

Ioannis Hatzilygeroudis and Jim Prentzas (Eds.)

Combinations of Intelligent Methods and Applications

Smart Innovation, Systems and Technologies 8

Editors-in-Chief

Prof. Robert J. Howlett
KES International
PO Box 2115
Shoreham-by-sea
BN43 9AF
UK
E-mail: rjhowlett@kesinternational.org

Prof. Lakhmi C. Jain
School of Electrical and Information Engineering
University of South Australia
Adelaide, Mawson Lakes Campus
South Australia SA 5095
Australia
E-mail: Lakhmi.jain@unisa.edu.au

Further volumes of this series can be found on our homepage: springer.com

Vol. 1. Toyoaki Nishida, Lakhmi C. Jain, and Colette Faucher (Eds.)
Modeling Machine Emotions for Realizing Intelligence, 2010
ISBN 978-3-642-12603-1

Vol. 2. George A. Tsihrintzis, Maria Virvou, and Lakhmi C. Jain (Eds.)
Multimedia Services in Intelligent Environments –
Software Development Challenges and Solutions, 2010
ISBN 978-3-642-13354-1

Vol. 3. George A. Tsihrintzis and Lakhmi C. Jain (Eds.)
Multimedia Services in Intelligent Environments –
Integrated Systems, 2010
ISBN 978-3-642-13395-4

Vol. 4. Gloria Phillips-Wren, Lakhmi C. Jain,
Kazumi Nakamatsu, and Robert J. Howlett (Eds.)
Advances in Intelligent Decision Technologies –
Proceedings of the Second KES International
Symposium IDT 2010, 2010
ISBN 978-3-642-14615-2

Vol. 5. Robert J. Howlett (Ed.)
Innovation through Knowledge Transfer, 2010
ISBN 978-3-642-14593-3

Vol. 6. George A. Tsihrintzis, Ernesto Damiani,
Maria Virvou, Robert J. Howlett,
and Lakhmi C. Jain (Eds.)
Intelligent Interactive Multimedia Systems
and Services, 2010
ISBN 978-3-642-14618-3

Vol. 7. Robert J. Howlett, Lakhmi C. Jain, and
Shaun H. Lee (Eds.)
Sustainability in Energy and Buildings, 2010
ISBN 978-3-642-17386-8

Vol. 8. Ioannis Hatzilygeroudis and Jim Prentzas (Eds.)
Combinations of Intelligent Methods and Applications, 2010
ISBN 978-3-642-19617-1

Ioannis Hatzilygeroudis and Jim Prentzas (Eds.)

Combinations of Intelligent
Methods and Applications

Proceedings of the 2nd International Workshop,
CIMA 2010, France, October 2010

123

Ioannis Hatzilygeroudis
Graphics, Multimedia & GIS Lab

Department of Computer Engineering &

Informatics
University of Patras

26500 Patras, Hellas, Greece

E-mail: ihatz@ceid.upatras.gr

Jim Prentzas
Democritus University of Thrace

School of Education Sciences

Dept. of Education Sciences in
Pre-School Age, Nea Chili

68100 Alexandroupolis, Greece

E-mail: dprentza@psed.duth.gr

ISBN 978-3-642-19617-1 e-ISBN 978-3-642-19618-8

DOI 10.1007/978-3-642-19618-8

Smart Innovation, Systems and Technologies ISSN 2190-3018

Library of Congress Control Number: 2011924477

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typesetting: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

The combination of different intelligent methods is a very active research area in
Artificial Intelligence (AI). The aim is to create integrated or hybrid methods that
benefit from each of their components. It is generally believed that complex
problems can be easier solved with such integrated or hybrid methods.

Some of the existing efforts combine what are called soft computing methods
(fuzzy logic, neural networks and genetic algorithms) either among themselves or
with more traditional AI methods such as logic and rules. Another stream of
efforts integrates case-based reasoning or machine learning with soft-computing
or traditional AI methods. Yet another integrates agent-based approaches with
logic and also non-symbolic approaches. Some of the combinations have been
quite important and more extensively used, like neuro-symbolic methods, neuro-
fuzzy methods and methods combining rule-based and case-based reasoning.
However, there are other combinations that are still under investigation, such as
those related to the Semantic Web. In some cases, combinations are based on first
principles, whereas in other cases they are created in the context of specific
applications.

The 2nd Workshop on “Combinations of Intelligent Methods and Applications”
(CIMA 2010) was intended to become a forum for exchanging experience and
ideas among researchers and practitioners who are dealing with combining
intelligent methods either based on first principles or in the context of specific
applications.

Important issues of the Workshop were (but not limited to) the following:

• Case-Based Reasoning Integrations
• Genetic Algorithms Integrations
• Combinations for the Semantic Web
• Combinations and Web Intelligence
• Combinations and Web Mining
• Fuzzy-Evolutionary Systems
• Hybrid deterministic and stochastic optimisation methods
• Hybrid Knowledge Representation Approaches/Systems
• Hybrid and Distributed Ontologies
• Information Fusion Techniques for Hybrid Intelligent Systems
• Integrations of Neural Networks
• Intelligent Agents Integrations

VI Preface

• Machine Learning Combinations
• Neuro-Fuzzy Approaches/Systems
• Applications of Combinations of Intelligent Methods to

o Biology & Bioinformatics
o Education & Distance Learning
o Medicine & Health Care

CIMA 2010 was held in conjunction with the 22nd IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2010). Also, we organized a special
track in ICTAI 2010, under the same title.

This volume includes revised versions of the papers presented in CIMA 2010
and one of the short papers presented in the corresponding ICTAI 2010 special
track. We have also included a paper of ours as invited paper.

We would like to express our appreciation to all authors of submitted papers as
well as to the members of CIMA-10 program committee for their excellent work.
We would like also to thank Prof. Eric Gregoire, the ICTAI-10 PC Chair for his
help and hospitality.

We hope that these proceedings will be useful to both researchers and
developers. Given the success of the first two Workshops on combinations of
intelligent methods, we intend to continue our effort in the coming years.

Ioannis Hatzilygeroudis
Jim Prentzas

Workshop Organization

Chairs-Organizers

Ioannis Hatzilygeroudis University of Patras, Greece
Jim Prentzas Democritus University of Thrace, Greece

Program Committee

Ajith Abraham MIR Labs, Europe
Plamen Agelov Lancaster University, UK
Emilio Corchado University of Salamanca, Spain
Ronald Denaux University of Leeds, UK
George Dounias University of the Aegean, Greece
Artur S. d’Avila Garcez City University, UK
Elpida Keravnou-Papailiou University of Cyprus, Cyprus
Constantinos Koutsojannis University of Patras, Greece
Rudolf Kruse University of Magdeburg, Germany
George Magoulas Birkbeck College, Univ. of London, UK
Toni Moreno University Rovira i Virgili, Spain
Ciprian-Daniel Neagu University of Bradford, UK
Vasile Palade Oxford University, UK
David Sanchez University Rovira i Virgili, Spain
Douglas Vieira Enacom-Handcrafted Technologies, Brazil

Contents

Defeasible Planning through Multi-agent Argumentation 1
Sergio Pajares, Eva Onaindia

Operator Behavior Modelling in a Submarine 21
Isabelle Toulgoat, Pierre Siegel, Yves Lacroix

Automatic Wrapper Adaptation by Tree Edit Distance
Matching . 41
Emilio Ferrara, Robert Baumgartner

Representing Temporal Knowledge in the Semantic Web:
The Extended 4D Fluents Approach . 55
Sotiris Batsakis, Euripides G.M. Petrakis

Combining a Multi-Document Update Summarization
System –CBSEAS– with a Genetic Algorithm 71
Aurélien Bossard, Christophe Rodrigues

Extraction of Essential Events with Application to Damage
Evaluation on Fuel Cells . 89
Teppei Kitagawa, Ken-ichi Fukui, Kazuhisa Sato,
Junichiro Mizusaki, Masayuki Numao

Detecting Car Accidents Based on Traffic Flow
Measurements Using Machine Learning Techniques 109
L.D. Tavares, G.R.L. Silva, D.A.G. Vieira, R.R. Saldanha,
W.M. Caminhas

Next Generation Environments for Context-Aware
Learning Design . 125
Patricia Charlton, George D. Magoulas

Neurules-A Type of Neuro-symbolic Rules: An Overview 145
Jim Prentzas, Ioannis Hatzilygeroudis

Author Index . 167

Defeasible Planning through Multi-agent
Argumentation

Sergio Pajares and Eva Onaindia

Abstract. The work reported here introduces DefPlanner, an argumentation-based
partial-order planner where different agents that have a partial, and possibly con-
tradictory, knowledge of the world articulate arguments for and against supporting
preconditions of the actions to be included in a plan. In this paper, we introduce
an extension to multiple agents of the defeasible argumentation formalism that has
been proposed to address the task of planning in a single agent environment.

1 Introduction

Planning is the art of building control algorithms that synthesize a course of action to
achieve a desired set of goals. The mainstream in planning is that of using heuristic
functions to evaluate goals and choices of action or states on the basis of their ex-
pected utility to the planning agent [7]. In classical planning, intelligent agents must
be able to set goals and achieve them, they have a perfect and complete knowledge
of the world, and they assume their view of the world can only be changed through
the execution of the planning actions. However, in many real-world applications,
agents often have contradictory information about the environment and their deduc-
tions are not always certain information, but plausible, since the conclusions can be
withdrawn when new pieces of knowledge are posted by other agents.

On the other hand, argumentation, which has recently become a very active re-
search field in computer science [2], can be viewed as a powerful tool for reason-
ing about inconsistent information through a rational interaction of arguments for
and against some conclusion. Systems that build on defeasible argumentation ap-
ply theoretical reasoning for the generation and evaluation of arguments, and they

Sergio Pajares · Eva Onaindia
Universidad Politécnica de Valencia, Camino de Vera s/n 46022 Valencia, Spain
e-mail: spajares@dsic.upv.es,onaindia@dsic.upv.es

I. Hatzilygeroudis and J. Prentzas (Eds.): Comb. of Intell. Methods and Appl., SIST 8, pp. 1–19.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

2 S. Pajares and E. Onaindia

are used to build applications that deal with incomplete and contradictory infor-
mation in dynamic domains ([11][5][10][12]). Particularly, the application of an
argumentation-based formalism to deal with the defeasible nature of reasoning dur-
ing the construction of a plan has been addressed by Garcia and Simari [13][6].

This paper extends the work of [6] and presents DefPlanner, a defeasible argu-
mentation planner developed for multi-agent environments. We explicitly consider
several entities (agents) in the argumentative process for the support of the condi-
tions of a planning action. Some recent works like [16][15] realize argumentation
in multi-agent systems using defeasible reasoning but they are not particularly con-
cerned with the task of planning. Specifically, we consider propositional STRIPS
planning representation augmented with the incorporation of different sources of
defeasible information (agents). Defplanner is a partial-order planner ([1][9]) that
invokes an argumentation process where many different agents with different opin-
ions exchange arguments and counterarguments in order to determine whether a
given precondition of an action is supported or not, i.e. it can be defeasibly derived
or not.

This paper is organized as follows. Next section summarizes the main notions
on defeasible logic and partial-order planning. Section 3 elaborates on the use of
argumentation during the construction of a partial-order plan. Section 4 presents the
defeasible argumentation process in a multi-agent system, and section 5 presents an
example of application. Finally, section 6 concludes and presents some future work.

2 Background

2.1 Defeasible Logic

In this section, we summarize the main concepts of the work on Defeasible Logic
Programming (DeLP), a formalism that combines Logic Programming and Defea-
sible Argumentation [5]. The basic elements in DeLP are facts and rules. Let L
denote a set of literals, where a literal h is a fact A or a negated fact ∼A, and, the
symbol � represents the strong negation. The set of rules is divided into strict rules,
i.e. rules encoding strict consequences, and defeasible rules, which derive uncertain
or defeasible conclusions. A strict rule is an ordered pair head← body, and a de-
feasible rule is an ordered pair head−� body, where head is a literal, and body is
a finite non-empty set of literals. For example, the strict rule animal← bird is de-
noting the piece of information ”a bird is an animal”. However, a defeasible rule is
used to describe tentative knowledge that may be used if nothing else can be posed
against it, e.g. ”birds fly” (fly −� bird).

Using facts, strict and defeasible rules, an agent is able to satisfy some literal h
as in other rule-based systems. Let X be a set of facts in L , STR a set of strict rules,
and DEF a set of defeasible rules. A defeasible derivation for a literal h from X ,
denoted as X |∼ h, consists of a finite sequence h1, . . . ,hn = h of literals such that hi

is a fact (hi ∈L), or there is a rule in STR ∪ DEF with head hi and body b1, . . . ,bk,
and every literal of the body is an element h j of the sequence appearing before hi

Defeasible Planning through Multi-agent Argumentation 3

(j < i). A set X is contradictory, denoted X |∼ ⊥, if two contradictory literals, eg. h
and � h, can be derived from X .

In our planning framework, the agent’s knowledge base is formed by a consistent
set of facts Ψ , and a set of defeasible rules Δ .

Definition 1. Let h be a literal, and let K = (Ψ ,Δ) be the knowledge base of an
agent. We say that 〈A ,h〉 is an argument structure for h, or simply argument for
h, if A is a set of defeasible rules of Δ , such that:

• there exists a defeasible derivation of h from Ψ ∪A ,
• the set Ψ ∪A is non-contradictory, and
• A is minimal, i.e., there is not a A

′ ⊂A , such that A
′

satisfies the above two
conditions.

The literal h is called the conclusion of the argument, and A the support of the
argument.

Definition 2. Two literals h1 and h2 disagree iff the setΨ∪{h1,h2} is contradictory.
Two complementary literals h and ∼h disagree because for any set Ψ , Ψ ∪{h,∼h}
is contradictory. We say that the argument 〈A1,h1〉 is in conflict or counter-argues
the argument 〈A2,h2〉 at the literal h, if and only if there exists a sub-argument
〈A ,h〉 of 〈A2,h2〉, that is A ⊆ A2, such that h and h1 disagree. If 〈A1,h1〉 is a
counterargument for 〈A2,h2〉 at literal h, then h is called a counter-argument point,
and the subargument 〈A ,h〉 is called the disagreement subargument [5].

In short, two arguments are in conflict if they support contradictory conclusions, or
one of the arguments is in conflict with an inner part of the other argument. That
is, if the head of a defeasible rule in one of the arguments contradicts the head of a
defeasible rule in the other argument.

In order to deal with counterarguments, a central aspect is to establish a formal
comparison criterion among arguments. A possible preference relation among ar-
guments is the so-called generalized specificity [14]. We consider an argument A 1
is preferred to an argument A 2 if A 1 is more precise (it is based on more infor-
mation), or more concise (it uses fewer rules in the conclusion derivation). In such
a case, it is said A 1 is more specific than A 2. For example, 〈{c−�a,b},c〉 is more
specific than 〈{∼c−�∼a},∼c〉. We use 〈A 1,h1〉 � 〈A 2,h2〉 to denote 〈A 1,h1〉 is
more specific than 〈A 2,h2〉 The preference criterion is needed to decide whether
an argument defeats another or not, as disagreement does not imply preference.

Definition 3. The argument 〈A1,h1〉 is a defeater for 〈A2,h2〉 iff there is a subargu-
ment 〈A,h〉 of 〈A2,h2〉 such that 〈A1,h1〉 is a counterargument of 〈A2,h2〉 at literal
h, and 〈A1,h1〉 � 〈A,h〉.
Definition 4. An argumentation line for 〈A0,h0〉 is a sequence of arguments, de-
noted Λ = [〈A0,h0〉, . . . ,〈Am,hm〉], where each element of the sequence 〈Ai,hi〉,
i > 0, is a defeater of its predecessor 〈Ai−1,hi−1〉. Certain constraints over Λ are
considered in [5] in order to avoid several problematic and undesirable situations
that may arise in Λ .

4 S. Pajares and E. Onaindia

Definition 5. A dialectical tree for the argument 〈A0,h0〉, denoted T〈A0,h0〉, is de-
fined by the root of the tree, labeled with 〈A0,h0〉, and a set of argumentation lines
from the root, where every node (except the root) represents a defeater of its parent,
and leaves correspond to non-defeated arguments, arguments with no defeaters.

Some examples of dialectical trees can be found in [5]. In order to decide whether
the argument at the root of a given dialectical tree is defeated or not, it is necessary
to perform a bottom-up analysis of the tree. Every leaf of the tree is marked un-
defeated and every inner node is marked defeated, if it has at least one child node
marked undefeated. Otherwise, it is marked undefeated. Let T ∗

〈A ,h〉 denote a marked
dialectical tree of the argument 〈A ,h〉. A literal h is said to be warranted, if and
only if there is an argument 〈A ,h〉 for h such that the root of the marked dialectical
tree T ∗

〈A ,h〉 is marked undefeated. In such a case, 〈A ,h〉 is a warrant for h. If a lit-
eral h is a fact then h is also warranted as there are no counterarguments for 〈 /0,h〉.
Otherwise, if all arguments for h are marked as defeated then the literal h is said to
be not warranted.

2.2 Partial-Order Planning

Planning is the art of building control algorithms that synthesize a course of action
to achieve a desired set of goals. We consider planning problems encoded in a for-
mal, first-order language such as STRIPS [4], particularly in a propositional version
of STRIPS. We will denote the set of all propositions by P (ground facts or liter-
als). A planning state s is defined as a finite set propositions s ⊆P . A (grounded)
planning task is a triple T = 〈O, i,G 〉, where O is the set of deterministic ac-
tions of the agent’s model that describes the state changes, and i ⊆P (the initial
state) and G ⊆P (the goals) are sets of propositions. An action a ∈ O is a tuple
a = (pre(a),add(a),del(a)), where pre(a)⊆P is the set of propositions that rep-
resents the action’s preconditions, and add(a)⊆P and del(a)⊆P are the sets of
propositions that represent the positive and negative effects, respectively. We will
represent an action a as follows:

{q1, . . . ,qn,∼r1, . . . ,∼rm} id←− {p1, . . . , pk} (1)

where id is the action name, ∀k
i=1 pi ∈ pre(a), ∀n

i=1qi ∈ add(a), and ∀m
i=1ri ∈ del(a).

An action a is executable in state s if pre(a)⊆ s. The state resulting from executing
a is defined as s′ = (s\del(a))∪add(a). That is, we delete any proposition in s that
belongs to del(a), and add the propositions in add(a). A solution plan (Π) for a
planning task T is a set of actions Π = {a1, . . . ,an} ⊆ O such that when applied
to i, it leads to a final state in which the goals G are satisfied. A planning task T is
solvable if there exists at least one plan for it.

In what follows, we provide a brief introduction to the Partial-Order Planning
(POP) paradigm ([1][9]). A more detailed tutorial can be found in [17]. In POP,
search is done through the space of incomplete partially-ordered plans as opposite
to state-based planning. Thus, a key concept in POP is that of partial-order plan.

Defeasible Planning through Multi-agent Argumentation 5

Definition 6. A partial-order plan is a tuple Π = 〈A P,OR,C L,OC,U L〉, where:

• A P⊆O is the set of ground actions1 in Π .
• OR is a set of ordering constraints (≺) over O
• C L is a set of causal links over O . A causal link is of the form (ai, p,a j), and

denotes that the precondition p of action a j will be supported by an add effect of
action ai.

• OC is the set of open conditions of Π . Let ai ∈ O; if ∃p ∈ pre(ai)∧ � ∃a j ∈
O/(a j, p,ai)⊆CL, then p is said to be an open condition.

• U L is the set of unsafe causal links of Π , also called the threats. Let (ai, p,a j)⊆
C L; (ai, p,a j) is unsafe if there exists an action ak ∈ O such that p ∈ del(ak)
and OR∪{ai ≺ ak ≺ a j} is consistent.

Given a planning task T = 〈O, i,G 〉, a POP algorithm starts with an empty partial
plan and keeps refining it until a solution plan is found. The initial empty plan
Π0 = 〈A P,OR,C L,OC,U L〉 contains only two dummy actions A P = {a0,a f },
the start action a0, and the finish action a f , where pre(a f) = G , add(a0) = i, {a0 ≺
a f } ⊆ OR, C L = /0, OC = G and U L = /0. The empty plan has no causal links
or threats, but, has open condition corresponding to the preconditions of a f (the
top-level goals G). A refinement step in a POP algorithm involves two things; first,
selecting a flaw (an open condition or a threat) in a partial plan Π , and then selecting
a resolver for the flaw. The different ways of solving a flaw are:

• Supporting an open condition with an action step. If p is an open condition, an
action a needs to be selected that achieves p. a can be a new action from O , or
any action that already exists in A P. Solving an open condition involves adding
a causal link to Π to record that p is achieved by the chosen action step.

• Solving a threat with an ordering constraint. When the flaw chosen is an unsafe
causal link (ai, p,a j) that is threatened by an action ak, it can be repaired either
by adding the ordering constraint ak ≺ ai, or the constraint a j ≺ ak, into OR. This
solving method involves reordering the action steps in Π .

Definition 7. A plan Π = 〈A P,OR,C L,OC,U L〉 is complete if it has no open
conditions (OC = /0).

Definition 8. A plan Π = 〈A P,OR,C L,OC,U L〉 is conflict-free if it has no unsafe
causal links (U L = /0).

Definition 9. A plan Π = 〈A P,OR,C L,OC,U L〉 is a solution if it is complete and
conflict-free.

1 Partial-order planners are capable of handling partially instantiated action instances and
hence, the definition of a partial order plan typically includes a set of equality constraints
on free variables in O [9]. We will, however, restrict our attention to ground action in-
stances without any loss of generality for our purposes.

6 S. Pajares and E. Onaindia

3 Argumentation in POP

The task of the agents in classical planning is to be able to set goals and achieve
them, i.e. finding a causal chain of actions that, when applied in the initial state, it
achieves the desired (sub)goals. In this sense, the set pre(a) of a planning action a
is interpreted as a set of achievable preconditions. However, actions can also have
preconditions whose predicates are not affected by any of the actions available to
the planning agent. Instead, the predicate’s truth value is the result of a derivation
obtained by forward chaining inference rules. More concretely, in our framework,
the agent is equipped with a set of planning actions, O , and a knowledge base K =
(Ψ ,Δ) where:

• Ψ is a consistent set of facts. Initially, Ψ = i, and this set will be updated accord-
ingly with the add and del effects of the applicable actions.

• Δ is a set of defeasible rules that will be used to derive plausible information,
tentative conclusions that might be withdrawn with new pieces of information.

In conclusion, a planning action a is a tuple a = (pre(a),add(a),del(a)), where the
set pre(a) is divided into two subsets:

• pre ach(a) denotes the set of achievable preconditions of the action a. The se-
mantics is the same as in classical planning; an achievable precondition p of an
action a is supported if it exists a set of actions from O that achieves the fact, and
p holds in the state in which a will be applied, i.e. p is not deleted by any action
before it holds in the state.

• pre der(a) denotes the set of derivable preconditions of the action a, the set of
preconditions that can be solved via a defeasible derivation. More particularly,
the semantics is that a derivable precondition p of an action a is supported if
there exists an argument 〈A, p〉 such that the root of a the tree T ∗

〈A ,p〉 is marked
undefeated, i.e. p is warranted in the state in which a will be applied.

Achievable preconditions are supported in a partial-order plan through action steps
(see section 2.2). On the other hand, derivable preconditions are supported through
argument steps as proposed in the argumentation-based formalism presented in [6].
Hence, we define a POP paradigm in combination with the argumentation formalism
described in section 2.1, and we analyze the interplay of arguments and actions when
constructing plans using POP techniques.

Definition 10. Let K = (Ψ ,Δ) be the knowledge base of an agent; and let 〈A , p〉,
A ⊆ Δ , an argument that supports a derivable literal p. The set f acts(A) contains
the facts that appear in the bodies of the rules in A .

In a partial-order plan Π , when an argument 〈A , p〉 is used to support a derivable
precondition p of an action ai, Π will contain a new element, a support link of
the form (A , p,ai). This refinement step for solving a derivable precondition of
an action is called argument step [6]. Like causal links, support links are used to
support a derivable precondition with the conclusion of an argument. Assuming an

Defeasible Planning through Multi-agent Argumentation 7

argument step A 1 = 〈A , p〉, we can interpret that add(A 1) = {p}, and pre(A 1)=
f acts(A 1). As can be observed, the introduction of argument steps does not imply
any changes in the POP algorithm.

Under this new perspective, we reformulate the definition 6 as follows: A partial-
order plan is a tuple Π = 〈A P∪A R,OR,C L∪S L,OC∪DP,U L〉, where A P,
OR, C L, OC and U L have the usual meaning, A R is the set of argument steps
included in Π , S L is the set of support links, and DP is the set of pending derivable
preconditions of the actions in Π . Note that the facts of an argument step are the
achievable preconditions of the argument and as such they are included as open
conditions in the set OC.

Unlike the approach presented in [6], DefPlanner is a defeasible argumentation-
based planner in which many different agents with different opinions argue with
each other on the warranty of a given argument. During the plan construction, at
the time of solving a derivable precondition p, DefPlanner invokes a procedure and
agents initiate a discussion in order to check whether p can be warranted or not.
This procedure builds a dialectical tree for each supporting argument of p and fi-
nally returns whether p is defeated or undefeated. This multi-agent discussion is
explained in detail in next section. Hence, in the case of DefPlanner, argument steps
are only inserted in a partial-order plan as long as it has been proven the argument
is undefeated. This contrasts with other approaches in which each supporting ar-
gument gives rise to a different alternative in the POP algorithm, and discussions
on the warranty of a given argument take place in case a counter-argument is in-
troduced in the plan. In conclusion, DefPlanner only inserts provably undefeated
arguments in a plan, and, consequently, no threats involving two argument steps
may appear in our approach. Let 〈A 1, p〉 be an argument step inserted in a plan Π ;
if argument 〈A 2,q〉 is later inserted in Π then DefPlanner guarantees A 2 is not a
counter-argument of A 1 and viceversa.

Additionally, in this first approach of DefPlanner, we assume a piece of infor-
mation can not be both derived and achieved. That is, a proposition p is either
defeasibly derived through a dialectical tree by using the rules in Δ , or achieved
through a course of actions in O . Thus, the predicates of defeasible information are
never affected by the available planning actions O and, consequently, no action-
argument threats exist. In section 6, we elaborate on this issue for future versions of
DefPlanner.

4 Defeasible Argumentation in a Multi-Agent System

DefPlanner implements a Multi-Agent System (MAS) (figure 1) to assist during the
construction plan. Agents can adopt one of the four different roles specified in this
MAS:

8 S. Pajares and E. Onaindia

• Client role: The user is represented by an agent playing this role, which is in
charge of requesting a plan for a given set of goals.

• POP role: The agent playing this role, that is, the planner takes as input the set of
goals and returns a solution plan that satisfies the client goals. There is only one
agent playing the POP role per MAS.

• Argumentative role: An agent agi which plays this role is associated with a set
of defeasible rules representing the tentative information of the agent about the
environment (Δi). The task of each argumentative agent agi is to participate as
far as possible in the multi-agent discussions for warranting a given literal. Each
agent has an associated utility function2 that is used to maximize its benefits.

• Mediator role: The agent which plays this role (only one per MAS) is in charge
of managing the multi-agent argumentation process.

A MAS, as defined in this paper, is formed by a POP agent which reasons about
which action step (for solving an open condition), or ordering constraint (for solving
a threat) should be chosen in the next iteration of the POP algorithm; a group of
non-self-interested argumentative agents, which join together to reason about the
argument step that should be chosen to satisfy/warrant a derivable precondition;

POP Agent

Argumentative Agent 2

Argumentative Agent 3

Client Agent

Mediator Agent

Argumentative Agent 1

De
fP
lan
ne
r

Fig. 1 An overview of DefPlanner.

2 For instance, in terms of less cost, time, resources or increased safety could be expressed
their utility functions.

Defeasible Planning through Multi-agent Argumentation 9

and, a mediator agent, which coordinates the multi-agent argumentation process for
warranting a literal.

4.1 DefPlanner Algorithm

The POP agent implements an extension of the traditional POP algorithm by con-
sidering the introduction of argument steps, and corresponding support links, to
resolve a defeasible precondition (Algorithm 1). The three non-determinist choose
statements state that the algorithm has to make a choice among different alternatives
(selecting the next partial-plan to work on, selecting a pending derivable precondi-
tion in the partial plan, or selecting the next open condition/threat to study). Typi-
cally, the selected choice will be the result of the application of a specific heuristic
[7]. The multi argumentation function encodes the defeasible argumentation multi-
agent process, which will be explained in detail in the next subsection.

The traditional POP algorithm works as follows: starting with the initial empty
plan Π0 (step 1 in Algorithm 1), it works through the application of successive
refinement steps at each iteration. First, it chooses a partial-order plan from the list
of candidates (step 3 in Algorithm 1), and then it applies a refinement step that
involves selecting a flaw (threat or open condition) in the partial-order plan (step 11
in Algorithm 1).

In contrast with the traditional POP algorithm, the new algorithm considers argu-
ment steps, besides action steps, to support unsatisfied derivable preconditions. The
POP agent takes an argument step as the support from the defeasible argumentation
multi-agent process (section 4.2) to derive a defeasible precondition. If no argument
steps can be constructed to support a derivable precondition, then it prunes3 the se-
lected plan Π from Plan List. Note that, unlike the achievable preconditions, the
algorithm does not branch for each different argument step that supports a derivable
precondition. As it will be explained later, in case of more than one undefeated ar-
gument step for a given defeasible precondition, the voting phase will select the best
argument step according to the preference criterion of generalized specificity (see
section 2.1).

The process ends when both subgoal list 1 and subgoal list 2 are empty, in
whose case Π is a solution plan, or when Plan List is empty, in whose case there is
not a solution plan.

4.2 Defeasible Argumentation Multi-Agent Process

The objective of this process is to have multiple agents reasoning (discussing)
about the warrant for a particular derivable precondition p requested by the POP
agent. The output of the process will be an argument step, if it exists an unde-
feated argument structure for p; otherwise, the procedure will return NIL (step 8 in

3 i.e. the plan is discarded and the search process does not continue exploring through this
plan.

10 S. Pajares and E. Onaindia

1: Plan list := Π0
2: repeat
3: choose Π ∈ Plan list

subgoal list 1 := DP(Π)
subgoal list 2 := OC(Π)

⋃
U L(Π)

4: if (subgoal list 1
⋃

subgoal list 2 = /0) then
5: return Π {Plan solution}
6: else if subgoal list 1 �= /0 then
7: choose Φ ∈ subgoal list1

Πa := multi argumentation(Φ)
8: if Πa �= NIL then
9: then Plan list := Plan list

⋃
Πa

10: else
11: choose Φ ∈ subgoal list2

Relevant := {Πr},∀ Πr that resolves Φ {Each r is a choice (partial-order
planning) to solve Φ}

12: if Relevant �= /0 then
13: Plan list := Plan list

⋃
Relevant

14: until Plan list = /0
15: return fail {Not exists plan}

Algorithm 1. Outline of the DefPlanner algorithm

Algorithm 1) thus indicating there is no refinement plan that supports the defeasible
precondition p.

In what follows, we will consider the notions defined in the section 2.1, such
as argument structure, disagreement, argumentation line, etc. Unlike single-agent
contexts, in our multi-agent framework arguments and counter-arguments will be
proposed by different argumentative agents in the MAS.

DefPlanner divides the reasoning process into three phases: the Dialogue Phase,
in which arguments and counter arguments are proposed, the Evaluation Phase, in
which each argument proposal to derive p is marked as defeated or undefeated, and
the Voting Phase, in which a voting is applied - in case of more than one undefeated
argument structure- to choose the best undefeated proposal for p according to the
preference criterion.

4.2.1 Dialogue Phase

Both the argumentative agents and the mediator agent are involved in this phase. The
argumentative agents of the MAS provide two functionalities: (I) propose an initial
argument structure to support a derivable precondition p, which will be the root of
a dialectical tree, and (II) propose a counterargument to the argument articulated by
another agent in the argumentation line. We assume that argumentative agents are
ordered according to their indexes: 1, 2, ..., n. The proposed model follows a rotating
shift approach4, in which an argumentative agent can only participate during its turn.

4 The shift approach allows to treat uniformly each agent.

Defeasible Planning through Multi-agent Argumentation 11

The mediator agent is in charge of adding the proposed arguments to the appropriate
dialectical tree or creating a new dialectical tree in case of a new initial argument
structure.

Let 〈X i,h〉 be an argument structure where X is the argument support, i denotes
the argumentative proposer agent, and h is the conclusion supported by the argu-
ment. Extending the definition 4 (section 2.1), an argumentation line in DefPlanner,
Λ = [〈X i,h0〉,〈Y j,h1〉 . . . ,〈,Z i,hn〉], is a sequence of argument structures from
different argumentative agents such that two consecutive argument structures can-
not be proposed by the same agent; i.e. 〈X i,h0〉, 〈Y j,h1〉, and i �= j. Thereby,
DefPlanner does not allow agents giving counterarguments to their own arguments,
and this is achieved by ensuring that the agent’s local belief base (Δi) is consis-
tent with respect to the global belief base (Ψ). In this first version of DefPlanner,
at the turn of an argumentative agent, it has to articulate all the arguments for a
given derivable precondition, or all its counterarguments for a given argument, so
an agent can jump-shift the turn only if it lacks sufficient information to make a new
proposal. However, in future versions, we will consider to model other different
kinds of argumentation strategies.

Specifically, the aim of this phase is to provide reasons that support a deriv-
able precondition p ∈ pre der(a). A new argument 〈X i, p〉 represents the root of
a dialectical tree T〈X ,p〉. In order to determine whether 〈X i, p〉 is an undefeated
argument or not in the next phase, agents alternatively propose a counter-argument
as a defeater to any of the leaf nodes of the dialectical tree T〈X ,p〉. According to [5],
a counter-argument 〈Y j,h2〉 to the argument 〈X i,h1〉 can be a direct attack to the
conclusion, that is h2 and h1 are contradictory literals, or can be an indirect attack by
arguing an inner point h of 〈X j,h1〉. Since counter-arguments are arguments too,
there may exist defeaters for them, and so on, thus giving rise to the argumentation
lines of T〈X ,p〉.

4.2.2 Evaluation Phase

At this phase, the aim is to decide whether a dialectical tree of a defeasible pre-
condition p is marked as undefeated or defeated. More specifically, the mediator
agent performs a bottom-up-analysis for each dialectical tree T〈X ,p〉 developed in

the above phase, obtaining a set of marked dialectical trees
n⋃

0
T ∗
〈X ,p〉, where n is

the total number of dialectical trees for p. Nodes will be recursively marked as D
(defeated) or U (undefeated) like the minimax tree used in Artificial Intelligence for
game trees. At the end of this process, each root argument 〈X i, p〉 will be marked
as defeated or undefeated (Definition 5). In DefPlanner, a derivable precondition p
is warranted if it has at least a root argument that satisfies p, and the corresponding
dialectical tree is marked as U (undefeated).

12 S. Pajares and E. Onaindia

4.2.3 Voting Phase

If the derivable precondition p has more than one undefeated argument, we must
choose one of them as the support for p in a partial-order plan Π . In this phase,
agents vote the most preferable undefeated argument according to their own utility
function. The undefeated argument structure with the highest number of votes will
be the selected argument step to be included in Π . In case of tie-breaking, the me-
diator agent makes the final decision. So, the voting idea is that each agent votes
according to their

Different partial plans For instance, the next utility function could be adopted:
generalized specificity [14], a function that favors two aspects in an argument to
derive a derivable precondition: it prefers (1) a more precise argument (i.e., with
greater information content) or (2) a more concise argument (i.e., with less use of
rules). So, the undefeated arguments with greater information and less rules would
be preferred.

The following section illustrates the application of this protocol to an example
scenario in order to obtain a solution plan for a planning task.

5 Example of Application

Figure 2 shows the planning scenario where we will put our argumentation-based
model to work. There are two different locations in this scenario l1 and l2. As can
be seen in the figure, there are three different connections between l1 and l2: via
truck, train or plane, and so the client agent can reach l2 by using any of these three
transport means. The client agent, the truck, the train and the plane are initially
located at l1. The goal of the problem is to have the client agent in l2. Following,
we present the objects defined in this problem:

• l1, l2, ca - location 1, location 2, and the client agent
• tr, tra, pl - a truck, a train, a plane,
• r, tl, al, ae - a road, a railway, an airline company, the airline experts,
• tv, in, - television news, internet news
• bw, sn, wg, - bad weather, snow, wind gusts
• br, vi, ll, es f - bad railroad, adequate visibility, landslides, electrical supply fail-

ure
• rm, va, ds - airplane engines work well, volcano ash cloud hits airline, dangerous

situation
• h, j6, t j - holidays, June 6, and traffic jam.

The actions the client agent can perform are the following ones:

• Mp(? j,?k): moving plane pl from location j to k. It must exist an airline com-
pany to travel from j to k, and absence of dangerous situations to assure safety.
Moving a plane takes 3 time units.

• fMt(? j,?k): fast-moving truck tr from location j to k. It must exist a road from j
to k, and assure there is no traffic jam between j and k. This action takes 8 time
units.

Defeasible Planning through Multi-agent Argumentation 13

l2

tra

tr

l1
cal1

pl

Fig. 2 Scenario of the application example

O =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(at tr ?k), ∼(at tr ? j), (at ca ?k), ∼(at ca ? j)} mFt←−−
{(link r ? j ?k), (at tr ? j), (at ca ? j), ∼(t j)}

{(at tr ?k), ∼(at tr ? j), (at ca ?k), ∼(at ca ? j)} mSt←−−
{(link r ? j ?k), (at tr ? j), (at ca ? j)}

{(at tra ?k), ∼(at tra ? j), (at ca ?k), ∼(at ca ? j)} mT←−−
{(link tl ? j ?k), (at tra ? j), (at ca ? j), ∼(br), (v)}

{(at pl ?k), ∼(at pl ? j), (at ca ?k), ∼(at ca ? j)} mP←−−
{(link al ? j ?k), (at pl ? j), (at ca ? j), ∼(ds)}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

• sMt(? j,?k): slow-moving truck tr from location j to k. It must exist a road from
j to k. This action takes 20 time units.

• Mt(? j,?k): moving train tra from location j to k. There must exist a railway from
j to k, and no bad railroad conditions to assure an adequate visibility. This action
takes 10 time units.

Our multi-agent system consists of the POP agent, the mediator agent and three
argumentative agents, Bob, Joe and Ann. Agents have different knowledge and two
pieces of information from different agents can appear to be contradictory. Let’s
assume that each argumentative agent is a travel agency, that Joe uses TV as a
source of information, but Ann prefers Internet to keep up to date. The goal (G) is
to have the agent ca at position l2, (at ca l2). The global belief base (Ψ), the local
belief bases (ΔBob, ΔJoe, ΔAnn), and the action base (O) are detailed as follows:

Ψ =

⎧
⎪⎪⎨

⎪⎪⎩

(have in); (have tv); (have vi); (have va);
(have wg); (today j6); (have ae); (at ca l1);

(at tr l1); (at pl l1); (at tra l1);
(link l1 l2 r); (link l1 l2 tl); (link l1 l2 al);

⎫
⎪⎪⎬

⎪⎪⎭

ΔBob =
{

br−�ll; ll−�wg; bw−�wg;
ds−�{va,tv};

}

14 S. Pajares and E. Onaindia

ΔJoe =

⎧
⎨

⎩

br−�es f ; es f −�sn; br−�sn; ∼bw−�sn;
sn−�tv; t j−�h;

h−� j6; ∼ds−�rm; rm−�ae;

⎫
⎬

⎭

ΔAnn =
{ ∼bw−�h; h−� j6; ∼ll−�∼bw;
∼br−�∼bw;∼bw−�in; ∼sn � in; ∼rm−�va;

}

For the sake of simplicity, Bob, Joe and Ann have the same utility function. Specif-
ically, we consider the same comparison criterion among defeaters arguments (sec-
tion 2.1), as an utility function that returns the best undefeated argument. In what
follows, we explain how DefPlanner works to obtain a complete plan Π that satisfies
the goal G .

5.1 Searching for a Solution Plan

5.1.1 Step 1

The planning process starts with the empty plan Π0 (leftmost plan in Figure 5). For
solving the precondition Φ = (at ca l2), the POP agent has four different action
choices {mP(l1, l2), mFt(tr, l1, l2), mT(l1, l2), mSt(tr, l1, l2)}, so four new
partial-order plans {Π0.1,Π0.2,Π0.3,Π0.4} are added to Plan List (see Figure 6).

5.1.2 Step 2

Let’s assume the POP selects the plan Π0.1 because it is the plan that takes fewer
time units. Then we have A P(Π0.1) = {mP(l1, l2)}. The action mP(l1, l2) has a
derivable precondition p =∼ds meaning that the plane can only fly if it is assured
that no dangerous situation is expected during the flight. The POP agent invokes the
mediator agent that calls the multi argumentation function, and it proposes a new
dialogue phase to check whether p is warranted or not.

Joe takes the first shift, and puts forward the initial argument 〈E Joe,∼ds〉 with
E Joe = {∼ds−�rm; rm−�ae}, indicating that the airline experts assert the airplane
engines work well and that there will be no dangerous situation. When counter-
arguments to this argument are requested, Ann responds5 with 〈E Ann,∼rm〉 with
E Ann = {∼rm−�va}, and Bob responds 〈C Bob,ds〉 with C Bob = {ds−�{va,tv}}. No-
body has more information to argue against, so the process ends here. Figure 3
shows the argument 〈E Joe,∼ds〉 is marked as defeated, and, consequently,∼ds is not
warranted. The multi argumentation function returns Π0.1.1 = NIL because ∼ds is
not warranted. Thereby, Π0.1 is discarded from the Plan list.

5.1.3 Step 3

Let’s assume the next plan to be selected is Π0.2 (see Figure 6), where = A P(Π0.2)=
{mFt(tr 1, l1, l2)}. The action mFt(tr 1, l1, l2) has a derivable precondition

5 An argumentative agent responds if it is at its turn.

Defeasible Planning through Multi-agent Argumentation 15

〈E Joe,∼ds〉D

〈E Ann,∼rm〉U

��������
〈C Bob,ds〉U

��������

Fig. 3 Marked dialectical tree for the derivable precondition ∼ds at step 2 of the plan solution
process

p =∼t j, indicating that there should not be traffic jam for fast-moving truck. The
POP agent selects Π0.2 because it is the second plan with fewer time units. The POP
agent invokes the mediator agent that calls the multi argumentation function, and it
proposes a new dialogue phase to check whether ∼t j is warranted or not.

Bob and Ann have not traffic jam information, and Joe knows there is traffic jam
because today is June 6, and {t j−�h; h−� j6}. Therefore, nobody can support ∼t j,
and, multi argumentation function returns Π0.2.1 = NIL. Thereby, Π0.2 is discarded
from Plan list.

5.1.4 Step 4

Assuming the next selected plan is Π0.3 (Figure 6) where A P(Π0.3) =
{mT(l1, l2)}, the action mT (l1, l2) has a derivable preconditions which indicates
the railroad must not be in bad conditions; then, Φ =∼br.

Ann takes the first shift, and puts forward the initial argument 〈F Ann,∼br〉 with
F Ann = {∼br−�∼bw;∼bw−�in}, i.e., internet news say that bad weather is not
expected, and, therefore, the railroad will not be in bad conditions. Next, Bob
takes the shift and responds directly attacking ∼br with 〈A Bob,br〉, where A Bob =
{br−�ll; ll−�wg}, meaning that wind gusts are expected according to the infor-
mation in the initial state, and because of that landslides may occur. If landslides
happen to occur, then it is likely the case to have the railroad in bad conditions.

Joe takes the shift, and responds to ∼br with 〈BJoe,br〉 with BJoe = {br−�es f ;
es f −�sn; sn−�tv}, and, 〈C Joe,br〉with C Joe = {br−�sn; sn−�tv}. That is, according
to Joe’s information, television news report it will snow, and so the railroad is likely
to be in bad conditions as well as having a electrical supply failure, which causes to
have the railroad in bad conditions.

When counterarguments to 〈BJoe,br〉 and 〈C Joe,br〉 are requested, Ann responds
with 〈A Ann,∼sn〉, where A Ann = {∼sn � in}. When asked to counter-argue 〈A Bob,br〉,
Ann responds with 〈BAnn,∼ll〉 where BAnn = {∼ll−�∼bw;∼bw−�in}. According to
Ann’s information, internet reports that no bad weather is expected and so there is
no chance to find landslides.

In turn, when asked to counter-argue 〈BAnn,∼ll〉, Bob takes the shift, and re-
sponds 〈BBob,bw〉 with BBob = {bw−�wg}. In turn, Joe responds 〈D Joe,∼bw〉
with D Joe = {∼bw−�sn; sn−�tv}, and, Ann responds 〈C Ann,∼bw〉 with C Ann =
{∼bw−�h; h−� j6}, and 〈DAnn,∼bw〉 with DAnn = {∼bw−�in}.

16 S. Pajares and E. Onaindia

〈F Ann,∼br〉U

〈A Bob,br〉D

��������
〈BJoe,br〉D 〈C Joe,br〉D

���������

〈BAnn,∼ll〉U 〈A Ann,∼sn〉U 〈A Ann,∼sn〉U

〈BBob,bw〉D

〈D Joe,∼bw〉U 〈C Ann,∼bw〉U

��������
〈DAnn,∼bw〉U

����������������������

Fig. 4 Marked dialectical tree for the derivable precondition ∼br at step 2 of the plan solution
process

Figure 4 shows that the argument 〈F Ann,∼br〉 is marked as undefeated, and, con-
sequently, the derivable precondition ∼br is warranted. The multi argumentation
function returns Π0.3.1, an extension of Π0.3 with F Ann and CL(F Ann).

5.1.5 Step 5

Assuming the plan selected next is Π0.3.1 (because it has less duration than Π0.4),
the POP agent extends Π0.3.1 to Π0.3.1.1, adding a causal link between f acts(F Ann)
and the initial state Ψ (Figure 6). Π0.3.1.1 is a solution plan that satisfies the goal G
(Figure 5).

FINISH FINISHFINISH

START STARTSTART

mT mT

FINISH

START

mT

Fig. 5 Different partial plans for the example scenario

Defeasible Planning through Multi-agent Argumentation 17

(at ca l2)

mP mFt mT mSt

brtjds
X X

Fig. 6 Search in the space of partial-order plans for the example scenario

6 Conclusions and Related Work

In this paper, we have presented DefPlanner, a defeasible argumentation-based plan-
ner that allows multiple agents with partial and contradictory knowledge articulate
reasons for and against the precondition of a planning action. Along the paper, we
have introduced the necessary modifications to include a defeasible reasoning into
a POP algorithm. This new and enriched planner opens up many possibilities to be
applied to a multi-agent planning context.

DefPlanner builds on the approximation of Garcia et al [6], and extends their
work by incorporating multiple agents at the time of deciding which literals (con-
ditions of a planning action or derivable preconditions) are warranted. Our work
is also related to conformant planning [8], an approach to deal with planning with
incomplete information in which the purpose is to generate plans given uncertainty
about the initial state and action effects, and without any sensing capabilities during
plan execution. However, unlike conformant planning, our approach is a powerful
planning mechanism for reasoning about contradictory information coming from
different sources or agents. In this sense, in the literature of classical planning we
can hardly find approaches to deal with contradictory information because, among
other reasons, there are very few attempts to extend planning to a multiagent en-
vironment, being a notably exception the work of Brenner and Nebel [3]. Hence,
DefPlanner is a novel approach regarding the consideration of incomplete and con-
tradictory information of multiple reasoning entities, i.e. agents.

As for future work, we are interested in extending the argumentation process to
achievable preconditions; that is, a new approach towards the integration of rea-
soning about action steps (practical reasoning) and reasoning about argument steps
(defeasible reasoning). Particularly, our next immediate step is to endow agents
with planning capabilities, rather than just limiting agents to perform defeasible
reasoning and discuss the warranty of literals, and thus come up with a defeasible

18 S. Pajares and E. Onaindia

multiagent planning approach. In this context, we will also study the choice of hav-
ing non-cooperative agents in the MAS.

Acknowledgements

We would like to thank three anonymous reviewers for helpful comments that have helped
to improve this work. This work is supported by FPU grant reference AP2009-1896
awarded to Sergio Pajares-Ferrando, TIN2008-04446, TIN2008-06701-C03-03 and PROM-
ETEO/2008/051 projects of the Spanish government and CONSO-LIDER INGENIO 2010
under grant CSD2007-00022.

References

1. Barrett, A., Weld, D.S.: Partial-order planning: evaluating possible efficiency gains. Ar-
tificial Intelligence 67(1), 71–112 (1994)

2. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artificial
Intelligence 171(10-15), 619–641 (2007)

3. Brenner, M., Nebel, B.: Continual planning and acting in dynamic multiagent environ-
ments. Journal of Autonomous Agents and Multiagent Systems 19(3), 297–331 (2009)

4. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem prov-
ing to problem solving. Artificial intelligence 2(3-4), 189–208 (1971)

5. Garcı́a, A.J., Simari, G.R.: Defeasible logic programming: An argumentative approach.
Theory and Practice of Logic Programming 4(1-2), 95–138 (2004)

6. Garcıa, D.R., Garcıa, A.J., Simari, G.R.: Defeasible Reasoning and Partial Order Plan-
ning. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, p. 311.
Springer, Heidelberg (2008)

7. Ghallab, M., Nau, D., Traverso, P.: Automated Planning. Theory and Practice. Morgan
Kaufmann, San Francisco (2004)

8. Hoffmann, J., Brafman, R.I.: Conformant planning via heuristic forward search: A new
approach. Artif. Intell. 170(6-7), 507–541 (2006)

9. Penberthy, J.S., Weld, D.: UCPOP: A sound, complete, partial order planner for ADL.
In: Proceedings of the Third International Conference on Knowledge Representation and
Reasoning, pp. 103–114. Citeseer (1992)

10. Prakken, H., Gordon, T., Walton, D., Bench-Capon, T., Bex, F.J., den Braak, S.W.v, Oost-
endorp, H.v., Prakken, H., Verheij, H.B., Vreeswijk, G.A.W.: Logical tools for modelling
legal argument: a study of defeasible reasoning in law, Dordrecht, Boston (1997)

11. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible
priorities. Journal of Applied Non-Classical Logics 7(1) (1997)

12. Rahwan, I., Amgoud, L.: An argumentation-based approach for practical reasoning. In:
Maudet, N., Parsons, S., Rahwan, I. (eds.) ArgMAS 2006. LNCS (LNAI), vol. 4766, pp.
74–90. Springer, Heidelberg (2007)

13. Simari, G.R., Garcı́a, A.J., Capobianco, M.: Actions, planning and defeasible reasoning.
In: 10th International Workshop on Non-Monotonic Reasoning (NMR 2004), pp. 377–
384 (2004)

Defeasible Planning through Multi-agent Argumentation 19

14. Stolzenburg, F., Garcia, A.J., Chesnevar, C.I., Simari, G.R.: Computing generalized
specificity. Journal of Applied Non-Classical Logics 13(1), 87 (2003)

15. Thimm, M.: Realizing argumentation in multi-agent systems using defeasible logic pro-
gramming. In: McBurney, P., Rahwan, I., Parsons, S., Maudet, N. (eds.) ArgMAS 2009.
LNCS, vol. 6057, pp. 175–194. Springer, Heidelberg (2010)

16. Thimm, M., Kern-Isberner, G.: A distributed argumentation framework using defeasible
logic programming. In: International Conference on Computational Models of Argument
(COMMA), pp. 381–392 (2008)

17. Weld, D.S.: An introduction to least commitment planning. AI magazine 15(4), 27 (1994)

Operator Behavior Modelling in a Submarine

Isabelle Toulgoat, Pierre Siegel, and Yves Lacroix

Abstract. Simulations of naval action estimate the operational performance of
warships or submarines for a given scenario. In common models, the operator’s
reactions are predefined. This is not realistic: the operator’s decision can produce
unexpected reactions.

This paper presents a method to model operator decision in simulations. This
method allows to reason about incomplete, revisable and uncertain information: an
operator has partial information about his environment only and must revise his
decisions. Our method uses a nonmonotonic logic: the rules of behavior are for-
malized with default logic, to which we added a consideration of time. Our method
uses preferences to manage choice between different rules, with simple probabilistic
techniques.

This method has been implemented in Prolog, interfaced to DCNS simulator
framework and applied to a scenario involving two adverse submarines.

1 Introduction

Simulations of naval action estimate the operational performance of warships or
submarines for a given scenario. For example, a submarine must be discreet,
in order not to be detected by an ennemy. One of the main aspect regarding

Isabelle Toulgoat
DCNS Ingénierie, Le Mourillon, BP 1306, 83 076 Toulon Cedex, France
e-mail: isabelle.toulgoat@dcnsgroup.com

Pierre Siegel
Université de Provence, France
e-mail: siegel@cmi.univ-mrs.fr

Yves Lacroix
Systèmes Navals Complexes, Avenue Georges Pompidou, 3160, La Valette du Var, France
e-mail: yves.lacroix@univ-tln.fr

I. Hatzilygeroudis and J. Prentzas (Eds.): Comb. of Intell. Methods and Appl., SIST 8, pp. 21–39.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

22 I. Toulgoat, P. Siegel, and Y. Lacroix

operational performance of a submarine is the detection acoustique performance
and the risk of being detected by an ennemy. At the DCNS, the simulator frame-
work ATANOR models complex scenarios involving several platforms with combat
system and equipment [18].

In this simulator framework, the behavior is modelled with Petri nets [13], com-
posed of places, which model the equipment states and transitions between these
places. These transitions are activated by internal and external events. Only one
place is activated at the same time, which forbids simultaneous actions.

The modelling of behavior rules with Petri nets provides automatic reactions of
the combat system to a tactical situation. This is not realistic: in a tactical situation
the decision of an operator is a key aspect, which can provide unexpected reactions.
Moreover, a disadvantage of the modelling with Petri nets is to have to revise its
implementation for any new behavior [7].

The purpose of this work is to develop a system allowing to model the behavior
of an operator in the performance simulations. We worked on a case study involving
two adverse submarines. This system has to obey several requirements:

• to be able to model the behavior rules of the operator.
• to be able to reason with incomplete, revisable and uncertain information.

Indeed, an operator has a partial sight of this environment only. This environ-
ment is always changing: the submarine can lose the detection, it hasn’t the exact
position of its adversary, it is just an estimation. . . . Therefore he must reason
with uncertain and incomplete information. His decisions must be revised with
the arrival of new information [17] [6].

• to choose between different proposals when the system proposes several actions
for a same situation.

• to allow the addition of new behavior rules, without having to modify the knowl-
edge representation and without calling into question the previous rules (unlike
the Petri nets, in which the modifications are complicated).

• to be able to reason with general rules, without having to compile in a very pre-
cise way all the information. It is not necessary for the user to describe all the
possibilities.

This work is financed by the DCNS company for military applications: we need a
simple and robust program. Therefore, we used the most widely known nonmono-
tonic logic: the default logic. We added a consideration of time: we have submarine’s
data at the time t, and the extensions calculus gives all the possible extensions at the
next time t + 1. Each extension is a proposal for the action of the submarine. We
calculate a weight function for each extension, thanks to preferences on defaults.
Then, we use simple probabilistic techniques to choose between these extensions.
This work has been implemented using Prolog, and interfaced with DCNS simulator
[21], [19].

In the following paper we will first present the case study and some behavior
rules. Then, we will present the limits of the classical logic and why we need the
nonmonotonic logic. We will explain the formalization of the behavior rules with

Operator Behavior Modelling in a Submarine 23

default logic. We use only normal defaults and Horn clauses in order to simplify the
program, though we could extend this work to other case studies, with more compli-
cated rules. Next we explain the choice between the extensions thanks to preferences
with simple probabilistic techniques. Finally, some results are presented.

2 Case Study: Submarine Detection and Tracking

In a scenario including two submarines, we model the decision of an on-watch of-
ficer in the submarine according to the events perceived on the tactical situation.
In this purpose, we questioned submariners about this case study, and we inferred
behavior rules. These rules are really used in a submarine. During this work, we
always got in touch with submariners, in order to complete the rules.

Here are some examples of these rules:

• Rule 1: As long as the submarine has no detection, it continues a random research
trajectory in its patrol area. During that process, the submarine makes successive
straight sections: it goes straight ahead and sometimes it changes its course. The
submarine is deaf in its rear (behind the submarine, the sonar’s reception is de-
creased for several reasons), this manœuver allows the submarine to check that
it isn’t tracked. With this manœuver, the submarine covers the entire patrol zone,
in order to increase its chances to detect an intruder.
Remark: it is a rule of minimal change [8] [23] [6]. This rule is applied as long
as the submarine has no new information.

• Rule 2: If the submarine detects another submarine, the officer engages the fol-
lowing actions:

– Collision avoidance manœuver.
– Elaboration of the solution manœuver: he manœuvers in order to confirm his

information about the distance, the course and the speed of the enemy.
– Bypassing of the enemy manœuver: when the officer is sure not to be detected,

he gets closer to the enemy’s rear, position in which he won’t be detected.
– Tracking manœuver: when the submarine is in the enemy’s rear, it begins the

tracking: it makes straight sections in the enemy’s rear, avoiding to be detected
and keeping good information about the enemy’s kinematics.

• Rule 3: If the submarine is detected when it makes one of the following manœu-
vers: elaboration of the solution, bypassing of the enemy or tracking, it must
escape: the officer manœuvers in order to go away from the enemy, aiming the
loss of contact.

• Rule 4: If the submarine is a diesel submarine and more than a few hours have
passed since the last battery charge, it must rise to the surface and use the snorkel
to take air from the surface and evacuate exhaust gas.

• Rule 5: If the submarine loses the contact during the tracking, the officer rallies
the last position of the adversary and searches for it.

24 I. Toulgoat, P. Siegel, and Y. Lacroix

If he finds it, then he resumes the tracking actions (Rule 2).
If after one hour he hasn’t found it, he resumes the random research trajectory
(Rule 1).
During this research hour, the submarine can not rise and use the snorkel (Rule
4).

• Rule 6: With the sonar called MOAS (Mine and Obstacle Avoidance System),
the submarine can detect mines, big rocks, cliffs. If the submarine detects a big
rock, it changes its course in order to place the rock to one side.

These rules can be in competition: at a same time, it is possible that the submarine
needs to do several actions. For example, it needs to rise the surface and use the
snorkel and it needs to continue the tracking. The system must be able to manage
these alternative choices.

3 Classical Logic and Its Limits

The classical logics, as the mathematical or the propositional logics, are monotonic:
if we add information or a formula E’ to a formula E, everything which was deduced
from E will be deduced from E ∪ E’.This monotonicity will generate problems to
reason with incomplete, uncertain and revisable information. Indeed, in this case, it
can happen that previously established conclusions turn invalid due to new informa-
tion arrival or information change.

• The classical logic doesn’t allow to reason about incomplete information. Let us
take the rule: ”Generally, a submarine with no detection makes a random research
trajectory”. At first sight, we can express this type of information within the first-
order logic:
Rule 1:

∀x,¬detection(x)→ random trajectory(x) (1)

This formulation is coherent if the only known information is ”The submarine
has no detection”.
But if we had the rule: ”If more than four hours have passed since the last battery
charge, the submarine must rise to the surface and use the snorkel to take air.”,
we express it within first-order logic:
Rule 2:

∀x, T lc(x) ≥ 4→ snorkel(x) (2)

where T lc denotes the time since the last charge and snorkel the action of rising
to the surface and using the snorkel.
With these rules, it is difficult to manage general rules containing an important
number of exceptions [17].

• The classical logic doesn’t allow to revise the information: it doesn’t plan to
revise the previously established deductions. Let us take again the rules 1 and 2.
Knowing that the submarine has no detection, we deduce that it must make a

Operator Behavior Modelling in a Submarine 25

random trajectory. But, if we know that more than four hours passed since the
last battery charge, we conclude that the submarine must use the snorkel.
We obtain two conclusions which are not consistent: the submarine can not make
at the same time these two actions.
It illustrates how classical logics don’t allow revising the reasoning and the con-
clusions. This kind of reasoning is common in artificial intelligence, as well as
in the daily life.

In the case of a submarine, blind in submersion, the only information comes from
passive sonar system, this information is uncertain and incomplete [15], [3]. The
officer must be able to revise the decisions with the arrival of new information.
We need a logic which allows to reason about incomplete, uncertain and revisable
information.

4 Nonmonotonic Logic and Default Logic

A nonmonotonic logic allows to eliminate the monotony property of the classical
logic: if a reasoning gives some conclusions using some given knowledge, these
conclusions could be revised with the addition of new knowledge.

A nonmonotonic logic allows to take the incomplete, revisable, uncertain infor-
mation into account. This logic has a natural similarity with the human reasoning:
due to the lack of information or lack of time, one can reason with partial knowledge
and revise the conclusions when one has more information.

The default logic, introduced by Ray Reiter [16], is the most widely used logic. It
formalizes the default reasoning: conclusions can be made, in the absence of oppo-
site proof. A default logic is defined by Δ = (D, W), W is a set of facts (formulae
from propositional logic or the first-order logic), and with D, a set of defaults, (in-
ference rules with specific content, which handle uncertainty).

Let us remind the definitions of defaults and extensions:

Definition: Default

A default is an expression of the form:

A(X) : B(X)
C(X)

(3)

where A(X), B(X) and C(X) are formulae and X is a set of variables. A(X) is the
prerequisite, B(X) is the justification and C(X) is the consequent. Intuitively, this
default (formula 3) means: if A(X) is true, if it is possible that B(X) is true (B(X) is
consistent), then C(X) is true.

If B(X) = C(X), the default is normal. The normal default means: ” Normally,
the As are Bs”.

26 I. Toulgoat, P. Siegel, and Y. Lacroix

Definition: Extension

The use of defaults allows to deduce more formulae from a knowledge base W.
To generate the deduced formulae, we calculate extensions, which are defined as
follows:

E is an extension of Δ if and only if E = ∪i=0,∞Ei , with

E0 = W and for i ≥ O,

Ei+1 = Th(Ei) ∪ {C/(
A : B

C
) ∈ D, A ∈ Ei,¬B /∈ E}

where Th(Ei) is the set of theorems obtained in a monotonic way from Ei.
It is important to notice that E appears in the definition of Ei+1. So, we need to

know E to find Ei, it is not possible to obtain the extensions with an incremental
algorithm.

If we work with normal defaults, the definition of an extension is changed: we
need to verify that ¬B /∈ Ei:

E0 = W and for i ≥ O,

Ei+1 = Th(Ei) ∪ {B/(
A : B

B
) ∈ D, A ∈ Ei,¬B /∈ Ei}

where Th(Ei) is the set of theorem obtained in a monotonic way from Ei.
For our case study, we only use normal defaults, but we could extend our work

to general defaults.

5 Rules Formalization with Default Logic

5.1 Time Consideration

To formalize the rules of behavior, we used default logic, to which we added a
consideration of time. Indeed, we have submarines data at the time t, and we have
to deduce the submarines instructions at the next time t+1, taking into account the
state of the submarine and updated information. These instructions will generate the
submarine updated data for time t+1. To introduce the time, we used previous work
by Cordier and Siegel [6].

We need the time consideration in the definitions of the facts W and the defaults
D of the default logic Δ = (D, W).

5.2 Facts Definition with Time Consideration

The set of facts W is defined with formulae from propositional logic or first-order
logic.

Operator Behavior Modelling in a Submarine 27

• We used basic facts (or ground literals) like, for example: detection(dt),
course(ct), speed(st). . . The basic facts define the submarine information at the
time t.

• We use only Horn clauses. They allow us to write two types of rules:

– the Horn clauses with a positive literal, written as follows:

(g(t) ∨ ¬f1(t) ∨ . . . ∨ ¬fk(t)) (4)

where the fi(t) and g(t) are positive literal at time t. This formula can also be
written with an implication:

(f1(t) ∧ . . . ∧ fk(t))→ g(t) (5)

This type of rules allows to define rules which are always true, these are classic
rules of expert systems.
Example: we formalise a rule such as ”If the submarine has a random research
trajectory, it turns by an angle between α and β”, as follows:

random trajectory(Xt)→ turn(Xt, (α, β)) (6)

– the Horn clauses with no positive literal, written as:

(¬f1(t) ∨ . . . ∨ ¬fk(t)), (7)

ie
¬(f1(t) ∧ . . . ∧ fk(t)) (8)

We use these rules to define mutual exclusions in pairs, these are the predicates
which can not be executed at the same time:

(¬f1(t) ∨ ¬f2(t)) (9)

equivalent to
¬(f1(t) ∧ f2(t)) (10)

Example: we can define a rule such as ”The submarine can not make at the
same time a random research trajectory and rise to use the snorkel” as follows:

¬(random trajectory(Xt) ∧ snorkel(Xt)) (11)

The basic facts and the Horn clauses are easily understandable for the users, and
we obtain a simple program. However, we could generalize our work to other
clauses.

28 I. Toulgoat, P. Siegel, and Y. Lacroix

5.3 Default Definition with Time Consideration

The defaults D are inference rules with specific content, they allow to manage un-
certainty. They express the fact that, if there is no contradiction to execute an action,
the submarine can do it. We use here only normal defaults. The normal defaults
allow to ensure the existence of at least one extension [16] and to obtain a simple
algorithm of extension calculus. However, we could generalize our work with other
defaults.

They allow us to formalize rules such as ”If the submarine has no detection, then
it makes a random research trajectory” in the following way:

¬detection(Xt) : random trajectory(Xt+1)
random trajectory(Xt+1)

(12)

This default means: ”If the submarine has no detection at time t and if it can make
a random research trajectory at time t+1, it makes a random research trajectory at
time t+1”.

The defaults allow us to define general rules on the behavior of the submarine
(rise to the surface to use snorkel, collision avoidance, tracking. . .). Then, the set
of facts allows to specify, for each behavior, the action to realize (change course,
speed, submersion) and the mutual exclusions between the behaviors.

5.4 Extension Calculus

We use extensions calculus to study all the defaults and to retain the defaults that
answer the problem in a coherent way. Each extension is a possible solution to
the problem: according to the submarine state at the time t, an extension gives a
possible solution of action for the submarine at the next time t+1 [20]. The normal
defaults grant the existence of at least one extension. Generally, we will have several
extensions for the same knowledge base.

We could use the answer set programming [12] to calculate the extensions, which
are equivalent. In order to have a simple system, we rather implement our own
extension calculus. The normal defaults and the Horn clauses allow to implement
easily the extensions calculus with the Prolog language. We called our program
NoMROD for Non-Monotonic Reasoning for Operator Decision.

6 Extensions Selection with Preferences

The aim of this part is to simulate the officer decision. In a tactical situation, the
decision of an operator is a key aspect. At each time, the officer has to choose be-
tween the actions. We define a method to choose between the different extensions
proposed. This method allows to simulate different types of behavior, depending on
the officer’s character.

Operator Behavior Modelling in a Submarine 29

We distinguish two stages in this method. The first stage consists in defining gen-
eral principles for the extension selection, and a weight function for the extension
with a multi-criteria decision aid method. This weight function is a general formula,
which can be used for other case studies. This function handles the officer’s behavior
at two levels:

• the importance of each default according to different criteria, with preference
coefficients C1, . . . , Cn, which allow to define preferences on defaults.These co-
efficients describe the importance of each action.

• the officer character with the character coefficients β1, . . . , βn: which criteria will
he favor? Thanks to these character coefficients, we can model different officers:
careful, bold. . .

Next, the second stage is more specific to the case study. We define a method to
select an extension, thanks to the weight function.

6.1 Extension Selection Principles

First, we study some principles and requirements to which the extension selection
must answer:

1. to choose the interesting extension and let the others aside.
Example: NoMROD proposes two extensions: to make a random research trajec-
tory or to rise to the surface and use the snorkel to take air.
The random research trajectory is a rule of minimal change: it is applied while the
submarine has no new information. The officer will choose to rise to the surface,
which is a more important behavior.

2. to choose the extensions which are obligatory (for the crew survival).
For example, the officer can postpone the rising to use the snorkel, if he is doing
another important action (for example the tracking). When this rule is verified,
the officer has approximately thirty minutes of battery. When this reserve will be
practically empty, the officer will be obliged to rise.

3. to manage the choice between several extensions.
Example:NoMROD proposes two extensions: avoid the collision with a subma-
rine and avoid the collision with a big rock. These two behaviors are very impor-
tant for the submarine safety. NoMROD must be able to choose between exten-
sions which have the same importance.

4. to respect the minimal change: while the submarine has no new information, it
stays in the same state, it doesn’t change its behavior. We must give more chance
to an action already engaged.
With this rule, the officer will persist in its choices, he won’t oscillate between
several behaviors. However, NoMROD must be able to stop an action if another
becomes obligatory.
Example: NoMROD proposes two extensions: to track the enemy and to rise to
the surface and use the snorkel to take air. We suppose that the system chooses
the tracking. These two extensions will be proposed again while the rising won’t

30 I. Toulgoat, P. Siegel, and Y. Lacroix

be executed. The best choice for the officer is to carry on the tracking, and when
the rising becomes obligatory (the submarine has just enough battery to rise to
the surface), he must execute this action.
When the submarine begins an action, it seems important to carry on this action
during a certain time. The officer can not change his opinion too often.

5. the enemy submarine doesn’t have to guess which action our officer will select.

These principles are some principles of common sense. Aside from last principle,
the other can be applied generally to other case studies.

6.2 Extensions Weight Function

We define a weight function to give weights to the extensions.These weights quan-
tify the extensions importance. In order to define this weight function, we use a
method of multi-criteria decision aid (MCDA). MCDA aims at modelling the pref-
erences of a decision maker. It allows the decision maker to solve complex problems,
where several criteria must be handled in the choice [2],[22]. There are several cat-
egories of methods in MCDA. We use the multi-attribute utility theory. This theory
is based on the following axiom:

Every decision maker tries unconsciously to maximize a function

U = U(g1, . . . , gn), (13)

which aggregates all the points of view to be handled (with gi the criteria).
In order to define a general method to define the extensions weight functions, we

use a simple aggregation function: the weighted sum.
Each extension uses defaults. First, we attribute preference coefficients on de-

faults. Next, we calculate the utility function for each extension, and finally we
calculate the weight functions for each extension using the weighted sums.

6.2.1 Preference’s Coefficients on Defaults

Each default is a general behavior. In order to specify the importance of behaviors,
the user allocates preference coefficients to the defaults.

In a similar way, the preferences are used within a system of nonmonotonic rea-
soning, allowing finding an appropriate compromise solution. For example, Brewka
[4] defined a prioritized default logic, with a definition of order in which defaults
must be applied.

Different preference coefficients C1, . . . , Cn are attributed to specify the impor-
tance of the defaults according to different criteria.

For example, we can specify the default importance for the submarine safety, the
efficiency on the submarine mission, the order obedience, ecologist criterion. . .
For each default Dj , we attribute values to these coefficients C1j . . . Ckj , . . . , Cnj .
We fixed arbitrarily these coefficients between 0 and 1000.

Operator Behavior Modelling in a Submarine 31

6.2.2 Utility Function

Each extension Ei uses defaults:

Ei = {D1 . . . , Dm}

For each extension Ei, we calculate the scores

{Score1(Ei), . . . , Scoren(Ei)}

which correspond respectively with the coefficients C1, . . . , Cn.
A score Scorek(Ei) is the sum of the coefficients Ck of each default used in the

extension Ei:

Scorek(Ei) =
m∑

j=1

Ckj (14)

We suppose that NoMROD proposes p extensions. For each Scorek(Ei) for an
extension Ei, we calculate a utility function μk(Ei). The sum of the utility functions
μk must be equal to 1:

p∑

j=1

μk(Ej) = 1 (15)

The score Scorek(Ei) is divided by the sum of all the Scorek(Ej) of the p exten-
sions proposed by the system:

μk(Ei) =
Scorek(Ei)

p∑

j=1

Scorek(Ej)

(16)

μk(Ei) is the evaluation of the extension Ei, according to the criterion Ci.

6.2.3 Officer’s Character

We want to model the officer’s character. According to his character, the officer will
use different tactics.

For example, a careful officer will give more importance to the behaviors which
ensure the submarine safety. A bold officer will favor the efficient behavior for the
submarine mission. To model these characters, the user defines character coefficients
β1, . . . , βn in the weight function, such as the sum of these coefficients is equal to
one

n∑

k=1

βk = 1 (17)

32 I. Toulgoat, P. Siegel, and Y. Lacroix

6.2.4 Weight Function

Finally, we use a simple function to aggregate criteria: the weighted sum. For each
extension Ei, we have:

P (Ei) =
n∑

k=1

βkμk(Ei) (18)

with the equation 17. The sum of the extension weight functions has the following
property:

p∑

i=1

P (Ei) = 1. (19)

We obtain a general formula, which could be easily reused with other case study.
The use of the weighted sum as aggregation function implies some limitations

[10]. More specially, this function can favor the extreme extensions (for example,
an extension with a utility function very small for a criterion and with a utility func-
tion very important for an other criterion) to the detriment of an other extension with
more well-balanced utility functions. Other aggregation functions, such as the Cho-
quet intergal [9], allow to solve this problem by handling the interaction between
criteria. We plan to test this aggregation function in future work.

6.2.5 Example of Weight Function Calculus

We define four defaults:
{D1, D2, D3, D4},

and two coefficents: the submarine safety Csafety , and the efficiency on the subma-
rine mission Cefficiency .

We attribute values to each default:

Defaults Csafety Cefficiency

D1 500 600
D2 10 800
D3 1000 900
D4 50 60

We suppose we have to choose between two extensions:
E1 = {D1, D4} and E2 = {D2, D3, D4}.

We calculate the extensions scores (cf. formula 14):

Scores E1 E2

Scoresafety 550 1060

Scoreefficiency 660 1760

Operator Behavior Modelling in a Submarine 33

We calculate the utility functions (cf. formula 16):

μ E1 E2

μsafety
550
1610

1060
1610

μefficiency
660
2420

1760
2420

Finally, we have the weight functions (cf. formula 18):

P (E1) = βsafety ∗ μsafety (E1) + βefficiency ∗ μefficiency(E1)

P (E2) = βsafety ∗ μsafety (E2) + βefficiency ∗ μefficiency(E2)

If the officer prefers to favor the safety of his submarine rather than the mission
efficiency, we can define: βsafety = 0.6 and βefficiency = 0.4. With this example,
we obtain:

P (E1) = 0.31 and P (E2) = 0.69.

6.3 Random Extension Choice

In a tactical situation, the decision of an operator is a key aspect, which can provide
unexpected reactions. In our case study, the choice hasn’t to be always determin-
ist. Moreover, with deterministic reactions, it is easy for the opposing submarine to
guess these reactions (principle 5). We need a choice method, which handles these
unexpected reactions.

For these reasons, we don’t choose always the extension with the maximum
weight function. We prefer to introduce an additional part of uncertainty with a
random choice. However, this random choice must be coherent with the princi-
ples which guide the officer’s decision, and with the extension selection principles
defined previously.

6.3.1 Random Choice

The random choice is based on a random sampling: we have p extensions:

E1, . . . , Ep

and the respective weight functions:

P (E1), . . . , P (Ep)

with the formula 19. Each weight function P (Ei) is the probability for the extension
to be chosen.

34 I. Toulgoat, P. Siegel, and Y. Lacroix

Example 1: We have to choose between two extensions:

• E1 with the weight function P (E1) = 0.1.
• E2 with the weight function P (E2) = 0.9.

With this random choice, we manage the choice between several extensions
(principle 3).

6.3.2 Correction on the Extension Weight Function

With this random sampling, we have problems to solve. The random choice is realist
if we have to choose between extensions with close weight.

However, if we have an extension with a very important weight, we want to
choose this one (example 1).

We have the same problem in the following example (example 2). The system
proposes six extensions: five extensions with the same weight function 0.1 and
one with the weight function equal to 0.5. The random sampling gives as much
chances to be chosen to the five extensions with the weight function equal to 0.1:
5 ∗ 0.1 = 0.5, as to the extension with the weight function equal to 0.5. In such a
case, it seems more natural to choose the extension with the weight function equal
to 0.5.

We have to modify the weight function, in order to give a more important weight
to the important extension, and less important weights to the others. In this purpose,
we apply a correction to the weight function: the power function f(x) = xk, with
k > 1.

The correction is applied as follows:

• We have to choose between p extensions :

E1, . . . , Ep,

and the respective weight functions:

P (E1), . . . , P (Ep),

with the formula 19.
• We apply the power function

f(x) = xk (20)

with k > 1: P (E1)k, . . . , P (Ep)k. The more k will be important, the more the
extensions with small weights will be minimized.

• The sum of the weight functions must be equal to one: we divide with the sum of
the extensions weights

P (Ej)k

p∑

i=1

P (Ei)
k

(21)

Operator Behavior Modelling in a Submarine 35

This correction gives more importance to the extensions with high weight function,
and less importance to the others. For the moment, we don’t fix the value of the
power k, we want to test different values.

Let us apply this correction on the example 2. We take the power function f(x) =
x2. The weight function 0.1 becomes 0.12 = 0.01 and the weight function 0.5
becomes 0.52 = 0.25.

We want the sum of the weight functions equal to 1. The sum of the weight
functions with correction is

6∑

i=1

P (Ei) = 0.3.

We obtain:

• Five extensions with the weight function
0.12

0.3
= 0.04.

• One extension with the weight function
0.52

0.3
= 0.8.

With the correction, we give more chances to the extension with the more important
weight to be chosen.

6.3.3 Filtering of the Extensions with Small Weight Functions

To be sure to choose the most interesting extension and let the others aside (principle
1), we eliminate the extension with very small weight functions. We fix a threshold:
the extensions with a weight function smaller than this threshold are removed.

6.4 Respect for Minimal Change

To respect the minimal change (principle 4), we define a general rule of minimal
change. In this purpose, we remember the submarine behavior (random research
trajectory, collision avoidance,. . .) at the time t. We call this behavior Behavior(t),
and the condition to be in this behavior: Prerequisite, which corresponds to the
default prerequisite for this behavior. The general rule of minimal change is a
default:

Dmin ch =
Behavior(t) ∧ Prerequisite(t) : Behavior(t + 1)

Behavior(t + 1)
(22)

This rule means: ” If the prerequisite of the previous behavior are always true at the
time t, and if it is possible to stay in this behavior at time t + 1, the submarine can
stay in this behavior at time t + 1”.

The preference coefficients C1 . . . Cn can not be too important, in order to allow
new behaviors. This rule gives more chances to an action already beginning and
allows also persistency (principle 4).

36 I. Toulgoat, P. Siegel, and Y. Lacroix

7 Interface with the Simulator Framework and Results

An interface has been realized between NoMROD and the DCNS simulator frame-
work ATANOR. ATANOR sends to NoMROD the information about the submarine
at which we apply the behavior rules (course, speed, submersion, position) and about
the enemy submarine (detection, position, speed).

NoMROD compiles the behavior rules, selects an extension and sends back the
instruction of course, speed and submersion to the simulator framework. On the
figure 1, we have an example of a run of NoMROD, interfaced with the simulator
ATANOR.

We call Submarine 1 the submarine to which we apply the behavior rules of
NoMROD. And we note Submarine 2 the enemy submarine, whose behavior is de-
fined by ATANOR. The goal for the enemy submarine is to cross the patrol area
without being detected. This transit is modeled with straight sections, which course
is selected to match an average course.

In this scenario, the submarine 1 makes random research trajectory, because it
has no detection. When it detects the enemy, the officer makes the sequence of
actions: collision avoidance, elaboration of the solution, bypassing the enemy and
tracking. The trajectory evaluated at the beginning is far from the real trajectory of
the submarine 2. The manœuver of elaboration of the solution allows to obtain a
better estimation of this trajectory.

We obtain an efficient program. To simulate a scenario of 2h40, the calculus time
used by ATANOR and NoMROD is 6 seconds and the NoMROD program only used
20 % of this calculus time.

Fig. 1 Detection and tracking of a submarine

Operator Behavior Modelling in a Submarine 37

This scenario has been validated by submariners. They recognize the actions en-
gaged when they detect a submarine. Moreover, we obtain a robust program. In the
simulations, the trajectory evaluated by the submarine 1 about the submarine 2 give
a bad estimation, far from the real trajectory of the submarine 2. In spite of this
uncertain information, the modelling of the behavior allows to carry out the mission
of tracking. Finally, this modelling was used to study the influence of the officer
behavior on the operational performance of a submarine, with Monte-Carlo type
statistical analyses.

8 Conclusion

The default logic allowed to formalize the behaviour rules of an officer in a sub-
marine, by handling the incomplete, uncertain and revisable information on the
environment.

With the use of Horn clauses and normal defaults, we obtain a simple, robust and
efficient program, appropriate for military applications. Moreover, this is a work
which can be applied generally, by using other clauses and other defaults.

We had to interface our work with the simulator framework ATANOR, in order
to do statistical studies. We obtain good calculus time, so we can do such studies.

The obtained system compiles the available information and gives all the possi-
bilities of actions with the extensions. To simulate the officer’s choice, we defined a
method to choose an extension:

• we defined weight functions for extensions, with preference coefficients on the
defaults and a weighted sum;

• we defined a method to choose an extension thanks to these weight functions with
a probabilistic technique: a random choice with corrections (power function and
threshold) to be coherent with the principles which guide the officer’s decisions.

We would like now to test another aggregation function: the Choquet integral, which
allows to handle the interaction between the criteria. We must also work on a general
method to attribute the value of the preference coefficients on the defaults and the
character coefficients: we could use learning to attribute the best values.

Other methods exist to model the behavior: the behavior-based systems, intro-
duced in robotics in 1980 [5], [11], [14], [1]. Another model has been tested: this
model is based on the schema theory, developed by Arkin in 1989 [1]. This model,
presented in [18], has some disadvantage:

• It is difficult to add a new behavior, because this method uses finite state au-
tomaton. If we want to add a new behavior, we have to review the finite state
automaton.

• All the activated behavior are considered for the final instruction of the officer.
We have a risk to obtain an incoherent behavior, which doesn’t answer to the
purpose of each activated behavior.

38 I. Toulgoat, P. Siegel, and Y. Lacroix

Our approach with the default logic allows to add easily a new behavior: we don’t
use Petri nets or states machines. The user will be able to add new rules, without
having to care about rules previously established. So, we have the advantage to
work with general rules, the defaults. We have just to define the mutual exclusions
between the different behaviours. With the mutual exclusions, we have no risk to
obtain incoherent behavior.

References

1. Arkin, R.: Motor schema-based mobile robot navigation. In: Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 264–271 (1987)

2. Ben Mena, S.: Introduction aux méthodes multicritères d’aide la décision. Biotchnol.
Agron. Soc. Envion., 83–93 (2000)

3. Botto, J., Toulgoat, I., Audoly, C.: Modélisation de l’avantage tactique d’un sous-marin.
In: 10ème Congrès Français d’Acoustique (2010)

4. Brewka, G.: Adding priorities and specificity to default logic. In: MacNish, C., Mo-
niz Pereira, L., Pearce, D.J. (eds.) JELIA 1994. LNCS (LNAI), vol. 838, pp. 247–260.
Springer, Heidelberg (1994)

5. Brooks, R.: A robust layered control system for a mobile robot. IEEE Journal of Robotics
and Automation 2(1), 14–23 (1985)

6. Cordier, M., Siegel, P.: A temporal revision model for reasoning about world change.
Journal of Intelligent Systems 9(1), 131–144 (1994)

7. Ferber: Les systèmes multi-agents. Vers une intelligence collective. InterEditions (1995)
8. Ginsberg, M., Smith, D.: Reasoning about action 1: a possible worlds approach. Read-

ings in Non Monotonic Reasoning (1987)
9. Grabisch, M.: L’utilisation de l’intégrale de choquet en aide multicritère la décision.

Newsletter of the European Working Group: Multicriteria Aid for Decisions (2006)
10. Grabisch, M., Labreuch, C.: Fuzzy measures and integrals in mcda. In: Figueira, J.,

Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis, pp. 563–608. Springer,
Heidelberg (2005)

11. Maes, P.: The dynamics of action selection. In: Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, vol. 2, pp. 991–997 (1989)

12. Nicolas, P., Garcia, L., Stephan, I.: Possibilistic stable models. In: International Joint
Conferences on Artificial Intelligence, vol. 19, p. 248 (2005)

13. Petri, C.: Fundamentals of a theory of asynchronous information flow. In: 1st IFIP World
Computer Congress, p. 386 (1962)

14. Pirjanian, P.: Behavior coordination mechanisms-state-of-the-art. Institute for Robotics
and Intelligent Systems, School of Engineering, University of Southern California. Tech.
Rep. IRIS-99-375 (1999)

15. Prouty, J.: Displaying uncertainty: a comparison between submarine subject matter ex-
perts. Ph.D. thesis, Naval postgraduate school, Monterey, California (2007)

16. Reiter, R.: A logic for default reasoning. Artificial intelligence 13(1–2), 81–132 (1980)
17. Sombé, L.: Raisonnement sur des informations incomplètes en intelligence artificielle,

Teknea (1989)
18. Toulgoat, I., Botto, J., De lassus, Y., Audoly, C.: Modeling operator decision in under-

water warfare performance simulations. In: Conference UDT, Cannes (2009)

Operator Behavior Modelling in a Submarine 39

19. Toulgoat, I., Siegel, P., Lacroix, Y., Botto, J.: Operator decision in naval action’s simula-
tions. In: NMR (2010)

20. Toulgoat, I., Siegel, P., Lacroix, Y., Botto, J.: Operator decision modeling in a submarine.
In: COMPIT, p. 65 (2010)

21. Toulgoat, I., Siegel, P., Lacroix, Y., Botto, J.: Simulation du comportement d’un
opérateur en situation de combat naval. JFPC (2010)

22. Vincke, P.: L’aide multicritère la décision. Ellipses (1989)
23. Winslett, M.: Reasoning about actions using a possible model approach. In: Proceedings

of the 7th National Conference of AI, pp. 89–93 (1988)

Automatic Wrapper Adaptation by Tree Edit
Distance Matching

Emilio Ferrara and Robert Baumgartner

Abstract. Information distributed through the Web keeps growing faster day by day,
and for this reason, several techniques for extracting Web data have been suggested
during last years. Often, extraction tasks are performed through so called wrappers,
procedures extracting information from Web pages, e.g. implementing logic-based
techniques. Many fields of application today require a strong degree of robustness
of wrappers, in order not to compromise assets of information or reliability of data
extracted.

Unfortunately, wrappers may fail in the task of extracting data from a Web page,
if its structure changes, sometimes even slightly, thus requiring the exploiting of new
techniques to be automatically held so as to adapt the wrapper to the new structure
of the page, in case of failure. In this work we present a novel approach of auto-
matic wrapper adaptation based on the measurement of similarity of trees through
improved tree edit distance matching techniques.

1 Introduction

Web data extraction, during last years, captured attention both of academic research
and enterprise world because of the huge, and still growing, amount of information
distributed through the Web. Online documents are published in several formats but
previous work primarily focused on the extraction of information from HTML Web
pages.

Emilio Ferrara
University of Messina, Dept. of Mathematics, Via Ferdinando Stagno D’Alcontres,
Salita Sperone, n. 31, Italy
e-mail: emilio.ferrara@unime.it

Robert Baumgartner
Lixto Software GmbH, Favoritenstrasse 16/DG, 1040 Vienna, Austria
e-mail: robert.baumgartner@lixto.com

I. Hatzilygeroudis and J. Prentzas (Eds.): Comb. of Intell. Methods and Appl., SIST 8, pp. 41–54.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

42 E. Ferrara and R. Baumgartner

Most of the wrapper generation tools developed during last years provide to full
support for users in building data extraction programs (a.k.a. wrappers) automati-
cally and in a visual way. They can reproduce the navigation flow simulating the
human behavior, providing support for technologies adopted to develop Web pages,
and so on. Unfortunately, a problem still holds: wrappers, because of their intrin-
sic nature and the complexity of extraction tasks they perform, usually are strictly
connected to the structure of Web pages (i.e. DOM tree) they handle. Sometimes,
also slight changes to that structure can cause the failure of extraction tasks. A cou-
ple of wrapper generation systems try to natively avoid problems caused by minor
changes, usually building more elastic wrappers (e.g. working with relative, instead
of absolute, XPath queries to identify elements).

Regardless of the degree of flexibility of the wrapper generator, wrapper main-
tenance is still a required step of a wrapper life-cycle. Once the wrapper has been
correctly developed, it could work for a long time without any malfunction. The
main problem in the wrapper maintenance is that no one can predict when or what
kind of changes could occur in Web pages.

Fortunately, local and minor changes in Web pages are much more frequent
case than deep modifications (e.g. layout rebuilding, interfaces re-engineering, etc.).
However, it could also be possible, after a minor modification on a page, that the
wrapper keeps working but data extracted are incorrect; this is usually even worse,
because it causes a lack of consistency of the whole data extracted. For this reason,
state-of-the-art tools started to perform validation and cleansing on data extracted;
they also provide caching services to keep copy of the last working version of Web
pages involved in extraction tasks, so as to detect changes; finally, they notify to
maintainers any change, letting possible to repair or rewrite the wrapper itself. De-
pending on the complexity of the wrapper, it could be more convenient to rewrite it
from scratch instead of trying to find causes of errors and fix them.

Ideally, a robust and reliable wrapper should include directives to auto-repair
itself in case of malfunction or failure in performing its task. Our solution of au-
tomatic wrapper adaptation relies on exploiting the possibility of comparing some
structural information acquired from the old version of the Web page, with the new
one, thus making it possible to re-induct automatically the wrapper, with a custom
degree of accuracy.

The rest of the paper is organized as follows: in Section 2 we consider the related
work on theoretical background and Web data extraction, in particular regarding
algorithms, techniques and problems of wrapper maintenance and adaptation. Sec-
tions 3 covers the automatic wrapper adaptation idea we developed, detailing some
interesting aspects of algorithms and providing some examples. Experimentation
and results are discussed in Section 4. Section 5, finally, presents some conclusive
considerations.

2 Related Work

Theoretical background on techniques and algorithms widely adopted in this work
relies on several Computer Science and Applied Mathematics fields such as

Automatic Wrapper Adaptation by Tree Edit Distance Matching 43

Algorithms and Data Structures and Artificial Intelligence. In the setting of Web
data extraction, especially algorithms on (DOM) trees play a predominant role. Ap-
proaches to analyze similarities between trees were developed starting from the
well-known problem of finding the longest common subsequence(s) between two
strings. Several algorithms were suggested, for example Hirshberg [4] provided the
proof of correctness of three of them.

Soon, a strong interconnection between this problem and the similarity between
trees has been pointed out: Tai [13] introduced the notion of distance as measure of
the (dis)similarity between two trees and extended the notion of longest common
subsequence(s) between strings to trees. Several tree edit distance algorithms were
suggested, providing a way to transform a labeled tree in another one through lo-
cal operations, like inserting, deleting and relabeling nodes. Bille [1] reported, in a
comprehensive survey on the tree edit distance and related problems, summarizing
approaches and analyzing algorithms.

Algorithms based on the tree edit distance usually are complex to be implemented
and imply a high computational cost. They also provide more information than
needed, if one just wants to get an estimate on the similarity. Considering these rea-
sons, Selkow [12] developed a top-down trees isomorphism algorithm called simple
tree matching, that establishes the degree of similarity between two trees, analyz-
ing subtrees recursively. Yang [16] suggested an improvement of the simple tree
matching algorithm, introducing weights.

During years, some improvements to tree edit distance techniques have been in-
troduced: Shasha and Zhang [18] provided proof of correctness and implementation
of some new parallelizable algorithms for computing edit distances between trees,
lowering complexity of O(|T1| · |T2|· min(depth(T1), leaves(T1))· min(depth(T2),
leaves(T2))), for the non parallel implementation, to O(|T1|+ |T2|), for the parallel
one; Klein [6], finally, suggested a fast method for computing the edit distance be-
tween unrooted ordered trees in O(n3 logn). An overview of interesting applications
of these algorithms in Computer Science can be found in Tekli et al. [14].

Literature on Web data extraction is manifold: Ferrara et al. [3] provided a com-
prehensive survey on application areas and used techniques, and Laender et al. [8]
give a very good overview on wrapper generation techniques. Focusing on wrapper
adaptation, Chidlovskii [2] presented some experimental results of combining and
applying some grammatical and logic-based rules. Lerman et al. [9] developed a
machine-learning based system for wrapper verification and reinduction in case of
failure in extracting data from Web pages.

Meng et al. [10] suggested a new approach, called SG-WRAM (Schema-Guided
WRApper Maintenance), for wrapper maintenance, considering that changes in Web
pages always preserve syntactic features (i.e. data patterns, string lengths, etc.),
hyperlinks and annotations (e.g. descriptive information representing the semantic
meaning of a piece of information in its context).

Wong [15] developed a probabilistic framework to adapt a previously learned
wrapper to unseen Web pages, including the possibility of discovering new at-
tributes, not included in the first one, relying on the extraction knowledge related
to the first wrapping task and on the collection of items gathered from the first Web

44 E. Ferrara and R. Baumgartner

page. Raposo et al. [11] already suggested the possibility of exploiting previously
acquired information, e.g. queries results, to re-induct a new wrapper from an old
one not working anymore, because of structural changes in Web pages.

Kim et al. [5] compared results of simple tree matching and a modified weighed
version of the same algorithm, in extracting information from HTML Web pages;
this approach shares similarities to the one followed here to perform adaptation
of wrappers. Kowalkiewicz et al. [7] focused on robustness of wrappers exploiting
absolute and relative XPath queries.

3 Wrapper Adaptation

As previously mentioned, our idea is to compare some helpful structural information
stored by applying the wrapper on the original version of the Web page, searching
for similarities in the new one.

3.1 Primary Goals

Regardless of the method of extraction implemented by the wrapping system (e.g.
we can consider a simple XPath), elements identified and represented as subtrees of
the DOM tree of the Web page, can be exploited to find similarities between two
different versions.

In the simplest case, the XPath identifies just a single element on the Web page
(Figure 1.A); our idea is to look for some elements, in the new Web page, shar-
ing similarities with the original one, evaluating comparable features (e.g. subtrees,
attributes, etc.); we call these elements candidates; among candidates, the one show-
ing the higher degree of similarity, probably, represents the new version of the orig-
inal element.

It is possible to extend the same approach in the common case in which the XPath
identifies multiple similar elements on the original page (e.g. a XPath selecting re-
sults of a search in a retail online shop, represented as table rows, divs or list items)
(Figure 1.B); it is possible to identify multiple elements sharing a similar structure
in the new page, within a custom level of accuracy (e.g. establishing a threshold
value of similarity). Section 4 discusses also these cases.

Once identified, elements in the new version of the Web page can be extracted as
usual, for example just re-inducting the XPath. Our purpose is to define some rules
to enable the wrapper to face the problem of automatically adapting itself to extract
information from the new Web page.

We implemented this approach in a commercial tool 1; the most efficient way to
acquire some structural information about elements the original wrapper extracts, is
to store them inside the definition of the wrapper itself. For example, generating sig-
natures representing the DOM subtree of extracted elements from the original Web
page, stored as a tree diagram, or a simple XML document (or, even, the HTML

1 Lixto Suite, www.lixto.com

Automatic Wrapper Adaptation by Tree Edit Distance Matching 45

html

head body

table

tr

td
...

tr

td td td

tr

td
...

td
...

(A)

/html[1]/body[1]/table[1]/tr[1]/td[1]

html

head body

table

tr

td
...

tr

td td td

tr

td
...

td
...

(B)

/html[1]/body[1]/table[1]/tr[2]/td

Fig. 1 Examples of XPaths over trees, selecting one (A) or multiple (B) items.

itself). This shrewdness avoids that we need to store the whole original page, ensur-
ing better performances and efficiency.

This technique requires just a few settings during the definition of the wrapper
step: the user enables the automatic wrapper adaptation feature and set an accuracy
threshold. During the execution of the wrapper, if some XPath definition does not
match a node, the wrapper adaptation algorithm automatically starts and tries to find
the new version of the missing node.

3.2 Details

First of all, to establish a measure of similarity between two trees we need to find
some comparable properties between them. In HTML Web pages, each node of the
DOM tree represents an HTML element defined by a tag (or, otherwise, free text).
The simplest way to evaluate similarity between two elements is to compare their
tag name. Elements own some particular common attributes (e.g. id, class, etc.) and
some type-related attributes (e.g. href for anchors, src for images, etc.); it is possible
to exploit this information for additional checks and comparisons.

The algorithm selects candidates between subtrees sharing the same root element,
or, in some cases, comparable -but not identical- elements, analyzing tags. This is
very effective in those cases of deep modification of the structure of an object (e.g.
conversion of tables in divs).

As discussed in Section 2, several approaches have been developed to analyze
similarities between HTML trees; for our purpose we improved a version of the
simple tree matching algorithm, originally led by Selkow [12]; we call it clustered
tree matching. There are two important novel aspects we are introducing in fac-
ing the problem of the automatic wrapper adaptation: first of all, exploiting previ-
ously acquired information through a smart and focused usage of the tree similarity
comparison; thus adopting a consolidated approach in a new field of application.
Moreover, we contributed applying some particular and useful changes to the algo-
rithm itself, improving its behavior in the HTML trees similarity measurement.

46 E. Ferrara and R. Baumgartner

3.3 Simple Tree Matching

Let d(n) to be the degree of a node n (i.e. the number of first-level children); let T(i)
to be the i-th subtree of the tree rooted at node T; this is a possible implementation
of the simple tree matching algorithm:

Algorithm 1. SimpleTreeMatching(T
′
, T
′′
)

1: if T
′

has the same label of T
′′

then
2: m← d(T

′
)

3: n← d(T
′′
)

4: for i = 0 to m do
5: M[i][0]← 0;
6: for j = 0 to n do
7: M[0][j]← 0;
8: for all i such that 1≤ i≤m do
9: for all j such that 1≤ j ≤ n do

10: M[i][j]← Max(M[i][j−1], M[i−1][j], M[i−1][j−1]+W [i][j]) where W [i][j]
= SimpleTreeMatching(T

′
(i−1), T

′′
(j−1))

11: return M[m][n]+1
12: else
13: return 0

Advantages of adopting this algorithm, which has been shown quite effective
for Web data extraction [5, 17], are multiple; for example, the simple tree match-
ing algorithm evaluates similarity between two trees by producing the maximum
matching through dynamic programming, without computing inserting, relabeling
and deleting operations; moreover, tree edit distance algorithms relies on complex
implementations to achieve good performance, instead simple tree matching, or sim-
ilar algorithms are very simple to implement.

The computational cost is O(n2 ·max(leaves(T
′
), leaves(T

′′
)) ·max(depth(T

′
),

depth(T
′′
))), thus ensuring good performances, applied to HTML trees. There are

some limitations; most of them are irrelevant but there is an important one: this ap-
proach can not match permutations of nodes. Despite this intrinsic limit, this tech-
nique appears to fit very well to our purpose of measuring HTML trees similarity.

3.4 Clustered Tree Matching

Let t(n) to be the number of total siblings of a node n including itself:

Automatic Wrapper Adaptation by Tree Edit Distance Matching 47

Algorithm 2. ClusteredTreeMatching(T
′
, T
′′
)

1: {Change line 11 with the following code}
2: if m > 0 AND n > 0 then
3: return M[m][n] * 1 / Max(t(T

′
), t(T

′′
))

4: else
5: return M[m][n] + 1 / Max(t(T

′
), t(T

′′
))

In order to better reflect a good measure of similarity between HTML trees, we
applied some focused changes to the way of assignment of a value for each matching
node.

In the simple tree matching algorithm the assigned matching value is always 1.
After leading some analysis and considerations on structure of HTML pages, our
intuition was to assign a weighed value, with the purpose of attributing less impor-
tance to slight changes, in the structure of the tree, when they occur in deep sublevels
(e.g. missing/added leaves, small truncated/added branches, etc.) and also when they
occur in sublevels with many nodes, because these mainly represent HTML list of
items, table rows, etc., usually more likely to modifications.

In the clustered tree matching, the weighed value assigned to a match between
two nodes is 1, divided by the greater number of siblings with respect to the two
compared nodes, considering nodes themselves (e.g. Figure 2.A, 2.B); thus reducing
the impact of missing/added nodes.

Before assigning a weight, the algorithm checks if it is comparing two leaves or
a leaf with a node which has children (or two nodes which both have children). The
final contribution of a sublevel of leaves is the sum of assigned weighted values to
each leaf (cfr. Code Line (4,5)); thus, the contribution of the parent node of those
leaves is equal to its weighed value multiplied by the sum of contributions of its
children (cfr. Code Line (2,3)). This choice produces an effect of clustering the pro-
cess of matching, subtree by subtree; this implies that, for each sublevel of leaves
the maximum sum of assigned values is 1; thus, for each parent node of that sub-
level the maximum value of the multiplication of its contribution with the sum of
contributions of its children, is 1; each cluster, singly considered, contributes with a
maximum value of 1. In the last recursion of this top-down algorithm, the two roots
will be evaluated. The resulting value at the end of the process is the measure of
similarity between the two trees, expressed in the interval [0,1]. The closer the final
value is to 1, the more the two trees are similar.

Let us analyze the behavior of the algorithm with an example, already used by
[16] and [17] to explain the simple tree matching (Figure 2): 2.A and 2.B are two
very simple generic rooted labeled trees (i.e. the same structure of HTML trees).
They show several similarities except for some missing nodes/branches.

Applying the clustered tree matching algorithm, in the first step (Figure 2.A, 2.B)
contributions assigned to leaves, with respect to matches between the two trees, re-
flect the past considerations (e.g. a value of 1

3 is established for nodes (h), (i) and
(j), although two of them are missing in 2.B). Going up to parents, the summation

48 E. Ferrara and R. Baumgartner

(A) a
N1

b
N2
1
4 ·

(N6+N7)

d
N6

1
2

e
N7

1
2

c
N3

1
4 ·N8

f
N8

1
2

b
N4
1
4 ·

(N9+N10)

e
N9

1
2

d
N10

1
2

c
N5

1
4 ·N11

g
N11

1
2 ·

(N12+N13+N14)

h
N12

1
3

i
N13

1
3

j
N14

1
3

(B) a
N15

b
N16

1
4 ·

(N18+N19)

d
N18

1
2

e
N19

1
2

c
N17

1
4 ·

(N20+N21)

g
N20

1
2 ·N22

h
N22

1
3

f
N21

1
2

Fig. 2 A and B are two similar labeled rooted trees.

of contributions of matching leaves is multiplied by the relative value of each node
(e.g. in the first sublevel, the contribution of each node is 1

4 because of the four
first-sublevel nodes in 2.A).

Once completed these operations for all nodes of the sublevel, values are added
and the final measure of similarity for the two trees is obtained. Intuitively, in more
complex and deeper trees, this process is iteratively executed for all the sublevels.
The deeper a mismatch is found, the less its missing contribution will affect the
final measure of similarity. Analogous considerations hold for missing/added nodes
and branches, sublevels with many nodes, etc. Table 1 shows M and W matrices
containing contributions and weights.

Table 1 W and M matrices for each matching subtree.

W N18 N19
N6 1

2 0
N7 0 1

2

M 0 N18 N18-19
0 0 0 0

N6 0 1
2

1
2

N6-7 0 1
2 1

W N18 N19
N9 0 1

2
N10 1

2 0

M 0 N18 N18-19
0 0 0 0

N9 0 0 1
2

N9-10 0 1
2

1
2

W N8
N20 0
N21 1

2

M 0 N8
0 0 0

N20 0 0
N20-21 0 1

2

W N12 N13 N14
N22 1

3 0 0

M 0 N12 N12-13 N12-14
0 0 0 0 0

N22 0 1
3

1
3

1
3

W N11
N20 1

6
N21 0

M 0 N11
0 0 0

N20 0 1
6

N20-21 0 1
6

W N2 N3 N4 N5
N16 1

4 0 1
8 0

N17 0 1
8 0 1

24

M 0 N2 N2-3 N2-4 N2-5
0 0 0 0 0 0

N16 0 1
4

1
4

1
4

1
4

N16-17 0 1
4

3
8

3
8

3
8

Automatic Wrapper Adaptation by Tree Edit Distance Matching 49

In this example, ClusteredTreeMatching(2.A, 2.B) returns a measure of similar-
ity of 3

8 (0.375) whereas SimpleTreeMatching(2.A, 2.B) would return a mapping
value of 7; the main difference on results provided by these two algorithms is the
following: our clustered tree matching intrinsically produces an absolute measure
of similarity between the two compared trees; the simple tree matching, instead,
returns the mapping value and then it needs subsequent operations to establish the
measure of similarity.

Hypothetically, in the simple tree matching case, we could suppose to establish
a good estimation of similarity dividing the mapping value by the total number of
nodes of the tree with more nodes; indeed, a value calculated in this way would
be linear with respect to the number of nodes, thus ignoring important information
as the position of mismatches, the number of mismatches with respect to the total
number of subnodes/leaves in a particular sublevel, etc.

In this case, for example, the measure of similarity between 2.A and 2.B, ap-
plying this approach, would be 7

14 (0.5). A greater value of similarity could sug-
gest, wrongly, that this approach is more accurate. Experimentation showed us that,
the closer the measure of similarity is to reflect changes in complex structures, the
higher the accuracy of the matching process is. This fits particularly well for HTML
trees, which often show very rich and articulated structures.

The main advantage of using the clustered tree matching algorithm is that, the
more the structure of considered trees is complex and similar, the more the measure
of similarity will be accurate. On the other hand, for simple and quite different
trees the accuracy of this approach is lower than the one ensured by the simple
tree matching. But, as already underlined, the most of changes in Web pages are
usually minor changes, thus clustered tree matching appears to be a valid technique
to achieve a reliable process of automatic wrapper adaptation.

4 Experimentation

In this section we discuss some experimentation performed on common fields of
application [3] and following results. We tried to automatically adapt wrappers, pre-
viously built to extract information from particular Web pages, after some -often
minor- structural changes.

All the followings are real use cases: we did not modify any Web page, original
owners did; thus re-publishing pages with changes and altering the behavior of old
wrappers. Our will to handle real use cases limits the number of examples of this
study. These real use cases confirmed our expectations and simulations on ad hoc
examples we prepared to test the algorithms.

We obtained an acceptable degree of precision using the simple tree matching and
a great rate of precision/recall using the clustered tree matching. Precision, Recall
and F-Measure will summarize these results showed in Table 2. We focused on
following areas, widely interested by Web data extraction:

50 E. Ferrara and R. Baumgartner

• News and Information: Google News 2 is a valid use case for wrapper adaptation;
templates change frequently and sometimes is not possible to identify elements
with old wrappers.

• Web Search: Google Search 3 completely rebuilt the results page layout in the
same period we started our experimentation 4; we exploited the possibility of
automatically adapting wrappers built on the old version of the result page.

• Social Networks: another great example of continuous restyling is represented by
the most common social network, Facebook 5; we successfully adapted wrappers
extracting friend lists also exploiting additional checks performed on attributes.

• Social Bookmarking: building folksonomies and tagging contents is a common
behavior of Web 2.0 users. Several Websites provide platforms to aggregate and
classify sources of information and these could be extracted, so, as usual, wrapper
adaptation is needed to face chages. We choose Delicious 6 for our experimenta-
tion obtaining stunning results.

• Retail: these Websites are common fields of application of data extraction and
Ebay 7 is a nice real use case for wrapper adaptation, continuously showing,
often almost invisible, structural changes which require wrappers to be adapted
to continue working correctly.

• Comparison Shopping: related to the previous category, many Websites provide
tools to compare prices and features of products. Often, it is interesting to ex-
tract this information and sometimes this task requires adaptation of wrappers to
structural changes of Web pages. Kelkoo 8 provided us a good use case to test
our approach.

• Journals and Communities: Web data extraction tasks can also be performed on
the millions of online Web journals, blogs and forums, based on open source blog
publishing applications (e.g. Wordpress 9, Serendipity 10, etc.), CMS (e.g. Joomla
11, Drupal 12, etc.) and community management systems (e.g. phpBB 13, SMF 14,
etc.). These platforms allow changing templates and often this implies wrappers
must be adapted. We lead the automatic adaptation process on Techcrunch 15, a
tech journal built on Wordpress.

2 http://news.google.com
3 http://www.google.com
4 http://googleblog.blogspot.com/2010/05/spring-metamorphosis-googles-new-look.html
5 http://www.facebook.com
6 http://www.delicious.com
7 http://www.ebay.com
8 http://shopping.kelkoo.co.uk
9 http://wordpress.org

10 http://www.s9y.org
11 http://www.joomla.org
12 http://drupal.org
13 http://www.phpbb.com
14 http://www.simplemachines.org
15 http://www.techcrunch.com

Automatic Wrapper Adaptation by Tree Edit Distance Matching 51

Table 2 Experimental results.

Simple Tree Matching Clustered Tree Matching
Precision/Recall Precision/Recall

URL threshold true pos. false pos. false neg. true pos. false pos. false neg.
news.google.com 90% 604 - 52 644 - 12
google.com 80% 100 - 60 136 - 24
facebook.com 65% 240 72 - 240 12 -
delicious.com 40% 100 4 - 100 - -
ebay.com 85% 200 12 - 196 - 4
kelkoo.co.uk 40% 60 4 - 58 - 2
techcrunch.com 85% 52 - 28 80 - -
Total - 1356 92 140 1454 12 42

Recall - 90.64% 97.19%
Precision - 93.65% 99.18%
F-Measure - 92.13% 98.18%

We adapted wrappers for these 7 use cases considering 70 Web pages; Table 2 sum-
marizes results obtained comparing the two algorithms applied on the same page,
with the same configuration (threshold, additional checks, etc.). Threshold repre-
sents the value of similarity required to match two trees. The columns true pos.,
false pos. and false neg. represent true and false positive and false negative items
extracted from Web pages through adapted wrappers.

In some situations of deep changes (Facebook, Kelkoo, Delicious) we had to
lower the threshold in order to correctly match the most of the results. Both the al-
gorithms show a great elasticity and it is possible to adapt wrappers with a high
degree of reliability; the simple tree matching approach shows a weaker recall
value, whereas performances of the clustered tree matching are stunning (F-Measure
greater than 98% is an impressive result). Sometimes, additional checks on nodes
attributes are performed to refine results of both the two algorithms. For example,
we can additionally include attributes as part of the node label (e.g. id, name and
class) to refine results. Also without including these additional checks, the most of
the time the false positive results are very limited in number (cfr. the Facebook use
case).

Figure 3 shows a screenshot of the developed tool, performing an automatic
wrapper adaptation task: in this example we adapted the wrapper defined for ex-
tracting Google news, whereas the original XPath was not working because of some
structural changes in the layout of news. Elements identified by the original XPath
are highlighted in red in the upper browser, elements highlighted in the bottom
browser represent the recognized ones through the wrapper adaptation process.

52 E. Ferrara and R. Baumgartner

Fig. 3 An example of Wrapper Adaptation.

5 Conclusion

This work presents new scenarios, analyzing Wrapper Adaptation related problems
from a novel point of view, introducing improvements to algorithms and new fields
of application.

There are several possible improvements to our approach we can already imagine.
First of all, it could be very interesting to extend the matching criteria we used, mak-
ing the tree matching algorithm smarter. Actually, we already included features like
analyzing attributes (e.g. id, name and class) instead of just comparing labels/tags
or node types. The accuracy of the matching process benefits of these additional
checks and it is possible, for example, to improve this aspect with a more complex
matching technique, containing full path information, all attributes, etc.

It could be interesting to compare these algorithms, with other tree edit distance
approaches working with permutations; although, intuitively, simple tree matching
based algorithms can not handle permutations on nodes, maybe it is possible to
develop some enhanced version which solves this limitation. Furthermore, just con-
sidering the tree structure can be limiting in some particular situations: if a new node
has only empty textual fields (or, equally, if a deleted node had only empty fields) we
could suppose its weight should be null. In some particular situation this inference
works well, in some others, instead, it could provoke mismatches. It could also be
interesting to exploit textual properties, nevertheless, not necessarily adopting Natu-
ral Language Processing techniques (e.g. using logic-based approaches, like regular
expressions, or string edit distance algorithms, or just the length of strings – treating
two nodes as equal only if the textual content is similar or of similar length).

The tree grammar could also be used in a machine learning approach, for exam-
ple creating some tree templates to match similar structures or tree/cluster diagrams
to classify and identify several different topologies of common substructures in Web

Automatic Wrapper Adaptation by Tree Edit Distance Matching 53

pages. This process of simplification is already used to store a light-weight snapshot
of elements identified by a wrapper applied on a Web page, at the time of extraction;
actually, this feature allows the algorithm to work also without the original version
of the page, but just exploiting some information about extracted items. This possi-
bility opens new scenarios for future work on Wrapper Adaptation.

Concluding, the clustered tree matching algorithm we described is very extensi-
ble and resilient, so as ensuring its use in several different fields, for example it per-
fectly fits in identifying similar elements belonging to a same structure but showing
some small differences among them. Experimentation on wrapper adaptation has
already been performed inside a productive tool, the Lixto Suite, this because our
approach has been shown to be solid enough to be implemented in real systems,
ensuring great reliability and, generically, stunning results.

References

1. Bille, P.: A survey on tree edit distance and related problems. Theoretical Computer
Science 337(1-3), 217–239 (2005), doi:10.1016/j.tcs.2004.12.030

2. Chidlovskii, B.: Automatic repairing of web wrappers. In: Proceedings of the 3rd inter-
national workshop on Web information and data management, p. 30. ACM Press, New
York (2001)

3. Ferrara, E., Fiumara, G., Baumgartner, R.: Web Data Extraction, Applications and Tech-
niques: A Survey. Technical Report (2010)

4. Hirschberg, D.S.: A linear space algorithm for computing maximal common subse-
quences. Communications of the ACM 18(6), 343 (1975)

5. Kim, Y., Park, J., Kim, T., Choi, J.: Web Information Extraction by HTML Tree Edit
Distance Matching. In: Proceedings of the 2007 International Conference on Conver-
gence Information Technology, vol. 1, pp. 2455–2460. IEEE, Los Alamitos (2007),
doi:10.1109/ICCIT.2007.19

6. Klein, P.: Computing the edit-distance between unrooted ordered trees. In: Algorithms
–ESA. LNCS, vol. 1461, pp. 1–1. Springer, Heidelberg (1998)

7. Kowalkiewicz, M., Kaczmarek, T., Abramowicz, W.: MyPortal: robust extraction and
aggregation of web content. In: Proceedings of the 32nd International Conference on
Very Large Data Bases, pp. 1219–1222 (2006)

8. Laender, A.H.F., Ribeiro-Neto, B.A., Da, A.S., Silva, J.S.: A brief survey of web data
extraction tools. ACM Sigmod 31(2), 84–93 (2002), doi:10.1145/565117.565137

9. Lerman, K., Minton, S., Knoblock, C.: Wrapper maintenance: A machine learning ap-
proach. Journal of Artificial Intelligence Research 18, 149–181 (2003)

10. Meng, X., Hu, D., Li, C.: Schema-guided wrapper maintenance for web-data extraction.
In: Proceedings of the 5th ACM international workshop on Web information and data
management, pp. 1–8. ACM Press, New York (2003), doi:10.1145/956699.956701

11. Raposo, J., Pan, A., Álvarez, M., Viña, A.: Automatic wrapper maintenance for semi-
structured web sources using results from previous queries. In: Proceedings of the 2005
ACM symposium on Applied computing - SAC 2005 , pp. 654–659. ACM Press, New
York (2005), doi:10.1145/1066677.1066826

12. Selkow, S.: The tree-to-tree editing problem. Information Processing Letters 6(6), 184–
186 (1977), doi:10.1016/0020-0190(77)90064-3

13. Tai, K.: The tree-to-tree correction problem. Journal of the ACM (JACM) 26(3), 433
(1979)

54 E. Ferrara and R. Baumgartner

14. Tekli, J., Chbeir, R., Yetongnon, K.: An overview on XML similarity: Background,
current trends and future directions. Computer Science Review 3(3), 151–173 (2009),
doi:10.1016/j.cosrev.2009.03.001

15. Wong, T.: A Probabilistic Approach for Adapting Information Extraction Wrap-
pers and Discovering New Attributes. In: Proceedings of the Fourth IEEE Inter-
national Conference on Data Mining, pp. 257–264. IEEE, Los Alamitos (2004),
doi:10.1109/ICDM.2004.10111

16. Yang, W.: Identifying syntactic differences between two programs. Software - Practice
and Experience 21(7), 739–755 (1991)

17. Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: Proceedings
of the 14th International Conference on World Wide Web, pp. 76–85. ACM Press, New
York (2005), doi:10.1145/1060745.1060761

18. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and
related problems. SIAM J. Comput. 18(6), 1245–1262 (1989)

Representing Temporal Knowledge in the
Semantic Web: The Extended 4D Fluents
Approach

Sotiris Batsakis and Euripides G.M. Petrakis

Abstract. Representing information that evolves in time in ontologies, as well as
reasoning over static and dynamic ontologies are the areas of interest in this work.
Building upon well established standards of the semantic Web and the 4D-fluents
approach for representing the evolution of temporal information in ontologies, this
work demonstrates how qualitative temporal relations that are common in natural
language expressions (i.e., relations between time intervals like “before”, “after”,
etc.) are represented in ontologies. Existing approaches allow for representations of
temporal information, but do not support representation of qualitative relations and
reasoning.

1 Introduction

Ontologies offer the means for representing high level concepts, their properties and
their interrelationships. Dynamic ontologies will in addition enable representation of
information evolving in time. In particular, dynamic ontologies are not only suitable
for describing static scenes with static objects (e.g., objects in photographs) but also
enable representation of events with objects and properties changing in time (e.g.,
moving objects in a video). Representation of both static and dynamic information
in ontologies, as well as reasoning over static and dynamic ontologies are exactly
the problems this work is dealing with.

Representation of dynamic features calls for mechanisms allowing representation
of the notion of time (and of properties varying in time) [1]. Methods for achiev-
ing this goal include (among others), temporal description logics [11], temporal
RDF [13], versioning [6], named graphs [18], reification, N-ary relations [2] and
the 4D-fluent (perdurantist) approach [9] with the last being the most efficient. All

Sotiris Batsakis · Euripides G.M. Petrakis
Department of Electronic and Computer Engineering
Technical University of Crete (TUC) Chania, Crete, GR-73100, Greece
e-mail: batsakis@softnet.tuc.gr, petrakis@intelligence.tuc.gr

I. Hatzilygeroudis and J. Prentzas (Eds.): Comb. of Intell. Methods and Appl., SIST 8, pp. 55–69.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

56 S. Batsakis and E.G.M. Petrakis

approaches suffer from data redundancy as several objects are created for each
binary relationship changing in time (i.e., for each new event, a new temporal object
and an additional binary relationship for each temporal property of this object is
created and associated with existing classes) thus complicating the ontology. Also,
adding a time argument to binary relationships may (as in reification and named
graphs) complicate application of OWL language constructs (e.g., cardinality con-
straints, inverse, transitive relations are no longer applicable) thus limiting OWL
expressivity and obstructing reasoning. The 4D fluents approach, still suffers from
data redundancy but maintains OWL expressiveness and reasoning support (i.e., an
OWL reasoner such as Pellet can still be applied to fully exploit OWL semantics
over the 4D fluent representation). However, time and temporal constructs repre-
senting the evolution of binary relationships in time, still offer additional semantics
which can be exploited by applying additional rules (e.g., rules on Allen relation-
ships). This is also a problem this work is dealing with.

Reasoning on temporal knowledge is still an active research area and has been
investigated previously in other domains (temporal logics [11], temporal data bases
[10]). To the best of our knowledge this is the first work to address this problem
within the context of ontologies. More specifically, we show how results from pre-
vious research efforts [17, 28, 25] can be ported into ontological representations
such as the extended 4D fluents representation proposed in this work.

In our earlier work [4] we showed how temporal information (also the evolution
of temporal concepts) can be represented effectively in OWL. Concepts varying in
time are represented as 4-D dimensional objects, with the 4-th dimension being the
time. This work extends this approach in certain ways: The 4-D fluents mechanism
is enhanced with qualitative (in addition to quantitative) temporal expressions allow-
ing for the representation of temporal intervals with unknown starting and ending
points by means of their relation (e.g., “before”, “after”) to other time intervals.
Adding reasoning support to the above representation is also a contribution of the
present work: A set of inference rules is proposed whose purpose is to assert addi-
tional implied facts into the knowledge base (i.e., determine the temporal relation
between two events given their relations with a third one). Reasoning becomes fea-
sible by using a tractable subset of the set of Allen’s relationships [17]. Specifically,
the reasoning mechanism incorporates rules for inferring certain temporal relations
from existing ones using additional axioms based on compositions of Allen relations
and by checking temporal assertions for consistency (i.e., path consistency checking
is implemented).

Adding query support to the extended 4D fluent representation is an additional
contribution of this work. More specifically, we extend the TOQL query language
[4] to handle qualitative temporal relationships and the extended 4D fluent repre-
sentation.

Related work in the field of knowledge representation is discussed in Section 2.
This includes issues related to representing and reasoning over information evolving
in time. The temporal representation model is presented in Section 3 and the corre-
sponding reasoning mechanism in Section 3.1, followed by evaluation in Section 4
and conclusions and issues for future work in Section 5.

Representing Temporal Knowledge in the Semantic Web 57

2 Background and Related Work

Several representation languages are defined for the Semantic Web, the most impor-
tant of them are referred to as the OWL-family [7, 22] of ontology languages for
ontology building and knowledge representation. Representation languages such as
RDF, OWL (which is based on description logics), the same as frame-based and
object-oriented languages (F-logic) are all based on binary relations. Binary rela-
tions simply connect two instances (e.g., an employee with a company) without any
temporal information. Nevertheless, representation of time using OWL is feasible,
although complicated [2, 9].

The OWL-Time temporal ontology [5] describes the temporal content of Web
pages and the temporal properties of Web services. Apart from language constructs
for the representation of time in ontologies, there is still a need for mechanisms for
the representation of the evolution of concepts (e.g., events) in time. This is related
to the problem of the representation of time in temporal (relational and object ori-
ented) databases. Existing methods are relying mostly on temporal Entity Relation
(ER) models [10] taking into account valid time (i.e., time interval during which a
relation holds), transaction time (i.e., time at which a database entry is updated) or
both. Also time is represented by time instants, intervals or finite sets of intervals.
However, representation of time in OWL differs because (a) OWL semantics are not
equivalent to ER model semantics (e.g., OWL adopts the Open World Assumption
while ER model adopts the Closed World Assumption) and (b) relations in OWL
are restricted to binary ones. Representation of time in the Semantic Web can be
achieved using Temporal Description logics (TDLs) [11, 12], Reification, N-ary re-
lations [2], temporal RDF [13], Versioning [6], named graphs [18] or 4D-fluents [9].

Temporal Description Logics (TDLs) extend standard description logics (DLs)
that form the basis for semantic Web standards with additional constructs such as
“always in the past”, “sometime in the future”. TDLs offer additional expressive ca-
pabilities over non temporal DLs and retain decidability (with an appropriate selec-
tion of allowable constructs) but they require extending OWL syntax and semantics
with additional temporal constructs. Representing information regarding specific
time points requires support for concrete domains, resulting to the proliferation of
objects [11].

Temporal RDF [13] proposes extending RDF by labeling properties with the time
interval they hold. This approach also requires extending the syntax and semantics
of the standard RDF, although representation over RDF (e.g., using reification) can
be achieved. Note that Temporal-RDF cannot express incomplete information , by
means of qualitative relations.

Reification is a general purpose technique for representing n-ary relations using
a language such as OWL that permits only binary relations. Specifically, an n-ary
relation is represented as a new object that has all the arguments of the n-ary relation
as objects of properties. For example if the relation R holds between objects A and
B at time t, this is expressed as R(A,B,t). Furthermore, in OWL using reification this
is expressed as a new object with R,A,B and t being objects of properties. Fig. 1
illustrates the relation WorksFor(Employee, Company, TimeInterval) representing

58 S. Batsakis and E.G.M. Petrakis

Fig. 1 Example of Reification

the fact that an employee works for a company during a time interval. Reification
suffers mainly from two disadvantages: (a) data redundancy, because a new object is
created whenever a temporal relation has to be represented (this problem is common
to all approaches based on non temporal Description Logics such as OWL-DL) and
(b) offers limited OWL reasoning capabilities [9] since relation R is represented as
the object of a property thus OWL semantics over properties are no longer applicable
(i.e., the properties of a relation are no longer associated directly with the relation
itself).

N-ary relations is also a general purpose technique that represents an n-ary re-
lation using an additional object. In contrast to reification, the n-ary relation is not
represented as the object of a property but as two properties each related with the
new object. These two objects are related to each other with an n-ary relation. This is
also illustrated in Fig.2. This approach requires only one additional object for every
temporal interval, maintains property semantics but suffers from data redundancy
in the case of inverse and symmetric properties [2] (e.g., the inverse of a relation is
added explicitly twice instead of once as in 4D-fluents).

Fig. 2 Example of N-ary Relations

Representing Temporal Knowledge in the Semantic Web 59

Versioning [6] suggests that the ontology has different versions (one per instance
of time). When a change takes place, a new version is created. Versioning suffers
from several disadvantages: (a) changes even on single attributes require that a new
version of the ontology be created leading to information redundancy (b) searching
for events occurred at time instances or during time intervals requires exhaustive
searches in multiple versions of the ontology, (c) it is not clear how the relation
between evolving classes is represented. Furthermore, ontology languages such as
OWL [7] are based on binary relations (relations connecting two instances) with no
time dimension regarding ontology versions.

Named Graphs [18] represent the temporal context of a property by inclusion of
a triple representing the property in a named graph (i.e., a subgraph into the RDF
graph of the ontology specified by a distinct name). The default (i.e., main) RDF
graph contains definitions of interval start and end points for each named graph,
thus a property is stored in a named graph with start and end points corresponding
to the time interval that the property holds. Named graphs are not part of the OWL
specification [24] (i.e., there are not OWL constructs translated into named graphs)
and they are not supported by OWL reasoners.

The 4D-fluent (perdurantist) approach [9] shows how temporal information and
the evolution of temporal concepts can be represented effectively in OWL. Concepts
in time are represented as 4-dimensional objects with the 4th dimension being the
time. Time instances and time intervals are represented as instances of a time in-
terval class which in turn is related with time concepts varying in time. Changes
occur on the properties of the temporal part of the ontology keeping the entities of
the static part unchanged. The 4D-fluent approach still suffers from data redundancy
but in contrast to other approaches it maintain full OWL expressiveness and reason-
ing support. N-ary relations[2] is considered to be an alternative to the 4-D fluents
approach, although the 4-D fluents representation where the property is holding
among two timeslices of objects and not between the two objects and the intermedi-
ate object representing their relation may seems more natural to users. TOWL [23]
is a temporal representation approach based on 4-D fluents that extends OWL syntax
with temporal concepts and supports quantitative time intervals.

3 Extended 4D Fluents Approach

Following the approach by Welty and Fikes [9], to add time dimension to an
ontology, classes TimeSlice and TimeInterval with properties tsTimeSliceOf and
tsTimeInterval are introduced. Class TimeSlice is the domain class for entities rep-
resenting temporal parts (i.e., “time slices”) and class TimeInterval is the domain
class of time intervals. A time interval holds the temporal information of a time
slice. Property tsTimeSliceOf connects an instance of class TimeSlice with an en-
tity, and property tsTimeInterval connects an instance of class TimeSlice with an
instance of class TimeInterval. Properties having a time dimension are called fluent
properties and connect instances of class TimeSlice.

60 S. Batsakis and E.G.M. Petrakis

Fig. 3 Dynamic Enterprise Ontology

Fig. 3 illustrates a temporal ontology with classes Company with datatype property
companyName and Employee with datatype property employeeName. In this ex-
ample, CompanyName and EmployeeName are static properties (their value do not
change in time), while properties employs and worksFor (i.e., inverse of employs)
are dynamic (fluent) properties whose values may change in time. Because they are
fluent properties, their domain (and range) is of class TimeSlice. CompanyTimeSlice
and EmployeeTimeslice are instances of class TimeSlice and are provided to denote
that the domain of properties worksFor and employs, are time slices restricted to be
slices of a specific class. For example, the domain of property employs is not class
TimeSlice but it is restricted to instances that are time slices of class Company.

The 4-D fluent mechanism forms the basis of the proposed temporal ontology
representation. In this work, the 4D-fluent representation is enhanced with qualita-
tive temporal relations holding between time intervals whose starting and ending
points are not specified. This is implemented by introducing temporal relationships
as object relations between time intervals. This can be one of the 13 pairwise disjoint
Allen’s relations [17] of Fig. 4.

By allowing for qualitative relations the expressive power of the representation
increases. Temporal RDF and 4-D fluents both require closed temporal intervals
for the representation of temporal information, while semiclosed and open intervals
can’t be represented effectively in a formal way. If their endpoints are unknown,
ad-hoc approaches [18] that handle open intervals by extending their start or end

Representing Temporal Knowledge in the Semantic Web 61

ji

Meets(i,j)

Before(i,j)

Overlaps(i,j)

Starts(i,j)

During(i,j)

Finishes(i,j)

Equals(i,j)

Inverse RelationRelation

After(j,i)

MetBy(j,i)

OverlappedBy(j,i)

StartedBy(j,i)

Contains(j,i)

FinishedBy(j,i)

Fig. 4 Allen’s Temporal Relations

point infinitely are not appropriate, since lack of knowledge (about their endpoints)
is interpreted as if a property always holds in the past or future. In this work, this is
handled by Allen relations: for example, if interval t1 is known and t2 is unknown
but we know that t2 starts when t1 ends, then we can assert that t2 is met by t1.
Likewise, if an interval t3 with unknown endpoints is introduced and t3 is be f ore
t1 then, using compositions of Allen relations [17], we infer that t3 is be f ore t2
although both interval’s endpoints are unknown and their relation is not represented
explicitly in the ontology. Semiclosed intervals can be handled in a similar way. For
example, if t1 starts at time point 1, still holds at time point 2, but it’s endpoint is
unknown, we assert that t1 is started by interval t2:[1,2]. Fig.5 illustrates the dy-
namic ontology schema representing the scenario “George lived in Crete from 2004
to 2010 and then he moved to Athens”. In this example, we don’t know whether
George still lives in Athens.

Overall, the model demonstrates enhanced expressivity compared to previous ap-
proaches [18, 19, 23, 15] by combining 4D-fluents [9] with Allen’s temporal rela-
tions, their formal semantics and composition rules as defined in [17].

3.1 Temporal Reasoning

Reasoning is realized by introducing a set of SWRL [27] rules operating on tempo-
ral intervals. Reasoners that support DL-safe rules such as Pellet [16] can be used for
inference and consistency checking over temporal relations. In addition to reason-
ing applying on temporal relations, the Pellet reasoner is applied on the ontology
schema to infer additional facts using OWL semantics (e.g., facts due symmetric
relationships and class-subclass relationships).

62 S. Batsakis and E.G.M. Petrakis

Fig. 5 Instantiation example

The temporal reasoning rules are based on composing pairs of basic Allen’s rela-
tions of Fig. 4 as defined in [17]. The composition table of basic Allen’s relations is
presented in Table 1. Relations BEFORE, AFTER, MEETS, METBY, OVERLAPS,
OVERLAPPEDBY, DURING, CONTAINS, STARTS, STARTEDBY, ENDS, END-
EDBY and EQUALS are represented using symbols B, A, M, Mi, O, Oi, D, Di, S,
Si, F, Fi and = respecively. Compositions with EQUALS are not presented since
these compositions keep the initial relations unchanged. The composition table rep-
resents the result of the composition of two Allen relations. For example, if relation
R1 holds between interval1 and interval2 and relation R2 holds between interval2
and interval3 then the entry of the Table 1 corresponding to line R1 and column
R2 denotes the possible relation(s) holding between interval1 and interval3. Not
all compositions yield a unique relation as a result. For example the composition of
relations During and Meets yields the relation Be f ore as result while the composi-
tion of relations Overlaps and During yields three possible relations Starts, Over-
laps and During. Rules corresponding to compositions of relations R1, R2 yielding
unique relations R3 as a result can be represented using SWRL as follows:

R1(x,y)∧R2(y,z) � R3(x,z)

An example of temporal inference rule is the following:

DURING(x,y)∧MEETS(y,z) � BEFORE(x,z)

Rules yielding a set of possible relations as a result can’t be represented in SWRL
since disjunctions of atomic formulas are not permitted as a rule head. Instead,

Representing Temporal Knowledge in the Semantic Web 63

Table 1 Composition Table for Allen’s temporal relations.

disjunctions of relations are represented using new relations whose compositions
must also be defined and asserted into the knowledge base. For example, if the rela-
tion DOS represents the disjunction of relations During, Overlaps and Starts, then
the composition of Overlaps and During can be represented as follows:

OVERLAPS(x,y)∧DURING(y,z) � DOS(x,z)

Note that the set of possible disjunctions over all basic Allen’s relations is 213 but
subsets of this set that are closed under composition (i.e., compositions of relation
pairs from this subset yield also a relation in this subset) do exist [25, 28]. In this
work we use the tractable subset introduced in [28].

In addition to the above, the following axioms are also asserted into the knowl-
edge base:

• Four transitivity axioms (for the relations BEFORE, FINISHEDBY, CONTAINS,
STARTEDBY).

64 S. Batsakis and E.G.M. Petrakis

• Six inverse axioms (relations AFTER, METBY, OVERLAPPEDBY, START-
EDBY, CONTAINS and FINISHEDBY are the inverses of BEFORE, MEETS,
OVERLAPS, STARTS, DURING and FINISHES respectively).

• One equality axiom (relation EQUALS).
• Rules defining the relation holding between two intervals with known starting

and ending points (e.g., if ending of interval1 is smaller than the start of interval2
the interval1 is before interval2) are part of the ontology as well.

Notice that, starting and ending points of intervals are represented using concrete
datatypes such as xsd:date that support ordering relations. Axioms concerning rela-
tions that represent disjunctions of basic relations are defined using the correspond-
ing axioms for these basic relations. Specifically, compositions of disjunctions of
basic relations are defined as the disjunction of the compositions of these basic re-
lations. For example the composition of relation DOS (representing the disjunction
of During, Overlaps and Starts), and the relation During yields the relation DOS as
a result as follows:

DOS ◦During � (During∨Overlaps∨Starts)◦During �

(During◦During)∨ (Overlaps◦During)∨ (Starts◦During)

� (During)∨ (During∨Overlaps∨Starts)∨ (During)

� During∨Starts∨Overlaps � DOS

The symbol ◦ denotes composition of relations, and compositions of basic (non-
disjunctive) relations are defined using Table 1. Similarly, the inverse of a disjunc-
tion of basic relations is the disjunction of the inverses of these basic relations as
presented in Fig. 4. For example the inverse of the disjunction of relations Be f ore
and Meets is the disjunction of the inverse relations of Be f ore and Meets (A f ter
and MetBy respectively).

By applying compositions of relations the implied relations may be inconsistent.
Consistency checking is achieved using path consistency [14, 25, 28]. Path consis-
tency is implemented by consecutive applications of the following formula:

∀x,y,k Rs(x,y) � Ri(x,y)∩ (R j(x,k)◦Rk(k,y))

representing intersection of compositions of relations with existing relations (the
symbol ∩ denotes intersection and the symbol ◦ denotes composition and symbols
Ri, R j, Rk, Rs denote Allen relations). The formula is applied until a fixed point is
reached (i.e., application of rules doesn’t yield new inferences) or until the empty
set is reached, implying that the ontology is inconsistent.

An additional set of rules defining the result of intersection of relations holding
between two intervals are also introduced. These rules have the form:

R1(x,y)∧R2(x,y) � R3(x,y)

Representing Temporal Knowledge in the Semantic Web 65

where R3 can be the empty relation. For example the intersection of relation DOS
(represents the disjunction of During, Overlaps and Starts), and the relation During
yields the relation During as result:

DOS(x,y)∧During(x,y) � During(x,y)

Intersection of relations During and Starts yields the empty relation, and an incon-
sistency is detected:

Starts(x,y)∧During(x,y) �⊥
Notice that, using the full set of 213 relations leads to intractability [29]. Tractable
subsets of relations that polynomial time algorithms such as path-consistency are
sound and complete (while these algorithms are approximation algorithms in the
case of the full Allen algebra) do exist [25, 28, 30]. The largest such set (corre-
sponding to the maximal tractable subset of Allen relations containing all basic
relations when applying the path consistency method) comprises of 868 relations
[25]. Tractable subsets of Allen relations containing 83 or 188 relations [28] can
be used for reasoning as well, offering reduced expressivity but increased efficiency
over the maximal subset of [25].

An ontology based on a set containing 83 relations (i.e., the continuous endpoint
subclass presented in [28]) has been implemented in this work. Other relations cor-
responding to disjunctions of basic relations that are not supported (i.e., they don’t
belong to the subset referred to above) can’t be asserted into the ontology. In [28]
reasoning regarding time instants in addition to intervals is presented as well. Specif-
ically qualitative relations regarding instants form a tractable set if the relation �=
(i.e., a temporal instant is before or after another instant) is excluded. Reasoning
regarding relations between interval and instants is achieved by translating interval
relations to relations regarding their endpoints as specified in [17].

3.2 Querying Temporal Information

Querying temporal information over the semantic Web using general purpose lan-
guages such as [8] and SeRQL [3] is a tedious task. Recent work on query lan-
guages for temporal ontologies include TOQL [4] (extended with spatial operators
at [33]) and t-SPARQL [18] using 4-D fluents and named graphs respectively for
the representation of temporal information. Notice that, t-SPARQL suggests using
named graphs as the underlying representation mechanism of temporal information
and therefore, does not preserve OWL expressiveness, has no reasoning support and
does not support representation of qualitative temporal expressions. TOQL handles
all these issues. In this work TOQL is used for querying the temporal ontology.

TOQL is a query language that treats classes and properties of an ontology
almost like tables and columns of a database. The language is enhanced with a
set of temporal operators (i.e., the AT and Allen operators). TOQL follows an SQL-
like syntax (SELECT-FROM-WHERE) and supports SQL operators and constructs

66 S. Batsakis and E.G.M. Petrakis

such as LIMIT, OFFSET, AND, OR,MINUS, UNION, UNION ALL, INTERSECT,
EXISTS, ALL, ANY, IN.

TOQL also introduces clause “AT” which compares a fluent property (i.e., the
time interval in which the property is true) with a time period (time interval) or time
point and returns fluents holding true at the specified time interval, thus enabling
temporal queries without requiring familiarity with the underlying representation
mechanism for the end user. For example the following TOQL query retrieves the
name of the company employee “x” was working for, from time=3 to time=5:

SELECT Company.companyName
FROM Company, Employee
WHERE Company.hasEmployee:Employee AT(3,5)
AND Employee.employeeName LIKE “x”

The following Allen operators are also supported: BEFORE, AFTER, MEETS,
METBY, OVERLAPS, OVERLAPPEDBY, DURING, CONTAINS, STARTS,
STARTEDBY, ENDS, ENDEDBY and EQUALS, representing the corresponding
relations holding between two time intervals specified either using quantitative (i.e.,
interval with specified end points) description or qualitative Allen relations. The fol-
lowing query retrieves the name of the company that hired employee “x” and then
employee “y”:

SELECT Company.companyName
FROM Company, Employee AS E1, Employee AS E2
WHERE Company.hasEmployee:E1
BEFORE Company.hasEmployee:E2
AND E1.employeeName like “x”
AND E1.employeeName LIKE “y”

In this work, extending TOQL to support queries over qualitative relations required
certain modifications to the language. The basic SQL syntax remains the same,
however, Allen operators aren’t translated to comparisons of interval endpoints as
in [4] but to Allen relations holding between intervals after reasoning is applied.
The AT operator in [4] requires that interval endpoints are defined. Here, we intro-
duce two additional operators namely ALWAYS AT and SOMETIME AT querying
for fluents holding always during the interval in question and some time in the
interval in question respecively. The AT operator in [4] corresponds to the pro-
posed ALWAYS AT operator. Specifically, the ALWAYS AT operator returns flu-
ents holding at intervals that EQUALS, CONTAINS, STARTEDBY or ENDEDBY
the interval in question. The SOMETIME AT operators returns fluents holding at
intervals that OVERLAP, OVERLAPPEDBY, START, STARTEDBY, END, END-
EDBY, EQUAL, CONTAIN or DURING the interval in question. These semantics

Representing Temporal Knowledge in the Semantic Web 67

in conjunction with the reasoning mechanism will allow for application of the op-
erators on qualitative intervals in addition to quantitative ones that are supported by
the AT operator.

4 Evaluation

The resulting OWL ontology is characterized by SHRIF(D) DL expressivity and it
is decidable since it doesn’t contain role inclusion axioms with cyclic dependences
[21] (role axioms in the ontology are restricted to disjointness, transitivity and in-
verse axioms). Adding the set of temporal qualitative rules of Sec. 3.1 retains de-
cidability since rules are DL-safe rules as defined at [26, 31] and they apply only on
named individuals of the ontology Abox using Pellet (which support DL-safe rules
[32]). Furthermore, computing the rules has polynomial time complexity since a
tractable subset of Allen’s relations is used.

As shown in [14, 25, 28], by restricting the supported relations set to a tractable
subset of Allen’s algebra, path consistency has O(n5) time complexity (with n being
the number of intervals). Also, any time interval can be related with every other
interval by at most k relations, where k is the size of the set of supported relations.
Therefore, for n intervals, using O(k2) rules, at most O(kn2) relations can be asserted
into the knowledge base. Note that, extending the model for the full set of relations
would result into an intractable reasoning procedure.

An alternative approach towards implementing a temporal reasoner would be to
extend Pellet to handle a (tractable) relations set, along with the supported axioms
and path consistency checking, similarly to the way PelletSpatial [20] implements
reasoning over RCC-8 topologic relations. This approach has the following advan-
tages: (a) The underlying representation is more simple since only the 13 Basic
Allen relations have to be defined and (b) certain improvements regarding efficiency
and scalability can be added. On the other hand, this approach requires additional
software to handle the ontology, while our approach requires only standard seman-
tic Web tools such as Pellet and SWRL. Because reasoning is part of the ontology
model, maintenance of the ontology requires that changes are applied to the ontol-
ogy only and not to the reasoner (other approaches such as [20] require modifying
both the ontology and the reasoner).

5 Conclusions and Future Work

We introduce an ontology model capable of handling temporal information in on-
tologies. The proposed model extends the 4D fluent representation of [4] to handle
both quantitative and qualitative temporal information. The representation mech-
anism incorporates reasoning rules for inferring certain temporal relations from
existing ones and for checking temporal assertions for consistency. Extending the
model to support spatial relations and addressing scalability issues using appropriate
indexing mechanisms are directions for further research.

68 S. Batsakis and E.G.M. Petrakis

Extending TOQL [4] to handle the proposed 4D fluent representation is another
contribution of this work. A desirable feature of TOQL is that it does not require that
the user be familiar with the peculiarities of the underlying 4D fluent representation
mechanism (which may be complicated leading to complicated query expressions
in other query languages such as SPARQL [8]). Extending SPARQL, the current
W3C standard to support 4D fluents and similar operators is an important issue for
future research. t-SPARQL [18] is an example of work along these lines. Notice
though that t-SPARQL suggest using named graphs as the underlying temporal rep-
resentation (does not support 4D fluents) and therefore, does not maintain full OWL
expressiveness and has no reasoning support.

References

1. Grenon, P., Smith, B.: SNAP and SPAN: Towards Dynamic Spatial Ontology. Spatial
Cognition and Computation 4(1), 69–104 (2004)

2. Noy, N., Rector, B.: Defining N-ary Relations on the Semantic Web. W3C Working
Group Note 12 (April 2006),
http://www.w3.org/TR/swbp-n-aryRelations/

3. Aduna, B.V.: The SeRQL query language. User Guide for Sesame 2.1, ch. 9 (2002–
2008),
http://www.openrdf.org/doc/sesame2/2.1.2/users/ch09.html

4. Baratis, E., Petrakis, E.G.M., Batsakis, S., Maris, N., Papadakis, N.: TOQL: Temporal
Ontology Querying Language. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K.,
Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 338–354. Springer, Heidelberg (2009)

5. Hobbs, J.R., Fang, P.: Time Ontology in OWL. W3C Recommendation (September
2006), http://www.w3.org/TR/owl-time/

6. Klein, M., Fensel, D.: Ontology Versioning for the Semantic Web. In: International Se-
mantic Web Working Symposium (SWWS 2001), California, USA, July–August 2001,
pp. 75–92 (2001)

7. McGuinness, D.L., VanHarmelen, F.: OWL Web Ontology Language Overview. W3C
Recommendation (February 2004), http://www.w3.org/TR/owl-features

8. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recom-
mendation (January 2008), http://www.w3.org/TR/rdf-sparql-query

9. Welty, C., Fikes, R.: A Reusable Ontology for Fluents in OWL. Frontiers in Artificial
Intelligence and Applications 150, 226–236 (2006)

10. Gregersen, H., Jensen, C.S.: Temporal Entity Relationship Models - A Survey. IEEE
Transactions on Knowledge and Data Engineering 3, 464–497 (1999)

11. Artale, A., Franconi, E.: A Survey of Temporal Extensions of Description Logics. Annals
of Mathematics and Artificial Intelligence 30(1-4) (2001)

12. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal Description Logics: A Survey. In:
Proc. TIME 2008. IEEE Press, Los Alamitos (2008)

13. Gutierrez, C., Hurtado, C., Vaisman, A.: Introducing Time into RDF. IEEE Transactions
on Knowledge and Data Engineering 19(2), 207–218 (2007)

14. Renz, J., Nebel, B.: Qualitative Spatial Reasoning using Constraint Calculi. In: Hand-
book of Spatial Logics, pp. 161–215. Springer, Netherlands (2007)

15. Sheth, A., Arpinar, I., Perry, M., Hakimpour, F.: Geospatial and Temporal Semantic An-
alytics. In: Karimi, H.A. (ed.) Handbook of Research in Geoinformatics, ch. XXI (2009)

Representing Temporal Knowledge in the Semantic Web 69

16. Parsia, B., Sirin, E.: Pellet: An OWL DL reasoner. In: McIlraith, S.A., Plexousakis, D.,
van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298. Springer, Heidelberg (2004)

17. Allen, J.F.: Maintaining Knowledge About Temporal Intervals. Communications of the
ACM 26, 832–843 (1983)

18. Tappolet, J., Bernstein, A.: Applied Temporal RDF: Efficient Temporal Querying of RDF
Data with SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T.,
Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS,
vol. 5554, pp. 308–322. Springer, Heidelberg (2009)

19. Chen, H., Perich, F., Finin, T., Joshi, A.: SOUPA: Standard Ontology for Ubiquitous and
Pervasive Applications. In: Int. Conference on Mobile and Ubiquitous Systems: Net-
working and Services, pp. 258–267 (2004)

20. Stocker, M., Sirin, E.: PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reasoning and
Query Engine. OWLED (2009)

21. Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ. In: Proc. KR 2006,
Lake District, UK (2006)

22. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2:
The Next Step for OWL. In: Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 6, pp. 309–322 (2008)

23. Milea, V., Frasincar, F., Kaymak, U.: Knowledge Engineering in a Temporal Seman-
tic Web Context. In: The Eighth International Conference on Web Engineering (ICWE
2008). IEEE Computer Society Press, Los Alamitos (2008)

24. Motik, B., Patel-Schneider, P.F., Horrocks, I.: OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax. W3C Recommendation (2009),
http://www.w3.org/TR/owl2-syntax/

25. Nebel, B., Burckert, H.J.: Reasoning about Temporal Relations: A Maximal Tractable
Subclass of Allen’s Interval Algebra. Journal of the ACM (JACM) 42(1), 43–66 (1995)

26. de Bruijn, J.: RIF RDF and OWL Compatibility. W3C Working Draft (July 2009),
http://www.w3.org/TR/rif-rdf-owl/

27. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. W3C Member submission
(2004), http://www.w3.org/Submission/SWRL/

28. van Beek, P., Cohen, R.: Exact and approximate reasoning about temporal relations.
Computational intelligence 6(3), 132–147 (1990)

29. Vilain, M., Kautz, H., van Beek, P.: Constraint propagation algorithms for temporal rea-
soning: a revised report. In: Weld, D.S., de Kleer, J. (eds.) Readings in qualitative rea-
soning about physical systems, pp. 373–381 (1989)

30. Krokhin, A., Jeavons, P., Jonsson, P.: Reasoning about temporal relations: The tractable
subalgebras of Allen’s interval algebra. Journal of the ACM 50(5), 591–640 (2003)

31. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with rules. In: Web Se-
mantics: Science, Services and Agents on the World Wide Web, Rules Systems, vol. 3(1),
pp. 41–60 (July 2005)

32. Kolovski, V., Parsia, B., Sirin, E.: Extending the SHOIQ (D) tableaux with dl-safe
rules: First results. In: Proceedings International Workshop on Description Logic (DL
2006) (2006)

33. Batsakis, S., Petrakis, E.: SOWL:Spatio-temporal Representation, Reasoning and Query-
ing over the Semantic Web. In: 6th International Conference on Semantic Systems (I-
SEMANTICS 2010), Graz, Austria, September 1-3 (2010)

Combining a Multi-Document Update
Summarization System –CBSEAS– with a
Genetic Algorithm

Aurélien Bossard and Christophe Rodrigues

Abstract. In this paper, we present a combination of a multi-document summa-
rization system with a genetic algorithm. We first introduce a novel approach for
automatic summarization. CBSEAS, the system which implements this approach,
integrates a new method to detect redundancy at its very core in order to produce
summaries with a good informational diversity. However, the evaluation of our sys-
tem at TAC 2008 —Text Analysis Conference— revealed that system adaptation to
a specific domain is fundamental to obtain summaries of an acceptable quality.

The second part of this paper is dedicated to a genetic algorithm which aims to
adapt our system to specific domains. We present its evaluation by TAC 2009 on a
newswire articles summarization task and show that this optimization is having a
great influence on both human and automatic evaluations.

1 Introduction

As more information becomes available online, people confront a new problem: dis-
orientation due to the abundance of information. Document retrieval and text sum-
marization systems can be used to address this problem. While document retrieval
engines can help a user to filter out documents, summarization systems can extract
and present the essential content of these documents.

Recently, the DUC —Document Understanding Conference— now known as
TAC —Text Analysis Conference1— evaluation campaigns have proposed to eval-
uate automatic summarization systems. These competitions have led to recent
improvements in summarization and its evaluation.

Aurélien Bossard · Christophe Rodrigues
Laboratoire d’informatique de Paris Nord, CNRS UMR 7030
Université Paris 13, 93430 Villetaneuse, France
e-mail: firstname.lastname@lipn.univ-paris13.fr

1 http://nist.tac.gov

I. Hatzilygeroudis and J. Prentzas (Eds.): Comb. of Intell. Methods and Appl., SIST 8, pp. 71–87.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

72 A. Bossard and C. Rodrigues

In this paper, we present our system, called CBSEAS —Clustering Based Sen-
tence Extractor for Automatic Summarization— and its adaptation to the newswire
article summarization task: the use of a genetic algorithm which aims at finding
automatically the best suited parameter combination as input of the system.

We first give a quick overview of existing automatic summarization systems. In
a second section, we describe our system. We then present our method for param-
eters optimization, based on a genetic algorithm. In a last section, we discuss the
results obtained by our system: its performance on the summarization task, and the
influence of the parameters values.

2 Automatic Extractive Summarization Overview

The extractive approaches to automatic summarization consist in selecting the most
pertinent sentences or phrases and assemble them together to create a summary. This
section gives an overview of this kind of approaches.

2.1 Feature-Based Approaches

Edmundson [7] defined textual clues which can be used to determine the importance
of a sentence. In particular, he set a list of cue words, such as ”hardly” or ”impos-
sible”, using term frequency, sentence position (in a news article for example, the
first sentences are the most important) and the number of words occuring in the title.
These clues are still used by recent systems, like the one of Kupiec [12].

This kind of approaches does not take into account the overall content of the
documents. That is why automatic summarization has evolved into sentence selec-
tion using the “centrality” feature: the sentence importance relatively to the overall
documents content.

2.2 Centrality-Based Approaches

Other systems focus on term frequency. Luhn [15] led the way of frequency-based
sentence extraction systems. He proposed to build a list of important terms. The
importance of a term depends on wether or not its frequency belongs or not to a
predefined range. The more a sentence presents words belonging to this list, the
more important it is. Radev [19] took advantage of the advances in text statistics
by integrating the tf.idf metric to Luhn’s method. The list of important terms, that
Radev calls ”centroid”, is composed of the n terms with the highest tf.idf –the tf.idf
metric was introduced by Salton[20]. The sentences are ranked according to their
similarity to the centroid. Radev also included a post-processing step to eliminate
redundancy from the summary. He implemented this method in an online multi-
document summarizer, MEAD2 [18].

Radev further improved MEAD using another sentence selection method which
he named “Graph-based centrality” [8]. It consists in computing similarity between

2 http://www.newsinessence.com/clair/meaddemo/demo.cgi

Combining CBSEAS with a Genetic Algorithm 73

sentences, and then selecting sentences which are considered as “central” in a graph
where nodes are sentences and edges are similarities. The most central sentences are
those which have been visited most after a random walk on the graph. This method
is inspired by the concept of prestige in social network.

The clue-based, term frequency-based and “graph-based centrality” methods are
efficient when selecting the sentences which reflect the global content of the docu-
ments to be summed up. Such a sentence is called ”central”. However, these methods
are not designed to generate good summaries according to informational diversity.
Now, informational diversity is almost as important as centrality when evaluating a
summary. Indeed, a summary should contain all the important pieces of information
which should not be repeated.

2.3 Dealing with Diversity

In multi-document summarization, the risk of extracting two sentences conveying
the same information is greater than in a single-document summarization problem-
atic. Moreover, identifying redundancy is a critical task, as information appearing
several times in different documents can be qualified as important.

The previously presented systems are dealing with redundancy as a post-processing
step. Goldberg [9], assuming that redundancy should be the key concept of multi-
document summarization, offered a method to deal with redundancy at the same time
as sentence selection. For that purpose, he used a “Markov absorbing chain random
walk” on a graph representing the different sentences of the corpus to summarize.

MMR-MD, introduced by Carbonnel in [5], is a measure which needs a passage
clustering: all passages considered as synonyms are grouped into the same clus-
ters. MMR-MD takes into account the similarity to a query, coverage of a passage
(clusters that it belongs to), content in the passage, similarity to passages already
selected for the summary, belonging to a cluster or to a document that has already
contributed a passage to the summary.

The problem of this measure lies in the clustering method: in the literature, clus-
tering is generally fulfilled using a threshold. If a passage has a similarity to a cluster
centroid higher than a threshold, then it is added to this cluster. This makes it a su-
pervised clustering method.

Considering that diversity is the main issue in multi-document summarization,
we want our method to first deal with diversity, grouping sentences in clusters ac-
cording to the information they convey. The diversity management has to be unsu-
pervised in order to be adapted to every type of documents. Our method will then
apply local centrality-based selection methods to extract one sentence per cluster.

3 CBSEAS: A Clustering-Based Sentence Extractor for
Automatic Summarization

We want to specifically manage the multi-document aspect by considering redun-
dancy as the main issue of multi-document summarization. Indeed, we consider

74 A. Bossard and C. Rodrigues

the documents to summarize as made up by groups of sentences carrying the same
information. In each of these clusters, one sentence can be considered as central.
Extracting this sentence, and not another one, in every cluster can lead to sum-
maries in which the risk of redundancy is minimized. The summaries generated with
this method may carry a good informational diversity. We here briefly present our
system, which is further described in [2].

3.1 Pre-processing

All sentences go through a POS tagger, TreeTagger3. While studying news corpora,
we identified several categories of news. Only a few of them present some particular-
ities which make them worthwhile for an automatic summarization system. Details
are available in [4]. Documents are classified using a keywords/structure clue based
categorizer, into four categories:

• Classic news (1: presentation of the event, 2: the premisses, possibly 3: the con-
sequences or projection in the future);

• Chronologies (list of related events ordered chronologically, cf Figure 1);
• Comparative news (the state of the article topic in different places or at different

times, cf Figure 1);
• Enumerative news (an enumeration of facts, recommandations...).

The last three categories are very interesting for an automatic summarizer. In fact,
they make up at most 5% of the total number of newswire articles in AQUAINT-24.
But, in the training corpus of the “Update Task”, they contain 80% of the pertinent
information. Moreover, they are written in a concise style, and can be easily inserted
into a summary.

sim(s1, s2) =

∑

mt

weight(mt)× fsim(s1, s2)

fsim(s1, s2) + gsim(s1, s2)
∑

mt

weight(mt)
(1)

fsim(s1, s2) =
∑

n1∈s1

∑

n2∈s2

tsim(n1, n2) × tfidf(n1) + tfidf(n2)

2
(2)

gsim(s1, s2) = card ((n1 ∈ s1, n2 ∈ s2) | tsim(n1, n2) < δ) (3)

where mt are the morphological types, s1 and s2 the sentences, tsim the similarity between
two terms using WordNet and the JCn similarity measure [11] and δ a similarity threshold.

3 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
4 AQUAINT-2 is a corpus built by NIST and composed of 900.000 news articles from dif-

ferent sources (AFP, APW, NYT...)

Combining CBSEAS with a Genetic Algorithm 75

(a) A comparative news

(b) A chronology

Fig. 1 News examples

3.2 Sentence Pre-selection

First, our system ranks all the sentences according to their similarity to the docu-
ments centroid, composed of the m terms with the highest tf.idf. In the case a user
query is provided, the sentences are ranked according to their relevance to the query.
We then select the best ranked sentences, using an empiric threshold. This method
has been changed with the integration of the genetic algorithm, as shown in Sec. 4.

3.3 Sentence Clustering

Similarity between sentences is computed using a variant of the “Jaccard” measure,
shown in Equations 1, 2 and 3. Other similarity measures exist, such as cosine sim-
ilarity, but this measure allows us to take into account the similarity between two
different terms in the sentence similarity computation. This point is important as
linguistic variation could otherwise not be managed.

Once the similarities are computed, we cluster the sentences using fast global
k-means (description of the algorithm is in Figure 2) using the similarity matrix.

76 A. Bossard and C. Rodrigues

for all ejinE %%Initialize the first cluster with all the elements
C1 ← ej

for i from 1 to k do
for j from 1 to i

center(Cj) ← argmaxem

∑
en∈Cj

sim(em, en)

for all ej in E
ej → Cl|Clmaximizessim(center(Cl, ej)

add a new cluster: Ci. It initially contains only its
center, the worst represented element in its cluster.

done

Fig. 2 Fast global k-means algorithm

3.4 Sentence Final Selection

After this clustering step, we select one sentence per cluster in order to produce
a summary that maximizes the informational diversity. The selected sentence has
to be central in the document and relevant to the query. The system chooses the
sentence that maximizes a weighted sum of four scores :

• Similarity to user query/centroid;
• Similarity to cluster center;
• Important sentence score (implemented after TAC 2008 campaign);
• Difference in length between the scored sentence and the desired sentence length.

The “Important sentence score” is the inverse of the sentence position in the doc-
ument if the sentence is part of a “classic news”, or 1 if the sentence is part of the
body of a news classified as a chronology, an enumerative news or a comparative
news.

3.5 Managing Update for TAC “Update Task”

Sometimes, a user wants to know what is new about a topic since the last time he
has read news about it. That is why the TAC 2008 and TAC 2009 “Update Task”
consisted in summarizing a first document set, then summarizing what is new in a
second document set.

CBSEAS –Clustering-Based Sentence Extractor for Automatic Summarization–
clusters semantically close sentences. In others terms, it creates different clusters for
semantically distant sentences. Our clustering method can also be used to differen-
ciate sentences carrying new pieces of information from sentences carrying already
known pieces of information, and so for managing update. In fact, sentences carry-
ing old pieces of information are semantically close from the sentences that a user
has already read.

CBSEAS has proven to be efficient at grouping together semantically close
sentences and differentiate semantically far ones. In fact, the results obtained by
CBSEAS on TAC 2008 Opinion Task are good, as CBSEAS appears at the third

Combining CBSEAS with a Genetic Algorithm 77

place for avoiding redundancy in the summaries [3]. This is another reason for us-
ing our clustering method to differentiate update sentences from non-update ones.

Before trying to identify update sentences, we need to modelize the pieces of
information that the user requesting the update summary has already read. We can
then confront the new documents to this model in order to determine if sentences
from these documents carry new pieces of information. So the first step of our al-
gorithm is to cluster the sentences from the documents the user has already read
–which we call DI– into kI groups, as in Sec. 3.3 for the generation of a standard
summary.

The model thus computed –MI– is then used for the second step of our algorithm,
which consists in determining if a sentence from the new documents –DU– is to be
grouped with the sentences from DI , or to create a new cluster which will only
contain update sentences. Fast global k-means algorithm, slightly modified, can be
used to confront elements to a previously established model in order to determine
if these elements can be an integral part of the model. We here describe the second
clustering part of our update algorithm.

First, our algorithm selects the sentences from DU same as for DI (cf Sec. 3.2).
Then, it computes the similarities between sentences from DU with the cluster cen-
ters of MI and between all the sentences from DU . Then it adds the new sentences
to MI , and iterates fast global k-means from the kI iteration with the following
constraints:

• The sentences from DI can not be moved to another cluster; this is done to pre-
serve the MI model which encodes the old pieces of information. It also avoids
to disturb the semantic range of the new clusters that bear novelty.

• The cluster centers from MI can not be recomputed; as the semantic range of
a cluster depends directly on its center, this prevents the semantic range of MI

clusters from being changed by the integration of new elements from DU .

In order to favor sentences from the second set of document being part of the update
clusters, a negative weight can be assigned to the similarities between sentences
belonging to the first document set and sentences belonging to the second.

Once the update clusters have been populated, the update summary is generated
by extracting one sentence per update cluster, as in Sec. 3.4.

4 Optimizing CBSEAS Parameters

News article summarization differs from scientific article summarization or tech-
nical report summarization. When aiming at finding similar sentences in order to
detect central sentences in a technical report, a system should not focus on the same
markers as for blogs or novel summarization. Dealing with scientific articles, cen-
trality could not be the best indicator of sentence importance. Teufel has shown in
[21] that examining the rhetorical status of a sentence —its position in the docu-
ment structure, if it contains cue phrases...— is a good way to figure out if it should
appear in the final summary.

78 A. Bossard and C. Rodrigues

Our participation to both the “Update Task” (cf Sec. 3.5) and the “Opinion Task”
—Summarizing opinions found in blogs— of TAC 2008 showed us that our system
can be competitive; it ranked second on the “Opinion Task”, but its poor behavior
on the “Update Task” showed that adaptation Splays a crucial role in performing
better on this task. For this purpose, we have first implemented a score that takes
into account specific news structure traits (cf Sec. 3.4), and have chosen to use
a learning technique that automatically adapts CBSEAS’ weights according to a
scoring method.

TAC 2008 campaign provided us a corpus, manual reference summaries, and an
automatic evaluation framework: ROUGE5. ROUGE is a package of automatic eval-
uation measures using unigram co-occurrences between summary pairs [13]. When
computing ROUGE scores between an automatic summary and one or more man-
ual summary, we can efficiently evaluate the information content of the automatic
summary. Also, our system takes fourteen parameters as input:

1. number of sentences desired as output;
2. average desired sentence length ;
3. weights of proper names, (4.) nouns, (5.) adjectives, (6.) adverbs, (7.) verbs and

(8.) numbers in the similarity function (cf Sec. 3.3);
9. number of pre-selected sentences from the first and the (10.) second document

sets ;
11. weight of similarity to cluster center, (12.) important sentence score, (13.) and

length difference in the final sentence selection scoring (cf Sec. 3.4);
14. reduction of similarities between first document set and second document set

sentences (cf Sec. 3.4).

We have all it takes for an environment interactive learning method.

4.1 Overview of Parameters Optimization for Automatic
Summarization

In the field of trainable summarizers, systems combine basic features and try to find
the best weight combination using an algorithm that adapts weights to maximize
a fitness score. Kupiec [12] and Aone [1] used similar features to Edmundson [7]
and optimized the weight of every feature using a trainable feature combiner using
Bayesian network. MCBA [23] added two scores: a centrality score —intersection
of sentence keywords and the other sentences keywords on the union of sentence
keywords and the other sentences keywords)— and the similarity to title. The best
weight combination is approximated using a genetic algorithm. Osborne used a gra-
dient search method to optimize the feature weights[17].

In a more statistical-oriented approach, the PYTHY system [22] used standard
features and different frequency-based features. The search for the best weight com-
bination was based on a dynamic programming solution for the knapsack problem
described in [16].

5 http://berouge.com

Combining CBSEAS with a Genetic Algorithm 79

4.2 What Type of Algorithm?

In our case, we cannot prove the regularity and continuity of a function from the
hypothesis space to the summary score. Indeed, the parameters we use are not only
weights for linear features combination. Now, function continuity is a pre-required
for gradient search methods to work correctly. Moreover, as some parameters oper-
ate at different steps of our algorithm and on different aspects of sentence selection,
building up a probabilistic model of hypothesis space that takes into account param-
eters dependencies is too complicated. The number of parameters (14) emphasizes
the hugeness of the search space. Consequently, a genetic algorithm seems an ap-
propriate method to learn the best parameters combination.

Genetic algorithms have been introduced by John Holland [10]. Holland aims at
using species natural adaptation metaphor in order to automatically realize an opti-
mal adaptation to an environment. The main idea is to generate individuals, and by
means of mutation and crossing over selected individuals, to father a new generation
of individual that will be more adapted to its environment than the previous one.

4.3 ROUGE-SU4 Metric Liability

We are using ROUGE-SU4 metric to automatically evaluate the quality of the sum-
maries. We won’t describe this metric, but one can find details about it in [13]. The
liability of this metric is crucial for the genetic algorithm. During TAC 2008 cam-
paign, three evaluations have been conducted:

• an entirely manual evaluation: assessors had to fill a grid with scores such as non-
redundancy, readability, overall responsiveness6, grammaticality, readability;

• pyramid evaluation [14], which consists in manually comparing the information
available in the automatic summaries with the information available in the refer-
ence summaries;

• ROUGE evaluation.

Amongst the ten best ranked systems in responsiveness score, only four appeared
in the top ten of ROUGE-SU4 scores. However, five out of the six other systems
from this top ten ranked between the average and the poorest system in readabil-
ity. This means that readability has a great influence on a human assessor judging
the responsiveness. We noticed that systems ranked low in readability were using
rewriting rules or sentence compression methods that make summaries less read-
able. Here is an extract of a summary created by one of these systems: “The A380
will take over from the Boeing 747 (...?). The Airbus official said he had not seen any
sign (of what?). Airbus says the A380 will produce half (as what?) as the 747. Most
airports originally thought to accommodate (...?) the A380. The A380 is designed
to carry 555 passengers. The plane’s engineers will begin to find out (what?).”.

6 Overall responsiveness is the answer to the question : “How much would you pay for this
summary?”

80 A. Bossard and C. Rodrigues

One can see that this summary, although it obtained good ROUGE scores, is not
understandable. The summarization system has removed phrases that are essential
for sentences comprehension.

ROUGE-SU4 is a good metric to evaluate different summaries created by extrac-
tion systems that do not modify extracted sentences when summarizing documents
such as newswire articles, where sentences are all syntactically correct. So this met-
ric is adapted to our optimization problem.

4.4 Our Genetic Algorithm

4.4.1 The Individuals

Each individual is composed of 14 parameters, which are described in Section 4.
We empirically set their variation space. The Table 1 shows the space in which they
fluctuate.

4.4.2 Individuals Selection Method

The evaluation of one individual is for us a time costly operation. That is the reason
why we have chosen a tournament selection method, which has the advantage to be
easily parallelized. For each generation of γ individuals, μ tournaments between λ
individuals are organized. The winner of each tournament is selected to be part of
the next generation parents. Another advantage of this method lies in the fact that
it preserves diversity because the selected individuals are not forced to be the best
ones. This prevents the algorithm from getting stuck in a local minimum.

δi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⌈
log(vali − mini) × rand(0, 1)

⌉
, vali �= mini, randi(0, 1) < loweri (4)

1, vali = mini, randi(0, 1) < loweri (5)
⌈
log(vali − maxi) × rand(0, 1)

⌉
, vali �= maxi, randi(0, 1) > loweri (6)

1, vali = maxi, randi(0, 1) > loweri.(7)

where vali is the value of parameter i,
and

loweri =
vali − mini

maxi − mini
, (8)

with i from 1 to 14.

Combining CBSEAS with a Genetic Algorithm 81

Table 1 Parameters’ variation space

parameter min max step
num. of sentences 1 20 1
av. length 1 20 1
num. of pre-selected sent. 1 200 1
num. of pre-selected sent. update 1 200 1
nouns weight 1 300 1
proper names weight 1 300 1
verbs weight 1 300 1
adjectives weight 1 300 1
adverbs weight 1 300 1
numbers weight 1 300 1
cluster center sim weight 1 300 1
important sent. score weight 1 300 1
length difference score weight 1 300 1
update sim reduction 0 1 0.01

4.4.3 Mutation Operator

As we do not know what parameters are dependent one to another, we want to
change several parameters at the same time. In order to avoid a too heavy vari-
ation due to the simultaneous mutation of several parameters, we have chosen to
limit the variation quantity (δi) of a parameter, weakening the probability to obtain
a strong variation. We do that by using a logarithmic variation described in Equa-
tions 4 and 8.

4.4.4 Creating a New Generation

Each generation is composed of 100 individuals. The algorithm organizes twenty
tournaments with fifteen randomly selected representatives. This seems to be a good
compromise between quick evolution and diversity preservation. Each new gener-
ation is composed of the twenty winners, forty individuals created by mutating the
winners, and the last forty created by randomly crossing the winners.

4.5 Training and Evaluation Data

TAC 2008 and 2009 “Update Task” consisted in creating two abstracts for forty-
eight pairs of document sets. As computing a summary is time expensive, we de-
cided to limit the training data to nine pairs of document sets. The evaluation data is
composed of the forty other pairs of document sets.

82 A. Bossard and C. Rodrigues

5 Evaluation

TAC 2008 campaign has shown that automatic evaluation was still not as trustable as
manual evaluation when dealing with summaries [6]. Although automatic evaluation
proves to be useful to quickly judge the quality of a summary or to act as a fitness
score for a learning algorithm, we cannot entirely rely on automatic evaluation.
Our goal is to figure out at what point the optimization of the parameters really
improves the quality of the automatic created summaries. We propose here two ways
to do this: using ROUGE scores to see if the optimized parameters have led to an
enhancement on the evaluation data, and letting an assessor judge if there is a visible
improvement of the summaries quality.

We selected the best manually evaluated summarizer from TAC 2008, and our
summarizer CBSEAS before and after the optimization. We selected fifteen pairs of
document sets, and submitted the results of both of the three systems to an asses-
sor, giving the automatically created summaries random ids, in order to avoid the
assessor being able to identify the origin of summaries.

We then asked two questions to the assessor:

• Which one of the three summaries reflects best the documents content? (this
summary gets the score 6)

• Compared to the best summary, give a score between 1 and five to the two other
ones:

– 5: the summary is almost as informative as the best one;
– 4: the summary is a bit less informative than the best one;
– 3: the summary is less informative than the best one;
– 2: the summary is really less informative than the best one;
– 1: no comparison is possible, the best summary overtakes this one.

We participated to TAC 2009 in order to validate that our system is performing better
and to evaluate its competitiveness.

6 Results and Discussion

The Table 2 shows the combination of features selected by the genetic algorithm
after 80 generations. It points out that setting a low weight of the proper names
weight has a positive influence on the summary ROUGE scores. Also, the more
important types seem to be the common names, adjectives and verbs. Adverbs are
having a lesser influence on the summary quality.

The weight of proper names is so small because most of the selected sentences
contain the same proper names, due to the fact that pre-selected sentences are close
to the user query. This query is indeed most of the time oriented by named entities.
So, having proper names playing an important role in sentence similarity compu-
tation brings noise to the similarity measure and affects negatively the clustering
algorithm. In a more general way, this validates the observation of Aone et al. [1]:
decreasing the impact of proper names in the sentence selection method for auto-
matic news summarization increases the quality of the summaries.

Combining CBSEAS with a Genetic Algorithm 83

Fig. 3 ROUGE scores comparison of CBSEAS with TAC 2008 other participants

Fig. 4 ROUGE scores comparison of CBSEAS with TAC 2009 other participants

Setting the variable “update sim reduction” in a way that strenghtens the simi-
larities between sentences from the first and the second set of documents leads to
the generation of higher scored summaries. This means that decreasing the proba-
bility that a sentence from the second document set will appear in an update cluster
improves the quality of the update management.

It is interesting to note that the feature “similarity to cluster center” gets the low-
est weight in the last step of our algorithm. As recent works have proven the per-
tinence of graph-based methods for automatic summarization, this tends to prove
that our similarity score is not adapted to such a feature. Other similarity measures
should be reassessed in order to increase the impact of this feature.

84 A. Bossard and C. Rodrigues

Fig. 5 Average of individual scores, and best individual for each generation

Table 2 Winning set of parameters

parameter value
num. of sentences 14

av. length 8
num. of pre-selected sent. 47

num. of pre-selected sent. update 83
nouns weight 171

proper names weight 29
verbs weight 207

adjectives weight 270
adverbs weight 12
numbers weight 66

cluster center sim weight 7
important sent. score weight 258

length difference score weight 72
update sim reduction 0.87

We observe that manual evaluation presented in Table 3 and automatic evaluation
agree: optimizing our parameters for this task has led to an important improvement
of the summaries quality, but CBSEAS still does not overtake the best automatic
systems of TAC 2008. This has been confirmed by our participation to TAC 2009
and the manual results of this conference, as shown by Fig. 4 (Pyramid and overall
responsiveness evaluations). However, the system ranks among the best quarter of
all participating systems.

Combining CBSEAS with a Genetic Algorithm 85

Table 3 Manual evaluation

Best TAC CBSEAS w/o Optimized
system optimization CBSEAS

Standard summaries
Number of times 9 2 4

winning
non winning summaries 4.7 3.9 4.3

average score
Update summaries

Number of times 8 2 5
winning

non winning summaries 5 3.7 4.5
average score

Overall scores
Number of times 17 4 9

winning
non winning summaries

average score 4.8 3.8 4.4

7 Conclusion

In this article, we presented our approach to generic multi-document summarization
and update management, and the integration of news articles structure to our system,
CBSEAS. We also presented a way to optimize the system we have developed via
a genetic algorithm. The results obtained by both manual and automatic evaluations
have shown us that the quality of our summaries has greatly improved. The impact of
domain characteristics are important when automatically summarizing documents.
The use of a genetic algorithm to optimize the features treatment in our systems has
revealed some counter-intuitive observations. Although a human judgment is nec-
essary, we cannot exclude automatic ways to find the best parameters combination
for a given task. The results of TAC 2009 also show that our system still needs some
improvements to rank among the very best systems. More linguistic methods, such
as sentence compression or sentence reranking should be investigated to improve
the overall quality of the summaries generated by CBSEAS.

Acknowledgement

Special thanks to Thibault Mondary and the GipiLab for having accepted to spend some time
evaluating manually our work.

86 A. Bossard and C. Rodrigues

References

1. Aone, C., Okurowski, M.E., Gorlinsky, J.: Trainable, scalable summarization using ro-
bust nlp and machine learning. In: Proceedings of the 17th international conference on
Computational linguistics, pp. 62–66. Association for Computational Linguistics, Mor-
ristown (1998), doi: http://dx.doi.org/10.3115/980845.980856

2. Bossard, A.: CBSEAS, a new approach to automatic summarization. In: Proceedings of
the SIGIR 2009 Conference - Doctoral Consortium, Boston, USA (2009)

3. Bossard, A., Généreux, M., Poibeau, T.: Description of the LIPN System at TAC 2008:
Summarizing Information and Opinions. In: Proceedings of the 2008 Text Analysis Con-
ference, TAC 2008 Gaithersburg, United States, pp. 282–291 (2008),
http://hal.archives-ouvertes.fr/hal-00397010/en/

4. Bossard, A., Poibeau, T.: Integrating document structure to an automatic summarizer. In:
RANLP 2009, Borovets, Bulgaria (2009)

5. Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In: SIGIR 1998: Proceedings of the 21st annual
international ACM SIGIR conference, pp. 335–336. ACM, New York (1998)

6. Dang, H.T., Owczarzak, K.: Overview of the TAC 2008 update summarization task
(DRAFT). In: Notebook papers and results of TAC 2008, Gaithersburg, Maryland, USA,
pp. 10–23 (2008)

7. Edmundson, H.P., Wyllys, R.E.: Automatic abstracting and indexing—survey and rec-
ommendations. Commun. ACM 4(5), 226–234 (1961)

8. Erkan, G., Radev, D.R.: Lexrank: Graph-based centrality as salience in text summariza-
tion. Journal of Artificial Intelligence Research, JAIR (2004)

9. Goldberg, A.: Cs838-1 advanced nlp: Automatic summarization (2007),
http://www.avglab.com/andrew/

10. Holland, J.H.: Adaptation in natural and artificial systems: An introductory analysis with
applications to biology, control, and artificial intelligence. University of Michigan Press,
Ann Arbor (1975)

11. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical
taxonomy. In: International Conference Research on Computational Linguistics (RO-
CLING X), September 1997, p. 9008 (1997),
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?
bibcode=1997cmp.lg....9008J

12. Kupiec, J., Pedersen, J., Chen, F.: A trainable document summarizer. In: SIGIR 1995:
Proceedings of the 18th annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 68–73. ACM, New York (1995), doi:
http://doi.acm.org/10.1145/215206.215333

13. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Proceedings
of the Workshop on Text Summarization Branches Out (WAS 2004), Barcelona, Spain
(2004)

14. Lin, C.Y., Cao, G., Gao, J., Nie, J.Y.: An information-theoretic approach to automatic
evaluation of summaries. In: Proceedings of the main conference on HLTC NACACL,
pp. 463–470. Association for Computational Linguistics, Morristown (2006)

15. Luhn, H.P.: The automatic creation of literature abstracts. IBM Journal 2(2), 159–165
(1958)

16. McDonald, R.: A study of global inference algorithms in multi-document summariza-
tion. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp.
557–564. Springer, Heidelberg (2007)

Combining CBSEAS with a Genetic Algorithm 87

17. Osborne, M.: Using maximum entropy for sentence extraction. In: Proceedings of the
ACL 2002 Workshop on Automatic Summarization, pp. 1–8. Association for Computa-
tional Linguistics, Morristown (2002), doi:
http://dx.doi.org/10.3115/1118162.1118163

18. Radev, D., Allison, T., Blair-Goldensohn, S., Blitzer, J., Çelebi, A., Dimitrov, S., Drabek,
E., Hakim, A., Lam, W., Liu, D., Otterbacher, J., Qi, H., Saggion, H., Teufel, S., Top-
per, M., Winkel, A., Zhu, Z.: MEAD - a platform for multidocument multilingual text
summarization. In: Proceedings of LREC 2004, Lisbon, Portugal (2004)

19. Radev, D., Winkel, A.: Multi document centroid-based text summarization. In: ACL
2002 (2002)

20. Salton, G., McGill, M.J.: Introduction to modern information retrieval (1983)
21. Teufel, S., Moens, M.: Summarizing scientific articles - experiments with relevance and

rhetorical status. Computational Linguistics 28 (2002)
22. Toutanova, K., Brockett, C., Gamon, M., Jagarlamudi, J., Hisami, S., Vanderwende, L.:

The pythy summarization system: Microsoft research at DUC 2007. In: Proceedings of
the HLT-NAACL Workshop on the Document Understanding Conference (DUC-2007),
Rochester, USA (2007)

23. Yeh, J.Y., Ke, H.R., Yang, W.P.: Chinese text summarization using a trainable summa-
rizer and latent semantic analysis. In: Lim, E.-p., Foo, S.S.-B., Khoo, C., Chen, H., Fox,
E., Urs, S.R., Costantino, T. (eds.) ICADL 2002. LNCS, vol. 2555, pp. 76–87. Springer,
Heidelberg (2002)

Extraction of Essential Events with Application
to Damage Evaluation on Fuel Cells

Teppei Kitagawa, Ken-ichi Fukui, Kazuhisa Sato,
Junichiro Mizusaki, and Masayuki Numao

Abstract. Although sudden changes of the event phase in complex system may in-
dicate underlying essential forces, such events are not frequent. In the present paper,
we propose an essential event extractor (E3) scheme to extract relatively rare but co-
occurring event sequences in event phase transitions. In E3, the self-organizing map
(SOM) is used as vector quantization (VQ) to encode non-symbolic events and Key-
Graph as a co-occurrence graph. Afterwards, event transitions on the co-occurrence
graph can be obtained by referring to an occurrence density estimation on the topol-
ogy map of VQ. We demonstrate the E3 using an acoustic emission (AE) event
sequence observed during a damage test of fuel cells and obtain reasonable and
essential co-occurring damage sequences that exhibit mechanical effects.

1 Introduction

Most of the researches on mining from sequential or temporal data focuses on major
trends or frequent patterns starting with Apriori[2, 10]. However, rare events play
an important role for discovery of hidden forces under complex system, such as
financial crash, rupture in a composite material, and earthquake. Sornette [26]
stated, “Most complex systems in the natural and social sciences do exhibit rare
and sudden transitions that occur over time intervals that are short compared with
the characteristic time scales of their posterior evolution. Such extreme events ex-
press more than anything else the underlying forces usually hidden by an almost

Teppei Kitagawa · Ken-ichi Fukui ·Msayuki Numao
The Institute of Scientific and Industrial Research, Osaka University,
8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 Japan
e-mail: fukui@ai.sanken.osaka-u.ac.jp

Kazuhisa Sato · Junichiro Mizusaki
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University,
2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan

I. Hatzilygeroudis and J. Prentzas (Eds.): Comb. of Intell. Methods and Appl., SIST 8, pp. 89–108.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

90 T. Kitagawa et al.

perfect balance and thus provide the potential for a better scientific understanding
of complex systems.” This work deals with an event sequence observed from such
complex system, and we define essential events as follows:

Definition 1 (essential events). Essential events are the events that exhibit the po-
tential forces and appear in the phase transitions, which are short periods compared
to their posterior evolution, by releasing the accumulated potential forces.

Although there exist several researches on discovery of important rare events[29,
18, 28, 22, 1], these works deal with symbolic sequential data, which means each
event is described by category. However, a lot of non-categorical data exists in the
real world, such as financial data, sensor data. It is an important task to discover
essential rare events from an event sequence where an event is described by a set of
features or defined by (dis)similarity to other events.

We propose in this paper the essential event extractor (E3) for a non-symbolic
event sequence, using vector quantization (VQ) as an encoder. Then a co-occurrence
analysis was applied to extract rare events which co-occur with fundamental high
frequent events. The nature of VQ is to capture the entire data distribution by the
small number of vectors, but not to divide the data distribution into meaningful clus-
ters. This property is important for an unknown domain because most clustering al-
gorithms have limitations, such as pre-setting of the number of clusters, a threshold
to merge clusters, or a chaining effect[30].

We combined the self-organizing map (SOM)[12] as a VQ and KeyGraph[18]
as a co-occurrence graph. The SOM and KeyGraph have very good compatibility
because they are both forms of exploratory data analysis (EDA)[27], which support
the user in investigating the data. As for a related work, Ohsawa applied KeyGraph
to an earthquake sequence in order to discover risky active faults[19, 17]. However,
each earthquake event is assigned to the nearest pre-defined active fault. The present
paper contributes to the relaxation of this requirement, but requires (dis)similarity
between events.

Based on an experiment using an acoustic emission (AE) event sequence ob-
tained through an solid oxide fuel cells (SOFC) damage test, we demonstrate that
the proposed E3 can extract essential AE events. These AE events exhibit potential
mechanical effects between the component materials of the fuel cells.

2 Essential Event Extractor (E3)

2.1 Overview

The present work deals with a non-symbolic event sequence. Non-symbolic event
in this work is defined as:

Definition 2 (non-symbolic event). An event Xi is characterized by (dis)similarity
to other events, i.e., ∀ j d(Xi,Xj). For example, d(Xi,Xj) is defined by Euclidean
distance of feature vectors between Xi and Xj.

Extraction of Essential Events with Application to Damage Evaluation 91

vector quantization

 - infer event type

 - infer event phase

co-occurrence graph

 - extract locally influenced events

 - extract globally influenced events

density estimation

SOM KeyGraph

Fig. 1 Overview of essential event extractor (E3)

Then, an event sequence is defined as:

Definition 3 (event sequence). An event sequence is a set of ordered events denoted
by D = X1, . . . ,XT , where Xt refers to the tth event.

The overview of the proposed E3 is illustrated in Fig. 1. In E3, the SOM provides VQ
as well as a low-dimensional representation of the data distribution, which allows the
user to investigate individual events and to understand intuitively the entire picture
of all events. In addition, the SOM encodes the entire data distribution by prototype
vectors and provides codes to KeyGraph. KeyGraph then generates a graph that
is based on the co-occurrence frequency of the prototypes within a certain period.
KeyGraph extracts two types of events, the one is locally influenced (fundamental)
events that are high occurrence frequency and the other is globally influenced events
that are rare but co-occur with fundamental events. These globally influenced events
are candidates of essential events.

Meanwhile, by estimating the occurrence probability density distribution of the
prototypes within the topology map obtained by the SOM, the user can infer the
event type and event phase based on the change in the estimated density distribu-
tion and the best matched events. Afterwards, referring to the transition direction
by the estimated density change of the prototypes, the co-occurrence graph can be
decomposed into small sequences that are highly correlated with phase transitions.
Consequently, co-occurring event sequences in phase transitions, that is essential
events, can be obtained within the low-dimensional map that exhibit the potential
forces.

2.2 Kernel SOM

2.2.1 Overview

The SOM[12] is an unsupervised, competitive neural network learning model that
has been applied in various domains, such as clustering and visualization of con-
tents, control or monitoring of an industrial instrument, medical check, and so
on[20]. The kernel SOM[4] was used in the present study, where the kernel trick
is a method to extend a linear method to non-linear using a kernel function that

92 T. Kitagawa et al.

maps into higher-dimensional space by an indirect manner. Although the SOM is
originally a non-linear method, we used the kernel SOM so as to introduce an appro-
priate dissimilarity function for the application of damage evaluation of fuel cells.
The kernel function used in the application is described in section 3.3.1

Here, let a function φ : O → H maps an original data space O to a high
dimensional feature space H . Then, a kernel function is defined as Gram matrix
of a positive semidefinite: K(xi,x j)≡ φ(xi) ·φ(x j).

2.2.2 Kernel SOM Algorithm

Suppose N input data {x1, · · · ,xN} are given, where xi = (xi,1, · · · ,xi,v) is a
v-dimensional data. Let M neurons of the prototype (reference) vectors be
{m1, · · · ,mM}, where m j = (m j,1, · · · ,m j,v). In addition, let the position of M neu-
rons in the topological layer be r j = (x j,y j) : j = 1, · · · ,M. The number of neurons
and the layout of the topological layer must be pre-defined, and a regular or hexag-
onal grid is normally used. The following shows the learning algorithm that uses a
batch process and decreasing strategy of the learning parameter.

S1 (Initialization). Initialize the prototype vectors {m1(t), · · · ,mM(t)} randomly,
also set an iteration counter as t = 1. In the kernel SOM, since mi(t) cannot be cal-
culated in H , the dissimilarity between a prototype mi(t) and an input xn denoted
by {di,n(t) : n = 1, · · · ,N} is used instead of mi(t).

S2 (Searching BMU). Search the best matching units (BMUs), in other words
the winner neurons {c(x1), · · · ,c(xN)} for all inputs by the nearest neuron:

c(n) = arg min
i=1,··· ,M

di,n(t). (1)

S3 (Termination condition). Exit if the winner neurons {c(x1), · · · ,c(xN)} were
not changed or the iteration reached t = tmax.

S4 (Updating prototypes). Update the prototype vectors {m1(t), · · · ,mM(t)} by
the following equation:

di,n(t + 1)≡ ||φ(xn)−mi(t + 1)||2
= K(xn,xn)−2γ ∑

j
hc(j),iK(xn,x j)

+γ2 ∑
k

∑
l

hc(k),ihc(l),iK(xk,xl), (2)

where ‖·‖ denotes L2-norm, and γ = 1/∑n hc(n),i is a normalization factor. In the
kernel SOM, also φ(xn) cannot be calculated, the prototype vectors are updated
in an indirect manner using the kernel function. In addition, hi, j is a neighborhood
function that defines the effect of the neighborhood of the winner, and a Gaussian
function is typically used as a neighborhood function:

Extraction of Essential Events with Application to Damage Evaluation 93

hi, j = exp
(
−‖ri− r j‖2

2σ 2

)
. (3)

S5 (Iterative processing). Decrease the neighborhood radius σ , also increase the
iteration counter t← t + 1. Then, return to step S2.

2.3 Density Estimation

Density estimation is used to estimate the occurrence density of events on the topol-
ogy map obtained by the SOM. Since a simple histogram has a problem with appro-
priate setting of the intervals to count the data, density estimation is an alternative
to the histogram that estimates the generative density distribution at any point with-
out setting of the intervals. Since no background knowledge is available with the
data distribution of damage events of fuel cells, non-parametric density estimation
is suitable. Therefore, we used kernel density estimation (KDE)[25].

The probability density by KDE at point x ∈Rv is given by:

PKDE(x) =
1

Nbv

N

∑
i=1

K
(x−xi

b

)
, (4)

where b is a band width, N is the number of data points, and v is the number of
dimension. The larger b becomes, the smoother the distribution that can be obtained.
In addition, K(x) is a kernel function1 at x. The Gaussian kernel was used in the
present study:

K(x) =
1

2π−v/2
exp

(
− ‖x‖

2

2

)
. (5)

2.4 KeyGraph

While KeyGraph[18] is originally proposed for keywords extraction from text data,
it is extended as general co-occurrence event extraction scheme. Suppose symbolic
sequence D = [e1, · · · ,ei][ei+1, · · · ,e j] · · · [ek, · · · ,el] (i < j < k < l) is given, where
“[·]” is called “basket” indicating one meaningful set (e.g., one sentence). The pro-
cedure of KeyGraph consists of the following two steps:

K1 (Extracting locally influenced events). Firstly extract a pre-defined number
of themost frequentevents inDasverticesVl.Locally influenced graph Gl(Vl ,El),
which represents fundamental causes, can then be obtained with a pre-defined
number of the most frequently co-occurring event pairs among Vl as edges El .
In the present paper, the Jaccard coefficient was used as the local co-occurrence
frequency, where the counting is based on baskets.

K2 (Extracting globally influenced events). Let s be a basket, |e|s be the num-
ber of events e that appear in basket s, and |g|s be the number of events e′ ∈ g

1 The meaning of “kernel” here is a density function, while in kernel trick is a positive
semidefinite Gram matrix.

94 T. Kitagawa et al.

(a) an order of major peaks exists (b) no order of major peaks exists

Fig. 2 A transition arrow is added between the BMUs in a KeyGraph if there exist an order
of major peaks of the density distributions pair

that appear in basket s, where set of events g is composed of the connected nodes
in Gl . The conditional probability by which event e ∈ D occurred with the set of
events g ∈Vl is then defined by global(e,g) as follows:

global(e,g) = ∑s∈D |e|s|g− e|s
∑s∈D ∑e′(=e)∈g |e′|s|e|s

, (6)

where |g− e|s =

{
|g|s−|e|s if e ∈ g,

|g|s otherwise.
(7)

The globally influenced events graph Gg(Vg,Eg) is then extracted with the pre-
defined number of the highest key(e) as Vg, where key(e) is defined by the sum
of global(e,g) for all clusters g, and e∈Vg and e′ ∈ g of the highest co-occurring
event pairs are connected as Eg. These events are not frequent but are important
events in terms of the conditional probability of fundamental causes. Finally, total
graph G is obtained by merging Gl and Gg.

As an implementation of KeyGraph, Polaris2 was used in this work.

2.5 The E3 Algorithm

The procedure of the proposed E3 consists of the following five steps:

E1 (Encoding). Assume an event sequence D = X1,X2, · · · ,XT is observed. After
the learning of the SOM, the best matching unit (BMU) for all events are ob-
tained, i.e., the coordinates of the nearest prototype neuron: (x1,y1), · · · ,(xT ,yT).

E2 (Partitioning). Separate D into baskets s = [Xt , · · · ,Xt+l]. In the original Key-
Graph, a basket corresponds to a set of words within a sentence. Since this pro-
cedure depends on application, this step is explained in section 3.3.2.

2 http://www.chokkan.org/software/polaris/ (in Japanese)

Extraction of Essential Events with Application to Damage Evaluation 95

E3 (Extracting co-occurrence graph). Extract a graph G by applying KeyGraph
to D.

E4 (Add event transition). Estimate the occurrence density in spatio-temporal
space of (xt ,yt ,t) : t = 1, · · · ,T , i.e., BMUs on the topology map of the SOM and
time. Afterwards, add an arrow between the BMUs in a KeyGraph G if an order
of major peaks exists in the density distribution of two nodes, i.e., prototypes
(Fig. 2).

E5 (Decoding). In the graph G, edges and nodes that were added as transitions in
the step E4 are mapped onto the topology map of the SOM by the coordinates of
the prototypes.

Here, the underlying assumption is that an interpretable topology map was obtained
by the SOM with density estimation. In addition, although the step E4 is currently
performed manually, this is not so great a burden because KeyGraph extracts a small
number of co-occurring events.

3 Application to Damage Evaluation of Fuel Cells

3.1 The Problem in Fuel Cells

The fuel cell is regarded as a highly efficient, low-pollution power generation system
that produces electricity by direct chemical reaction. Solid oxide fuel cells (SOFC),
in particular, have attracted a great deal of attention because they have a power
generation efficiency of nearly 70% when combined with a gas turbine. However, a
crucial issue in putting SOFC into practical use is the establishment of a technique
for evaluating the deterioration of SOFC in the operating environment[31, 3, 13].

Since SOFC operate in harsh environments (i.e., high temperature, oxidation-
reduction), the reaction area is decreased by fracture damage, and the cell per-
formance is reduced as a result. Previously, the degree of degradation has been
estimated using an electrochemical method that measures chemical degradation.
Two of the co-authors have succeeded in observing mechanical damage to SOFC
using the acoustic emission (AE) method[24]. Acoustic emission is an elastic wave
(i.e., vibration, sound waves, including ultrasonic wave) produced by damage, such
as cracks in the material, or by friction between materials. Depending on the “frac-
ture mode” (i.e., opening or shear), the type of material, the fracture energy, the
shear rate, and other factors, distinct AE wave forms are produced[15].

We previously developed the basis upon which to explore numerous AE events
using the method based on a self-organizing map (SOM)[8, 6] as well as a complex
network analysis[7]. In these studies, we revealed that the transition of the damage
phase in SOFC also suddenly occurs as mentioned in [26]. The present study is an
attempt to infer mechanical effect in SOFC from an AE event sequence. Most of the
researches on AE events including other than SOFC did not focus on co-occurring
AE events, but rather on typical clustering or classification tasks [5, 23, 9, 21].

96 T. Kitagawa et al.

Fig. 3 SOFC damage test apparatus

Fig. 4 Controlled temperature change and observed AE event count

3.2 Damage Evaluation Test of Fuel Cells

A schematic diagram of the apparatus used to perform the SOFC performance test is
shown in Fig. 3. The test section was initially heated up to 800◦C in order to melt a
soda glass ring and was then gradually decreased to room temperature (Fig. 4). The
AE measurement was performed using a wide-band piezoelectric transducer3. The
AE transducer was attached to an outer Al2O3 tube away from the heated section.
The sampling rate is 1 MHz, and so the observable maximum frequency is 500 KHz.
Over 60 hours of running the SOFC, 1,429 AE events were extracted by the burst
extraction method[11, 8].

Note that this damage evaluation test was to rupture the cells intentionally
while lowering the temperature. Therefore, the knowledge obtained through this

3 PAC UT-1000, URL: http://www.pacndt.com

Extraction of Essential Events with Application to Damage Evaluation 97

experiment is not directly available to actual running the SOFC. However, it is suf-
ficient to demonstrate and confirm the reasonableness of the proposed E3.

3.3 Adaptation of E3 to AE Event Sequence

3.3.1 Kernel Function

In the present work, the Kullback-Leibler (KL) divergence was used as the ker-
nel function between frequency spectra of AE events for the kernel SOM. The KL
divergence is widely known as a metric of probability distribution. We assume a
frequency spectrum as a probability distribution, in the same manner that Moreno
et al. applied the KL divergence to SVM for image spectrum classification[16].

Let v−discrete points of a frequency spectrum be xi = (xi,1, · · · ,xi,v). Then, the
KL kernel function is defined as:

KKL(xi,x j) = exp(−αJS (xi,x j)) , (8)

JS(xi,x j) = KL(xi,x j)+ KL(x j,xi)

=
v

∑
k=1

{

xi,k log
xi,k

x j,k
+ x j,k log

x j,k

xi,k

}

, (9)

where JS(xi,x j) denotes the Jensen-Shannon divergence, which symmetrizes the
KL divergence, and α > 0 is a scaling parameter. Note that the spectra must be
normalized as ∑k xi,k = 1, since KL divergence is originally for a probability distri-
bution.

In advance, we have validated the performance of the kernel SOM with KL kernel
for AE events data, using the benchmark data of damage related sounds, such as
crack of a block of wood[6]. The result showed the KL kernel provides the best
performance in terms of F-measure compared to the general kernel functions, such
as Gaussian kernel, and the standard SOM.

...

Fig. 5 Partition of an AE event sequence into baskets

98 T. Kitagawa et al.

3.3.2 Partition of AE Event Sequence

Assume that the potential stress in a composite material is released after a large-
energy AE event occurs, i.e., interactions of internal forces are reset. In this research,
the observed AE event sequence was divided into baskets followed by [19, 17],
assuming a sequence until a large-energy AE event occurs to be a chain of damage
progression (Fig. 5). These baskets are used in the KeyGraph.

More concretely, at first calculate the energy for all events, E1,E2, · · · ,ET , where
Ei = ∑ j x2

i, j . Then divide the AE event sequence into baskets s = [Xt , · · · ,Xt+l], where
each basket satisfies the following condition:

Et+i ≤ Eσ and Et+l > Eσ (i = 0, · · · , l−1), (10)

where Eσ is an energy threshold. Then the AE event sequence is, for example,
described as D = [· · · (4,6),(7,8), · · · ,(1,5)] · · · [(7,8),(10,2),(1,5)] · · · in Fig. 5.

3.4 Inference of Physical Interpretation of the Topology Map

The number of neurons in the SOM was set to 15×15 with a regular grid. Here, the
number of neurons does not affect the result if there are sufficient neurons to capture
the data distribution. In addition, the parameter of the KL kernel function was set
to α = 0.95, which yields a reasonable result. Fig. 6 shows the occurrence density
distribution of the AE events on the topology map of the SOM for each instant of
time. The bandwidth was set to b = 0.34 in the KDE, which was determined by
10-fold cross validation.

The frequently occurring regions change dynamically according to time in Fig. 6.
The approximate frequent occurring regions and samples of AE events are illus-
trated in Fig. 7. Such regions imply a certain AE type, e.g., cracking of electrolytes.
Two of the co-authors, whose major fields are fuel cells and fracture mechanics,
provided a physical interpretation of the topology map, by referring to actual AE
waves, frequency spectrum, and the temperature of frequent occurring period. In
this manner, the damage type and phase transition was inferred as follows, also as
summarized in Table 1.

(A) AE events in region (A) in Fig. 7 occurred mostly in the heating period, as
shown in Fig. 4. In addition, since all of the AE events were low-energy events,
this region was inferred as squeaking of the members.

(B) This region appeared from the beginning of lowering the temperature with the
outbreak type of high-energy AE event. Therefore, region (B) was inferred as the
progression of the initial cracks, or other cracks, because of the unevenness of the
materials. These AE events are may be both in the electrolyte and the electrodes.

(C) Since continuous type AE events, the frequency spectra of which are similar
to the AE events in region (B), occur in this region, region (C) was inferred as
squeaking of the members, followed by region (B).

(D) The AE events in this region are high-frequency events. Thus, region (D) was
inferred as cracking of the electrolytes of hard materials.

Extraction of Essential Events with Application to Damage Evaluation 99

 2 4 6 8 10 12 14 2 4 6
 8 10 12 14 0

 5
10
15
20

 0
 4
 8
 12
 16
 20

 2 4 6 8 10 12 14

 2
 4
 6
 8
 10
 12
 14

density

x
y

x
y

(a) t = 50

 2 4 6 8 10 12 14 2 4 6 8
 10 12 14 0

 5
10
15
20

 0
 2
 4
 6
 8

 2 4 6 8 10 12 14

 2
 4
 6
 8
 10
 12
 14

density

x
y

x
y

(b) t = 250

 2 4 6 8 10 12 14 2 4 6 8
 10 12 14 0

 5
10
15
20

 0
 1
 2
 3
 4
 5
 6

 2 4 6 8 10 12 14

 2
 4
 6
 8
 10
 12
 14

density

x
y

x
y

(c) t = 700

 2 4 6 8 10 12 14 2 4
 6 8

 10 12 14 0
 5
10
15
20

 0
 2
 4
 6

 2 4 6 8 10 12 14

 2
 4
 6
 8
 10
 12
 14

density

x
y

x
y

(d) t = 900

 2 4 6 8 10 12 14 2 4 6
 8 10 12 14 0

 5
10
15
20

 0
 1
 2
 3
 4
 5
 6

 2 4 6 8 10 12 14

 2
 4
 6
 8
 10
 12
 14

density

x
y

x
y

(e) t = 1,100

 2 4 6 8 10 12 14 2 4 6 8
 10 12 14 0

 5
 10
 15
 20

 0
 2
 4
 6
 8
 10

 2 4 6 8 10 12 14

 2
 4
 6
 8
 10
 12
 14

density

x
y

x
y

(f) t = 1,300

Fig. 6 Damage transition of SOFC by the kernel SOM with density estimation (upper: 3D
representation, lower: 2D contour representation)

Fig. 7 Frequent occurring regions and sample AE events on the topology map by the kernel
SOM

100 T. Kitagawa et al.

Table 1 Inferred damage type from the kernel SOM with the density distribution

Region Frequent period Damage type
(A) t = 1 - 180 squeaking of the members during heating
(B) t = 100 - 400 progression of the initial cracks
(C) t = 220 - 600 squeaking of the members followed by (B)
(D) t = 550 - 1,100 cracks in the electrolyte
(E) t = 900 - 1,350 cracks in the glass seal
(F) t = 1,000 - 1,429 cracks in and exfoliation of the electrode

(E) Region (E) was inferred as cracking of the glass seal. Since this region ap-
pears from around 100◦C, which is the solidifying temperature of the glass seal.
Moreover, the frequent region shifts from the left to the right, as shown in Figs.
6(d) through 6(f), changing the frequency spectrum gradually. The glass seal is
the only material that changes its state depending on the temperature.

(F) The AE events in this region are low-frequency, outbreak type events, which
means exfoliation of the electrode together with cracks because of difference of
heat contraction ratios.

(3,15)

(15,12)

(10,1)

(3,7)

(14,1)

(7,15)

(3,14)

(10,15)

(11,8)

(5,15)

(5,1)

(9,1)

(10,4) (15,6)

(15,4)
(15,11)

(12,1)

(6,15)

(13,12)

(9,15)

(8,1)

(1,15)

(1,14) (12,4)

(13,3)

(7,12)

(5,3)

(8,15)

(4,15)

(3,13)

(13,15) (15,15)

(15,13)

(7,1)

(1,11)

(13,1)

Fig. 8 Output of KeyGraph with event transition. Black nodes denote high frequent funda-
mental events and white nodes denote rare essential events. Node labels are the coordinates
of prototypes by the kernel SOM

Extraction of Essential Events with Application to Damage Evaluation 101

3.5 Mechanical Effects Inferred by E3 Analysis

The output of KeyGraph is shown in Fig. 8. The energy threshold Eσ was set to
1,500 from among 1,000, 1,250, 1,500, 1,750, and 2,000, the effect of the energy
threshold is discussed in section 3.6. A black node indicates a prototype of a locally
influenced event, i.e., fundamental event, whereas a white node indicates a prototype
of a globally influenced event. A solid line indicates higher occurrence frequency
than a dotted line. Event transitions, which are shown by arrows in the graph, were
then added by referring to the density change of the prototype events pairs (Fig. 9).
An ending event of the transitions is denoted as a double circle.

These extracted event transitions were mapped onto the topology map shown in
Fig. 10. Fig. 10(a) shows the transitions from region (B) to region (D), indicating
that the progression of the initial cracks affects the electrolyte, while Fig. 10(b)
shows the transitions from region (D) to region (B) in the direction opposite that
shown in Fig. 10(a). Thus, mutual interaction exists in the progression of the initial
cracks and the electrolyte. Fig. 10(c) shows transitions from region (B) to region
(E) via (D), indicating that the progression of initial cracks affects the electrolyte
same as in Fig. 10(a) and in addition cracks of the electrolyte affects the glass seal.
Moreover, region (E) which is cracks of the glass seal is affected by electrolyte and
electrode whose regions are (D) and (F) as illustrated in Fig. 10(c) to Fig. 10(f).
On the other hand, there is no influence from regions (A) and (C) on any other
region. This is reasonable because these regions are inferred as squeaking of the
members. In addition, the glass seal does not affect the other materials, and only
the glass seal is affected by the other materials. Moreover, a result that is interesting

(a) (9,15)→(3,13) (b) (13,12)→(1,11)→(5,3)

(c) (1,15)→(11,8)→(10,15) (d) (15,11)→(13,1)

Fig. 9 An order of major peaks on occurrence density change of the prototypes

102 T. Kitagawa et al.

 2 4 6 8 10 12 14

 2
 4
 6
 8
 10
 12
 14

(3,13)

(8,15)
(9,15)

(3,14)

x
y

(A)

(B)

(D)

(E)

(F)

(C)

(a) (B)→(D)

 2 4 6 8 10 12 14

 2
 4
 6
 8
 10
 12
 14

(10,15)

(11,8)

(1,15)

(5,15)

x
y

(A)

(B)(D)

(E)

(F)

(C)

(b) (D)→(B)

 2 4 6 8 10 12 14

 2
 4
 6
 8
 10
 12
 14

(1,11) (13,12)

(7,1)

x
y

(A)

(B)
(D)

(E)

(F)

(C)

(5,3)

(c) (B)→(D)→(E)
 2 4 6 8 10 12 14

 2
 4
 6
 8
 10
 12
 14

(12,1)

(1,14)

x
y

(A)

(B)
(D)

(E)

(F)

(C)(5,15)

(5,3)
(5,1)

(d) (D)→(E)

 2 4 6 8 10 12 14

 2
 4
 6
 8
 10
 12
 14

(5,3)

(9,15)(8,15)

x
y

(A)

(B)

(D)

(E)

(F)

(C)

(e) (B)→(E) (f) (F)→(E)

Fig. 10 Mapped co-occurring event transitions from KeyGraph onto the topology map

to even experts in the field of fuel cells is that no effect between the electrolyte
and the electrode were extracted, even though the electrolyte and the electrodes are
structurally connected.

Note that the prototype events indicated by a white node were extracted by condi-
tional probability, the most fundamental causes of which are indicated by the origins
of the arrows in Fig. 10(a) to Fig. 10(e). Since these events cannot be extracted only
by their occurrence frequency, the results show that relatively rare but co-occurring
essential events in phase transitions were extracted.

Extraction of Essential Events with Application to Damage Evaluation 103

Table 2 Occurrence/co-occurring frequency of transition events

event transition a→ b N(a), N(b) N(a∩b)
Co-occurring LI events

(1,11)→(7, 1) 9, 14 4
(5,15)→(5, 1) 11, 11 4
(1,14)→(12, 1) 9, 15 4
(13,12)→(1,11) 9, 9 4
(15,11)→(13, 1) 9, 11 4

Co-occurring GI events
(9,15)→(3,14)∗ 9, 5 4
(1,11)→(5, 3)∗ 9, 5 4
(1,15)→(11, 8)∗ 9, 8 3
(5,15)→(11, 8)∗ 11, 8 3
(11, 8)∗→(10,15) 8, 11 3
(8,15)→(3,13)∗ 9, 7 2
(9,15)→(3,13)∗ 9, 7 2
(1,14)→(5, 3)∗ 9, 5 2
(8,15)→(5, 3)∗ 9, 5 2
(9,15)→(5, 3)∗ 9, 5 2

Table 3 Parameter settings of the KeyGraph

parameter \ Eσ 1,000 1,250 1,500 1,750 2,000
LI events 30 28 26 26 24
LI event pairs 32 35 26 25 26
GI events 10 10 10 10 10
GI event pairs 27 28 29 24 23

Table 4 Effect of the energy threshold

transition \ Eσ 1,000 1,250 1,500 1,750 2,000
(B)→ (D) 3 8 4 4 4
(D)→ (B) 3 1 2 1 0
(B)→ (E) 1 1 2 0 0
(D)→ (E) 4 3 5 4 5
(E)→ (D) 1 0 0 0 1
(F)→ (E) 1 1 1 1 1

total 13 14 14 10 11

3.6 Extracted Essential Rare Events

Table 2 shows the occurrence frequency of the extracted transition events from the
above experiment. The listed event transitions correspond to Fig. 10. Here, N(a) de-
notes the occurrence frequency of event ‘a’, where the frequency means the number
of baskets containing event ‘a’ at least one. Locally and globally influenced events,

104 T. Kitagawa et al.

which are denoted by LI and GI, were extracted respectively by steps K1 and K2 of
the KeyGraph algorithm. GI events are marked as a∗ in table 2.

While five transitions of co-occurring LIevents were extracted, that of co-occurring
GI events was ten. This fact means that co-occurring AE events during damage phase
transitions were extracted more by conditional probability of fundamental AE events
rather than by high frequent fundamental events.

3.7 Effect of Energy Threshold

This section discusses the effect of energy threshold Eσ which is a parameter to
divide an AE event sequence into baskets. The larger Eσ is the more events obtain
in one basket and the less number of basket.

The parameter settings of the KeyGarph for every Eσ is listed in Table 3. The
occurrence frequency of AE events was fixed by nine for every Eσ , because the
number of prototypes which has more than ten AE events as BMU was relatively
few, while more than eight was too many with this SOM learning result. From this
fact, the number of LI events were 24 to 30. The number of co-occurring LI event
pairs, which are links in the KeyGraph, were set to around the number of LI events.
Also GI events was set to 10, and co-occurring GI event pairs were set to around the
number of LI events.

With these settings, in order to investigate the effect of Eσ to the inferred me-
chanical effects, we compared the number of event transitions extracted by E3 as
shown in Table 4. The appropriate Eσ is around 1,250 to 1,500 as transition (B)→(E)
disappears above 1,750 and (E)→(D) appears 1,000 and 2,000. (E)→(D) suppose
to appear by chance depending on relative frequency when Eσ is an inappropriate
setting. Whereas, (F)→(E) appeared not by chance since it appears in every Eσ .
Eσ =1,500 is well balanced in terms of the number of appeared transitions. Also

Fig. 11 Inferred mechanical effects in SOFC by E3 analysis

Extraction of Essential Events with Application to Damage Evaluation 105

the important fact is that Eσ is not sensitive to the final inferred mechanical effects,
even though the output of KeyGraph is different.

Considering above discussion, the final inferred mechanical effects is illustrated
in Fig. 11. The thick arrow in the map indicates strong effect and thin arrow indicates
weak effect.

3.8 Scenario

This section describes a scenario of the damage process of SOFC inferred from our
E3 analysis (Fig. 11 together with Table 1).

1) Stable running period: Although squeaking of the members of the materials occur
(region (A)), these events do not affect damage of the cells at all. That is, these
events can be disregarded as noise events when monitoring the running.

2) Primary stage of lowering the temperature: At the beginning of lowering the tem-
perature to stop running, it begins to progress the initial small cracks because of
unevenness of the material (region (B)). The attendant squeaking of the members,
region (C), do not affect any other damage as well.

3) Secondary stage: With further lowering the temperature, stress is accumulated in
the heat-shrinkable electrolyte. Then, the cracks in the electrolyte are triggered
by the progression of the initial cracks ((B)→(D)). In contrast, though cracks of
the electrolyte promote the initial cracks, its effect is lesser ((D)→(B)).

4) Latter stage: As solidifying the glass seal, the glass seal accumulates stress
strained by the electrolyte. Then the glass seal is damaged by releasing the accu-
mulated internal stress with the trigger of cracks of the electrolyte ((D)→(E)).

5) Final stage: Although exfoliation together with cracks develop in the electrode
(region (F)), these are not affected from cracks of the electrolyte. Also progres-
sion of the initial cracks and cracks of the electrode promote the damage of the
glass seal ((B)→(E) and (F)→(E)).

4 Future Perspective

We demonstrated the proposed E3 using an AE event sequence observed by the
damage evaluation test on SOFC. The kernel SOM with density estimation provides
a comprehensive topology map that can infer the damage type and damage phase
transitions within the map. Afterwards, the E3 extracted and suggested AE events
on the map that are not frequent themselves, but co-occurred in phase transitions.
These AE events cannot be extracted only by the method based on the occurrence
frequency of a single event, e.g., density estimation.

The domain experts can reasonably explain the results as mechanical effects and
ascertain novel information. It is great advance that the domain experts can form a
hypothesis via E3. This hypothesis can be verified by checking the reproducibility
of the event sequences via several damage tests.

106 T. Kitagawa et al.

In the proposed E3, event transitions are manually assigned by referring to the
occurrence density change of prototypes. In the future, activity propagation mecha-
nisms, such as priming activation indexing (PAI)[14], are an option for the natural
introduction of event transition to E3.

The proposed E3 can contribute to the clarification of the fracture mechanism
or to monitoring the phase transition point or fatal damage. In the future, the frac-
ture mechanism in the SOFC will be clarified by comparing several experimental
conditions and/or by combining computational simulation.

5 Conclusion

We proposed the essential event extractor (E3) scheme for a non-symbolic event
sequence to extract relatively rare but co-occurring events in phase transitions that
exhibit hidden forces. The self-organizing map (SOM) is used as vector quantization
(VQ) to encode non-symbolic events and KeyGraph as a co-occurrence graph. To-
gether with density estimation on the topology map of the SOM, co-occurring event
sequences can be obtained on the map. The E3 enhances the co-occurring analysis
of a symbolic sequence to a non-symbolic sequence, because E3 requires only the
dissimilarity between events.

We demonstrated E3 by applying to an acoustic emission (AE) event sequence
observed from damage test of fuel cells. Consequently, mechanical effects in the
fuel cells can be inferred by the result of E3 analysis, and these extracted effects
express hidden forces that appear during the damage phase transitions.

Acknowledgment

This work was supported in part by the Management Expenses Grants for National Univer-
sities Corporations and also by KAKENHI (21700165) both from the Ministry of Education,
Culture, Sports, Science and Technology of Japan (MEXT).

References

1. Agarwal, D., Broder, A., Chakrabarti, D., Diklic, D., Josifovski, V., Sayyadian, M.: Es-
timating rates of rare events at multiple resolutions. In: Proc. of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 2007), pp.
16–25 (2007)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of the
20th International Conference on Very Large Databases (ICVD 1994), pp. 487–499
(1994)

3. Atkinson, R., Ramos, T.M.G.M.: Chemically-induced stresses in ceramic oxygen ion-
conducting membranes. Journal of Solid Sate Ionics 129, 259–269 (2000)

4. Boulet, R., Jouve, B., Rossi, F., Villa, N.: Batch kernel SOM and related Laplacian meth-
ods for social network analysis. Neurocomputing 71, 1257–1273 (2008)

Extraction of Essential Events with Application to Damage Evaluation 107

5. Emamian, V., Kaveh, M., Tewfik, A.H., Shi, Z., Jacobs, L.J., Jarzynski, J.: Robust cluster-
ing of acoustic emission signals using neural networks and signal subspace projections.
Journal on Applied Signal Processing 2003(3), 276–286 (2003)

6. Fukui, K., Sato, K., Mizusaki, J., Numao, M.: Kullback-leibler divergence based kernel
som for visualization of damage process on fuel cells. In: Proc. of 22th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, ICTAI 2010 (2010)

7. Fukui, K., Sato, K., Mizusaki, J., Saito, K., Kimura, M., Numao, M.: Growth analysis of
neighbor network for evaluation of damage progress. In: Theeramunkong, T., Kijsirikul,
B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 933–940.
Springer, Heidelberg (2009)

8. Fukui, K., Sato, K., Mizusaki, J., Saito, K., Numao, M.: Combining burst extraction
method and sequence-based som for evaluation of fracture dynamics in solid oxide fuel
cell. In: Proc. of 19th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2007), pp. 193–196 (2007)

9. Godin, N., Huguet, S., Gaertner, R.: Influence of hydrolytic ageing on the acoustic emis-
sion signatures of damage mechanisms occurring during tensile tests on a polyester com-
posite: Application of a kohonen’s map. Composite Structures 72(1), 79–85 (2006)

10. Han, J., Kamber, M., Pei, J.: Data Mining, Concepts and Techniques, 2nd edn. Morgan
Kaufmann, San Francisco (2006)

11. Kleinberg, J.: Bursty and hierarchical structure in streams. In: Proc. the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
2002), pp. 1–25 (2002)

12. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)
13. Krishnamurthy, R., Sheldon, B.W.: Stresses due to oxygen potential gradients in non-

stoichiometric oxides. Journal of Acta Materialia 52, 1807–1822 (2004)
14. Matsumura, N., Ohsawa, Y., Ishizuka, M.: Pai: Automatic indexing for extracting as-

serted keywords from a document. New Generation Computing 21, 37–47 (2003)
15. Miller, R.K., Kill, E.V.K., Moore, P.O., Hill, E.V.: Acoustic Emmision Testing. American

Society for Nondestructive (2005)
16. Moreno, P.J., Ho, P.P., Vasconcelos, N.: A kullback-leibler divergence based kernel for

svm classification in multimedia applications. Advances in Neural Information Process-
ing Systems 16 (2003)

17. Ohsawa, Y.: Keygraph as risk explorer from earthquake sequence. Journal of Contingen-
cies and Crisis Management 10(3), 119–128 (2002)

18. Ohsawa, Y., Benson, N.E., Yachida, M.: Keygraph: Automatic indexing by co-
occurrence graph based on building construction metaphor. In: Proc. Advances in Digital
Libraries Conference, pp. 12–18 (1998)

19. Ohsawa, Y., Yachida, M.: Discover risky active faults by indexing an earthquake se-
quence. In: Arikawa, S., Nakata, I. (eds.) DS 1999. LNCS (LNAI), vol. 1721, pp. 208–
219. Springer, Heidelberg (1999)

20. Oja, M., Kaski, S., Kohonen, T.: Bibliography of self-organizing map (som) papers:
1998-2001 addendum. Neural Computing Surveys 3, 1–156 (2002)

21. Omkar, S., Karanth, R.: Rule extraction for classification of acoustic emission signals
using ant colony optimisation. Engineering Applications of Artificial Intelligence 21,
1381–1388 (2008)

22. Phan, X.H., Nguyen, L.M., Ho, T.B., Horiguchi, S.: Improving discriminative sequen-
tial learning with rare-but-important associations. In: Proc. of the 11th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 2005), pp.
304–313 (2005)

108 T. Kitagawa et al.

23. Rippengill, S., Worden, K., Holford, K.M., Pullin, R.: Automatic classification of acous-
tic emission patterns. Journal for Experimental Mechanics: Strain 39(1), 31–41 (2003)

24. Sato, K., Omura, H., Hashida, T., Yashiro, K., Kawada, T., Mizusaki, J., Yugami, H.:
Tracking the onset of damage mechanism in ceria-based solid oxide fuel cells under
simulated operating conditions. Journal of Testing and Evaluation 34(3), 246–250 (2006)

25. Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman & Hall,
Boca Raton (1986)

26. Sornette, D.: Predictability of catastrophic events: Material rupture, earthquakes, turbu-
lence, financial crashes, and human birth. Proc. the National Academy of Sciences of the
United States of America (PNAS) 99(Suppl. 1), 2522–2529 (2002)

27. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)
28. Vilalta, R., Ma, S.: Predicting rare events in temporal domains. In: Proc. of the 2002

IEEE International Conference on Data Mining (ICDM 2002), pp. 474–481 (2002)
29. Weiss, G.M., Hirsh, H.: Learning to predict rare events in event sequences. In: Proc.

of the 4th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 1998), pp. 359–363 (1998)

30. Xu, R., Wunsch, D.C. (eds.): Clustering. SCI. IEEE Press, Los Alamitos (2008)
31. Yasuda, I., Hishinuma, M.: Lattice expansion of acceptor-doped lanthanum chromites

under high-temperature reducing atmospheres. Electrochemistry 68(6), 526–530 (2000)

Detecting Car Accidents Based on Traffic
Flow Measurements Using Machine
Learning Techniques

L.D. Tavares, G.R.L. Silva, D.A.G. Vieira,
R.R. Saldanha, and W.M. Caminhas

Abstract. This paper deals with the problem of detecting the occurrence
of a car accident in an urban environment. Firstly, a model based on Cellu-
lar Automata is designed to simulate the traffic flow with its main features
such as: multiple lanes, cars, traffic lights, buses and bus stops. Afterwards,
machine learning techniques are trained with the traffic flow measurements
considering both the normal and the situation in which the accident caused
a partial closure of the lanes. Several machine learning techniques results are
presented to several car breaking scenarios.

1 Introduction

The land transportation system is an important resource for the country
economy and population well-being, thus, when this system does not work
well, several sectors are affected. Considering, for instance, the urban transit
system of a Brazilian large city, such as São Paulo or Belo Horizonte, this
problem can be even more serious. In these cities the most common prob-
lem is related to congestion. Congestion can be generated when the number
of vehicles is greater than the capacity of the road or for any momentary
interruption (accidents or maintenance of the road). Therefore, it is neces-
sary to develop tools that can detect the moment and place these problems
occur. Hence, a corrective action can be taken in order to returns the flow
to its normal state. The objective of this paper is to conduct a comparative
study of different classifiers in order to detect congestion in an urban traffic.

L.D. Tavares · G.R.L. Silva · D.A.G. Vieira · R.R. Saldanha · W.M. Caminhas
Dep. of Electrical Engineering, Universidade Federal de Minas Gerais, Brazil
e-mail: tavares@cpdee.ufmg.br

D.A.G. Vieira
ENACOM - Handcrafted Technologies, Brazil
e-mail: douglas.vieira@enacom.com.br

I. Hatzilygeroudis and J. Prentzas (Eds.): Comb. of Intell. Methods and Appl., SIST 8, pp. 109–124.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

110 L.D. Tavares et al.

For this study it was built a simulator of Urban Traffic flow using Cellu-
lar Automata (CA), called Cellular Automata for Urban Traffic Simulation
(CAUTS). This model considers the presence of cars, trucks, traffic lights,
buses and bus stops.

CA is, in short, the mathematical model discrete in time, space and states.
Its fundamental unit is called cell. This kind of model is based on two simple
components: local rules and neighborhood. Local rules are responsible for cal-
culating the next state of the cell, based on the influence of its neighborhood.
Only with those components CA can reproduce (simulate) dynamic complex
systems, ranging from biology to chemical reactions [1]. CAUTS has resources
capable of simulating most of the features of an urban traffic as main roads,
secondary roads, traffic lights and bus stop. Moreover, it is possible to gen-
erate events that cause traffic jams, such as stopped vehicles and accidents,
which is the main focus of this work. The database was tested with different
methods of classification, so that it can detect which part of the model and
at what time an incident occurred. The classifiers used were: (i) Näıve Bayes
(NB), (ii) Decision-Tree (DT), (iii) K-Nearest Neighbor (K-NN), (iv) Multi-
layer Perceptrons (MLPs), (v) Support Vector Machine (SVM), (vi) Adaptive
Neuro-Fuzzy Inference Systems (ANFIS). The paper is organized as follows.
Sections 4 and 5 show the basic concepts employed in the construction of
CAUTS model. Then, Section 7 contains the results obtained, considering
several different scenarios. Finally, the conclusion and future works are in
Section 8.

2 Overview on the Traffic Flow Theory

Theories of Traffic Flow seek to study and describe the relationships between
the vehicles, routes, components and infrastructure as traffic lights, signs,
among others, in mathematicians terms. These theories emerged in the 30’s in
an attempt to relate the magnitudes of flow density and velocity, by scientist
Bruce Greenshields. Today these theories are based all the tools and models
of traffic flow [2]. The applications of these theories are broad. Among them
are:

• Evaluation of alternative treatments in traffic management;
• Design and testing of new lanes;
• Models operational flow serving as a sub-module in other tools (model-

based traffic control and optimization and dynamic traffic assignment);
• Traffic management training.

Papageorgiou [3] explains the phenomena that do not always observed in
traffic are evident to the correct equation, and still divides approaches into
three categories:

Detecting Car Accidents Based on Traffic Flow Measurements 111

1. Purely deductive approaches: where it is necessary to know the laws of
physics exist that govern the phenomenon;

2. Purely inductive approaches: where real systems input/output pairs data
are available, which are then used to adjust general mathematical struc-
tures as ARIMA models, neural networks and polynomial approximations,
for example;

3. Intermediate approaches: where the first structural model exists and then
real data are used to adjust the model.

Whatever the approach taken, it is still possible to classify it using the fol-
lowing criteria [4]:

• Type of variables;
• Level of Detail;
• Representation of the process;
• Operationalization;
• Range of application.

Type of variables is defined on the bais of how it treats the passage of time, ie
environmental change occurs in a continuous or discrete. The level of detail
with respect to how the approach works existing entities in the model. The
microscopic approaches have a greater level of detail, where the entities are
treated individually. The macroscopic approaches have little level of detail
and understand the traffic as a whole. In an intermediate level of detail exist
mesoscopic approaches where blocks entities are treated as platoons. The rep-
resentation of the process is characterized by existence of random variables.
When they are not present the process is deterministic, on the other hand, if
they are needed the process is stochastic.

The criterion of operation checks whether the approach is analytical or by
simulation. Finally, the scale defines the scope of application of the approach,
for example, a city, an avenue, or simply a stretch of street.

3 Cellular Automata

Studies on the potential of CA started around 1950’s by von Neumann and
Ulam [1]. CA is, in short, a mathematical model discrete in time, space and
states. Its fundamental unit is called cell. This kind of model is based on two
simple components: local rules and neighborhood. Local rules are responsible
for calculating the next state of the cell, based on the influence of its neigh-
borhood. Only with those components CA can reproduce (simulate) dynamic
complex systems, ranging from biology to chemical reactions [1].

The simplest case of elementary CA is an one-dimensional array of cells,
where each cell can have the values 0 or 1. Consider at

i as the state of the cell
of index i at the moment t, an example of local rule δ for this elementary CA
is [1] [5]:

112 L.D. Tavares et al.

at+1
i = δ

(
at

i−1, a
t
i, a

t
i+1

)
(1)

Formally, CA is defined by a tuple A = (S, d, n, δ), where S is set of states that
one cell can assume, d is the dimension, n is the influence of the neighborhood
structure over a cell a, and δ is the local rule. In a uniform CA model the
same δ function is applied over all cells, but it is possible to have different
local rules for distinct sets of cells, in this case has a non-uniform or hybrid
CA [6]. CA may also include stochastic elements, such as probabilistic local
rules, as shown below:

δ (.) =
{

s1, if p
s2, if 1− p

(2)

where p is the probability of occurrence of the state s1 ∈ S.The update of the
cells may occur in a synchronous or asynchronous form. The CA is classified
as synchronous if all cells are updated at the same time, but, if some parts of
the model are updated at different times the CA is classified as asynchronous.

The best known application, based on CA, is the ”Game of Life”, created
in 1970 by Conway [1] [7]. In this game each cell is a unicellular organism
that can assume one of two states: 0 - dead or 1 - alive. The local rules of
this game are:

• (R1) Under population: any living cell will die if it has less than two alive
neighbors;

• (R2) Overcrowding: any living cell will die if it has more than three alive
neighbors;

• (R3) Perpetuation: any cell will remain for the next generation if it has
two or three neighbors;

• (R4) Reborning: any dead cell will revive if it has exactly three live neigh-
bors.

Other examples of applications based on CA are well documented in the
literature, see, for instance, [8, 9, 10].

4 Simulator Features

Among several methods to traffic flow simulations, the ones based on the
use of Cellular Automata (CA) have received an especial attention of re-
searchers. Some papers from the 1990’s presented the bases concerning the
use of CA for traffic flow [11, 12, 13, 14, 15]. These results considered the
basic acceleration, deceleration, velocity randomization and velocity update
rules. A review considering road traffic flow can be found in[16]. It shows
that most of the concerns are related to acceleration, deceleration and lane
changes for freeways. Makowiec and Miklaszewski [17] added supplementary
rules to the traditional model such a way to increase the mean velocity. It
is expected that most of drivers want to travel as close as possible to the

Detecting Car Accidents Based on Traffic Flow Measurements 113

maximum allowed speed. The CA is a very useful and efficient method, and
can be applied to online simulation of traffic flow, as presented in [18]. In [19]
it was derived the critical behavior of a CA traffic flow model by means of
an order parameter breaking the symmetry of the jam-free phase. Fuks [20]
considered a deterministic CA model and derived a rigorous flow at arbitrary
time. Other important aspect is the jamming caused by the reduction of the
number of lanes. This reduction can be due to repairing, accidents and even
because it is part of the road design. Studying the road capacity, Nassab et.
al. [21] considered a road partial reduction from two lanes to one lane. The
blockage of one lane, caused by an accident car, was recently studied in [22].
This paper considers the study of a car accident in an urban environment.
By urban environment it is required to consider: (i) multi-lane traffic flow;
(ii) crossroads; (iii) traffic lights; (iv) trucks; (v) buses and; (vi) bus stops.
The presence of buses and bus stops requires specific rules. These rules are
important to the traffic flow in urban areas.

5 Model Definition

The model of urban traffic flow is implemented based on a two-dimensional
Stochastic Cellular Automata, called Cellular Automata for Urban Traffic
Simulation - CAUTS. CAUTS has resources capable of simulating the features
of an urban traffic as main roads, secondary roads, traffic lights and bus
stop. Moreover, it is possible to generate events that cause traffic jams, such
as stopped vehicles and accidents. The sub sections below will detail the
proposed model.

5.1 Maps Definitions

The cell of the model can represent one of two states: 0 - empty, 1 - occu-
pied. All cells of the model are square with side equal to 5.5 meters. This
measure represents the average sized car in the Brazil, taking into account
the distance between cars. The properties of cells are defined as a triple:
ci,j = {pd, sd, vmax}, where: (i) pd is the predominant direction; (ii)sd is
the secondary direction; (iii) vmax is the speed limit. For predominant di-
rection, means, the direction in which the vehicle will stay longer; and, by
secondary direction the change route or direction, such as lane-changing or
street change. The speed limit determines how many cells can be advanced
forward, at most, per iteration. Each direction d has a code, and their respec-
tive shift in the axis x and y, as can be illustrated in the Figure 1. Moreover,
it allows a vehicle to move forward up to 3 cells. To indicate that a cell is not
available for transit and the end of road (cell where vehicle is removed from
model), two triples, {0, 0, 0} and {9, 9, 9}, are used, respectively.

114 L.D. Tavares et al.

5.2 Environmental Rules

These are the rules that change a set of cells to implement some de-
sired characteristics. One of the most important feature in urban traffic
is the presence of traffic lights. Consider the complementary set of traf-
fic lights T1 and T2, where the cells affected by these sets are defined as
T1 = {(x1, y1) , (x2, y2) , . . . , (xn, yn)}. Similarly, consider T2, where, for ex-
ample, T1 is the set of traffic lights in the main road and T2 in the secondary
road. The complementarity, then, is defined by: T1(Green) ⇒ T2(Red),
T1(Y ellow)⇒ T2(Red), T2(Green)⇒ T1(Red), T2(Y ellow)⇒ T1(Red). The
Equation 3 shows how the traffic lights can be modeled.

(RT) :

⎧
⎨

⎩

T (Red) ⇒ vmaxT = 0
T (Y ellow) ⇒ vmaxT = 1
T (Green) ⇒ vmaxT = vmax

(3)

∀(x, y) ∈ T .
As mentioned above, the model contains features that considers broken

vehicles or accidents. Consider the set A = {(x1, y1) , (x2, y2) , . . . , (xn, yn)}
as the location of the cells where the incident occurs, at time t0 with k
iterations long. Additionally, consider cod(A, t0−1) = cod(A, t0−1) as the cell
triple code before the incident. Since the cells not available for transit is
represented using {0, 0, 0}, then, the presence of stopped vehicle is modeled
as:

(RA) :
{

cod(A,t) = 000, if t ≤ t0 + k
cod(A,t) = cod(A,t0−1), otherwise

. (4)

At the beginning and the end of each road there is one sensor. These sensors
are responsible for capturing the statistics, such as, number of vehicles (flow)
and their speeds.

5.3 Vehicles Definitions

The model implemented has three types of vehicles: small vehicles, like cars,
and large vehicles, such as buses and trucks. Small vehicles occupy only one
cell, while large vehicles occupy three cells in length and the width of one cell.
Currently, the model considers that large vehicles can only move in the main
roads and can not switch lanes or routes. Buses and trucks differ, themselves,
by the fact that buses have to stop at bus stops. The vehicle models have
the following structure: (i) kind of vehicle: 1 − car, 2 − bus or 3 − truck;
(ii) vehicle location (x, y); (iii) lane change indicator (t1); (iv) vehicle current
speed (veli); (v) time of the vehicle last stopped (t2); (vi) sensor identifier
(sid). The feature (iii) is applied only when the vehicle is a car and indicates
how many iterations has passed from the time vehicle last changed a lane.
This serves to prevent the car change its lane by consecutive times. Because
of this, the model does not allow a vehicle leaving right lane and go to left

Detecting Car Accidents Based on Traffic Flow Measurements 115

Fig. 1 Code and respective dislocation (in x and y axis).

lane, whereas there is a central lane, instantly. Consider a vehicle vi in the
set V = {v1, v2, . . . vi, . . . vn} at the moment t. The location of the vehicle
may be recovered by the expression:

loci =

⎧
⎪⎪⎨

⎪⎪⎩

[x1, y1] = posi(vi), if vi = car⎡

⎣
x1 y1

x2 y2

x3 y3

⎤

⎦ = posi(vi), otherwise
. (5)

Consider the location of all vehicles as LOC = posi(V). The function diri =
direc(vi), where diri = [xd1, yd1] for small cars, indicates the vehicle moving,
according to the Figure 1. For instance, a vehicle is moving to the east, the
function direc(.) will be [xd, yd] = [1, 0] and [xd, yd] = [−1, 1] for northwest
moving. The current speed of the vehicle veli is accessed through the function
speed(vi). The maximum speed that a vehicle can achieve depends on its type
and its location at time t, as small cars tend to be faster than large vehicles
in urban traffic. The speed is computed as cells/iteration, of c/i. The speed
limit is calculated by the function vmaxi = velocmax(vi, loci). The Equation
6 defines the rule for local acceleration. This rule represents the intention of
the driver to speed up as much as possible, i.e., the speed limit of the road
will be respected.

(R1) : vel(i,R1) = min
(
vel(i,t) + 1, vmaxi

)
(6)

However, we know that drivers may, so seemingly random, reduce vehicle
speed. Consider α as the probability of a slowing down, then the local rule
for this event is given by 7.

if rand < αi,
(R2) : vel(i,R2) = max

(
vel(i,R1) − 1, 0

) . (7)

116 L.D. Tavares et al.

The previous local rule is a representation of a natural factor in the urban
transit system and, in some way, can contribute to the rise in congestion. An-
other condition for the deceleration of the vehicle is the existence of obstacles
on the road. The nfreei = gap(vi) function is responsible for identifying
the maximum number of free cells in which the vehicle can move in a given
direction d, according to the Figure 1. The local rule for the downturn by
obstacles is given by Equation 8.

(R3) : vel(i,R3) = min
(
vel(i,R2), nfreei

)
(8)

The rule R3 simulates, to some extent, the vision of the driver, it means, the
maximum that he can move is a combination of following factors: the road
speed limit, maximum speed that the vehicle can reach and the next obstacle.
Furthermore, it is defined in the model rules for local buses to consider the bus
stops. Consider S = {(x1, y1) , (x2, y2) , . . . , (xn, yn)} the set of cells located
in a bus stop. For a bus vi, consider t0 the moment where loci ∈ S and k the
stop duration, with a probability ϕi, defines de rules RS, as shown in Eq. 9.

(RS) :
If loci ∈ S, rand < ϕi, t < t0 + k and vi = bus

vel(i,t+1) = 0,
otherwise

vel(i,t+1) = vel(i,R3)

. (9)

Finally, the movement of the vehicle vi given the direction d of displacement
diri can be calculated by:

(R4) : loci,t+1 = loci + veli,t+1 ∗ diri . (10)

6 Overview on the Classification Methods

The traffic jam identification can be regarded as a problem of fault detection
class, where the transit is the studied system. The identification can be binary
(normal or congested) or multiple classes. In the following subsections will
be a brief explanation of the methods used. For more details about used
methods, we suggest to search the cited references.

6.1 Näıve Bayes Classifier

The NB is a simple and but efficient Bayesian network classifier. It is built
upon the strong assumption that different attributes are independent with
each other given the class [23]. Although this classifier has this strong assump-
tion, studies show that its performance is not affected when the database
does not have the attributes fully independent of each other [24]. Formally,
the model for the classifier has the following form (using Bayes Theorem):

Detecting Car Accidents Based on Traffic Flow Measurements 117

p(C|F1, . . . , Fn) =
p(C) p(F1, . . . , Fn|C)

p(F1, . . . , Fn)
. (11)

Where p(C) is the probability of occurrence of class C, p(F1, . . . , Fn|C) is the
maximum likelihood, and p(F1, . . . , Fn) is the evidence. All these parameters
can be obtained through the relative frequencies of training database [25].

6.2 Decision Tree Classifier

The DT is an inductive tree-like structure classifier where the basic idea is
break up a complex decision into a union of several simpler decisions [26].
In the branch nodes of the tree some classification rules are stored. This is
done in order to group similar samples in the same leaf nodes. DT is not, in
general, the algorithm itself but a means to perform the classification. The
best known algorithms to implement a DT are C4.5 and ID3. They differ,
mainly, in the way of how the attributes are sequenced for the decision. The
Figure 2 illustrates an example of DT with their IF...THEN ...ELSE... rules
form.

6.3 K-Nearest Neighbor

The K-NN method is one of the most simplest and oldest classifier, but, at the
same time, most important methods for regression and pattern classification.
It is based on the fact that similar instances tend to be closer in search space.
This method requires two parameters: k (which gives the method’s name) and
a metric d. The performance of this method of classification depends heavily

Fig. 2 An example of Decision Tree (source: Hung, C. and Chen, J.-H. (2009)).

118 L.D. Tavares et al.

on the metric applied. Whatever the metric used to it comply with the four
properties below [27, 28]:

• No negativity: d(a, b) ≥ 0;
• Reflexive: d(a, a) = 0;
• Symmetry: d(a, b) = D(b, a);
• Triangular inequality: d(a, b) + D(b, c) ≥ d(c, a).

6.4 Artificial Neural Network

The ANN is a biologically inspired method capable of capturing highly com-
plex non-linear functions. The fundamental unit of this network is called neu-
ron, designed by McCulloch and Pitts. When many neurons work together
to get a network called Multi-Layer Perceptron (MLP). There are several ar-
chitectures of MLP as recurrent neural network (RNN), the self-organizings
maps (SOM) and the radial basis function (RBF) where each one is capable
of performing different tasks [29, 30]. The best known method of learning is
called the backpropagation and is based on the motion made to correct the
weights of each neuron, which is the exit to the entrance of the network [31].

6.5 Support Vector Machine

Initially created to linearly separable problems, the SVM was created by
Vladimir Vapnik and co-authors in the late 90’s. The basic principle behind
SVM is to construct a hyperplane that is capable of separating the classes,
where the distance (or the surface) between them is the maximum possible
[29]. Recently, several methods were developed in order to adapt it for models
not linearly separable [32, 33]. Formally, the construction of the hyperplane
by the SVM can be defined by the following optimization problem [34]:

argmin
1
2
‖w‖2 + C

∑

i

ξi (12)

subject to ci(w · xi − b) ≥ 1− ξi 1 ≤ i ≤ n. (13)

Where w is the n dimensional vector, C is a penalty parameter controls the
trade-off between minimizing the classification error and maximizing the class
separation margin, b is a bias term

6.6 Adaptive Neuro-fuzzy Inference Systems

The ANFIS is a hybrid system that combines fuzzy logic with learning abili-
ties of Artificial Neural Networks. The fuzzy sets are those where each entry
is associated to a member function. Different sets of numbers (where an ele-
ment is or is not present), the fuzzy sets combine a degree of relevance to the

Detecting Car Accidents Based on Traffic Flow Measurements 119

Fig. 3 An ANFIS architecture(source: Ubeyli, E. D. (2009))

element. The learning process of ANFIS is similar to an MLP, ie using back-
propagation. The Figure 3 illustrates a typical architecture of ANFIS [35]. In
brief, the Layer 1 associated with each entry a member’s function. The layer
2 performs the multiply the degrees of the entries. The layer 3 is responsible
for normalization of degrees. The layer 4 is responsible for defuzzyfication
and finally, the layer 5 for the output.

7 Simulations and Results

7.1 Environment

The Figure 4 illustrates the layout of the implemented map to the simulator.
It consists of 1 main (horizontal) and 3 via secondary (vertical) roads.

The main routes are composed of 3 lanes and its maximum allowed speed
is 60 km/h (or 3 cells per iteration); furthermore, the secondary roads have
only 2 lanes and maximum speed allowed is 40 km/h (or 2 cells per iteration).
The entry of vehicles in the model is given in the following way:

Fig. 4 Layout of implemented map of CAUTS

120 L.D. Tavares et al.

1. West-east Main roads: Probability of at least 10% of a vehicle entering the
model outside the time of greatest movement. This probability increases
linearly up to 70% between the hours of 7:00 a.m. to 8:00 a.m.. And, 50%
between the hours of 12:00 to 1:00 p.m.

2. East-West Main roads: Probability of at least 10% of a vehicle entering the
model outside the time of greatest movement. This probability increases
linearly up to 50% between the hours of 12:00 a.m. to 1:00 p.m.. And, 70%
between the hours of 4:00 p.m. to 5:00 p.m.

3. Secondary streets: Probability of at least 10% of a vehicle entering the
model outside the time of greatest movement. Increasing 30% in the hours
between 7:00 a.m. and 8:00 a.m., 12:00 and 1:00 p.m., and, 4:00 p.m. and
5:00 p.m..

For all scenarios are carried out 30% of large vehicles (between bus and
trucks), and, all simulated accidents occurred on the central lane of the west-
east main road, but in different blocks.

7.2 Parameters and Scenarios

The parameters used for the classifier are:

1. DT: was implemented using the C4.5 method, maximum depth=5;
2. K-NN: k = 17 and d = Euclidean distance;
3. ANN: MLP neural network with four layers, being [2, 25, 25, 2] the number

of neurons in each layer;
4. Fuzzy: Sugeno ANFIS using has 5 membership functions (Gaussian) for

each entry;
5. SVM: ξ = 0.5;

We simulated 5 different scenarios (08:00 to 09:00) with situations: (i) with-
out incidents; (ii) incident in the first block, (iii) incident in the second block,
(iv) incident in the third block and, (v) incident in the fourth block, accord-
ing to Fig. 4. The techniques were trained with the same parameters for all
considered the scenarios. The networks are trained to detect between the sit-
uations without and with accidents, therefore, they always consider situation
(i) as reference.

7.3 Results

Tables 1-4 present the results in descending order accuracy for all tested
topologies, ranging from 99% to 85%. For each scenario there are 400 records,
of which 80% were used for training and 20% for validation. Accuracy is the
average of 35 runs for each classifier (using validation data). For each sim-
ulation the training and validation set are randomly split. The results for

Detecting Car Accidents Based on Traffic Flow Measurements 121

all tested topologies presented good accuracy. This is mainly due to the fact
that a consistent (big enough) dataset can be arbitrary generated using the
CAUTS model. Moreover, it appears that a breakdown in the first blocks
is harder to detect than in the last ones. As it is well known, traffic jams
propagates backwards, therefore, the information of the first sensor are richer
than in the last ones. Indeed, more information is got when the accident takes
place in last blocks. This empirical expectation is observed in Tables 1-4.

Table 1 Performance of classifiers considering the scenarios (i) x (ii).

Classifiers Performance

Method Accuracy

MLP 96.50%

SVM 95.17%

DT 92.46%

KNN 92.02%

NB 86.12%

ANFIS 85.68%

Table 2 Performance of classifiers considering the scenarios (i) x (iii).

Classifiers Performance

Method Accuracy

DT 96.66%

SVM 92.21 %

ANFIS 90.95%

MLP 88.78%

NB 88.13%

KNN 87.48%

Table 3 Performance of classifiers considering the scenarios (i) x (iv).

Classifiers Performance

Method Accuracy

MLP 99.87%

NB 94.38%

DT 94.37%

KNN 92.64%

ANFIS 90.39%

SVM 89.14 %

122 L.D. Tavares et al.

Table 4 Performance of classifiers considering scenarios (i) x(v).

Classifiers Performance

Method Accuracy

ANFIS 99.12%

MLP 97.34%

NB 93.68%

KNN 92.63%

SVM 91.67%

DT 89.15%

8 Final Considerations and Future Works

This paper has studied the use of machine learning techniques to detect car
breakdowns in an urban environment. Measurements of traffic flow in several
points in the main road are used to train the techniques. These measurements
were simulated in our model called CAUTS. Using this simulator it is possible
to generate several scenarios with low cost. Combining the tested methods
in a voting machine will be explored in a future work. Additionally, this
technique, which is based solely in the traffic flow, can be also combined
with other ones, as ones based on computer vision. Indeed, detecting the
traffic jams is one important aspect in the traffic flow control. Based on this
detection, the traffic lights can be adjusted such a way to decrease the harsh
caused by the breakdown. This is one of the future aspects to be explored in
this work. In fact, it is important to improve both, the CAUTS model and
the machine learning techniques.

Acknowledgment

The authors would like to thank CNPq, FAPEMIG and CAPES for the fi-
nancial support.

References

1. Wolfram, S.: Statistical mecachics of cellular automata. In: Theory and Appli-
cations of Cellular Automata. World Scientic, Singapore (1986)

2. C. on Traffic Flow Theory and Characteristics. In: Traffic Flow Theory: A
State-of-the-Art Report. Transportation Research Board / National Academy
of Sciences (2001)

3. Papageorgiou, M.: Some remarks on macroscopic traffic flow modelling. Trans-
portation Research A 32(5), 323–329 (1998)

Detecting Car Accidents Based on Traffic Flow Measurements 123

4. Hoogendoorn, S.P., Bovy, P.H.: State-of-the-art of vehicular traffic flow mod-
elling. Special Issue on Road Traffic Modelling and Control of the Journal of
Systems and Control Engineering 215(4), 283–303 (2001)

5. Chen, S.H., Jakeman, A.J., Norton, J.P.: Artificial intelligence techniques: An
introduction to their use for modelling environmental systems. Mathematics
and Computers in Simulation, 379–400 (2008)

6. Mamei, M., Roli, A., Zambonelli, F.: Emergence and control of macro-spatial
structures in pertubed cellular automata and implications for pervasive com-
puting. IEEE Transactions on Systems, Man and Cybernatics - Part A, 337–348
(2005)

7. Rich, E., Knight, K.: Artificial Intelligence. McGraw-Hill, New York (1991)
8. Qi, Z., Boaming, H., Dewei, L.: Modeling and simulation of passenger alighting

andboarding movement in beijing metro stations. Transportation Research Part
C, 635–649 (2008)

9. Chen, C., Li, Q., Kaneko, S., Chen, J., Cui, X.: Location optimization algorithm
for emergency signs in public facilities and its applications to a single-floor
supermarket. Fire Safety Journal, 113–120 (2009)

10. Xie, D.-F., Gao, Z.-Y., Zhao, X.-M., Li, K.-P.: Characteristics of mixed traffic
flow with non-motorized vehicles and motorized vehicles at an unsignalized
intersection. Physica A: Statistical Mechanics and its Applications 388(10),
2041–2050 (2009)

11. Blue, V., Bonetto, F., Embrechts, M.: A cellular automata of vehicle self or-
ganization and nonlinear speed transitions. In: Proceedings of Transportation
Reserach Board Annual Meeting, Washington, DC (1996)

12. Nagel, K., Schreckenberg, M.: Cellular automaton models for freeway traffic.
Physics I (2), 2221–2229 (1992)

13. Schadschneider, A., Schreckenberg, M.: Cellular automaton models and traffic
flow. Physics A (26), 679–683 (1993)

14. Villar, L., de Souza, A.: Cellular automata models for general traffic conditions
on a line. Physica A (211), 84–92 (1994)

15. Nagel, K.: Particle hopping models and traffic flow theory. Physical Review E
(3), 4655–4672 (1996)

16. Maerivoet, S., Moor, B.D.: Cellular automata models of road traffic. Physics
Reports 419(1), 1–64 (2005)

17. Makowiec, D., Miklaszewski, W.: Nagel-schreckenberg model of traffic - study
of diversity of car rules. In: International Conference on Computational Science,
vol. (3), pp. 256–263 (2006)

18. Wahle, J., Neubert, L., Esser, J., Schreckenberg, M.: A cellular automaton
traffic flow model for online simulation of traffic. Parallel Computing 27(5),
719–735 (2001)

19. Boccara, N., Fuks, H.: Critical behaviour of a cellular automaton highway traffic
model. Journal of Physics A: Mathematical and General 33(17), 3407–3415
(2000)

20. Fukś, H.: Exact results for deterministic cellular automata traffic models. Phys.
Rev. E 60(1), 197–202 (1999)

21. Nassab, K., Schreckenberg, M., Boulmakoul, A., Ouaskit, S.: Effect of the lane
reduction in the cellular automata models applied to the two-lane traffic. Phys-
ica A: Statistical Mechanics and its Applications 369(2), 841–852 (2006)

22. Zhu, H., Lei, L., Dai, S.: Two-lane traffic simulations with a blockage induced by
an accident car. Physica A: Statistical Mechanics and its Applications 388(14),
2903–2910 (2009)

124 L.D. Tavares et al.

23. Fan, L., Poh, K.-L., Zhou, P.: A sequential feature extraction approach for näıve
bayes classification of microarray data. Expert Systems with Applications 36(6),
9919–9923 (2009)

24. Perez, A., Larranaga, P., Inza, I.: Bayesian classifiers based on kernel density
estimation: Flexible classifiers. International Journal of Approximate Reason-
ing 50(2), 341–362 (2009)

25. Isa, D., Kallimani, V., Lee, L.H.: Using the self organizing map for clustering
of text documents. Expert Systems with Applications 36(5), 9584–9591 (2009)

26. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology.
IEEE Transactions on Systems, Man, and Cybernetics 21(3), 660–674 (1991)

27. Choi, K., Singh, S., Kodali, A., Pattipati, K., Sheppard, J., Namburu, S., Chi-
gusa, S., Prokhorov, D., Qiao, L.: Novel classifier fusion approaches for fault
diagnosis in automotive systems. IEEE Transactions on Instrumentation and
Measurement 58(3), 260–269 (2009)

28. Zuo, W., Zhang, D., Wang, K.: On kernel difference-weighted k-nearest neighbor
classification. Pattern Anal. Applic. 11(3-4), 247–257 (2008)

29. Haykin, S.: Redes Neurais: Prinćıpios e Prática. Bookman, vol. 2 (2004)
30. Delen, D., Fuller, C., McCann, C., Ray, D.: Analysis of healthcare coverage:

A data mining approach. Expert Systems with Applications 36(2), 995–1003
(2009)

31. Braga, A.d.P., Carvalho, A.P.D.L.F.D., Ludemir, T.B.: Redes Neurais Artifici-
ais - Teoria e Aplicações. LTC 2 (2007)

32. Schnell, S., Saur, D., Kreher, B.W., Hennig, J., Burkhardt, H., Kiselev, V.G.:
Fully automated classification of hardi in vivo data using a support vector
machine. NeuroImage 46(3), 642–651 (2009)

33. Maglogiannisa, I., Loukisb, E., Zafiropoulosb, E., Stasis, A.: Fully automated
classification of hardi in vivo data using a support vector machine. Computer
Methods and Programs in Biomedicine 95(1), 47–61 (2009)

34. Bae, M.H., Pan, R., Wu, T., Badea, A.: Automated segmentation of mouse
brain images using extended mrf. NeuroImage 46(3), 717–725 (2009)

35. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing.
Prentice-Hall, Englewood Cliffs (1997)

I. Hatzilygeroudis and J. Prentzas (Eds.): Comb. of Intell. Methods and Appl., SIST 8, pp. 125–143.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Next Generation Environments for
Context-Aware Learning Design*

Patricia Charlton and George D. Magoulas

Abstract. Next generation Learning Design tools and applications have similar
design requirements as intelligent applications that create, share and re-use content
through the use of data specifications or formal models. In this paper, we present an
approach that combines ontologies and autonomic computing principles to design and
build next generation learning design environments that possess context-aware
features. Our approach builds on the features of self-management and organisation of
autonomic computing but uses self-configuration as a means to extend a knowledge-
based inference through the design of meta-level inference. This leads to the design
and implementation of a next generation learning design tool that is context-aware
supporting both knowledge push and knowledge pull to enable appropriate use of
theory and practice when creating learning designs for use in higher education.

1 Introduction

One of the current interests in the field of “Learning Design” is to find ways to
support teachers who wish to develop designs that incorporate digital technologies
[11]. The focus from pedagogical point of view is to enable teachers to exploit the
constructivist potential of digital technologies for learning: those that support
learners in discussing, collaborating, and creating user-generated designs.

The term “Learning Design” has been in use only in recent years; the earliest
work in the field can be traced back to instructivist approaches, e.g. [10]. To make
theoretical findings readily available to practitioners led to extensive work on
Instructional Design Theory [15], which attempted to make learning theories more
operational. The development of interest in “Learning Design” as a focus of
research began with this recognition that the constructivist pedagogical theories
did not easily transfer to the practice of teaching [13]. The emphasis on what
learners were doing and how to support their activities was much less constrained

Patricia Charlton
London Knowledge Lab, Birkbeck College, University of London, UK
e-mail: patricia@dcs.bbk.ac.uk

George D. Magoulas
London Knowledge Lab, Birkbeck College, University of London, UK
e-mail: gmagoulas@dcs.bbk.ac.uk

126 P. Charlton and G.D. Magoulas

by constructivism. This dependence on the context in which learning takes place
required an approach to teaching based on design principles rather than
pre-defined instructional sequences [14]. Supporting these design principles has
required re-thinking how to support learning designers.

By leveraging the semantic web developments and knowledge management,
and exploiting the observation that knowledge management building blocks
(ontological models) form the domain grounding for context-aware applications
we have designed and implemented a framework for supporting next generation
Learning Design (LD) tools. To manage and exploit the semantics of concepts
used when creating the learning design we use self-configuration, an autonomic
computing technique, which enables us to infer about appropriate context changes,
as well managing context alignment via the underlying ontological models.

The paper is organized as follows: In Section 2 there is a review of learning design
tools and identification of their limitations. Section 3 provides the requirements for a
learning design environment and evaluates tools with respect to self-configurable and
context-aware capabilities. Section 4 provides a short summary about the background
of autonomic computing and context-aware systems and the use of ontologies. In
Section 5 we present our approach to support context-aware learning design. Section 6
illustrates the overall architecture and self-configurable inference details demonstrating
the creation and management of context-paths. Section 7 concludes the paper.

2 Learning Design Tools

Existing e-learning systems and authoring tools have several limitations in respect
of support provided and usability, and cannot accommodate the needs of teachers
who increasingly look for more intelligent services and support when designing
instruction [12]. This support can be potentially helpful in formulating teaching
goals and lesson plans and in better accommodating learners’ needs by
incorporating personalization technologies into teachers’ designs. In fact, at
present, systems do not provide tools for identifying patterns in effective practice
and offer no opportunities for teachers to personalize the learning experience and
collaborate with peers in developing more effective designs.

There is considerable work on developing various languages and formalisms for
learning design (e.g. [22][23]). The Educational Modeling Language (EML), which
appeared in 2000, was the outcome of work that started in 1997 by the IMS Global
Consortium (IMS) and the OUNL. Initial work by the IMS targeted support
processes for learning rather than the learning process itself but by early 2001 it was
realized that a specification was needed to describe the learning processes. The EML
approach to pedagogy is to provide a high-level abstraction of learning methods,
including actors (e.g. tutors and students) and roles (e.g. activities) undertaken in an
environment. The term "environment" has been used in this context to describe
learning content, tools, communication, and other elements usable by learners and
others in an activity. Activities are structured using a "learning flow" that includes
decision-points (so that, for example, performance in one activity determines the
next), sequences and choices. This high level of abstraction and flexibility makes
EML a very powerful tool for expressing very different learning scenarios. The

Next Generation Environments for Context-Aware Learning Design 127

EML focused on the entire learning process and was considered as complementary
to the specifications developed by IMS. The IMS LD 1.0 adopted the XML format,
which is not visible to the designer but works behind the scenes like the converters
of document formats used in software applications (e.g. converting DOC format to
HTML in MS Word).

Other attempts in this area internationally, include the PALO language
(http://sensei.ieec.uned.es/palo/) and the E2ML [19]. The PALO approach allows
creation of a course-specific repository of semantically linked material rather than
a set of local or distributed knowledge objects, which leads to the construction of a
knowledge base that is organized along a set of themes/learning scenarios. This is
considered as a core aspect of course development in PALO. In E2ML, goals,
requirements and design of the teaching and learning activities are described in a
visual language. The E2ML model is compliant with the IMS LD specification; it
can be integrated with Learning Object Metadata standards and its usability has
been explored in several studies.

IMS LD has motivated developments in authoring using tools that exploit IMS
LD concepts, such as the Unit of Learning (UoL), or are IMS LD compliant [20].
Some examples in this area are editors like CopperAuthor1 and Cosmos2 or the
Reload LD Editor3, which can be run together with other tools and engines, like
CopperCore4 or Sled5 . However, current tools are not very friendly to non
technical users as they assume that the teacher is familiar with the technical
editors and the specifications. Paquette’s work [22] uses OWL (the Web ontology
language), as a key component in developing formal representations. This work
can inform the development of next generation of environments for learning
design by matching it with design-based representations that mesh with and
extend effective teaching practice.

3 Rational and Overview of Our Approach

Although LD information can be quantified for engineering purposes, as done in
the works mentioned above, only LD knowledge is of real social and economic
importance and can help to increase the rate of adoption and change current
teacher practices. This kind of knowledge must be assimilated by humans before
they can use it and is not enough to copy information or reproduce learning design
products mechanically using XML, Petri Nets or LAMS sequences. In our view a
LD environment should work more like a system to manage tacit knowledge (i.e.
knowledge acquired from practical experiences). This type of knowledge cannot
be easily formalized (e.g. using Petri Nets) and not a single actor knows the whole
picture. Thus it is hard to learn and pass on and this knowledge has not yet been
given sufficient recognition in the approaches to LD so far. However, this form of
knowledge is an essential part of the educational environment and affects its

 1 http://sourceforge.net/projects/copperauthor/
 2 http://www.collide.info/Members/admin/publications/ICCE05.260.pdf
 3 http://www.reload.ac.uk/
 4 http://coppercore.sourceforge.net/
 5 http://sled.open.ac.uk/

128 P. Charlton and G.D. Magoulas

economic performance. Inclusion of the LD theory and practice from various
perspectives and view points is the basis of our design which employs knowledge
engineering to structure the LD concepts and learner designers’ requirements for
flexibility in the design process in order to provide an environment for enabling
knowledge push. This knowledge is an important component of the teaching
profession, and social cooperation and a common understanding are crucial to task
performance.

Current LD tools described in Section 2 can be roughly organized into the
following groups: (a) standards-based, (b) generic form-based, (c) authoring tools
and (d) ontology-based. Table 1 provides an overview.

Table 1 Overview of Existing Tools and Main Properties

Properties Learning Design Tools

Standards-
based

Generic form-
based

Authoring Ontology-
based

Self-configure No No No No

Context-aware No No No No

Inference No inference
about theory

No inference;
static guidance
about theory is
used

Inference
usually sup-
ports one
theory

May provide
inference

Formal ontol-
ogy

No In part May support
concepts
about one
theory

Yes, only a
model or lim-
ited set of the-
ory supported

Concepts Concepts and
schemas for us-
age and integra-
tion

Concepts about
LD are available
as part of the form

Yes Yes

Standards-based approaches, such as Educational modeling languages and

IMS-LD [2], provide greater interoperability between tools and designs. This
approach enables building tools with specific functionality, e.g. LAMS6, Moodle7,
which facilitate creating activity sequences, supporting from technical point of
view modeling of various design methods, theories and approaches and generate
designs through LD engines. Generic form-based tools, such as Phoebe8 and
CompendiumLD9 are used for designing, managing and delivering learning
activities and content, e.g. learning design documents and, in certain cases, enable
collaboration, online learning and social networking (e.g. Cloudworks 10). They

 6 http://www.lamsinternational.com/
 7 http://moodle.org/
 8 http://www.phoebe.ox.ac.uk/
 9 http://compendiumld.open.ac.uk/
10 http://cloudworks.ac.uk/

Next Generation Environments for Context-Aware Learning Design 129

focus on one aspect of the design process and as a result designers need to learn
and engage with a number of tools to benefit from re-use. Authoring tools usually
support a particular instructional design theory and employ inference engines that
enable sequencing and presentation of instructional material depending on learner
characteristics; an overview is given in [4]. Ontology-based tools represent
domain concepts and relationships [5][6] as well as educational theories and
relationships [3] among them. They facilitate communication and sharing of LD
knowledge through common vocabularies and the development of a rational for
learning designs use, modeling, and most of the time promote a particular
pedagogy approach.

The tools discussed above do not support the context-aware needs for complex
applications and they are limited in their adaptation to the context of use. While
context-aware [9] is often classed as event-driven, here we mean data-driven or
more precisely domain knowledge-driven: conventional context-aware systems
use property values for matching and triggering related events while a knowledge-
aware system makes inferences between related concepts based on a deep domain
and knowledge understanding. In the Learning Design Support Environment
(LDSE) presented in this chapter this is enabled by a domain ontology that defines
relevant concepts, which form both part of the problem definition and a solution,
and inference rules to determine concepts that relate to the user’s current problem
space. Thus, concepts, such as learning outcomes, learning activities, learning
approaches etc. form the problem definition or the solution depending on the
user’s context of use, e.g. for a designer who is following an approach to LD that
is organized in terms of particular learning outcomes, the LDSE would exploit
relationships between sets of learning outcomes and types of activities that are
defined in terms of learning approaches that best serve them.

In LDSE, thus, it is not data processing of properties and values in the
conventional sense but concept relationships that influence the construction of a
context path, which is then managed through LD inference rules to determine
concepts that relate to the user’s problem space, i.e. user’s design requirements.
Rules are triggered by LD concepts incorporated in users learning design and user
actions during the process of LD. Moreover, this is an approach that does not
make assumptions about a particular way of creating learning designs as typically
done in LD tools described above; for example using standard templates or
specific learning objects. Instead it is based on a context path that emerges as
events, concepts and information become available.

Let us consider for example a designer who creates her learning design
employing concepts represented in the LDSE ontology. As the designer selects
concepts to create her learning design (such as the concept “Learning outcome”)
and expresses that the aim of her session is to “Communicate ideas in
academically acceptable forms of expression and argument”, the LDSE inference
engine is determining those concepts that are appropriate for the particular
context. To this end, LDSE builds upon a number of “Learning Approaches” that
are available in the system supporting the various learning outcomes. For
example, in this case, the learning outcome “Synthesis” (following Bloom’s
taxonomy) with instance “Communicate ideas” is supported by a learning

130 P. Charlton and G.D. Magoulas

approach “Collaborative learning” that is best served by a set of “Learning
activities”, whose instance “online collaborative project using simulator” could be
suggested to the designer as a potentially useful element of her design. At any
point the user can of course ignore specific concepts/suggestions of LDSE altering
the context path.

Apart from ontologies and inference rules, our approach exploits the type of
features of self-management and organization that is expressed in autonomic
computing [1]. LDSE uses self-configuration as a means to extend its knowledge-
based LD inference through the design of meta-level inference. The inclusion of a
concept within a learning design means that other domain concepts maybe more
relevant than they were before. A process of self-configuration at the meta-level
permits the inference to inspect not just concepts but relationships as well. This is
necessary in order to both manage and infer the creation of two context-paths. For
example the addition to a learning design by the user can be a core concept
(represented in the LDSE ontology), a modified concept, a shared concept that is
situated, or content that is unknown to the LDSE system. The evaluation of the
nature of the concept at that point in time by the inference engine prepares an
alignment of concepts for next possible steps and LD tags. This provides a
knowledge-aware application with flexibility in finding, using and presenting
information to the user.

Lastly, our approach has been designed to support multiple theories about LD,
which assists in creating application context. This has been developed based on
interviews with LD practitioners and LD case studies (see [8] for a full description
of the methods used to construct our approach) and is theoretically underpinned by
the Conversational Framework (CF) [16]. CF provides conceptual depth and
perspective round a number of pedagogical theories with a clear mapping of a unit
of learning into the broader ideas of a constructivist perspective. This has led to an
ontological design of the system, where a unit of learning may differ both in
concept and content to work of others, such as Mizoguichi [12] who attempted to
create a theory-aware environment by adopting a particular instructional design
theory.

4 Autonomic Computing and Ontologies for Context-Aware LD

Autonomic computing is aimed at designing and building systems that are self-
managing. The characteristics often attributed to an autonomic system are a self-
managing, autonomous and ubiquitous computing environment that completely
hides complexity, thus providing the user with an interface that exactly meets
his/her needs [1]. While LD identified the need for flexibility to support the
functionality of self-management, there are two common autonomic computing
design challenges that should be addressed: (a) what context to use for self-
management and (b) how to collect that particular context in both form and
content.

Several researchers [7] [9] have tried to categorize context-aware applications
according to subjective criteria; a taxonomy on context-aware features is proposed in
[7]. There are three general categories of context-aware features that context-aware

Next Generation Environments for Context-Aware Learning Design 131

applications may support [9]: (a) services to a user, (b) automatic execution of a
service, and (c) tagging of context to information for later retrieval.

Here we consider LDSE to be context-aware if it can extract, interpret and use
context information and adapt its functionality to the current context of use. LDSE
uses the ontologies to provide context to assist in the creation of learning designs
on behalf of the user.

For example, let us consider the following scenario. The learning designer has
chosen an annotated activity of the type “small discussion group”. The system
automatically constructs the context path for this learning design and offers to the
user relevant “Learning Outcome” recommendations. The recommendations come
constructed with content that can be edited or used directly. This inference is
performed indirectly by the LDSE via the concept “Learning Approach”. In
LDSE, the LD concepts have many to many relationships, e.g. many activities
may support the learning outcome “Comprehension”. As the user constructs
concepts to complete their learning design the LDSE is constructing relevant
knowledge. When the user edits or shares this learning design the same knowledge
can be used to reference appropriately the concepts and immediately provide
different views of the knowledge, such as LDSE view, user view, modified view
illustrating the changes, e.g. activity, class size support, learning experience view
etc. The user can change properties and concepts, such as class size, use of
activities, e.g. on-line resources versus face-to-face teaching to see immediately
what the implication is for a particular design for both the learner and teacher. It is
the system’s perspective, built on the knowledge of the LD community. The
learning designer is in control in terms of using recommendations when they seem
appropriate and when to use system concepts rather than modified concepts etc.
While terms can be changed, so can the context of use. Again, the system provides
a “common context of use”. The modifications are held as contextual preferences
by the user. The same principles of knowledge-based and self-configuration are
applied.

Fig. 1 illustrates the concepts used to automatically tag a learning design in the
above scenario. This tagging is automatic as the inference engine is supporting the
same concepts selected by the user that exist in the knowledge-base. Both the
knowledge-base concepts and context of use are maintained in such a way that the
inference is possible. This formal semantics underpin the design enabling
preference re-use, e.g. such as previous terms or properties that have been created
by the user and sharing of designs. Adaptation occurs using both the knowledge
model and the self-configuration. The self-configuration principles build on the
relationships and LD rules. This means that while self-configuration is generic, it
is constrained by the principles of the domain. LD exploits the flexibility of
concepts clusters and the modification of these concepts being constructed via the
user-driven selection. The knowledge push and knowledge-aware is possible by
exploiting the same principles of concept similarity, indirect mappings and look-
ahead strategy of self-configurability.

132 P. Charlton and G.D. Magoulas

Fig. 1 Automatic creation of semantic tags for annotating learning design.

In LDSE, ontologies are used to enable the user to find learning designs that
best match their LD approach: the user can enter LD concepts that exist in the
knowledge-base. A user requiring assistance in adding learning outcomes to their
design can request all known learning outcomes from the knowledge-base. The
knowledge-base will use any context about the current learning design to
appropriately present the learning outcomes. This is possible because the LDSE
contains both concepts and relationships, thus defining a “concept context about
LD”. This is used as an inference template to assist in concept processing of the
users request rather than a keyword search. Thus, the match is based on the formal
processing of learning design concepts held in the knowledge-base.

The ontologies enable personalization methods to create and manage personal
learning designs to be applied to the creation, search and retrieval of appropriate
learning designs. They are also used to identify LD related concepts and content:
the content entered by the user is related to the concepts in the knowledge-base,
e.g. “Session topic” means that the user is working on concepts about a session.
LDSE does not understand the domain of topics but the concepts about session.
Hence as content is used within certain contexts, e.g. activities and session
descriptions, the content is indirectly situated and thus tagged in this manner. This
knowledge can be used to better categorize that content for further use.

The application of context is about how to maintain and enhance the context of
tagging (see Fig. 1): the learning designs are triggering configuration rules that
self-adapt and self-organize the underlying concepts of a learning design as
changes take place by the user. The context, which is represented as a set of
concepts that are used to build a context-path, can provide the relevant knowledge

Next Generation Environments for Context-Aware Learning Design 133

at run-time for the user. There are two context-based ontological models held by the
LDSE. The first is the LDSE core ontology and the second is created at run-time
when the user is creating their learning design, which may include modifications to
the concepts that are part of the core ontology. As these modifications take place a
meta-level inference is used to investigate the changes.

The self-configurable inference is about supporting “individual” contextual
information, from history of use or declared alternative terms, or modified properties
about learning design context. The individual context information can come from re-
using previous learning designs, creation of personal terms from the common set of
terms and refining the properties of common concepts that exist in the LDSE core
ontology.

5 Self-configuration Approach and Use of Ontologies

In LDSE, users’ individual terms and concepts support their personal preferences of
creating learning designs. The context is gradually constructed as users enter LD
concepts in their learning designs. LD concepts either refer directly to concepts in the
core ontology or are, new concepts and content that are added by the user. Thus, they
cannot be recognized as part of the core ontology and are “indirectly” referenced. The
self-configurable context is built as a path. It is created as a conceptual network.
Concepts and properties are matched in terms of similarity measure that operates as
constraints in determining which cluster of concepts best reflect the creation of a
learning design.

Self-configurable rules are used by the LDSE to assist in the automation of finding
relevant concepts and content. The context of when to self-configure is built during
the creation of the learning designs. If for example there is only one action to be taken
in the next stage of the learning design, then self-configuration is simple – it is
“execute” that action. If however, the user has made many modifications to the
instances of a concept or set of concepts in use, e.g. editing a particular design. Then
the LD engine needs to inspect the consequences of these changes both for
appropriately tagging the design and for preparing possible next stages of the design.
This requires the inference engine to reflect about if the current named concept is the
most appropriately aligned concept. For example the user may have decided that the
learning outcome they are designing for is Application (following Bloom’s
taxonomy). However, the user makes significant changes to the session and selects
both activities and content material that from an LDSE perspective is for “Learning
Outcome” Evaluation- to determine this inference requires the LDSE to inspect not
just the properties of the concepts but the relationships that are either direct or
indirect. This triggers a context-path alignment that is used to position further
appropriate use of concepts. On the one hand the user’s explicit reference to
Application must be used as the user’s label but on the other hand content retrieval of
other design content is appropriately mapped to Evaluation. Application is still used
but Evaluation content is also retrieved. Now if the user uses the Evaluation content
then while the LD is tagged with Application externally, e.g. in the interface, the
LDSE specific tagging does two things: first it tags with a user specific learning
outcome Application but then has an LDSE alignment context path that tags this as

134 P. Charlton and G.D. Magoulas

Evaluation. The result is when the learning design is shared or re-used it is used as an
example of serving both Application and Evaluation learning outcomes. To achieve
such alignment of concepts requires meta-level inspection that is a relationship
inspection not just a concept instance or property inspection as to design the specific
rules for every case would be extremely difficult. This also enables the user to create
their own terminology that can still be underpinned by the LDSE, e.g. for example a
user may create a learning outcome that is not part of Bloom’s taxonomy. For
example the user may wish to have a learning outcome called Creativity. Thus
through the self-configuration the new learning outcome can be included and built.
However, it does not form part of the core LDSE ontology but can be used and shared
in the same way.

The similarity measure and rules of thumb define a set of conditions to be
ideally satisfied. A particular priority order is provided by the LDSE but other
configurations are enabled to permit user divergence while supporting the LD
creation process - the “best support from the LDSE system” – as illustrated in the
example given above about the user’s view of learning outcome Application and
LDSE view of the changes indicating learning outcome Evaluation. When there
are user’s preferences and concepts mapped to rules using concept alignment then
the meta-inference is used to find a solution to: (a) create a context path, (b) link
the appropriate core concepts, and (c) re-use of the formal semantic tagging
(which is a representation of the context path created at run time).

5.1 Constructing a Context Path

When the LDSE receives a user input, it reasons about this input and sets up a context
path that reflects its understanding of the learning design being created. This context
is passed to the inference configuration and the necessary computations needed to
deal with the input are created. Once a concept has been added to the context path
then the management of the context-path requires handling further modification to
properties and deletion of concepts. These changes require a call to “configure” an
inference inspection by self-configure rules again with type similarity-context, or
same, or indirect-context. However, it is possible that a configuration can result in a
context-path being unbounded or highly fragmented. Essentially, the set of concepts
changes made by the user are such that the mapping to the core ontology is limited,
and thus limited knowledge can be inferred from the context-path related to the
current learning design.

5.2 Managing the Context Path through Ontology Alignment

In the LDSE there are two context-paths created. The first path contains the original
core LDSE ontologies and the second path the LDSE ontologies used, modified
concepts and the user-created ontologies. Both context-paths form part of the formal
semantic tagging of the learning design. This means that when the editing of the
design happens, or sharing or re-use, the underlying concepts and the context in
which they were used can be drawn from to support the creation of further learning
designs. Fig. 1 provides an example of using the LDSE to create learning design
using the ontology.

Next Generation Environments for Context-Aware Learning Design 135

Within the LDSE the core ontologies are known, possible extensions are
enabled and although general extensions are possible through the self-configurable
approach the ontology extension is scoped. The creation and management of the
context-path is considered a simplified form of ontology alignment, which is
described as the task of finding relationships holding between the entities of two
different ontologies; thus establishing a set of mappings expressing the
correspondence between two entities of different ontologies through their relation.

The ontology alignment in LDSE is specialized to a set of correspondences
between two ontologies, which are expressed as mappings between two context-
paths as well as within a context path. The mapping within a context-path is a
formal expression that states the semantic relation between two entities belonging
to different ontologies. However, between the two context-paths this provides one
ontology as an extension or modification of another and thus the similarity-
measure becomes an evaluation of the extension or modification to use both the
initial ontology and the user ontology edits to see if other core ontology may better
serve to underpin the current learning design. The mappings are based on
terminology and conceptual similarities. As the users are creating their learning
design, some of the original concepts will be modified or new unknown concepts
will be added. The concepts that are the same, modified or new are matched to the
core ontology by using terminology and conceptual similarity. The result of this
matching is used to generate the context-path of the learning design. Knowing the
concepts that are similar is used to configure the next set of appropriate concepts
for the user.

Fig. 2 An example of ontologies and context creation that occurs when a user creates a
simple session.

Terminological similarity is the part of a mapping that expresses terminological
relations between the lexical expressions used to name the entities to be mapped.
Simple examples are: the name of two entities is the same, the name of an entity is

136 P. Charlton and G.D. Magoulas

an abbreviation of the name of the other or has been created by the user through
the LDSE pedagogy thesaurus (see Section 6) and contains same properties but
different names of the concepts.

Conceptual similarity is the part of a mapping that expresses the relation
between entities in different ontologies. Simple examples are: concept c1 in
ontology O1 is equivalent to concept c2 in ontology O2, concept c1 in ontology O1
is similar to concept c2 in ontology O2, instance i1 in ontology O1 is the same as
instance i2 in ontology O2. O2 is built as the user creates their learning designs and
may never differ from the original ontology accept in values and terminology.
However, extensions and modifications and deletion of properties are possible by
the user and the inclusion of non core concepts means that handling the context of
similarity and indirect mappings is required. This means:

• given two ontologies O1 and O2 with different coverage, tells us how the two
ontologies can be used together to achieve a (less partial) description of the LD
domain in LDSE. This permits clustering relevant concepts when the user is
creating, editing or sharing a learning design.

• given two ontologies O1 and O2 with different granularity, tells us how facts in
O1 can be systematically translated into facts of O2 (for example, how a fact f1
belonging to O1 can be rewritten as a logically equivalent fact f2 in O2). The
user may chose a particular instance but wish to use a different set of terms. If
the properties remain the same then the LDSE can draw from the original
concepts and relationships to provide relevant information.

• given two ontologies O1 and O2 with different perspective, tells us how a fact f1
in O1 would be seen from the perspective of O2.

Over time the context-path itself provides the contextual cues in determining a
user ontology alignment relative to the core ontology, e.g. through indirect
context, frequency of use of certain terminology and concepts etc. The expression
of alignment, simplified by this application, enables LD concepts adapted by the
user to be linked to the LDSE core ontology. The use of “with different
perspectives” alignment enables the provision of a pedagogy framework, where
the use of user terminology within the creation of learning design can be “aligned”
with the underlying concepts in the LDSE supported by LD relationships.

Fig 2 provides an example of ontologies and context creation that occurs when a
user creates a simple session with a learning outcome using the LDSE ontology core
concepts. In the knowledge-base there is a basic concept about a session. Each
session will have a description and is ideally expected to have at least one other
concept (indicated by the has-a relationship). The other concept can be, for example,
educational aims, learning outcomes, learning activity sequence or summative
assessment. In this example the user has chosen the “Learning Outcome” concept and
a set of learning outcomes, such as those shown in Fig. 3 based on Bloom’s
Taxonomy, are presented. Each learning outcome concept has a set of instances (an
instance may also belong to a number of learning outcome concepts).

In Fig. 3 “a Learning Outcome” is an abstract concept, which has a relationship
links_to “Learning Activity ”. However, note the relationship from “Learning
Activity” achieves “Learning Outcomes”. For the expert the concept “Learning

Next Generation Environments for Context-Aware Learning Design 137

Activity” has details of achieving a particular learning outcome. It is meant to be
some type of content, tool, instruction that a teacher will use during the lesson.
However, the relationship links_to from “Learning Outcome” to “Learning Activity”
is intuitively more vague/loose relationship.

The concept hierarchy for “Learning Outcome” has a set of concrete classes that
has the relationship “isa” (or is a kind of) e.g. “Comprehension” is a kind of learning
outcome. Learning Outcomes also have relationships defined indirectly with session
types and more directly with the learning approaches. Within certain concepts,
properties are themselves concepts and so at any one interaction point with the user
the LDSE inference engine can draw from the Knowledge-base (KB) a set of
appropriate concepts to be used to help in the creation of learning design. This is the
common use of KBs and inferencing to create inference-based contextual
information. However, combining both the KB and self-configuration we can
consider the broader scope of the LD context.

Fig. 3 Learning outcomes in the knowledge-base.

5.3 Self-configuration and Inference

Designs that include meta-interpreters and reflective techniques have been applied
to enable the modeling of code as data that can be later included in the system
execution. It is a highly compelling technique in distributed systems and is used in
various ways to enable users to download and automatically install software,
where configurations of the software to the hardware are possible. We use this
technique in LDSE to enable self-configuration as part of the inference steps about
the learning design application. The contextual knowledge gathered as a learning
design is created can be used at each inference stage to select appropriate
concepts. Within the LD context the concept of “self” can be coarsely divided
into:

• The ability to handle high-level tasks and to automate the completion of these
tasks. The possible types of knowledge are pre-defined (but not necessarily all
instances of the knowledge) and the system has methods, rules and protocols to
deal with the automation of tasks. In Fig. 4 the Learning Design Reasoner uses
the LDSE ontology and user defined concepts to determine the concepts to be
used and content inferencing for the user;

138 P. Charlton and G.D. Magoulas

Fig. 4 Overview of LDSE Reasoner.

• Self-management inferencing to determine the next action, when not all of the
decision processes have been predefined and encoded. Fig. 4 illustrates where
the self-configuration is triggered to inspect concepts from shared learning
designs or when concepts are modified. The LD inference is then effected
because direc#t concept inferencing may not be possible.

The first point can be handled by leveraging an ontological model that captures
the relationships of learning design. The designs can be annotated with formal
concepts from the knowledge-base. The second representation of “self”, where an
inference has the possibility to incorporate self-management, is useful during the
evaluation of a LD or when re-using LDs.

6 LDSE Architecture: Context-Awareness and
Self-configuration Features

Fig. 5(a) and (b) provides an illustration of the main components of the LDSE.
The conceptual model is represented by the LD ontology and includes
relationships that support the use of pedagogy theory in practice. The pedagogy
thesaurus permits the user to define their own terms that are linked to the original
concepts found in the LD ontology. The usage of the new terms and change to
properties triggers a contextual cue analysis to see if there are closer matching
concepts than the original concept used. The user model and preferences relate to
frequently used LD knowledge and re-use, such as concepts and terms from the
pedagogy thesaurus or the LD ontology. The contextual information generated
through the interaction with the system is stored keeping the context path details
for later use, e.g. when editing a design. The learning designs that have been
created are stored including the relationships and changes made from the original
LD ontology, concepts developed in the pedagogy thesaurus and other contextual
information from the user model and preferences. The learning designs are

Next Generation Environments for Context-Aware Learning Design 139

Fig. 5(a) Visualization and organization of the learning designs in LDSE 1.0.

Fig. 5(b) Overview of context-aware LDSE architecture

automatically tagged by the system with the appropriated instances and
modifications from the learning design ontology. The community knowledge
contains the content to be shared and how this is shared and the re-use of other
learning designs that contain the learning design tags.

The LDSE inference engine uses the ontology concepts to determine the
appropriate knowledge, such as activities and learning outcomes to offer to the
user. Contextual information is drawn from the user interactions and the
conceptual models, learning designs and preferences held in knowledge-base. This
permits “knowledge push” of recommendations to the user. The visualization of
the designs is based on the same concepts from the ontology that have been
modified to suite the learning design purpose. A time line presentation permits the
user to see the set of scheduled activities. A pie chart permits the user to visualize
the learning experience that is at the heart of their learning design, based on the
concepts from the ontology. The form permits the user to enter free text and view
recommendations and use the concepts that are available. The tree view of the
learning design shows an overview to the user of the learning design, e.g. level of
design, activities used during sessions etc.

140 P. Charlton and G.D. Magoulas

Key to the design in order to enable both direct mapping and indirect mapping
of contextual knowledge is the context path creation and management. As
mentioned earlier there are two views of the context path maintained: the expected
set of concepts and the modified set of concepts. There is also during the process
of creating a learning design additional knowledge generated and, thus, associated
with the context, e.g. preferences and particular content. The management of the
context path is through the use of self-configuration system [24]. This enables
both flexibility and context inspection at run-time; thus enabling the design
adaptation and personalization. The creation of a context path requires the
following types of knowledge-base inputs:

1. A collection of concepts. Each concept or set of concepts has a set of
properties. The starting concept of any context path will define the most
relevant concept clusters that will follow.

2. Relation between different concepts, which define the priority of concepts
(close to/relevant) and can be determined by the context of a specific or set of
configuration rules.

3. Self-configuration context, which is defined by a set of configuration principles
of learning design as part of the system. This is underpinned by the set of
configuration rules.

We use the principles of self-configuration to provide the framework in which the
context path can be created. This allows flexibility of design for adaptation
through changing concepts, modifying concepts and creating concepts.

Self-configuration is a method to represent the process of inference. Self-
configuration is defined as meta-level inference so that the knowledge about the
current context can be taken into account and appropriate concepts from the
ontology can be included as certain data parameters change. The approach is used
because it is impossible to design before hand all the choices and changes a user
will make when creating their learning design. Very few properties of the LD
concepts are fixed in terms of their values. While the LDSE has been designed
with default preferences the true context and understanding of any given design is
held in the user’s mind. Thus, the inference process tries to align the changes
made by the user with the relationships held in the knowledge-base.

In fact, what makes a concept unique is determined by the property, values and
the relationships that concept has with other concepts. For example a teaching and
learning activity has certain properties, e.g. an activity defined as “individual
supervised project” means that the teacher’s time with the student contains
“individual supervision”, i.e. the class size is one. If the activity is a group project
then the class size is one or more. As the number of students change the learning
experience through the group dynamics can change. Depending on the learning
outcome there are different combinations and ways of organizing a session. It is
possible during the design of a session that a teacher decides that the individual
project supervision has a class size of five. There maybe many reasons that the
teacher chooses to make this change. However, LDSE logically interprets this
change as a trigger to find if other concepts and relationships internally are better
suited to this new property value within the LDSE knowledge-base.

Next Generation Environments for Context-Aware Learning Design 141

To this end, several meta-level partial inferences can occur. They are meta-
level because to determine the alignment of the data the inspection must take place
taking into account the set of possible alternative concepts. Once the LDSE has
inspected and evaluated the possible alignments then normal first-order inference
can continue. However, the normal first-order inference context is determined by
the process of self-configuration about LD, to include new concepts and the
relationship with other concepts. This process of suspending the process of
reasoning, reasoning about the process, and using the results to control subsequent
reasoning is called reflection [25]. For example, self-configure inference of LD
inference about create LD context and a set of LDs, then create LDi context
produces a change to LDi, if and only if current concept Ci of LDi is different from
the knowledge-base LDSEi.

Concept(create context(LD), LDSE) ≠ Concept(LD, LDSE).

Once the change is recognized then self-configuration of a new alignment to be
included within the creation of the LD occurs. The alignment uses the concepts
(properties and values) and the relationships to determine what “influence” this
change in the concept has created for this learning design.

The inferencing rules through self-configuration and the context path provide
the necessary knowledge to manage two context paths and use this to generate
semantic tags that take into account the user choices, modifications and original
concepts from the domain. This permits both the creation and use of a pedagogy
thesaurus, which is user-driven, and of user preferences. The preference model is
built from frequency of use of the concepts and properties based on particular
original concepts used and any modification of these concepts. Some of the
concepts used by the user are “linked” by interaction only. That is the user
generates a particular sequence to create their design. Other concepts are directly
drawn from the domain concepts and are part of the initial LDSE context path.
Other concepts are drawn from the pedagogy thesaurus, which links back to the
original concepts. The preference concept may not link to the domain knowledge
directly but is situated in a context of use and, thus, can be inferred through using
the particular knowledge that is located near to the content. The nearness of a
concept is determined by the context path and is based on the ontology alignment
definitions given in Section 5. The knowledge is always driven by the original
concepts but through the use of self-configuration the pedagogy thesaurus or
preferences can be taken into account, and the creation of new or modified
learning designs are adapted appropriately both with recommendations and
automatic tagging by the system.

The current implementation of the LDSE, user interface and integration of the
different components is in Java (see Fig. 5). Protégé has been used to develop the
LD domain ontology and JESS has been used to implement the inference engine
and core functions of the self-configurable framework and contextual cues.

7 Conclusion

Semantic web technologies and autonomic computing principles were combined in
this paper in an attempt to design and build a next generation learning design

142 P. Charlton and G.D. Magoulas

environment. The paper described our approach which builds on the features of self-
management and organization of autonomic computing using self-configuration as a
means to extend a knowledge-based inference through the design of meta-level
inference. Through leveraging the formal semantics of ontological models and
inference techniques our approach illustrates some of the key cues for enabling
context-aware computations that provide intelligent functionality. The system creates
context paths, linking together domain concepts to keep track of the context in which
user’s learning designs are created. This leads to the design and implementation of a
LD tool that is context-aware supporting both knowledge push and knowledge pull to
enable appropriate use of theory and practice when generating learning designs for
use in higher education. While being theory-aware is an important function of a
learning design environment, being context-aware is also critical when including
multiple resources and perspectives. In our approach these are combined through the
inclusion of self-management functions as part of the knowledge inferencing. A
preliminary evaluation of the context-aware features has been conducted with a small
group of learning designers producing promising results for their effectiveness in
supporting lecturers in practice.

References

[1] Steritt, R., Parasgar, M., Tianfield, H., Unland, R.: A Concise Introduction to
Autonomic Computing. Advanced Engineering Informatics 19, 181–187 (2005)

[2] Koper, R.: Learning Design: A Handbook on Modeling and Delivering Networked
Education and Training. Springer, Heidelberg (2005)

[3] Barn, B.S.: Conceptual Modelling of Educational Theories: An ontological approach.
In: Proceeedings of the IADIS International Conference on Cognition and
Exploratory Learning in Digital Age, pp. 45–51 (2006)

[4] Papanikolaou, K.A., Grigoriadou, M.: Building an Instructional Framework to
Support Learner Control in Adaptive Education Systems. In: Magoulas, G.D., Chen,
S.Y. (eds.) Advances in Web-based Education Personalized Learning Environments,
IGI Publishing, pp. 127–146 (2006)

[5] Heiyanthuduwage, S.R., Karunaratna, D.D.: An Iterative and Incremental Approach
for e-learning Ontology Engineering. International Journal of Emerging Technologies
in Learning 4(1), 40–46 (2009)

[6] Armani, J., Botturi, L.: Bridging the Gap with MAID: A method for Adaptive
Instructional Design. In: Magoulas, G.D., Chen, S.Y. (eds.) Advances in Web-based
Education Personalized Learning Environments, IGI Publishing, pp. 147–177 (2006)

[7] Chen, G., Kotz, D.: A Survey of Context-Aware Mobile Computing Research.
Technical Report TR2000-381, Department of Computer Science, Dartmouth
College, Dartmouth Computer Science (2000)

[8] Charlton, P., Magoulas, G., Laurillard, D.: Designing for Learning with Theory and
Practice in Mind. In: Proceedings of the Workshop “Enabling creative learning
design: how HCI, User Modelling and Human Factors help”, part of AIED 2009
Conference, pp. 52–61 (2009)

[9] Dey, A.K., Abowd, G.D.: Towards a Better Understanding of context and context-
awareness. Georgia Institute of Technology, College of Computing, Technical Report
GIT-GVU-99 22 (1999)

Next Generation Environments for Context-Aware Learning Design 143

[10] Merrill, M.D., Twitchell, D. (eds.): Instructional Design Theory. Educational
Technology Publication, Englewood Cliffs (1994)

[11] McNaught, C.: Identifying the complexity of factors in the sharing and reuse of
resources. In: Littlejohn, A. (ed.) Reusing online resources – a sustainable approach
to e-learning, pp. 199–211. London and Stirling, Kogan Page (2003)

[12] Mizoguchi, R., Bourdeau, J.: Using Ontological Engineering to Overcome AI-ED
Problems. International Journal of Artificial Intelligence in Education 11(2), 107–121
(2000)

[13] Jonassen, D.H.: Thinking technology: Toward a constructivist design model.
Educational Technology 34(2), 34–37 (1994)

[14] Oliver, R., Harper, B., Hedberg, J., Wills, S., Agostinho, S.: Formalising the
description of learning designs. In: Goody, A., Herrington, J., Northcote, M. (eds.)
Eds, Quality conversations: Research and Development in Higher Education,
Jamison, ACT, HERDSA, vol. 25, pp. 496–504 (2002)

[15] Reigeluth, C.M.: What is Instructional-Design Theory and How Is It Changing? In:
Reigeluth, C.M. (ed.) Instructional-Design Theories and Models: A New Paradigm of
Instructional Theory, vol. 2, pp. 5–29. Lawrence Erlbaum Associates, Mahwah
(1999)

[16] Laurillard, D.: Rethinking University Teaching. A conversational framework for the
effective use of learning technologies. Routledge, London (2002)

[17] Mizoguchi, R., Hayashi, Y., Bourdeau, J.: Inside Theory-Aware Authoring System.
In: Proceedings of the 5th International Workshop on Ontologies and Semantic Web
for E-Learning (SWEL 2007), USA, July 9, 2007, pp. 1–18 (2007)

[18] Waterson, A., Preece, A.: Verifying ontological commitment in knowledge-based
systems. Knowledge-Based Systems 12(1–2), 45–54 (1999)

[19] Botturi, L.: A Visual Language for Instructional Design: Evaluating the Perceived
Potential of E2ML. In: Proceedings of EDMEDIA, Lugano, Switzerland (2010)

[20] Hernández-Leo, D., et al.: Reusing IMS-LD Formalized Best Practices in
Collaborative Learning Structuring. Advanced Technology for Learning 2(4), 223–
232 (2005)

[21] Naeve, A.: A SECI-based framework for professional learning processes. Deliverable
10.1 of the ProLearn EU/FP6 Network of Excellence 507310 (2007) IST 507310

[22] Paquette, G.: Graphical ontology modeling language for learning environments.
Technology, Instruction, Cognition and Learning (TICL) 5, 2–3 (2007)

[23] Sicilia, M.-A.: Reuse, instructional design, and learning objects. In: Sicilia, M.-A.
(ed.) Paper presented at Design-Based Approaches to Learning Objects and Learning
Models Symposium Annual Conference of the American Educational Research
Association (AERA), March 26, 2008, New York (2008)

[24] Charlton, P., Magoulas, G.: Self-configurable Framework for enabling Context-aware
Learning Design. In: Proceedings of the IEEE International Conference on Intelligent
Systems, pp. 1–6 (2010)

[25] Maes, P.: Computational Reflection., Ph.D Thesis, University of Brussels, Artificial
Intelligence Laboratory (1987)

I. Hatzilygeroudis and J. Prentzas (Eds.): Comb. of Intell. Methods and Appl., SIST 8, pp. 145–165.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Neurules-A Type of Neuro-symbolic Rules: An
Overview*

Jim Prentzas and Ioannis Hatzilygeroudis

Abstract. Neurules are a kind of integrated rules integrating neurocomputing and
production rules. Each neurule is represented as an adaline unit. Thus, the corre-
sponding neurule base consists of a number of autonomous adaline units (neu-
rules). Due to this fact, a modular and natural knowledge base is constructed, in
contrast to existing connectionist knowledge bases. In this paper, we present an
overview of our main work involving neurules. We focus on aspects concerning
construction of neurules, efficient updates of neurule bases, neurule-based infer-
ence and combination of neurules with case-based reasoning. Neurules may be
constructed from either symbolic rule bases or empirical data in the form of train-
ing examples. Due to the fact that the source knowledge of neurules may change
with time, efficient updates of corresponding neurule bases to reflect such changes
are performed. Furthermore, the neurule-based inference mechanism is interactive
and more efficient than the inference mechanism used in connectionist expert sys-
tems. Finally, neurules can be naturally combined with case-based reasoning to
provide a more effective representation scheme that exploits multiple knowledge
sources and provides enhanced reasoning capabilities.

1 Introduction

The combination or integration of (two or more) different problem solving meth-
ods has given fruitful results in many application areas. The aim is to create
combined formalisms or systems that benefit from each of their components. Dis-
advantages or limitations of specific intelligent methods can be surpassed or alle-
viated by their combination with other methods. It is generally believed that
complex problems can be easier solved with such combinations (Medsker 1995).

Jim Prentzas
Democritus University of Thrace, School of Education Sciences, Dept. of Education
Sciences in Pre-School Age, Nea Chili, 68100 Alexandroupolis, Greece
e-mail: dprentza@psed.duth.gr

Ioannis Hatzilygeroudis
University of Patras, School of Engineering, Dept. of Computer Engineering and
Informatics, 26500 Patras, Greece
e-mail: ihatz@ceid.upatras.gr

146 J. Prentzas and I. Hatzilygeroudis

A popular type of combinations is that of symbolic and connectionist
approaches, usually called the neuro-symbolic approach. Advanced neuro-
symbolic formalisms and systems have been developed (Bookman and Sun 1993,
Fu 1994, Medsker 1995, Hilario 1997, Sun and Alexandre 1997, McGarry et al.
1999; Wermter and Sun 2000, Cloete and Zurada 2000, d’Avila Garcez et al 2002,
d’Avila Garcez et al 2004, Hatzilygeroudis and Prentzas 2004a, Bader and Hitzler
2005). Different types of neuro-symbolic approaches have been developed such as
combinations of connectionist approaches with first-order logic (Bader et al. 2008,
Shastri 2007), or with multi-valued logic (Komendantskaya et al. 2007) or with
non-classical logic (d’Avila Garcez et al. 2007) or with symbolic rules (of pro-
positional type) (Gallant 1993, Towell and Shavlik 1994, Fu 1993, Hatzilyger-
oudis and Prentzas 2000b and 2001b). However, combinations of neural networks
and symbolic rules seem to have given more applied results (Souici-Meslati and
Sellami 2006, Xianyu et al. 2008, Yu et al. 2008) due to the complementary ad-
vantages and disadvantages of the two combined formalisms (Hatzilygeroudis and
Prentzas 2004a).

Symbolic rules have several advantages as well as some significant disadvan-
tages in terms of knowledge representation and reasoning. Their main advantages
involve naturalness of representation and modularity (see e.g. Reichgelt 1991).
The naturalness of rules facilitates comprehension of their encompassed knowl-
edge. Modularity refers to the fact that each rule is a discrete, autonomous unit
enabling incremental development of the knowledge base as well as partial testing.
Moreover, rule based systems provide an interactive inference mechanism, which
guides the user in supplying input values, and an explanation mechanism, which
justifies the reached conclusions. The provision of explanations is necessary in
certain application domains (e.g. medicine) to justify system outputs. Symbolic
rules have certain drawbacks besides advantages. An important disadvantage con-
cerns the knowledge acquisition bottleneck that is, the difficulty in acquiring rules
from experts (see e.g. Gonzalez and Dankel 1993). The brittleness of rules is an-
other disadvantage. More specifically, it is not possible to draw conclusions from
rules when there are missing values in the input data. For a specific rule, a certain
number of condition values must be known in order to evaluate the logical func-
tion connecting its conditions. In addition, rules do not perform well in cases of
unexpected input values or combinations of them.

Neural networks represent a totally different approach to problem solving,
known as connectionism (see e.g. Gallant 1993, Haykin 2008). Neural networks
possess certain advantages but disadvantages as well. They are able to obtain
knowledge from training examples. Therefore, empirical knowledge (i.e. training
examples) available in several domains is exploited and interaction with the ex-
perts is reduced. Additional advantages of neural networks concern their ability to
generalize that is, provide computation of correct outputs from input combinations
not present in the training set, their ability to represent complex and imprecise
knowledge and their efficiency in producing outputs. Compared to symbolic rules,
neural networks possess significant disadvantages. Main such disadvantages con-
cern the lack of naturalness and modularity. It is difficult to comprehend the
knowledge encompassed in neural networks and for this reason several rule

Neurules-A Type of Neuro-symbolic Rules: An Overview 147

extraction methods have been presented (Andrews et al. 1995). Due to the lack of
modularity, a neural network cannot be decomposed into components and form a
modular structure. The aforementioned drawbacks result into the difficulty (if not
inability) in providing explanations for outputs produced by neural networks.

From the various neuro-symbolic approaches that have been presented, we con-
centrate on combinations that result in a uniform, seamless combination of the two
component approaches. Such combinations are called unified, according to
(Hilario, 1997), or integrated, according to (Bader and Hitzler, 2005). A main re-
search direction at combining rules and neural networks involves use of prior do-
main knowledge in neural network configuration. One could discern two different
trends in this research direction. The one trend stems from (Holldobler and
Kalinke 1994), where a connectionist network is developed that implements the
meaning function of a propositional (definite) logic program. The other trend
stems from (Towell and Shavlik 1994), which consists of two main steps: an exist-
ing domain theory in the form of propositional rules is used to construct an initial
neural network and then training data are used to train the network. On the other
hand, connectionist expert systems are integrated systems that represent relation-
ships between concepts associated with nodes in a neural network (Gallant 1988,
Gallant 1993, Ghalwash 1998). The network also contains certain random cells
that have no concepts assigned to them. These cells are introduced during
construction.

Most (if not all) of existing such approaches give pre-eminence to connection-
ism. Thus, they do not exploit representational advantages of symbolic rules, like
naturalness and modularity. Moreover, with the exception of connectionist expert
systems, they do not provide the functionalities of a rule-based system, like inter-
active inference and explanation. It should also be mentioned that as far as con-
nectionist expert systems are concerned, the presence of random cells results in
certain incomprehensible explanations.

Neurules (Hatzilygeroudis and Prentzas 2000a, Hatzilygeroudis and Prentzas
2000b, Hatzilygeroudis and Prentzas 2001b) are a type of integrated rules combin-
ing symbolic rules (of propositional type) and neurocomputing. In contrast to oth-
er approaches, neurules give pre-eminence to the symbolic part of the integration.
Therefore, they retain the naturalness and modularity of symbolic rules in a large
degree. Neurules can be produced either from symbolic rules or from empirical
data (Hatzilygeroudis and Prentzas 2000a, 2001b). Also a neurule-based system
possesses an interactive inference mechanism (Hatzilygeroudis and Prentzas 2010)
and provides explanations for drawn conclusions (Hatzilygeroudis and Prentzas
2001a). Mechanisms for efficiently updating a neurule base, given changes to its
source knowledge (i.e. symbolic rules or empirical data), have also been devel-
oped (Prentzas and Hatzilygeroudis 2005, Prentzas and Hatzilygeroudis 2007b).
Neurules may also be effectively combined with case-based reasoning (Prentzas
and Hatzilygeroudis 2002, Hatzilygeroudis and Prentzas 2004c).

In this paper, we present an overview of our work concerning neurules. The
structure of the paper is as follows. Section 2 presents the neurule-based knowl-
edge representation scheme. In Section 3 production of neurules from existing
symbolic rules is presented. Section 4 discusses aspects regarding the mechanism

148 J. Prentzas and I. Hatzilygeroudis

for efficiently updating a neurule base given changes to its symbolic source know-
ledge (i.e. symbolic rule base). Section 5 outlines construction of neurules from
empirical data. Section 6 briefly discusses aspects regarding efficient updates of a
neurule base due to availability of new empirical source data. Section 7 discusses
the interactive neurule-based inference mechanism. Section 8 discusses issues
concerning combination of neurules with case-based reasoning. Finally, Section 9
concludes.

2 Neurules

2.1 Syntax and Semantics

Neurules are a kind of integrated rules. The form of a neurule is depicted in
Fig.1a. Each condition Ci is assigned a number sfi, called its significance factor.
Moreover, each rule itself is assigned a number sf0, called its bias factor. Inter-
nally, each neurule is considered as an adaline unit (Fig.1b). The inputs Ci
(i=1,...,n) of the unit are the conditions of the rule. The weights of the unit are the
significance factors of the neurule and its bias is the bias factor of the neurule.
Each input takes a value from the following set of discrete values: [1 (true), -1
(false), 0 (unknown)].

The output D, which represents the conclusion (decision) of the rule, is
calculated via the standard formulas:

∑

=

+==
n

i
iiCsfsfaafD

1
0),((1)

()

⎩
⎨
⎧

<−
≥

=
0 ,1

0 ,1

aif

aif
af (2)

where a is the activation value and f(x) the activation function, which is a thresh-
old function. Hence, the output can take one of two values (‘-1’, ‘1’) representing
failure and success of the rule respectively. The significance factor of a condition
represents the significance (weight) of the condition in drawing the conclusion.
The LMS learning algorithm is used to compute the values of the significance fac-
tors as well as the bias factor of a neurule. Examples of neurules are shown in
Table 3.

The general syntax of a neurule (in a BNF notation, where ‘< >’ denotes
non-terminal symbols) is:

<rule>::= (<bias-factor>) if <conditions> then <conclusion>
<conditions>::= <condition> | <condition>,<conditions>
<condition>::= <variable> <l-predicate> <value> (<significance-factor>)
<conclusion>::= <variable> <r-predicate> <value> .

where <variable> denotes a variable, that is a symbol representing a concept in the
domain, e.g. ‘sex’, ‘pain’ etc in a medical domain, and <l-predicate> denotes a

Neurules-A Type of Neuro-symbolic Rules: An Overview 149

symbolic or a numeric predicate. The symbolic predicates are {is, isnot}, whereas the
numeric predicates are {<, >, =}. <r-predicate> can only be a symbolic predicate.
<value> denotes a value; it can be a symbol (e.g. “male”, “night-pain”) or a number
(e.g “5”). <bias-factor> and <significance-factor> are (real) numbers.

(sf0) if C1 (sf1),

 C2 (sf2),

 …

 Cn (sfn)

 then D

 (a) (b)

Fig. 1 (a) Form of a neurule (b) a neurule as an adaline unit

We distinguish three types of variables:

• input or askable variables, that is variables for which the user will be prompted
to give a value during inference,

• intermediate or inferable variables, that is variables constituting intermediate
goals of the inference process,

• output or goal variables, that is variables constituting the (final) goals of the in-
ference process.

We also distinguish between input, intermediate and output neurules. An input
neurule is a neurule having only input variables in its conditions and intermediate
or output variables in its conclusions. An intermediate neurule is a neurule having
at least one intermediate variable in its conditions and intermediate variables in its
conclusions. An output neurule is one having an output variable in its conclusions.

2.2 Neurule-Based System Architecture

In Figure 2, the architecture of a neurule-based system is illustrated. The run-time
system (in the dashed rectangle) consists of five modules: the neurule base (NRB),
the hybrid inference engine (HIE), the working memory (WM), the explanation
mechanism (EXM) and the indexed case library (ICL). The first four of these
modules are more or less functionally similar to those of a conventional rule-based
system. HIE in combination with ICL can provide additional reasoning capabili-
ties (i.e. handling of exceptional situations).

C1 C2 Cn

. . .
(sf1)

(sf2)
(sfn)

(sf0)

D

150 J. Prentzas and I. Hatzilygeroudis

Fig. 2 The architecture of a neurule-based system

NRB contains neurules alongside certain information useful for updating neu-
rules when the source knowledge changes (see Sections 4 and 6). HIE is responsi-
ble for making inferences. HIE either performs purely neurule-based inference by
taking into account the data in WM and the neurules in NRB or combines neurule-
based with case-based reasoning by also taking into account cases stored in the
ICL. WM contains fact assertions either given by the user, as initial input data or
during an inference course, or produced by the system, as intermediate or final
conclusions during an inference course. ICL contains cases indexed by neurules in
the NRB and is used by the approach combining neurule-based with case-based
reasoning (see Section 8).

The architecture also includes certain offline modules useful for producing and
updating the contents of the NRB and for constructing an indexed case library
(ICL). The contents of the NRB are produced from a symbolic rule base (SRB) or
from empirical data (ED). Construction of a NRB from a symbolic rule base is
performed by the rule conversion mechanism (RCM) presented in Section 3. Con-
struction of a NRB from empirical data is performed by the neurules production
algorithm (NPA) presented in Section 5. The rule update mechanism (RUM) up-
dates the NRB to reflect changes to its symbolic rule source (see Section 4). RUM
interacts with the RCM to perform its tasks. The data update mechanism (DUM)
updates the NRB when new empirical data becomes available (see Section 6). The
indexing construction mechanism (ICM) constructs an ICL by taking as input a
case library (CL) and either symbolic rules indexing cases in CL or neurules.

Neurules-A Type of Neuro-symbolic Rules: An Overview 151

3 Construction of a Neurule Base from a Symbolic Rule Base

As mentioned above, neurules can be produced from either symbolic rules or
empirical data. Here, we concentrate on the former.

An existing (propositional type) SRB can be converted to a neurule base (NRB)
by the rule conversion mechanism. The corresponding conversion mechanism is
described in (Hatzilygeroudis and Prentzas 2000b). Conversion does not involve
refinement of SRB, but creates an equivalent knowledge base. This means that the
conclusions drawn from NRB are the same as those drawn from SRB, given the
same inputs. Each produced neurule usually merges two or more symbolic rules
with the same conclusion. Therefore, the size of the produced NRB is less than
that of SRB as far as both the number of rules and the number of conditions is
concerned. This results in improvements to the efficiency of the inferences from
NRB, compared to those from SRB (Hatzilygeroudis and Prentzas 2000b).

The conversion mechanism is outlined as follows:

1. Group symbolic rules into merger sets.
2. From each merger set, produce a merger.
3. Produce a training set for each merger.
4. Train each merger and produce one or more neurules.

Each merger set contains all the rules of the SRB having the same conclusion. We
call such merger sets initial merger sets. A merger is a neurule having as condi-
tions all the conditions of the symbolic rules in the corresponding merger set
(without duplications) and significance factors as well as bias factor set to zero (or
any other proper initial value). Each training set is extracted from the truth table of
the combined logical function of the rules in its merger set (the disjunction of the
conjunctions of the conditions of each rule), via a filtering process. Filtering
eliminates the invalid rows of the truth table. Invalid rows are those with contra-
dicting or inconsistent values.

Training of mergers is performed using the standard LMS algorithm. A limitation
of the LMS algorithm is its inability to find a set of significance and bias factors that
classify correctly all of the training patterns, in case that the training patterns of the
training set are inseparable. In case that training is successful, one neurule will be
produced. Otherwise, a splitting process is followed, which produces more than one
neurule having the same conclusion, called sibling neurules.

Splitting is performed in a way that each subset contains symbolic rules that are
‘close’ to each other in some degree. Closeness between two symbolic rules is de-
fined as the number of their common conditions. Splitting is based on the notion
of closeness due to the observation that separable sets have rules with larger aver-
age closeness than inseparable ones. A least closeness pair (LCP) of rules in a
merger set is a pair of rules with the least closeness (LC) in the set. Initially, a
LCP in the merger set is found and two subsets are created each containing as its
initial element one of the rules of that pair, called its pivot. Each of the remaining
rules is distributed between the two subsets based on their closeness to their piv-
ots. That is, each subset contains rules, which are closer to its pivot. If training
fails, for a merger of a merger subset, the corresponding subset is further split into

152 J. Prentzas and I. Hatzilygeroudis

two other subsets, based on one of its LCPs. This continues, until training suc-
ceeds or the merger subset contains only one rule that is converted into a neurule.

Table 1 An example merger set

R1

if patient-class is human0-20,

 pain-feature2 is continuous,

 fever is no-fever,

 antinflam-reaction is none

then disease-type is primary-malignant

R2

if patient-class is human0-20,

 pain-feature2 is night,

 fever is low

then disease-type is primary-malignant

R3

if patient-class is human0-20,

 pain-feature2 is night,

 fever is medium

then disease-type is primary-malignant

R4

if patient-class is human0-20,

 pain-feature2 is night,

 fever is high

then disease-type is primary-malignant

R5

if patient-class is human0-20,

 pain-feature2 is night,

 fever is no-fever,

 antinflam-reaction is none

then disease-type is primary-malignant

R6

if patient-class is human21-35,

 pain-feature2 is night,

 antinflam-reaction is none

then disease-type is primary-malignant

R7

if patient-class is human36-55,

 pain-feature2 is night,

 fever is low

then disease-type is primary-malignant

R8

if patient-class is human36-55,

 pain-feature2 is night,

 fever is medium

then disease-type is primary-malignant

As an example, to demonstrate application of the main steps of the conversion
mechanism, we use the merger set of Table 1 that consists of eight symbolic rules
{R1, R2, R3, R4, R5, R6, R7, R8}, taken from a medical diagnosis rule base. The
merger constructed from this (initial) merger set contains the ten distinct condi-
tions of the eight rules and is shown in Table 2. The training set of the merger is
extracted from the truth table of the combined logical function of the rules of the
merger set:

F = (C1 ∧ C2 ∧ C3 ∧ C4) ∨ (C1 ∧ C5 ∧ C6) ∨ (C1 ∧ C5 ∧ C7)
 ∨ (C1 ∧ C5 ∧ C8) ∨ (C1 ∧ C5 ∧ C3 ∧ C4) ∨ (C9 ∧ C5 ∧ C4)

∨ (C10 ∧ C5 ∧ C6) ∨ (C10 ∧ C5 ∧ C7)

where C1≡patient-class is human0-20, C2≡pain-feature2 is continuous, C3≡fever
is no-fever, C4≡antinflam-reaction is none, C5≡pain-feature2 is night, C6≡ fever

Neurules-A Type of Neuro-symbolic Rules: An Overview 153

is low, C7≡ fever is medium, C8≡ fever is high, C9≡ patient-class is human21-35,
C10≡ patient-class is human36-55.

Table 2 The merger of the merger set of Table 1

(0) if patient-class is human0-20 (0),

 pain-feature2 is continuous (0),

 fever is no-fever (0),

 antinflam-reaction is none (0),

 pain-feature2 is night (0),

 fever is low (0),

 fever is medium (0),

 fever is high (0),

 patient-class is human21-35 (0),

 patient-class is human36-55 (0)

 then disease-type is primary-malignant

The truth table of F contains 210=1024 training patterns, from which only 120
patterns remain after application of the filtering process. The training patterns of
the training set are inseparable and the initial merger set is split in two subsets:
MS1={R1, R5, R6} and MS2={R2, R3, R4, R7, R8}. The LCP that guides split-
ting is (R1, R7). Training of the merger of MS1 is not successful. So, {R1, R5,
R6} is split in {R1, R5} and {R6} with LCP: (R1, R6). The merger of {R1, R5} is
successfully trained and neurule NR1-5 is produced. Rule R6 is converted to a
neurule (i.e. NR6). The merger of MS2 is successfully trained and neurule NR2-3-
4-7-8 is produced. So, finally, from the initial merger set of eight symbolic rules,
three neurules are produced. The produced neurules are shown in Table 3.

Table 3 Neurules produced from the merger set of Table 1

NR1-5

(-2.5) if fever is no-fever (1.4),

 antinflam-reaction is none (1.3),

 patient-class is human0-20 (0.8),

 pain-feature2 is continuous (0.8),

 pain-feature2 is night (0.8)

 then disease-type is primary-malignant

NR6

(-2.4) if patient-class is human21-35 (1.5),

 pain-feature2 is night (1.4),

 antinflam-reaction is none (1.3)

 then disease-type is primary-malignant

NR2-3-4-7-8

(1.6) if patient-class is human0-20 (8.5),

 pain-feature2 is night (8.2),

 fever is medium (8.2),

 patient-class is human36-55 (5.0),

 fever is low (4.4),

 fever is high (0.8)

 then disease-type is primary-malignant

154 J. Prentzas and I. Hatzilygeroudis

4 Efficient Updating of a Neurule Base Produced from a
Symbolic Rule Base

An aspect of interest involves the efficient updates of a NRB to reflect changes to
its symbolic source knowledge. The basic changes to SRB can be (a) insertion of a
new rule and (b) removal (or deletion) of an existing rule, since modification of a
rule is equivalent to removal of the old rule and insertion of the new one. One
approach to reflect such changes would be to reconvert the whole SRB and repro-
duce the whole NRB. Obviously such an approach would impose useless compu-
tational effort due to the fact that only specific parts of the SRB are affected from
changes. To minimize the computational effort for performing updates, an effi-
cient mechanism has been developed (Prentzas and Hatzilygeroudis 2005) that re-
converts as small portion of SRB as possible. The modularity of NRB enables
such an approach. Furthermore, the number of neurules after an update remains as
small as possible, which is a significant aspect in terms of inference time-
efficiency.

The update mechanism exploits the structure of a tree, called the splitting tree,
that stores information related to the conversion process. More specifically, a
splitting tree is used to store the splitting process for each initial merger set. The
root of a tree corresponds to an initial merger set. The intermediate nodes and
leaves correspond to the subsequent subsets, into which the initial merger set was
split. An intermediate node denotes a subset that was split, due to training failure,
whereas a leaf denotes a subset that was successfully trained and produced a neu-
rule. The pivot of each (sub)set is attached to the corresponding branch of the tree.
Figure 3 depicts the splitting tree corresponding to the splitting process for the
merger set of Table 1.

Whenever a new symbolic rule R is inserted in SRB and there are more than
one sibling neurule of R in NRB, the splitting tree is exploited to focus the update
process on the neurules produced from the merger subset containing the rules
closest to R. To achieve this, the splitting tree is traversed, starting from the root.
Traversing is based on the closeness of the inserted rule to the LCP members of
the merger subsets corresponding to the traversed nodes. Traversing ends at an in-
termediate node, when the corresponding merger subset contains a rule R' whose
closeness to the inserted rule is less than the least closeness. Otherwise, traversing
ends at a leaf. In case traversing stops at a leaf, the corresponding neurule is re-
moved from the NRB, the merger corresponding to the new merger set is trained,
updating accordingly the NRB and the splitting tree. In case traversing stops at an
intermediate node, the descending nodes as well as corresponding neurules are
removed, the new merger set is split in two subsets based on LCP (R, R'), the two
corresponding mergers are trained updating accordingly the NRB and the splitting
tree. In any case, parts of the initial splitting tree are exploited to avoid useless
computational effort.

Neurules-A Type of Neuro-symbolic Rules: An Overview 155

Fig. 3 The splitting tree for merger set of Table 1

Table 4 Inserted rule R9 and resulted neurule NR2-3-4-7-8-9

R9

if patient-class is human36-55,

 pain-feature2 is night,

 fever is high

then disease-type is primary-malignant

NR2-3-4-7-8-9

(1.6) if pain-feature2 is night (8.2),

 fever is high (8.0),

 patient-class is human36-55 (5.0),

 patient-class is human0-20 (4.9),

 fever is medium (4.6),

 fever is low (4.4)

 then disease-type is primary-malignant

Whenever an existing symbolic rule R is removed from SRB and there are
more than one sibling neurule of R in NRB, the splitting tree is exploited in a way
similar to the approach for rule insertion. Traversing ends at an intermediate node,
when R is a member of LCP of its merger (sub)set. Otherwise, traversing ends at a
leaf. Each case is handled accordingly.

It should be mentioned that in certain situations of rule insertion/removal, the
number of neurules contained in the NRB may decrease by one. A detailed presen-
tation of the update mechanism along with experimental results is presented in
(Prentzas and Hatzilygeroudis 2005).

Fig. 4 Insertion of R9: traversal of the splitting tree

156 J. Prentzas and I. Hatzilygeroudis

Fig. 5 Final form of the splitting tree after insertion of R9

We will demonstrate application of the update mechanism for rule insertion
with an example. Let us consider the rules in Table 1 as constituting SRB and
those in Table 3 as constituting NRB. Also, suppose that rule R9 (Table 4) is to be
inserted. Information contained in the splitting tree shown in Figure 3 is exploited
to efficiently perform the update of the NRB. Traversing of the splitting tree ends
at the leaf related to subset {R2, R3, R4, R7, R8} (Figure 4). Notice that R9 is in-
serted into the merger sets corresponding to all traversed nodes. NR2-3-4-7-8 is
removed from NRB. Training of the merger corresponding to the new merger
(sub)set {R2, R3, R4, R7, R8, R9} is successful and the corresponding neurule
NR2-3-4-7-8-9 is inserted into NRB (Table 4). The splitting tree takes the form
shown in Figure 5.

5 Producing a Neurule Base from Empirical Data

In several domains, empirical data in the form of training examples are available
and can be exploited to construct neurule bases. The neurules production algo-
rithm (NPA) constructs a neurule base from empirical data. NPA requires the fol-
lowing input: a set of domain variables V representing the domain concepts with
their possible values, possible dependency information among domain variables
and a set of empirical data S. Dependency information indicates which variables
the intermediate, if any, and output variables depend on.

NPA tries to produce one neurule for each output/intermediate variable value
that is, one neurule for each possible output/intermediate conclusion. This is not
always possible due to the fact that the training set may be inseparable. Therefore,
more than one neurule having the same conclusion may be produced (i.e. sibling
neurules). The main steps of NPA are outlined as follows:

1. Construct initial neurules, based on dependency information.
2. Extract an initial training set for each initial neurule from S.
3. Train each initial neurule individually and produce corresponding neurule(s).

Neurules-A Type of Neuro-symbolic Rules: An Overview 157

Initial neurules represent the possible intermediate or final conclusions. One initial
neurule is constructed for each value of each intermediate or output variable. The
conditions of each initial neurule include the variables that contribute in drawing
the corresponding conclusion, as specified by the dependency information. Then,
for each initial neurule its corresponding initial training set is extracted from the
empirical dataset. A training pattern has the form [v1 v2 . . . vn d], where d is the
desired value of a variable related to an intermediate or output conclusion and vi,
i=1,…,n are the values of the variables it depends on, called component values.
We distinguish between success examples and failure examples in a training set.
Success examples are those having ‘1’ (‘true’) as their desired value, whereas fail-
ure examples are those having ‘-1’ (‘false’). Each initial neurule is individually
trained, via the Least Mean Square (LMS) algorithm, using its own training set.
Training is not always successful, that is a set of significance and bias factors can-
not always be found that correctly classify all of the training examples. This is the
case when the training patterns are inseparable. When the algorithm succeeds, that
is values for the bias and significance factors are calculated that classify all train-
ing patterns, one neurule is produced. When it fails, due to inseparability of the
training examples, a splitting process is followed. More specifically, the initial
training set of the neurule is split into two subsets and two copies of the initial
neurule are trained, each using one of the training subsets. If training of either neu-
rule copy fails, its subset is further split into two other subsets and so on, until
there is no failure or a subset contains only one success pattern. In this way, more
than one neurule are produced, having the same conditions with different bias and
significance factors and the same conclusion.

Splitting is based on the notion of closeness between training patterns. The
closeness between two examples is defined as the number of their common com-
ponent values. A least closeness pair (LCP) consists of two success examples that
have the least closeness between them. Splitting a training set is based on an LCP.
More specifically, each subset comprises one of the members of an LCP, the suc-
cess examples closer to it and all the failure examples of the initial training set.
This stems from the intuition that existence of quite different examples causes in-
separability.

To demonstrate application of NPA, we use an example problem taken from the
UCI Machine Learning ftp repository (Frank and Asuncion 2010); it is called the
LENSES problem. There are five domain variables, four input (i.e. age, spectacle, as-
tigmatic, tear-rate) and one output (lenses-class) that depends on the four input vari-
ables. Table 5 shows the corresponding empirical dataset consisting of twenty-four
(24) patterns. The output variable takes three possible values (i.e. no-lenses, soft-
lenses, hard-lenses) and therefore three initial neurules are constructed. A training set
is extracted for each initial neurule. Each of the three training sets consists of twenty-
four (24) patterns. The patterns in each of them have the same input values, but dif-
ferent output values.

158 J. Prentzas and I. Hatzilygeroudis

Table 5 The empirical data set S for the lenses example problem

age spectacle astigmatic tear-rate lenses-class

young myope no reduced no-lenses

young myope no normal soft-lenses

young myope yes reduced no-lenses

young myope yes normal hard-lenses

young hypermetrope no reduced no-lenses

young hypermetrope no normal soft-lenses

young hypermetrope yes reduced no-lenses

young hypermetrope yes normal hard-lenses

pre-presbyopic myope no reduced no-lenses

pre-presbyopic myope no normal soft-lenses

pre-presbyopic myope yes reduced no-lenses

pre-presbyopic myope yes normal hard-lenses

pre-presbyopic hypermetrope no reduced no-lenses

pre-presbyopic hypermetrope no normal soft-lenses

pre-presbyopic hypermetrope yes reduced no-lenses

pre-presbyopic hypermetrope yes normal no-lenses

presbyopic myope no reduced no-lenses

presbyopic myope no normal no-lenses

presbyopic myope yes reduced no-lenses

presbyopic myope yes normal hard-lenses

presbyopic hypermetrope no reduced no-lenses

presbyopic hypermetrope no normal soft-lenses

presbyopic hypermetrope yes reduced no-lenses

presbyopic hypermetrope yes normal no-lenses

The (final) neurules produced are shown in Table 6. For the first two initial neu-

rules, the calculated factors successfully classified all training patterns. The produced
neurules NR1 and NR2. However, the same didn’t happen with the third initial neu-
rule. Its training set had to be split, two copies of the third initial neurule were trained
with each subset and neurules and finally neurules NR3 and NR4 were produced.

Neurules-A Type of Neuro-symbolic Rules: An Overview 159

Table 6 The neurules produced from the empirical set of lenses problem

NR1

(-13.1) if age is young (8.8),

 age is pre-presbyopic (1.5),

 age is presbyopic (1.2),

 spectacle is myope (1.6),

 spectacle is hypermetrope (-2.7),

 astigmatic is no (-6.1),

 astigmatic is yes (4.4),

 tear-rate is reduced (-5.7),

 tear-rate is normal (4.6)

 then lenses-class is hard-lenses

NR3

(-4.6) if age is young (-4.4),

 age is pre-presbyopic (2.6),

 age is presbyopic (3.2),

 spectacle is myope (-4.2),

 spectacle is hypermetrope (3.4),

 astigmatic is no (-4.5),

 astigmatic is yes (3.3),

 tear-rate is reduced (6.5),

 tear-rate is normal (-8.0)

 then lenses-class is no-lenses

NR2

(-14.6) if age is young (6.4),

 age is pre-presbyopic (6.9),

 age is presbyopic (-0.4),

 spectacle is myope (-3.9),

 spectacle is hypermetrope (3.1),

 astigmatic is no (6.9),

 astigmatic is yes (-7.4),

 tear-rate is reduced (-7.9),

 tear-rate is normal (6.2)

 then lenses-class is soft-lenses

NR4

(-2.2) if age is young (-2.6),

 age is pre-presbyopic (-2.5),

 age is presbyopic (5.0),

 spectacle is myope (1.0),

 spectacle is hypermetrope (-2.5),

 astigmatic is no (5.1),

 astigmatic is yes (-6.2),

 tear-rate is reduced (8.1),

 tear-rate is normal (-9.5)

 then lenses-class is no-lenses

6 Efficient Updating of a Neurule Base Produced from
Empirical Data

In certain domains, training examples become available over time. Therefore, an
aspect of interest involves the efficient updates of a NRB to reflect availability of
new empirical source knowledge. In (Prentzas and Hatzilygeroudis 2007b) we
present an efficient mechanism for performing such updates. The mechanism is
based on splitting trees containing information regarding the splitting process for
each training set of each initial neurule, in a similar way to that in Section 4. The
root of each tree corresponds to the initial training set. Descendant nodes corre-
spond to the subsequent subsets into which the initial training set was split. Each
leaf denotes subsets that was successfully trained and produced a neurule. The
members of the LCP that guided each split are attached to the corresponding
branches of the tree.

The splitting tree is useful to perform updates in case more than one sibling
neurules have been produced. The availability of a new training example means
insertion of a new success example into a specific initial training set and insertion

160 J. Prentzas and I. Hatzilygeroudis

of a new failure example into all other initial training sets. Splitting trees enable to
perform such updates efficiently.

To insert a new success example not satisfied by the existing neurules produced
from the initial training set, the corresponding splitting tree is traversed to starting
from the root and ending at a leaf or an intermediate node. Traversing is based on
the closeness between the new success example and the LCPs attached to the
edges of the splitting tree. Retraining of the corresponding subset is performed
updating the NRB and the splitting tree.

The insertion of a failure example not satisfied by the existing neurules into an
initial training set requires training of the subsets corresponding to leaves of the
splitting tree whose corresponding neurules misclassify the new failure example.
The corresponding existing neurules are removed from the NRB, whereas the
newly created ones are inserted.

7 Neurule-Based Inference Engine

The neurule-based inference engine implements the way neurules co-operate to
reach a conclusion. The choice of the next rule to be considered is based on a neu-
rocomputing measure, but the rest is symbolic (Hatzilygeroudis and Prentzas
2010).

Generally, the output of a neurule is computed according to Eq. (1) (Section
2.1). However, it is possible to deduce the output of a neurule without knowing
the values of all of its conditions. To achieve this, we define for each neurule the
known sum (kn-sum) and the remaining sum (rem-sum). More specifically,
‘known-sum’ is the weighted sum of the values of the already known (i.e. evalu-
ated) conditions (inputs) of the corresponding neurule. ‘Remaining sum’ is the
sum of absolute values of significance factors corresponding to all unevaluated
conditions of the neurule. Therefore, ‘remaining sum’ represents the largest possi-
ble weighted sum of the remaining (i.e. unevaluated) conditions of the neurule.

If |kn-sum| > rem-sum for a certain neurule, then evaluation of its conditions
can stop, because its output can be deduced regardless of the values of the un-
evaluated conditions. In this case, its output is guaranteed to be ‘1’ if kn-sum > 0
whereas it is ‘-1’, if kn-sum < 0. In the first case, we say that the neurule is fired,
whereas in the second that it is blocked.

A condition evaluates to ‘true’, if it matches a fact in the working memory that
is, there is a fact with the same variable, predicate and value. A condition evalu-
ates to ‘unknown’, if there is a fact with the same variable, predicate and ‘un-
known’ as its value. A condition cannot be evaluated if there is no fact in the
working memory with the same variable. In this case, either a question is made to
the user to provide data for the variable, in case of an input variable, or an inter-
mediate neurule with a conclusion containing the variable is examined, in case of
an intermediate variable. A condition with an input variable evaluates to ‘false’, if
there is a fact in the working memory with the same variable, predicate and differ-
ent value. A condition with an intermediate variable evaluates to ‘false’ if addi-
tionally to the latter there is no unevaluated intermediate neurule that has a con-
clusion with the same variable. Inference stops either when one or more output

Neurules-A Type of Neuro-symbolic Rules: An Overview 161

neurules are fired (success) or there is no further action (failure). To facilitate in-
ference, conditions of neurules are organized according to the descending order of
their significance factors.

In (Hatzilygeroudis and Prentzas 2001a) we present initial work for the provi-
sion of explanations concerning neurule-based inference. Explanations involve
‘how’ type rules justifying how conclusions were reached.

Neurule-based inference has certain advantages. When a neurule base is
produced from a symbolic rule base, experimental results have shown that neu-
rule-based inference is more efficient than the corresponding symbolic rule-based
inference (Hatzilygeroudis and Prentzas 2000b). Another advantage of neurule-
based reasoning compared to symbolic rule-based reasoning is the ability to reach
conclusions from neurules even if some of the conditions are unknown. This is not
possible in symbolic rule-based reasoning. A symbolic rule needs all its conditions
to be known in order to produce a conclusion.

Most neuro-symbolic approaches, except connectionist expert systems, do not
support functionalities like interactive inference and provision of natural explana-
tions. Neurule-based inference is more efficient than the inference mechanism
used in connectionist expert systems (Hatzilygeroudis and Prentzas 2010).

8 Combining Neurule-Based and Case-Based Reasoning

Case-based reasoning is an approach that exploits knowledge encompassed in
stored past cases to handle similar new cases (Aamodt and Plaza 1994). It is useful
in several domains where an abundant number of past cases are available. A case-
based system stores useful experience obtained when handling new cases and is
continuously enhanced during operation. Case-based representations offer several
advantages such as easy knowledge acquisition, naturalness, modularity, ability to
express specialized knowledge, self-updatability. There are also issues of CBR
that may give rise to problems such as adaptation, inference efficiency regarding
case retrieval, provision of explanations, difficulties in knowledge acquisition in
certain domains (Prentzas and Hatzilygeroudis 2007a, 2009).

Combinations of case-based reasoning with other intelligent methods have been
pursued in several domains resulting into more effective representation schemes.
One of the most effective types of combinations involves combination of case-
based reasoning with rule-based reasoning (Prentzas and Hatzilygeroudis 2007a).
Such combinations offer benefits since the advantages of rule-based reasoning and
case-based reasoning are complementary to a large degree. An overall advantage
of such combined approaches involves naturalness and modularity of the represen-
tation scheme. Neurules are a type of integrated rules offering advantages com-
pared to symbolic rules. In (Prentzas and Hatzilygeroudis 2002, Hatzilygeroudis
and Prentzas 2004c) we explored the combination of neurule-based with case-
based reasoning. A main benefit, among others, deriving from this combination
concerns accuracy improvement as cases may fill in gaps of neurules in domain
knowledge representation. Furthermore, characteristics of the formalism involve
naturalness, modularity, ability to exploit multiple types of knowledge sources and
self-updatability. Few approaches combine case-based reasoning with multiple

162 J. Prentzas and I. Hatzilygeroudis

other intelligent methods with the other methods being outside the case-based rea-
soning cycle.

In the representation scheme combining neurules with case-based reasoning,
neurules index cases representing their exceptions. The indexing construction
module implements the process of acquiring an indexing scheme. The specific
process may take as input alternative types of available knowledge: (a) available
neurules and cases or (b) available symbolic rules and exception cases.

Let us consider that the indexing process takes as input available neurules and
cases. To acquire an indexing scheme, neurule-based reasoning is performed for
the neurules based on the attribute values of each case. A case is indexed as a neu-
rule’s exception, whenever the neurule fires and the value of the conclusion vari-
able do not match the corresponding attribute value of the case.

The alternative type of knowledge concerns an available formalism of symbolic
rules and indexed exception cases as the one presented in (Golding and Rosen-
bloom 1996). The indexing scheme is acquired by first converting symbolic rules
to neurules and then associating the produced neurules with the exception cases of
the symbolic rules belonging to their merger sets.

The hybrid inference process combining neurule-based with case-based reason-
ing focuses on neurules (i.e. neurule-based reasoning). If an adequate number of
the conditions of a neurule are fulfilled so that it can fire, firing of the neurule is
suspended and CBR is performed for its indexed exception cases. CBR results are
evaluated as in (Golding and Rosenbloom 1996) to assess whether the neurule will
fire or whether the conclusion proposed by the exception case will be considered
valid.

9 Conclusions

In this paper, we present an overview of our main research work involving neu-
rules, a type of hybrid neuro-symbolic rules. An attractive feature of neurules is
that compared to other connectionist approaches they retain the modularity and to
some degree the naturalness of symbolic rules. In contrast to most neuro-symbolic
approaches, a neurule-based system also provides an interactive inference mecha-
nism and explanation facilities. We outlined aspects regarding construction of
neurules from symbolic rule bases or empirical data, efficient updating of a neu-
rule base constructed from symbolic rule bases or empirical data, neurule-based
inference and combination of neurules with case-based reasoning.

Neurules have been used in developing an Intelligent Tutoring System (Prent-
zas, Hatzilygeroudis and Garofalakis 2002, Hatzilygeroudis and Prentzas 2004b).
Intelligent Tutoring Systems (ITSs) require discrete knowledge bases to perform
tasks of their different units (i.e. user modeling unit, pedagogical unit). Neurules
facilitated the development and performance of the ITS since they satisfy most of
the representation requirements concerning ITSs (Hatzilygeroudis and Prentzas
2004d, 2006). More specifically, neurule bases can be constructed from alternative
knowledge sources producing a natural and modular representation scheme. In-
cremental development of neurule bases is also supported to accommodate source

Neurules-A Type of Neuro-symbolic Rules: An Overview 163

knowledge changes. Furthermore, neurule-based inference is natural, robust and
time-efficient.

Our future work is directed to a number of aspects. Such aspects involve find-
ing ways to (a) improve the neurule-based inference efficiency, (b) provide natural
explanations, (c) incorporate fuzziness into neurules and (d) improve the mecha-
nisms constructing neurules. Another future direction will involve use of neurules
in different applications.

References

Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological varia-
tions and system approaches. AI Communications 7, 39–59 (1994)

Andrews, R., Diederich, J., Tickle, A.: A survey and critique of techniques for extracting
rules from trained artificial neural networks. Knowledge-Based Systems 8, 373–389
(1995)

Bader, S., Hitzler, P.: Dimensions of neural-symbolic integration – a structured survey. In:
Artemov, S., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J. (eds.) We Will
Show Them: Essays in Honour of Dov Gabbay. International Federation for Computa-
tional Logic, vol. 1, pp. 167–194. College Publications (2005)

Bader, S., Hitzler, P.: Holldobler Connectionist model generation: a first-order approach.
Neurocomputing 71, 2420–2432 (2008)

Bookman, L., Sun, R. (eds.): Special issue on integrating neural and symbolic processes.
Connection Science, vol. 5(3-4) (1993)

Browne, A., Sun, R.: Connectionist inference models. Neural Networks 14, 1331–1355
(2001)

Cloete, I., Zurada, J.M. (eds.): Knowledge-based neurocomputing. The MIT Press, Cam-
bridge (2000)

Frank, A., Asuncion, A.: UCI Machine Learning Repository, School of Information and
Computer Science, University of California, Irvina, CA (2010),

 http://archive.ics.uci.edu/ml(accessed October 9, 2010)
Fu, L.M.: Knowledge-based connectionism for revising domain theories. IEEE Transac-

tions on Systems, Man, and Cybernetics 23, 173–182 (1993)
Fu, L.M. (ed.): Proceedings of the International Symposium on Integrating Knowledge and

Neural Heuristics. Pensacola, Florida (1994)
Gallant, S.I.: Connectionist expert systems. Communications of the ACM 31, 152–169

(1988)
Gallant, S.I.: Neural network learning and expert systems. The MIT Press, Cambridge

(1993)
d’Avila Garcez, A.S., Broda, K., Gabbay, D.M.: Neural-symbolic learning systems: foun-

dations and applications. In: Perspectives in Neural Computing. Springer, Heidelberg
(2002)

d’Avila Garcez, A., Gabbay, D., Holldobler, S., Taylor, J.: Special issue on neural-symbolic
systems. Journal of Applied Logic 2 (2004)

d’Avila Garcez, A., Lamb, L.C., Gabbay, D.M.: Connectionist modal logic: representing
modalities in neural networks. Theoretical Computer Science 371, 34–53 (2007)

Ghalwash, A.Z.: A recency inference engine for connectionist knowledge bases. Applied
Intelligence 9, 201–215 (1998)

164 J. Prentzas and I. Hatzilygeroudis

Golding, A.R., Rosenbloom, P.S.: Improving accuracy by combining rule-based and case-
based reasoning. Artificial Intelligence 87, 215–254 (1996)

Gonzalez, A., Dankel, D.: The engineering of knowledge-based systems: theory and prac-
tice. Prentice-Hall, Upper Saddle River (1993)

Hatzilygeroudis, I., Prentzas, J.: Neurules: integrating symbolic rules and neurocomputting.
In: Fotiades, D., Nikolopoulos, S. (eds.) Advances in Informatics. World Scientific Pub-
lishing, Singapore (2000a)

Hatzilygeroudis, I., Prentzas, J.: Neurules: improving the performance of symbolic rules.
International Journal on AI Tools 9, 113–130 (2000b)

Hatzilygeroudis, I., Prentzas, J.: An efficient hybrid rule based inference engine with expla-
nation capability. In: Kolen, J., Russell, I. (eds.) Proceedings of the Fourteenth Interna-
tional Florida Artificial Intelligence Research Society Conference. AAAI Press, Menlo
Park (2001a)

Hatzilygeroudis, I., Prentzas, J.: Constructing modular hybrid knowledge bases for expert
systems. International Journal on AI Tools 10, 87–105 (2001b)

Hatzilygeroudis, I., Prentzas, J.: Neuro-symbolic approaches for knowledge representation
in expert systems. International Journal on Hybrid Intelligent Systems 1, 111–126
(2004a)

Hatzilygeroudis, I., Prentzas, J.: Using a hybrid rule-based approach in developing an intel-
ligent tutoring system with knowledge acquisition and update capabilities. Expert Sys-
tems with Applications 26, 477–492 (2004b)

Hatzilygeroudis, I., Prentzas, J.: Integrating (rules, neural networks) and cases for knowl-
edge representation and reasoning in expert systems. Expert Systems with Applica-
tions 27, 63–75 (2004c)

Hatzilygeroudis, I., Prentzas, J.: Knowledge representation requirements for intelligent tu-
toring systems. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS,
vol. 3220, pp. 87–97. Springer, Heidelberg (2004d)

Hatzilygeroudis, I., Prentzas, J.: Knowledge representation in intelligent educational sys-
tems. In: Ma, Z. (ed.) Web-based intelligent e-learning systems: technologies and appli-
cations. Idea Group Inc., Hershey (2006)

Hatzilygeroudis, I., Prentzas, J.: Integrated rule-based learning and inference. IEEE Trans-
actions on Knowledge and Data Engineering 22, 1549–1562 (2010)

Haykin, S.: Neural Networks and Learning Machines. Prentice Hall, Upper Saddle River
(2008)

Hilario, M.: An overview of strategies for neurosymbolic integration. In: Sun, R., Alexan-
dre, E. (eds.) Connectionist-symbolic integration: from unified to hybrid approaches.
Lawrence Erlbaum Associates, Mahwah (1997)

Holldobler, S., Kalinke, Y.: Towards a massively parallel computational model for logic
programming. In: Proceedings of ECAI 1994 Workshop on Combining Symbolic and
Connectionist Processing. pp. 68–77. ECCAI (1994)

Komendantskaya, E., Lane, M., Seda, A.K.: Connectionist representation of multi-valued
logic programs. In: Hammer, B., Hitzler, P. (eds.) Perspectives of Neural-Symbolic In-
tegration. Springer, Heidelberg (2007)

McGarry, K., Wermter, S., MacIntyre, J.: Hybrid neural systems: from simple coupling to
fully integrated neural networks. Neural Computing Surveys 2, 62–93 (1999)

Medsker, L.R.: Hybrid intelligent systems. Kluwer Academic Publishers, Dordrecht (1995)
Prentzas, J., Hatzilygeroudis, I.: Integrating hybrid rule-based with case-based reasoning.

In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, p. 336.
Springer, Heidelberg (2002)

Neurules-A Type of Neuro-symbolic Rules: An Overview 165

Prentzas, J., Hatzilygeroudis, I., Garofalakis, J.: A web-based intelligent tutoring system us-
ing hybrid rules as its representational basis. In: Cerri, S.A., Gouardéres, G., Paraguaçu,
F. (eds.) ITS 2002. LNCS, vol. 2363, p. 119. Springer, Heidelberg (2002)

Prentzas, J., Hatzilygeroudis, I.: Rule-based update methods for a hybrid rule base. Data
and Knowledge Engineering 55, 103–128 (2005)

Prentzas, J., Hatzilygeroudis, I.: Construction of neurules from training examples: a thor-
ough investigation. In: Garcez, A., Hitzler, P., Tamburini, G. (eds.) Proceedings of the
ECAI 2006 Workshop on Neural-Symbolic Learning and Reasoning (2006)

Prentzas, J., Hatzilygeroudis, I.: Categorizing approaches combining rule-based and case-
based reasoning. Expert Systems 24, 97–122 (2007a)

Prentzas, J., Hatzilygeroudis, I.: Incrementally updating a hybrid rule base based on empiri-
cal data. Expert Systems 24, 212–231 (2007b)

Prentzas, J., Hatzilygeroudis, I.: Combinations of case-based reasoning with other intelli-
gent methods. International Journal of Hybrid Intelligent Systems 6, 189–209 (2009)

Reichgelt, H.: Knowledge representation, an AI perspective. Ablex, New York (1991)
Souici-Meslati, L., Sellami, M.: Toward a generalization of neuro-symbolic recognition: an

application to Arabic words. International Journal of Knowledge-based and Intelligent
Engineering Systems 10, 347–361 (2006)

Sun, R., Alexandre, E. (eds.): Connectionist-symbolic integration: from unified to hybrid
approaches. Lawrence Erlbaum Associates, Mahwah (1997)

Teng, T.-H., Tan, Z.-M., Tan, A.-H.: Self-organizing neural models integrating rules and
reinforcement learning. In: Proceedings of the IEEE International Joint Conference on
Neural Networks, IEEE, Los Alamitos (2008)

Towell, G., Shavlik, J.: Knowledge-based artificial neural networks. Artificial Intelli-
gence 70, 119–165 (1994)

Wermter, S., Sun, R. (eds.): Hybrid neural systems. Springer, Heidelberg (2000)
Xianyu, J.C., Juan, Z.C., Gao, L.J.: Knowledge-based neural networks and its application in

discrete choice analysis. In: Proceedings of the Fourth International Conference on Net-
worked Computing and Advanced Information Management. IEEE Computer Society
Press, Los Alamitos (2008)

Yu, L., Wang, L., Yu, J.: Identification of product definition patterns in mass customization
using a learning-based hybrid approach. International Journal of Advanced Manufactur-
ing Technologies 38, 1061–1074 (2008)

Author Index

Batsakis, Sotiris 55
Baumgartner, Robert 41
Bossard, Aurélien 71

Caminhas, W.M. 109
Charlton, Patricia 125

Ferrara, Emilio 41
Fukui, Ken-ichi 89

Hatzilygeroudis, Ioannis 145

Kitagawa, Teppei 89

Lacroix, Yves 21

Magoulas, George D. 125
Mizusaki, Junichiro 89

Numao, Masayuki 89

Onaindia, Eva 1

Pajares, Sergio 1
Petrakis, Euripides G.M. 55
Prentzas, Jim 145

Rodrigues, Christophe 71

Saldanha, R.R. 109
Sato, Kazuhisa 89
Siegel, Pierre 21
Silva, G.R.L. 109

Tavares, L.D. 109
Toulgoat, Isabelle 21

Vieira, D.A.G. 109

	Cover
	Smart Innovation, Systems and Technologies 8
	Combinations of Intelligent
Methods and Applications
	ISBN 9783642196171
	Preface
	Workshop Organization
	Contents
	Defeasible Planning through Multi-agent Argumentation
	Introduction
	Background
	Defeasible Logic
	Partial-Order Planning

	Argumentation in POP
	Defeasible Argumentation in a Multi-Agent System
	DefPlanner Algorithm
	Defeasible Argumentation Multi-Agent Process

	Example of Application
	Searching for a Solution Plan

	Conclusions and Related Work
	References

	Operator Behavior Modelling in a Submarine
	Introduction
	Case Study: Submarine Detection and Tracking
	Classical Logic and Its Limits
	Nonmonotonic Logic and Default Logic
	Rules Formalization with Default Logic
	Time Consideration
	Facts Definition with Time Consideration
	Default Definition with Time Consideration
	Extension Calculus

	Extensions Selection with Preferences
	Extension Selection Principles
	Extensions Weight Function
	Random Extension Choice
	Respect for Minimal Change

	Interface with the Simulator Framework and Results
	Conclusion
	References

	Automatic Wrapper Adaptation by Tree Edit Distance Matching
	Introduction
	Related Work
	Wrapper Adaptation
	Primary Goals
	Details
	Simple Tree Matching
	Clustered Tree Matching

	Experimentation
	Conclusion
	References

	Representing Temporal Knowledge in the SemanticWeb: The Extended 4D Fluents Approach
	Introduction
	Background and Related Work
	Extended 4D Fluents Approach
	Temporal Reasoning
	Querying Temporal Information

	Evaluation
	Conclusions and Future Work
	References

	Combining a Multi-Document Update Summarization System –CBSEAS– with a Genetic Algorithm
	Introduction
	Automatic Extractive Summarization Overview
	Feature-Based Approaches
	Centrality-Based Approaches
	Dealing with Diversity

	CBSEAS: A Clustering-Based Sentence Extractor for Automatic Summarization
	Pre-processing
	Sentence Pre-selection
	Sentence Clustering
	Sentence Final Selection
	Managing Update for TAC ``Update Task''

	Optimizing CBSEAS Parameters
	Overview of Parameters Optimization for Automatic Summarization
	What Type of Algorithm?
	ROUGE-SU4 Metric Liability
	Our Genetic Algorithm
	Training and Evaluation Data

	Evaluation
	Results and Discussion
	Conclusion
	References

	Extraction of Essential Events with Application to Damage Evaluation on Fuel Cells
	Introduction
	Essential Event Extractor (E3)
	Overview
	Kernel SOM
	Density Estimation
	KeyGraph
	The E3 Algorithm

	Application to Damage Evaluation of Fuel Cells
	The Problem in Fuel Cells
	Damage Evaluation Test of Fuel Cells
	Adaptation of E3 to AE Event Sequence
	Inference of Physical Interpretation of the Topology Map
	Mechanical Effects Inferred by E3 Analysis
	Extracted Essential Rare Events
	Effect of Energy Threshold
	Scenario

	Future Perspective
	Conclusion
	References

	Detecting Car Accidents Based on Traffic Flow Measurements Using Machine Learning Techniques
	Introduction
	Overview on the Traffic Flow Theory
	Cellular Automata
	Simulator Features
	Model Definition
	Maps Definitions
	Environmental Rules
	Vehicles Definitions

	Overview on the Classification Methods
	Naïve Bayes Classifier
	Decision Tree Classifier
	K-Nearest Neighbor
	Artificial Neural Network
	Support Vector Machine
	Adaptive Neuro-fuzzy Inference Systems

	Simulations and Results
	Environment
	Parameters and Scenarios
	Results

	Final Considerations and Future Works
	References

	Next Generation Environments for Context-Aware Learning Design*
	Introduction
	Learning Design Tools
	Rational and Overview of Our Approach
	Autonomic Computing and Ontologies for Context-Aware LD
	Self-configuration Approach and Use of Ontologies
	Constructing a Context Path
	Managing the Context Path through Ontology Alignment
	Self-configuration and Inference

	LDSE Architecture: Context-Awareness and Self-configuration Features
	Conclusion
	References

	Neurules-A Type of Neuro-symbolic Rules: An Overview
	Introduction
	Neurules
	Syntax and Semantics
	Neurule-Based System Architecture

	Construction of a Neurule Base from a Symbolic Rule Base
	Efficient Updating of a Neurule Base Produced from a Symbolic Rule Base
	Producing a Neurule Base from Empirical Data
	Efficient Updating of a Neurule Base Produced from Empirical Data
	Neurule-Based Inference Engine
	Combining Neurule-Based and Case-Based Reasoning
	Conclusions
	References

	Author Index

