38)
o

From (1.38) we conclude that

( )
_ sinhJt

E 2 2 t - fi', yt

(1.39)

(lAO)

(1.41 )

The Laplace transformations for several Mittag-Leffterfunctions are summarized
m the followmg:

1
L(ta

-
I E (-Ata

) ) = --
a,a sa + A'

(1.42)

(1.43)
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(1.44)

In the following we are going to present a brief introduction of the generalized
functiOns and they connect with the fractiOnal denvatives.

Generahzed functiOns have many mterestmg apphcatiOns m SCience and engi­
neenng (Gelfand and Shl1ov, 1964).

Let us consider the Cauchy's integral formula as given below:

1 itj(-n) = _ j(T)(t - Tt-1du.
r(n) a

(1.45)

Here n is a positive integer, r(n) denotes the Gamma function and a < t. Let us
consider <JJ;; (t) as given below:

<JJ+(t) = ~tn-l t > 0
n r(n) , (1.46)

and zero for t < 0
Letting f be zero for t < a and by making use of (1.46), we obtain that (l.45)

becomes
aI~ j(t) = j(t) *<JJ;;(t),

where * denotes the convolution operation and it is given by

g(t) * j(t) = 1:00

g(T)h(t - T)dT.

(1.47)

(l.48)

EquatiOn (1.47) can be generahzed for any a> 0 as (Gelfand and Shl1ov, 1964)

aIf j(t) = j(t) *<JJ;(t), (1.49)

where <JJ;t (t) is a generalized function or distribution (Gelfand and ShiIov, 1964).
Having in mind to define the convolution of two generalized functions we have

to defined first the test functions (Gelfand and Shl1ov, 1964). For these reasons we
choose the set K of all real functions ¢(x) with continuous derivatives of all orders
and with bounded support. We denote these functions the test functions. We can add
and multiply by a scalar a test function in order to get new test functions, as a result,
K becomes a linear space. Another interesting property of these test functions is
that the sequence ¢l (x), ... , ¢v (x) of test functions converges to zero in K if all
above mentiOned functiOns vamsh outSide a given fixed common bounded region
and converge umformly to zero together With their denvatives of any order.

We claim that j is a continuous linear functional on K if there exists some rule
according to which we can associate with every ¢(x) in K a real number (1, ¢) such
that (Gelfand and Shl1ov, 1964)
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a) (f, OO1¢1 + OO2¢2) = 001 (f, ¢d + OO2(f, ¢2), for any real numbers 001 and 002
and for any two functions ¢1(x) and ¢2(x).

b) If the sequence ¢1, ¢2, , ¢v, ... converges to zero in K, then the sequence
(f, ¢d, (f, ¢2), ... , (f, ¢v), converges to zero (Gelfand and Shilov, 1964).

The next step is to consider k(t) = g(t) *h(t) and a test function ¢(x). Therefore,
we obtam the followmg (Podlubny, 1999; Gelfand and Shdov, 1964):

(k, ¢) = Jk(t)¢(t)dt = it J{J g(~)h(t - ~)d~} ¢(t)dt

././ g(~)h(TJ)¢(~+ TJ)d~dTJ· (1.50)

Here the limits of the mtegrals are -00 and +00 respectively.
By makmg use of (1.50) we obtam the generalizatIOn of a convolutIOn of two

functIOnsas mentIOnedin the followmg:

(g * h, ¢) = (g(t), (h(T), ¢(t + T)/). (1.51)

From (1.51) we obtain the following properties ofthe convolution operation:

9 * h = h * g,

D(g * h) = (Dg) * h = 9 * (Dh),

(1.52)

(1.53)

(1.54)

where D(·) denotes the generalized derivative. The relation between the general­
ized derivative and the classical derivative becomes (Podlubny, 1999; Gelfand and
Shdov, 1964)

(1.55)

For a < 0 and 4>t (t) as a generalized function we introduce the notion of left
fractional derivative as given below:

(1.56)

or

In the same way, we define

aDf[f] = f(t) * 4>+ry(t), a> O.

(1.57)

(1.58)

The most interesting properties of the distributions 4>1; (t) are (Podlubny, 1999;
Gelfand and Shdov, 1964)
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D n = <pt(t),n E Z,

From (1.60) we obtain

Dumltru Baleanu

(1.59)

(1.60)

(1.61)

For 0 :::; n - 1 :::; a < n we obtam the followmg important relatiOns for the
generahzed tractiOnal denvative

aDf(f) = f(t) *<Pt(t) = f(t) * (Dn<p~_a)(t)

= iD" f(t) * <P~ a(t)) = Dn(f(t) * <P~ a(t))· (1.62)

From (1.62) we observe that the distnbutiOnal forms of Caputo and the Riemann­
Liouville are the same.

The right fractional derivative can be define as follows

where t;p-a is defined as

In addition, we have

_ (_t)a-l
<P_a(t) = r(a) , t < 0,

<P=a(t) = 0, t ~ 0.

<Pv (t) = (-l)"D "o(t ),

(1.63)

(1.64)

(1.65)

for n being integer.
The integration by parts formula is valid for the generalized fractional deriva­

tives, namely

I aD~[j]g(t)dt = I tD~[g]f(t)dt.

1.3 Fractional variational principles and their applications

(1.66)

The Lagrangian formulatiOn of dynamical systems represents one of the most im­
portant principle in physics.

The corresponding Lagrangian for dissipative systems depends explicitly on
time, therefore the Hamlltoman depends exphcitly on time too.

One still open and important issue m thiS area is the tractiOnal quantizatiOn pro­
cedure. The mam obstacle for tractiOnal calculus quantization is represented by its
non-locality of the fractional derivatives.
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The main advantage of this theory is that it incorporates, under certain limits,
both the conservative and nonconservative systems.

1.3.1 Fractional Euler-Lagrange equations,for discrete systems

The classical Euler-Lagrange differential equation is the fundamental equation of
calculus of variations

It states that J if IS defined by an mtegral of the form

1= I j(t, y, i/)dt,

. dy
y = dt'

then J has a stationary value if the Euler-Lagrange differential equation

oj _~(Oj)=o.
oy dt oy

Let us consider the following Lagrangian

1 .2 ( )L = -q - V q.
2

As a result, the corresponding Euler-Lagrange equation becomes

oV(q) .. _ 0
oq + q - .

(1.67)

(1.68)

(1.69)

(1.70)

(1.71)

In the followmg we are grvmg the tractiOnal generalizatiOn of the above results.
Let us assume that ai (j = 1, ... , nd and Pk (k = 1, ... , n2) are two sets of

real numbers all greater than 0, a m a x = max(al,"" ani, PI, ... ,Pn2), and M is
an integer such that M - 1 :S a m a x :S M. Let J[qP] be a functional of the type

(1.72)

defined on the set of n functions qP, p = 1, ... , n which have continuous left
Riemann-Liouville fractional derivative of order ai, j = 1, ... , nl and right
Riemann-Liouville fractional derivative of order Pj, j = 1, ... , n2 in la, b] and
satisfy the boundary conditions (qP(a))(j) = q~i and (qP(b))(j) = q~i' j =
1, ... ,M -1. A necessary condition for JlqPI to admit an extremum for given func­
tions qP(t), p = 1, ... , n is that qP(t) satisfy Euler-Lagrange equations (Agrawal,

~
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Bl. nl a oL n2 (3 oL
;::> p + LtDbJ aj p + LaDtJ (3 = 0. (1.73)
oq j=1 OaDt q j=1 OtDbJ qP

Here, if exi is an integer, then aD~j and tD~j must be replaced with the ordinary
derivatives (dj dt)a j and (-djdt)a j , respectively. The method initiated by Agrawal
(Agrawal, 2002) was generalized and improved by Baleanu and coworkers (Baleanu
et al., 2006; Baleanu and Avkar, 2004; Baleanu, 2004; Mushh and Baleanu, 2005c;
Baleanu and Mushh, 20055).

Let us start wIth the followmg claSSical Lagrangian

L(x, y, z) = xi + yz3.

The classical solutions of Euler-Lagrange equations are given below

x(t) = at + b, z(t) = 0.

(1.74)

(1.75)

We notice that y( t) has an undetermined evolution and a and b are constants to
he determined from the initial conditions

The fractional generalization of (1.74) becomes

As a result, the Euler-Lagrange equations of (1.76) are given below

tDb(aD~ z) = 0, z3 = 0, tDb(aD~x) + 3yz2 = 0.

(1.76)

(1.77)

From (1.77) we notice that z - 0, Y is not determmed. We note that x fulfills the
followmg equation

tDb(aD~x) = 0.

The solution of (1.78), under the assumption of 1 < ex < 2, is given by

x(t) = A(t - a)a-l + B(t - a)a-2

(
t - a)+C(t-a)a2H 1,1-ex,1+ex'b_a

+ D(t - a)a
2F1 ( 1,2 - ex, 1 + ex, : =:) .

(1.78)

(1.79)

Here 2H represents Gauss hypergeometric function and A, B, C, and D are real
constants. When ex ----+ 1+ and a = 0, the classical linear solution of one-dimensional
space is recovered, namely

x(t)=A+Ct. (1.80)
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1.3.2 Fractional Hamz7tonianformulation

1.3.2.1 A direct method with Riemann-Liouville fractional derivatives

In the following we introduce the meaning of fractional Hamiltonian. For simplicity,
in the following we consider the following form of the fractional Euler-Lagrange
equations (Agrawal, 2002)

8L a 8L
8qp(t) + tDb 8aDfqp(t) = 0, 0 < a < 1, P = 1, ... , N. (1.81)

In the following by using (1.81) we define the generalized momenta as (see, for
example, Ref.(Rabei et al., 2007) for more details)

(1.82)p= 1, ... ,N.
8L

Pap = 8aDfqp(t)'

As a consequence of (1.81) and (1.82) a Hamiltonian function is defined as

(1.83)

The canonical equations corresponding to (1.83) are given below

8H 8L
at at'

(1.84)

8H _ a p8 -aDtq,
Pap

8H a
~ =tDbPa ,0 < a < 1, p= 1, ... ,N.
uqP P

(1.85)

(1.86)

1.3.2.2 A direct method within Caputo fractional derivatives

In the followmg we present bnefly the Haml1toman formulatIOn wlthm Caputo's
fractIOnal denvatlves (Baleanu and Agrawal, 2006). Let us conSider the fractIOnal
Lagrangian as given below

L( C o: ) 0 1q,a t q, t, < a < . (1.87)

By using (1.87) we define the canomcal momenta Pa as follows

8L
Pa = 8e Da .

a t q
(1.88)

We define the fractional canonical Hamiltonian as

(C a)H = Pa a D'; q - L. (1.89)
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Taking total differential of (1.89) and by using (1.88), we obtain

C a 8L 8L
dH = dPa (a D'; q) - ~dq - ~dt.

uq ot

Dllmitm Raleaoll

(1.90)

Taking into account the fractional Euler-Lagrange equations we obtain

dH = (~Dfq)dPa + (tD'bPa)dq - ~~ dt. (1.91)

Finally, after some simple manipulations, the fractional Hamilton equations are ob­
tained as follows

8H C a
~ =aDtq,
UPa

1.3.2.3 Fractional Ostrogradski's formulation

(1.92)

(1.93)

(1.94)

The higher-derIvatives theOrIes (Gitman and Tytm, 1990; Nesterenko, 1989) appear
naturally as corrections to general relativity and cosmic strings as well (Birell and
Davies, 1982). The unconstrained higher-order derivatives have more degree of free­
dom than lower-derivative theories, as a result a lack a lower-energy bound was
reported. A method how to remove all these problems was suggested m (Simon,
1990). It was reported that the non-local formulatiOn can be WrItten as an mtimte
order Ostrogradskt's formulatiOn (Gitman and Tytm, 1990; Nesterenko, 1989). On
the other hand the fractional derivatives are non-local objects and we have a decom­
position formula for them. In conclusion, a natural question is how to formulate a
theory correspondmg to the fractiOnal case.

Let us conSider an ordmary local Lagrangian dependmg on a timte number of
derIvatives at a given time as (BerIng, onhne)

L (q(t), q(t), ... , q(n)(t)) . (1.95)

Let us consider a Lagrangian depending on a piece of the trajectory q(t, A) for
VA belonging to an interval la, bl, namely

Lnon(t) = L(q(t + A)). (1.96)

Here a, b represent real numbers. Therefore, we have created a non-local Lagrangian
and the corresponding action function is given by
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S(q) = .I dtLnon(t).
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(1.97)

We are able to write the Euler-Lagrange equation corresponding to (1.97) as
(Benng, onhne)

J
oLnon(t)

dt o(q(t)) = O. (1.98)

We observed that Equations (1.98) are functional relations to be satisfied by a
Lagrangian constraint. Another observation is that there is no dynamics except the
displacement inside the trajectory

q(t) ----; q(t + A).

The following step is to introduce the dynamical variable Q(t, A) as

Q(t, A) = q(t + A).

Let us consider a field Q(t, A) instead of a trajectory q(t), namely

Q(t, A) = Q'(t, A),

(1.99)

(1.100)

(1.101)

where Q =~ and Q'(t, A) = ~. In such a way we obtain a 1 + 1
dimensIOnal formulatIOn of non-local Lagrangian (Benng, onhne).

The coordmates and momenta are suppose to have the followmg forms

(1.102)

(1.103)

and

In conclusIOn, the HamiHoman for I + I dimensIOnal field has the form

H(t, [Q, P]) = I dAP(t, A)Q'(t, A) - L(t, [Q]),

(1.104)

(1.105)

where P denotes the canonical momentum of Q. The phase space is T *J equipped
with the fundamental Poisson brackets

{Q(t, A),P(t, X)} = O(A - A').

The functional L(t, IQI) is defined as below

L(t, [Q]) = JdA5(A)L(t, A).

(1.106)

(1.107)
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By analyzing (1.107), the primary constraint becomes

¢(t, A, [q, P]) = P(t, A) - daX(A, -a)E(t; a, A) ::::; O.

E(t; a, A) and X(A, -a) have the following definitions:

( . A) = oL(t,a) (A _ ) = E(A) - E(a)
E t,a, OQ(t,A)' X , a 2'

Dumitru Ba1eanu

(1.108)

(1.109)

where E(A) denotes the sigma distribution. By using this construction the Euler­
Lagrange equation IS guaranteed by Itself

¢ rv 7/J = I da~(t; a, A). (1.110)

Inthe followmg we would lIke to derIve both the LagrangIan and the Hamlltoman
fonnalisms for non singular Lagrangian with fractional order derivatives starting
from the Hamiltonian fonnalism of non local-theories (Baleanu et al., 2006). Let us
consider the following Lagrangian to start with

L(q,t) = L(t,qa",),

where the generalIzed coordmates are defined as

(1.111)

(1.112)

where m is a natural number.
To obtam the reduced phase space quantization, we start wIth the mfimte dImen­

sional phase space T * J(t) = ~Q(t, A),P(t, A)}.
The key Issue IS to find an approprIate generalIzatIOn of (1.104) for the tractIOnal

case (Baleanu et a1., 2006). As It was pomted out m (BerIng, onlIne) the coordmates
and the momenta are considered as a Taylor series. Therefore, the first step is to
generalIze the claSSIcal serIes to the tractIOnal case. A natural extensIOn IS to use
factorIal mstead of the Gamma functIOn. In thIS way we mtroduce naturally the
generalized functions instead of em(A) and em(A) given by (1.104).

As it is already known several fractional Taylor's series expansions were de­
veloped (TruJIllo, 1999; Hardy, 1945), therefore we have to decIde whIch one IS
appropriate for our generalization. Since we are dealing with fractional Riemann­
LIOuvIllederIvatIves we choose the followmg generalIzatIOn proposed, namely

tx:

m=-CX)

00

(1.113)
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where
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(1.114)

and am = m +a, with 0 < a < 1. Here )\0 is a constant. The coefficients m (1.113)
are new canonical variables:

(1.115)

By usmg (1.115) we obtam that

=
(1.116)

and

(1.117)

Therefore, ea", (A) and earn (A) form an orthonormal basis. We stress on the fact
that (1.116) and (1.117) involve the generalized functions and the relations have the
meaning in the sense of generalized functions approach (Gelfand and Shilov, 1964;
Hardy, 1945).

The fractiOnal Haml1toman is now given by

=
(1.118)

m=-CX)

The momenta constraints become an infinite set of constraints

The fractiOnal Euler-Lagrange equations are as follows

~ Dal aL(t) = 0
~ t b aqal (t) .

1--00

(1.119)

(1.120)

An interesting property of the fractional series proposed by Riemann and dis­
cussed by Hardy m (Hardy, 1945) is that when am becomes mtegers the usual form
of Taylor senes is obtamed. Therefore one should notice that for mteger values of
am we have

n m 1 ( d) I aL(t)
v«; (t) - ~ - dt a(a~+m+iq(t)) = 0, (1.121)

which is the defimtiOn of Ostrogradskl's momenta (Gitman and Tytm, 1990).
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In this case the Euler-Lagrange equation for original fractional derivative La­
grangian is given below

~ Dal oL(t) = 0.
~ t b oqal (t)
[-0

(1.122)

Now, from this equation, for integer values of am we obtain the Euler-Lagrange
equation for higher derivative Lagrangian, namely

n ( d)l oL(t) =0,
~ - dt o(o~q(t)) (1.123)

The constraints (1.121) and (1.123) lead us to ehmmate canomcal pairs
~qal,Pal HZ> n).

In thIScase the mtimte dImensIOnal phase space IS reduced to a timte dImensIOnal
one. The reduced space is coordinated by T *In = {qa1 , Pa,} with Z= 0, 1, ... , n­
1. The Hamiltonian in the reduced space is given by

(1.124)
m=O

One should notice that the canonical reduced phase space Hamiltonian (1.124) is
obtained in terms of the reduce canonical phase space coordinates {qa1 , Pal} with
Z = 0, 1, ... , n - 1. In this case the path integral quantization of filed system is given
oy

n I

K = JII dqa=dpa=ei{J dt(L:;;'~~pQ=qQ=+l-H)}.

m=O

(1.125)

We observe that when a are integers, we obtam the path mtegral for systems wIth
higher order Lagrangian (Gitman and Tytin, 1990; Nesterenko, 1989).

1.3.2.4 Example

The classical Pais-Uhlenbeck fourth order oscillator is described by the following
equatIOn (PaIS and Uhlenbeck, 1950)

(1.126)

where 1, WI, and W2 are all posItIve constants. As It can be seen from (1.126), the
model represents two oscillators coupled by a fourth-order equation of motion. The
tractIOnal generahzatIOn of (1.126) can be obtamed by replacmg the claSSIcal denva­
tIves to the tractIonal one. It IS easy to see that the tractIonal LagrangIan counterpart
correspondmg to the fractIOnal generahzatIOn of (1.126) becomes
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(1.127)

(t - a)-2a 00 (20) (t - a)k-2a (k)
r(l_p)q(t)+{; k r(k-20+1)q (t)

2

(t - a)-a ~ (0) (t - a)k-a (k)
r(l_p)q(t)+L.., k r(k-o+1)q (t)

k=l

2

(1.128)+ WiW~q2(t)].
~_-----------------

FmalIy, we obtam the folIowmg Lagrangian

I

'YLf[Q][t] = 2
2

(t - a)-2a Q(t) +~ (20) (t - a)k-2a Q(k)(t)
r(1-20) ~ k r(k-20+1)

2

(t - a)-a Q(t) + f (0) (t - a)k-a Q(k)(t)
r(l - 0) k=l k r(k - 0 + 1)

(1.129)

In our mvestlgated case, we obtam the folIowmg tractIOnal Euler-Lagrange and
Hamilton equations

• I (t - a) 2a 2a
p(O)(t) = 'Y r(l _ 20) aDt Q(t)

1.3.2.5 Fractional path integral quantization

The classical Lagrangian to start with is given by
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where wand E are constants.
The fractIOnal generahzatIOn of (1.132) has the foIIowmg form:

Dumltru Baleanu

(1.132)

(1.133)

The independent coordinates are x(t) and tD~x(t) respectively. Let us denote
P¥ - Px and P~ - p(tD~x(t)). The fractIOnal canomcal momenta are (Rabel et aI.,
2007)

(1.134)

By making use of (1.133) we obtain the forms ofthe fractional canonical momenta
as given below:

pf = (1+ E2w2)tD~x(t) + E2tD~ax(t),

P2 = -E2tD~ax(t).

(1.135)

(1.136)

Takmg mto account (1.135) the fractIOnal canomcal Hamlltoman becomes

(1.137)

and after takmg mto account (1.133), (1.135) and (1.135), the fractIOnal Hamlltoman
has the form·

By making use of (1.138) the fractional path integral is given by

(1.139)

1.3.3 Lagrangianformulation offield systems with fractional
derivatives

A covariant form of the action would involve a Lagrangian density J: via S
rJ:d4x = rJ:d3xdt where J: = J:(rjJ, oJ1rjJ).

The correspondmg claSSIcalcovanant Euler-Lagrange equation IS

(1.140)
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where (j) IS the field varIable. In the foIIowmg we present the tractIOnal generahza­
tion of the above mentioned result. Let us consider an action as given below:

(1.141)

Here a < CXk < 1 and ak correspond to XI, X2 , X3 and t respectively.
The tractIOnal Euler-Lagrange equations are as foIIows (Baleanu and Mushh,

~

(1.142)

For CXk --+ I, EquatIOn (1.142) IS the usual Euler-Lagrange equations for claSSIcal
fields.

1.3.3.1 Application 1: Fractional Dirac field

Lagrangian density for Dirac fields of order *is proposed as follows (Muslih and
Baleanu,2005b; Raspini,2001)

(1.143)

By usmg (1.143) the generahzed momenta become

(1.144)

From (1.143) and (1.144) we construct the canonical Hamiltonian density as

HT = -if ('ln~~31j;(x)+ (m)2/31j;(x)) + Al [(7TL )1j; -if·ll

+A2[(7TL ),J;]. (1.145)

Makmg use of (1.145), the canonIcal equatIons of motIon have the foIIowmg fonns

n;/31j; = 8HT = AI,
+ 8(7TL)1j;

n2
/

3if = 8HT = A2'
t+ 8(7TL )¢

(1.146)

(1.147)

(1.148)

(1.149)
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which lead us to the following equations of motion:

(1.150)

(1.151)

The path integral for this system is given by

K = d(7rL),p d(7rL){; d7jJ d~6[(7rL),p - ~'-l]6[(7rL){;]

x expi [J d4 x {(7rL),pD;~37jJ + (7rL){;D;~3~ -7-{}]. (1.152)

Integrating over (7rCL),p and (7rCL ){;, we arrive at the result

(1.153)K= Jd7jJd~exPil-",----J_d4X_L",-----I. _

1.3.3.2 Application 2: Fractional SchrOdinger equation, a Lagrangian
approach

The claSSIC Schrodinger equation IS given by

. d7jJ n2

zn- + -f':c,7jJ - V(x)7jJ = O.
dt 2m

(1.154)

The claSSIcal LagrangIan correspondmg to (1.154) IS

(1.155)

We proposed the followmg Lagrangian denSIty for the fractIOnal Schrodinger
equation:

The generalized momenta are

(1.157)

The total canonical Hamiltonian density reads as

(1.158)
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The corresponding fractional canonical equations of motion are
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(1.159)

(1.160)

(1.161)

(1.162)

and after some calculations we arrive at the following fractional equations of motion

(1.163)

(1.164)

The path mtegral for fractIOnal Schrodinger equation IS found to be as

(1.165)

1.4 Fractional optimal control formulation

Fractional optimal control problem gained a lot of importance during the last
decades

In the foIIowmg we present bnefly how thiS techmque works on a given example.
The aim is to rmmrmze the foIIowmg performance mdex:

such that

J(u) = lb

!(x,u,t)dt,

aDrx = g(x, u, t),

(1.166)

(1.167)

and the tenninal conditions x(a) = c and x(b) = d. Here t denotes the time, x(t)
and u(t) are a nx x 1 state and nu x 1 control vectors, ! and 9 are a scalar and a
nx x I vector functIOns. The dimenSIOns nx and n; fuUiII the relatIOnn; < nx •

A fractional order fonnulation for this problem for the case of scalar variables
and functions was developed in (Agrawal and Baleanu, 2007). The same fonnulation
is applicable for the vector case.

A modified performance mdex is defined as
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J(1I) = l b

[H (x , 1I , t ) - ATaO~x]dt, (1.168)

where H(x, 11, A,t) is the following Hamiltonian:

H(x, 11, A,t) = f(x, 11, t) + AI'g(x, 11, t), (1.169)

and A is a ti; x 1 vector of Lagrange multipliers. Here the superscript T repre­
sents the transpose of the vector. Using (1.168) and (1.169) and the techniques from
fractional variational principles, the necessary equations for the fractional control
problem can be wntten as given below (Agrawal, 2004):

(1.170)

8H
a = 0,

11
(1.171)

(1.172)

We notice that if Xi (b) is not specified, then we require Ai(b) to be 0. Here Xi
and Ai are the ith components of the vectors X and A. Equations (1.170)-(1.72)
along with the above conditiOn on Xrepresent the necessary conditiOns m terms of a
Hamiltonian for the fractional optimal control problem. To solve the obtained set of
differential equations we used the Grilnwald-Letnikov definition. For the discretized
time interval la, bl with (N + 1) equally-spaced grid points, at node i we have

(1.173)i =N, ... ,O,

i =O, ... ,N,
,Ell

N-i

Oa _ 1 " (a)
t bYi - ha L Wj Yi+j,

Oa _ 1 ~ (a)
a tYi- ha L Wj Yi-j,

respectively, where Yi = y(ti), h = 1/N, ti = ih, and

(1.174)

1.4.1 Example

To demonstrate the above proposed formulation, let us minimize (Baleanu et al.,

~

(1.175)
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(1.176)

subjected to the following dynamic constraint, oDfoDf8(t) = u(t). Here we have
a = 0, b = 2, and oDfoDf8(t) is the sequential derivative of 8. By making use of
8(t) = Xl (t), oDf8(t) = X2(t) the modified performance index in (1.175) becomes

J = 12

[H (X,u, >.. ) - >..ToDfx(t))]dt,

(1.177)

denotes the Hamiltonian of the system, and

(1.178)

Osmg (1.170)-(1.72), we obtam

We observed that the variable u from the above mentioned equations can be elim­
inated using the third equality shown in (1.179). In addition, we use the following
terminal conditions, 8(0) = oDf8(0) = 0 and 8(2) = oDf8(2) = 1 which can be
translated into Xl (0) = X2(0) = 0 and Xl (2) = x2(2) = 1.

The presentatIOnof the numencal method whIch IS used to solve the equations in
(1.179) IS given below.

This method uses the scheme developed in (Agrawal and Baleanu, 2007) for
scalar case. Briefly, we do the followings (Baleanu et al., 2009):

a) we dIvide the time domam into N sub-domams, where N represents an integer,

b) approximate the fractional derivatives in (1.179) at each node using the
Griinwald-Letmkov defimtIOnsgiven in (1.173),

c) apply the terminal conditions,

d) solve the resultmg equations.

For N = 128 and a = 0.75,0.85,0.95 and 1, the values of the state variables
Xl and X2 and the control variable u are presented in the following Figs.l.l, 1.2 and
1.3. These figures also include the analytical solutions for a = 1. The results show
that as a approaches 1, the analytical solutIOnis recovered.
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1.5 Fractional calculus in nuclear magnetic resonance

As it was proved in (Magin et aI., 2008; Magin, 2009), the generalization of the
Bloch equation through extension of the time derivative to fractional order offers
a number of mterestmg possIbIhties concermng spin dynamIcs and magnetization
relaxation

Let us denote M x , My, and M z as the system magnetizations (x, y and z com­
ponents). M o will denote as the equilibrium magnetization, TI is the spin-lattice
relaxation time, T2 represents the spin-spin relaxation time. Let us denote Wo the
resonant frequency given by the Larmor relationship Wo = yBo, where Bo is the
static magnetic field (z-component) and "y is the gyromagnetic ratio for spin ~ par­
ti.Cl.eS:

As a result the classical equations are given in the following (see Refs. (Magin et
aI., 2008; Magin, 2009) and the references therein)

(1.180)

(1.181)

(1.182)
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Several approaches were presented to follow in fractional generalization; we ul­
timately should employ the form best suited for fitting experimental data. The as­
sumption of a time domain fractional derivative suggests a modulation - or weight­
mg - of system memory, an assumptIOn that plays an important role m affectmg
the spin dynamics descnbed by the Bloch equations.

In addition, the fractional order systems of differential equations (KUbas et aI.,
2006) depend on the initial conditions; as a result, we should choose the fractional
derivative most appropriate for handling the initial conditions of our problem.

In Nuclear Magnetic Resonance, the imtial state of the system is specified by the
components of the magnetizatIOn, hence these need to be clearly identified (Magm
et aI., 2008; Magm, 2009). Another more general, and still open issue, is the phys­
ical meaning of the fractional Bloch equations and this question ultimately goes
back to the basic formulation-the Schrodinger equation as a fractional order par­
tial differential equatIOn m quantum mechamcs - a tOPiC beyond the scope of this
presentation (Rabei et aI., 2007; Naber, 2004; Baleanu and Mushh, 2005b).

(1.183)

In order to preserve the meamng of the imtial conditions for the magnetization
for our problem,namely Mx(O), My(O), and Mz(O), we will use the fractional order
Caputo derivative.

120 ,

:::(
of

:1
J

4 5

Fig. 1.4 Plots of M z (t) for different values of oc in the range of oc- 0:5 (bottom curve) to oc- 1:0
(top curve) in steps of 0.1. For these plots, equation (186) was used with M z (0) = 0, TI-I sec
and Mo - 100. The Mittag-Leffler function was evaluated usmg the Matlab function m-file mlf.m
found at http:77www.mathworks.coiri7matlabcentrai.



New Treatise In fractional Dynamics

As a result, we obtain a set of fractional order Bloch equations as given below

29

eDaM - M My
a x Y = -Wo x --

T2

Here wo, -.!" and -.!, each have the units of (sec)-a.
T J T 2

(1.184)

(1.185)

(1.186)

Osmg either tractiOnal calculus or the Laplace transformatiOn, the solutiOn for
Mz(t) is given as follows

(1.187)

The solutions for Mx(t) and My(t) can be found by solving the corresponding
tractiOnal order differential equations. If we suppose that

(1.188)

and lise that
(1.189)

~=: ~r=: .. ~

~~_M__'~ 80 I
o 20 40

t
(s) 60 80 100 0 20 40 60 80 100

s': s'~~
~~1~~ ~~~~~v~

o 20 40 60 80 100 0 20 40 60 80 100
tW tOO

Fig. 1.5 Plots of My (t) for T2 = 20 ms and fa = e7r
) = 80, 160, and 320 Hz, top to bottom,

respectively. In the right hand side we have the plots oeMy (t) for fa = 160 Hz and T2 = 10, 20,
and 40 ms, top to bottom, respectively. For all plots, equation (195) was used with M x (0) - °and
My (0) = 100.
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Fig. 1.6 Plots of M+(t) in the complex plane with a - I (a, classical model), a - 0.9 (b) and a­
0.8 (c). For these plots, Equations (187) and (190) were used with M x (0) - 0, My (0) - 100, T 2

- 20 ms and fa - 160 Hz.
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Fig. 1.7 A plot of fractIOnal order solutIOnto the Bloch equatIOns with a - I (classical model). In
the fight hand side we have a plot of tractIOnal order solution to the Bloch equatIOns with a - 0.9.
For these plots. Equations (1.186), (1.187) and (1.189) were used with M x (0) - O. My (0) - 100,
Mz(O) - 0, Tl - 1 S, T2 - 20 ms and fo - 160 Hz.

then we observe that we can combine the two equations for the x and the y compo­
nents of magnetizatiOn gIven above to yIeld.

The next step IS to assume that

and to introduce (1.190) into (1.183). By making use of

~DfB",(-Ata
) = -AEa ( -Ata

) ,

we obtam the values of Xas gIven below:

(1.190)

(1.191)

(1.192)
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Also, we observe that
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(1.193)

In fractional calculus one of the questions is to verify the classical results. In this
case we get for a - I the followmg expressions:

Mx(t) = exp

My(t) = exp

(Mx(O) cos(wot) + My(O) sin(wot)) ,

(Mx(O) cos(wot) - My(O) sin(wot)) ,

(1.194)

(1.195)

which both agree with the classical results.

1.6 Fractional wavelet method and its applications in dru~

analysis

Various spectrophotometric methods such as graphical an numerical approaches
have been used for the quantitative analysis of samples containing multicomponents.

In some complex mIxture analysIs the classIcal graphIcal and numencal spectro­
SCOpIC methods do not proVIde always desIrable and rehable results. Namely, the
denvatIve spectrophotometry and ItS modIfied versions have been used extensIvely
in fast quantitative analysis of mixtures. However, these spectral methods may not
lead to desirable analysis results due to the strong spectral overlapping characteris­
tics of compounds, decreasing signal intensity with worsening signal-to-noise ratio
m hIgher denvatIve orders.

The developments of wavelet transform and ItS apphcatiOns m the field of ana­
lytical chemistry has significantly amplified the potential power of various spectral
analysis techniques. It was shown that the continuous wavelet transform (CWT)
approach represents an important signal processing method for data reduction, de­
nOlsmg, basehne correctiOn and resolutiOn of multI-component overlappmg spectra
(Walczak, 2000). CWT methods have been successfully used for the quantItatIve
resolutiOn of multIcomponent mixtures wIthout using any pnon separation proce­
dure (see for example Ref.(DinQ and Baleanu, 2007) and the references therein).
The application of the fractional wavelet transform for the simultaneous detenni­
natIon of the compounds m a bmary mIxture was apphed for the first tIme m the
hterature by Dmc and Baleanu (Dm~ and Baleanu, 2006). A new wavelet transform
that IS based on a recently defined famIly of scahng functiOns so called the tractiOnal
B-splines was introduced (Unser and Blu, 2000b, 2002, 1999, 2000a). The interest
of this family is that they interpolate between the integer degrees of polynomial
B-splines and that they allow a fractional order of approximation. In the following
the notiOn of B-sphne IS mtroduced (Unser and Blu, 2000b, 2002, 1999, 2000a). A
B-sphne represents a generahzatiOn of the BezIer curve.
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Fig. 1.8 Absorption spectra (A) and FWT spectra (B) of ATV (- - -) and AMD (f-----+) in the
calibration range of 4-20 J.Lg/mL. Due to the large wavelength interval the FWT spectra was
descnbed on a smaIl figure. Here ATV denotes the atorvastatm and AMT represents amlodlpme m
their mixture.
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Let a vector known as the knot be defined by T = {to,h, ... , tm } where T is a
non-decreasing sequence with ti E [0,1], and define the control points Po, Pn . The
knots t p+1, ... , tm-p-l are called internal knots.
we define the basis functional as

1, if ti :::; t -< ti+l and ti -< ti+l,

0, otherwise,
(1.196)

and

As a result the spline is a curve defined as below:

(1.197)

The next step is to mtroduce the tractiOnal B spline as (Unser and Blu, 2000a)

(1.198)

where the Gamma function is defined as

(1.199)

and (x - k)t = max(x - k, 0)"'.

The forward tractiOnal fimte dlflerence operator of order a is given below:

L1'+f(x) = ~(_l)k (~) f(x - k),
k=O

where the binomial coefficient has the form:

(a) r(a+1)
k - r(k+1)r(a-k+1)"

The centered fractional B-splines of degree a is defined by

We mention that

(1.200)

(1.201)

(1.202)
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. (-;-)' a odd,
-28m -

<>

x2n log (x)
(-l)l+n7f' a even.

The fractional B-spline wavelets is defined as

7jJ+(~) = L (~~)k L (a ~ 1) p;<>+l(l + k - l)p+(x - k).
kEZ lEZ
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(1.203)

(1.204)

We observe that

(1.205)

The Fourier transform fulfills the following relation

{f;~(w) = C(jw)<>+l, as w ----+ 0,

where cJ': (w) is symmetric.

(1.206)

(1.207)

We notice that tractiOnal sphne wavelet looks hke a tractiOnal denvatIve opera­
tor in Grunwald-Letnikov representation. To illustrate the advantages of the com­
bined CWT and fractional wavelet transform for a given mixture we show below
a picture showmg the actiOn of the tractiOnal wavelet transform on a CWT coe!­
ficients. The imphcatiOns of the obtamed results trom the chemical pomt of View
were descnbed in details in (Dm~ and Baleanu, 2010). Namely, by makmg use of
the fractional wavelet transform we obtain higher peak amplitude, less noise and
sharper peaks (DinQ and Baleanu, 2010). Fractional wavelet transform is a power­
ful tools for the data reduction, de-noising, compressing and baseline correction of
the analytIcal signals and resolutiOn of multIcomponent overlappmg signals (se for
example Ret.(Dm~ and Baleanu, 2006) and references therem).
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Chapter 2
Realization of Fractional-{)rder Controllers:
Analysis, Synthesis and Application to the
Velocity Control of a Servo System

Ramiro S. Barbosa, Isabel S. Jesus, Manuel F. Silva, J. A. Tenreiro Machado

Abstract The syntheSIS and apphcatIOn of fractIOnal-order controllers IS now an
active research field. This article investigates the use of fractional-order PID con­
trollers in the velocity control of an experimental modular servo system. The sys­
tem conSIsts of a dIgItal servomechamsm and open-archItecture software enVIron­
ment for real-tIme control expenments usmg MATLAB/SImuhnk. DIfferent tumng
methods will be employed, such as heuristics based on the well-known Ziegler­
Nichols rules, techniques based on Bode's ideal transfer function and optimization
tuning methods. Experimental responses obtained from the application of the sev­
eral tractIOnal-order controllers are presented and analyzed. The effectIveness and
supenor pertormance of the proposed algonthms are also compared WIth claSSIcal
mteger-order PID controllers.

2.1 Introduction

Fractional calculus (Fe) is an area of mathematics that extends derivatives and in­
tegrals to an arbitrary order (real or, even, complex order) and emerged at the same
time as the classical differential calculus. FC generalizes the classical differential
operator D~ == dn7dIn to a fractional operator DC;, where a can be a non-integer
value (Oldham and Spamer, 1974; Oustaloup, 1991, 1995; Podlubny, 1999a; Samko
et aI., 1993; MIller and Ross, 1993; Carpmten and MamardI, 1997). However, ItS
inherent complexity delayed the application of the associated concepts.

Nowadays, FC is extensively applied in science and engineering (Oldham and
Spamer, 1974; Oustaloup, 1991, 1995; Podlubny, 1999a; Carpmten and MamardI,
1997; HIlfer, 2000; Westerlund, 2002), bemg recogmzed ItS abIhty to yIeld a su-
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perior modelling and control in many dynamical systems. We may cite its adop­
tion in areas such as viscoelasticity and damping, diffusion and wave propagation,
electromagnetism, chaos and fractals, heat transfer, biology, electronics, signal pro­
cessmg, robotics, system identificatIOn, traffic systems, genetic algonthms, perco­
latIOn, modelhng and identificatIOn, telecommumcatlOns, chemistry, irreversibihty,
physics, control, economy and finance. We may say that all areas of science are
touched by this fascinating new (and, at the same time, old) topic.

In what concerns the area of automatic control, the fractional-order controllers
(FOCs) are now an active field of research (Oustaloup, 1991, 1995; Podlubny,
1999a,b; Barbosa et aI., 2004b; Machado, 1997; Ma and Ron, 2003; Fehu-Batlle et
aI., 2007; Valeno and Sa da Costa, 2004; Sabatier et aI., 2004; Silva and Machado,
2006,2008; Silva et aI., 2008; Machado et aI., 2007; Jesus et. aI., 2006a; Jesus et aI.,
2007c, 2008a; Jesus and Machado, 2008a, 2009). Ma and Hod (2003) used a p/uD

controller for the speed control of two-mertia system. The supenor robustness per­
formance agamst mput torque saturatIOn and load mertia vanatlOn are shown by
companson With integer PID control. Fehu-Batlle et al. (2007) apphed FOCs in
the control of main irrigation canals, which revealed to be robust to changes in the
time delay and gain. Valerio and Sa da Costa (2004) introduced a FOC in a two
degree of freedom flexible robot, achieving a stable response for the position of its
tip. Sabatier et al. (2004) apphed the CRONE (French acronym for "Commande
Robuste d'Ordre Non Entier") algonthm to a robust speed control of a low damped
electromechanical system with backlash. The CRONE scheme ensures robust speed
control of the load in spite of plant parametric variations and speed observation er­
rors. Silva et al. (2006, 2008) compared the pertormance of legged robots locomo­
tion when controlled usmg integer and fractIOnal PD control algonthms. Through a
simulation study, they showed the advantages of using a PDa algorithm in the joint
control of hexapod robots With two and three degrees of freedom per leg. ThiS con­
troller allows the minimization of two global measures of the overall performance
of the mechanism (in an average sense), being one index inspired on the system
dynamics and the other based on the trajectory trackmg errors (Silva and Machado,
2008). It was also verified that the superior performance of the fractional PDa joint
leg controller, for the fractIOnal order a >::::: 0.5, is kept for dlfferent ground prop­
erties. In (Machado et aI., 2007; Jesus and Machado, 2009), It is studied the skin
effect phenomena and the electrical potential in the FC perspective. It was verified
that the classical electromagnetism and the Maxwell equation, with integer order
denvatives, lead to models requmng a FC viewpomt to be fully mterpreted. Jesus
et al. (2006a, 2007c) analyzed the electncalimpedance m botamcal elements. The
fractional order behavior as well as its relation with the electrical impedance was
established and an equivalent fractional order circuit model was presented. Also, in
(Jesus et aI., 2008a; Jesus and Machado, 2008a), they studied an electrolytic process
for developmg fractIOnal order capaCitors. The results revealed capaCitances of frac­
tIOnal order that can constitute an alternative to the claSSical mteger order capaCitors.
It was venfied that it is pOSSible to get fractIOnal order elements by adoptmg non­
classical electrodes and dielectrics. For more application examples, see the therein
references of the above cited works.
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In spite of the recent progresses, the truth is that simple and effective tuning
rules, such as those for classical PID controllers, are still lacking. In this chapter,
we apply several types of fractional PID controllers in the velocity control of an ex­
penmental servo system. Also, several tumng methods will be employed m order to
assess the performance of such algonthms. FIrstly, we use the well-known Zlegler­
Nichols (Z-N) heuristic rules (Ziegler and Nichols, 1942) and analyze the effect of
fractional (derivative and integral) orders upon the system's performance. After, a
simple analytical method for tuning FOCs based on Bode's ideal transfer function is
outhned. Fmally, several optimal fractiOnalPID will be apphed to the servo system.
Companson with conventiOnal mteger PID IS also pursued. The expenments show
that the extra parameters (denvative and mtegral orders) provided by the FOCs can
effectively enhance the system performance and help to adjust more carefully the
dynamics of an automatic control system.

Beanng these Ideas m mmd, thiS chapter IS orgamzed as follows. SectiOn 2.2
presents the fundamentals of FOCs while SectiOn 2.3 outhnes the Oustaloup's fre­
quency approxunation method used in thiS work for the reahzatiOn of the fractiOnal
algorithms. Section 2.4 describes the experimental servo system setup and Section
2.5 makes the mathematical modelling and identification of the servo system. Sec­
tion 2.6 describes the FOC scheme used in the experiments. Here, we will present
the several FOCs employed. SectiOn 2.7 shows the expenmental results obtamed
from the apphcatiOn of the well-known Ziegler-Nichols (Z-N) tumng rules. Re­
sponses from the quarter decay ratio and oscillatory behavior Z-N heuristics will
be given. In Section 2.8 we propose a simple analytical method for tuning FOCs
and in Section 2.9 we investigate the use of optimal FOCs in the control of the servo
system. Fmally, SectiOn2.10 draws the main conclUSiOns.

2.2 Fractional-order control systems

FOCs may be defined as systems that possess fractiOnal denvatives or mtegrals m
the system to be controlled or m the controller. The fundamentals for the analYSIS
and synthesis of fractional-order systems are given in next subsections.

2.2.1 Basic theory

In general, a fractional system can be described by a Linear Time Invariant (LTI)
fractional-order differential equation of the form:

anDfny(t) +an_lDfn-l y(t) +...+aoDfoy(t)

= bmD~mu(t) +bm_lDfm-lu(t) +...+boD~u(t), (2.1)
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where 13k, adk = 0, 1,2, ) are real numbers, 13k > ... > 131 > 130, ak > ... > al >
ao and ai, bdk= 0, 1,2, ) are arbitrary constants.

The corresponding continuous transfer function has the form:

(2.2)

A z-transfer functIOnof (2.2) can be obtaIned by USIng a dIscrete approximation
of the fractional-order operators, yielding:

G(z) = bm[w(z 1 )]am + bm-I [w(z 1 )]am
-

1 + + bo[w(z 1)]<Xo , (2.3)
an[w(c l )]13n +an-dw(c l )]13n-1 + +ao[w(c l )]130

where w(z 1) denotes the discrete equivalent of the Laplace operator s, expressed
as a function of the complex variable z or the shift operator Z-I .

The generalized operator aDf', where a and t are the limits and a the order of
operation, is usually given by the Riemann-Liouville definition (a > 0):

a_I d
n it x(-r)

aDtX(t)-r( )d ( ) +l d -r , n - 1< a < n,n - a t'' a t - -r a-n
(2.4)

where r(u) represents the Gamma function of u. Another common definition is that
given by the Griinwald-Letnikov approach (a E 9\):

1 ['hal k(a)
aDfx(t) = 1imha L (-1) k x(t-kh),

h--70 k=O
(2.5)

where h IS the time Increment and [v] means the Integer part of v.
Several attempts have been made to give a meanIngfully InterpretatIOn of frac­

tIOnal denvatIves/Integrals (NlgmatullIn, 1992; Rutman, 1994, 1995; Adda, 1997;
Monsrefi-Torbati and Hammond, 1998; Podlubny, 2002; Machado, 2003, 2009).
Podlubny (2002) gives a geometric and physical interpretation to fractional differen­
tiation and integration for various kinds of well-known operators. Machado (2003,
2009), Introduces a probabilIstic InterpretatIOn of the fractIOnal denvatIve based on
the Griinwald-LetnIkov definItIOn. Other dIfferent approaches have been proposed
(NlgmatullIn, 1992; Rutman, 1994, 1995; Adda, 1997; Monsrefi-TorbatI and Ham­
mond, 1998), but at author's knowledge, no consensual interpretation (geometric or
physical) is yet been established for these operators.

For a Wide class of functIOns, Important for applIcatIOns, definItIOns (2.4) and
(2.5) are eqUIvalent (Oldham and SpanIer, 1974; Podlubny, 1999a; Samko et al.,
1993; MIller and Ross, 1993). ThiS allows one to use the Riemann-LIOuvIlle defi­
nition during problem formulation, and then turn to the Griinwald-Letnikov defini­
tion for obtaining the numerical solution. Moreover, an important fact revealed by
both definitions is that the evaluation of fractional-order derivatives in any instant t
requires the whole history of y(t). This means that fractional-order derivatives are
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(2.6)

"global" operators having a memory ofthe entire past in opposition with the integer­
order derivatives that are "local" operators. This property is being used to model
hereditary and memory effects in most materials and systems. While this brings a
new vlewpomt over many areas of sCience and engmeenng, It poses, however, eval­
uation problems due to the unhmlted memory Imposed for their computation (e.g.,
for large values of t). To overcome this difficulty, Podlubny (1999a) suggested the
use of the so-called "short memory" principle, which takes into account the behavior
of y(t) only in the "recent past", i.e. in the interval [t - L, t], where L is the "memory
length" and, consequently, maxlmlzmg the amount of computatiOn to L seconds.
This method was apphed successfully for the numencal solutiOn of hnear ordmary
fractiOnal-order dtfferential equations With constant and non-constant coeffiCients
and non-linear ordinary fractional-order differential equations (Podlubny, 1999a).

The fractional-order derivatives can also be defined in the transfonn domain. It
is shown that the Laplace transform (L) of a fractional derivative of a signal x(t) is
given by:

n-l

L{Dax(t)} = saX (s) - ~/ Da-k-1x(t) 11=0'

where X (s) = L{x(t)}. Considering null initial conditions, expression (2.6) reduces
to the simple form (a E 9\):

(2.7)

which IS a direct generahzatiOn of the mteger-order scheme With the multlphcatiOn
ofthe signal transform X(s) by the Laplace s-variable raised to a real power a. The
Laplace transfonn reveals to be a valuable tool for the analysis and design of FOC
systems.

2.2.2 Fractional-Order controllers and their implementation

The FOe concept was first mtroduced by Oustaloup (1991, 1995), who developed
the so-called CRONE controller. Some earher authors that produced Important re­
sults m the control area mdude Bode (1945), Tustm et at (1958) and Manabe
(1961,1963). Also, Machado (1997,1999) discussed the deSign of fractional-order
discrete-time controllers. More recently, Podlubny (1999b) proposed a generaliza­
tion of the PID controller, the PIADJl controller, involving an integrator of order Ii­
and a differentiator of order Jl. The transfer function Gc(s) of such a controller has
the form·

_ U(s) _ -A Jl
G(s)- E(s) -Kp+KIS +KDS, Ii-,Jl>O, (2.8)

where E(s) is the error signal and U(s) the controller's output. The parameters
(Kp,KI, KD) are the proportional, integral, and derivative gains of the controller,
respectively.
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(2.9)

The PIADJ1 controller is represented by a fractional integro-differential equation
of type:

Clearly, depending on the values of the orders A and Jl, we get an infinite num­
ber of choices for the controller's type (defined continuously on the (X,Jl)- plane).
For example, taking (A,Jl) == {(I, 1), (1,0), (0, 1), (0, On gives the {PID,PI,PD,P}
controllers. All these classical types of controllers are the particular cases of the frac­
tional PIADJ1 algorithm. Thus, the PIADJ1 is more flexible and gives the possibility
of ad]ustmg more carefully the dynamical properties of a control system (Podlubny,
1999a,b).

As shown above, the fractional-order operators are characterized by having irra­
tional continuous transfer functions in the Laplace domain or infinite dimensional
discrete transfer functions in time domain. These facts preclude their direct utiliza­
tion both m time and frequency domams. Therefore, the usual approach for the
analysIs and syntheSIS of fractiOnal-order systems IS the development of contmu­
ous and discrete integer-order approximations of these operators (Machado, 1997,
1999; Vinagre et aI., 2000; Chen and Moore, 2002; Vinagre et aI., 2003; Charef et
aI., 1992; Barbosa et aI., 2006; Chen et aI., 2004; Carlson and Halijak, 1964).

For mstance, the usual approach for obtammg discrete eqUivalentsof contmuous
operators of type sa (a E 9\) adopts the Euler, Tustin and AI-Alaoui generating
functiOns (Machado, 1997; Ymagre et aI., 2000; Chen and Moore, 2002; Ymagre et
aI., 2003; Barbosa et aI., 2006; Chen et aI., 2004; AI-A1aoUi, 1993, 1997). However,
the fractional-order conversion schemes lead to non-rational z-formulae. In order to
get ratiOnal expreSSiOns we may adopt two posslblhties. One way IS to perform a
power senes expanSiOn (PSE) (Taylor senes) over them and the final approxima­
tion corresponds to a truncated z-polynomlal functiOn (FIR filter) (Machado, 1997;
Vmagre et aI., 2000; Barbosa et aI., 2006). For example, usmg the backward Eu­
ler rule, H(z I) = (1- z I)/T, and performing a PSE of [(1- z I)/T]a gives the
discretizatiOn formula correspondmg to the Grtinwald-Letmkov defimtiOn(2.5):

Da(z) = Y(z) = (~)a PSE{(I-z-1t }
X (z) T N

where P is a polynomial of degree N and cIa) are binomial coefficients which may
be calculated recursively as:

Co(a) = 1, (a) _ (1- 1+a) (a)
Ck - k Ck_ I' k = 1,2, ... (2.11)

Another pOSSible way IS to obtam a discrete transfer functiOn m the form of ra­
tiOnal functiOn (I.e., as the ratio of two polynomials) (IIR filter) by apphcatiOn of
the continued fraction expansion (CFE) method (Chen and Moore, 2002; Barbosa
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(2.12)

et al., 2006; Chen et al., 2004). It is well known that the CFE is a method of eval­
uation of functions that frequently converges much more rapidly than power series
expansions, and converges in a much larger domain in the complex plane. A method
for obtammg discrete eqmvalents of the fractiOnal-order operators, which combmes
the well known advantages of the trapeZOidal rule (commonly deSignated as the
Tustin method in the control community) and the advantages of the CFE uses the
generating function:

(W(Z-1)t = (~1_Z-1)a
T l+c i

By doing so over expression (2.12), results in the discrete transfer function,
approximating continuous fractional-order operators, expressed as:

Da (z) = y (z) = (~) a CFE
X(z) T (~) a

l+C i
m,n

where T is the sampling period, CFE~ u} denotes the function from applying the
continued fraction expansion to the function u,Y(z) is the z-transform ofthe output
sequence y(nT), X(z) is the z-transform of the input sequence x(nT), m and n are
the orders of the approximation, and P and Q are polynomials of degrees m and n,
correspondingly, in the variable Z-1.

2.3 Oustaloup's frequency approximation method

In thiS study we adopt mteger ratiOnal transfer functiOns of the contmuous frac­
tiOnal operators mtroduced by Oustaloup (Oustaloup, 1991; Oustaloup et al., 2000),
and hence commonly named the Oustaloup-recursive-approximation method. So,
in order to implement the term sa (a E 9\) of the FOC, a frequency-band limited
approximation is used by cutting out both high and low frequenCies of transfer func­
tion s Wu a to a given frequency range Wb, Wh , distributed geometrically around
the unit gain frequency Wu = (WbWh)i 2 (Oustaloup et al., 2000), yielding:

D(s) = (Wu)a (1 +S/Wb)a
Wh 1+S/Wh

(2.14)

The syntheSiS of such transfer functiOn (2.14) results m a recursive distnbutiOn
of poles and zeros, giving:

(2.15)

where
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(2.16)

and

Takmg N, rob, roh and a, permIts the determmatIOn of the values of the set of
zeros and poles of (2.17) and consequently, the syntheSIS of the desIred transfer
functIon (2.16).

2.4 The experimental modular servo system

The Modular Servo System (MSS) consists of the INTECO (Inteco, 2006) digital
servomechanism and open-architecture software environment for real-time control
experiments. The MSS supports the real-time design and implementation of ad­
vanced control methods usmg MATLAB/SImulInk tools.

FIg. 2.1(a) Illustrates the MSS setup, whIch consIsts of several modules mounted
m a metal raIl and coupled wIth small clutches. The modules are arranged m the
chain such that the DC motor with the generator module is at the front and the
gearbox with the output disk is at the end of the chain, see Fig. 2.1(b).

The DC motor can be coupled wIth the modules of mertIa, magnetIc brake, back­
lash and gearbox wIth the output dIsk. The angle of rotatIOn of the DC motor shaft
IS measured using an mcremental encoder. The generator IS connected dIrectly to
the DC motor and generates a voltage proportional to the angular velocity.

The servomechanism is connected to a computer where a control algorithm is
implemented based on the measurement of the angular position and/or velocity. The
accuracy of measurement of the posItIon IS 0.1% whIle the accuracy of measured
velOCIty IS 5%. The armature voltage of the DC motor IS controlled by a PWM
signal v(t) excited by a dimensionless control signal in the form u(t) = v(t)/vmax .

The admissible controls satisfy lu(t)I :S 1 and Vmax = 12 V (Inteco, 2006).

2.5 Mathematical modelling and identification of the servo
system

The experiments in the MSS include the modules of the DC motor with tacho­
generator, inertia load, encoder module and gearbox module with output disk (see
FIg. 2.1).

The lInear model of the setup system IS represented m FIg. 2.2. It IS assumed that
the armature mductance of the motor IS neglIgIble. Also, the static and dry fnctIOns,
as well the saturation are neglected. Based on these considerations, the electrical
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(b) Mechamcal constructIOn

Fig. 2.1 The modular servo system (MSS) (lnteco, 2006).

R

+

v(t)

Fig. 2.2 Schematic of DC Motor.

51



52 Ramiro S. Barbosa, Isabel S. Jesus, Manuel F. Silva, J. A. Tenreiro Machado

and mechanical equations that model the system are, respectively, given by:

v(t) = Ri(t) +Kero(t),

J6J(t) +Bro(t) = Kti(t),

~

v(t) is the applied voltage,
i(t) is the armature current,
ro(t) is the angular velocity of the rotor,
R is the resistance of armature winding,
J IS the moment of mertIa of the movmg parts,
B IS the dampmg coefficIent due to VISCOUS fnctIon,
Kero(t) is the back electromotive force (EMF),
T = Kti(t) is the electromechanical torque.
By combining expressions (2.18) and (2.19) we get

Ts6J(t) + ro(t) = Ksmv(t),

where the motor time constant T, and motor gam Ksmare given by:

(2.18)

(2.19)

(2.20)

RJ
T---­

s - BR+KeKt '

KtK -------'---­
sm - BR+KeKt

(2.21)

The transfer function for the motor velocity ro(t) has the form:

G(s) = ro(s) = Ksm . (2.22)
V (s) Tss+ 1

The control applied to the system has the form of a PWM signal. Thus, we as­
sume the dimensionless control signal as the scaled input voltage, u(t) = v(t) / vmnx.
The admissible control satisfies lu(t)1 < 1. With respect to Ks = Ksmvmax we obtain
the transfer function in the form'

ro (s) x,
G(s) = V(s) = Tss+l'

where the parameters K, and Ts must be identified by the user.

(2.23)

For the identification process, a unit step input signal, u(t) = 1(t), is applied to
the servo system and the angular velOCIty versus tIme IS acqUIred. Next, the least
squares method IS used to find the system parameters of transfer functIOn (2.23).

Figure 2.3 shows the velocity obtained from the measurements and the velocity
calculated from the model (2.23). Clearly, the fitting of both curves is good. The
calculated values of system parameters are Ks - 203.5344 radls and Ts - 0.8258 s.
We must note that these values were obtamed for the configuratIOn descnbed m
the first paragraph of thIS section and that other setup of the system wIll generate
different parameters.
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Fig. 2.3 Measured and simulated velocities.

2.6 Fractional-order real-time control system

The MSS setup for the experiments include the modules of DC motor with tacho­
generator, merha load, encoder and gearbox wIth output dIsk (see FIg. 2. I ).

All real-hme control experiments are pefformed using the MATLAB/SImulmk
real-time model of Fig. 2.4. A fixed-step solver (Euler's integration method) with a
step size of 0.01 (sampling period of T = 0.01 s) is chosen.

Reference

~
COiiliOI

Reset
I f------t>-o
of------t....

Normal
Servo

Filteredvelocity

Fig. 2.4 Real-time model with the tractional PID controller (adapted trom (Inteco, 2(06».
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The fractional term sa (a E 9\) in the fractional PID controller transfer function
(2.8) is implemented by using the Oustaloup's frequency approximation method de­
scribed in Section 2.3. The values used were N = 5, rob = I rad/s and rob = 1000 rad/s.

The tractiOnal-order controllers are implemented ill digital form by discretiza­
tion of the contmuous controller transfer functiOns. The discretizatiOn techmque
used consists in the bilinear (or Tustin's) approximation with a sampling period of
l' - 0.01 s.

This work investigates the application of several types of fractional PIDs in the
control of the angular velocity of the servo systems ill which were was adopted the
D,u-controller, the IA.-controller, the PIA.-controller and the PIA.D-controller, corre­
spondingly given by the transfer functions (11, X > 0):

(2.24)

(2.25)

(2.26)

(2.27)

where the gains (Kp, K/, KD) and orders (11, X) of the FOCs are the parameters to
he tuned

In order to assure a good steady state error, the term 1/s:l: in expressions (2.25)­
(2.27) must be implemented by means of an illteger illtegrator (Franklin et aL, 2006;
Axtell and Bise, 1990). The modified integral term of the mentioned FOCs is then
given ill the form:

i-A.
A. s 1

I =K/--, 0<11- < 1 (2.28)

The steady-state behavior could be also improved by multiplying the FOC by a
term of the form (s+ 1]) / s, with 1] being a small value (Feliu-Batlle et al., 2007).

2.7 Ziegler-Nichols tuning rules

Ziegler and Nichols (1942) proposed two methods for tuning the controller param­
eters based on the tranSient response characteristics of a given plant. In the first
method, the chOice of controller parameters is deSigned to result ill a closed-loop
step response transient With a decay ratio of approximately 0.25 (that is, the tran­
sient decays to a quarter of its value after one period of oscillation). In the second
method, the criterion for tuning the controller parameters consists in evaluating the
system at the limit of stability (ultimate sensitivity method). Here, the proportional
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gain is increased until the system becomes marginally stable and we observe contin­
uous oscillations. The corresponding gain Ku and the period of oscillation Pu (also
called ultimate gain and ultimate period, respectively) are then determined (Franklin
et al., 2006). In thIS sectIOn, we wIll apply both methods to the servo system.

Several works for tumng tractIOnallmtegerorder PID controllers based on Zlegler­
Nichols rules have been proposed (Barbosa et al., 2008a,b; Valerio and da Costa,
2006a,b). Barbosa et at (2008a,b) investigated the adoption of different fractional
PID algorithms in the velocity control of an experimental servo system by using
the ZIegler-NIchols rules. In (Barbosa et al., 2008a), they used the ultImate senSI­
tIVIty method whIle m (Barbosa et al., 2008b) the quarter-decay ratIO was adopted.
The tractIOnal orders, as well the constants of the controllers, were vaned and theIr
effect on system's performance was analyzed. It was shown that the FOCs can ef­
fectively enhance the system performance providing extra tuning parameters useful
for the adjustment of the control system dynamIcs. Also, the ZeIgler-NIchols rules
revealed to be SImple and effectIve m the final tumng of the tractIOnal algonthms.
Valeno and da Costa (2006b) developed tumng rules for tractIOnal PID controllers.
These rules are quadratic and require the same plant time-response used by the
quarter-decay ratio Ziegler-Nichols rules for integer PID. The fractional PID tuned
with these rules compare well with integer PID tuned according to the Ziegler­
NIchols rules, and proVIde a roughly constant overshoot when the gam of the plant
undergoes variations. Also, m (Valeno and da Costa, 2006a) the same authors have
developed tuning rules for integer PIDs that behave, to the possible extent, as frac­
tional PIDs, while keeping the simplicity of the Ziegler-Nichols rules. The results
obtained showed that the rules lead to PID controllers that behave better than those
tuned usmg ZIegler-NIchols rules, but worst than ruled-tuned tractIOnal PIDs (whIch
follow more complex specIficatIOns WIthgreater ease).

2.7.1 Ziegler-Nichols tuning rules: quarter decay ratio

ZIegler and NIchols (Z-N) recogmzed that the step responses of a large number of
process control systems exhIbIt a process reactIOn curve lIke that shown m FIg. 2.5.

The S-shape of the curve is characteristic of many higher-order systems, and
such plant transfer function may be approximated by a first-order system plus a
time delay (FOPTD) of td seconds:

y (s)
U (s)

(2.29)

where r is the system time constant and A is the gain. The parameters (A,td, r) are
determined from the unit step response of the process. If a tangent is drawn at the
inflection point of the S-shaped curve, then the slope of the line is R = A7r and the
intersections of the tangent line with the time axis and line y(t) = A identify the time
delay L = td and tIme constant r (FranklIn et aL, 2006).
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Fig. 2.5 Process reaction curve.

The chOice of controller parameters IS desIgned to result m a closed-loop step
response transient with a decay ratio of approximately 0.25 in one period of os­
cillation. This corresponds to " = 0.21 and is a good compromise between quick
response and adequate stability margins. Table 2. I lists the controller parameters
suggested by ZIegler and NIchols to tune the proportIOnal gam K p , mtegral tIme h
and derIvatIve tIme TD.

Once the values of nand TD have been obtamed, the gains KI and KD, are com­
puted as:

(2.30)

Table 2.1 Ziegler-Nichols tuning for the controller Gc (s) - Kp (1 + l!1[s+ TDS), for a decay ratio
of 0.25.

Type of controller

p

PI

PID

RL

0.9
RI

1.2

RL

L

03

2L

o

o

0.5L

For the identification of the FOPTD model parameters, a unit step input is ap­
plIed to the system and the process reactIOn curve IS acqUIred, as shown m FIg. 2.6.
Note that the response IS slIghtly dIfferent of that of FIg. 2.3, partIcularly m what
concerns the gam of the system. ThISfact IS a consequence of VarIatIOn of the system
dynamICS over tune, since these responses were obtamed in dIfferent tunes.
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Fig. 2.6 Unit step response of the servo system.

Followmg the method of ZIegler-NIchols we IdentIfy the parameters A = 187.2106,
-r - 1.1841 and L - 0.1753. The mteger PID parameters are then calculated accord­
mg to the formulae given in Table 2. I.

In the next experiments, a velocity step input of amplitude 40 rad/s is applied
to the closed-loop servo system (Fig. 2.4) and the angular velocity versus time is
acquired for different types of fractional PID controllers. The obtained experimental
responses are then presented and analyzed.

FIgures 2.7-2.10 Illustrate the velOCIty responses of the experImental system
with the DJ1, fA, PIA and PIAD controllers, respectively, for several values of deriva­
tive order Jl and integrative order X. In all the cases, the gains Kp, KD and K[ are
fixed and given by the following rules:

• For the DJ1 and IA controllers we have used the proportional gain of the integer
P controller obtamed from apphcatIOn of the Z-N rules (see Table 2.1), that IS,
KD = K[ = IjRL = 0.0361.

• For the PIA we have used the parameters of the integer PI obtained from ap­
plication of the Z-N rules (see Table 2.1), that is, Kp = 0.9jRL = 0.0325 and
K[ = 0.3KpjL = 0.0556.

• For the PIAD we have used the parameters of the integer PID obtained from
application of the Z-N rules (see Table 2.1), that is, Kp = 1.2jRL = 0.0433,
K[ = Kp/(2L) = 0.1235 and KD = 0.5LKp = 0.0038.
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Fig. 2.7 Velocity response of the real-system with the DJ1 controller and J.1 - {O, 0.1,0.2,
0.3,0.4, 0.5}.
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Fig. 2.8 Velocity response of the real-system with the fX controller and A = {0,0.1,0.3,0.5,0.7}.
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Fig. 2.9 Velocity response of the real-system with the PIX controller and 1t.={0.3,0.5,0.7,0.9,1}.
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Fig. 2.10 Velocity response of the real-system with the PIXD controller and It. = {0.2,OA,
0.6,0.8,1 f.

2.7.2 Ziegler-Nichols tuning rules: oscillatory behavior

In the second method, a P controller is apphed to the velOCity servo system unttl the
system shows non-decaying oscillations, as shown in Fig. 2.11. The ultimate gain
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and period yield Ku = 0.08 and Pu = 0.74 s, respectively. The controller parameters
are then calculated according to the Ziegler-Nichols rules illustrated in Table 2.2.
Once the values of nand TD have been obtained, the gains KI and KD are computed
by using formulae (2.30).

50 ,..-------.----------,-------,---------,

20 I

75 8 85 9 95

Fig. 2.11 Ultimate gain K, - 0.08 and ultimate penod Pu - 0.74s.

Table 2.2 Ziegler-Nichols tuning for controller Gc(s) - Kp(l + l!1}s+ TDS) based on oscillatory
~

'lYpe of controller

P

PI

PID

0.5Ku

0.45Ku

0.6Ku

1
-P.I 2 u

1
-P.2 u

1b

o

o

1
-P.8 u

Once more, a velocity step input of amplitude 40 rad/s is applied to the closed­
loop servo system (FIg. 2.4) and the angular velOCIty versus tIme IS acqUIred for
dIfferent types of fractIOnal PID controllers. The obtamed expenmental responses
are then presented and analyzed.
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Figures 2.12-2.14 illustrate the velocity responses of the experimental system
with the DJ1, I A and PIA controllers, respectively, for several values of derivative
order Jl and integrative order X. In all the cases, the gains Kp, KD and KI are fixed
and given by the followmg rules:

• For the DJ1 and IA controllers we have used the proportional gain of the integer
P controller obtamed from apphcatIOn of the Z-N rules (see Table 2.2), that IS,
KD - K, - O.SKu - 0.04.

• For the PIA we have used the parameters of the integer PI obtained from ap­
plication of the Z-N rules (see Table 2.2), that is, Kp = 0.45Ku = 0.0364 and
KI = 1.2Kp/Pu = 0.0590.

50 I \ I I I I

~,------- KD = 0.04, /1 = 0 (P-Controller)
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Fig. 2.12 Velocity response of the real-system with the DP controller and /1 = {0,0.05,0.15,
0.25,0.35,0.45 f.

2.7.3 Comments on the results

From the analySIS of previous FIgs. 2.7-2.10 and 2.12-2.14, we conclude that
the application of both Z-N tuning methods leads to similar results. However, the
velocity responses differ from the application of different fractional PID controllers.

In fact, FIgs. 2.7 and 2.12 reveal that the steady-sate error mcreases as the order
Jl of the DP controller increases. The variation of the gain KD was also tested (with
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Fig.2.13 Velocity response of the real-system with the I'- controller and A, = {0.1,0.3,0.5,0.7,1 }.
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Fig. 2.14 Velocity response of the real-system with the PI'- controller and A, = {0.1,0.3,0.5,
0.7,0.9, I}.
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a fixed value of the derivative order) and, as expected, the system showed a dimin­
ishing steady-state error as KD increases. However, the overshoot and settling time
are more acceptable for the case where the order Jl is changed. We verify that the
extra degree of tumng provided by the fractiOnal algonthm, m companson to the
classical P controller, may be useful to yield a satisfactory control. In Figs. 2.8 and
2.13, we observe that the steady-state error due to the use of an fA controller is very
small. We must note that the real system is nonlinear and, therefore, the oscillations
are damped very quickly. Once more, we verify that the fractional order It is a very
useful parameter for adJustmg the dynamics of the control system. In fact, the order
A has a large influence upon the system dynamics, as illustrated in Figs. 2.8 and
2.13. As m previOUS case, Figs. 2.9, 2.10 and 2.14 show that the steady-state error
is very small and that the order It has a large influence in the overshoot and settling
time of the system. An adequate phase margin can be easily established by a proper
choice of A. However, the output converges to its final value more slowly, as should
be expected by a weak fractiOnal mtegral term.

2.8 A simple analytical method for tuning fractional-order
controllers

In his work on design of feedback amphfiers, Bode suggested an ideal shape of the
loop transfer functiOnof the form (Bode, 1945; Astrom, 2000):

(
roc)lXL(s) = ~ (2.31)

where roc is the gam crossover frequency and a is an arbitrary non-mteger value.
Bode called (2.31) the ideal cut-oft charactenstic, but m the termmology of auto­
matic control it is best known as the Bode's ideal loop transfer function. The slope
a is typical positive. In this study we consider 1 < a < 2.

The mterpretatiOn of loop transfer functiOn (2.31) m the frequency domam is
very Simple.The Bode diagram of amphtude is Simplya straight hne of slope - 20a
dB/dec, whtle the phase curve is a honzontal hne pOSitioned at -an/2 rad (see Fig.
2.15). The Nyquist curve is a straight line through the origin with arg L(jro) =

-an/2 rad.
This choice of L(s) gives a closed-loop system with the desirable property of

bemg msensitive to gam changes. If the gam changes, the crossover frequency roc
will change, but the phase margin of the system remains PM = n( 1 - a 72) rad,
mdependently of the value of the gam (see Fig. 2.15). The gam margm is mfimte.
The slopes a - 1.333, 1.5 and 1.667 correspond to phase margms of PM _ 60°, 45°
and 30°, respectively.

The transfer functiOn (2.31) is matiOnal for non-mteger values of a. Therefore,
for itSpractical implementatiOn, it Will be approximated by a ratiOnal transfer func­
tion of type (2.16), that is, With a recursive set of poles and zeros over a speCified
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log(ro)

argL(jro)
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- a n/2 ---------+---------
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1\

\

PM = n(1 a/2)

Fig.2.15 Bode diagrams of amplitude and phase of L(jw) for I < a < 2.

band of frequencies. Bode suggested that it is sufficient to approximate L(s) over a
frequency range of interest around the crossover frequency WC '

Several studies for tuning fractional, as well integer, controllers have been pro­
posed based on Bode's ideal loop transfer function (Barbosa et aI., 2004b; Karimi et
aI., 2002a,b; Barbosa et aI., 2003, 2004a; Chen et aI, 2003; Chen and More, 2005;
D]ouambI et aI., 2008). Barbosa et aI, (2003, 2004a,b) suggested the use of the
Bode's Ideal shape as reference functIOn for the tunmg of integer PID controllers.
They verified that specifying a desired gain crossover frequency and the slope at
that frequency (which is equivalent to defining a specific phase margin), and min­
ImIzmg a pefformance CrIterIon lIke the mtegral of square error (lSE), can ensure
that the phase around the gam crossover frequency IS nearly flat. ASSUrIng thISfea­
ture, we then obtam closed-loop systems more robust to gam vanations and step
responses exhibiting an almost iso-damping property. Adopting a similar approach,
Y.Q. (Chen et ai, 2003; Chen and More, 2005) proposed a PID tunmg method for a
class of unknown, stable and minimum phase plants. They designed a PID controller
to ensure that the phase plot IS flat at a gIven frequency caIIed "tangent frequency" so
that the closed-loop system IS robust to gam vanations and that the step responses
exhibit an iso-damping property. With this method, no plant models are assumed
during the PID controller design; only several relay tests are needed. More recently,
Djouambi et aI. (2008) proposed a method for tuning a controller that guarantees
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that the open-loop transfer function of a unity feedback control system will be the
Bode's ideal transfer function. Like the case of the above cited works, the idea of the
proposed controller is to assure a flat phase around the crossover frequency so that
the closed-loop system IS robust to gam VarIatIOns and the step response exhIbIts an
Iso-dampmg property. The proposed method IS based on the ratIOnal approximation
of the fractional-order operators (Charef et al., 1992), which can somehow be ma­
nipulated to easily control the width and the position of the flat phase to achieve the
desired performances.

2.8.1 The proposed analytical tuning method

Here we outlIne a sImple analytIcal method for tUllIng tractIOnal-order controllers
based on Bode's Ideal loop transfer functIOn (Barbosa et al., 2004b; Astrom, 2000).

Let us conSIder agam the mathematIcal model of the velOCIty servo system:

K
G(s) = Ts+ i (2.32)

(2.33)

Since L(s) = C(s)G(s), the controller transfer function that gives the Bode's
ideal loop transfer function (2.31) has the form:

Ts+ 1
C(s) = Kp-a-'

~

whIch can be expressed as

(2.34)

As can be seen by expression (2.34), the transfer function is, in fact, a IXDJ1
controller of fractional integration X and fractional derivation Jl (where Jl = 1 - X).

The time-domain equation of the controller C(s) is:

u(t)=Kp(Dt ae(t)+TDl ae(t)).

The open-loop transferfunction L(s) = C (s) G(s) is then given by:

(2.35)

1 < a < 2. (2.36)

The phase margm ifJm of the system and the controller's gam can be calculated
through the relatIOns:

cf>m = n+argL(jwc) = n (l-~), (2.37)

wP
Kp = K' (2.38)
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where Wc is the gain crossover frequency. So, given a specified phase margin, from
(2.37) we get the fractional order a and, given the gain crossover frequency, we get
from relation (2.38) the controller gain K».

Therefore, the parameters of the fractIOnal controller (2.33) are tuned to attam
two speCIficatIOns: the desIred phase margm pm, whIch provIdes the adequate over­
shoot of the system; and the gain crossover frequency wc , which defines the desired
speed of response of the system.

The design procedure can be outlined as follows:

1. Fmd the fractIOnal order a by using formula (2.37) from the desIred phase margm

«:
2. Calculate the proportional gain Kp by using formula (2.38) from the gain crossover

frequency Wc and the nominal gain of the system process K.

As an example, the closed-loop system should satIsfy the followmg speCIfica­
tIOns'

1. Phase margm Pm - 60°;
2. Gain crossover frequency Wc = 1 rad/s.

The parameters of the servo system obtained from the identification experiment
of SectIOn 2.5 are K - 203.5344 and T - 0.8258 s. Followmg the above deSIgn
procedure, the parameters of the FOC are a - 1.333 and Kp - 0.0049. So, the
transfer function of the fractional controller is:

0.8258s+ 1
C(s) = 0.0049 ~1.333 . (2.39)

Once agam, a velOCIty step mput of amplItude 40 rad/s IS applIed to the closed­
loop servo system WIth fractIOnal controller (2.39) and the angular velOCIty versus
time IS acqUIred for several dIfferent deSIgn speCIficatIOns. Next, the obtamed ex­
perimental responses are presented and analyzed.

FIgure 2.16 shows the experImental VelOCIty step responses of the servo system
for the phase margins pm = {30°, 45°, 60°, 80°} and the same gain crossover fre­
quency Wc - 1 rad/s whIle the correspondmg control SIgnals are shown m FIg. 2.17.
In FIg. 2.18 we show the experImental velOCIty step responses of the servo system
for pm = 45° and Wc= {0.5, 0.75, 1, 1.5} rad/s. Figure 2.19 illustrates the corre­
sponding control signals.

From the results, we verify that the system behaves like the desired specifications.
That IS, WIth the phase margm we change mamly the overshoot of the closed-loop
response and WIth the crossover frequency we change the speed of response, al­
though, m thIScase, the overshoot IS also slIghtly changed. Therefore, we prove the
effectiveness of the simple analytical method for tuning FOCs and its applicability
in the velocity control of a servo system.
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J"lg. 2.16 VelOCIty response of the real-system wIth the fractIOnal controller (2.39) and
epm = poo, 45°, 60°, 80°}.
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Fig. 2.17 Control signal of the real-system with the fractIOnal controller (2.39) and
Pm - poo, 45°, 60°, 80° f.
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Fig. 2.18 VelOCIty response of the real-system WIth the fractIOnal controller (2.39) and
Wc = {0.5, 0.75, 1, 1.5} rad/s.
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Fig. 2.19 Control signal of the real-system with the fractIOnal controller (2.39) and
roc - {0.5, 0.75, 1, 1.5f rad/s.
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2.9 Application of optimal fractional-order controllers

69

In recent years, the number of works dedIcated to the deSIgn of optImal fractIOnal­
order controllers has been increasing (Leu et aI., 2002; Xue et aI., 2006; Jesus et
aI., 2006b, 2007a; Machado et aI., 2006; Jesus and Machado, 2007; Jesus et aI.,
2007b; Jesus and Machado, 2008b; Jesus et aI., 2008b). Leu et al. (2002) proposed
the deSIgn of a fractIOnal PID controller by takIng both tIme and frequency domaIn
specIficatIOns. The controller parameters and the fractIOnal orders of the fractIOnal
PID controller are determined to minimize an integral square error (ISE) perfor­
mance index while satisfying the specified gain and phase margins. A comparison
between optimal fractional PID and optimal integer PID algorithms is presented for
controllIng Integer as well fractIOnal processes. The deSIgn examples show that the
performance of the control system can sIgmficantly be Improved by USIng a frac­
tIOnal PID. Xue et al. (2006) InvestIgated the use of a fractIOnal PID for a positron
servomechanism control system considering actuator saturation and the shaft tor­
sional flexibility. Extensive simulations of the position servomechanism controlled
by optimal integer PIDIPI and optimal fractional PID/PI algorithms are presented to
Illustrate the supenor robustness of the fractIOnal scheme. It was shown that the best
fractIOnal PID works better than the best Integer PID. Jesus et al. (2006b, 2007a) an­
alyzed the heat diffusion system in the perspective of fractional calculus by applying
a conventional PID controller. The PID parameters are tuned by using the so-called
Ziegler-Nichols open loop (ZNOL) method (Jesus and Machado, 2008a; Machado
et aI., 2006). However, the poor results IndIcated that the method of tumng mIght
not be the most adequate for the control of the heat system. Therefore, In (Jesus
et aI., 2007a,b) they proposed the use of FOCs tuned through the rmmrmzation of
the ISE, ITSE, IAE and ITAE indices. The results demonstrate the effectiveness of
the FOes when used for the control of fractional systems. More recently, in (Jesus
et aI., 200gb) a nonlInear controller (NLC) WIth a fractIOnal model was presented
and compared WIthother algonthms. The results reveal the supenor performance of
the NLC based on the fractIOnal algonthm, namely In the dynamICS of systems of
non-integer order.

In this section we will apply several optimal fractional/integer PID controllers to
the velocity control of the servo system. The presence of the phenomena of satura­
tIon and backlash In the servo system are analyzed also In thIS study. For that, we
conSIder agaIn the servo (real-tIme) feedback control system Illustrated In FIg. 2.4.
The controller is given by a PID/PIAD controller and the nonlinearity (Figure 2.20)
is described by equation:

Iml <8,
Iml ;:::8,

(2.40)

where sign(m) is the signal function.
The controller is tuned by the minimization of an integral performance index.

For that purpose, we analyze the IndICeS that measure the response error, namely
the Integral absolute error (IAE) and the Integral time absolute error (ITAE) cntena,
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)I~I
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)

Fig. 2.20 Non-linearity of the saturation type (0 = I-I, II), inserted in the closed-loop system.

defined as'

IAE =100

Ir(t) -c(t)ldt,

ITAE = 100

tlr(t) - c(t)ldt,

(2.41)

(2.42)

where r(t) is the input reference to the system and c(t) the corresponding response
of the closed-loop system.

We can use other performance criteria, such as the integral square error (ISE) or
the integral time square error (ITSE); however, in the present case, the IAE and the
ITAE CrIterIonproduce the best results and are adopted In the study.

Another pOSSIble performance Index consists on the energy En at the controller
output n(t), given by the expression:

(2.43)

where Te is the time window needed to stabilize the system output c(t ).

2.9.1 Tuning ofthe PID and PIA D controllers

In thIS work we compare the pefformances of two controller archItectures, namely
an integer PID and a FOe of type pfXD, when controlling the servo system without
or with backlash for the IAE and ITAE indices.

Once more, a velocity step input of amplitude 40 rad/s is applied to the closed­
loop servo system WIth the optImal Integer/fractIOnal PID controllers and the angu­
lar velOCIty versus tIme IS acqUired.

The first step In the work conSIsted In tumng both control schemes In the per­
spective of optimizing the IAE and ITAE indices.

Table 2.3 presents the results of tuning both control algorithms, when minimizing
the IAE index, and using the servo system without the presence of backlash. In this
table is depicted the optimum value of the fractional order A for the integrative term
of the PIAD (A = 0.8), the minimum values of the IAE and the controller energy and
the corresponding parameters (Kp, K/, KD) for the PIA D and PID controllers. Also,
it is given some specifications that characterize the system time response, namely:
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Table 2.3 Optimum values for the integer PID and fractional PI', D controllers, and corresponding
values of the IAE, controller parameters (Kp, K/, KD) and time specifications (PO, tr , ts ) for the
system without backlash.

x IAE En K p K, K o PO(%) t; t,

1.00 340668 2 8269 00998 00375 00027 35 1405 027 8 19

0.80 17 8305 1 8528 00397 00348 00041 247334 028 293

• The percentual overshoot, PO;
• The rise time, t-:
• And the settling tune, t.,

Analysing this table we conclude that the PIAD scheme leads not only to lower
values of the Index IAE and of the controller energy En, but also to a better transient
response With lower values of PO and t.,

Table 2.4 presents the results of tuning both control algorithms, when minimizing
the IAE index, and using the servo system in the case of having backlash. In this
table is presented the optimum value of A of the PIAD, the minimum values of
the IAE, the controller energy En, the controller parameters (Kp, K/, KD) and the
specifications (PO, tr , ts ) for the PIAD and PID controllers.

Table 2.4 Optimum values for the integer PID and fractional PIXD controllers, and corresponding
values of the IAE, controller parameters iK», K/, KD ) and time specifications (PO, t., ts ) for the
system With backlash.

A- lAE En K p K/ K D PO(%) t, i,

1.00 304017 2 8335 00998 00375 00027 336425 028 701

0.80 18 1299 20250 00397 00348 00041 234787 029 288

It is possible to conclude that, as In the previous case of the system With backlash,
the PIAD scheme, with A = 0.8, leads not only to lower values for the IAE and for
the controller energy En, but also to a faster transient response having lower values
of the PO and t;

The previous tuning procedure is now repeated considering the minimization of
the ITAR index

Table 2.5 presents the results of tUllIng both algOrIthms, when mInimiZIng the
I1'AE, and USIng the servo system Without the presence of backlash. In thiS table is
presented the optimum value of A ofthe PIAD, the minimum values of the ITAE, the
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controller energy En, the controller parameters tK», KI, KD) and the specifications
(PO,tr,ts) forthe ploD and PID controllers.

Table 2.5 Optimum values for the integer PID and fractional PIAD controllers, and corresponding
values of the ITAE, controller parameters (Kp, K/, KD) and time specifications (PO, f r , fs ) for the
system without backlash.

X ITAE En

1.00 62 6920 2 2555

0.85 39 8773 1 6899

Kp

00671

00243

K,

00373

00353

K n PO (%) t; t,

00015 404646 027 490

o0062 16 5204 0 40 3 35

AnalyZIng the values presented In Table 2.5 we conclude that, hke In the previous
cases of the IAE with or without the backlash, the PIAD scheme, with A, = 0.85,
leads to lower values tor the ITAE and tor the controller energy En, and also gives a
faster transient response with lower values for PO and ts.

Finally, Table 2.6 presents the results of tuning both algorithms, when minimiz­
ing the ITAE, and using the servo system in the case of having backlash. In this
table is presented the optimum value of A, of the PIAD, the minimum values of
the ITAE, the controller energy En, the controller parameters (Kp, KI, KD and the
specifications (PO,tr,ts ) for the PI D and PID controllers.

Table 2.6 Optimum values for the integer PID and fractional ptA D controllers, and corresponding
values of the ITAE, controller parameters (Kp, K/, KD) and time specifications (PO, fro fs) for the
system with backlash.

A ITAE

1.00 57.2717

0.85 39.9524

2.3740 0.0671

1.9431 0.0243

0.0373

0.0353

K D PO (%) t,

0.0015 37.7394 0.28

0.0062 16.0887 0.41

i,

4.98

3.36

Observing the values presented in Table 2.6 we can conclude again that the PIAD
scheme, with It = 0.85, leads to lower values for the ITAE and for the controller en­
ergy En, and (as preVIOusly) gives also a taster transient response WIth lower values
tor PO and t.,

Comparing the results presented in Tables 2.3-2.6 we conclude that the PIAD
controller (with It E [0.8,0.85]) minimizes the controller energy En when control­
ling the servo system with or without the presence of backlash. Furthermore, it also



2 RealizatIOn of fractIOnal-Order Controllers 73

leads to a faster transient response with lower values of time specifications PO and
ts for both situations.

Comparing the results in the tables, we may conclude that when the control algo­
nthms are tuned using the rmmrmzation of the I1'AE, both the controller energy and
the percentual overshoot are lower, when adopting the PIA.D. In this case, it is then
preferable to tune the control algorithm by minimizing the ITAE. However, these
results are obtained at the cost of an increase in the values of t; and t;

The same conclusions can be drawn analyzing Figs. 2.21 - 2.28. Figs. 2.21 and
2.22 show the velOCity step responses of the closed-loop system, for the mteger PID
tuned m the IAE and the I1'AE perspectives, respectively, without or with backlash.
We note that the responses are very similar, if we look at specificatIOnsPO and ts
for both situations.

PID-rAE
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50

~ 40
~

.F:
~ 30
>

i
~ 20

10

0

0 2 3

Without backlash

456
Tlme[s]

7 8 9 10

Fig.2.21 Companson of the velOCIty response without or with backlash, under the action of a PID
controller, tuned In the vIewpoInt of the mInImIzatIOn of the IAE.

Figures 2.23 and 2.24 illustrate the velOCity step responses of the closed-loop
system, for the PIA.D tuned in the IAE and the ITAE perspectives, respectively,
without or with backlash. From these figures, we observe that when the controller
is tuned from the viewpoint of minimizing the IAE the step response show higher
PO and longer ts ' Also, in both cases, we note that the responses are almost equal,
independently of the fact of the system including backlash or not.

FIgures 2.25 and 2.26 show the velOCity step responses of the closed-loop sys­
tem, for the integer PID and the fractional PIA. D controllers tuned in the IAE and
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J"lg.2.22 Companson of the velocity response without or with backlash, under the action of a PID
controller, tuned m the vlewpomt of the minimization of the nAB.
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FI~. 2.23 Companson of the velocity response without or with backlash, under the action of a
PI D controller, tuned in the viewpoint of the minimization of the IAE.
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Fig. 2.24 Comparison of the velocity response without or with backlash, under the action of a
PIA D controller, tuned in the viewpoint of the minimization of the ITAE.
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Fig. 2.25 Comparison of the velocity response, under the action of a PID and pJXD controller,
tuned In the viewpoint of the rrumrruzatron of the IAE, when the system IS backlash free.
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Fig. 2.26 Comparison of the velocity response, under the action of a PID and PIx D controller,
tuned in the viewpoint of the minimization of the ITAE, when the system is backlash free.

ITAE - Without backlash
60 , , , , , , , , , ,

A

50 1(, f\,
U\ f\ f\ Do. r-. A r-;

';;;' ,
:g ,
~

40

VV~ V v
v <::»

.~

V
Q

.Q
\ P/'Dv 30

--1<1 PID
], Ref

<::
<t: 20

10

0~

o 2 3 4 5 6 7 8 9 10

Time[s]

Fig. 2.27 Comparison of the velocity response, under the action of a PID and PIx D controller,
tuned In the viewpomt of the rrumrruzatron of the IAE, when the system Includes backlash.
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the ITAE perspectives, respectively, without system backlash. We conclude that the
PIAD controller presents a better transient response, namely it reveals a lower PO
and smaller {s. These results are independent of the criteria followed to tune the
control scheme

Figures 2.27 and 2.28 illustrate the velOCity step responses of the closed-loop
system, for the integer PID and the fractional PIAD controllers tuned in the IAE
and the ITAE perspectives, respectively, when the system includes backlash. As
previously observed in Figures 2.25 and 2.26, we conclude also that the PIAD con­
troller presents a better tranSIent response, revealtng a lower PO and smaller (s. In
the same way, these results are mdependent of the mdices mimmized to tune the
control scheme
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u 2 3 456

TIme lsi
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Fig. 2.28 Comparison of the velocity response, under the action of a PID and PIXD controller,
tuned In the vIewpoint of the minImIzatIOn of the ITAB, when the system Includes backlash.

2.10 Conclusions

In this chapter we investigated the velocity control of a servo system by using several
fractional PID controllers and tuning methods:

• First, we adapted the well-known ZIegler-NIchols rules for the tumng of trac­
tional PID controllers. It was shown that the FOes can effectively enhance the
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control system performance providing extra tuning parameters useful for the ad­
justment of the control system dynamics. The Ziegler-Nichols rules revealed to
be simple and effective in the final tuning of the FOCs;

• Second, a Simple analytical tumng method was devised and used to tune a FOe.
With this method it is pOSSible to attain two design specificatiOns: one to establish
the overshoot of the closed-loop system, and the other to define the speed of
response of the system. The FOC tuned by this method was applied to the servo
system proving to be effective;

• Third, several optimum fractiOnal PID controllers were proposed for the control
of the servo system. The controllers were tuned by usmg the IAE and ITAE per­
formance mdices. With the ITAE the advantage of usmg FOes is more eVident,
revealing better transient response and smaller controller energy. Furthermore, it
was shown that the system with the FOCs performs better than the integer PID
without or with the presence of backlash.
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Chapter 3

Differential-Delay Equations

Richafd Rand

Abstract Periodic motions in DDE (Differential-Delay Equations) are typically
created in Hopf bdurcatiOns. In thIS chapter we examine thIS process from several
points of view. Firstly we use Lindstedt's perturbation method to derive the HopfBi­
furcation Formula, which determines the stability of the periodic motion. Then we
use the Two Variable Expansion Method (also known as Multiple Scales) to inves­
tIgate the tranSIent behaviOr mvolved m the approach to the perIOdIC motIon. Next
we use Center Mamfold AnalYSIS to reduce the DDE from an mfimte dImenSiOnal
evolution equation on a function space to a two dimensional ODE (Ordinary Dif­
ferential Equation) on the center manifold, the latter being a surface tangent to the
eigenspace associated with the Hopf bifurcation. Finally we provide an application
to gene copying m whIch the delay IS due to an observed time lag m the transcription
process.

3.1 Introduction

Some dynamIcal processes are modeled as dIfferentIal-delay equations (abbreVIated
DDE). An example is

dx(t) 3
-=-x(t-T)-x(t) .

dt
(3.1)

Here the rate of growth of x at time t is related both to the value of x at time t, and
also to the value of x at a previOUS tIme, t - T.

ApplIcatiOns of DDE mclude laser dynamIcs (WIrkus and Rand, 2002), where
the source of the delay IS the time It takes lIght to travel from one point to another;
machine tool vibrations (Kalmar-Nagy et aI., 2001), where the delay is due to the
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dependence of the cutting force on thickness of the rotating workpiece; gene dy­
namics (Verdugo and Rand, 2008a), where the delay is due to the time required for
messenger RNA to copy the genetic code and export it from the nucleus to the cyto­
plasm; mvestment analysIs (Kot, 1979), where the delay IS due to the tIme reqUIred
by bookkeepers to determme the current state of the system; and physIOlogIcaldy­
namics (Camacho et al., 2004), where the delay comes from the time it takes a
substance to travel via the bloodstream from one organ to another.

A generalized version ofEq.(3.1) is

d~~) = ax(t) + f3x(t - T) + f(x(t),x(t - T)) (3.2)

where a and f3 are coefficients and f is a strictly nonlinear function of x(t) and
x(t - T). Here the linear terms ax(t) and f3x(t - T) have been separated from the
strictly nonlinear terms, a step which facilitates stability analysis.

3.2 Stability of equilibrium

Equation (3.2) has the trivial equilibrium solution x(t) = O. Is it stable? In order to
find out, we linearize Eq.(3.2) about x = 0:

d~~) = ax(t) + f3x(t - T). (3.3)

Since Eq.(3.3) has constant coefficients, we look for a solution in the form x = eAt,

which gives the characteristic equation:

(3.4)

EquatIOn(3.4) IS a transcendental equatIOnand wIll m general have an mfimte num­
ber of roots, which wIll eIther be real or wIll occur m complex conjugate paIrs. The
eqUlhbnum x - 0 wIll be stable If all the real parts of the roots are negative, and
unstable if any root has a positive real part. In the intermediate case in which no
roots have positive real part, but some roots have zero real part, the linear stability
analysIs IS madequate, and nonhnear terms must be conSidered.

As an example, we conSider Eq.(3.1), for which Eq.(3.4) becomes

(3.5)

Since II: will be complex in general, we set II: = v + iW, where v and ware the real
and Imagmary parts. SubstItutIOn mto Eq.(3.5) gIves two real equatIOns:

v = -e vi coswT,

w = e vi sinwT.

(3.6)

(3.7)
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The question of stability will depend upon the value of the delay parameter T. Cer­
tainly when l' = 0 the system is stable. By continuity, as l' is increased from zero,
there will come a first positive value of l' for which x = 0 is not (linearly) stable.
ThIs can happen m one of two ways. EIther a smgle real root wIll pass through
the origin in the complex-A plane, or a pair of complex conjugate roots will cross
the imaginary axis. Since v=ro=O does not satisfy £qs.(3.6) and (3.7), the first case
cannot occur.

In order to consider the second case of a purely imaginary pair of roots, we set
v - 0 m Eqs.(3.6) and (3.7), grvmg

0- - cos ro1',

ro = sin to'I'.

(3.8)

(3.9)

Equation (3.8) gives roT=n/2, whereupon Eq.(3.9) gives ro = 1, from which we
conclude that the critical value of delay 1'= Tcr=n/2. That is, x = 0 in Eq.(3.1) is
stable for T < n /2 and is unstable for T > n /2. Stability for 1'= Tcr=n /2 requires
consideration of nonlinear terms.

In order to check these results we numerically integrate Eq.(3.1) using the MAT­
LAB package DDE23. Note that thIS reqUIres that the values of x be gIven on the
entIre mterval - l' :::; t :::; O. FIgures 3.1 and 3.2 show the results of numencal m­
tegratIOn usmg the mItIal condItIon x - 0.01 on -1' :::; t :::; O. FIgure 3.1 IS for
l' = n /2 - 0.01 and shows stability, while Fig. 3.2 is for l' = n /2 +0.01 and shows
instability, in agreement with the foregoing analysis.

3.3 IJndstedt's method

The change in stability observed in the preceding example will be accompanied by
the bIrth of a lImIt cycle m a Hopf bIfurcatIOn. In order to obtam an approXImatIOn
for the amplItude and frequency of the resultmg penodIc motion, we use Lmdstedt's
method (Rand and Armbruster, 1987; Rand, 2005).

We begin by stretching time,
r - rot. (3.10)

Replacmg t by r as mdependent vanable, Eq.(3.l) may be wntten m the form:

dx(r) 3
ro-- = -x(r- roT) -x(r) .

dr

Next we choose the delay l' to be close to the critical value Tcr=n /2:

n
T = - +.12 .

We mtroduce a perturbatIOn parameter e « 1 by scalIng x:

(3.11)

(3.12)
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J"lg.3.1 Numencal IntegratIon of Eq.(3.1) for the InItIal condItIOn x - 0.01 on -T < t < 0, for
T = nl2 - 0.01.
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Fig. 3.2 Numencal IntegratIon of Eq.(3.1) for the InItIal condItIon x - 0.01 on - T < t < 0, for
T -nj2+0.01.
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X= lEU.

Osmg Eq.(3.13), Eq.(3.1l) becomes:

du(~) 3
ro-- = -u(~ - roT) - £u(~) .

d~

Next we scale L1
L1 - £Il,

and we expand u and ro in power senes of £:
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(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

where we have used the fact that ro=1 when T=Tcr •

The delay term u(~ - roT) is handled by expanding it in Taylor series about £=0:

n n du n 2
=u(~--)-£(kl-+Il)-(~--)+O(£ ).

2 2 dr 2

Substituting into Eq.(3.14) and collecting terms gives:

duo n
- +uo(~- -) = 0
dt 2'
dUI n duo n duo n 3
- +UI(~- -) = -kl- + (kl- +Il)-(~- -) - uo'
dr 2 dr 2 dr 2

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

Since Eq.(3.1) is autonomous, we may choose the phase of the periodic motion
arbitrarily. This pennits us to take the solution to Eq.(3.21) as:

uo(~) =Acos~, (3.23)

where A IS the approximate amplItude of the penodlc motion. SubstItutmg Eq.(3.23)
into (3.22), we obtam:

dUI n . n 3 3 1d:r+UI(~- 2') = kIAsm~+ (kl 2' + Il)Acos~-A 4cos~+ 4cos3~ ,

(J:24)
For no secular tenns, we equate to zero the coefficients of sin ~ and cos ~ on the
RHS of Eq.(3.24). This gives:

and (3.25)



88 Richard Rand

Now A is the amplitude in u. In order to obtain the amplitude in x, we multiply the
second one of Eqs.(3.25) by ve, which, together with Eqs.(3.13) and (3.15), gives

The Amplitude of periodic motion in Eq.(3.1) is -3v':1,nameIY,-3~'
rr:m

This predicts, for example, that when T = Jr /2 + 0.01, the limit cycle born in the
Hopf wIll have approximate amplItude of 0.1155. For companson, numencal mte­
gration gives a value of 0.1145, see Fig. 3.3.

o 200 400 600
t

800 1000 1200

Fig. 3.3 Numerical mtegranon of Eq.(3.1) for the mitia1condition x - 0.05 on -T:S t:S 0, for
T = n72+0.01.

3.4 HopI'bifurcation formula

The treatment of the Hopf bifurcation (Rand and Verdugo, 2007) in the previous
section for Eq.(3.1) can be generalized to apply to a wide class of DDEs. In this
section we present a formula for the amplItude of the resultmg lImIt cycle for the
IIDE::
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where x = x(t) and Xd = x(t - T). Here T is the delay. Associated with (3.27) is a
linearDDE

dx
dt = ax+ f3 xd· (3.28)

We assume that (3.28) has a cntlcal delay Tcr for whIch It exhIbIts a pair of pure
imaginary eIgenvalues ±rol correspondmg to the solutIOn

x - Cj cos rot + C2 sin rot

Then for values of delay T which lie close to Tcr.

T = Tcr+/l,

(3.29)

(3.30)

the nonbnear Eq.(3.27) may exhIbIt a penodIc solutIOn whIch can be wntten m the
approximate form:

x =Acosrot,

where the amplitude A can be obtained from the following expression for A2 :

p=4f33 (f3 -a) (f3+a)2 (-5f3+4a),

(3.31)

(3.32)

(3.33)

Q = l5b4f36 Tcr + 5b2f36Tcr + 3 ab4 f35 Tcr - 15 ab3 f35 Tcr + ab2f35 Tcr

- 15 abl 135Tcr - 22a32 135Tcr -7a2a3 135Tcr - l4al a3135Tcr - 3a22135Tcr

- 7al a2135Tcr - 4aI 2135Tcr - 12 a 2b4134Tcr - 3 a 2b3134Tcr +6 a 2b2134Tcr

- 3 a 2bl f34 t.;+ l2a32 a f34 t.; + 37 aia: a f34 t.; + 30al a3 a f34 t.;
+ 7a22a f34 Tcr + 19a1 a2a f34 Tcr + l8al2 a f34 Tcr + 12 a 3b3f33 Tcr

+ 2 a 3b213 3Tcr + l2a3bl 13 3Tcr + 4a32 a 213 3Tcr - 20a2a3 a 213 3Tcr

16 2/33,.,-. 12 2 2/33,.,-. 26 2/33,.,-. 8 2 2/33,.,-.- al a3a lcr - a2 a lcr - al a2 a lcr - al a lcr

- 8 a 4b: f32 E; - 4a2a3 a 3f32 E; + 8a22a 3 f32 E; + 8al o: a 3f32 E;

+ 5b3f35+ l5blf35 -15ab4f34 + ab3f34 -15ab2f34 + 3 a bl f34 - 4a32 f34

- 9a2a3 134 - l8al a3134 - a22134 - 9al a2134 - l8al2 134 - 3 a 2b413 3

+ 6 a 2b313 3 - 3 a 2b213 3 - l2a2bl 13 3+ 26a32a 13 3+ 19a2a3 a 13 3

+ 30al a3a f33 + 11al af33 + 33al o: af33 + l2al2 a f33 + l2a3 b4f32

+ 2 a 3b313 2+ l2a3 b213 2 - 8a32 a 213 2 - 32a2a3 a 213 2 - l2al a3 a 213 2

- l4al a 213 2 - l8al ai a 213 2 - 8 a 4b313 - 8a32a 313 + 8a2a3 a 313
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In Eq.(3.32), A is real so that A2 > 0, which means that g must have the same sign
p

as Q.
E~q7.(3"."3'4')'de-p-e-n'd-s-o-n--=g-:-,-aC:-:-,7J{3-,-a-i,'b-i-a-nd-.--riT,"'cr-.nT"h~is-e-q-u-a-;Oti~o-n-m-a-y-b'e~al'-;-te-r-n-at;-e'----ly

written with Tcr expressed as a function of a and {3. This relationship may be ob­
tamed by consIdenng the lInear DDE (3.28). SubstItutmg Eq.(3.3l) mto Eq.(3.28)
and equating to zero coefficients of sin( rot) and cos( rot), we obtain the two equa­
tions:

f3 sin (roTcr ) = -ro, f3 cos (roTcr ) = -a.

Squanng and addmg these we obtam

(3.35)

(3.36)

SubstItutmg (3.36) mto the second of (3.35), we obtam the deSIred relatIOnshIp be­
tween Tcr and a and {3:

arccos ( =;-)
E; =

Jf32 - a2

3.4.1 Example 1

As an example, we consider the following DDE:

dx 3- = -X-2Xd-XXd-X .
dt

ThIS corresponds to the followmg parameter assignment m Eq.(3.27):

(3.37)

(3.38)

(3.39)

The associated linearized equation (3.28) is stable for zero delay. As the delay T
is increased, the origin first becomes unstable when T = TCYl where Eq.(3.37) gives
iillil

aICCOS 2
Tcr = ~---;:=-='--

v}

Substituting (3.39) and (3.40) into (3.32), (3.33), (3.34), we obtain:

A2 = 648,u = 1.667
40v}n + 171 }1,

where we have set

2n
T = Tcr + }1 = M + }1 = 1.2092 + }1.

3y3

(3.40)

(3.41)

(3.42)



3 Differential-Delay EquatIOns 91

Thus the origin is stable for J1 < 0 and unstable for J1 > O. In order for A2 in (3.41) to
be positive, we require that J1 > O. Therefore the limit cycle is born out of an unstable
equilibrium point. Since the stability of the limit cycle must be the opposite of the
stablhty of the eqmhbnum pomt from which It IS born, we may conclude that the
hmlt cycle IS stable and that we have a supercrltlcaLHopt. This result IS in agreement
with numerical integration ofEq.(3.38).

3.4.2 DerivatiOn

In order to derive the result (3.32), (3.33), (3.34), we use Lindstedt's method. We
begin by introducing a small parameter £ via the scaling

x=£U.

The detuning J1 of Eq.(3.30) is scaled like £2:

Next we stretch time by replacing the independent variable t by r, where

r - f.2t.

This results in the following form of Eq.(3.27):

(3.43)

(3.44)

(3.45)

du 2 2 2 3 2 2 3
Q-;h=au+{3ud+£(atU +a2uud+a3ud)+£ (btU +b2U ud+b3uud+b4Ud)'

(3.46)
where Ud = U(r - Q T). We expand Q in a power series in £, omitting the O(£) term
for convemence, smce It turns out to be zero:

(3.47)

Next we expand the delay term Ud:

(3.48)

(3.49)

Finally we expand u(r) in a power series in £:

(3.51)

Substituting and collecting terms, we find:
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duo
rodi - auo( -r) - f3uo( -r- roTcr) = 0, (3.52)

dUl
ro dr - aUl (r) - f3 ul (-r - roTcr)

= aluo( -rf +a2uo(-r)uo( -r- roTcr) +a3uo(-r- roTcrf, (3.53)

dU2
rodi - aU2(-r) - f3u2( -r- roTcr) (3.54)

where· .. stands for terms In Uo and ul, omitted here for breVity.We take the solutiOn
of the Uo equation as (ct. Eq.(3.29) above):

uo(r) = Acos( r).

We substitute (3.55) into (3.53) and obtain the following expression for Ui:

Ul(r) = ml sin(2-r) +m2cos(2-r) +m3,

where ml is given by the equation:

A2 (2a3f3 +a2f3 - 2al 13 - 2a3 a) Jf32 - a 2

m1 = - 213 (13 + a) (5 13 - 4 a) .

(3.55)

(3.56)

(3.57)

and where m2 and m3 are given by similar e9uations, omitted here for brevity. In
deriving (3.57), ro has been replaced by Jf32 - a 2 as in Eq.(3.36).

Next the expressiOns for Uo and Ul, E9S.(3.55),(3.56), are substituted Into the U2
equatiOn, Eq.(3.55), and, after tngonometnc simpbficatiOns have been pertormed,
the coeffiCients of the resonant terms, SIn-r and cos -r, are equated to zero. ThiS re­
sults in E9.(3.32) for A2 as well as an expression for k2 (d. E9.(3.47» which does
not concern us here. (Note that A = fA from E9s.(3.3l ),(3.43),(3.55), and f.1 = £2 A
from (3.44). The perturbation method givesA2 as a function of A, but multiplication
by £2 converts to a relation between A2 and /1.)

3.4.3 Example 2

As a second example, we consider the case In which the quantity QIn Eqs.(3.32),(3.34)
is zero. To generate such an example for the DDE (3.27), we embed the previous
example in a one-parameter family of DDE's:

dx 3- = -X-2Xd-XXd-AX
dt '

(3.58)

and we choose It so that Q =°in E9.(3.32). This leads to the following critical value
of It:
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A= A = 4n+3\!3 = 0.0859
cr 18(2n+3V3)
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(3.59)

Since this choice for II: leads to Q = 0, Eq.(3.32) obviously cannot be used to find
the limit cycle amplitude A. Instead we use Lindstedt's method, maintaining terms
of 0(£4). The correct scalings in this case turn out to be (cf.Eqs.(3.44),(3.47»:

We find that the limit cycle amplitude A satisfies the equation:

A4 = -rf.1,

(3.60)

(3.61)

(3.62)

where we omit the closed form expression for r and give instead its approximate
value, 1 '-620.477.

The analysis of this example has assumed that the parameter A exactly takes on
the cntIcal value gIVen In Eq.(3.59). Let us consIder a more robust model whIch
allows II: to be detuned:

4n+3V3 2 A

A = Acr +A = V3 +e A.
18(2n+3 3)

(3.63)

Using Lindstedt's method we obtain for this case the following equation on A:

(3.64)

where we omIt the closed form expreSSIOn for (J and gIve Instead ItS approxImate
value, (J-342.689. EquatIOn (3.64) can have 0,1, or 2 positive real roots for A, each
of which is a limit cycle in the original system. Thus the number of limit cycles
which are born in the Hopf bifurcation depends on the detuning coefficients A and
f.1. Elementary use of the quadratic formula and the requirement that A2 be both real
and posItIve gIves the follOWIng results: It f.1 < 0 then there IS one hmlt cycle. It f.1 >
oand (JA < -2\!rf.1 then there are two limit cycles. If f.1 > 0 and (JA > -2\!rf.1
then there are no limit cycles.

3.4.4 Discussion

Although Lindstedt's method is a formal perturbation method, i.e., lacking a proof
of convergence, our experience is that it gives the same results as the center mani­
fold approach, whIch has a ngorous mathematIcal foundatIOn. The center mamfold
approach has been descnbed In many places, for example (Hassard et al., 1981;
Campbell et al., 1995; Stepan, 1989; Kalmar-Nagy et al., 2001; Rand, 2005), and
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will be treated later in this Chapter. Since the DDE (3.27) is infinite dimensional
(for example the characteristic equation of the linear DDE (3.28) is transcendental
rather than polynomial, and hence has an infinite number of complex roots), the
center mamfold approach mvolves decomposmg the ongmal functIOn space mto a
two dImensIOnal center mamfold (m whIch the Hopf bIfurcatIOn takes place) and an
infinite dimensional function space representing the rest of the original phase space.
The center manifold procedure is much more complicated than the Hopf calcula­
tion. Stepan refers to the center manifold calculation as "long and tedious" ((Stepan,
1989), p.112), and Campbell et a1. refer to It as "algebraIcally dauntmg" ((Campbell
et aI., 1995), p.642). Thus the mam advantage of the Hopf calculatIOn IS that It IS
sImpler to understand and easrer to execute than the center mamfold approach.

The idea of using Lindstedt's method on bifurcation problems in DDE goes back
to a 1980 paper by Casal and Freedman (Casal and Freedman, 1980). That work
provIded the algonthm but not the Hopf bIfurcatIOnformula. We present the general
expreSSIOn for the Hopf bIfurcatIOn, as m Eqs.(3.32)-(3.34), as a convemence for
researchers in nnE

3.5 Transient behavior

We have seen that Lindstedt's method can be used to obtain an approximation for
the periodic motion of a DDE. This section is concerned with the use of perturbation
methods to obtain approximate expressions for the transient behavior of DDEs, e.g.
for the approach to a steady state penOdIC motIon. In the case of ordmary dIfferentIal
equatIOns (ODEs), a very popular method for obtammg tranSIent behaVIOr IS the
two vanable expanSIOn method (also know as multIple scales) (Cole, 1968; Nayfeh,
1973; Rand and Annbruster, 1987; Rand, 2005). In thIS sectIOn we show how thIS
method can be applied to a DDE. See also (Das and Chatterjee, 2002; Wang and Hu,
2003; Das and Chatterjee, 2005; Nayfeh, 2008). Although thIS approXImate method
IS stnctly formal, ItS use IS JustIfied by center mamfold conSIderatIOns. Although
the DDE IS an mfimte dImenSIOnal system, a WIde class of problems mvolves the
presence of a two dimensional invariant manifold, and it is the approximation of the
transient flow on this surface which is the goal of this perturbation method.

3.5.1 Example

In order to illustrate the manner in which this perturbation method may be applied
to DDEs, we choose a SImple DDE problem, one that has an exact solutIOn, namely:

dx
- = -x(t-T)
dt '

(3.65)
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3.5.2 Exact solUtiOn

In Eq.(3.65) we set
x(t) = exp(At),

giving the characteristic equation

A = -exp(-AT).
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(3.66)

(3.67)

When E = 0, that is when T = n/2, Eq.(3.67) has the exact solution A = i. Thus for
E > 0 we set

A = i+E(a+ib). (3.68)

Substituting Eq.(3.68) into (3.67) and equating real and imaginary parts to zero, we
obtam the foIlowmg two equations on a and b:

(
2 naE). 2 nbe

aE = exp -a E J1 - -2- sin be J1 + E J1 + -2- , (3.69)

(3.70)

If Eqs.(3.69) and (3.70) were to be solved for a and b, we would obtam a solutiOn
to (3.65) m the form:

x(t) = exp( Eat) sin
cos

(1+Eb)t,
(1 +Eb)t. (3.71)

Inorder to obtain a version of the exact solution (3.71) which will be useful for com­
panng solutiOns to Eq.(3.65) obtamed by the perturbatiOn method, we now denve
approxImate expressions for a and b. Taylor expandmg Eqs.(3.69),(3.70) for small
E, weobtam

(bn+2J1) E
aE+"'= +...

2
naE

l+bE+···=l--+···
2

(3.72)

(3.73)

Solvmg Eqs.(3.72),(3.73) for a and b, we obtam the approximate expressions:

4J1
a=~4+0(E),

n +
2nJ1

b=---+O(E)
n2+4

(3.74)

3.5.3 Two variable expansion method (also known as multiple
scales)

In applymg thIS method to the example of Eq.(3.65), we replace tIme t by two tIme
variables: regular time g= t, and slow time 1] = Et. The dependent variable x(t) is
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then replaced by x(~, 1] ), and Eq.(3.65) becomes

ax ax
ag +£a1] =-x(£-T,1]-£T).

Richard Rand

(3.75)

Note that since T = n/2 + £J1, the delayed term may be expanded for small £ as
follows·

where Xd is an abbreviation for x(£- j, 1]). Next we expand x = Xo +£x! +0(£2)
and collect terms m Eqs.(3.75),(3.76), grvmg

ax! (J: n) aXOd n aXOd aXO
ag-+X! "-2,1] = J1 ar + 2 a11 - a1i · (3.78)

Eq.(3.77) has the periodic solution

Xo = R(1])cos(g - 8(1])). (3.79)

where as usual in this method, R(1]) and 8(1]) are as yet undetermined functions of
slow time 1]. The next step is to substitute Eq.(3.79) mto (3.78). Before domg so,
we rewrite (3.78) by noting that (3.77) can be written in the form XOd = -axozag:

Now we substitute (3.79) into (3.80) and require the coefficients of both cos(~ - 8)
and sin(~ - 8) to vanish, giving the following slow flow on Rand 8:

n
R' + -R8' - IIR = 02 r- ,

7!..R' -R8' = 0
2 '

(3.81)

(3.82)

where primes represent differentiation with respect to slow time 1]. Solving for R'
and 8', we get

(3.83)

(3.84)

from which we obtain
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Eq.(3.79) thus gives

97

(3.85)

(3.86)

x~xo = Roexp
2nj1

t- --£t-80
n2 + 4

(3.87)

which agrees with the exact solution given by Eq.(3.71) with a andb given by (3.74).

3.5.4 Approach to limit cycle

Now let us use the two variable method on Eq.(3.1). We have seen by use of Lindst­
edt's method that this DDE has a limit cycle of amplitude 2J7i/J3, see Eq.(3.25).
The questiOnanses as to the stabihty of thiS hmit cycle. ThiS may be determmed as
follows: After scahng x as m Eq.(3.13), we may obtam Eq.(3.1) by addmg the term
-£x(t? to the RHS of Eq.(3.65). This results in the term -x~ being added to the
RHS of Eqs.(3.78) and (3.80). After trigonometric reduction, this new term causes
the term -3R3/4 to be added to the RHS of Eq.(3.81), resulting in the new slow
HOW

, 4j1R- 3R3
R = --'---::--­

n2 + 4 '

8' = 2nj1- (3n/2)R
2

n2 + 4

(3.88)

(3.89)

Here we see that Eq.(3.88) has two equilibria, R = 0 and R = 2J7i/J3. Treat­
ing (3.88) as a flow on the R-line immediately shows that for Jl > 0 the R = 0
eqmhbnum is unstable, a fact which we have already observed Via a different ap­
proach, smce R - 0 corresponds to the tnvial solutiOnof Eq.(3.1), which was mves­
tIgated m Eqs.(3.5)-(3.9). In additIon (3.88) shows that for j1 > 0 the eqmhbnum
R = 2J7i/J3 is stable, from which we may conclude that the corresponding limit
cycle is stable and that the Hopf bifurcation is supercritical. This conclusion agrees
With the numencal integration displayed m Figure 3.3.

3.6 Center manifold analysis

We have seen earher that the eqmhbnum solutiOn x = 0 m Eq.(3.l) is stable for
T < n/2 and is unstable for T > n/2. The question remains as to the stability of
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x = 0 when T = n /2. More generally, in order to determine the stability of the x=O
solution of a DDE in the form of Eq.(3.2),

dx(t)
- = ax(t) + f3x(t - T) + f(x(t),x(t - T)),

dt
(3.90)

m the case that the delay T takes on its cntical value Ta , it is necessary to take
into account the effect of nonhnear terms. ThiS may be accomphshed by using a
center manifold reduction. In order to accomplish this, the DDE is reformulated
as an evolution equation on a function space. Our treatment closely follows that
presented m (Kalmar-Nagy et al., 2001).

The idea here is that the imtial condition for Eq.(3.90) consists of a functiOn de­
fined on - T :::; t :::; O. As t increases from zero we may conSider the piece of the
solution lying in the time interval [-T +t, t] as having evolved from the initial con­
dition function. In order to avoid confusion, the variable 8 is used to identify a point
in the interval [-T, 0], whereupon x(t + 8) will represent the piece of the solution
which has evolved from the imtial condition functiOn at time t. From the pomt of
View of the functiOn space, t is a parameter, and it is e which is the mdependent
variable. To emphasize this, we write:

xt(8) =x(t+8). (3.91)

The evolution equation, which acts on a function space consisting of continuously
differentiable functions on 1-T, 01, is written:

for 8 E [-T,O),
(3.92)

for 8 = O.

Here the DDE (3.90) appears as a boundary condition at e = O. The rest of the

interval goes along for the ride, which is to say that the equation dx,;;~e) = dX!J~e) is
an identity due to Eq.(3.91).

The RHS of Eq.(3.92) may be wntten as the sum of a hnear operator A and a
nonhnear operator F:

aXt(8)
for 8 E [-T,O),

AXt(8) = a8
,

for 8 = O.

FXt(8) =
0, for 8 E [-T,O),

f(xt(O),Xt(-T)), for 8 = O.

(3.93)

(3.94)

We now assume that the delay T is set at itS cntical value for a Hopf bifurcatiOn,
i.e. the characteristic equation has a pair of pure imaginary roots, II: = ±roi. Corre­
sponding to these eigenvalues are a pair of eigenfunctions Si(8) and S2 (8) which
satisfy the ergenequation:
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ASI (B) = -COS2( B),

AS2(B) = COSI (B).
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(3.95)

(3.96)

(3.97)

From the definition (3.93) of the linear operator A we find that SI(B) and S2( B) must
satisfy the following differential equations and boundary conditions:

asdO) +[3sd-T) = -COS2(0),

(3.98)

(3.99)

(3.100)

(3.101)

Let's illustrate this process by using Eq.(3.1) as an example. We saw earlier that at
T=Tcr=1C/2, co=l, which permits us to solve Eqs.(3.98), (3.99) as:

sl(B) =clcosB-c2sinB,

s2(B) =clsinB+c2cosB,

(3.102)

(3.103)

where CI and C2 are arbItrary constants. In the case of Eq.(3.l), the boundary condI­
tions (3.100), (3.101) become (a-O, f3--1):

(3.104)

(3.105)

EquatIOns (3.102), (3.103) IdentIcaIIy satIsfy Eqs.(3.104), (3.105) so that the con­
stants of integration CI and C2 remain arbitrary at this point.

In preparation for the center manifold analysis, we write the solution XI (B) as
a sum of points lying in the center subspace (spanned by SI(B) and S2 (B)) and of
points whIch do not he ill the center subspace, i.e., the rest of the solutIOn, here
called w:

(3.106)

Here YI (t) and Y2 (t) are the components of XI ( B) lying in the directions SI(B) and
S2 (B) respectively.

The idea of the center manifold reduction is to find w as an approximate
function of Yl and Y2 (the center manifold), and then to substitute w (Yl' Y2)
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into the equations on Yl (t) and Y2 (t). The result is that we will have replaced
the original infinite dimensional system with a two dimensional approximation.

In order to find the equations on Yl (t) and Y2 (t ), we need to project XI ( e) onto the
center subspace. In this system, projections are accomplished by means of a bilinear
form:

(v,u) = v(O)u(O) +1; v(e+T)f3u(e)de, (3.107)

where u(e) lies in the original function space, i.e. the space of continuously differ­
entiable functions defined on I-T,OI, and where vee) lies in the adjoint function
space of continuously differentiable functions defined on [0,T]. See the Appendix
to this chapter for a discussion of the adjoint operator A*.

In order to project XI ( e) onto the center subspace, we will need the adjoint eigen­
functions nl (e) and n2(e) which satisfy the adjoint eigenequation:

(3.108)

(3.109)

(3.110)

where the adjoint operator A* is defined by

A*v(e) =
for e E (0,T],

for e = 0.
(3.111)

In addItIon, the adJomt eIgenfunctIOns n; are defined to be orthonormal to the eigen­
functions Si:

(ni,sj} = { ~: ifi = j,
ifi =1= j.

(3.112)

From the definition (3.111) of the linear operator A* we find that n1( e) and n2(e)
must satIsfy the followmg differentIal equations and boundary conditIons:

(3.113)

(3.114)

(3.115)

(3.116)

We contmue to Illustrate by usmg Eq.(3.l) as an example. With ro- 1, Eqs.(3.113),
(3.114) may be solved as:

(3.117)
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(3.118)

where dl and d2 are arbItrary constants. In the case of Eq.(3.1), the boundary con­
ditions (3.115), (3.116) become (a=O, {3=-1):

(3.119)

(3.120)

As in the case of the Si eigenfunctions, Eqs.(3.117), (3.118) identically satisfy
Eqs.(3.119), (3.120) so that the constants of integration dl and d2 remain arbitrary.

The four arbitrary constants CI, C2, dl, d2 of Eqs.(3.102),(3.103),(3.117),(3.118)
will be related by the orthonormahty condlttons (3.112). Let's Illustrate this by com­
puting (nl, Sl) for the example of Eq.(3.1). Using the definition of the bilinear form
(3.107), we obtam:

(nl,SI) =nl(O)SI(O) + i: nl (8+~)(-1)SI(8)d8,
2

(nl,SI) = (2C2 + ncr) d2: (2CI - nC2) dl = 1.

Similarly, we find:

(3.121)

(3.122)

(3.123)

The other two orthonormality conditions give no new information since it turns out
that (n2,sl) = -(nl,s2) and (n2,s2) = (nl,sr). Thus Eqs.(3.122) and (3.123) are
two equatiOns m four unknowns, CI, C2, dl, d2. Without loss of generahty we take
di = 1 and d2 = 0, giving CI = 2

8
4' C2 = - ~n4. Thus the eigenfunctions s; and n;n+ n+

for Eq.(3.l) become:

(
8 ) = 4nsm8+8cos8

Sl n2 + 4 '

S (8) = 8sm8-4ncos8
2 n2 +4

(3.124)

(3.125)

(3.126)

(3.127)

Recall that our purpose in solving for nl and n2 was to obtain equations on YI (t) and
Y2(t), the components of x, (8) lying in the directions Sl(8) and S2 (8) respectively,
see Eq.(3.106). We have:

(3.128)

Dtfferenttatmg (3.128) with respect to t:

(3.129)
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Let us consider the first of these:

Now by definition of the adjoint operator A*,

So we have

and similarly

In Eqs.(3.132), the quantities (ni,Fxtl are given by (d. Eq.(3.107)):
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(3.130)

(3.131)

(3.132)

(ni,Fxt) = ni(O)Fxt(O) +1; ni(B+T)f3Fxt(B)dB (3.133)

= ni(O)/(Xt(O),Xt(-T)) since FXt(B)=O unless B=O, (3.134)

in which Xt = Yl (t)Sl (B) +Y2(t)S2(B) +w(t)(B). Continuing with the example of
Eq.(3.1), Eqs.(3.132) become, using / = -x(t?:

and »2 = -Yl, (3.135)

where we have usedsl (O)=~,S2(0)=~,nl (0)=1 andn2(0)=0 from Eqs.(3.124)
-(3.127).

The next step IS to look for an approximate expression for the center mamfold,
which is tangent to the YI-Y2 plane at the origin, and which may be written in the
form:

(3.136)

The procedure IS to substItute (3.136) mto the equations of motion, collect terms,
and solve for the unknown functions mi(B). Then the resulting expression is to be
substituted into the YI-Y2 equations (3.132). Note that if this is done for the example
of Eq.(3.1), I.e. for Eqs.(3.135), the contnbutIon made by w WIll be of degree 4
and hIgher m the Yi. However, stablhty of the ongm wIll be determmed by terms
of degree 2 and 3, accordmg to the followmg formula (obtamable by averagmg).
Suppose the YI-Y2 equations are of the form:

(3.137)

Then the stablhty of the ongm IS determmed by the sign of the quantity Q, where
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where subscripts represent partial derivatives, which are to be evaluated at YI = Y2 =

O.Q > 0 means unstable, Q < 0 means stable. See ( Guckenheimer and Holmes,
1983) pp.154-l56, where it is shown that the flow on the YI -Y2 plane in the neigh­
borhood of the ongm can be approxImately wntten m polar coordmates as:

(3.139)

Applying this criterion to Eqs.(3.135) (in which w is assumed to be of the fonn
(3.136) and hence contnbutes terms of hIgher order my;), we find:

48
Q = - 2 = -0.2495.

(n2 +4)
(3.140)

The origin in Eq.(3.1) for T = Tcr = nl2 is therefore predicted to be stable. This
result IS in agreement WIthnumencalmtegratlOn, see FIg. 3.4.

0.15 ,-----,-------,------,------,-------,--,-------.---------,-------,------,

o 50 100 ISO 200 250 300 350 400 450 500
1

Fig. 3.4 Numencal integratIOn of Eq.(3.I) for the Imtlal condition x - 0.1 on - T < t < 0, for
T-n/2.

Now let's change the example a httle so that wplays a slgmficant role in determmmg
the stablhty of the ongm:
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dx(t) 2
-=-x(t-T)-x(t) .

dt

Richard Rand

(3.141)

Since the linear parts of this example and of the previous example are the same, our
prevIOuslydenved expressions for SI, S2, nl and n2, Eqs.(3.124)-(3.127), still apply.
Eqs.(3.135) now become:

2

and (3.142)

So our goal now is to find the functions m; ( 8) in the expression for the center man­
ifold (3.136), and then to substitute the result into Eq.(3.142) and use the formula
(3.138) to determme stabIlIty.

We begm by dIfferentlatmg the expression for the center mamfold (3.136) wIth
respect to t:

(3.143)

We substitute the equations (3.132) on y] and)'2 in (3.143) and neglect terms of
degree higher than 2 in the y;:

dW(YI,Y2)(8)
at = 2ml(8)YIWY2+m2(8)(-YlwYI +Y2WY2)

- 2m3(8)Y2WYI +...
= w[-m2(8)YT +2(ml(8) -m3(8))YIY2

+m2(8)Y5]+...

(3.144)

(3.145)

We obtain conditions on the functions m; (8) by deriving another expression for W
and equatmg them. Let us dIfferentiate Eq.(3.106) wIth respect to t:

(3.146)

Using the functional DE (3.92)-(3.94), and rearranging terms, we get:

= AXt(8) +FXt(8) -»1 (t)SI (8) - )'2(t)S2(8)

= A(YI(t)sl(8) +Y2(t)S2(8) +w(t)(8))

+Fxt(8) -)'1 (t)sd8) - )'2(t)S2(8)

= YI( - WS2) +Y2(wsI) +Aw+Fxt

-(WY2 + (nl,Fxt ))SI - (-WYI + (n2,Fxt ))S2

(3.147)

(3.148)

(3.149)

(3.150)

(3.151)

(3.152)
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where we have used Eqs.(3.96), (3.97) and (3.132), and where the quantities
(ni,Fxt) are given by Eq.(3.134).

Eq.(3.152) is an equation for the time evolution of w. Since the operator A is
defined differently for 8 E 1-T, 0) and for 8 = 0, we consider each of these cases
separately when we substitute Eq.(3.136) for the center manifold. In the 8 E 1-T,O)
case, Eq.(3.152) becomes:

(3.153)

where pnmes denote dIfferentIatIOn wIth respect to 8. In the 8 - 0 case, Eq.(3.152)
becomes·

dw(t)(8)
at

Now we equate Eqs.(3.153) and (3.154) to the previously derived expression for lV,
Eq.(3.145). Equating (3.153) to (3.145), we get:

m;YT +m;YIY2 +m;y~ - (nl,Fxt)SI(8) - (n2,Fxt)S2(8) =

ro[-m2YT +2(ml -m3)YIY2 +m2Y~] + ...

Equatmg (3.154) to (3.145), we get:

aim, (O)yr +m2(0)YIY2 +m3(0)yD

(3.155)

(3.156)

Now we equate coefficients of yr, YIY2 and Y~ in Eqs.(3.155) and (3.156) and so
obtain 3 first order ODE's on ml, m2 and m3 and 3 boundary conditions. From
Eq.(3.134), the nonlinear terms (ni,Fxt) become:

(3.157)

in which Xt = yt{t)st{8) +Y2(t)S2(8) +w(t)(8) ~ yt{t)st{8) +Y2(t)S2(8). In the
case of the example system (3.141) we have a = 0, f3 = -1, ro = 1, T = n12,
f(x(t),x(t - T)) = -x(t? and

(3.158)

For thIS example, Eq.(3.155) becomes
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which gives the following 3 ODE's on mi(8):

m~ +SI(0)2sl(8) = -m2,

m; + 2S1 (0)S2(0)SI (8) = 2(ml - m3),

m; +S2(0)2s1(8) = mi.

For thISexample, Eq.(3.156) becomes

-(ml (-nI2)YI +m2( -nI2)YIY2 +m3( -nI2)y~)

-(YISI(O) +Y2S2(0))2 + (YISI(O) +Y2S2(0))2sl(0) =

which gives the following 3 boundary conditions on mi(8):

Richard Rand

(3.159)

(3.160)

(3.161)

(3.162)

(3.163)

(3.164)

-m2(-nI2) - 2S1 (0)S2 (0) + 2S1 (0)2S2(0) = 2(ml (0) - m3(0)),

-m3(-nI2) - S2(0)2 +S2(0)2s1(0) = m2(0).

(3.165)

(3.166)

So we have 3 lInear ODE's (3.160)-(3.162) wIth 3 boundary condItIons (3.164)­
(3.166) for the mi(8). In these equations, Sl and S2 are given by Eqs.(3.124), (3.125).
The solution of these equations is algebraically complicated. I used a computer al­
gebra system to obtain a closed form solution for the m; (8). For brevity, a numerical
version of the center mamfold IS given below:

W=

(0.20216 sin28 + 0.16022 cos28 - 0.6953 sin 8 + 0.39537 cos 8 - 0.5768) Yl2

+ (0.32044 sin 28 - 0.40432 cos 28 + 0.09393 sin 8 + 0.5034 cos 8) YIY2

+ (-0.20216 sin28 - 0.16022 cos28 + 0.0299 sin 8 + 0.64984 cos 8 - 0.5768) yl.
(TT67)

Next we substItute the algebraic verSIOn of Eq.(3.167) mto the YI-Y2 Eqs.(3.142) and
use Eq.(3.138) to compute the stability parameter Q:

Q= 32(9-n) =0.19491>0.
5 (n2+4)2

(3.168)

Thus the center mamfold analysIs predIcts that ongm of Eq.(3.14l) IS unstable. ThIS
result IS m agreement WIthnumencal mtegration, see FIg. 3.5.
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Fig. 3.5 Numencal IntegratIOn of Eg.(3.141) for the InItial condItIOn x - 0.04 on - T < t < 0, for
T=n/2.

3.6.1 Appendix: The adjoint operator A*

The adjoint operator A* is defined by the relation:

(v,Au) = (A*v,u),

where the bilinear form (v, u) is given by Eq.(3.107):

(v,u) = v(O)u(O) +1~ v(8+T)f3u(8)d8,

(3.169)

(3.170)

where u(8) lies in the original function space, i.e. the space of continuously differ­
entiable functions defined on I-T,OI, and where v(8) lies in the adjoint function
space of continuously differentiable functions defined on [0,T].

The linear operator A is given by Eq.(3.93):

du(8)
Au(8) = ----;j"8 ,

au(O) + f3u( - T),

from which (v,Au) can be written as follows:

for 8 E [-T,O),

for 8 = 0,
(3.171)
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(v,Au) = v(O)Au(O) +1: v(8+T)f3Au(8)d8

Richard Rand

(3.172)

10 du(8)
= v(O)[au(O)+f3u(-T)] + T v(8+T)f3---;j8d8. (3.173)

Usmg integration by parts, the last term of Eq.(3.173) can be wntten:

e dv(</»
=v(T)f3u(O) - v(O)f3u( -T) - Ji/J=o f3u(</> - T)~d</>

where p = 8 +T. Substituting (3.175) into (3.173), we get

(3.174)

(3.175)

(v,Au) = [av(O)+f3v(T)]u(O) + rT
(- dV(</»)f3U(</>_T)d</> (3.176)

Ji/J=o d</>
= (A*v,u) (3.177)

from which we may conclude that the adjoint operator A* is given by:

dv(</> )
---

A*v(</» = d</>
av(O) + f3v(T)

3.7 Application to gene expression

for </> E (0, T],

for </> = O.
(3.178)

ThIs section offers a timely example showmg how DDEs occur m a mathematical
model of gene expression (Monk, 2003; Verdugo and Rand, 2008a). The biology
of the problem may be described as follows: A gene, i.e. a section of the DNA
molecule, IS copied (transcrIbed) onto messenger RNA (mRNA), whIch dIffuses out
of the nucleus of the cell mto the cytoplasm, where It enters a subcellular structure
called a rIbosome. Inthe rIbosome the genetic code on the mRNA produces a protem
(a process called translation). The protein then diffuses back into the nucleus where
it represses the transcription of its own gene.

Dynamically speaking, this process may result in a steady state equilibrium, in
whIch the concentratIOns of mRNA and protem are constant, or It may result m an
oscIllatIOn. In thIS section we analyze a sImple model prevIOusly proposed m the
biological literature (Monk, 2003), and we show that the transition between equilib­
rium and oscillation is a Hopf bifurcation. The model takes the form of two equa­
tions, one an ordinary differential equation (ODE) and the other a delayed differen-
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tial equation (DDE). The delay is due to an observed time lag in the transcription
pmcess.

Oscillations in biological systems with delay have been dealt with previously in
(Mahaffy, 1988; Mahaffy et al., 1992; Mocek et al., 2005).
The model equations investigated here involve the variables M(t), the concentration
of mRNA, and P(t), the concentration of the associated protein (Monk, 2003):

~C(rtr) -~mM,
P = apM-}lpP

(3.179)

(3.180)

where dots represent differentiation with respect to time t, and where we use the
subscript d to denote a variable which is delayed by time T, thus Pd = P( t - T). The
model constants are as gIven m (Monk, 2003): am IS the rate at whIch mRNA IS tran­
sCrIbedm the absence of the assocIated protem, ap IS the rate at whIch the protem
is produced from mRNA in the ribosome, }lm and }lp are the rates of degradation of
mRNA and of protein, respectively, Po is a reference concentration of protein, and n
is a parameter. We assume }lm=}lp=}l.

3.7.1 Stability ofequilibrium

We begin by rescaling Eqs. (3.179) and (3.180). We set m= :,., P = a:a
p

' and
_ Po ...

Po - a;;;a,;' glVlng.

p - m- gp.

(3.181)

(3.182)

Equilibrium points, (m*,p*), for (3.181) and (3.182) are found by setting liz = 0 and
p=o

m" =gp*.

Eliminating m* from Eqs. (3.183) and (3.184), we obtain an equation on p*:

(p*)n+I + lop* - P~ = o.
g

(3.183)

(3.184)

(3.185)
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(3.187)

(3.186)

Next we define ~ and 1] to be deviations from equilibrium: ~ = ~ (t) = m(t) - m*,
1] = 1](t) = p(t) - p", and 1]d = 1](t - T). This results in the nonlinear system:

. 1
~= (+*)n-,u(m*+~),

1+ !1ill!:
Po

f]=S-j11J·

Expanding for small values of lJd, Eq.(3.l86) becomes:

where K, H2 and H3 depend on p*, Po, and n as follows:

(3.188)

K = nf3 where
p*(l +13)2'

13 n (13 n - n + 13 + 1)
H2==---------':.:.-----;;---'------'--

2(f3+ 1) 3 p * 2 '

(3.189)

(3.190)

(3.191)

Next we analyze the hnearIzed system coming from Eqs. (3.188) and (3.187):

f]=£-j11J.

(3.192)

(3.193)

Stablhty analysIs of Eqs. (3.192) and (3.193) shows that for T = 0 (no delay), the
equilibrium point (m*,p*) is a stable spiral. Increasing the delay, T, in the linear
system (3.192)-(3.193), will yield a critical delay, TCTl such that for T > TCTl (m* ,p*)
will be unstable, gIVIngrIse to a Hopf bIfurcatIOn. For T - Tcr the system (3.192)­
(3.193) will exhIbit a pair of pure imaginary eigenvalues ±roz correspondIng to the
solution

S(t) = Bcos(rot+l!»,

1](t) = Acos ox,
(3.194)

(3.195)

where A and B are the amplitudes of the 1](t) and ~ (t) oscillations, and where l!> is
a phase angle. Note that we have chosen the phase of 1](t) to be zero without loss
of generality. Then for values of delay T close to TCTl

T=Tcr +.1 , (3.196)

the nonhnear system (3.181)-(3.182) IS expected to exhIbit a perIodiC solutIOn (a
hmIt cycle) whIch can be WrItten In the approxImate form of Eqs. (3.194), (3.195).
SubstItutIng Eqs. (3.194) and (3.195) Into Eqs. (3.192) and (3.193) and solVIng for
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ro and Tcr we obtain

ro=~,

arctan (2J.l~)K-2J.l2
Tcr = ------===--'---
~

3.7.2 Lilldstedt's method

III

(3.197)

(3.198)

We use Lindstedt's Method (Rand and Verdugo, 2007) on Egs. (3.188) and (3.187).
We begin by changing the first order system into a second order DDE. This results
m the followmg form:

(3.199)

where K, H2 and H3 are defined by Eqs. (3.189)-(3.191). We mtroduce a small
parameter e via the scaling

1] = eu.

The detuning Ll ofEq. (3.196) is scaled like e2, Ll = e28:

Next we stretch time by replacmg the mdependent vanable t by r, where

-r=Qt.

This results in the following form of Eg. (3.199):

(3.200)

(3.201)

(3.202)

(3.203)

where Ud = u( -r - Q, T). We expand Q, in a power series in e, omitting the O(e) for
convenience, since it turns out to be zero:

(3.204)

Next we expand the delay term Ud:

ud=u(-r-Q,T) =u(-r-(ro+ezk2+ .. ·)(Tcr+eZ8)) (3.205)

= u( -r - roTcr - eZ(k2Tcr +ro8) +...) (3.206)

= u( -r - roTcr) - e2(k2Tcr + ro8)u'(-r - roTcr) +O(e3) . (3.207)

Now we expand u(r) in a power series in e:
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(3.208)

(3.212)

SubstItutmg and collectmg terms, we find:

2d2uo duo 2
ro --;Fi2 +2J.lrodi +Kuo(r- roTa)+ J.l Uo = 0, (3.209)

2d2uI dUI 2 2ro --;Fi2+2J.lrodi+KuI(r-roTa)+J.l UI =H2uO(r-roTa), (3.210)

2d2U2 dU2 2
ro --;Fi2+2J.lrodi+Ku2(r-roTa)+J.l U2 =... (3.211)

where· .. stands for terms in Uo and uI, omitted here for brevity. We take the solution
of the Uo equation as:

where from Eqs. (3.195) and (3.200) we know A - A£. Next we substItute (3.212)
into (3.38) and obtain the following expression for UI:

(3.213)

where ml is given by the equation:

(3.214)

and where m2 and m3 are given by similar equations, omitted here for brevity. We
substItute Eqs. (3.212) and (3.213) mto (3.40), and after tngonometnc slmphfica­
tlOns have been performed, we equate to zero the coeffiCIents of the resonant terms
sin r and cos r. ThIS yIelds the amphtude, A, of the hmlt cycle that was born in the
Hopf bifurcation:

(3.215)

where

(3.216)

(3.217)

+ 27H3J(6 + 30H2
2 K5, (3.218)

QI = 96H3Kg9 + 64H22g9 -138H3K2 g? -16H22 Kg?
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Eg. (3.217) depends on Ji, K, H2, H3, and Tcr . By using Eg. (3.198) we may express
Eg. (3.217) as a function of Ji, K, H2, and H3 only. Removal of secular terms also
yields a value for the freguency shift k2, where, from Eg. (3.204), we have .Q =

CO+£2k2:

where Q is given by (3.217) and

R
k2 = --0Q.

R=~QO.

(3.220)

(3.221)

An expression for the amplitude B of the periodic solution for g(t) (see Eq. (3.194))
may be obtained directly from Eg. (3.187) by writing g = iz + Jill, where 11 rv

AcoSQ)( We find·
B=VKA,

where K and A are given as m (3.189) and (3.215) respecttvely.

3.7.3 Numerical example

Osmg the same parameter values as m (Monk, 2003)

J.l = 0.03jmin, Po = 100, n = 5,

we obtain
p* = 145.9158, m* = 4.3774,

K = 3.9089 x 10-3 , H2 = 6.2778 x 10-5 , H3 = -6.4101 X 10-7,

-2 2n
Tcr = 18.2470, w = 5.4854 x 10 ,- = 114.5432.

w

(3.222)

(3.223)

(3.224)

(3.225)

(3.226)

Here the delay Tcr and the response period 2n j co are given in minutes. Substituting
(3.224)-(3.226) mto (3.215)-(3.222) yields the tollowmg equations:

A = 27.0215 J.1,

k2 = -2.4512 x 10 3 0,

B = 1.6894 J .1.

(3.227)

(3.228)

(3.229)

Note that smce Eq. (3.227) reqmres L1 > 0 tor the hmit cycle to eXist, and smce we
saw m Eqs. (3.192) and (3.193) that the ongm is unstable tor T > Tcr , l.e. tor L1 > 0,
we may conclude that the Hopt btfurcatlOn is supercnttcal, i.e., the hmit cycle is
stable.

Multiplying (3.228) by £2 and substituting into (3.204) we obtain:

.Q = 5.4854 x 10 2 - 2.4512 x 10 3.1 (3.230)
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where Li = T - Tcr = T - 18.2470. Plotting the period, ~, against the delay, T,
yields the graph shown in Fig. 3.6. These results are in agreement with those ob­
tained by numerical integration of the original Eqs. (3.179) and (3.180) and with
those presented in (Monk, 2003).

Fig.3.6 Period of oscillation, #' plotted as a function of delay T, where Q is given by Eq.(3.230).
The InitIatIOnof oscIllatIOn at T - Ter - 18.2470 IS due to a supercntIcal Hopf bifurcatIon, and IS

marked In the Figure Witha dot.

3.8 Exercises

Exercise 1
For whIch values of the delay T > 0 IS the tnvIal solutIOn in the followmg DDE
stable?

Exercise 2

dx(t)
- = x(t) - 2x(t - T).

dt
(3.231)

Use Lmdstedt's method to find an approxunation for the amplItude of the lImIt cycle
m the followmg DDE:

dx(t) 3
- = -x(t-T)+x(t-T) .

dt
(3.232)
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Exercise 3
Use the center manifold approach to determine the stability of the x=O solution in
the following DDE:

dx(t) =-x(t-~)(l+x(t)).
dt 2

Here is an outhne of the steps mvolved in this comphcated calculatiOn:

1. Show that the parameters of the linearized equation

dx(t) = -x (t _~)
dt 2 '

(3.233)

(3.234)

have been chosen so that the delay is set at its critical value for a Hopfbifurcation,
i.e. the characteristic equation has a pair of pure imaginary roots, II: = ±wi.Find
rn;

2. Find the eigenfunctions Sl(8), S2 (8) and the adjoint eigenfunctions nl (8), n2(8 ).
These are determined by Eqs.(3.98)-(3.101),(3.113)-(3.116), where the con­
stants c;, d; are related by the orthonomality conditions (3.112), in which the
bilinear form (v, u) is given by Eq.(3.107).

3. By comparing Eq.(3.233) with the general form (3.90), identify a, {3, and f for
this system. This will permit you to wnte down Eqs.(3.155) and (3.156), m which
(n;,Fxt) is given by Eq.(3.157) and Xt = vi (t)st{ 8) +Y2(t)S2( 8).

4. Equate coefficients ofYr, YIY2 and Y5 in Eqs.(3.155) and (3.156) and so obtain 3
first order linear ODE's on m, (8), m2(8) and m3(8), together with 3 boundary
conditions

5. Solvetheseform;(8).
6. Substitute the resulting expressions for m;( 8) into Eq.(3.136) for the center man­

ifold.
7. Substitute your expression for the center manifold into the YI-Y2 Eqs.(3.132).

Here (n;,Fxt) is given by Eq.(3.134) and r, = Yl (t)Sl(8) +Y2(t)S2(8) +w(t)(8).
8. Compute Q from Eq.(3.138).

A . Q - 4n (3n-2)
nswer. - -5 (n2+4)2
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Chapter 4

Analysis and Control of Deterministic and
Stochastic Dynamical Systems with Time Delay

Iian-Qiao Sun, Bo Song

Abstract ThIS chapter presents a comprehensIve summary of recent advances m
the analysis and control of time-delayed deterministic and stochastic systems. The
studIes of numencal methods for tIme-delayed systems m the mathematIcs lIterature
are revIewed mcludmg a dISCUSSIOn of the abstract Cauchy problem for delayed
dIfferentIal equations. Several numencal methods for computmg the response of
and designing controls for time-delayed systems are presented. These include semi­
discretization, continuous time approximation, lowpass filter based continuous time
approXImatIOn, and contmuous tIme approXImatIOnWIth Chebyshev nodes. A large
number of examples are presented mcludmg optImal feedback gam desIgn, stabIlIty
domams m the feedback gam space of lInear time-mvanant and penodIc systems,
optimal control, Lyapunov stability, supervisory control of systems with uncertain
time delay, moment stability, Fokker-Planck-Kolmogorov equation and reliability
formulation of stochastic systems.

4.1 Introduction

TIme delay IS a common phenomenon m engmeenng, economIcal and bIOlogIcal
systems. It IS caused by SIgnal transportatIOn and commUnICatIOn lags, feedback
delays and retarded hardware responses. It also anses when hIgh order mdustry pro­
cesses are approximated by low-order models with delay (Camacho and Bordons,
1999). Other than a few cases, time delay is undesirable. Control strategies to elim­
mate or mInImIZe unwanted effects are often employed. Effects of tIme delay on
the stabIlIty and performance of control systems have been a subject of many stud­
res, For time-mvanant lInear systems WIth time delay, several methods are aVaIlable

llan-Qlao Sun, Bo Song
School of Engmeenng, Umverslty of CalIfornia, Merced, CA 9533, USA.
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for the design of PID controls and stability analysis. These methods including root
locus and Nyquist criterion are quite mature.

4.1.1 Deterministic systems

Stability conditions of delayed time-varying systems have been extensively stud­
Ied In the hterature. The Lyapunov approach IS a popular method to use (Wu and
MlzukamI, 1995; KapIla and Haddad, 1999). A non-Lyapunov based stablhty study
of hnear tnne-varymg system by the Gauss-Seidel iteration IS presented In (Xlao
and Liu, 1994). An unconditional stability criterion is derived in (Li et aI., 1989) for
time-varying discrete systems. A study on stability and performance of feedback
controls wIth multiple time delays IS reported In (Ah et aI., 1998) by consIderIng
the roots of the closed-loop characterIstic equatIOn. A survey of methods for sta­
blhty analySIS of determInIstic delayed hnear systems IS presented In (Nlculescu et
aI., 1998). Another excellent survey of stability and control of time-delayed systems
can be found in (Gu and Niculescu, 2003).

Cao, Lin and Hu (2002), Fridman and Orlov (2009), and Kim (2008) ana­
lyzed stablhty of hnear systems wIth time delay USIng the Lyapunov approach.
Fan and Chan discussed asymptotic stablhty problem for a class of neutral systems
with discrete and distributed delays via linear matrix inequality (Fan et aI., 2002).
de Oliveira and Geromel focused on synthesis of non-rational controllers for linear
delay systems (de Oliveira and Geromel, 2004). Stabilization and performance de­
sign problems are expressed In terms of hnear matrIX Inequahtles. Gao, Chen and
Lam studied stablhty and Hoo controls of systems With two successive delay compo­
nents (Gao et aI., 2008). Han concerned WIth stablhty of hnear time-delay systems
of both retarded and neutral types by using time-independent and time-dependent
Lyapunov-Krasovskii functional (Han, 2009). Ivanescu, Dion, Dugard and Niculecu
(2000), Kolmanovskll and Richard (1999), Zhang, TSlOtras and Knospegave (2002)
Investigated delay-dependent and delaY-Independent stablhty conditions. Shao pro­
Vided Improved delay-dependent stablhty cntena for systems WIth a varying delay
in a range (Shao, 2008). Xia and Jia considered the problem of robust stability and
stabilization of linear systems with a constant time-delay in the state and subject to
real convex polytopic uncertainty (Xia and Jia, 2003).

Although time delay IS conSidered as a undeSired characterIstics which IS fre­
quently a source of Instablhty and comphcates the analySIS and deSign In most of
the applications, positive uses of time delay have also been investigated. From the
early 1950s (Tallman and SmIth, 1958) to the more recent days (Suh and BIen, 1979,
1980; Shanmugathasan and Johnston, 1988; Kwon et aI., 1990), time delay has been
used to Improve system pefformance In varIous ways. The time-delayed feedback
control IS deSIgnedIn (FUJll et aI., 2000) to regulate the hbratlOnal motion of gravlty­
gradIent satelhtes In an elhptlc orbIt. Delayed feedback laws are Investigated In
(Atay, 2002) to control the amplitude of oscillations in planar systems with general
nonlinearities. Olgac and his associates have published extensively on the use of
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delayed resonator for vibration suppression (see e.g., (Filipovic and Olgac, 1998)).
Space teleoperation is notorious for time delays (Nohmi and Matsumoto, 2002). In
reference (Singh, 1995), a time-delay filter is developed to design a fuel/time opti­
mal control. A sampled-data control system IS studied m (Ha and Ly, 1996) with a
consideratIOn of computation time delay. Yang and Wu (1998) and Stepan (1998)
have studied structural systems with time delay. Over the years, researchers have
come to a realization that the model predictive control offers a good tool to deal
with time delay (Dumont et aI., 1993; Normey-Rico and Camacho, 1999; Rawlings,

~
There have also been many studies of control systems with unknown and tIme­

varying time delays. Chen et aI. denved sufficient conditIons for the existence of the
guaranteed cost output-feedback controller in terms of matrix inequalities for uncer­
tain dynamical systems with time delay (Chen et aI., 2004). The Lyapunov method
IS used m (He et aI., 2007) for the stabilIty analysIs of systems with tIme-varymg
delay with known lower and upper bounds. The Lyapunov functIOn dependent on
the known upper bound of uncertain state-delays IS denved m the study of model
predictive controls (MPC) for a constrained linear digital systems with uncertain
state-delays (Hu and Chen, 2004). A class of iterative learning control systems with
uncertain state delay and control delay is studied in (Ii and Luo, 2006). Robust sta­
bilIty of uncertam lInear systems with mterval tIme-varymg delay IS studied m (Jiang
and Han, 2008). StabilIty of systems with bounded uncertain tnne-varymg bounded
delays in the feedback loop is studied in (Kao and Rantzer, 2007). The stability
problem is treated in the integral quadratic constraint (IQC) framework. Kwon, Park
and Lee investigated delay-dependent robust stability for neutral systems with the
help of the Lyapunov method (Kwon et aI., 2008). The system has tIme-varymg
structured uncertamtIes and mterval tIme-varymg delays. A compensatIOn scheme
consisting of a fuzzy-PID controller and a neural network compensator IS proposed
for real-time control over the network (Lin et aI., 2008). This scheme reduces the
influence of time delays on stability while maintaining the system performance. Ac­
cordmg to (MIller and DaVison, 2005), gIVen a fimte-dimenslOnal LTI plant and an
upper bound on the admissible tIme delay, there IS no general theory for desIgmng a
controller to handle an arbitranly large uncertain delay. The authors show that given
a finite-dimensional LTI plant and an upper bound on the admissible time delay,
there exists a linear periodic controller which robustly stabilizes the plant. Robust
stability of systems with random time-varying delay is studied in (Yue et aI., 2009).
The resultmg system model has stochastIc parameters. Sufficient conditIons for the
exponentIal mean square stabilIty of the system are denved by usmg the Lyapunov
functional method and the linear matrix inequality (LMI) technique.

When the uncertain time delay is bounded with known lower and upper bounds,
the supervIsory control (Morse, 1996, 1997; Hespanha et aI., 1999,2003) can be
considered. The supervIsory control proposes to use several estImates of uncertam
parameters for the system model. For each estImate of the parameter, a control IS
deSigned to achieve the deSired performance. A supervisor momtors the real-tIme
response of the system, selects a plant model according to a switching criterion and
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implements the corresponding control. This chapter presents one such example of
the supervisory control of systems with uncertain time delay.

4.1.2 Stochastic systems

There is a strong interest in the stochastic systems with time delay. An effective
Monte Carlo sImulatIOn scheme that converges m a weak sense IS presented by
Kuchler and Platen (2002). Buckwar has studIed numerIcal solutIOns of Ito type
differential equations and theIr convergence where the system consIdered has time
delay both in diffusion and drift terms (Buckwar, 2000). Guillouzic, L'Heureux and
Longtin have studied first order delayed Ito differential equations using a small de­
lay approxImatIOn and obtamed probablhty denSIty functIOns (PDF) as well as the
second order statistics analytically (Gmllouzlc et aI., 1999). Frank and Beek have
obtamed the PDFs using the Fokker-Planck-Kolmogorov (FPK) equation for hnear
delayed stochastic systems and studied the stability of fixed point solutions in bi­
ological systems (Prank and Beek, 2001). State feedback stabilization of nonlinear
time delayed stochastic systems are investigated by Pu, Tian and Shi (2003) where
a Lyapunov approach IS used.

4.1.3 Methods 0.1'solution

Several methods of solution are available in the literature
A method that fully dlscretizes the delayed control system m time domam has

been extensively studied. Pinto and Goncalves (2002) have fully discretized a non­
linear SDOP system to study control problems with time delay. Klein and Ramirez
(2001) have studied MDOF delayed optimal regulators WIth a hybrId discretiza­
tion techlllque where the state equatIOn IS partitIOned mto discrete and contmuous
portions, Cal and Huang have studIed optimal VIbratIOn controller With a delayed
feedback where standard discretization techniques are used (Cai and Huang, 2002).
Time-delayed systems have been studied using discretization techniques with an ex­
tended state vector. The SmIth predIctor IS a well-known method (SmIth, 1957) that
proposes a compensator to stabIhze the feedback control deSIgned for the system
WIthouttime delay.

A method using Chebyshev polynomials to approximate general nonlinear func­
tions of time has been developed to handle linear and nonlinear time-delayed dy­
namIcal systems WIth perIOdIC coeffiCIents(Deshmukh et aI., 2008, 2006; Ma et aI.,
2005,2003). The method has also been apphed to study optimal control problems. A
temporal tillite element method has been proposed m (Garg et aI., 2007) to study the
stabIhty of time-delayed systems WIth parametrIc eXCItatIOns. The work reported m
(Kalmar-Nagy, 2005) makes use of the pIece-WIseexact solutIOnof hnear ddleren-
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tial equations with a single time delay to create a map in order to study the stability
of the system.

The semi-discretization (SO) is a well-established method in the literature and
used Widely m structural and flUId mechamcs (PfeIffer and Marquardt, 1996; Leuger­
mg, 2000). The method has been applIed to delayed determimstIc dynamical sys­
tems by Insperger and Stepan (Insperger and Stepan, 2001, 2002). The method
has been extended to control systems with delayed feedback (Sheng et aI., 2004;
Sheng and Sun, 2005). The effect of various higher order approximations in semi­
discretIzatIOn on the computatIOnal effiCiency and accuracy has been exammed m
(ElbeylI and Sun, 2004). The merIt of the semi-discretIzatIOn method as mtroduced
by Insperger and Stepan lIes m that It makes use of the exact solutIOn of lInear
systems over a short time interval to construct the mapping of a finite dimensional
state vector for the system with time delay. The disadvantage of the method is that
It becomes dIfficult to handle multIple mdependent tIme delays with the mappmg
as well as nonlInear dynamical systems. The contmuous tIme approximatIOn(CIA)
method IS an extension of the method of semi-discretIzatIOn and provides an alter­
native to handle systems with multiple independent time delays (Sun, 2009). The
CTA method has been applied to study control problems of the time-delayed linear
dynamical systems, and stochastic dynamical systems with time delay.

Most numerIcal methods for the solutIOn and stabilIty analysIs of tIme-delayed
systems focus on approxunation of temporal responses of the system, and are not
specifically developed to meet frequency domain requirements such as accurate rep­
resentation of poles and zeros of the original system. Numerical methods based on
the abstract Cauchy problem for computing the right-most characteristic roots of de­
lay dIfferentIal equatIOns (DDEs) are presented m (Engelborghs and Roose, 2002;
Breda et aI., 2004, 2005). The convergence and stabilIty of the method with the
Chebyshev polynomial expansion of the delayed response are discussed. The ab­
stract Cauchy problem can be stated in tenns of a PDE, which is open to various
numerical methods for solutions. A finite difference method to solve the differential­
dIfference equatIOnof the tIme-delayed system and the stabilIty of the method are
presented m (Bellen and Maset, 2000), and a method of lInes for solvmg the PDE of
the tIme-delayed system IS mvestIgated in (Maset, 2003; Koto, 2004). These meth­
ods are the same as the CTA method (Sun, 2009). The higher order Runge-Kutta
methods and their convergence are studied in (Maset, 2003). The implicit-explicit
(IMEX) linear multistep Runge-Kutta method for DDEs is studied in (Koto, 2009).
The book (Bellen and Zennaro, 2003) presents a comprehensive diSCUSSIOn of stud­
Ies of numerIcal methods for DDEs up to 2003. The Pade approximatIOn of the
transfer functIOn IS a method m frequency domam (FranklIn et aI., 1986; VI]ta,
2000). This method provides a rational approximation of the transfer function of
the time-delayed system, which contains the exponential term e-TS due to time de­
lay. However, It does not focus on the accurate representatIOnof the mfimte number
of poles and zeros of the transfer functIOn, in particular, the dommant poles.
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4.1.4 Outline ofthe chapter

Jian-Qlao Sun, Bo Song

The chapter IS orgamzed as follows. SectIOn 4.2 reviews the abstract Cauchy prob­
lem, and points out that many numerical methods can be derived in this framework.
Section 4.3 presents the method of semi-discretization. Section 4.4 discusses the
method of continuous time approximation. Section 4.5 studies the spectral proper­
tIes of these two methods. SectIOn 4.6 presents a comparatIve study of stabIlIty of
tIme-delayed lInear time mvanant systems by the Lyapunov method, Pade approxi­
mation and semi-discretization. A number of control examples and an experimental
validation are presented in Sections 4.7 to 4.9. Section 4.10 presents a supervisory
control of systems with unknown time delays.

We then sWItch our mterest to stochastIc systems with tIme delay. In SectIOns
4.11 and 4.12, we review the methods of solutIOn for stochastIc dynamIcal systems
with time delay. SectIOn 4.13 presents several examples of stabilIty and response
analysis of stochastic systems with time delay.

4.2 Abstract Cauchy problem for DDE

The discussion in this section follows closely the reference (Bellen and Zennaro,
2003). ConsIder an n-dImensIOnal system wIth k dIscrete tIme delays

x(t) = Aox(t) + LAzx(t - Tz) == g(x(t)),
r=I

x(B) = <p(B), BE [-T, 0],

(4.1)

where x(t) E ~n, A o, AI, ... , Ak E ~nxn, 0 = TO < TI < ... < Tk = T and

g(x(t)) = L7-o Azx(t - TZ)' The solution operator T(t) (t 2: 0) of the system
(4.1) is defined by

T(t)<p(B) = x(t + B), <p(B) EX, (4.2)

where the Banach space X = O(I-T, 01, ~n) is endowed with the maximum norm

11<p(B)11 = max 1<p(B)I, .p EX,
eE[-T,O]

(4.3)

and x(t + B) denotes the solution of Eq. (4.1) with the initial condition <p(B) E
X. The family {T( t) It>o is a Oo-semigroup with an infinitesimal generator A
D(A) C X --+ X given by

A - d<p(B) If") E D(A),
<p- dB 'Y

where the domain D(A) is defined as

(4.4)
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d<p(B) d<p ~
D(A) = .p EX: -----;}j} E X and dB (0) = Z:: Al<P(-Tl)

l-O

The equation
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(4.5)

(4.6)

is known as the splicing condition. When <p( B) satisfies the splicing condition, the
response x(t) of the DDE is Cl-continuous. When the splicing condition is not
satisfied, x(t) is CO-continuous (Bellen and Zennaro, 2003). The discontinuity in
<p(B) propagates to the solution x(t) making it nonsmooth.

The system (4.1) can be restated as an abstract Cauchy problem in terms of the
mfimteslmal generator

dX(~: B) = A(B)x(t + B), t > 0,

x(B) = <p(B), BE I-T, 01.

(4.7)

It should be pointed out that in general, the infinitessimal operator A is a function
of time delay mdex e. Hence, thIS sImple looking hnear system ImphcltIy hves in

an mfimte dImensiOnal state space.
Introduce a function

v(t,B) = x(t+B), t> 0, - T < B < 0.

Equations (4.4) and (4.7) lead to a hyperbolic PDE for v(t, B)

8v 8v
at (t,B) = ae(t,B),

with a boundary condition

8v
ae (t, 0) = g(v(t, 0)), t 2 0,

and an initial condition

v(O,B) = <p(B), BE I-T,OI.

(4.8)

(4.9)

(4.10)

(4.11)

The abstract Cauchy problem (4.7) and the PDE (4.9) do not contain time delay
exphcltIy and are amenable to vanous numencal methods of mtegratiOn (Maset,
2003; BeIIen and Maset, 2000; Koto, 2009; BeIIen and Zennaro, 2003). The methods
of semI-dIscretizatiOn and continuous time approxunation can also be denved from
the abstract Cauchy problem (4.7) and the PDE (4.9) (Elbeyli and Sun, 2004; Sun,

~
Next, we construct a discrete approximation of A. Consider a mesh UN

{TN,i, i = 0,1, ... , N} of N + 1 points in 10, TI such that °= TN,O < TN,l <
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. .. < TN,N = T. The continuous space X is replaced by the space X N of the
discrete functions defined on the mesh J!N. That is, x(t + B) is discretized into a
block-vector

y(t) = [x(t), x(t - TN,I), , x(t - TN,N)] I

== [YO(t),YI(t),Y2(t), ,YN(t)]T. (4.12)

Let (LNY)(B) be the unique ~n(N+1) valued interpolating polynomial of degree N
with (LNY)(TN,i) = Yi(t). In particular, (LNY)(TN,O) = Yo(t) = x(t).

The infinitesimal generator A is approximated by a spectral differentiation ma­
trix AN determined by the following equations

(4.13)

It should be noted that the term (ANy(t))o in the first equation should be interpreted
in the sense of the operator as defined by f(LNY(TN,O))' Other terms (ANy(t))i
(i = 1, ... , N) are matrix multiplications. The system (4.7) now reads

(4.14)

Note that y(t) is n(N +1) x 1,and AN is n(N +1) x n(N +1).The initial condi­

tion reads Y(O) = ['P(O), 'P( -TN,I), ... , 'P( -TN,N )]T. In a nutshell, Eq. (4.14) is a
continuous time approximation of the system (4.1), which is the same as the one pre­
sented m (Sun, 2009). A detal1ed matnx representatIOn of AN With the Chebyshev
external nodes on 10,-TI is presented in (Breda et al., 2004, 2005).

4.2.1 Convergence with Chebyshev nodes

Let B(A., p) be a closed ball in C centered at A. with radius p where A. is the eigen­
value of the ongmal system. It IS shown m (Breda et al., 2004, 2005) that when the
Chebyshev external nodes on [0, -T] are used for (LNy)(B), the maximum error
em ax of the collocation polynomial is bounded above by

(4.15)

where Co and C I are constants determined by :x and p, but mdependent of N. Fur­
thermore,

(4.16)
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where Xi denotes the elgenvalue of the matnx AN of multIplIclty v that matches
the exact elgenvalue Xof the ongmal system, and

(4.17)

with C2 and C3 = C3(A) are constants, It should be noted that this convergence
analysls does not apply to the extraneous elgenvalues mtroduced by the dlscretIza­
tion, which don't match any true eigenvalues of the original system. It also does not
address the accuracy of temporal response prediction. We shall numerically examine
thls lssue m the example sectiOn, and further show that these extraneous elgenvalues
are not neglIglble, and contnbute to temporal responses.

For the convergence and stabllIty analysls when the fimte dlfference and Runge­
Kutta methods are used to derive Eg. (4.14), the readers are referred to (Maset, 2003;
Bellen and Maset, 2000; Koto, 2009; Bellen and Zennaro, 2003).

4.3 Method of'semi-discretization

Consider a linear periodic system with time delay

x(t) = A(t)x(t)+Ad(t)x(t - T) + B(t)u(t), (4.18)

where x E ~n and u E ~m. A(t) E ~nxn, Ad(t) E ~nxn and B(t) E ~nxm

are penodlc matnces wlth penod '1'. We shaIl conslder a feedback control wlth or
without time delay in the following forms

u(t) = -Kx(t) or u(t) = -Kx(t - T),

where K E R m x n is the gain matrix.

(4.19)

When we mtroduce the method of seml-dlscretIzatiOn, we can focus on the sys­
tem in Eq. (4.20) wlthout loss of generalIty, because in the closed loop system, the
control simply modifies the matrix A(t) or Ad(t).

x(t) = A(t)x(t)+Ad(t)X(t - T). (4.20)

The time delay significantly complicates the solution process of the system, be­
cause the state vector of the system is no longer just x( t), but (xT (t), X T (t - T1)) T

for all 0 < T1 < T, whlch has an mfimte dlmensiOn.
Let us discretize the period T into an integer k intervals of length t:lt such that

T = klit. For the sake of simplicity, we assume that the time delay T = Nlit
where N < k lS an mteger. When an mteger cannot be found, dlscretlzatiOn of the
tIme delay T wlIl be approxlmate. Details on how to treat thls case can be found
m (Insperger and Stepan, 2001). The eTA method mtroduced next can handle thls
issue naturaIly.



128 Jian-Qlao Sun, Bo Song

Consider Eq. (4.20) in a time interval t E [ti, ti+l] where ti = i6.t, i =

0,1,2, ... , k. In each small time interval [ti, ti+l], the delayed responses x(t - T)
and the time dependent coefficients are assumed to be constant. We denote

X(ti - T) = x((i - N)6.t) = Xi-N,

A(ti) = Ai, Ad(ti) = A di·

EquatlOn (4.20) becomes

The general solutlOn of the equation IS

(4.21)

(4.22)

(4.23)

The integration on the RHS of the above equation can be computed by assuming
that Ad (t )x( t - T) is a constant or a linear function of time over the small interval
Iti, ti+ 11. When it is taken to be a constant, it can be either the value at the beginning
of the mterval or the mld-pomt average. The latter approxunation has been shown as
good as the linear approximation. The work in (Elbeyli and Sun, 2004) has studied
the accuracy of these approximation schemes. In the numerical examples, the mid­
pomt approxlmatlOn has been used.

As an example, we show the case when Ad(t)X(t-T) is assumed to be AdiXi-N
over Iti, ti+ 11· The response Xi±! = x( ti±!) at time ti±! can then be expressed in
terms of the initial condition Xi and Xi-N in the following mapping

where

(4.24)

(4.25)

Define an (N + 1) x n dimensional state vector as

A mapping of the state vector over the interval [ti, ti+1] can be found as

where the transItion matnx from time ti to ti+l IS

o, 0nx(Nn-n) Pi
Hi = In x n Onx(Nn-n) Onxn

O(Nn-n)xn I(Nn-n)x(nN-n) O(Nn-n)xn

(4.26)

(4.27)
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The mapping of the state vector over one period T - kt5.t is therefore

where the mapping matrix cP is given by
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(4.28)

(4.29)

Note that the mdex J (J = 0, I, ...) refers to the number of penods, i.e. Yj IS the
state vector at the beginning of the jth period.

The stability of the control system is determined by the eigenvalues of CP. Let
IAImax denote the largest absolute value of eigenvalues of the matrix CP. Then,

(4.30)

When IAlmax < 1, cP is a contraction, and the control system is asymptotically
stable. The stability boundary is given by IAlmax = 1. Equation (4.30) indicates that
the smaller IAlmax is, the faster the system converges to zero. IAlmax therefore also
provides a measure of the control performance.

In the method of semi-discretization, delayed portion of the response is dis­
cretIzed and other part IS kept contmuous. And we use fimte dImenSIOnal map to
approximate an mfimte dImenSIOnal system. The method of semI-dIscretIzatIOn IS
an efficient and accurate method for analysis of time delayed periodic systems.
Minimization of the largest eigenvalue of the mapping leads to an optimal feed­
back controller in the sensor of response decay over one mapping step. However, it
IS dIfficult to handle multIple mdependent delays or when the penod of the system
IS not a multIple of the tIme delay. The method of continuous time approximation
presented in SectIOn 4.4 can deal wIth thIS problem.

4.3.1 General time-varying systems

In principle, the SD method can be extended to general time-varying linear systems.
In this case, the mapping of the state vector over one mapping interval becomes

(4.31)

where the matrix cp(j) is now a function of the mapping step j. The asymptotic
stablhty of the system requires

(4.32)

The computatIOn to dehneate the stablhty boundary IS far more mtenslve. A stnn­
gent sufficIent condItIon for asymptotic stablhty IS that there exists a J < 00 such
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that
1>'lmax (ct>(j)) < 1 for all j 2: J.
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(4.33)

The extensIOn of the method to nonlInear systems IS nontnvlal, and wIll lead to a
nonlinear mapping Yj+I = F(j, Yj) with a high dimension. It would be very diffi­
cult Just to locate all the eqUllIbnum POints of the mapping In the hIgh dimensIOnal
state space.

4.3.2 Feedback controls

4.3.2.1 Optimal feedback gains

Ifwe restrict our interest in a finite and compact region n c ~m X n in the parametric
space K, we can find the regions of stabIlIty and optImal control gains In the region
to minimize 1>'lmax. This leads to the following optimization problem

min [max I>.(ct»11 subject to 1>.lmax < 1.
KEn

(4.34)

ThIS optImizatIOn formulatIOn offers a dIfferent approach to the deSign of feedback
controls for lInear systems WIthtIme delay. The control pertormance cntenon IS the
decay rate of the mapping ([) over one penod.

The implication of the optimal control gains obtained from Eg. (4.34) is studied
next by examining the root locus of PID controls of the linear time-invariant system.

4.3.2.2 Implication of optimal feedback gains

Consider a delayed PID control of a linear time-invariant second-order system.

x(t) =

o 1 0
o 0 1 x(t)-
o _w2 -2(w

o 0 0
o 0 0 x(t - T),
k i kp kd

(4.35)

where x = (x, x, x)T, ( is the damping ratio, and w is the natural frequency. Be­
cause the system IS autonomous, we can arbltranly select a penod '1 ' > T to con­
struct the mapping. For convenience, we choose the undamped natural period of the
system as '1'. Note that the matnx Hi is Independent of i In thIS case. The stabilIty
of the system ISalso determined by the eIgenvalues of a Single matnx Hi.

We first consider PI controls. The system parameters are chosen as ( - 0.05,
w = 2 and N = 50. The undamped penod of the system IS '1' = tt . FIgures 4.1
and 4.2 show the root locus of the closed loop system for varying feedback gain
t; when kp = -1.1217. The closed loop poles corresponding to the optImal gains
(kp , ki ) are marked on the loci in the figure. It appears that the optimization problem
stated In Eq. (4.34) leads to the feedback gains that stabilIze all branches of the root
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Fig. 4.2 Root locus of the second order system with PI control with respect to k i when k p

-1.1217 In the magmfied regIOn of Interest. "x" indicates the optimal control gains on the root
locus. "0" indicates the zero ki gains. Arrows show direction of increasing ki gain. Wi (i ­
0,1,2,3) correspond to the crossing frequency when the system is marginally stable. The branch
C I ISthe most "vulnerable" branch for the system.

locus. The branch 01 marked in Fig. 4.2 is the most vulnerable branch that could
cause mstability. The ophmal control gams place the pole to the leftmost hp of
the branch 01 to ensure the best convergence rate. The present design method of
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optimal feedback controls leads to a multi-variable optimization problem, and offers
a complementary approach to the classic design methods such as root locus.

From FIg. 4.2, stabIlIty bounds of k i for the fixed kp - -1.1217 can be found as
10,2.7131·

The case for varying kp with a fixed optimal k i gain has a similar result and is
omitted here.

4.3.2.3 Tracking control

We now consIder the trackmg control problem. The control defined by Eq. (4.19) IS
given by u(t) = -Ke(t) or u(t) = -Ke(t - T) where e(t) = r(t) - x(t) is the
tracking error and r(t) is the reference vector. The state equation now reads

x(t) = A(t)x(t)+Ad(t)x(t - T) + g(r(t)),

where g(r(t)) is a function of the reference input r(t) evaluated at tor t - T.

The one step mapping of the state vector Y: can be expressed as

(4.36)

(4.37)

where hi is due to the contribution of g(r(t)) over the interval [ti, ti+I] in the i h

period. Consequently the mapping of the state vector over one period T - kt5.t is

(4.38)

(4.39)

Note that the mdex J (J = 0,1, ... ) stIll refers to the number of penods. ThIs result
suggests that the trackmg control of lInear penodIc systems has the same stabIlIty
region as that of the regulator.

The above control design and stability study are in terms of the extended state
vector Yi. Recall that Yi IS a fimte dImenSIOnal approxImatIOn of the ongmalmfimte
dImenSIOnal state of the tIme delay system. Therefore, the stabIlIty of Yi ImplIes
that of the original system. Furthermore, the condition 1>- Imax < 1 is necessary and
suffiCIent for cp to be a contractIOn. It IS also necessary and suffiCIent for the stabIlIty
of the system.

When I>-Imax < 1, Equation (4.30) indicates that the magnitude of Yi decays in
every mappmg step. ThIs does not guarantee the same decay of the magmtude of
Xi unless the system IS in steady state. For thIS reason, the optImal feedback control
gains may not guarantee the transient perfonnance of the closed-loop system in
some cases. The numerical results reported subsequently will attest to these points.
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4.3.3 AnalYsis of the method ofsemi-discretization

We consider three approximation schemes for computmg the mtegral
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(4.40)

in Eq. (4.23) when t = ti+I. The first scheme is the zeroth order method when
Ad(t)x(t - T) is taken to be Ad(ti)X(ti - T). The second scheme is called the
improved zeroth order method when Ad(t)X(t - T) is taken to be (Ad(tilx(ti ­
T) + Ad(ti±1)X(ti±1 - T))72, i.e. the average of the values at lower and upper
ends of the time interval Iti, ti+ 11. The third scheme is the first order method when
Ad(t)x(t - T) is assumed to be a line function oftime for ti :S t :S ti+I.

To compare the accuracy of the three approximation schemes, we need a mea­
sure. Since the exact solutions for periodic systems are not available, we shall con­
sider the followmg en system, for which we can obtam exact stablhty bounds of
the control gams,

(4.41)

where ( IS the dampmg ratio, and W IS the natural frequency. The charactenstic
equation of the closed loop system is as follows

(4.42)

where S IS the Laplace vanable. The roots of Eq. (4.42) are the closed loop poles.
By studymg the stablhty of the closed loop poles, we can find the exact ranges of
the control gams kd and kp that stablhze the system. Let kj and k; be a pair of
control gains within the stable boundary of the controlled system. Keeping either of
the control gains constant, we can determine the upper and lower limits of the other
control gam that renders the system margmally stable. We label these exact gams as
k:t, k~, k~ and k; where the superscript u and l respectively stands for upper and
lower bounds.

Because the system in Eq. (4.41) is autonomous, we can arbitrarily select a period
l' > T to construct the mappmg q>. By fixmg one of kj and k; m turn and varymg
the other, we can obtam an approximate value for the upper and lower bound of
the control gains crossing the stability boundary defined by I>-Imax = 1. These
approximate gains corresponding to the exact ones k:t, k~, k~ and k; are denoted as

k:t, k~, k~ and k;.
We introduce the following root mean square error as a measure of accuracy of

the semi-discretizatiOn method,
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We can also study the effects of the approximation schemes on the optimal gains.
The convergence of the control gains and IAImax as a function of discretization level
offers a qualitative measure for comparison, and will be considered hereafter. Fi­
nally, we simulate the system response and compare the decay rate of the response
to that predIcted by the semI-discretizatIOn method wIth different approximation
schemes. In the numerical examples, we examine the decay rate of the £2 norm of
the state vector y. This comparison is amenable to both time-invariant and periodic
systems.

4.3.3.1 Linear time-invariant second order system

We first consIder a second-order autonomous system defined III Eq. (4.41) wIth ( =

0.05, w = 2 and T = 7r /2. We have selected a period T = 7r > T to construct the
mapping.

In Table 4.1, we present the solutIOns for the upper and lower stabIlIty bounds
of the control gaIlls wIth dIfferent dIscretizatIOn levels. We used kj = -0.1356
and k; - -0.3898, the optimal control gaIlls by the zeroth order approXImatIOn
with N = 20. These solutions are compared with the exact values. The results in
the table are also plotted III FIg. 4.3. The figure shows that the convergence of the
first order approxunation IS far supenor to that of the zeroth order approximations.
At N = 10, its error is comparable to that of the zeroth order approximation at

'fable 4.1 Exact and approximate stablhty bounds of control gams with varymg discretizatIOn
levels.

Discretization Solution kp= -0.1356 kd= -0.3898 Error

Level Method lower upper lower upper k e r

Exact -1.75862692 0.19715358 -1.85247965 1.364948976 n/a

10 zeroth -1.556284 0.1918105 -1.5558121 1.4998466 1.9I82036e-I

improved -1.792398 0.19921478 -1.84305351 1.41216126 2.9421873e-2

first order -1.793502 0.19887852 -1.8705159 1.37106345 1.9887050e-2

20 zeroth -1.6557696 0.1938158 -1.69536752 1.43163415 9.965 I774e-2

improved -1.7635742 0.1973303 -1.8401601 1.38495437 1.2005144e-2

first order -1.7672229 0.1975833 -1.85698090 1.36647265 4.9157433e-3

40 zeroth -1.7068267 0.19531915 -1.77153523 1.39809059 5.0835515e-2

improved -1.7581437 0.19703111 -1.84436498 1.37407107 6.1096020e-3

first order -1.7607684 0.19726091 -1.85360447 1.36532958 1.225508ge-3

60 zeroth -1.7240170 0.1958938 -1.79796493 1.3869977 3.412269ge-2

improved -1.7576467 0.1970252 -1.84662891 1.3708362 4.1793607e-3

first order -1.7595781 0.1972013 -1.85297953 1.3651181 5.4439084e-4

80 zeroth -1.732641 0.1961951 -1.81138360 1.38146835 2.5680546e-2

improved -1.7576447 0.1970397 -1.84792522 1.36929181 3.1851518e-3

first order -1.7591618 0.1971804 -1.85276083 1.36504411 3.0616550e-4

100 zeroth -1.7378257 0.196380 -1.81950120 1.37815617 2.0586993e-2

improved -1.7577224 0.1970541 -1.84875598 1.36838844 2.575056ge-3

first order -1.7589692 0.1971708 -1.85265961 1.36500986 1.9593027e-4
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N = 100. Since the dimension of the matrix Ai is (N + 2) x (N + 2), and ~ is a
product of k > N matrIces Ai, the computatiOnal effort to fonn CP IS proportiOnal
to (N + 2) x (N + 2) x k rv 0 (N3 ) . Thus, the first order approximation provides
about 1000 fold computatiOnal effiCIency Increase as compared to the zeroth order
scheme. The Increase In the computatiOnal effiCIency sIgmficantly speeds up the
optimization solution process, which involves repeated calculations of ~ and its
eigenvalues.

10° r-------,-------,------,--------r------,

10080604020
10-4 '------ - ---'- - - -----'-- - - -----'-- - - ----'--- - - ---'

o

Fig.4.3 Variation of the control gain error her with discretization level N. (-+-+-): zeroth order,
(-x-x-): Improved zeroth order, (--{)--{)-): first order.

FIgure 4.4 shows the effect of the three approximation schemes on the stabIlIty
boundary in the control gain space. The stable region is inside the closed curve. For
N = 20, there is a substantial difference between the stability boundary predicted

0.5 ,...--,.---,------.-----,-----r------r----,--,-------,
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k
l'
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Fig. 4.4 StabilIty boundaries of the second order lInear tIme-mvanant system with tIme delay.
T - 7r 72 and N - 20. (_. -. - ):zeroth order approximation, (- - - ):improved zeroth order
approximation, (-- ---) : first order approximation.
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by the first order approach and that by the zeroth order method. It should be noted
that there is a slight difference between the improved zeroth order solution and the
first order solution. The stability boundary obtained by the zeroth order approxima­
tIon approaches to that by the first order approxunation as N increases beyond 40,
and deViatessubstantIally when N < 40.

4.3.3.2 Mathieu equation

Next, we conSider the Mathieu equation with a delayed feedback control

x(t) + (0 + 2c:cos2t)x(t) = -kdx(t - T) - kpx(t - T), (4.44)

where c: = 1, 0 = 4, and the period of the system is T = 1f. We assume a time delay
T = 1f74. The uncontrolled system is parametrically unstable.

Table 4.2 shows the optImal feedback gams and associated largest absolute value
I>-Imax of eigenvalues of <P. The variation of I>-Imax with discretization level is de­
picted m Fig. 4.5. The solutiOns obtamed by the first order and Improved zeroth
order approximation converge much faster than that by the zeroth order approxima­
tion. Figure 4.6 shows the time history of the norm of the state vector y (t). The
figure validates that the decay rate, characterized by I>-Imax, obtained by the first
order and Improved zeroth order approxunation converges to the exact ones.

Table 4.2 Optimal control gains and the largest absolute value of eigenvalues of q. with varying
ihscretiz:1tion levels

Discretization Optimal gains

Level Approximation kp kd 1>"1~"v
20 zeroth -2.016893 -0.3090877 0.00155351

improved zeroth -2.035019 -0.2839209 0.00344162

first order -2.034412 -0.2832894 0.00335362

40 zeroth -2.027560 -0.2973511 0.00222317
improved zeroth -2.034192 -0.2830767 0.00336122

first order -2.034040 -0.2829187 0.00333904

60 zeroth -2.029776 -0.2925680 0.0026507
improved zeroth -2.034037 -0.2829196 0.0033463

first order -2.033967 -0.2828478 0.0033365

80 zeroth -2.030838 -0.2901451 0.0028373
improved zeroth -2.033984 -0.2828655 0.0033410

first order -2.033947 -0.2828261 0.0033354

100 zeroth -2.031465 -0.2886839 0.0029433
improved zeroth -2.033959 -0.2828401 0.0033386

first order -2.033935 -0.2828150 0.0033350

120 zeroth -2.031879 -0.2877072 0.0030119
improved zeroth -2.033946 -0.2828265 0.0033372

first order -2.033929 -0.2828085 0.00333479
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Fig. 4.5 Variation of the largest absolute value of eigenvalues of cI> with discretization level N.
(-0-0-): zeroth order, (-x-x-): improved zeroth order, (-LS-LS-): first order approximation.
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Fig. 4.6 Time history of the norm of the state vector yet). (--): Time simulation of
the system with optimal gains computed by the first order approximation; (k p , kd)
(-2.03441, -0.28329) and Arnax - 3.3536e-3. Corresponding mapping by the improved ze­
roth order approximation (+) and by the first order approximation (0). (- - - - ): Time simu­
lation of the system with optimal gains computed by the zeroth order approximation, (k p , kd) ­
(-2.01689, -0.30909) and Arnax - 1.5535e-3. Corresponding mapping by the zeroth order
approximation (*), and mapping by the first order approximation ( li). ( ): The logarithmic
curve tit. In each of the mappmgs N - 20 ISused.

Finally, we present the stability boundaries of the control gains with IAlrnax = 1
using different approximations in Fig. 4.7. The shape of the stability region is more
complex than that of the time-invariant system. The irregular geometry is a reflection
of the complex behaviOr of the perIodic system. ThiS figure demonstrates agam that
the proposed first order and Improved zeroth approximatiOns substantially Improve
the accuracy and effiCiencyof the semi-discretizatiOn method even for perIodic sys­
tems.
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Fig.4.7 Stability boundary in (k p , k d ) plane, a section of the graph is enlarged to show the detail.
(--): first order approximation with N = 12, (- . - . -): improved zeroth order approxi­
mation with N - 12. (- - - -): zeroth order approximation with N - 12, (..... ): zeroth order
approximation with N = 40.

4.3.4 High order control

In the previous discussion of semi-discretization, the delayed response x( t - T) is
discretized. In the following, we discretize the delayed control u( t - T) instead.
This leads to a control of higher order and with better performance. Consider a
bnear system WItha delayed control,

x= Ax(t) + Bu(t - T), (4.45)

where x E ~n and u E ~m. Let D..T = T 7N be the sample time of the digital
control system and t = kD..T. We denote u(t - T) = u(k - N). Following the
concept of semI-dIscretIzatIOn, we construct a mappmg from Eq. (4.45) as

x(k + 1) = Ax(k) + Bu(k - N), (4.46)

(4.47)

Introduce the extended state (n + N m) x 1 vector

y(k) = [x(k), u(k - N), u(k - N + 1), ... , u(k - 1)]T. (4.48)

Then, EquatIOn (4.46) can be WrItten m tenns of the extended vector WIthout tIme
delay as

y(k + 1) = Ay(k) + Bu(k), (4.49)
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where
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ABO··· 0 0
U U .L'" U U

A= 0 , B= (4.50)

0 0 o· .. I 0
0 0 o· .. 0 I

ConsIder the full state feedback control (Kwon and Pearson, 1980)

u(k) = -Ky(k) (4.51)

= -K1x(k) - K 2u(k - N) - K 2u(k - N + 1) - ... - KN±1U(k - 1).

We refer to thIS control as a hIgher order control because the gam matnx K IS
m x (n + N m). The gain matrix for the state feedback control u( k) = - Kx( k) is
TIJ:XI£.

The feedback gain can be designed with the digital LQR optimal control to min­
imize a cost function (Cai et al., 2003)

(4.52)

where Q is non-negative definite symmetric matrix and R is a positive definite

symmetric matrix. We obtain K = [R + B TS(X)BrIBTS(X)A where S(X) satisfies
the algebraic Riccati equation (Franklin et al., 1998),

(4.53)

4.3.5 Optimal estimation

Assume that the system has an output z(k) with measurement noise v(k)

z(k) = Cy(k)+v(k). (4.54)

Furthermore, we assume that the system (4.49) IS subject to a whIte noise distur­
EJ.i.i:l.Ce

y(k + 1) = Ay(k)+Bu(k) + rw(k), (4.55)

where the process noise w(k) and the measurement noise v(k) are random pro­
cesses with zero mean

Elw(k)1 = Elv(k)1 = 0,

and the delta correlation function

(4.56)
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E[w(i)wI'(j)] = E[v(i)vI'(j)] = 0, if i =!= i,
E[w(k)wT(k)] = R w , E[v(k)vT(k)] = R v ·

Define an estimation system as

y (k + l)=Ay(k)+Bu(k),

z(k)= Cy(k),

(4.57)

(4.58)

(4.59)

(4.60)

where y(k) denotes an estimate of y(k), and y(k) is an update ofy(k) given by

y(k) = y(k) + L(k)(z(k) - z(k))

= y(k) + L(k)(z(k) - Cy(k)), (4.61)

and L is the estimate gain. L is determined by considering a recursive least squares
problem leadIng to the folloWIng equations (FranklIn et al., 1998)

L(k) = M(k)CI'(CM(k)CI' + R v ) 1, (4.62)

M(k + 1) = A[M(k) - M(k)CT(CM(k)CT + Rv)-ICM(k)]AT

+ rR~r. (4.63)

In the steady state as k ---+ 00, we have L = Lao and

(4.64)

(4.65)

4.3.6 Comparison ofsemi-discretization and higher order control

ReconsIder the system (4.41) In terms of the delayed control

x(t) + 2(wx(t) + w2x(t) = u(t - T). (4.66)

We compare the performance of the higher order control with that of the PD feed­
back control with the optimal gains designed by semi-discretization. Let T = Jr 72,
w = 2, ( = 0.05 and the discretization level N = 25 . The optimal feedback gains
are kp = -0.1356 and kd = -0.3898. Note that the system has one control input
m = 1 and the weIghtIng matrix R becomes a scalar denoted as R. We take Q
such that Qii = 0 except Qll = 4. The weighting factor R changes in the exam­
ples. Figure 4.8 shows the comparison of the impulse response of the system and
the controls Implemented. In thIS case, the PD control with optimal gaInSdeSigned
by the semI-discretizatIOn method and the hIgher order control have the same order
of magmtude, resultIng the sImIlar control performance. FIgure 4.9 shows the same
comparison where the higher order control is about one order of magnitude larger
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than the PD control with optimal gains designed by the semi-discretization method
resulting much better performance,
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Fig. 4.8 Comparison of impulse responses (top) and controls (bottom) of the LTI system under
a PD control (solid line) with optimal gains designed by semi-discretization and a higher order
control (dashed line) with R - 1.
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a PD control (sohd line) with optimal gams deSigned by semi-discretizatIOn and a higher order
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Figure 4.10 shows the comparison of the step response of the system and the
controls. As is the case in the previous example, the PD control with optimal gains
designed by the semi-discretization method and the higher order control have the
same order of magmtude, resultmg the sImIlar control performance. Figure 4.11
shows the same comparison where the higher order control IS about two orders of
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Fig. 4.10 Companson of step responses (top) and controls (bottom) of the LTI system under a PD
control (sohd Ime) with optimal gams deSigned by semi-discretizatIOn and a higher order control
(dashed Ime) with R - 0.05.
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control (sohd Ime) with optimal gains deSigned by semi-discretizatIOn and a higher order control
(dashed Ime) with R - 0.0005.
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magnitude larger than the PD control with optimal gains designed by the semi­
discretization method resulting much better tracking control.

The advantage of the higher order control design lies in that it allows the time
delay system to have relatIvely large feedback gams while stIll keepmg the system
stable. ThIs IS not the case wIth the delayed PD control as mdicated by the stabIlIty
domains in the gain space presented in this section and Section 4.7.

4.4 Method of continuous time approximation

Consider a dynamical system with one time delay T given by,

x = f (x (t), x (t - T), t) -l-Bu (t), (4.67)

where x E ~n, U E ~m, f describes the system dynamics with time delay, and
B = {Bi j } is the control influence matrix. Following the idea of semi-discretization,
we discretize the delayed part ofthe state vector (x (t - tIl, 0 < h < T). Let N be
an integer such that ~T = T / N. Ti = i~T (i = 1,2, ... ,N). We introduce a finite
forward difference approximation of the derivatives of (x (t - Ti), 1 :::; i :::; N) as

(4.68)

Note that other approxunation schemes mcludmg, for example, the central dIffer­
ence and Gear integration method for ordinary differential equations, can be used,
and that the discretization of the time delay interval can be non-uniform. Higher
order Runge-Kutta algorIthms, Chebyshev nodes to replace the umform sampled
pomts Ti and ImplICit-explIcIt methods can also be applIed leadmg to better ap­
proximation of x (t - Ti) and more accurate solutions overall in frequency and time
domain (Bellen and Maset, 2000; Engelborghs and Roose, 2002; Maset, 2003; Koto,
2004; Breda et al., 2004,2005; Koto, 2009).

Recall the finite dimensional extended state vector Y (t) defined in Eq. (4.12).
We obtain an equation for the vector Y (t),

f (YI (t), YN+I (t), t) B

...L lv (t) - v- (t)l 0
~

y (t) = + u (t)

iT [YN (t) - YN+l (t)] 0

For a linear system

== f(y, t) + Bu (t) . (4.69)



144 l1an-QlaoSun, Bo Song

x= Ax (t) +ATx (t - T) -l-Bu (t), (4.70)

where A is the state matrix and AT is the state matrix related to the delayed re­
sponse, we have an equation for y (t) as

A 0

Y(t) =

o

=Ay(t)+Bu(t). (4.71)

Recall that Ti need not to be spaced uniformly in the time interval [0,T]. Non­
uniform sampling allows the method to handle more than one independent time
delay (Sun, 2009). In the followmg, we present several control formulatiOns m the
extended state space.

4.4.1 Control problem formulations

4.4.1.1 Full-state feedback optimal control

Define a performance index as

(4.72)

where Q = QT ~ °and R = R T > 0. When the linear system (4.71) is consid­
ered, the full state feedback control u - - Ky IS the LQR control determmed by
the matrices (A:B, Q, R) (Lewis and Syrmos, 1995). When the nonlinear system
(4.69) IS consIdered, we have a nonlInear optImal control problem on hand (Slotme
and LI, 1991).

Note that the extended state vector y contams the current and past system re­
sponse x (t). The history of the response x (t) can be stored in the memory to con­
struct y in real-time implementation of the control. The full state feedback control
does not consider possible transport delays since the current state x (t) is included
in the control.

A theoretical issue to investigate is the controllability of the system (A,B) in
relation to the controllability of the corresponding linear system (A, B). A rigorous
proof of this relationship is elusive at this time. Many numerical examples suggest
that (A, B) is uncontrollable with a high deficiency of the controllability matrix.
This is because the original system lies in an infinite dimensional state space.
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4.4.1.2 Output feedback optimal control

145

Assume that there is a transport delay Tv. We consider a control of the form u =
-Kx(t - Tp ) for the linear system. First, we select a discretization scheme such that
Tv IS one of the pomts Ti of the time dIscretizatiOn. Assume that Tv - Tk. Define an
output equation as

v = Cy = Yk+l = x(t - T p ) , (4.73)

where Yk±1 is the (k + 1)th elemental vector defined in Eq. (4.12).
Accordmg to (LeWIS and Syrmos, 1995), If a control gam K for the hnear sys­

tem m Eq. (4.71) can be found such that the closed-loop system charactenzed by
the matnx~KC IS stable, the system IS output stablhzable. Assume that the
system is output stabilizable, an optimal control gain can be found in the following
optimization problem: Find a control gain K such that the perfonnance index

(4.74)

is minimized where Yo is an initial condition of the extended state vector y(t),
subject to the constraint of the Lyapunov equation

(4.75)

This is a nonlinear matrix algebraic optimization problem. The Matlab function
fminsearch can be used to find the optimal control. The optimal gain is in general
a functiOn of the Imtial condItion Yo. ThIS IS not a deSIrable feature of the output
feedback control. A common approach to select Imtial condItions IS to replace the
term YOyJ' by its statistical average E[yoYJ'], i.e., the autocorrelation function of
Yo. For more dIscussiOns, the reader IS referred to (LeWIS and Synnos, 1995).

It should be noted that for a given initial value of the control gain to start search­
mg for the optimal one, even the best searchmg algonthm only gIves a local mlm­
mum of the performance mdex J. There are many research Issues WIth the output
feedback deSIgn that need further studIes. For example, how to help the searchmg
algorithm land on a much deeper local minimum? How to select the design matrices
Q and R to Improve the control performance under certam constramts? In the cur­
rent formulation, when is the system output stabilizable? These tum out to be tough
techmcal questions to answer.

4.4.1.3 Optimal feedback gains via mapping

Another way to obtam optimal gams for output feedback controls IS VIa mappmg.
ThIS approach has been studIed extenSIvely m (Sheng et aI., 2004; Sheng and Sun,
2005) WIth semI-dIscretizatiOn, and IS presented m SectiOn4.3.
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4.5 Spectral properties of the eTA method

Jian-Qiao Sun, Eo Song

As IS the case for the method of seml-dlscrehzatiOn, the CTA method focuses on
approximation of temporal responses of the system over a short time interval. As
N ----+ 00, the approximate solution approaches the exact one in time domain at the
rate depending on the order of the local approximation. This has been verified by
means of extensIve numencal sImulatiOns (lnsperger and Stepan, 2001; Sheng et al.,
2004; Sheng and Sun, 2005; Sun, 2009).

The methods of semi-discretization and CTA are not specifically developed to
meet frequency dominant requirements such as accurate representation of the open­
loop or closed-loop poles and zeros of the original system. Although the methods
have been mostly vahdated WIth hme domam numencal solutiOns, theIr properhes
m frequency dommant have not been studIed carefully. In the followmg, we shall
use numencal examples of a hnear hme-delayed system to examine thISIssue. Smce
the CTA formulation can be made completely equivalent to semi-discretization for
linear time-invariant systems with a single time delay, the spectral properties of the
CTA method are the same as that of semi-discretization.

ConSIder a hnear spnng-mass-dashpot oscIllator subject to a delayed PD control.
The closed-loop charactenshc equation IS given by Eq. (4.42). The state matnx WIth
the CTA method reads

n_~2 -;(w] 0 0
[ -~p -~dn

-LI --LI 0 0
~T ~T

A.= 0
(4.76)

0
0 0 -LI --LI

~T ~T

From the stablhty chart m (Sheng and Sun, 2005), we know that the system IS stable
when (kp , kd ) = (-0.5, -0.5). There are two pairs of the dominant poles with real
parts approxImately equal to -1 and -0.4. Figures 4.12 and 4.13 show the roots
of the charactenshc equation (4.42) and the eIgenvalues of the state matnx (4.76)
constructed with the forward central difference and fourth order Gear's integration
algonthm (Carnahan et a1., 1969). ExtenSIve SImulatiOnsshow that the CTA method
is able to capture the dominant poles of the system only, and completely misses the
fast and hIgh frequency poles.

The central timte difference for CTA yIelds more accurate solutiOns m hme do­
main. But It mtroduces a set of hghtly damped poles as shown m Fig. 4.14. ThIS
causes difficulties when the method is used in control design. On the other hand, the
backward finite difference for CTA is unstable. A recent study uses the Chebyshev
polynomials to approXImate the dynamICS of the delayed response (Butcher and
Bobrenkov, 2009). The spectral property of the CTA method WIth the Chebyshev
polynomials IS much Improved as compared to the results based on timte dlflerence
approximations.
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l<·lg. 4.13 Closed-loop poles of the linear osclIIator under a delayed PD control. "x" denotes the
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Fig. 4.14 Closed-loop poles of the hnear system with central fimte difference approXimatIOn of
the delayed portIOn of the response under a delayed PO control. "x" denotes the roots of the
characteristic equation (4.42). "+" denotes the eigenvalues of the state matrix (4.76). (k p , k d ) =
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Fig. 4.15 Closed-loop poles of the linear system with backward finite difference approximation
of the delayed portion of the response under a delayed PD control. "x" denotes the roots of the
characteristic equation (4.42). "+" denotes the eigenvalues of the state matrix (4.76). (k p , kd) ­
(-0.5, -0.5). <; = 0.05. w = 2. T = 7r /2. N = 40.

Why can the eTA method accurately predict temporal response x (t) of the time­
delayed system even when It misses all the fast and hIgh frequency poles?

Recall that the response of time-delayed systems lives in an infinite dimen­
sional state space. x (t) is a projection of the infinite dimensional response (x (t) ,
x (t - h) ,0 < h < T) on to the finite dimensional space ~n. However, different
ob,ects In a hIgher dImenSIOnaL space can have the same prOTectIOn In a Lower dI­
mensional space. The eTA method aims at accurate time domain solutions of x (t)
for all t > 0, much like the numerical algorithms for integrating ordinary differ-
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ential equations, such as Runge-Kutta methods whose frequency domain properties
are also rarely discussed. These methods in time domain provide one projection of
the infinite dimensional response, while the methods in frequency domain such as
Pade approximatiOns of the transfer functiOn provide a different projectiOn (Frankhn
et al., 1986; Vijta, 2000). In principle, the solutions x (t) obtained by both the time
and frequency domain methods with "equivalent accuracy" should be very close to
each other, while the solutions obtained by the frequency domain methods may have
an advantage of containing more accurate information about the poles and zeros.

The questiOn is then, can we construct a time domam method that accurately
predicts both the temporal responses and the poles of the system? In the followmg,
we present a method that is prormsmg,

4.5.1 A Zow-pass.tiZter based eTA method

Let T be the sample time of a digitized system, and p > °be a parameter defining
an anti-aliasing low pass filter. The derivative of a measured signal can be computed
with the following transfer function.

H(s) = ~s.
s+p

(4.77)

Hence, x(s) ~ H(s)x(s). The digital version of the transferfunction with Tustin's
approximation reads,

H 2A(z-1)
(z) = (2 + AT)z + (AT - 2)

Define a parameter r = 1I (pT). H (z) can be rewritten as

I z - I

H(Z)=-(l ) (1 ).
T 2 +r z+2- r

In the z-domain, x(z) = H(z)x(z), or in the digital time domain,

(~ + r) x(n) + (~ - r) x(n - 1) = ~ (x(n) - x(n - 1)).

(4.78)

(4.79)

(4.80)

This relatiOnship can be adopted for the eTA method. EquatiOn (4.81) now reads

(~ + r) x(t - Ti) + (~ - r) x(t - Ti+d = ;T [x (t - Ti) - x (t - Ti+dJ·
G:]]}

where ~T = TIN. Ti = i~T (i = 0,1,2, ... , N). We have selected the sample
time T = LST. Equation (4.69) becomes
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I 0

(~+r)I(~-r)IO

o

o

o

(4.82)

(4.83)

o

o

o (~+r)I(~-r)I

f(y(t)) B

!:>.T lYI \T) Y2 \T)J U

F N = Hj\/ , G N = HiVI , (4.84)

IT [YN (t) - YN+I (t)] 0

and Y (t) is defined in Eq. (4.12). Note that HN is a lower triangular matrix and is
non-singular as long as r -I- 1/2. When r = 1/2, the LPCTA is reduced to be the
backward fimte dIfference method, whIch IS unstable for the time-delayed system
(Sun, 2009).

Recall that r = l/(pLh). Note that 1/Lh defines the bandwidth of the dis­
cretization and p denotes the bandwidth of the lowpass filter. The parameter r is
therefore a bandwidth ratio. The bandwidth 17L:::.T determines how high the fre­
quency of the time-delayed dynamIcal system IS captured by the numencal solutIOn.
Note that the response of time-delayed dynamIcal systems contains mfimtely high
frequency components. Since the lowpass filter should preserve the fidelity of high
frequency components in the numerical solution, the bandwidth p must be much
larger than 17L:::.T.

EquatIOn (4.82) is based on a first order lowpass filter. Higher order lowpass
filters of vanous type can also be applied.

4.5.2 Example ofa.first order linear system

Consider a first-order system,

x(t) = -0.5x(t) + 0.5x(t - T), (4.85)

where T = 7r /2 is a constant time delay. We select r = 0.01 and N = 210 . Fig­
ure 4.16 shows the poles of the system by the low pass filter based CTA (LPCTA)
method and the fourth order Pade approximation. It is clear that the low pass filter
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Fig. 4.16 Comparison of poles of the first order time-delayed system. "x" denotes the exact poles.
"+" denotes the poles obtained by the low pass filtered CTA method. "0" denotes the poles by the
Pade approximatIOn with R44. (6) IS the zoomed-Ill view of (a).

helps the CTA method to substantially improve the spectral prediction capability by
accurately computmg many higher order poles of the system.

Let us now consider a nonhnear case with two time delays,

x(t) = -x(t) + x(t - 1) - 0.5x(t - tt /2) - x3(t) + sinwt. (4.86)

To measure the accuracy of the LPCTA solution in time domain, we define a nor­
malized RMS error over a duration of time T,

(4.87)

where x(t) is obtained from the direct numerical integration and XAP(t) denotes the
solutiOn obtamed with an approximatiOn method.

Figure 4.17 shows all the poles of the hnear part of Eq. (4.86) obtamed by the
LPCTA method. Figure 4.18 shows the responses by the direct mtegration and by
the LPCTA method with N = 26 and w = 1. The initial condition is x(O) = O. The
agreement between the responses is excellent. Figure 4.19 shows the normalized
RMS errors for the LPCTA method and the method with Chebyshev nodes discussed
m SectiOn 4.2 as a functiOn of the dnvmg frequency w. From the figure, we can see
that the RMS errors of both the methods have the same trend, and peak around
w = 1. At w = 105 , the RMS errors have a sharp jump. We note that w = 105 is
larger than the highest frequency of the poles obtained by the approximate methods.
In other words, this frequency is out of the bandwidth of the discrete solution. In
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order to obtain accurate solutions for even higher frequencies, we must increase N
or the bandwidth of the method.
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Fig. 4.17 The exact and approximate poles predicted by the LPCTA method with N = 29 for the
lInear part of EquatIOn (4.86). 'x': the exact poles; '+': the predicted poles.
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FIg. 4.18 The temporal response of Eq. (4.86). '- -': the direct integration; '-' the LPCTA method
with N = 26 . The agreement between the results is excellent.
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Fig. 4.19 Variation of the normalized RMS errors with w of Eg. (4.86). 'LS.': the LPCTA method;
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4.6 Stability studies of time delay systems

ThIS sectIOn presents a few numerIcal examples of stabIlIty boundarIes of lInear
tIme-mvarIant systems m the feedback gam space by varIOUS methods mcludmg
Lyapunov, semI-dIscretIzatIOn and Pade approximation.

4.6.1 Stabz7itY with Lyapunov-Krasovskiifunctional

Consider a time-delayed linear time-invariant system

x(t) = Ax(t) + AdX(t - T),

subject to the initial condition

where 4>( (J) is a given function of time.

4.6.1.1 Delay independent stability conditions

Define a Lyapunov-Krasovskll functIOnal (Ivanescu et al., 2000)

(4.88)

(4.89)
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v = xT(t)Px(t) + it T xT(s)Sx(s)ds, (4.90)

where P = p T > 0 and S = ST > O.

We wnte Eq. (4.91) m the matnx form as,

The stability condition is

(4.92)

(4.93)
!

A l P + P A + S PAd l 0
ATp -S < .

d _

A necessary condition is ATp + PA + S < O. Let [ATp + PA + S] = -Q
where Q = QT > O. Hence, we have

A I'p + PA = -Q - S < o. (4.94)

This is the Lyapunov equation for the linear system without time delay x(t) =
Ax(t), which implies that A must be Hurwitz stable. This is obviously too strict.
Furthermore, the stability condition stated above is independent of the time delay
T. Hence, it must hold for any time delay, including arbitrarily large delay. In the
numencal results presented later, we shall show that this stabihty condition is too
conservative

4.6.1.2 Delay dependent stability conditions

To overcome the hmitatiOn of the stabihty condition mdependent of time delay, we
can modify the Lyapunov-Krasovskll functiOnal to mtroduce the time delay depen­
dence in the stability conditions (Ivanescu et aI., 2000). The system (4.88) can be
rewritten in the following form,

dL ~
ill = Ax(t), t ~ 0, (4.95)

where L = x( t) + Ad t-T x( s)ds and A = A + Ad. Consider a Lyapunov­
Krasovskll functiOnal as V = VI + V2 where

(4.96)

(4.97)
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The derivatives of the Lyapunov-Krasovskii functional read,
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VI = iTpL + LTpi = [Ax(t)]TpL + LTp[Ax(t)] (4.98)

~ xT(ATp +PA+TATpAdP1IAJPA)x+ it TXT(S)Plx(s)ds,

V2 = TXTplx -i~TXT(S)Plx(s)ds, (4.99)

V = VI + V2 ~ xT(ATp + PA + TP I + TATpAdP, IAJPA)x. (4.100)

The stability condition is

The Schur complement arguments lead to the matrix inequality.

(4.101)

(A + Ad)Tp + P(A + Ad) + TP I

TAJP(A+Ad)
< 0, (4.102)

where a necessary condition is [(A + Ad)Tp + P(A + Ad) + TP I] < O.
Let [(A + Ad)Tp + P(A + Ad) + TP I] = -Q where Q QT> O. We

:Elli.Ye

Another condition stated ill (Fan et al., 2002) reads,

T(T) = dPIiI < 1.

4.6.2 Stability with Pade approximation

(4.103)

(4.104)

Consider the same time-invariant linear system with an output y(t) and control u(t).
The transfer function G(s) relates the input and output as

Y(s) = G(s)U(s) == ~;;j U(s). (4.105)

Consider a feedback control with time delay as U(s) = e-TSC(s)[R(s) - Y(s)].
The time delay term e-TS is approximated with the Pade expansion as

e-TS = Np(s) = R (s)
Dp(s) - n,d ,

(4.106)
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where the subscripts of Rn,d(S) indicate the orders of the polynomials Np(s) and
Dp(s). Several different order Pade approximations are listed in Table (4.3). The
closed-loop system response is given by

N(s)Np(s)(7(S)
Y(s) = N(s)Np(s)(7(s) + D(s)Dp(s) R(s). (4.107)

The closed-loop characteristic equation reads

(4.108)

In the stablhty analysIs, we can apply the Routh-HurwItz cntenon (Frankhn et aI.,

~

,

Order (0,1) (1,1) (2,2) (1,2) (2,3)

Np(s) 1 2 - ST 12 - 6ST + (ST)2 6 - 2T 60 - 24sT + 3(STj2

Dp(s) l+sT 2+ST 12 + 6ST + (ST)2 6 + 4ST + (STj2 60 + 36sT + 9(STj2 + (ST)3

'fable 4 3 VarIOus order of Pade approxrmations of the time delay term e TS (Vllta 2(00)

Order (3,3) (4,4)

Np(s) 120 - 60ST + 12(sT)2 - (ST)3 1680 - 840ST + 180(sT)2 - 20(ST)3 + (ST)4

Dp(s) 120 + 60ST + 12(sT)2 + (ST)3 1680 + 840ST + 180(sT)2 + 20(ST)3 + (ST)4

4.6.3 Stabz7ity with semi-discretization

As dIscussed in SectiOn 4.3, the method of semI-dIscretizatiOn leads to a mapping
ofthe state vector overthe interval [ti, ti+l] as

(4.109)

The stablhty boundary IS given by

IAlmax = 1. (4.110)

we should comment that the method of semi-discretization has heen well studied
and proven to be effective and reliable (Elbeyli and Sun, 2004). We shall use this
method as a yardstick to compare with other methods in the stability analysis.

4.6.4 Stability ofa second order LTI system

Next, we use the second order LTI system in Eq. (4.41) subject to a delayed PD
control as an example to compare the stablhty results in the PD control gam space
by vanous methods dIscussed above.



4 Analysis and Control of Systems with Time Delay

Delay independent Lyapunov stability

157

Wefirst compare the stablhty condItion (4.93) wIth the method of semI-dIscretizatiOn.
In the numerical studies, we have chosen different values of time delays T. The Q
and S matnces for the stablhty condItiOn (4.93) are taken to be the Identity matnx.
We have found that the stability domains determined by the Lyapunov method are
insensitive to the choices of these matrices. This is because we are only interested
m the stablhty domam determmed by V - O.

Figure 4.20 shows the stability domains by both the methods for T = 7r /30.
Smce the Lyapunov stablhty condItion IS mdependent of time delay, It must hold
for all time delays including arbitrarily large ones. The figure suggests that as the
time delay T ----+ 00, the regions of stability domains for different time delays as
obtamed by the method of semI-dIscretizatiOn must converge to the domam by the
time-mdependent Lyapunov approach.

0.5 ,-----------,

20
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...," 5
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-10' ,
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o

40

o
60

Fig. 4.20 Stability domains in the kp - kd gain space (T - 7r /30). The large domain is obtained
with the semi-discretizatIOn mothed. The small domaIn In the sub-figure IS determIned by Eg.
(4.93) of the Lyapunov method mdependent of time delay.

Delay dependent Lyapunov stability

The delay dependent stablhty condItion (4.103) IS consIdered next. FIgures 4.21 to
4.23 show the companson of the stablhty domams by the delay dependent Lya­
punov method and the semi-discretization with T = 7r /30, 7r / 4 and 7r /2. We have
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J"lg. 4.21 StabIlIty domaInS In the PD control gam space for the LTI system wIth tIme delay. The
closed regIOn marked WIth SO IS by the semI-dIscretIzatIon. The closed regron marked WIth L IS
determined by the delay dependent Lyapunov method. T = 1r 730.
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J<'lg. 4.22 StabIlIty domaInS In the PD control gam space for the LTI system WIth tIme delay. The
closed regIOn marked wIth SO IS by the semI-dIscretIzatIOn. 'I he smaIl cIrcle ISthe stabIlIty domam
determined by the delay dependent Lyapunov method. T - 1r 74.
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J"lg. 4.23 StabIlIty domaIns In the PD control gaIn space tor the LTI system wIth tIme delay. The
closed regIOn marked WIth SD IS by the semI-dIscretIzatIOn. The small cIrcle ISthe stabIlIty domaIn
determined by the delay dependent Lyapunoy method. T = 1r /2.

15

10

o

0.5

0

-0.5
-0.5 0

10 20 30 40 50
k
l'

"·lg.4.24 SuperposItion ot all the stabilIty domaInS In Figs. 4.21 to 4.23. The small circle repre­
sents the stabIlIty domaIn by the delay dependent Lyapunoy method tor all large ume delays.
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computed the stability domains for a number of time delays. We have found that
when the time delay is small, the stability domain by the delay dependent Lyapunov
method is indeed enlarged as compared to that by the delay independent Lyapunov
method, and IS stIll contamed wlthm the domam obtamed by the semI-dIscretIzatIOn.

FIgure 4.24 supenmposes all the stabIlIty domams in FIgs. 4.21 to 4.23. It appears
that the stability domains by the delay dependent Lyapunov method converge to that
by the delay independent Lyapunov method as the time delay increases. The stability
results are still very conservative.

Stability by Fade approximation

Figures 4.25 to 4.29 show the stability domains for T = 7r /30 and 7r /2 obtained by
the semI-dIscretIzatIOn and the Pade approxImatIOn of orders (1,2), (2,3) and (4,4).
It IS mterestmg to note that the stabIlIty domams by the Pade approximation agree
with that by the semi-discretization only when the delay is small. As the time delay
increases, the order of the Pade approximation has to be increased also. The Pade
approximation gives slightly less conservative stability results because its stability
domams don't completely overlap WIth that by the semI-dIscretIzatIOn. When the
Pade approximation IS used to deSIgn feedback controls for systems WIth time delay,
we must pick the gains as much to the centroid of the domian as possible to avoid
instability.
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FIg. 4.25 Stability domainS In the PD control gain space of the LTI system. The closed regIOn
marked as SD IS obtained by the semi-discretIzatIOn and the one marked as P IS by the Pade ap­
proximation of order (1,2). T - 7r 730.
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J"lg. 4.26 StabilIty domaInS In the PD control gaIn space of the LTI system. The closed regIOn
marked as SD IS obtaIned by the semi-discretIzatIOn and the one marked as P IS by the Pade ap­
proximation of order (2,3). T = 1r/30.
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J<'lg. 4.27 StabilIty domaInS In the PD control gaIn space of the LTI system. The closed regIOn
marked as SD IS obtaIned by the semi-discretIzatIOn and the one marked as P IS by the Pade ap­
proximation of order (1,2). T - 7f /2.
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J"lg. 4.211 Stability domaIns In the PD control gaIn space of the LTI system. The closed regIOn
marked as SD IS obtaIned by the semi-discretIzatIOn and the one marked as P IS by the Pade ap­
proximation of order (2,3). T = 1r/2.
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Fig. 4.29 Stability domains in the PD control gain space of the LTI system. The closed regIOn
marked as SD IS obtaIned by the semi-discretIzatIOn and the one marked as P IS by the Pade ap­
proximation of order (4,4). T - tt /2.
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In summary, we have compared the stability results obtained by the Lyapunov
method, semi-discretization, and the Pade approximation. From extensive numerical
simulations, we have found that the Lyapunov method, whether it is delay dependent
or mdependent, leads to conservatIve results as compared with those obtamed by
the semi-discretIzatiOn. As the time delay mcreases, the Lyapunov results for a en
system converge to a small region which is the stability domain for arbitrary time
delay. The Lyapunov method appears to be quite conservative for LTI systems with
time delay and is not effective for feedback control design. On the other hand, the
Fade approximatiOn gives less conservatIve and reasonably accutrate stablhty results
when the order of the method IS high enough m companson to the time delay.

4.7 Control of LTI systems

ConSider a delayed FID control of the hnear tIme-mvanant (erl) system m Eq.
(4.35). We first examme PD controls. The system parameters are chosen as ( =

0.05, w = 2 and N = 50. The undamped period of the system is T = tt,

Figure 4.30 shows the upper and lower bounds of the control gam k p as a functiOn
of the time delay T when kd = O. This result is fully agreeable to that obtained by
the Nyqmst cntenon. Note a penodlc change of the bounds related to '1 ' m the figure.
The bounds become narrower as the time delay increases. In (Filipovic and Olgac,
1998), a similar result is achieved. This trivial example helps to study the issues
such as the accuracy of semi-discretization as a function of the time step lit.
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Fig. 4.30 Upper and lower bounds of control gam kp vs. time delays when kd - 0 for the tlme­
mvanant second order system. Soltd Ime IS the upper bound. Dashed Ime IS the lower bound.

In Fig. 4.31, the stability boundaries on the kp - kd plane are plotted for the
system with different time delays. It is interesting to point out that the size of the
stability region decreases when the time delay increases. Figure 4.32 shows the per­
formance contours of the feedback control as measured by the maximum absolute
value of eigenvalues of the mapping matrix c]) for a time delay T = 7r/2. This chart
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clearly indicates that for a given delay, there is a finite optimal pair of control gains
kp and kd that will lead to the best control performance with the smallest 1>'lmax.
Solving for the optimization problem in Eg. (4.34), we have found the optimal gains
to be (kp , kd) = (-0.1356, -0.3898) with 1>.lmax = 0.1103.
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Fig. 4.31 Stability boundaries on the k p - k d plane of the tune-mvanant system with different
time delays. The mner part of the closed contour IS the stable regIOn.
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Flg.4.32 Performance contours of the second order linear tIme-invarIant system wIth a tIme delay
T = 7f /2. The labels of the contours are the maximum absolute value Amaxof eingenvalues of the
mapping <1>. "+" indicates the optimal control gains (k p , kd) - (-0.1356, -0.3898) with the
smaIIest Xm a x - 0.1103.
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Figure 4.33 shows a comparison of time histories of the amplitude of the response
vector (x, x) of the system under the optimal and non-optimal feedback controls.
The optimal control clearly provides superior performance to that of the non-optimal
ones.

Next, we consider PI control.
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Fig. 4.33 Time history of the response amplItude of the autonomus system. SolId Ime: the op­
timal gains (k p, kd) = (-0.1356, -0.3898) and Arna x = 0.1103. Dashed line: (k p, kd)
(-0.5, -0.8) and Arn a x ::::J 0.5. Dashed-dotted line: (kp,k d ) - (0.8, -1.45) and Arna x ::::J
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Flg.4.34 Performance contours of the second order lInear tIme-mvarlant system with a tIme delay
T - 1f74. The labels of the contours are the maximum absolute value Arna x of eigenvalues of
the mapping <P. "+" indicates the optimal control gains (kp , ki) = (-1.1217,1.3682) with the
smallest Arna x - 0.0537.
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Figure 4.34 shows the performance contours of the feedback control as measured
by the largest absolute value of eigenvalues of the mapping matrix cP for a time
delay T = 7r74. This chart clearly indicates that for a given delay, there is a finite
optimal pair of control gains kp and k i that will lead to the best control performance
with the smallest I>-Imax. We have indeed found the optimal gains to be (kp , ki ) =
(-1.1217, 1.3682) with I>-Imax = 0.0537.

Figure 4.35 shows a comparison of time histories of the amplitude of the response
vector (x, X,x) of the system under the optimal and non-optimal feedback controls.
The optimal control clearly provides supenor performance to that of the non-optimal
ones.
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4

Fig. 4.35 Time history of the response amplitude II x II of the autonomous system. Solid line: the
optimal gains (k p , kd = (-1.1217,1.3682) and Arna x = 0.0537. Dashed line: (k p , ki)
(-1.0,2.0) and Arna x ::::! 0.5. Dashed-dotted line: (k p , k;) - (0.0,1.0) and Arna x ::::! 0.75.
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Fig. 4.36 Tracking performance of the response x( t) of the autonomous system. The reference
is a step input with r = 0.2. Solid line: the optimal gains (k p , kd = (-1.1217,1.3682) and
Arna x - 0.0537. Dashed line: (k p , k;) - (-1.0,1.64) and Arna x ::::! 0.25. Dashed-dotted line:
(k p , ki) - (0.0,1.0) and Arna x ::::! 0.75.
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In the classic rID control theory, the steady state tracking error can be eliminated
by the integral control. This is still true for time delayed linear systems. Figure 4.36
shows the response under the optimal and non-optimal feedback controls tracking a
step reference. Notice that the steady state trackmg error IS zero.

4.8 Control of the Mathieu system

ConsIder the MathIeu equation wIth a delayed rID feedback control

[
0 1 0] [0 00]x(t) = 0 0 1 x(t)- 000 x(t - T),

4Esin2t -(0 + 2Ecos2t) 0 k; kp kd

(4.111)

where x = (x, x, x) 1'. The period of the system is T = tt . We select the parame­
ters to be E = 1, 0 = 1, 3 and 4. When 0 = 1 and 4, the uncontrolled system is
parametrically unstable. Consider a delay T = 1r74 and choose N = 20.

Figures 4.37 and 4.38 present the stability boundaries on the kp - kd plane with
dIfferent parameters. As IS m the case of the time-mvanant system, the SIze of the
stability region decreases with the increase of time delay. The shape of the stability
region is more complex than that of the time-invariant system. The irregular ge­
ometry of the contours in the figures is a reflection of the complex behavior of the
tune-varying system.
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FIg. 4.37 Stability boundaries on the kp - kd plane for the perIodIc system WIth different time
delays. The inner part of the closed contour is the stable region. 8 - 4 and c: - 1.
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In the following discussions, the parameters are fixed to be (j = 4, c = 1 and
N = 20. Figure 4.39 shows the performance contours of the control system with
a time delay T = 7r74. For the periodic system, there is also a finite optimal pair
of the feedback gams that wIll lead to the best control pefformance as measured by
I>-Imax. We have found the optimal gains to be (kp , kd) = (-2.0169, -0.3091) with
I>-Imax = 1.5535e-3.
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Fig.4.38 Stability boundaries of the periodic system with a time delay T = 7r74. Solid line: 0 = 4
and E - 1. Dashed line: ('j - 3 and E - 1. Dashed-dotted line: ('j - 1 and E - 1. The inner part
of the closed contour IS the stable region.
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Fig. 4.39 Performance contours of the closed loop periodic system with a time delay T = 7r 74.
The labels of the contours are the maximum absolute value Amaxof emgenvalues of the mappmg
<P. "+" indicates the optimal control gains (kp , kd) - (-2.0169, -0.3091) with the smallest
Amax- 1.5535e-3.
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Figure 4.40 shows a comparison of time histories of the amplitude of the response
vector (x, x) of the system under the optimal and non-optimal feedback controls.
The optimal control again provides superior performance to that of the non-optimal
ones.

Next, we conSIder PI control. FIgure 4.41 presents the stabIlIty boundarIes on
the k p - k i plane wIth kd = O. The shape of the stabIlIty regIOn IS more complex
than that of the time-invariant system. When T = 1r720, the region breaks into two
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Fig. 4.40 TIme hIstory of the response amplItude of the penodlc system. SolId lme: the optI­
mal gains (k p , kd) = (-2.0169, -0.3091) and Arna x = 1.5535e-3. Dashed line: (k p , kd) =
(-2.0,0.4) and Arn a x ~ 0.25. Dashed-dotted line: (k p , k d ) - (-4.0, -1.0) and Arna x ~

IT.75:
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F'lg. 4.41 StabIlIty boundarIes on the t; - t; plane for the penodlc system WIth dIfferent ume
delays when kd = O.The inner part of the closed contour is the stable region. 8 = 4 and e = 1.
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disJomt parts. Figure 4.42 presents the stabihty boundarIes on the k p - kd plane with
k i = O. In this case, the Size of the stabihty regIOn decreases with the mcrease of
time delay. Figure 4.43 shows minimal 1),lmax as a function of time delay for both
the PI and PI) controls considered herein

The lffegular geometry of the stabihty boundary m Figs. 4.41 and 4.42 is a reflec­
tion of the complex behavior of the time-varying system. Furthermore, significant
variations of minimal 1),lmax with time delay suggests the difficulty in designing
controls to reach certain performance targets.
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Fig. 4.42 Stability boundaries on the kp - kd plane for the penodlc system with different time
delays when k i - O.The inner part of the closed contour is the stable region. ('j - 4 and c: - 1.
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Flg.4.43 MInimal Xmax for the penodlc system with different time delays. (-*-): PI control. (-0-):
PO control.
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Next, we consider the time domain performance of a PI control with time delay
T = 1f74. Figure 4.44 shows the performance contours of the system. In this case,
there exists one finite optimal pair of the feedback gains that will lead to a minimal
I>-Imax. We have found the optimal gains to be (kp , ki ) = (-2.2628,0.9483) with
I>-Imax = 0.1605. Figure 4.45 shows a comparison of time histories of the ampli­
tude of the response vector x(t) of the system under the optimal and non-optimal

Fig. 4.44 Performance contours of the closed loop periodic system with a time delay T - 1f74.
The labels of the contours are the maximum absolute value )\rnax of eigenvalues of the mappmg
CPo "+" indicates the optimal control gains (k p , k i ) - (-2.2628,0.9483) with the smallest
)\rnax - 0.1605.
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Fig. 4.45 Time history of the response amplitude Ilxll of the periodic system under a delayed
PI control. Solid line: the optimal gains (k p , ki) = (-2.2628,0.9483) and Arn a x = 0.1605.
Dashed line: (k p , ki) - (-2.0,1.0) and Arn a x ~ 0.5. Dashed-dotted line: (k p , ki)
(-3.0,0.8) and Arn a x ~ 0.75.
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feedback controls. As pointed earlier, once the system is in steady state, the magni­
tude of x(t) decays at the faster rate due to the optimal control gains than that due
to the non-optimal ones.

4.9 An experimental validation

We apply the semI-discretizatIOn method to the design of the feedback control of
a rotary flexIble Jomt experIment made by Quanser. The experImental apparatus IS
shown m FIg.4.46, whIch consists of a rotary fleXIble joint mounted on top of a rIgId
rotary platform. Two encoders are used in the system. One measures the angular
position of the platform, the other measures the angular displacement of the flexible
Jomt relative to the platform. The state equation of the system IS of fourth order
given by

x=Ax+bu, (4.112)

Fig. 4.46 The rotary fleXible lomt expenment.

where
(4.113)~[e od~ a ]_T--'-, ----'---_--'-

o 0 1 0
o 0 0 1

A = 0 689.86 -57.658 0
o-1359.2 57.658 0

(4.114)

(4.115)~ 0 0 107.39 -107.39 ]L-T _. -'------'-----

() IS the angular position of the platform, and a IS the angular position of the fleXIble
joint relative to the platform. A state feedback control u = - k T X is designed by
using the LQR method with the state weighting matrix Q and the control weighting
factor R given by
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Q = diag([ 30001450010 0 j), R = 2.

The resultmg optimal feedback gains are

k = [k1 k2 k3 k4 ] l' = [38.7298 -73.25053.36571.1871 ] 1
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(4.116)

(4.117)

By exammmg the measured step response of the open-loop system, we have
found that the system has a time delay of 0.002 second. An additional transport
delay 0.008 second between the input and the output of the system is digitally intro­
duced, leading to a total time delay T = 0.01 second.

The top plot of Fig. 4.47 shows the step response of the expenmental system with
time delay under the LQR control. Recall that the LQR control is designed without
consideration of time delay. The time delay has already destabilized the control
system in simulations and introduces oscillations in the experimental response. The
experimental system has a hardware saturation limit of the control output, which
keeps the system stable m this case.

The closed-loop system with time delay reads

x = Ax - bk1x(t - T). (4.118)

We shall look for the optimal feedback gams k.
Here, the gain space is four dimensional. In this example, we restrict our interest

m the domam defined by

a< k1 < 100, -50 < k2 < 50, a< k3 < 5, a< k4 < 5. (4.119)

We discretize the domam by dividmg each gam range into ten partitions. We then
choose the grid points of the partition as initial guess of the optimal gains, and a
nonlinear search algorithm is run to find the optimal gains that deliver the minimal
IAlmax' It turns out that there are many local minimums of IAlmax' The smallest one
among all the local minimums is taken to be the global minimum of IAlmax in the
domam (4.119) of the gam space.

We have found the optimal feedback gains to be

k m in = [12.32067 -15.43203 0.86435 0.45176] l' , (4.120)

with IAlmax = 0.6511. The bottom plot of Fig. 4.47 shows the step response of
the closed-loop system With the feedback gams k m in . The current control deSign
exphcitly takes mto account of the effect of time delay, and improves the trackmg
performance. Because the minimum of IAlmax is used in the control, the system has
plenty dampmg as shown in the response.

The present control design procedure does not require a significant computational
power. After the formulation of the mapping matrix, searching for one optimal gain
in the four dimensional space takes less than 10 seconds for a discretization level
N < 40, which gives accurate solutiOnsas demonstrated in (Elbeyh and Sun, 2004).
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Fig.4.47 Comparison of the experimental step response ofthe LQR control (top) and the feedback
control designed with the semi-discretization method (bottom) of the rotary flexible joint system
with a time delay T - 0.01 second.

Figure 4.48 shows the computational time for finding one local minimum as a func­
tion of the discretization level N. The computation is performed on a 2GHz Pc.
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Fig.4.48 Computational time for one nonlinear search for the optimal gains starting from k -180
-200.50.5] as a function of the discretization level N.

4.10 Supervisory control

Recall the system m Eq. (4.67). The time delay T IS assumed to be slowly nme­
varying, and lies in an interval [Tmin, Tm ax] where the minimum and maximum time
delays are assumed to be known. Assume that we have obtained a set of optimal
feedback gains for the set of time delays sampled in the interval ITmin, Tmaxl. We
present the sWItchmg algonthm tor selectmg a gam to Implement m real time,
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The actual time delay T is such that Tmin :::; T :::; Tmax. We descritize [Tmin,Tmax]
into MT - 1 intervals so that Tmin = Tl < T2 < ... < TM r = Tmax. Consider MT

models of the time-delayed system as

(4.121)

Consider the feedback control Ui = -KiXi (t - Til where K i E !1. Each K i is
found by imposing Eq. (4.34) subject to an additional constraint: K i must be stable
for all T j (1 :::; j :::; MT ). Let KiOpt E ~! be the optImal gam for Ti and the aSSOCiate
eigenvalue with the smallest magnitude IAi (q» Imin < 1. Check if KiOpt stablizes
the system m Eq. (4.121) for all other tIme delays Tj (1 :::; J :::; MT ) .

FoIlowmg the concept of the supervIsory control (Morse, 1996, 1997; Hespanha
et aI., 1999,2003), we define an estImatiOnerror as

e, = Xi (t) - X (t), 1 < i < MT) (4.122)

where X (t) is the output of the system with unknown time delay. In the experiment,
x (t) would be obtained from measurements. Consider a positive function of the
estimation error Fi(ed > O. An example is Fi(eil = Ileil12. Define a switching
index 7fi (t) such that

iri(t) + Ai7fi(t) = Fi(eil, (Ai> 0)

7fi(O) = 0, (4.123)

where the parameter Ai defines the bandwidth of the low pass filter. The general
solution for 7fi(t) can be obtained as

(4.124)

The hysteretic switching algorithm in (Hespanha et al., 1999, 2003) is stated as
follows. Assume that the system is sampled at time interval D..t. At the kt h time step,
the system IS under control WIth the gam K j and the assOCIated sWltchmg SIgnal IS
7fj (k). At the (k + 1)th step, if there is an index i such that 7fi (k) < (1 - 1])7fj (k)
where 1] > 0 IS a small number, we SWItch to the gam K i . OtherWIse, we contmue
With the gam K j • 1] is known as the hysteretIc parameter and prevents the system
from switching too frequently.

4.10.1 Supervisory control ofthe LT1 system

ConSIder a second-order autonomous system (4.35) under a delayed PI control. The
feedback control reads u = -[ki , kp , O]x(t - T) where x = (x, X, X)T. Take w = 2
and ( = 0.05. The discretization number of the time delayed response is set to be
N - 20 for all sampled time delays (Sheng et aI., 2004; Sheng and Sun, 2005;
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Sun, 2009). Tmin = 0.0419 and Tmax = 0.2094. We pick five different time delays
to design optimal feedback gains according to the method outlined in the previous
section.

Table 4.4 Optimal PI feedback gains and IAlrnax for the four sampled time delays of the linear
time mvanant system.

Time Delay k i k p IAlrnax
71 -0.0419 0.2000 1.8400 0.9992
72 =0.0733 0.2000 -2.3500 0.9982
73 =0.1047 0.2000 -2.8600 0.9966
74 -0.1571 0.2000 2.8600 0.9938
75 -0.2094 0.2000 -3.3700 0.9907

The optimal gains associated wIth the five time delays are hsted in Table 4.4. The
associated stability domains in the gain space are shown in Fig. 4.49. It should be
pointed out that when the optimal gains of all the controls with different time delays
fall in the intersection of the stability domains, it is possible to use the hysteretic
algOrIthmto sWItch among the pre-deSIgned controls and to keep the system stable
all the time. When an optimal gam IS out of the mtersectlOn, the control wIth that
gain can destabilize the system with some time delay in the range ITmin, Tmaxl. This
property limits the size of the unknown time delay range [Tmin, Tmax] because the
stability domains change significantly with the time delay, particularly for periodic
systems (Sheng and Sun, 2005).

1.5 I

-05 !

-4 -2 o
k

E

2 4 6

FIg. 4.49 StabIlIty domams (lInes) m the gam space and the optimal feedback gams (0) for the
autonomous systems With five dIfferent time delays 7i (2 - 1,2,3,4,5). The stabIlIty boundanes
become taIler and narrower, and move upward along ki axiS as time delay mcreases.

FIgure 4.50 shows the closed loop response of the system under the feedback
control wIth all five dIfferent time delays when the system true time delay IS taken
to be TI and is assumed to be unknown. As it can be seen from the figure, when
the control designed for the time delay that is close to T4 is implemented, the per­
formance IS acceptable. OtherWIse, the performance can deterIorate as seen m the
left-upper sub-figure.
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Fig.4.50 Response of the autonomous system under feedback controls designed for a specific gain
when the system true time delay is 71 and is assumed to be unknown. When the feedback gains
(K2' K3, K4) are designed for the time delay close to the actual one, the control performance is
quite good. K4 and K5 are the same. When the mismatch gap ISlarge, I.e. when K4 deSigned for
74 is implemented for the system with time delay 71, the performance deteriorates.

Next, we examine how well the hysteretic switch algorithm works. Assume that
we start with a control gain K 5 designed for T5 while the system delay is TI. Figure
4.51 shows that the hysteretIc algonthm IS able to sWItch the control to R I. FIgure
4.52 shows the switch signal1f( t) and the control index.

0.5 T= TI, K=Ks

,,- 0

-0.5

5 10 15 20
Time (8)

2015J()5

-0.5

-1;;====~====;:';;====~====;:;"o

Fig. 4.51 The closed loop response of the system under the switched control when the imtial gam
of the control IS K5 deSigned for 75 while the system true time delay IS 71 (bottom), as compared
to the case when the gam ISfiexed at K5 (top).
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Fig.4.52 Switch signal (lower figure) and the control index (upper figure) of the hysteretic switch­
mg algonthm tor the closed loop response m FIg. 4.51.

4.10.2 Supervisory control ofthe periodic system

ConsIder the MathIeu equatIOn (4.111) wIth a delayed PID feedback control. The
period of the system is T - tt . We select the parameters to be E - 1, ('j - 4 and N ­
20 for all sampled time delays. The uncontrolled system is parametrically unstable.
Next, we show the closed-loop response of the system under a switching PD control
wIth tIme delay m the range [0.5498, 1.0210]. FIve tIme delays are sampled from
the mterval and theIr optImal gams are lIsted m Table 4.5. The stabIlIty domams m
the gam space are shown m FIg. 4.53. Note that the optImal gams of all the controls
with different time delays fall in the intersection of the stabilIty domams. Hence, It
is possible to use the hysteretic algorithm to switch among the pre-designed controls
and to keep the system stable all the time. Another interesting phenomenon as shown
in Fig. 4.53 and also in (Sheng and Sun, 2005) is that the stability domain in kp - kd
gain space grows along the kd direction as time delay increases.

Table 4.5 Optimal PD feedback gains and IAImax for the five sampled time delays of the periodic
system. Note that the mappmg step tor the penodic system IS one penod, whtle the mappmg step
tor the en system IS only one time delay T.

Time Delay »;
Tl =0.5498 -3.6634
T2 -0.6676 -4.0000
T3 =0.7854 -2.8000
T4 =0.9032 -2.6000
T5 -1.0210 -1.8000

-0.0990
-0.8000
-0.6000
-0.6000
-0.6000

IAlmax
0.0130
0.0083
0.0141
0.0213
0.0347
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Fig. 4.53 Stability domains (lines) in the gain space and the optimal feedback gains (0) for the
periodic system with five different time delays Ti (i = 1,2,3,4,5). The stability boundaries
move down along kd axis as time delay increases.

Figure 4.54 shows the closed loop responses of the system under the feedback
control with the first four different time delays when the system true time delay is
taken to be 71 and is assumed to be unknown. As it can be seen from the figure,
when the control deSigned for the time delay that is close to 71 IS implemented, the
performance is better.
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Fig. 4.54 Response of the penodlc system under PD feedback controls designed for a specific gam
when the system true time delay ISTI and ISassumed to be unknown.
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Next, we start with a control gain K 4 designed for 74. Figure 4.55 shows the
closed loop response. The hysteretic algorithm switches the gain to reduce the
switch signal nfr) as shown in Fig. 4.56.

J"lg. 4.55 The closed loop response of the penodlc system under the sWitched PD control when the
initial gain of the control IS K4 designed for 74 while the system true time delay IS 71 (bottom), as
compared to the case when the gain IS fiexed at K 4 (top).
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Flg.4.56 Switch signal (lower figure) and the control index (upper figure) of the hysteretic switch­
Ing algonthm for the closed loop response In Fig. 4.55.
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4.11 Method of semi-discretization for stochastic systems
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ThISsection studIes systems wIth time delay subject to both addItIve and multIplIca­
tive stochastic disturbances. Specifically, we present a study of stability analysis
with the method of semi-discretization.

4.11.1 Mathematical background

We consider a system

x= f (x (t), x (t - T) ,t) +G (x, t) W (t), (4.125)

where x E ~n, W E ~m, the system dynamics and delayed effects are ac­
counted by the vector f and G = [gij] is the matrix determining the parametric
and external random excitations. Wi (t) are delta correlated Gaussian white noises
with E [Wi (t) Wj (t + T)] = 27rKijl5 (T). Here, we will extend the the semi­
discretization method where the general procedure is studied in (Insperger and
Stepan, 2002) .

we make use of Ito stochastic calculus to obtain an accurate stochastic discrete
map. Equation (4.125) can be converted to Ito differential equation in the following
general form,

dX = ill (X (t) ,X(t - T), t) dHCJ(X, t) dB (t), (4.126)

where ill is the drift including the Wong-Zakai correction term and CJ (X, t) is the
diffusion term defined as

(4.127)

The Brownian motion dB (t) has the following properties that we use in the coming
sections r:E ti dB (t) = 0, E [dBi (t) dBj (t)] = oijdt. (4.128)

We restrict ourselves to linear stochastic differential equations with ill = AX (t)
+ATX (t - T), and G (X, t) is a linear function of X,

dX = AX (t) dHATX (t - T) dHCJ(t) dB (t), (4.129)

where A IS the state matnx and AT IS the state matnx related to the tIme delayed re­
sponse, CJ IS the dIffUSIOn term due to parametnc and external stochastIc excitations.
The formal solutIOnto thIS equation In Integral form IS wntten as follows
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(4.130)

+lti+l5.t

AT (t) X (t - T)dH lti+l5.t

IJ (t) dB (t) ,

where X (ti) is the initial value. Note that the fourth term on the RHS is a multi­
dimensIOnal stochastic mtegral that must be mterpreted m Ito sense. Although Eq.
(4.130) IS exact It does not provide any sImphficatIOns for the deSifed mapping.
To circumvent this problem we introduce the following notations which will be
practical in the formulation,

X(ti - T) = X((i - N)6.t) = X Ii - NI ,

X(ti) = X [i], lJ(ti) = IJ [i],

A(til = A Iii, AT(ti) = AT Iii,

(4.131)

where the time lag T is divided into an integer N intervals of length 6.t such that
T = Nl5.t. Details of this procedure and applications in complex systems can be
found in (Insperger and Stepan, 2001, 2002)

Integration of Eq. (4.129) over a short time intervall5.t gives:

X [i + 1]=X [i]+A [i] X [i] 6.t

t:+ AT(ti)X [i - N] 6.HIJ [i] ti dB (t).

(4.132)

The last term on the RHS IS dlscretlzed m such a way that the diffusIOn term IS
kept constant during the short interval. This is the essence of the semi-discretization
method and allows us to generate a discrete mapping of diffusion terms. We would
like to draw the readers attention to two points at this step. Firstly note that as 2lt
gets smaller the accuracy of short time mtegrals Improves. Therefore, the discrete
map (4.132) approaches to contmuous process. Secondly the dIffUSIOn term IS not
hnear for the first moments but produces hnear relatIOnshIp for the second order
moments. ThIS IS due to the hnear nature of the G matrIX m EquatIOn(4.125) and
we demonstrate it in the following sections. Define a (N + l)n x 1 dimensional
state vector as

(4.133)

A mapping of Y Ii lover the interval Iti, ti± 11 becomes

(4.134)

where ep [i] is the mapping that accounts for the system dynamics, delayed effects
and relationship of the delayed states and R [i] is the combined stochastic influence
vector defined as
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R[i] = [ I
T N·n

ti+Ll.t ~

rY[i]l dB(t) ,0, ... ,0

T

(4.135)

4.11.2 Stabz7ity analysis

To formulate the second order moment stability we define following matrix Z [i]
that represents the second order moments as

[Z [i]]MXM = E (Y [i]yI' [iD ' (4.136)

where M = (n + I)N x 1. Then the mapping of second order moments for one step
becomes

Z [i+ l]kp = E (q, [ihl q, [i]qp) Z [i]lq (4.137)

+ E (q, [i]kl Y [ill R [i]p + q, [i]qp Y [i]q R [i]k) + E (R [ilk R [i]p) .

Note that due to the hnear nature of G the last term on the RHS can be at most
quadratIc

(4.138)

where 8kpl is the term for the coupling of first order moments to the second order
moments. We group Eg. (4.137) as follows,

Z [i+ l]kp = 'l1 [i]klpq Z [i]lq + 8kplE (Y [ill) + r [i], (4.139)

where'l1 [i]klpq = H [ihlpq+E (q, [i]kl q, [i]qp). This step allows us to write a sim­

ple stability condition because the effects of stochastic excitations linear in second
order moments become explicit. The stability condition for the system in (4.139) is

lim liZ [i+ 1]11::; l'\lmax(i) liZ [i]ll,
"-+00

where 11.11 is the norm. This condition is guaranteed if

l'\lmax(i) < 1, for all i, (4.140)

where l'\lmax(i) is the maximum absolute value of the linear transformation 'l1 [i].
Moreover, when limits

lim Z (i) = Z, lim 'l1 [i] = 'l1, lim r [i] = r, lim E [Y [i]] = 0,
'l-+CXl ],-+CX) ],-+CX) 'l-+cx)
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exist Eq. (4.139) makes it possible to calculate the stochastically steady state re­
sponse of second order moments using

Z = [1- w] lr,

where 1 IS the IdentIty matnx wIth the same dImensIOn as \[i.

4.12 Method of finite-dimensional markov process (FDMP)

Consider Ito equation (4.126). Recall that the system lives in an infinite dimensional
state space. In general, X (t) is no longer a Markov process because it depends on
ItS hIstory. Followmg the Idea of the CTA method, we dIscretIze the delayed part of
the state vector (X (t - ttl ,0 < it < T). Let N be integer such that D..T = T7N.
Ti = iD..T (i = 1,2, ... , N). Then, we introduce a finite difference approximation
of the derivatives of eX (t - Ti) ,1 :S i :S N) as in Eq. (4.81). Define a discrete
vector as

Y (t) = [XT (t), X T (t - D..T), X T (t - 2D..T), ... , X T (t - N Lh)]T

== [YT (t), Yi (t), Yi (t), ... ,Y~+I (t)]T . (4.141)

We obtain an Ito stochastic equation for the vector Y (t),

m(Y (t) Y" (t) t) OfT rv, (t) Y" (t) ° t)

2~T [YI (t) - Y 3 (t)] 0
dY (t) = dt+ dB (t)

~T [YN (t) - Y N+I (t)] 0

== m(Y, t)dt + a- (Y, t) dB (t) . (4.142)

Note that the low-pass filtered CTA approxImatIOnm SectIOn 4.5.1 can be applIed
here also. ConsIder a lInear stochastIc dIfferentIal equation as an example,

dX = AX (t) dt+ATX (t - T) di-s-a (t) dB (t), (4.143)

where A is the state matrix and AT is the state matrix related to the delayed re­
sponse. We have an equation for Y (t) as

=.tty (t) dt + a- (t) dB (t), (4.144)
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Equation (4.142) indicates that Y (t) is a Markov process when dB (t) is a Brow­
nian motion (Lin and Cai, 1995). The conditional probability density function of
Y (t) satisfies a FPK equation as well as backward Kolmogorov equation.

4.12.1 Fokker-Planck-Kolmogorov (FPK) equation

The conditional probability density function py(y, tlYo, to) for the stochastic sys­
tem (4.142) satisfies the FPK equation given by

where the index j runs from 1 to M = n(N + 1) and bj k = o-jZo-kl or b = o-o-T.

The index l runs from 1 to p, the dimension of dB(t). The FPK equation is subject
to an mitial condition, for example,

py(y, tlYo, to) = o(y - Yo). (4.146)

Note that since the stochastic excitations only act on the vector X (t) = Y 1 (t),
the second order derivatives of the FPK equation only involve the components of
Y 1 (t). Hence, there are only n x n diffusion terms, instead of M x M. In other
words, the time-delay within the FDMP method only affects the drift term of the
FPK equatiOn. ThiS is also true with the backward Kolmogorov equation and its
denvatives m the study of rehabihty and first-passage time probabihty.

Example of the linear system

Recall the hnear system m Eq. (4.144). The FPK equation reads

8 (I ) 8 [A ] bj k 8
2
py

8tPY Y,t Yo,to = --8. ajkYkPy + 21-8.8 .
Yl . Yl Yk

(4.147)

Assume that the matnx A is nondefective. Then, there eXistm eigenvalues )\k and
eigenvectors Ck such that

AC-CA,

(4.148)

(4.149)

where A = diag{Ad and C = {c1 , Cl, ... , cm } (Golub and Loan, 1983). Note
that C is nonsingular. Introduce a transformation such that
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(4.150)

Let H = C-1b(C I)T == {hjk}. We obtain a Gaussian probability density func­
tlon (Sun, 2006)

where

pz(z, tlzo, to)
I

. exp ( -~(z - tLzfCzi(z - tLz ) ) ,

(4.151)

EquatIOn (4.152) mdlcates that the first and second order moments of the system are
stable if the real part of each eigenvalue Ak of the matrix A is negative or zero.

Hence, py(y, tlYo, to) is also Gaussian with the mean and variance given by

(4.153)

Recall that Y == [Yl, Y2, ... ,YN+l] I for the case of one time delay and x = Yl.
The marginal probability density function of the responses x of the original time­
delayed system is given by

px(x, tlYo, to) = py(y, tlYo, to)dY2'" dYN+l.
iRn

(4.154)

It is not hard to show recursively that Px(x, tlYo, to) for the linear time-delayed
system is still Gaussian in x although it is not Markovian. This is an interesting
result.

4.12.2 Moment equations

Recall that in the Ito sense, dB k (t) is defined as the forward difference and
O"jk(Y, t) is independent of dBk(t). Also, E[dBk(t)] = O. Taking the mathematical
expectation on both sides of EquatIOn (4.142), we have

dE[Yj(t)] _ E[ A .(Y )]dt - m J ,t.

Consider a function F(Y, t) = YjYk. According to Ito's lemma, we have

(4.155)
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Taking the expectation of the equation, and recalling that
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(4.157)

because of the independence of the terms 0- jl Yk +o-kl Y j and dBI (t) in the Ito sense,
we have the equation for the correlatIOnfunctIOn

(4.158)

By following the same steps, we can construct differential equations governing
the evolutIOn of the moments of any order. Consider agam the hnear example. The
moment equations of the first and second orders are readtly obtamed.

dE[Yj(t)] _ A- E[Y, ( )]
dt - Jk k t ,

In the matrix form, they read

df..ly A

ill = Apy,

dRy y A AT 1 A

~=ARyy+RyyA +"2b,

where f-Ly = E[Y] and Ryy = E[yyT].

4.12.3 Reliability

(4.159)

(4.160)

(4.161)

(4.162)

The backward Ko1mogorov equation for the process Y (t) can be derived as (Sun,
2000)

(4.163)

Note that to ::; t < 00. Integratmg EquatIOn (4.163) with respect to the delayed
components (Y2' Y3,... , YN ±1) of the state vector leads to the backward equation
for the margmal probabihty denSity functIOn,

(4.164)

An important application of the backward Kolmogorov equation is the reliability
study. Consider the state vector X (t) of the original system. Let S ~ 3{n be a
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domain in which the system is considered to be safe. r is the boundary ofS. Assume
that all the components ofY (to) = Yo lie inside S at time to. The probability that
the system is still in the safe domain S at time t is given by

Rs (t, to, Yo) = P (t < Tn X (t) E SlY (to) = Yo)

= l px(x, tlyo, to)dx, (4.165)

where T is the first time when X (t) crosses the boundary r. Rs (t, to, Yo) is also
known as the relIabIlIty against the first-passage fQllure with respect to the safe
domam S.

Integrating Eg. (4.163) over S with respect to x, we obtain a partial differential
equation of the reliability function Rs (t, to, Yo),

subject to the followmg mltlal and boundary conditions

Rs (to,to,yo) = 1, YOi E S, (1 < i < N + 1),

Rs (t, to,Yo) = 0, YOi E T (for at least one i).

4.12.4 First-passage time probability

(4.166)

(4.167)

(4.168)

Denote the complement of Rs (t, to, Yo) as Fs (t, to,Yo), which is the probability
dlstnbutlOn functIOn of the first-passage time. We have

Fs (t, to, Yo) = P (t 2: TIY (to) = Yo) = 1 - Rs (t, to,Yo).

Substltutmg thISrelatIOnshIp to EquatIOn (4.166), we obtam

(4.169)

(4.170)

_ 8Fs(t,to,yo) _ A.( )8Fs(t,to,yo)
8 - m J Yo,to 8

to YOj

bjk(yo, to) 82FS (t,to,yo)+ .
2! 8Yoj8YOk

The probability density function of the first-passage time denoted by PT (tIYo, to)
is given by

( I ) - 8Fs(t,to,yo) __ 8Rs(t,to,yo)
PT tYo,to - 8t - 8t . (4.171)
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Differentiating Eq. (4.170) with respect to t, we yield the governing equation for

PT (tIYo, to)

(4.172)

Since, at a given time t > to and when YOi E T (for at least one i), the reliability
ofthe system vanishes Rs (t, to, Yo) = 0, this suggests the boundary condition

PT (tIYo, to) = 0, t > to, YOi E T (for at least one i). (4.173)

Assume that inItIally, the system starts from a pomt in the sate domam With proba­
bihty one, we have an inItIal conditIon

PT (toIYo, to) = O(yo), YOi E 5, (1 :S i :S N + 1).

4.12.5 Pontryagin-Vitt equations

(4.174)

The first-passage time is a random variable and its rt h order moment can be defined
as

M; (Yo, to) = E[(T - tonyO, to] =100

(t - torPT (tIYo, to) dt.
to

(4.175)

From Eq. (4.172), we obtam a set of mtegral-partIal dtfferentIal equations tor the
moments ofthe first-passage time as

(4.176)

(4.177)

This equation is in general difficult to solve. Assume that X(t) is a stationary pro­

cess such that PT (tIYo, to) = pr(rlvo) = - 8Rs~;,yo) , mj(Yo, to) = mj (Yo) and

bjk(yo, to) = bjk(yo) where T = t - to. Let

M r (Yo) = 100

TrpT (TIYo) dr.

Assume that limT -+oo T
r PT (TIYo) = 0. We can derive a set of the generalized

Pontryagin- vu. equauons tor the moments of the first-passage time as
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All the moments satisfy the same boundary condition

M; (Yo) = 0, YOi E T (for at least one i), r = 1,2,3, ...

(4.178)

(4.179)

Note that MO(Yol = 1 because PT (TIYol is a probability density function of T.

Hence, the mean of the first-passage time satIsfies the Pontryagin-Vztt equation with
r = I,

(4.180)

4.13 Analysis of stochastic systems with time delay

4.13.1 Stabz7itY ofsecond order stochastic systems

Consider a second order linear system subject to both additive and multiplicative
stochastic excitations.

x(t) + ad;(t) + a2x(t) = WI (t) x(t) + W2(t) x(t)
+ W3 (t) - kpx(t - T) - kdX(t - T), (4.181)

where al and a2 are constant system parameters, kp and kd are the delayed feed­
back control parameters. We first compare the stablhty results of semi-discretIzatiOn
method with the known analytIcal solutiOn III the hterature. To do so we restnct
ourselves to a non-delayed case without feedback and show the essential steps of
semi-discretization method. The Ito equations representing this system can be char­
acterized with

(4.182)

(4.183)

(4.184)

The denvatiOn of these quantItIes are weB known III the hterature, see for example
(LIll and Cal, 1995) and not presented here. K 13 and K 23 are the couphng terms for
second order moments with first order moments and would produce terms similar to
8kpl in Equation (4.139). To keep the example simple we restrict ourselves to the
cases where K 13 and K 23 are zero. The integration over a short time interval t:lt
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yields following map
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(4.185)

In the coming sections, we refer to this formulation as direct Ito integration. Com­
paring Eq. (4.185) to Eq. (4.134) we see that first two matrices on the RHS constitute
<T> [ibx l' the third one constitutes R [ibx l' Naturally due to the absence of the de­
layed terms the vector sizes are much smaller. Notice that the terms like IJ lib] are
the discretized constant quantities IJ [i]2] = IJ (t; )2] for t E (t;, t; + ~t). Explicitly,
Equation (4.138) reads

E (R [i] R T liD =

[ ']2 + [']2 + [']2 IJ[i]l1 IJ[i]21 +IJ[i]12 IJ[ib
IJ z 11 IJ Z 12 IJ Z 13 ['] [']+IJ Z 13 IJ Z 23

symmetric IJ [i]2 + IJ [i]2 + IJ [i]2
~t.

(4.186)

Here we take advantage of the symmetric nature of the second order moments and

use equivalent vector form for E R [i]R lilT as follows

Note that, the first matnx 1S the hnear contnbution H m Eq. (4.138) whereas the
second term is r.

We take K 11 and K 12 - 0, and construct the map of second order moments
followmg the procedure descnbed earher.

00 0 X 2 01

+27f~t 00 0 E X1X2 + 27f~t 0 (4.188)
00 K 22 X 2 K 332 i
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Using the Ito differential rule (Sun, 2006), we can obtain the equations for the sec­
ond order moments in the continuous time domain.

d E P'tj 0 2 0 E l~tj
- E[X1X2] - -a2 -al + 7rK 22 1 E [X1X2]-
dt

E rxi1 0 - 2 a2 -2al + 47rK22 E rxi1
The stabIlIty of the second order moments IS guaranteed If all the eigenvalues of the
matnx have negative real parts.

The integration of Eq. (4.189) over a short time ~t leads to exactly the same
discrete map as in Eq. (4.188) when the higher order tenns involving ~t2 are ne-

~
We take this results as our benchmark and mvestlgate the stabilIty boundary of

the semi discretized system. Here we bnefly compare the stabIlIty boundanes ob­
tamed by three approaches. To do so for the system in Eq. (4.181) we take a2 = 1
and vary the damping al. Figure 4.57 shows the upper bound for K 22 . The numer­
ical result obtained by Equation (4.13.1) is very close to that of the exact analytical
results. Note that the numerical results render discrepancies when al is very small
that is when the system parameters are of the same order as ~t.

0.3 0.05

0.04

0.25 0.03

0.02

0.2 0.01

i:<~ 0.15 0.1 0.2 0.3

0.4 0.6 0.8
U;

1.2 1.4 1.6

Fig. 4.57 Stability boundary for the strength of parametnc excitation K22 with varymg system
damping ai, for a2 - 1. (+): Exact solution, (- - - -): exact drift mapping with lit - 0.02, (...
.): direct Ito integration with t::.t = 0.02, (--): direct Ito integration with t::.t = 0.0001

Wefound that accuracy of the dnft term m Eq. (4.130) can be further Improved If
the dnft term IS treated separately. The reason behmd that IS that those terms are of
order lit. We further take advantage of the semi-discretization method and construct
a more accurate map of the drift tenns using an equivalent continuous model
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where f [i - NJ = kpx [i - N] - kdX [i - NJ. Such a formulation is significantly
effiCient and accurate if first order approximation IS used for the feedback terms. We
call this approach as exact drift mapping and obtain the following 2D map

{ X[i + 1] } = [alia2i] {Xli]}
x [i+ 1] (3Ii (32i x [i]

{
a3i a4i } { f[i - N] } { RI [i] }

+ (33i(34i f[i-N+1] + R2[i]'
(4.191)

Note that m order to achIeve an efficIent numenc formulatIOn we collapsed down
the delayed state effects into a scalar quantity f Ii - NI. The explicit expressions
of the coefficients aji and (3ji for a detenninistic system is studied in the literature
(Insperger and Stepan, 2001, 2002). When Wi (t) are constants the problem simpli­
fies to deterministic delayed feedback control and R l i , R2i are due to the external
stochastic excitations. The transition matrix in Eq. (4.134) <T> Iii becomes

(32i (3Ii 00 .. · (34i (33i

a2i ali UU... a4i a3i

-u, -kp 0 0··· 0 0

<T> [i] = 0 0 10 ... 0 0 (4.192)

0 0 00 .. · 0 0

0 0 00 .. · 1 0

Now, we take WI = W2 = am Eq. (4.181), and set the feedback gains kp , kd to
zero. In this case, the steady-state second moments of the system are known as

(4.193)

In Fig. 4.58 we vary the discretization time step t:lt and obtain the second mo­
ments usmg the proposed method. We employ two formulatIOns as descnbed before:
1) dIrect Ito integration and 11) exact dnft mapping. Clearly, the latter yIelds supe­
rior results where the results of E [xi] and E [XIX2] = 0 are virtually the same
as the exact values. For E [x§], the convergence rate of the exact drift mapping is
significantly higher than that of the direct Ito integration.

We first mvestIgate the system m Eq. (4.181) usmg the system parameters T =
0.16, al = 0.4, a2 = 1 and the strength of stochastic excitations K 22 = 0.5/J21f,
K ll = 1/J21f, K 33 = O. Figure 4.59 shows the stability boundary as well as the
equal perfonnance curves for the delayed feedback gains. We used a discretization
level of N = 8. The region outside the solid line is unstable. The equal performance
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Fig.4.58 Second order moments versus the discrete time step b.t, K 33 = ~, system damping

al = 0.8 and a2 = 4, all other parameters are set to zero. (- - - - ): exact values, (0-0-0): exact
drift mapping, (b.-b.-b.): direct Ito integration.

9

8

7

6

...," 5

4

3

2

~2 0 2
!

10 12 14

Fig. 4.59 Stability and performance boundaries of the delayed system In Eg. (4.181) In mean
square sense With al - 0.4, a2 - 1, T - 0.16, N - 8 and stochastic eXCitatIOns K 2 2 ­

0.5jv27f , Ku = 1jv27f, K33 = O. (--): Stability boundary where Am a x = 1, (- - - -
):Xm a x - 0.875, (- ): Xm a x - 0.75.

lines correspond to the decay rate of the second moments of the system response.
The fastest decay rate can be achieved for kp - 4.566586 and kd - 4.763169 With
a corresponding IAlmax = 0.748013. Note that, the origin in the unstable region
corresponds to the uncontrolled case.

The semi-discretization method applied to stochastic systems is very versatile
that one can obtain auto-correlation and cross-correlation functions of the system
response m steady state Without difficulty. In Fig. 4.60, we demonstrate thiS phe-
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nomenon where we used the same parameters as in Fig. 4.58. This time we stacked
up the state vector and discretized the period of the system into a number of parts.
We tum off the feedback gains which effectively sets CY3j, CY4j, P3j, and P4i to zero.
We present the auto-correlation of the displacement, E IXI (t) Xl (t - T)I. It should
be noted that the results when T = 0 correspond to E [:i]. In other words, there is
one to one relation between Figs. 4.60 and 4.58.

-1

o 05 25

Fig. 4.60 VanatlOn of auto-correlation of the second moment of displacement with varymg dls­
cretezation, N. al = 0.8, a2 = 4, k p = 0, kd = 0, K ll = 0, K22 = 0 K33 = ;&;.(00):

N - 7, (+ +): N - 15, (2S. 2S.): N - 24, (* - *): N - 40.

FIgure 4.61 depIcts the most general case where we have addItIve and multI­
plIcatIve stochastIc dIsturbances. ThIS time we use the same parameter set as III

4

o

0.004 0.01 0.04

Flg.4.61 Delayed feedback control response With k p - 2, kd - 4 al - 0.4, a2 - 1, T - 0.16,
N = 8 and stochastic excitations K22 = 0.5/V21f, Kll = I/V21f. Second order moments
versus the discrete time step llt; (ll-ll-ll): E [xi] , (0-0-0): E [x~] , (x-x-x): E [XIX2] . Dashed
hnes mdlcate the outcome of the Monte Carlo Simulations.
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Fig. 4.59. The system is unstable when the controller is turned of. We use a feed­
back gain pair (kp , kd ) = (4,2) to stabilize the system. The dashed lines in­
dicate the outcome of the Monte Carlo simulations where the initial conditions
for the delayed vector is assumed to be zero. The Monte Carlo simulatiOns yield
0.511044, -0.0103565 and 3.91148 for E [:ill ,E [XiX2] and E ~, respectively.

4.13.2 One Dimensional Nonlinear System

Consider a system defined by

dX(t) = [-aX(t) - EX 3(t) + bX(t - T)]dt + udB(t),

where dB(t) is a unit Brownian motion such that

EquatiOn (4.144) for thiSexample reads

(4.194)

(4.195)

cIY(t) = {[::~ ~'l<_~, ]Y(t)-

o 2>T 2>T

= m(Y (t), t)dt + B-dB (t).

The vector Y (t) reads

o

(4.196)

Y (t) = [Xl (t), Xl (t - Lh), Xl (t - 2Lh) , ... , Xl (t - N Lh)] l'

== [YI (t), Y2 (t), ... ,YN±1 (t)]T . (4.197)

The FPK equation of the system reads

1 8
- --[(aIYI - a2Y3)PY]'"
2~T 8Y2
1 8

- ~-;::;--[(am-IYm-1 - amYm)PY]. (4.198)
uTUYm
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When c = 0, the FPK admits an exact solution as outlined in Section 4.12.1. When
the state matrIXA IS stable, the steady state solutions of the system eXISt. An exam­
ple of the steady state mean square response of Yi is shown in Fig. 4.62. The mean
square responses of all the components Yi fluctuate ±1.7% about the average value
over the time delay interval. When b = 0, Ell'?] matches the exact solution.

2

~-

~

~

5- 1.5
o:
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<I)

:::E
<I)

E 1
tr:

i
~

0.5
5 10 15 20

Fig. 4.62 Steady state mean square responses of Y i of the first order linear system with time delay.
a -1 b 05 EON 20

The FDMP method can also be applIed to the stochaStiC system even when there
is no time delay b = O. Note that EIY1Ykl = Rx x(Tk-Il is the correlation function
of X(t) where k = 1,2, ... , N + 1, and Tk-I = (k - l)D..T/N. Figure 4.63 shows
the correlation function Rxx (T) when b = O. The solution obtained by the FDMP
approximation matches perfectly with the exact solution.

:s
~ 0.8
~
<::
0

"-B
§ 0.6
~

<::
0
.~

] 0.4
0
u

020
, , ,

0.2 0.4 0.6 0.8
I

Fig. 4.63 Comparison of the exact correlatIOn function of the first order lmear system with the
solution by the FDMP method. The agreement is perfect. a = 1. (J" = }2. E = O. b = O.
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It is noted that the exact solution of the steady state probability density function
governed by the FPK equation (4.198) is illusive at this time, although its non­
delayed version is well known.
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Chapter 5

Synchronization of Dynamical Systems in Sense
of Metric Functionals of Specific Constraints

Albert C.l. Luo

Abstract In this chapter, a theory for synchronization of multiple dynamical sys­
tems under specIfic constraints IS developed from a theory of dlscontmuous dynam­
ical systems. The metric functionals based on specific constraints are proposed to
describe the synchronicity of the two or more dynamical systems to such specific
constramts. The synchromzatIOn, desynchromzatIOn and penetratIOn of multIple dy­
namIcal systems to multIple specIfied constramts are dIscussed through such metrIC
functIOnals, and the necessary and sufficIent condItIons for such synchromcIty are
developed. The synchronicity of two dynamical systems to a single specific con­
straint is presented, and the synchronicity of the two systems to multiple specific
constraints is investigated as well. The chapter provides a theoretic frame work in or­
der to control slave systems whIch can be synchromzed wIth master systems though
specIfic constraints in a general sense.

5.1 Introduction

The study on synchromzatIOn should go back to the 17th century. Huygens (1673)
gave a detailed description of the synchronization of two pendulum clocks with
a weak interaction. Once the coupled pendulums possess small oscillations with
the same mItIal condItIons or the mItIal phase dIfference IS zero, the two pendu­
lums will be synchronized. However, when the initial phase difference is 1800

, the
antI-synchromzatIOn of two pendulums can be observed. For a general case, the
motion of the two pendulums will be combined by the synchronization and anti­
synchronization modes of vibration. Four types of synchronizations of two or more
dynamical systems have been considered: (i) identical or complete synchronization,

Albert C I Luo
Department of Mechamcal and Industnal Engmeenng, Southern IllmOis UmversIty Edwardsville,
IL 62026-1805, USA.
Email: aluo@sme.edu

A. C. J. Luo et al. (eds.), Complex  Systems
© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011



206 Albert C.l. Luo

(ii) generalized synchronization, (iii) phase synchronization, (iv) anticipated and lag
synchronization and amplitude envelope synchronization. All the synchronizations
of two or more systems at least possess one constraint for synchronicity, and the
aforementIOned synchromzatIOns possess the characterIstIcs of asymptotIc stabIlIty.
Once the two or more dynamIcal systems generate a state of synchromzatIOn un­
der a specific constraint, such a synchronized state should be stable, as referred to
Pikovsky et al. (2001) and Boccaletti (2008). After the Huygens's studies, Rayleigh
described the synchronization phenomena in acoustic systems (Rayleigh J., 1945).
Due to electrIcal and radIO wave propagatIOns, the wave synchromzatIOn was of
great mterest m 1920s. For early studIes on synchromzatIOns, one focused on the
lImIt cycles m self-excIted dynamIcal systems, resonance phenomena m multIple­
degrees of freedom systems and, steady-state motion in forced vibration. The limit
cycle in self-excited dynamical systems was discussed (e.g., van der Pol B., 1927),
whIch IS a kmd of synchromzatIOn and such synchromzatIOn can be stabIlIzed. The
other dIscussIOnson steady-state motIon and resonance m nonlInear oscIllatIOns can
be referred m many books (e.g., Stocker U., 1950; HayashI c., 1964). Recently, one
tried to control a flow of dynamical systems with attractors. Such an investigation
is actually to look into a dynamical system synchronizing with a goal dynamics, as
discussed in (Jackson, 1991).

Pecora and Carroll (1990) mvestIgated the synchromzatIOn of two systems con­
nected WIth common SIgnals and gave a cntenon of the Lyapunov exponents.
The common signals are as constraints between the two systems. Based on this
idea, the synchronized circuits for chaos were developed by Carroll and Pecaora
(1991). Since then, one focused on developing the corresponding control methods
and schemes to achIeve the synchromzatIOn of two dynamIcal systems WIth con­
stramts. Pyragas (1992) presented two methods to obtam the synchromzatIOn of
two chaotIc dynamIcal systems WIth a small time contmuous perturbatIOn. KapIta­
niak (1994) used a continuous control to present the synchronization of two chaotic
systems. Ding and Ott (1994) stated that a slave system (receiver system) is not
necessary to be a replIca of part of master systems. Such a synchromzatIOn of two
systems IS called an IdentIcal (or complete) synchromzatIOn. However, Rulkov et
al. (1995) dIscussed a generalIzed synchromzatIOn of chaos m dIrectIOnally coupled
chaotIc systems. Kocarev and Parhtz (1995) developed a general method to con­
struct chaotic synchronized systems, which decomposes the given systems into the
actIve and paSSIve systems. Peng et al. (1996) presented the chaotIc synchromzatIOn
of n-dImenSIOnal systems, and Pyragas (1996) dIscussed the weak and strong syn­
chromzatIOns of chaos by the couplIng strength of two dynamIcal systems. Dmg et
al. (1997) reviewed the control and synchronization of chaos in high-dimensional
dynamical systems. Boccaletti et al. (1997) presented an adaptive synchronization
of chaos for secure communication. Abarbanel et al. (1997) used a small force to
control a dynamIcal system to speCIfic orbIts. Pyragas (1998) systematIcally mtro­
duced the baSIC Ideas of the generalIzed synchromzatIOn of chaos. Yang and Chua
(1999) used lInear transformatIOns to study generalIzed synchromzatIOn. Zhan et al.
(2003) investigated the complete and generalized synchronizations of coupled time­
delay systems. Campos and Urias (2004) presented a mathematical description of
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multi-modal synchronization with chaos. The definition of master-slave synchro­
nization was presented and a multivalued, synchronized function was introduced.
Koronovskii et at (2004) discussed the duration of a process of complete synchro­
mzatlOnof two coupled, Identical chaotic systems. MosekIlde et aI. (2001) dIscussed
chaotic synchromzatlOn and applIed such concepts to IIvmg systems, and recent
contribution on synchronization in biosystems can also be found (e.g., Wang et aI.,
2008; Enjieu Kadji et aI., 2008; Peng et aI., 2009). Newell et at (1994) investigated
synchronization in chaotic diode resonator. Kocarev and Parlitz (1996) investigated
synchromzmg spatlOtemporal chaos m coupled nonlInear oscIllators. Teufel et aI.
(1996) presented the synchromzatlOn of two flow-excIted pendula as sImIlar to Huy­
gens' work (1986) . YamapI and Woafo (2006) mvestigated synchromzatlOns m a
ring of four mutually coupled self-sustained electromechanical devices. Boccaletti
et at (2002) gave a systematical review about the synchronization of chaotic sys­
tems. The defimtlOns and concepts are further clarIfied. Chen et aI. (2006) dIscussed
on stabIlIty of synchromzed dynamIcs and pattern formatlOn m coupled systems.
As aforementlOned, the phase synchromzatlOn exists in self-excIted vlbratlOn sys­
tems, forced nonlinear vibrating systems and coupled nonlinear systems. For such
an synchronization one employed the perturbation techniques (e.g., Stocker, 1950;
Hayashi, 1964). Kuramoto (1984) investigated the waves and turbulence in chem­
Ical oscIllatlOns by use of the phase synchromzatlOn (or entertamments). Zaks et
aI. (1999) studIed the Imperfect phase synchromzatlOn through the alternative lock­
ing ratios. Feng and Shen (2005) investigated phase synchronization and anti-phase
synchronization of chaos in degenerate optical parametric oscillator.

On the other hand, one has been interested in the synchronization of discrete
systems WIth mappmgs. Pecora et aI. (1997) dIscussed the volume-preservmg
and volume-expandmg synchromzed chaotic systems through dIscrete maps. Stoc­
JanovskI et aI. (1979) used the symbolIc dynamIcs to study chaos synchromzatlOn,
and the infonnation entropy was used to the synchronization of chaotic systems
through discrete maps. Rulkov (2001) discussed a regularization of synchronized
chaotic bursts. AfraImovlch et aI. (2002) studIed the generalIzed synchromzatlOn of
chaos of nomnvertible maps m mathematics. Barreto et aI. (2003) dIscussed the ge­
ometrIcal behavlOrof chaos synchromzatlOn through dIscrete maps. Huet aI. (2008)
investigated the hybrid projective synchronization ofa general class of chaotic maps.
Pareek et aI. (2005) used multiple one-dlmenslOnal chaotic maps to mvestigated
cryptography, and the extension of such a research can be found in (Kiang et aI.,
2008). Bowong et aI. (2006) adopted the parameter modulatlOn of a chaotic system
for secure commurucations. FaIIahI et aI. (2008) adopted the extended Kalman filter
and multi-shift cipher algorithm for secure chaotic communication, and Kiani-B et
aI. (2009) used fractional chaotic systems to secure communication through an ex­
tended fractional Kalman filter. Wang and Yu (2009) used multiple-chaotic systems
to develop a block encryptlOn algOrIthm WIth a dynamIcal sequence. Soto-Crespo
and Akhmedlev (2005) showed nonlInear synchromzatlOn and chaos through solI­
tons as strange attractors. Hung et aI. (2006) dIscussed chaos synchromzatlOn of two
stochastically coupled random Boolean networks. The more discussion about phase
synchronization in oscillatory networks was presented in Osipov et aI. (2007). The
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investigations on synchronization on the dynamical systems with time-delay were
very active and the recent results can be found in (e.g., Zhan et al., 2003; Bowong
et al., 2006; Ghosh et al., 2007; Wang et al., 2008, Cruz-Hernandez and Romero­
Haros, 2008; Lu, 2008).

From the above dIscussIOns, the synchromzatIOn of two or more dynamIcal sys­
tems is that the corresponding flows of the two or more dynamical systems are
constrained under specific constraint conditions for a time interval. If the constraint
conditions are considered as constraint boundaries, the synchronization of the two
or more dynamIcal systems can be mvestIgated by the theory of dlscontmuous dy­
namIcal systems. In Luo (2009), a theory for synchromzatIOn of dynamIcal systems
wIth specIfic constraints was presented by the theory for dlscontmuous dynamIcal
systems in (Luo, 2005, 2006, 2008). The general concept of synchronization was
presented. The necessary and sufficient conditions for the synchronization, desyn­
chromzatIOn and penetratIOn were developed, and the synchromzatIOn complexIty
for multIple slave systems wIth multIple master systems wIll be dIscussed under
specIfic constraints. In thIS chapter, the metnc functIOnal wIll be mtroduced for the
synchronicity of two dynamical systems with single and multiple constraints. With
such metric functional, the necessary and sufficient conditions for the synchroniza­
tion, desynchronization and penetration will be presented.

5.2 System synchronization

As m Luo (2009), the baSIC concepts and defimtIOns about the synchromzatIOn of
dynamIcal systems wIll be presented. To solve the over constramts of slave systems,
a generalIzed synchromzatIOn wIll be mtroduced. For slave and master systems WIth
full constraints, the static synchronization will be introduced. To describe the syn­
chronization of two systems (e.g., slave and master systems) under specific con­
stramts, the correspondmg domams and boundarIes relatIve to the constramts wIll
be dIscussed through dlscontmuous dynamIcal systems. To dISCUSS the synchromc­
ity of the two systems, the metnc functIOnal wIll be mtroduced.

5.2.1 Synchronization o.t'slaveand master systems

Consider two dynamic systems as

x= F(x,t,p) E 9tn

and

(5.1)

(5.2)

where x = (Xl ,X2,'" ,Xn ) I and p = (PI ,P2,'" ,Pk) I; X= (Xl ,X2,'" ,Xii) I and p=
(jh,ih, ... ,fikl· The two vectorfunctionsF = (FI,F2,'" ,Fn)T andF = (F"t,F2,""
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Fn)T can be either time-dependent or time-independent. Consider a time interval
1]2 == (tl ,t2) C 9\ and domains Ux ~ 9\n and Ux~ 9\n.For initial conditions (to,xo) E
1]2 x Ux and (to,xo) E 1]2 x Ux, the corresponding flows of the two systems are
x(t) = <I>(t,xo,to,p) and x(t) = <I>(t,xo,to,p) for (t,x) E 1]2 x Ux and (t,x) E 1]2 x

Ox with P E Up ~ 9\k and p E Up ~ 9\k. The semi-group properties for two flows
hold (i.e., <I>(t+s,xo,to,p) = <I>(t,<I>(s,xo,to,p),s,p) with x(to) = <I>(to,xo,to,p),
and <I>(t +s,xo,to, p) = <I>(t, <I>(s,xo, to,P),s, p) with x(to) = <I>(to,xo, to,p) ).

ConsIder the synchronIzatIOn of the two systems m Eqs.(5.1) and (5.2), the slave
and master systems are defined as follows.

Definition 5.1. A system in Eq.(5.2) is called a master system if its flow x(t) is
mdependent. A system m Eq.(5.l) IS called a sLave system of the master system If
its flow x(t) is constrained by a flow x(t) of the master system.

From the foregomg definItIOn, a sLave system IS constramed by a master system
through a speCIfic condItIon. In other words, a slave system wIll be controlled by
a master system under a specific constraint. Such a phenomenon is called the syn­
chronization of the slave and master systems under such a specific condition. The
corresponding definition is given as follows.

Definition 5.2. If a flow x(t) of a slave system in Eq.(5.l) is constrained by a flow
x(t) of a master system in Eq.(5.2) through

p(X(t),X(t),t,A) = 0, A E 9\no, (5.3)

for time t E [tm 1 ,tm2 ], then the slave system is said to be synchronized with the mas­
ter system in the sense of Eq.(5.3) for time t E [tm l ,tm2 ], which is also called an
(n : ii)-dimensional synchronization of the slave and master systems in the sense of
Eq.(5.3). There are four speCIalcases:

(I) If tm2 --+ 00, the slave system IS SaId to be absolutely synchronIzed WIth the
master system in the sense of Eq.(5.3) for time t E [tm l ,00).

(n) If tm l --+ 00, the slave system IS SaId to be asymptotlcally synchronized WIth
the master system m the sense of Eq.(5.3).

(iii) For n = ii, such a synchronization of the slave and master systems is
called an equi-dimensionaLsystem synchronIzatIOn m the sense of Eq.(5.3) for time
t E [tm l,tm 2 ] .

(IV) For n - ii, such a synchronIzatIOn of the slave and master systems IS called
an absoLute, eqUl-dlmenslOnal system synchronIzatIOn m the sense of Eq.(5.3) for
time t E [tm 1 ,00). If n =I- ii, the (n: ii)-dimensional synchronization is called a non­
equi-dimensional system synchronization.

From the previous definition, the state variables in a slave system can be less
or more than those in the master system. Therefore, it is not necessary to require
the slave and master systems have the same dimensions in state space for synchro­
nIzatIOn. Under a certam rule m Eq.(5.3), It IS mterestmg that a slave system can
foIIow another completely dIfferent master system to synchronIze. From the pro­
ceedmg definItIOn, a slave system can be synchronIzed WIth a master system under
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a constraint condition. In fact, constraints for such a synchronization phenomenon
can be more than one. In other words, a slave system is synchronized with a master
system under multiple constraints. Thus, the synchronization of a slave system with
a master system under multiple constraints IS desCrIbed as follows:

Definition 5.3. An n-dImensIOnal slave system m Eq.(5.1) IS called to be synchro­
nized with an n-dimensional master system in Eq.(5.2) ofthe (n: n;l)-type (or an (n:
n;i)-synchronization) if there are I-linearly independent functions CPj(x(t),x(t), t, .Aj)
(j E JL and JL = {1,2, ... , IUto make two flows x(t) and x(t) of the master and slave
systems satisfy

CPj(x(t ), x(t),t, .Aj) = 0 for .Aj E 9\nj and j E JL

for time t E [tm] ,tm2]. There are eight special cases:

(5.4)

(1) It tm2 --+ 00, the slave system IS SaId to be absolutely synchromzed of the
(n : n;l)-type with the master system (or an (n : n;l)-absolute synchronization) in
the sense of Eq.(5.4) for time t E [tm ] ,00).

(ii) If tm] --+ 00, the slave system is said to be asymptotically synchronized of the
(n: n;l)-type with the master system (or an (n: n;l)-asymptotic synchronization) in
the sense of Eq.(5.4).

(iii) For I = n, the slave system is said to be completely synchronized of the
(n : ii; n)-type with the master system (or an (n : ii.n )-complete synchronization) in
the sense of Eq.(5.4) for time t E [tm] ,tm2].

(IV) For 1- nand tm2 --+ 00, the synchromzatIOn of the slave and master systems
is called an (n : n;n )-absolute, complete synchronization in the sense of Eq. (5.4) for
time t E [tm ] ,00).

(v) If n = n> I, the synchronization of the slave and master systems is called
an equi-dimensional system synchronization (or an (n: n;l)-synchronization) in the
sense of Eq.(5.4) for time t E [tm! ,tm2].

(VI) It n = n> I and tm! --+ 00, the synchromzatIOn of the slave and master sys­
tems is called an equi-dimensional, (n : n;l)-absolute synchronization in the sense
of Eq.(5.4) fortime t E [tml'oo).

(vii) If n = n= I, the synchronization of the slave and master systems is called
an equi-dimensional, complete synchronization (simply said a synchronization) in
the sense of Eq.(5.4) for time t E [tm! ,tm2].

(vm) It n - ii - I and tm2 --+ 00, the synchromzatIOn of the slave and master
systems is called an equi-dimensional, absolute, complete synchronization (simply
said an absolute synchronization) in the sense of Eq.(5.4) for time t E [tm! ,00).

In the foregomg defimtIOn, If the I-nonlInear equatIOns are lInearly mdependent,
then there IS a set of constants k j and only k j - 0 for all j E JL eXIsts to make the
following equation hold for all the domains and time,

(5.5)
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In addition, the independence of functions q>j(x(t),x(t),t,Aj) (for all j E JL) is
checked through the corresponding normal vectors. The normal vector of q>j(x(t),
x(t), t, Aj) is computed by

(
_ ) (dq>j dq>j dq>j. dq>j dq>j dq>j) I

llqJj =Vq>j X,x,t,Aj = --=;--,--=;--, ... ,--=;--, :l- , :l- , ... , :l- . (5.6)
OXl OX2 OXm OXl OX2 OXn (I,X,X)

For all domains and time, if all the normal vectors llqJj (j E JL) are linearly­
independent, i.e.,

(5.7)

then the functions q>j(x(t),x(t),t,Aj} are linearly-independent.
The foregoing definition tells that the slave and master systems are synchronized

under I-constraints whatever the state-space dimension of the slave system is higher
or lower than the master system. For I < n, the l-vanables of the n-state vanables of
the slave system can be expressed by the ii-state vanables of the master system Via

the I-constraints. Select any I-variables X[jl and the rest (n-1) variables X(k) of the
n-state variables, i.e.,

Xlj] E {x;, i = 1,2, ,n} for j = 1,2, ... , I,

X(k) E {x;,i = 1,2, ,n} for k = 1+ 1,1+2, ... .n.
(5.8)

From Eq.(5.4), because of the linear-independence offunctions q>j(x(t), x(t), Aj)
(j = 1,2, ... ,1), the constraint conditions gives

(5.9)

Thus, the state vanab1es xlii of the slave system for jElL can be saId to be syn­
chronized with the master system in the conditions of Eq.(5.4). The subscripts 1·1
and (.) of the state variables of the slave systems represent the synchronizable and
non-synchronizable variables of the slave system to the master systems, respec­
tively. If 1= 1, this definition reduces to Definition 5.2 and (n: ii;1) == (n: ii), the
(n: ii;Il-synchronization reduce to the (n : iil-synchronization. However, for 1= n,
the n-lInearly mdependent conditions constram the responses of the master and slave
flows in the ii-dimensiOnalsystems. Thus, the n-components of the slave flow can be
completely determined by the ii-components of a flow in the master system. There­
fore, for the complete synchronization of the slave and master systems, a flow of the
slave system is completely controlled by the master system through the constramt
conditions m Eq.(S.4). For I> n, the slave system is overconstramed by the master
system. Such a case Will be discussed later. For n - ii - I, an eqm-dimensiOnal,
complete synchronization of the slave and master systems is obtained. For this case,
n-components of a flow in the slave system are controlled by the n-components of
a flow m the master system through the n-constramt equatiOns m Eq.(S.4). Because
the n-constramt equations m Eq.(S.4) are IInearly-mdependent, the determmant of
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the Jocabian matrix of functions in Eq.(5.4) in neighborhood of the master flow x
is non-zero. Therefore, there is a one-to-one relation between the slave and master
flows x and x. It implies that the slave flow is completely controlled by the master
flow. From the above dIscussIOn, one obtams

x(t) = h(x(t),.\) or

x;(t) =h;(x(t),.\) for i= 1,2, ... ,n.
(5.10)

Introduce a set of new vanables wIth n-hnear, mdependent relatIOns between the
slave and master systems. So one obtains

z(t) = x(t) - Bx(t) = h(x(t)) - Bx(t) or

z;(t) = x;(t) - b;x;(t) = h;(x(t)) - b;x;(t) for i = 1,2, ... ,n.
(5.11)

where a constant diagonal matrix B = diag(bl,b2, ... ,bn ) . One likes to consider
the synchronization of two systems to be z;(t) --+ 0 for t --+ tml and z;(t) = 0 for
t E [tml ,tm2], from which the slave and master system are synchronized. The n­
equations (i.e., b;x;(t) = h;(x(t)) = h;(XI,X2, ... ,Xn ) for i = 1,2, ... ,n) give the
synchronization state independent of time. Such a concept can be extended to the
affine synchronization, i.e., for z;(t) --+ c; (constant) for t --+ tm and z;(t) = ci for
t E [tml ,tm2]. The definition is given as follows:

Definition 5.4. For the slave and master m Eqs.(5.1) and (5.2) WIth n - ii, If the
slave and master flows satisfy

x(t) -Bx(t) = c (constant) (5.12)

with a constant diagonal matrix B = diag( bl, b2,... ,bn ) and a constant vector
c = (CI, C2, ... ,Cn ) I for t E [tml, tm2], then the slave and master systems are equi­
dimensionally synchronized in such a affine transformation sense. If tm+1 --+ 00, the
synchronization of the slave and master systems is absolutely and equi-dimensionally
synchronized in the linear sense for time t E [tm J ,00). Three important synchroniza­
nons are also given as foIIows.

(i) Ifc = 0 and b, = 1 (i = 1,2, ... ,n), the synchronization of the slave and master
systems is called an identical synchronization.

(ii) If c = 0 and b; = -1 (i = 1,2, ... ,n), the synchronization of the slave and
master systems IS caIIed an antI-symmetnc synchromzatIOn.

(iii) If c = 0, and b; E { 1, -I} (i = 1,2, ... ,n), the synchronization of the slave
and master systems is called a mixed, identical and anti-symmetric synchronization.

NotIce that the matnx B can be a fuII matnx. To extend the above Idea, new
variables are introduced as

Zj = CPj(x(t),x(t),t,.\j} for jEll,

or z = cp(x(t),x(t),t,.\).
(5.13)
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If Zj = Cj (const) or Zj = 0, Equation (5.13) can be used as the constraint condition
in Eq.(5.4). If the slave and master systems are not synchronized, the new variables
(Zj =I- Cj, j = 1,2, ... , l) will change with time t. The corresponding time-change rate
is given by

(5.14)

acp acp - acp= -·F+-----;:-·F+-.ax ax at

It the slave and master systems are contmuous, the time-change rate of the new
variables for the constraint conditions in Eq.(5.4) should be zero, i.e., Zj = 0 (j E JL)
or z= 0 E 9\'. However, if the slave and master systems are discontinuous to the con­
straint conditions, the time-change rate of the new variables for the constraint condi­
tions in Eq.(5.4) may not be zero. To investigate the synchronization, the constraint
conditions are considered as boundanes for discontmuous dynamical systems.

The slave and master flows x(t) and x(t) are determined by differential equations
m Eqs.(5.l) and (5.2). Suppose at least there is a point X m at time tm to satisfy the
constramt conditiOn m Eq.(5.3), l.e.,

Zm = p(x(tm),x(tm),tm,A) = O. (5.15)

For t > tm , the synchromzatiOn between the slave and master systems reqmres
the slave and master flows to satisfy the constramt condition m Eq.(5.3). Because
the master flow is mdependent, only the slave flow can be changed for the condi­
tiOn m Eq.(5.3). It the constramt condition m Eq.(5.3) is treated as a super-sufface,
the slave system should be switched to the super-surface. If the slave and master
systems are Cr -continuous and differentiable (r 2 I) to the super-surface, the slave
and master flows Will pass through the super-sufface mstead of staymg on the super­
sufface because of the contmmty and differentiatiOn of the slave and master flows.
Otherwise, on the super-surface, one obtains Z= dpjdt = 0 for all time t > tm and
dkcp/dtk = 0 (k = 1,2, ...). From a theory of discontinuous dynamical system in
Luo (2006, 2008), at least the slave system possesses discontmuous vector fields
to make the slave and master flows stay on the super-sufface, which means that
the slave and master systems to the constramt can keep the synchromzatiOn on the
super-surface. Therefore, the constraints can be used as super-surfaces to mvestigate
the synchronization of slave and master systems.
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5.2.2 Generalized synchronization

Albert C.J. Luo

As dIscussed in the previous section, If the number of constraints for slave and mas­
ter systems is over the number of state variables of the slave system (i.e., I > n), the
slave system is overcontrained under the constraint conditions by the master sys­
tem. In other words, if all the constraint conditions are satisfied, the master system
should be partIally constramed also for n < I :::; n+ Ii. OtherwIse, the constramt con­
dItIons cannot be satIsfied for the synchromzatIOn of the slave and master systems.
The overconstrained synchronization for slave and master systems can be defined
from Definition 5.3, i.e.,

Definition 5.5. If I> n, an (n : ii;l)-synchronization ofthe slave and master systems
in Eqs.(5.1) and (5.2) in sense of Eq.(5.4) for time t E [tml ,tm2] is said an (n : ii;l)­
overconstrained synchronization.

To make an overconstramed slave system be synchromzed wIth a master sys­
tem, the flow of the master system should be controlled by the constraints. Gener­
ally speaking, the slave system can be partially controlled by some constraints in
Eq.(5.4), and the master system can be partially controlled by the rest constraints in
Eq.(5.4) as well. For some time intervals, the slave system can be controlled by the
master system under the constramts. WIth tIme varymg, for some tIme mtervals, the
master system can also be controlled by the slave system. For thIS case, It IS very
difficult to know which one of two systems is a slave or master system. In fact, it is
not necessary to distinguish slave and master systems from two dynamical systems.
To mvestIgate the synchromzatIOn of two or more systems, DefimtIOn S.2 can be
generalIzed as follows.

Definition 5.6. If a flow x(t)of a system in Eq.(5.1) with a flow x(t) of a system
in Eq.(5.2) is constrained by a single constraint in Eq.(5.3) for time t E [tm1,tm2],
then the two systems are SaId to be synchronized m the sense of Eq.(S.3) for tIme
t E [tml ,tm2]. There are five special cases:

(i) If tm2 ----+ 00,the two systems are said to be absolutely synchronized in the sense
ofEq.(5.3) fortimet E [tm1,00).

(11) It tm] ----+ 00, the two systems are saidto be asymptOtlcallysynchromzed m the
sense of Eq.(S.3).

(m) For n = ii, the two eqUl-dlmenslOnal systems are said to be synchromzed in

the sense of Eq.(5.3) for time t E [tm] ,tm2].
(iv) For n = ii and tm2 ----+ 00, the two equi-dimensional systems are said to be

absolutely synchronized in the sense of Eq.(5.3) for time t E [tml ,00).
(v) For n - ii and tm] ----+ 00, the two equl-dlmenslOnal systems are said to be

asymptotically synchromzed m the sense of Eq.(S.3).

In an alike fashion, the synchronization of slave and master systems in Definition
S.3 should be generalIzed for the synchromzatIOn of slave and master systems wIth
or without overconstraints
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Definition 5.7. An n-dimensIOnal system m Eq.(5.I) with an ii-dimensIOnal sys­
tem in Eq.(5.2) is said to be synchronized with i-constraints (or an i-constraint
synchronization) for time t E [tm J ,tm 2 ] if there are i-linearly independent func­
tions cpi(x(t),x(t),t,Ai) (j E JL and JL = {I,2, ... ,i} with i < n+ii) to make two
flows x(t) and x(t) of the two systems satisfy the constraints in Eq.(5.4) for time
t E [tm J ,tm 2 ] . There are five special cases:

(i) If tm 2 --+ 00, the two systems are smd to be absolutely synchromzed with 1­
constramts (or an absolute, l-constramt synchromzatIOn)m the sense of Eq.(5.4) for
time t E [tm l ,00).

(ii) If tm 1 --+ 00, the two systems are said to be asymptotically synchronized with
i-constraints (or an asymptotic i-constraint synchronization) in the sense ofEq.(5.4).

(m) If n - ii, the two eqm-dimensIOnal systems are smd to be synchromzed with
i-constraints in the sense of Eq.(5.4) for time t E [tm l,tm2 ] .

(iV) If n - ii and tm2 --+ 00, the two eqm-dimensIOnal systems are saidto be abso­
iutely synchronized with i-constraints in the sense of Eq.(5.4) for time t E [tm 1 ,00).

(v) Ifn = ii and tm J --+ 00, the two equi-dimensional systems are said to be asymp­
totically synchronized with i-constraints in the sense ofEq.(5.4) for time t E [tm 1 ,00).

From the above definition, the number of constraints in Eq.(5.4) can be greater
than the dimension number of state space for one of the two systems in Eqs.(5.1)
and (5.2) (i.e., i > n or i > ii). For such a case, one cannot control only one of the
two systems to make them be synchromzed through the constramts. In other words,
one must control both of two systems to make the correspondmg synchromzatIOn
occur. Of course, if i < n or i < ii, one can control only one of two systems to make
them be synchromzed through the constramts m Eq.(5.4). If the constramt func­
tions cpi(x(t),x(t), t, Ai) (for all j E JL) are time-independent for i = n + ii, Equation
(5.4) Will give a set of fixed values of x* and x*, which are mdependent of time.
The constramts yield the values-fixed, static pomts m the resultant sate space. To
make the two systems m Eqs.(5.I) and (5.2) be synchromzed at the static pomts m
phase space, such a synchronization can be called a static synchronization of two
systems m Eqs.(5.I) and (5.2). For I > n + ii, the time-mdependent constramts m
Eq.(5.4) Will giVe the statically overconstramed synchromzatIOn, which may not be
meamngful for practical problems. Such a case Will not be discussed any more. If
the constraint functions of CPj(x(t), x(t ),t, AJ (for all j E JL) are time-dependent for
i = n + ii, Equation (5.4) will give a flow of x* and x* relative to time. To elimi­
nate time, the constramts m Eq.(5.4) give a one-dimensIOnal flow m the resultant
phase space. If the time-dependent constraint functions of cpi(x(t),x(t),t,Ai) (for
all j E JL) are of i-dimensions with i = n + ii+ 1, Equation (5.4) will give a set of
fixed values of x* and x* at a specific time t" in the resultant phase space, which is
an instantaneous fixed point only at time t*. For this case, it is very difficult for the
two systems to be synchronized for such an instantaneous point. Such a case may
not be too meamngful, which Will not be discussed. Therefore, the followmg two
defimtIOns are given to descnbe the afore-discussed cases.
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Definition 5.8. An n-dimensional system in Eq.(5.l) with an ii-dimensional sys­
tem m Eq.(5.2) IS saId to be statIcally synchronIzed wIth l-constramts (or a static
synchronization) for time t E [tm 1 ,tm 2 ] if there are I-linearly independent and time­
independent functions ((>j(x(t) ,x(t), Aj} (j E JL and JL = {I, 2, ... , I} with I = n + ii)
to make two flows x(t) and x(t) ofthe two systems satisfy the constraints in Eq.(5.4)
for time t E [tm l ,tm 2 ] . There are two special cases:

(1) It tm2 --+ 00, the two systems are saId to be absolutely and statically synchro­
nIzed wIth l-constramts (or an absolute and static synchronIZatIOn) m the sense of
Eq.(5.4) fortime t E [tm p oo ) .

(ii) If tm 1 --+ 00, the two systems are said to be asymptotically and statically syn­
chronIzed wIth l-constramts (or an asymptotic and static synchronIZatIOn) in the
sense of Eq.(5.4).

Definition 5.9. An n-dImensIOnal system m Eq.(5.1) wIth an ii-dImensIOnal sys­
tem in Eq.(5.2) is said to be synchronized with a one-dimensional constraint-flow
(or a 1 - D constraint-flow synchronization) for time t E [tm l,tm 2 ] if there are 1­
linearly independent and time-dependent functions ({>j(x(t),x(t),t,Aj) (j E JL and
JL = {I, 2, ... ,I} with I = n + ii) to make two flows x(t) and x(t) of the two systems
satisfy constraints in Eq.(5.4) for time t E [tm 1 ,tm 2 ] . Two special cases are given as
follows:

(1)It tm 2 --+ 00, the two systems are saId to be absolutely synchronIzed wIth a one­
dImensIOnal constramt-flow (or an absolute, 1 - D constraint-flow synchronization)
in the sense of Eq.(5.4) for time t E [tm l ,00).

(ii) If tm l --+ 00, the two systems are said to be asymptotically synchronized with a
one-dImensIOnal constramt-flow (an asymptotic, 1 - D constraint-flow synchroniza­
tion) m the sense of Eq.(5.4).

5.2.3 Resultant dynamical systems

From the theory of dlscontmuous dynamIcal systems m Luo (2006, 2008), the syn­
chronIZatIOn of two or more dynamIcal systems wIth specIfic constraints can be
investigated through a resultant dynamical system. The constraint conditions can
be considered as a set of super-surfaces. If the resultant system to the constraints
is discontinuous, the resultant discontinuous dynamical system can be adjusted on
both sIdes of each super-surface for such synchronIZatIOn. For domg so, a set of
new state vanables for the resultant dlscontmuous system WIll be mtroduced, and
the sub-domams and boundanes relatIve to the constraints WIll be presented. For
the synchronization of slave and master systems on the constraint surfaces, only the
slave system can be adjusted, and the master system cannot be adjusted. In other
words, the slave system can be controlled m order to make It be synchronIzed wIth
the master system through the constramts. That IS, the slave system can be expressed
by dlscontmuous vector fields to all the constraint suftaces for such synchronIZatIOn,
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but the master system should keep a continuous vector field to such constraint sur­
faces. However, for a resultant system formed by two systems with constraints, one
can adjust two dynamical systems to make them be synchronized on the constraint
condItIons m general.

A new vector of state varIables of two dynamIcal systems m Eqs.(5.1) and (5.2)
is introduced as

(5.16)

The notation (.;.) == (.,.) is just for a combined vector of state vectors of two
dynamIcal systems. From the constramt condItIon m Eq.(5.3), a constramt boundary
tor the dlscontmuous deSCrIptIOn of the synchromzatIOn of two dynamIcal systems
m Eqs.(5.l) and (5.2) can be defined, and the correspondmg domams separated by
such a constraint boundary can be obtained.

Definition 5.10. A constraint boundary in an (n+ ii)-dimensional phase space for
the synchromzatIOn of two dynamIcal systems m Eqs.(5.1) and (5.2) to constramt
condition in Eq.(5.3) is defined as

aQ l 2 = Q l n Q2

= {X(O) I <p(X(O),t,'x) == <p(x(O)(t),x(O)(t),t,'x) = 0, }

<p is C' -continuous (r ::::: 1)

(5.17)

and two correspondmg domams tor a resultant system of two dynamIcal systems in
Eqs.(5.l) and (5.2) are defined as

<p(X(1),t,'x) == <p(x(1)(t),x(1)(t),t,'x) > 0,
Q I = X(1) c 9tn+ii ;

<p is C' -continuous(r ::::: 1)

<p is C" -continuous(r ::::: 1)

(5.18)

On the two domains, the resultant system of two dynamical systems is discontin­
uous to the constraint boundary, defined by

x(a) = IF(a)(X(a) t 7r(a)) in Q (a = 1 2), , a " (5.19)

wherelF(a) = (F(a)j")T = (F/a),F}a), ... ,FJa);Fl,F2, ... ,Fii)T and 7r(a)=(Pa,p)T.

Suppose there is a vector field IF(O) X(O), t,'x on the constraint boundary with
<p (X 0 , t, ,X) = 0, and the corresponding dynamical system on such a boundary is
expressed by

(5.20)
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The domains Q a (a = 1,2) are separated by the constraint boundary aQ12, as
shown in Fig.5.l. For a point (x(1), x(1)) E QI attime t, one obtains cp(x(1), x(1),t, A)
> O. For a point (x(2), x(2)) E Q2 at time t, one obtains cp(x(2) ,x(2), t, A) < O. How­
ever, on the boundary (x(O) ,x(O)) E aQn at time t, the constraint condition for syn­
chronization should be satisfied (i.e., p(x(O), x(O) , t, A) = 0). If the constraint condi­
tion is time-independent, the constraint boundary determined by the constraint con­
dition is invariant. If there are many constraint conditions for the synchronization of
two dynamical systems, the above definition can be extended.

...
/
I,

I
/

/
/

/
/1.---

-------------- )
/

Fig.5.1 Constraint boundary and domains in en +n)-dimensional state space.

Definition 5.11. The fh-constraint boundary in an (n+ ii)-dimensional phase space
for the synchromzatlOn of two dynamical systems III Eqs.(5.I) and (5.2), relatIve to
the ;th-constraint ofthe constraint conditions in Eq.(5.4), is defined as

aQnU) = QU,il nQ(2,il

{

m·(X(O,j) t A') == m·(x(O,j)(t) x(O,j)(t) t A') = 0 }
(0 ') 't' j " j 't' j , " j ,= X,j

CPj is CTj -continuousp-, ~ 1)

and two domains pertaining to the fh-boundary for a resultant system of two dy­
namical systems III Eqs.(5.I) and (5.2) are defined as

Q(I,j) =
m·(X(I,j) t A') = m·(x(l,j)(t) x(l,j)(t) t A') > 0
't'j " j - 't'j , " j ,X(I,j)

CPj is CTj -continuoustrj ~ 1)

c 9tn+n ;

Q(2,jj ~ { X(2,jj

C 9\n+n.

cpj{X(2,j),t,Aj) == cpj{x(2,j)(t),x(2,j)(t),t,Aj} < 0, }

CPj is CTj -continuousfz, ~ 1)

(5.22)
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(5.23)

On the two domains relative to the ;th-constraint boundary, a discontinuous resul­
tant system of two dynamical systems in Eqs.(5.1) and (5.2) with the ;th-constraint
in Eq.(5.4) is defined by

X(aj,j) = jF(aj,j) (X(aj,j) t 1r(aj)) in Q( ..)
" , a"j'

/h-constraint boundary with Ipj(X(O,j) ,t,Aj) = 0, and the corresponding dynamical
system on the ;th-boundary is expressed by

(5.24)

Smce l-constramt conditions are hnearly mdependent, any two boundanes are
intersected each other. Consider two constraint boundaries of dQ12(j) and dQ12(k)

for synchronization. The intersection of the two constraint boundaries is given by

(5.25)

and the corresponding domain in phase space is separated into four sub-domains

Such a partitIOnof the domam m state space for a resultant system of two dynam­
Ical systems IS sketched m Fig. 5.2. The mtersection of the two constramt bound­
aries in state space for a resultant system of two dynamical systems is depicted by
an (n+ ii - 2)-manifold, depicted by a dark curve. For the I-linearly independent
constramts, the state space partition can be completed via such l-hnearly mdepen­
dent constramt boundanes. Based on the l-constramt conditions, the correspondmg
intersection of boundaries is

\
\
I
I /'•./

dQ12(j)

--//1, m.(x(o,j) x(o,j) t A') =0
..-P' 't'] , "J/ t:

/ ,
I

" ~ ) dQ12(k)" ,. --
" .... /A

n n "m,.(xCO,k) xCO,k) t Ak) = 0
·<C2,j) n·<C2,k) "', , , ,

Fig. 5.2 An intersection of two boundaries with ({Ii = 0 and ({Ik = 0 for j,k EILand j i= k.
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sa nl sa ron+fi I (5 27)12(J) = ;=1 12(j) C ;1\ •

which gives an (n+ ii -i)-dimensional manifold. Consider the synchronization of
the slave and master systems for dIscussIOn. If n - I, the mtersectlOn mamfold of
the constraints IS an ii-dImensIOnal state space. In other words, the slave system
can be completely controlled through the n-constraints to be synchronized with the
master system. From the i-constraint conditions in Eq.(5.4), the domain in (n+
ii)-dimensional state space is partitioned into many sub-domains for the resultant
system of two dynamIcal systems, i.e.,

(5.28)

The total domain u = U~=I U~i=I (n~=IQ(aj,j)) C 9\n+fi is a union of all the sub
domains

From the foregomg descrIptIOnof a resultant dynamIcal system, the synchromza­
tion of two systems under constraints can be mvestIgated through such a resultant
dynamical system with the constraint boundaries as in Luo (2006, 2008). The con­
straint boundaries can be either of one-side or of two sides. If the resultant system
for the synchronization of two systems can be defined (or can exist) in one of the
two sub-domams only, such a constramt boundary IS called one-SIde boundary. Oth­
erwise, the constraint boundary IS called tWO-SIde constraint boundary. If a flow of
the resultant system can approach to a constraint flow on the constraint boundaries
as t ----+ 00, for such a case, the synchronization of two systems to the constraint
boundaries is asymptotic.

5.2.4 Metric functionals

For a better descrIptIOn of the synchromcIty of two dynamIcal systems, a metrIC
functional based on the constraint boundaries can be introduced The metric func­
tlOnals are a set of non-negatIve functIOns of constramt functIOns. For a constraint
functIOn m Eq.(5.3), the defimtlOn of a metrICfunctIOn IS gIven as foIIows:

Definition 5.12. A metric function for two dynamical systems in Eqs.(5.1) and (5.2)
IS defined by a non-negative functIOnal

V(X,t,oX) = j(p(X,t,oX)) (5.29)



5 Synchronization of Dynamical Systems

V(k)(X t A) = d
k

V(X t A) = ~ [V(k-l)(X t A)]
, , dtk ' , dt ' ,

where
V(O)(X,t,A) = V(X,t,A).

From the foregoing definition, consider a metric functional as

1 2
V(X,t,A) = 2 [q>(X,t,A)] .
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(5.30)

(5.31)

(5.32)

For two dynamical systems in E9s.(5.1) and (5.2), from the foregoing definition,
one obtains

(5.33)

for X(a) E n a and

(5.34)

for X(O) E ann. From Eq.(5.34), one obtains p(X(O),t,A) = O. So the conditions in
Eq.(5.34) IS eqUIvalentto the constramt condItIon m Eq.(5.3). The tIme-change rate
of the metric function is

. (5.35)

In fact, the metnc functIOnal m E9.(5.29) can be also defined by the other non­
negative functions. For instance, using the absolute function, we have

V(X,t,A) = Ip(X,t,A)I. (5.36)

In DefimtIOn 5.12, the metnc functIOnal for the smgle constramt IS presented.
For multIple constramts m Eq.(5.4), the correspondmg metnc functIOnals can be
defined in order to describe the synchronicity of two dynamical systems under such
constramts. From E9.(5.4), a set of metnc functIOnalsfor two dynamIcal systems m
E9.(5.1) and (5.2) are mtroduced.

Definition 5.13. The ;th- individual metric functional and a resultant metric func­
tIOnal for two dynamIcal systems m E9.(5.1) and (5.2) are

(n:il:l)v(X t A) = "l (n:il)V(X t A')
, , L.J= 1 J" J

= L~=l/j(q>j(X,t,Aj)) fori E {l,2, ... ,n}

(5.37)
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with the following conditions for (j = 1,2, ... , l)
(i) (n:fi)Vj(X, t, Aj) is continuous and differentiable for time t and X,

(ii) for X = X(ufj) E Q( .) (n:fi)V(X(Ufj) t A') > 0
ajlj , } "J '

(iii)for X = X(O,j) E aQl2(i)' (n:fi)Vj(X(O,j) ,t, Aj} = 0;
and the time-change rates are tor k - I, 2, ...

(n:fi)dk) (X t A)= d
k

(n:fi)V(X t A) =!!... [(n:fi)V(k-l) (X t A)].) , , dt k )' , dt ) , , (5.38)

For the ;th-metric functional relative to the ;th-constraint, it is similar to the met­
ric functional pertaining to the single constraint, as discussed before. Herein, con­
sider a resultant metric function as

(n:fi:l) ( ') _ ~~l [(n:fi).( , .)] 2 f I-V X,t,A - 2~j=1 V) X,t,A) or - 1,2, ... ,n (5.39)

For two dynamical systems in Eqs.(5.1) and (5.2), from the foregoing definition,
one obtains

for X(Uj,j) E Q(u;,j) (j = 1,2, ... ,I; aj = 1,2),X(u) E Q(a) and

(n:fi:I)V(X(O) t A) = ~~l [m.(X(O,j) t A')] 2 = 0 for 1= 1 2 ... n (5.41), , 2~j=1 'f') ") " ,

for X(O,j) E a.Ql2(;) (j = 1,2, ... , I; aj = 1,2) and X(O) E aQI2(J) ' From Eq.(5.41),
one obtains

((Jj(X(O,j) ,t,Aj) = 0 for j = 1,2, ... ,I and 1= 1,2, ... .n.

So the condItIOnsIII Eq.(5.42) IS eqUIvalentto that III Eq.(5.4).
Similarly, we discuss another metric functional as

(n:fi:I)V(X t ') - ~l Im·(X(Uj,j) t ' ')1 cor 1- 1 2 n"A -~j=I'f') "A) l' -, , ... ,.

(5.42)

(5.43)

For the slave and master systems III Eqs.(5.1) and (5.2), from the toregolllg defim­
tions, one obtains

(n:I)V(X(O) ') - ~l 1 ·(X(o:j) ")1- 0 c 1- 1 2,t,A - ~j=1 ((J) ,t,A) - lor - , , ... ,n

(5.44)

(5.45)

for X(O,j) E aQl2U) (j = 1,2, ... , l) and X(O) E aQI2(J) ' From Eq.(5.45), one obtains
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q>j(x(O:j) ,t,>"j) = °for j = 1,2, ... ,I and 1= 1,2, ... .n.
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(5.46)

So the conditIons m Eq.(5.46) are eqUIvalent to those constramt conditIons m
Eq.(5.4). The resultant metnc functIOnal IS a kmd of a generalIzed Lyanunov func­
tion, which cannot be use to determine the synchronization in general. However,
the resultant metric functional can be only used to two special cases: (i) full syn­
chromzatIOn,and (11) full desynchromzatIOn. The detaIled discussIOnabout the syn­
chromzatIOn and desynchromzatIOn wIll be presented m the followmg sectIOn. For
any general case of synchromzatIOn, all the mdlvldual metnc functIOns should be
adopted. As afore-discussed, each individual metric functional in Eq.(5.37) can be
the same as the resultant metric functional. However, those individual metric func­
tionals will provide more possibility for one to discuss the synchronicity of two
dynamical systems.

5.3 Single-constraint synchronization

InthiSsectIOn, under a smgle constramt, the synchromclty of two dynamical systems
wIll be discussed. Based on the metnc functIOnal m Eq.(5.29), the proper defimtIOns
relative to the synchronicity of two dynamical systems in Eqs.(5.1) and (5.2) to a
constraint in Eq.(5.3) will be presented. The necessary and sufficient conditions for
the synchromclty of two dynamical systems to the constramt are developed.

5.3.1 Synchronicity

Before dlscussmg the synchromclty of two dynamical systems to the constramt
boundary, the neighborhood of the constramt boundary should be mtroduced through
a typical point on such a constraint boundary for time tm . For any small f > 0, the
neighborhood of a constraint boundary is defined as follows.

Definition 5.14. For X~a) E Q a (a E {1,2}) and X~) E aQn at time tm,X~a) =

X~). For any small f > 0, there is a time interval [tm-E,tm) or (tm,tm+e]. The f­

neighborhood of the constraint boundary aQ12 is defined as

Q;E = {X(a) Illx(a)(t) - x},?) II < 8,8> O,t E [tm-E,tm)} ,

Q~E = {x(a) Illx(a)(t) - x},?) II ~ 8,8> O,t E (tm,tm+eJ}.
(5.47)

For a point X~) = x~), x~) T E aQ12 at time tm , a surface of the constraint
boundary aQn at the instantaneous time tm is governed by p(x 0 ,x 0 ,tm ,>..) =

q>(x~), x~), tm , >..) = 0. If the constraint function q> is time-independent, such a con-
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straint surface for the synchronization of two dynamical systems is invariant with re­
spect to time. Otherwise, this constraint surface changes with the instantaneous time
tm . In addition to the constraint surface, two boundaries of domain Q~e(a = 1,2)

are determined by q>(x(a) ,ira) ,tm- e,>..) = q>(x~a~e,i~a~e,tm_e, >..) = C, as shown in
FIg.5.3. In the e-neIghborhood of a constramt boundary, If the resultant system of
two dynamIcal systems IS attractive to such a constramt boundary, any a flow in the
two e-domains will approach to the constraint boundary. Further, the synchronicity
of two dynamical systems to the constraint boundary can be investigated. In other
words, the attractivity of the resultant system to the constraint boundary requires
that any flow in the two e-domains of Q a (a = 1,2) approach the constraint bound­
ary aQl2 as t --+ tm . From Luo (2006, 2008), the synchronization of two dynamical
systems to the constraint needs that any flows of the resultant system in the two
s-domains of Q a (a = 1,2) are attractive to the constraint boundary.

----- -----

cp(x(O),jJO) ,tm , A) = 0

cp(x(2) ,x(2) ,tm-e,A) < 0

Fig. 5.3 A neighborhood of the constramt boundary and the atlractIvlty of a resultant flow to the
constraint boundary in (n+ ii)-dimensional state space.

Definition 5.15. For two dynamIcal systems m Eqs.(5.1) and (5.2) wIth a constramt
in Eq.(5.3), there is a metric functional of V (X,t, >..) = f( q>(X, t, >..)) in Eq.(5.29).

For X~a) E Q a (a E {1, 2}) and X~) E aQl2 at time tm, X~a) = X~). For any small
e > 0, there is a time intervalltm-e,tm). The two systems in Eqs.(5.1) and (5.2) to
constramt m Eq.(5.3) IS caIIed to be synchronized m sense of the metrICfunctIOnal
for time tm E [tm] ,tm2] if

(5.48)

In addItIon to the attractIVIty of a flow of the resultant system to the constramt
boundary, the repulSIOn of a flow of the resultant system to the constramt bound­
ary can be defined. Because such a repulsion, any flows of the resultant system in
the two e-domains of Q a (a = 1,2) can never approach to the constraint bound­
ary. In other words, two dynamIcal systems m Eqs.(5.1) and (5.2) cannot make the
constramt condItIon m Eq.(5.3) be satIsfied. Thus the repulSIOn of a flow of the re-
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sultant system to the constraint boundary should be introduced. Such a repulsion
phenomenon is sketched in Fig.5A. The constraint boundary aQn is governed by
<p(x(O), i(O), tm , A) = O. The boundary of the s-neighborhood of the constraint is

obtained by <p(x(a) ,ira) ,tm+e, A) = <p(x~<1E,i~<1E,tm+e, A) = C. Two flows of the
resultant system on both sides of the constraint boundary aQI2 move away in two
domains Qa (a = 1,2), which means that no any flows of the resultant system can
arrIve to the constramt boundary. So the synchronIZatIOn of two dynamical systems
m Eqs.(5.l) and (5.2) to the constramt m Eq.(5.3) cannot be achieved. Such a repul­
SIOn of a resultant system to the constraint boundary ImplIes that the two dynamical
systems is desynchronized to the constraint in Eq.(5.3). To descript the desynchro­
nization of two systems to a constraint, a mathematical description can be given as
follows.

-------

(2) _(2)
(Xm±E,Xm±€,tm+e)

Fig. 5.4 The repulsion of a resultant flow to the constraint boundary in(n + il)-dimensional state

~

Definition 5.16. For two systems in Eqs.(5.l) and (5.2) with constraint in Eq.(5.3),

there is a metric functional of V(X,t,A) = f(p(X,t,A)) in Eq.(5.29). For X~a) E

Qa (a E {I,2}) andX~) E aQI2 at time tm, X~a) = X~). For any small e > 0, there
is a time interval [tm,tm+e]. The two dynamical system systems in Eqs.(5.1) and (5.2)
to constramt m Eq.(5.3) are saId to be repelled (or desynchronized) m sense of the
metric fucntional for tm E [tml ,tm2] if

( (a) ) ((a) )V Xm+e,tm+e,A - V Xm+,tm+,A > 0 for a = 1,2.

From the theory of dlscontmuous dynamIcal systems m Luo (2006, 2008), a re­
sultant system of two dynamical systems m Eqs.(5.I) and (5.2) may pass through
the constramt boundary from a domam to another. For thiScase, the penetratIOnsyn­
chronICity of two dynamical systems can occur, as sketched m Fig. 5.5. Such syn­
chronIZatIOn can be caIIed an Instantaneous synchronizatIOn. A flow of a resultant
system to the constraint boundary for time t < tm and t > tm lies in the two domains
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Q I and Ql. In sense of Eq.(5.3), a definition of such penetration synchronicity is
given as follows.

(2) _(2)
(Xm±E'J<;,,±E' tm±E)

------

Fig. 5.5 A penetration of a resultant flow to the constraint boundary in (n + ill-dimensional state
space.

Definition 5.17. For two dynamical systems in Eqs.(5.l) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,t,A) = f(p(X,t,A)) in Eq.(5.29).

For X~a) E Q a (a E {1,2}) and X~) E JQIl at time tm,X~a) = X~). For any small
£ > 0, there is a time intervalltm-e,tm+e I. A resultant flow oftwo dynamical systems
in Eqs.(5.l) and (5.2) is said to be penetrated to the constraint boundary JQa{3 from
Q a to Q{3 at time tm in the sense of the metric fucntional if for a, f3 E {I, 2} and

CITJl
V(X(a) t ') - V(X(f3) t ') - V(X(O) t ') - O·m-' m-,A - m+' m+,A - m ,m,/\ - ,

(5.50)

In DefinItIOn5.17, the mcommg flow With"-" and outgomg flow With"+" to the
boundary are prescnbed. From the above definItIOn, a penetratIOn flow of the resul­
tant system of two dynamical systems to the constramt boundary can be conSidered
to be formed by the semi-synchronization and semi-desynchronization. Such a pen­
etration flow of the resultant system to the constraint boundary can also be called
an instantaneous synchronization of two dynamical systems m Eqs (5.1) and (5.2)
to constramt m Eq.(5.3). Such an mstantaneous synchronIZatIOn wIll disappear be­
cause the semi-desynchronIZatIOn eXists. From the definItIOn of a penetratIOn flow,
a flow of the resultant system m domam !!a approaches to the constramt boundary.
However, m domam !!(3, such a flow wIll leave from the constramt boundary.

To investigate the relations among three types of synchronicity of two dynamical
systems to the constramt m Eq.(5.3), the sWltchablhty of the synchronIZatIOn,desyn­
chronIZatIOnand penetratIOn IS of great mterest, which can be discussed through the
smgulanty of the resultant system to the constramt boundary.
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5.3.2 Singularity to constraint
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From a theory of discontmuous dynamIcal systems m Luo (2006, 2008), a flow of
a resultant system of two dynamical systems may be tangential to the constraint
boundary governed by the constraint condition in Eq.(5.3). For this case, the syn­
chronicity of two dynamical systems to the constraint occurs only at one point and
then returns back to the same domam. Such an Instantaneous synchromzatIOn IS dd­
ferent from a penetration flow of the resultant system to the constraint boundary. The
tangential synchronization of two dynamical systems to the constraint is sketched in
Fig. 5.6. In domain Ql, the tangential synchronization ofthe two systems to the con­
straint boundary aQ12 is presented. The two boundaries at time tm- e and tmH are
given by the two dIfferent surfaces. For such synchromcIty, the followmg defimtIOn
IS given.

----------

\. (1) -(I)
" (~m_E,Xm_£,tm e)

" -------,: /
I

/
/

/

/ -­
~-

I
I
I

/
/

cp(x(O) ,i(O) ,tm , A) = 0

cp(x(2),i(2),tm+E ,A) < 0

Fig. 5.6 Tangential synchronization to the constraint in an (n + ii)-dimensional state space.

Definition 5.18. For two dynamical systems in Eqs.(5.l) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V (X,t, A) = f( cp(X, t, A)) in Eq.(5.29).

For X~a) E Q a a E 1,2 and X},?) E aQn at time tm,X~a) = X},?). For any small
[0 > 0, there is a time interval tm-e,tmH . At X a E Q±e for t E tm-e,tmH , the
functional V(X a ,t,A) is era-continuous (fa;:: 2) and IV ra+ 1 (X a ,t,A)1 < 00. A
flow of a resultant system of two dynamIcal systems m Eqs.(5.1) and (5.2) IS Said to
be tangential (or grazing) to the constraint boundary at time tm in the sense of the
metric fucntional if for a E {I, 2}

V (1 )(X (a ) ') - o.m±,tm±,A - , (5.51)

In DefimtIOn 5.18, the mcommg flow WIth "-" and outgoing flow WIth "+" to
the boundary are prescribed. Such a tangency of a resultant flow to the constraint
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boundary will cause the synchronicity to be changed. The onset and vanishing sin­
gularity for synchronizations can be discussed, and the corresponding definition is
given as follows.

Definition 5.19. For two dynamIcal systems m Eqs.(5.I) and (5.2) wIth constramt
in Eq.(5.3), there is a metric functional of V (X, t, A) = j(cp(X, t, A)) in Eq.(5.29).

ForX~a) E na (a E {I,2}) and X},?) E ann at time tm,X~a) = X},?). For any small
[0 > 0, there is a time interval tm-e,tm+e . At X(a) E n±e for t E tm-e,tm+e , the
functional V(X a ,t,A) is era-continuous and IV ra+ I (X a ,t,A)1 < 00 (ra 2: 2).

(i) The synchronization of two dynamical systems in Eqs.(5.1) and (5.2) with
constraint in Eq.(5.3) is called to be vanishing to form a penetration from domain
na to n(3 at the constramt boundary at tIme tm m the sense of the metrICfucntIOnal
if for a,f3 E {1,2 ~ and a ~ f3

V(1)(X(a) t A) --.L 0 V(1)(X({3) t A) = o.
m-' m-, r, m=f' m=t=' ,

( (a ) ) ((a) ).V Xm_e,tm-e,A - V Xm_,tm-,A > 0,

(X({3 ) ') (X({3) ') 0V m'fe,tm'fe,A - V m'f,tm'f,A > .

(5.52)

(ii) The synchronization of two dynamical systems in Eqs.(5.l) and (5.2) with
constramt m Eq.(5.3) IS caIIed to be onset from a penetratIOn from domam na to
n(3 at the constramt boundary at tIme tm m the sense of the metrIC fucntIOnal If for
a,f3 E {1,2} and a ~ f3

V(X~a~,tm_,A) = V(X~l,tm±,A) = V(X},?) ,tm,A) = 0;

V(1)(X~a~,tm_,A) ~ 0, V(1)(X~l,tm±,A) = 0;

( (a ) ) ((a) ).V Xm_e,tm-e,A - V Xm_,tm-,A > 0,

V(X~L,tm±e,A- V(X~l,tm±,A) > O.

(5.53)

In Eq.(5.52), the notatIOn "=f" represents the synchromzatIOn first wIth "-" and
the penetration secondly with"+". This condition is called either the vanishing con­
dition of synchronization to form a new penetration or the onset condition of pen­
etration from the synchromzatIOn at the boundary of constramt m Eq.(5.3). How­
ever, m Eq.(5.53), the notation "±" represents the penetration first wIth "+" and
the synchronization secondly with "_". This condition is called the onset condition
of synchronization from a state of penetration to the boundary, which can also be
called the vanishing condition of penetration to form a synchronization at the con­
stramt boundary at tIme tm . The sWItchmg condItIons between the synchromzatIOn
and desynchromzatIOn are presented as foIIows.

Definition 5.20. For two dynamIcal systems m Eqs.(5.I) and (5.2) wIth constramt
in Eq.(5.3), there is a metric functional of V(X,t,A) = j(p(X,t,A)) in Eq.(5.29).
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ForX~a) E na (a E {I,2}) and X};!) E ann at time tm, X~a) = X};!). For any small
[0 > 0, there is a time interval tm-e,tm+e . At x(a) E n±e for t E tm-e,tm+e , the
functional Y(X a ,t,A) is era-continuous (ra > 2) and IV ra+ 1 (X a ,t,A)1 < 00.

(i) The synchronization of two dynamical systems in £9s.(5.1) and (5.2) to con­
straint in £9.(5.3) are called to be onset from a desynchronization at the constraint
boundary at time tm m the sense of the metnc fucntIOnal d for a - 1, 2

y(I)(X(a j t A) = o.m±, m±, ,

( (a) ) ( (a) )YXm±£ltm±e,A - Y Xm±,tm±,A > O.

(5.54)

(11) The synchromzatIOn of two dynamical systems m Eqs.(5.l) and (5.2) to con­
straint in E9.(5.3) is called to be vanished to form a desynchronization at the con­
straint boundary at time tm in the sense of the metric fucntional if for a = 1,2

V(X~a-i,tm=j=,A)= Y(X};!),tm,A) = 0;

y(I)(X(a) t A) = O:m=j=' m=j=, , (5.55)

SimIlarly, m £9.(5.54), the notation H±" represents the desynchromzation first
with "+" and the synchromzatIOn with "-" secondly. ThiS condition IS called either
the onset conditIOn oj synchronizatIOn from the desynchromzatIOn on the boundary
or the vanishing conditIOn oj desynchronizatlOn to form a new synchromzatIOn on
the boundary. In E9.(5.55), the notatIOn H=f" represents the synchromzatIOn first
with H_" and the desynchronization secondly with H+". This condition is called the
vanishing conditIOn oj synchronizatIOn to form a new desynchromzatIOn, which can
also be called the onset conditIOn oj desynchronizatlOn from the synchromzatIOn. In
other words, the onset and vamshmg conditions of the desynchromzatIOn from the
penetration can be discussed as for the synchronization. The following definition
will give the onset and vanishing conditions of desynchronization.
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Y (l ) (x (a ) ') - 0 y(l)( ({3) ') -L O'm±,tm±,A -, xm+,tm+,A I ,

(x({3 ) ') (X({3) ') 0V m+e,tm+e,A - V m+,tm+,A > .

Albert C.J. Luo

(ii) The desynchronization of two dynamical systems in Eqs.(5.l) and (5.2) to
constramt m Eq.(5.3) IS called to be onset from a penetratIOn from na to n(3 at the
constraint boundary at time tm in the sense of the metric fucntional if for a, {3 E

P ,2 ~ and a =I- f3

Y(l ) (x (a ) ') - 0 y(l) (X(f3) ') -L O'm±,tm±,A - , m+,tm+,A I ,

NotIce that m Eq.(5.56), the notatIOn "±" represents the desynchromzatIOn first
wIth "+" and the penetration secondly wIth "_". ThIs condItIon IS called the vanzsh­
ing condition of desynchronization to form a new penetration on the boundary, and
can also be called the onset condition of penetration from a synchronization state.
However, m Eq.(5.57), the notatIOn"±" represents the penetratIOn first wIth "+" and
the synchromzatIOn secondly wIth "_". ThIs condItIon IS called the onset conditIOn
oj desynchronzzatlOn from a penetratIOn and also can be called the vanzshlng con­
ditIOn oj the penetration to form a desynchromzatIOn state. From the previous three
definitions, the switching between synchronization and penetration, between desyn­
chronization and penetration, and between desynchronization and synchronization
were presented. However, another sWItchmg between two penetrations should be
discussed
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V(X~L,tm±E,A) - v(x~l,tm±,A) > O.
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(5.58)

Based on the defimtlOnsof the tangential (or grazmg) and sWltchmg smgulanty,

there is a critical parameter Acr from which (IV(X~a2, tm±,A)/ (I A1.xC[ -I- 0, such a
singularity is called the corresponding bifurcation at Acr for parameter A.

5.3.3 Synchronicity with singularity

As similar to discontinuous dynamical systems in Luo (2006, 2008), the above
synchronicity of two dynamical systems in Eqs.(5.1) and (5.2) with constraint in
Eq.(5.3) can be extended to the case of higher-order singularity. The correspond­
ing definitions can be presented. The definition for the (2k a : 2k{3)-synchronization
of two dynamical systems m Eqs.(5.1) and (5.2) with constramt m Eq.(5.3) at the
corresponding constraint boundary for time tm E [tm! ,tm2] is presented first.

Definition 5.23. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint in
Eq.(5.3), there is a metric functional of V(Xt,A) = j(p(X,t,A)) in Eq.(5.29). For

(a) ( {}) (O):l (a) (0)Xm E aa a E 1,2 and Xm E aan at tm, Xm = Xm . For any small e > 0,
there is a time interval tm-E,tm. At X(a) E a-E

, for t E tm-E,tm , the functional
V(X a ,t,A) is era-continuous (ra > 2ka + 1) and IV ra+! (X a ,t,A)1 < 00. The
two dynamical systems m Eqs.(5.1) and (5.2) with constramt m Eq.(5.3) IS called
to be synchronized with the (2k! : 2k2)-type to the constraint in Eq.(5.3) for time
tm E [tm! ,tm2] in the sense of the metric fucntional if for a = 1,2

(5.59)

As in the definition for the (2k! : 2k2)-synchronization, the (2k! : 2k2)-desynchr­
omzatlOnof two dynamical systems m Eqs.(5.1) and (5.2) with constramt m Eq.(5.3)
on the corresponding constraint boundary for time tm E [tm! ,tm2] is also presented.

Definition 5.24. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint in
Eq.(5.3), there is a metric functional of V(X, t, A) = j(q>(X,t, A)) in Eq.(5.29). For

(a) (0) :l (a) (0)Xm E aa a E 1,2 and Xm E van at tm, Xm = Xm . For any small e > 0,
there is a time interval [tm,tmH]. At X a E a~E for t E (tm,tmH], the functional
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V(x(a),t,'\) is era-continuous tr« 22ka + l ) and lV(ra+l)(x(a),t,'\)1 <00. The
two dynamical systems in Eqs.(5.1) and (5.2) with constraint in Eq.(5.3) is said to be
desynchronized (or repelled) with the (2kl : 2k2)-type to the constraint in Eq.(5.3)
for tm E [tml ,tm2] in the sense of the metric fucntional if for a = 1,2

(5.60)

As dIscussed before, the penetratIOn on the boundary of constramt IS composed
of the semI-synchromzatIOn and semI-desynchromzatIOn. From the foregomg two
definitions, the (2ka : 2k13)-penetrationof two dynamical systems in Eqs.(5.1) and
(5.2) to constraint in Eq.(5.3) at time tm is described.

Definition 5.25. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,t,'\) = j(p(X,t,'\)) in Eq.(5.29).

For X~a) E Q a (a E {1,2}) and X~) E aQl2 at tm, X~a) = X~). For any small
e > 0, there is a time interval [tm-E,tmH]' At X(a) E Q~E, for t E [tm-E,tmH], the
functional V(X(a) ,t,'\) is era-continuous and lV(ra+I)(X(a) ,t,'\) I < 00 (ra > 2ka).
A flow of two dynamIcal systems m Eqs.(5.l) and (5.2) WIth constramt m Eq.(5.3)
is said to be penetrated with the (2ka : 2kf3)-type from domain Q a to domain Qf3 at
the constraint boundary at time tm in the sense of the metric fucntional if

V(X(a) t ') - V(X(f3) t ') - V(X(O) t ') - O·m-' m-,/\ - m+' m+,A - m ,m,/\ - ,

v(ra)(X~a~,tm_,'\) = 0 for Sa = 1,2, ... ,2ka;

V(SI3 )(X (f3 ) t ') - 0" - I 2 2k'm+' m+,A - 10rsf3 - " ... , 13,

( (a) ) ((a)) { }V Xm-El tm-E,'\ - V Xm_,tm-,'\ > 0 for a E 1,2 and

V(X~lE,tmH''\) - V(X~l,tm+,'\) > 0 for a -1= f3 E {1,2}.

(5.61)

From the three definitions, the higher-singularity is used for description of the
synchronization, desynchronization and penetration at the constraint boundary, and
the sWltchmg among the three synchronous states can be dIscussed through the
hIgher-order smgulanty as well.

5.3.4 Higher-order singularity

From the previous descnptIOns of the synchromzatIOn, desynchromzatIOn and pene­
tration with the higher-order singularity for two dynamical systems to the constraint,
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the higher-order singularity of the two dynamical systems to the constraint boundary
should be further discussed as follows.

Definition 5.26. For two dynamical systems in Eqs.(5.l) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V (X,t, A) = f( q>(X, t, A)) in Eq.(5.29).

For X~a) E Q a (a E {I,2}) and X~) E aQ l2 at tm, X~a) = X~). For any small
e > 0, there is a time interval [tm-e,tm+e]. At X(a) E Q~e for t E [tm-e,tm+eJ, the
functional V(X(a) ,t, A) is era-continuous and lV(ra+l) (X(a) ,t, A)I < 00 (ra > 2ka).
A resultant flow of the two dynamical systems in Eqs.(5.1) and (5.2) with constraint
in Eq.(5.3) is said to be tangential to the constraint boundary with the (2ka - 1)th_
order at time tm in the sense of the metric fucntional if for a E {I, 2}

V(X~~,tm±,A) = V(X~) ,tm,A) = 0;

v(sa)(X~a2,tm±,A) = 0 Sa = 1,2, ... ,2ka -1;

( (a ) ) ((a) )V Xm_e,tm-e,A - V Xm_,tm-,A > 0 and

( (a ) ) ((a) )V Xm+e,tm+e,A - V Xm+,tm+,A > O.

(5.62)

The foregoing definition gives the definition of the (2ka - 1)th tangential con­
dItion to the constraint boundary. Based on the sImIlar Ideas, the sWltchablhty of
the synchronization, desynchronization and penetration of two dynamical systems
to the constraint boundary can be described.

Definition 5.27. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint in
Eq.(5.3), there is a metric functional of V(X,t, A) = f( q>(X,t,A)) in Eq.(5.29). For

(a) (0) a (a) (0)Xm E Q a a E 1,2 and Xm E Ql2 at tm, Xm = Xm . For any small £ > 0,

there is a time interval tm-e, tm+e . At X a E Q±e for t E tm-e, tm+e , the functional
V(X a ,t,A) is era-continuous and IV ra+ 1 (X a ,t,A)1 < 00 (ra > 2ka + 1).

(i) The (2ka : 2kf3)-synchronization of the two dynamical systems in Eqs.(5.l)
and (5.2) with constraint in Eq.(5.3) is said to be vanishing to form a (2k a : 2kf3)­
penetratIOn from domaIn !!a to domaIn !!{3 at the constraInt boundary at time tm In
the sense of the metric fucntional if for a, f3 E {I, 2} and a #- f3

V(X(a) t ') - V(x(f3) t ') - V(x(O) t ') - O·m-' m-,A - m=f' m=r=,A - m ,m,/\ - ,

v(sa)(x~al,tm_,A) = 0 for Sa = 1,2, ... ,2ka,

(5.63)

( (a ) ) ((a) )VXm £ltm-e,A - V Xm ,tm-,A > 0,

(ii) The (2k a : 2k(3)-synchronization of the two dynamical systems in Eqs.(5.l)
and (5.2) with constraint in Eq.(5.3) is said to be onset from the (2k a : 2kf3 )-
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penetration from Qa to QI3 at the constraint boundary at time tm in the sense of
the metric fucntional if for a, f3 E {I, 2} and a -I- f3

V(X(a) t A) - V(X({3) t A) - V(X(O) t A) - O·m-' m-, - m+' m+, - m , m, -,

v(sa)(X~a),tm_,A)=Oforsa = 1,2, ... ,2ka,

(5.64)

( (a ) ) ((a) )V Xm_£,tm-£,A - V Xm_,tm-,A > 0,

V(X~L,tm±£,A) - V(X~l,tm±,A) > O.

From this definition, this condition in Eq.(5.63) for the onset of the (2ka : 2k{3)­
synchronization from the (2ka : 2k{3)-penetration on the constraint boundary can
be called the vanishing condition of the (2ka : 2k{3)-penetration to form a new
(2ka : 2k{3)-synchronization on the constraint boundary. In Eq.(5.64), the vanishing
condition of the(2ka : 2k{3)-synchronization to form a new (2ka : 2k{3)-penetration
can be called the onset condition of the (2ka : 2k{3)-penetration from the synchro­
nization. The onset and vanishing conditions of the (2ka : 2k{3)-desynchronization
from the (2ka : 2k{3)-penetration can be discussed. The following definition will
give the onset and vanishing conditions ofthe (2ka : 2k{3)-desynchronization.

Definition 5.28. For two dynamIcal systems m Eqs.(5.1) and (5.2) wIth constramt m
Eq.(5.3), there is a metric functional of V(X,t, A) = f( q>(X,t,A)) in Eq.(5.29). For

(a) (0) (a) (0)Xm E Qa a E 1,2 and Xm E aQn at tm, Xm = Xm . For any small e > 0,
there is a time interval tm-£, tm+c . At X a E Q±£ for t E tm-£, tm+c , the functional
V(X a ,t,A) is era-continuous and IV ra+ 1 (X a ,t,A)1 < 00 (ra 2: 2ka + 1).

(i) The (2ka : 2k{3)-synchronization of the two dynamical systems in Eqs.(5.1)
and (5.2) with constraint in Eq.(5.3) is called to be vanished to form a (2ka : 2k{3)­
desynchromzatlOn at the constramt boundary at time tm m the sense of the metnc
fucntional if for a, f3 E {I, 2} and a -I- f3

V(X(a) t ') - V(X(f3) t ') - V(X(O) t ') - O:m=f' m:r:,A - m=f' m=r=,A - m ,m,/\ - ,

v(sa)(x~~,tm+,A) = 0 for Sa = 1,2, ... ,2ka + 1,

(5.65)

(ii) The (2ka : 2kf3)-synchronization of the two dynamical systems in Eqs.(5.1)
and (5.2) with constraint in Eq.(5.3) is said to be onset from the (2ka : 2kf3 )­
desynchronization at the constraint boundary at time tm in the sense of the metric
fucntional if for a, f3 E {I, 2} and a -I- {3
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V(X~a;,tm±,A) = V(X~l,tm±,A) = V(X~),tm,A) = 0;

v(sa)(x~~,tm±,A) = 0 for Sa = 1,2, ... ,2ka + 1,

(X({3 ) ') (X({3) ') 0V m±£,tm±£,/\ - V m±,tm±,/\ > .
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(5.66)

It is observed that the conditions in Eqs.(5.65) and (5.66) are symmetrically
switched. The condition in Eq.(5.65) for the onset condition of the (2ka : 2k13)­
synchronization from the (2ka : 2k{3)-desynchronization on the constraint boundary
can be called the vanishing condition ofthe (2ka : 2k{3)-desynchronization to form a
new (2ka : 2k{3)-synchronization on such a constraint boundary. However, the con­
dition in Eq.(5.66) for the vanishing condition of the (2ka : 2k{3)-synchronization
to form a new (2ka : 2k{3)-penetration can be called the onset condition of the
(2ka : 2k{3)-desynchronization from the synchronization. The switching of desyn­
chromzatIOn and penetration on the boundary wIll be discussed as follows.

Definition 5.29. For two dynamical systems m Eqs.(5.1) and (5.2) with constramt m
Eq.(5.3), there is a metric functional ofV(X,t,A) = f(p(X,t,A)) in Eq.(5.29). For

(a) ( {}) (0) a (a) (0)Xm E Q a a E 1,2 and Xm E Qn at tm, Xm = Xm . For any small e > 0,
there is a time interval tm-£, tmH . At X(a) E Q±£ for t E tm-£, tmH , the functional
V(X a ,t,A) is era-continuous and IV ra+ i (X a ,t,A)1 < oo(fa 2: 2ka + 1).

(i) The (2ka : 2kf3)-desynchronization of the two dynamical systems in Eqs.(5.1)
and (5.2) with constraint in Eq.(5.3) is called to be vanished to form a (2ka : 2kf3 )­
penetration from domam !!a to domam !!f3 at the constramt boundary at time tm m
the sense of the metric fucntional if for a, f3 E {I, 2} and a -I- (3

V(X (a ) t ') - V(X({3) t ') - V(X(O) t ') - O·m±' m±,A - m±' m+,A - m ,m,A - ,

v(ra)(x~~,tm±,A) = 0 for fa = 1,2, ... ,2ka + 1;

(5.67)

(ii) The (2ka : 2k{3)-desynchronization of the two dynamical systems in Eqs.(5.1)
and (5.2) with constraint in Eq.(5.3) is said to be onset from the (2ka : 2kl3)­
penetratIOn from domam !!a to domam !!{3 at the constramt boundary at hme tm
in the sense of the metric fucntional if for a, f3 E {I, 2} and a -I- f3,

V(X (a ) t ') - V(X({3) t ') - V(X(O) t ') - O·m=f' m:r:,A - m+' m+,A - m ,m,/\ - ,

v(sa)(x~~,tm+,A) = 0 for Sa = 1,2, ... ,2ka + 1,
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(5.68)

Similarly, the onset condition of the (2ka : 2k[3)-desynchronization from the
(2ka : 2k[3)-penetration on the constraint boundary in Eq.(67) can be called the
vanishing condition of the (2ka : 2k[3)-penetration to form a new (2ka : 2k[3)­
desynchromzatIOn on the constramt boundary. However, m Eq.(5.68), the vanishing
condition of the (2ka : 2k[3)-synchronization to form a new (2ka : 2k[3)-penetration
can be called the onset condition ofthe (2ka : 2k[3 )-penetration from the (2ka : 2k[3 )­
desynchronization.

Definition 5.30. For two dynamical systems in Eqs.(5.l) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,t,oX) = f(p(X,t,oX)) in Eq.(5.29).

For X~a) E Qa (a E {1,2}) and X~) E dQI2 at tm, X~a) = X~). For any small
e > 0, there is a time interval [tm-e,tm+e]' At X(a) E Q~e for t E [tm-e,tm+eJ, the
functional V X(a),t,oX is era-continuous and differentiable (ra > 2ka + 1 and
IV ra+ 1 (X a ,t,oX) 1< 00. The (2ka : 2k[3)-penetrationof the two dynamical systems
in Eqs.(5.1) and (5.2) with constraint in Eq.(5.3) is called to be switched to a new
(2k[3 : 2ka)-penetration at the constraint boundary at time tm in the sense of the
metric fucntional if for a, f3 E {I, 2} and a =1= f3

V(X(a) t ') - V(X({3) t ') - V(X(O) t ') - 0'm=f' m+,A - m±' m±,A - m ,m,A - ,

v(sa)(x~~,tm'f' oX) = °for Sa = 1,2, ... ,2ka + 1;

(5.69)

In the foregoing definition, the condition for the (2ka : 2k[3)-penetration switch­
ing to the (2k[3 : 2ka)-penetration at the boundary is presented.

5.3.5 Synchronization to constraint

In the prevIOUS sectIOn, the defimtIOns for the synchromclty and the correspondmg
smgulanty of two dynamIcal systems to a specIfic constramt were dIscussed. What
condItIons can guarantee such synchromclty of the two dynamIcal systems to the
constraint exists? In this section, necessary and sufficient conditions for the syn­
chronization of two dynamical systems to the specific constraint will be presented.
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The synchronicity switching is discussed through the singularity of a flow of the
resultant system to the constraint boundary.

Theorem 5.1. For two dynamical systems m Eqs.(5.1) and (5.2) with constramt
in Eq.(5.3), there is a metric functional of V (X,t, A) = f( cp(X, t, A)) in Eq.(5.29).

For X~a) E na (a E {I,2}) and X~) E an l2 at time tm, X~a) = X~). For any
smalls > 0, there is a time interval [tm-e,tm) or (tm,tm+e]. For X(a) E n~e at time
t E tm-e, tm or tm,tm+e , the functional V X( a) ,t, A is era -continuous r a :::::

ka + 1) and IV ra+2 (X a ,t,A)1 < 00. For X a E na and X 0 E an12 , suppose
D(sa)lF(a) (x(a) ,t,7r(a)) = D(sa)lF(O) (X(O) ,t,A) (sa = 0,1,2, ...) for X(a) = X(O)( a E

{1,2}). The two dynamical systems in Eqs.(5.l) and (5.2) to the constraint in
Eq.(5.3) are synchronized for time t E [tm] ,tm2] in the sense of the metric fucntional
If and only If

(i) for X~a) E na and X};!) E an l2 with any time tm

X (a ) - X (O) V(ra)(x(a) t ')-0'-ora-12andr -012 .m - m, m ,m,/\" - I' -, a - , , , ... ,

lim V(1) (X(a) i: A) = 0 for a = 1 2·1< , K" , ,
r;;-+tm

( """) '- X(a) "+e + ( ] d X(O) a" "h rf [ ]III lor I( E ~~a at tl( E t.«,tm+e an m E ~~12 Wit tm 'F tm],tm2

lim V(1) (X(a) t+ A) = 0 for a = 1 2·+ K' , Ie' , ,
t K -tIm

(5.70)

(5.71)

(5.72)

X(a) -I- X(O) lim V(1)(X(a) t± A) = 0
K' r m, ± K' , 1(' ,

t1(-+tm±

lim V(2)(X(a) t± A) < 0 for a = 1 2
± K' '1<' , .

tK -+tm±

(5.73)

Proof: (i) For two dynamical systems in Eqs.(5.l) and (5.2) with a constraint
condition in Eq.(5.3), the boundary anl2 in Eq.(5.17) and two domains n a (a =
1,2) in Eq.(5.l8) are defined. From Definition 5.13, at time tm , X~a) = X~) E an l2 .

So one obtains
( (a) )V Xm ,tm,A = O.

From Definition 5.13, for any time t, one gets X(a) = X(O) E an12,
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<p(x(a)(t),t,A) = <p(X(O)(t),t,A) = 0,

V(x(a)(t),t,A) = V(X(O)(t),t,A) = O.

On the constraint boundary anl2,
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gives
dra+lx(a)(t)

dt ra+1

The toregomg equation gives

dra+I X(O) (t)

dt ra+1

On the other hand, consider X(a) (t) = X(O)(t) E an12 at time t. Selecting t' = t +e
for any small £ > 0, the Taylor series expansion gives

V(x(a) t' A)- V(X(a) t A) = ~ v(ra)(X(a) t A)£ra.
, , , '.Ltra=l ' ,

Using £q.(5.70), the foregoing equation yields

V(x(a) t' A) - V(X(a) t A) = 0, , , , .

Because of V(X(a) ,t, A) = 0, for t' = t + £, the following equation holds

V(x(a) t' A) = V(X(O) t' A) = 0, , , , .

Therefore, x(a)(t') = X(O)(t'), i.e., x(a) (t') is on the boundary an12.
(" ) d (... ) F (a) rde [ ) + ( ] d X(O) X(O)11 an III orxl( E ::'l.a att~ E tm-e,tm ortl( E tm,tm+e an m E m E

an12 with tm E (tml ,tmJ,

( (a) ± )v XI( ,tl(,A >0.

Introduce 0 < £1 = Itm±e - t;1 < Itm±e - tml = £ for tm > tK and tm < (t. Because
or

( (a) ) ((a) ± ) _ (1)( (a) ± )( ) ()V Xm±£ltm±e,A - V XI( ,tK ,A - v XI( ,tK ,A ±£I +0 £1

and once higher-order terms drop, the foregoing equation leads to

From Definition 5.15 for tm E (tm1,tm2) with t~, we have

lim V(1)(X(a) i: A) < 0 and lim V(I)(X(a) i: A) = V(I)(X(a) t A) = 0
K' '1\" K' , K" m s-m»

tK ---+tm

However, usmg £q.(5.71), the conditIOn m DefimtlOn 5.15 IS obtamed.
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From Definition 5.16 for tm tt [tmlltm2J with t;f, we have
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lim V(1)(X(a) t+ A) > 0 and lim V(1)(X(a) t+ A) = V(1)(X(a) t A) = 0
+ K' , x : + K' '1<' m ,m, ,

tK --+t m± tK --tIm

However, using Eg. (5.72), the condition in Definition 5.16 is obtained.

(iv) For X~a) E n~e at time t,c E [tm-e,tm-) out E (tm+,tmH] and X),?) E an12

with tm = tm] and tm2,

( (a ) ) ((a) ± )lim V Xm±e,tm±e,A - V XI( ,tl( ,A
t~--ttm±

= }im V(1)(X~a),t~,A)(±et}+ }im V(2)(X~a),t~,A)(±et}2+o(er).
t K -+tm± tK -+tm±

Ignoring the third-order term and the higher-order terms of e1 yields

= }im V(1)(X~a),t~,A)(±et}+ }im V(2)(X~a),t~,A)(±et}2.
t K -+tm± tK -+tm±

Using )im V(1)(X~~),t~,A)=0, the foregoing equation becomes
tKi---+tm j ±

If lim V(2)(X~a) ,t~,A) > 0, we have
tt--7tm±

From Definition 5.18, the point (X~~ttmi±) (i = 1,2) is tangential point to the
constraIllt. The synchromzatlOn at such a POIllt appears or disappears. However,
the conditions III DefimtlOn 5.18, EquatlOn (5.73) can be obtaIlled. This theorem is
proved. •

For the point (X~~) ,tm ] ) , the synchronization will be onset. However, for the

point (X~~),tmJ, the synchronization will vanish. For tm E (tml,tmJ, the syn­

chronization at point (X~a) ,tm) on the constraint boundary can be formed. For

tm tt [tml, tm2J, the desynchronization at point (X~a), tm) on the constraint bound­
ary can be formed. If tm] --+ -00 and tm2 --+ 00, the synchromzatlOn is absolute. The
synchronization of two dynamical systems to the constraint can occur at any time tm .

Once the synchronization is formed on the constraint boundary, such synchroniza-
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tion on the constraint boundary will not disappear. If the higher order singularity on
the boundary exists, the corresponding theorem is presented in a similar fashion.

Theorem 5.2. For two dynamIcal systems m Eqs.(5.1) and (5.2) wIth constramt m
Eq.(5.3), there is a metric functional of Y(X,t, A) = f( q>(X,t, A)) in Eq.(5.29). For

X~a) E n a (a E {I,2}) and X~) E anl2 at tm, X~a) = X~). For any small e > 0,
there is a time interval [tm-E, tm) or (tm, tm+e]. For X(a) E n~E at time t E [tm-E, tm) or
tm,tm+e , the functional Y X(a) ,t, A is era-continuous and y(ra+ 1) X(a) ,t, A <

00 (fa 2: ka + I). For X a E n a and X 0 E anl2, supposeD Sa IF a (X a ,t,1r a ) =

D(sa)IF(O) (X(O) ,t, A) (sa = 0, 1,2, ... ) for X(a) = X(O) (a E {I, 2}). The two dynam­
ical systems in Eqs.(5.I) and (5.2) to the constraint in Eq.(5.3) are synchronized for
time t E [tm] ,tm2] in the sense of the metric fucntional if and only if

(i) for X~a) E n a and X~) E anl2 with tm E (tm] ,tm2)

X(a) = X(O) y(ra)(X(a) t ') = 0m m , m ,m,/\..

tor a = 1,2 and fa = 0, 1,2, ...
(5.74)

(
•• ) l' X(a) ,,-E . - [ ) d X(O) a" . h ( )11 lor I( E ~l.a at tIme tl( E tm-E,tm an m E ~1.12 WIt tm E tm] ,tm2

X(a ) --1- X (O) I' (2ka) (X(a) - ')-01' - 2 2k'
I( r m, Hfl Y I( ,tl(,A - lorsa-I, , ... , a,

(5.75)

(
••• ) l' X(a) ,,+e . + ( ] d X(O) a" . h d: [ ]111 lor I( E ~l.a at tIme tl( E tm, tm+E an m E ~1.12 WIt tm 'F tm], tm2

X (a ) --I- X(O) I' y(sa)(X(a) + ') - 0 l' - 1 2 u.:
I( r m, Hfl I( ,tl(,A - lorsa- " ... , a,

It -ttm+

y(2ka+l)(X(a) t+ A) > 0 and lim y(2ka+l)(X(a) t+ A) = 0 for a = 1 2'
1('1<' + 1('1<' "

I", --tIm

(5.76)

( • ) l' X(a) ,,+e . - r ) + ( 1 d x(O) a"IV lor I( E ~l.a at tIme tf( Etm-E,tm- tf( Etm+,tm+E an m E ~1.12

with tm = tm] and tm2

X (a ) --I- X(O) I' (sa) (X(a) ± ') - 0 l' - 2 2k I:
I( r m, Hfl Y l(,tl(,A- lorsa-I" ... , a+,

t't--ttm±

lim y(2ka+2)(X(a) t± A) < 0 for a = 1 2
± K' '1<' , .

tK ---+tm±

(5.77)

Proof: (i) For two dynamical systems in Eqs.(5.1) and (5.2) with a constraint
condition in Eq.(5.3), the boundary anl2 in Eq.(5.17) and two domains n a (a =
1,2) in Eq.(5.18) are defined. From Definition 5.13, at time zs; X~a) = X~) E anl2.

So the following equation holds,

((a) )YXm ,tm,A = O.
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From Definition 5.13, for any time t, one obtains X(a) = X(O) E an l 2 ,

p(x(a)(t),t,oX) = p(X(O)(t),t,oX) = 0,

which is implies

drax(a) (t) draX(O) (t)

dtra dt ra

The toregomg equation gives
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On the other hand, consider a point x(a)(t) = X(O)(t) E anl2 at time t. Selecting
t' = t +e for any small e > 0, the Taylor series expansion gives

V(x(a) t' oX) - V(X(a) t oX) = ~ v(ra)(X(a) t oX)era.
, , , 'J...ra=l ' ,

Usmg £q.(5.74), the toregomg equatIon gIves

V(X(a) ,t', oX) - V(X(a) ,t, oX) = o.

Because of V(X(a) ,t, oX) = 0, for t' = t +e, one obtains

V(x(a) t' oX) = V(X(O) t' oX) = 0, , , , .

Therefore, X(a)(t') = X(O)(t'), i.e., x(a) (r') is on the boundary anl2.
(..) d (...) F X(a) rd£· [ ) + ( ] d X(O)11 an 11l or I( E ~l.a at time t;;; E tm-£,tm or tl( E tm,tm+£ an m E

anl2 with tm E (tml ,tmJ,

( (a) ± )v XI( ,tl('oX >0.

Introduce 0 < el = Itm±£ - t; I< Itm±£- tmI= e for tm > tl( and tm < tt. Because
or

and once the (2ka +2) and higher-order terms drop, one obtains

= ~2kaV(sa)(X(a) t± oX)(±e )Sa +V(2ka+I)(X(a) t± oX)(±e )2ka+1
i...sa I( , 1(' I I( , 1(' I
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. [( (a) ) ((a) ± )]±hm Y Xm±e,tm±e,A - Y XI( ,tl( ,A
t",-----+tm±

= ~2ka lim y(sa)(X(a) t± A)(±£ )Sa + lim y(2ka+l)(X(a) t± A)(±£ )2ka+l.
~sa ± I( , 1(' 1 ± I( , 1(' 1

tJ('-----+tm± t",-----+tm±

Definition 5.23 for tm E (tm! ,tmJ with t I( gives

lim y(2ka+l)(X~a),t;,A)<Oand
t1('-----+tm-

lim y(2ka+l)(X(a) t: A) = y(2ka+l)(X(a) t A) = 0
K' , 1(' m ,m, .

tK -----+tm

However, using Eq.(5.75), the condition in Definition 5.15 is obtained. Definition
5.24 for tm tt [tm) ,tm2] with tt leads to

lim y(2ka+l)(X(a) t+ A) > 0
+ K' , K"

tK --+tm ±

and lim y(2ka+l)(X(a) t+ A) = y(2ka+l) (X(a) t A) = 0+ 1< , K" m ,m, .
tJ('-----+tm

However, using Eq. (5.76), the condition in Definition 5.16 is obtained.

(iv) Similarly, for X~a) E Q~e at time t; E [tm-e,tm-) or tt E (tm+,tm+e] and

X (O) :lr\ . h dm E a~~12 Wit tm = tm! an tm2,

= ~2ka+ly(sa)(X(a) t± A)(±£ )Sa + y(2ka+2) (X(a) t± AX±£ )2ka+2+o(£2ka+2)
~Sa I( , 1(' 1 I( , 1(' 1 1 ,

Ignoring the (2ka +3)term or higher-order terms, we have

= ~2ka+l lim y(sa)(X(a) t± A)(±£ )sa + lim y(2ka+2);X(a) t± A)(±£ )2ka+2.
~sa ± I( , 1(' 1 ± '~ I( , 1(' 1

t K -+tm± tK -+tm±

Using lim Y(Sa) (X~a) ,t~, A) = 0 (sa = 1,2, ... ,2ka + 1), the foregoing equation
1(i-----+mi± 1 I

gives

= lim y(2ka+2)(X(a) t± A)(±£ )2ka+2
± I( , 1(' 1 .

t",-----+tm±
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If lim V(2k a+2)(X(a) t± x) > 0 one obtains± 1< , K" ,
t",-----+tm±

( (a ) ') ((a) ± ')lim V Xm±e,tm±e,A - V XI( ,tl( ,A > O.
t~-----+tm±
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From Definition 5.26, the point (X~~Ltmi±) (i = 1,2) is a tangential point to the
constraint. The synchronization at such a point appears or disappears. However,
the condItIons m DefimtlOn 5.26, Eq. (5.73) can be obtamed. ThIs theorem IS
proved. •

(a)

(b)

Flg.5.7 (a) A cross sectIOnvIew and (b) a 3-D vIew for an absolute synchromzatIon of two dynam­
ical systems to the constraint in vicinity of the constraint boundary dQI2 in (n+ ii)-dimensional

state space. Any point for synchronization on the constraint boundary, is expressed by (X;;;), tm ) .

In two domaIns, the resultant flows In the VICInIty of the constraInt boundary are expressed by

(X~a)e, tm- £) (a = 1,2). The onset point on the constraint boundary is (X;;;;, tm 1), depicted by a
red CIrcularsymbol.

Consider the foregoing two theorems with tm ) ----+ -00 and tm2 ----+ 00. For this case,
once the two dynamical systems to the constraint are synchronized, such synchro­
mzatlOn can keep forever. To explam the two theorems, the synchromzatlOn of the
flows of two dynamical systems on the boundary JQ12 are in Fig. 5.7. Any point

of a constraint flow on the constraint boundary is expressed by (X);;) ,tm ) for syn­
chromzatlOn. In the two domams, the reslutant flows m the vIcImty of the constramt

boundary are expressed by (x~ale,tm_e) (a = 1,2). The onset point is denoted by

(X);;; ,lm, ). For tm > tm] and tm2 ----+ 00, all the flows ofthe resultant system of two dy-
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namical systems will be on the constraint boundary. Thus, the synchronization of the
two dynamical systems to the constraint is an absolute synchronization. The start­
ing point of a resultant flow for the synchronization can occur at any time tm > tm ) .

However, If tm2 IS finIte, the two dynamIcal systems to the constramt can be synchro­
nized only in a finite time interval of t E (tm! ,tmJ. To the point on the boundary at
time t = tm2 , such synchronization will disappear. Further, the resultant flow on the
constraint boundary for synchronization vanishing will enter into the domain, which
cannot be synchronized any more in sense ofEq.(5.3). Such synchronization is very
easIly realIzed through the dlscontmuous vector fields to the two dynamIcal systems
to the constramt boundary. For the synchronIZatIOn of slave and master systems to
the constraint, a slave system IS controlled by dlscontmuous, external vector fields
in order to make it synchronize with the master system. To answer this question, let
us discuss the metric functional first.

For IF(a) (X(a) ,t, 1r(a)) = IF(O)(X(O) ,t, A) at X(a) = X(O) (a E {I,2}), the synchro­
nization of two dynamical systems to a specific constraint requires D(k)p(X(a)(t),
t,A = D(k) X(O) t ,t,A = O. For a metric functional in Eq.(5.32), if X(a) t
X 0 (t) on the constraint boundary, one gets

V(1)(x(a) t A) = dcp . av == 0, , dt 't' ,

because of p(X(O),t, A) = O. Furthermore,for X(a)(t) = X(O)(t), if

2 d2cp

+ cp dt 2 = 0

is required, the following condition should be satisfied, i.e.,

d
-m(X(a)(t) t A)=O.dt" , ,

Continuously, ifx(a)(t) = X(O)(t) E aaI2 , V(k)(x(a)(t),t,A) = 0 leads to

(5.78)

(5.79)

(5.80)

(5.81)

ConsIder another metnc functIOnal m Eq.(5.36), and the correspondmg time change
rate is

V(1)(x(a),t,A) = sgn(cp)~~,

For X(a)(t) = X(O)(t), one requires

So one achieves
d
dt cp(X(a)(t),t,A) = O.

(5.82)

(5.83)

(5.84)
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Furthermore, ifx(a)(t) = X(O)(t) E aQ12, V(k)(x(a)(t),t,A) = 0 leads to

d
k

( (a)() ) _ _kq> X t .i,»: -Ofork-I,2, ...
dt
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(5.85)

It a resultant system of two dIfferent dynamIcal systems IS contmuous to the con­
stramt boundary, It IS very dIfficult to make the two dIfferent dynamIcal systems be
synchronized with a specific constraint. Most of such synchronization is asymptotic
as t ----+ 00. To make the synchronization of two dynamical systems to a specific con­
straint possible, one often considers control schemes to realize the synchronization
through adJustmg vector fields. Next, consIder the resultant system of two dIfferent
dynamIcal systems to be dlscontmuous to the constramt boundary.

For IF(a)(x(a),t,7r(a)) i-lF(O)(X(O) ,t,A) for X(a) = X(O) (a E {I,2}), the syn-
chronization of two dynamical systems with a specific constraint does not require
the condition in Eq.(5.85), i.e.,

d
k

( (a)()) _
k

q> X t, t, A i- 0 for k - 1,2, ...
dt

(5.86)

To distinguish X~~) from X~O) at time ts E [tm,tm+1J, a point X~~) E Q;XE in the do­

main infinitesimally approaches a point X~O) E aQ12 on the constraint boundary at

timet. For X~~) E Q;XE (or X~~) i-aQ12), the corresponding differentiation of vector

fields with respect to state variables can be carried out. For xiO) E aQ12 on the con­
straint boundary, such differentiation cannot be done for t' E ts - e,ts (any small
e > 0) because the vector fields (IF a (X a ,t, 7r a ), a E {I, 2}) to the constraint

boundary aQ12 are discontinuous (i.e., IF(O)(XiO),ts,A) i-lF(a)(x~~),ts_,7r(a)) for

X~~) = xiO) at time ts = ts-). Therefore, the time ts will be replaced by ts- =

ts - 0 for a point X~~) E Qa. For a metric functional in Eq.(5.32), at X(a)(t) =

X(O) t , V(1) X(a) t ,t,A == 0 is always observed even if d dt i- O. One also
obtains V 2 X a t ,t,A > 0 if d dt i- O. It implies that V X a t' ,t',A >
V(X °(tm),tm,A) for t' = tm+e. So one obtains X °(t) i- X a (t') E Qa. It means
that the two dynamical systems to a specific constaint cannot be synchronized.
For thIS case, one cannot use such a metrIC functIOnal m Eq.(5.32) to mvestIgate
the synchronization for a discontinuous resultant system. However, for a metric
functional in Eq.(5.36), at X(a)(L) = X(O)(t), one obtains V(1)(X(a) (ts- ),ts-, A) =

sgn(p±)dp/dt i- 0 if d~/dt i- O. If dp/dt < 0 and P+ = 0+ or if dp/dt > 0 and
q>_ = 0_, then V(1)(x(a (t),t,A) = sgn(q>±)dq>jdt ~ O. From the aforementioned
dIscussIOn, the metrIC functIOnal m Eq.(5.36) can be consIdered as a candIdate of
metric functional to investigate the synchronization of two dynamical systems with
IF(a)(X(a), t, 7r(a)) i-lF(O) (x(O) , t, A). Under the constraint condition in Eq.(5.3), the
correspondmg theorem IS presented for the synchromzatIOn of two dynamIcal sys­
tems m Eqs.(5.1) and (5.2) as follows.

Theorem 5.3. For two dynamIcal systems m Eqs.(5.1) and (5.2) WIth constramt
in Eq.(5.3), there is a metric functional of V(X,t,A) = f(p(X,t,A)) in Eq.(5.29).
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(ii) for time tm E (tm1,tmJ,

x(a) = X(O) and V(1)(X(a) t A) < 0 for a = 1 2m- m m-' m-, , ,

(iii) with penetration at time t = tmi, X~~) = X};;/ (i = 1,2)

V(1)(X~~Ltmi±,A)= 0 and V(2)(X~~Ltmi±,A) > 0 for a E {I,2}

V(1)(X~~,tmi-,A)< 0 for f3 E {I,2} and f3 =I- a

or with desynchronization at time t = tm il X~~) = X~) (i = 1,2)

V(1)(X~~Ltmi±,A) = 0 and v(2)(Xl~l,tmi±,A) > 0 for a E {I,2},

(5.87)

(5.88)

(5.89)

V(1)(X~~,tmi±,A) = 0 and V(2)(X~l,tmi±,A) > 0 for f3 E {I,2} and f3 =I- a.
():9UJ

Proof': From DefimtiOn 5.13, the metrIC functiOns for the constramt boundary
aQ12 and domains Q a (a = 1,2) are given by

V(X(O),t,A) =0 forX(O) E aQ12,

V(X(a),t,A) > 0 forX(a) E Qa,a = 1,2.

EquatiOn (5.87) IS obtamed, vice versa.

(..) F' ( ) X(a) X(O) sa Consid . X(a) QE11 or time tm E tm] ,tm2, m- = m E 12· onsl er a pomt m-E E a

for tm- E = tm - e in the neighborhood of X}:;) E aQ12 and e > O. We have

Because of any selection of e > 0, if
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then
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From DefimtIOn 5.15, the two dynamIcal systems to a specIfic constramt are
synchronized for time interval of tm E (tm! ,tmJ. However, Eq. (5.88) is achieved if

( (a) ) ((a) )V Xm_,tm-,A - V Xm_E,tm-E,A < O.

(o' O) A 0 X(a) X(O) a" c °d 0 X(a) "( 1 2)111 t time t = tm;, m;± = m; E :l,-'12. onSI er a pomt m;±E E :l,-'a a = ,

for tm;±E = tm; ± EO in the neighborhood ofX~) E aQl2 and EO> O. The Taylor series
expansIOn gIves

If the third and higher order terms are dropped in the foregoing equation in Q a
(a = 1,2), with the condition

(l)(X(a) ') - 0V m;±,tmi±,A - ,

the following equation is achieved:

If V(1) (X~~~,tmi-, A) = V(1) (x~~Ltmi+,A) ~ 0 and only the first order term in the
Taylor senes expansion IS consIdered, one gets

For a,f3 E {1,2} and a ~ 13, from Definition 5.19, the disappearance and ap­
pearance of synchronization with the penetration require

from WhICh Eq.(5.89) IS obtamed, vice versa.
For a,f3 E {1,2} and a ~ 13, from Definition 5.20, the disappearance and onset

of synchromzatIon wIth the desynchromzatIOn require
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(5.91)

from which Eq.(5.90) is obtained, vice versa. Therefore, this theorem is proved. •

From the foregomg theorem, the synchromzatIOn of two dynamical systems to
a special constraint requires that the first-order denvative of the metnc functIOnal
be less than zero. The onset and vanishing conditions of the synchronization in
Eqs.(5.89) and (5.90) are the vanishing and onset conditions relative to the penetra­
tion and desynchronization, respectively. If the first-order derivative is zero, under
what conditions can two dynamical systems to a special constramt be synchromzed
m sense of Eq.(5.3)? The followmg theorem will consider the synchromzatIOn of
two dynamical systems to a special constraint With higher-order smgulanty.

Theorem 5.4. For two dynamical systems m Eqs.(5.I) and (5.2) With constramt m
Eq.(5.3), there is a metric functional ofV(X,t,oX) = f(p(X,t,oX)) in Eq.(5.29). For

(a) ( {}) (0) a (a) (0)Xm E Q a a E 1,2 and Xm E Qn at tm, Xm = Xm . For any small e > 0,
there is a time interval [tm-E,tm) or (tm,tm+cJ. For X(a) E Q~E at t E [tm-E,tm)
or (tm,tm+c], the functional V(X(a),t,oX) is era-continuous (ra > 2ka + 1) and
v(ra+2) X,t,oX < 00. For X(a) E Qa and X(O) E aQn, let F(a) X(a),t,1r(a) i=-

F 0 (X 0 ,t,oX) for X a = X 0 and a E {1,2}. The two dynamical systems in
Eqs.(5.1) and (5.2) to constraint in Eq.(5.3) are synchronized of the (2ka : 2k/3)­
type for time t E [tm) ,tm2J in the sense of the metric functional if and only if

(i) for x~al = X;;;) and X(a)(t) E Q a (a E {I,2}) attime t = tm E [tmptm2J

( (a) ) ((0) )V Xm_,tm-,oX = V Xm ,tm,oX = O.

(ii) for time tm E (tm] ,tmJ,

X(a) = X(O) and v(sa)(X(a) t _ ') = 0 ( 1 2 2k)m- m m-' m , A sa = , ,... , a

V(2ka+i)(X~a~,tm_,oX) < 0 for a = 1,2.

(iii) with the (2ka : 2k/3 )-penetration for time t = tmi'X~~) = X~) (i = 1,2),

and V(2ka+2) (X(a±) t .± oX) > 0 for a E {I 2}'m; ,mt , , ,

or with the (2ka : 2k13)-desynchronizationfor time t = tmi'X~~) = X~) (i = 1,2),
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v(sa)(x~~Ltmi±,A) = 0 (sa = 1,2, ... ,2ka + 1),

and V(2ka+2) (X(a±) t .± A) > 0 for a E {I 2}'m, s-m, , , ,

v(s/3) (X~Ltmi±' A) = 0 (sf3 = 1,2, ... ,2kf3+ 1),
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(5.94)

Proof: From Definition 5.13, the metric functions for the boundary aQ12 and
domains Q a (a = 1,2) are given by

V (X(O) , t, A) = 0 for X(O) E aQ12,

V(X(a) ,t,A) > 0 for X(a) E Qa, a = 1,2.

o [] (a) (a) (a) (0) a(I) For t = tm E tm] ,tm2 and X = Xm E Qa, X m- = X m E Q12. Further,

(a) _ (0) _
V(Xm_,tm-,A) - V(Xm ,tm,A) - O.

So Eq.(5.9I) is obtained. IfEq.(5.9I) exists, from Definition 5.13, x~al = X}:;) E

aQ12.

(o') F ' ( ) X(a) X(O) aQ C °d . X(a) QE"11 or time tm E tmj, tm2, m- = m E 12· onst er a point m-E E a lor

tm- E = tm - e in the neighborhood of X}:;) E aQ12 and e > O. The following Taylor
series expansion is achieved.

Due to the higher order smgulanty, i.e.,

and by ignoring of the (2ka + 2)-order and higher-order terms, the Taylor series
expansIOn gIves

From DefimtIon 5.24, the synchromzatIon of two dynamical systems to a specific
constraint for time tm E (tmJ, tm2) requires

However, if
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IS achIeved, whIch Imphes the two dynamIcal systems to the specific constraint are
synchronized for time tm E (1m! , tm2).

(... ) A . X(a) X(O) :lQ Consid . X(a) Q'-III t time t = tmp mj± = mi E a 12. OnSI er a pomt mj±e E a tor

tmj±e = tmj ± to in the neighborhood of X~) E aQl2 and to > O. The Taylor series
expansIOngIves

Letting a = f3, because of the higher order singularity of the Y -function in domain
Q[3, i.e.,

and once the higher order terms of to2k
[3 +1 are dropped, one obtains

Similarly, if the following equation exists

Y (sa ) (X(a) t .± ") = 0 ( 1 2 2k + 1)nux:» m, ,A Sa = , ,... , a

and the higher order term of e2ka+2 will not be considered, the Taylor series expan­
SIOn gIves

Y(x(a) ") _ Y(X(a) ") _ Y (2k a +2) (X(a) ") 2ka+2
mj±e,tmj±e,A mj±,tmj±,A - mj±,tmj±,A to .

From Definition 5.27, the onset and vanishing conditions of the (2ka : 2k[3 )-synchronization
of the two dynamical systems with a corresponding penetration on the constraint
boundary aQa [3 are

Y(sa ) (x (a ) t . ")=O( 12 2k+l)mj:f'm,'f,A Sa = , , ... , a ,



5 Synchronization of Dynamical Systems

Thus, one gets
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V(2ka+2)(x~~k,tmi+'..\) > 0 and v(2k/3+I)(X~~,tmn..\) < O.

In other words, Equation (5.93) is obtained. If Eq.(5.93) holds, the conditions in
Definition 5.27 can be obtained for the onset and vanishing condition for synchro­
mzation from the penetratlOn.

If the (2ka : 2k{3)-synchronization of two dynamical systems to a specific con­
straint vanishes and appears with a (2ka : 2k{3)-desynchronization, the following
conditions are required

(X({3 ) ') (X({3) ') 0V mi+c,tmi+c,A - V mi+,tmi+,A > ,

with the singularity conditions

So one obtains

V(2ka+2) (X(a) t.; ..\) > 0 and V (2k/3 +2) (X({3) t.; ..\) > 0
mj+' mt +, mj±' mt +, ,

i.e., EquatlOn (5.94) IS obtamed, VIce versa. Therefore, thIStheorem IS proved. •

In the foregoing theorem, the onset and vanishing conditions of the (2ka : 2k{3)­
synchronization in Eqs.(5.93) and (5.94) for time t = tmi (i = 1,2) are also the
vanishing and onset conditions of the (2k a : 2k{3)-penetration and the (2k a : 2k{3)­
desynchromzatlOn, respectIvely. To explam the synchromzatlOn of the two dynam­
Ical systems under the condItIon m Eq.(5.3) m the prevlOUS two theorems, such
synchromzatlOn IS sketched m Flg.5.S. On the constramt boundary, any pomt for

synchronization is expressed by (X);;),tm ) . In the two domains, any flows in the

vicinity of the boundary are expressed by (X~a~c,tm_c) (a = 1,2). The onset and

vanishing points are (X);;! ,tm] ) and (X);;;,tm2) with red and blue circular symbols.
Both of the two points belong to a sub-manifold on the boundary in the (n+ ii)­
dlmenslOnal phase space. Once a flow of the resultant system of two dynamIcal
systems from domam HI comes to any point of the sub-reglOn on the constramt
boundary, the synchronization of the two dynamical systems to the constraint oc-

curs until the point (X);;;,tm2) is reached. If tm2 --; 00, such synchronization will not
disappear forever. For tm > tm ] , once the resultant flows are on the constraint bound­
ary, the synchronization of the two dynamical system to the constraint will keep
~
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(b)
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Fig. 5.8 (a) A cross-section view and (b) A 3-D view of the synchronization of resultant flows
in vicinity of the constraint boundary aol Z in (n + ill-dimensional state space. On the constraint

boundary, any point for synchronization is expressed by (X;;;),tm ) . In two domains, the resultant

flows in the vicinity of the constraint boundary are expressed by (X~a~£ltm_£) (a = 1,2). The onset

and vanishing points are (xl:;! ,tm l ) and (xl:;l ,tm 2 ) with red and blue circular symbols.

5.3.6 Desynchronization to constraint

In the previous four theorems, the synchronization for two dynamical systems to
the constramt m Eq.(5.3) is discussed. Next, the desynchromzatlon of two dynam­
ical systems wIll be simIlarly discussed. The desynchromzatlOn is another phe­
nomenon opposite to the synchronization. IfjF(a) (X(a) ,t, 1r(a)) = jF(O) (X(O) ,t, oX) on
the constraint boundary, the desynchronization will be discussed first, and the desyn­
chronization for jF(a)(x(a),t,1r(a)) i-jF(O)(X(O),t,oX) on the constraint boundary
will be addressed. The theorems for desynchronization with jF(a)(x(a),t,1r(a)) =

jF(O) (X(O) ,t,oX) are presented as follows.

Theorem 5.5. For two dynamical systems m Eqs.(5.1) and (5.2) with constramt m
Eq.(5.3), there is a metric functional of V(X, t, oX) = f( q>(X,t, oX)) in Eq.(5.29). For

X~a) E na a E 1,2 and X}:;) E ann at time tm, X~a) = X}:;). For any small e >
0, there is a time interval tm-e,tm or tm,tm+e . For X a E n±e at t E tm-e,tm or
(tm,tm+e], the functional V(X a ,t,oX) is era-continuous and IV ra+z (X a ,t,oX)1 <
00 fa> ka +1 . ForX(a) E na andX(O) E ann, supposeD(sa)jF(a) X(a) ,t, 1r(a) =

D Sa jF0 (X 0 ,t,oX) (Sa =0,1, ... ) for X a =X 0 (a E {I,2}). The two dynamical
systems m Eqs.(5.l) and (5.2) to constram m Eq.(5.3) are desynchromzed for time
t E [tml ,tmz] in the sense of the metric fucntional if and only if

(i) for X~a) E na and X}:;) E ann with any time tm
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x(a) = x(O) v(ra)(x(a) t A) = 0m m , m ,m, ,

for a = 1,2 and ra = 0, 1,2, ...
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(5.95)

x~a) 01 X};!), V(1)(X~a),ti,oX) >Oand

lim V(1)(X(a) t+ oX) = 0 for a = 1 2·+ K' , Ie' , ,
t K -tIm

(5.96)

(... )" X(a) rv E· [ ) d X(O) :lr. . h d: [ ]11l lor " E ~~a at time t;; E tm-E,tm an m E a~~12 WIt tm 'F tm] ,tm2

x(a) --I- X(O) V(1)(X(a) t: oX) < 0 and
K' r m, K' 'K"

(5.97)

(iv) for X~a) E n~E at time t; E [tm-E,tm) or ti E (tm,tmH] and X};!) E anl2

with tm = tm] and tm2

x(a) --I- X(O) lim V(I)(X(a) t± oX) = 0
K' r m, ± K' 'Ie' ,

t/('-ttm±

lim V(2)(X~a),t~,oX)<Ofora=I,2.
tt--7tm±

(5.98)

Proof': Once DefimtlOns 5.15, 5.16, 5.19 and 5.20 are used, the proof of thIS
theorem IS SImIlar to the proof of Theorem 5.1. •

(5.99)
for a -1,2 and r« - 0, 1,2, ...

(..)" X(a) r.H . + ( ] d X(O) :lr. . h ( )11 lor " E ~~a at time t" E tm,tm+E an m E a~~l2 WIt tm E tm] ,tm2
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X (a ) -L X(O) I' y(Sa) (X(a) + ') - 0" - I 2 Zk»:" 1m, Hfl " ,t",/\ - lorSa- " ... , a,
rt-----+tm+

y(2ka+I)(X(a) t+ oX) > 0 and lim y(2ka+I)(X(a) t+ oX)=O for a=l 2'x , 1(' + x , 1(' , ,

I", -tIm

(5.100)

X (a ) -L X(O) I' y(Sa) (X(a) - ') - 0" - I 2 Zk»:" I m, 1m " ,tIC , /\ - lorSa- " ... , a,
t1('-----+tm-

y(2ka+l)(X(a) t: oX) < 0 and lim y(2ka+I)(X(a) t: oX) = 0 for a = 1 2'x , 1(' 1C , 1(' , ,

r;;-+tm

Q:TIlTI
( . )" X(a) Q±c . - [ ) + ( ] d X(O) :lQIV lor " E a at trme t" E tm-c,tm- or t" E tm+,tm+c an mEa 12

with tm = tm] and tm2

X (a ) -LX(O) I' (Sa) (X(a) ± ') -0" -I 2 2k .x 1m, Hfl Y x ,t",/\ - lorsa- " ... , a+l,
t~-ttm±

lim y(2ka+2)(X(a) t± oX) < 0 for a = I 2± K' , 1(' , •

tK ---+tm±

(5.102)

Proof: Once Definitions 5.23, 5.24, 5.27 and 5.28 are used, the proof of this
theorem IS sImIlar to the proof of Theorem 5.2. •

From the two foregomg theorems, the condItIons for the desynchromzatlOn are
sImIlar to the condItIons for the synchromzatlOn. It tm] --+ -00 and tm2 --+ 00, such
a desynchromzatlOn of two dynamIcal systems to constraint m Eq.(5.3) IS absolute.
Once the resultant flows on the constraint boundary are repelled, such a desynchro­
nization can keep forever. To explain the two foregoing theorems, the desynchro­
mzatIon of two dynamIcal systems to a specIfic constramt are sketched m FIg. 5.9
through the resultant flows in the vicinity of the constraint boundary aQn. Any

point for desynchronization on the constraint boundary is expressed by (X~) ,tm ) .

In the two domams, the resultant flows m the vlclmty of the boundary are ex-

pressed by (X~alc' tmH) (a = 1,2). The onset point for the desynchronization is

denoted by (X~l, tm] ). For tm > tm] and tm --+ 00, all the resultant flows leave from
the constraint boundary, whIch means the desynchromzatlOn exists forever. How­
ever, if tm2 > tm] is finite, such desynchronization to the constraint will disap-

pear at a point (X~l ,tmJ. The desynchronization of two dynamical systems with
F(a) (x(a), t, 7r(a)) = F(O) (X(O) ,t, oX) to a specific constraint are different from those
with F(a) (x(a) ,t, 7r(a)) =I- F(O) (X(O), t, oX). Therefore, the conditions for the desyn­
chronization of two dynamical systems with discontinuous vector fields are dis­
cussed m the foIIowmg two theorems.

Theorem 5.7. For two dynamIcal systems m Eqs.(5.1) and (5.2) WIth constramt
in Eq.(5.3), there is a metric functional of Y (X, t, oX) = f( cp(X, t, oX)) in Eq.(5.29).

For X~a) E Qa a E 1,2 and X~) E aQ n at time tm, X~a) = X~). For any
small e > 0, there is a time interval [tm-c,tm) or (tm,tmH]' For X a E Q&-c at
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(a)

Fig. 5.9 (a) Cross section vIew and (b) 3-D vIew for the desynchromzatIon of slave and master
flows in vicinity of the boundary aQI2 in (n+ il)-dimensional state space. On the boundary, any

point for desynchronization is expressed by (xl:;J ,tm ) . In the two domains, the flows in the vicinity

of the boundary are expressed by (X~al£,tm+£) (a = 1,2). The onset point is (X;::; ,tmJ, depicted
by a red CIrcular symbol.

(ii) for time tm E [tmptmJ,

(a) (0) (1)( (a) )Xm±= Xm and V Xm±,tm±,A > 0 for a = 1,2,

(iii) with a penetration for time t = tmi, X~~) = X~/ (i = 1,2),

V(1)(X~~~,tmi+,A) = 0 and V(2)(X~~~,tmi+,A) > 0 for a E {I,2},

V(1)(X~Ltmi±,A)> 0 for f3 E {I,2} and f3 -I- a,

or with a synchronization for time t = tmi, X~~) = X~/,

(5.103)

(5.104)

(5.105)
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(5.107)

V(1)(X~~,tmi+,A) = 0 and V(Z)(X~~,tmi+,A) > 0 for f3 E {1,2} and f3 =I- a.
(5.106)

Proof: By using Definitions 5.15, 5.19-5.21, the proof of this theorem is similar
to the proof of Theorem 5.3. •

From the foregoing theorem, the desynchronization of two dynamical systems to
a speclfic constramt reqmres that the first-order denvatIve of the metnc functIOnal
be greater than zero. In additIon, the onset and vanzshlng conditIons of desynchro­
mzation m Eqs.(5.105) and (5.106) are the vanishing and onset conditIons for onset
of the penetration and synchronization with the desynchronization, respectively. The
following theorem will give the corresponding conditions for the desynchronization
of two dynamical systems to a speCificconstraint With the higher-order smgulanty.

Theorem 5.8. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,t, A) = f( cp(X, t, A)) in Eq.(5.29).

For X~a) E Qa a E 1,2 and X~) E aQn at time tm, X~a) = X~). For any
small e > 0, there is a time interval tm-e,tm or tm,tm+e' For X a E Q±e at
t E [tm-e,tm) or (tm,tm+eJ, suppose V(X a ,t,A) is era-continuous (ra 2: 2ka + 1)
and lV(ra+ Il(x(a) ,t, A)I < oo.lF(a) (x(a) ,t, 7r(a)) =I- IF(O) (X(O) ,t, A) at X(a) = X(O) for
X(a) E Qa and X(O) E aQiZ (a E {1,2}). The two dynamical systems in Eqs.(5.1)
and (5.2) to constraint in Eq.(5.3) is desynchronized of the (2k1 : 2kz)-type for time
t E [tml ,tm2] in the sense of the metric fucntional if and only if

(i) for X~a) = X~) and x(a) (t) E Qa (a = 1,2) at time t = tm E [tmptm2J,

( (a) ) ((0) )V Xm+,tm+,A = V Xm ,tm,A = 0,

(ii) for time tm E (tm1,tmJ,

(a) _ (0) (ra)( (a) ) _ ( _ )Xm+ -Xm and V Xm+,tm+,A -0 ra -1,2, ... ,2ka ,

V(Zka+l)(X(a) t A)<OforaE{12}'m+' m+, , ,

x}!!l = X~) and v(rfJl(x}!!l,tm+, A) = O(r{3 = 1,2, ... ,2k{3),

V (ZkfJ+1) (X~l,tm+, A) < 0 for f3 E {I, 2} and f3 =I- a.

(iii) with a (2ka : 2k{3 )-penetration flow for time t = tmil X~~) = X~?,

V(Sa) (X~~ttmi±' A) = 0 (sa = 1,2, ... ,2ka + 1)

and V(Zka+Z) (X(a±) tm.± A) > 0 for a E {I 2}'mj , 1 , , ,

V(SfJl(X~Ltmi+,A) = 0 (s{3 = 1,2, ... ,2k{3),

(5.108)

(5.109)
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or with a (2k[ : 2k2)-synchronization for time t = tm ;> X~~) = X~),

V(Sa) (X~~Ltmi±'.\) = 0 (sa = 1,2, ... ,2ka + 1)

and V(2ka+2) (X(a±) t .± .\) > 0 for a E {I 2}·m, s-m, , , ,

v(sfJ) (X~Ltmi±'.\) = 0 (sf3 = 1,2, ... ,2kf3 + 1),

V(2kfJ+2)(X~Ltmi±'.\) > 0 for f3 E {1,2} and f3 =1= a.
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(5.110)

Proof: Using Definitions 5.25, 5.27-5.29, the proof of this theorem is similar to
Theorem 5 4 •

In the foregoing theorem, the onset and vanishing conditions of the (2k[ : 2k2)­
desynchromzatIOn m Eqs.(5.109) and (5.110) are also the vanishing and onsets of
the (2ka : 2k{3)-penetration and the (2k[ : 2k2)-synchronization, respectively. The
(2k[ : 2k2)-desynchronization requires that the (2k[ + 1 : 2k2+ 1)-order derivatives
of the metric function should be greater than zero. The desynchronization of two dy­
namical systems to a specific constraint is presented in the previous two theorems,
as sketched m FIg.5.1O through the resultant flows m the vicimty of the constramt
boundary. On the constramt boundary, any pomt relatIve to desynchromzatIOn IS

expressed by (X;;;) ,tm ) . In the two domains, the flows in the vicinity of the con­

straint boundary are expressed by (X~~E' tmH) (a = 1,2). The onset and vanishing

points are (X~! ,tm ] ) and (X~) ,tm 2 ) with red and green circular symbols, which are
generated by the two penetration. Both of them belong to a sub-manifold on the con-

straint boundary in the (n+ /i)-dimensional state space. The points (X~! ,tm ] ) and

(X~) ,tm2 ) are starting and vanishing points of the resultant flow relative to desyn­
chronization. If tm2 ---+ 00, once the desynchronization exists, no any synchronization
for such two systems to a specific constraint can be achieved. The desynchroniza­
tion for IF(a) (X(a),t, 7r(a)) =1= IF(fl)(X(fl) ,t, 7r(fl)) can be investigated through the two
foregomg theorems. From the prevIOUS dIscussIOn, the penetratIOnof two dynamIcal
systems to a specIfic constramt IS also very Important for the onset and vamshmg of
synchronization and desynchronization.

5.3.7 Penetration to constraint

The synchronization and desynchronization of two dynamical systems to a specific
constraint have been discussed. Another important phenomenon is the penetration
of two dynamIcal systems to a specIfic constramt. The penetratIOn of two dynamIcal
systems with IF(a) (X(a) ,t, 7r(a)) = IF(O) (X(O), t,.\) (a = 1,2) to a specific constraint
cannot eXISt. However, If two dynamIcal systems to a specIfic constramt possess
discontinuous vector fields, the penetration can occur at the constraint boundary.
The corresponding theorems are presented as follows.
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Fig. 5.10 (a) A cross-sectIOn view and (6) a 3-D view of the desynchromzatIon of resultant flows
in vicinity of the constraint boundary (lfi12 in (n+ n)-dimensional state space. On the constant

boundary, any point for desynchronization is expressed by (X;;;),tm ) . In two domains, the resultant

flows in the vicinity of the constant boundary are expressed by (X~a~E,tm_£) (a = 1,2). The onset

and vanishing points are (X!:;; ,tm l ) and (X!:;] ,tm?) with red and green circular symbols.

(I)(x(a) ') 0 d (I) (X(f3) ') 0Y m_,tm-,/\ < an Y m±,tm±,/\ > , (5.111)

(..) . h hronizati X(a) X(o) X(f3) (. 1 2)11 WIt a sync roruzation at tnne t = tmi, mi- = m, = mi± I = , ,

Y(I)(X (f3 ) ') - 0 d y(2) (X(f3) ') 0mi±,tmi±,/\ - an mi±,tmi±,/\ >

for f3 E {1,2} and f3 =I- a,

(5.112)
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· h d hronization at ti X(a) X(O) X(f3) (. 1 2)or WIt a esync romzatIon at tIme t = tmi, mj+ = mj = mj+ 1= , ,

V(1)(X~%,tmj+''\) = 0 and V(2) (X~~~,tmj+''\) > 0 fora E {I,2},

v(1)(X~Ltmj+''\)> 0 for f3 E {1,2} and f3 -=I- a,
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(5.113)

· h . hi .. X(a) X(O) X(f3) (. 1 2)or WIt a SWItc mg penetratIOnat tIme t = tmi ' mj+ = mj = mj± I = , ,

V(1)(X~~k,tmj+''\) = 0 and V(2)(X~~k,tmj+''\) > 0 for a E {1,2},

v(1)(X~Ltmj±''\)= 0 and V(2)(X~Ltmj±''\) > 0

for f3 E { 1,2 ~ and f3 -=I- a

(5.114)

Proof: By using Definitions 5.17,5.19,5.20 and 5.22, the proof of this theorem
IS SImIlarto the proof of Theorem 5.3. •

(5.115)

a,f3 E {1,2} and a -=I- {3.

(ii) with a (2kl : 2k2)-synchronization at time t = tm p X~~~ = X}:;/ = X~~ (i =
1,2),

V(2ka)(x~~~,tmj_''\)= 0 and V(2ka+l)(x~~~,tmj_''\) < 0;

(5.116)

for a,{3 E {1,2} and {3 -=I- a,

· h (2k 2k) d hronizati X(a) X(O) X({3) (. 1 2)or WIt a 1: 2 - esync romzatIOnat t = tmi, mj+ = mj = mj+ 1= , ,
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for a, f3 E P, 2} and f3 =1= a,

or with a (2k{3 : 2ka ) penetration at time t = tmp X~~~ = X},?) = xie~ (i = 1,2),

V(2ka+l)(x(a) t. ..\) = Q and V(2k a+2)(X(a) t. ..\) > Q.
miT' m1+ , miT' m1=f' ,

(5.118)

for a,f3 E {I,2} and f3 =1= a.

Proof': Usmg DefimtIOns 5.25, 5.27, 5.28 and 5.30, the proof of this theorem is
similar to the proof of Theorem 5.4. •

In the foregoing theorem, the onset and vanishing conditions of the (2ka : 2k{3)­
penetration of the t E [tm l,tm2 ] to a specific constraint in Eqs.(5.1 16)-(5.1 18) are
also the vanishing and onset conditions of the (2kl : 2k2)-synchronization, the
(2kl : 2k2)-desynchronization and the (2k{3 : 2ka)-penetration, respectively. The
penetratIOn of the two dynamical systems to a specific constramt is sketched m
Fig.5.11. On the constraint boundary, any point for penetration is expressed by

FIg. 5.11 (a) A cross-section vIew and (b) a 3-D vIew of the penetration of resultant flows In

vicinity of the constraint boundary dQi2 in (n + ill-dimensional state space. On the constraint

boundary, any point for penetration is expressed by (X):;) ,tm ) . In two domains, the resultant flows

in the vicinity of the constraint boundary are expressed by (X~a1e,tm_e) (a = 1,2). The onset and

vanishing points are (X):;! ,tm l ) and (x):;l ,tm 2 ) with red and blue circular symbols.
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(X;;;),tm ) . In two domains, the incoming and outgoing resultant flows in the vicin­

ity of the constraint boundary are expressed by (X~U~e,tm_e) and (xY:le,tmH)

(a,f3 E {1,2} and a i- 13). The onset and vanishing points are (X~!,tml) and

(X;;;;,tm2 ) with red and blue circular symbols.

5.4 Multiple-constraint synchronization

In thISsectIOn,the synchromzatIOn of two dynamIcal systems to multIple constramts
wIll be dIscussed. Followmg the dIscussIOn of the synchromcIty of two dynamIcal
systems to a single constraint, the synchronicity of two dynamical systems with
multiple constraints can be investigated. Based on the metric functions of multiple
constramts, the defimtIOns relatIve to the synchromcIty of two dynamIcal systems to
multIple constramts wIll be defined. From the correspondmg defimtIOns, the corre­
spondmg theorems for the synchromcIty of two dynamIcal systems to the constraints
are presented.

5.4.1 Synchronicity to multiple-constraints

The e-domain in the vicinity of the intersected, constraint boundary will be defined
through the e-domain of the /h-constraint boundary. Based on such e-domain and
the mtersected constramt boundary, the synchromcIty of two dynamIcal systems to
multIple constraints wIll be dIscussed m thIS section,

Definition 5.31. For x~Uj,j) E Q(Uj,j) (aj E II and) E JL with II = {I,2} and

JL {I 2 f}) d X(O,j ) :l r. . X(Uj,j) X(O,j) F 11
= " ... , an m E u~~12(j) at tIme tm, m = m . or any sma

e > 0, there is a time interval [tm-e,tm) or (tm,tmH]' The neighborhood of the lh­
constraint boundary IS defined as

Q(~,j) = {X(Uj,j) IIIX(Uj,j)(t) - x;;;,j) II < O(Uj,j)AUj,j) >O,t E [tm-e,tm) } ,

Qt~,j) = X(Uj,j) IIX(Uj,j)(t) - X;;;,j) II < o(Uj,j), o(Uj,j) >O,t E (tm,tmH]

The sub-domams and the mtersected boundary are defined as

(5.119)

Qa == QUjU2"'U/ = nQ(u;,j) and dQI2(j ) == dQI2(12...I) = ndQ(u;f3;,j) (5.120)
1-1 1-1

ForX~a) E Qa(a = ala2'" al,aj E Hand} E JL) andX~) E dQI2(j ) (j = (12·· ·f))

at time tm,X~a) = X~). For any small e > 0, there is a time interval [tm-e,tm) or
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(tm,tmH]' The neighborhood of the intersected constraint boundary dQI2(j ) is de­
fined as

Q~e = {x(a) Illx(a)(t) - xf,?)11 < 0,0> O,t E [tm-e,tm)},

Qte = {x(a) Illx(a)(t) - xf,?)11 :::; 0,0> O,t E (tm,tmH]}.

whereo=. min (0(aj))withJL={1,2, ... ,I}andll={1,2}.
JEIL,ajEll J'

Definition 5.32. Three index sets are defined as

3 3

JL = UJL i and OJL i = 0,
iii I

(5.121)

(5.122)

(5.123)

Definition 5.33. For two dynamical systems m Eqs.(5.1) and (5.2) With constramts

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)

(aj Ell and j E JL with II = {1,2} and JL = {1,2, ... ,I}) and xf,?,j) E dQ12(j) at

time tm,x~aj,j) = xf,?,j). For any small e > 0, there is a time interval [tm-e,tm)
or (tm,tmHI. The systems in Eqs.(5.1) and (5.2) with constraints in Eq.(5.4) are
called an II-dimensIOnalsynchromzatIOn,h-dimensIOnal desynchromzatIOnand 13­
dimensional penetration for time tm E [tml ,tm2] in the sense of metric fucntiona1s

(i) iffor aj - I, 2 and j E llA,

(n:n)v(x(aj,j) t .A.) = (n:n)v(x(O,j) t .A.) = O'
J m- ,m-, J J m ,m, J '

(n:n)V(X(aj,j) t .A.) - (n:n)V(X(aj,j) t .A.) > O'
1 m-e' m-e, I 1 m- , m-, I '

(11) If tor aj = 1,2 and j E JL2,

(n:n)v(x(aj,j) t .A.) = (n:n)v(x(O,j) t .A.) = O'
J m+ ,m+, J J m ,m, J '

(n:n)V(X(aj,j) t .A.) - (n:n)V(X(aj,j) t .A.) > O'
J m+e' m+e, J J m+ , m+, J '

(iii) iffor aj,{3j E {I, 2}, aj # {3j and j E JL3,

(n:n)V(X(aj,j) t .A.) = (n:n)v(x(O,j) t .A.) = O'
J m- ,m-, J J m ,m, J '

(n:n)V(X(aj,j) t .A.) - (n:n)V(X(aj,j) t .A.) > O'
J m-e' m-e, J J m- , m-, J '

(n:n)v(x({3j,j) t .A.) = (n:n)v(x(O,j) t .A.) = O'
J m+ , m+, J J m ,m, J '

(n:n)v(x(f3j,j) t .A.) - (n:n)v(x(f3j,j) t .A.) > 0
J m+e' m+e, J J m+ ,m+, J .

(5.124)

(5.125)

(5.126)

(5.127)
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From the previous definition, among the I-constraints in Eq.(5.4), (i) there are
II-constraints to make the two dynamical systems be synchronized in the normal
directions of the corresponding constraints; (ii) there are h-constraints to make the
two dynamical systems be desynchromzed m the normal directIOns of the corre­
spondmg constraints; and (m) there are I3-constramts to make the two dynamical
systems be penetrated in the normal directions of the corresponding constraints. If
h = 13 = 0 and II = I, the two dynamical systems to all the I-constraints are syn­
chronized. If 13 = 0 and II +h = I, the two dynamical systems to all the I-constraints
are to be synchromzed with II-constramts and desynchromzed with I2-constramts.
It II - 0 and I2 + I3 - I, the two dynamical systems to all the I-constramts are to
be desynchromzed with I2-constramts and to be penetrated with I3-constramts. For
this case, the two dynamical systems cannot be synchronized any more for all the
I-constraints. If one of three types of synchronicity has changed the current state,
the synchromclty of the two dynamical systems will be changed. The three speCial
cases are useful. Therefore, three defimtlOnsfor the three speCialcases will be given
as follows'

Definition 5.34. For two dynamical systems m Eqs.(5.1) and (5.2) With constramts

in Eq.(5.4), there are (l + I)-metric functionals in Eq.(5.37). For x~Uj,j) E 0.(Uj,j)

(aj Ell and j E JL with II = {I,2} and JL = {I,2, ... ,I}) and X~,j) E a0.12(;) at
. X(Uj,j) X(O,j) F 11 0 h . . . 1 r )time tm, m = m . or any sma e > , t ere IS a time mtervatm-e,tm .

The two dynamical systems m Eqs.(5.1) and (5.2) With constraints m Eq.(5.4) are
called an I-dimensional synchronization for time tm E [tmJ, tm2] in the sense of metric
functlOnals d for aj = 1,2 and j E lL,

(n:n)v(x(Uj,j) t .A.) = (n:n)v(x(O,j) t .A.) = O:
J m- , m-, J J m , m- J '

(n:n)v(x(Uj,j) t .A.) - (n:n)v(x(Uj,j) t .A.) > 0
J m-e' m-e, J J m- , m-, J •

(5.128)

Definition 5.35. For two dynamical systems m Eqs.(5.1) and (5.2) With constramts

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~Uj,j) E 0.(Uj,j)

(aj Ell and j E JL with II = {I,2} and JL = {I,2, ... ,I}) and X~,j) E a0.12U) at

time tm,x~Uj,j) = X~,j). For any small e > 0, there is a time interval (tm,tm+e]' The
two dynamical systems m Eqs.(5.1) and (5.2) With constramts m Eq.(5.4) are caIIed
an I-dimensional desynchronization for time tm E [tml, tm2] in the sense of metric
functlOnals d for aj E II and j E lL,

(n:n)v(x(Uj,j) t .A.) = (n:n)v(x(O,j) t .A.) = O:
J m+ , m+, J J m , m- J '

(n:n)V(x(Uj,j) t .A.) - (n:n)V(x(Uj,j) t .A.) > 0
1 m+e' m+e, 1 1 m+ , m+, 1 .

(5.129)

Definition 5.36. For two dynamical systems m Eqs.(5.1) and (5.2) With constramts

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~Uj,j) E 0.(Uj,j)



264 Albert C.l. Luo

(aj E IT and j E JL with IT = {I,2} and JL = {I,2, ... ,i}) and X}:;,j) E aQl2(;) at

time tm,x~aj,j) = X}:;,j). For any small £ > 0, there is a time interval [tm-E,tm) or
(tm,tm+e]' The two dynamical systems in Eqs.(5.1) and (5.2) with constraints in
Eq.(5.4) are called an i-dimensional penetration for time tm E [tm1,tm2] in the sense
of metric functionals iffor aj, /3j E IT and j E JL with aj =I- /3j,

(n:fi)V(x(aj,j) t A') = (n:fi)v(x(O,j) t A') = 0
J m- , m-, J J m , ms J ,

(n:fi)V(X(aj,j) t A') - (n:fi)V(X(aj,j) t A') > O·
J m-E' m-E, J J m- , m-, J '

(n:fi)v(x(f3j,j) t A') = (n:fi)v(x(O,j) t A') = 0
J m+ , m+, J J m , m- J ,

(n:fi)v(x({3j,j) t A') - (n:fi)v(x({3j,j) t A') > 0
I m+E' m+E, I I m+ , m+, I .

5.4.2 Singularity to constraints

(5.130)

(5.131)

As discussed in the synchronization of two dynamical systems to the single con­
stramt, the smgulanty for a flow of the two dynamIcal systems m Eqs.(5.l) and
(5.2) to one of the constramts m Eq.(5.4) can be descnbed. The tangency of a resul­
tant flow to one of I-constramt boundanes IS presented first, and then the vamshmg
and onset of the synchronization of two dynamical systems to the /h-constraint
boundary of the i-constraint boundaries will be presented.

Definition 5.37. For two dynamical systems in Eqs.(5.I) and (5.2) with constraints

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(a;,j)

(aj E IT and j E JL with IT = {I,2} and JL = {I,2, ... ,i}) and X};:,j) E aQl2U) at

time tm,x~aj,j) = X}:;,j). For any small £ > 0, there is a time interval tm-E,tm or
(tm,tm+e]' At X aj,j E Q±(aE .) for time t E [tm-E,tm) or (tm,tm+e], the functional,,)

( -) (.) r ( -) (ra· +1) ( .)
n:n V.(X aN t A') is C aj -continuous and I n:n V } (X aN t A') I < 00 (ra >

J " J j" J j-

2). A flow of the resultant system for two dynamical systems in Eqs.(5.I) and (5.2)
with i-constraints in Eq.(5.4) is called to be tangentiai to the /h -constraint boundary
for time tm E [tm1,tm2J in the sense of metric functionals if all j E JL and aj E IT,

(5.132)

Definition 5.38. For two dynamical systems in Eqs.(5.I) and (5.2) with constraints

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(a;,j)
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(aj E IT and j E JL with IT = {I,2} and JL = {I,2, ... ,l}) and X}:;,j) E aQl2(il at
. X(aj,j) X(O,j) F II 0 h . . . ItIme tm, m = m . or any sma e > , t ere IS a tIme Illterva tm-e,tm

or (tm,tm+e]' At X aj,j E Q±(ac .) for t E [tm-e,tm) or (tm,tm+e], the functional,,)

( -) (.) r ( -) (ra· +1) ( .)
n:n V.(X aN t A') is C aj -continuous and I n:n V j (X aN t A') I < 00 (ra >

J " J i" J j-

2). (i) The synchronization of the two dynamical systems in Eqs.(5.I) and (5.2) with
the ;th-constraint in Eq.(5.4) is called to be vanished to form a penetration on the
/h -constraint boundary at time tm in the sense of metric functionals if for aj, f3 j E IT
and a =1= {3 with j E JL,

(n:n)V(X(aj,j) t A') = (n:n)v(x(f3j,j) t A')
J m± , m±, J J m- , m-, J

- (n:n)v(x(O,j) t A') - O·- 1 m ,m, 1 - ,

(5.133)

(11) The synchromzatIOn of the two dynamIcal systems IIIEqs.(5.l) and (5.2) WIth
the ;th-constraint in Eq.(5.4) is called to be onset from the penetration on the ;th­
constraint boundary at time tm in the sense of metric functionals if for aj, f3j E IT and
a =1= f3 with; E JL,

(n:n)V·(X(a) t ') = (n:n)v·(x({3) t ')
J m-' m-,A J m±, m±,A

- (n:n)v(x(O) t A) - O·- ,m, m, - ,
(n:n)v(1)(x({3) t A) = O·

J m±, m±, , (5.134)

Definition 5.39. For two dynamIcal systems III Eqs.(5.1) and (5.2) WIth con­

straints in Eq.(5.4), there are (l + I)-metric functionals in Eq.(5.37). For x~aj,j) E

Q(aj,j) (aj E IT and j E JL with IT = {I,2} and JL = {I,2, ... ,l}) and X};;,j) E

aQl2U) at time tm, x~aj,j) = X}:;,j). For any small e > 0, there is a time interval

[tm-e,tm) or (tm,tm+e]' At X(aj,j) E Q±(:' .) for t E [tm-e,tm) or (tm,tm+eJ, the func-
j,J

( -) (.) r ( -) (ra .+I ) ( .)tional n:n V(X aN t A') is C aj -continuous and I n:n V j (X aN t A') I < 00
J " J j" J

(raj ~ 2). (i) The synchronization of the two dynamical systems in Eqs.(5.1) and

(5.2) with the /h-constraint in Eq.(5.4) are called to be onset from the desynchro­
nization on the /h_ constraint boundary at time tm in the sense of metric functionals
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iffor aj, f3jEll and a =I- f3 with j E JL,

(n:n)y.(x(aj,j) t A') = (n:n)y.(x(f3j,j) t A')1 m± ,m±, 1 1 m± ,m±, 1

= (n:n)y.(x(O,j) t A) = O:} m ,m, ,

(n:n)v(1)(X(aj,j) t A') = O:
J m±' m±, J '

(n:n)y.(X(aj,j) t A') - (n:n)y.(X(aj,j) t A') > O·1 m±E' m±E, 1 1 m± ,m±, 1 '

(n:n)y.(x(f3j,j) t A') - (n:n)y.(x(f3j,j) t A') > 0
J m±E' m±E, J J m± ,m±, J •
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(5.135)

(ii) The synchronization ofthe two dynamical systems in Eqs.(5.l) and (5.2) with
the /h-constraint in Eq.(5.4) is called to be vanished to form the desynchronization
on the /h-constraint boundary at time tm in the sense of metric functionals if for
aj,{3j Ell and a =I- {3 with j E JL,

- (n:n)v·(x(O,j) t ,.) - O·- 1 m ,m,A, - ,

(5.136)

Definition 5.40. For two dynamical systems in Eqs.(5.l) and (5.2) with constraints

in Eq.(5.4), there are (l + I)-metric functionals in Eq.(5.37). For x~aj,j) E Q(a;,j)

(aj Ell and j E JL with II = {I,2} and JL = {I,2, ... ,l}) and X};:,j) E aQ]2(;) at
. X(aj,j) X(O,j) F 11 0 h . . . 1tIme tm, m = m . or any sma e > , t ere IS a tIme mterva tm-E,tm

or (tm,tm+c]. At X aj,j E Q±(; .) for t E [tm-E,tm) or (tm,tm+c], the functional
"j

( -) (.) r ( -) (ra· +1) ( .)
n:n V.(X aN t A') is C aj -continuous and I n:n V } (X aN t A') I < 00 (ra >

J " J j" J j-

2). (i) The desynchronization of the two dynamical systems in Eqs.(5.I) and (5.2)
with the /h-constraint in Eq.(5.4) is called to be vanished to form a penetration on
the /h-constraint boundary at time tm if for aj, {3j E II and a =I- {3 with j E JL,

= (n:n)y.(x(O,j) t A') = O:
J m ,m, J '

(5.137)

(n:n)y.(x(aj,j) t A') - (n:n)y.(X(aj,j) t A') > o.
J m±E' m±E, J J m± ,m±'J '

(n:n)y.(x(f3j,j) t A') - (n:n)y.(x(f3j,j) t A') > 0
J m+E' m+E, J J m+ ,m+, J •
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(ii) The desynchronization of the two dynamical systems in E9s.(5.1) and (5.2)
with the /h-constraint in E9.(5.4) is called to be onset from the /h-penetration flow
on the /h-constraint boundary at time tm in the sense of metric functionals if for
aj,{3j E IT and a i= {3 with j E JL,

(n:ii)V(x(a) t A) = (n:ii)v(x({3) t A)
j m=F' m=F, j m+, m+,

- (n:ii)y·(x(O) t ') - O·- ,m ,m,/\ - ,

(n:ii)y(1)(X({3) t A) = O·
I m+, m+, ,

(n:ii)y·(x(a) ') (n:ii)y·(x(a) ') O.j m=Fe,tm=Fe,A - j m=F,tm=F,A > ,
(n:ii)y (x({3) t ') (n:ii)y (x({3) t ') > 0; m+e' m+e,A - ; m+' m+,A .

(5.138)

Definition 5.41. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints

in Eq.(5.4), there are (l + I)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)

(aj E IT and j E JL with IT = {1,2} and JL = {1,2, ... ,l}) and X};;,j) E dQ12(j) at

time tm,x~aj,j) = X};;,j). For any small e > 0, there is a time interval [tm-e,tm)
or (tm,tm+c]. At X(aj,j) E Q(~,j) for t E [tm-e,tm) or (tm,tm+c], the functional

( -) (.) r ( -) (ra· +1) ( .)
n:n Y.(X ajoJ t A') is C aj -continuous and I n:n v. } (X ajoJ t A') I < oo(ra >j " j j" j j-

2). The penetration of the two dynamical systems in Eqs.(5.1) and (5.2) with the
/h-constraint in Eq.(5.4) is called to be switched to form a new penetration on the
/h-constraint boundary at time tm in the sense of metric functionals if for a j, {3 j E IT
and a i= {3 with j E JL,

(n:ii)Y.(X(aj,j) t A') = (n:ii)y.(x({3j,j) t A')
j m=F ' m=F, j j m± , m±, j

= (n:ii)v(x(O,j) t A') = O·
} m ,m, } '

(n:ii)y(1)(x(aj,j) t A') = (n:ii)y(1) (x({3j,j) t A') = O·
j m=F ,m=F, j j m± ,m±, j ,

(n:ii)Y.(X(aj,j) t A') - (n:ii)Y.(X(aj,j) t A') > O·
j m=Fe' m=Fe, j j m=F ' m=F, j ,

(n:ii)y·(x({3j,j) t ' .) - (n:ii)y·(x({3j,j) t ' .) > 0j m±e' m±e,Aj j m± , m±,Aj .

5.4.3 Synchronicity with singularity to multiple constraints

(5.139)

As discussed m a smgle constramt, the synchromclty of two dynamical systems
to multiple constraints With higher-order smgulanty can be descnbed through the
followmg defimtlOns.

Definition 5.42. For two dynamical systems m E9S.(5.1) and (5.2) With constramts

in Eq.(5.4), there are (l + I)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)
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(aj E IT and j E JL with IT = {1,2} and JL = {1,2, ... ,i},JL = JL] UJL2UJL3) and

x~,j) E aQ]2U) at time tm, x~aj,j) = x~,j). For any small e > 0, there is a time inter­

val [tm-E,tm) or (tm,tm+c]. AtX(aj,j) E Q±(: .) fort E [tm-E,tm) or(tm,tm+c], thefunc-
"l

( - ) (.) r ( -) (ra'+I) ( .)tional n:n Yj(X aN ,t,Aj) is C aj-continuous and In:n Yj J (X aN ,t,Aj)1 < 00

(raj ~ 2ka ; + I). The two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4) is called an i]-dimensional synchronization with the (2kaj : 2k{3)-order
singularity for all j E JL], h-dimensional desynchronization with the (2kaj : 2k{3)­

order singularity for all j E JL2, and i3-dimensiona1 penetration with the (2ka j :

2k{3)-order singularity for all j E JL3 for time tm E [tml, tm2] in the sense of met­
ric functionals

(1) If tor a; = 1,2 and j E 1L],

(n:fi)V(x(aj,j) t A') = (n:fi)v(x(O,j) t A') = o.j m- , m-, j j m , ms j ,

(n:fi)y(saj) (X(aj,j) ,.) -0 l' -012 2k'; m- ,tm-,Aj - ,lorsaj-" , ... , aj'

(11) If tor a; - 1,2 and j E 1L2,

(n:fi)y(saj) (X(aj,j) ")-01' -012 2k'j m+ ,tm+,Aj - lorsaj - , , , ... , aj'

(iii) iffor aj, /3j E 1,2 and j E JL3 with aj =I- /3j,

(n:fi)V(x(aj,j) t A') = (n:fi)v(x(O,j) t A') = o.j m- , m-, j j m , ms j ,

(n:fi)y(saj) (X(aj,j) ,.) -0 l' -012 2k'; m- ,tm-,Aj - ,lorsaj-" , ... , aj'

(n:fi)v(x(!3j,j) t A') = (n:fi)v(x(O,j) t A') = o.
1 m+ , m+, "m , m, 1 '

(n:fi)y(SfJ) (X({3j,j) , .) - 0 l' - 1 2 Zk«:j m+ ,tm+,Aj - , lOrS{3j - , , ... , {3j'

(5.140)

(5.141)

(5.142)

(5.143)
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Consider two dynamical systems with I-constraints to be synchronized, or desyn­
chronized or penetrated with higher-order singularity. The corresponding descrip­
tions for such synchronicity will be given as follows.

Definition 5.43. For two dynamIcal systems m Eqs.(5.I) and (5.2) wIth con­

straints in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For x~aj,j) E

Q(aj,j) (aj E II and jElL with II = {I,2} and lL = {I,2, ... ,I}) and X~,j) E

aQnU) at time tm,x~aj,j) = X~,j). For any small [0 > 0, there is a time interval

[tm-e,tm) or (tm,tm+e]. At X(aj,j) E Q(~,j) for t E [tm-e,tm) or(tm,tm+eJ, the func-

( -) (.) r ( -) (ra+d ( .)tional n:n Y-(X aN t A') is C aj -continuous and I n:n v. 1 (X aN t A') I < 00
] " ] I" ]

(raj ~ 2ka ; + 1). The two dynamical systems in Eqs.(5.I) and (5.2) with constraints
in Eq.(5.4) is called an I-dimensional synchronization with the (2k aj : 2kJ3Jorder
singularity for all jElL for time tm E [tmJ,tm2] in the sense of metric functionals if
tor a; - 1,2 and jElL,

(n:fi)y-(x(aj,j) t A') = (n:fi)y-(x(O,j) t A') = o.
I m- ,m-, l I m ,m,] ,

(n:fi)y(saj) (X(aj,j) ,.) -0 + -012 2k'; m- ,tm-,A] - ,10rSaj-" , ... , aj'

(n:fi)y-(x(aj,j) t A') - (n:fi)Y-(X(aj,j) t A') > 0
I m-e' m-e, l I m- ,m-,] .

(5.144)

Definition 5.44. For two dynamIcal systems m Eqs.(5.1) and (5.2) wIth constramts

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)

(aj Ell and jElL with II = {I,2} and lL = {I,2, ... ,I}) and X~,j) E aQnU) at
. X(aj,j) X(O,j) F 11 0 h . . . 1tIme tm, m = m . or any sma [0 > , t ere IS a tIme mterva tm-e,tm

or (tm,tm+e]. At X aj,j E Q±(E .) for t E [tm-e,tm) or (tm,tm+e], the functionalal ,]

( -) (.) r ( -) (ra· +1) ( .)
n:n Yj(X aN ,t, Aj) is C aj -continuous and I n:n Yj 1 (X aN ,t, Aj) I < 00 (raj ~

2ka; + 1). The two dynamical systems in Eqs.(5.I) and (5.2) with constraints in
Eq.(5.4) is called an I-dimensional desynchronization with the (2kaj : 2kJ3)-order
singularity for all jElL for time tm E [tmJ,tm2] in the sense of metric functionals if
tor aj = 1,2 and j E lL,

(n:fi)Y.(X(aj,j) t A') = (n:fi)Y·(X(O,j) t A') = O:
I m+ ,m+, I 1m, m- I '

(n:fi)y(saj) (X(aj,j) ")-0+ -012 2k'j m+ ,tm+,A] - 10rSaj - , " ... , aj'

(n:fi)Y.(X(aj,j) t A') - (n:fi)Y.(X(aj,j) t A') > 0
I m+e' m+e, I I m+ ,m+, I .

(5.145)

Definition 5.45. For two dynamical systems in Eqs.(5.I) and (5.2) with constraints

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)
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(aj E IT and j E JL with IT = {1,2} and JL = {1,2, ... ,i}) and X}:;,j) E dQ12(il at
. X(aj,j) X(O,j) F II 0 h . . . ItIme tm, m = m . or any sma e > , t ere IS a tIme mterva tm-e,tm

or (tm,tm+e]' At X aj,j E Q±(; _) for t E [tm-e,tm) or (tm,tm+e], the functional,,)

( -) (-) r ( -) (ra -+1) ( -)
n:n V-(X aN t A -) is C aj -continuous and I n:n V } (X aN t A -)I < 00 (ra >] " ] j" ] j-

2kaj + I). The two dynamical systems in Eqs.(5.1) and (5.2) with constraints in
Eq.(5.4) is called an i-dimensional penetration with the (2kaj : 2kp)-order singu­
larity for all j E JL for time tm E [tm! ,tm2] in the sense of metric functionals if for
aj,f3j E 1,2 and j E JL with aj =1= f3j.

(n:fi)V(x(aj,j) t A -) = (n:fi)v(x(O,j) t A -) = O·] m- , m-, ] ] m , mv r v] ,

(n:fi)V(saj) (X(aj,j) '- _) -0 c -012 Zk,«:
j m- ,tm-,A] - ,lorsaj-" , ... , aj'

(n:fi)V (sf3)(X(Pj,j) '- _) - 0 c - 0 1 2 2k'
j m+ ,tm+,A] - ,10rSPj-" , ... , Pj'

5.4.4 Higher-order singularity to constraints

(5.146)

(5.147)

Since a resultant flow of two dynamical systems to one of i-constraints possesses
the higher-order singularity, the synchronicity of the two dynamical systems to the i­
constramts wIll be changed. In thISsectIOn,the hIgher-order smgularIty of a resultant
flow of two dynamical systems to the /h-constraint boundary from the i-constraints
WIll be presented herem.

Definition 5.46. For two dynamIcal systems m Eqs.(5.1) and (5.2) wIth constramts

in Eq.(5.4), there are (l + I)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)

(aj E IT and j E JL with IT = {I,2} and JL = {I,2, .. ·,i}) and x~,j) E dQ12(il at
. X(aj,j) X(O,j) F II 0 h . . . ItIme tm, m = m . or any sma e > , t ere IS a tIme mterva tm-e,tm

or (tm,tm+e]. At X aj,j E «: _) for t E [tm-e,tm) or (tm,tm+eJ, the functional,,)

( -) (-) r ( -) (ra -+I) ( -)
n:n V-(X aN t A -) is C aj -continuous and I n:n V } (X aN t A .) I < 00 (ra >] " ] j" ] j-

2kaJ A flow of the resultant system of two dynamical systems in Eqs.(5.I) and

(5.2) with i-constraints in Eq.(5.4) is called to be tangentiai to the /h-constraint
boundary with the (2ka; - 1)th-order for time tm E [tm! ,tm2] in the sense of metric
functIOnals If for j E lL and aj E IT,
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(n:n)v(x(aj,j) t A -) = (n:n)v(x(O,j) t A -) = O:} m± ' m±, } } m , m,} ,

(n:n)v(saj) (X(aj,j) '-)-0" -12 2k -1'j m± ,tm±,A} - lorsa j - , '00" aj ,

271

(5.148)

Definition 5.47. For two dynamical systems in Eqs.(5.I) and (5.2) with constraints

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)

(aj E II and j E IL with II = {I,2} and IL = {I,2, ,l}) and X};;,j) E dQ12(j) at

time tm,x~aj,j) = X};;,j). For any small e > 0, there is a time interval [tm-E,tm)
or (tm,tm+c]. At X(aj,j) E Q±(; _) for t E [tm-E,tm) or (tm,tm+c], the functional,,)

( -) (-) r ( -) (ra -+1) ( -)
n:n V-(X ajoJ t A -) is C aj -continuous and I n:n V } (X ajoJ t A -)I < 00 (ra >) " } i" } j-

2kaj + 1).

(i) The synchronization of the (2kaj : 2kf3j )-order of the two dynamical systems

in Eqs.(5.1) and (5.2) with the ;t6-constraint in Eq.(5.4) is said to be vanished to
form the penetration on the /h-constraint boundary from domain Q(a;j) to Q(f3;j) at
time tm in the sense of metric functionals if for ai, f3 i E II and a i= f3 with j E IL,

= (n:n)v(x(O,j) t A -) = o.
} m s-m» } '

(n:n)v(saj) (x(aj,j) '-) -0" -1 2 uc.:j m- ,tm-,A} - lOrSaj - , '00" aj'

(n:n)V (sfJ) (x(f3j,j) , _) - 0" - 1 2 2k l'i m± ,tm±,A} - lorsf3j-' '00" f3;+'

(5.149)

(ii) The synchronization of the (2kaj : 2kf3;)-order of the two dynamical systems

in Eqs.(5.I) and (5.2) with the /6 constraint in Eq.(5.4) is said to be onset from the
penetration on the /6 constraint boundary from domain Q(aj,j) to Q(f3j,j) at time tm

in the sense of metric functionals iffor aj, f3j E II and a i= f3 with j E IL,

(n:n)v(x(a) t A) = (n:n)v(x({3) t A)
} m-' m-, } m±' m±,

- (n:n)v-(x(O) t ') - O:- 1 m, m,/\ - ,

(n:n)v(saj) (x(aj,j) , .) - 0" - 1 2 ... 2k .
j m- ,tm-,A} - lor Saj - " , aj'

(5.150a)
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(n:n)y(Sf3) (X([3j,j) , .) - 0 + - 1 2 ... 2k I:i m+ ,tm+,A} - lors[3; - " , [3;+ ,
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(n:n)Yj(x~ale,tm_e,.A) - (n:n)Yj(X~al,tm_,.A) > 0; (5.150b)

(n:n)y (X(f3) t ') (n:n)y (X(f3) t ') > 0j m±e' m±e,A - j m±, m±,A .

Definition 5.48. For two dynamical systems in Eqs.(5.I) and (5.2) with constraints

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(a;,j)

(aj E II and j E IL with II = {I,2} and IL = {I,2, ... ,l}) and X};;,j) E liQ 12(j) at

time tm,x~aj,j) = X};;,j). For any small e > 0, there is a time interval [tm-e,tm)
or (tm,tm+e]' At X(aj,j) E Q±(aE .) for t E [tm-e,tm) or (tm,tm+eJ, the functional,,)

( -) (.) r ( -) (ra· +1) ( .)
n:n Y.(X aj,} t.A·) is C aj -continuous and I n:n v } (X aj,) t.A·) I < 00 (ra >) " } j" } j-

2kaj + 1).

(i) The (2k aj : 2k[3)-synchronization of the two dynamical systems in Eqs.(5.1)

and (5.2) with the ;th-constraint in Eq.(5.4) is called to be onset from the desynchro­
nization on the ;th-constraint boundary at time tm in the sense of metric functionals
if for aj,/3j E II and aj i= /3j with j E IL,

(n:n)y.(x(aj,j) t .A.) = (n:n)y.(x(f3j,j) t .A.)
} m± , m±, } } m± , m±, }

- (n:n)y.(x(O,j) t ,.) - O'- 1 m ,m,A, - ,

(n:n)y(saj) (X(aj,j) ,.) -0+ -1 2··· 2k I:j m± ,tm±,A} - lorSaj - " , aj+ ,

(n:n)y(Sf3) (X([3j,j) , .) - 0 + - 1 2 ... 2k I:
j m± ,tm±,A} - lor S[3j - " , [3j + ,

(n:n)Y.(X(aj,j) t .A.) - (n:n)Y.(X(aj,j) t .A.) > O'
1 m±e' m±e, 1 1 m± , m±, 1 '

(n:n)y.(x(f3j,j) t .A.) - (n:n)y.(x(f3j,j) t .A.) > 0
} m±e' m±e, } } m± , m±,} .

(5.151)

(ii) The (2ka : 2k[3. )-synchronization of the two dynamical systems in Eqs.(5.I)
} I

and (5.2) with the /h-constraint in Eq.(5.4) is said to be vanishing to form the desyn­
chronization on the ;th-constraint boundary at time tm in the sense of metric func­
tionals iffor aj, f3j E II and a i= f3 with j E IL,

(n:n)y. X aj,j t .A. - (n:n)y.
) m+' m+, } - }

= (n:n)y. (x(O,j) t Ii- .) = O·
} _ m , m, } _ '

(n:n)y(saj) (x(aj,j) ")-0+ -12 2k I:j m+ ,tm+,A} - lOrSaj - , , ... , aj+ ,

(n:n)y(Sf3) (x([3j,j) , .) - 0 + - 1 2 2k l'i m+ ,tm+,A} - lors[3; - , , ... , [3;+,

(n:n)y.(x(aj,j) t .A.) - (n:n)y.(x(aj,j) t .A.) > O·
} m+e' m+e, } } m+ ' m+,} ,

(n:n)y.(x(f3j,j) t .A.) - (n:n)y.(x(f3j,j) t .A.) > 0
} m+e' m+e, } } m+ ' m+,} .

(5.152)
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Definition 5.49. For two dynamical systems m Eqs.(5.1) and (5.2) with constramts

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)

(aj E IT and jEll with IT = {I,2} and lL = {I,2, ... ,!}) and X~,j) E aQl2U) at

time tm,x~aj,j) = X~,j). For any small e > 0, there is a time interval [tm-E,tm)
or (tm,tm+c]. At X(aj,j) E Q±(E .) for t E [tm-E,tm) or (tm,tm+c], the functional

aj,j

( -) (.) r ( -) (ra· +1) ( .)
n:n Vj(X ajoJ ,t, >'j) is C aj -continuous and I n:n V j j (X ajoJ , t, >'j) I < 00 (raj :::::

2ka;+ 1).

(i) The desynchronization of the (2kaj : 2k[3; )-order of the two dynamical systems

in Eqs.(5.I) and (5.2) with the /h-constraint in Eq.(5.4) is called to be vanished to
form the penetration on the /h-constraint boundary from domain Q(a;,j) to Q([3;,j)

at time tm in the sense of metric functionals if for aj, f3j E IT and a =I- f3 with jEll,

(n:n)v(x(aj,j) t >..) = (n:n)v(x([3j,j) t >..)
j m± , m±, j j m+ , m+, j

= (n:n)v(x(O,j) t >..) = O·
j m , m- j ,

(n:n)v(saj) (X(aj,j) ")-0+ -12 2k I:j m± ,tm±,Aj - lOrSaj - , , ... , aj+ ,

(n:n)V (sfJ) (X([3j,j) , .) - 0 + - 1 2 2k'i m+ ,tm+,Aj - lors[3; - , , ... , [3;'

(n:n)v(x(J3j,j) t >..)- (n:n)v(x(J3j,j) t >..) > 0
j m+E' m+E, j j m+ , m+, j .

(ii) The desynchronization of the (2ka j : 2k[3)-order of the two dynamical sys­

tems in Eqs.(5.I) and (5.2) with the /h-constraint in Eq.(5.4) is said to be onset from
the penetration on the /h-constraint boundary from domain Q(a;,j) to Q([3;,j) at time
tm in the sense of metric functionals if for ai, f3 i E IT and a =I- f3 with jEll,

(n:n)v(x(a) t >.) = (n:n)v(x(f3) t >.)
j m±' m±, j m+' m+,

= (n:n)v(x(O) t >.) = O·} m, m- ,

(n:n)v(saj) (x(aj,j) ")-0+ -12 2k I:j m± ,tm±,Aj - lorsaj - , , ... , aj+ ,

(n:n)V (sfJ) (x([3j,j) , .) - 0 + - 1 2 2k'i m+ ,tm+,Aj - lors[3; - , , ... , [3;'

(n:n)V (X(a) ') (n:n)V (X(a) ') o.j m±E,tm±E,A - j m±,tm±,A > ,

(n:n)v (X(f3) t ') (n:n)v (X(f3) t ') > 0i m+E' m+E,A - i m+' m+,A .



274 Albert C.J. Luo

Definition 5.50. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)

(aj E IT and j E JL with IT = {1,2} and JL = {1,2, ... ,!}) and X};;,j) E aQl2U) at
. X(aj,j) X(O,j) F II 0 h . . . ItIme tm, m = m . or any sma e > , t ere IS a tIme mterva tm-e,tm

or (tm,tm+e]' At X aj,j E Q(; _) for t E [tm-e,tm) or (tm,tm+e], the functional,,)

( -) (-) r ( -) (ra -+1) ( -)
n:n V-(X aN t A -) is C aj -continuous and I n:n V } (X aN t A -) I < 00 (ra >] " ] i" ] j-

2kaj + I). The (2kaj : 2kp)-penetration of the two dynamical systems in Eqs.(5.1)

and (5.2) with the /h-constraint in Eq.(5.4) is called to be switched from the
(2kpj : 2kaJ-penetration on the /h-constraint boundary at time tm in the sense of
metric functionals iffor aj,/3j E IT and aj i= /3j with j E JL,

(n:n)v(x(aj,j) t A -) = (n:n)v(x(Pj,j) t A-)] m:r: ' m:r:, ] ] m± , m±, ]

- (n:n)v-(x(O,j) t '-) - O·- 1 m ,m,A, - ,

(n:n)v(saj) (X(aj,j) '-)-0+ -12 2k I'j m:r: ,tm:r:,A] - 10rSaj - , , ... , aj+ ,

(n:n)V (sfJ) (X(Pj,j) , -) - 0 + - 1 2 2k l'i m± ,tm±,A] - 10rSpj - , , ... , Pj+'

(n:n)v(x(J3j,j) t A -) - (n:n)v(x(J3j,j) t A -) > 0
1 m±e' m±e, 1 1 m± , m±, 1 •

5.4.5 Synchronization to aU constraints

In this section, from the definitions for the synchronicity of two dynamical sys­
tems with multiple constraints, the necessary and sufficient conditions for such syn­
chromcIty of the two dynamIcal systems to multI-constramts wIll be dIscussed. Be­
cause of many constramts for two dynamIcal systems, the synchromcIty for each
one of constraints should be discussed

Theorem 5.11. For two dynamIcal systems m Eqs.(5.1) and (5.2) WIth constramts

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)

(aj E IT and j E JL with IT = {I,2} and JL = {I,2, ... ,l}) and X};;,j) E aQl2( j) at

time tm, x~aj,j) = X};;,j). For any small e > 0, there is a time interval tm-e, tm or
(tm,tm+e]' For X aj,j E Q(aj,j) and X O,j E aQl2U)' at X aj,j = X O,j , the con-

dition dsa)JF(aj,j)(X(aj,j),t,n(aj,j)) = dsa)JF(O,j)(X(O,j),t,Aj} (saj = 0,1,2, ... )
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holds. The two dynamical systems in Eqs.(5.1) and (5.2) to i-constraints in Eq.(5.4)
are synchronized with i-dimensions for time t E [tm] ,tm2] in the sense of metric
functionals if and only if

(ij f II 0 JL X(aj,j) rv d X(O,j) :lr." .i lor a } E ,m E ~~(ai,j) an m E a~~i2(j) lor any tIme tm,

(5.156)

for aj = 1,2 and Saj = 0, 1,2, ...

( 00 ) " II 0 JL X(aj,j) r.-£ . [ ) d X(o,j):lr. 0h
11 lor a } E ,I( E ~~(aj,j) at time t;; E tm-£,tm an m E U~~12(j) Wit

tm E (tm] ,tm2),

(5.157)

(iii) for the /h-constraint (j E JL),X~aj,j) E Q+(e ') at time ti E (tm,tm+cJ and
aJ,J

X(O,j) :lr. . h d [ Jm E a~~12(;) Wit tm 'F tm],tm2 ,

(5.158)

( 0 j f h ·th . (0 JL) X(aj,j) r.+c . - [ ) +tv lor t eJ -constramt } E ,I( E ~~( , ') at time tl( E tm-£,tm- ,tl( E
aJ,J

( J d X (O,j ) :l r. 0 h - dtm+,tm+£ an m E U~~12(;) Wit tm - tm) an tm2,

x(a) --I- X(O) lim (n:n)v(1)(X(a) t± A) = °
I( r m, ± J 1(, 1(' ,

tl(---+tm±

lim (n:n)v(2)(X(a) t± A) <°for a, = 1 2
± j 1(, 1(' J' •

t K -+tm±

(5.159)

Proof: The proof is similar to the proof of Theorem 5.1 for each j E JL. For
all j E JL, if the conditIons m Eqs.(5.156) and (5.157) are satIsfied, from DefimtlOn
5.34, the two dynamical systems m Eqs.(5.1) and (5.2) are synchromzed for tIme t E
(tm] ,tmJ in the sense of Eq.(5.4), vice versa. If the onset and vanishing conditions
m Eqs.(5.158) and (5.159) hold, from DefimtlOn 5.37, the synchromzatlOn of two
dynamical systems Will start to form and to vamsh, Vice versa. ThiS theorem is
proved. •

Theorem 5.12. For two dynamical systems m Eqs.(5.1) and (5.2) With constramts

in Eq.(5.4), there are (l + I)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)



276 Albert C.l. Luo

(aj E II and j E JL with II = {1,2} and JL = {1,2, ... ,i}) and X}:;,j) E aQl2( ;) at

time tm, x~aj,j) = X}:;,j). For any small [0 > 0, there is a time interval tm-e, tm or
(tm,tm+eJ. For X aj,j E Q(aj,j) and X O,j E aQl2(j ) , at X aj,j = X O,j , the relation

v!sa)jF(aj,j) (X(aj,j) ,t, n(aj,j)) = v!sa)jF(O,j) (X(O,j) ,t, >..J (saj = 0,1,2, ... ) holds.
The two dynamIcal systems In Eqs.(5.1) and (5.2) to I-constraInts In Eq.(5.4) are
synchronized with i-dimensions for time t E [tml , tm2J in the sense of metric func­
tionals if and only if

(ij f II' JL X(aj,j) rv d X(O,j):lr. . h ( )I lor a } E , m E ~~(aj,j) an m E a~~I2(j) wit lm E tm) ,tm2 ,

(5.160)

for aj = 1,2 and Saj = 0, 1,2, ...

(..)" II' JL X(aj,j) r.-e . [ ) d X(O,j):lr. . h11 lor a } E ,,, E ~~(a . .) at time t~ E tm-e,tm an m E a~~I2(j) WIt
Ilj

(5.161)

(iii) for the /h-constraint (j E JL),X~aj,j) E Q+(e .) at time ti E (tm,tm+eJ and
aJ,j

X (O,j) :lr. . h d [ Jm E U~~l2(;) WIt tm 'F tm], tm2 ,

(5.162)

( -) (2ka·+l) (a j)
lim n:n V. J (X J' t+ >..) = °for a, = I 2'+ j ", x » j' ,

t",-----+tm

(iv) for the /h-constraint (j E JL),X~aj,j) E Q±(; .) at time t~ E [tm-e,tm-) and
"j

+ ( ] d X(O,j):lr. . h - dt" E tm+,tm+e, an m E a~~l2(;) WIt tm - tml an tm2
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10 (n:n)y(saj) (x(aj,j) ± , 0) - 0" - 1 2 2k 1
1m ]- IC ,tIC'""'] - lorSa- - , , ... , a-+,± J J

tJ('-----+tm±

10 (n:n)y(2kaj+2) (X(aj,j) ± '-) 0" - 1 2±Im j IC ,tIC'""'] < lora- ,.
tJ('-----+tm±
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(5.163)

Proof': The proof IS sImIlar to the proof of Theorem 5.2 for eachj E lL. For all
; E JL, if the conditions in Eqs.(5.160) and (5.161) are satisfied, from Definition 5.38,
the slave and master systems m Eqs.(5.l) and (5.2) are synchromzed for time t E

(tm] ,tmJ in the sense of Eq.(5.4), vice versa. If the onset and vanishing conditions
in Eqs.(5.162) and (5.163) hold, from Definition 5.41, the synchronization will start
to form and to vanish, vice versa. The proof is completed. •

Theorem 5.13. For two dynamIcal systems m Eqs.(5.1) and (5.2) wIth constramts

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)

(aj E II and j E JL with II = {1,2} and JL = {1,2, ... ,1}) and X};;,j) E aQ]2(j) at

time tm,x~aj,j) = X};;,j). For any small e > 0, there is a time interval [tm-E,tm) or
(tm,tm+c]. At X(aj,j) E Q±(aE _) for time t E [tm-E,tm) or (tm,tm+c], the functional

"j

( _) (0) r ( _) (ra -+1) ( -)
n:n yo(X ajoJ t A-) is C aj -continuous and I n:n v J (X ajoJ tAo) I < oo(ra >] " ] i" ] j-

3). For X(aj,j) E Q(aj,j) and X(O,j) E aQ]2U)' at X(aj,j) = x(O,j) ,IF(aj,j) (x(aj,j), t,

7r(aj,j)) i= IF(O,j)(X(O,j) ,t, AJ. The two dynamical systems in Eqs.(5.1) and (5.2) to
I-constraints in Eq.(5.4) are synchronized with I-dimensions for time t E [tm ) ,tm2 ] in
the sense of metric functionals if and only if

(0) " II' JL X(aj,j) X(O,j) d X(aj,j) r. (II) [ ]
1 lor a J E , m- = m an m E ~~(aj,j) aj E at tm E tm] ,tm2 ,

(n:n)V(x(aj,j) tAo) = (n:n)V(X(O,j) tAo) = o.] m- , m-, ] ] m ,m,] ,

(ii) for all j E JL, time tm E (tm] ,tm2),

x(aj,j) = X(O,j) and (n:n)y(1) (X(aj,j) tAo) < 0 for a, = 1 2'
m- m ] m-' m-, ] ], ,

(5.164)

(5.165)

(iii) with the /h-penetration for time t = tmi'X~~) = X~) (i = 1,2) for aj,f3j E
II and f3i i= ai,

or with the /h-desynchronizationfortime t = tmi'X~~) = X~) (i = 1,2) for aj,f3j E II
and f3i i= ai,
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Proof':The proof IS sImIlar to the proof of Theorem 5.3 for each jElL. For anj E
JL, if the conditions in Eqs.(5.164) and (5.165) are satisfied, from Definition 5.34,
the two dynamIcal systems m Eqs.(5.I) and (5.2) to i-constramts m Eq.(5.4) are
synchronized for time t E [tml , tm2], vice versa. If the onset and vanishing conditions
m Eqs.(5.I66) and (5.167) hold, from DefimtIOn 5.38 or 5.39, the synchromzatIOn
of the two dynamical systems to I-constraints in Eq.(5.4) will start to form and to
vanish, vice versa. The proof is completed. •

In the foregomg theorem, the synchromzatIOn of the two systems IS wIthout any
singularity except for the onset and vanishing conditions on the boundaries of the
constraints. If the synchronization of two dyanmical systems with higher-order sin­
gularity, the corresponding theorems can be presented as follows.

Theorem 5.14. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)

(aj Ell and j E JL with II = {1,2} and JL = {1,2, ... ,I}) and X~,j) E dQ12(j) at

time tm,x~aj,j) = x~,j). For any small e > 0, there is a time interval [tm-E,tm)
or (tm,tm+c]. At X(aj,j) E Q±(E .) for time t E [tm-E,tm) or (tm,tm+c], the func-aJ,j

( -) (.) r ( -) (ra .+I ) ( .)tional n:n V(X aN t A') is C aj -continuous and I n:n v. } (X aN t A') I < 00j " j j" j
(raj;:: 2kaj +1). For X(aj,j) E Q(a;,j) and X(O,j) E dQ12(j ), at X(aj,j) = X(O,j) ,IF(aj,j)

(X(aj,j),t,n(aj,j)) i-lF(o,j)(X(O,j),t,Aj). The two dynamical systems in Eqs.(5.1)
and (5.2) to I-constraints in Eq.(5.4) are synchronized ofthe (2kaj : 2kJ3Jtype with
I-dimensions for time t E [tml , tm2] in the sense of metric functionals if and only if

(i) for all j E JL,X~a~,j) = x~,j) and X(aj,j)(t) E Q(a;,j) (aj E ll) at time t = tm E

[tm! , tm2],

(n:fi)V(x(aj,j) t A') = (n:fi)V(x(O,j) t A') = O·j m- , m-, j j m , m- j ,

(ii) for all j E JL and time tm E (tm) ,tm2),

(n:fi)V(saj) (X(aj,j) " .) - 0" - 1 2 2kj m- ,tm-,Aj - lor Saj - , , ... , aj'

(n:fi)V (2kaj +1) (X(aj,j) ".) 0" . = 1 2'
j m- ,tm-,Aj < lor a j "

(5.168)

(5.169)

(iii) with the ih-penetration of the (2kaj : 2kJ3)-type for time t = tm;, x~~j,j) =

X~,j) (i = 1,2),
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(5.170)

or with the /h-desynchronization of the (2kuj : 2k[3;)-type for time t = tm;, X~~j,j) =

X~) (i = 1,2),

(n:n)v(saj) (x(Uj,j) , .) - 0 ( - 1 2 2k 1)j m;± ,tm;±,AJ - SUj-' , ... , Uj+ ,

d V (2ka +2) (x(Uj,j) ') 0 {I 2}'an J m;± ,tm;±,Aj > or aj E , ,

(5.171)

= o(s[3j = 1,2, ... ,2k[3j+l),

Proof: The proof is similar to the proof of Theorem 5.4 for each} E JL. For
all} E IL, If the condItIons m Eqs.(5.168) and (5.169) are satIsfied, from DefimtIOn
5.38, the slave and master systems m Eqs.(5.1) and (5.2) are synchromzed WIth
the (2kuj : 2k[3Jtype for time t E [tm] ,tm2] in the sense of Eq.(5.4), vice versa. If
the onset and vamshmg condItIons m Eqs.(5.170) and (5.171) hold, from DefimtIon
5.42 or 5.43, the synchromzatIOn WIll start to form and to vamsh, VIce versa. The
proof IS completed. •

5.4.6 Desynchronization to aU constraints

In thIS section, from the defimtIOns for the desynchromClty of two dynamIcal sys­
tems to multiple constraints, the necessary and sufficient conditions for such desyn­
chronicity will be discussed. Because of many constraints for two dynamical sys­
tems, the synchromcIty for each smgle one of constramts should be dIscussed.

Theorem 5.15. For two dynamIcal systems m Eqs.(5.1) and (5.2) WIth constramts

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~Uj,j) E n(Uj,j)

(aj Ell and) E JL with II = {1,2} and JL = {1,2, ... ,I}) and XJ:!,j) E an]2U) at

time tm,X~Uj,j) = X~,j). For any small e > 0, there is a time interval [tm-E,tm) or

(tm,tmH]. ForX(Uj,j) E n(Uj,j) andX(O,j) E an]2(j), atX(Uj,j) = X(O,j) ,dsa;lw(uj,j)
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(x (aj ,j ) t n(aj,j)) = dSaj)JF(o,j) (X(O,j) t .A .) (sa = 0 1 2 ... ) The two dynamical
, , "J ; '" •

systems III Eqs.(5.l) and (5.2) to l-constraIllts III Eq.(5.4) are desynchromzed with
i-dimensions for time t E [tmJ,tm2] in the sense of metric functionals if and only if

(i) " II' JL X(aj,j) r. d X(O,j) ar." .I lor a J E , m E ~~(aj,j) an m E ~~12(j) lor any time tm,

X (aj ,j ) - X(O,j) (n:n)v(sa)(X(aj,j) t '-) - 0
m - m, j m, m,AJ - ,

for aj - 1,2 and sa; - 0, 1,2, ...

(5.172)

(..)" 11' JL X(aj,j) r.H . + ( ] d X(O,j) ar. . h
11 lora JE ,,, E~~(ai,j)attImet"E tm,tm+£ an m E ~~12(j)Wlt

tm E (tml ,tm2),

lim (n:n)v(1)(X(aj,j) t+ .A -) = 0 for a- = 1 2'
+ j'" 1(' J J' ,

tK -tIm

(5.173)

(iii) for the /h-constraint (j E JL),X~aj,j) E Q(-a£ _) at time t;; E [tm-£,tm) and
"l

x;;;,j) E aQ]2(j) with tm 'f. [tml,tm2],

X(aj,j) -L X(O,j) (n:n)v(1)(X(aj,j) t: .A -) < 0 and
I( 1m, j I( '1(' J

lim (n:n)v(1)(X(aj,j) t: .A -) = 0 for a- = 1 2'_ J I( ,,,, J J' ,
tK -tIm

(5.174)

(i )" h ·th . (. JL) X(aj,j) r.H . - [ ) +IV lor t e J -constramt J E ,I( E ~~(a- -) at trme t" E tm-£,tm- ,t" E
"l

( ] d X (O,j ) sa .h dtm+,tm+£ an m E ~~12(j) Wit lm = lm, an tm2,

(5.175)

Proof: The proof is similar to the proof of Theorem 5.1 for each} E JL. For
all} E IL, If the conditIons III Eqs.(5.172) and (5.173) are satIsfied, from DefimtlOn
5.35, the two dynamical systems III Eqs.(5.I) and (5.2) to constraIllts III Eq.(5.4) are
desynchronized for time t E (tm1,tmJ, vice versa. If the onset and vanishing condi­
tIons III Eqs.(5.174) and (5.175) hold, from DefimtlOn 5.37, the desynchromzatlOn
wIll start to form and to vamsh, vice versa. ThiS theorem IS proved. •

Theorem 5.16. For two dynamical systems III Eqs.(5.1) and (5.2) with constraIllts

in Eq.(5.4), there are (l + I)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)
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(aj E IT and j E JL with IT = {I,2} and JL = {I,2, ... ,i}) and X}:;,j) E anl2( ;) at

time tm, x~aj,j) = X}:;,j). For any small [0 > 0, there is a time interval tm-e, tm or
(tm,tm+e]' For X aj,j E n(aj,j) and X O,j E anl2(j), at X aj,j = X O,j ,DSUjlF' aj,j

(x(aj,j),t,n(aj,j)) = DSUjlF'(O,j)(X(O,j),t,'\j} (saj = 0, 1,2, ...). The two dynamical
systems in Eqs.(5.I) and (5.2) to i-constraints in Eq.(5.4) are desynchronized with
i-dimensions for time t E [tm J ,00) in the sense of metric functionals if and only if

(i) + II' JL X(aj,j) r. d X(O,j) ar. . h ( )1 lor a J E , m E ~~(aj,j) an m E ~~12(j) Wit tm E lm, ,tm2 ,

X (aj ,j ) - X(O,j) (n:n)v(su)(X(aj,j) t ,.) - 0
m - m, j m, ms /v] - ,

tor aj = 1,2 and sa; = 0, 1,2, ...

(5.176)

( .. ) + II' JL X(aj,j) r.+e . + ( ] d X(O,j) ar. . h
11 lora JE ,,, E~~(ai,j)attImet"E tm,tm+e an m E ~~12(j)Wlt

tm E (tml ,tm2),

t~---+tm-

lim (n:n)v(SUj) (X(aj,j) + ,.) -0+ -1 2 2k'
j ",t"'/\J- IOrSaj- " ... , aj'

(n:n)v(2kuj + l )(X(aj,j) + ,.) 0 d
j ",t"'/\J < an

I· (n:n)v(2kuj + l )(X(aj,j) + ,.) - 0 + . - 1 2'+lm j ",t"'/\J - loraJ - , ,
t",-----+Im

(5.177)

(iii) for the /h-constraint (j E JL),X~aj,j) E n-(E .) at time t~ E [tm-e,tm) and
aJ,J

X (O,j) ar. . h d. [ ]m E ~~l2(;) wit tm 'F tml, tm2 ,

t~---+tm-

lim (n:n)v(SUj)(X(aj,j) - ,.) - 0 + -1 2 Zk,«:
j ",t"'/\J- lorsa j - " ... , aj'

(n:n)v(2kuj + l ) (X(a) - ,.) 0 d
j " ,t"'/\J < an

II'm (n:n)v(2kuj + l )(X(aj,j) - ,.) = 0 + . = 1 2'
_ J ",t"'/\J loraJ "

t K -tIm

(5.178)

(i ) + h ·th . ( . JL) X(aj,j) r.±e . - [ ) dIV lor t e J -constramt J E ,,, E ~~(a . .) at time t" E tm-e,tm- an
J,J
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I· (n:n)y(saj) (X(aj,j) ± , .) - 0" - I 2 2k I'
Hfl J' I<: ,tl<:'/\J - lorSa· - " ... , a·+,± J J

tJ('-----+tm±

I· (n:n)y(2kaj+2) (X(aj,j) ± ,.) 0" - I 2±Im j I<: ,tl<:'/\J < lora- ,.
tJ('-----+tm±

(5.179)

Proof': The proof IS sImIlar to the proof of Theorem 5.2 for each jElL. For all
; E lL, if the conditions in Eqs.(5.176) and (5.177) are satisfied, from Definition
5.44, the two dynamIcal systems m Eqs.(5.l) and (5.2) to constramts m Eq.(5.4) are
synchronized for time t E (tml ,tm2), vice versa. If the onset and vanishing conditions
in Eqs.(5.178) and (5.179) hold, from Definition 5.47, the synchronization will start
to form and to vanish, vice versa. The proof is completed. •

From the foregomg theorem, the desynchromzatIOn reqUIresall the hIgher-order
denvatIves of the metnc functIOnsm Eq.(5.37) should be zero on the constramt sur­
faces and the the highest-order derivative of the metric functions in domain should
be greater than zero. In practical applications, such a condition is too strong for one
to control the desynchromzatIOn of the slave and master systems. Therefore, such
a condItIon can be released through a dlscontmuous vector fileds to the slave and
master systems. Therefore, the followmg theorem for the desynchromzatIOn wIll be
stated.

Theorem 5.17. For two dynamIcal systems m Eqs.(5.1) and (5.2) wIth constramts

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(a;,j)

(aj Ell and jElL with II = {1,2} and lL = {1,2, ... ,i}) and X~,j) E aQ]2(;) at

time tm,x~aj,j) = x~,j). For any small£ > 0, there is a time interval tm-e,tm or
(tm,tm+e]' At X aj,j E Q(ae .) for time t E [tm-e,tm) or (tm,tm+eJ, the functional,,)

( -) (.) r ( -) (ra· +1) ( .)
n:n y.(X aN t A') is C aj -continuous and I n:n v J (X aN t A') I < oo(ra >J " J ;" J j-

3). For X(aj,j) E Q(aj,j) and X(O,j) E aQ]2U)' at X(aj,j) = x(O,j) ,IF(aj,j) (X(aj,j) ,t,

1r(aj,j)) -=/=IF(O,j) (X(O,j) ,t, A;). The two dynamical systems in Eqs.(5.1) and (5.2) to
i-constraints in Eq.(5.4) are desynchronized with i-dimensions for time t E [tm] ,tm2]
in the sense of metric functionals if and only if

(i) for all j E lL,X~a~,j) = X~,j)and X(aj,j)(t) E Q(a;,j) (aj E ll) attm E [tm] ,tm2],

(n:n)v.(x(aj,j) t A') = (n:n)v.(X(O,j) t A') = o., m+ ,m+, , , m s-m» , '

(ii) for all jElL and time tm E (tml ,tm2),

x(aj,j) = X(O,j) and (n:n)y(1) (X(aj,j) t A') > 0 for a, = I 2'
m+ m J m+' m+, J J' ,

(5.180)

(5.181)

(iii) with the /h-penetration for time t = tmi'X~~) = X~) (i = 1,2) for aj Ell,
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(n:ii)v(l) (X(!3) t "\ ) > 0 eRE II d R -I- .j mj+' mj+,Aj lor pj an pj raj,
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or with the /h-synchronization for time t = tmi'X~~) = X~) (i = 1,2) for aj,!3j E
II and /3j # aj,

Proof': The proof IS slmtlar to the proof of Theorem 5.3 for each; E lL. For
allj E JL, if the conditions in £9s.(5.180) and (5.181) are satisfied, from Defi­
mtIOn 5.35, the two dynamical systems m Eqs.(5.l) and (5.2) to constramts m
Eq.(5.4) are desynchronized for time t E [tml ,tm2], vice versa. If the onset and van­
Ishmg condlbons m Eqs.(5.182) and (5.183) hold, from DefimtIOn 5.39 or 5.40,
the desynchronization will start to form and to vanish, vice versa. The proof is
completed. •

In the foregomg theorem, the desynchromzatIOn of two dynamical systems to
multiple constraints is without any singularity except for the onset and vanishing
condition. If the desynchronization of two dynamical systems to multiple constraints
possesses higher-order singularity, the following theorem is presented.

Theorem 5.18. For two dynamical systems m Eqs.(5.l) and (5.2) with constramts

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E n(a;,j)

(aj Ell and j E JL with II = {1,2} and JL = {1,2, ... ,I}) and X~,j) E anl2U) at
. X(aj,j) X(O,j) F II 0 h . . . Ibme tm, m = m . or any sma e > , t ere IS a bme mterva tm-E,tm

or (tm,tm+c]. At X aj,j E n(~,j) for time t E [tm-E,tm) or (tm,tm+c], the func-

( -) (') r ( -) ( ra, +I ) ( ')tional n:n V(X aj.} t A ') is C aj -continuous and I n:n V' J (X aj.} t A ') I < 00
] " ] J" ]

(raj;:: 2kaj + 1). For X(aj,j) E n(aj,j) and X(O,j) E anl2U)' at X(aj,j) = X(O,j),

IF(aj,j)(x(aj,j),t,n(aj,j)) # IF(O,j)(X(O,j),t,Aj). The two dynamical systems in
Eqs.(5.1) and (5.2) to I-constraints in Eq.(5.4) are desynchronized of the (2kaj :

2kf3; )-type with I-dimensions for time t E [tml ,tm2] in the sense of metric functionals
If and only If

( ') c II' JL X(aj,j) X(O,j) d X(aj,j) r. (ll) [ ]I lor a J E , m+ = m an m E ~~(aj,j) aj E at tm E tm] ,tm2 ,

(n:ii)V(x(aj,j) t A') = (n:ii)V(X(O,j) t A') = O·] m+ , m+, ] ] m , m- ] '

(ii) for all j E JL and time tm E (tmJ,tm2),

(5.184)
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(n:n)v(saj) (X(aj,j) , .) - 0 - 1 2 2k
j m+ ,tm+,Aj - Saj - , , ... , aj'

Albert C.J. Luo

(5.185)

(iii) with the /h-penetration of the (2kaj : 2kj3)-type for time t = tmil X~~j,j) =

x~,j) (i = 1,2),

(n:n)v(saj) (X(aj,j) , .) - 0 ( - 1 2 2k 1)j m;± ,tm;±,Aj - Saj - , , ... , aj+

(5.186)
(n:n) v (s/3) (X(j3j,j) , .) - O( - 1 2 2k)j m;+ ,tm;+,Aj - sj3j - , , ... , j3j

(n:n) (2k/3+I)(X(j3) ') 0'" f3 {I 2} d f3 -L .Vj m;+,tm;+,Aj > lor j E , an j I aj,

or with the /h-desynchronization of the (2kaj : 2kj3)-type for time t = tmilX~~j,j)

= X~) (i = 1,2),

(n:n)v(saj) (X(aj,j) ")-O( -12 2k 1)
j m;±,tm;±,Aj- Saj-""" aj+

d V (2ka +2)(X (aj ,j) ') 0'" {I 2}'an ] mj± ,tm;±,Aj > lor aj E , ,

(n:n)v (s/3) (X(j3j,j) , .) - 0 ( - 1 2 2k 1)j m;± ,tm;±,Aj - sj3j - , , ... , j3j+ ,

(5.187)

Proof': The proof IS simIlar to the proof of Theorem 5.4 for each; E lL. For
aIlj E JL, If the conditIons m Eqs.(5.184) and (5.185) are satIsfied, from DefimtIOn
5.44, the two dynamical systems m Eqs.(5.l) and (5.2) to constramts m Eq.(5.4)
are synchronized with the (2kaj : 2kj3)-type for time t E [tml ,tm2], vice versa. If
the onset and vamshmg conditIOns m Eqs.(5.186) and (5.187) hold, from DefimtIon
5.47 or 5.48, the desynchromzatIon wIll start to form and to vamsh, vice versa. The
proof IS completed. •

5.4.7 Penetration to all constraints

With all j E JL, the two dynamical systems to multIple constramts do not have any
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penetration. For such penetration, IF(aj,j) (x(aj,j), t, 7r(aj,j)) i- IF(o,j) (X(O,j) ,t, Aj}

should hold. Thus, the corresponding conditions for the i-dimensional penetration
of two dynamical systems with i-constraints are presented through the following
theorems

Theorem 5.19. For two dynamical systems in Eqs.(5.l) and (5.2) with constraints

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)

(aj Ell and j E JL with II = {I,2} and JL = {I,2, ... ,i}) and X~,j) E aQl2U) at

time tm, x~aj,j) = X;;;,j). For any small [0 > 0, there is a time interval tm-e, tm or
(tm,tm+e]. At X aj,j E Q±(E .) for time t E [tm-e,tm) or (tm,tm+e], the functionala j , ]

( -) (.) r ( -) (ra· +1) ( .)
n:n Vj(X ajoJ ,t, Aj) is C aj -continuous and I n:n Vj j (X ajoJ , t, Aj) I < co(raj :::::

3). For X(aj,j) E Q(a;,j) and X(O,j) E aQ12(j), at X(aj,j) = x(O,j) ,IF(aj,j) (X(aj,j), t,

7r(aj,j)) i-lF(O,j)(X(O,j) ,t, Aj}. The two dynamical systems in Eqs.(5.I) and (5.2) to
constraints in Eq.(5.4) is penetrated with i-dimensions for time t E (tm! ,tmJ in the
sense of metnc functlOnals If and only If

( .) " 11' JL . () X(aj,j) X(O) x(f3j,j)
1 lor a J E , tIme t = tm E tm!, tm2, m- = m = m+ ,

(5.188)

(ii) with the synchronization to the fh-constraint for time t = tm., xSa~j) =

X(O,j) = X(f3j,j) (. = 1 2) I ,

mj mj± 1 "

(n:il)v(1) (X(f3 j,j) t.: A') = 0 and (n:il)d2) (X(f3 j,j) t. A') > O·] mi±' m,±, ] ] mi±' m,±,] ,

or with the desynchronization to the /h-constraint only for timet = tmi'X~~~
(0) (13) (. )X mi = X mi+ I = 1,2 ,

(n:il)v(1)(X(aj,j) t.: A') = 0 and (n:il)d2)(X(aj,j) t.: A') > 0
] mi+' m,+, ] ] mi+' m,+,] ,

or with the switching penetration to the /h-constraint only for timet = tmi, X~~k =
X(O) = X(f3) (i = 1 2)

m, mj± "

(n:il)v(1) (X(f3j,j) t A') = 0 and (n:il)d2) (X(f3j,j) t A') > 0
] mi±' mi±' ] ] mi±' mi±'] .
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Proof': The proof IS slml1ar to the proof of Theorem 5.3 for each; E lL. For
alIj E JL, if the conditions in E9.(5.188) are satisfied, the two dynamical systems in
E9s.(5.1) and (5.2) to constraints in E9.(5.4) are penetrated with I-dimensions for
time t E [tm] ,tm2], vice versa. If the onset and vanishing conditions in Eqs.(5.189)­
(5.191) are satisfied, the penetration of the two dynamical systems wlthl- constraints
will start to be formed or to vanish, vice versa. This theorem is proved. •

Theorem 5.20. For two dynamical systems m Eqs.(5.1) and (5.2) with constramts

in Eq.(5.4), there are (l + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(a;,j)

(aj E IT and j E JL with IT = {I,2} and JL = {I,2, ... ,I}) and X};;,j) E aQ12(;) at
. X(aj,j) X(O,j) F II 0 h . . . Itime tm, m = m . or any sma e > , t ere IS a time mterva tm-e,tm

or (tm,tm+e]' At X aj,j E Q±(ae .) for time t E [tm-e,tm) or (tm,tm+e], the func-
"l

( - ) (.) r ( -) (ra· +1) ( .)tional n:n V(X aN t A') is C aj -continuous and I n:n V. J (X aN t A') I < 00j " j 1" j
(raj:::: 2ka j + I). For X(aj,j) E Q(aj,j) and X(O,j) E aQ12U)' at X(aj,j) = X(O,j) ,IF(aj,j)

(X(aj,j),t,n(aj,j)) i=-lF(O,j)(X(O,j),t,Aj). The two dynamical systems in Eqs.(5.1)
and (5.2) to I-constraints in Eq.(5.4) is penetrated of the (2kl : 2k2)-type with 1­
dimensions for time t E [tm] , tm2) in the sense of metric functionals if and only if

(ij f II' JL . () X(a) X(O) x(f3)1 lor a } E , time t = tm E tm] ,tm2, m- = m = m+'

(n:ii)V (Sa) (X(aj,j) '- .) - 0" - 1 2 2kj m- ,tm-,Aj - lorSaj - , , ... , aj

d (n:ii)V (2kaj +1) (X(aj,j) ,-.) o.an j m- ,tm-,Aj < ,

(n:ii)V(
2k

f3) (X(f3j ,j ) '- .) - 0" - 1 2 2kj m+ ,tm+,Aj - lorsPi - , , ... , P;

(5.192)

(ii) with the synchronization of the (2k a j : 2kp)-type to the /h-constraint for
. (a) (0) (13) (. )time t = tmi,Xm;_ = X mi = X m;± 1= 1,2 ,

(n:ii) V (Sa) (X(aj,j) '- .) - 0" - 1 2 2kj m- ,tm-,Aj - lorSaj - , , ... , aj

d (n:ii)V (2kaj +1) (X(aj,j) ,-.) o.an j m- ,tm-,Aj < ,

(n:ii) V (sf3) (X(Pj,j) '- .) - 0" - 1 2 2k 1j m± ,tm±,Aj - lOrSPj - , , ... , Pj+

(5.193)
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or with the desynchronization of the (2kaj : 2kf3)-type to the /h-constraint only for
. (a) (0) (13) (. )tIme t = tm;,Xm;+ = X m; = X m;+ 1= 1,2 ,

(n:fi)v(SUj) (X(aj,j) ")-0" -12 2k Ii m+ ,tm+,Aj - torSaj - " ... , aj+

(n:fi)V (sfJ) (X(f3j,j) , .) - 0 .. - I 2 2kj m+ ,tm+,Aj - torsf3j - " ... , f3j

or with the penetration of the (2k[3 : 2ka)-type to the /h-constraint only for time

t - t X(a) - X(O) - X({3) (I· - I 2)
- mi' mi~ - mi - mi+ -, ,

(n:fi)v(SUj) (X(aj,j) ,.) -0" -I 2 2k Ii m+ ,tm+,Aj - torsaj - " ... , aj+

(n:fi)V (sfJ) (X(f3j,j) , .) - 0 .. - I 2 2k Ij m± ,tm±,Aj - torsf3j-' , ... , f3j+

Proof': The proof is simtlar to the proof of Theorem 5.4 for each; E lL. For
allj E lL, If the conditIons are satIsfied ill Eq.(5.192), the two dynamical systems ill
Eqs.(5.I) and (5.2) to constraints in Eq.(5.4) are penetrated of the (2kaj : 2kf3)-type
with i-dimensions fort E (tm1, tmJ, vice versa. If the switching conditions for the
synchronization-penetration, desynchronization-penetration, penetration-penetration
in Eqs.(5.193)-(5.195) are satisfied, the onset and vanishing of the (2kaj : 2kf3J
penetration with I-dimensiOns occur, Viceversa. ThiS theorem is proved. •

5.4.8 Synchronization-desynchronization-penetration

In this section, the mixture of the synchromzatiOn, desynchromzatiOn and penetra­
tion to multiple constraints is discussed.

Theorem 5.21. For two dynamical systems ill Eqs.(5.1) and (5.2) with constraillts ill

Eq.(5.4), there are (l +1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(a;,j) (aj E

IT and j E JL with IT = {I,2} andJL = {I,2, ... ,i},JL = JLi UJL2) and X~,j) E aQ12(;)

at time tm,x~aj,j) = x~,j). For any small [0 > 0, there is a time interval [tm-E,tm) or
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(tm,tm+e]. For X(aj,j) E Q(a;,j) and X(O,j) E OQ12(j) , at X(aj,j) = x(O,j)dSa)JF(aj,j)

(x(aj,j) ,t,n(aj,j)) = dSaj)JF(O,j) (X(O,j) ,t,Aj} (saj = 0,1,2, ... ). The two dynami­
cal systems in Eqs.(5.1) and (5.2) to I-constraints in Eq.(5.4) are of the (ll,h)­
synchronization and desynchronization for time [tm1,tm2] in the sense of metric func­
tlOnals If and only If

(ij f X(aj,j) r>. d X(O,j) or>." .I lor m E ::'l.(aj,j) an m E ::'1.12(j) lor any time tm,

X (aj ,j ) - X(O,j) (n:n)v(saj)(X(aj,j) t ,.) - 0
m - m, j m, m- r»] -

for aj - 1,2 and sa; - 0, 1,2, ...

(ii) for all j E lL1 and aj = 1,2,

X(aj,j) --I- X(O,j) (n:n)v(1)(X(aj,j) t: A') < 0 and" r m, j " ,,,,}

lim (n:n)v(1)(X(aj,j) i: A') = 0 for a, = 1 2
_ j'" '" } }' ,

tJ('-----+tm

(5.196)

(5.197)

· h X(aj,j) r>.-e . - [ ) d X(O,j) or>." ( )WIt "I E ::'l.(aj,j) at time t" E tm-e,tm an m E ::'1.12(j) lor tm E tml,tm2 ;

(111) for all j E 1L2 and aj = 1,2,

lim (n:n)v(1)(X(aj,j) t+ A') = 0 for a, = 1 2+ }", x } i r:>.

tK -tIm

(5.198)

· hX(aj,j) r>.+e • + ( ] dX(O,j) or>. " d ( ).WIt " E ::'l.(aj,j) at time t" E tm,tm+e an m E ::'1.12(j) lor tm 'F tml,tm2 '
(IV) for somej E 1L1,

lim (n:n)v(1)(X(aj,j) t+ A') = 0 for a, = 1 2
+ }", '" } i r:>.

tK -tIm

(5.199)

· h X(aj,j) r>.+e • ( ] d X(O,j) or>. " d ( ).WIt " E ::'l.(aj,j) at time t" E tm,tm+e an m E ::'1.12(j) lor lm 'F tm) ,tm2 '
or for some j E 1L2 ,

(5.200)

· h X(aj,j) r>.-e . [ ) d X(O,j) or>." ( ).WIt x E ::'l.(aj,j) at time I« E tm-e,tm an m E ::'1.12(j) lor tm E tm1,tm2 '
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(v) for jElL in (iv) and aj = 1,2,

lim (n:ii)d2)(x(a) t± A) < 0 for a, = 1 2
± j 1(, 1(' j' ,

t",-----+tm±

o h X(aj,j) rde 0 - [ ) + ( ] d x(O,j) a"WIt I( E ~~(ao 0) at time tl( E tm-e,tm- ,tl( E tm+,tm+e an m E ~~12(j)
"j

Proof': The proof IS sImIlar to the proof of Theorem 5.1 for each ; E lL.For all ; E
lL, if the conditions are satisfied, the two dynamical systems in Eqs.(5.1) and (5.2)
to I-constraints in Eq.(5.4) are of the (11,12 )-synchronization and desynchronization
for time [tm! , tm2], vice versa. This theorem is proved. •

Theorem 5.22. For two dynamIcal systems m Eqs.(5.1) and (5.2) WIth constramts

in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For x~aj,j) E Q(aj,j)

(a; E IT and jElL with IT = {I,2} and lL = {I,2, ... ,I}, lL = lL l UlL2 ) and X;;;,j) E

aQ[2(j) at time tm , x~aj,j) = x;;;,j). For any small e > 0, there is a time inter­

val [tm-e,tm) or (tm,tm+e]' For X(aj,j) E Q(aj,j) and X(O,j) E aQn(j), at X(aj,j) =

X(O,j),dsa)jF(aj,j) (X(aj,j) ,t, 7r(aj,j)) = dsa)jF(O,j) (X(O,j), t, Aj) (saj = 0, 1,2, ... ).

The two dynamIcal systems m Eqs.(5.1) and (5.2) to L-constramts m Eq.(5.4) are
of an (11,/2) - (2ka ; + 1)lh-synchronization and (2ka j + 1)lh-desynchronization for
time [tm! , tm2] in the sense of metric functionals if and only if

(0) " X(aj,j)" d X(O,j) a"" 01 lor m E ~~(a;,j) an m E ~~12(j) lor any tIme tm,

(5.202)

for aj - 1,2 and sa; - 0, 1,2, ...

(11) for all j E JLI and a; - 1,2,

(5.203)
(n:ii)V (2kaj +1) (X(a) - '- 0) 0 d

j I( ,tl( ,Aj < an

II'm (n:ii)V(saj) (X(aj,j) - '- 0) -0" -1 2 Zk,«:
j I( ,tl(,Aj - lorsa j - " ... , aj'

t~---+tm-
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, h X(aj,j) A-e ' - [ ) d X(O,j) OA "Wit 1(1 E ::'l.(aj,j) at time tl( E tm-e,tm an m E ::'1.12(j) lor tm E

(tm) ,tmJ;

(iii) for all j E JL2 and aj = l , 2,

l' (n:n)v(saj) (X(aj,j) + ,.) -0" -} 2 2k'
tm )' I( ,tl(,A) - lorSa'-' "'" a·,+ }}

t/('-----+tm+

( -) (2ka+l) (a j)
n:n V. } (X)' t+ A') > 0 and

I I( '1(')

( -) (2ka+l) (a j)
lim n:n V, } (X)' is A') =Ofora' =} 2'+ ) 1(, 1(' ) ), ,

t",-----+tm

(5,204)

with X(aj,j) E A+e, t ti + ( ] d X(o,j) OA " d:
I( ::'l.(a;,)) a tme tl( E tm,tm+e an m E ::'1.12(j) lor lm 'F

(iv) for some j E JLI,

li (n:n)v(saj) (X(aj,j) + ,.) - 0" -} 2 2k'1m )' I( ,tl(,A) - lorsa· - """ a·,+ }}
tl(---+tm+

(n:n)v(2kaj+I)(X(a) t+ A') > 0 and
I I( , 1(' )

( -) (2ka·+I) (a' j)
lim n:n V. } (X)' t+ A') =Ofora' =} 2'+ ) 1(, 1(' ) ), ,

t K -tIm

(5,205)

with x~aj,j) E nt;j,j) at time tl( E (tm,tmH] and X~,j) E On I2(j) for tm rt
(tml,tmJ;

or tor some j E IL2 ,

l' (n:n)v(saj) (X(aj,j) - ,.) -0" -} 2 2k'
Hfl )' I( ,tl(,A) - lorSa· - " .. " a·,_ }}

t",-----+tm+

(n:n)v(2kaj+l) (X(aj,j) - ") 0 d
j I( ,tl( ,A) < an

(5,206)

, h X(ah,h) A+e ' ( ] d X(O,jI) OA " d:Wit K E ::'l.(a. ') at trme t« E tm,tm+e an m E ::'1.12(j1) lor lm 'F
12 ,)2
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( ,-) (2ka+l) (a' j')
lim n,nV J (X J' t- A')=Ofora'=12'_ j IC, IC' j j, ,

tJ('-----'ttm

(v) for jElL in (iv) and aj = 1,2,

1, (n:n)v(saj) (X(aj,j) ± ,,) -0+ -1 2 2k'
Hfl j' IC ,tIC,Aj - 10rSa'-, ,"', a"± J J

t/('-----'ttm±

( -) (2ka+l) (a' j') ±
lim n:n V, J (X J' t A') < 0 for a = 1 2± j IC, IC' j ,

tK:-----+tm±
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(5,207)

, h X(aj,j) rde ' - [ ) + ( ] d X(o,j)Wit IC E :!oL( , ') at time tIC E tm-e,tm- or tIC E tm+,tm+e an m E
aJ,j

aQnU) for tm = tmj and tm2'

Proof': The proof IS simIlar to the proof of Theorem 5,2 for each jElL. For all
; E lL, if the conditions are satisfied, the two dynamical systems in Eqs,(5,1) and
(5.2) to constraints in Eq,(5.4) are of an ([1,I2) - (2ka;+ 1)th-synchronization and

(2ka j + 1)th-desynchronization, vice versa, This theorem is proved, •

Theorem 5.23. For two dynamical systems m Eqs,(5.l) and (5.2) with constramts

in Eq,(5.4), there are ([ + 1)-metric functionals in Eq,(5,37), For x~aj,j) E Q(a;,j)

(aj E JI and jElL with JI = {1,2} and lL = {1,2, .. "I}) and X};;,j) E aQnU) at

time tm,x~aj,j) = X~,j), For any small e > 0, there is a time interval tm-e,tm or
(tm,tm+e]' At X aj,j E Q±(ac ') for time t E [tm-e,tm) or (tm,tm+e], the functional,,)

(n:n)v(x(aj,j) t A')is Craj-continuous and l(n:n)V(aj+I)(X(aj,j) t A,)I < 00 ir«, >
j "j 1" j J-

3), For X(aj,j) E Q(a;,j) and X(O,j) E aQI2U)' at X(aj,j) = x(O,j),JF(aj,j) (X(aj,j), t,

1r(aj,j)) =I- JF(O,j) (X(O,j), t, Aj), The two dynamical systems in Eqs,(5,1) and (5.2)
to I-constraints in Eq,(5.4) are of the (II, 12, 13 )-synchnonization, desynchronization
and penetration for time t E [tmJ, tm2] in the sense of metric functionals if and only if

(i) + X(aj,j) - X(O,j) d X(a,j) () r. (' JI) , - [ ]I I I'Ot' m+ - man J tE:!oL(aj,j)ajE ,attImet-tmEtml,tm2'

(n:n)V(x(aj,j) t A') = (n:n)V(X(O,j) t A') = 0j m+ , m+, j j m , m-. j

with all j E IL-ILl UIL2 UIL3 ;

(ii) for time tm E (tmj , tm2) for all j E lLI,

x(aj,j) = X(O,j) and (n:n)v(1) (X(aj,j) t A') < 0 for a' E JIm- m j m-' m-, j j,

X({3j,j) = X(O,j) and (n:n)V(1) (X({3 j,j) t A') < 0 for f3' E JI'
m- m I m-' m-, j j'

(iii) for time tm E (tmj , tm2) for all j E lL2,

(5,208)
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x(aj,j) = X(O,j) and (n:n)y(1) (X(aj,j) t A') > 0 for a' E II
m+ m ] m+' m+, ] ],

Albert C I I.uo

for aj E ll,

( ) " . JL k {I 23} ith ti X(aj,j) X(o,j) (. 1 2)v lor J E k, E " Wit time t = tmil mi = mi I = , ,

(5.212)

(5.213)

Proof': The proof is siml1ar to the proof of Theorem 5.3 for each; E lL. For
allj E JL, if the conditions are satisfied, of the (iI, h, i3)-synchnonization, desynchro­
nization and penetration for timet E [tml ,tm2J, vice versa. This theorem is proved.•

Theorem 5.24. For two dynamical systems m E9S.(5.1) and (5.2) With constramts

in Eq.(5.4), there are (l + I)-metric functionals in Eq.(5.37). For x~aj,j) E 0.(aj,j)

(aj Ell and j E JL with II = {I,2} and JL = {I,2, ... ,i}) and X;;;,j) E a0.12(; ) at
. X(aj,j) X(O,j) F II 0 h . , , Itime tm, m = m . or any sma e > ,t ere is a time mterva tm-e,tm

or (tm,tm+e]. At X aj,j E 0.±(e ') for time t E [tm-e,tm) or (tm,tm+eJ, the func-
a),]

( -) (') r ( -) ( ra' +1) ( ')tional n:n V(X aj.} t A,) is C aj -continuous and I n:n v.> (X aj.) t A.)I < 00
] " ] j" ]

(x(aj,j),t,n(aj,j)) i=-lF(O,j)(X(O,j),t,Aj). The two dynamical systems in Eqs.(5.1)
and (5.2) to i-constraints in Eq.(5.4) are of the (iI, h,l3 )-synchnonization, desyn­
chronization and penetration of the (2kaj : 2k{3j)-type for all j E JL = JL1UJL2 U JL3
for time t E [tmJ, tm2] in the sense of metric functionals if and only if

(ij f X(aj,j)-X(O,j) dx(a,j)() " ( ll) . - [ ]I lor m+ - m an } t E ~l.(aj,j) aj E , at time t - l m E tm] ,tm2 ,
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(n:n)V(x(aj,j) t A') = (n:n)V(X(O,j) t A') = 0j m+ , m+, j j m , m-. j

with all j E JL = JLl UJL2 UJL3;
(ii) for time tm E (tm] , tm2) for all j E JLl,

(n:n)y(saj)(x(aj,j) , .) - 0 + - 1 2 2k
j m- ,tm-,Aj - lOrSaj - , '00" aj'

(n:n)y(2kaj+l) (X(aj,j) ,.) 0 + . - 1 2'
j m- ,tm-,Aj < lor a j - , ,

(iii) for time tm E (tm] , tm2) for all j E JL2,

(n:n)y(saj) (X(aj,j) , .) - 0 + - 1 2 2k
j m+ ,tm+,Aj - lorsaj - , '00" aj'

( -) (2ka·+l) (a' j)
n:n V, } (X J' t A') > Ofor «. = 1 2'j m+ , m+, j j, ,

(n:n)y(saj)(x(aj,j) ,.) -0+ -1 2 2k
; m- ,tm-,Aj - lorsaj - , '00" aj'

( -) (2ka·+l) (a' j)
n:ny. } (X J' t A')<Ofora'Ell'1 m- , m-, j j'

( -) (sfJ) (13· j')
n:n y } (X J' , .) - 0 + - 1 2 ... 2kj m+ ,tm+,Aj - lorSf3j - " , f3p

293

(5.214)

(5.215)

(5.216)

(v) for one of j E JL with the (2kaj : 2kf3)-singularity for time t = tmp X~~j,j) =

X~,j) (i = 1,2),

(n:n)y(saj) (X(aj,j) , .) - 0 + - 1 2 2k 1j m;± ,tm;±,Aj - lOrSaj - , , ... , aj+ ,

Y (2ka .+2)(X(aj,j) ') 0 + {I 2}'} mj± ,tm;±,Aj > lor aj E , ,

(5.218)
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and/or

(n:n)y(S/3) (X([3j ,j ) , .) - 0 + - 1 2 2k 1
j mj+ ,tmj+,Aj - lors[3j - , , ... , [3j+ ,

(n:n)y(Zk/3+Z) (X([3j,j) ,.) 0+ R. {12}
j mj+ ,tmj+,Aj > lor Pj E , .

Albert C I I.uo

(5.219)

Proof': The proof IS SImIlar to the proof of Theorem 5.4 for each jElL. For all; E
lL, If the condItIons are satIsfied, two dynamIcal systems m Eqs.(5.I) and (5.2) to L­
constraints in Eq.(5.4) are ofthe (II ,1z,13 )-synchnonization, desynchronization and
penetration of the (2ka j : 2k[3)-type for time t E [tm ] ,tm2 ], vice versa. This theorem
is proved. •

5.5 Conclusions

In this chapter, a theory for synchronization of multiple dynamical systems to spe­
cific constraints was presented from a theory of discontinuous dynamical systems.
The concepts on synchronIZatIOnof two or more dynamIcal systems to speCIficcon­
stramts were systematIcaIly presented. Based on speCIfic constramts, metrIc func­
tIOnals were porposed to measure the synchronICIty of the two or more dynam­
ical systems to such specific constraints. The synchronization, desynchronization
and penetration of two or more dynamical systems to specific constraints were dis­
cussed through the metric functionals, and the necessary and sufficient conditions
for such synchronICIty were developed. The synchronIZatIOnof two dynamIcal sys­
tems to a smgle speCIfic constraint was first dIscussed, and further the synchronICIty
of two dynamical systems to multiple constraints was investigated. The meaning of
synchronization for dynamical systems with constraints is extended. This chapter
provides a general frame work to control slave systems which can be synchronized
WIth master systems through speCIfic constraints.
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Chapter 6

The Complexity in Activity of Biological
Neurons

Yong Xie, Jian-Xue Xu

Abstract We sum up our work about neurodynamIcs In thIS chapter. It IS WIdely
considered that the nervous system in man and animals is a rather complicated non­
lInear dynamIcal system. Therefore, It IS both necessary and Important to understand
the behaVIOr occurred In the nervous system from the perspectIve of nonlInear dy­
namics. ActuaIIy, a great many of novel and puzzlIng phenomena are Just observed
in a single neuron, but their physiological or dynamical mechanisms remain open
so far. In other words, single neurons are not simple. We show many firing patterns
In theoretIcal neuronal models or neurophYSIOlogIcal expenments of SIngle neurons
In rats In thISchapter. And then we Introduce three representatIve examples of best
known mathematIcal neuron models. The two types of neuronal eXCItabIlIty are Il­
lustrated by the Hodgkin-Huxley mode and the Morris-Lecar model. Especially, it
is shown that we can change the types of neuronal excitability using the methods of
bifurcation control. Besides, we display bursting and its topological classification,
and explaIn bIfurcatIOn, chaos and cnSIS by the eXIstIng neuronal models. We gIve
emphaSIS to sensitive responsrveness of apenodIc finng neurons to external stImulI,
and show experimental phenomena and their underlying nonlinear mechanisms. The
synchronization between neurons is remarked simply. We stress a constructive role
of noise in the nervous system, and depict the phenomena of stochastic resonance
and coherence resonance, and gIve theIr dynamIcal mechamsms. The common anal­
YSIS methods are presented for the tIme senes of the InterspIke Intervals. FInaIIy, we
grve two applIcatIOn examples about controllIng chaos and stochastIc resonance,
and draw some conclusions.

MOE Key Laboratory of Strength and VIbration, School of Aerospace, XI'an Jlaotong Umverslty,
XI'an 710049, Chma.
EmaIis:yxle@maIi.xJtu.edv.cn.Jxxu@maIi.xJtu.edv.cn

A. C. J. Luo et al. (eds.), Complex  Systems
© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011



300 Yang Xle, Jlan-Xue Xu

6.1 Complicated firing patterns in biological neurons

6.1.1 Time series ofmembrane potential

We can obtain the time course of membrane potential (or transmembrane poten­
tial) easily m neurophysiOlogical expenments. Membrane potential is the voltage
difference (or electncal potential difference) between the mtenor and extenor of a
cell. The cell membrane acts as a baffler which prevents the mSide solutiOn (mtra­
cellular fluid) from mixing with the outside solution (extracellular fluid). Actually
such a membrane surrounds the cell to provide a stable environment for biochemi­
cal processes running in the interior of the cell. The membrane potential arises from
the actiOn of iOn channels, iOn pumps, and iOn transporters embedded m the cell
membrane. Neurons are speciahzed to use changes in membrane potential for rapid
communication with other neurons, muscles and secretory cells. There are two kinds
of the membrane potential: the relatively static one and the specific dynamic one.
The former is the resting membrane potential, which means the membrane potential
of a neuron at rest; the latter mclude the graded membrane potential and the actiOn
potential. An actiOn potential (also known as a nerve impulse or a spike) is a selt­
regenerating wave of electrochemical activity that allows neurons to carry a signal
over a distance. In general, the action potential can be superior to graded mem­
brane potential if the action potential sharpens the temporal structure of neuronal
responses by amphfymg fast tranSients of the membrane potential. On the other
hand, the graded membrane potential is supenor for discnmmatiOn between stimuh
on a fine time scale (Kretzberg et aI., 2001).

Usually neurons depolarizes from the resting potential and produces the action
potential, it travels down the axon to the synapses. Surprisingly, many neurons can
fire the action potential spontaneously. On reaching a (chemical) synapse, a neuro­
transmitter is released causmg a locahzed change m potential m the postsynaptic
membrane of the target neuron by opemng ion channels m its membrane. To our
knowledge, the states of individual ion channels are either closed or open, and they
are relatively random. The cooperation of a large number of ion channels embedded
in the membrane, however, can generate action potentials. Maybe this behavior is a
kmd of emergent phenomenon m complex adaptive systems.

6.1.2 Firing patterns: spiking and bursting

Many neurons can exhibit repetitive (tomc) spikmg and/or burstmg (lzhikevich,
2007). Repetitive spikmg means a neuron is typically constantly active. Burstmg,
however, is a dynamic state where a neuron repeatedly fires discrete groups or bursts
of spikes. Each such burst is followed by a period of quiescence before the next burst
occurs. A burst of two spikes is called a doublet, of three spikes is called a triplet,
four - quadruplet, etc. (for detail, see http://www.scholarpedla.org/artic1elBurstmg).
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There is an evident difference in the membrane potential for spiking and bursting
(Chay et aI., 1995). Namely, for spiking there is no clear underlying slow wave while
for bursting several spikes ride on the slow wave.

Spikmg neurons are classified mto two types (Izhikevich, 2007; Rmzel and Er­
mentrou, 1989; Izhikevich, 2000; Xie et aI., 2008a; TsuJi et aI., 2007), namely type-I
excitability and type-II excitability according to the frequency response character­
istics of a neuron to a constant current stimulus. A neuron with type-I excitability
is characterized by a continuous PI (the firing frequency versus the applied cur­
rent) curve that shows oscillatlOns startmg With an arbitranly low frequency. The
finng frequency vanes contmuously from almost zero to a certam value With a Wide
dynamiC range as the apphed current changes. In contrast, a neuron With type-II
excitability is characterized by a discontinuous PI curve with the oscillations start­
ing with a nonzero frequency, and the response frequency range is narrow. Por a
neuron With type-I excitabihty there is an apparent threshold for the appearance of
spikes, whtle there is no true threshold for a neuron With type-II excitabihty, ng­
orously speakmg (Izhikevich, 2007). Therefore there is a great difference m finng
behavior between them. Clearly, the two types of excitability have different neuro­
computational properties (Izhikevich, 2007). Type I excitable neurons can smoothly
encode the strength of input, e.g., the strength of applied dc-current or the strength
of mcommg synapttc bombardment, mto the frequency of their spikmg output. Type
II neurons cannot do that. Instead, they can act as threshold elements reporting when
the strength of input is above certain value. Both properties are important in neural
computations.

Almost every neuron can burst if stimulated or manipulated pharmacologi­
cally (for detail, see http:77www.scholarpedia.org/arttcle/Burstmg). Many burst au­
tonomously due to the mterplay of fast lOmc currents responsible for spikmg acttvity
and slower currents that modulate the activity. Neuronal burstmg can play important
roles in communication between neurons. In particular, bursting neurons are impor­
tant for motor pattern generation and synchronization. Rinzel (1987) first proposed
a scheme accordmg to the dynamical mechamsms of burstmg onset and termmatlOn
to classify burstmg neurons, and identtfied three types, l.e., square wave burstmg,
parabohc burstmg and elhpttc burstmg. It was later extended by Bertram et aI., who
included another type. Izhikevich (2000, 2007) provided the complete classification,
identtfymg all 16 topological types, and foretelhng 120 all pOSSible types.

Neuronal firing behavior can be periodic or aperiodic. The periodic firing in­
cludes penodic spikmg and penodic burstmg; whtle the apenodic finng consists of
irregular spikmg and irregular burstmg. Now more and more eVidence shows that
a rather large part of such aperiodic firing is deterministic chaos, namely, chaotic
spikmg or chaottc burstmg (Aihara and Matsumoto, 1986; Mpitsos et aI., 1988;
Hoffman et aI., 1995; Gong et aI., 1998,2002; Xu et aI., 1997; Longtm, 1993a; Ren
et aI., 1997,2001). Figure 6.1 shows four kmds of finng pattern, and they are ob­
tamed by numencal simulatlOn of the Hmdmarsh-Rose neuron model (Hmdmarsh
and Rose, 1984).

Inneurophysiological experiments, the series of interspike intervals (ISIs) is usu­
ally recorded to display the firing pattern of a neuron. Interestingly, it is widely con-
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sidered that neural information transmitted from presynaptic to postsynaptic neu­
rons is embedded in the series ofISls (Gong et aI., 2002; So et aI., 1998; Suzuki et
aI., 2000). Integer multiple spiking OMS) (Gu et aI., 2001; Yang et aI., 2002; Xie et
aI., 2004a) is seemmgly random finng behavlOrwhose mterspike mterval histogram
(lSIH) exhibits multimodal structure with peaks at integer multiples of a basic lSI.
Furthermore the amplitude of the peaks decays with increasing lSI except for the
first few peaks, and the return map of lSI series has a crystal lattice structure, as
seen in Fig. 6.2. The IMS herein is numerically simulated from the Morris-Lecar
model. Simtlarly, mteger multiple burstmg (1MB) denotes that the mter-burst mter­
vals (IBis) of the 1MB exhibit multi-mode and are approximately mteger multiples
of a basic lEI. Figure 6.3 shows the finng pattern of the 1MB, which is observed m
the experiment on an experimental neural pacemaker (Gu et aI., 2003). In addition,
bursting is a considerable complicated firing pattern, and has various types. Figure
6.4, For example, demonstrates a penodic parabohc burstmg m a neural pacemaker
after the addtlOnof 5 ,uMollL veratndme (Xie et aI., 2003a). The upper trace is the
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time course of membrane potential, and mainly exhibits the active phase of a burst;
while the lSI as a function of time is shown in the lower trace. It can be seen clearly
that parabolic bursting is characterized by a spike frequency which is low at the
begmmng, high m the middle, and low agam near the end of the active phase. lSI
senes looks like a family of parabolic curves, as seen m the lower trace.
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lEI histogram.
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In fact, there are different transition styles between firing patterns (Ren et aI.,
1997; Mandelblat et aI., 2001; Xie et aI., 2003b; Li et aI., 2003 ): mainly in­
cluding period adding and period-doubling cascades, which have been observed in
neural pacemakers. FIgure 6.5 shows penod-addmg and penod-doubhng cascades
recorded in the dIfferent neural pacemakers, respectIvely. Note that lSI versus time
or lSI versus the number of lSI is not really a bifurcation diagram. However, the
action of the drugs is slowly permeable, and tunes up slowly the control parameters
of the neural pacemakers, therefore, time or the number of lSI reflects the changes
m the control parameters, and thus lSI versus tIme or lSI versus the number of lSI
can be consIdered to be a bIfurcatIOndIagram, roughly speakmg.
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Fig. 6.5 Penod-addmg and period-doublmg cascades. (a) Period-adding cascade m (Xle et aI.,
2003b). The neural pacemaker exhibited penod-one burstmg, penod-two burstmg, penod-three
bursting and period-four bursting after the addition of 5mMoi EGTA, respectively, as time elapsed.
(b) Penod-doubhng cascade route to chaos. The finng cascade of the neural pacemaker IS mduced
by the decrease of [Ca2+]a,see (Li et aI., 2003).
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6.2 Mathematical models

6.2.1 HH model

Yong Xie, Jian-Xue Xu

The Hodgkin-Huxley (HH) model is one of the most famous neuron models in com­
putatIOnal neuroSCience.It IS the first quantItatIve model of the electrIcal excItabIbty
of neurons based on a number of experIments m gIant sqUId axons (Hodgkm and
Huxley, 1952). ThIS model consists of three IOnIC currents: fast mward sodIUmcur­
rent, time-dependent outward potassium current and time-independent leak current.
And the circuit diagram is shown in Fig. 6.6.

Fig. 6.6 The CIrCUIt dIagram correspondmg to the HH model.

As we know, the HH model describes successfully how the action potentials
m neurons are InItIated and propagated; and It IS expressed by a set of nonbnear
ordmary dIfferentIal equations as follows:

dV I 3 4dt = eM (lex! - gNam h(V - VNa) - gKn (V - VK) - gL(V - VL)),

dmdt = am(V)(1 - m) - f3m(V)m,

dhdi = ah(V)(I-h) - f3h(V)h,

dn
dt = an(V)(I-n) - f3n(V)n,

(6.1)

V represents the membrane potentIal, whIch IS the electrIcal potentIal dIfference
(voltage) across the neuronal membrane. m and hare gating varIables that repre­
sent the activation and inactivation of the sodium current, since h decreases when
m increases. n denotes the activation gating variable of the potassium current. Ob­
viously, m, h, and n obey equations of the same form, but with different voltage
dependences for their steady state values and time constants. CXm,f3m, cu; f3h, an, and
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lin are functions of V that are defined as follows:

am(V) = 0.1 (25.0 - V)/ exp((25.0 - V)/1O.0 - 1.0),

{3m(V) = 4.0exp( -VI18.0),

ah(V) = 0.07 exp( - V/20.0),

{3h(V) = 1.0/(exp(( -V +30.0)/10.0) + 1.0),

an(V) = 0.01 (10.0 - V)/(exp((10.0 - V)/1O.0) - 1.0),

f3n(n) = 0.125exp(-V/80.0).

The HH model includes the following parameters: VNa = 115.0 mV, VK = -12.0
mV, and VL = 10.599 mV, representing the equilibrium potentials of the sodium,
potassium, and leak currents, respectively. They are determined uniquely by the
Nernst equation. Thus, these parameter values are controllable by changmg the tonic
concentrations within and outside the membrane. gNa = 120.0 mS/cm 2

, gK = 36.0
mS/cm1, and gL = 0.3 mS/cm1 represent the maximum conductance of the corre­
sponding ionic currents. They reflect the ionic-channel density distributed over the
membrane. eM = 1.0 gF/cm1 is the membrane capacitance. lex! represents the ex­
ternally apphed current, and usually serves as a bifurcatIOnparameter of the system.
If lex! exceeds a certain threshold value, the HH model neuron can exhIbIt perIOdIC
spIkmg.

6.2.2 FitzHugh-Nagumo model

The FItzHugh-Nagumo (FHN) model (FItzHugh, 1961) IS a sImphficatIOn of the
HH model. As seen above, the HH has four variables. The variables kept in the FHN
model are only the excitable variable and the recovery variable which are charac­
terIzed as bemg the fast and slow varIables respectIvely. Actually, the FHN model
adIabatIcally ehmmates the hand m gates, and retains only the membrane potentIal
V and a slow variable w similar to n. Because of its simple two-variable form and
generality, the FHN has been used widely. It is able to reproduce many qualitative
electrical characteristics of a neuron, such as the existence of firing threshold, rela­
tIve and absolute refractory perIods, and the generatIOn of actIOnpotentIals under the
actIOnof apphed currents. The FHN model IS deSCrIbed by the followmg equations
(FItzHugh, 1961):

(6.2)

dV V 3

dt - V - 3 -w+lext ,

dw
dt = </>(V +a - bw).

Here, parameter are often taken as a - 0.7, b - 0.8, and i/J - 0.08. lex! denotes
the externally apphed current and IS usually conSIdered to be the control parame-
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ter. Clearly, the membrane potential variable V has cubic nonlinearity that allows
regenerative self-excitation via a positive feedback; and the recovery variable w has
a linear dynamics that provides a slower negative feedback. Similarly, if the applied
current lext exceeds a certam threshold value, the FHN can also display a character­
isnc excursion in the phase plane, before the van abies V and w relax back to their
resting values. In fact, the dynamical behavior of this model can be nicely described
by zapping between the left and right branch of the cubic nullcline in the phase
plane.

6.2.3 Hindmarsh-Rose model

In 1982 and 1984, Hmdmarsh and Rose (1984) constructed the Hmdmarsh-Rose
(HR) neuron model to model the synchromzatiOn of finng of two snail neurons m
a relatively Simple way that did not use the full HH equations. Naturally, at the
time they modified the FHN model to account for tail current reversal. This point
is crucial for the development of the HR model. Now the HR can be used to study
the spiking-bursting behavior of the membrane potential observed in experiments
made With a smgle neuron. The HR model has the mathematical form of a system
of three nonhnear ordmary differential equations m the followmg (Hmdmarsh and
Rose, 1984 ):

dx 3 2
dt =y-ax +bx -z+lext,

dy 2
dt =c-dx -y,

dz
- =r[s(x-xo)-z].
dt

(6.3)

Where x denotes the membrane potential, which is wntten m dimensiOnless umts.
The other two vanables, y and z, which take into account the transport of ions across
the membrane through the ion channels. The transport of sodium and potassium ions
is made through fast ion channels and its rate is measured by y, which is called the
spikmg vanable. The transport of other iOns is made thorough slow channels, and
is taken mto account thorough z, which is called the burstmg vanable. In fact, z is a
slow vanable and usually regarded as the bifurcatiOn parameter of the fast subsys­
tem x - y when the method of the slow-fast subsystem decomposition is adopted to
analyze the dynamics of the HR model.

The HR model has eight parameters: a, b, c, d, r, s, Xo and lext. Commonly, we
fix some of them and let the other to be control parameters. Frequently, the apphed
current lext is conSidered to be the control parameter. Other parameters take a - 1.0,
b - 3.0, c - 1.0, d - 5.0, s - 4.0 and Xo - -1.6. The parameter r is somethmg of
the order of lOe-3, and lext ranges between -10 and 10.
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6.3 Nonlinear mechanisms of firing patterns

6.3.1 Dynamical mechanisms underlying Type I excitability and
Type II excitabz7ity

309

The definition of neuronal excitability is first introduced here. In existing textbooks
it is that a "subthreshold" synaptic input evokes a small graded postsynaptic poten­
tIal (PSP), whIle a "superthreshold" mput evokes a large all-or-none actiOn potentIal.
Onfortunately, thIS definItiOn cannot be adopted to define excItabIlIty of dynamIcal
systems because many systems, mcludmg neuronal models have neIther all-or-none
action potentials nor firing thresholds (Kretzberg et aI., 2001; Izhikevich, 2000). A
purely geometrical definition, therefore, is more reasonable to describe neuronal ex­
cItabIlIty (Kretzberg et aI., 2001). From the geometncal pomt of VIew, a dynamIcal
system havmg a stable eqUIlIbnum IS excItable If there IS a large-amplItude pIece of
trajectory that starts in a small neIghborhood of the eqUIlIbnum, leaves the neIgh­
borhood, and then returns to the equilibrium.

Despite a large number of biophysical mechanisms, there are only four co­
dimension-l bifurcations of equilibrium underlying neuronal excitability because
they have the lowest co-dImensiOn and hence they are the most lIkely to be seen
expenmentally, namely, saddle-node on mvanant CIrcle (SNIC) bIfurcatiOn, saddle­
node (off invariant circle) bifurcation, supercritical Ropf bifurcation and subcritical
Ropf bifurcation (Izhikevich, 2007). In general, the former one underlies type-I ex­
citability, while the latter three mediate type-II excitability. When the resting state
of a neuron IS near a SNIC bIfurcatiOn, the neuron can fire all-or-none spIkes WIth
an arbItrary low frequency, It has a well-defined threshold manIfold, and It acts as
an integrator (IzhIkevIch, 2001); i.e. the hIgher the frequency of mcommg pulses,
the sooner it fires. In contrast, when the resting state is near a Ropf bifurcation, the
neuron fires in a certain frequency range, its spikes are not all-or-none, it does not
have a well-defined threshold manIfold, It can fire m response to an mhIbItory pulse,
and It acts as a resonator (lzhIkevIch, 2001); I.e. It responds preferentIally to a cer­
tam (resonant) frequency of the input. Increasmg the input frequency may actually
delay or terminate its firing.

In the context of neurons, the stable equilibrium corresponds to the resting state
of a neuron. All trajectories starting in a sufficiently small region of the stable equi­
IIbnum converge back to the eqUIlIbnum. Such trajectones correspond to subthresh­
old PSPs. In contrast, the large-excursiOn trajectory corresponds to finng a spIke.
Therefore, superthreshold PSPs are those that push the state of the neuron to or near
the beginning of the large trajectory thereby initiating the spike. Furthermore, the
limit cycle in the phase space corresponds to periodic spiking or periodic bursting
or penOdIC subthreshold oscIllatiOn of a neuron.
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6.3.2 Dynamical mechanism for the onset oIfiring in the HH
IJ'lflJ1e1

For the HH model, the bifurcatIOn diagram ot the membrane potential V versus
the apphed current lext IS shown In Fig. 6.7. From Fig. 6.7(a), we can see that
the neuron undergoes a Hopf bifurcation (HB) from quiescence to periodic spik­
ing at lext = 9.780 gA/cm2. Moreover, the amplitude of the periodic oscillation
decreases with an Increase In the externally apphed current, and the penOdIC oscIlla­
tion terminates at lext = 154.527 JlA/cm2 , where another Hopf bifurcation occurs.
ObvIOusly, the left Hopt bifurcatIOnIS subcntical from Fig. 6.7(b). The bifurcatIOn
diagrams in Fig. 6.7 were produced using the software package XPPAUT (Ennen­
trout, 2002). The left Hopf bifurcation is considerably important because it is the
dynamical mechanism of neuronal excitability from quiescence to periodic spiking
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(Xie et aI., 2008b). As to the right Hopf bifurcation, however, the intensity of the
external applied current generally exceeds the normal physiological range. The HH
model neuron, therefore, is of Type II excitability.

6.3.3 Type I excitability and Type II excitability displayed in the
Morris-Lecar model

The Morris-Lecar (ML) model (Morris and Lecar, 1981) is a variation of the
Hodgkm-Huxley model. Ongmally It was postulated m order to descnbe the vanous
oscIllatory response patterns of the Barnacle muscle fiber. The dIfferentIal equation
and V -dependent functions are

dw [w=(V) -w]
dt = q> 't"w(V) .

With steady states for the Ca2+ and K+ current fractions:

m=(V) = 0.5 *P +tanhl(V - VIl/v21 L
w=(V) = 0.5 * ~tanhl(V - V3)/V41 }.

And a transition rate,

(6.4)

Here the parameter C denotes the capacIty; gCa, gK and gL are the maxImal con­
ductance of calcIUm, potassIUm and leak, respectIvely, and VCa, VK and VL are the
correspondmg reversal potentIals. 10 denotes the total synaptIc mputs from the en­
VIronment vary slowly WIth tIme, and ifJ represents the change between slow and
fast regions of the neuron. All conductances are in mS/cm1 and voltages in mV; the
capacity C is ,uF/cm2 and currents in ,uAJcm2. Here, 10 is generally the only free
parameter.

One can see that the equation IS a two-dImensIOnal descnptIOn of neuronal spIke
dynamics. The first equation describes the evolution of the transmembrane potential
V, the second equation the evolution of a slow recovery variable w, which represents
the open probability for the potassium channel.

We consIder the bIfurcatIOndIagram of V versus 10, and focus our attentIOn on
the dynamIcal mechamsms of excItabIlIty. Interestmgly, the ML model neuron can
undergo a Hopf or SNIC bifurcation depending on two different sets of values of
parameters (Rinzel and Ermentrout 1989, Morris and Lecar, 1981). In these two pa­
rameter sets, except for V3, V4,gCa and ifJ, the rest of parameters IS the same, namely,
VI - -1.2, V2 - 18, gK - 8, gL - 2, VK - -84, VL - -60, VCa - 120 and C - 20.
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When V3 = 2, V4 = 30, gCa = 4.4 and p = 0.04, the ML model neuron under­
goes a subcritical Hopf bifurcation from the resting state to periodic spiking. The
bifurcation diagram of V versus /0 is shown in Fig. 6.8. Evidently, at /0 = 93.86
the subcnttcal Hopt bifurcatIOn destablhzes the left rest state to fire. A saddle-node
bifurcatIOn ot hmlt cycles occurs at /0 - 88.29, that IS, a stable hmlt cycle merges
with an unstable limit cycle denoted by the dot line. In particular, at the left and
right handsides of Fig. 6.8 the dynamic mechanisms are similar.
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Fig. 6.8 The bifurcation diagram of the membrane potential V versus 10 (Figure 1 m (Xle et aI.,
2005)). The bold solid lines represent stable focus points, and the thin lines correspond to the
maJumum and mmlmum values for membrane potential of penodlc splkmg, respectively. The dash­
dot lme between the two HE bifurcatIOn pomts IS composed of unstable focus pomts.
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Fig. 6.9 The bifurcatIOn diagram of the membrane potential versus 10 (Figure 2 m (Xle et aI.,
2005)). The left bold line consists of stable nodes, while the right bold line stable focus points. The
meanmg of thm hnes IS the same as the captIOnof Fig. 6.8.
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The gray circle III (b) IS a saddle-node. (a)The unstable Illvanant mamfold IS also drawn before the
bifurcation at 10 = 30. (b) At 10 = 39.96 the saddle merges with the node, and the SNIC occurs. (c)
A hmlt cycle correspondlllg to the penodlc splklllg IS shown when 10 - 45.
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When V3 = 12, V4 = 17.4, gCa = 4 and </J = 1715, the model neuron transits a
SNIC bifurcation at 10= 39.96, and the state of the neuron varies from the resting
state to periodic spiking. Figure 6.9 shows the bifurcation diagram of V versus 10.
Clearly, a subcntlcal Hopf bdurcatiOn occurs at 10= 97.79, and a saddle-node bi­
furcatiOn of hmit cycles at 10 - II6.I. Near the SNIC bdurcatiOn, the change m
relative positions of the V -nullcline and w-nullcline are shown in Figs. 6.1O(a)-(c).
As is known, the intersections of these two nullclines are fixed points. We draw
the unstable invariant manifold of the saddle, as seen in Fig. 6.10(a). As to the cal­
culatiOn of the unstable mvanant mamfold we give a simple descnptiOn. To begm
With, the eigenvector for the pOSitive eigenvalue of the saddle is computed, and then
the equations are mtegrated forward in time With imtlal conditions that are on the
eigenvector and slightly off of the singular point.

Thus we can see that the ML model neuron can undergo Hopf or SNIC bifurca­
tion dependmg on the values of parameters.

6.3.4 Change in types ofneuronal excitability via Nfurcation
control

As mentiOned above, changes m types of neuronal eXCltability actually imply
changes m dynamical mechamsms underlymg neuronal excitabihty, that is, vana­
tion in types of bdurcatiOn. Specifically, we convert Type I eXCltabihty into Type
II excitability by a washout filter-aided dynamic feedback controller (Xie et aI.,
2008a). In other words, such a controller is adopted to create a Hopf bifurcation
before the occurrence of a SNIC bifurcation. It is known that static state feedback
does not apply to problems where the dynamics and the targeted operatmg pomt
are uncertain (Hassouneh et aI., 2004). Moreover, static state feedback changes the
operating conditions of the open-loop system. This may result in waste of control
energy and also induce degradation of system performance. Fortunately, washout
filters can overcome these difficulties. In fact, a washout filter is a high pass fil­
ter that washes out steady state mputs, while passmg tranSient mputs (Abed et aI.,
1994). The use of washout filters ensures that all the eqmhbnum pomts of an open­
loop system are preserved m the closed-loop system; namely, their locatiOns are not
changed. In addition, washout filters facilitate automatic following of targeted oper­
ating points, which results in vanishing control energy once stabilization is achieved
and a steady state is reached.

Here, a two-dimensiOnal Hmdmarsh-Rose (HR) type model (TSUJi et aI., 2007)
is used as a model neuron because it not only can exhibit Type I excitabihty un­
der appropriate values of parameters but also possesses a set of simple expression
formulas. It is described by the following equations:
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~; = c (x- x; -y+z),

dy x2+dx-by+a

dt c
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(6.5)

where x and y denote the cell membrane potential and a recovery variable, respec­
tively. a,b,c,d and z are parameters. In particular, z represents the external stimulus.
Bifurcation behavior of this model has been explored in detail.

Onder a set of parameter values, namely, a - 0.42, b - 1.0, c - 3.0, and d ­
1.8, the neuron exhIbIts Type I excItabIlIty as the external stImulus z changes, as
shown in Fig. 6.11. There is a SNIC bifurcation at z = 0.3463, where the neuron
model generates the SNIC bifurcation from quiescence to firing. A subcritical Hopf
bifurcation occurs at z = 2.3420.
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Fig. 6.11 The bifurcation diagram of the HR type model with Type I excitability (Figure lea) m
(Xle et aI., 2008a». The thick sohd hnes denote stable steady states, whtle the dotted lme shows
unstable eqUlhbnum pomts. The thm hnes represent the maximum and mmlmum values of stable
hmlt cycles, and the dashed lmes are the maximum and mmlmum values of unstable hmlt cycles.

We mtroduce a Hopf bIfurcatIOn at zo = -0.5 VIa a washout filter-aIded dynamIc
feedback controller. This makes neuronal excitability change from Type I excitabil­
ity into Type II excitability.

The equations of the two-dimensional HR model with a dynamic feedback con­
troller through a washout filter are given as follows:

dx x3
- = c(x- - -y+z) +u
dt 3 '

dy ~+dx-by+a

dt c

dw
- =x-dfw
dt '

u=g(v), v=x-dtw,

(6.6)
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where df > 0 is the reciprocal of the filter time constant, and we set df = 0.1. v is
the output function of the washout filter.

For the above closed-loop system, in addition to the creation of a Hopf bifur­
catIon, our controller can be desIgned to control the cntIcalIty of the bIfurcatIOn
(see m the followmg). It IS well known that only the quadratIc and CUbIC terms in

a nonlinear system generating a Hopf bifurcation influence the bifurcation stability
coefficient (Abed and Fu, 1986; Chen et aI., 2001). In order to simplify the choice
of control parameters, however, we represent our controller in the following simple
form WIthonly a lInear term and a CUbIC term:

(6.7)

Note that introduction of the washout filter to the two-dimensional HR model
does not affect the equilibrium structure of the original system during a control pro­
cess. As we shall see later, the linear control gain K[ determines two basic critical
condItIons, but has no effect on the cntIcalIty of the bIfurcatIOn because of no con­
tnbutIOn to the bIfurcatIOn stabIlIty coeffiCIent; the nonlInear control gam Kn , on the
other hand, controls the cntIcalIty of the bIfurcatIOn, but has no mfluence on the
locations of equilibrium points.

Suppose that a Hopf bifurcation is created at a desired parameter value zo = -0.5
before the emergence of the SNIC bifurcation. For the closed-loop system it has only
one eqiiilibriiiiii point at zo = -0.5, namely,

(XO,YO, wo) = (xO,Yo,xo/df) = (-2.48104,2.10968, -24.8104).

The JacobIan matnx of the closed-loop system IS given as follows.

r

C(1 - X2) +K[ + 3Kn(x- dfwf

2x+d

C

-C -Kldf - 3K.(x - dfw)2df1
b o . (6.8)
C

0 -df

It is clear that the nonlinear control term has no influence on the lacobian matrix
at the eqUIlIbnum point. Thus, the JacobIan matnx becomes

2x+d

C

1

-C -K[df

b
0

C

0 -df

(6.9)

The corresponding characteristic equation has the following form,

POA3+PIA2+P2A+P3 =0, (6.10)
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It a Hopf bIfurcatIOnoccurs, the Jacobian matnx of the closed-loop system must
satisfy the basIc cntical conditions (Chen et aI., 2001; Guckenhelmer and Holmes,
1997). One is the eigenvalue assignment. Namely, the characteristic equation has
a pair of pure imaginary eigenvalues XI = moi and X2 = XI = -moi, and the other
eigenvalues have negative real parts at Zo = -0.5. The other is the transversality
condition. That is, the eigenvalues Al and A2 cross the imaginary axis with some
nonzero speed at the Hopfbifurcation point (xo,Yo, wo;zo). To avoid solving directly
all eigenvalues, we employ a more convenient and efficient algorithm criterion for
detecting the existence of Hopfbifurcations, which is on basis of the Routh-Hurwitz
stability criterion and described by the coefficients of the characteristic equation
Instead of eigenvalues (Lm, 1994).

In thiS way, the eigenvalues assignment corresponds to the follOWIng condtIOns.

!ll = PI> 0,

~
!l2 = IP3 P21 = O.

SubstitutIng the parameter values and the locatIOn of the eqmhbnum POInt, we
can get

P3 = 0.19935 > 0,

K[ < 15.90000,

Kl- 26.62042K[ + 169.85670 = o.

There are two solutIOnsfor the above equatIOn, namely, K[ = 16.01299 and K[ =

10.60743. Apparently, only K[ - 10.60743 meets the eigenvalue assignment. Next,
we examine If K[ = 10.60743 satisfies the transversahty condtIOn, which IS wntten
as

d!l2
dz = -62.0351O+4.72179K17~ 0, namely K[ =1= 13.13804.

Apparently, K[ - 10.60743 satisfies the transversahty condItion. As a result, we
take K[ = 10.60743 accordIng to the two baSIC cntical conditions for the occurrence
of the Hopf bIfurcatIOn. For a whIle, let Kn - 0, then the bIfurcatIOndiagram of the
closed-loop system IS shown In Fig. 6.12. As expected, a Hopf bifurcatIOnIS created
at Zo = -0.5. At the same time, the nght Hopf bIfurcation IS moved to z = 9.656.
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Notice that the created Hopfbifurcation here is subcritcial. Thus, we have made the
neuronal excitability change from Type I excitability to Type II excitability.
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Fig. 6.12 The bifurcation diagram of the closed-loop system with only the linear control term
K, - 10.60743.

In what follows, we can control the cnticality of the created Hopf bifurcatiOn
by the nonlinear control term. At a small neighborhood of a Hopf bifurcatiOnpomt
the bifurcated periodic solution of the limit cycle has the amplitude of O(e), here,
e = Iz - zol. The asymptotic stability of such a periodic solution is governed by
one characteristic exponent given by a real smooth even function f3 (e) = f3J.e +
f34e4 +..'. If f3 (e) < 0, the periodic solution is asymptotically stable, otherwise it
is unstable. From the expression of [3 (e), typically, it can be seen that the local
stability of the bifurcated penodic solutiOn, namely, the cnticality of the bifurcatiOn
is determined by the sign of [32, which is called the bifurcation stability coefficient.
Here, we apply the center manifold and normal form theory to derive the closed­
form analytic expression for {32.

As seen above, after determmmg the linear control gam K[ - 10.60743 accordmg
to the two baSIC cntical conditions for the Hopf bifurcatiOn, the Jacobian matnx of
the closed-loop system becomes a constant matrix. Therefore, we can numerically
compute all eigenvalues of the matirx and their corresponding eigenvectors. In fact,
this is a necessary step in deriving the analytic expression for [32 with respect to Kn

m order to employ the center mamfold and normal form theory.
The constant matrix is

-4.85923 -3.0 -1.06074

-1.05403 -0.33333 0.0

1.0 0.0 -0.1

The eigenvalues and their correspondmg eigenvectors are

Al = -1.16241 x 10 1O+0.19408i,

A2 = -1.16241 x 10 1O-0.19408i,

A3 = -5.29256,
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and
0.08441 +0.1638li -0.96125

VI = -0.42457 - 0.27080i , V2 =VI, V3 = -0.20431

0.84407 0.18512
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Here, i is the imaginary unit. Due to very small real parts of XI and X2 , the ma­
trIX can be considered to have a pair of pure Imagmary eigenvalues. Another IS
a negative eigevalue. For notational simplicity, let ~ = Im(Xtl = 0.19408 and
M = A3 = -5.29256. We construct a matrix P as follows:

Here, Re and 1m mean extracting the real part and the imaginary part of a
complex-valued expression, respectively.

That IS,
0.08441 -0.16381 -0.96124

P = -0.42457 0.27080

0.84407 0.0

-0.20430

0.18512

Taking the following coordinate transformation,

x Xo x

Y Yo +P Y (6.11)

we can obtain

w Wo W

x -2.48104 +0.08441X - 0.16381Y - 0.96124W

Y 2.10968 - 0.42457X+0.27080Y - 0.20430W

w -24.81039 +0.84407X+ 01.8512W

Substttutmg the coordmate transformatIOninto the closed-loop system, and then
making the following transformation, we can get a system under a new coordinate
system as follows:

dX dx

dt dt

dY =p_1 dy
dt dt

dW dw
dt dt

(6.12)

where p-I is the following inverse matrix of P
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[

0.20947 0.12671

r:' = -0.39215 3.45558

-0.95509 -0.57777

Yang Xle, Jlan-Xue Xu

1.22753 ]

1.77737 .

-0.19511

At (X,Y, W) = (0,0,0) the Jacobian matrix ofthe new system is

-1.0xlO-1O -0.19408 3.0xlO-9

0.19408 0.0 -1.0 x 10-

0.0 0.0 -5.29256

We can regard the Jacobian matrix as the following matrix of the real canonical form
by ignoring very small entnes,

[

0.0 -0.19408

0.19408 0.0

0.0 0.0

0.0 ]
0.0 .

-5.29256

As a result, the Jacobian matnx of the new system has the foIlowmg property:

U1

dX

dF3

dX

dFl

dY
.~')
ur

dY

dF 3

dY

ur

dW

dF 3

dW (0,0,0)

o
COo

o
o
o

o
o
M

(6.13)

Here, we can apply the center manifold and normal form theory to derive the
analytic expression for the bifurcation stability coefficient 132. In fact, by following
the procedures provided m (Hassard, 1981), the bIfurcatIOn stablhty coefficient has
a umfied expression, regardless of the detaIled form of the transformed system With
a real canonical form, as follows:

(6.14)

d2Fl d2Fl d2F2 d2F2 d2F2 d2Fl

dX2 - dy2 +2 dXdY +i dX2 - dy2 -2 dXdY

d'lF] d'lF] d'lF'l d2F2

dX2 + dy2 +i dX2 + dy2
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1 ,PF1 ,PF1 ,PF2 ,J2f1 ,)IF'l ,PF1

802 (zo) = 4: aX2 - aY2 - 2axJY +i aX2 - aY2+2axJY
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As above, all derivatives take their values at (X, Y,W; zo) = (0,0,0; -0.5). In this
way, we obtain closed-form analytic expression for /32 as follows:

/32 = 0.22527 X10-1+2Re(0.64645 x 1O-3K
n + i0.34531 x 1O-3K

n ) .

If Kn is a real number with Kn < -17.42357, f32 < O. As a consequence, Kn <
-17.42357 ensures that the penOdIC solutIOn bIfurcated from the Hopf bIfurcatIOn IS
asymptotically stable, and then makes the Hopfbifurcation change from subcritical
into supercritical. In contrast, if K; > -17.42357, then /32 > 0, and the created Hopf
bifurcation is slIbcritical

Let us investigate bifurcation behavior in the case of Kn = - 20 to verify the ac­
curacy of our analytic expression for 13z. The bifurcation diagram is shown in Figs.
6.13(a) and 6.13(b). FIgure 6.13(b) IS enlargement of FIg. 6.13(a) near the created
Hopf bIfurcatIOn POIllt. From FIg. 6. 13(b), It IS clear that the created Hopf bIfurca­
tIon IS supercntIcaI. Thus, we can make the created Hopf bIfurcatIOn supercntIcal
VIa the nonhnear control term WIth K; - - 20. And we see the structure and loca­
tions of the equilibrium points are not changed. Also, the bifurcation points of the
left (created) and the right Hopf bifurcations are not varied. The bifurcation value
of the left HB ISz - -0.5, whIle that of the nght HB IS Z - 9.656. In other words,
the nonhnear control term only exerts an Illtluence on the cntIcahty of the bIfurca­
nons, namely, the bIfurcatIOn stabIhty coefficIent, but no effect on the structure and
locations of the equilibrium points. Actually, these features can be seen from their
calculation processes and expressions.
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Fig. 6.13 The bifurcation diagram and time series of the closed-loop system with Kl - 10.60743
and Kn - 20.0. (a) The bifurcation diagram, and (b) IS enlargement of (a) near the left Hopf
bifurcatIOn pomt.

6.3.5 Bursting and its topological classification

Different ionic mechanisms of bursting may lead to different dynamical mech­
amsms, whIch m turn determme the neuro-computatIOnal properties of bursters
(lzhikevIch, 2007), l.e., how they respond to the mput. Therefore, much effort IS
devoted to studymg and classIfymg the dynamIcs of burstmg.

Most mathematical models of bursting neurons can be written in the slow-fast
form [2] as follows:

dx
dt = !(x,y),

dy
dt = J1g(x,y).

(6.15)
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where x represents the fast subsystem responsible for spiking activity, the modifica­
tion of spiking attributes to the role of the slow subsystem y, and J1 << I is the ratio
of time scales. Such systems are singularly perturbed system, for which the standard
method for analysis is to set J1 = 0 and consider the fast and the slow subsystems
separately. This method is called dissectiOnof neuronal burstmg or slow-fast subsys­
tem decomposition (Rinzel, 1985). Therefore, we can treat y as a vector of slowly
changing bifurcation parameters to investigate the dynamical behavior of the fast
subsystem.

Osually, the fast subsystem has a hmit cycle attractor correspondmg to spikmg
for some values of y and a stable eqmhbnum attractor correspondmg to restmg state
for other values of y. As y oscillates between the two regions where x exhibits spik­
ing and resting state, respectively, the whole system can burst. Now the key problem
is to make y oscillate. In the simple case the slow subsystem has a limit cycle at­
tractor, which is relatively msensitive to the fast vanable, and thus the slow van able
exhibits an autonomous oscillatiOn that penodically dnves the fast subsystem dis­
play spikmg and the resting state. Such a burstmg is called slow wave burstmg.
Parabolic bursting (Bertram et aI., 1995; Ermentrout and Kopell, 1986; Rinzel and
Lee, 1987; Baer et aI., 1995) belongs to this case, for example. The slow subsystem,
however, must be at least tow-dimensional. When the fast subsystem has a bistable
range of restmg and spikmg states, where the stable eqmhbnum and hmit cycle at­
tractors coexist for the same value of y, a hysteresis loop is created for the slow
variable. Such a bursting is called hysteresis-loop bursting. Square wave bursting
(RmzeI and Ermentrout, 1989;Bertram et aI., 1995) is one of thiSburstmg.

Bursting neurons are distinguished qualitatively according to their topological
type (Izhikevich, 2007), which is determmed by the two bifurcatiOns of the fast
subsystem: one is from restmg state to spikmg, and the other is from spikmg to
resting state. The former means that the state of the fast subsystem changes from a
stable equilibrium into a limit cyle attractor, the latter denotes the state of the fast
subsystem transforms from a limit cycle attractor into a stable equilibrium.

As we know, an eqmhbnum has only 4 pOSSible bifurcatiOns of co-dimensiOn 1:
saddle-node bifurcatiOn (fold), saddle-node bifurcatiOn on mvanant circle (circle),
supercntical Hopf bifurcatiOn (Hopf) and Subcntical Hopf bifurcatiOn (subHopf),
while also a limit cycle attractor has only 4 possible bifurcations of co-dimension
1 if the fast subsystem is two-dimensional: saddle-node bifurcation on invariant
circle (circle), saddle homoclinic orbit bifurcation (homoclinic), supercirical Hopf
bifurcatiOn (Hopf) and fold hmit cycle (fold cycle). Thus, there are 16 different
bifurcatiOn combmatiOns, resultmg m 16 different topological types of fast-slow
bursting neurons with 2-dimensional fast subsystems. They can be named after the
bifurcations involved. If the constraint that the fast subsystem is two-dimensional is
removed, then the topological type has 120 all possible types for bursting neurons
(Izhikevich, 2007; Izhikevich, 2000).

The topological types of the three known burstmg neurons are as follows.
Square-wave burstmg belongs to the fold/homochmc type. Namely, the fast sub­

system undergoes fold (saddle-node off limit cycle) bifurcation resulting in the tran­
sition from resting state to spiking. After spiking, the fast subsystem undergoes sad-
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dIe homoclinic orbit bifurcation resulting in the transition from spiking to resting.
As to parabolic bursting, it is the circle/circle type because the transition from spik­
ing to resting and back to spiking of the fast subsystem occurs via saddle-node on
mvanant circle bifurcatiOn. For elliptic burstmg, the fast subsystem undergoes sub­
cntical Hopf bifurcatiOnleadmg to the transition from resting state to spikmg. After
that, spiking stops via fold limit cycle bifurcation. Therefore, elliptic bursting is
subHopf/fold cycle type.

6.3.6 B{[urcation, chaos and Crisis

Bifurcation structures and chaos phenomena are frequently observed in experimen­
tal neural pacemakers and theoretical neuron models. Aihara, et al. (1985) find an al­
ternatmg penodic-chaotic sequence expenmentally observed m penodically forced
neural OSCillators of giant axons of sqmds, and demonstrate that such a sequence
can be qualitatively described by the HH model. Matsumoto et al. (1987) discover
that chaotic potential responses could be evoked in periodically forced squid axons
immersed in normal seawater and intermittent chaos appears through a subcritical
penod-doubling bifurcatiOn. In addition, Takahashi, et al. (1990) find the penodic
potential responses appear through either tangent bifurcatiOnor type III bifurcatiOn
in the same experimental objects. Ren et al. (1997) claim that they observe period­
adding cascades with or without chaos and period doubling cascades many times in
the expenmental neural pacemakers. Shl1mkov and Cymbalyuk (2005) mvestigate
a contmuous and reverSible tranSition between penodic tomc spikmg and burstmg
activities in a model of a heart interneuron from the medicina I leech and find that the
Blue-Sky Catastrophe is the dynamical mechamsm for the transition between Tomc
Spiking and Bursting. Also, they show the model can demonstrate co-existence of
a periodic tonic spiking with either periodic or chaotic tonic spiking (Cymbalyuk
and Shl1mkov, 2005). Feudel et al (2002) study global bifurcatiOns of the chaotic
attractor m a modified HH model of thermally senSitive neurons, and observe an
abrupt increase of the mterspike mtervals m a certain temperature region, and iden­
tify this as a homoclinic bifurcation of a saddle-focus fixed point embedded in the
chaotic attractors. Interestingly, Guckenheimer and Oliva (2002) demonstrate the
existence of chaotic solutions in the HH model with its original parameters, which
is preViOusly unobserved dynamiCs m such a model. Figure 6.14 shows the bifur­
cation diagram of lSI versus the time-scale factor r (Xie et aI., 2004b). We can
see a penod-addmg cascade With chaos as r is decreased from Fig. 6.14. Here, the
firing pattern alternates between periodic bursting and chaotic bursting, which re­
sults from chaos appearance by period-doubling cascades and chaos termination by
saddle-node bifurcations

An mtenor cnSiS occurs at the tranSition pomt between chaotic spikmg and
chaotic burstmg m the HR neuron model, where the change of the attractor Size
is sudden but contmuous (Xie et aI., 2004b). Also, Jm et al. (2006) show a cnSiSof
mterspike mtervals m penodically forced HH model. Figure 6.15 shows an mtenor
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Fig. 6.14 Bifurcation diagram of lSI versus the time-scale factor r (see Fig. l(b) in (Xie et aI.,
2004b))

CrISiS occurs at the transition pomt between chaottc spikmg and chaottc burstmg in
the modified Chay model (Xie et aI., 2004b). By the way, although the Chay model
is used to describe the electrical activities of pancreatic f3 cells, and, recently, it is
frequently considered to be a neuron model.
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Fig. 6.15 Bifurcation diagram of lSI versus the maximal conductance of the slow K+ current gp

III the modified Chay model (see Fig. 5(6) III (Xle et aI., 20046».
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6.4 Sensitive responsiveness of aperiodic firing neurons to
external stimuli

6.4.1 Experimental phenomena

In a number of neurophysiological experiments about responsiveness of the chroni­
cally compressed dorsal root ganglion (DRG) neurons in rats to drugs, neuroscien­
tIsts have found that apenodic finng neurons are more senSitIve to external stImuli
than penodic finng neurons (Hu et aI., 2000; Yang et aI., 2000). To demonstrate
the umversality of the sensitive responsiveness, vanous drugs With dlflerent action
mechanisms have been applied to the chronic compression DRG neurons, for ex­
ample, higher Ca2+ solution, norepinephrine (NE) and tetraethylammonium (TEA).
Interestmgly, all of these drugs can mduce thiS phenomenon of the sensitive respon­
srveness m the expenments.

Let us now give m bnef the expenmental results on the phenomenon of sensitive
responsiveness (Yang et aI., 2000). Here, we only show the responses of chronic
compression DRG neurons to TEA. Spike series from a total of 91 DRG neurons
with spontaneous firing behavior in 25 anesthetized rats were recorded extracellu­
lady. There are 32 penodic finng neurons and 59 apenodic finng neurons, mc1udmg
44 With chaotIc burstmg, 7 With integer multIple finng and 8 With chaotIc spikmg
patterns, in the 91 DRG neurons. After bath application of 2 mmol/L TEA to the
DRG neurons for 3 minutes, the percentage of periodic and aperiodic firing neurons
exhibiting obvious response are 27.3 and 93.2, respectively. Moreover, the responses
of apenodic finng neurons are more mtensive than those of penodic finng neurons.
Figure 6.16 shows the responses of mJured DRG neurons With dlflerent finng pat­
terns to TEA. In Figs. 6.16(a)-(d), top panels, middle panels and bottom panels show
the spike trains, the histogram of mean firing rate (bin width 1 second) and the lSI
series, respectively.

From the expenments about the responses of penodic finng neurons and apen­
odiC finng neurons to TEA Withdifferent concentratiOn, we observed that the apen­
odiC finng neurons exhibited a gradually enhanced response as the concentratiOn of
TEA was mcreased from 0.5 mmol/L to 2 mmol/L and 10 mmol/L, while the pen­
odic firing neurons only produced a faint response to 10 mmol/L TEA, as shown in
Fig. 6.17.

From a number of expenmental results, we can find that apenodic finng neurons
respond more easily and mtensively than penodic finng neurons to external stimu­
lation of drugs. What mechanisms govern such a phenomenon? Here, we devote our
attention to the study of this problem in terms of dynamical systems theory.
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Fig. 6.17 Response of a chaotic bursting neuron and a penodlc finng neuron to TEA Withdifferent
concentratIOn (Fig. 2 In (Yang et al., 20(0)). (a) shows a developed eVident response of the chaotic
bursting neuron to TEA, and the response enhanced gradually as the concentration of TEA was
Increased from 0.5 mMol/L to 2 mMol/L and 10 mMoI7L. (b) shows the penodic finng neuron had
Just a little response to 10 mMoIlL TEA.

6.4.2 Nonlinear mechanisms

Actually, many neuron models are described by a set of first-order ordinary differ­
ential equatIOns. Qmte frequently some models are chaotic systems under a cer­
tam parameter range. As we know, a key development descnbmg chaotic systems
is periodic orbit theory. Periodic orbits open a door to the understanding of the
chaotic dynamics. It has now been a widely accepted notion that unstable periodic
orbits (UPO's) constitute the most fundamental building blocks of a chaotic system
(Schmelcher and Dlakonos, 1998; Davldchack and La!, 1999; So et aI., 1996, 1997).
Theoretically, there are the mfimte number of OPO's embedded m a chaotic attrac­
tor. Moreover, these OPO's reveal the skeleton of the chaotic attractor because they
are dense in it. As a result, the UPO's carry essential information concerning charac­
teristic features of the chaotic system, and allow the calculation of many dynamical
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invariants of physical interest like Lyapunov exponents, fractal dimensions and en­
tropies of the attractor by knowing their positions and properties (Cvitanovic,1998;
Auerbach et al., 1987; Lathrop and Kostelich, 1989). This reflects the importance of
the OPO's for the analysIs and decodmg of the dynamIcs on the attractor. Therefore,
OPO's seem to be the optImal practIcal tool for the descnptIOn of chaotIc systems.
More recently, the theory of uro's has been applied to understand the mechanism
of neural coding and decoding (So et al., 1998). This is the very reason why uro's
is used to characterize the activity of aperiodic firing neurons in this study. We use
the recurrence method to compute the dIstnbutIOn of OPO's at every penod, whIch
denotes how often a chaotIc trajectory VISIt OPO's WIth the same penod. Although
thIS method was proposed before a decade and more, It IS suffiCIent enough for our
pUlpose.

First, we investigate a celebrated neuron model, the HR model, and reveal the
dynamIcal mechamsms for the sensItIve responsIveness of apenodIc finng neurons
to external stImulI. And then we turn to the modIfied Chay model, and find the
phenomenon of sensitive responsrveness also occurs m thIS model. By the way, our
goal is to choose these two models to interpret the dynamical mechanisms for the
phenomenon of sensitive responsiveness, but not use them to model the injured DRG
neurons in rat.

It IS well known that the neuronal finng pattern can be changed after the applI­
cation of a drug. ThIS IS because most of drugs affect the functIOn of a neuronal
system by varying the efficacy of various ion channels in the membrane. Here, we
fix I = 3.0 and vary r to reflect the action of external stimulation in the HR model,
as seen previously.

The bIfurcatIOn dIagram of lSI versus r IS shown m FIg. 6.18. FIgure 6.14 IS the
enlargement of Fig. 6.18 over the range of 10.002 7, 0.00551. From Fig. 6.18, we can
see the finng pattern at first undergoes from SImple penod spIkmg to chaotIc finng
via a period-doubling sequence, and then a saddle-node bifurcation abruptly termi­
nates this chaotic firing in the form of intermittency, and reorganizes simultaneously
penod-3 burstmg WIth the decrease of r. After that, the alternatIOn between penod­
doublIng sequence and saddle-node bIfurcatIOn IS repeated and at the same tIme a
narrow chaotIc finng region occurs between them, as seen m FIg. 6.14. Fmally, the
chaotic firing region disappears after a certain periodic bursting.

From FIg. 6.18, we see clearly that penodIc spIkmg and penod-2 burstmg eXIst
in a broad range of r, respectively. Thus, they can retain easily their corresponding
finng patterns under a small perturbatIOn of r. As r IS reduced, the chaotIc finng
range and the penodIc burstmg range appear alternately untIl the dIsappearance
of the chaotIc finng range. In FIg. 6.14, we can find that a saddle-node bIfurca­
tion terminates a chaotic regime, and simultaneously reorganizes a new periodic
bursting whose number of firing will increase by one. Furthermore, the size of
a chaotIc regIme IS much smaller than that of the adjacent penodIc regIme. The
larger the finng number of a penOdIC burstmg IS, the smaller the SIzeof the adjacent
chaotIc regime becomes. EVIdently, a penod-doublIng cascade leads to a chaotIc
regime, and a saddle-node bifurcation terminates the chaotic regime via intermit­
tency. Namely, there are bifurcation points at the two ends of the chaotic regime.
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Therefore, an aperiodic firing neuron located at a chaotic range crosses bifurcation
points much more easily than the corresponding periodic firing one under a small
perturbation of r.

180
160

140

120

...... 100
CJ:l
...... 80

60
40

20

o
000 om o02 0 03 0 04 0 05

Fig. 6.18 Bifurcation diagram of lSI versus the time-factor r within the range of [0.001, 0.05J
(Figure l(a) in (Xie et aI., 2004b».

It is well known that qualitative variations of dynamical behavior of a system
occur at bifurcation points as control parameters are changed. This implies the fir­
mg behavIOrvanes qualItatIvely over bIfurcatIOn pomts for the HR model. Conse­
quently, an apenodic finng neuron is more sensitive than a penodic finng one under
a small perturbation of r. It follows that various bifurcations should be one of dy­
namical mechanisms for the sensitive responsiveness of aperiodic firing neurons to
external stimuli.

To order to demonstrate whether such a phenomenon of senSitIveresponsiveness
of apenodic finng neurons occurs in bIOphysicalmodels, let us to mvestigate a pan­
creatic f3-cell model. Since physiological evidence shows the intracellular calcium
concentration Ca2+ changes rather quickly during depolarization, it may not be a
low dynamic variable. Thus, we adopt the modified Chay model, which is based on
the hypothesis of Ca2+ -activated K+ channel (Chay et aI., 1995). The equations are
listed as follows'

dV 3 4
-Cm""di = gImoohoo(V - VI)+gKn (V - VK) +gpp(V - VK)

+gL(V - Vd,
dn noo-n

dt "t"n

dp = m~hoo(VI- V) - kcpj(l- p) (1- p)2,
dt "t"p

(6.16)

where V is the membrane potentIal, n is the gating van able, p is a slow van able
which denotes the fraction of the available Ca2+ -sensitive K+ channels at time
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t. The maximal conductance of the slow K+ current g p is chosen as the control
parameter.

The bifurcation diagram of lSI versus gp is shown in Fig. 6.19. Figure 6.15
is the enlargement of Fig.6.19 in the range of 110.5,13.01. From Figs. 6.19 and
6.15, we can see that dynamIcal behaVIOr of the Chay model IS SImIlar to that of
the HR model. As g p is increased, the firing pattern undergoes a period-doubling
cascade and changes from periodic spiking to chaotic spiking, and then becomes
suddenly chaotic bursting via an interior crisis. With further increasing g p, the
finng pattern transforms from chaotic burstmg mto penod-7 burstmg Via an m­
verse penod-doublIng cascade. Hereafter, chaotic finng regImes and penodic burst­
mg regimes appear alternately, as shown m FIg. 6.15. Saddle-node bIfurcatIOn and
period-doubling bifurcation dominate this variation. Moreover, they are at the left
and right of chaotic regimes, respectively. Finally, the system terminates the firing
behaVIOr at about gp - 26.855. In addItion, It IS noted that the number of spIkes of
penOdIC burstmg decreases by one If only the system stndes over a chaotic regime.
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Fig. 6.19 Bifurcation diagrams of lSI versus gp with gp E [8, 27] (Figure 5(a) in (Xie et al.,
~

As seen m FIg. 6.15, the smaller the finng number of a penodic burstmg IS, the
narrower the chaotic regime adjacent to thIS penodic burstmg IS. ThIS IS contrary
to the case of the HR model. The fact holds, however, that is, the size of chaotic
regime is much smaller than that of the adjacent periodic regime. Aperiodic firing
cells, therefore, get across bifurcation points more easily than periodic firing cells
do under a small perturbatIOn of gpo In other words, apenodic finng cells exhIbIt a
sIgmficant change more easIly than penOdIC finng cells when subjected to a small
perturbatIOn of gpo Hence, vanous bIfurcatIOns remain still one of mechamsms for
sensitivity of aperiodic firing cells to external stimulation.

Now let us turn to the case of crisis. In fact, crisis phenomena occur in almost
all chaotic systems. There should be cnSIS phenomena emergmg m chaotic neuron
models. Generally speakmg, there are three dIfferent types of cnses (Grebogi et al.,
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1986, 1987), i.e., attractor merging crisis, interior crisis, and boundary crisis, where
a chaotic attractor undergoes a sudden change as a function of the control parame­
ters. For attractor merging crisis, a multi-piece chaotic attractor merges together to
mcrease m Size smoothly. Intenor cnSiS means a chaotic attractor mcreases m Size
abruptly. If a chaotic attractor suddenly vamshes, it is considered a boundary crisis
or an exterior crisis occurs.

In the following we focus our attention on the case of interior crisis. As to exterior
crisis, since it is related to abrupt disappearance or appearance of a chaotic attractor,
without any doubt, there is a quahtative vanatiOn m the dynamical behaViOr of a
system as the control parameter vanes. Generally, an attractor mergmg cnSiSappears
m many systems with symmetnes, where two (or more) chaotic attractors merge to
fonn a single chaotic attractor, and it also leads to an abrupt change in dynamical
behavior. Thus both of exterior crisis and attractor merging crisis can result in the
sensitive responsiveness of apenodic finng cells to external eXCitatiOn If they eXiSt.

Now, we mvestigate the change m the finng pattern of the modified Chay model
before and after the mtenor cnsts. It is can be seen from Fig. 6.15 that there is a
sudden increase in the size of a chaotic attractor as the parameter g p passes through a
critical value, as denoted by an arrow. The incremental portion comes from a chaotic
saddle that already exists for parameter values below the crisis. This chaotic saddle
is an mvanant and nonattractmg set havmg horseshoe-type dynamics and resembles
the new portion of the larger attractor Just above the crisis m phase space. When the
crisis occurs, the chaotic saddle collides with the chaotic attractor and becomes part
of the chaotic attractor at the crisis (Kim and Stringer, 1992). This is the very origin
of the abrupt enlargement of the chaotic attractor via the interior crisis.

We take gp - 10.9 below the cnSiS and gp - 11.0 above the cnSiS. They corre­
spond to the finng states of chaotic spikmg and chaotic burstmg, respectively. The
membrane potentials are shown m Fig. 6.20. The upper panel is before the cnsis,
while the lower one is after the crisis. Clearly, there is an evident difference between
membrane potentials, namely, for chaotic spiking there is no clear underlying slow
wave while for chaotic burstmg an unpredictable number of spikes nde on the slow
wave. Figure 6.21 shows the first return maps of the lSI senes m these two cases,
where the Sizes and structures of the chaotic attractors are completely dlflerent. The
big dot and the small dot denote respectively the cases of gp = 10.9 and gp = 11.0.
Furthermore, the distributions of UPO's are calculated from 30 000 lSI's before and
after the interior crisis, respectively. The embedding dimension is chosen as d = 3
and time delay as 'r - 1. There is a sigmficant dlflerence m the distnbutiOn of OPO's
between S» = 10.9 and S» = 11.0, as seen m Fig. 6.22. Interestmgly, the number of
UPO's increases suddenly at period 7. This is because the lSI series of after the cri­
sis is dense near the period-7 UPO's. Thus, if an aperiodic firing cell resides near an
interior crisis, also it can exhibit the sensitive response to external stimulation.

To sum up, vanous bifurcatiOns and cnses are possible mechamsms for senSitive
responsiveness of apenodic finng neurons to external eXCitatiOn. They all can result
m obviOUS changes in the finng activity of an apenodic finng neuron to external
weak stimulation. It is worth while to say that there are some periodic windows in
some chaotic regimes, for those periodic ones are very narrow in scale and do not
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form the leading pattern of periodic bursting in the HR model, the influence of them
is negligible.
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Fig. 6.20 Membrane potentials before and after the interior crisis (Figure 6 in (Xie et aI., 2004b)).
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Fig. 6.21 First return maps of lSI before and after the intenorcnsis (Figure 7 In (Xie et aI., 2004b)).

Up to now, the phenomenon of the sensitive responsiveness that aperiodic fir­
ing neurons are more sensitive to external stimulation has been investigated using
dynamical systems theory, and the dynamical mechamsms underlymg such sensI­
tive responsiveness are revealed. BifurcatIOns and cnses are considered as possible
mechamsms. We thmk that the sensitivity of neurons With apenodlc finng activity
to external stimulation reflects a universal property of excitable cells with determin­
istic chaos. The phenomenon of sensitive responsiveness can provide curing some
dIfficult diseases With Important directIOns, for example, the time mstant and dose
of takmg drugs. That IS, we can expect to control and cure some diseases With some
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minimum doses of drugs at appropriate instant of time making use of the sensitive
phenomenon.
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Fig. 6.22 Comparison of the distribution of UPOs computed from 30 000 lSI's before and after
the interior crisis, respectively (Figure 8 in (Xie et aI., 2004b».

6.5 Synchronization between neurons

6.5.1 Significance ofsynchronization in the nervous system

OscIllatory responses m cat vIsual cortex exhIbIt mter-columnar synchromzatIOn
(Gray et aI., 1989). Now It IS wIdely consIdered that the synchronous oscillatIOn
plays a role in feature binding, neuronal communication and motor coordination
(Smger, 1993; FrIes, 2001; Schmtlzer and Gross, 2005). PartIcularly, feature bmd­
mg denotes how a large collectIOn of coupled neurons combmes external sIgnals
WIth mternal memOrIes mto new coherent patterns of meamng. An external stImulus
spreads over an ensemble of coupled neurons, bUIldmg up a correspondmg collec­
tive state. Thus, the synchronization among many coupled neurons is the basis of
a coherent perception. The synchronous oscillation, however, can be modulated by
task constrains, such as attention. To sum up, the neural synchronization may be the
Important mechamsm of the mformatIOn integration m the partIcular cortIcal area or
between different cortical areas



6 The Complexity in Activity of Biological Neurons

6.5.2 Coupling: electrical coupling and chemical coupling

335

Neuron commumcation IS completed VIa synapses (MIchael and Bennett, 2006).
The synapse is a unique junction that allows for the transfer of neural information
from one neuron to the next. A synapse is usually located between a presynap­
tic axon and a postsynaptic dendrite. There are two types of synapses, electrical
and chemIcal. Electncal synapses are actually gap JunctIons, whIch are clusters
of mtercellular channels that connect the mtenors of coupled neurons VIa specIal
protein channels (Rozental et aL, 2001). This allows for the direct flow of ions
from one neuron to another and rapid signal transmission between the neurons.
Generally this communication is unidirectional, but bidirectional communication
IS also possIble. We often refer to the couphng scheme of neurons coupled m thIS
way as electncal couphng. These synapses are therefore largely found m smooth
and cardIaC muscle and m certain regions of the bram. On the other hand, chemI­
cal synapses are specialized junctions through which neurons signal to each other
and to non-neuronal cells such as those in muscles or glands ( more detail see
http://en.wikipedia.org/wiki/Chemical...synapse).This type of synapses is crucial to
the bIOlogIcal computatIOns that underhe perceptIOn and thought. Smce a chemI­
cal synapse has a synaptic cleft, neurons must utIhze a form of the neurotransrmt­
ter release to achieve neuron communication. Thus this communication is usually
unidirectional. Compared to chemical synapses, electrical synapses conduct nerve
impulses faster, but unlike chemical synapses they do not have gain.

SynchromzatIOn between neurons coupled by electncal or chemIcal synapses has
been observed expenmentally (NeIman and Russell, 2002; Elson, 1998). Now there
are a large number of SCIentIfic hteratures devoted to the study of synchromzatIOn
mechanisms between coupled neuron models. Actually, there may be no connec­
tion between neurons in different brain regions. Many physiological experiments of
bram actIvIty, however, show that synchronous oscIllatIOn to the same stImulatIOn
can appear m dIfferent bram regIOns (NeIman and Russell, 2002). ThIs means that
the synchromzatIOn can also occur in pairs of noncoupled neurons.

Since synchronization of electrically coupled neurons has been studied exten­
sively, we here show synchronous behavior of chemically coupled HR model neu­
rons (Wu et aL, 2005). SpeCIally, we consIder two IdentIcal HR model neurons WIth
recIprocal synaptic connections. The dIfferentIal equations of the coupled system
are given as

dx, 3 2
---;j( = Yi - aXi +bx; - z:+ [ext +e,

dy, 2- =c-dx· _yo
dt ",
dz·
-' = r[S(Xi -Xo) -Zi].
dt

Xi+Vc

(6.17)
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Flg.6.23 Figs. (a) and (6) are the time courses of membrane potential of two neurons for excItatory
synapse. (a) lITegular actlVlty for es - 0.03, (b) penod I antlsynchrony for es - 0.3, respectively.
FIgs. (c) and (d) are the time courses of membrane potential of two neurons for mhlbltory synapse.
(c) full anti synchrony for es = -0.45, (d) full synchrony for es = -0.9(Figure 1. in (Wu et aI.,
2D05)).
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Here, i-I, 2, j - 2, 1, and i i j. In the numerical simulation, we take a - 1.0,
b = 3.0, c = 1.0, d = 5.0, s = 4.0, r = 0.006, Xo = -1.56, and lext = 3.0. e, is
the strength of the synaptic coupling, and Vc = 1.4 is the synaptic reverse poten­
tIal whIch IS selected so that the currents mJected mto the postsynaptIc neuron are
always negative for mhIbItory synapses and positive for excitatory synapses. Smce
each neuron must receive an input every time the other neuron produces a spike, we
set Yo = 0.01 and Xo = 0.85.

The chemical synapse is excitatory for es > 0 and is inhibitory for es < O. The re­
sults show that two neurons are Irregular oscIllatIOn wIth small excItatory couplIng
strength, and are m full antIsynchrony for enough excItatory couplIng strength, as
shown m FIgs. 6.23(a) and (b). Interestmgly, these results are contrary to tradItIonal
view. For the synchrony course of two coupled neuron with inhibitory synapse, the
oscillation of the two neurons is irregular for small coupling intensity, and the phase
dIfference between the two neurons mcreases gradually wIth couplIng strength m­
creasmg tIll es = -0.45 at whIch the phase dIfference are bIggest and the two neu­
rons exhIbIt full antrsynchrony, see FIg. 6.23(c). As the mtensity of mhIbItory cou­
pling increases, the phase difference between neurons decreases. The two neurons
are in full synchronization for es = -0.9, as seen in Fig. 6.23(d).

Our results show that excitatory synapses can antisynchronize two neurons, and
weak or moderate mhIbItory synaptIc couplIng can antIsynchromze two neurons
too, but strong mhIbItory synapse can foster phase synchrony of two neurons. In
(Neiman and Russell, 2002), authors show that synchronization of nonidentical neu­
ronal oscillators which are not coupled can still be achieved via a specific mecha­
nism of noise-induced slow dynamics. In addition, note that a common signal in­
cludmg nOIse can mduce full synchromzatIOn or phase synchromzatIOn in the two
uncoupled neurons.

6.6 Role of noise in the nervous system

6.6.1 Constructive role: stochastic resonance and coherence
resonance

Noise permeates every level of the nervous system, from the perception of sensory
signals to the generation of motor responses, and poses a fundamental problem for
mformatIOn processmg (FaIsal et al., 2008). In partIcular, external sensory stIm­
ulI are mtnnsIcally nOISY because they are eIther thermodynamIc or quantum me­
chanical in nature. For example, all forms of chemical sensing (including smell and
gustation) are affected by thermodynamic noise because molecules arrive at the re­
ceptor at random rates owing to diffusion and because receptor proteins are limited
m theIr abIlIty to accurately count the number of SIgnallIng molecules. Now It has
been WIdelyconSIdered that neurons can use a phenomenon of stochastIc resonance
(SR) to detect weak SIgnals m mformatIOn processing (Longtm and Bulsara, 1991;
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Chialvo et aI., 1997; Douglass et aI., 1993; Levin and Miller, 1996; Russell et aI.,
1999; Longtin, 1993b, 1997; Longtin and Hinzer, 1996 Douglass, 1993; Levin and
Miller, 1996; Moss et aI., 2004; Braun et aI., 1994; Gammaitoni et aI., 1998; Wellens
et aI., 2004).

SR is a phenomenon in which a nonbnear system is subjected to a penodic modu­
lated signal so weak as to be normally undetectable, but it becomes detectable due to
resonance between the weak deterministic signal and stochastic noise (Gammaitoni
et aI., 1998). In other words, stochastic noise enhances a weak input signal. Gen­
erally, a system embedded m a nOiSY environment acqUires an enhanced senSitivity
towards small external time-dependent forcmgs by the mechamsm of SR, when the
noise intensity reaches some fimte level. Many SCientists, therefore, thmk that the
biological sensory system utilizes this phenomenon to detect emergent signals from
outer environment. In fact, the neurophysiological experiments on SR have been
conducted, three popular examples of which are the mechanoreceptor cells of cray­
fish, the sensory halr cells of cncket and human visual perception (more detail see:
http:71www.scholarpedia.org/article/StochasticJesonance).

Simultaneously, a phenomenon of coherence resonance (CR) has also attracted
much interest in the fields of neuroscience and physics (Pikovsky and Kurths, 1997).
CR is sometimes called autonomous stochastic resonance (ASR) (Longtin, 1997),
and refers to a phenomenon m which addition of certam amount of nOisem eXCitable
system makes its OSCillatory responses most coherent Withoutany weak Signal. Thus
a coherence measure of stochastic oscillations attains an extremum at optimal noise
intensity. Theoretically, CR can occur in excitable systems such as FHN model and
biophysical neuron models. Actually CR has been demonstrated in an experimental
neural pacemaker (Gu et aI., 2002).

Moreover, there eXists suprathreshold stochastic resonance (SSR), which is a
vanant of SR that occurs for a speCificset of conditions that are somewhat ddferent
from those of SR (http://www.scholarpedia.org/article/Suprathreshold...stochastic-res
onance). Like SR, SSR describes the observation of noise enhanced behaviour in
signal processmg systems. Unbke conventiOnal SR, SSR does not disappear when
the signal is no longer subthreshold. SSR has also been demonstrated m mtegrate­
and-fire neurons m the context of other nOise-based enhancement effects, and satu­
ration. In recent modelling studies SSR has been observed in a model of the electri­
cally stimulated auditary nerve.

6.6.2 Stochastic resonance: When does it not occur in neuronal
models?

We reported that subthreshold oscillations could hinder the detection of a weak sig­
nal via SR in neuronal systems (Gong et aI., 1998). Through the FHN model and
the Chay model, we have studied their subthreshold oscillatiOns m certam parame­
ter regimes, and we have found that the existence of subthreshold oscillatiOn could
hinder the detection of weak signals for neurons. It seems more difficult to say that
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SR does not occur than to find it, because one can not check for everyone of the
combinations of the amplitude and the frequency of a stimulus as well as the noise
intensity in the periodic driven stochastic excitable cell model; however, from our
defimtIOn and calculatIOn, a conclusIOn can be drawn that SR wIll not occur when
the effect of the subthreshold oscIllatIOn is very large compared with that of a pe­
riodic stimulus. Consequently, a weak signal whether periodic or aperiodic (finite
bandwidth) can not be amplified if it is overwhelmed by the subthreshold oscillation.

We note that the effect of the subthreshold oscillation can easily be neglected,
not only because it eXists m a very small parameter range with a very small amph­
tude, it can also bnng a gamma-hke distnbutIOn of spontaneous discharges. Onder
a penodic sttmulus, neurons havmg the subthreshold oscillatIOn may also exhibit a
multimodal structure in the ISIH, a lattice form in the return map, and the evolu­
tion of the height of multi-peaks to individual maxima. All these were recorded in
neurophysIOlogical expenments without paymg attentIOn to it.

The excitable cell model m our study seems robust to external perturbatIOns
(sttmuh). To get a stable pertormance, robustness is an essenttal quahty when de­
signing a real weak signal amplifier based on SR. However, this also brings much
trouble if the system happens to work in the regime of subthreshold oscillation,
which greatly degrades the performance of the amplifier to enlarge weak signals via
SR.

'....r.-h-e-p-o-s,.it~iv-e-r-o-,-le-p~la-y-e--,d"b-y-su--'b"t"-h-re-s-'-h-o-'-ld-'--o-sc-icnll'-a"tt-o-n-s~m-e-n-co-d-ri~n-g-c-e-rt'-a~m-s"tt-m-u-r'h

via the mechanism of ASR was highlighted recently where it acted as the periodic
forcing. To our knowledge, we are the first to report the negative role played by
the subthreshold oscillation on SR phenomenon. As a result, if we make use of it to
encode certam sttmuh ViaASR, the subthreshold oscillatIOn should be strengthened.
On the other hand, if we detect weak signals ViaSR, it should be got nd of.

6.6.3 Global dynamics and stochastic resonance ofthe forced
FitzHugh-Nagumo neuron model

We consider the penodically forced FHN neuron model m the followmg form:

dv
£ dt = v(v - a) (I - v) - w,

dw =v-dw-b+rsin(f3t).
dt

(6.18)

The variable v is the fast voltage-like variable and w is the slow recovery variable.
We fix the values of the constants to £ = 0.005, d = 1.0, and {3 = 7.5. Here the slow
van able of the neuronal model is dnven by the external weak signal; the reason for
this is to allow companson with the results obtamed by other scholars.

We show that the small-amplitude subthreshold periodic oscillation and the large­
amplitude suprathreshold periodic oscillation coexist commonly in some parameter
regions of the forced excitable FHN neuron model (Gong and Xu, 2001), as shown
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in Fig.6.24 (Figs. 3(a) and (b) in (Gong and Xu, 2001)). To address the question, a
white Gaussian noise is added on the second equation. We find that the random tran­
sitions induced by noise between the subthreshold oscillation and the suprathreshold
oscillatiOn are the essential mechamsm underlymg stochastic resonance studied by
us. The slgnal-to-nOise rano (SNR) as a functiOn of noise intensity D is shown in
Fig. 6.25 (Fig. 7 in (Gong and Xu, 2001)). Clearly, the SNR increases with noise
intensity D, reaches a maximum, and decreases again, displaying the typical feature
of stochastic resonance. This kind of bistability was also found in the HH neuron
model with time-dependent smusOidal stimulatiOn, but stochastic resonance was dis­
cussed only m the regiOn where the penodically forced HH neuron model has one
attractor, a stable nonfinng state. It is no doubt that the appearance of such dynamic
bistability should exist in other forced excitable neuronal models such as the ML
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Fig. 6.24 The subthreshold smaIl-amplitude penodlc solutIOn with penod T] - To and The
suprathreshold large-amplitude periodic solution with period Tz = 2To, here To = 2n!f3: (a) the
coexistent attractors m the state space v - w, the dashed lme IS for the suprathreshold osclIla­
tlOnand the solid lme IS for the subthreshold oscillatIOn; (b) Membrane potential versus time for
the two attractors, the dashed lme IS for the subthreshold oscillatIOnand the solid lme IS for the
suprathreshold oscillation. 'I he umts of the vanables are arbitrary.
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neuron model and the Chay neuron model. Moreover, such bistability has been ob­
served experimentally in neurons. Therefore our results may help us to understand
stochastic resonance in these neuron systems.

30,
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Flg.6.25 Slgnal-to-nOlse ratIOsversus nOIse mtenslty D. The umts of the axes are arbItrary.

In comparison with the previous studies about stochastic resonance, our work
shows that stochastic resonance of the excitable neuronal model is related to the
dynamtc btstabthty. Furthermore, the transtttons 10duced by nOise between the two
dynamtc oSCtllatiOn are studted by us. The mean of the return time and the mean­
to-variance ratio of the pulse number distributions are calculated in our works, the
results suggest that these values can serve to distinguish our case from the previous
studtes about stochasttc resonance 10 the typtcal btstable nonhnear system and the
excttable neuronal model. Moreover, tt tS 1Oterest1Og to note that for our case the
external stgnal can be regarded not only as a subthreshold sttmulatiOn but also a
suprathreshold stimulation, thus our studies also extend the classical stochastic res­
onance which is used to detect a subthreshold signal to a new range that can be used
to detect suprathreshold signal for neurons.

Through companng the stabthty of the finngs of the FHN neuron model wtth
smooth basm boundary and that wtth fractal basm boundary, we can draw the con­
clusion that the stability of firings of the forced FHN neuron with fractal basin
boundary can be changed eastly under the small nOise perturbatiOn. Ftgure 6.26
exhibits that the basin boundary between the two coexistent attractors has a frac­
tal structure, and tt tS venfied by the further calculatiOn about the dtmensiOn of the
basm boundary. Thts result suggests that 10 order to ma1Ota1O the stabthty of finng
state subjected to random perturbatiOns, the neuron model should be operated 10the
region where the basin of attraction is smooth. The result also suggests that when
we study the dynamic behavior of some typical neuronal models, much attention
should be paid to the global dynamics of these systems. As shown in the present
studtes, the global charactensttcs may have stgmficant effects on some issues we
are interested in
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Fig. 6.26 Basin of attractIOn for the forced FHN neuronal model when b - 0.259 92, r - 0.016 3
(Figure 15 in (Gong and Xu, 2(01». The black dots represent the basin of attraction of the sub­
threshold oscillation, the other region is the basin of attraction of the suprathreshold oscillation.
The Unitsof the v and ware arbitrary.

6.6.4 A novel dynamical mechanism ofneural excitabilityfor
integer multiple spiking

We show that saddle-node on mvanant CIrcle (SNIC) bIfurcatIOn IS a novel dynam­
Ical mechamsm for mteger multIple splkmg (Xle et aI., 2004a), and a neuron WIth
integer multIple splkmg may employ the phenomenon of stochastIc resonance to
detect external weak signals and transmit neural infonnation. Integer multiple spik­
ing OMS), here, is seemingly random firing behavior whose interspike interval his­
togram (lSIH) exhIbIts multImodal structure WIth peaks at mteger multIples of a
baSIC mtersplke mterval (lSI). Furthermore the amplItude of the peaks decays WIth
increasing lSI except for the first few peaks, and the return map of lSI senes has
a crystal lattice structure. Such a phenomenon is referred to as stochastic phase
lockmg or skIppmg by Longtm (Longtm, 1995), It has been already observed m a
variety of neurophysiological experiments. Most recently, Xing and Hu et al. (2001)
observed the IMS m spontaneous dIscharge from mJured dorsal root ganglIon neu­
rons. Actually, thIS speCIal kmd of finng pattern was found earlIer m the audItory
fibers of squirrel monkey and of the cat retinal ganglion cells and primary visual
cortex, and mechanoreceptor of the macaque monkey and crayfish when subject to
periodic stimulus (Gammaitoni et aI., 1998).

The dynamIcal mechamsms of neural eXCItabIlIty for the IMS mvolved only Hopf
bIfurcatIOn (mcludmg supercntIcal and subcntIcal) m the eXlstmg studIes. Smce
there exist two major dynamIcal mechamsms of neural eXCItabIlIty, i.e., SNIC and
Hopfbifurcations, we want to investigate whether a model neuron near SNIC bifur­
cation can exhibit the firing behavior of the IMS.
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There are various noise sources for a neuron, such as ionic channel conductance
fluctuations, synaptic fluctuations and thermal noise. In general, therefore, the noise
component can be described using Gaussian white noise. Since the ML model under
a set of parameter values can undergo a SNIC bifurcatiOn from the rest state to
repetitrve splkmg, here, we utIhze this model to simulate the IMS when the model
neuron is subjected to a subthreshold periodic stimulus and Gaussian white noise.

In the following calculation, we take parameter values: VI = -1.2, V2 = 18,
V3 = 12, V4 = 17.4,gCa = 4, gK = 8, gL = 2, VCa = 120, VK = -84, VL = -60,
l/J = 1/15and C = 20. The bifurcation diagram of the membrane potential versus /0
IS shown m Fig. 6.9. ThiS model neuron transits a SNIC bifurcatiOn at /0 = 39.96,
and the state of the neuron changes from the rest state to repetitive splkmg. A sub­
critical Hopf bifurcation (HB) occurs at /0 = 97.79, and a saddle-node bifurcation
oflimit cycles occurs at /0 = 116.1. Here, we are only interested in the dynamical
mechamsm of excltablhty from the rest state to repetitive splkmg, namely, the SNIC
bifurcation

As stated above, a subthreshold periodic stimulus h sin(2nft) and noise £(t)
are added up to the right hand of the first equation to produce the IMS. Since
h sin (2nft ) is subthreshold, it alone is insufficient to evoke firing ofthe neuron. The
~ (t) is chosen as a Gaussian white noise with the statistical properties as (~(t)) = 0
and (£1 (t)£2(t)) = 2DO(tl - t2), where D is the noise intensity, and 0 is the Dirac­
function

We fix the constant current /0 = 37gAlcm2, the frequency of the stimulus f = 10
Hz, and the amplitude of the stimulus h = 8 gAlcm2, which is subthreshold one.
For a while the intensity of noise is chosen as D = 130. The stochastic Runge-Kutta
algonthm proposed by Honeycutt IS used to mtegrate the stochastIc ML mode With
the mtegratiOn tIme step of 0.1 msec. A reahzatiOn of thiS stochastIc model IS Im­
plemented, and the time course of the membrane potentIal IS shown m Fig. 6.27(a).
Clearly, the firing occurs near a preferred phase of the stimulus, but there can be a
random number of periods skipped between two successive firings. In other words,
nOise can produce stochastIc phase lockmg m the ML model With a subthreshold
penodlc stImulus m the vlclmty of the SNIC bifurcatiOn. Figure 6.27(6) shows the
senes of ISIs. We can see that the ISIs are concentrated at integer multiples of the
stimulus period of 100 msec and exhibit a structure of distinct layers. The peaks of
the ISIH decay exponentIally except for the first two peaks, as seen m Fig. 6.2(a).
Furthermore, the width of the ISIH peaks determines the degree of phase locking:
sharp peaks correspond to a high degree of phase lockmg, l.e., a narrow range of
phases of the penodlc stImulus dunng which finng preferentIally occurs. The re­
turn map of the lSI senes has a crystallattlce structure, as shown m Fig. 6.2(6).
These all exhibit the major features of the IMS observed in the neurophysiological
experiments. It follows that the firing behavior of the IMS is simulated successfully
by use of the ML under the actiOn of subthreshold penodic stImulus and Gaussian
white nOise. SNIC bifurcatiOn, therefore, IS a novel dynamical mechamsm of neural
excltablhty for the IMS.

Evidently, the deterministic ML model is not a bistable system near the SNIC bi­
furcation. To a certain extent, however, the stochastic ML model is a nearly bistable
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system, i.e., noise-induced bistablity. It follows that the SR can be characterized by
the ISIH, which corresponds to the residence time histogram (RTH) of a bistable
system. FIgure 6.28 shows the height of the first three peaks m the ISIH computed
from 20,000 ISIs as a functIOn of nOise mtensity D. We can see that a change m
the height of the second (or third) peak by varying the noise intensity: from a small
peak at low noise intensity, going through a maximum at an intermediate noise in­
tensity and decreasing again at a high noise intensity. An optimal noise intensity
can be found at where the maximum IS located. ThiS phenomenon IS a signature of
a resonance (Longtm, 1993b; Wiesenfeid and Moss, 1995), and It IS known as SR,
which IS nonhnear cooperative effect in which a weak penOdIC stimulus entrains
large-scale environmental fluctuations, with the result that the periodic component
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is greatly enhanced. Therefore, neurons may make use of the SR phenomenon to
detect weak signals and transmit neural information, in which the noise plays a con­
structive role.

In summary, the IMS occurs m the vIcImty of a SNIC bIfurcatIOn. ThIs pomt
IS dIfferent from the existing mvestigations in whIch the IMS was obtamed near
a Hopf bifurcation. Hence, the SNIC bifurcation is a novel dynamical mechanism
of neural excitability underlying the IMS. Besides, we have investigated stochastic
resonance in the ML model neurons near the SNIC bifurcation. Neurons may make
use of the specIal finng behaVIOr of the IMS to detect weak SIgnals and transmit
neural information

3000
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o 200 41111 600 800 lOOO
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Fig. 6.28 HeIght of the first three peaks m the ISIH as a functIOn of nOIse mtenslty D (FIgure 5 m
(Xle et aI., 2004a)).

6.6.5 A Further Insight into Stochastic Resonance in an
Integrate-and-fire Neuron with Noisy Periodic Input

To check whether double SR occurs m an mtegrate-and-fire (IF) neuron WIth mput
noise, a further mSIght into SR of the IF neuron IS made. Smce the IF neuron IS one
of the simplest neuron models, it is frequently used to get qualitative characteristics
about SR. As we know, the noise enters the neuron in two ways, i.e. as the input
nOIse, or as the threshold nOIse. The former causes the membrane voltage to fluc­
tuate, whIle the latter causes the threshold to fluctuate. For the mput nOIse,Bulsara
et a1. (1995) studIed the cooperative behaVIOr between the norse and the penodIc
stimulation in a simplified version by the method of mirror image; Shimokawa et
a1. (1999,2000), Plesser and Geisel (1999) studied the SR based on numerically
calculating the mean first passage time, which is also named as interspike interval
(lSI) in the background of neural dIscharge. As for the threshold norse, BarbI et
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al. (2003) recently reported the double SR, and they stressed that it is interesting to
check whether the double SR can be observed in the case of the input noise. Inspired
by them, we are dedicated to investigating whether the double SR occurs in the IF
neuron WIththe mput nOIse, and clardy the comparIson between the two cases.

We conSIder the IF neuron desCrIbed by the followmg equation:

(6.19)

V(t+) = Yo, if V(t) = So

where V is the membrane potential; So is the constant firing threshold; Vo < So rep­
resents the post-discharge resetting potential; r represents the characteristic mem­
brane charge-discharge time; Ilr represents the resting potential; ~ (.)is the Gaussian
white noise satisfying < g(t + r)g (t) >= 8(r); (J is the noise intensity; and A, T
and Po are the amplItude, perIod, and mltIal phase, repectIvely. Once V reaches So,
It IS ImmedIately reset to Vo and a spIke pulse IS generated. The output of the neuron
consists of the seguence of these pulses. When there is no input signal, namelyA = 0,
Eg. (6.19) is the so-called Ornstein-Uhlenbeck with an absorbing boundary at So.

Let us temporarily omit the role of the noise, we have

V(t,CAl) = Voexp (-~) +rll (l-exp (-~))
A .+ 1+ r2Q2 (rsm(Qt + CAl) - r2Qcos(Qt + CAl)) (6.20)

- A2Q2 [rsin(Qto + CAl) - r2Qcos(Qto + CAl)] exp (_ t - to) .
1+r r

It t -+ 00, then

with the maximum value

- rA
Vmax = rll+ .vI + r 2Q2

(6.21)

Then from Vmax = So we get the critical amplitude Ac = ~VI + r 2Q2 (So - rIl).
For suprathreshold perIOdIC mputs, I.e. A> Ac , Eg. (6.19) has complex dynamICS.
For mstance, d dUrIng each M mput SIgnal perIods, Just N spIkes are generated, the
dIscharge pattern IS aM: N phase lockmg WIthM and N to be pOSItIve mtegers. It
the noise IS conSIdered, the counterpart IS the M : N stochastIc phase lockmg, whIch
is a statistical definition.

Next we introduce the method for the probability distribution of ISIs (Buonocore
et al., 1987). For this purpose, we make a transform V(t) = X(t) +V(t, Po), then
Eq. (6.19) turns mto the Ornstem-Ohlenbeck WIth an absorbmg boundary at the
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transformed threshold, namely,

347

X
dX(t) = --dt + O"dW(t), X(t) ~ S mod (t, cpo) = So - V(t, cpo)

-r (6.22)

If define the first passage time ofEg. (6.22) as

-rf = inf{ u : X(u) > S mod (u, cpo)IX(O) = °< S mod (0, cpo)}, (6.23)

then -rf is a random variable, and it is the same as an lSI defined by Eq.
(6.19). Let g(S mod (u,cpo), ulO) represent the probability density function ohf, then
g(S mod (u, Po), ulO) satisfies the integral equation (Buonocore et al., 1987).

g(Smod (t,cpo),tIO) = -2'¥(Smod (t,cpo),tIO,O)

+2l g(S mod (s,cpo),sIO)'P(S mod (t, cpo),tIS mod (s,cpo),s)ds, (6.24)

where a nonsmgular mtegral kernel 'P ISdefined as

'¥(S mod (t, cpo),tIS mod (s,cpo),s) = p(S mod (t, 8),tly,s)H(t,s,y) (6.25)

with

H(t ) = ~ Sf (t fIlA) + S mod (t, cpo),s,Y 2 mod' YV -r

exp((t - s)/-r)/-r
+ 1 _ exp(2(t _ s)/ -r) [Smod (t, cpo) exp( (t - s) / r) - y], (6.26)

1 (x - ye-(t-s)/")2
p(x,tIY,s) = exp - 2 2( )/ . (6.27)

V,m2-r(I-e-2(t-s)/,,) 0" -r(l-e- t-s ")

Here p(x,tIY,s) is the probability density function of the Ornstein- Uhlenbeck
process wIth free boundanes. Solvmg Eq. (6.24) YIelds the probabIlIty denSIty func­
tion, namely,

g(S mod (M, cpo),~tIO) = -2'P(S mod (~t, cpo),MIO,0),

g(Smod (Mt,cpo),MtIO) = -2'P(Smod (Mt,cpo),kMIO,O)

k 1

+2M [.g(Smod (jM,cpo),jMIO),

x'P(S mod (Mt, Po),kMISmod (j~t, Po),jM),
k-2,3, ...

(6.28)

Now we turn to the Markov analysis of SR. Since g(S mod (u, cpo), ulO) depends
only on the initial phase cpo at time t = to, it can be rewritten as g(ulcpo) for brief. If
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q>o denotes the previous discharge phase and f( q>lq>o)dq> represents the probability
with which the following discharge phase falls within (q>, q> +dq», then f( q>lq>o)
reads

f( q>lq>o) = ~"fr/(kT + q> ~ q>o Iq>o) . (6.29)

Further, if the initial discharge phase distribution is hdPo), then the succes­
sive discharge phase distributions obey a recursive relation hn+1( q» = J5" f( q> Iq>o)
hn(Po)dPo(n = 0,1,2, ... ), and there exists a stationary discharge phase distribu­
tion hs(p) = lim hn(p). By approximating the continuous phase axis by discrete

f'E±!52

phase state, the contmuous kernel j IS reduced to a timte-order stochastic matnx
with elements f(2nj /NI2nk/N)2n / N, i, k = 0, 1, ... , N. Correspondingly, hs ( q»
is approximated by the eigenvector belonging to the eigenvalue 1. From hs ( q» the
stationary probability density function g(t) of lSI can be calculated according to

r21r

g(t) = Jo g(tlq> )hs ( q> )dq>. (6.30)

The importance of g(t) is in that it quantifies the coherence between the input
signal and the output signal. It is also possible to compute the statistical properties
such as autocorrelation and power spectral density of the spiking train, and finally
the slgnal-to-nOise rano (SNR) (Shlmokawa et al., 2000) IS

s:~ (:;; IthAq¥"dq>I',
where \ 'rf) = Ir'; tg(t )dt is the mean lSI.

(6.31)

For the IF neuron With the threshold nOise (Barbl et al., 2003), when the sub­
threshold input IS strong enough, there exist two different noise mtensities at which
g(nT)(n takes 1 and 2 or 0.5) attain their maximums, respectively, and as a result the
output SNR reaches two extremes near the noise intensities, which is the so-called
double SR. Now in order to check whether this double SR occurs in the IF neuron
With the mput nOise, let us make a companson between the SR m the two cases.
Seen from Fig.6.29(a), when the mput signal IS subthreshold, the highest peak of
g(t) moves towards the origin, so there exist three different noise intensities such
that g(nT)(n takes 1 or 2 or 0.5) attains the maximum, respectively, as shown in
Fig.6.29(b). But compared With Fig.6.29(c), these nOise mtensltles nearly have no
beanng With the optimal nOise mtenslty of SR, and thiS IS completely mconslstent
With the case With the threshold nOise. Furthermore, companng Fig. 6.29(c) With
Fig. 6.29(d), we see at the optimal intensity CJopt~ O.75 (where the resonant peak IS
observed) that the mean lSI nearly equals the input period, i.e. < 'rf >~ T. There­
fore, the occurrence of SR here, similar to the case in (Shimokawa et al., 1999) is
due to the 1:1 stochastic phase lockmg, even though there Isn't an obvIOUS plateau­
hke flattemng on the curve of < 'rf > vs. CJ.
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Fig. 6.29 (Figure 1 in (Kang et aI., 2005a». (a) The statIOnarydistrIbution of lSI with different
noise intensity: 0.15 (solid), 0.4 (dash), 1.15 (dot), 1.9 (dash dot); (b) the evolution of g(nT) via
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mtenslty. The parameters are r - 1.0,!1 - 0.3S,A - 1.0, n - O.Sit" and So - 1.0.
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Since the evolution of g(nT) does not contain the material information of SR,
the subsequent plots only show the dependence of mean lSI and SNR via the noise
intensity. To check whether the double SR exists, we choose a "low" frequency and
a "high" frequency to give numencal results Just as that done m (Barbl et aI., 2003),
respectively. In the low frequency case (see Flg.6.30), only If the subthreshold mput
has a amplitude very close to the critical one Ac = 0.7086 such as A = 0.7085, a
hump is observed on the curve of SNR via noise intensity left to the main resonant
peak, however this hump is not a secondary resonant peak. For the given A = 0.7085,
the optimal nOise mtenslty IS (Yapt - 0.54 ± 0.01, where the mean lSI IS < 'Cf >­
4.0 ± 0.03, so the occurrence of SR IS owmg to the 2:5 stochaStiC phase lockmg.
Notmg that not only at the noise level where the hump IS observed < 'Cf > IS a
little larger than T, but there is a plateau-like flattening corresponding to the hump,
the occurrence of the hump corresponds to the I: I stochastic phase locking. In the
high frequency case (see Flg.6.3l), even when the mput amplitude IS exactly the
same as the cntical one, i.e. A = Ac = 0.8242, an ObViOUS hump dlfferent from the
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main SR peak is not obvious. The main SR peak is observed at (joP! = 0.21 ± 0.01
with < 'rf >= 3.68 ± 0.03, therefore in this case the occurrence of SR is due to the
2:1 stochastic phase locking. The above analysis shows us there does not exist a
double SR m the IF neuron wIth the mput nOIse, but when the mput frequency IS
low enough, a resonant structure sImIlar to that of a double SR can be observed.
Why such a hump is obvious only in the low input frequency case? The explanation
should be connected with the most left peak at the stronger noise level in Fig.6.29
(a). In fact, the peak is noise-dominated, and it will soon overwhelm the coherent
mteger multIple peaks when the mput perIod IS short. Therefore, when the mput
frequency IS "hIgh", some coherent mformatIOn of the mput sIgnal IS smeared by
the noise qUIckly, whIch makes the hump on the SNR curve unclear. In addItIon, the
above analysis also shows us that the stochastic phase locking does not suggest the
SR certainly, and the stochastic phase locking connected with SR is not confined to
the 1:1 pattern, whIch extends the conclUSIOn in (ShImokawa et al., 1999).
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Thus, we have drawn the conclusions about the IF neuron with the input noise as
follows. Firstly, the noise intensity where the extreme of the lSI stationary proba­
bility peak g(nT) is observed is greatly discordant with the optimal intensity where
the SNR attams the maXImum. Secondly, the double SR cannot occur m the IF, but
the resonant structure similar to that of the double SR can be observed when the
input frequency is low. Thirdly, for stronger subthreshold input signals, the occur­
rence of SR does relate to the stochastic phase locking, but the phase locking pattern
can be beyond the 1:1 pattern. The conclusions might reflect some properties of real
neurons, and they should be Important in understandmg the role of noise in neuro­
phYSICOlogy.

6.6.6 Signal-to-noise ratio gain ofa noisy neuron that transmits
subthreshold periodic spike trains

We numerIcally mvestIgate the transmISSIOn propertIes of an mtegrate-and-fire neu­
ron model that transmits coherent subthreshold spIke trams m a shot noise environ­
ment (Kang et aI., 2005b). For very weak coherent couplings, it is shown that the
input-output signal-to-noise ratio (SNR) gain is easier to exceed unity; while for
stronger coherent couphngs It IS dIfficult to observe the SNR gam larger than umty
at the optImal nOIse mtensIty. These observatIOns are dIfferent from those acqUIred
m the case of continuous noise. Our analYSIS further suggests that the larger SNR
gain in the very weak coherent coupling case should be due to the noise induced res­
onance. It is also shown that there is more possibility of the SNR gain above unity
for slower periodic spike trains transmitted by the model. The results may be useful
m understandmg the performance of real nOISY neurons acting as sIgnal-processmg
elements

6.6.7 Mechanism ofbij'urcation-dependent coherence resonance of
Morris-Lecar Model

The mechamsm of bIfurcatIOn-dependent CR of eXCItable neuron models IS related
to the random transitions between attractors on two sides of bifurcation point. We
examine that the relationship between the random transitions and the mechanism
of bifurcation-dependent CR by use of the ML neuron model [113], and show that
there eXIstdIfferent attractors on two SIdes of the Hopf bIfurcatIOn pomt. It follows
that the neuron may tranSIt between attractors on two SIdes of bIfurcatIOn pomt at
the presence of noise. The transition frequency tends towards a certain value for a
certain optimal noise intensity. Since the SNR of the neuronal response evaluated at
this certain frequency is maximal at the optimal noise intensity, CR occurs.
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6.7 Analysis of time series of interspike intervals
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As stated prevIOusly, all neurons m the bram fire action potentials that carry mforma­
tion to other parts of the brain along their fibres, and neural information is embedded
in the series of interspike intervals (ISis). Consequently, the analysis methods for the
series of ISis are very important in order to extract the neural information. In what
follows, we illustrate several methods from the viewpoint of nonhnear dynamics.

6.7.1 Return map

Return map is a simple method to find out the determimstic structure hidden m the
senes of the ISis. In detail, return map is constructed by previous lSI versus next
lSI. As we know, bifurcation and chaos phenomena of lSI are often dynamically
observed along a single fiber of injured sciatic nerve in the anesthetized rat. Figure
6.32(a) exhibits the continuous bifurcation procedure of the lSI data CA381W4 that
were recorded at a constant samphng mterval Is of 97.66 Jls as soon as the concen­
tration of calcmm in the Krebs' solutIOn used to perfuse the mJured SCiatic nerves
was decreased from 5.0 mmol/L to 1.2 mmol/L (Gong et aI., 1998). Therefore, the
direction of the abscissa not only stands for the sampling sequence of lSI but also
qualitatively represents the change in the ionic concentration of the solution with
time. To reveal the mechamsm underlymg the trregular lSI after the penod tranSi­
tion enlarged and shown m Fig. 6.32(b) to the left of the vertical hne, the data m the
pomt smear region from the nght Side of the vertical hne to the end of the data file
have been separated and uniformly divided into nine groups each consisting of 4000
points. Thus every group may approximately be considered as a steady-state process
and return map can be apphed to mvestigate the senes of the ISIs.. Figure 6.32(c)
shows the one-hump structure constructed by the lSI data of the first group usmg
return map. This simple form is the most convincing eVidence for the existence of
deterministic chaotic dynamics.

6.7.2 Phase space reconstruction

Actually, phase space reconstruction is attractor reconstruction, which refers to
methods for inference of geometrical and topological information about a dynamical
attractor from observatIOns(for detail see: http:77www.scholarpedia.org/articIe/Attra­
ctoLreconstructIOn.). Attractor reconstructIOn is an important first step m the pro­
cess of makmg predictIOns for nonhnear time senes and m the computation of
certain invariant quantities such as Lyapunov exponent used to characterize the
dynamics of such series. The reliability of computed predictions and the accu­
racy of mvanant quantities are stnctly dependent on the accuracy of attractor re­
construction, which m turn is determmed by the methods used in the reconstruc-
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tion process. Usually the time delay embedding as the way to reconstruct the
phase spaces of original dynamical systems. The validity of such a method is
guaranteed by the Whitney embedding theorem and the Takens embedding the­
orem (http://www.scholarpedta.org/artic1e/Attractor...reconstructiOn.). In the recon­
struction process, time delay and embeddmg dimenSiOn are two very import quan­
tities. Now there are various methods for determining such two quantities, autocor­
relation function and mutual information for time delay, and the false near neighbor
(FNN) method and the Cao method for embedding dimension, for example. Em­
beddmg ideas were later extended beyond autonomous systems with contmuously­
measured time senes. A verSiOn was deSigned by Sauer for the senes of ISIs. Actu­
ally, time delay for the senes of ISIs can be selected as 1 because it can be considered
to be a discrete dynamical system. The key problem, therefore, is to determine the
embedding dimension for the series of ISIs.

6.7.3 Extraction ofunstable periodic orbits

Periodic orbits play an important role in understanding the rich structures in a dy­
namical system (http://www.scholarpedia.org/artic1e/Onstable-penodicorbits).An
unstable penodic orbit (OPO), however, is simply a penodic orbit which is dynami­
cally unstable, and actually UPOs in chaotic set can be saddles as well as repellers.
Since the set of UPOs is dense within the chaotic set, a typical trajectory wanders
incessantly in a sequence of close approaches to these orbits. The more unstable an
orbit, the less time that a trajectory spends near it. Interestmgly, the set of OPOs can
be considered to be the skeleton for chaotic attractors. Furthermore, many dynam­
ical mvanants, such as, natural measure, Lyapunov exponents, and fractal dimen­
sions can by efficiently expressed in terms of a sum over UPOs. Therefore, UPOs
are also important tools in affecting the behavior of dynamical systems (So et aI.,
1996,1997; CVitanovic, 1998).

In most cases, time senes of some vanables observed m expenments are usually
the only avatlable mformatiOn from a dynamical system. To further analyze the
system, we firstly need to reconstruct itS phase space. Recurrence method [67] is
a simple one for detecting UPOs from this reconstructed data set, and the standard
procedure is to look for peaks in a histogram of recurred points as a function of their
recurrmg penods. The sensitivity of thiS method m findmg OPOs naturally depends
on the natllfa I measure of the I) POs

An enhancement of the standard recurrence methods was proposed later (So et
aI., 1996,1997). In thiSmethod, expenmentally extracted hnear dynamiCs near each
state point was incorporated into a periodic-orbit transform that take experimental
data mto a space where the probabihty measure at the OPOs are enhanced and at
other non-recumng pomts are dispersed. Simtlar to the previOUS recurrent methods,
an expenmenter detects OPOs by lookmg for peaks in the transformed space.
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6.7.4 Nonlinear prediction and surrogate data methods

The nonlInear forecastmg method was proposed that measures the predIctabIlIty of
the future state of a dynamical system (Sugihara and May, 1990). It has the feature
of analyzing the experimental time series dynamically and the advantage of need­
ing only a relatively short time series, so nonlinear forecasting quickly became one
of the most Important tools for the analysIs of experImental data. The key of thIS
method IS that when predIctmg the future state from chaotIc time senes, the nearest­
neighbor points are utilized so as to obtain the best prediction (Gong et aI., 1998).
Let X/ ' i = 1, d + 1 be the nearest-neighbor points that form the the smallest sim­
plex around the point Xl , and Xi~p' i = 1, d +1 be their p steps of evolution points.

Then the point XJ after p steps of evolution from X T can be predicted:

d±1
XJ = L exp(-IIXr -XTII)Xi~p, (6.32)

according to the exponential weights computed from the Euclidean distances be­
tween X T and its nearest-neighbor points.

After takmg the first dIfference Li of the measured tIme serIes to reduce the ef­
fects of any short-term lInear autocorrelatIOns, the time senes from observatIOn are
usually divided into two groups. One group is used as the data base for forecasting
the future while the other is used for the purpose of comparison with the predicted
values. Finally, Pearson's correlation coefficient is applied to evaluate the effect of
predIctIon, i.e., the larger the values of the correlatIOn coeffiCIents IS, the better the
forecastmg IS.

It is known that the long term behavior of a chaotic system is almost unpre­
dictable due to its sensitivity to the initial conditions, while the behavior of the sys­
tem can still be predicted to some extent for a relatively short time. As a result, the
evolutIOn curve of the correlatIOn coeffiCIent first decay slowly when the predIctIon
step IS small, then qUIckly WIththe growth of the predIctIon step.

NonlInear forecastmg method IS frequently combmed WIth the surrogate data
method (Theiler et aI., 1992) together to analyse the series of ISIs. The simplest
algorithm for generating surrogate data is random shuffling. According to this al­
gOrIthm we wIll rearrange the orIgmal data m the rank order of the GaUSSIan whIte
noise generated from a random number generator. ThIS algOrIthm guarantees that
the surrogate data is consistent with the null hypothesis of a D-correlated random
process, while exactly preserving the distribution of the original data. Another sur­
rogate data algorithm is phase randomization, which is realized by implementing
the Fourier transform for the original data set, randomizing the phases and then
mvertmg the transform. The surrogate data generated by the algOrIthm of phase ran­
domIzatIOn have the same power spectrum as the orIgmal data.

FIgure 6.33 shows that the lSI, I.e., the tIme mterval between any two succeSSIve
impulses, is the same as the interval between their corresponding two crosspoints of
the trajectory with the Poincare section from one side. According to this, the bifurca-
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tion and chaos phenomena onSI time series from the f)-cell model can conveniently
be obtained with the proper choice of Poincare section (Gong et aI., 1998). As an
example, for the chaotic lSI time series given in Fig. 6.34 from the f)-cell model,
the values of the surrogate data generated by random shutHmg are the same as the
ongmal data, whIle the structure is identical to that of the noise. With the embed­
ding dimension d = 3 that equals the number of state variables of the model and the
time delay 'T = 1, altogether 4000 data points were used for the computation of the
noisy chaotic lSI time series from the model. It can be seen in Fig. 6.35 that with the
mcrease m the predictiOn step, the evolutiOnof the correlatiOn coefficient curve for
the chaotic lSI time senes decays slowly first then very qmckly, which is apparently
dtfferent from that of the surrogate data even in this worse SNR case. This suggests
the deterministic structure in the noisy time series. Therefore, one can easily dis­
tinguish chaos from noise according to their different evolution of the correlation
coefficient curves, even at a high level of noise.

> lSI lSIg
:> •. lSI·' •. lSI·' Poincare

~ section
J:i V+35=O0
Q.,

'"
~ )~ )

"8
'"S time (ms)

Fig. 6.33 SchematIC dIagram of the correspondmg relatIonshIp between mtersplke mtervals and
the Pomcare secnon (FIgure I(b) m (Gong et aI., 1998)).

o
number

5000

Fig. 6.34 Chaotic lSI time series obtained from the {.'l-cell model: lSI versus lSI serial number
(FIgure 2(a) m (Gong et aI., 1998)).
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Fig. 6.35 Curves of the correlation coefficient p versus the predictIOn step. x, chaotic lSI time
series from the {:l-ceII model contaminated with noise; +, the surrogate data (Fig. 4 in Ref. (Gong
et aI., 1998».

6.7.5 Nonlillear characteristiC numbers

6.7.5.1 Correlation dimension

The most WIdelyused procedure of detectmg chaos IS the GP correlatIOn dImenSIOn
algOrIthm that quantIfies the strangeness of the attractors (Grass berger and Procac­
CIa, 1983a, b; MIzrachI et aI., 1984). Accordmg to the GP algOrIthm, the correlatIOn
integral is first evaluated using the following expression:

1 N N
Cd(l) = lim 2: L L E>(l-IIX{ -XIII).

N--->=N i=lj=l
(6.33)

Here, X/ and Xl are reconstructed vectors with the embedding dimension d.
C(l is the correlation integral, represents Euclidean norm, E>. is the Heav­
iside function, and I is the correlation length. Then, the correlation dimension in
d-dimensional phase space is estimated form the slope of In(l) versus InCd(l) plot.
To IdentIfy the correlatIOn dImenSIOn, we look for a scalIng regIOnm the correlatIOn
dImenSIOn plot. When the correlatIOn dImenSIOn reaches a saturated state as a func­
tion of d, this value is taken as an estimate of the correlation dimension. Note that
the onset of the plateau known as then scaling region in local slope curves indicates
the occurrence of chaos

Although the GP method has the advantage of SImplICIty, lImItatIOns stIlI eXIst
such as the need for a large amount of time series data (Grassberger P., 1986); also,
as it is only concerned with the static values of the data, the influence of noise on its
computation is almost unavoidable (Osborne and Provenzale, 1989). As an example,
4000 lSI data points are computed from the f)-cell model are used to calculate the
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correlation dimension, and the local slope curves are given in Fig.6.36. It can be
seen that the plateau of the scaling region is long and distinct.

5.00

-2.00 3.00

r:nnJ
8.00

Fig. 6.36 Local slope versus logarIthmIc I curves. The embeddIng dImensIOn d IS In sequence 2;
3; 4; : : : ; 9; 10; I I from the bottom to the top (FIgure 3(a) In (Gong et aI., 1998)).

6.7.5.2 Lyapunovexponent

The Lyapunov exponent or Lyapunov characteristic exponent of a dynamic system
tS a quantttattve measure of the senstttvtty of the system to the tmttal condtttons,
i.e., the Lyapunov exponent is a quantity that charactenzes the rate of separation of
infinitesimally close trajectories (Gong et aI., 1998). Quantitatively, two trajectories
in phase space with initial separation 8Zo diverge

(6.34)

where A is the Lyapunov exponent.
The rate of separatlOn can be dtfferent for dtfferent onentatlOns of tmttal separa­

tion vector. Thus, there is a whole spectrum of Lyapunov exponents, and the number
of them is equal to the number of dimensions of the phase space. On the other hand,
the number of Lyapunov exponents is equal to the number of the embedding dimen­
sion of the reconstructed phase space. Usually we calculate the Largest Lyapunov
exponent (LLE), because tt determmes the predtctabthty of the system. A postttve
LLE is usually taken as an mdtcatlOn that the system is chaottc, and may be regarded
as an estimator of the dominant chaotic behavior of a dynamical system.

The LLE can be defined as follows:

A = lim ~ In 1
8Z

(t ) I.
1->00 t 820 (6.35)



360 Yong Xie, Jian-Xue Xu

Although the formula for the calculation of the Lyapunov exponents is given above,
in most cases we cannot carry out analytically, and must turn to numerical tech­
niques. One of the most used and effective numerical technique to calculate the Lya­
punov spectrum for a smooth dynamIcal system rehes on perIOdIC Gram SchmIdt or­
thonormahzatIOn of the Lyapunov vectors to aVOId a mIsahgnment of all the vectors
along the direction of maximal expansion.

6.7.5.3 Approximate entropy

ApproXImate entropy has been mtroduced to characterIze the regularIty or pre­
dictability of time series (Pincus, 1991). This entropy calibrates an ensemble ex­
tent of sequential interrelations, quantifying a continuum that ranges from totally
ordered to completely random. More mterestmgly, approXImate entropy aSSIgns a
nonnegatIve number to a sequence or tIme serIes: smaller values of approXImate
entropy Imply a greater hkehhood that SImIlarpatterns of measurements wIll be fol­
lowed by additional similar measurements. If the time series is highly irregular, the
occurrence of similar patterns will not be predictive for the following measurements,
and approximate entropy will be relatively large. Note that approximate entropy has
sIgmficant weaknesses, notably ItS strong dependence on sequence length and ItS
poor self-conSIstency. Namely, the observatIOn that approximate entropy for one
data set is larger than approximate entropy for another for a given choice of m and
r should, but does not, hold true for other choices of m and r. By they way, m is the
number of dimensions, and r is the tolerance. To compute approximate entropy, m
and r must be fixed The values m 2 and r between 10% and 25% of the standafd
deviation of the data sets are recommended

The process of calculatIOn IS as follows (Pmcus, 1991; Yang et aI., 2002):
First, given N data points {u(i)}, form vector sequences x(i) = [u(i),... ,

u(i +m- 1)]. Then define the distance d[x(i),xU)] between x(i) and xU) as the
maXImum dIfference m theIr respectIve scalar components. And then use the se­
quence x(l ),x(2), ... ,x(N - m+ 1) to construct, for each i ~ N - m+ 1, Cf'(r) =
N-m±I

L e(r - d[x(i) - dU)]). Here, eo is the Heaviside function. And then deter­
:J=1

1 N-m±l
mine <I>m(r) = E lnCi(r). Finally, we can calculate the approximate

N-m+l ;=1

-=-en-=-t-=r-=-op-=-y=-=-=a-=-s"fo-=-lfTlo-=-w=s:

ApEn(m, r, N) = <I>m(r) - <I>m±l(r). (6.36)

The value ofN for the computation of approximate entropy is typically between 100
and 5000; m - 2 and r - 0.1 - 0.25STD, here, STD ISthe standard deVIatIon of the
data set

FIgure 6.37 shows a bIfurcatIOn cascade of ISIs from the rat mJured nerve WIth
the perfusion of Ca2± free solution and its approximate entropy (Han et aI., 2002),
and the schematIc dIagram of the experIment setup IS shown m FIg. 6.38. The serIes
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of ISIs is transforming from period-2 bursting to period-3 bursting. We can see that
the change in approximate entropy is considerably obvious at the time instant of
transformation of the lSI pattern.

Ca2+ free solution
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J"lg. 6.37 The serIes of ISIs from the rat mlured nerve and Its approximate entropy (Figure 2 m
(Han et aI., 2(02)).

Electrode

Oil pool

J<'lg. 6.3lS Schematic diagram of the experIment setup about the spontaneous firIngs of the DRG
neurons (Figure 1 in (Gong et aI., 2002».
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6.7.5.4 LempeI-Ziv complexity
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The Lempel-Ziv complexity algorithm can be used to quantitatively characterize the
complexIty of a data set (SzczepanskI et al., 2003, 2004). The calculatIOn of com­
plexIty measure consists of two steps. FIrst, generate a bmary stnng by companng
the original data with a threshold. Second, use the string to calculate the disorder
degree of the original data based on Lempel-Ziv algorithm. In detail, in the first

N
step, the average z = ~ L Xi is subtracted for every signal simple Xi, i = 1, ... , N.

;-1

The sample points are then compared with the threshold Xth = 0.2 x STD( {xi}f-l ),
where STD({xi}f-1) is the standard deviation of the data set. If -Xth < Xi < Xth,

then Si = 0, otherwise Si = 1. In this way, the set of the original data is transformed
mto a bmary sequence S - SiS2, ... , SN, where Si IS 1 or O. In the second step, the
Lempel-ZIv complexIty algonthm IS calculated to obtam the complexIty measure
of the ongmal time senes. The N-dIgIt sequence IS scanned from left to nght and
defined a new block of length k every time it discovers a sub-string of length knot
previously encountered. After a number of operations, a decomposition of the orig­
mal tIme senes m mImmal blocks IS obtamed. The complexIty IS then defined as the
number of blocks m the decompOSItIon.

6.8 Application

The dense OPO structure wIthm a chaotIc attractor and the exponentIal sensitivity
of a chaotic system provides a very power tool for utilizing chaos for control as well
as controlling chaos (http://www.scholarpedia.org/article/Unstable.periodic_orbits).
Cardiac arrhythmias were successful tamed by a chaos stabilization method; and
seizure actIVItIes were controlled by JUdICIOusly tImed electnc pulses.

SR-based techmques has been used to create a novel class of medIcal devIces
(such as vIbratmg msoles) for enhancmg sensory and motor functIOn in the elderly,
patients with diabetic neuropathy, and patients with stroke (http://en.wikipedia.org/
wiki/Stochasticresonance). For example, a potentially very important proposed ap­
plIcatIOn where suprathreshold SR would be caused to occur IS a cochlear Implant
sIgnallIng strategy. The Idea IS based on the fact that people requmng cochlear Im­
plants are rmssmg the natural sensory haIr cells that a functIOmng inner ear uses to
encode sound in the auditory nerve. It is known that the stereocilia of these hair cells
undergo significant Brownian motion, i.e. randomness, and the synaptic release of
neurotransmitter introduces additional randomness. These sources of randomness
lead to spontaneous finng m pnmary afferent audItory nerve fibres that IS not nor­
mally present m deaf patients who benefit from cochlear Implants. The hypotheSISIS
that suprathreshold stochastic resonance induced by re-introducing this natural ran­
domness to the encoding of sound could improve speech comprehension in patients
fitted with cochlear implants (http://www.scholarpedia.org/article/Suprathreshold...st­
ochastIcresonance).
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6.9 Conclusions
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The mammahan nervous system is a complex adapttve system, which is composed
of a large number of neurons. In fact, a neuron can be considered to be a rather
complicated nonlinear dynamical system. There are many neuron models presented
for different kinds of neurons. For example, the HR model of neuronal activity is
mmed to study the spikmg-burstmg behaViOr of the membrane potenttal of corttcal
neurons, and the Traub model (Traub et aI., 1991) is used to charactenze a CA3
hippocampal pyramidal neuron. A rich variety of dynamical behavior occurs in
these neuron models, such as periodic spiking, chaotic spiking, periodic bursting
and chaotic bursting. It is this point that asks us to apply the nonlinear systems the­
ory to the mvesttgatiOn on the finng behaViOr of neuron models. And the methods or
theones m nonhnear dynamiCs can be helpful to understand the neuronal finng pat­
terns and the mechamsms underIymg neural mformatiOn encodmg. Meanwhtle, the
complicated phenomena observed in neurophysiological experiments provide strong
motivation for the development of nonlinear systems theory. Actually, the naissance
of neurodynamics is just a perfect combination between neuroscience and nonlinear
dynamiCs.

Up to now, it is very important and sigmficant to estabhsh correspondmg math­
ematical models for special neurons including one-compartment model and multi­
compartment model. Therefore, the numerical or theoretical investigation on new
neuron models or existing neuron models with complex behavior remains very in­
terestmg, and bifurcatiOn and chaos occumng m these models are sttll hot tOPiCS.
As for nOise m nervous systems, itS role is wmtmg for more confirmatiOn. As we
know, the neural mformatiOn transmission happens at the synapses between neu­
rons. The collective behavior of neuronal population, therefore, should be studied
from the viewpoint of coupled neuronal networks including electrical and chemi­
cal couphng. In additton, the transitory process m nervous systems deserves more
attentlOn
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