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Preface (First Edition) 
 
 
 This textbook is intended to introduce engineering graduate students to the essentials of 
modern Continuum Mechanics.  The objective of an introductory course is to establish certain 
classical continuum models within a modern framework.  Engineering students need a firm 
understanding of classical models such as the linear viscous fluids (Navier-Stokes theory) and 
infinitesimal elasticity.  This understanding should include an appreciation for the status of the 
classical theories as special cases of general nonlinear continuum models.  The relationship of the 
classical theories to nonlinear models is essential in light of the increasing reliance, by engineering 
designers and researchers, on prepackaged computer codes.  These codes are based upon models 
which have a specific and limited range of validity.  Given the danger associated with the use of 
these computer codes in circumstances where the model is not valid, engineers have a need for an 
in depth understanding of continuum mechanics and the continuum models which can be 
formulated by use of continuum mechanics techniques. 
 
 Classical continuum models and others involve a utilization of the balance equations of 
continuum mechanics, the second law of thermodynamics, the principles of material frame-
indifference and material symmetry.  In addition, they involve linearizations of various types.  In 
this text, an effort is made to explain carefully how the governing principles, linearizations and 
other approximations combine to yield classical continuum models.  A fundamental understanding 
of these models evolve is most helpful when one attempts to study models which account for a 
wider array of physical phenomena. 
 
 This book is organized in five chapters and two appendices.  The first appendix contains 
virtually all of the mathematical background necessary to understand the text.  The second 
appendix contains specialized results concerning representation theorems.  Because many new 
engineering graduate students experience difficulties with the mathematical level of a modern 
continuum mechanics course, this text begins with a one dimensional overview.  Classroom 
experience with this material has shown that such an overview is helpful to many students.  Of 
course, more advanced students can proceed directly to the Chapter II.  Chapter II is concerned 
with the kinematics of motion of a general continuum.  Chapter III contains a discussion of the 
governing equations of balance and the entropy inequality for a continuum.  The main portion of 
the text is contained in Chapter IV.  This long chapter contains the complete formulation of various 
general continuum models.  These formulations begin with general statements of constitutive 
equations followed by a systematic examination of these constitutive equations in light of the 
restrictions implied by the second law of thermodynamics, material frame-indifference and material 
symmetry.  Chapter IV ends with an examination of the formal approximations necessary to 
specialize to the classical models mentioned above.  So as to illustrate further applications of 
continuum mechanics, the final chapter contains an introductory discussion of materials with 
internal state variables. 
 
 The book is essentially self contained and should be suitable for self study.  It contains 
approximately two hundred and eighty exercises and one hundred and seventy references.  The 
references at the end of each chapter are divided into References and General References.  The 
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References are citations which relate directly to the material covered in the proceeding chapter.  
The General References represent additional reading material which relate in a general way to the 
material in the chapter. 
 
 This text book evolved over an extended period of time.  For a number of years, early 
versions of the manuscript were used at Rice University.  I am indebted for the assistance my many 
students gave me as the lecture notes evolved into a draft manuscript.  The final manuscript has 
been utilized at the University of Kentucky by my colleague, Professor Donald C. Leigh, in an 
introductory graduate course.  I am indebted to him for his many comments and suggestions. 
 
 
 Ray M. Bowen 
 Lexington, Kentucky 
 
Preface (Revised Edition) 
 
 

This electronic textbook is a revision to the textbook, Introduction to Continuum Mechanics 
which was published by Plenum Press in 1989.  A small amount of new material has been added in 
Chapters 1, 3 and 4.  In addition, an effort has been made to correct numerous typographical errors 
that appeared in the first edition.  It is inevitable that other typographical errors creep into the 
manuscript when it is retyped.  I hope there has been a net reduction in these kinds of errors from 
the first edition to this revised edition 

 
I remain indebted to my colleagues that have pointed out errors over the years.  A special 

mention needs to be made to my good friends Dr. C.-C. Wang of Rice University and Dr. Donald 
C. Leigh of the University of Kentucky.  Not only were they kind enough to adopt the first edition 
as a textbook, they informed me of many corrections and improvements that could be made. 

 
I am also indebted to my students at Texas A&M University that endured my teaching from 

the revised edition after being out of the classroom for many years. 
 
It is my desire and intention that this revised textbook be made available for free to anyone 

that wishes to have a copy.  For the immediate future, the access will be provided by posting it on 
the website of the Mechanical Engineering Department of Texas A&M University.  I would 
appreciate being informed of any typographical and other errors that remain in the posted version. 
 
 Ray M. Bowen 
 rbowen@tamu.edu 
 College Station, Texas 
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1 
 
One-Dimensional Continuum Mechanics 
 
It is often not clear to engineering students that there is a common basis for their courses in 
thermodynamics, fluid mechanics and elasticity.  The pace of most undergraduate curriculums is 
such that there is no opportunity to stress the common features of these courses.  In addition, many 
undergraduate engineering students have limited skill with vector analysis and Cartesian tensor 
analysis.  These problems make it awkward to teach a modern introductory course in Continuum 
Mechanics to first year engineering graduate students.  Experience has shown that an elementary 
preview of the modern course can be a great asset to the student.  This chapter contains such a 
preview.  It is a brief survey of the elements of continuum mechanics presented for one 
dimensional continuous bodies.  This survey allows the student to encounter a new notation and 
several new concepts without the problem of learning three dimensional vector and tensor analysis. 
 

This chapter contains a development of the one dimensional forms of the equations of 
balance of mass, momentum and energy.  The entropy inequality is presented, and it is utilized to 
derive the thermodynamic restrictions for a particular material model. 
 
1.1.  Kinematics of Motion and Strain 
 

We shall denote by U  the one dimensional body.  The symbol X denotes an element or 
particle of the body U .  It is useful at this point not to distinguish between the body U  and the 
portion of one dimensional space it occupies.  Thus, X is a real number.  It is customary to refer to 
X as the material or Lagrangian coordinate of the particle.  The set of material coordinates is a 
subset of the real numbers called the reference configuration.  If t denotes the time and e  is the 
set of real numbers, then the deformation function is a function ( , ) :tχ ⋅ →U e  which, for each t, 
maps U  into its present configuration.  We write 
 
 ( , )x X tχ=  (1.1.1) 
 
where x  is the spatial position or coordinate of the particle X  at the time t .  The spatial 
coordinates are also called Eulerian coordinates.  We shall assume that for each t , χ  has an 
inverse 1χ −  such that 
 
 1( , )X x tχ −=  (1.1.2) 
 
Theses assumptions insure that X  and x  are in one to one correspondence for each t  and are, in 
effect, a statement of permanence of matter.  The particle X  cannot break into two particles as a 
result of the deformation, and two particles 1X  and 2X  cannot occupy the same spatial position x  
at the same instant of time. 
 

The velocity of X at time t is 
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 ( , )X tx
t

χ∂
=

∂
�  (1.1.3) 

 
The acceleration of X  at the time t  is 
 

 
2

2

( , )X tx
t

χ∂
=

∂
��  (1.1.4) 

 
 
The displacement of X  at the time t  is 
 
 ( , )w X t Xχ= −  (1.1.5) 
 
Because of (1.1.2), we can regard x� , x��  and w  to be functions of ( , )x t  or ( , )X t .  The pair ( , )X t  
are called material variables, and the pair ( , )x t  are called spatial variables.  Clearly, by use of 
(1.1.1) and (1.1.2) any function of one set of variables can be converted to a function of the other 
set. 
 

If ψ  is a function of ( , )X t , then its material derivative, written ψ� , is defined by 
 

 ( , )X t
t

ψψ ∂
=

∂
�  (1.1.6) 

 
If the function ψ�  of ( , )x t  is defined by 
 
 1( , ) ( ( , ), )x t x t tψ ψ χ−=�  (1.1.7) 
 
an elementary application of the chain rule yields 
 

 ( , ) ( , ) ( , )X t x t x t x
t t x

ψ ψ ψψ ∂ ∂ ∂
= = +

∂ ∂ ∂

� �
� �  (1.1.8) 

 
Equation (1.1.8) gives the material derivative in terms of spatial derivatives.  For notational 
simplicity, we shall write (1.1.8) as 
 

 x
t x
ψ ψψ ∂ ∂

= +
∂ ∂

� �  (1.1.9) 

 
where it is understood that / tψ∂ ∂  is computed at fixed x , and / xψ∂ ∂  is computed at fixed t .  As 
an illustration of (1.1.9), we can take xψ = � and obtain 
 

 x xx x
t x
∂ ∂

= +
∂ ∂
� ��� �  (1.1.10) 
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The deformation gradient is defined by 

 

 ( , )X tF
X

χ∂
=

∂
 (1.1.11) 

 
 
Since χ  has an inverse, it is trivially true that 1( ( , ), )x t t xχ χ − =  and, thus, 
 

 
1( , ) ( , ) 1X t x t

X x
χ χ −∂ ∂

=
∂ ∂

 (1.1.12) 

 
Equation (1.1.12) shows that 0F ≠ and 
 

 
1

1 1 ( , )x tF
F x

χ −
− ∂
= =

∂
 (1.1.13) 

 
The displacement gradient is defined by 
 

 ( , )w X tH
X

∂
=

∂
 (1.1.14) 

 
It follows from (1.1.11), (1.1.14), and (1.1.5) that H  and F  are related by 
 
 1H F= −  (1.1.15) 
 

If dX  denotes a differential element of the body at X , then it follows from (1.1.1) and 
(1.1.11) that 
 
 dx FdX=  (1.1.16) 
 
Equation (1.1.16) shows that if dX  is a material element at X  then FdX dx=  is the deformed 
element at x .  Therefore, F  measures the local deformation of material in the neighborhood of 
X . 
 

If x�  is expressed as a function of ( , )x t , then 
 

 xL
x
∂

=
∂
�

 (1.1.17) 

 
is the velocity gradient.  Because 
 

 ( , ) ( , )X t x x X t
X t X x X

χ χ∂ ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂
� �

 (1.1.18) 
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it follows from (1.1.11), (1.1.17) and (1.1.6) that 
 
 F LF=�  (1.1.19) 
 
Exercise 1.1.1 
 
Show that 
 

 1 1F F L
⋅
− −= −  (1.1.20) 

 
Next we shall state and prove an important result known as Reynold’s theorem or the 

transport theorem.  Consider a fixed portion of the body in 1 2X X X≤ ≤ .  The deformation 
function, for each t , deforms this portion into a region in e .  Without loss of generality, we can 
take this region to be 1 2x x x≤ ≤ , where 1 1( , )x X tχ= , 2 2( , )x X tχ=  and ( , )x X tχ= .  Reynold’s 
theorem states that if Ψ  is a sufficiently smooth function of x  and t , then 
 

 2 2

1 1
2 2 1 1

( , )( , ) ( , ) ( , ) ( , ) ( , )
x x

x x

x tx t dx dx x t x x t x t x x t
t

⋅ ∂Ψ
Ψ = +Ψ −Ψ

∂∫ ∫
i

� �  (1.1.21) 

 
The derivation of (1.1.21) is best approached by utilizing a formalism which does not 

depend upon the use of a deformation function, and its associated motion.  We first let ( , )x tΦ  be 
the indefinite integral, with respect to x , of a function ( , )x tΨ .  In other words, let 
 
 ( , ) ( , )  constantx t x t dxΦ = Ψ +∫  (1.1.22) 
 
It follows then that 
 

 ( , ) ( , )x t x t
x

∂Φ
= Ψ

∂
 (1.1.23) 

and, for two points 1x  and 2x , 
 

 2

1
2 1( , ) ( , ) ( , )

x

x
x t dx x t x tΨ =Φ −Φ∫  (1.1.24) 

 
If we allow the limits in (1.1.24) to be functions of time, i.e., 
 

 2

1

( )

2 1( )
( , ) ( ( ), ) ( ( ), )

x t

x t
x t dx x t t x t tΨ = Φ −Φ∫  (1.1.25) 

 

The total derivative of 2

1

( )

( )
( , )

x t

x t
x t dxΨ∫  is 
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2

1

( ) 2 1
( )

2 2 2

1 1 1

( ( ), ) ( ( ), )( , )

( ( ), ) ( ( ), ) ( )

( ( ), ) ( ( ), ) ( )

x t

x t

d x t t d x t td x t dx
dt dt dt

x t t x t t dx t
t x dt

x t t x t t dx t
t x dt

Φ Φ
Ψ = −

∂Φ ∂Φ
= +

∂ ∂
∂Φ ∂Φ

− −
∂ ∂

∫

 (1.1.26) 

 
If (1.1.25) is used, (1.1.26) can be written 
 

 

2

1

2

1

( ) 2 2 1 1
2 1( )

( ) 2 1
2 1( )

( ( ), ) ( ) ( ( ), ) ( )( , ) ( ( ), ) ( ( ), )

( ) ( )( , ) ( ( ), ) ( ( ), )

x t

x t

x t

x t

x t t dx t x t t dx td x t dx x t t x t t
dt t dt t dt

dx t dx tx t dx x t t x t t
t dt dt

∂Φ ∂Φ
Ψ = +Ψ − −Ψ

∂ ∂
∂

= Ψ +Ψ −Ψ
∂

∫

∫
 (1.1.27) 

 
The next formal step is to interchange the order of integration on x  with the partial differentiation 
with respect to t .  The result of this final step is 
 

 2 2

1 1

( ) ( ) 2 1
2 1( ) ( )

( ) ( )( , )( , ) ( ( ), ) ( ( ), )
x t x t

x t x t

dx t dx td x tx t dx dx x t t x t t
dt t dt dt

∂Ψ
Ψ = +Ψ −Ψ

∂∫ ∫  (1.1.28) 

 
 
The result (1.1.28) is a mathematical identity that holds for the function Ψ  of ( , )x t  and functions 

1x  and 2x  of t  that are sufficiently smooth that the various derivatives above exist.  In calculus, it 
sometimes goes by the name Leibnitz’s rule.  It is one of the standard results one needs in applied 
mathematics for the differentiation of integrals.  We have not been precise about the smoothness 
assumptions sufficient to give the result (1.1.28).  More rigorous derivations of this result can be 
found in many Calculus textbooks.  References 1 and 2 contain this derivation.  In any case, we are 
interested in this result in the special case where the functions 1x  and 2x  of t  are derived from the 
deformation function χ .  In this case, (1.1.27) immediately becomes (1.1.21) 
 
Exercise 1.1.2 
 

Show that (1.1.21) can be derived by a change of variables in the integral 2 2

1 1

( , )

( , )
( , )

x X t

x X t
x t dx

χ

χ

=

=
Ψ∫ .  The 

first step is to write 
 

 2 2 2 2

1 1 1 1

( , )

( , )
( , ) ( , ) ( ( , ), )

x x X t X

x x X t X
x t dx x t dx X t t FdX

χ

χ
χ

=

=
Ψ = Ψ = Ψ∫ ∫ ∫  (1.1.29) 

 
Differentiate (1.1.29) and rearrange the result to obtain (1.1.21). 
 
The name "transport theorem" is suggested by viewing the last two terms in (1.1.21) as the net 
transported out of the spatial region 1 2x x x< <  by the motion of the material. 
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 Equation (1.1.28) and its special case (1.1.21) assume that Φ  is differentiable and, thus, 
from (1.1.23), Ψ continuous as a function of x  in 1 2x x x< < .  Next we wish to remove the 
assumption that Ψ  is continuous in 1 2x x x< <  and derive a generalization of (1.1.21).  The 
derivation simply utilizes the general result (1.1.27) in two different intervals and carefully joins 
the results so as they apply to the interval 1 2x x x< < .  We assume Ψ  is continuous except at a 
point ( )y t  in the interval 1 2x x x< < .  As shown in the following figure, at the point ( )y t  the 
function Ψ  is allowed to undergo a discontinuity as a function of x  at a fixed time t . 
 

As indicated on the figure 
 
 

( )
lim ( , )

x y t
x t

−

↑
Ψ = Ψ  (1.1.30) 

 
and 
 
 

( )
lim ( , )

x y t
x t+

↓
Ψ = Ψ  (1.1.31) 

 
We use the notation Ψ[ ]  to denote the jump of Ψ  defined by 
 
 − +Ψ = Ψ −Ψ[ ]  (1.1.32) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1.1 
Exercise 1.1.3 
 
If Ψ  and Φ  undergo jump discontinuities at ( )y t  show that 
 

1Ψ

−Ψ

+Ψ

2Ψ

1x 2x( )y t
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− + − +

+ +

ΨΦ = Ψ Φ +Ψ Φ = Ψ Φ + Ψ Φ

= Ψ Φ +Ψ Φ + Ψ Φ

[ ] [ ] [ ] [ ] [ ]
[ ][ ] [ ] [ ]

 

and 
 

 ( ) ( )1 1
2 2

+ − + −= Ψ +Ψ Φ + Ψ Φ +Φ[ ] [ ]  (1.1.33) 

 
Exercise 1.1.4 
 
If Ψ  undergoes a jump discontinuity at ( )y t , show that 
 

 2

1
2 1( , ) ( , )

x

x
dx x t x t

x
∂Ψ

= Ψ −Ψ + Ψ
∂∫ [ ]  (1.1.34) 

 
Given a function Ψ  which undergoes a jump discontinuity at ( )y t , Reynold’s theorem 

takes the form 
 

 
2 2

1 1
2 2

1 1

( , ) ( , ) ( , )

( , ) ( , )

x x

x x
x t dx dx x t x x t

t
x t x x t y

∂Ψ
Ψ = +Ψ

∂
−Ψ + Ψ

∫ ∫
[ ]

i

�

� �
 (1.1.35) 

 
where ( )y t�  is the velocity of the point ( )y t .  The derivation of (1.1.35) is elementary.  Because Ψ  
is differentiable in 1 ( )x x y t< <  and in 2( )y t x x< < , (1.1.27) yields 
 

 
1 1

1 1
( , )( , ) ( , ) ( , )

y y

x x

d x tx t dx dx y x t x x t
dt t

−∂Ψ
Ψ = +Ψ −Ψ

∂∫ ∫ � �  (1.1.36) 

 
and 
 

 2 2

2 2
( , )( , ) ( , ) ( , )

x x

y y

d x tx t dx dx x t x x t y
dt t

−∂Ψ
Ψ = +Ψ −Ψ

∂∫ ∫ � �  (1.1.37) 

 
The addition of (1.1.36) and (1.1.37) yields (1.1.35).  If (1.1.34) is used, (1.1.35) can also be 
written 
 

 2 2

1 1

( , ) ( )
x x

x x

xx t dx dx x y
t x

∂Ψ ∂Ψ⎛ ⎞Ψ = + − Ψ −⎜ ⎟∂ ∂⎝ ⎠∫ ∫ [ ]
i

� � �  (1.1.38) 

 
1.2.  Balance of Mass 
 

In this section we shall state the one dimensional form of the equation of balance of mass.  
This equation is the first of four fundamental principles which form the basis of continuum 



8  Chapter 1 

  

mechanics.  The others are balance of momentum, balance of energy and the entropy inequality.  
These equations of balance will be discussed in subsequent sections. 
 

We shall denote by ρ  the mass density (mass/length) of U  in its deformed configuration.  
Therefore, 
 
 ( , )X tρ ρ=  (1.2.1) 
 
The corresponding quantity in the reference configuration is 
 
 ( )R R Xρ ρ=  (1.2.2) 
 
Balance of mass is the simple physical statement that the mass of the body and any of its parts are 
unaltered during a deformation.  If an arbitrary part of the body is defined by 1 2X X X< < , then it 
is deformed into 1 2x x x< <  by the deformation, where 1 1( , )x X tχ= and 2 2( , )x X tχ= .  Balance of 
mass is the assertion that 
 

 2 2

1 1

X x

RX x
dX dxρ ρ=∫ ∫  (1.2.3) 

 
for all parts of the one dimensional body U .  Because the left side of (1.2.3)is independent of t , 
an alternate form of balance of mass is 
 

 2

1

0
x

x
dxρ =∫
i

 (1.2.4) 

 
Next we shall derive the local statement of balance of mass.  The statement is local in the 

sense that it holds at an arbitrary point X  at an arbitrary time t  rather than for an interval 
1 2X X X< < .  By use of (1.1.16), (1.2.3) can be written 

 

 ( )2

1

0
X

RX
F dXρ ρ− =∫  (1.2.5) 

 
If we assume the integrand RFρ ρ−  is a continuous function of X , the fact that (1.2.5) must hold 
for every interval 1 2X X X< <  forces the following local statement of balance of mass: 
 
 RFρ ρ=  (1.2.6) 
 
For reasons that will become clear later, we shall refer to (1.2.6) as the material form of the local 
statement of balance of mass.  Other local statements follow by differentiation of (1.2.6).  It follows 
from (1.2.6) that 
 

 0F F Fρ ρ ρ= + =
i

��  (1.2.7) 
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If we now use (1.1.19) and the fact that 0F ≠ , (1.2.7) yields 
 
 0Lρ ρ+ =�  (1.2.8) 
 
Exercise 1.2.1 
 
Show that (1.2.8) can be written in the alternate forms 
 

 1 1 L
ρ ρ

=

i

 (1.2.9) 

 
and 
 

 0x
t x
ρ ρ∂ ∂
+ =

∂ ∂
�

 (1.2.10) 

 
Equations (1.2.8), (1.2.9) and (1.2.10) are local statements of balance of mass which hold at 

points where ρ  and x�  are differentiable.  If there is a point for which ρ  and x�  undergo a jump 
discontinuity, we must proceed from (1.2.3) more carefully. If ρ  and x�  suffer a jump 
discontinuity at ( )y t� , it follows from (1.2.4) and (1.1.38) that 
 

 2

1

( ) 0
x

x

x dx x y
t x
ρ ρ ρ

⋅ ∂ ∂⎛ ⎞+ − − =⎜ ⎟∂ ∂⎝ ⎠∫ [ ]
� � �  (1.2.11) 

 
Equation (1.2.11) holds for all 1 2( , )x x .  The integrand is assumed to be continuous at all points 
except ( )y t� .  If 1 2( , )x x  is an arbitrary interval which does not contain ( )y t� , then (1.2.11) implies 
(1.2.10).  Given (1.2.10), (1.2.11) then yields 
 
 ( ) 0x yρ − =[ ]� �  (1.2.12) 
 
at ( )x y t= .  The physical meaning of (1.2.12) is quite clear.  It simply states that the flux of mass 
across the point ( )y t�  is continuous. 
 
Exercise 1.2.2 
 
Use (1.2.12) and show that the jump in specific volume, 1/ ρ[ ], is given by 
 
 ( ) 1/x y xρ ρ+ + − =[ ] [ ]� � �  (1.2.13) 
 
Exercise 1.2.3 
 
Use (1.2.10) and show that 
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 x
t x
ρ ρρ ∂ Ψ ∂ Ψ

Ψ = +
∂ ∂

��  (1.2.14) 

 
where Ψ  is any function of ( , )x t . 
 
Exercise 1.2.4 
 
Use (1.2.14) and show that 
 

 2 2

1 1

( , ) ( )
x x

x x
x t dx dx x yρ ρ ρΨ = Ψ − Ψ −∫ ∫ [ ]

i

� � �  (1.2.15) 

 
1.3.  Balance of Linear Momentum 
 

In the three dimensional theory, the statement of balance of momentum consists of two 
parts.  The first is the statement concerning the balance of linear momentum, and the second is a 
statement concerning the balance of angular momentum.  For a one dimensional theory the concept 
of angular momentum does not arise. 
 

The linear momentum of the part of U  in 1 2x x x< <  is 
 

 2

1

x

x
xdxρ∫ �  

 
The rate of change of linear momentum is required to equal to the resultant force on the part of 
U .  The formal statement is written 
 

 2

1

x

x
xdx fρ =∫
i

�  (1.3.1) 

 
for all parts of the body U , where f  is the resultant force acting on the part.  We shall assume 
that f  consists of two contributions and write 
 

 2

1
2 1( , ) ( , )

x

x
f T x t T x t bdxρ= − + ∫  (1.3.2) 

 
The quantity ( , )b x t  is called the body force density (body force/mass), and the integral of bρ  is the 
resultant body force acting on the part of U  in 1 2x x x< < .  The quantity ( , )T x t  is a contact 
force.  It results from the contact of the part of U  in 1 2x x x< <  with that not in 1 2x x x< < .  

( , )T x t  is the one dimensional counterpart of stress.  If ( , )T x t  > 0 (< 0) the material point is in 
tension (compression). If we combine (1.3.1) and (1.3.2), we obtain 
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 2 2

1 1
2 1( , ) ( , )

x x

x x
xdx T x t T x t bdxρ ρ
⋅

= − +∫ ∫�  (1.3.3) 

 
 
Next, we wish to deduce from (1.3.3) a local statement of balance of linear momentum.  For the 
sake of generality, we allow T , ρ  and x�  to suffer jump discontinuities at a point ( )y t  in U .  It 
easily follows from (1.1.34) that 
 

 2

1
2 1( , ) ( , )

x

x

TT x t T x t dx T
x

∂
− = −

∂∫ [ ] (1.3.4) 

 
and, from (1.2.15), that 
 

 2 2

1 1

( )
x x

x x
xdx xdx x x yρ ρ ρ= − −∫ ∫ [ ]
i

� �� � � �  (1.3.5) 

These results allow (1.3.3) to be written 
 

 2

1

( ) 0
x

x

Tx b dx x x y T
x

ρ ρ ρ∂⎛ ⎞− − − − + =⎜ ⎟∂⎝ ⎠∫ [ ] [ ]�� � � �  (1.3.6) 

 
Since (1.3.6) must hold for all parts of U , it follows by the same argument that produced (1.2.10) 
and (1.2.12) from (1.2.11) that 
 

 Tx b
x

ρ ρ∂
= +
∂

��  (1.3.7) 

 
for all ( )x y t≠ , and 
 
 ( ) 0x x y Tρ − − =[ ] [ ]� � �  (1.3.8) 
 
at ( )x y t=  
 
Exercise 1.3.1 
 
Show that an alternate form of the acceleration x��  is 
 

 
2x xx

t x
ρ ρρ ∂ ∂

= +
∂ ∂
� ���  (1.3.9) 

 
Exercise 1.3.2 
 
Show that (1.3.8) can be written 
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 2( ) 0x y Tρ − − =[ ]� �  (1.3.10) 
 
and 
 
 0x Tγ − =[ ] [ ]�  (1.3.11) 
 
where ( ) ( )x y x yγ ρ ρ+ + − −= − = −� � � � . 
 
Exercise 1.3.3 
 
Show that 
 

 2

1/
Tγ
ρ

=
[ ]

[ ]
 (1.3.12) 

 
Equation (1.3.12) shows that T[ ]  and 1/ ρ[ ]  must have the same sign.  Equation (1.3.12) is known 
as the Rankine-Hugoniot relation. 
 
Just as (1.2.6) is the material version of balance of mass, equation (1.3.7) can be manipulated into a 
material version of balance of linear momentum.  This material version is 
 

 R R
Tx b
X

ρ ρ∂
= +
∂

��  (1.3.13) 

 
Equation (1.3.13) follows by multiplication of (1.3.7) by F  and making use of (1.2.6). 
 
1.4.  Balance of Energy 
 

Balance of energy, or the First Law of Thermodynamics, is the statement that the rate of 
change of total energy equals the rate of work of the applied forces plus the rate of heat addition.  
The total energy includes the sum of the internal energy and the kinetic energy.  If ( , )x tε  is the 
internal energy density (internal energy/mass), 
 

 2

1

21( )
2

x

x
x dxρ ε +∫ �  

 
is the total energy of the part of U  in 1 2x x x< < . The rate of work or power of the applied forces 
is 
 

 2

1
2 2 1 1( , ) ( , ) ( , ) ( , )

x

x
T x t x x t T x t x x t xbdxρ− + ∫� � �  

 
 



One-Dimensional Continuum Mechanics  13 

 

The rate of heat addition arises from heat generated at points within the body U  and from contact 
of the part of U  in 1 2x x x< <  with that not in 1 2x x x< < . If ( , )r x t  denotes the heat supply 
density (rate of heat addition/mass), then 
 

 2

1

x

x
rdxρ∫  

 
 
is the rate of heat addition resulting from heat generated within the body.  The rate of heat addition 
from contact is written 
 
 1 2( , ) ( , )q x t q x t−  
 
where ( , )q x t  is the heat flux.  The mathematical statement which reflects balance of energy is 
therefore 
 

 
2 2

1 1

2

1

2
2 2 1 1

1 2

1( ) ( , ) ( , ) ( , ) ( , )
2

( , ) ( , )

x x

x x

x

x

x dx T x t x x t T x t x x t xbdx

q x t q x t rdx

ρ ε ρ

ρ

+ = − +

+ − +

∫ ∫

∫

i

� � � �
 (1.4.1) 

 
Exercise 1.4.1 
 
Show that (1.4.1) implies 
 

 21( )
2

Tx qx xb r
x x

ρ ε ρ ρ
⋅

∂ ∂
+ = − + +

∂ ∂
�� �  (1.4.2) 

 
for all ( )x y t≠  and 
 

 21( )( ) 0
2

x x y Tx qρ ε + − − + =[ ]� � � �  (1.4.3) 

 
at ( )x y t= . 
 
Exercise 1.4.2 
 
Show that when 0q =[ ]  (1.2.12) and (1.3.8) can be used to write (1.4.3) in the forms 
 

 21 ( ) 0
2

T x yε
ρ

− + − =[ ]� �  (1.4.4) 

and 
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 1 1( ) 0
2

T Tε
ρ

− +− + =[ ] [ ]  (1.4.5) 

 
Equation (1.4.5) is known as the Hugoniot relation.  It is often written in terms of a different 
thermodynamic quantity than the internal energy density ε .  The quantity that is used is the 
enthalpy density defined by  
 

 Tχ ε
ρ

= −  (1.4.6) 

 
Exercise 1.4.3 
 
Given the definition (1.4.6), show that (1.4.5) takes the form 
 

 1 1 1 0
2

Tχ
ρ ρ− +

⎛ ⎞
+ + =⎜ ⎟

⎝ ⎠
[ ] [ ]  (1.4.7) 

 
Exercise 1.4.4 
 
Derive a material version of (1.4.2). 
 

Next we shall use (1.3.7) to derive from (1.4.2) a thermodynamic energy equation.  If 
(1.3.7) is multiplied by x� , the result can be written 
 

 21
2

Tx x xb
x

ρ ρ

⋅

∂
= +

∂
� � �  (1.4.8) 

 
If this equation is subtracted from (1.4.2), the result is 
 

 qTL r
x

ρε ρ∂
= − +

∂
�  (1.4.9) 

 
 

where the definition (1.1.17) has been used.  The term Tx
x

∂
∂
�

in (1.4.2) arose from the rate of work of 

the contact forces.  Since 
 

 Tx Tx TL
x x

∂ ∂
= +

∂ ∂
� �  (1.4.10) 
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this rate of work decomposes into a part which changes the mechanical energy, Tx
x

∂
∂
� , and a part 

which changes the internal energy, TL .  The term TL  is sometimes called the stress power. 
 
Exercise 1.4.5 
 
Derive the material version of (1.4.9). 
 
Exercise 1.4.6 
 
On the assumption that none of the field quantities undergo jump discontinuities, show that 
 

 2 2 2

1 1 1
1 2( , ) ( , )

x x x

x x x
dx q x t q x t rdx TLdxρε ρ= − + +∫ ∫ ∫

i

 (1.4.11) 

 
and 
 

 
2 2

1 1

2

1

2
2 2 1 1

1( ) ( , ) ( , ) ( , ) ( , )
2

x x

x x

x

x

x dx T x t x x t T x t x x t xbdx

TLdx

ρ ρ= − +

−

∫ ∫

∫

i

� � � �
 (1.4.12) 

 
 
Equations (1.4.11) and (1.4.12) show how the stress power couples the internal energy and the 
kinetic energy of the part of the body U in 1 2x x x< < . 
 
1.5.  General Balance 
 

The reader has probably noticed a formal similarity between the three balance equations 
discussed thus far in this chapter.  Each balance equation is a special case of the following equation 
of general balance: 
 

 2 2

1 1
2 1( , ) ( , )

x x

x x
dx x t x t dxρψ ρϕ= Γ −Γ +∫ ∫

i

 (1.5.1) 

 
In equation (1.5.1) the left side represents the rate of change of the amount of ψ  in 1 2x x x< < . The 
term 2 1( , ) ( , )x t x tΓ −Γ  represents the net influx of ψ , and the last term presents the supply of ψ .  
The following table shows the choices of ψ , Γ  and ϕ  appropriate to the equations of balance of 
mass, momentum and energy. 
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 ψ  Γ  ϕ  
Mass 1 0 0 
Momentum x�  T  b  

Energy 21
2

xε + � Tx q−� r xb+ �

 
 
Exercise 1.5.1 
 
Derive the following local statements of the general balance: 
 

 
x

ρψ ρϕ∂Γ
= +
∂

�  (1.5.2) 

 
for ( )x y t≠ , and 
 
 ( ) 0x yρψ − −Γ =[ ]� �  (1.5.3) 
 
for ( )x y t= .  Equation (1.5.3) is a one dimensional version of a result known as Kotchine's 
theorem. 
 
Exercise 1.5.2 
 
Derive a material version of (1.5.2). 
 
1.6.  The Entropy Inequality 
 

The entropy inequality is the mathematical statement of the Second Law of 
Thermodynamics.  In order to state this inequality, we introduce three new quantities.  The entropy 
density (entropy/mass) is denoted by ( , )x tη .  The entropy flux is denoted by ( , )h x t , and the 
entropy supply density is denoted by ( , )k x t .  These three quantities are required to obey the 
following entropy inequality or Clausius-Duhem inequality: 
 

 2 2

1 1
1 2( , ) ( , )

x x

x x
dx h x t h x t kdxρη ρ≥ − +∫ ∫

i

 (1.6.1) 

 
for all parts of the body U .  The temperature is introduced by forcing the ratio of entropy flux to 
heat flux to equal the ratio of entropy supply density to heat supply density.  The temperature 

( , )x tθ  is defined to be the common value of these two ratios, i.e., 
 

 ( , ) q rx t
h k

θ = =  (1.6.2) 
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We also require θ  to be a positive number and, thus, 
 

 ( , )( , )
( , )

q x th x t
x tθ

=  (1.6.3) 

 
and 
 

 ( , )( , )
( , )

r x tk x t
x tθ

=  (1.6.4) 

 
Given (1.6.3) and (1.6.4), (1.6.1) becomes 
 

 2 2

1 1

1 2

1 2

( , ) ( , )
( , ) ( , )

x x

x x

q x t q x t rdx dx
x t x t

ρρη
θ θ θ

≥ − +∫ ∫
i

 (1.6.5) 

 
By a now familiar argument, (1.6.5) can be written 
 

 2 / ( ) 0
x

x

q r qdx x y
x
θ ρρη ρη

θ θ
∂⎛ ⎞+ − − − + ≥⎜ ⎟∂⎝ ⎠∫ [ ]� � �  (1.6.6) 

 
for all parts of U .  The following local inequalities are valid: 
 

 / 0q r
x
θ ρρη

θ
∂

+ − ≥
∂

�  (1.6.7) 

 
for ( )x y t≠ , and 
 

 ( ) 0qx yρη
θ

− + ≤[ ]� �  (1.6.8) 

 
for ( )x y t=  
 
If (1.6.7) is written 
 

 2

1 0q q r
x x
θρη ρ

θ θ
∂ ∂⎛ ⎞− + − ≥⎜ ⎟∂ ∂⎝ ⎠

�  (1.6.9) 

 

the term q r
x

ρ∂
−

∂
 can be eliminated by use of (1.4.9).  The result of this elimination is 

 

 ( ) 0qTL
x
θρ θη ε

θ
∂

− + − ≥
∂

� �  (1.6.10) 
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A more convenient version of (1.6.10) results if we introduce the Helmholtz free energy density 
defined by 
 
 ψ ε ηθ= −  (1.6.11) 
 
This definition allows (1.6.10) to be written 
 

 ( ) 0qTL
x
θρ ψ ηθ

θ
∂

− + + − ≥
∂

��  (1.6.12) 

 
Exercise 1.6.1 
 
If 0θ  is a positive number, show that 
 

 

( )( )2

1

2 2

1 1

21
0 2 2 1 12

0 0
1 2

1 2

0

( , ) ( , ) ( , ) ( , )

( , ) 1 ( , ) 1
( , ) ( , )

1

x

x

x x

x x

dx T x t x x t T x t x x t

q x t q x t
x t x t

x bdx rdx

ρ ψ η θ θ

θ θ
θ θ

θρ ρ
θ

+ − + ≤ −

⎛ ⎞ ⎛ ⎞
+ − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞+ ⋅ + −⎜ ⎟
⎝ ⎠

∫

∫ ∫

x
i

� � �

�

 (1.6.13) 

 
Equation (1.6.13) is a useful representation of the entropy inequality (1.6.5) when one wants to 
study the stability of certain types of bodies. 
 
Exercise 1.6.2 
 
Use (1.6.12) and prove that the Helmholtz free energy density cannot increase in an isothermal 
constant deformation process. 
 
Exercise 1.6.3 
The enthalpy density χ  was defined by equation (1.4.6).  The Gibbs function is defined by 
 

 Tς ψ
ρ

= −  (1.6.14) 

 
Use these definitions and show that 
 

 ( ) 0qT
x
θρ θη χ

θ
∂

− − − ≥
∂

�� �  (1.6.15) 

 
and 
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 ( ) 0qT
x
θρ ς ηθ

θ
∂

− + − − ≥
∂

� ��  (1.6.16) 

 
Exercise 1.6.4 
 
Use (1.6.16) and prove that the Gibbs function cannot increase in an isothermal constant stress 
process. 
 
Exercise 1.6.5 
 
Use the definition (1.6.11) and show that (1.4.9) can be written 
 

 ( ) qTL r
x

ρθη ρ ψ ηθ ρ∂
= − + + − +

∂
�� �  (1.6.17) 

 
Exercise 1.6.6 
 
Show that material versions of (1.6.7), (1.6.12) and (1.6.17) are 
 

 / 0R
R

rq
X

ρθρ η
θ

∂
+ − ≥

∂
�  (1.6.18) 

 

 ( ) 0R
qTF

X
θρ ψ ηθ

θ
∂

− + + − ≥
∂

� ��  (1.6.19) 

 
and 
 

 ( )R R R
qTF r
X

ρ θη ρ ψ ηθ ρ∂
= − + + − +

∂
� �� �  (1.6.20) 

 
respectively. 
 
Exercise 1.6.7 
 
 Throughout this chapter, we have developed jump expressions which govern balance of 
mass, momentum and energy across a jump discontinuity.  We have also, with (1.6.8), developed a 
jump inequality which follows from the entropy inequality.  It is interesting to develop material 
versions of these jump equations.  As a first step, combine (1.2.6) and (1.2.12) and show that 
 
 1( ) 0F x y− − =[ ]� �  (1.6.21) 
 
The physical quantity 1 ( )Y F y x

±± − ±= −� � �  is the velocity in the reference configuration of the image 

of the spatial discontinuity.  The notation ±  means that the equation 1 ( )Y F y x
±± − ±= −� � �  is really 

two equations, one evaluated on the +  side of the discontinuity and one evaluated on the −  side.  
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In any case, it follows from (1.6.11) that conservation of mass forces 0Y =[ ]� .  Thus, the physical 
quantity Y�  is actually continuous across the discontinuity.  Show that material versions of 
equations (1.3.8), (1.4.3) and (1.6.8) are 
 
 0RY x Tρ + =[ ] [ ]� �  (1.6.22) 
 

 21 0
2RY x Tx qρ ε + + − =[ ] [ ] [ ]� � �  (1.6.23) 

 
and 
 

 0R
qYρ η
θ

− ≥[ ] [ ]�  (1.6.24) 

 
Exercise 1.6.8 
 
Use the definition of Y� given above and show that the jumps x[ ]�  and F[ ] are related by 
 
 x Y F= −[ ] [ ]��  (1.6.25) 
 
Exercise 1.6.9 
 
Derive the material version of the Rankine-Hugoniot relation 
 

 2
R

TY
F

ρ =
[ ]
[ ]

�  (1.6.26) 

Equation (1.6.26) is useful in the study of one dimensional shock waves in certain types of 
materials.  It gives the velocity of the shock in the reference configuration in terms of jumps in 
stress and jumps in deformation.  It is, in reality, the material version of (1.3.12). 
 
Exercise 1.6.10 
 
Show that material versions of (1.4.5) and (1.4.7) are 
 

 1 ( ) 0
2R T T Fρ ε − +− + =[ ] [ ]  (1.6.27) 

and 
 

 ( )1 0
2R F F Tρ χ − ++ + =[ ] [ ]  (1.6.28) 

 
As with (1.4.5) and (1.4.6), these results also assume 0q =[ ] . 
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1.7.  Example Constitutive Equations 
 

The equations of balance are indeterminate in that they involve more variables than there 
are equations.  This indeterminacy is to be expected since the balance equations apply to every 
continuous body.  Experience shows that continuous bodies behave in radically different ways.  
There must be equations of state or constitutive equations which distinguish various types of 
materials.  An important part of continuum mechanics is the study of constitutive equations.  In this 
section we shall give examples of constitutive equations which define certain well know types of 
materials. 
 

The first example is taken from gasdynamics.  The material defined by the constitutive 
equations to be listed below is a heat conducting compressible gas with constant specific heats.  
The constitutive equations which define this material are 
 
 
 vcε θ ε += +  (1.7.1) 
 
 ln lnvc Rη θ ρ η+= − +  (1.7.2) 
 
 T Rπ ρ θ= − = −  (1.7.3) 
 
and 
 

 q
x
θκ ∂

= −
∂

 (1.7.4) 

 
where vc  is a positive constant that represents the specific heat at constant volume, R  is a positive 
constant that represents the gas constant, ε +  is a constant representing the reference internal 
energy, η+  is a constant representing the reference entropy, π  is the one dimensional pressure and 

( , )κ θ ρ  is the one dimensional thermal conductivity.  The one dimensional pressure is the force of 
compression on the gas.  It is a property of the thermal conductivity that 
 
 ( , ) 0κ θ ρ ≥  (1.7.5) 
 
As our notation indicates, κ  can depend upon θ  and ρ .  It follows from (1.7.1), (1.7.2) and 
(1.6.11) that 
 
 ln lnv vc c Rψ θ θ θ θ ρ ε θη∗ ∗= − + + −  (1.7.6) 
 
It follows from (1.7.6), (1.7.2) and (1.7.3) that 
 

 ψη
θ

∂
= −

∂
 (1.7.7) 
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and 
 

 2 ψπ ρ
ρ

∂
=

∂
 (1.7.8) 

 
Therefore, the Helmholtz free energy, as a function of ( , )θ ρ , determines η  and π .  Thus, ψ  is a 
thermodynamic potential for the material defined by (1.7.1) through (1.7.4).  Given ψ , then η  and 
π  are determined by (1.7.7) and (1.7.8).  The internal energy density ε  is then determined from 
(1.6.11). 
 

It is reasonable to question why (1.7.7) and (1.7.8) happen to hold.  Other questions one 

could ask are why is it only the heat flux that depends upon 
x
θ∂
∂

, why does q  vanish when 
x
θ∂
∂

 

vanishes, and why must the thermal conductivity be nonnegative.  In the next section we shall show 
that the entropy inequality places restrictions on the constitutive equations.  In particular, the 
restrictions (1.7.5), (1.7.7) and (1.7.8) are consequences of the entropy inequality.  How one 
establishes these results will be explained in the next section.  It is important to note that certain of 
the features of (1.7.1) through (1.7.4) are not a consequence of the entropy inequality.  For 
example, vc  is required to be a positive number. This requirement is a consequence of 
thermodynamic stability considerations. 
 

For reference later, we shall give several other example constitutive equations.  The 
example stress constitutive equations are the following: 
 

1. Linear elasticity 
 

 wT E
X
∂

=
∂

 (1.7.9) 

 
 where E  is a material constant called the one-dimensional modulus of elasticity. 

2. Linear viscoelasticity (Volterra material) 
 

 
0

( , ) ( , )(0) ( )w X t w X t sT E E s ds
X X

∞∂ ∂ −
= +

∂ ∂∫ �  (1.7.10) 

 
where ( )E s  is the stress relaxation modulus. 

3. Linear Viscous Material (Voight or Kelvin Material) 
 

 w wT E
X X

µ∂ ∂
= +

∂ ∂
�

 (1.7.11) 

 
where E  and µ  are material constants.  The constant µ  is the coefficient of viscosity. 

4. Maxwellian Material 
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 wT T E
X

τ ∂
+ =

∂
�  (1.7.12) 

 
where τ  and E  are material constants. 

5. Linear Themoelasticity 
 

 0( )wT E
X

β θ θ∂
= − −

∂
 (1.7.13) 

 
where E  is the isothermal modulus of elasticity and β  is a constant that can be related to the 
coefficient of thermal expansion. 
 
Example constitutive equations for the heat flux are the following: 
 

1. Nonconductor 
 
 0q =  (1.7.14) 
 

2. Fourier Heat Conductor 
 

 q
x
θκ ∂

= −
∂

 (1.7.15) 

 
3. Maxwell-Cattaneo Heat Conductor 

 

 q q
x
θτ κ ∂

+ = −
∂

�  (1.7.16) 

 
4. Gurtin-Pipkin Heat Conductor 

 

 
0

( , )( ) x t sq a s ds
x

θ∞ ∂ −
= −

∂∫  (1.7.17) 

 
In the formulation of any theory of material behavior there are certain principles which 

restrict constitutive equations.  The first is a requirement of consistency.  This requirement is that 
constitutive assumptions must be consistent with the axioms of balance of mass, momentum and 
energy and with the entropy inequality.  This requirement will be the one we begin to investigate in 
the next section.  When we consider three dimensional models, the requirements of material frame 
indifference and material symmetry will be used to restrict constitutive equations.  As an operating 
procedure, we shall utilize the concept of equipresence.  This concept states that an independent 
variable present in one constitutive equation should be present in all unless its presence can be 
shown to be in contradiction with consistency, and, for three dimensional models, material frame 
indifference or material symmetry. 
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1.8.  Thermodynamic Restrictions 
 

In this section we shall establish the type of thermodynamic restrictions described in the last 
section.  We shall illustrate our results by examining the thermodynamic restrictions which follow 
for a particular set of constitutive assumptions. 
 

By a thermodynamic process, we mean a set consisting of the following nine functions of 
( , )X t : , , , , , , ,T q rχ θ ψ η ρ  and b .  The members of this set are required to obey balance of mass, 
balance of momentum and balance of energy.  It is convenient to introduce a special symbol for the 
function whose value is θ  and write 
 
 ( , )X tθ = Θ  (1.8.1) 
 
The constitutive equations we shall study in this section are characterized by requiring , ,Tψ η  and 
q  to be determined by the functions Θ  and χ . Formally, we shall write 
 
 ( ( , ), ( , ), ( , ), ( , )) ( ( , ), ( , ))X t X t T X t q X t fψ η χ= Θ ⋅ ⋅ ⋅ ⋅  (1.8.2) 
 
The function f  is called the response function.  An admissible thermodynamic process is a 
thermodynamic process which is consistent with (1.8.2).  If we regard ( )R Xρ  as given, then for 
every choice of Θ  and χ  there exists an admissible thermodynamic process.  To prove this 
assertion, we must construct from Θ  and χ  the seven remaining functions , , , , ,T q rψ η ρ  and b  
such that balance of mass, momentum and energy are satisfied.  Given (1.8.2), Θ  and χ  determine 
the four functions , ,Tψ η  and q .  The function ρ  is determined by balance of mass (1.2.6) written 
 
 /R Fρ ρ=  (1.8.3) 
 
The function b  is determined by balance of linear momentum (1.3.7) written 
 

 1 Tb x
xρ

∂
= −

∂
��  (1.8.4) 

 
Finally, the function r  is determined by balance of energy (1.6.17) written 
 

 1 1 qr TL
x

θη ψ ηθ
ρ ρ

∂
= + + − +

∂
�� �  (1.8.5) 

 
The impact of the last argument is that when (1.8.2) is given, the balance equations are always 
satisfied no matter how we select Θ  and χ . 
 

As yet, we have not made use of the entropy inequality.  The inequality (1.6.12), rewritten, 
is 
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 1( ) 0TL qgρ ψ ηθ
θ

− + + − ≥��  (1.8.6) 

 
where 
 

 g
x
θ∂

=
∂

 (1.8.7) 

 
If we were to substitute (1.8.2) into (1.8.6), the resulting inequality depends, in a complicated way, 
on Θ  and χ , and the response function f .  We can view (1.8.6) as a restriction of the response 
function f  or a restriction on the functions Θ  and χ .  We shall require that (1.8.6) be a restriction 
on f . 
 

As an illustration, consider the case where (1.8.2) specializes to 
 
 ( , , , )g F Fψ ψ θ= �  (1.8.8) 
 
 ( , , , )g F Fη η θ= �  (1.8.9) 
 
 ( , , , )T T g F Fθ= �  (1.8.10) 
 
and 
 
 ( , , , )q q g F Fθ= �  (1.8.11) 
 
These constitutive assumptions clearly contain (1.7.1) through (1.7.4) as a special case.  They 
define a nonlinear one dimensional material that is compressible, viscous and heat conducting.  Our 
objective is to determine how (1.8.6) restricts the functions , ,Tψ η  and q .  First we differentiate 
(1.8.8) to obtain 
 

 g F F
g F F

ψ ψ ψ ψψ θ
θ

∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂

� � ��� � �  (1.8.12) 

 
If this result, along with (1.8.9), (1.8.10) and (1.8.11), are substituted into (1.8.6), the result is 
 

 1

( , , , ) ( , , , )( , , , )

( , , , ) ( , , , )( , , , )

1 ( , , , ) 0

g F F g F Fg F F g
g

g F F g F FT g F F F FF F
F F

gq g F F

ψ θ ψ θρ η θ θ ρ
θ

ψ θ ψ θθ ρ ρ

θ
θ

−

⎛ ⎞∂ ∂
− + −⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂ ∂

+ − −⎜ ⎟∂ ∂⎝ ⎠

− ≥

� ��� �

� �� � ��
�

�

 (1.8.13) 
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Equation (1.8.13) is required to hold for every choice of the functions Θ  and χ .  By selecting a 
family of functions Θ  and χ  each having the same , ,g Fθ  and F� , the quantities , gθ� � and F��  can 
be assigned any value.  In particular they can be assigned values which violate the inequality 
(1.8.13) unless 
 

 ( , , , ) ( , , , ) 0g F F g F Fψ θ η θ
θ

∂
+ =

∂

� �  (1.8.14) 

 

 ( , , , ) 0g F F
g

ψ θ∂
=

∂

�
 (1.8.15) 

 
and 
 

 ( , , , ) 0g F F
F

ψ θ∂
=

∂

�
�  (1.8.16) 

 
Therefore, 
 
 ( , )Fψ ψ θ=  (1.8.17) 
 
and 
 

 ( , )( , ) FF ψ θη η θ
θ

∂
= = −

∂
 (1.8.18) 

 
Thus, η  is determined by ψ and both quantities cannot depend upon g and F� .  Given (1.8.17)and 
(1.8.18), (1.8.13) reduces to 
 

 1( , ) 1( , , , ) ( , , , ) 0FT g F F F FF gq g F F
F

ψ θθ ρ θ
θ

−∂⎛ ⎞− − ≥⎜ ⎟∂⎝ ⎠
� � �  (1.8.19) 

 
Because T  can depend on g  and q  can depend on F� , it is not possible to conclude that the two 
terms in (1.8.19) are separately positive.  It does follow from (1.8.19) that 
 

 1( , )( ,0, , ) 0FT F F F FF
F

ψ θθ ρ −∂⎛ ⎞− ≥⎜ ⎟∂⎝ ⎠
� �  (1.8.20) 

 
and 
 

 1 ( , , ,0) 0gq g Fθ
θ

− ≥  (1.8.21) 
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Equation (1.8.21) shows that when 0F =� , the heat flux must be opposite in sign from the 

temperature gradient.  We shall show below that ( , )FF
F

ψ θρ ∂
∂

 is the stress in a state of 

thermodynamic equilibrium.  Equation (1.8.20) shows that, when 0g = , the stress in excess of 
( , )FF
F

ψ θρ ∂
∂

 necessarily has a nonnegative stress power. 

 
Next we shall derive the equilibrium restrictions from (1.8.19).  As a function of 

( , , , )g F Fθ � , the left side of (1.8.19) is a minimum at ( ,0, ,0)Fθ  for all θ  and F .  Because of this 
fact, the material defined by (1.8.8) through (1.8.11) is said to be in thermodynamic equilibrium 
when 0g F= =� .  If we define a function Φ  of ( , , , )g F Fθ �  by 
 

 1( , ) 1( , , , ) ( , , , ) ( , , , ) 0Fg F F T g F F F FF gq g F F
F

ψ θθ θ ρ θ
θ

−∂⎛ ⎞Φ = − − ≥⎜ ⎟∂⎝ ⎠
� � � �  (1.8.22) 

 
then Φ  is a minimum at ( ,0, ,0)Fθ .  Therefore, 
 

 
0

( , , , 0d a F A
d λ

θ λ λ
λ =

Φ
=  (1.8.23) 

 
and 
 

 
2

2
0

( , , , 0d a F A
d λ

θ λ λ
λ

=

Φ
≥  (1.8.24) 

 
 
for all real numbers a  and A .  Since 
 

 
0

( , , , ( ,0, ,0) ( ,0, ,0)d a F A F Fa A
d g Fλ

θ λ λ θ θ
λ =

Φ ∂Φ ∂Φ
= +

∂ ∂ �
 (1.8.25) 

 
(1.8.23) is equivalent to 
 

 ( ,0, ,0) ( ,0, ,0) 0F F
g F

θ θ∂Φ ∂Φ
= =

∂ ∂ �
 (1.8.26) 

 
Equation (1.8.24) is equivalent to the requirement that the 2x2 matrix 
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2 2

2

2 2

2

( ,0, ,0) ( ,0, ,0)

( ,0, ,0) ( ,0, ,0)

F F
g g F

F F
g F F

θ θ

θ θ

⎡ ⎤∂ Φ ∂ Φ
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ Φ ∂ Φ
⎢ ⎥

∂ ∂ ∂⎣ ⎦

�

� �

 

 
is positive semi-definite.  It easily follows from (1.8.22) and (1.8.26) that 
 
 ( ,0, ,0) 0q Fθ =  (1.8.27) 
 
and 
 

 ( , )( ,0, ,0) FT F F
F

ψ θθ ρ ∂
=

∂
 (1.8.28) 

 

Thus, the equilibrium heat flux must vanish and the equilibrium stress must equal ( , )FF
F

ψ θρ ∂
∂

.  

If we define a function 0 ( , )T Fθ  by 
 

 0 ( , )( , ) FT F F
F

ψ θθ ρ ∂
=

∂
 (1.8.29) 

 
and a function ( , , , )eT g F Fθ �  by 
 
 0( , , , ) ( , , , ) ( , )eT g F F T g F F T Fθ θ θ= −� �  (1.8.30) 
 
 
then 0T is the equilibrium stress and eT  is the dissipative or extra stress.  The result (1.8.28) shows 
that eT  vanishes in equilibrium. 
 
Exercise 1.8.1 
 
Calculate the elements of 2x2 matrix defined above and show that the matrix is positive semi-
definite if and only if 
 

 ( ,0, ,0) 0q F
g

θ∂
≤

∂
 (1.8.31) 

 
and 
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1

2
1

1 ( ,0, ,0) ( ,0, ,0)

1 ( ,0, ,0) 1 ( ,0, ,0)
4

e

e

q F T FF
g F

T F q FF
g F

θ θ
θ

θ θ
θ

−

−

∂ ∂
−

∂ ∂

⎛ ⎞∂ ∂
≥ −⎜ ⎟∂ ∂⎝ ⎠

�

�

 (1.8.32) 

 
Note, in passing, that (1.8.31) and (1.8.32) combine to yield 
 

 1 ( ,0, ,0) 0
eT FF

F
θ− ∂

≥
∂ �

 (1.8.33) 

 
 
Exercise 1.8.2 
 
Show that when the constitutive equations (1.8.8) through (1.8.11) are independent of F� , that 
(1.8.17), (1.8.18), 
 

 ( , )( , ) FT F F
F

ψ θθ ρ ∂
=

∂
 (1.8.34) 

 
and 
 

 1 ( , , ) 0gq g Fθ
θ

− ≥  (1.8.35) 

 
are the thermodynamic restrictions. 
 
Exercise 1.8.3 
 
Show that when the constitutive equations (1.8.8) through (1.8.11) are independent of g , that 
(1.8.17), (1.8.18), 
 
 0q =  (1.8.36) 
 
and 
 
 1( , , ) 0eT F F FFθ − ≥� �  (1.8.37) 
 
are the thermodynamic restrictions. 
 
Exercise 1.8.4 
 
Express the formula (1.8.29) in terms of the variables θ  and ρ  and show that 
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 0T π= −  (1.8.38) 
 
where 
 

 2 ( , )ψ θ ρπ ρ
ρ

∂
=

∂
 (1.8.39) 

 
Exercise 1.8.5 
 
If (1.8.18) and (1.8.29) are used, the derivative of (1.8.17) is 
 

 
0

1T FFψ ηθ
ρ

−= − +� ��  (1.8.40) 

 
Equation (1.8.40) is called the Gibbs relation.  Show that 
 

 
0

1T FFε θη
ρ

−= + �� �  (1.8.41) 

 
Also, on the assumption that (1.8.18) can be solved for θ  as a function of ( , )Fη , show that 
 

 ( , )Fε ηθ
η

∂
=

∂
 (1.8.42) 

 
and 
 

 0 ( , )( , ) FT F F
F

ε ηη ρ ∂
=

∂
 (1.8.43) 

 
Exercise 1.8.6 
 
Use the results of Exercise 1.8.5 and show that the energy equation (1.6.17) (or (1.4.9)) reduces to 
 

 e qT L r
x

ρθη ρ∂
= − +

∂
�  (1.8.44) 

 
Exercise 1.8.7 
 
Show that the material version of (1.8.44) is 
 

 e
R R

qT F r
X

ρ θη ρ∂
= − +

∂
��  (1.8.45) 

 
Exercise 1.8.8 
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Derive the thermodynamic restrictions for a material whose constitutive equations are 
 
 ( , , , , )g F Fψ ψ θ θ= � �  (1.8.46) 
 
 ( , , , , )g F Fη η θ θ= � �  (1.8.47) 
 
 ( , , , , )T T g F Fθ θ= � �  (1.8.48) 
 
and 
 
 ( , , , , )q q g F Fθ θ= � �  (1.8.49) 
 
The material model defined by these constitutive equations could possibly yield a hyperbolic 
partial differential equation for θ .  The model defined by (1.8.8) through (1.8.11) yields a 
parabolic equation which has the undesirable feature that thermal disturbances propagate with 
infinite speed.  Will the above model yield a hyperbolic equation? 
 
1.9.  Small Departures from Thermodynamic Equilibrium 
 

The mathematical model which results from the constitutive equations (1.8.8) through 
(1.8.11) is quite complicated.  A less complicated model results if we assume that the departure 
from thermodynamic equilibrium is small.  In this case we can derive approximate formulas for q  
and eT .  Departures from the state ( ,0, ,0)Fθ  are measured by a positive number ε  defined by 
 
 2 2 2g F∈ = + �  (1.9.1) 
 
Given 
 
 ( , , , )e eT T g F Fθ= �  (1.9.2) 
 
and 
 
 ( , , , )q q g F Fθ= �  (1.9.3) 
 
 
we can write the following series expansions 
 

 2( ,0, ,0) ( ,0, ,0) ( )
e e

e T F T FT F g O
F g

θ θ∂ ∂
= + + ∈

∂ ∂
�

�  (1.9.4) 

 
and 
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 2( ,0, ,0) ( ,0, ,0) ( )q F q Fq g F O
g F

θ θ∂ ∂
= + + ∈

∂ ∂
�

�  (1.9.5) 

 
 
The leading terms in both expansions vanish because of the equilibrium results (1.8.27) and 
(1.8.28).  The coefficients in the expansions (1.9.4) and (1.9.5) correspond to material properties of 
the body.  We shall write 
 

 ( ,0, ,0)( , ) q FF
g

θκ θ ∂
= −

∂
 (1.9.6) 

 

 ( ,0, ,0)( , )
eT FF F

F
θλ θ ∂

=
∂

�
�  (1.9.7) 

 

 ( ,0, ,0)( , ) q FF F
F

θα θ ∂
= −

∂ �
 (1.9.8) 

 
and 
 

 ( ,0, ,0)( , )
eT FF

g
θν θ ∂

=
∂

 (1.9.9) 

 
Therefore, (1.9.4)and (1.9.5)can be rewritten 
 
 2( )eT L g Oλ ν ε= + +�  (1.9.10) 
 
and 
 
 2( )q g L Oκ α ε= − − +  (1.9.11) 
 
 
where (1.1.19)has been used.  The quantity κ  is the coefficient of thermal conductivity and λ�  is 
the bulk coefficient of viscosity.  The coefficients ν  and α  are zero in many of the standard 
applications of our model and, thus, are not given names which will be familiar to the reader.  
Material symmetry considerations, which we have not discussed, show that ν  and α  must vanish 
for materials with a center of symmetry.  This means that the constitutive equations are invariant 
under an inversion in the reference configuration.  In any case, the material coefficients in (1.9.10)
and (1.9.11)must obey the restrictions (1.8.31) and (1.8.32).  These restrictions yield 
 
 ( , ) 0Fκ θ ≥  (1.9.12) 
 
and 
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21( , ) ( , )

4
F F ακ θ λ θ θ ν

θ
⎛ ⎞≥ +⎜ ⎟
⎝ ⎠

�  (1.9.13) 

 
Because of (1.9.12), it follows from (1.9.13)that 
 
 ( , ) 0Fλ θ ≥�  (1.9.14) 
 
Equations (1.9.12)and (1.9.14)are the classical results that the thermal conductivity and the 
viscosity cannot be negative. 
 

When the remainder terms are omitted from (1.9.10) and (1.9.11), the result is a material 
model with linear dissipation.  The field equations which result from utilizing these 
approximations are still nonlinear.  In the next section we shall proceed one additional step and 
assume the departure from a static solution constθ = and 1F −  is small.  The resulting 
constitutive equations are linear and yield a set of linear governing partial differential equations. 
 
1.10.  Small Departures from Static Equilibrium 
 

If we consider the state of constant temperature and constant deformation defined by 
 
 ( , )X t θ +Θ =  (1.10.1) 
 
and 
 
 ( , )X t Xχ =  (1.10.2) 
 
it follows that, in this state, 1, 0F F= =� and 0g = .  It immediately follows from (1.8.17), (1.8.18)
and (1.8.29)that ψ , η  and 0T are constants in the state defined by (1.10.1) and (1.10.2).  Also, 
from (1.8.27), (1.8.28), (1.8.29) and (1.8.30) it follows that q and eT  vanish.  It follows from 
(1.3.7) that, in the state defined by (1.10.1)and (1.10.2), 
 
 0b =  (1.10.3) 
 
Likewise, the energy equation (1.8.44) yields 
 
 0r =  (1.10.4) 
 
Therefore, given (1.10.1)through (1.10.4), the field equations are identically satisfied.  Such a 
solution is appropriately called a static solution.  Our objective in this section is to derive the 
approximate constitutive and field equations which are valid near the static solution. 
 

Departures from the static solution are measured by a positive number 1∈  defined by 
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 2 2 2 2 2
1 ( ) ( 1)g F Fθ θ +∈ = − + + − + �  (1.10.5) 

 
Note that the static solution is trivially a thermodynamic equilibrium state.  In order to obtain 
expressions for η  and 0T  which are correct up to terms of order 1( )O ∈ , we must have a 
representation for ( , )Fψ θ  correct up to terms 2

1( )O ∈ .  The necessary expansion of (1.8.17) is 
 

 
2 2

2
2

2
2 3

12

( ,1) ( ,1)( , ) ( ,1) ( ) ( 1)

1 ( ,1) ( ,1)( ) ( )( 1)
2
1 ( ,1) ( 1) ( )
2

F F
F

F
F

F O
F

ψ θ ψ θψ θ ψ θ θ θ
θ

ψ θ ψ θθ θ θ θ
θ θ

ψ θ

+ +
+ +

+ +
+ +

+

∂ ∂
= + − + −

∂ ∂
∂ ∂

+ − + − −
∂ ∂ ∂

∂
+ − + ∈

∂

 (1.10.6) 

 
For the sake of a simplified notation, (1.10.6) shall be written 
 

 2

2 3
1

( , ) ( ) ( 1)

1 ( ) ( )( 1)
2
1 ( 1) ( )
2

R

v

R

R

TF F

c F

F O

ψ θ ψ η θ θ
ρ

βθ θ θ θ
θ ρ
λ
ρ

+
+ + +

+ +
+

= − − + −

− − − − −

+ − + ∈

 (1.10.7) 

 
where 
 
 ( ,1)ψ ψ θ+ +=  (1.10.8) 
 

 ( ,1)ψ θη
θ

+
+ ∂
= −

∂
 (1.10.9) 

 

 ( ,1)
RT

F
ψ θρ

+
+ ∂
=

∂
 (1.10.10) 

 

 
2

2

( ,1)
vc ψ θθ

θ

+
+ ∂= −

∂
 (1.10.11) 

 

 
2 ( ,1)

R F
ψ θβ ρ
θ

+∂
= −

∂ ∂
 (1.10.12) 

 
and 
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2

2

( ,1)
R F

ψ θλ ρ
+∂

=
∂

 (1.10.13) 

 
From (1.8.18)and (1.8.29), η+  and T +  are the entropy and stress in the equilibrium state.  The 
coefficient vc  is the specific heat at constant volume and λ  is the isothermal modulus of elasticity.  
As follows from (1.2.6), Rρ  is the density in the static equilibrium state.  Given (1.10.7), it follows 
from (1.8.18)and (1.8.29)that 
 

 2
1( ) ( 1) ( )v

R

c F Oβη η θ θ
θ ρ

+ +
+= + − + − + ∈  (1.10.14) 

 
and 
 
 2

1( ) ( 1) ( )T T F Oβ θ θ λ+ += − − + − + ∈  (1.10.15) 
 

Next, we need expressions for eT and q  valid near the static solution.  Recalling that both 
eT  and q  must vanish whenever g  and F�  are zero, we obtain from (1.9.2) and (1.9.3) 

 

 2
1

( ,0,1,0) ( ,0,1,0) ( )
e e

e T TT g F O
g F

θ θ+ +∂ ∂
= + + ∈

∂ ∂
�

�  (1.10.16) 

 
and 
 

 2
1

( ,0,1,0) ( ,0,1,0) ( )q qq g F O
g F

θ θ+ +∂ ∂
= + + ∈

∂ ∂
�

�  (1.10.17) 

 
 
By use of (1.8.7) and (1.1.11), 
 

 

1

2
1

1
1 ( 1)

( )

g F
x X X F

O
X

θ θ θ

θ

−∂ ∂ ∂
= = =
∂ ∂ ∂ + −

∂
= + ∈
∂

 (1.10.18) 

 
This result, along with (1.9.6) through (1.9.9) allows equations (1.10.16) and (1.10.17) to be 
written 
 

 2
1( )eT F O

X
θν λ+ +∂

= + + ∈
∂

� �  (1.10.19) 

 
and 
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 2
1( )q F O

X
θκ α+ +∂

= − − + ∈
∂

�  (1.10.20) 

 
where 
 
 ( ,1)ν ν θ+ +=  (1.10.21) 
 
 ( ,1)λ λ θ+ +=� �  (1.10.22) 
 
 ( ,1)κ κ θ+ +=  (1.10.23) 
 
and 
 
 ( ,1)α α θ+ +=  (1.10.24) 
 

Equations (1.10.14), (1.10.15), (1.10.19) and (1.10.20) are the basis for our linear 
constitutive equations.  If we simply drop the remainder terms in these equations, the following 
linear constitutive equations are obtained: 
 

 ( ) ( 1)v

R

c Fβη η θ θ
θ ρ

+ +
+= + − + −  (1.10.25) 

 
 0 ( ) ( 1)T T Fβ θ θ λ+ += − − + −  (1.10.26) 
 

 eT F
X
θν λ+ +∂

= +
∂

� �  (1.10.27) 

 
and 
 

 q F
X
θκ α+ +∂

= − −
∂

�  (1.10.28) 

 
If follows from (1.9.12), (1.9.13) and (1.10.14) that 
 
 0κ + ≥  (1.10.29) 
 

 21 ( / )
4

κ λ ν α θ
θ

+ +
+ + +

+ ≥ +
�

 (1.10.30) 

 
and 
 
 0λ+ ≥�  (1.10.31) 
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The field equations which result from these linear constitutive equations follow by 
substitution into the material statements of balance of momentum and energy.  Because of (1.10.3), 
balance of momentum (1.3.13) yields 
 

 
2

2R
F Fx
X X X X

θ θρ λ λ β ν+ +∂ ∂ ∂ ∂
= + − +

∂ ∂ ∂ ∂

����  (1.10.32) 

 
The material statement of balance of energy for our material is (1.8.45).  This equation repeated 
here, is 
 

 e
R R

qT F r
X

ρ θη ρ∂
= − +

∂
��  (1.10.33) 

 
 
If (1.10.4), (1.10.25), (1.10.27) and (1.10.28) are used, the energy equation (1.10.33) reduces to 
 

 
2

2R v
Fc F F F

X X X
θ θ θρ θ θβ κ α ν λ
θ

+ + + +
+

∂ ∂ ∂⎛ ⎞+ = + + +⎜ ⎟∂ ∂ ∂⎝ ⎠

�� �� � �  (1.10.34) 

 
 
Note that (1.10.34) is not a linear partial differential equation because of the products 

, ,F F
X
θθθ θ ∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
� � �  and FF� � .  If (1.10.34) is linearized, the result is 

 

 
2

2R v
Fc F

X X
θρ θ θ β κ α+ + +∂ ∂

+ = +
∂ ∂

�� �  (1.10.35) 

 
Since we have formally linearized our constitutive equations, it is reasonable to utilize the linear 
partial differential equation (1.10.35) rather than (1.10.34) as the equation governing balance of 
energy.  The coupled partial differential equations (1.10.32) and (1.10.35), along with suitable 
initial and boundary data, determine χ  and θ  for our model. 
 
Exercise 1.10.1 
 
As in elementary thermodynamics, it is sometimes convenient to use independent variables other 
than θ  and F .  Solve (1.10.25) for θ θ +−  in terms of η η+− and 1F −  and use this result to 
eliminate θ  in favor of η  in (1.10.26).  The result should be 
 

 0 *( 1) ( )
v

T T F
c
θ βλ η η

+
+ += + − − −  (1.10.36) 

 
where 
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 * 2

R vc
θλ λ β
ρ

+

= +  (1.10.37) 

 
 
Recalling that λ  is the isothermal modulus of elasticity, the coefficient *λ  is the isentropic 
modulus of elasticity. 
 
Exercise 1.10.2 
 
Express ε  in terms of η  and F  and show that 
 

 

2

*
2

1( ) ( 1) ( )
2

1( )( 1) ( 1)
2

R v

R v R

T F
c

F F
c

θε ε θ η η η η
ρ

θ λβ η η
ρ ρ

+ +
+ + + +

+
+

= + − + − + −

− − − + −
 (1.10.38) 

 
and, from (1.8.42), 
 

 ( ) ( 1)
v R v

F
c c
θ θθ θ η η β

ρ

+ +
+ += + − − −  (1.10.39) 

 
Also show that (1.8.43) yields (1.10.36). 
 
1.11.  Some Features of the Linear Model 
 

It is interesting to investigate certain features of the model formulated in Section 1.10.  For 
simplicity, we shall assume that the material is such that none of the constitutive equations depend 
upon F� .  This special case is achieved by taking 
 
 0λ α+ += =�  (1.11.1) 
 
 
This assumption implies, from (1.10.30), that 
 
 0ν + =  (1.11.2) 
 
Therefore, eT  vanishes and the constitutive equations reduce to 
 

 ( )v

R

c w
X

βη η θ θ
θ ρ

+ +
+

∂
= + − +

∂
 (1.11.3) 
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 ( ) wT T
X

β θ θ λ+ + ∂
= − − +

∂
 (1.11.4) 

 
and 
 

 q
X
θκ ∂

= −
∂

 (1.11.5) 

 
 
where (1.1.14) and (1.1.15) have been used to express the results in terms of the displacement 
gradients.  In order to simplify the notation, we have written κ  rather than κ +  for the thermal 
conductivity.  Of course from (1.9.12), κ  is restricted by  
 
 0κ ≥  (1.11.6) 
 
The field equations in our special case follow from (1.11.1), (1.11.2), (1.10.32) and (1.10.35).  
They are 
 

 
2 2

2 2R
w w

t X X
θρ λ β∂ ∂ ∂

= −
∂ ∂ ∂

 (1.11.7) 

 
and 
 

 
2 2

2R v
wc

t t X X
θ θρ θ β κ+∂ ∂ ∂
+ =

∂ ∂ ∂ ∂
 (1.11.8) 

 
where the displacement has been introduced from (1.1.15). 
 
Exercise 1.11.1 
 
Show that for the special case of a nonconductor ( 0)κ =  that (1.11.8) yields 0η =� . 
 
Exercise 1.11.2 
 
Show that for a nonconductor with initially uniform entropy that the displacement is a solution of 
the following wave equation: 
 

 
2 2

2
2 2*w wa

t X
∂ ∂

=
∂ ∂

 (1.11.9) 

 
where 
 

 
*

2*
R

a λ
ρ

=  (1.11.10) 
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Because (1.11.9) is a wave equation, *a  is called the isentropic wave speed. 
 
Exercise 1.11.3 
 
Show that in the limit of very large conductivity ( )κ →∞  that suitable boundary conditions can 
always be prescribed such that constθ = .  Note that in this case the displacement satisfies the 
following wave equation: 
 

 
2 2

2
2 2

w wa
t X

∂ ∂
=

∂ ∂
 (1.11.11) 

 
where 
 

 2

R

a λ
ρ

=  (1.11.12) 

 
 
is the isothermal wave speed squared. 
 
Exercise 1.11.4 
 
The definitions (1.11.10) and (1.11.12) presume that both λ  and *λ  are non-negative quantities.  
Show that if 0vc ; , the isentropic wave speed is larger than the isothermal wave speed.  Calculate 
the ratio * /a a  for the case where the material is air modeled as a heat conducting compressible 
perfect gas with constant specific heats. 
 

Certain properties of the solutions to (1.11.7) and (1.11.8) are revealed by deriving the 
single partial differential equation obeyed by ( , )w X t .  This equation, which is also obeyed by 

( , )X tΘ  is the result of expanding the following 2 2×  operator determinant. 
 

 

2 2

2 2

2 2

2

0
R

R v

t x X

c
t X t X

ρ λ β

θ β ρ κ+

∂ ∂ ∂
−

∂ ∂ ∂ =
∂ ∂ ∂

−
∂ ∂ ∂ ∂

 (1.11.13) 

 
If this determinant is expanded and rearranged, the result is the following fourth order partial 
differential equation: 
 

 
2 2 2 2 2

2 2
2 2 2 2 2* 0

R v

w w w wa a
t t X c X t X

κ
ρ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
− − − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (1.11.14) 
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where a  and *a  are the wave speeds defined by (1.11.12) and (1.11.10), respectively.  It is 
convenient to define a characteristic time κτ  by 
 

 
vcκ

κτ
λ

=  (1.11.15) 

 
and rewrite (1.11.14)as 
 

 
2 2 2 2 2

2 2 2
2 2 2 2 2* 0w w w wa a a

t t X X t Xκτ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

− − − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (1.11.16) 

 
The characteristic time κτ can be used to assign meaning to the expressions "short time" and "long 
time".  For fixed t , the dimensionless time /t κτ  is large if κτ is small and is small if κτ  is large.  A 
short time approximation to (1.11.16) is a solution valid for small /t κτ .  A long time 
approximation to (1.11.16) is a solution valid for large /t κτ .  For large κτ  the second term in 
(1.11.16) dominates and, as a result, disturbances propagate with the isothermal wave speed.  
Likewise, for small κτ  the first term in (1.11.16) dominates and disturbances propagate with the 
isentropic wave speed.  It is reasonable to expect that short time approximations to the solutions of 
(1.11.16) approach solutions of (1.11.11) and long time approximations approach solutions of 
(1.11.9).  The intuitive argument which is sometimes used to support this assertion is that for short 
times the heat conduction has not yet influenced the material, and the material acts as if it is in an 
isothermal process.  For long times, the dissipative effects of heat conduction have taken place and, 
after this, the material acts as if it is in an isentropic process. 
 
 It is helpful when one tries to get some general feelings about the behavior of the one 
dimensional material defined by (1.11.16) to look at some representative numerical values.  The 
following table is adapted from one in Ref. 3. 
 

Properties of Four Metals at 20o C  
 

Quantity Aluminum Copper Iron Lead 
a (m/sec) 6320 4360 5800 2140 

*a (m/sec) 6432 4396 5801 2217 
κτ (sec) 122.15(10)−  125.78(10)−  12.571(10)−  125.24(10)−  

 
Table 1.11.1 

 
To the extent that these metals are typical, the small characteristic time κτ  would cause solutions of  
(1.11.16) to behave like long term approximations. 
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Exercise 1.11.5 
 
Calculate the three parameters a , *a  and κτ  for the two materials defined by the following table: 
 

Quantity Air (as a Perfect Gas) AL 2024-T3 

θ +  ( o C ) 20 20 

Rρ ( 3/kg m ) 1.205 2770 

vc  ( / oJ kg K ) 717.4 963 
κ ( / oW m K ) .0257 190.5 

λ  (Pa) 101.4 108308270 
β  ( /oPa K ) 346 4876 

 
 

Additional insight into the behavior of the material described by (1.11.7) and (1.11.8) can 
be obtained by investigating the propagation of harmonic waves defined by solutions of the form 
 
 ( / )( )( , ) X i q X qtw X t de eϕ ω− −=  (1.11.17) 
 
and 
 
 ( / )( )( , ) X i q X qtX t fe eϕ ωθ θ + − −− =  (1.11.18) 
 
In (1.11.17) and (1.11.18), it is understood that the real part of the assumed solution is used.  The 
quantity ω  is a real number and represents the frequency of the harmonic wave.  The quantity q is 
a real number which represents the phase velocity of the wave.  The quantity ϕ  is a real number 
called the attenuation coefficient.  The coefficients a  and b  are complex numbers which 
correspond to the amplitudes of the wave.  The wave number is defined by 
 

 k i
q
ω ϕ= +  (1.11.19) 

 
This definition allows (1.11.17) and (1.11.18) to be written 
 
 ( )( , ) i kX tw X t de ω−=  (1.11.20) 
 
and 
 
 ( )( , ) i kX tX t fe ωθ θ + −− =  (1.11.21) 
 
In order that (1.11.20) and (1.11.21) represent a solution of (1.11.7) and (1.11.8), k  and ω  cannot 
be independent.  Since ω  is a prescribed real number, k  will be determined as a function of ω .  
Such a relation is known as the dispersion relation. 
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Exercise 1.11.6 
 
Substitute (1.11.20) into (1.11.16) and show that the dispersion relation ( )k ω  is a solution of 
 
 2 2 2 2 2 2 2 2( ) ( * ) 0a k a k i a kκτ ω ω ω− − − =  (1.11.22) 
 
Equation (1.11.22) is a quadratic in 2k . Therefore, there are four modes of propagation of the form 
(1.11.20).  Since high frequency corresponds to short time, the phase velocity in the high frequency 
approximation for two of the modes is easily shown to be a+  and a− .  Likewise, the low 
frequency approximation yields phase velocities *a+  and *a− . 
 

In circumstances where the two limiting cases of high and low frequency does not apply, 
the phase velocities and the attenuation coefficients depend upon the frequency.  A dispersion 
relation which yields a frequency dependent phase velocity is called a dispersive mode.  The 
approximations just cited correspond to the nondispersive limits of the solutions ( )k ω .  The other 
modes are dispersive and, roughly speaking, correspond to the propagation of the thermal 
disturbance. 
 

The explicit formulas for k  implied by (1.11.22) are complicated but can be derived.  The 
details can be found in the work of P. Chadwick in Ref. 3 
 
Exercise 1.11.7 
 
Show that the roots of (1.11.22) can be written 
 

 
2 2* *2 (1 ) 2 (1 ) 2ak a ai i i i

a aκ κ κ κω ω ω ω ω ω ω ω
ω

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= ± + + + ± + − +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 (1.11.23) 

 

where 1
κ

κ
ω τ= . 

 
In equation, (1.11.23) the positive root corresponds to waves propagating in the x+  direction.  We 
shall only consider this case below.  Chadwick gives approximations for ( )k ω .  One family of 
approximations to (1.11.23) involves the assumption that a  and *a  are close.  The formal way this 

approximation is generated is to expand (1.11.23) for small values of the ratio 
*2 2

2

a a
a
− .  It is 

readily established from (1.10.37), (1.11.10) and (1.11.12) that 
*2 2

2
2 2

R v

a a
a c

θ β
ρ

+−
= .  Therefore, 

small values of 
*2 2

2

a a
a
−  correspond to small values of the coefficient β .  It is β  which couples 

the equation of motion (1.11.7) and the energy equation (1.11.8).  Table 1.11.1 shows that for the 
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metals given, the isothermal wave speed and the isentropic wave speeds are very close.  This type 
of approximation would not be good for air, where, the ratio 

*2
2

a
a  is approximately the ratio of 

the specific heat at constant pressure to the specific heat at constant volume.  If air is modeled as a 
perfect gas, this ratio is 1.4.  Exercise 1.11.4 asks that the ratio *a a  be calculated in the case 
where air is modeled as a perfect gas with constant specific heats. 
 

The other family of approximations is one where the ratio 
κ

ω
ω  is small.  Table 1.11.1 

shows that κτ  is small, and, thus, 1
κ

κ
ω τ=  is large.  The characteristic time for air, as calculated 

in Exercise 1.11.5, is approximately 103.5(10)−  sec.  As a result, an approximation based upon the 

assumption that the corresponding ratio
κ

ω
ω  is small appears to be broadly useful.  Chadwick 

gives the following results for the two phase velocities and the associated attenuation coefficients. 
 

 ( )
*2 2 *2 2

* 2 4
(1) *2 2 4

( 1)(7 3 )1 ( ) ( )
8( )

a a a aq a O
a a κ κω ω ω ω

⎛ ⎞− −
= − +⎜ ⎟

⎝ ⎠
 (1.11.24) 

 

 ( )
2 *2 2

2
(2) * *2 2 2

( 1)2( ) 1 ( ) ( )
2( )

a a aq O
a a aκ κ κω ω ω ω ω ω

⎛ ⎞−
= − +⎜ ⎟

⎝ ⎠
 (1.11.25) 

 

 ( )
*2 2

2 4
(1) * *2 2 2

( 1) ( ) ( )
2( )
a a O

a a a
κ

κ κ
ωϕ ω ω ω ω

⎛ ⎞−
= +⎜ ⎟

⎝ ⎠
 (1.11.26) 

 
and 
 

 ( )
* *2 2

2
(2) 2 *2 2 2

( 1)2 1 ( ) ( )
2( )

a a a O
a a a

κ
κ κ κ

ωϕ ω ω ω ω ω ω
⎛ ⎞−

= − +⎜ ⎟
⎝ ⎠

 (1.11.27) 

 
These approximate expressions display the two modes of propagation.  The first mode depends 
upon the frequency through second order terms, while the second mode has a stronger dependence.  
It is the first mode that propagates with a phase velocity near the isentropic speed *a .  Additional 
discussion of plane harmonic waves in thermoelastic materials can be found in references 4, 5 and 
6. 
 
 In the last four sections, we have examined the constitutive equations of a special one 
dimensional material.  Our thermodynamic results, along with the approximations introduced in 
Sections 9 and 10, allowed a brief consideration of the behavior of waves propagating in the one 
dimensional material.  If one were interested in the behavior of a broader class of initial boundary 
value problems, one would need some sort of existence and uniqueness theorem.  Uniqueness 
theorems in elasticity usually arise from some sort of energy argument.  An illustration, in the 
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context of the one dimensional material being discussed here, is provided by the following 
exercise. 
 
Exercise 1.11.8 
 
Use (1.11.4), (1.11.5), (1.11.7) and (1.11.8) and show that 
 

 

2 2
2

2

1 1 1( )
2 2 2

( , ) ( , )( ( , ) ) ( ( , ) )

( , ) ( , )( , ) ( , )

b
R v

Ra

b

a

c w w dX
t X t

w b t w a tT b t T T a t T
t t

b t a tq b t q a t

dX
X

ρ θ θ λ ρ
θ

θ θ θ θ
θ θ

κ θ
θ

+
+

+ +

+ +

+ +

+

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∂ ∂

= − − −
∂ ∂

⎛ ⎞ ⎛ ⎞− −
− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∂⎛ ⎞− ⎜ ⎟∂⎝ ⎠

∫

∫

 (1.11.28) 

 
where a  and b  are fixed positions. 
 
Exercise 1.11.9 
 
Consider a boundary-initial value problem for (1.11.7) and (1.11.8) where the velocity and heat 
flux vanish at each end of the material.  Show that 
 

 
2 2

21 1 1( ) 0
2 2 2

b
R v

Ra

c w w dX
t X t

ρ θ θ λ ρ
θ

+
+

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + + ≤⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫  (1.11.29) 

 
Exercise 1.11.10 
 
Assume that 0vc ;  and 0λ ; .  For initial conditions, assume that 
 
 ( ,0)Xθ θ +=  (1.11.30) 
 

 ( ,0) 0w X
X

∂
=

∂
 (1.11.31) 

and 
 

 ( ,0) 0w X
t

∂
=

∂
 (1.11.32) 

 
Show that (1.11.29) implies that 
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 ( , )X tθ θ +=  (1.11.33) 
 

 ( , ) 0w X t
X

∂
=

∂
 (1.11.34) 

 
and 
 

 ( , ) 0w X t
t

∂
=

∂
 (1.11.35) 

 
for all 0t ≥ . The argument used in this exercise provides a uniqueness theorem for solutions of 
(1.11.7) and (1.11.8).  Given the assumptions made in the problem, it is necessary that (1.11.33), 
(1.11.34) and (1.11.35) hold.  Notice that 0vc >  and 0λ >  were among the assumptions made.  
These stability results are not consequences of the second law of thermodynamics. 
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Kinematics of Motion 
 
 
This chapter is concerned with the three dimensional kinematics of motion and strain.  The material 
presented represents the three dimensional generalization of the material contained in Section 1.1.  
After the introduction of the concepts of deformation, velocity, acceleration and deformation 
gradient in Sections 2.1 and 2.2, Section 2.3 contains a discussion of the transformation of linear, 
surface and volume elements which are induced by a deformation.  This discussion leads naturally 
to a discussion of nonlinear strain kinematics in Section 2.4 and linear, or infinitesimal, strain 
kinematics in Section 2.5. 
 
2.1. Bodies and Deformations 
 

Given the limited mathematical background established in the Appendix A, it is convenient 
here to regard a body U  to be a primitive concept.  Precise mathematical definitions of a body can 
be found, for example, in Reference 1, 2 and 3.  Roughly speaking a body is a set U  endowed 
with a topological and differentiable structure.  In addition, a body is endowed with a family of 
functions, called configurations, which map U  into a subset of X A  The structure of U  is such 
that it is meaningful to require configurations to be diffeomorphisms.  In addition, bodies are 
required to be connected.  We shall denote the elements of U , called particles, by X.  If χ  is a 
configuration, then 
 ( )X=x χ  (2.1.1) 
 
is the position in X  occupied by X in U . 
 

Definition:  A motion of the body U  is a one parameter family of configurations. 
 

The parameter is the time t and a motion is written 
 
 ( ),X t=x χ  (2.1.2) 
 
for all (X, t) in ( , )× −∞ ∞U .  Since a configuration is a diffeomorphism, for each t the motion χ  
has a smooth inverse such that 
 ( )1 ,X t−= xχ  (2.1.3) 
 
for all ( , )tx  in ( )( ) ,× −∞ ∞Uχ .  The point x is the place occupied by the particle X at the time t.  
Physical observations can never be made on a body except in some region of physical space X .  In 
many cases it is convenient to reflect this fact by use of a fixed configuration, called a reference 
configuration.  We shall denote this fixed configuration byκ .  The configuration κ  may be, but 
need not be, a configuration actually occupied by the body in the course of its motion.  The position 
of X in κ  will be denoted by X.  Thus, 
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1x

2x

3x

0

xX

( )⋅κ ( , )t⋅χ

( , )t⋅κχ

X

 ( )X=κX  (2.1.4) 
 
Figure 2.1.1 shows the geometric arrangement reflected in equations (2.1.2) and (2.1.4). 
 

 The function κχ  defined by 

 ( )( )1 , t−=x κχ X  (2.1.5a) 
 
 ( ), t≡ κχ X  (2.1.5b) 
  (2.1.5) 
for all (X,t) in ( )( ) ,× −∞ ∞κ U  is called the deformation function relative to the reference 
configuration κ .  As the above notation suggests and the definition (2.1.5) shows, the deformation 
function depends upon the choice of the reference configuration. 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Figure 2.1.1 
 

The coordinates of the point X , denoted by ( )1 2 3, ,X X X , are called the material coordinates 

of the particle at X , while the coordinates of the point x , denoted by ( )1 2 3, ,x x x  are called the 
spatial coordinates of the particle at x .  As a matter of convention, the subscripts on the material 
coordinates will always be in Latin majuscules and those on the spatial coordinates will be Latin 
minuscules.  Therefore, in components, (2.1.2) and (2.1.5b) can be written 
 
 ( ),i ix X tχ=  (2.1.6) 
 
and 
 ( ) ( )1 2 3, , , ,

i ii Ix X X X t X tκ κχ χ= ≡  (2.1.7) 
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where 
 ( )i ix = ⋅x 0 i-  (2.1.8) 
 
and 
 ( )I IX = ⋅X 0 i-  (2.1.9) 
 

In the following sections it will be assumed, without comment, that the diffeomorphisms χ 
and κχ  have sufficient smoothness in order to allow for the existence of any derivatives that 
appear. 
 
2.2. Velocity, Acceleration and Deformation Gradients 
 

Given a motion χ, there are several kinematic quantities which can be calculated.  In this 
section several of these quantities are defined. 
 

Definition:  The velocity of the particle X, written x  is defined by 
 

 ( )X t
t

∂
∂

χ ,
x =  (2.2.1) 

 
It follows from (2.1.5) and (2.2.1) that 

 ( )t
t

∂
∂

κχ X,
x =  (2.2.2) 

 
Of course, the velocity computed by (2.2.2) does not depend upon the special configuration κ. 
 

Definition:  The acceleration of the particle X, written x , is defined by 
 

 ( )2 ,
=

X t
t

∂
∂

x
χ

 (2.2.3) 

 
Also, it is true that 
 

 ( )2

2

,
=

t
t

∂
∂
κχ X

x  (2.2.4) 

 
Definition:  The displacement of X relative to the configuration κ is defined by 

 
 ( ), t= −κw χ X X  (2.2.5) 
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Any time dependent scalar, vector, or tensor field Ψcan be regarded as a function of (X, t),   
(X, t) or (x, t) whenever the motion ( ) ( ),X t t= = κx Xχ χ,  is given.  If we regard Ψ to be a 
function of (X, t), we are using material variables.  If we regard Ψ to be function of (x, t), we are 
using spatial variables.  For the sake of notational simplicity, it is convenient to use the same 
symbol for the three possible functions whose value is Ψ.  For example, the following equations 
should not be confusing: 
 
 ( ),X tΨ=Ψ  (2.2.6a) 
 
 ( ), tΨ=Ψ X  (2.2.6b) 
 
and 
 
 ( ), tΨ=Ψ x  (2.2.6c) 
  (2.2.6) 
It should be remembered also that the function Ψ in (2.2.6b) will depend upon the configuration κ. 
. 
 Definition:  The material derivative of Ψ, written Ψ is defined by 
 

 ( ) ( ), ,X t t
t t

∂Ψ ∂Ψ
Ψ= =

∂ ∂
X

 (2.2.7) 

 
It follows from (2.2.5) and the above definitions that 
 
 =w x  (2.2.8) 
 
and 
 =w x  (2.2.9) 
 

The material derivative can be expressed in terms of ( ), tΨ x . By the chain rule, it follows 
that 
 

 ( ) ( )( ),
,

t
grad t

t
∂Ψ

Ψ= + Ψ
∂

x
x x  (2.2.10) 

 
In components, (2.2.10) is 
 

 
( ) ( ), ,

1 2 p 1 2 p

1 2 p

j j j j j j
j j j k

k

t t
x

t x

∂Ψ ∂Ψ
Ψ = +

∂ ∂

x x
 (2.2.11) 

 
As an example of (2.2.10), consider the velocity, x .  Then, the acceleration can be written 
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 ( ) ( )( ),
,

t
grad t

∂
= +

∂
x x

x x x x
t

 (2.2.12) 

or 

 
( ) ( ), ,j j

j k
k

x t x t
x x

t x
∂ ∂

= +
∂ ∂

x x
 (2.2.13) 

 
In (2.2.10) and (2.2.12) the gradient with respect to spatial coordinates ( )1 2 3, ,x x x has been 

denoted by "grad".  The gradient with respect to material coordinates will be denoted by "GRAD".  
The divergence with respect to spatial coordinates will be denoted by "div", and the divergence 
with respect to material coordinates will be denoted by "Div". 
 

Definition:  The deformation gradient at (X, t) is a linear transformation in ( ; )_ i i  
defined by 
 
 ( ),GRAD t= κF χ X  (2.2.14) 
 
In those cases where no confusion can arise, F(X t) will be written F(t) or, simply, F. 
 

Since the functions χ  and κ are diffeomorphisms, the composition of χ  and 1−κ , which is 
,κχ  is a diffeomophism.  The differentiability of κχ  has been used in the definition (2.2.14). 

 
The fact that κχ and 1

κ
−χ are one-to-one has an important and clear physical significance.  It 

omits the possibility of a material point at X  being mapped into more than one point x , and, 
conversely. It is a well known theorem of general topology that a homeomorphism maps connected 
sets into connected sets. [Ref. 4]. If this theorem is applied to the function κχ , it follows that a point 
is mapped into a point, a line into a line, a surface into a surface and a region into a region. 
 
Exercise 2.1.1  
 
Show that 
 ( ) ( ) ( ) ( )1 1, , , ,t grad x t grad t t− −= =κ κF X x F X Iχ χ  (2.2.15) 
 
 
Equation (2.2.15) shows that ( )1grad , tκ x−χ  is the inverse of the linear transformation F.  In the 

following, this linear transformation will be denoted by 1−F .  It follows from (2.2.15) and (A.5.22) 
that 
 det 0≠F  (2.2.16) 
 
for all (X, t) in ( )( ) ,× −∞ ∞Uχ . 
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The component representation of the deformation gradient F  follows from (A.8.14), (2.1.5b) 
and (2.2.14).  The result shall be written 
 

 = i
i J

J

x
X
∂

⊗
∂

F i i  (2.2.17) 

 
In addition, if the component version of ( )1 , t−= κX xχ  is written 
 
 ( )1

1 2 3, , ,J JX x x x tκχ
−=  (2.2.18) 

 
we can write 
 

 1 = J
J i

i

X
x

∂
⊗

∂
-F i i  (2.2.19) 

 
Definition:  The displacement gradient at (X, t) is a linear transformation in ( ; )_ i i   

defined by 
 
 ( ) ( ), GRAD ,t t=H X w X  (2.2.20) 
 
It easily follows from (2.2.5) and (2.2.14) that 
 
 = −H F I  (2.2.21) 
 

Definition:  The velocity gradient at (x, t) is a linear transformation in ( ; )_ i i defined by 
 
 ( ) ( ), grad ,t t=L x x x  (2.2.22) 
 
Often, we shall write L  or ( )tL  for ( , )tL x . 
 

The component representation for L  can be shown to be 
 

 j
j k

k

x
x
∂

= ⊗
∂

L i i  (2.2.23) 

 
Given (2.2.14) and (2.2.22), we shall prove that 
 
 F = LF  (2.2.24) 
 
The argument necessary to establish (2.2.24) is as follows: 
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( ) ( )

( )

,
= GRAD , GRAD

GRAD ,

t
t

t
grad t

∂
=

∂

=

=

κ
κ

κ

X
F X

x X
LF

χ
χ

χ  

 
Exercise 2.1.2  
 
Show that 
 tr div=L x  (2.2.25) 
and 

 1 1
⋅
− −=−F F L  (2.2.26) 

 
Equation (2.2.24) implies that 

 ( ) ( )det det tr
⋅

=F F L  (2.2.27) 
 
Equation (2.2.27) follows by the following argument. 
 

By the definition (A.5.19), we can write 
 
 ( ) ( ) ( )det ⋅ × = ⋅ ×F u v w Fu Fv Fw  (2.2.28) 
 
where u, v and w are arbitrary vectors in i .  If (2.2.28) is differentiated, the result is 
 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

det

tr

⋅

⋅ × = ⋅ × + ⋅ × + ⋅ ×

= ⋅ × + ⋅ × + ⋅ ×

= ⋅ ×

F u v w Fu Fv Fw Fu Fv Fw Fu Fv Fw

LFu Fv Fw Fu LFv Fw Fu Fv LFw

L Fu Fv Fw

 

 
where (A.5.36) and (2.2.24) have been used.  Because u , v  and w  are arbitrary the result (2.2.27) 
is obtained. 
 
Exercise 2.1.3  
 
Use (2.2.27) and show that 
 

 ( ) ( ) -1det
det

T∂
=

∂
F

F F
F

 (2.2.29) 

 
It is also true that 
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 ( )( )-1Div det
T

=F F 0  (2.2.30) 

 
and 
 ( )( )1div det T =-F F 0  (2.2.31) 

 
The proof of these results is rather complicated and will be summarized in the following exercises. 
 
Exercise 2.1.4   
 
Show that (2.2.30) is equivalent to the component formula 
 

 ( )det
X

J

J jx
⎡ ⎤∂Χ∂

=⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

F 0  (2.2.32) 

 
Exercise 2.1.5  
 
Use equation (A.5.27) and show that 

 ( )det Q j k
QJK qjk

q J K

x x
x

ε ε
∂Χ ∂ ∂

=
∂ ∂Χ ∂Χ

F  (2.2.33) 

 
Exercise 2.1.6   
 
Multiply equation (2.2.33) by RJKε  and show that 
 

 ( ) 1det
2

j kR
RJK qjk

q J K

x x
x

ε ε
∂ ∂∂Χ

=
∂ ∂Χ ∂Χ

F  (2.2.34) 

 
Exercise 2.1.7  
 
Use (2.2.34) and prove the validity of (2.2.30).The proof of (2.2.31) follows an identical argument 
with x and X interchanged. 
 
Exercise 2.2.8 
 
Use (2.2.31) and show that 
 
 1 1div((det ) ) (det )Div− −=F Fu F u  (2.2.35) 
 
for an arbitrary vector field u . 
 
2.3. Transformation of Linear, Surface and Volume Elements 
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It follows from (2.2.14) that 
 dd =x F Χ  (2.3.1) 
 
The vector dX at X represents an infinitesimal segment of material in the reference configuration, 
and the vector dx at x represents an infinitesimal segment of material in the deformed 
configuration.  Equation (2.3.1) represents the transformation law for linear elements of material 
under the deformation ( ), t= κx Xχ . 
 

If dV  is a material element of volume at X and dv  denotes its image under the mapping 
( ), t= κx χ X  then we wish to show that 

 detdv dV= F  (2.3.2) 
 
By definition, the volume elements dV and dv are given by 
 
 ( )1 2 3dV d d d= ⋅ ×X X X  (2.3.3) 
and 
 ( )1 2 3dv d d d= ⋅ ×x x x  (2.3.4) 
 
where 1 1 2 2 3 3, and .d d d d d d= = =x F X x F X x F X  Therefore, by (A.5.19), 
 

 
( )

( ) ( )
1 2 3

1 2 3det det V

dv d d d

d d d d

= ⋅ ×

= ⋅ × =

F X F X F X

F X X X F
 

 
 
Equation (2.3.2) shows us again the physical importance of (2.2.16).  By (2.3.2), we see that 
(2.2.16) is in reality a statement about the permanence of the material. 
 

Next, we wish to obtain a formula that relates a material element of area at X to its image at 
x.  It will not be possible to discuss here, in a careful fashion, the idea of an oriented surface 
element.  However, we can obtain the desired result by the following argument.  If dS denotes a 
material element of area at X, we require that 
 
 1=dV d d⋅X S  (2.3.5) 
 
If we compare (2.3.3) and (2.3.5), it is seen that dS must be given by 
 
 2 3d d d=± ×S X X  (2.3.6) 
 
where the plus or minus sign is used, depending upon the orientation of the vectors 2 3d and dX X  
relative to 1 .dX   A formula similar to (2.3.5) can be written to define ds, the image of dS, at x.  It is 
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1x

2x

3x

0

ds

( , )t⋅χ
c
U

( , )tχ c

( , )t∂χ c

 1dv d d= ⋅x s  (2.3.7) 
 
where 1 1d d=x F X .  Therefore, by (2.3.2), 
 
 1 1detd d d d⋅ = ⋅x s F X S  (2.3.8) 
or 
 ( ) ( )T

1 1d d d d det d d⋅ = ⋅ = ⋅1F X s X F s F X S  (2.3.9) 
 
Therefore, equation (2.3.9) can be written, 
 
 ( )T

1 det 0d d d⋅ − =X F s F S  (2.3.10) 
  
If we now regard 1dX  as arbitrary, equation (2.3.10) yields the transformation law for material 
surface elements, 
 

T-1detd d=s F F S  (2.3.11) 
 
The next formulas we shall discuss are expressions for differentiating volume, surface and line 
integrals.  If c  is a part of the body U , then ( , )tχ c  is the region occupied by c  at the time t.  
It is a material region in the sense that it moves with the part c  such that every point within 

( , )tχ c  has the material velocity x .  We shall denote the surface of ( , )tχ c  by ( , )t∂χ c . The 
vector ds denotes the outward drawn vector element of area.  The geometric arrangement is shown 
in the figure below. 
 

For a volume integral the following result, known as Reynold’s Theorem, shall be established: 
 

 
( ) ( ) ( ), , ,t t t

dv dv d
t ∂

∂Ψ
Ψ = + Ψ ⋅

∂∫ ∫ ∫χ χ χ
x s

c c c
 (2.3.12) 
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x

2x

3x

0

ds ( )tf

 
 

Figure 2.3.1 
 
In order to prove (2.3.12), we first utilize (2.3.2) and write 
  

 
( ) ( )

( )
( )

( )( )

,
det det

det det

t
dv dV dV

dV

⋅

Ψ = Ψ = Ψ

= Ψ +Ψ

∫ ∫ ∫

∫

χ κ κ

κ

F F

F F

c c c

c

 

 
By use of (2.2.27) and (2.3.2), this result can be rewritten 
 

 
( ) ( )( ), ,

tr
t t

dv dvΨ = Ψ +Ψ∫ ∫χ χ
L

c c
 (2.3.13) 

 
If we now use (2.2.10) and (2.2.25), it is seen that 
 

 ( )tr div
t

∂Ψ
Ψ+Ψ + Ψ

∂
L = x  (2.3.14) 

 
If (2.3.14) is substituted into (2.3.13), the divergence term can be converted, by use of (A.8.27), to 
the surface integral which appears in (2.3.12). 
 

Equation (2.3.12) is the three dimensional generalization of (1.1.21).  The reader should note 
that the derivation of (2.3.12) is the three dimensional version of the solution to Exercise 1.1.2. 
 
Exercise 2.1.8  
 
If ( )tf  denotes a material surface, i.e., a surface that always consists of the same material points, 
show that 

 
( )

( )( )( )
tr T

t t
d d d dΨ = Ψ + Ψ Ψ∫∫ s s L s - L s

f f
 (2.3.15) 

 
The geometric arrangement appropriate to this exercise is illustrated in the Fig. 2.3.2. 
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Figure 2.3.2 
 
Exercise 2.1.9  
 
If ( )t_  denotes a material curve, i.e., a curve that always consists of the same material points, 
show that 
 

 
( )

( )
( )t t

d d dΨ = Ψ +Ψ∫ ∫x x L x
_ _

 (2.3.16) 

 
Exercise 2.1.10  
 
The circulation about a closed curve ( )t_  is defined by 
 
 ( )( )

( )t
t dΓ = ⋅∫ x x

_
_  (2.3.17) 

Show that 

 ( )( )
( )t

t d
⋅

Γ = ⋅∫ x x
_

_  (2.3.18) 

 
Equation (2.3.18) is useful in discussing the kinematics of vorticity and in proving classical 
theorems regarding circulation.[Ref. 5] 
 

It is important to recognize that (2.3.12) can be generalized to the point where it is divorced 
from the idea that ( , )tχ c  is a material region.  In fact, if ( )te  denotes a region in X  and if 
points on the boundary of ( )te , ( )t∂e  move with velocity v(x, t), then it is possible to show that 
 

 
( ) ( ) ( )t t t

d dv dv d
dt t ∂

∂Ψ
Ψ = + Ψ ⋅

∂∫ ∫ ∫ v s
e e e

 (2.3.19) 

 
[Ref.6, Sect.112] 
 
The derivation of (2.3.12) assumed, among other things, that Ψ was differentiable throughout 

( , )tχ c . It is useful to have a generalization of (2.3.12) valid when Ψ suffers a jump discontinuity 
on a surface ( )tΣ  in ( , )tχ c . The generalization we seek is the three dimensional generalization of 
(1.1.31).  Consider Fig. 2.3.3. 
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1x

2x0

ds
( , )t −χ c

( )tΣ

n

( , )t −∂χ c

( , )t +∂χ c

3x 
 

 
 
 
 
 
 
 
 

 
 

 
 

 
 

Figure 2.3.3 
 
 

The surface ( )tΣ  divides ( , )tχ c . into the two regions shown, ( , )t +χ c  and ( , )t −χ c .  It is 
important to note that ( , )t +χ c  and ( , )t −χ c  are not material volumes.  This assertion becomes 
clear when one recognizes that the surface ( )tΣ  dividing ( , )tχ c . is not fixed in ( , )tχ c .  The 
unit normal n  to ( )tΣ  is directed into ( , )t −χ c .  The surface ( )tΣ  is allowed to be moving and its 
normal velocity is written nun .  If we assume Ψ  is differentiable in both ( , )t −cχ  and ( , )t +χ c , 
then Ψ  approaches limiting values −Ψ and +Ψ as ( )tΣ  is approached from ( , )t −cχ  and 

( , )t +χ c , respectively.  Equation (2.3.19) can be used to obtain 
 

 
( ) ( ) ( ) ( ), , , nt t t t

d dv dv d u d
dt t

σ+ + +

+

∂ Σ

∂Ψ
Ψ = + Ψ ⋅ − Ψ

∂∫ ∫ ∫ ∫χ χ χ
x s

c c c
 (2.3.20) 

 
for ( , )t +χ c , and 
 

 
( )( , ) ( , ) ( , ) nt t t t

d dv dv d u d
dt t

σ
− − −

−

∂ Σ

∂Ψ
Ψ = + Ψ ⋅ + Ψ

∂∫ ∫ ∫ ∫χ χ χ
x s

c c c
 (2.3.21) 

 
for ( , )t −cχ .  In (2.3.20) and (2.3.21), dσ  is the element of area of the surface ( )tΣ .  The sum of 
(2.3.20) and (2.3.21) yields 
 

 
( ) ( ) ( ), , , ( ) nt t t t

dv dv d u d
t

σ
∂ ∑

∂Ψ
Ψ = + Ψ ⋅ + Ψ

∂∫ ∫ ∫ ∫χ χ χ
x s [ ]

c c c
 (2.3.22) 
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where the jump Ψ[ ]  is defined by (A.8.31).  Equation (2.3.22) generalizes (1.1.35).  By use of 
(A.8.30), (2.3.22) can be written 
 

 
( )

( )
( )

( )
, , ( )

div nt t t
dv dv u d

t
σ

∑

∂Ψ⎛ ⎞Ψ = + Ψ − Ψ ⋅⎜ ⎟∂⎝ ⎠∫ ∫ ∫χ χ
x [ x n - ]

c c
 (2.3.23) 

 
If we now use (2.3.14), the result (2.3.23) can be rewritten in the form 
 

 
( ) ( )( )

( )
, , ( )

tr nt t t
dv dv u dσ

∑
Ψ = Ψ+Ψ − Ψ ⋅∫ ∫ ∫χ χ

L [ x n - ]
c c

 (2.3.24) 

 
The reader should recognize (2.3.23) as the three dimensional generalization of (1.1.38). 
 
Exercises 2.3.4-2.3.8: 
 
Kinematics of Rotating Coordinates. Consider the geometric arrangement shown in the Fig. 2.3.4.   
The point c = c(t) is the origin of a translating and rotating coordinate system with orthonormal 
basis { }* * *

1 2 3, ,i i i .  Since { }* * *
1 2 3, ,i i i is a basis for i, we can write 

 
 *

j kj kQ=i i  (2.3.25) 
 
where kjQ⎡ ⎤⎣ ⎦ is an orthogonal time-dependent matrix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3.4 
 
Exercise 2.1.11  
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Show that 

 ( ) *
kj k

d
Z t

dt
=

*
ji

i  (2.3.26) 

 
where ( )kjZ t⎡ ⎤⎣ ⎦ is a skew-symmetric matrix defined by 
 

 ( ) ( )sj
kj sk

dQ t
Z t Q

dt
=  (2.3.27) 

 
Exercise 2.1.12  
 
Define Z(t) in ( ; )_ i i  by 
 
 ( ) ( ) * *

kj j jt Z t= ⊗Z i i  (2.3.28) 
 
and show that 
 

 *
j

d
dt

=
*
ji

Zi  (2.3.29) 

 
The linear transformation Z measures the angular velocity of { }* * *

1 2 3, ,i i i with respect to { }1 2 3, ,i i i . 
 
Exercise 2.1.13  
 
If ω  is the angular velocity vector of the basis { }* * *

1 2 3, ,i i i defined by 
 
 = ×Zv vω  (2.3.30) 
for all v in i , show that 
 
 1

2k ksj sjZω ε= −  (2.3.31) 
 
and 

 *
j

d
dt

= ×
*
ji

iω  (2.3.32) 

Exercise 2.1.14   
 
If ( ), t=u u X  is a time dependent vector field, show that 
 

 =
t

δ
δ

+ ×
uu uω  (2.3.33) 
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where / tδ δu  is the material derivation of u seen by an observer in the translating and rotating 
coordinate system, i.e., if * *

j ju=u i  then 

 * *
j ju

t
δ
δ

=
u i  

 
Exercise 2.1.15   
 
From the figure above, we have 
 
 ( ) ( )t t− = + −x 0 p c 0  (2.3.34) 
 
The velocity x  associated with the motion ( ), t= κx Xχ is thus given by 
 

 ( )t
t

δ
δ

+ × +
px = p cω  (2.3.35) 

 
where we have used (2.3.33).  Show that 
 

 grad
t

δ
δ

⎛ ⎞= +⎜ ⎟
⎝ ⎠

pL Z  (2.3.36) 

 
2.4. Strain Kinematics 
 
In this section, the kinematics of local strain are discussed.  The discussion is "local" in the sense 
that the kinematical ideas apply to the deformation of infinitesimal linear elements of material.  The 
ideas introduced here will aid in understanding certain quantities that will appear later when special 
types of materials are considered. 
 

If the polar decomposition theorem, Theorem A.5.12, is applied to F we have 
 
 =F RU  (2.4.1a) 
 
 
 =VR  (2.4.1b) 
  (2.4.1) 
 
where R is orthogonal and U and V are symmetric and positive definite.  The tensor R is called the 
rotation tensor, while U  and V  are the right and left stretch tensors, respectively.  The positive 
definite and symmetric tensors B and C, defined by 
 
 T=B FF  (2.4.2) 
and 
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 T=C F F  (2.4.3) 
 
are the left and right Cauchy- Green tensors, respectively. 
 

It follows from (2.4.1) and (2.3.1) that 
 
 d d=x RU X  (2.4.4a) 
 
 
 d=VR X  (2.4.4b) 
  (2.4.4) 
The meaning of (2.4.4a) should be clear.  Given the material element dX, dU X  is the material 
element stretched by U.  The orthogonal linear transformation R then rotates the stretched material 
element into the deformed element dx .  Equation (2.4.4b) represents the same deformation, but 
with the rotation and stretch taking place in a reverse order.  Therefore, U and V measure the 
stretch (or strain) of a linear element, while R measures its rotation.  It easily follows from (2.4.1), 
(2.4.2) and (2.4.3) that 
 
 T=V RUR  (2.4.5) 
 
 T=B RCR  (2.4.6) 
 
 2=B V  (2.4.7) 
 
and 
 2=C U  (2.4.8) 
 
As observed in the proof of Theorem A.5.11, U and V have the same eigenvalues. Thus, they 
correspond to the same stretch.  If n is an eigenvector of U, then we know that Rn is the 
corresponding eigenvector of V.  Therefore, V and U correspond to the same stretch but in different 
directions related by the orthogonal linear transformation R. 
 
Exercise 2.4.1 
 
Show that 
 n n T=V RU R  (2.4.9) 
 
where n is an integer.  
 

It follows from (2.4.7) and (2.4.8) that B and C are also measures of the strain.  An equivalent 
method of reaching this conclusion is to consider the following argument.  The squared lengths of 
the linear element at X and x are 
 
 2Sd d d= ⋅X X  (2.4.10) 
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and 
 
 2ds d d= ⋅x x  
 
 
The difference in these squared lengths is clearly a measure of the strain.   It is a simple calculation, 
based upon (2.3.1), to show that 
 
 ( )( ) ( )( )2 2 1ds dS d d d d−− = ⋅ − = ⋅ −X C I X x I B x  (2.4.11) 

 
Equations (2.3.11) indicate that C  and B  measure the strain.  The tensor 
 
 ( )1

2= −E C I  (2.4.12) 
 
is called the material strain tensor or the Lagrangian strain tensor. 
 
Exercise 2.4.2 
 
Show that 
 
 T T= + +C I H H + H H  (2.4.13) 
 
 T T= + +B I H H + HH  (2.4.14) 
 
and 
 
 ( )1

2
T T= +E H H + H H  (2.4.15) 

 
Exercise 2.4.3 
 
Show that 
 3 2C EI I= +  (2.4.16) 
 
 3 4 4C E EII I II= + +  (2.4.17) 
 
and 
 
 1 2 4 8C E E EIII I II III= + + +  (2.4.18) 
 
where , ,C C CI II III  are the fundamental invariants defined by (A.5.44) through (A.5.46). 
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Given the various strain measures introduced in this section, their material derivatives are 
rate of strain measures.  Given the deformation gradient F, its derivative F measures the rate of 
deformation.  If (2.2.24) is written 
 
 -1=L FF  (2.4.19) 
 
it follows that L also measures the rate of deformation.  More precisely, it follows from (2.4.19) 
that 
 
 =

F=I
L F  (2.4.20) 

 
and, thus, L is the rate of deformation measured with respect to a configuration which 
instantaneously coincides with the reference configuration. 

Given the decompositions (2.4.1), it is natural to use (2.4.20) and attempt to decompose L 
into a part which measures rate of rotation and a part which measures rate of deformation.  From 
(2.4.1a), 
 
 F = RU + RU  (2.4.21) 
 
When F = I, it follows from the polar decomposition theorem that U = I and R = I. Therefore, 
(2.4.21) yields 
 
 = +

F=I F=I F=I
F U R  (2.4.22) 

 
Therefore, in the state which instantaneously coincides with the reference configuration, 

F=I
U  

measures the rate of deformation and 
F=I

R measures the rate of rotation.  Because R is orthogonal, 

 
 T =RR I  (2.4.23) 
 
The derivative of (2.4.23) yields 
 
 ( )T T T= −RR RR  (2.4.24) 
 
Therefore, TRR is a skew symmetric linear transformation, and, thus, 
 
 T=

F=IF=I
R -R  (2.4.25) 

 
Because U is symmetric, U is symmetric and, thus, 
 
 T=

F=I F=I
U U  (2.4.26) 
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Therefore, (2.4.22) is a decomposition of 
F=I

F  into its symmetric and skew symmetric parts.  

Because of (2.4.20), (2.4.22) is the decomposition of L into its symmetric and skew symmetric 
parts.  Therefore 
 
 ( )1

2 =T

F=I
L + L U  (2.4.27) 

and 
 ( )1

2 =T

F=I
L - L R  (2.4.28) 

 
We shall use the symbols D and W for the symmetric and skew symmetric parts of L, respectively.  
These quantities are, of course, defined by 
 
 ( )1

2
T=D L + L  (2.4.29) 

and 
 ( )1

2
T=W L - L  (2.4.30) 

 
The linear transformation D measures the rate of strain with respect to a state which 
instantaneously coincides with the reference configuration, and W measures the rate of rotation 
with respect to the same state.  D is called the stretching tensor and W is called the spin tensor.  D 
is sometimes called the rate of strain tensor, and the vector formed from the skew symmetric W is 
called the vorticity vector. 
 
Exercise 2.4.4 
 
Show that 
 
 2 T=C F DF  (2.4.31) 
 
Exercise 2.4.5 
 
Show that 
 ( )1 11

2= - - T+D R UU U U R  (2.4.32) 
 
and 
 
 ( )1 11

2= - - T+ −W RR R UU U U R  (2.4.33) 
 
Equations (2.4.32) and (2.4.33) show that D is not a pure rate of stretching and W is not a pure rate 
of rotation when these rates are measured with respect to a fixed configuration.  If the body is rigid, 
=U I for all X.  Equation (2.4.32) yields D = 0 for a rigid body, and (2.4.33) yields T=W RR .  The 

term TRR represents the angular velocity of the rigid body. 
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Exercise 2.4.6 
 
Show that, for a rigid body with velocity ox  at the point ox , the velocity of any point x in the body 
is given by 
 ( )T

o o= + −x x RR x x  (2.4.34) 
 
Equation (2.4.34) shows that the velocity of a rigid body can always be represented by a translation 
of a point ox  in the body plus a rotation about that point. 
 
Exercise 2.4.7 
 
Show that 

 1
2 grad grad

T

t t
δ δ
δ δ

⎡ ⎤⎛ ⎞ ⎛ ⎞= +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

p pD  (2.4.35) 

 
and 

 1
2 grad grad ,

T

t t
δ δ
δ δ

⎡ ⎤⎛ ⎞ ⎛ ⎞= − +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

p pW Z  (2.4.36) 

 
where p is the position vector introduced in (2.3.34).  These results show that the spin tensor is 
sensitive to rigid rotations while stretching tensor is not. 
 
Exercise 2.4.8 
 
For certain types of viscoelastic fluids an important kinematic quantity is the nth Rivlin-Ericksen  
tensor, nA , for 1, 2,...n = , defined by 
 

 
n

T
nn

d
dt

=
C F A F  (2.4.37) 

 
Show that 
 
 1 2=A D  (2.4.38) 
 
and 
 
 ( )2 grad grad 2T T= +A x + x L L  (2.4.39) 
 
Exercise 2.4.9 
 
If F(X, t) is orthogonal for every X and for all t and if F is differentiable, show that F is 
independent of X and that the body is rigid. 
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Exercise 2.4.10 
 
Consider the homogeneous deformation of the form 
 
 =x FX  (2.4.40) 
 
where F is the deformation gradient defined in Exercise A.5.22 of Appendix A.  Given a material 
element in the shape of a unit cube aligned with the coordinate axes, construct the deformed 
element which results from the deformation (2.4.40). 
 
Exercise 2.4.11 
 
Show that 
 
 1div((det ) ) (det )Div− =F V F R  (2.4.41) 
 
One approach to working this exercise is to choose T=u R v  in (2.2.35) where v  is an arbitrary 
vector. 
 
2.5. Infinitesimal Strain Kinematics 
 

If the displacement gradients are, in some sense, small, the results of Section 2.4 are 
simplified considerably.  This section is concerned with a discussion of the kinematics of strain in 
this special circumstance.  The results are important in the classical theory of linear elasticity. 

 
The magnitude of a deformation is measured by a positive number ∈  defined by  
 

 ( )tr T∈= ≡HH H  (2.5.1) 

 
In components, ∈  is defined by 

 j j

J J

w w
X X
∂ ∂

∈=
∂ ∂

 (2.5.2) 

 
Equation (2.5.1) defines the norm of a linear transformation H in terms of the trace operation.  It is 
easy to show that this definition of norm is consistent with the definition (A.3.1), and it has the 
properties summarized in Theorem A.3.1. 
 

It follows from (2.5.1) that when ∈  is small every component of H is necessarily small.  We 
shall denote by ( )O ∈  any function of H with the property that 
 
 ( )O M∈ < ∈ (2.5.3) 
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as 0,∈→  where M is any positive number. If 1,∈  the deformation is said to be small or 
infinitesimal. 
 

It is a consequence of (2.5.1) that 
 
 ( )O= ∈H  (2.5.4) 
 
and 
 
 ( )T O= ∈H  (2.5.5) 
 
Since 
 ( ) ( ) ( )n m n mO O O +∈ ∈ = ∈  (2.5.6) 
 
for positive integers n and m, it follows from (2.5.4) and (2.5.5) that 
 
 ( )2T O= ∈H H  (2.5.7) 
 
and 
 ( )2T O= ∈HH  (2.5.8) 
 
If E denotes the symmetric linear transformation defined by 
 

 ( )1
2

TE= H + H  (2.5.9) 

 
it follows from (2.4.13), (2.4.14), (2.4.15), (2.5.7) and (2.5.8) that 
 
 ( )22 O= + + ∈C I E  (2.5.10) 
 
 ( )22 O= + + ∈B I E  (2.5.11) 
 
and 
 
 ( )2O ε+E = E  (2.5.12) 
 
Equations (2.5.10) through (2.5.12) show that E is a measure of the strain whenever terms like 
( )2O ∈ are neglected.  It is for this reason that E  is called the infinitesimal strain measure. 

 
It is also possible to derive approximate expressions for U, V, and R that are valid for 

infinitesimal deformations.  These expressions are 
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 ( )2O= + + ∈U I E  (2.5.13) 
 
 ( )2O= + + ∈V I E  (2.5.14) 
 
and 
 
 ( )2O= + + ∈R I R  (2.5.15) 
 
where 
 

 ( )1=
2

TR H-H  (2.5.16) 

 
Equations (2.5.13) and (2.5.14) follow from (2.4.7) and (2.4.8) by extracting the square root of 
(2.5.10) and (2.5.11).  Equations (2.5.15) follows from (2.4.1a), written in the form 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 2 2

2 2

2 2

1
2

1
2

T

T

O O

O O

O O

−− ⎡ ⎤ ⎡ ⎤= = + + ∈ = + − + ∈⎣ ⎦ ⎣ ⎦

= − + ∈ = + + ∈

= − + ∈ = + + ∈

R FU I H I E I H I E

I H E I H - H +H

I H H I R

+

+

+

 

 
The kinematical meaning of R should be clear from (2.5.15).  It is the linear correction to the 
rotation R = I.  This is the reason R  is called the infinitesimal rotation tensor.  It follows from 
(2.5.9) and (2.5.16) that 
 
 = +H E R  (2.5.17) 
 
Equation (2.5.17) is a decomposition of the infinitesimal deformation into the sum of an 
infinitesimal strain and an infinitesimal rotation. 
 
Exercise 2.1.16   
 
Show that 
 
 ( )det =1 tr 2O ∈F + H +  (2.5.18) 
 
 ( )=1 tr 2O ∈+ E+  (2.5.19) 
 
 ( )=3 2 tr 2

CI O ∈+ E+  (2.5.20) 
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 ( )=3 4 tr 2
CII O ∈+ E+  (2.5.21) 

 
and 
 
 ( )=1 2 tr 2

CIII O ∈+ E+  (2.5.22) 
 
Equation (2.5.18) shows that tr=H E measures volume deformations in the case of small 
deformations.  In linear elasticity, tr E is called the dilatation. 
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3 
 
 
Equations of Balance 
 
 
 
This chapter is concerned with the three dimensional statements of the equations of balance.  As in 
Chapter I, the discussion will include statements of balance of mass, linear momentum, energy and 
the entropy inequality.  In addition, we shall discuss balance of moment of momentum.  This 
balance equation is trivial in one dimension. 
 
 
3.1. Balance of Mass 
 

The body U  is assumed to be endowed with a nonnegative scalar property known as the mass.  
For our purposes, the idea of mass will be introduced by assuming the existence of a positive 
valued function on U  called the mass density.  The mass density, or simply the density, of X  in 
U  at the time t  is given by 
 
 ( ), tρ ρ Χ=  (3.1.1) 
 
By use of (2.1.2), we can regard ρ  to be a function of ( ), tx .   In this case, we shall write 
 
 ( ), tρ ρ= x  (3.1.2) 
 
where, for notational simplicity, we have used the same symbol for the two different functions 
which appear in (3.1.1) and (3.1.2).  Also, when the independent variables are ( ), tΧ  we shall again 
write 
 
 ( ), tρ ρ= Χ  (3.1.3) 
 
The above notational convention will not cause any confusion since the context will always 
indicate which function is intended. 
 

If κ  is the reference configuration, the density of U  in κ  will be written 
 
 ( )R Rρ ρ= Χ  (3.1.4) 
 
The mass of a part c  of U  in the configuration χ  at the time t  is 
 
 ( )

( ),
,

t
m t dvρ= ∫χ c

c  (3.1.5) 
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Axiom (Balance of Mass).  For all parts c  in U , 

 
 ( ), constm t =c  (3.1.6) 
 
or, equivalently, 
 

 ( ), 0m t
⋅

=c  (3.1.7) 
 
Note that ( ),m t⋅  is a set function; i.e., the domain of ( ),m t⋅  is a collection of sets.  Each element 
of the domain represents a part of U . Clearly, the axiom of balance of mass is equivalent to the 
following statements: 
 

1.  ( ) ( ), ,m t m τ=c c  (3.1.8) 
for t τ≠ , 
 

2.  
( ),

0
t

dvρ
⋅

=∫χ c
 (3.1.9) 

 
and 
 

3.  
( )( ),t

VRdv dρ ρ=∫ ∫χ κc c
 (3.1.10) 

 
for all c  in U . 
 

If we use (2.3.2), equation (3.1.10) can be written 
 
 ( )

( )
det V 0R dρ ρ− =∫κ F

c
 (3.1.11) 

 
Since c  is an arbitrary part of U , (3.1.11) is equivalent to 
 
 det Rρ ρ=F  (3.1.12) 
 
for all ( ), tΧ  in ( ) ( ),× −∞ ∞κ U .  Equation (3.1.12) is a local version of the axiom of balance of 
mass.  When ρ  and F  are differentiable functions, it follows from (3.1.12) and (3.1.4) that 
 

 det 0ρ
⋅

=F  (3.1.13) 
 
Exercise 3.1.1  
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Show that (3.1.13) is equivalent to the following equations: 
 

 1 div ρ
ρ

⋅

⎛ ⎞
=⎜ ⎟

⎝ ⎠
x  (3.1.14) 

 
 div 0ρ ρ+ =x  (3.1.15) 
 
and 
 

 div 0
t
ρ ρ∂
+ =

∂
x  (3.1.16) 

 
Exercise 3.1.2  
 
Derive (3.1.16) from (3.1.9) by use of (2.3.12). 
 
Equations (3.1.12), (3.1.14), (3.1.15) and (3.1.16) summarize the usual local statements of the 
axiom of balance of mass. Equation (3.1.12) is the form usually used in solid mechanics while the 
others are common in fluid mechanics. All of these equations hold at points where ρ , x , and F  
are differentiable. 
 
Exercise 3.1.3  
 
Start with (3.1.16) and derive an integral statement of the axiom of balance of mass for an arbitrary 
region ( )te .  The answer is 
 

 ( )
( )( )

s
t t

d dv d
dt

ρ ρ
∂

= − − ⋅∫ ∫ x v
e e

 (3.1.17) 

 
where v  denotes the velocity of a point on the surface ( )t∂e .  What do the terms in (3.1.17) 
represent physically? 
 

In deriving (3.1.14),  (3.1.15) and (3.1.16), we assumed that ρ , x , and F  are differentiable 
within ( ),tχ c .  From our one dimensional discussion in Chapter I, we know that in certain 
physical problems this is not the case.  Across a three dimensional shock wave ρ , x , and F  are 
not continuous.  They undergo jump discontinuities.  A typical problem in continuum mechanics is 
to compute the properties of these discontinuities.  In order to relax the assumptions leading to 
(3.1.14), (3.1.15) and (3.1.16), we shall now consider the case when ρ , x , and F  are 
differentiable at all points except on a surface ( )t∑ , where ρ , x , and F  suffer jump 
discontinuities.  It follows from (3.1.9) and (2.3.23) that 
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( )

( )
( ),

div n nt t
dv x u d

t
ρ ρ ρ σ

∑

∂⎛ ⎞+ = −⎜ ⎟∂⎝ ⎠∫ ∫χ
x [ ]

c
 (3.1.18) 

 
where 
 
 nx = ⋅x n  (3.1.19) 
 
is the normal component of x at ( )t∑ .  The arbitrary nature of ( ),tχ c  allows us to conclude 
from (3.1.18) that (3.1.16) holds at points where ρ  and x  are differentiable.  In addition, (3.1.18) 
shows that 
 
 ( )

( )
0n nt

x u dρ σ
∑

− =∫ [ ]  (3.1.20) 

 
Equation (3.1.20) yields 
 
 ( ) 0n nx uρ − =[ ]  (3.1.21) 
 
at points x  on ( )t∑ .  Equation (3.1.21) follows from (3.1.20) and the arbitrary nature of ( )t∑ .  
The physical meaning of (3.1.21) should be clear.  It simply states that the mass flux per unit of 
area is continuous across ( )t∑ .  The reader has no doubt noticed the formal similarity of the 
derivation of (3.1.21) and its one dimensional version (1.2.12). 
 
Exercise 3.1.4  
 
Show that 
 

 ( )div
t
ρψρψ ρψ∂

= +
∂

x  (3.1.22) 

 
Exercise 3.1.5  
 
Show that 
 

 
( ) ( )

( )
( ), , n nt t t

dv dv x u dρψ ρψ ρψ σ
⋅

∑
= − −∫ ∫ ∫χ χ

[ ]
c c

 (3.1.23) 

 
Exercise 3.1.6  
 
Use (2.3.36) and show that 
 

 div div
t

δ
δ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

px  (3.1.24) 
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Since ( ) ( )1 1 tρ δ ρ δ
⋅

= , (3.1.24) and (3.1.14) combine to yield 
 

 ( )1
div

t t
δ ρ δρ
δ δ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

p  (3.1.25) 

 
which is the local statement of balance of mass appropriate to an observer in a rotating and 
translating coordinate system. 
 
Exercise 3.1.7  
 
Show that (3.1.25) can be written 
 

 div 0
t t
ρ δρ

δ
∂ ⎛ ⎞+ =⎜ ⎟∂ ⎝ ⎠p

p  (3.1.26) 

 

where 
t
ρ∂
∂ p

 denotes the time derivative of ( ), tρ ρ= p  at constant p . 

 
Exercise 3.1.8  
 
The body U  is incompressible if 0ρ =  for all X  in U .  Show that in this case 
 
 det 1=F  (3.1.27) 
 
and 
 
 div 0=x  (3.1.28) 
 
 
3.2. Balance of Linear Momentum 
 

In this section, the axiom of balance of linear momentum is stated and discussed. 
 

The linear momentum of the part c  of the body U  is 
 
 ( )

( ),
,

t
t dv

χ
ρ= ∫k x

c
c  (3.2.1) 

 
The center of mass of the part c  of the body U  is 
 

 ( ) ( ) ( ),

1,
,c t

t dv
m t

ρ= ∫χx x
c

c
c

 (3.2.2) 
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where ( ),m tc  is given by (3.1.5). 
 
Exercise 3.2.1  
 
Show that the linear momentum of the part c , no matter what deformation it undergoes, equals 
the linear momentum of a mass point of mass ( ),m tc  located at the center of mass moving with 
the velocity of the center of mass, i.e., show that 
 
 ( ) ( ), , ct m t=k xc c  (3.2.3) 
 
It should be stressed that (3.2.3) depends strongly on the fact that the mass within ( ),tχ c  is 
constant.  The concept of center of mass is of little value in those cases where the mass is not 
constant. 
 

The statement of the axiom of balance of linear momentum takes the concept of force as 
fundamental.  If ( ),tf c  denotes the resultant force acting on the part c  in U  at the time t , 
the axiom of balance of linear momentum is the following: 
 

Axiom  (Balance of Linear Momentum) For all parts c  in U , 
 
 ( ) ( ), ,t t=k fc c  (3.2.4) 
 

Equation (3.2.4) will be referred to as the equation of motion of c .  Also, note that this 
axiom is stated for the material occupying the volume ( ),tχ c .  The important property of 

( ),tχ c  is that is contains a constant mass.  It will be shown in an exercise how (3.2.4) is modified 
when a region with variable mass is used. 
 

Equation (3.2.4) is usually referred to as "Newton's second law," although it was stated 
explicitly for the first time by Euler [Ref. 1].  Equivalent forms of (3.2.4) are 
 

 
( )

( )
,

,
t

dv tρ
⋅

=∫χ x f
c

c  (3.2.5) 

 
and 
 
 ( ) ( ), ,cm t t=x fc c  (3.2.6) 
 
Exercise 3.2.2  
 
Show that if (3.2.6) is written with respect to the translating and rotating system, it takes the form 
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 ( ) ( ) ( )
2

2, 2 ,c c
c cm t t

t t
δ δ
δ δ

⎛ ⎞
+ + × + × + × × =⎜ ⎟

⎝ ⎠

p pc ω p ω ω ω p fP P  (3.2.7) 

 
where cp  denotes the position vector to cx  from ( )tc .  Identify the terms in (3.2.7). 
 

Assume that the body U  and its motion are given. 
 

Definition.  A system of forces for the body in motion is characterized by the following 
conditions [Ref. 2, Sect. 16]: 
 

1. For every t  in ( ),−∞ ∞  there exists a vector field ( ), t⋅b  defined on ( ),tχ c . 

2. For every t  in ( ),−∞ ∞  and for every c  in U  there exists a vector field ( ), ,t⋅t c  

defined on ( ),t∂χ c . 
 

The vector field ( ), t⋅b  is called the external body force density on U .  The vector ( ),b tf c  
defined by 
 
 ( )

( ),
,b t
t dvρ= ∫χf b

c
c  (3.2.8) 

 
is the resultant external body force exerted on c  at the time t .  The vector field ( ), ,t⋅t c  is 
called the stress vector and represents the contact force acting on c  at the time t .  The resultant 
contact force ( ),c tf c  exerted on c  at the time t  is defined by 
  
 ( ) ( )

( ),
, , ,c t
t t ds

∂
= ∫ χ

f t x
c

c c  (3.2.9) 

 
where ds d= s .  Physically, ( ),c tf c  is the resultant force exerted by the material outside of c  

which is in contact with the surface ( ),t∂χ c .  The resultant force ( ),tf c  exerted on c  in U  
at the time t  is defined by 
 
 ( ) ( ) ( ), , ,b ct t t= +f f fc c c  (3.2.10) 
 

Under certain rather formal mathematical assumptions, one can prove that there exists a vector 
field ( ), , t⋅t n , where n  is the unit exterior normal to ( ),t∂χ c , such that 
 
 ( ) ( ), , , ,t t=t x t x nc  (3.2.11) 
 
for all x  on ( ),t∂χ c  and t  in ( ),−∞ ∞ .  The mathematical argument leading to (3.2.11) can be 
found in Ref. 3.  Additional discussion relevant to this argument can be found in Refs. 4, 5, and 6. 
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By use of (3.2.8), (3.2.9), (3.2.10) and (3.2.11), the axiom (3.2.5) can be written 
 

 
( )

( )
( ) ( ), , ,

, ,
t t t

dv t ds dvρ ρ
⋅

∂
= +∫ ∫ ∫χ χ χ

x t x n b
c c c

 (3.2.12) 

 
The normal stress at x  on ( ),t∂χ c  is  

 ( ), , t ⋅t x n n  
 
Since ( ), , tt x n  is the local effect of the material outside of ( ),tχ c  on the material inside of 

( ),tχ c , if  ( ), , t ⋅t x n n  is negative, the normal stress is compressive and, if ( ), , t ⋅t x n n  is 

positive, the normal stress is a tension.  The projection of ( ), , tt x n  in the direction of a plane 

normal to n  is the shear stress.  If ( ), , tt x n  is parallel to n , and if the factor of proportionality is 
independent of n , the stress is hydrostatic. 
 

Next, we shall show that if ( ), , tt x n  is a continuous function of x , there exists a linear 

transformation T , depending upon x  and t , such that all stress vectors ( ), , tt x n  at x  and t  are 
determined by 
 ( ) ( ), , ,t t=t x n T x n  (3.2.13) 
  
This result is known as Cauchy's theorem, and it asserts that ( ), , tt x n  depends upon the surface 
orientation only in a linear fashion.  The tensor T  is called the stress tensor.  The proof of (3.2.13) 
is based on a preliminary result which is stated as follows: 
 

If d  denotes a characteristic dimension of ( ),tχ c  and if ρx and ρb  are bounded for all 

( ),tχ c , then 
 

 ( )
( )2 ,0

1lim , ,
td

t ds
d ∂→

=∫ χ
t x n 0

c
 (3.2.14) 

 
Because d  is the characteristic dimension of ( ),tχ c , then ( ),tχ c  is proportional to 3d  and 

( ),t∂χ c  is proportional to 2d .  The proportionality factors depend only on the shape of ( ),tχ c .  

If we select ( ),tχ c  such that it does not contain a surface of discontinuity, we can use (3.1.23) 
with ψ = x  to write (3.2.12) in the form 
 
 ( )

( )
( )

( ), ,
, ,

t t
t ds dvρ

∂
= −∫ ∫χ χ

t x n x b
c c

 (3.2.15) 

 
If we divide (3.2.15) by 2d  and let 0d → , we immediately obtain (3.2.14) since, by assumption, 
ρx  and ρb  are bounded.  Returning to the proof of Cauchy's Theorem, consider the tetrahedron 
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1x

2x

3x

x

n

shown in the following figure.  This is tetrahedron has three of its faces parallel to the coordinate 
planes through x  and the fourth with normal n .  If ds  is the element of area for the slant face, the 
element of area for the face perpendicular to the coordinate axis ji  is ( )j jds ds= ⋅n i .  If (3.2.14) is 
applied to the tetrahedron, it follows that 
 

 ( ) ( )( )
3

1
, , , ,j j

j
t t

=

+ − ⋅ =∑t x n t x i n i 0  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2.1 
 
 
Therefore, 
 

 ( ) ( ) ( )
3

1
, , , , ,j j

j
t t t

=

⎛ ⎞
= − − ⊗ ≡⎜ ⎟

⎝ ⎠
∑t x n t x i i n T x n  

 
By use of (A.4.3), the component representation for the stress tensor can be written 
 
 jk j kT= ⊗T i i  (3.2.16) 
 
 
Exercise 3.2.3  
 
Use (3.2.13) and (3.2.16) and show that the components of T , jkT , represents the force per unit of 
area in the j th direction of the k th face of a unit cube.  The following figure illustrates the results 
of this exercise. 
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3x

33T
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Figure 3.2.2 
 
 
 

If equation (3.2.13) is substituted into (3.2.12), the result can be written 
 

 
( )

( )
( ) ( ), , ,

,
t t t

dv t d dvρ ρ
⋅

∂
= +∫ ∫ ∫χ χ χ

x T x s b
c c c

 (3.2.17) 

 
If we assume ( ),tχ c  does not contain a surface of discontinuity, we can follow the same 
procedure used to derive (3.2.15) from (3.2.12) and deduce from (3.2.17) that 
 
 ( )

( ) ( )( ), , ,
,

t t t
dv t d dvρ ρ

∂
= +∫ ∫ ∫χ χ χ

x T x s b
c c c

 (3.2.18) 

 
If the surface integral in (3.2.18) is converted into a volume integral by use of (A.8.29), it follows 
that 
 
 ( )

( ),
div

t
dvρ ρ− − =∫χ x T b 0

c
 (3.2.19) 

 
Because ( ),tχ c  is arbitrary, (3.2.19) implies the following local statement of balance of linear 
momentum: 
 
 divρ ρ= +x T b  (3.2.20) 
 
This result holds at points x  not on a surface of discontinuity.  The component version of (3.2.20) 
is 
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 jk
j j

k

T
x b

x
ρ ρ

∂
= +
∂

 (3.2.21) 

 
Exercise 3.2.4  
 
Show that the following equations are equivalent statements of the local statement of balance of 
linear momentum. 
 

1.  divρ ρ= +x T b  (3.2.22) 
 

2.  ( )grad div
t

ρ ρ∂⎛ ⎞+ = +⎜ ⎟∂⎝ ⎠
x x x T b  (3.2.23) 

 

3.  ( )div div
t
ρ ρ ρ∂

+ ⊗ = +
∂

x x x T b  (3.2.24) 

 

4.  
2

grad 2
2

div
t

ρ ρ
⎡ ⎤⎛ ⎞∂

+ + = +⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦

x x Wx T b  (3.2.25) 

 
Exercise 3.2.5  
 
Show that, for the material in ( )te , the balance equation for linear momentum is 
 

 
( )

( )
( ) ( ) ( )t t t t

d dv d d dv
dt

ρ ρ ρ
∂ ∂

= − − ⋅ + +∫ ∫ ∫ ∫x x x v s T s b
e e e e

 (3.2.26) 

 
What do the terms in (3.2.26) represent physically? 
 
Equation (3.2.20) represents the form of the equation of balance of linear momentum that occurs 
frequently in textbooks on fluid mechanics.  While (3.2.20) applies to any continuum material, in 
theories of nonlinear elasticity it is useful to derive a material form of the axiom of balance of 
linear momentum.  This result, derived below, is expressed in terms of the first Piola-Kirchhoff 
stress tensor. This tensor is given the symbol RT , and is defined by 
 
 1det

T

R
−=T F TF  (3.2.27) 

 
Exercise 3.2.6  
 
Show that 
 
 Rd d=T s T S  (3.2.28) 
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This results shows that RT  is the stress tensor measured per unit of undeformed area. 
 
The local statement of the material form of the axiom of balance of linear momentum will now 

be shown to be 
 
 DivR R Rρ ρ= +x T b  (3.2.29) 
 
The derivation of (3.2.29) follows by first multiplication of (3.2.20) by det F  and making use of 
(3.1.12).  The result is 
 
 det divR Rρ ρ= +x F T b  (3.2.30) 
 
By use of (2.2.30), it follows that 
 
 ( )1det div div det Div

T

R
−= =F T F TF T  (3.2.31) 

 
which yields the desired result.  The reader should compare the derivation of (3.2.19) with its one 
dimensional version (1.3.13).  In some applications the second Piola-Kirchhoff stress tensor is 
introduced.  It is defined by 
 
 1

R
−=T F T  (3.2.32) 

 
Exercise 3.2.7  
 
Show that the following jump equation governs linear momentum across a singular surface ( )t∑ . 
 
 ( )n nx uρ − − =[ x] [T]n 0  (3.2.33) 
 
Equation (3.2.33) is the three dimensional generalization of (1.3.8). 
 
Exercise 3.2.8  
 
Show that (3.2.33) can also be written 
 
 ( ) ( )n nu uρ − ⊗ − − =[ x n x n T]n 0  (3.2.34) 
 
and 
 
 γ − =[x] [T]n 0  (3.2.35) 
 
where  ( ) ( )n n n nx u x uγ ρ ρ+ + − −= − = − .  Equations (3.2.34) and (3.2.35) generalize (1.3.10) and 
(1.3.11), respectively. 
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Exercise 3.2.9  
 
Show that when T  is given by π= −T I , where π  is the pressure, that (3.2.34) is equivalent to 
 
 ( )2 0n nx uπ ρ+ − =[ ]  (3.2.36) 
 
and 
 
 × =n [x] 0  (3.2.37) 
 
if 0γ ≠ .  Equation (3.2.37) shows that the tangential component of x  is continuous across the 
discontinuity whenever π= −T I  and 0γ ≠ . 
 
Exercise 3.2.10  
 
Show that 
 

 ( )
2

2 2 div
t

δ δρ ρ
δ δ

⎛ ⎞
+ + × + × + × × = +⎜ ⎟

⎝ ⎠

p pc ω p ω ω ω p T b
t

 (3.2.38) 

 
Equation (3.2.38) is the equation of motion which is utilized in geophysical continuum mechanics. 
 
 
3.3. Balance of Angular Momentum 
 
The moment of momentum or angular momentum of a part of c  of U  about the origin 0  is 
defined by 
 
 ( ) ( )

( ),
,o t
t dvρ= − ×∫χh x 0 x

c
c  (3.3.1) 

 
It is clear from (3.3.1) that the moment of momentum has been assumed to be due entirely to the 
velocity x . This is certainly the most common case.  However, there are theories of polar 
materials from which ( ),o th c  contains a part due to an intrinsic spin moment of momentum.  We 
shall not consider such theories in this text [Refs. 2, 7]. 
 

Axiom (Balance of Moment of Momentum) The rate of change of moment of momentum of an 
arbitrary part c  of U  about the origin 0  is equal to the resultant of the torques about the origin.  
If ( ),o tl c  denotes this resultant torque, then 
 
 ( ) ( ), ,o ot t=h lc c  (3.3.2) 
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It is assumed here that ( )0 ,tl c  is due to the body and contact forces.  Therefore, surface couples 

and body couples are not allowed.  With this assumption, ( ),o tl c  is given by 
 
 ( ) ( ) ( )

( )
( )

( ), ,
, ,o t t
t t d dvρ

∂
= − × + − ×∫ ∫χ χ

l x 0 T x s x 0 b
c c

c  (3.3.3) 

 
Therefore, the axiom of balance of angular momentum can be written 
 

 ( )
( )

( ) ( )
( )

( )
( ), , ,

,
t t t

dv t d dvρ ρ
⋅

∂
− × = − × + − ×∫ ∫ ∫χ χ χ

x 0 x x 0 T x s x 0 b
c c c

 (3.3.4) 

 
It should be clear to the reader that one could use (A.5.17) and (A.5.18) to rewrite (3.3.4) as an 
equivalent tensor equation.  In this equivalent statement, moment of momentum and torque are 
treated as skew-symmetric linear transformations. 
 
Exercise 3.3.1  
 
Show that, when linear momentum is balanced, the balance of angular momentum with respect to 
one fixed point is necessary and sufficient for the balance of angular momentum with respect to 
any other fixed point. 
 
Exercise 3.3.2  
 
If  
 
 ( ) ( )

( ),
,a at
t dvρ= − ×∫χh x x x

c
c  

 
is the angular momentum about the variable point ax , show that the balance equation for ( ),a th c  
is 
 
 ( ) ( ) ( ), , ,a a a ct t m t= − ×h l x xc c c  (3.3.5) 
 
where ( ),a tl c  is the resultant of moments taken about ax  and ax  is the velocity of the point ax .  

In what cases does the above result reduce to ( ) ( ), ,a at t=h lc c ? 
 
Exercise 3.3.3  
 
If  
 
 ( ) ( ) ( )

( ),
,r

a a at
t dvρ= − × −∫χh x x x x

c
c  
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is the relative angular momentum about the variable point ax , show that the balance equation for 

( ),r
a th c  is 

 
 ( ) ( ) ( ) ( ), , ,r

a a a c at t m t= + × −h l x x xc c c  (3.3.6) 
 
where ax  is the acceleration of the point ax .  In what cases does the above result reduce to 

( ) ( ), ,r
a at t=h lc c ? 

 
Exercise 3.3.4  
 
Use the results of Exercise 3.3.3 and derive Euler's equations for a rigid body U . 
 

Next, we wish to derive a local version of the axiom (3.3.4).  This derivation requires that we 
define the operation of the cross product of a vector with a linear transformation.  If v  is in i  
and A  is in ( )i i_ ;  then ×v A  is a linear transformation defined by 
 
 ( ) ( )× = ×v A u v Au  (3.3.7) 
 
for all u  in i . Equation (3.3.7) can be used to derive the following component formula: 
 
 jqm q mk j kAε υ× = ⊗v A i i  (3.3.8) 
 
Given (3.3.4), we can follow a now standard argument and show that 
 

 ( )( ) ( )( ) ( )divρ ρ
⋅

− × = − × + − ×x 0 x x 0 T x 0 b  (3.3.9) 
 
at points x  not on a singular surface. 

It is a fact that equation (3.3.9) and balance of linear momentum, (3.2.20), are equivalent if and 
only if the stress tensor is symmetric, i.e. 
 
 T=T T  (3.3.10) 
 
The proof of this assertion depends upon the identities 
 

 ( )( ) ( )
⋅

− × = − ×x 0 x x 0 x  (3.3.11) 
 
and 
 
 ( )( ) ( )div div jmk km jTε− × = − × +x 0 T x 0 T i  (3.3.12) 
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Equation (3.3.11) follows directly, since 
 

 ( )
⋅

− × = × =x 0 x x x 0  
 
Equation (3.3.12) is most easily obtained by expressing the left side in components, differentiating 
the result, and then writing the answer in direct notation.  In components, the left side of (3.3.12) is 
 

 ( )( ) ( )
div jsk s km

j
m

x T
x

ε∂
− × =

∂
x 0 T i  (3.3.13) 

 
Therefore, 
 

 ( )( )div km s
jsk s j jsk km j

m m

T xx i T i
x x

ε ε∂ ∂
− × = +

∂ ∂
x 0 T  (3.3.14) 

 
If the identity 
 

 s
sm

m

x
x

δ∂
=

∂
 (3.3.15) 

 
is used, (3.3.14) reduces to (3.3.12).  By use of  (3.3.11) and (3.3.12), it follows that (3.3.9) can be 
written 
 
 ( ) ( )div jmk km jTρ ρ ε− × − − =x 0 x T b i  (3.3.16) 
 
It is easy to conclude that the right side of (3.3.16) is zero if and only if T  is symmetric.  Thus, if 
T  is symmetric,  (3.3.16) implies (3.2.20).  Conversely, if (3.2.20) is used in (3.3.16), then T  must 
be symmetric.  The result just established is a theorem proven by Cauchy in 1827.  This theorem is 
no longer true if the material is a polar material, i.e., a material with intrinsic spin, surface couples, 
and body couples.  From our standpoint, it is an extremely useful result, since we can avoid the use 
of the balance equation for moment of momentum in the complicated form (3.3.9) by replacing it 
with (3.3.10).  In terms of the first Piola-Kirchhoff stress tensor RT  defined by (3.2.27), the result 
(3.3.10) can be written 
 
 T T

R R=T F FT  (3.3.17) 
 
thus RT  is not symmetric.  An elementary calculation shows that T  defined by (3.2.32) is 
symmetric. 
 

No additional information is obtained from (3.3.4) by allowing a surface of discontinuity to 
occur in the material.  The jump equation for angular momentum turns out to be equivalent to 
(3.2.33). 
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3.4. Balance of Energy (First Axiom of Thermodynamics) 
 

In this section the axiom of balance of energy is considered.  In addition to the quantities 
previously introduced in this chapter, the balance of energy axiom introduces the ideas of internal 
energy and heat.  As in Chapter I, these two concepts are regarded as fundamental undefined 
properties of the material. 
 
 
The kinetic energy of a part c  of U  at the time t  is defined by 
 

 ( )
( )

2

,

1,
2t

T t dv
χ

ρ= ∫ x
c

c  (3.4.1) 

 
If ε denotes the internal energy density (i.e., the internal energy/mass), the internal energy  
of c  in U  at the time t  is 
 
 ( )

( ),
,

t
E t dv

χ
ρε= ∫ c

c  (3.4.2) 

 
The total energy of c  in U  at the time t  is the sum of ( ),T tc  and ( ),E tc . The power (rate 
of work) of the applied forces acting on c  in U  at the time t  is 
 
 ( ) ( )

( ) ( ), ,
,

t t
P t d dvρ

∂
= ⋅ + ⋅∫ ∫χ χ

x T s x b
c c

c  (3.4.3) 

 
The rate of heat addition to c  is regarded as arising from the generation of heat within the body 
and from contact of c  with the material outside of c  (conduction).  Thus, if ( ),Q tc  denotes 
the rate of heat addition to c  at the time t , we can write 
 
 ( ) ( )

( )
( )

( ), ,
, , , ,

t t
Q t q t ds r t dvρ

∂
= − +∫ ∫χ χ

x x
c c

c c  (3.4.4) 

 
The quantity q  in (3.4.4) represents the rate of heat flow per unit of area across ( ),t∂χ c .  It is 
positive when heat is being removed from c .  The quantity r in (3.4.4) represents the rate of 
generation of heat at x  in ( ),tχ c  at the time t .  It is called the heat supply density.  Equation 
(3.4.4) has the same interpretation for heat as (3.2.10) has for resultant force. 
 

Axiom (The First Axiom of Thermodynamics).  For all parts c  in U , 
 

 ( ) ( ) ( ) ( ), , , ,E t T t P t Q t
⋅

+ = +c c c c  (3.4.5) 
 
In terms of the definitions (3.4.1) through (3.4.4), the axiom (3.4.5) takes the form 
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( )

( )
( )

( )
( )

( )
( )

2

, , , ,

1 , ,
2t t t t

dv d q t ds r dvρ ε ρ

⋅

∂ ∂

⎛ ⎞+ = ⋅ − + ⋅ +⎜ ⎟
⎝ ⎠∫ ∫ ∫ ∫χ χ χ χ

x x T s x x b
c c c c

c  (3.4.6) 

 
By use of (3.3.10), (3.1.23) and (A.8.27), (3.4.6) can be written 
 

 ( )
( )

( )
( )

2

, ,

1, , div
2t t

q t ds pr dvρ ρ ε

⋅

∂

⎛ ⎞
⎛ ⎞⎜ ⎟= + ⋅ + − +⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠
∫ ∫χ χ

x Tx x b x
c c

c  (3.4.7) 

 
when one assumes ( ),tχ c  does not contain a surface of discontinuity.  The same type of 
argument which produced (3.2.11) and (3.2.13) can be used to show that 
 
 ( ) ( ) ( ), , , , ,q t q t t= = ⋅x x n q x nc  (3.4.8) 
 
The vector ( ), tq x  is known as the heat flux vector.  Equation (3.4.8) is a result first established by 
Stokes.  With (3.4.8) and (3.3.10), (3.4.6) and (3.4.7) become 
 

 
( )

( )
( )

( )
( )

2

, , ,

1
2t t t

dv d r dvρ ε ρ

⋅

∂

⎛ ⎞+ = − ⋅ + ⋅ +⎜ ⎟
⎝ ⎠∫ ∫ ∫χ χ χ

x Tx q s x b
c c c

 (3.4.9) 

 
and 
 

 ( )
( )

2

,

1 div 0
2t

r div dvρ ε ρ ρ

⋅⎛ ⎞
⎛ ⎞⎜ ⎟+ − − ⋅ − + =⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠
∫χ x Tx x b q

c
 (3.4.10) 

 
Equation (3.4.10) immediately yields the following local statement of the axiom of balance of 
energy: 
 

 ( )21 div div
2

rρ ε ρ ρ

⋅

⎛ ⎞+ = − + ⋅ +⎜ ⎟
⎝ ⎠

x Tx q x b  (3.4.11) 

 
Of course, (3.4.11) generalizes (1.4.2).  This result holds at points x  not at a surface of 
discontinuity. 
 
Exercise 3.4.1  
 
Show that the following forms of (3.4.11) are equivalent: 
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1.  ( )21 div div
2

rρ ε ρ ρ

⋅

⎛ ⎞+ = − + ⋅ +⎜ ⎟
⎝ ⎠

x Tx q x b  (3.4.12) 

 

2.  ( )2 21 1grad div
2 2

div r
t

ρ ε ρ ε ρ ρ∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + ⋅ = − + ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠
x x x Tx q x b  (3.4.13) 

 
and 
 

3.  ( )2 21 1div div
2 2

div r
t
ρ ε ρ ε ρ ρ∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + = − + ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠

x x x Tx q x b  (3.4.14) 

 
 
Exercise 3.4.2  
 
Assume that the body force b  is given by grad v= −b , where ( ),v tx  is the potential energy.  
Show that (3.4.11) can be written 
 

 ( )21 div div
2

r
t
νρ ε ν ρ ρ

⋅

∂⎛ ⎞+ + = − + +⎜ ⎟ ∂⎝ ⎠
x Tx q  (3.4.15) 

 
Exercise 3.4.3  
 
Show that, for the material in ( )te , the balance of energy equation the energy is 
 

 

( )
( )

( )

( )
( )

( )
( )

2 21 1
2 2t t

t

t

d dv d
dt

d

r dv

ρ ε ρ ε

ρ

∂

∂

⎛ ⎞ ⎛ ⎞+ = − + − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ − ⋅

+ ⋅ +

∫ ∫

∫
∫

x x x v s

Tx q s

x b

e e

e

e

 (3.4.16) 

 
Exercise 3.4.4  
 
Show that the material form of the axiom of balance of energy is 
 

 ( )21 Div Div
2

T
R R R R Rrρ ε ρ ρ

⋅

⎛ ⎞+ = − + ⋅ +⎜ ⎟
⎝ ⎠

x T x q x b  (3.4.17) 

 
where 
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 1detR
−=q F F q  (3.4.18) 

 
As in Section 1.4, it is possible to derive a balance equation for the internal energy density 

alone by "removing the kinetic energy" from (3.4.11) with the equation of motion (3.2.20).  It is 
convenient to call the resulting equation a thermodynamic energy equation.  However, this does not 
imply that the internal energy density is not influenced by things that might be attributed physically 
to mechanical origins.  It must be stressed that the thermodynamic energy equation does not 
represent a new axiom.  It will be derived from (3.4.11) and (3.2.20).  It follows from (3.2.20) that 
 

 ( )21 div
2

ρ ρ ρ
⋅

⋅ = = ⋅ + ⋅x x x x T x b  (3.4.19) 

 
It should be clear that (3.4.19) can be used to subtract the kinetic energy and the rate of work of the 
body force from (3.4.11).  The result is 
 
 ( )div div div rρε ρ= − ⋅ − +Tx x T q  (3.4.20) 
 

Equation (3.4.20) shows that the internal energy density ε is changed because of the heat 
addition and what is left over from ( )div div− ⋅Tx x T .  Important physical information can be 

obtained by examination of the quantities ( )div Tx  and div⋅x T .  It should be clear that  
 
1. ( )div =Tx  rate of work/vol of the surface forces, and it contributes to the change of total 

energy density, 21
2

ε + x  [See (3.4.11)]; 

2. div⋅ =x T  a rate of work/vol of the surface forces; however, it contributes only to the 
change in the kinetic energy [See (3.4.19)] 

 
We can conclude that the difference, ( )div div− ⋅Tx x T , is a rate of work of the surface forces that 
contributes to a change in the internal energy density.  Therefore, except in certain trivial cases, 
there is always a coupling between the rate of work of the surface forces and the internal energy. 
 

If the term ( )div Tx  is expanded, it follows that 
 
 ( ) ( )div tr div= + ⋅Tx TL x T  (3.4.21) 
 
where (3.3.10) has been used.  Equation (3.4.21) is a decomposition of the rate of work per unit 
volume of the context forces into a part which represents that part of the rate of work per unit 
volume of the contact forces which changes the kinetic energy and a part that changes the internal 
energy. 
 

In summary, the balance energy equation (3.4.11) and the balance of linear momentum 
equation (3.2.20) imply the following balance of thermodynamic energy equation: 
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 ( )tr div rρε ρ= − +TL q  (3.4.22) 
 
Conversely, (3.4.22) and (3.2.20) imply (3.4.11). 
 
Exercise 3.4.5  
 
Show that (3.4.22) can be written 
 
 ( )tr div rρε ρ= − +TD q  (3.4.23) 
 
Thus, the skew part of L  does not contribute to the thermodynamic energy equation.  The term 
tr tr=TL TD  in (3.4.22) and (3.4.23) is usually called the stress power. 
. 
Exercise 3.4.6  
 
Show that the material version of (3.4.22) is 
 
 ( )tr DivT

R R R Rrρ ε ρ= − +T F q  (3.4.24) 
 
The jump statement of balance of energy can be derived by allowing ( ), tχ c  to contain a surface 
of discontinuity as was done in Section 3.1 for balance of mass. 
 
Exercise 3.4.7  
 
Show that 
 

 ( )21 0
2 nuρ ε⎛ ⎞+ − − + ⋅ =⎜ ⎟

⎝ ⎠
[ x x n Tx q] n  (3.4.25) 

 
Exercise 3.4.8  
 
Show that 
 

 21 0
2

γ ε⎛ ⎞+ − ⋅ + ⋅ =⎜ ⎟
⎝ ⎠

[ x ] [Tx] n [q] n  (3.4.26) 

 
where γ  is defined below equation (3.2.35). 
 
Exercise 3.4.9  
 
If π= −T I  and 0⋅ =[q] n , show that (3.4.26) can be written 
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 ( )21 0
2 n nx uπε

ρ
+ + − =[ ]  (3.4.27) 

 
Exercise 3.4.10  
 
Show that (3.4.27) can be written 
 

 ( )1 1 0
2

ε π π ρ+ −+ + =[ ] [ ]  (3.4.28) 

 
Equation (3.4.28) is called the Hugoniot relation and is the three-dimensional generalization of 
(1.4.5). 
 
Exercise 3.4.11  
 
Derive the three-dimensional version of equation (1.4.12). 
 

Several interesting applications require statements of the axiom of balance of energy where the 
velocities are measured with respect to a translating and rotating coordinate system.  The required 
equations are easily derived if one first recognizes that (3.4.22) or (3.4.23) is a scalar equation 
which is invariant under a transformation to translating and rotating coordinate systems. 
 
Exercise 3.4.12  
 
Show that with respect to a translating and rotating coordinate system (3.4.11) takes the form. 
 

 ( )( )1 div div
2

r
t t t t t
δ δ δ δ δρ ε ρ ρ
δ δ δ δ δ

⎛ ⎞ ⎛ ⎞+ ⋅ = − + ⋅ − − × − × × +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

p p p pT q b c ω p ω ω p  (3.4.29) 

 
Exercise 3.4.13  
 
On the assumption that =ω 0 , show that (3.4.29) can be written 
 

 ( ) ( ) ( )1 1 div div
2 2

r
t t t t t
δ δ δ δ δρ ε ρ ρ
δ δ δ δ δ

⎡ ⎤ ⎛ ⎞+ ⋅ − × ⋅ × = − + ⋅ − +⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
p p p pω p ω p T q b c  (3.4.30) 

 
It is possible to formulate an argument which yields the axioms of balance of mass, linear 

momentum and angular momentum from the axiom of balance of energy and assumptions of 
invariance [Refs. 8, 9, 10, 11, 12].  Insight into this argument is provided by the following 
exercises. 
 
Exercise 3.4.14  
 
Without utilizing balance of mass, linear momentum and angular momentum show that the local 
statement of balance of energy which follows from (3.4.6) is 
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 ( )2 2 T1 1div div div
2 2

r
t
ρ ε ρ ε ρ ρ∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + = − + ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠

x x x T x q x b  (3.4.31) 

 
at points x  not occupied by a singular surface. 
 
Exercise 3.4.15  
 
Show that (3.4.31) can be written 
 

 ( ) ( ) ( )T 21tr div div tr 0
2

rρε ρ ρ ρ ε ρ ρ⎛ ⎞− + − + ⋅ − − + + + =⎜ ⎟
⎝ ⎠

T L q x x T b x L  (3.4.32) 

 
Exercise 3.4.16  
 
Consider a motion ( )* , tκχ X  defined in terms of ( ), tkχ X  by [see (A.7.8)] 
 
 ( ) ( ) ( ) ( )( )* , ,t t t t= + −k kχ X c Q χ X 0  (3.4.33) 
 
where ( )tc  is a point in X  for each t  in ( ),−∞ ∞  and ( )tQ  is in ( )b i  for each t  in ( ),−∞ ∞ .  

If an asterisk denotes quantities associated with the motion *
κχ ,show that 

 
 * =F QF  (3.4.34) 
 
 ( ) ( )( )* ,t t= + + −κx c Qx Q χ X 0  (3.4.35) 
 
 ( ) ( )( )* 2 ,t t= + + + −κx c Qx Qx Q χ X 0  (3.4.36) 
 
and 
 
 * T T= +L QLQ QQ  (3.4.37) 
 
where TQQ  is a skew-symmetric linear transformation. 
 
Exercise 3.4.17  
 
If, in addition to (3.4.34) through (3.4.37), the following transformation rules hold: 
 
 *ρ ρ=  (3.4.38) 
 
 *ε ε=  (3.4.39) 
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 * T=T QTQ  (3.4.40) 
 
 * =q Qq  (3.4.41) 
 
 *r r=  (3.4.42) 
 
and 
 
 ( )( )* 2 , t= + + + −κb Qb c Qx Q χ X 0  (3.4.43) 
 
then show that if we postulate 
 

 
( ) ( )

( )

T

2

* * * * * * * * * * * * * * *

* * * * *

tr div div

1 tr 0
2

rρ ε ρ ρ ρ

ε ρ ρ

− + − + ⋅ − −

⎛ ⎞+ + + =⎜ ⎟
⎝ ⎠

T L q x x T b

x L
 (3.4.44) 

 
for all ( ) ( ): ,⋅ −∞ ∞ →c X  which have second derivatives and all ( ) ( ) ( ): ,⋅ −∞ ∞ →Q b i  which 
have second derivatives, then it is necessary and sufficient that 
 
 tr 0ρ ρ+ =L  (3.4.45) 
 
 divρ ρ= +x T b  (3.4.46) 
 
and 
 
 T=T T  (3.4.47) 
 
3.5. The Entropy Inequality 
 

As in Section 1.6, the mathematical statement of the second axiom of thermodynamics takes the 
form of an entropy inequality or the Clausius-Duhem inequality [Ref. 2, 6, 7, 8, 9, 13, 14, 
15,16,17]. 

 
In order to discuss the second axiom of thermodynamics it is necessary to accept as 

fundamental the concepts of an entropy density η , body entropy supply density k  and a contact 
entropy supply density h . 
 

Definition.  The entropy of a part c  in U  at the time t  is defined by 
 
 ( )

( ),
,

t
S t dvρη= ∫χ c

c  (3.5.1) 

 
Definition. The entropy flux into c  in U  at the time t  is defined by 



  Chapter 3 96

 
 ( ) ( )

( )
( )

( ), ,
, , , ,

t t
M t h t ds k t dvρ

∂
= − +∫ ∫χ χ

x x
c c

c c  (3.5.2) 

 
Axiom (The Second Axiom of Thermodynamics).  For all parts c  of U , 

 
 ( ) ( ), ,S t M t≥c c  (3.5.3) 
 
By the same kind of argument which produced (3.2.11), (3.2.13) and (3.4.8), it follows that 
 
 ( ) ( ) ( ), , , , ,h t h t t= = ⋅x x n h x nP  (3.5.4) 
 
[Ref. 6].  It is appropriate to call h  the entropy flux vector. By use of (3.5.1), (3.5.2) and (3.5.4),the 
axiom (3.5.3) can be written 
 

 
( )

( )
( )

( )
( ), , ,

, ,
t t t

dv t d k t dvρη ρ
⋅

∂
≥ − ⋅ +∫ ∫ ∫χ χ χ

h x s x
c c c

 (3.5.5) 

 
As in Section 1.6, the temperature is introduced with the formal assumption that the ratios q h  and 
r k  are equal. 
 

Definition.  The temperature θ  at x  in ( ),tχ c  at the time t  is defined to be the common 
ratio 
 

 q r
h k

θ = =  (3.5.6) 

 
By assumption, θ  shall be regarded as a positive valued function of ( ), tx , i.e. 
 
 ( ), 0tθ θ= >x  (3.5.7) 
 
Formulations of the Second Axiom of Thermodynamics do exist for which the definition (3.5.6) is 
not adopted.  These formulations are available in Refs. 13 and 16.  Reference 17 contains a slightly 
different formulation of the entropy inequality from that given here and in Refs. 13 and 16.  These 
alternate statements of the Second Axiom of Thermodynamics are briefly discussed in Section 5.4.  
The definition (3.5.6) is essentially classical and has been adopted here for that reason.  Given  
(3.5.6), (3.5.4) and (3.4.8), we can replace (3.5.5) by 
 

 
( ) ( ) ( ), , ,

1
t t t

rdv d dvρρη
θ θ

⋅

∂
≥ − ⋅ +∫ ∫ ∫χ χ χ

q s
c c c

 (3.5.8) 

 
Next, we wish to use (3.5.8) to derive local statements of the second axiom of thermodynamics.  

It follows from (A.8.33) and (3.1.23) that (3.5.8) can be written 
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 ( )( )

( )
( )( )

( ),
div 0n nt t

r dv x u dρη θ ρ θ ρη θ σ
∑

+ − − − + ⋅ ≥∫ ∫χ
q [ ] [q ] n

c
 (3.5.9) 

 
where ( )t∑  is a singular surface.  Because c  is arbitrary, (3.5.9) implies that 
 
 ( )div 0rρη θ ρ θ+ − ≥q  (3.5.10) 
 
for all x  not on a singular surface and 
 
 ( ) 0n nx uρη θ− + ⋅ ≤[ ] [q ] n  (3.5.11) 
 
for all x  on ( )t∑ .  Equations (3.5.10) and (3.5.11) generalize (1.6.7) and (1.6.8), respectively. 
 

As in Section 1.6, it is useful to eliminate the term div rρ−q  between (3.5.10) and the 
thermodynamic energy equation (3.4.22).  This calculation can be carried out if we write (3.5.10) in 
the form 
 

 ( ) 2

1 1div grad 0rρη ρ θ
θ θ

+ − − ⋅ ≥q q  (3.5.12) 

 
It immediately follows from (3.4.22) that (3.5.12) can be written 
 

 ( ) tr grad 0ρ θη ε θ
θ

− + − ⋅ ≥
qTL  (3.5.13) 

 
which is obviously the three dimensional generalization of (1.6.10).  As in Section 1.6, equation 
(3.5.13) is a combined statement of the entropy inequality (3.5.10) and the energy equation  
(3.4.22). 
 

The free energy density or the Helmholtz free energy density is defined as in Section 1.6, by 
 
 ψ ε ηθ= −  (3.5.14) 
 
In terms of ψ  the inequality (3.5.13) is 
 

 ( ) tr grad 0ρ ψ ηθ θ
θ

− + + − ⋅ ≥
qTL  (3.5.15) 

 
Exercise 3.5.1  
 
Show that the material form of the inequality (3.5.15) is 
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 ( ) Ttr GRAD 0R
R Rρ ψ ηθ θ

θ
− + + − ⋅ ≥

qT F  (3.5.16) 

 
Exercise 3.5.2  
 
Show that (3.4.9) can be written 
 

 

( )

( )
( ) ( ) ( )

( )

( ) ( ) ( )

2
0,

0
, , ,

0
,

0 , , ,

1
2

1

1

1 1

t

t t t

t

t t t

dv

x d d dv

rdv

dv d rdv

ρ ε θ η

θ ρ
θ

θ ρ
θ

θ ρη ρ
θ θ

⋅

∂ ∂

⋅

∂

⎛ ⎞− +⎜ ⎟
⎝ ⎠

⎛ ⎞= ⋅ − − ⋅ + ⋅⎜ ⎟
⎝ ⎠

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟− + ⋅ −
⎜ ⎟
⎝ ⎠

∫

∫ ∫ ∫

∫

∫ ∫ ∫

χ

χ χ χ

χ

χ χ χ

x

T s q s x b

q s

c

c c c

c

c c c

 (3.5.17) 

 
where 0θ  is any constant. 
 
Exercise 3.5.3  
 
If 0θ  is a positive number, show that 
 

 

( )
( )

( )
( ) ( )

( ) ( )

2
0,

0
, ,

0
, ,

1
2

1

1

t

t t

t t

dv

d d

dv rdv

ρ ψ η θ θ

θ
θ

θρ ρ
θ

⋅

∂ ∂

⎛ ⎞+ − +⎜ ⎟
⎝ ⎠

⎛ ⎞≤ ⋅ − − ⋅⎜ ⎟
⎝ ⎠

⎛ ⎞+ ⋅ + −⎜ ⎟
⎝ ⎠

∫

∫ ∫

∫ ∫

χ

χ χ

χ χ

x

x T s q s

x b

c

c c

c c

 (3.5.18) 

 
Equation (3.5.18) is the three dimensional version of (1.6.13).  It is useful in the study of 
thermodynamic stability [Ref. 18 through 31].  For linearized models of materials, (3.5.18) is 
useful in the proof of uniqueness theorems.  (See Exercises 8, 9, 10, of Section 1.11 and Exercise 6 
of Section 4.12.) 
 
Exercise 3.5.4  
 
If the temperature θ  is only a function of t , show that 
 
 ( ) ( ), ,S t Q tθ ≥c c  (3.5.19) 
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Exercise 3.5.5  
 
Use the definition (3.5.14) and show that the thermodynamic energy equation (3.4.22) can be 
written 
 
 ( ) tr div rρθη ρ ψ ηθ ρ= − + + − +TL q  (3.5.20) 
 
Exercise 3.5.6  
 
Show that the material version of (3.5.20) is 
 
 ( ) Ttr DivR R R R Rrρ θη ρ ψ ηθ ρ= − + + − +Τ F q  (3.5.21) 
 
3.6. Jump Equations of Balance - Material Versions 
 

Equations (3.1.21), (3.2.33), (3.4.25) and (3.5.11) are the spatial forms of the jump balance 
equations.  In this section the corresponding material forms are derived.  The argument is 
complicated by the fact that x  and F  are not necessarily continuous across the singular surface 
( )t∑ .  Indeed, for a shock wave, these quantities have nonzero jumps. 

 
If ( )t∑  is represented in the form 

 
 ( ), 0f t =x  (3.6.1) 
 
then it is true that 
 
 ( ) ( )grad , grad ,f t f t=n x x  (3.6.2) 
 
is the unit normal to ( )t∑ , and 
 

 ( ) ( ),
grad ,n

f t
u f t

t
∂

= −
∂
x

x  (3.6.3) 

 
is the normal speed of ( )t∑ . 
 

It is convenient to consider a family of surfaces defined by 
 
 ( ),f t α=x  (3.6.4) 
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where 0α =  defines the surface ( )t∑ .  Without loss of generality we can regard n  to be directed 
from the surface 0α =  towards surfaces with 0α > .  We assume that (3.6.4) can be inverted to 
yield 
 
 ( )ˆ ,t t α= x  (3.6.5) 
 
Given (3.6.5), a function ϕ  of ( ), tx  can be replaced by a function ϕ̂  of ( ),αx  by the rule 
 
 ( ) ( )( )ˆˆ , , ,tϕ α ϕ α=x x x  (3.6.6) 
 
It follows from (3.6.6) that 
 

 ( ) ( ) ( ) ( ), ˆˆgrad , grad , grad ,
t

t t
t

ϕ
ϕ α ϕ α

∂
= +

∂
x

x x x  (3.6.7) 

 
Likewise it follows from (3.6.4) and (3.6.5) that 
 

 ( ) ( ) ( ),ˆgrad , grad ,
f t

t f t
t

α
∂

= −
∂
x

x x  (3.6.8) 

 
By formulas like (3.6.2) and (3.6.3), (3.6.8) can be written 
 

 ( ) ( )

( )

ˆgrad ,
n

t
u

α

α

α =
n

x  (3.6.9) 

 
where ( )αn  is the unit normal to the surface (3.6.4) and ( )nu α  is its normal speed.  The special 

surface 0α =  has its normal and normal speed denoted by n  and nu , respectively.  Given (3.6.9), 
equation (3.6.7) becomes 
 

 ( ) ( ) ( )

( )

( ),ˆgrad , grad ,
n

t
t

u t
α

α

ϕ
ϕ α ϕ

∂
= +

∂

n x
x x  (3.6.10) 

 
The jump of ϕ  across the surface 0α =  is defined by 
 
 ϕ ϕ ϕ− += −[ ]  (3.6.11) 
 
where 
 
 ( )

0
ˆlim ,

α
ϕ ϕ α

−

−

↑
= x  (3.6.12) 
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and 
 
 ( )

0
ˆlim ,

α
ϕ ϕ α

+

+

↓
= x  (3.6.13) 

 
Because differentiation at constant α  commutes with the jump operation, the jump of (3.6.10) 
yields 
 

 ( )grad grad , [ ]
n

t
t u
ϕϕ ϕ ∂

= +
∂

n[ ] [ x ]  (3.6.14) 

 
If, as a special case, the jump of ϕ[ ]  is zero, (3.6.14) yields 
 

 ( )grad , [ ]
n

t
t u
ϕϕ ∂

= −
∂

n[ x ]  (3.6.15) 

 
Equation (3.6.15) is known as Maxwell's theorem [Ref. 7, Sec. 175]. 
 

Given a motion (2.1.5), we can construct a material image of each spatial surface defined by 
(3.6.4).  Each of these surfaces is given by 
 
 ( ),f t α=κ Χ  (3.6.16) 
 
where fκ  is defined by 
 
 ( ) ( )( ), , ,f t f t t=κ κX χ X  (3.6.17) 
 
The material image of ( )t∑ , defined by 0α = , is denoted by ( )t∑ κ .  Differentiation of (3.6.17) 
yields 
 

 ( ) ( ) ( )( ),
, grad ,

f t
f t f t

t
∂

= + ⋅
∂κ

x
X x x  (3.6.18) 

 
and 
 
 ( ) ( )TGRAD , grad ,f t f t=κ X F x  (3.6.19) 
 
Formulas like (3.6.2) and (3.6.3) allow (3.6.18) and (3.6.19) to be written 
 
 ( ) ( ) ( ) ( )( ), grad , nf t f t u α α= − − ⋅κ X x n x  (3.6.20) 

 
and 
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 ( ) ( ) ( )

TGRAD , grad ,f t f t α=κ Χ x F n  (3.6.21) 
 
At this point, it is convenient to define a normal speed and a unit normal for each of the surfaces 
(3.6.16) by the usual definitions 
 
 

( )
( ) ( ), GRAD ,NU f t f t

α
= − κ κX X  (3.6.22) 

 
and 
 
 ( ) ( ) ( )GRAD , GRAD ,f t f tα = κ κN X X  (3.6.23) 
 
Given these definitions, (3.6.20) and (3.6.21) become 
 

 
( )

( )
( ) ( ) ( )( )grad ,

GRAD ,N n

f t
U u

f tα α α= − ⋅
κ

x
n x

X
 (3.6.24) 

 
and 
 

 ( )
( )
( ) ( )

Tgrad ,
GRAD ,

f t
f tα α=
κ

x
N F n

X
 (3.6.25) 

 
If the surface ( )t∑  is a shock wave, then [x]  and [F]  are not zero.  As a result, (3.6.24) yields two 

values for the normal speed on ( )t∑ κ  and (3.6.25) yields two values of the unit normal.  If 

(3.6.24) and (3.6.25) are evaluated in the limit as each side of ( )t∑  is approached, these multiple 
values are given by 
 

 
( )
( )

( )grad ,

GRAD ,
N n

f t
U u

f t
± ±

±= − ⋅
κ

x
n x

X
 (3.6.26) 

 
and 
 

 
( )
( )

Tgrad ,

GRAD ,

f t

f t
± ±

±=
κ

x
N F n

X
 (3.6.27) 

 
Fortunately, we can prove that +N  equals −N  and, in addition, that NU +  equals NU − .  The proof of 
the first assertion will be given next. 
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In order to establish that + −= −[N] N N  is zero, we utilize (3.6.15) where ϕ  is the j th 
component of ( )1 , t−

κχ x .  The resulting identity can be written 
 

 ( )1
1 ,1 [ ]

n

t
u t

−
− ∂

= ⊗
∂

κχ x
[F ] n  (3.6.28) 

 
Because n  is the unit normal to ( )t∑ , if c  is any vector tangent to ( )t∑  then 
 

 ( ) ( )
1

1 ,1 0[ ]
n

t
u t

−
− ∂

= − ⋅ =
∂

κχ x
[F ]c n c  (3.6.29) 

 
If ds  is the vector element of area of ( )t∑ , it can be written 
 
 1 2d d d= ×s x x  (3.6.30) 
 
for tangent vectors 1dx  and 2dx .  The image of ds  under the motion is determined by the 
transformation rule (2.3.11).  It follows from (2.3.11) that 
 

 
1 T

detd d
−±± ±=S F F s  (3.6.31) 

 
If (3.6.30) is used, (3.6.31) can be written 
 
 

1 1

1 2d d d
− −± ± ±= ×S F x F x  (3.6.32) 

 
where (A.5.25) has been used.  The result (3.6.29) shows that 1 1

1 2d d− −= =[F ] x [F ] x 0 .  Therefore 
(3.6.32) yields 
 
 d d d− += − =[ S] S S 0  (3.6.33) 
 
Because 
 

 d
d

=
SN
S

 (3.6.34) 

 
it follows that 
 
 − += − =[N] N N 0  (3.6.35) 
 
The result N NU U+ −=  will be established next.  Given (3.6.33), it follows from (3.6.31) that 
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1 T

detd d
−± ±=S F F n s  (3.6.36) 

 
Therefore, 
 
 ( )R N nU d u dρ ρ± ± ±= − ⋅S n x s  (3.6.37) 
 
where (3.1.12) and the result 
 

 
T n

N

u
U

±
±

±

− ⋅
=

n xF n  (3.6.38) 

 
have been used.  Equation (3.6.38) follows from (3.6.26), (3.6.27), (3.6.35) and the fact that N  is a 
unit vector.  The jump balance of mass statement (3.1.21) tells us that 
 
 ( ) ( )n nu uρ ρ+ + − −− ⋅ = − ⋅n x n x  (3.6.39) 
 
Therefore, (3.6.37) yields the desired result 
 
 0N N NU U U− += − =[ ]  (3.6.40) 
 
As our derivation indicates, the result (3.6.40) is, in effect, the material version of jump balance of 
mass.  The remaining jump balance equations are given below. 
 

Given jump balance of linear momentum in the form (3.2.35), the material version is 
 
 R N RUρ + =[x] [T ]N 0  (3.6.41) 
 
where (3.6.37), (3.2.28) and (3.6.34) have been used.  Likewise, the material version of jump 
balance of energy (3.4.26) is 
 

 2 T1 0
2R N R RUρ ε + + ⋅ − ⋅ =[ x ] [T x] N [q ] N  (3.6.42) 

 
Exercise 3.6.1  
 
Show that the material version of (3.5.11) is 
 
 0R N RUρ η θ− ⋅ ≥[ ] [q ] N  (3.6.43) 
 
Exercise 3.6.2  
 
By the same derivation that produced (3.6.28), except for an interchange of x  and Χ , it follows 
that 
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 1

NU
= − ⊗[F] [x] N  (3.6.44) 

 
Use (3.6.44) and (3.6.41) and derive the Rankine-Hugoniot relation 
 

 ( )
( )

2 R
R NUρ

⋅
=

⋅
n [T ]N
n [F]N

 (3.6.45) 

 
Equation (3.6.45) generalizes (1.3.12) and is useful in the study of shock waves in solids. 
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4 
 
 
MODELS OF MATERIAL BEHAVIOR 
 
 
This chapter is concerned with the investigation of various models of material behavior.  Since 
materials are defined by constitutive equations, we will be examining various constitutive 
assumptions and the implication of these assumptions. It is useful, therefore, to list briefly the 
general requirements that constitutive equations must obey [Ref. 1, Sect. 293]. 
 

1. Consistency:  Constitutive equations must be consistent with the axioms of balance of mass, 
momentum, energy, and the entropy inequality. 

2. Coordinate invariance:  Constitutive equations must be stated by a rule that is equally valid 
in all fixed coordinate systems. 

3. Just setting:  Boundary value problems resulting from the constitutive equations must be 
well posed.  In other words, there should exist unique solutions corresponding to 
appropriate initial and boundary data, and these solutions should depend continuously on 
this data. 

4. Material frame indifference:  The response of the material as characterized by the 
constitutive equations must be independent of the frame of reference. 

5. Material symmetry:  If the material possesses any symmetry, the fact must be reflected in 
the constitutive equations. 

6. Equipresence:  An independent variable present in one constitutive equation of a material 
should also be present in all constitutive equations unless its presence can be shown to be in 
contradiction with 1 – 5 above. 

 
The restriction 3 will not be considered in this work.  The restriction 2 will be satisfied trivially by 
writing our equations in either direct notation or in a fixed rectangular Cartesian coordinate system.  
This chapter will be concerned with proposing constitutive equations for various types of materials 
and then systematically examining the restrictions imposed by 1, 4, 5 and 6. 
 
 
4.1. Examples 
 

In order to give direction to the discussion of this chapter, in this section we shall give two 
examples of constitutive equations which occur in the classical theories of continuous materials.  
The material in this section, in some aspects, parallels the material in Section 1.7. 
 

In order to model a particular material we need constitutive equations for ψ , η , T , and q .  
The first example constitutive equations are those of a compressible conducting viscous fluid. In 
this case, the material is defined by the following constitutive equations: 
 
 ( ),ψ ψ θ ρ=  (4.1.1) 
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 ( ),η η θ ρ=  (4.1.2) 
 
 ( ) ( )( ) ( ), , tr 2 ,π θ ρ λ θ ρ µ θ ρ= − + +T I D I D  (4.1.3) 
 
and 
 
 ( ), gradκ θ ρ θ= −q  (4.1.4) 
 
where 
 

 ( ) ( ),
,

ψ θ ρ
η θ ρ

θ
∂

= −
∂

 (4.1.5) 

 

 ( ) ( )2 ,
,

ψ θ ρ
π θ ρ ρ

ρ
∂

=
∂

 (4.1.6) 

 
 ( ) ( )2

3, , 0λ θ ρ µ θ ρ+ ≥  (4.1.7) 
 
 ( ), 0µ θ ρ ≥  (4.1.8) 
 
and 
 
 ( ), 0κ θ ρ ≥  (4.1.9) 
 
The quantity π  is the pressure.  The coefficients λ  and µ  are the viscosities, while κ  is the 
thermal conductivity.  The quantity 2

3λ µ+  is called the bulk viscosity and µ  is called the shear 
viscosity.  In many applications the bulk viscosity is taken to be zero.  Given (4.1.1) and (4.1.2), 
(3.5.14) shows that 
 
 ( ),ε ε θ ρ=  (4.1.10) 
 
An example expression for ψ  as a function of ( ),θ ρ  is [see (1.7.6)] 
 
 ( ), ln lnv vc c Rψ θ ρ θ θ θ θ ρ ε θη+ += − + + −  (4.1.11) 
 
where vc  and R  are positive constants and ε +  and η+  are constants.  It follows from (4.1.5), 
(4.1.6), and (4.1.11) that 
 
 ( ), ln lnvc Rη θ ρ θ ρ η+= − +  (4.1.12) 
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and 
 
 ( ), Rπ θ ρ ρ θ=  (4.1.13) 
 
The reader will recognize (4.1.11) as defining a perfect gas with constant specific heat vc .  The 
constant R  is the gas constant.  Equations (4.1.11) and (4.1.12) combine with (3.5.14) to yield 
 
 ( ), vcε θ ρ θ ε += +  (4.1.14) 
 
Thus, for a perfect gas the internal energy density is independent of density. 
 

Returning to the more general case (4.1.1), we see that 
 

 ψ ψψ θ ρ
θ ρ

∂ ∂
= +
∂ ∂

�� �  (4.1.15) 

 
By (4.1.5) and (4.1.6), we can write (4.1.15) in the form 
 

 2

πψ ηθ ρ
ρ

= − +�� �  (4.1.16) 

 
Equation (4.1.16) is called the Gibbs relation for the material being discussed.  By use of (3.5.14), 
it follows from (4.1.16) that 
 

 2

πε θη ρ
ρ

= +� � �  (4.1.17) 

 
Next we wish to present the special forms taken by the axioms of balance of linear 

momentum and energy for the material defined by (4.1.1) through (4.1.4).  Note that the axiom of 
balance of angular momentum is automatically satisfied because T  in (4.1.3) is symmetric.  First 
we shall consider the axiom of balance of linear momentum.  If (4.1.3) is substituted into (3.2.20), 
we can use (2.2.22), (2.2.25) and (2.4.29) to obtain 
 
 ( ) ( ) ( )( )grad grad div div grad div grad Tρ π λ µ µ ρ= − + + + +x x x x b�� � � �  (4.1.18) 

 
In the special case where the viscosities are constant, (4.1.18) can be written 
 
 ( ) ( )grad grad divρ π λ µ µ ρ= − + + + ∆ +x x x b�� � �  (4.1.19) 
 
where ∆x�  denotes the Laplacian of x� .  This operator is defined by equation (A.8.25).  Equations 
(4.1.19) are called the Navier-Stokes equations. 
 

The special form taken by the thermodynamic energy equation in this case is 
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 ( )div grad rρθη κ θ ρ= +Φ +�  (4.1.20) 
 
where Φ  is called the viscous dissipation and is defined by 
 
 ( )2 2tr 2 trλ µΦ = +D D  (4.1.21) 
 
If κ  is a constant, (4.1.20) becomes 
 
 rρθη κ θ ρ= ∆ +Φ +�  (4.1.22) 
 
Exercise 4.1.1  
 
Derive (4.1.20). 
 
Exercise 4.1.2  
 
Show that (4.1.21) can be written 
 

 ( ) ( )
2

22 1tr 2 tr tr
3 3

λ µ µ⎛ ⎞ ⎛ ⎞Φ = + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

D D D I  (4.1.23) 

 
Exercise 4.1.3  
 
Show that (4.1.21) can be written 
 
 ( ) 22 I 4 IIλ µ µΦ = + −D D  (4.1.24) 
 
where ID  and IID  are the first two fundamental invariants of D .  In those cases where λ , µ , and 
κ  are constant, equations (3.1.15), (4.1.19) and (4.1.22) represent the field equations appropriate to 
the viscous compressible fluid with heat conduction. 
 

The next example we wish to discuss is that of an isotropic linear thermoelastic solid with 
heat conduction.  Unlike the previous example, this one is approximate in the sense that it only 
holds when the displacement gradients are small.  Thus, it corresponds to a thermomechanical 
version of classical linear elasticity. 
 

The defining constitutive equations are 
 

 ( ) ( ) ( )22 21
0 0 2

0

tr tr tr
2

R v
R

cρρ ψ θ θ β θ θ λ µ
θ

= − − − − + +E E E� � �  (4.1.25) 
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 0

0

trR R vc θ θρ η ρ β
θ

⎛ ⎞−
= +⎜ ⎟

⎝ ⎠
E�  (4.1.26) 

 
 ( ) ( )0tr 2R λ µ β θ θ= + − −T E I E I� �  (4.1.27) 
 
and 
 
 GRADR κ θ= −q  (4.1.28) 
 
where vc , 0θ , β , λ , µ , and κ  are constants.  The coefficient vc  is a positive number called the 
specific heat, 0θ  is a reference temperature, λ  and µ  are the isothermal Lame parameters and κ  
is the thermal conductivity.  The conductivity must obey the inequality 
 
 0κ ≥  (4.1.29) 
 
The coefficient µ  is also called the isothermal shear modulus while 2

3λ µ+  is the isothermal bulk 
modulus.  The constant α , defined by 
  

 
( )2

33
βα

λ µ
=

+
 (4.1.30) 

 
is called the coefficient of thermal expansion.  The constant ν , defined by 
 

 
( )2
λν
λ µ

=
+

 (4.1.31) 

 
is the isothermal Poisson's ratio.  Finally, the constant E ,defined by 
 

 ( )3 2
E

µ λ µ
λ µ

+
=

+
 (4.1.32) 

 
is the isothermal Young's modulus. 
 

Equations (4.1.26) and (4.1.27) can be written 
 

 ψη
θ

∂
= −

∂
 (4.1.33) 

 
and 
 

 R R
ψρ ∂

=
∂

T
E�

 (4.1.34) 
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It easily follows from (4.1.27) that 
 
 T

R R=T T  (4.1.35) 
 
In the small displacement approximation being explained here, it is possible to show that (3.3.10) 
and (4.1.35) are equivalent.  Thus, balance of angular momentum is satisfied in this theory.  It is 
possible to show that the axioms of balance of linear momentum and energy in this model become 
 
 
 ( ) ( ) ( )GRAD Div Div GRAD GRADRρ λ µ µ β θ= + + −w w w��  (4.1.36) 
 
and 
 

 ( ) ( )0
0

Div Div GRADR vcθ ρ θ βθ κ θ
θ

+ =w� �  (4.1.37) 

 
respectively.  In the classical theory the left side of (4.1.37) is linearized by approximating the ratio 

0θ θ  by unity.  The result is a linear equation of the form 
 
 ( )0 Div Div GRADR vcρ θ βθ θ+ =w κ� �  (4.1.38) 
 
Equations (4.1.36) and (4.1.38) are the field equations of classical linear thermoelasticity.  They 
represent the three dimensional generalizations of of (1.11.7) and (1.11.8). 
 
Exercise 4.1.4  
 
Show that the Gibbs relation for the material defined by (4.1.25) through (4.1.38) is 
 

 1 tr R
R

ψ ηθ
ρ

= − + T E�� ��  (4.1.39) 

 
Exercise 4.1.5  
 
Show that RT  and E�  have the same eigenvectors. 
 
Exercise 4.1.6  
 
Show that (4.1.27) can be solved for E�  and that the result is 
 

 ( ) ( )0
1 trR R

v v
E E

α θ θ+
= − + −E T T I I�  (4.1.40) 

 
Exercise 4.1.7  
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Eliminate 0θ θ−  from (4.1.27) by use of (4.1.26) and show that 
 

 ( )20 0tr 2R
R v vc c
θ βθλ β µ η
ρ

⎛ ⎞
= + + −⎜ ⎟
⎝ ⎠

T E I E I� �  (4.1.41) 

 
The quantity 
 

 20 2
3R vc

θλ β µ
ρ

+ +  

 
is the isentropic bulk modulus. 
. 
Exercise 4.1.8  
 
Solve (4.1.41) for E�  and show that 
 

 ( ) 01
R R

v

tr
E E c

η η η

η η

ν ν α θ
η

+
= − +E T T I I�  (4.1.42) 

 
where 
 

 

20

202

R v

R v

c

c

η

θλ β
ρν
θλ β µ
ρ

+
=

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠

 (4.1.43) 

 

 
20 23

3R vc

η
βα

θλ β µ
ρ

=
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠

 (4.1.44) 

 
and 
 

 

20

20

3 2
R v

R v

c
E

c

η

θµ λ β µ
ρ
θλ β µ
ρ

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦=
+ +

 (4.1.45) 

 
The quantity ην  is the isentropic Poisson's ratio and Eη  is the isentropic Young's modulus. 
 
Exercise 4.1.9  
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Adopt the governing equations of linear thermoelasticity given in this section and derive the three 
dimensional version of (1.11.28). 
 

In closing this section it is useful to mention a few additional examples of constitutive 
equations which occur in the applications.  The first is one which has been proven to be useful in 
rubber elasticity.  It is a Mooney-Rivlin material.  This model is one where thermodynamic 
influences and compressibility are taken to be unimportant.  As a result, the only constitutive 
equation of importance is the one for the stress.  In this case, this constitutive equation takes the 
form 
 
 ( ) ( ) 11 1

2 2p µ β µ β −= − + + − −T I B B  (4.1.46) 
 
where µ  and β  are constants, p  is the hydrostatic stress, and B  is the left Cauchey-Green tensor 
defined by (2.4.2).  In Section 4.5, we shall formulate a model of an incompressible isothermal 
elastic material.  Equation (4.1.46) is a special case of the class of incompressible materials 
discussed in this section.  Another example is that of a Rivlin-Ericksen fluid.  This model 
 is also valid in the isothermal case and is defined by 
 
 ( ) ( )1 2, , ,..., nπ ρ ρ= − +T I G A A A  (4.1.47) 
 
where nA  is the n th Rivlin-Ericksen tensor defined by (2.4.37).  More precisely, (4.1.47) defines a 
Rivlin-Ericksen fluid of grade n .  In the special case where 1n = , (4.1.47) defines what is called a 
Reiner-Rivlin fluid.  In the incompressible case, (4.1.47) is altered by replacing the pressure ( )π ρ  
by an indeterminate pressure p  and omitting the dependence of G  on the density ρ .  A fluid of 
the second grade is a special incompressible Rivlin-Ericksen fluid of grade 2 defined by 
 
 2

1 1 2 2 1p µ α α= − + + +T I A A A  (4.1.48) 
 
where µ , 1α , and 2α  are material constants. 
 
4.2. Isothermal Elasticity – Thermodynamic Restrictions 
 

As our first model of a material, we shall consider a purely mechanical theory of an elastic 
material.  First we shall investigate the implications of the entropy inequality on the constitutive 
equations which define this type of material.  In the following sections we shall examine the 
additional restrictions imposed by material frame indifference and by material symmetry. 
 

Because we are interested in an isothermal model, the entropy inequality (3.5.15) reduces to 
 
 ( )tr 0ρψ− + ≥TL�  (4.2.1) 
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Therefore, as far as the entropy inequality is concerned, η  and q  are indeterminate.  This 
indeterminacy indicates that we are formulating a theory of a constrained material.  Rather than 
presenting a detailed discussion of the implication of various types of constraints, it will simply be 
stated that the isothermal constraint causes the energy equation (3.4.22) to be identically satisfied.  
The necessary field equations for our isothermal formulation are balance of mass and balance of 
momentum. 
 

The constitutive equations which define an elastic material are 
 
 ( ) ( )( ), , ,t u tψ = κX F X X  (4.2.2) 
 
and 
 
 ( ) ( )( ), , ,t t= κT X G F X X  (4.2.3) 
 
As the notation indicates, the response functions, whose values are ψ  and T , depend upon the 
reference configuration κ .  This dependence is necessary because F  is calculated from (2.1.5), and 
the deformation function κχ  depends upon the reference configuration κ .  The response function 
uκ  and κG  are allowed to depend upon the particle X  through the position ( )X=X κ .  As a 
result, if two different particles are subjected to the same deformation gradient, they need not have 
the same free energy and the same stress.  Therefore, the elastic material defined by (4.2.2) and 
(4.2.3) is allowed to be inhomogeneous. 
 

A comment is in order regarding the domain of the response functions uκ  and κG .  The 
deformation gradient F  must obey (2.2.16), which rejects a deformation gradient with zero 
determinant.  Therefore, the first argument of the response functions must lie in a subset of 

( )Z_ i , the set of automorphisms in ( );_ i i , such that all elements have the same sign 

for their determinants.  Without loss of generality, we can take this subset of ( )Z_ i  to contain 
elements with positive determinant. 

 
If we regard the density Rρ  to be a known function of X , a thermodynamic process for an 

isothermal model is the following set of five functions of ( ), tX :  ( ), tκχ X , ( ), tψ X , ( ), tT X , 

( ), tρ X , and ( ), tb X , which obey balance of mass, 
 

 det Rρ ρ=F  (4.2.4) 
 
and balance of linear momentum, 
 
 divρ ρ= +x T b��  (4.2.5) 
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An admissible thermodynamic process is a thermodynamic process which satisfies (4.2.2) and 
(4.2.3).  Note that for every choice of the function κχ  there exists an admissible thermodynamic 
process.  The proof of this assertion is essentially the same as the corresponding assertion given in 
Section 1.8.  Given κχ  one can calculate ( ), tρ X  from (4.2.4), ( ), tψ X  from (4.2.2) and ( ), tT X  

from (4.2.3).  This information can then be used to calculate ( ), tb X  from (4.2.5). 
 

As in Section 1.8, we require that (4.2.1) hold for every admissible thermodynamic process.  
In addition, balance of moment of momentum, in the form (3.3.10), is required to hold for every 
admissible thermodynamic process.  Thus (4.2.1) and (3.3.10) are restrictions on the response 
functions uκ  and κG .  The restriction implied by (3.3.10) is simply that the function κG  has 
symmetric values.  We shall assume this restriction is satisfied and next investigate the restrictions 
implied by (4.2.1).  It follows from (4.2.2) that 
 

 ( ) ( ), ,
tr tr

T Tu uκ κψ
⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂
⎜ ⎟ ⎜ ⎟⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

F X F X
F F L

F F
��  (4.2.6) 

 
where (2.2.24) and (A.5.39) have been used.  The partial derivative of uκ  with respect to the linear 
transformation F  which appears in (4.2.6) requires a careful definition.  For each X , uκ  is defined 
on a certain open subset of ( )Z_ i .  The gradient of uκ  with respect to F  is defined by the 
definition given in Section 8 of Appendix A.  In the notation used in (4.2.6), the formula (A.8.6) 
takes the special form 
 

 ( ) ( )
0

,
tr ,

T
u d u

d τ

τ
τ =

⎛ ⎞⎛ ⎞∂
⎜ ⎟ = +⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

κ
κ

F X
A F A X

F
 (4.2.7) 

 
where A  is an arbitrary linear transformation in ( );_ i i .  Equation (4.2.7) defines the partial 

derivative ( ),u∂ ∂κ F X F .  If (4.2.6) and (4.2.3) are substituted into (4.2.1), the result is 
 

 ( ) ( ),
tr , 0

Tu
ρ

⎛ ⎞⎛ ⎞∂
⎜ ⎟⎜ ⎟− ≥
⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

κ
κ

F X
G F X F L

F
 (4.2.8) 

 
Equation (4.2.8) must hold for every admissible thermodynamic process.  Thus, it must hold for 
every deformation function.  Next, we shall prove that L  in (4.2.8) can be assigned arbitrarily.  Let 
F  be a fixed but arbitrary element in the domain of uκ  and κG , and let X  and t  be fixed.  Given 
these quantities, we can define a deformation *

κχ  by 
 
 ( ) ( ) ( ){ }( )* * * * *, ,t t t t⎡ ⎤= + + − −⎣ ⎦κ κχ X χ X I A F X X  (4.2.9) 



118  Chapter 4 

 
where A  is an arbitrary linear transformation.  The deformation gradient of the deformation 
function *

κχ  is 
 
 ( ) ( )* * * *, t t t⎡ ⎤= + −⎣ ⎦F X I A F  (4.2.10) 

 
and its rate is 
 
 ( )* * *, t =F X AF�  (4.2.11) 
 
Therefore, at *t t=  and * =X X , 
 
 ( )* , t =F X F  (4.2.12) 
 
and 
 
 ( ) 1* * *, t

−

= =L F X F A�  (4.2.13) 
 
If (4.2.8) is evaluated on the deformation function *

κχ , and we then let * →X X  and *t t→ , the 
result is 
 

 ( ) ( ),
tr , 0

Tu
ρ

⎛ ⎞⎛ ⎞∂
⎜ ⎟⎜ ⎟− ≥
⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

κ
κ

F X
G F X F A

F
 (4.2.14) 

 
Because (4.2.14) must hold for every linear transformation A , it immediately follows that the 
response function κG  is determined by uκ  through the formula 
 

 ( ) ( ),
,

Tu
ρ

∂
=

∂
κ

κ

F X
G F X F

F
 (4.2.15) 

 
Conversely, given (4.2.15), the entropy inequality (4.2.8) is trivially satisfied.  Thus, (4.2.15) is 
necessary and sufficient for the entropy inequality (4.2.1) to hold for every admissible 
thermodynamic process.  Equation (4.2.15) is the three dimensional generalization of the 
isothermal version of (1.8.33). 
 

As indicated above, moment of momentum requires that κG  have symmetric values and, as 
a result, (4.2.15) yields 
 

 ( ) ( ), ,T
Tu u∂ ∂

=
∂ ∂

κ κF X F X
F F

F F
 (4.2.16) 
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Equation (4.2.16) is a restriction which must be obeyed by the function uκ . 
. 
Exercise 4.2.1  
 
Show that (4.2.3) and (4.2.15) combine to yield 
 

 ( ),
R R

u
ρ

∂
=

∂
κ F X

T
F

 (4.2.17) 

 
Exercise 4.2.2  
 
Show that the material defined by (4.2.2) and (4.2.3) obeys the following Gibb's relation 
 

 1 1 1tr tr trT
R

R

ψ
ρ ρ ρ

= = =T F TL TD��  (4.2.18) 

 
Because of the simplicity of (4.2.17), it is convenient to replace the equation of motion in 

the form (4.2.5) by its material version (3.2.29).  In components, (3.2.29) is 
 

 jJR
R j R j

J

T
x b

X
ρ ρ

∂
= +
∂

��  (4.2.19) 

 
If (4.2.17) is substituted into (4.2.19) the result is 
 

 
2

k
R j jJkK j R j

J K

xx A q b
X X

ρ ρ∂
= + +

∂ ∂
��  (4.2.20) 

 
where the fourth-order elasticity tensor A  is defined by 
 

 ( ) ( )2 ,
,jJkK R

jJ kK

u
A

F F
ρ

∂
=

∂ ∂
κ F X

F X  (4.2.21) 

 
where jJ j JF x X= ∂ ∂ , and 
 

 ( ) ( )

const

,
,j R

J jJ

u
q

X F
ρ

=

⎛ ⎞∂∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

κ

F

F X
F X  (4.2.22) 

 
Equation (4.2.20) is the governing differential equation of finite elasticity.  The term jq  arises from 
the explicit dependence of uκ  on X  and, thus, represents a body force resulting from the 
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inhomogeneous nature of the material.  From (4.2.21) it is readily seen that the elasticity tensor A  
is symmetric in the following sense: 
 
 jJkK kKjJA A=  (4.2.23) 
 
Exercise 4.2.3  
 
Show that for the isothermal elastic material defined in this section, (3.5.17) reduces to 
 

 ( )( )
( )

( ) ( )
21

2R R RdV d dVρ ψ ρ
∂

⋅
+ = ⋅ + ⋅∫ ∫ ∫κ κ κ

x x T S x b
c c c

� � �v  (4.2.24) 

 
Equation (4.2.24) is in the form of an energy equation for our isothermal elastic material.  
However, because of the isothermal assumption, it is an identity derivable from the equations in 
this section. 
 
4.3. Isothermal Elasticity-Material Frame Indifference 
 

In this section we shall introduce the axiom of material frame indifference and show how it 
restricts the constitutive equations for an isothermal elastic material. 
 

By definition a frame of reference is the set ×X e .  In words, a frame of reference is a set 
that provides information about position in X  and the time t .  We are interested in mappings of 

× → ×X e X e  with the properties that distances, time intervals, and temporal order are 
preserved.  Such mappings are called changes of frame.  However, they are mappings of ×X e  
into itself.  The formal definition is as follows: 
 

Definition.  A change of frame is a one-to-one mapping × → ×X e X e  defined by 
 
 ( ) ( )( )* t t= + −x c Q x 0  (4.3.1) 
 
and 
 
 *t t a= −  (4.3.2) 
 
where ( )tc  is a time-dependent element of X , ( )tQ  is a time-dependent of ( )b i , and a  is in 
e  .  The geometric interpretation of (4.3.1) has been discussed in Section A.7 of Appendix A. 
 

Because of the special nature of the constitutive equations of an elastic material, we actually 
will not need to capitalize on the time dependence of c  and Q .  However, for the more general 
materials to be investigated later, this time dependence will be important.  Also, in this section, we 
can always take 0a =  without any loss of generality.  Given a motion κχ , we construct a new 
motion *

κ
χ  by use of (4.3.1).  The result is 
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 ( ) ( ) ( ) ( )( )* , ,t t t t= + −κκ
χ X c Q χ X 0  (4.3.3) 

 
The deformation gradient associated with the new motion is by definition 
 
 ( ) ( )* *, GRAD ,t t=

κ
F X χ X  (4.3.4) 

 
It follows from (4.3.3) that 
 
 * =F QF  (4.3.5) 
 
Exercise 4.3.1  
 
Show that 
 
 * =C C  (4.3.6) 
 
 * =U U  (4.3.7) 
 
 * =R QR  (4.3.8) 
 
 * T=B QBQ  (4.3.9) 
 
and 
 
 *ρ ρ=  (4.3.10) 
 

Equation (4.3.5) indicates how the independent variables in (4.2.2) and (4.2.3) transform 
under the transformation (4.3.3).  The dependent variables are required to transform according to 
the rules 
 
 *ψ ψ=  (4.3.11) 
 
and 
 
 * T=T QTQ  (4.3.12) 
 
The derivation of (4.3.12) is as follows.  Given (3.2.13), we require that the stress vector t  and the 
normal n  transform by the following rules: 
 
 * =t Qt  (4.3.13) 
 
and 
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 * =n Qn  (4.3.14) 
 
It follows from (3.2.13) and (4.3.14) that (4.3.13) can be written 
 
 * *T=t QTQ n  (4.3.15) 
 
Equation (4.3.15) implies (4.3.12) because *t  and *n  must be related by 
 
 * * *=t T n  (4.3.16) 
 
for every normal vector *n . 
 

The axiom of material frame indifference for our isothermal elastic material is the following 
statement [Ref. 3, Sect. 19]. 

 
Axiom.  The constitutive equations (4.2.2) and (4.2.3) must be invariant under a change of 

frame.  In particular, if 
 
 ( ) ( )( ), , ,t u tψ = κX F X X  (4.3.17) 
 
and 
 
 ( ) ( )( ), , ,t t= κT X G F X X  (4.3.18) 
 
then 
 
 ( ) ( )( )* *, , ,t u tψ = κX F X X  (4.3.19) 
 
and 
 
 ( ) ( )( )* *, , ,t t= κT X G F X X  (4.3.20) 
 
where 
 
 ( ) ( )* , ,t tψ ψ=X X  (4.3.21) 
 
 ( )* , Tt=T QT X Q  (4.3.22) 
 
and 
 
 ( ) ( )* , ,t t=F X QF X  (4.3.23) 
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for all orthogonal linear transformations Q , such that ( )* , tF X  is in the domain of uκ  and κG . 
 

It is important to note that the reference configuration is fixed in the statement of the above 
axiom.  Equations (4.3.17) through (4.3.23) are summarized by the following two equations: 
 
 ( ) ( ), ,u u=κ κF X QF X  (4.3.24) 
 
and 
 
 ( ) ( ), ,T =κ κQG F X Q G QF X  (4.3.25) 
 
Equations (4.3.24) and (4.3.25) must hold for every orthogonal linear transformation Q  such that 
QF  is in the domain of uκ  and κG .  As explained in Section 4.2, the domains of uκ  and κG  
contains linear transformations F  which obey det 0>F .  Therefore, because det det det=QF Q F , 
the orthogonal linear transformations Q  in (4.3.24) and (4.3.25) must have positive determinants. 
 

Because of the thermodynamic restriction (4.2.15), it is reasonable to suspect that (4.3.24) 
implies (4.3.25).  In fact, this is the case, and we shall now present the proof.  The key formula is 
 

 ( ) ( ), ,T Tu u∂ ∂
=

∂ ∂
κ κF X QF X

Q
F F

 (4.3.26) 

 
This equation results from differentiation of (4.3.24) with respect to F  according to the definition 
(4.2.7).  It follows from (4.3.26) that 
 

 ( ) ( ), ,T T
Tu u

ρ ρ
⎛ ⎞∂ ∂
⎜ ⎟ =
⎜ ⎟∂ ∂⎝ ⎠

κ κF X QF X
Q F Q QF

F F
 (4.3.27) 

 
Because of (4.2.15), equation (4.3.27) implies (4.3.25). 
 
Exercise 4.3.2  
 
Derive (4.3.26). 
 

Next, we shall deduce the solution of (4.3.24).  Because (4.3.24) must hold for every 
orthogonal Q  with positive determinant, we can obtain necessary conditions by making various 
choices for Q .  Following Noll, if we take T=Q R , (2.4.1a) allows (4.3.24) to be written 
 
 ( ) ( ), ,u u=κ κF X U X  (4.3.28) 
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[Ref. 4, Sect. 15].  Therefore, (4.3.24) yields the necessary condition that uκ  evaluated on F  equals 
uκ  evaluated on U .  Thus, the rotation part of =F RU  does not effect the value of uκ .  If we can 
show that (4.3.28) is sufficient for (4.3.24) to be valid for all Q , then we have established that 
(4.3.28) is a solution of (4.3.24).  If we assume (4.3.28), then 
 

 
( ) ( )( ) ( )( )

( )( ) ( )

1 2 1 2

1 2

, , ,

, ,

T T T

T

u u u

u u

⎛ ⎞= =⎜ ⎟
⎝ ⎠

= =

κ κ κ

κ κ

QF X QF QF X F Q QF X

F F X U X
 (4.3.29) 

 
Therefore, 
 
 ( ) ( ), ,u u=κ κQF X F X  (4.3.30) 
 
for all orthogonal linear transformations Q .  Thus, (4.3.28) reflects all of the restrictions implied 
by the axiom of material frame indifference for an isothermal elastic material. 
 

Given (4.3.28), we can define a function ûκ  of C  and X  by 
 
 ( ) ( )ˆ , ,u u=κ κC X U X  (4.3.31) 
 
The choice of C  as an independent variable is convenient because, from (2.4.3), C  is a rational 
function of the deformation gradient.  In summary, if 
 
 ( ) ( )( )ˆ, , ,t u tψ = κX C X X  (4.3.32) 
 
then the axiom of material frame indifference is satisfied. 
 

The stress is calculated from (4.2.15).  It follows from (4.3.28), (4.3.31) and (2.4.3) that 
 

 ( ) ( )ˆ, ,
2

T
Tu u∂ ∂

=
∂ ∂

κ κF X C X
F

F C
 (4.3.33) 

 
Therefore, 
 

 ( ) ( )ˆ ,
, 2 Tu

ρ
∂

=
∂

κ
κ

C X
G F X F F

C
 (4.3.34) 

 
and, from (4.2.3), 
 

 ( ) ( )ˆ ,
, 2 Tu

ρ
∂

=
∂

κ C X
T F X F F

C
 (4.3.35) 
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As a final observation of this section, note that the symmetry condition (4.2.16) is satisfied.  

This fact follows from (4.3.33) or, more directly, from (4.3.35) which clearly yields a symmetric 
stress tensor. 
 
Exercise 4.3.3  
 
Derive (4.3.33). 
 
Exercise 4.3.4  
 
Show that 
 

 ( )ˆ ,
2R R

u
ρ

∂
=

∂
κ C X

T F
C

 (4.3.36) 

 
and 
 

 ( )ˆ ,
2 R

u
ρ

∂
=

∂
κ C X

T
C

�  (4.3.37) 

 
Exercise 4.3.5  
 
Take =Q R  in (4.3.24) and show that the resulting necessary condition is not sufficient to satisfy 
(4.3.24) for all orthogonal Q . 
 
Exercise 4.3.6  
 
Given (4.2.15), it was shown in the text that (4.3.24) implies (4.3.25).  Show that (4.3.25) implies 
(4.3.24).  Therefore, given (4.2.15), (4.3.24) and (4.3.25) are equivalent. 
 
Exercise 4.3.7  
 
Given (4.2.15), it was shown in the text that (4.3.24) implies (4.2.16).  Show that (4.2.16) implies 
(4.3.24).  Therefore, given (4.2.15), (4.2.16) and (4.3.25) are equivalent. 
 

Exercises 4.3.6 and 4.3.7 combine to yield Noll's result that frame indifference of the free 
energy, frame indifference of the stress and symmetry of the stress are equivalent for the material 
defined by (4.2.2) and (4.2.3) [Ref. 4, Sect. 4]. 
 
Exercise 4.3.8 
 
Define a stress tensor (1)T  by the formula 
 

 ( )(1) 1
2

T T
R R= +T T R R T  (4.3.38) 
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and show that 
 

 (1) ( , )
R

uκρ ∂
=

∂
U XT
U

 (4.3.39) 

 
The stress tensor (1)T  is sometimes called the Biot stress tensor or the Jaumann stress tensor. [Ref. 
6] 
 
4.4. Isothermal Elasticity-Material Symmetry 
 

In this section we shall present the concept of material symmetry and show how the 
response function ûκ  is restricted for special types of material symmetry.  The presentation will be 
brief.  Material Symmetry will be discussed in greater detail later in Section 4.10. 
 

Roughly speaking, the concept of material symmetry arises when one attempts to determine 
in what fashion the response function ûκ  depends upon the choice of reference configuration.  
Recall from (2.1.4), a reference configuration is a mapping : →κ U X , and we wrote 
 
 ( )X=X κ  (4.4.1) 
 
to indicate the position occupied by X  in the reference configuration κ .  If κ̂  is a different 
reference configuration, then 
 
 ( )ˆ ˆ X=X κ  (4.4.2) 
 
is the position occupied by X  in the reference configuration κ̂ .  It follows from (4.4.1) and (4.4.2) 
that the positions X̂  and X  are related by 
 
 ( )( ) ( )1ˆ ˆ −= ≡X κ κ X λ X  (4.4.3) 
 
Figure 4.4.1 reflects the construction of the function λ .  Equation (4.4.3) is a change of reference 
configuration.  It maps particles which occupy points in ( )κ U  into the region ( )κ̂ U .  In general 
such a mapping will deform the body U .  We shall denote by H  the gradient defined by 
 
 ( )GRAD=H λ X  (4.4.4) 
 
There should be no confusion between this quantity and the displacement gradient defined by 
(2.2.20).  H  is the deformation gradient associated with the deformation (4.4.3). 
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ˆ ( )⋅κ

ˆ=λ κ κD

ˆ ( )κ U
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i

i

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.1 
 

The deformation function κχ  is defined by (2.1.5).  Likewise, we can define a deformation 
function ˆˆ κχ  by 
 
 ( ) ( )( )1

ˆ
ˆ ˆˆˆ ˆ, ,t t−=κχ X χ κ X  (4.4.5) 

 
where χ̂  is the motion for U .  Figure 4.4.2 illustrates the construction of κχ  and ˆˆ κχ .  Of course, if 
the motion χ̂  is the same as χ , the spatial regions ( )ˆ , tχ U  and ( ), tχ U  are the same. 
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ˆ ( )κ U

( )κ U
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ˆˆ κχ

( , )tχ U

ˆ( , )tχ U

χ

χ̂

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.2 
 
The deformation function ˆˆ κχ  can be expressed in terms of positions in κ  by use of (4.4.3).  The 
result is 
 
 ( ) ( )( )ˆ ˆ

ˆˆ ˆ ˆ, ,t t= =κ κx χ X χ λ X  (4.4.6) 

 
The deformation gradient associated with the deformation function ˆˆ κχ  is denoted by F̂  and is 
defined by 
 
 ( )ˆ

ˆ ˆˆGRAD , t= κF χ X  (4.4.7) 

 
If we use (4.4.6) to define a deformation function ˆ κχ  by 
 
 ( ) ( )( )ˆˆ ˆ, ,t t=κ κχ X χ λ X  (4.4.8) 
 
then ˆ κχ  is a deformation function which, for each t , describes deformations from ( )κ U  to 

( )ˆ , tκχ U .  If we differentiate (4.4.8) and use the definitions (4.4.7) and (4.4.4), it follows that  
 
 ( ) ˆˆGRAD , t =κχ X FH  (4.4.9) 
 
This equation relates the deformation gradients constructed from viewing the same motion from 
two different reference configurations.  Figure 4.43 illustrates the construction of these deformation 
gradients. 
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( , )tχ U

ˆ( , )tχ U

F̂H

X

X̂

•

•

x

x̂

•

•

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.3 
 

The concept of material symmetry arises when one tries to characterize those changes of 
reference configuration which, in some sense, do not affect the response of the isothermal elastic 
material.  If the material is subjected to a deformation gradient F , then (2.4.3) and (4.3.32) yield 
 
 ( )ˆ ,uψ = κ C X  (4.4.10) 
 
The value of ψ  is the free energy density one obtains when the particle at X  in the reference 
configuration κ  is subjected to a deformation F . If the same particle is subjected to the 
deformation FH , then the resulting value of the free energy density is 
 
 ( )* ˆ ,Tuψ = κ H CH X  (4.4.11) 
 
Conceptually, (4.4.11) arises when one deforms X  by the amount H  followed by a deformation of 
the amount F .  The second deformation is the same as that which appeared in (4.4.10) except that 
it is applied from ( )κ̂ U  to ( )ˆ , tχ U .  Figure 4.4.4 should be useful. 
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Figure 4.4.4 
 

In rough terms, we are interested in characterizing those linear transformations H  which 
produce the same value of the free energy from (4.4.11) as obtained from (4.4.10).  In order that the 
mass density 1ˆ detRρ ρ −= FH  equals the mass density 1ˆ detRρ ρ −= F , we shall only consider 
changes of reference configuration which obey 
 
 det 1=H  (4.4.12) 
 
Because F  and H  are nonsingular, they are members of the general linear group ( )Z_ i , 

defined in Section A.2.  The set of linear transformations H  in ( )Z_ i  which obey (4.4.12) 

form a subgroup of ( )Z_ i  called the unimodular group.  It is denoted by the symbol ( )h i .  
Roughly speaking, a subgroup is a subset of a group which obeys all of the group axioms.  The 
orthogonal group ( )b i , defined in Section A.3, is a subgroup of ( )h i  because all of its 
elements obey (4.4.12).  However, one can construct examples of unimodular linear 
transformations which are not orthogonal.  Thus, ( )b i  is a proper subgroup of ( )h i .  The 

groups ( )Z_ i , ( )h i  and ( )b i  have positive components.  These positive components 
are defined to be the subsets, of each group, which have positive determinants.  For example, 

( )+Z_ i  is the set of nonsingular linear transformations in ( );_ i i  which have positive 

determinant.  The sets ( )+h i  and ( )+b i  are defined accordingly.  Because of (A.5.22), 

( )+Z_ i  is actually a subgroup of the group ( )Z_ i .  Identical observations yield that 

( )+h i  is a subgroup of ( )h i  and ( )+b i  is a subgroup of ( )b i .  It should also be 

clear that ( )+b i  is a subgroup of ( )+h i , which, in turn, is a subgroup of ( )+Z_ i .  The 
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group ( )+b i  is often called the proper orthogonal group because its elements represent proper 

rotations.  An improper rotation is illustrated by the inversion −I  in ( )b i .  Likewise, one could 

call ( )+h i  the proper unimodular group.  More often, it is referred to as the special linear 
group. 
 

Definition.  The symmetry group ( )XκZ  (isotropy group) of the isothermal elastic particle 
X  in the reference configuration κ  is the set of linear transformations H  which obey the 
following two conditions: 
 

1.  det 1=H  (4.4.13) 
 
and 
 

2.  ( ) ( )ˆ ˆ, ,Tu u=κ κC X H CH X  (4.4.14) 
 
for all symmetric linear transformations C . 
 

It is important to note that, as defined, the symmetry group depends upon the particle X  
and the reference configuration κ .  This dependence arises because the response function ûκ  
depends upon κ  and X .  If ûκ  is independent of X , then accordingly ( )XκZ  is independent of 

X .  In this case we write κZ  for the symmetry group of the body.  The dependence of ( )XκZ  on 
the reference configuration will be examined briefly later in this section. 
 
Exercise 4.4.1  
 
Prove that ( )XκZ  is in fact a group.  In particular, prove that it is a subgroup of the general linear 

group ( )+h i . 
 

Note that (4.4.14) is unchanged if H  is replaced by −H .  For this reason, one could have 
defined the symmetry group to be the set of linear transformations H  which obey (4.4.14) and 
det 1=H  rather than (4.4.13).  In this case, ( )XκZ  would be a subgroup of ( )h i  and could 

contain elements with negative determinant.  Insofar as the results of this section are concerned, 
these two possible definitions are equivalent.  For more general materials, like the one discussed in 
Section 4.6, the condition which replaces (4.4.14) is altered if H  is replaced by −H . 
 

The dependence of ( )XκZ  on κ  can be characterized by investigating how it is altered 
under a change of reference configuration.  Such a change is caused by a mapping 
 
 ( )ˆ =X α X  (4.4.15) 
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P

ˆ ( )κ U

( )κ U

F
( , )tχU

1−FP

X

X̂

•

•

x
•

whose gradient is written 
 
 ( )GRAD=P α X  (4.4.16) 
 
By the same type of calculation that yielded (4.4.9), if F  is the deformation gradient from 
( ) ( ), t→κ χU U , then 1−FP  is the deformation gradient from ( )κ̂ U  to ( ), tχ U .  These 

relationships are illustrated in Figure 4.4.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.5 
 
Because the free energy density of X  at the time t  must be independent of the choice of reference 
configuration, we define ˆûκ , the response function relative to κ̂ , by 
 
 ( ) ( )ˆ

ˆ ˆˆ ˆ, ,u u=κ κC X C X  (4.4.17) 

 
where ( )ˆ =X α X  and, from (2.4.3), 
 

 ( ) ( )1 1 1 1 1 1ˆ T TT T− − − − − −= = =C FP FP P F FP P CP  (4.4.18) 
 
is the right Cauchy-Green tensor relative to the reference configuration κ̂ .  Equation (4.4.17) is 
required to hold for every particle X  (or position X ) and every symmetric linear transformation 
C .  Equation (4.4.17) characterizes to what extent ûκ  depends on the reference configuration κ .  
Given C  and X , one must know the value of α  at X  and the value of the first gradient of α  at 
X .  One does not really need to know any more about the function α  in order to construct ˆûκ  for 
the particle at X .  This observation shows that ûκ  really only depends on κ  in a neighborhood of 
X .  Such a neighborhood is usually called a local reference configuration. 
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Given the function ˆûκ  we can define the symmetry group ( )ˆ XκZ  by a definition identical 

to (4.4.13) and (4.4.14).  Because ˆûκ  is determined by ûκ , it follows that ( )ˆ XκZ  is determined by 

( )XκZ .  The explicit relationship between these groups follows by writing (4.4.14) in terms of the 
function ˆûκ , which is defined by (4.4.17).  It follows from (4.4.17) and (4.4.18) that (4.4.14) can be 
written 
 
 ( ) ( )1 1

ˆ ˆ
ˆ ˆ ˆˆ ˆ, ,

T Tu u − −=κ κC X P H CHP X  (4.4.19) 

 
or, by (4.4.18), 
 

 ( ) ( ) ( ) ( )( )1 1 1 1
ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ, , ,
T TT Tu u u− − − −= =κ κ κC X P H P CPHP X PHP C PHP X  (4.4.20) 

 
Because  
 
 1 1 1det det det det det det det− − −= = =PHP P H P PP H H  
 
(4.4.20) shows that if H  is an element of ( )XκZ , then 1−PHP  is an element of ( )ˆ XκZ .  The 
result, which was first obtained by Noll, can be written symbolically as 
 
 ( ) ( ) 1

ˆ X X −=κ κP PZ Z  (4.4.21) 
 
[Ref. 5]. 
 

A reference configuration κ  is said to be undistorted for the elastic particle X  if ( )XκZ  

contains the proper orthogonal group ( )+b i  or if ( )XκZ  is contained in the proper orthogonal 

group ( )+b i .  The elastic particle X  is isotropic if there exists an undistorted reference 

configuration for X  such that ( )+b i  is in ( )XκZ .  The elastic particle X  is an elastic solid 

particle if there exists an undistorted reference configuration for X  such that ( )XκZ  is in 

( )+b i .  These two definitions show that X  is an elastic isotropic solid particle if there exists an 

undistorted reference configuration for X  such that ( ) ( )X +=κZ b i .  It is important in these 
definitions of an isotropic particle and of a solid particle to require the existence of an undistorted 
reference configuration.  If κ  is such a configuration for X  and H  is an orthogonal element of 

( )XκZ , then a simple manipulation shows that the corresponding element in ( )ˆ XκZ , 1−PHP , is 
not orthogonal for arbitrary P .  Therefore, for example, if X  is an elastic isotropic solid particle in 
the configuration κ  its symmetry group ( )ˆ XκZ  is not necessarily equal to ( )+b i .  Our 

definition requires that ( ) ( )X +=κZ b i  for some reference configuration κ . 
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Exercise 4.4.2  
 
Verify the assertion that if H  is in ( )+b i  then 1−PHP  is not in ( )+b i  for arbitrary P . 
 

Following Noll, an elastic particle X  is an elastic fluid particle if ( ) ( )X +=κZ h i  [Ref. 

3, Sect 32; Ref. 5].  Note that if ( )XκZ  equals ( )+h i , then from (4.4.21) ( )ˆ XκZ  also equals 

( )+h i .  Thus, we need not make reference to a particular reference configuration when 
asserting that X  is a fluid particle.  From our definitions, it follows that a fluid particle is an 
isotropic particle.  It is possible to show that isotropic solids and fluids are the only isotropic 
particles [Refs. 6, 7]. 
 

If X  is an elastic fluid particle, then (4.4.14) must hold identically for every linear 
transformation H  with determinant equal to 1+ .  In order to display how ûκ  is restricted in this 
case we first derive a necessary condition.  Given a deformation gradient F , it readily follows from 
(A.5.32) that 
 
 ( )1 31 det−=H F F  (4.4.22) 
 
is in ( )+h i .  If (4.4.22) is substituted into (4.4.14), it follows that 
 
 ( ) ( )( )2 3ˆ ˆ, det ,u u=κ κC X F I X  (4.4.23) 

 
Therefore, it is necessary that ûκ  depend on C  only through the determinant of F .  From Section 
(2.3), we know that det F  measures the deformation of volume elements.  Equation (4.4.23) simply 
states that for an elastic fluid particle it is only the volume deformations which affect the free 
energy. 
 
Exercise 4.4.3  
 
Show that (4.4.23) is sufficient, as well as necessary, for (4.4.14) to hold for every H  in ( )+h i . 
 

Given the result (4.4.23), we can use balance of mass in the form (3.1.12) to define a 
function uκ  of ρ  and X  by 
 
 ( ) ( )( )2 3ˆ, ,Ru uρ ρ ρ=κ κX I X  (4.4.24) 
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Notice that the dependence of uκ  on the particle position X  arises from the dependence of ûκ  on 
X  and the possible dependence of Rρ  on X .  Given (4.4.23) and (4.4.24), we can use (4.3.35) to 
calculate the stress on our fluid particle.  Because 
 

 ( ) ( )ˆ , ,u u ρ ρ
ρ

∂ ∂ ∂
=

∂ ∂ ∂
κ κC X X

C C
 (4.4.25) 

 
and 
 

 1 1 12
Tρ ρ ρ− − −∂

= − = −
∂

F F C
C

 (4.4.26) 

 
It follows that (4.3.35) reduces to 
 

 ( ) ( )2 ,
,

u
t

ρ
ρ

ρ
∂

= −
∂

κ X
T X I  (4.4.27) 

 
Exercise 4.4.4  
 
Use (3.1.12), (2.4.3) and (2.2.29) and derive the identity (4.4.26). 
 

We see from (4.4.27) that our definition of an elastic fluid particle implies that the stress on 
our isothermal elastic fluid particle is necessarily hydrostatic, i. e. the elastic fluid particle will not 
support a shear stress.  Equation (4.4.27) is usually written 
 
 ( ), t π= −T X I  (4.4.28) 
 
where π  is the pressure defined by 
 

 
( )2 ,u ρ

π ρ
ρ

∂
=

∂
κ X

 (4.4.29) 

 
If every particle of U  is a fluid particle, then (4.4.23) and (4.4.29) hold for every X  in U .  In 
this case our constitutive equations define an isothermal elastic fluid body. 
 
Exercise 4.4.5  
 
Show that for an isothermal elastic fluid body that the equation of motion (3.2.20) can be written 
 

 1 gradπ
ρ

= − +x b��  (4.4.30) 

 
Exercise 4.4.6  
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If the fluid body is such that uκ  is independent of X , use the result in Exercise 2.3.3 and show that 
 

 ( )( ) 0t
⋅

Γ =_  (4.4.31) 
 
if you assume ( )gradν= −b x , i. e., b  is conservative. 
 
Exercise 4.4.7  
 
If b  is a conservative body force as in Exercise 4.4.6, then according to (4.4.30), in equilibrium, 
the pressure π  must obey 
 
 ( ) ( ) ( )grad gradπ ρ ν+ =x x x 0  (4.4.32) 
 
Continue to assume the fluid is homogeneous and show that (4.4.32) integrates to yield 
 

 ( )( ) ( )( )
( ) ( ) constu

π ρ
ρ ν

ρ
+ + =κ

x
x x

x
 (4.4.33) 

 
Equation (4.4.33) determines the equilibrium density distribution in the presence of the 
conservative body force ( )gradν= −b x . 
 

Next we shall record the restrictions on the function ûκ  in the case where X  is an elastic 
isotropic solid particle in its undistorted reference configuration.  In this case (4.4.14) must hold for 
every orthogonal linear transformation in ( )+b i .  Thus, we must determine how ûκ  is restricted 
if it is required to obey 
 
 ( ) ( )ˆ ˆ, ,Tu u=κ κC X Q CQ X  (4.4.34) 
 
for every orthogonal linear transformation in ( )+b i .  An immediate necessary condition is 

obtained if one takes T=Q R  in (4.4.34) and utilizes (2.4.6).  The result is 
 
 ( ) ( )ˆ ˆ, ,u u=κ κC X B X  (4.4.35) 
 
Therefore, in this case, the value of ûκ  on C  equals its value on T=B RCR .  Equation (4.4.35) is 

not sufficient to satisfy (4.4.34) for all Q  in ( )+b i . 
 
Exercise 4.4.8  
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Given (4.4.35) show that equation (4.4.34) is obeyed if 
 
 ( ) ( )ˆ ˆ, ,Tu u=κ κB X Q BQ X  (4.4.36) 
 
for all orthogonal Q  in ( )+b i . 
 
Exercise 4.4.9  
 
Use (4.4.35) and show that 
 

 ( ) ( )ˆ ˆ, ,
2 2

u u
ρ ρ

∂ ∂
= =

∂ ∂
κ κB X B X

T B B
B B

 (4.4.37) 

 
Equation (4.4.34) or, equivalently, (4.4.36) defines what is called a scalar valued isotropic function 
of a symmetric linear transformation.  It is a classical result that the solution of (4.4.34) is that ûκ  
depends upon C  through the three fundamental invariants of C  [Ref. 3, Sect. 10].  Because B  and 
C  have the same fundamental invariants (see Section A.5), it follows that (4.4.36) is satisfied if 
and only if 
 
 ( ) ( )*ˆ , , , ,u u I II III=κ κ B B BC X X  (4.4.38) 
 
For the sake of completeness, a proof of this representation theorem is given in Appendix B. 
 
Exercise 4.4.10  
 
Show that (4.4.38) is sufficient for (4.4.34) to hold for all orthogonal Q  in ( )+b i . 
 
Given (4.4.38), we can calculate the stress by use of (4.4.37).  Clearly, 
 

 ( ) * * *ˆ ,u u I u II u III
I II III

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
κ κ B κ B κ B

B B B

B X
B B B B

 (4.4.39) 

 
From (A.5.44), (A.5.49) and (A.5.46), the fundamental invariants of B  are defined by 
 
 trI =B B  (4.4.40) 
 
 ( )( )2 21

2 tr trII = −B B B  (4.4.41) 

 
and 
 
 detIII =B B  (4.4.42) 
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The derivatives which appear in (4.4.39) are thus given by 
 

 I∂
=

∂
B I

B
 (4.4.43) 

 

 II I∂
= −

∂
B

BI B
B

 (4.4.44) 

 
and 
 

 1III III −∂
=

∂
B

BB
B

 (4.4.45) 

 
Exercise 4.4.11  
 
Derive the results (4.4.43) through (4.4.45). 
 

If (4.4.43), (4.4.44) and (4.4.45) are substituted into (4.4.39) and the result is substituted 
into (4.4.37), the following formula is obtained: 
 
 ( ) ( ) ( ) 2

0 1 2, , , , , , , , ,I II III I II III I II IIIα α α= + +B B B B B B B B BT X I X B X B  (4.4.46) 
 
where 
 

 ( ) ( )*

0

, , ,
, , , 2

u I II III
I II III III

III
α ρ

∂
=

∂
κ B B B

B B B B
B

X
X  (4.4.47) 

 

 ( ) ( ) ( )* *

1

, , , , , ,
, , , 2 2

u I II III u I II III
I II III I

I II
α ρ ρ

∂ ∂
= +

∂ ∂
κ B B B κ B B B

B B B B
B B

X X
X  (4.4.48) 

 
and 
 

 ( ) ( )*

2

, , ,
, , , 2

u I II III
I II III

II
α ρ

∂
= −

∂
κ B B B

B B B
B

X
X  (4.4.49) 

 
Equation (4.4.46) is the representation for the stress of an isothermal isotropic elastic solid particle 
in its undistorted reference configuration.  In the state =B I ,  (4.4.46) reduces to 
 
 p= −T I  (4.4.50) 
 
where p  is the residual pressure defined by 
 
 ( ) ( ) ( )0 1 23,3,1, 3,3,1, 3,3,1,p α α α= − − −X X X  (4.4.51) 
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Equation (4.4.50) shows that the stress in the state =B I , the residual stress, is necessarily 
hydrostatic for the isotropic particle in its undistorted reference configuration. 
 
Exercise 4.4.12  
 
It is desired to approximate (4.4.46) for the case where −B I  is small in some sense.  Expand 
(4.4.46) about the state =B I  and show that the result is 
 
 ( ) ( )( ) ( )( )1

2 trp p pλ µ= − + + − + − −T I B I I B I  (4.4.52) 
 
where second-order terms have been dropped and the coefficients λ  and µ  are defined by 
 

 ( )0 1 2
3

1

2 2
I II
III

p
I II III

λ α α α
= =
=

⎛ ⎞∂ ∂ ∂
+ = + + + +⎜ ⎟∂ ∂ ∂⎝ ⎠ B B

B

B B B

 (4.4.53) 

 
and 
 
 ( ) ( )1 23,3,1, 2 3,3,1,pµ α α− = +X X  (4.4.54) 
 
Of course, p  is defined by (4.4.51).  Equation (4.4.52) defines what is known as a finite-linear 
elastic particle.  As a function of strain B , T  is linear.  As a function of displacement gradient, B  
is not linear (see (2.2.14) and (2.2.2)).  Thus, (4.4.52) is a possible model for large (finite) 
displacement elasticity. 
 
Exercise 4.4.13  
 
If the model developed in Exercise 4.4.12 is specialized by the assumptions of no residual stress 
( )0p =  and infinitesimal strains, show that (4.4.52) reduces to 
 
 ( )tr 2λ µ= +T E I E� �  (4.4.55) 
 
Exercise 4.4.14  
 
Equation (4.4.55) is almost the isothermal version of (4.1.27).  The difference is the appearance of 
the Cauchy stress in (4.4.55) and the first Piola-Kirchhoff stress in (4.1.27).  Show that to the order 
of approximation used in Exercises 4.4.12 and 4.4.13 T  and RT  are equal and, thus, (4.4.55) 
reduces to 
 
 ( )tr 2R λ µ= +T E I E� �  (4.4.56) 
 
Clearly, the coefficients λ  and µ  are the isothermal Lame parameters introduced in Section 4.1. 
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Exercise 4.4.15  
 
Given (4.4.56), use (3.2.29) and show that the displacement ( ), tw X  must be a solution of the 
Navier equation of motion 
 
 ( ) ( ) ( )GRAD Div Div GRADRρ λ µ= + +w w w��  (4.4.57) 
 
Notice that the body force b  in (3.2.29) has been taken to be zero.  This choice reflected our 
assumption that =w 0  is a solution to the equation of motion.  Equation (4.4.57) is the isothermal 
version of (4.1.36).  During the derivation of (4.4.57), the reader will need to assume λ  and µ  are 
constants, independent of X .  Such a dependence is still allowed in (4.4.52) and, thus, (4.4.56). 
 
Exercise 4.4.16  
 
Equation (4.4.57) is a vector partial differential equation for the displacement vector w .  Viewed 
as a system of three partial differential equations,  the system is coupled.  Decouple the system 
(4.4.57) and show that the displacement, w , is a solution of 
 

 
2 2

2 2

2

R Rt t
λ µ µ
ρ ρ

⎛ ⎞⎛ ⎞∂ + ∂
− ∆ − ∆ =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

w 0  (4.4.58) 

 
Each factor in the operator in (4.4.58) is a wave operator.  The squared speeds are ( )2 Rλ µ ρ+  
and Rµ ρ .  These speeds are called the longitudinal and transverse speeds, respectively.  The 
result (4.4.58) was first obtained by Cauchy in 1840 [Ref. 9]. 
 
Exercise 4.4.17  
 
Consider the group ( )ˆ XκZ  defined by the set of linear transformations H  that obey 
 
 det 1=H  (4.4.59) 
 
and 
 
 ( ) ( ), ,=κ κG F X G FH X  (4.4.60) 
 
for all linear transformations F  in the domain of κG .  Given (4.2.15), (4.3.28) and (4.3.31),  show 

that ( )ˆ XκZ  can be defined by the set of linear transformations H  that obey (4.4.59) and 
 
 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, , , ,T Tu u u u= + −κ κ κ κC X H CH X I X H H X  (4.4.61) 
 



Models of Material Behavior  141 

for all C  in the domain of ûκ .  Equation (4.4.61) shows that ( )XκZ  is a subgroup of ( )ˆ XκZ  [Ref. 

10].  In other words, if an H  in ( )+h i  obeys (4.4.14), then (4.4.61) and, thus, (4.4.60) is 
satisfied. 
 
4.5. Incompressible Isothermal Elasticity 
 

As explained in Section 4.2, the isothermal assumption defines a constrained material.  If, in 
addition, we assume the deformations are constrained such that 
 
 ( ) ( ), Rtρ ρ=X X  (4.5.1) 
 
then the material point X  is incompressible.  From (3.1.12) and (3.1.15), we see that (4.5.1) 
implies that 
 
 det 1=F  (4.5.2) 
 
and 
 
 div tr 0= =x L�  (4.5.3) 
 
where (2.2.25) has been used.  Notice that if the body U  is incompressible, it is not necessarily 
true that ( ), tρ X  is uniform in X . Our definition allows for the possibility that 

( ) ( )RGRAD , GRADtρ ρ= ≠X X 0 .  In any case, given (4.5.3) we see that the isothermal entropy 
inequality (4.2.1) allows for T  to have an indeterminate hydrostatic part.  This assertion becomes 
clear if one observes that 
 
 ( )( ) ( ) ( )tr p tr tr trp+ = + =T I L TL L TL  (4.5.4) 
 
for arbitrary real number p .  This indeterminacy suggests that our constitutive equations (4.2.2) 
and (4.2.3) be replaced by 
 
 ( ) ( )( ), , ,t u tψ = κX F X X  (4.5.5) 
 
and 
 
 ( ) ( )( ), , ,t p t+ = κT X I G F X X  (4.5.6) 
 
where, at this point, p  is simply an arbitrary multiplier. 
 

Our objective in this section is to deduce the thermodynamic restrictions on the constitutive 
equations (4.5.5) and (4.5.6).  The formalism is roughly the same as that in Section 4.2 except that 
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we must utilize the constraint (4.5.3) in some fashion.  Our first technical assumption concerns the 
response functions uκ  and κG .  In Section 4.2, the response functions were defined on an open 

subset of ( )+Z_ i .  As a result, if F  is in this domain, τ+F A  is in the domain for arbitrary A  

in ( );_ i i  for some nonzero real numbers τ .  This feature of the domain of uκ  and κG  make 
it meaningful to require the response functions to be differentiable.  Without this feature, (4.2.7) is 
meaningless.  In this section, the elements in the domain of uκ  and κG  must obey (4.5.2).  Without 
loss of generality, we can take these elements to have determinants equal to 1+ .  Therefore, the 
domain of uκ  and κG  is a subset of ( )+h i , the special linear group.  Unfortunately, this 
domain is not an open set.  As a result, without further assumptions, it is meaningless to regard uκ  
and κG  as being differentiable.  The technical assumption we shall make is to assume the domains 
uκ  and κG  have differentiable extensions to an open set.  This purely formal assumption allows us 
to write, from (4.5.5), 
 

 ( ) ( ), ,
tr tr

T Tu u
ψ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂
⎜ ⎟ ⎜ ⎟⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

κ κF X F X
F F L

F F
��  (4.5.7) 

 
where the partial derivative ( ),u∂ ∂κ F X F  is again defined by (4.2.7). 
 

If (4.5.7) and (4.5.6) are substituted into (4.2.1), it follows that 
 

 ( ) ( ),
tr , 0

Tu
ρ

⎛ ⎞⎛ ⎞∂
⎜ ⎟⎜ ⎟− ≥
⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

κ
κ

F X
G F X F L

F
 (4.5.8) 

 
where (4.5.4) has been used.  Equations (4.5.8) and (4.2.8) are formally identical.  Like (4.2.8), 
(4.5.8) must hold for every admissible thermodynamic process.  However, for an incompressible 
particle, the definition of an admissible thermodynamic process must be such that the constraint 
(4.5.2) must be obeyed.  By the same argument that produced (4.2.14), we can again obtain  
 

 ( ) ( ),
tr , 0

Tu
ρ

⎛ ⎞⎛ ⎞∂
⎜ ⎟⎜ ⎟− ≥
⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

κ
κ

F X
G F X F A

F
 (4.5.9) 

 
where A  is the velocity gradient for the motion *

κχ .  Because of the constraint (4.5.3), at this point 
in the discussion (4.5.9) holds for all A  such that 
 
 tr 0=A  (4.5.10) 
 
Our next formal step will be familiar to readers proficient in analytical mechanics or the calculus of 
variations [Refs. 10, 11].  We shall allow p  to take on whatever value is necessary as a 
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consequence of taking A  in (4.5.9) to be arbitrary.  When the constraint (4.5.10) is freed, then 
(4.5.9) yields 
 

 ( ) ( ),
,

Tu
ρ

∂
=

∂
κ

κ

F X
G F X F

F
 (4.5.11) 

 
just as in Section 4.2.  The difference is that T  is not determined by uκ .  From (4.5.11) and (4.5.6), 
we see that 
 

 ( ), Tu
p ρ

∂
= − +

∂
κ F X

T I F
F

 (4.5.12) 

 
In physical terms, p  is the extra hydrostatic pressure necessary to constrain the motion to obey 
(4.5.2).  It becomes one of the unknowns in the problem.  Unlike in Section 4.2, where the 
appropriate field equations are (3.1.12) and (3.2.20), for an incompressible body one has the extra 
field equation given by the constraint (4.5.2) to aid in the computation of ( ), tκχ X  and p . 
 

The restrictions implied by material frame indifference and material symmetry explained in 
Sections 4.3 and 4.4 carry over to the incompressible case with minor modification.  One point 
worthy of mention here is that for an incompressible isothermal isotropic elastic solid particle, in its 
undistorted reference configuration the representation (4.4.46) is replaced by  

 
 ( ) ( ) 2

1 2, , , ,p I II I IIα α= − + +B B B BT I X B X B  (4.5.13) 
 
because 1III =B  and the hydrostatic term proportional to 0α  is simply incorporated into the 
indeterminate term.  Equation (4.1.46), which defines a Mooney-Rivlin material, is a special case 
of (4.5.13). 
 
Exercise 4.5.1  
 
There is an interesting argument which produces the results of this section as a limit of the 
compressible case.  In this exercise the argument is developed for an isothermal infinitesimal 
elastic material.  The isothermal version of the inverse of (4.4.56) is a special case of (4.1.40) and 
is 
 

 ( )1 trR R
v v

E E
+

= −E T T I�  (4.5.14) 

 
where ν  and E  are defined by (4.1.31) and (4.1.32).  If the material is incompressible, (4.5.14) 
must be made consistent with the constraint 
 
 tr 0=E�  (4.5.15) 
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Equation (4.5.15) follows from (4.5.2) and (2.5.18b).  Show that (4.5.14) implies that 
 

 ( )1 2tr tr RE
ν−

=E T�  (4.5.16) 

 
Therefore, (4.5.16) tells us that 
 

 1
2

ν =  (4.5.17) 

 
for the incompressible limit.  Show that in this limit 
 
 1 0λ =  (4.5.18) 
 
 3E µ=  (4.5.19) 
 
and 
 
 2R p µ= − +T I E�  (4.5.20) 
 
where p  is arbitrary.  Equation (4.5.20) is the infinitesimal elasticity version of (4.5.13). 
 

The reader interested in a carefully constructed formulation of the constitutive theory of 
elastic materials with internal constraints should consult Cohen and Wang [Refs. 12 and 13]. 
 
4.6. Thermoelastic Material with Heat Conduction and Viscous Dissipation – Constitutive 

Assumptions 
 

Sections 4.2 through 4.4 serve to illustrate how one uses the entropy inequality, material 
frame indifference and material symmetry for a rather simple material model.  In the remainder of 
this chapter we shall, essentially, retrace the material in Sections 4.2 through 4.4 except that the 
material model is more complicated.  This model is one which has presented the effects of heat 
conduction and viscous dissipation in addition to the nonlinear elasticity effects of the previous 
model.  Many of the fundamental definitions and concepts are repeats of topics presented in 
Sections 4.2 through 4.4.  In some cases these ideas are refined and stated with more precision than 
originally.  It is hoped that the reader will find this repetition helpful in understanding the ideas 
being presented.  The material in Sections 1.8, 1.9 and 1.10 also relates to the contents of the 
remainder of this chapter.  The constitutive assumptions adopted in Section 1.8 are one-
dimensional versions of constitutive equations which will be studied in detail in this and the 
following sections. 

 
Before we present the explicit special constitutive assumptions, it is useful to characterize 

our constitutive equations in rather general terms.  We are interested in constitutive equations for 
each particle X .  The general class of materials of interest are those for which ψ , η , T , and q  
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for the particle X  are determined by the motion χ  and the temperature θ .  Given a motion χ , we 
can define a function : +Θ × →U e e  by 
 
 ( ) ( )( ), , ,X t X t tθΘ = χ  (4.6.1) 
 
for all ( ),X t  in ×U e .  With the definition (4.6.1), both χ  and Θ  are functions defined on 

×U e .  Like the definition (2.1.5), if we are given a reference configuration κ  we can define a 
function ( ): +Θ × →κ κ U e e  by 
 
 ( ) ( )( ) ( )( )1, , , ,t t t tθ−Θ = Θ =κ κX κ X χ X  (4.6.2) 
 
Therefore, the two fields which are going to determine ψ , η , T , and q  are Θ  and χ  or Θκ  and 

κχ , when a reference configuration is given.  In the following discussion, we shall assume an 
arbitrary but fixed reference configuration κ  is given.  In addition, as in Section 4.2, we shall 
regard the density Rρ  in κ  to be a prescribed function of X  in ( )κ U . 
 

Definition.  A thermodynamic process is a set consisting of the two functions Θκ  and κχ  
and the seven functions of ( ), tX  whose values are ψ , η , T , q , ρ , r  and b  which satisfy 
 

1. Balance of Mass (3.1.12): 
 
 det Rρ ρ=F  (4.6.3) 
 

2. Balance of Linear Momentum (3.2.20): 
 
 divρ ρ= +x T b��  (4.6.4) 
 

3. Balance of Thermodynamic Energy (3.5.20): 
 
 ( ) tr div rρθη ρ ψ ηθ ρ= − + + − +TL q�� �  (4.6.5) 
 
As we have stated, we are interested in a theory of material behavior for which ψ , η , T , and q  
are determined by Θ  and χ .  More precisely, we shall require that ψ , η , T , and q  for each 
particle X  at the time t  be determined by the histories of Θκ  and κχ  up to the time t  defined by 
 
 ( ) ( ) ( ), ,t s t sΘ = Θ −κ κX X  (4.6.6) 
 
and 
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 ( ) ( ) ( ), ,t s t s= −κ κχ X χ X  (4.6.7) 
 
for all ( ), sX  in ( ) [ )0,× ∞κ U .  Symbolically, we can write 
 
 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ), , , , , , , , , , ,t tt t t t f Xψ η = Θ ⋅ ⋅ ⋅ ⋅κ κ κX X T X q X χ  (4.6.8) 

 
Equation (4.6.8) shows that we have assumed that ψ , η , T , and q  are not influenced by future 
values of Θκ  and κχ .  Equation (4.6.8) does allow these quantities to be influenced by all past 
values of Θκ  and κχ  as well as their values over the region ( )κ U .  A dependence on the particle 
X  is included in order to allow for the possibility that the values ψ , η , T , and q  could be 
different for two particles 1X  and 2X  subjected to the same ( )tΘκ  and ( )t

κχ .  Since a reference 
configuration κ  is presumed to be given, we can always use (2.1.4) to express the particle X  in 
terms of its position X  in κ .  However, it is convenient at this point to take fκ  to be an explicit 
function of X .  The function fκ  is called the response function relative to κ .  It is important to 
stress that the values of fκ  for a particle X  are independent of κ .  If this were not the case, one 
could alter ψ , η , T , and q  by simply selecting a different reference configuration.  It is also 
important to note that (4.6.8) obeys the equipresence condition mention in the Introduction to this 
chapter. 
 

As in Section 4.2, an admissible thermodynamic process is a thermodynamic process which 
is consistent with the constitutive assumption (4.6.8).  Also, as in Section 4.2, for every choice of 
Θκ  and κχ  there exists and admissible thermodynamic process [Refs. 2, 14].  The proof of this 
assertion is as follows.  Given Θκ  and κχ , we can compute ψ , η , T , and q  from (4.6.8).  Given 

κχ  and the known value of rρ , we can calculate ρ  from (4.6.3).  This collection of information 
can then be used to calculate b  from (4.6.4) and r  from (4.6.5). 
 

Notice that the definition of a thermodynamic process made no mention of balance of 
angular momentum (3.3.10) or the entropy inequality (3.5.15).  We shall utilize these axioms by 
requiring that they be satisfied for all admissible thermodynamic processes.  In this way (3.3.10) 
and (3.5.15) restrict the constitutive function fκ .  For example, if (3.3.10) is satisfied for every 
admissible thermodynamic process it must be satisfied for all choices of the functions Θκ  and κχ .  
Immediately, we see from (4.6.8) that fκ  must be restricted such that it yields a symmetric stress 
tensor.  In the remaining sections we shall assume that this restriction is obeyed and focus our 
attention on determining the restrictions on the response function forced by the entropy inequality.  
When this has been done, the requirement of consistency, discussed in the Introduction to this 
chapter, will be satisfied. 

 
The special case of (4.6.8) which we wish to investigate in detail is the one with the 

following properties: 
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1. For each X  in U , the dependence on ( ) ( ),tΘ ⋅ ⋅κ  is only through the present value at X  
and the present gradient at X . 

2. For each X  in U , the dependence on ( ) ( ),t ⋅ ⋅κχ  is only through the present deformation 
gradient at X  and the present rate of deformation gradient at X . 

  
It will be clear in Section 4.9 that a dependence on the value of ( )t

κχ  at ( ),0X  would violate 
material frame indifference.  For simplicity, we have omitted such a dependence at this point in the 
discussion.  As a result of our specialization, the constitutive assumption which defines each 
particle in the body is 
 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
, , , , , , ,

, ,GRAD , , , , , ,

t t t t

f t t t t

ψ η

= Θ Θκ κ κ

X X T X q X

X X F X F X X�  (4.6.9) 

 
where 
 
 ( ) ( ) ( ), ,0ttΘ = Θκ κX X  (4.6.10) 
 
 ( ) ( ) ( )GRAD , GRAD ,0ttΘ = Θκ κX X  (4.6.11) 
 
 ( ) ( ) ( ) ( ) ( )t, GRAD ,0 ,0tt = =κF X χ X F X  (4.6.12) 
 
and 
 

 ( )
( ) ( ) ( )

0

, ,
,

t

ts

d s d
t

ds d
τ

τ
τ

==

= − =
F X F X

F X�  (4.6.13) 

 
Since (4.6.2) shows that 
 
 ( ) ( ) ( )GRAD , , grad ,Tt t tθΘ =κ X F X x  (4.6.14) 
 
we can use ( )grad , tθ x  as an independent variable if we chose.  It is convenient to define a vector 

( ), tg x  by 
 
 ( ) ( ), grad ,t tθ=g x x  (4.6.15) 
 
and rewrite the defining constitutive assumption in the simplified form 
 
 ( ) ( ), , , , , , ,kψ η θ= κT q g F F X�  (4.6.16) 
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where kκ  is defined by 
 
 ( ) ( ), , , , , , , ,Tk fθ θ=κ κg F F X F g F F X� �  (4.6.17) 
 

Equation (4.6.16) does not contain all of the important classical theories of continuous 
materials.  It does contain, as special cases, the two examples summarized in Section 4.1.  The most 
obvious case excluded by (4.6.16) is the case of a viscoelastic material.  Viscoelastic materials have 
among their independent variables the quantity ( ) ( ),t ⋅F X  [Refs. 3, 14, 15, 16, 17].  It is perhaps 

helpful to think of the dependence of kκ  on ( ),F F�  as arising as an approximation of a dependence 

on ( ) ( ),t ⋅F X .  This approximation is suggested by the formal series expansion of ( ) ( ),t ⋅F X  about 
0s =  in the form 

 

 ( ) ( ) ( ) ( )
( ) ( )

0

,
, ,0

t
t t

s

d s
s s s

ds
=

= + + ⋅ ⋅ ⋅ = − + ⋅ ⋅ ⋅
F X

F X F X F F�  (4.6.18) 

 
Clearly, more general types of materials would allow for a dependence on more derivatives of 

( ) ( ),t ⋅F X  at 0s = . 
 

The constitutive assumption (4.6.16) reflects another special feature.  The point made in the  
last paragraph above can be explained by saying that ψ , η , T , and q  at ( ), tX  depend upon 

( ) ( ),tΘ ⋅κ X  and ( ) ( ),t ⋅κχ X  local to the point 0s = .  Likewise, ψ , η , T , and q  at ( ), tX  depend 

upon ( ) ( ),t sΘ ⋅κ  and ( ) ( ),t s⋅κχ  local to the point X .  By including a dependence on higher 

gradients of ( ) ( ),t sΘ ⋅κ  and ( ) ( ),t s⋅κχ  than their first, one can formulate a theory of material 
behavior for which long-range spatial effects are allowed [Refs. 18, 19, 20, 21]. 
 

Some comments are in order concerning the domain of the response function kκ  in (4.6.16).  
The temperature θ  must obey the natural restriction 
 
 0θ >  (4.6.19) 
 
In addition, the deformation gradient F  must obey the condition (2.2.16), 
 
 det 0≠F  (4.6.20) 
 
Since +e  denotes the subset of e  consisting of the positive real numbers, then θ  is in +e .  
Equation (4.6.20) shows that ( ), tF X , as a nonsingular linear transformation,  must either have a 

positive or negative determinant.  Recall from Appendix A that ( )Z_ i  denotes the set of 
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automorphisms of i , i.e. the set of regular or nonsingular linear transformations in 
( );_ i i .  We write ( )+Z_ i  and ( )−Z_ i  for the subsets of ( )Z_ i  defined by 

 
 ( ) ( ){ }in ;  and det 0+ = >A A AZ_ i _ i i  (4.6.21) 

 
and 
 
 ( ) ( ){ }in ;  and det 0− = <A A AZ_ i _ i i  (4.6.22) 

 
The subset ( )+Z_ i  was introduced in Section 4.4.  The condition (4.6.20) shows that ( ), tF X  

must lie in only one of the components of ( )Z_ i  defined by (4.6.21) and (4.6.22).  As in 

Section 4.2, without loss of generality, we can assume that ( ), tF X  lies in ( )+Z_ i .  Therefore, 

for each X , the domain of kκ  is a subset of ( ) ( );++ × × ×e i Z_ i _ i i .  It has values in 

the set ( );× × ×e e f i i i , where ( );f i i  denotes the symmetric members of 

( );_ i i .  We assume that, for each X ,  kκ  is at least of class 2C  on an open subset of 

( ) ( );++ × × ×e i Z_ i _ i i . 
 

Next we wish to characterize the dependence of kκ  on the reference configuration κ .  By 
(2.1.5), we can define a deformation function relative to a reference configuration κ̂  by 
 
 ( ) ( )( )1

ˆ
ˆ ˆˆ, ,t t−=κχ X χ κ X  (4.6.23) 

 
It easily follows from (2.1.5) and (4.6.23) that 
 
 ( ) ( )( )ˆ, ,t t=κ κχ X χ λ X  (4.6.24) 
 
where ( ) ( )ˆ: →λ κ κU U  is defined by 
 
 1ˆ −=λ κ κD  (4.6.25) 
 
By differentiation of (4.6.24), it follows that 
 
 ˆ=F FP  (4.6.26) 
 
where 
 
 ( ) ( )ˆ

ˆ ˆ ˆ ˆGRAD , ,t t= =κF χ X F X  (4.6.27) 
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X

X

( )⋅κ

X̂

ˆ ( )⋅κ

λ

ˆ ( )κ U

( )κ U

U
x

κχ

κ̂χ

 
and 
 
 ( ) ( )GRAD= =P λ X P X  (4.6.28) 
 
In understanding (4.6.23) through (4.6.28), it is helpful to consider the Figure 4.6.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6.1 
 

Because values of kκ  must be independent of κ , it follows from (4.6.16) that one can 
define a response function with respect to κ̂  by 
 

 ( ) ( )ˆ
ˆ ˆ, , , , , , , ,k kθ θ=κ κg F F X g F F X� �  (4.6.29) 

 
or, with (4.6.26) and (4.6.28), 
 
 ( ) ( )1 1

ˆ , , , , , , , ,k kθ θ− − =κ κg FP FP X g F F X� �  (4.6.30) 
 
Equation (4.6.30) must hold for all ( ), , , ,θ g F F X�  in the domain of kκ .  The important message in 
(4.6.30) is that the dependence of the response function on the reference configuration is such that 
only the gradient of λ  at X  is needed in order to characterize the change of reference 
configuration.  This result reflects again the local nature of the constitutive assumption (4.6.16). 
 

In order to make the local dependence of kκ  on κ  explicit, we shall introduce the concept 
of a local reference configuration [Ref. 3, Sect. 22; Refs. 5, 22, 23]. 
 

Definition.  Two reference configurations 1κ  and 2κ  are equivalent at X  in U  if 
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 ( )1
1 2GRAD − =κ κ ID  (4.6.31) 

 
Exercise 4.6.1  
 
If 1κ  and 2κ  and 1κ  and 3κ  are equivalent at X  in U , then show that 2κ  and 3κ  are equivalent. 
 

Definition.  The local reference configuration at X  in U  is the set XK  of all reference 
configurations equivalent at X . 
 
It follows from (4.6.31) that, when κ  and κ̂  are equivalent at X , =P I  and from (4.6.30) that 
 
 ˆk k=κ κ  (4.6.32) 
 
Therefore, at X  in U , kκ  depends on the configuration κ  through the local reference 
configuration XK .  For this reason, we define a function 

X
kK  by 

 
 ( ) ( ), , , , , , ,

X
k kθ θ=K κg F F g F F X� �  (4.6.33) 

 
for all ( ), , ,θ g F F�  in the domain of kκ  and for all κ  in XK .  With (4.6.33), our constitutive 
assumption (4.6.16) becomes 
 
 ( ) ( ), , , , , ,

X
kψ η θ= KT q g F F�  (4.6.34) 

 
Many of our later manipulations require that we introduce symbols for the component 

functions of 
X

kK .  These functions are defined by 
 
 ( ), , ,

X X X X X
u h k=K K K K KG l  (4.6.35) 

 
For example, (4.6.35) shows that T  is given by 
 
 ( ), , ,

X
θ= KT G g F F�  (4.6.36) 

 
4.7. Thermoelastic Material with Heat Conduction and Viscous Dissipation – General 

Thermodynamic Restrictions 
 

As indicated in the last section, we require that (3.5.15) be satisfied for all admissible 
thermodynamic processes.  In this section we shall investigate the restrictions on the response 
function 

X
kK  in (4.6.34) implied by this requirement [Ref. 15]. 

 
From (4.6.34) and (4.6.35), we have 
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 ( ), , ,

X
uψ θ= K g F F�  (4.7.1) 

 
For sufficient smooth Θκ  and κχ , the material derivative of ψ  can be expressed in terms of the 
material derivatives of θ , g , F  and F�  by the chain rule.  The result is 
 

 tr trX X X X

T Tu u u u
ψ θ

θ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= + ⋅ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

K K K Kg F F
g F F

� � ��� � �  (4.7.2) 

 
If (4.7.2) and (4.6.34) are substituted into (3.5.15), the result can be written 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( )1

, , , , , , , , ,
, , , tr

, , ,
tr , , , , , , 0

X X X

X

X

X X

T

T

u u u
h

u

θ θ θ
ρ θ θ ρ ρ

θ

θ
θ ρ θ θ−

⎛ ⎞⎛ ⎞∂ ∂⎜ ⎟⎜ ⎟− + − ⋅ −
⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞∂⎜ ⎟⎜ ⎟+ − − ⋅ ≥⎜ ⎟⎜ ⎟∂⎜ ⎟⎝ ⎠⎝ ⎠

K K K
K

K
K K

g F F g F F g F F
g F F g F

g F

g F F
F G g F F F F l g F F g

F

� � �
�� ���

�
� � �

(4.7.3) 

 
Equation (4.7.3) must hold for every choice of the functions Θκ  and κχ . 
 

Let ( ), , ,θ g F F�  be an arbitrary element of the domain of 
X

kK  and let ( ), tX  be fixed.  

Given these quantities, we can define functions *Θκ  and *
κχ  by 

 
 ( ) ( ) ( ) ( )* , t c tτ θ τ τ⎡ ⎤ ⎡ ⎤Θ = + − + + − ⋅ −⎣ ⎦ ⎣ ⎦κ Y g a F Y X  (4.7.4) 
 
and 
 
 ( ) ( ) ( ) ( ) ( )2* 1

2, , t t tτ τ τ⎡ ⎤= + + − + − −⎣ ⎦κ κχ Y χ X F F A Y X�  (4.7.5) 

 
where ( ), ,c a A  is any element in ( );× ×e i _ i i .  It follows from (4.7.4) and (4.7.5) that 
at =Y X  
 
 ( ) ( ) ( )* * , t cθ τ τ θ τ= Θ = + −κ X  (4.7.6) 
 
 ( ) ( ) ( )* 1 *GRAD ,

T

tτ τ τ−= Θ = + −κg F X g a  (4.7.7) 
 
 ( ) ( ) ( ) ( )2* * 1

2GRAD , t tτ τ τ τ= = + − + −κF χ X F F A�  (4.7.8) 
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and 
 
 ( ) ( )* tτ τ= + −F F A� �  (4.7.9) 
 
The time τ  is required to lie in the internal [ ],t t δ+ , where δ  is a positive number chosen so that 

( ) ( ) ( ) ( )( )* * * *, , ,θ τ τ τ τg F F�  is in the domain of 
X

kK  for all τ  in [ ],t t δ+ .  Since (4.7.3) must 

hold for all Θκ  and κχ , we can evaluate it on *Θκ  and *
κχ .  If this evaluation is done and we then 

consider the limit of the result as tτ → , the result is 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( )1

, , , , , , , , ,
, , , tr

, , ,
tr , , , , , , 0

X X X

X

X

X X

T

T

u u u
h c

u

θ θ θ
ρ θ ρ ρ

θ

θ
θ ρ θ θ−

⎛ ⎞⎛ ⎞∂ ∂ ∂⎜ ⎟⎜ ⎟− + − ⋅ −
⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞∂⎜ ⎟⎜ ⎟+ − − ⋅ ≥⎜ ⎟⎜ ⎟∂⎜ ⎟⎝ ⎠⎝ ⎠

K K K
K

K
K K

g F F g F F g F F
g F F a A

g F

g F F
F G g F F F F l g F F g

F

� � �
�

�
� � �

(4.7.10) 

 
In (4.7.10), the quantities c , a  and A  are arbitrary.  By selecting different values of these 
quantities for fixed ( ), , ,θ g F F�  we can clearly violate (4.7.10) unless their coefficients are zero.  
Consequently, (4.7.10) yields 
 

 
( ) ( )

, , ,
, , , 0X

X

u
h

θ
θ

θ

∂
+ =

∂
K

K

g F F
g F F

�
�  (4.7.11) 

 

 
( ), , ,

X
u θ∂

=
∂

K g F F
0

g

�
 (4.7.12) 

 
and 
 

 
( ), , ,

X
u θ∂

=
∂

K g F F
0

F

�
�  (4.7.13) 

 
Because ( ), , ,θ g F F�  is an arbitrary element of the domain of 

X
kK , (4.7.12) and (4.7.13) yield the 

important result that the free energy density of the material defined by (4.6.34) is independent of g  
and F� .  Thus, 
 
 ( ),

X
uψ θ= K F  (4.7.14) 

 
and, from (4.7.11), (4.6.34) and (4.6.35), 
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 ( ) ( ),
, X

X

u
h

θ
η θ

θ
∂

= = −
∂

K
K

F
F  (4.7.15) 

 
Equation (4.7.15) shows that 

X
hK  is determined by 

X
uK . 

 
Given (4.7.14) and (4.7.15),  the inequality (4.7.3) [or (4.7.10)] reduces to 

 

 ( ) ( ) ( )1 ,
tr , , , , , , 0X

X X

Tu θ
θ ρ θ θ−

⎛ ⎞⎛ ⎞∂
⎜ ⎟⎜ ⎟− − ⋅ ≥

⎜ ⎟∂⎜ ⎟⎝ ⎠⎝ ⎠

K
K K

F
F G g F F F F l g F F g

F
� � �  (4.7.16) 

 
Equation (4.7.16) is called the residual entropy inequality.  Equations (4.7.14), (4.7.15), and 
(4.7.16) represent necessary conditions which follow from requiring that (4.7.3) hold for all 
admissible thermodynamic processes.  They are also sufficient conditions because if we assume 
(4.7.14), (4.7.15), and (4.7.16) are valid,  then (4.7.3) is necessarily true. 
 

If we set =F 0�  in (4.7.16) we obtain the heat conduction inequality 
 
 ( ), , , 0

X
l θ θ⋅ ≥K g F 0 g  (4.7.17) 

 
Equation (4.7.17) shows that when =F 0� , the angle between a nonzero temperature gradient and a 
nonzero heat flux vector must be greater than or equal to ninety degrees.  If we set =g 0  in (4.7.16) 
we obtain the mechanical dissipation inequality 
 

 ( ) ( )1 ,
tr , , , 0X

X

Tu θ
θ ρ−

⎛ ⎞⎛ ⎞∂
⎜ ⎟⎜ ⎟− ≥

⎜ ⎟∂⎜ ⎟⎝ ⎠⎝ ⎠

K
K

F
F G 0 F F F F

F
� �  (4.7.18) 

 
Exercise 4.7.1  
 
Specialize (4.6.34) by omitting the dependence on F�  and show that (4.7.14) and (4.7.15) are again 
obtained and that (4.7.16) is replaced by 
 

 ( ) ( ),
, X

X

Tu θ
θ ρ

∂
= =

∂
K

K

F
T G F F

F
 (4.7.19) 

 

 
( ) ( ), ,

X X

T
Tu uθ θ∂ ∂

=
∂ ∂

K KF F
F F

F F
 (4.7.20) 

 
and 
 
 ( ), , 0

X
θ θ− ⋅ ≥Kl g F g  (4.7.21) 
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This example defines a thermoelastic material with heat conduction. 
 
Exercise 4.7.2  
 
If in Exercise 4.7.1 a dependence on g  is omitted, show that (4.7.14), (4.7.15), (4.7.19) and 
(4.7.20) remain valid but that (4.7.21) is replaced by 
 
 ( ),

X
θ= =Kq l F 0  (4.7.22) 

 
This example defines a thermoelastic nonconductor.  Note that it is not necessarily true that θ  is 
constant for this model.  Thus, it does not correspond to the one formulated in Section 4.2. 
 
Exercise 4.7.3  
 
In an effort to produce a theory of heat conduction for which thermal disturbances propagate with 
finite, rather than infinite, speed, it is reasonable to investigate a material for which 
 
 ( ) ( ), , , , , , ,

X
kψ η θ θ= KT q g F F� �  (4.7.23) 

 
Derive the thermodynamic restrictions in this case.  Reference 25 provides information useful for 
the solution of this exercise. 
 
Exercise 4.7.4  
 
In order to include additional memory effects, the discussion in Section 4.6 suggests that higher 
time derivatives of F  be included in the response function.  Assume that 
 
 ( ) ( ), , , , , , ,

X
kψ η θ= KT q g F F F� ��  (4.7.24) 

 
Derive the thermodynamic restrictions in this case. 
 
Exercise 4.7.5  
 
In order to include additional spatial effects, the discussion in Section 4.6 suggests that higher 
gradients of Θκ  and κχ  be included in the response function.  As an example assume that 
 
 ( ) ( ), , , , , ,GRAD

X
kψ η θ= KT q g F F  (4.7.25) 

 
and show that the resulting thermodynamic restrictions are such that (4.7.25) reduces to the case of 
a thermoelastic material with heat conduction studied in Exercise 4.7.1 above except that 

XKl  in 
this case will depend upon GRADF .  Additional discussion of spatial effects can be found in Refs. 
16, 17, 18, and 19. 
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It is convenient for manipulations which will be carried out in Section 4.8 to define a 
function 

X

e
KG  of ( ), , ,θ g F F�  as follows 

 

 ( ) ( ) ( ),
, , , , , , X

X X

T
e u θ

θ θ ρ
∂

= −
∂

K
K K

F
G g F F G g F F F

F
� �  (4.7.26) 

 
If we denote the value of 

X

e
KG  by eT , we can rewrite (4.7.16) in the more simple form 

 
 tr 0e θ− ⋅ ≥T L q g  (4.7.27) 
 
where (2.2.24) and (4.6.34) have been used. 
 
 
4.8. Thermoelastic Material with Heat Conduction and Viscous Dissipation – Equilibrium 

Thermodynamic Restrictions 
 

In this section, we shall investigate certain results implied by the residual entropy 
inequality.  They correspond to special conditions which hold at thermodynamic equilibrium. 
 

Definition.  The material defined by (4.6.34) is in thermodynamic equilibrium at ( ), tX  if 

=g 0  and =F 0� . 
 
Of course, we have made the obvious assumption that elements of the form ( ), , ,θ 0 F 0  are in the 

domain of the response function 
X

kK .  If we define a function  of ( ), , ,θ g F F�  by 
 
 ( ), , , tr eθ θΦ = − ⋅g F F T L q g�  (4.8.1) 
 
it follows from (4.7.27) that  
 
 ( ), , , 0θΦ ≥g F F�  (4.8.2) 
 
and 
 
 ( ), , , 0θΦ =0 F 0  (4.8.3) 
 
Thus, the function Φ  is a minimum at a thermodynamic equilibrium state.  Consequently, it must 
be true that 
 

 
( )

0

, , ,
0

d
d

λ

θ λ λ
λ

=

Φ
=

a F A
 (4.8.4) 



Models of Material Behavior  157 

 
and 
 

 ( )2

2
0

, , ,
0

d
d

λ

θ λ λ
λ

=

Φ
≥

a F A
 (4.8.5) 

 
for all vectors a  and linear transformations A . 
 

It follows from (4.8.1), (4.7.26), (4.6.34) and (4.6.35) that 
 
 ( ) ( )( ) ( )1, , , tr , , , , , ,

X X

eθ λ λ λ θ λ λ λ θ λ λ θ−Φ = − ⋅K Ka F A F G a F A A l a F A a  (4.8.6) 

 
A simple calculation yields 
 

 
( ) ( )( ) ( )1

0

, , ,
tr , , , , , ,

X X

ed
d

λ

θ λ λ
θ θ θ

λ
−

=

Φ
= − ⋅K K

a F A
F G 0 F 0 A l 0 F 0 a  (4.8.7) 

 
and 
 

 

( ) ( )

( )

2
1

2
0 0

0

, , ,, , ,
2 tr

, , ,2

X

X

edd
d d

d
d

λ λ

λ

θ λ λθ λ λ
λ λ

θ λ λ
θ λ

−

= =

=

⎛ ⎞Φ
⎜ ⎟=
⎜ ⎟
⎝ ⎠

− ⋅

K

K

G a F Aa F A
F A

l a F A
a

 (4.8.8) 

 
where 
 

 
( ) ( ) [ ] ( ) [ ]

0

, , , , , , , , ,
X X X

e e ed
d

λ

θ λ λ θ θ
λ

=

∂ ∂
= +

∂ ∂
K K KG a F A G 0 F 0 G 0 F 0

A a
F g�  (4.8.9) 

 
and 
 

 
( ) ( ) [ ] ( )

0

, , , , , , , , ,
X X X

d
d

λ

θ λ λ θ θ
λ

=

∂ ∂
= +

∂ ∂
K K Kl a F A l 0 F 0 l 0 F 0

A a
F g�  (4.8.10) 

 
Equations (4.8.9) and (4.8.10) introduce three algebraic operations which we have not encountered 
previously.  In components, these operations are defined by 
 

 
( ) [ ] ( ), , , , , ,

X X

e e

jJ
jJ

A
F

θ θ∂ ∂
=

∂ ∂
K KG 0 F 0 G 0 F 0

A
F� �  (4.8.11) 
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( ) [ ] ( ), , , , , ,

X X

e e

j
j

a
g

θ θ∂ ∂
=

∂ ∂
K KG 0 F 0 G 0 F 0

a
g

 (4.8.12) 

 
and 
 

 
( ) [ ] ( ), , , , , ,

X X
jJ

jJ

A
F

θ θ∂ ∂
=

∂ ∂
K Kl 0 F 0 l 0 F 0

A
F� �  (4.8.13) 

 
Because a  and A  are arbitrary in (4.8.7), it follows from (4.8.4) that 
 
 ( ), , ,

X
θ =Kl 0 F 0 0  (4.8.14) 

 
and 
 
 ( ), , ,

X

e θ =KG 0 F 0 0  (4.8.15) 
 
for all ( ),θ F  in the domain of 

X
kK .  Equation (4.8.14) shows that the heat flux vector must vanish 

in equilibrium.  Equations (4.8.15) and (4.7.26) show that in equilibrium the stress is determined by 
the free energy by the formula 
 

 ( ) ( ),
, , , X

X

Tu θ
θ ρ

∂
=

∂
K

K

F
G 0 F 0 F

F
 (4.8.16) 

 
Since 

XKG  has symmetric values, it follows from (4.8.16) that the condition 
 

 
( ) ( ), ,

X X

T
Tu uθ θ∂ ∂

=
∂ ∂

K KF F
F F

F F
 (4.8.17) 

 
must hold.  The result (4.8.16) shows that the value of the function 

X

e
KG  defined by (4.7.26) is a 

symmetric linear transformation which represents the extra or nonequilibrium part of the stress.  If 
we denote the value of 

XKG  at ( ), , ,θ 0 F 0  by 0T , it follows from (4.7.26) that 
 
 0 e= +T T T  (4.8.18) 
 
where 
 

 
( )0 ,

X

Tu θ
ρ

∂
=

∂
K F

T F
F

 (4.8.19) 
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and 
 
 ( ), , ,

X

e e θ= KT G g F F�  (4.8.20) 
 
The decomposition of the stress into the sum of an equilibrium part and a nonequilibrium part is a 
characteristic of the two examples discussed in Section 4.1.  Equation (4.1.3) and (4.1.27) 
correspond to (4.8.18).  In the case of the thermoelastic solid, the stress eT  is identically zero. 
 
Exercise 4.8.1  
 
Show that the Gibbs relation for the material defined by (4.6.34) is 
 

 01 trψ ηθ
ρ

= − + T L��  (4.8.21) 

 
If equations (4.8.9) and (4.8.10) are substituted into (4.8.8) it follows from the resulting 

equation along with (4.8.5) that 
 

 

( ) [ ] ( ) [ ]

( ) [ ] ( )

1 1, , , , , ,
tr tr

, , , , , ,1 1 0

X X

X X

e eθ θ

θ θ
θ θ

− −
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟ ⎜ ⎟+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂
− ⋅ − ⋅ ≥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

K K

K K

G 0 F 0 G 0 F 0
F A A F a A

F g

l 0 F 0 l 0 F 0
a A a a

F g

�

�

 (4.8.22) 

 
 
for all ( ),a A  in ( );×i _ i i .  Equations (4.8.14), (4.8.15) and (4.8.22) are results which 
necessarily hold in equilibrium.  It is important to stress that they are generally not equivalent to the 
residual inequality (4.7.27).  In other words, (4.7.27) contains information in addition to the results 
(4.8.14), (4.8.15) and (4.8.22). 
 
Exercise 4.8.2  
 
Use (4.8.22) and derive the inequalities (4.1.7), (4.1.8) and (4.1.9) for the material defined by 
(4.1.1) through (4.1.6). 
 
Exercise 4.8.3  
 
Show that for the material defined by (4.1.1) through (4.1.6), equation (4.8.22) is equivalent to the 
residual inequality (4.7.27). 
 
Exercise 4.8.4  
 
Show that for the material defined by (4.6.34) the thermodynamic energy equation takes the form 
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 div tr e rρθη ρ= − + +q T L�  (4.8.23) 
 
Exercise 4.8.5  
 
Show that 0

RT , the equilibrium first Piola-Kirchhoff stress tensor, is given by 
 

 
( )0 ,

X
u θ

ρ
∂

=
∂

K
R R

F
T

F
 (4.8.24) 

 
Exercise 4.8.6  
 
The results in Sections 4.7 and 4.8 can be written in an alternate form by changing variables from 
( ), , ,θ g F F�  to ( ), , ,η g F F� .  Assume equation (4.7.15) can be inverted to obtain θ  as a function ˆ

X
tK  

of η  and F  and show that 
 

 ( ) ( )ˆ ,ˆ , X

X

e
t

η
θ η

η
∂

= =
∂

K
K

F
F  (4.8.25) 

 
and 
 

 
( )0

ˆ ,
X

e η
ρ

∂
=

∂
K F

T F
F

 (4.8.26) 

 
where 
 
 ( )ˆ ,

X
eε η= K F  (4.8.27) 

 
4.9. Thermoelastic Material with Heat Conduction and Viscous Dissipation – Material 

Frame Indifference 
 

In this section the axiom of material frame indifference is stated, and it is used to further 
restrict the form of the constitutive equations for the material defined by (4.6.34).  Recall from 
Section 4.3 that a change of frame is a one-to-one mapping × → ×X e X e , defined by 
 
 ( ) ( )( )* t t= + −x c Q x 0  (4.9.1) 
 
and 
 
 *t t a= −  (4.9.2) 
 
where ( )tc  is a time-dependent element of X , ( )tQ  is a time-dependent element of ( )b i , and 

a  is in e .  It is sufficient to assume here that c  and Q  are of class 2C . 
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The axiom of material frame indifference is the following statement [Ref. 3, Sect. 19]. 
 

Axiom.  The constitutive equations (4.6.8) must be invariant under changes of frame.  If 
( ), , ,ψ η T q  at ( ),X t  is given by a function 

X
fK  of the pair ( ),Θ χ , the value ( )* * * *, , ,ψ η T q  at 

( )*,X t  is given by the same function 
X

fK  of the pair ( )* *,Θ χ , where 
 
 ( ) ( ) ( ) ( )( )* * * *, , , , , ,Tt t tψ η ψ η=T q Q TQ Q q  (4.9.3) 

 
 ( ) ( )* *, ,X Xτ τΘ = Θ  (4.9.4) 
 
 ( ) ( ) ( ) ( )( )* *, ,X Xτ τ τ τ= + −χ c Q χ 0  (4.9.5) 
 
and 
 
 * aτ τ= −  (4.9.6) 
 
for all a  in e , ( )τQ  in ( )b i  and ( )τc  in X  such that ( )* *,Θ χ  is in the domain of 

X
fK . 

 
As stated in Section 4.3, it is important to realize that the reference configuration plays no 

role in the axiom.  If a reference configuration is used, it is not altered by the transformations 
(4.9.4), (4.9.5), and (4.9.6).  The physical idea behind this axiom is the feeling that translations of 
the time scale and rigid motions of the body should not influence the response functions for the 
material.  Equation (4.9.3) implies that 
 
 *ψ ψ=  (4.9.7) 
 
 *η η=  (4.9.8) 
 
 ( ) ( )* Tt t=T Q TQ  (4.9.9) 
 
and 
 
 ( )* t=q Q q  (4.9.10) 
 
Equation (4.9.7) and (4.9.9) are simple restatements of (4.3.11) and (4.3.12), respectively.  
Equation (4.9.8) is an assumption based upon the physical assumption that the entropy density is 
not altered by the transformations (4.9.4), (4.9.5) and (4.9.6).  Equation (4.9.10) follows by an 
argument similar to the one used to derive (4.9.9).  This argument is outlined in the following 
exercise. 
 
Exercise 4.9.1  
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Given (3.4.8) and * * *q = ⋅q n , assume that the quantities *q  and *n  transform by the rules 
 
 *q q=  (4.9.11) 
 
and 
 
 ( )* t=n Q n  (4.9.12) 
 
Derive the transformation (4.9.10). 
 

For the special material defined by (4.6.34), the constitutive functions depend only on 
quantities evaluated at the present time.  It is possible to show that there is no loss of generality in 
taking 0a =  in (4.9.6).  We shall adopt this choice in the following discussion.  It follows from 
(4.9.4) and (4.9.5) that 
 
 ( )* t=g Q g  (4.9.13) 
 
 ( )* t=F Q F  (4.9.14) 
 
and 
 

 ( ) ( ) ( )* t t t
⋅

= = +F Q F Q F Q F�� �  (4.9.15) 
 
Exercise 4.9.2  
 
Show that (4.9.14) implies that 
 
 ( )* t=R Q R  (4.9.16) 
 
 * =U U  (4.9.17) 
 
and 
 
 ( ) ( )* Tt t=V Q VQ  (4.9.18) 
 
Therefore, the axiom of material frame indifference states that if 
 
 ( ) ( ), , , , , ,

X
kψ η θ= KT q g F F�  (4.9.19) 

 
then 
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 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ), , , , , ,
X

Tt t t k t t t tψ η θ= +KQ TQ Q q Q g Q F Q F Q F� �  (4.9.20) 

 

for all ( )tQ  in ( )b i  and ( )tQ�  in ( );_ i i  with ( ) ( ) ( ) ( )( )TT Tt t t t= −Q Q Q Q� �  such that 

( ) ( ) ( ) ( )( ), , ,t t t tθ +Q g Q F Q F Q F� �  lies in the domain of 
X

kK .  Since the domain of 
X

kK  is a subset 

of ( ) ( );+× × ×e i Z_ i _ i i , it is clearly necessary for ( )tQ  in (4.9.20) to lie in 

( )+b i , the proper orthogonal group, introduced in Section 4.4.  A formal definition of ( )+b i  
is 
 
 ( ) ( ){ } in  and T+ += =Q Q QQ Ib i Z_ i  (4.9.21) 

 
The condition on ( )tQ�  stated above arises because ( )tQ  is orthogonal for each t .  To see this 
condition, simply note that 
 

 ( ) ( ) ( ) ( ) ( ) ( )( )TT T Tt t t t t t
⋅

= + =Q Q Q Q Q Q 0� �  (4.9.22) 
 
We have used results like (4.9.22) in Sections 2.4 and 3.4. 
 

Next, we shall deduce the solutions to equations (4.9.19) and (4.9.20) and, thus, derive the 
restrictions implied by the axiom of material frame indifference.  The procedure we shall use is one 
originated by Noll [Ref. 4; Ref. 3, Sect. 29].  As in Section 4.3, this procedure involves first 
deducing necessary conditions from (4.9.19) and (4.9.20) The resulting necessary conditions will 
then be shown to be sufficient in that (4.9.19) and (4.9.20) will be satisfied for all proper 
orthogonal necessary condition.  At any instant t  we take 
 
 ( ) Tt =Q R  (4.9.23) 
 
and 
 
 ( ) Tt = −Q R W�  (4.9.24) 
 
where W  is the spin tensor defined by (2.4.30).  Clearly ( )tQ  is in ( )+b i  and 

( ) ( )T Tt t = −Q Q R WR�  is skew-symmetric.  If (4.9.23) and (4.9.24) are substituted into (4.9.20), 
we can use (2.4.1a) and (2.4.29) to write the result in the form 
 
 ( ) ( ), , , , , ,

X

T T T Tkψ η θ= KR TR R q R g U R DRU  (4.9.25) 
 
If we now use (4.6.35), it follows from (4.9.19) and (4.9.25) that 



164  Chapter 4 

 
 ( ) ( ), , , , , ,

X X

T Tu uθ θ=K Kg F F R g U R DRU�  (4.9.26) 
 
 ( ) ( ), , , , , ,

X X

T Th hθ θ=K Kg F F R g U R DRU�  (4.9.27) 
 
 ( ) ( ), , , , , ,

X X

T T Tθ θ=K KG g F F RG R g U R DRU R�  (4.9.28) 
 
and 
 
 ( ) ( ), , , , , ,

X X

T Tθ θ=K Kl g F F Rl R g U R DRU�  (4.9.29) 
 
where the thermodynamic restrictions deduced in Sections 4.7 and 4.8 have not, as yet, been 
utilized.  Next, we wish to show that if (4.9.26) through (4.9.29) are assumed, then (4.9.19) and 
(4.9.20) are satisfied for all ( )tQ  is in ( )+b i  and all ( )tQ�  such that ( ) ( )Tt tQ Q�  is skew-
symmetric.  When this argument is complete, we will have established that (4.9.26) through 
(4.9.29) are both necessary and sufficient for (4.9.19) and (4.9.20) to be satisfied.  For the sake of 
brevity, we shall only provide the sufficient proof for (4.9.28).  The reader can work out the 
corresponding proofs for (4.9.26), (4.9.27) and (4.9.29).  From (4.9.19), (4.9.20) and (4.6.35) it 
follows that we must establish that 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )( ), , , , , ,

X X

Tt t t t t tθ θ= +K KQ G g F F Q G Q g Q F Q F Q F�� �  (4.9.30) 
 
when (4.9.28) is true.  Given (4.9.28), then 
 

 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )( ) ( )( )
( ) ( ) ( )

, , ,

, , ,

, , ,

X

X

X

T T TT

TT T T

t t t t

t t t t t t t t

t t

θ

θ

θ

+

=

=

K

K

K

G Q g Q F Q F Q F

Q RG Q R Q g U Q R Q DQ Q R U Q R

Q RG R g U R DRU R Q

� �

(4.9.31) 

 
If we substitute (4.9.28) into the right side of (4.9.31), it is easily seen that (4.9.30) is identically 
satisfied. 
 

Given (4.9.26) through (4.9.29), it is convenient in certain applications to use (2.4.1a) and 
(2.4.8) to define functions ˆ

X
uK , ˆ

X
hK , ˆ

XKG , and ˆ
XKl  by 

 
 ( ) ( )1 2 1 2 1 2ˆ , , , , , ,

X X

T T T Tu uθ θ − −=K KF g C F DF C F g C C F DF  (4.9.32) 
 
 ( ) ( )1 2 1 2 1 2ˆ , , , , , ,

X X

T T T Th hθ θ − −=K KF g C F DF C F g C C F DF  (4.9.33) 
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 ( ) ( )1 2 1 2 1 2 1 2 1 2ˆ , , , , , ,
X X

T T T Tθ θ− − − −=K KG F g C F DF C G C F g C C F DF C  (4.9.34) 
 
and 
 
 ( ) ( )1 2 1 2 1 2 1 2ˆ , , , , , ,

X X

T T T Tθ θ− − −=K Kl F g C F DF C l C F g C C F DF  (4.9.35) 
 
With these assumptions, the constitutive assumption (4.6.34) takes the form 
 
 ( )ˆ , , ,

X

T Tuψ θ= K F g C F DF  (4.9.36) 
 
 ( )ˆ , , ,

X

T Thη θ= K F g C F DF  (4.9.37) 
 
 ( )ˆ , , ,

X

T T Tθ= KT FG F g C F DF F  (4.9.38) 
 
and 
 
 ( )ˆ , , ,

X

T Tθ= Kq Fl F g C F DF  (4.9.39) 
 
Note that the dependence on F�  is through the special combination TF DF .  This dependency is 
consistent with the first example of Section 4.1. 
 

If we now utilize the restrictions (4.7.14) and (4.7.15), it follows that (4.9.36) and (4.9.37) 
are simplified to 
 
 ( )ˆ ,

X
uψ θ= K C  (4.9.40) 

 

 ( ) ( )ˆ ,ˆ , X

X

u
h

θ
η θ

θ
∂

= = −
∂

K
K

C
C  (4.9.41) 

 
Next, we wish to show that the restriction (4.8.17) is automatically satisfied when ψ  is given by 
(4.9.40).  The argument given in Section 4.3 to derive (4.3.35) is essentially the same as the one to 
be given here.  From (4.7.14) and (4.9.40), we have 
 
 ( ) ( )ˆ, ,

X X
u uθ θ=K KF C  (4.9.42) 

 
The derivative ˆ

X
u∂ ∂K F  is a linear transformation defined by [see (4.2.7)] 

 

 ( ) ( )
0

,,
tr X

T duu
d

λ

θ λθ
λ

=

⎛ ⎞ +∂
⎜ ⎟ =
⎜ ⎟∂⎝ ⎠

Kκ F AF
A

F
 (4.9.43) 
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for all A  in ( );_ i i .  It follows from (2.4.3) that 
 
 ( ) ( )( )2ˆ, ,

X X

T T Tu uθ λ θ λ λ+ = + + +K KF A C F A A F A A  (4.9.44) 

 
The derivative ˆ

X
u∂ ∂K C  is a symmetric linear transformation defined by 

 

 
( ) ( )

0

ˆ ˆ, ,
tr X X

u du
d

λ

θ θ λ
λ

=

⎛ ⎞∂ +
=⎜ ⎟⎜ ⎟∂⎝ ⎠

K KC C J
J

C
 (4.9.45) 

 
for all symmetric J  in ( );_ i i .  Given (4.9.43) and (4.9.45), it follows from (4.9.44) that 
 

 
( ) ( ) ( )X X

ˆ, ,
tr tr

T
T Tu uθ θ⎛ ⎞ ⎛ ⎞∂ ∂

⎜ ⎟ = +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

K KF C
A A F F A

F C
 (4.9.46) 

 
Because (4.9.46) holds for all A  in ( );_ i i , it follows that 
 

 
( ) ( )ˆ, ,

2X X

T
Tu uθ θ∂ ∂

=
∂ ∂

K KF C
F

F C
 (4.9.47) 

 
Therefore, as in Section 4.3, material frame indifference insures that (4.8.17) is satisfied.  It also 
follows from (4.9.47) and (4.8.19) that 
 

 
( )0 ˆ ,

2 X Tu θ
ρ

∂
=

∂
K C

T F F
C

 (4.9.48) 

 
The result developed in Exercises 4.3.6 and 4.3.7 can be established in the context of the material 
defined by (4.6.34).  This result is that, given (4.8.15), the following equations are equivalent: 
 
 ( ) ( ), , , , , ,

X X

Tθ θ=K KG 0 F 0 G 0 F 0  (4.9.49) 
 
 ( ) ( ), , , , , ,

X X

Tθ θ=K KG 0 QF 0 QG 0 F 0 Q  (4.9.50) 
 
for all Q  in ( )+b i , and 
 
 ( ) ( ), ,

X X
u uθ θ=K KQF F  (4.9.51) 

 
for all Q  in ( )+b i  [Ref. 4, Sect.4; Ref. 25]. 
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Exercise 4.9.3  
 
Show that the equilibrium value of the second Piola-Kirchhoff stress tensor is given by  
 

 
( )

0
,

2 X
θ∑∂

=
∂

K C
T

C
�  (4.9.52) 

 
where 
 
 ( ) ( ), ,

X XRuθ ρ θ=∑K KC C  (4.9.53) 
 
The quantity ( ),

X
θ∑K C  is the strain energy per unit of undeformed volume. 

 
Exercise 4.9.4  
 
Show that the material defined by (4.1.1) through (4.1.4) satisfies material frame indifference. 
 
Exercise 4.9.5  
 
Show that the material defined by (4.1.25) through (4.1.28) does not satisfy material frame 
indifference. 
 
Exercise 4.9.6  
 
Show that the material defined by (4.1.25) through (4.1.28) does satisfy a restricted version of 
material frame indifference where Q  is small in some sense.  Explain the physical meaning of this 
result. 
 
Exercise 4.9.7  
 
Consider a material for which 
 
 ( ), , ,

X
θ= Kq l g g F�  (4.9.54) 

 
Show that the axiom of material frame indifference applied to 

XKl  yields 
 
 ( ), , ,

X

Tθ Τ= Kq Rl R g R d U  (4.9.55) 
 
where, 
 

 
⎛ ⎞⎛ ⎞

= ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

g gd g
g g

�  (4.9.56) 
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[Refs. 26, 27]. 
 
Exercise 4.9.8  
 
Given (4.9.9), show that 
 

 ( ) ( )* Tt t=T Q TQ
D D

 (4.9.57) 
 

where T
D

 is a stress rate given by either one of the following formulas: 
 

 = − +T T WT TW
D �  (4.9.58) 

 
or 
 

 T= + +T T L T TL
D �  (4.9.59) 

 

The quantity *T
D

 is given by formulas identical to (4.9.58) or (4.9.59) with T  replaced by *T  and 
L  replaced by *L .  The stress rate (4.9.58) is called the corotational stress rate and (4.9.59) is 
called the convected stress rate.  These stress rates arise when one studies materials of the rate type 
such as the Maxwellian material [Ref. 3, Sect. 36].  Maxwellian materials will be discussed in 
Chapter V. 
 
4.10. Thermoelastic Material with Heat Conduction and Viscous Dissipation – Material 

Symmetry 
 

In Section 4.4 the concept of material symmetry was investigated for the isothermal elastic 
material.  These ideas are expanded in this section and applied to the material defined by (4.6.34).  
The material in this section is discussed in greater detail in Refs. 3, 5, 20, and 21. 
 

It is useful to attempt to assign a mathematical meaning to the intuitive idea that two 
particles are identical.  The only physical properties of the particle X  in U  are its density ρ  and 
its response function 

X
kK .  Therefore, in asserting that two particles are identical, it is reasonable to 

express this condition in terms of their densities and their response functions.  In the following 
discussion, it is convenient not to make use of the restrictions obtained in Sections 4.7, 4.8 and 4.9. 
  

Definition.  Consider two particles X  and Y  in the body U .  The particles X  and Y  are 
identical if local reference configuration XK  for X  and YJ  for Y  exist such that 
 
 ( ) ( )R Rρ ρ=X Y  (4.10.1) 
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XK

ˆ ( )κ U

( )κ U

F

FYJ

X

Y

X
Y

where ( )Rρ X  is the density of X  at ( )X=X κ  in any κ  in XK  and ( )ˆRρ Y  is the density of Y  

at ( )ˆ=Y κ Y  in any κ̂  in YJ , and 
 
 ( ) ( ), , , , , ,

X Y
k kθ θ=K Jg F F g F F� �  (4.10.2) 

 
for all ( ), , ,θ g F F�  in the domain of 

X
kK  and 

Y
kJ . 

 
Physically, the above definition attempts to convey the statement that X  and Y  are 

identical if we can find a local reference configuration for X  and a local reference configuration 
for Y  such that X  and Y  have the same density, and, for the same values of θ , g , F , and F� , we 
obtain the same values of ψ , η , T , and q .  The geometric arrangement that applies here is shown 
in the Figure 4.10.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.10.1 
 

When two particles are identical in the sense of the above definition, they are said to be 
materially isomorphic.  The local reference configurations XK  and XJ  are called the materially 
isomorphic local reference configurations for X  and Y , respectively. 
 

Next we shall investigate the case where X  in U  is materially isomorphic to itself.  If κ  
is in XK  and κ̂  is in XJ , then 
 
 ( ) ( )1ˆ ˆ −= =X κ κ X λ XD  (4.10.3) 
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XK

ˆ ( )κ U

( )κ U

F

1−FP

XJ

X

relates the position of X  in κ  to its position in κ̂  (see (4.4.3) and (4.6.25)).  For X  to be 
materially isomorphic to itself, it follows from (4.10.2) that 
 
 ( ) ( ), , , , , ,

X X
k kθ θ=K Jg F F g F F� �  (4.10.4) 

 
Next we need a formula which relates the response function 

X
kJ  to 

X
kK .  The necessary formula 

has been developed in Section 4.6.  From (4.6.30) and (4.6.33) 
 
 ( ) ( )1 1, , , , , ,

X X
k kθ θ− − =J Kg FP FP g F F� �  (4.10.5) 

 
where P  is defined by (4.6.28).  As explained in Section 4.6, equation (4.10.5) reflects the fact that 
the values of the response function are independent of the special choice of local reference 
configuration.  Figure 4.10.2 is useful when trying to justify (4.10.5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10.2 
 
Since (4.10.5) holds for all ( ), , ,θ g F F�  in the domain of 

X
kK , we can formally replace F  by FH , 

where =H P , to obtain 
 
 ( ) ( ), , , , , ,

X X
k kθ θ=J Kg F F g FH FH� �  (4.10.6) 

 
Equations (4.10.4) and (4.10.6) combine to yield the important result 
 
 ( ) ( ), , , , , ,

X X
k kθ θ=K Kg F F g FH FH� �  (4.10.7) 
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XK

ˆ ( )κ U

FXJ

X H FH

F

( )κ U

for all ( ), , ,θ g F F�  such that ( ), , ,θ g FH FH�  is in the domain of 
X

kK .  This equation and the 
condition (4.10.1) characterize the circumstance where X  is materially isomorphic to itself.  
Figure 4.10.3 indicates the geometric interpretation of (4.10.7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10.3 
 

In order that (4.10.1) be satisfied it is necessary and sufficient that 
 
 det 1=H  (4.10.8) 
 
To see this result simply use (3.1.12) for the deformation (4.10.3) and force the density at X̂  to 
equal the density at X .  Since the domain of 

X
kK  is a subset of 

( ) ( );++ × × ×e i Z_ i _ i i , we must replace (4.10.8) by the more restrictive condition 
 
 det 1=H  (4.10.9) 
 
or otherwise FH  in (4.10.7) would be in ( )−Z_ i . 
 

As explained in Section 4.4, the subset of ( )Z_ i  such that (4.10.8) is satisfied is called 

the unimodular group.  It is a subgroup of ( )Z_ i .  We shall continue to denote it by ( )h i .  
Again, as in Section 4.4, the proper unimodular group or the special linear group is the subgroup 
of ( )h i  defined by  

 
 ( ) ( ){ }in , det 1+ = =H H Hh i Z_ i  (4.10.10) 
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Definition.  The symmetry group of X  in U  relative to the local reference configuration 

XK  is the group of material isomorphisms of X  with itself. 
 

We shall denote the symmetry group of X  relative to XK  by 
XKZ .  It follows from 

(4.10.7) and (4.10.9) that 
 
 ( ) ( ) ( ){ } in  and , , , , , ,

X X X
k kθ θ+= =K K KH H g F F g FH FHZ h i � �  (4.10.11) 

 
Exercise 4.10.1  
 
Show that 

XKZ  is indeed a subgroup of ( )+h i . 
 

As the definition (4.10.11) indicates, the symmetry group 
XKZ  depends upon the local 

reference configuration XK .  In order to characterize this dependence let κ  be in XK  and κ̂  be in 
ˆ

XK .  It follows from (4.10.5) that 
 
 ( ) ( )1 1

ˆ, , , , , ,
X X

k kθ θ − −=K Kg F F g FP FP� �  (4.10.12) 

 
where P  is defined by (4.6.28).  Given (4.10.12), we can formally replace F  by FH  to obtain 
 
 ( ) ( )1 1

ˆ, , , , , ,
X X

k kθ θ − −=K Kg FH FH g FHP FHP� �  (4.10.13) 

 
For H  in 

XKZ , it follows from the definition (4.10.11), and equations (4.10.12) and (4.10.13) that 
 
 ( ) ( )1 1 1 1

ˆ ˆ, , , , , ,
X X

k kθ θ− − − −=K Kg FP FP g FHP FHP� �  (4.10.14) 

 
If we formally replace F  by FP  in (4.10.14), we see that 
 
 ( ) ( )1 1

ˆ ˆ, , , , , ,
X X

k kθ θ − −=K Kg F F g FPHP FPHP� �  (4.10.15) 

 
It follows from the definition (4.10.11), that ˆ

XKZ  is defined by 

 
 ( ) ( ) ( ){ }ˆ ˆ ˆ

ˆ ˆ ˆ ˆ in  and , , , , , ,
X X X

k kθ θ+= =K K KH H g F F g FH FHZ h i � �  (4.10.16) 

 
This result and (4.10.15) show that when H  is in 

XKZ  the corresponding element Ĥ  in ˆ
XKZ  is 

given by 
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 1ˆ −=H PHP  (4.10.17) 
 
It is convenient to express (4.10.17) by the relationship 
 
 1

ˆ XX

−= KK P PZ Z  (4.10.18) 

 
The result (4.10.18) was first proven by Noll [Ref. 4].  In group theory, the group ˆ

XKZ  would be 

called the conjugate group to 
XKZ .  We established a special case of (4.10.18) in Section 4.4.  

However, in that section we did not stress the dependence on the local reference configuration. 
 
Exercise 4.10.2  
 
Show that if H  is in ( )+b i , then Ĥ  is not generally orthogonal. 
 

The symmetry group of a particle X  is generally not related in any special way to the 
symmetry group of a particle Y .  However, if X  and Y  are materially isomorphic, then we shall 
show that the two symmetry groups are equal providing the appropriate local reference 
configurations for X  and Y  are used.  Recall that when X  and Y  are materially isomorphic, there 
exist local reference configurations XK  for X  and YJ  for Y , such that (4.10.1) and (4.10.2) hold.  
What we shall show is that 
 
 

X Y
=K JZ Z  (4.10.19) 

 
The proof is elementary.  From (4.10.11) we can write 
 
 ( ) ( ) ( ){ } in  and , , , , , ,

Y Y Y
k kθ θ+= =J J JH H g F F g FH FHZ h i � �  (4.10.20) 

 
From (4.10.2), this definition can be written 
 
 ( ) ( ) ( ){ } in  and , , , , , ,

Y X X
k kθ θ+= =J K KH H g F F g FH FHZ h i � �  (4.10.21) 

 
A comparison of (4.10.21) and (4.10.11) shows that (4.10.19) holds. 
 

Definition.  A local reference configuration XK  is undistorted if 
XKZ  contains ( )+b i  or 

( )+b i  contains 
XKZ . 

 
Another way to state this definition is to say that 

XKZ  is comparable to ( )+b i  with respect to 
inclusion. 
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Definition.  A particle X  is hemitropic if there exists an undistorted local reference 
configuration XK  such that ( )+b i  is in 

XKZ . 
 

Definition.  A particle is isotropic if it is hemitropic and if 
 
 ( ) ( ), , , , , ,

X X
θ θ= −K KG g F F G g F F� �  (4.10.22) 

 
and 
 
 ( ) ( ), , , , , ,

X X
θ θ= − −K Kl g F F l g F F� �  (4.10.23) 

 
Thus, X  is isotropic if there exists a local reference configuration such that any proper rotation is 
in the symmetry group and if 

XKG  is an even function of g  and 
XKl  is an odd function of g . 

 
Definition.  The particle X  is a solid particle if there exists an undistorted local reference 

configuration XK  such that 
XKZ  is contained in ( )+b i . 

 
It is important to stress that in order to assert that X  is a solid particle, it is necessary to put 

it in a special local reference configuration.  From the last exercise, it follows that if 
XKZ  is 

contained in ( )+b i , the conjugate group 1
ˆ XX

−= KK P PZ Z  is not generally in ( )+b i .  It 

follows from the above definitions that for an isotropic solid particle ( )
X

+=KZ b i  and (4.10.22) 
and (4.10.23) hold. 
 

Definition.  A particle X  is a fluid if it is isotropic and if ( ) ( )
X

+=KZ i h i . 
 
Exercise 4.10.3  
 
Show that if X  is a fluid particle with respect to XK , it is a fluid particle with respect to every 
local reference configuration.  Thus a fluid particle does not have a preferred reference 
configuration. 
 

It is a fact in group theory that if ( )+b i  is contained in 
XKZ  and 

XKZ  is contained in 

( )+h i , then either ( )
X

+=KZ b i  or ( )
X

+=KZ h i  [Refs. 6, 7].  Therefore, among the 
materials defined by (4.6.34), the only isotropic ones are either fluids or solids. 
 

Next we wish to derive the explicit restrictions imposed by material symmetry for the cases 
where X  is an isotropic solid particle and where X  is a fluid particle.  If we incorporate the 
definition (4.10.11) with the restrictions deduced in Sections 4.7, 4.8, and 4.9,  it follows from 
(4.9.39), (4.9.40), (4.9.38) and (4.10.11) that 

XKZ  is a subset of ( )+h i  such that 
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 ( ) ( )ˆ ˆ, ,

X X

Tu uθ θ=K KC H CH  (4.10.24) 
 
 ( ) ( )ˆ ˆ, , , , , ,

X X

T T T T T T T Tθ θ=K KG F g C F DF HG H F g H CH H F DFH H  (4.10.25) 
 
and 
 
 ( ) ( )ˆ ˆ, , , , , ,

X X

T T T T T T Tθ θ=K Kl F g C F DF Hl H F g H CH H F DFH  (4.10.26) 
 
If we assume that X  is an isotropic solid and XK  is its undistorted reference configuration, then 

(4.10.24), (4.10.25), and (4.10.26) hold for all H  is ( )+b i  and, in addition, ˆ
XKG  is an even 

function of g  (see (4.10.22)) and ˆ
XKl  is an odd function of g  (see (4.10.23)).  These facts will be 

used to establish the following results: 
 

For an isotropic solid particle in its undistorted reference configuration, 
 
 ( )ˆ ,

X
uψ θ= K B  (4.10.27) 

 
 ( ), , ,

X
θ= KT G g B D  (4.10.28) 

 
and 
 
 ( ), , ,

X
θ= Kq l g B D  (4.10.29) 

 
where B  is the left Cauchy-Green tensor defined by (2.4.2) and, for all Q  in ( )+b i , 
 
 ( ) ( )ˆ ˆ, ,

X X

Tu uθ θ=K KB QBQ  (4.10.30) 
 
 ( ) ( ), , , , , ,

X X

T T Tθ θ=K KQG g B D Q G Qg QBQ QDQ  (4.10.31) 
 
and 
 
 ( ) ( ), , , , , ,

X X

T Tθ θ=K KQ l g B D l Qg QBQ QDQ  (4.10.32) 
 
In addition 

XKG  is an even function of g  and 
XKl  is an odd function of g . 

 
In order to establish (4.10.27) through (4.10.32) we follow an argument similar to the one 

used to establish. (4.4.35) We take T=H R  in (4.10.24) and use (2.4.6) to obtain the necessary 
condition 
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 ( ) ( )ˆ ˆ, ,

X X
u uθ θ=K KC B  (4.10.33) 

 
Thus, in the case under discussion, ˆ

X
uK  has the same value on ( ),θ B  as on ( ),θ C .  Given 

(4.10.33), it follows from (4.10.24) and (2.4.6) that, for all Q  in ( )+b i , 
 
 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, , , ,

X X X X

T T Tu u u uθ θ θ θ= = =K K K KQBQ QRCR Q C B  (4.10.34) 
 
because QR  is also in ( )

X

+ = Kb i Z .  Conversely, given (4.10.30) and (4.10.33) it follows that 
(4.10.24) holds.  Consequently, (4.10.30) and (4.10.33) are equivalent to (4.10.24).  By an entirely 
similar argument, it follows from (4.10.25) and (4.10.26) that a necessary condition is 
 
 ( ) ( )1 2 1 2 1 2 1 2 1 2ˆ ˆ, , , , , ,

X X

T T Tθ θ=K KFG F g C F DF F B G B g B B DB B  (4.10.35) 
 
and 
 
 ( ) ( )1 2 1 2 1 2 1 2ˆ ˆ, , , , , ,

X X

T Tθ θ=K KFl F g C F DF B l B g B B DB  (4.10.36) 
 
Next we define the functions 

XKG  and 
XKl  by 

 
 ( ) ( )1 2 1 2 1 2 1 2 1 2ˆ, , , , , ,

X X
θ θ=K KG g B D B G B g B B DB B  (4.10.37) 

 
and 
 
 ( ) ( )1 2 1 2 1 2 1 2ˆ, , , , , ,

X X
θ θ=K Kl g B D B l B g B B DB  (4.10.38) 

 
Equation (4.10.31) follows easily because by (4.10.37) and (4.10.35), 
 

 

( )
( )
( )

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

, , ,

ˆ , , ,

ˆ , , ,

X

X

X

T T

T T T T T T T

T T T T

θ

θ

θ

=

=

K

K

K

G Qg QBQ QDQ

QB Q G QB Q Qg QBQ QB Q QDQ QB Q QB Q

QB Q G QB g QBQ QB DB Q QB Q

 (4.10.39) 

 
Because (4.10.25) holds for all Q  in ( )+b i , (4.10.39) can be rewritten as 
 

 
( )

( )1 2 1 2 1 2 1 2 1 2

, , ,

ˆ , , ,
X

X

T T

T

θ

θ=

K

K

G Qg QBQ QDQ

QB G B g B B DB B Q
 (4.10.40) 
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with the definition (4.10.37), (4.10.40) becomes the desired result (4.10.31).  Conversely, given 
(4.10.31), (4.10.35), and the definition (4.10.37), equation (4.10.25) can easily be shown to hold.  
Therefore, with the definition (4.10.37), (4.10.31), and (4.10.35) are equivalent to (4.10.25).  
Equation (4.10.32) follows by an identical argument.  Equation (4.10.27) follows from (4.10.40) 
and (4.10.33).  Equation (4.10.28) follows from (4.10.37), (4.10.35), and (4.10.38).  Finally, 
(4.10.29) follows from (4.10.38), (4.10.36), and (4.9.39).  The function 

XKG  is an even function of 

g  because ˆ
XKG  is even.  Likewise 

XKl  is an odd function of g  because ˆ
XKl  is an odd function.  

Thus, the assertion is established.  Notice that the even and odd dependence on g  follows from 
(4.10.31) and (4.10.32) if we extend the allowable orthogonal linear transformations to include all 
of ( )b i .  To see this assertion, simply take = −Q I  in (4.10.31) and (4.10.32).  If (4.10.30) 

through (4.10.32) are viewed as holding for all Q  in ( )b i , the functions ˆ
X

uK , 
XKG  and 

XKl  
are said to be isotropic. 
 
Exercise 4.10.4  
 
Show that for an isotropic solid particle in its undistorted local reference configuration 
 

 
( )ˆ ,

X
u θ

η
θ

∂
= −

∂
K B

 (4.10.41) 

 
and 
 

 
( ) ( )0

ˆ ˆ, ,
2 2X X

u uθ θ
ρ ρ

∂ ∂
= =

∂ ∂
K KB B

T B B
B B

 (4.10.42) 

 
As we used in Section 4.4, equation (4.10.30) implies the existence of a function *

X
uK  of the 

fundamental invariants of B  in addition to the temperature θ .  Therefore, 
 
 ( ) ( )*ˆ , , , ,

X X
u u I II IIIψ θ θ= =K K B B BB  (4.10.43) 

 
Exercise 4.10.5  
 
Use (4.10.43) and (4.10.42) and show that 
 
 ( ) ( ) ( )0 2

0 1 2, , , , , , , , ,I II III I II III I II IIIα θ α θ α θ= + +B B B B B B B B BT I B B  (4.10.44) 
 
where 
 

 ( ) ( )*

0

, , ,
, , , 2 X

u I II III
I II III III

III
θ

α θ ρ
∂

=
∂

K B B B
B B B B

B

 (4.10.45) 
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 ( ) ( ) ( )* *

1

, , , , , ,
, , , 2 2X X

u I II III u I II III
I II III I

I II
θ θ

α θ ρ ρ
∂ ∂

= +
∂ ∂

K B B B K B B B
B B B B

B B

 (4.10.46) 

 
and 
 

 ( ) ( )*

2

, , ,
, , , 2 X

u I II III
I II III

II
θ

α θ ρ
∂

= −
∂

K B B B
B B B

B

 (4.10.47) 

 
Note that 0T  is necessarily hydrostatic in the undistorted local reference configuration. 
 
Exercise 4.10.6  
 
Show that (4.10.32) is satisfied in the state ( ), , ,θ g B 0  by the representation  
 
 ( ) ( )2

0 1 2, , ,
X
θ σ σ σ= + +Kl g B 0 I B B g  (4.10.48) 

 
where 
 
 ( ) ( )( )2, , , , , ,I II IIIτ τσ σ θ= ⋅ ⋅ ⋅B B B g g g Bg g B g , (4.10.49) 

 
for 0,1,2τ =  [Ref. 29].  Note that a similar representation could be stated for 

XKl  in the state 

( ), , ,θ g I D  by formally replacing B  by D .  Equation (4.10.48) shows that when =D 0  in the 
undistorted local reference configuration, q  and g  have a common line of action. 
 

If we assume X  is a fluid particle, then (4.10.24), (4.10.25), and (4.10.26) hold for all H  
in ( )+h i .  In addition, ˆ

XKG  is an even function of g  and ˆ
X

lK  is an odd function of g .  These 
facts will next be used to establish the following results: 

 
For a fluid particle 

 
 ( ),

X
uψ θ ρ= K�  (4.10.50) 

 
 ( ), , ,

X
θ ρ= KT G g D�  (4.10.51) 

 
and 
 
 ( ), , ,

X
θ ρ= Kq l g D�  (4.10.52) 

 
where, for all Q  in ( )+b i , 
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 ( ) ( ), , , , , ,

X X

T Tθ ρ θ ρ=K KQG g D Q G Qg QDQ� �  (4.10.53) 
 
and 
 
 ( ) ( ), , , , , ,

X X

Tθ ρ θ ρ=K KQl g D l Qg QDQ� �  (4.10.54) 
 
In addition, 

XKG�  is an even function of g  and 
XKl�  is an odd function of g .  These conditions, 

along with (4.10.53) and (4.10.54), make 
XKG�  and 

XKl�  isotropic functions. 
 

It is convenient in this case not to work with (4.10.24), (4.10.25), and (4.10.26) as in the 
proof of (4.10.27) through (4.10.32).  We shall work with the definition (4.10.11).  Given the 
thermodynamic restrictions derived in Section 4.7, it follows that 

XKZ  is the set of linear 
transformations H  such that det 1=H  and 
 
 ( ) ( ), ,

X X
u uθ θ=K KF FH  (4.10.55) 

 
 ( ) ( ), , , , , ,

X X
θ θ=K KG g F F G g FH FH� �  (4.10.56) 

 
and 
 
 ( ) ( ), , , , , ,

X X
θ θ=K Kl g F F l g FH FH� �  (4.10.57) 

 
for all ( ), , ,θ g F F�  in the domain of 

X
kK .  Following the argument used in Section 4.4, we deduce a 

necessary condition by taking 
 
 ( )1 31 det−=H F F  (4.10.58) 
 
If (4.10.58) is substituted in (4.10.55), (4.10.56) and (4.10.57), the results are 
 
 ( ) ( )( )1 3, , det

X X
u uθ θ=K KF F I  (4.10.59) 

 
 ( ) ( ) ( )( )1 3 1 3, , , , , det , det

X X
θ θ=K KG g F F G g F I F L�  (4.10.60) 

 
and 
 
 ( ) ( ) ( )( )1 3 1 3, , , , , det , det

X X
θ θ=K Kl g F F l g F I F L�  (4.10.61) 
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where (2.2.24) has been used.  Conversely, if (4.10.59) through (4.10.61) are assumed, then 
(4.10.55) through (4.10.57) are satisfied for all H  in ( )

X

+=KZ h i .  Next, we must insure that 
material frame indifference is satisfied.  For the function 

X
uK , equations (4.9.19), (4.9.20) and 

(4.6.35) show that we must have 
 
 ( ) ( ), ,

X X
u uθ θ=K KF QF  (4.10.62) 

 
Since det det det det= =QF Q F F , (4.10.59) shows that (4.10.62) is satisfied.  If we use (3.1.12) to 
define a function 

X
uK�  of ( ),θ ρ  by 

 
 ( ) ( )1 3 1 3, ,

X X Ru uθ ρ θ ρ ρ−=K K I�  (4.10.63) 
 
then (4.10.50) is established.  Material frame indifference for 

XKG  is the restriction (4.9.30).  From 
(4.10.60), this restriction takes the form 
 

 
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 3 1 3

1 3 1 3 1 3

, , det , det

, , det , det det

X

X

T

T T

t t

t t t t t

θ

θ= +

K

K

Q G g F I F L Q

G Q g F I F Q LQ F Q Q�
 (4.10.64) 

 
By an argument similar to the one used in Section 4.9, we take ( )t =Q I  and ( )t = −Q W�  in 
(4.10.64).  With (2.4.29) and (2.4.30), the result can be written 
 
 ( ) ( )( ) ( ) ( )( )1 3 1 3 1 3 1 3, , det , det , , det , det

X X
θ θ=K KG g F I F L G g F I F D  (4.10.65) 

 
If this result is substituted back into (4.10.64), it follows that 
 

 
( ) ( )( )

( ) ( ) ( ) ( )( )

1 3 1 3

1 3 1 3

, , det , det

, , det , det

X

X

T

Tt t

θ

θ=

K

K

QG g F I F D Q

G Qg F I F Q DQ
 (4.10.66) 

 
If we define 

XKG�  by 
 
 ( ) ( )1 3 1 3 1 3 1 3, , , , , ,

X X R Rθ ρ θ ρ ρ ρ ρ− −=K KG g D G g I D�  (4.10.67) 
 
then (4.10.51) follows from (4.10.60), (4.10.65), and (4.10.67).  Equation (4.10.53) follows from 
(4.10.66) and (4.10.67).  The derivation of (4.10.52) and (4.10.54) follows by an identical 
procedure. 
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The function 
XKG�  is an even function of g  because of (4.10.22).  Likewise, 

XKl�  is an odd 
function of g  because of (4.10.23).  As with the case of an isotropic solid particle, for the fluid 
case the even and odd dependence on g  follows from (4.10.53) and (4.10.54) if we use all Q  in 
( )b i .  In order to verify this assertion simply take = −Q I  in (4.10.53) and (4.10.54). 

 
Given (4.10.50), it follows from (4.7.15) that 

 

 ( ) ( ),
, X

X

u
h

θ ρ
η θ ρ

θ
∂

= = −
∂

K
K

��  (4.10.68) 

 
for a fluid particle X .  Equation (4.10.68) is equivalent to (4.1.5).  From (4.8.19) and (4.10.50), it 
follows that 
 

 
( ) ( )0 , ,

X X

Tu uθ θ ρ ρρ ρ
ρ

∂ ∂ ∂⎛ ⎞= = ⎜ ⎟∂ ∂ ∂⎝ ⎠
K KF

T F F
F F

�
 (4.10.69) 

 
From (3.1.12) and (2.2.29), 
 

 
( ) ( ) ( )

( )

1
2

1 1 1

det det
det

det

T TT

R R

R

ρ ρ ρ

ρ ρ

−
−

− − −

⎛ ⎞ ⎛ ⎞∂ ∂∂⎛ ⎞ ⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

= = −

F F
F

F F F

F F F

 (4.10.70) 

 
With (4.10.70), (4.10.69) can be written 
 
 0 π= −T I  (4.10.71) 
 
where 
 

 
( )2 ,

X
u θ ρ

π ρ
ρ

∂
=

∂
K�  (4.10.72) 

 
is the hydrostatic pressure.  Equation (4.10.72) is equivalent to (4.1.6).  As in Section 4.4, equation 
(4.10.71) shows that the definition of a fluid particle given here is consistent with the intuitive idea 
that a fluid will not support a shear stress in equilibrium. 
 

By a representation theorem first proven by Noll, (4.10.54) and the condition that 
XKl�  be an 

odd function of g  can be shown to yield 
 
 ( ) ( )2

0 1 2, , ,
X
θ ρ σ σ σ= = + +Kq l g D I D D g�  (4.10.73) 
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where 
 
 ( ) ( )( )2, , , , , ,I II IIIτ τσ σ θ= ⋅ ⋅ ⋅D D D g g g Dg g D g  (4.10.74) 

 
for 0,1,2τ =  [Ref. 29].  The last six arguments in (4.10.74) are the six joint invariants of ( ),g D . 
 
Exercise 4.10.7  
 
Show that (4.10.73), along with (4.10.74), forces 

XKl�  to be an isotropic function. 
 

In closing this section we shall indicate how one extends a symmetric property of a particle 
to that of a body.  We have previously shown that if X  and Y  are materially isomorphic there exist 
local reference configurations XK  and YJ  such that 
 
 

X Y
=K JZ Z  (4.10.75) 

 
Definition.  A body U  is materially uniform if each pair of particles is materially 

isomorphic. 
 
We shall assume that U  is materially uniform in the remainder of these lectures.  

Therefore, for each particle X  there corresponds a local reference configuration XK  used to 
establish the material isomorphism with any other particle.  Following Noll, we define a function 
K  on U  by 
 
 ( ) XX =K K  (4.10.76) 
 
for all X  in U , were XK  is the materially isomorphic local reference configuration for X  [Ref. 
23].  The function K  is called a uniform local reference configuration.  Actually, not all materially 
uniform bodies have a uniform local reference configuration as introduced here.  However, in this 
work we shall not complicate the discussion by considering such bodies [Ref. 24]. 
 

Given that U  is materially uniform, an equation such as (4.10.2) holds for all pairs of 
particles.  Consequently, we can define a function kK  by 
 
 ( ) ( ), , , , , ,

X
k kθ θ=K Kg F F g F F� �  (4.10.77) 

 
for all ( ), , ,θ g F F�  in the domain of 

X
kK .  Because of (4.10.2), the function kK  is independent of 

the particle.  Thus, for a materially uniform body there is a single function kK  which determines 
the response of every particle in the body.  With an obvious change of notation, the reader can 
easily use (4.10.77) to simplify the results in Sections 4.7 through 4.10 to the case of a materially 
uniform body.  An immediate simplification, which follows from (4.10.75), is that for a materially 
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uniform body in its uniform local reference configuration there is a single symmetry group for the 
body.  We shall denote this group by KZ .  It is called the symmetry group for U  relative to K .  It 
should be clear to the reader that the definitions given earlier which involve the symmetry group of 
a particle X  relative to a local reference configuration can be restated as definitions for a 
materially uniform U  by replacing "local reference configuration XK " by "uniform local 
reference configuration K ", "particle X " by "body U " and "particle" by "body". 
 

Given a reference configuration κ̂  for U , we can select a particle X  and regard κ̂  as in 
ˆ

XK .  For a different particle, κ̂  would be in a different local reference configuration.  Given the 
particle X  and the corresponding materially uniform local reference configuration ( )XK , we can 

find a κ  in ( )XK  and define a linear transformation XP  in ( );_ i i  by [see (4.6.25) and 
(4.6.28)] 
 
 ( )( )1ˆGRADX

−=P κ κ XD  (4.10.78) 
 
We can carry out this construction for every X  in U .  While a single κ̂  can be used for the body, 
we could be forced to find a different κ  for each particle of the body.  Without further 
assumptions, there need not be a single function κ  such that κ  is in ( )XK  for all X  in U .  In 
any case, by carrying out the above construction for every X  in U  we can define a function 

( ): ;→P U _ i i  by 
 
 ( ) XX =P P  (4.10.79) 
 
for every X  in U .  Since there does not necessarily exist a single function κ  such that κ  is in 
( )XK  for all X  in U , we cannot combine (4.10.78) and (4.10.79) to obtain a field equation 

 
 ( )( ) ( )( )1 1ˆGRAD− −⋅ = ⋅P κ κ κD  (4.10.80) 
 

Given the reference configuration κ̂ , then from (4.6.27) 
 
 ( ) ( )ˆ

ˆ , GRAD ,t t⋅ = ⋅κF χ  (4.10.81) 
 
This equation is a field equation holding for every X̂  in ( )κ̂ U .  Given an X  in U  and a κ  in 

( )XK , we can use (4.6.26), (4.10.79) and (4.10.81) to write 
 
 ( ) ( )( ) ( )ˆ

ˆ, GRAD ,X t t X= κF χ X P  (4.10.82) 

 
By constructing (4.10.82) at every X  in U , we obtain a field equation 
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 ( ) ( )( ) ( )ˆ ˆ, GRAD ,t t⎡ ⎤⋅ = ⋅ ⋅⎣ ⎦κF χ κ P  (4.10.83) 

 
Because (4.10.80) does not hold, we cannot write a field equation 
 
 ( ) ( )( ), GRAD ,t t⋅ = ⋅κF χ κ  (4.10.84) 
 
Thus, we see from (4.10.83) the important fact that for a materially uniform body, the quantity F  
in the argument of the response function kK  is generally not a gradient of a single function κχ  
defined on some subset of X .  This fact gives rise to theories of continuous distributions of 
dislocations [Refs. 22, 23]. 
  
Exercise 4.10.8  
 
Consider an isotropic solid body in its undistorted uniform local reference configuration.  By the 
argument above, the strain is measured by the tensor B .  Show that for each X̂  in ( )κ̂ U , the 
strain is measured by 
 

 ( ) ( ) ( ) ( )ˆ ˆ
ˆ ˆ ˆ ˆ, GRAD , GRAD ,

T
t t t= κ κB X χ X G X χ X  (4.10.85) 

 
where ( )ˆG X  is a positive definite symmetric linear transformation.  How is ( )ˆG X  related to 

( )⋅P  in (4.10.83)? 
 

Clearly, some formal simplification would arise if we could adopt (4.10.80) and thus 
(4.10.84).  Whenever there exists a single reference configuration κ  such that κ  is in ( )XK  for 
all X  in U  the materially uniform body U  is said to be homogeneous.  Thus, it is for 
homogeneous materially uniform bodies that (4.10.84) holds.  It follows from (4.10.77) and 
(4.10.84), that the constitutive equations for a materially uniform homogeneous body are 
 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
, , , , , , ,

, , , ,GRAD , ,GRAD ,K

t t t t

k t t t t

ψ η⋅ ⋅ ⋅ ⋅
⋅

= Θ ⋅ ⋅ ⋅ ⋅κ κ κ

T q

g χ χ
 (4.10.86) 

 
Equation (4.10.86) holds for every X  in ( )κ U .  The single function Kk  characterizes the 
response of each particle of the materially uniform, homogeneous, body. 
 

This textbook is concerned with the introduction of a wide variety of concepts which arise 
in continuum mechanics.  Not all of these concepts will be exploited here.  In particular, in the 
remainder of this work we shall only be concerned with materially uniform homogeneous bodies. 
 
4.11. Constitutive Equations for a Compressible, Conducting, Viscous Fluid 
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From the results of Section 4.10, for a fluid body we have 
 
 ( ),uψ θ ρ= K�  (4.11.1) 
 

 ( ) ( ),
,

u
h

θ ρ
η θ ρ

θ
∂

= = −
∂

K
K

��  (4.11.2) 

 
 ( ), , ,eπ θ ρ= − + KT I G g D�  (4.11.3) 
 
and 
 
 ( ), , ,θ ρ= Kq l g D�  (4.11.4) 
 
where e

KG�  and lK
�  are isotropic functions and π  is given by (4.10.72).  The defining properties for 

isotropic functions are 
 
 ( ) ( ), , , , , ,e T e Tθ ρ θ ρ=K KQG g D Q G Qg QDQ� �  (4.11.5) 
 
and 
 
 ( ) ( ), , , , , , Tθ ρ θ ρ=K KQl g D l Qg QDQ� �  (4.11.6) 
 
for all Q  in ( )+b i , and 
 
 ( ) ( ), , , , , ,e eθ ρ θ ρ= −K KG g D G g D� �  (4.11.7) 
 
and 
 
 ( ) ( ), , , , , ,θ ρ θ ρ= − −K Kl g D l g D� �  (4.11.8) 
 
Because of (4.7.27), we must have 
 
 ( )( ) ( )tr , , , , , , 0e θ ρ θ ρ θ− ⋅ ≥K KG g D D g l g D� �  (4.11.9) 
 
From the results of Section 4.8 [see (4.8.14) and (4.8.15)], it follows from (4.11.9) that 
 
 ( ), , ,e θ ρ =KG 0 0 0�  (4.11.10) 
 
and 
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 ( ), , ,θ ρ =Kl 0 0 0�  (4.11.11) 
 
Of course, (4.11.11) is automatically satisfied by the stronger result 
 
 ( ), , ,θ ρ =Kl 0 D 0�  (4.11.12) 
 
which follows from (4.11.8) evaluated at =g 0 . 
 

Given the results (4.11.1) through (4.11.12), in this section we wish to specialize the 
constitutive equations to the case where the departure from equilibrium is small.  This argument 
will produce (4.1.3), (4.1.4), (4.1.7), (4.1.8), and (4.1.9).  For one-dimensional materials, Section 
1.9 contains a calculation similar to the one given here.  If we define a nonnegative number α  by 
 
 2 2trα = ⋅ +g g D  (4.11.13) 
 
it follows that 0α =  if and only if =D 0  and =g 0 .  Consequently, α  measures the departure 
from the equilibrium state.  It follows that 
 

 
( ) ( ) ( ) [ ]

( ) [ ] ( )2

, , ,
, , , , , ,

, , ,

e e

O

θ ρ
θ ρ θ ρ

θ ρ
α

∂
= +

∂

∂
+ +

∂

K
K K

K

G 0 0
G g D G 0 0 g

g
G 0 0

D
D

�
� �

�
 (4.11.14) 

 
and 
 

 ( ) ( ) ( ) ( ) [ ] ( )2, , , , , ,
, , , , , , O

θ ρ θ ρ
θ ρ θ ρ α

∂ ∂
= + + +

∂ ∂
K K

K K

l 0 0 l 0 0
l g D l 0 0 g D

g D

� �
� �  (4.11.15) 

 
From (4.11.10) and (4.11.11), the leading term in each expansion is zero.  In addition, it follows 
from (4.11.7) that 
 

 
( ) ( ), , , , , ,θ ρ θ ρ∂ ∂ −

= −
∂ ∂

K KG g D G g D
g g

� �
 (4.11.16) 

 
and, from (4.11.12), that 
 

 ( ), , ,θ ρ∂
=

∂
Kl 0 D

0
D

�
 (4.11.17) 

 
These two equations imply that 
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( ), , ,

0
θ ρ∂

=
∂

KG 0 0
g

�
 (4.11.18) 

 
and 
 

 ( ), , ,θ ρ∂
=

∂
Kl 0 0

0
D

�
 (4.11.19) 

 
Therefore, the expansions (4.11.14) and (4.11.15) simplify to 
 
 ( ) ( ) ( )2, , , , [ ]e Oθ ρ θ ρ α= +KG g D Λ D�  (4.11.20) 
 
and 
 
 ( ) ( ) ( )2, , , , Oθ ρ θ ρ α= − +Kl g D K g�  (4.11.21) 
 
where 
 

 ( ) ( ), , ,
,

θ ρ
θ ρ

∂
=

∂
KG 0 0

Λ
D

�
 (4.11.22) 

 
and 
 

 ( ) ( ), , ,
,

θ ρ
θ ρ

∂
= −

∂
Kl 0 0

K
g

�
 (4.11.23) 

 
The coefficients ( ),θ ρΛ  and ( ),θ ρΚ  must also satisfy the restrictions implied by (4.11.5) and 

(4.11.6).  It follows from (4.11.20) and (4.11.5) that ( ),θ ρΛ  must obey 
 
 ( )( ) ( ), [ ] , [ ]T Tθ ρ θ ρ=Q Λ D Q Λ QDQ  (4.11.24) 
 
for all Q  in ( )+b i  and all symmetric linear transformations D .  It follows from (4.11.6) and 

(4.11.21) that ( ),θ ρΚ  must obey 
 
 ( ) ( ), ,θ ρ θ ρ=QK K Q  (4.11.25) 
 
for all Q  in ( )+b i .  Equation (4.11.24) shows that ( ),θ ρΛ  is a fourth-order isotropic tensor.  

Equation (4.11.25) shows that ( ),θ ρΚ  is a second-order isotropic tensor.  As shown in Appendix 

B, ( ), [ ]θ ρΛ D  takes the form 
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 ( ) ( )( ) ( ), [ ] , tr 2 ,θ ρ λ θ ρ µ θ ρ= +Λ D D I D  (4.11.26) 
 
and ( ),θ ρΚ  takes the form 
 
 ( ) ( ), ,θ ρ κ θ ρ=K I  (4.11.27) 
 
Equations (4.11.26), (4.11.20), and (4.11.3) combine to yield 
 
 ( )( ) ( ) ( )2, tr 2 , Oπ λ θ ρ µ θ ρ α= − + + +T I D I D  (4.11.28) 
 
Equations (4.11.27), (4.11.21) and (4.11.4) combine to yield 
 
 ( ) ( )2, Oκ θ ρ α= − +q g  (4.11.29) 
 
Clearly (4.1.3) follows from (4.11.28) by neglecting the terms ( )2O α .  Likewise, (4.1.4) follows 

from (4.11.29) by neglecting the terms ( )2O α .  If (4.11.28) and (4.11.29) are substituted into 
(4.11.9), the result can be written 
 

 
( ) ( )( )( ) ( ) ( )( )

( ) ( )

222 1
3 3

3

, , tr 2 , tr tr

,
0O

λ θ ρ µ θ ρ µ θ ρ

κ θ ρ
α

θ

+ + −

+ ⋅ + ≥

D D D I

g g
 (4.11.30) 

 
In the same way that (4.8.2) implies (4.8.22), (4.11.30) yields (4.1.7), (4.1.8), and (4.1.9).  Because 
of the terms ( )3O α  in (4.11.30), (4.1.7), (4.1.8), and (4.1.9) are not equivalent to (4.11.30).  

However, if the linearized theory happens to be exact, the terms ( )2O α  in (4.11.28) and (4.11.29) 
do not appear.  In this case, we obtain 
 

 
( ) ( )( )( ) ( ) ( )( )

( )

222 1
3 3, , tr 2 , tr tr

,
0

λ θ ρ µ θ ρ µ θ ρ

κ θ ρ
θ

+ + −

+ ⋅ ≥

D D D I

g g
 (4.11.31) 

 
instead of (4.11.30).  Equation (4.11.31) is equivalent to (4.1.7), (4.1.8), and (4.1.9) because each 
term in (4.11.31) is algebraically independent of the others. 
 
Exercise 4.11.1  
 
Neglect ( )2O α  terms in (4.11.28) and (4.11.29) and derive (4.1.18) and (4.1.20). 
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Exercise 4.11.2  
 
Given (4.11.1), (4.11.2), and (4.10.72), change variables from ( ),θ ρ  to ( ),η ρ  and show that 
 
 ( ),ε ε η ρ=  (4.11.32) 
 

 ( ),ε η ρ
θ

η
∂

=
∂

 (4.11.33) 

 
and 
 

 ( )2 ,ε η ρ
π ρ

ρ
∂

=
∂

 (4.11.34) 

 
where, for notational simplicity, the function whose value is ε  has also been denoted by ε . 
 
Exercise 4.11.3  
 
The enthalpy density χ  and the Gibbs function ζ  are defined by 
 

 πχ ε
ρ

= +  (4.11.35) 

 
and 
 

 πζ ψ
ρ

= +  (4.11.36) 

 
respectively.  Show that 
 
 ( ),χ χ η π=  (4.11.37) 
 

 ( ),χ η π
θ

η
∂

=
∂

 (4.11.38) 

 

 ( ),1 χ η π
ρ π

∂
=

∂
 (4.11.39) 

 
 ( ),ζ ζ θ π=  (4.11.40) 
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 ( ),ζ θ π
η

θ
∂

= −
∂

 (4.11.41) 

 
and 
 

 ( ),1 ζ θ π
ρ π

∂
=

∂
 (4.11.42) 

 
Exercise 4.11.4  
 
Show that 
 

 
( ) ( )2, ,π η ρ θ η ρ

ρ
η ρ

∂ ∂
=

∂ ∂
 (4.11.43) 

 

 
( ) ( )1 ,, η πθ η π ρ
π η

∂
∂

=
∂ ∂

 (4.11.44) 

 

 
( ) ( )2, ,π θ ρ η θ ρ

ρ
θ ρ

∂ ∂
= −

∂ ∂
 (4.11.45) 

 
and 
 

 ( ) ( )1 ,, θ πη θ π ρ
π θ

∂
∂

= −
∂ ∂

 (4.11.46) 

 
Equations (4.11.43) through (4.11.46) are examples of Maxwell relations in thermodynamics. 
 
Exercise 4.11.5  
 
By suitable changes of variables one can obtain 
 
 ( ),ε ε θ ρ=  (4.11.47) 
 
and 
 
 ( ),χ χ θ π=  (4.11.48) 
 
Show that 
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 ( ) ( )2 , ,ε θ ρ π θ ρ
ρ π θ

ρ θ
∂ ∂

= −
∂ ∂

 (4.11.49) 

 
and 
 

 
( ) ( )1 ,, 1

θ πχ θ π ρθ
π ρ θ

∂
∂

= −
∂ ∂

 (4.11.50) 

 
Exercise 4.11.6  
 
The specific heat at constant volume, vc , and the specific heat at constant pressure, pc , are defined 
by 
 

 ( ),
vc

ε θ ρ
θ

∂
=

∂
 (4.11.51) 

 
and 
 

 ( ),
pc

χ θ π
θ

∂
=

∂
 (4.11.52) 

 
respectively.  Show that 
 

 
( ) ( )2

2

, ,
vc

η θ ρ ψ θ ρ
θ θ

θ θ
∂ ∂

= = −
∂ ∂

 (4.11.53) 

 

 ( ) ( )2

2

, ,
pc

η θ π ζ θ π
θ θ

θ θ
∂ ∂

= = −
∂ ∂

 (4.11.54) 

 

 
( ) ( )2

2 2

, ,vc θ ρ π θ ρθ
ρ ρ θ

∂ ∂
= −

∂ ∂
 (4.11.55) 

 

 
( ) ( )2

2

1 ,,pc θ πθ π ρθ
π θ

∂∂
= −

∂ ∂
 (4.11.56) 

 

 
( ) ( )

1 , ,
p vc c

θ π π θ ρρθ
θ θ

∂
∂

− =
∂ ∂

 (4.11.57) 

 
and 
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 ( ) ( ), ,p

v

c
c

π η ρ π θ ρ
ρ ρ

∂ ∂
=

∂ ∂
 (4.11.58) 

 
Equations (4.11.49), (4.11.50) and (4.11.55) through (4.11.58) are useful in thermodynamics when 
one is given a thermal equation of state ( ),π θ ρ . 
 

In the next collection of exercises the fluid is assumed to be nonviscous and a 
nonconductor.  Therefore, it is to be assumed that 
 
 0λ µ κ= = =  (4.11.59) 
 
These assumptions reduce (4.1.18) and (4.1.20) to 
 
 gradρ π= −x��  (4.11.60) 
 
and 
 
 0ρθη =�  (4.11.61) 
 
where, in addition, we have taken b  and r  to be zero.  Equation (4.11.61) shows that the motion is 
isentropic, i.e., the entropy density does not change for a particle along its path.  However, 0η =�  
implies ( )η η= X  and entropy changes from particle to particle are allowed.  If, in fact, the entropy 
density is constant, then the motion is said to be homentropic. 
 
Exercise 4.11.7  
 
Show that (4.11.60) can be written 
 
 grad gradχ θ η= − +x��  (4.11.62) 
 
Exercise 4.11.8  
 
Use (4.11.60), (4.11.61) and any necessary thermodynamic identities to show that 
 

 ( )21
2

1
t
πχ

ρ

⋅
∂

+ =
∂

x�  (4.11.63) 

 
The combination 21

2χ + x�  is called the stagnation enthalpy.  Equation (4.11.63) shows that it is a 
constant along particle paths in steady flow problems. 
 
Exercise 4.11.9  
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Show that an alternate form of (4.11.62) is 
 

 ( )21
2grad 2 grad

t
χ θ η∂

+ + + =
∂
x x Wx
� � �  (4.11.64) 

 
For steady motion, (4.11.64) is known as the Crocco-Vazsonyi theorem.  In gasdynamics, this 
theorem is used to establish that an irrotational flow ( )=W 0  does not remain irrotational when it 
passes through a curved shock wave. 
 
Exercise 4.11.10  
 
In Appendix A, the curl of a vector field was not defined.  If ( )g x  is a vector field, its curl is a 
vector field defined by 
 
 ( )( ) ( )( ) ( )( )curl grad grad

T
× = −g x u g x u g x u  (4.11.65) 

 
for all u  in i .  Equation (4.11.65) yields the following component formula: 
 

 ( ) ( )curl k
jkq j

q

g
x

ε
∂

= −
∂

x
g x i  (4.11.66) 

 
For example, the definition (4.11.65) allows us to write the term 2Wx�  in (4.11.64) in the form 
 
 2× =ζ x Wx� �  (4.11.67) 
 
where ζ  is the vorticity vector defined by 
 
 ( )curl , t=ζ x x�  (4.11.68) 
 
Utilize the definition of the curl and show that 
 

 1curl grad grad grad gradθ η π
ρ

= × = − ×x��  (4.11.69) 

 
Exercise 4.11.11  
 
Use (2.2.12) and (3.1.14) and show that 
 

 curl ρ
ρ

⋅

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

ζx Lζ��  (4.11.70) 
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and, as a result, 
 

 1 1 curlρ
ρ

⋅

− −⎛ ⎞
=⎜ ⎟

⎝ ⎠

ζF F x��  (4.11.71) 

 
Equation (4.11.70) is known as Beltrami's equation.  When combined with (4.11.69) it yields the 
vorticity equation of Vazsonyi.  For a homentropic flow, (4.11.69) and (4.11.71) yield 
 

 1

ρ ρ
− = R

R

ζζF  (4.11.72) 

 
where Rζ  is the vorticity in the reference configuration.  If =Rζ 0 , then the resulting flow is 
irrotational. 
 
Exercise 4.11.12  
 
If the velocity field x�  is given by 
 
 ( ) ( ), grad ,t tφ=x x x�  (4.11.73) 
 
where φ  is the velocity potential, then an elementary calculation shows that ( ), t =ζ x 0 .  Given 
(4.11.73), assume the flow is homentropic and derive the following compressible Bernoulli 
equation: 
 

 21
2 C

t
φ χ∂
+ + =

∂
x�  (4.11.74) 

 
where C  is a constant. 
 
Exercise 4.11.13  
 
Show that the velocity potential φ  is a solution of 
 

 ( )( ){ }
2

2
2 2grad grad grad grad grad grada

t t
φ φφ φ φ φ φ∂ ∂

∆ = + ⋅ + ⋅
∂ ∂

 (4.11.75) 

 
where 2a  is the squared speed of sound defined by 
 

 ( )2 ,
a

π η ρ
ρ

∂
=

∂
 (4.11.76) 
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4.12. Constitutive Equations for an Isotropic Linear Thermoelastic Solid with Heat 
Conduction 

 
If we omit the dependence on F�  in the constitutive assumption (4.6.34), then from the 

results of Exercise 4.7.1 and from those of Section 4.10, it follows that for an isotropic solid body 
in its undistorted uniform local reference configuration we have 
 
 ( )ˆ ,uψ θ= K B  (4.12.1) 
 

 ( ) ( )ˆ ,
,

u
h

θ
η θ

θ
∂

= = −
∂

K
K

B
B  (4.12.2) 

 

 ( ) ( )ˆ ,
, 2

u θ
θ ρ

∂
= =

∂
K

K

B
T G B B

B
 (4.12.3) 

 
and 
 
 ( ), ,θ= Kq l g B  (4.12.4) 
 
where 
 
 ( ) ( )ˆ ˆ, , Tu uθ θ=K KB QBQ  (4.12.5) 
 
and 
 
 ( ) ( ), , , , Tθ θ=K KQ l g B l Qg QBQ  (4.12.6) 
 
for all Q  in ( )+b i .  In addition, Kl  is an odd function of g .  For the case under discussion, the 
condition which corresponds to (4.10.31) is automatically satisfied because of (4.12.5) and  
(4.12.3). The proof of this assertion is essentially the same as the proof that (4.3.24) implies 
(4.3.25).  From (4.7.21), the function Kl  in (4.12.4) is restricted by 
 
 ( ), , 0θ θ− ⋅ ≥Kg l g B  (4.12.7) 
 
In the case under discussion (4.8.14) is equivalent to 
 
 ( ), ,θ =Kl 0 B 0  (4.12.8) 
 
Equation (4.12.8) is also implied by the fact that Kl  is an odd function of g . 
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Given the results (4.12.1) through (4.12.7), in this section we wish to specialize the 
constitutive equations to the case where the displacement gradients, temperature gradients, and 
temperature variations are small.  This argument will produce (4.1.25) through (4.1.29).  In 
carrying out this derivation, it is algebraically more convenient to utilize the function ûK  in 
(4.12.1) rather than the function *uK  in (4.10.43).  We shall carry out the specialization in two 
distinct steps.  First we define a positive number α  by 
 
 ( ) ( )2 22 1

04 trα θ θ= − + ⋅ + −B I g g  (4.12.9) 
 
where 0θ  is a constant.  From its definition, 0α =  if and only if =B I , =g 0  and 0θ θ= .  As a 
first step, we shall derive approximate formulas for ψ , T , and q  valid for small α .  The next step 
involves regarding B  to be a function of H  [see (2.4.14)] and then deducing an approximate 
relation for B  in terms of H .  The resulting approximate equations will be (4.1.25) through 
(4.1.29). 
 

By expansion of (4.12.1) about the state =B I  and 0θ θ= , it follows that 
 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ] ( ) ( )

2
20 0 0

0 0 02

2 2
0 0 3

0 2

ˆ ˆ ˆ, , ,1ˆ , tr
2

ˆ ˆ, ,1tr tr
2

u u u
u

u u
O

θ θ θ
ψ θ θ θ θ θ

θ θ

θ θ
θ θ α

θ

∂ ∂ ∂⎛ ⎞
= + − + − + −⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂
+ − − + − − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

K K K
K

K K

I I I
I B I

B

I I
B I B I B I

B B

(4.12.10) 

 
From (4.12.5), it follows that the tensor coefficients in (4.12.10) must be isotropic.  It then follows 
from the same arguments which produced (4.11.26) and (4.11.27) that the tensor coefficients have 
the representations 
 

 ( )0ˆ ,
2 R

u
p

θ
ρ

∂
= −

∂
K I

I
B

 (4.12.11) 

 

 ( )0ˆ ,
2 R

u θ
ρ β

θ
∂

= −
∂ ∂
K I

I
B

 (4.12.12) 

 
and 
 

 ( ) [ ] ( )( ) ( )
2

0
2

ˆ ,
4 tr 2R

u θ
ρ λ µ

∂
− = − + −

∂
K I

B I B I I B I
B

 (4.12.13) 

 
where p , β , λ , and µ  are constants.  In order to simplify the notation somewhat, we also define 
constants 0η  and vc  by 
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 ( )0
0

ˆ ,u θ
η

θ
∂

= −
∂

K I
 (4.12.14) 

 
and 
 

 ( )2
0

0 2

ˆ ,
v

u
c

θ
θ

θ
∂

= −
∂
K I

 (4.12.15) 

 
Given (4.12.11) through (4.12.15), we can rewrite (4.12.10) as 
 

 
( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )

21
0 0 0 02

0

2 2 31 1 1
02 2 4

ˆ , tr
2

tr tr tr
2

R v
R R R

cu p

O

ρρ ψ ρ θ ρ η θ θ θ θ
θ

λβ θ θ µ α

= − − − − − −

− − − + − + − +

K I B I

B I B I B I
 (4.12.16) 

 
From equations (4.12.16) and (4.12.2), 
 

 ( ) ( )20 1
0 2

0

trR R R vc Oθ θρ η ρ η ρ β α
θ

⎛ ⎞−
= + + − +⎜ ⎟

⎝ ⎠
B I  (4.12.17) 

 
It also follows from (4.12.16) that 
 

 ( ) ( ) ( )( ) ( ) ( )21 1 1 1
02 2 4 2

ˆ ,
trR

u
p O

θ
ρ β θ θ λ µ α

∂
= − − − + − + − +

∂
K B

I I B I I B I
B

 (4.12.18) 

 
By use of (3.1.12) and (2.4.2), equation (4.12.3) can be written 
 

 ( ) ( )1 2 ˆ ,
2 detR

u θ
ρ

∂
=

∂
K B

T B B
B

 (4.12.19) 

 
Exercise 4.12.1  
 
Show that 
 
 ( ) ( ) ( )1 2 21

2det 1 tr O α= − − +B B I  (4.12.20) 
 
If (4.12.18) and (4.12.20) are substituted into (4.12.19), the result is 
 
 ( ) ( )( ) ( )( ) ( ) ( )21

02 trp p p Oλ µ β θ θ α= − + + − + − − − − +T I B I I B I I  (4.12.21) 
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The isothermal version of (4.12.21) is the earlier result (4.4.52).  Equation (4.12.17) shows that 0η  
is the entropy density in the state =B I  and 0θ θ= .  Equation (4.12.21) shows that p  is the 
pressure in the state =B I  and 0θ θ= . 
 

From (4.12.4) and (4.12.8), it follows that 
 

 ( ) ( )0 2, ,
O

θ
α

∂
= +

∂
Kl 0 I

q g
g

 (4.12.22) 

 
Because of (4.12.6), the tensor ( )0, ,θ∂ ∂Kl 0 I g  is a second-order isotropic tensor.  It then follows 
that 
 

 ( )0, ,θ
κ

∂
= −

∂
Kl 0 I

I
g

 (4.12.23) 

 
Therefore, (4.12.22) can be rewritten 
 
 ( )2Oκ α= − +q g  (4.12.24) 
 
If (4.12.24) is substituted into (4.12.7), the result can be written 
 

 ( )3

0

0Oκ α
θ

⋅ + ≥g g  (4.12.25) 

 
This result implies 
 
 0κ ≥  (4.12.26) 
 
However, (4.12.26) does not imply (4.12.25) unless the term ( )2O α  in (4.12.24) is omitted. 
 

If the terms ( )2O α  in (4.12.17), (4.12.21), and (4.12.24) are omitted, the resulting 

equations correspond to a theory of thermoelasticity which is linear in 0θ θ−  and −B I .  From 
(2.4.14), −B I  is a nonlinear function of H .  In order to bring equations (4.12.16), (4.12.17), 
(4.12.21), and (4.12.24) closer to (4.1.25) through (4.1.28), we shall now define a positive number 
σ  by 
 
 ( )22

0tr Tσ θ θ= + ⋅ + −HH g g  (4.12.27) 
 
If 0σ = , it is necessary and sufficient that =g 0 , 0θ θ= , and =H 0 .  Since H  has the 
representation (2.5.17), =H 0  implies = =E R 0� � .  Thus, a small σ  corresponds to small 
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infinitesimal strains, small infinitesimal rotations, small temperature gradients, and small 
temperature variations.  It follows from (2.5.11) that 
 
 ( )22 O σ= + +B I E�  (4.12.28) 
 
It follows from (4.12.28), (4.12.27), and (4.12.9) that 
 
 ( )2 2Oα σ=  (4.12.29) 
 
and, as a result, 
 
 ( ) ( )2 2O Oα σ=  (4.12.30) 
 
If we use (4.12.28) and (4.12.30), equations (4.12.16), (4.12.17), (4.12.21), (4.12.24), and (4.12.25) 
become 
 

 
( ) ( ) ( )

( )( ) ( ) ( ) ( )

2
0 0 0 0

0

2 2 3
0

ˆ , tr
2

tr tr tr
2

R v
R R R

cu p

O

ρρ ψ ρ θ ρ η θ θ θ θ
θ

λβ θ θ µ σ

= − − − − −

− − + + +

K I E

E E E

�

� � �
 (4.12.31) 

 

 ( ) ( )0 2
0

0

trR R R vc O
θ θ

ρ η ρ η ρ β σ
θ

⎛ ⎞−
= + + +⎜ ⎟

⎝ ⎠
E�  (4.12.32) 

 
 ( )( ) ( ) ( ) ( )2

0tr 2p p p Oλ µ β θ θ σ= − + + + − − − +T I E I E I� �  (4.12.33) 
 
 ( )2Oκ σ= − +q g  (4.12.34) 
 
and 
 

 ( )3

0

0Oκ σ
θ

⋅ + ≥g g  (4.12.35) 

 
Given (2.2.21), (2.5.18), (3.2.27), (3.4.18) and (4.6.14) it follows that 

 
 ( ) ( )2trT

R p O σ⎡ ⎤= + − +⎣ ⎦T T H E I�  (4.12.36) 

 
 ( )2

R O σ= +q q  (4.12.37) 
 
and 
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 ( )2GRAD Oθ σ= +g  (4.12.38) 
 
Therefore, 
 
 ( ) ( ) ( ) ( ) ( )2

0tr 2T
R p p Oλ µ β θ θ σ= − − + + − − − +T I H E I E I� �  (4.12.39) 

 
and 
 
 ( )2GRADR Oκ θ σ= − +q  (4.12.40) 
 
Equations (4.1.25) through (4.1.28) follow from (4.12.31), (4.12.32), (4.12.39), and (4.12.40) by 
omitting the terms ( )2O σ , by selecting the datum for the free energy density to be such that 

( )0ˆ , 0
X

u θ =K I , by selecting the datum for the entropy density to be such that 0 0η =  and, finally, 
by assuming the undistorted state is a natural state, i. e. 0p = . 
 
Exercise 4.12.2  
 
Use (4.10.44) and show that 
 
 ( ) ( ) ( )0 0 1 0 2 0,3,3,1 ,3,3,1 ,3,3,1p α θ α θ α θ− = + +  (4.12.41) 
 

 ( )
0

0 1 2
, 3
3, 1

2
2 I

II III

p
I II III θ θ

λ α α α
= =
= =

⎛ ⎞∂ ∂ ∂
+ = + + + +⎜ ⎟∂ ∂ ∂⎝ ⎠ B

B B

B B B

 (4.12.42) 

 
 ( ) ( )1 0 2 0,3,3,1 2 ,3,3,1pµ α θ α θ− = +  (4.12.43) 
 
and 
 

 ( )
0

0 1 2
, 3
3, 1

I
II III
θ θ

β α α α
θ = =

= =

∂
− = + +

∂ B

B B

 (4.12.44) 

 
Exercise 4.12.3  
 
Show that the linearized equations of motion and energy take the forms 
 
 ( ) ( ) ( )GRAD Div GRADR pρ λ µ µ β θ= + + − ∆ −w w w��  (4.12.45) 
 
and 
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 0 DivR vcρ θ βθ κ θ+ = ∆w� �  (4.12.46) 
 
Exercise 4.12.4  
 
Show that 
 

 
( )( ) ( ) ( ) ( )

( ) ( )

22
0 0 0

0
2 3

ˆ , tr tr
2 2

tr

R v
R R

cu p

O

ρ λρ ψ η θ θ ρ θ θ θ
θ

µ σ

+ + = − + − +

+ +

K I E E

E

� �

�
 (4.12.47) 

 
Exercise 4.12.5  
 
Use the result (4.12.47) and show that (3.5.17) reduces to 
 

 ( )( )
( )( )

( ) ( )
2 01

2
0

R RdV p d d
t

θ θ
θ∂ ∂

−∂
Σ + ≤ ⋅ + − ⋅

∂ ∫ ∫ ∫κ κ κ
w w T I S q S� �v vc c c

 (4.12.48) 

 
where 
 

 ( ) ( ) ( )2 22
0

0

tr tr
2 2

R vcρ λθ θ µ
θ

Σ = − + +E E� �  (4.12.49) 

 
and terms ( )3O σ  are dropped.  The inequality (4.12.48) is the three dimensional version of the 
inequality which follows from (1.11.23) by noting that 0κ ≥  in (1.11.23) 
 
Exercise 4.12.6  
 
Use the result of Exercise 4.12.5 and prove that for an isolated body the total energy decreases in 
time.  This assertion is a rough statement of a precise theorem in thermoelasticity.  It is rough 
because one must provide definitions of an isolated body and of total energy. 
 
Exercise 4.12.7  
 
In Exercise 1.11.10 it was pointed out how an energy argument implies uniqueness of certain types 
of initial-boundary value problems in one-dimensional thermoelasticity.  The three-dimensional 
version is due to Wiener and was published in 1957.  As in Section 1.11, one must make certain 
assumptions about the material constants.  These assumptions are restrictions which are not 
provided by the second law of thermodynamics.  For the three-dimensional theory, these 
restrictions follow from the requirement that Σ  in (4.12.49) is a positive definite function of θ  and 
E� .  Show that this assumption implies that 
 
 0vc >  (4.12.50) 
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 2
3 0λ µ+ >  (4.12.51) 

 
and 
 
 0µ >  (4.12.52) 
 
A full discussion of uniqueness in thermoelasticity can be found in Ref. 30.  Stability arguments in 
thermoelasticity are discussed in Ref. 31. 
 
Exercise 4.12.8  
 
Decouple (4.12.45) and (4.12.46) (with 0p = ) and show that θ  and w  obey 
 

 
2

2 2
* 2

2 2 0
R v

a a
t t c t

θ κ θθ θ
ρ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− ∆ − ∆ − ∆ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (4.12.53) 

 
and 
 

 
2

2 2 2
* 2

2 2 2
R v

a a
t t c t t

κ µ
ρ ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− ∆ − ∆ − ∆ − ∆ =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

w 0  (4.12.54) 

 
where a  is the isothermal longitudinal wave speed defined by 
 

 2 2

R

a λ µ
ρ
+

=  (4.12.55) 

 
*a  is the isentropic longitudinal wave speed defined by 

 

 
2* 201 2

R R v

a
c

θλ β µ
ρ ρ

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 (4.12.56) 

 
The ratio Rµ ρ  is the squared transverse wave speed.  Equations (4.12.53) and (4.12.54) 
generalize to three dimensions the result (1.11.14).  They generalize to thermoelasticity the result 
(4.4.58).  Equations (4.12.53) and (4.12.54) were first obtained by Cristea in 1952 [Ref. 30]. 
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5 
 
 

MATERIALS WITH INTERNAL STATE VARIABLES 
 
So as to illustrate a continuum model which possesses a relaxation phenomena, this chapter is 
concerned with a class of materials known as materials with internal state variables.  Such models 
have been found to be useful in a large number of cases.  They turn out to contain the Maxwellian 
material and the Maxwell-Cattaneo heat conductor mentioned in Section 1.7.  The mathematical 
model of a relaxing gas is another example [Ref. 1].  Roughly speaking, one introduces additional 
"state variables" and requires that they obey a constitutive relation of the form of an ordinary 
differential equation.  Depending upon the phenomena to be analyzed, the state variables have 
many different physical interpretations.  Admittedly, in some cases, the physical interpretation of 
the state variables can be vague.  One example where this is not the case, is when one wishes to 
model a chemically reacting mixture without diffusion.  It turns out that the equations of balance 
given in Chapter III remain valid in this case.  In addition, one has additional equations of balance 
which gives the exchange of mass between the constituents.  In this model, the state variables are 
called "extents of reaction" and measure the progress of the independent chemical reactions taking 
place in the mixture.  Background on this particular model of a material with internal state 
variables can be found in References 2 and 3. 
 

The fundamental results for materials with internal state variables are presented in Section 
5.1.  With few exceptions, the results in Section 5.1 are taken from References 4 and 5.  Section 5.2 
shows how the results in 5.1 can be specialized so as to obtain the model of a Maxwell-Cattaneo 
heat conductor.  Section 5.3 contains a brief discussion of Maxwellian materials.  Finally, Section 
5.4 contains a discussion of several proposals for an entropy inequality which generalizes equation 
(3.5.8). 
 
5.1. Constitutive Assumptions and Thermodynamic Results 
 

The internal state variable shall be represented by the following R-tuple: 
 
 ( )1 2, 3, ,..., Rξ ξ ξ ξ=ξ  (5.1.1) 
 
It is assumed to be given by the function Ξκ of (X, t) such that 
 
 ( ), t= Ξκξ X  (5.1.2) 
 
The explicit tensor character of the state variable is not important at this point.  Its components 
could be components of vectors or tensors or, as in the chemical reaction cases, they are convenient 
collections of scalar quantities. 
 

A thermodynamic process for a material with internal state variables is the set consisting of 
the three functions , ,andθ Ξκ κ κχ and the seven functions of ( , )tX  whose values are 
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, , , , , ,rψ η ρT q and b which satisfy balance of mass (3.1.12), balance of linear momentum (3.2.20), 
and balance of thermodynamic energy (3.5.20).  The constitutive equations which define the 
material to be studied here are generalizations of the ones introduced in Section 4.6.  It is assumed 
that 
 ( ) ( ), , , , , , , ,fψ η θ=T q ξ g F F ξ  (5.1.3) 
 
The reader can see that (5.1.3) allows for the same effects presented in the model analyzed in 
Chapter IV.  In addition , , , andψ η T q are allowed to depend in a general way on the internal state 
variable ξ .  This quantity is, in turn, given by a relaxation rate law of the general form 
 
 ( ), , , ,θ=ξ ω g F F ξ  (5.1.4) 
 
Equation (5.1.4) is a consequence of (5.1.3) and our defining the component functions of f by 
 
 ( ), , , ,f u h= G l ω  (5.1.5) 
 
For notational simplicity, the dependence of f on the reference configuration and the particle has 
not been shown explicitly in equations (5.1.3), (5.1.4), and (5.1.5).  If necessary, the reader can 
make such dependencies explicit as was done in Chapter IV. 
 

By definition, an admissible thermodynamic process is a thermodynamic process which is 
consistent with the constitutive assumption (5.1.3).  As in Sections 1.8, 4.2, and 4.6, one can next 
prove a theorem to the effect that certain functions can be selected arbitrarily in the construction of 
admissible thermodynamic processes.  In the case under discussion, we must make a technical 
assumption prior to the statement of this theorem.  The assumption is that the ordinary differential 
equation (5.1.4) subject to the arbitrary initial condition  
 
 ( ) o, tΞ =κ X ξ  (5.1.6) 
 
has an unique solution on some interval [ , ]o ot t δ+  where δ is a positive number.  This assumption 
is assumed to hold for all , ,and oθκ κχ ξ .  As a consequence of this assumption, it is now true that 
for every choice of , ,and oθκ κχ ξ  there exists a unique admissible thermodynamic process.  The 
proof of this assertion is the same as the corresponding assertion in Sections 1.8, 4.2, and 4.6.  
Given , ,and oθκ κχ ξ then Ξκ  can be calculated from (5.1.4).  Equation (5.1.3) determines 

, , ,ψ η T q . Given this information, ρ can be calculated from (3.1.12), b can be calculated from 
(3.2.20) and r can be calculated from (3.5.20).  As earlier, the reference density Rρ  is regarded as 
given.  As the reader should have anticipated, we shall require that balance of angular momentum 
(3.3.10) and the entropy inequality (3.5.15) hold for every admissible thermodynamic process.  The 
symmetry of the stress tensor is achieved by selecting G to have symmetric values.  The 
restrictions implied by (3.5.15) shall be examined next. 
 

Given (5.1.3), it follows that  
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 ( ), , , ,uψ θ= g F F ξ  (5.1.7) 
 
and, as a result,  
 

 tr tr
T Tu u u uψ θ

θ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= + ⋅ + + − ⋅⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
g F F σ ξ

g F F
 (5.1.8) 

 
where σ  is the R-tuple defined by 
 

 
( ), , , ,u θ∂

=−
∂

g F F ξ
σ

ξ
 (5.1.9) 

 
and, in addition, 
 

 
R

ασ σ ξα
α=1

⋅ ∑ξ=  (5.1.10) 

 
In theories of chemical reactions, σ  is known as the chemical affinity.  Here, we shall refer to it 
simply as the affinity.  We shall see later that it is an important parameter for internal state variable 
models.  Given (5.1.8), the inequality (3.5.15) becomes  
 

 tr tr / 0
T Tu u u uhρ θ ρ ρ ρ ρ θ

θ
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞− + − ⋅ − + ⋅ + − − ⋅ ≥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

-1g F ξ F G F F l g
g F F

σ (5.1.11) 

 
where the argument of each function is ( ), , , ,θ g F F ξ .  By an argument similar to the one used in 
Section 4.6, (5.1.11) yields 
 
 ( ), ,uψ θ= F ξ  (5.1.12) 
 

 ( ) ( ), ,u
h

θ
η θ, ,

θ
∂

= = −
∂

F ξ
F ξ  (5.1.13) 

and 
 

 tr / 0
Tuρ ρ θ

⎛ ⎞⎛ ⎞∂
⋅ − − ⋅ ≥⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

-1σ ξ F G F F l g
F

+  (5.1.14) 

 
Exercise 5.1.1  

 
If the response functions are independent of F show that (5.1.14) implies  
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 ( ) ( ),
, ,

Tu θ
θ ρ

∂
= =

∂
F,ξ

T G F ξ F
F

 (5.1.15) 

and 
 
 / 0ρ θ⋅ ⋅ ≥σ ξ l g−  (5.1.16) 
 

Exercise 5.1.2  
 
If, in addition, the response functions are independent of g show that (5.1.16) yields 
 
 =q 0  (5.1.17) 
 
and 
 
 0ρ ⋅ ≥σ ξ  (5.1.18) 
 

In Section 4.8 we defined a thermodynamic equilibrium state as the state where 
and= =g 0 F 0 .  In this state, we were able to extract additional information from the residual 

entropy inequality because the function defined by (4.8.1) was a minimum at the thermodynamic 
equilibrium state.  We now wish to extend the argument of Section 4.8 so as to apply to the 
material defined by (5.1.3).  The residual entropy inequality is (5.1.14).  Therefore, we define a 
function Φ of  ( ), , , ,θ g F F ξ  
 

 ( ), , tr / 0
Tugθ ρ ρ θ

⎛ ⎞⎛ ⎞∂
Φ = ⋅ − − ⋅ ≥⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

-1F, F,ξ σ ξ F G F F l g
F

+  (5.1.19) 

 
This function has the property that  
 
 ( ), , 0θΦ ≥g F, F,ξ  (5.1.20) 
 
for all ( ), , , ,θ g F F ξ in the domain of the constitutive functions.  Unfortunately, the function Φ does 

not vanish in the state ( ), , , ,θ 0 F 0 ξ . We have the slightly more complicated situation where one 

must characterize the thermodynamic equilibrium state by requiring the term ⋅σ ξ  to vanish in 
addition to g and F being zero.  In theories of chemical reactions ( ), , , ,θ g F F ξω  is the chemical 
reaction rate. Therefore, it is reasonable to require ω  to yield a zero value in the state called the 
thermodynamic equilibrium state.  Following Truesdell, we shall call a state ( ), , , ,θ + + +0 F 0 ξ  such 
that 
 
 ( )+, , , ,θ + =ω 0 F 0 ξ 0+  (5.1.21) 
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a state of weak thermodynamic equilibrium.[Ref. 6, Chap. 6]  On the assumption that such a state 
exists, (5.1.19) yields 
 
 ( ), , , , 0θ +Φ =+0 F 0 ξ+  (5.1.22) 
 
Therefore, in a state of weak thermodynamic equilibrium, 
 

 
( )+

0

, , , ,
0

d
d

λ

θ λα λ λ λ λ
λ

+

=

Φ + + +
=

a F J A ξ+ η
 (5.1.23) 

 
and 

 
( )2 +

0

, , , ,
0

d
d

λ

θ λα λ λ λ λ
λ

+

=

Φ + + +
≥

a F J A ξ+ η
 (5.1.24) 

 
for all real numbers α, all vectors a, all linear transformations J and A and all R-tuples η. 
 
 

Exercise 5.1.3    
 
Show that (5.1.23) implies that  
 

 ( ) ( )+ , , , ,
, , 0

θ
θ

θ

+
+

∂
⋅ =

∂

+ω 0 F 0 ξ
σ F ξ

+
+  (5.1.25) 

 

 ( ) ( )+ , , , ,
, ,

θ
θ

+
+

∂
⋅ =

∂

+0 F 0 ξ
σ F ξ 0

F

+
+

ω
 (5.1.26) 

 
( ) ( )

+
+, , , ,

, ,
T

θ
θ

+ +
+ +

∂
=

∂

ω 0 F 0 ξ
σ F ξ 0

ξ
 (5.1.27) 

 

 ( ) ( ) ( )+
+ + + , , , ,

, , , , , , ,
θ

θ ρ θ
+ +

+ + + +
∂

= ⋅
∂

ω 0 F 0 ξ
l F 0 ξ σ 0 F 0 ξ

g
 (5.1.28) 

 
and  

 ( ) ( ) ( ) ( )+ +
+ + + +, , , , , , ,

, , , , ,
T

u θ θ
θ ρ θ

+ + +
+ + +

⎛ ⎞∂ ∂
⎜ ⎟= − ⋅
⎜ ⎟∂ ∂
⎝ ⎠

0 F ξ 0 F 0 ξ
G 0, F ξ F σ F 0 ξ

F F

+
+

ω
 (5.1.29) 

 
Relative to the results of Section 4.8, equations (5.1.28) and (5.1.29) might be unexpected.  We 
cannot conclude that the heat flux vanishes and that the stress is determined by the free energy 
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density whenever the material is in weak thermodynamic equilibrium.  If, however, the equilibrium 
state is such that  
 ( )+, ,θ + + =σ F ξ 0  (5.1.30) 
 
in addition to (5.1.21), then (5.1.25), (5.1.26), and (5.1.27) are satisfied, and (5.1.28) and (5.1.29) 
reduce to results similar to those in Section 4.8.  Again following Truesdell, the state 
( ), , , ,θ + +0 F 0 ξ+ such that both (5.1.21) and (5.1.30) hold is called a strong thermodynamic 
equilibrium state [Ref.6, Chap.6]. Equation (5.1.27) contains the important result that a weak 
equilibrium state is necessarily a strong one if the R R×  matrix ( ), , , , /θ + +∂ ∂ω 0 F 0 ξ ξ+  is regular.  
In chemistry a state where the reaction rate vanishes and the chemical affinity does not is called a 
false equilibrium state [Ref. 7]. 
 

We now see that without additional assumptions a weak equilibrium state is not necessarily a 
strong equilibrium state.  It is also interesting to question whether or not the vanishing of the 
affinity implies anything about the function ω .  We assume that there exists a state ( ), , , ,θ ′ ′ ′0 F 0 ξ  
such that  
 
 ( ), ,θ ′ ′ ′ =σ F ξ 0  (5.1.31) 
 
Given (5.1.31), it is necessarily true that  
 

 ( )
0

, , , ,
0

d
d

λ

θ λα λ λ λ λ
λ

=

′ ′ ′Φ + + +
=

a F J A ξ η
 (5.1.32) 

 
 

 
( )2

2

0

, , , ,
0

d
d

λ

θ λα λ λ λ λ
λ

+

=

′ ′Φ + + +
≥

a F J A ξ η
 (5.1.33) 

 
 

Exercise 5.1.4  
 
Show that (5.1.32) implies that 
 

 ( ) ( ),
, , , , 0

θ
θ

θ
′ ′ ′∂

′ ′⋅ =
∂

σ F ,ξ
ω 0 F 0 ξ  (5.1.34) 

 

 ( ) ( ),
, , , ,

θ
θ

′ ′ ′∂
′ ′⋅ =

∂
σ F ,ξ

ω 0 F 0 ξ 0
F

 (5.1.35) 
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 ( ) ( ),
, , , ,

θ
θ

′ ′ ′∂
′ ′⋅ =

∂
σ F ,ξ

ω 0 F 0 ξ 0
ξ

 (5.1.36) 

 
 ( ), , , ,θ ′ ′ ′ =l 0 F 0 ξ 0  (5.1.37) 
 
and 
 

 ( ) ( ), , ,
, ,

Tu θ
θ ρ

′ ′ ′∂
′ ′ ′ ′ ′=

∂
0 F ξ

G 0, F ξ F
F

 (5.1.38) 

 
The state ( ), , , ,θ ′ ′ ′0 F 0 ξ  such that (5.1.31) is satisfied is another candidate for the name 

equilibrium.  This alternate definition is appealing since, in this state, the heat flux vanishes and the 
stress is determined by the free energy density.  However, as (5.1.34), (5.1.35), and (5.1.36) 
indicate, the relaxation rate ( ), , , ,θ ′ ′ ′ω 0 F 0 ξ  need not be zero.  Equation (5.1.36) contains an 

important result.  It asserts that the vanishing of the affinity when g and F are zero implies 
( ), , , ,θ ′ ′ ′ω 0 F 0 ξ  that must vanish if the R R×  matrix ( ), , /θ ′ ′ ′∂ ∂σ F ξ ξ  is regular.  It follows from 

(5.1.9) that  
 

 ( ) ( )2

2

, , , ,uθ θ∂ ∂
= −

∂ ∂
σ F ξ F ξ

ξ ξ
 (5.1.39) 

 
and, thus, /∂ ∂σ ξ  is a symmetric matrix.  In chemistry, a chemical reaction which takes place with 
a zero chemical affinity is called a spinodal decomposition.  For many of the classical applications 
of this subject, the symmetric matrix ( ), , /θ∂ ∂σ F ξ ξ  is taken to be negative definite and, thus, 
regular.  In summary, the formulas in Exercises 5.1.3 and 5.1.4 combine to tell us that if at a state 

( ), , , ,θω 0 F 0 ξ  both of the R R×  matrices ( ), , , , /θ∂ ∂ω 0 F 0 ξ ξ  and ( ), , /θ∂ ∂σ F ξ ξ  are regular, then 

the vanishing of ( ), ,θσ F ξ is equivalent to the vanishing of ( ), , , ,θω 0 F 0 ξ . 
 

In the applications, it is frequently assumed that (5.1.9) can be inverted to obtain 
 
 ( )ˆ ,θξ ξ F σ= ,  (5.1.40) 
 
This equation allows for the elimination of ξ  in favor of σ  as an independent variable.  For 
example, (5.1.4) can be replaced by  
 
 ( )ˆ , ,θ ,ξ ω g F F σ= ,   (5.1.41) 
where 
 
 ( ) ( )( )ˆ , , , , , , , , , ,θ θ θ=ω g F F σ ω g F F ξ F σ     (5.1.42) 
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The inversion leading to (5.1.40) forces the R R×  matrix ( ), , /θ∂ ∂σ F ξ ξ   to be regular for all 

( ), ,θ F ξ in the domain of  σ.  Thus, the results of Exercise 5.1.4 tell us that 
 
 ( )ˆ , , , ,θ =0 F 0 0 0ω  (5.1.43) 
 

Exercise 5.1.5  
 
Define functions ˆ ˆˆ, ,and u G l by 
 
 ( ) ( )( )ˆˆ , , , , , ,u uθ θ θ=F σ F ξ F σ  (5.1.44) 
 

 ( ) ( )( )ˆˆ , , , , , , , , ,θ θ θ=G g, F F σ G g F F ξ F σ  (5.1.45) 
 
and 
 
 ( ) ( )( )ˆˆ , , , , , , , ,θ θ θ=l g, F F σ l g, F F ξ F σ  (5.1.46) 
 
Show that 
 

 ( ) ( )ˆ , ,ˆ , , ,
Tu θ

θ ρ
∂

=
∂

F 0
G 0, F 0 0 F

F
 (5.1.47) 

 
and 
 
 ( )ˆ , , ,θ =l 0, F 0 0 0  (5.1.48) 
 
Equations (5.1.43), (5.1.47), and (5.1.48) show that departures from thermodynamic equilibrium 
are measured by ,g F  and σ .  For a process with =g 0  and =F 0 , the relaxation process is driven 
by the affinity.  This statement is often argued by analogy with heat conduction models where the 
heat flux is driven by the temperature gradient.  In any case, it must be stressed that the inversion 
leading to (5.1.40) was essential to the argument leading to (5.1.43), (5.1.47), and (5.1.48). 
 

The concept of shifting equilibrium is important in applications of internal state variable 
models.  A thermodynamic process is in shifting equilibrium if =σ 0  for all time t .  In this case 
the state variable is determined from ( ),θ F by 
 
 ( )ˆ θξ ξ F 0= , ,  (5.1.49) 
 
a result which follows from (5.1.40).  In certain special cases, the shifting equilibrium case arises as 
a consequence of relaxation processes which occur very fast relative to other characteristic times in 
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the model.  A material with internal state variables is frozen if ξ  does not change in time.  This 
case is achieved formally by taking the response function ω  in (5.1.4) to be zero.  The frozen 
assumption simply reduces the model defined by (5.1.3) to the one analyzed in Sections 4.6 
through 4.12.  The frozen case can be viewed as arising from the assumption that the relaxation 
process is infinitely slow.  In this sense, it is the opposite extreme from the shifting equilibrium 
case discussed above. 
 

Exercise 5.1.6   
 
Show that 
 

 ( ) ( ) ( ) ( ) ( )1
ˆ , , , , , , , ,

, ,
u uθ θ θ θ

θ
θ θ θ

−
∂ ∂ ∂ ∂⎛ ⎞

= + ⋅⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

F σ F ξ σ F ξ σ F ξ
σ F ξ

ξ
 (5.1.50) 

 

 ( ) ( ) ( ) ( ) ( )1
ˆ , , , , , , , ,

, ,
u uθ θ θ θ

θ
−

∂ ∂ ∂ ∂⎛ ⎞
= + ⋅⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

F σ F ξ σ F ξ σ F ξ
σ F ξ

F F ξ F
 (5.1.51) 

 
and 
 

 ( ) ( ) ( )1ˆ , , , ,
, ,

u θ θ
θ−∂ ∂⎛ ⎞

=⎜ ⎟∂ ∂⎝ ⎠

F σ σ F ξ
σ F ξ

σ ξ
 (5.1.52) 

 
Exercise 5.1.7   

 
Given (5.1.40) and its implications (5.1.43), (5.1.47), and (5.1.48), show that ( )ˆ , , , ,θω g F F σ must 
obey 

 ( )ˆ , , , ,
0

θ∂⎛ ⎞
⋅ ≥⎜ ⎟∂⎝ ⎠

ω 0 F 0 0
η η

σ
 (5.1.53) 

 
for all R-tuples η . 
 

Exercise 5.1.8  
 
Consider the case where the response functions are independent of F . (See Exercise 5.1.1). Show 
that the Gibbs relation is 

 1 trψ ηθ
ρ

= − + − ⋅TL σ ξ  (5.1.54) 

 
and that balance of thermodynamic energy takes the form 
 
 div rρθη ρ ρ= − + ⋅ +q σ ξ  (5.1.55) 
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Exercise 5.1.9  

 
In the case where the response functions are independent of g and ,F the results of Exercise 5.1.2 
are valid.  A special version of this model is used to describe relaxation in gases.  It is convenient in 
this application to utilize ( , , )η F ξ  as the independent variables rather than ( , , )θ F ξ .  Follow the 
same line of reasoning utilized in Exercise 4.8.6 of Section 4.8 and show that  
 
 ( ), ,eε η= F ξ  (5.1.56) 

 ( ), ,e η
θ

η
∂

=
∂

F ξ
 (5.1.57) 

 ( ), , Te η
ρ

∂
=

∂
F ξ

T F
F

 (5.1.58) 

and 
 

 ( ), ,e η∂
= −

∂
F ξ

σ
ξ

 (5.1.59) 

 
Exercise 5.1.10  

 
In problems where the shifting equilibrium is assumed, it is often convenient to change variables 
from ( ) ( ), , to , ,η ηF ξ F σ . The formal argument is similar to that used earlier in this section to 

change variables from ( ) ( ), , to , ,θ θF ξ F σ . Carry out this change and show that 
 
 ( ), ,eε η= F σ  (5.1.60) 
 

 ( ) ( ), , , ,e η η
θ

η η
∂ ∂

= + ⋅
∂ ∂

F σ ξ F σ
σ  (5.1.61) 

and 
 

 ( ) ( ), , , ,
T

e η η
ρ

⎛ ⎞∂ ∂
= + ⋅⎜ ⎟∂ ∂⎝ ⎠

F σ ξ F σ
T F σ

F F
 (5.1.62) 

 
where 
 
 ( )η, ,ξ ξ F σ=  (5.1.63) 
 
is the inverse of (5.1.59). 

 
The restrictions on the constitutive equations of this section implied by material frame 

indifference can be read off from the results of Section 4.9 for those cases where the state variable 
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is invariant under the transformation (4.9.1).  The chemical reaction model is an example of this 
case. The restrictions implied by material symmetry follow the same formal development as 
presented in Section 4.10.  For the sake of brevity, we shall not record material frame indifference 
and material symmetry restrictions in this section.  Reference 5 does contain a discussion of these 
two concepts for the chemical reaction model. 
 

As an illustration of a model of a material with internal state variables, consider an isotropic 
linear thermoelastic solid with heat conduction and a single internal state variable.  This example is 
the one developed in Section 4.12 except that an internal state variable is present. The linearization 
is about a state of uniform temperature ,oθ no deformation, i.e., x = X and zero affinity.  It is 
readily shown that such a state is a solution of the field equations if we take  
 
 =b 0  (5.1.64) 
and 
 0r =  (5.1.65) 
 
The equation which replaces (4.12.31) is  
 

 

( ) ( ) ( )

( )( ) ( ) ( ) ( )
( )( ) ( )

2

2 2 21
2

, , tr
2

tr tr tr
2

tr

R v
R R o o R o o o

o

o R

o o o

cu p ρρ ψ ρ θ ξ ρ η θ θ θ θ
θ

λβ θ θ µ ρ ξ ξ

δ ξ ξ θ θ α ξ ξ
ο

= − − − − −

− − + + + Φ −

+ − − + −

I E

E E E

E

 (5.1.66) 

 
 
where, for simplicity, the order term has been omitted.  Of course the symbol Φ in (5.1.66)(5.1.66) 
should not be confused with the function Φ introduced in (5.1.19).  In (5.1.66) the coefficients, Φ, 
δ, and α arise from the dependence of ψ on the single state variable ξ .  The quantity oξ  is the 
value of the internal state variable in the reference state.  The reference state has a zero affinity.  
Therefore, from (5.1.49), 
 
 ( ), ,0o oξ ξ θ= I  (5.1.67) 
 
Given (5.1.66), it follows from (5.1.13), (5.1.15) and (5.1.9) that the entropy density, the stress and 
the affinity are given by  
 

 ( )tro
R R o o

o

θ θρ η ρ η β δ ξ ξ
θ
−

= + + − −E  (5.1.68) 

 
 ( ) ( ) ( ) ( ) ( )0tr 2T

R op pλ µ β θ θ α ξ ξ= − − + + − − − + −T I H E I E I I  (5.1.69) 
 
and 
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 ( ) ( ) tro o
R R

δ ασ ξ ξ θ θ
ρ ρ

= − Φ − − − − E  (5.1.70) 

 
Because we are assuming (5.1.9) can be inverted to obtain (5.1.40), the linearized expression 
(5.1.70) must be invertible for  oξ ξ− .  Therefore, the material constant Φmust obey 
 
 0Φ ≠  (5.1.71) 
 
Below, we shall see reasons to require that Φ be positive. 
 

The heat flux vector and the relaxation rate are taken to be 
 
 GRADR κ θ= −q  (5.1.72) 
and 
 

 lξ σ
τ

=
Φ

 (5.1.73) 

 
With the exception of the order term, equation (5.1.72) is formally the same as (4.12.40).  In a 
linearized isotopic model a dependence of the heat flux vector on a scalar such as ξ  is not allowed.  
Equation (5.1.73) is our special case of (5.1.41).  It follows from the assumption that the departure 
from thermodynamic equilibrium is small and that the material is isotropic.  In our case, where we 
have a single state variable and a dependence on F is not allowed, (5.1.41) reduces to 
 
 ( )ˆ , , ,ω θ σξ= g F  (5.1.74) 
 
The constant 1/τΦ  in (5.1.73) is related toω̂ by the formula 
 

 ( )ˆ , , ,01 oω θ
τ σ

∂
=

Φ ∂
0 I

 (5.1.75) 

 
Given (5.1.75), equation (5.1.53) tells us that  
 

 1 0
τ

≥
Φ

 (5.1.76) 

 
Equation (5.1.76) is one of the implications of the entropy inequality (5.1.16).  The other 
implication is, as in Section 4.12, 
 
 0κ ≥  (5.1.77) 
 
Because, from (5.1.70), 
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 ( ), ,o oσ θ ξ
ξ

∂
Φ =

∂
I

 (5.1.78) 

 
it is easily shown that the coefficient τ in (5.1.73) is given by 
 

 ( ), ,1 o oIω θ ξ
τ ξ

∂
= −

∂
0

 (5.1.79) 

 
The physical dimension of τ  is time and it represents a characteristic relaxation time in our model.  
After we establish that Φ is positive, (5.1.76) will tell us that 1/τ  cannot be negative. 
 

Exercise 5.1.11  
 
Show that the linearized field equations which replace (4.12.45) and (4.12.46) are 
 
 ( ) ( ) ( )= + GRAD Div GRAD GRADR pρ λ µ µ β θ α ξ+ − ∆ +w w w -  (5.1.80) 
 
 DivR v ocρ θ βθ δξ κ θ+ = ∆w -  (5.1.81) 
 
and 
 

 ( ) ( ) Divo o
R R

δ ατξ ξ ξ θ θ
ρ ρ

= − − − − −
Φ Φ

w  (5.1.82) 

 
Exercise 5.1.12  

 
Show that (4.12.47) is replaced by 
 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2 21
2

, , tr
2

tr tr tr
2

R v
R o R o o

o

R o

cu p ρρ ψ η θ θ ρ θ ξ θ θ
θ

λ µ ρ ξ ξ α ο

+ − = − −

+ + + Φ − + ξ− ξ

I E+

E E E
 (5.1.83) 

 
Exercise 5.1.13  

 
Show that (4.12.48) is replaced by  
 

 ( )( ) ( )
( )( )

( )
21

R2
o

R
o

dV p d d
t κ κ κ

θ θ
θ∂ ∂

∂ −
Σ+ ≤ ⋅ + − ⋅

∂ ∫ ∫ ∫w w T I S q S
c c c

 (5.1.84) 

where 
 

 ( ) ( ) ( ) ( ) ( )2 22 21
2tr tr tr

2 2
R v

o R o o
o

cρ λθ θ µ ρ ξ ξ α ξ ξ
θ

∑ = − + + + Φ − + −E E E  (5.1.85) 
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Exercise 5.1.14  

 
Show that Σ is positive definite if and only if 
 
 0vc >  (5.1.86) 
 
 0Φ >  (5.1.87) 
 
 0µ >  (5.1.88) 
 
and 

 
2 2 0

3R

αλ µ
ρ

− + >
Φ

 (5.1.89) 

 
Equation (5.1.87) is the result anticipated above.  Given (5.1.87) and (5.1.76), we see that 
 

 1 0
τ

≥  (5.1.90) 

 
Also, given (5.1.89), it is true that 
 
 2

3 0λ µ+ >  (5.1.91) 
 
The material properties , , ,andvc β λ µ arise in the representation (5.1.66) and are thus partial 
derivatives of ψ computed at constant ξ .  For example, 
 

 ( )2

2

, , o
v o

u
c

θ ξ
θ

θ
∂

=
∂

I
 (5.1.92) 

 
It is convenient to refer to these properties as frozen properties.  In the limit where the characteristic 
time τ approaches infinity, (5.1.82) reduces to oξ ξ=  and, thus, .oξ ξ=  This limit is the frozen limit 
for our model.  The limit  0τ →  yields, from (5.1.73), 0σ = .  This limit is the shifting equilibrium 
limit for our model. 
 

Exercise 5.1.15  
 
Show that in the shifting equilibrium case 
 

 
2

2 tro
R R o R v o

R o R

c δ θ θ δαρ η ρ η ρ θ β
ρ θ ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞−
= + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟Φ Φ⎝ ⎠ ⎝ ⎠⎝ ⎠

E  (5.1.93) 

and 
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 ( ) ( ) ( ) ( )
2

tr 2T
R o

R R

p pα δαλ µ β θ θ
ρ ρ

⎛ ⎞ ⎛ ⎞
= − − + − + − − + −⎜ ⎟ ⎜ ⎟Φ Φ⎝ ⎠ ⎝ ⎠

T I H E I E I  (5.1.94) 

 
These results enable us to identify 2 2/v o Rc θ δ ρ+ Φ  as the specific heat at constant volume for the 
shifting equilibrium case.  In addition 2/ and /R Rβ δα ρ λ α ρ+ Φ − Φ are the shifting equilibrium 
properties which replace the frozen properties β  and λ .  Equation (5.1.89) asserts that the shifting 
equilibrium bulk modulus must be positive. 
 

Exercise 5.1.16  
 
Take 0p =  and decouple (5.1.80), (5.1.81) and (5.1.82).  The results are that ,θ ξ  and w  obey 
 
 0L Lθ ξ= =  (5.1.95) 
and 
 

 
2

2 0
R

L
t

µ
ρ

⎛ ⎞∂
− ∆ =⎜ ⎟∂⎝ ⎠

w  (5.1.96) 

 
where L is the differential operator  
 

 

2 2
*2 2

2 2

2 2 2
*2 2

2 2 21

R v

o

R v R v

L a a
t t t c t

s s
c t t c t

κτ
ρ

θ δ κ
ρ ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= − ∆ − ∆ − ∆⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ + − ∆ − ∆ − ∆⎜ ⎟ ⎜ ⎟ ⎜ ⎟Φ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (5.1.97) 

 
The four constants * *, , , anda a s s are longitudinal wave speeds defined by  
 

 2 2

R

a λ µ
ρ
+

=  (5.1.98) 

 

 *2 21 2o

R R v

a
c

θλ β µ
ρ ρ

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 (5.1.99) 

 

 
2

2 1 2
R R

s αλ µ
ρ ρ

⎛ ⎞
= − +⎜ ⎟Φ⎝ ⎠

 (5.1.100) 

 
and 
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2

2
*2

2

2

1 2Ro

R R R
v o

R

s
c

αδβ
ρα θλ µ

ρ ρ ρ δθ
ρ

⎛ ⎞⎛ ⎞
⎜ ⎟+⎜ ⎟Φ⎜ ⎟⎝ ⎠= − + +⎜ ⎟Φ ⎛ ⎞
⎜ ⎟+⎜ ⎟⎜ ⎟Φ⎝ ⎠⎝ ⎠

 (5.1.101) 

 
The speeds *anda a are frozen isothermal and frozen isentropic speeds, respectively.  Likewise s 
and s* are equilibrium isothermal and equilibrium isentropic speeds, respectively.  It is possible to 
show that 
 
 *2 *2 2a s s> >  (5.1.102) 
 
and 
 *2 2 2a a s> >  (5.1.103) 
 

There are many aspects of the model with internal state variables which have not been 
touched on in this chapter.  In particular, the stability theorems established by Coleman and Gurtin 
should be of interest to the reader.[Ref. 4] 
 
5.2. Maxwell -Cattaneo Heat Conductor 
 

As an illustration of a material with internal state variables which is not a reacting mixture 
or something similar, in this section we shall formulate the model of a Maxwell-Cattaneo heat 
conductor.  The fundamental constitutive equation for this model is, in one dimensional form, 
(1.7.16).  Therefore, we shall present an argument leading to a constitutive equation for the heat 
flux of the form 
 
 τ κ+ = −q q g  (5.2.1) 
 

For simplicity, in this section we shall deal with the case of a rigid heat conductor.  This 
assumption allows us to avoid a discussion of material frame indifference.  A rigid material at rest 
is a material constrained by the deformation  
 
 =x X  (5.2.2) 
 
Given (5.2.1), the entropy inequality (3.5.15) (or (3.5.16)) reduces to 
 
 ( ) / 0ρ ψ ηθ θ− + − ⋅ ≥q g  (5.2.3) 
 
and the stress T is completely indeterminate in so far as the entropy inequality is concerned.  
Balance of mass in the form (3.1.12) reduces to 
 
 Rρ ρ=  (5.2.4) 
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and we shall take Rρ  to be a constant.  The thermodynamic energy equation (3.5.20) reduces to 
 
 ( ) div rρθη ρ ψ ηθ ρ= − + − +q  (5.2.5) 
 
in the rigid case. 
 

The constitutive equations to be investigated are as follows: 
 
 ( ) ( ), , , ,fψ η θ=q g q  (5.2.6) 
 
Relative to (5.1.3), it can be seen that we have taken the state variable to be the heat flux vector q.  
Because of this choice, we have in effect taken the function l  in (5.1.5) to be the identity function. 
 

Given (5.2.6), we can write 
 
 ( ), ,uψ θ= g q  (5.2.7) 
and, thus, 
 

 u u gψ θ
θ

∂ ∂
= + ⋅ − ⋅

∂ ∂
σ q

g
 (5.2.8) 

 
where the affinity σ  is the vector defined by  
  

 ( ), ,u θ∂
−

∂
g q

σ
q

=  (5.2.9) 

 
If (5.2.8) is combined with (5.2.3), the same argument used in Section 5.2 yields  

 
 ( ),uψ θ= q  (5.2.10) 
 

 ( ) ( ),
,

u
h

θ
η θ

θ
∂

= = −
∂

q
q  (5.2.11) 

 
And 
 
 / 0ρ θ⋅ − ⋅ ≥σ ω q g  (5.2.12) 
 
where the relaxation rate law has been written  
 
 ( ), ,θ=q ω g q  (5.2.13) 
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For simplicity, we shall consider the equilibrium state defined by = =g σ 0  and assume 
(5.2.9) can be inverted to obtain  
 
 ( )ˆ ,θ=q q σ  (5.2.14) 
 
where (5.2.10) has been used to justify the omission of the argument g from (5.2.9).  As in Section 
5.1, the assumed inversion leading to (5.2.14) implies that the linear transformation ( ), /θ∂ ∂σ q q  is 
regular.  Given (5.2.14), we can replace (5.2.13) by  
 
 ( )ˆ , ,θ=q ω g σ  (5.2.15) 
where 
 
 ( ) ( )ˆ ˆ, , , , ( , )θ θ θ=ω g σ ω g q σ  (5.2.16) 
 

Exercise 5.2.1  
 
Show that in thermodynamic equilibrium the following results must hold: 
 
 ( )ˆ , ,θ =ω 0 0 0  (5.2.17) 
 
 ( )ˆ ,θ =q 0 0  (5.2.18) 
 

 ( ) ( )ˆ ˆ, , ,θ θ
ρθ

∂ ∂
=

∂ ∂
q 0 ω 0 0

σ g
 (5.2.19) 

and 

 ( )ˆ , ,
0

θ∂⎛ ⎞
⋅ ≥⎜ ⎟∂⎝ ⎠

ω 0 0
a a

σ
 (5.2.20) 

 
for all vectors a. 
 

In order to reach a linear isotropic model, we take  
 

 ( ) ( ) ( ) ( )2 1, ,
2 2

v
o o o o

o

cu uψ θ θ η θ θ θ θ
θ

= = − − − − + Φ ⋅q 0 q q  (5.2.21) 

 
Essentially, (5.2.21) is a special case of (5.1.66).  Relative to (5.1.66) we see that the terms arising 
from the deformation have been omitted and, in addition, a term like ( )( )o oδ ξ ξ θ θ− − has been 
omitted.  Such a term is not allowed by material symmetry where ξ  is the vector q.  As in Section 
5.1, (5.2.21) is proposed as being a valid approximation about a state of constant temperature oθ  
and zero affinity.  Given (5.2.21), it then follows from (5.2.11) and (5.2.9) that  
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 ( )o
o

o
vc

θ θ
η η

θ
−

= +  (5.2.22) 

and 
 
 Φσ q= −  (5.2.23) 
 
Of course, the coefficient Φ must be nonzero in order to construct the inversion (5.2.14).  Also, 
given (5.2.23), the thermodynamic restriction (5.2.18) is satisfied.  It follows from (5.2.21) and 
(5.2.22) that 

 ( ) ( ) ( )2
o o

o

1,
2 2

v
o

cuψ η θ θ θ θ θ
θ

+ − = + − + Φ ⋅0 q q  (5.2.24) 

 
Roughly speaking, equation (5.2.24) is a special case of (5.1.83).  The corresponding special case 
of (5.1.84) is 
 

 
( )

( )
( )

o

o

dV d
t κ κ

θ θ
θ∂

−∂
Σ ≤− ⋅

∂ ∫ ∫ q S
c c

 (5.2.25) 

 
where 
 

 ( )2
o

o

1
2 2

vc θ θ
θ

Σ = − + Φ ⋅q q  (5.2.26) 

 
The usual requirement that Σ  be positive definite yields 
 
 0vc >  (5.2.27) 
and 
 0Φ >  (5.2.28) 
 

For small departures from the state  andoθ θ= σ 0=  (5.2.15) is replaced by 
 

 1 α
τ

=
Φ

q σ g−  (5.2.29) 

 
where (5.2.17) has been used.  It follows from (5.2.28) and (5.2.20) that 
 

 1 0
τ

≥  (5.2.30) 

 
Based upon the results in Section 5.1, the reader will recognize τ as the characteristic relaxation 
time.  It follows from (5.2.19), (5.2.29) and (5.2.23) that 
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 1

o

α
ρθ

=
Φ

 (5.2.31) 

 
Given (5.2.28), it follows from (5.2.31) that 
 
 0α >  (5.2.32) 
 
If we define a coefficient κ by 
 
 κ τα=  (5.2.33) 
 
then (5.2.29) reduces to 
 
 τ κ+ = −q q g  (5.2.34) 
 
where (5.2.23) has been used.  Equation (5.2.34) is the Maxwell-Cattaneo constitutive equation 
(5.2.1). 
 

Exercise 5.2.2  
 
Show that the temperature is a solution of the following partial differential equation: 
 

 
vc

κτθ θ θ
ρ

+ = ∆  (5.2.35) 

 
For τ = 0, (5.2.35) reduces to the parabolic diffusion equation.  For τ ≠ 0, (5.2.35) is the hyperbolic 
damped wave equation.  The wave-like solutions of (5.2.35) are the advantage of the Maxwell-
Cattaneo constitutive equation over the Fourier equation (1.7.15).  The Fourier constitutive 
equation implies that thermal disturbances propagate with infinite velocity. 
 
The reader interested in additional details about the thermodynamic basis of the Maxwell-Cattaneo 
model should consult reference 8. 
 
5.3. Maxwellian Materials 
 

As an additional illustration of a material with internal state variables which is not a reacting 
mixture or something similar, in this section we shall formulate the model of what is known as a 
Maxwellian material.  The arguments in this section should be viewed as a generalization of the 
model discussed in Section 4.2.  As in Section 4.2, all thermodynamic effects will be suppressed by 
forcing the temperature to be constant.  Unlike Section 4.2, we will allow the constitutive equations 
to depend upon F . In this way, viscous dissipation is included in the model.  The constitutive 
equations which define the Maxwellian material are as follows: 
 
 ( ) ( ), , ,fψ =T F F T  (5.3.1) 
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As should be apparent to the reader, we have taken the internal state variable to be the Cauchy 
stress tensor T.  Because of this choice, we have in effect taken the response function G in (5.1.5) 
to be the identity function.  Of course, equation (1.7.12) is a one dimensional special case of the 
constitutive equation for T implied by (5.3.1). 
 

Given (5.3.1), we can write 
 
 ( ), ,uψ = F F T  (5.3.2) 
and 
 
 ( ), ,ΩT = F F T  (5.3.3) 
 

Exercise 5.3.1  
 
Show that the axiom of material frame indifference forces the functions u and Ω to obey the 
following restrictions: 
 
 ( ) ( ), , , , Tu u= +F F T QF QF QF QTQ  (5.3.4) 
and 
 
 ( ) ( ), , , ,T T T T+ + = +Q F F T Q QTQ QTQ QF QF QF QTQΩ Ω  (5.3.5) 
 
for all Q(t) in d (i) and ( )tQ  in ( ; )_ i i  with ( ) ( ) ( ) ( )( )T T Tt t t t= −Q Q Q Q such that 

( ), , T+QF QF QF QTQ is in the domain of u and Ω. 
 

Exercise 5.3.2  
 
Show that (5.3.4) and (5.3.5) force the two response functions to obey the following relationships: 
 
 ( ) ( ), , , ,T Tu u=F F T U R DRU R TR  (5.3.6) 
and 
 
 ( ) ( ), , , ,T T T= + −F F T R U R DRU R TR R WT TWΩ Ω  (5.3.7) 
 
Note that (5.3.7) and (5.3.3) can be combined to obtain 
 
 ( ), ,T T T− + =T WT TW R U R DRU R TR RΩ  (5.3.8) 
 
The left side of (5.3.8) is the co-rotational stress rate introduced in Exercise 4.9.8. 
 



228  Chapter 5 

Exercise 5.3.3  
 
By an argument entirely similar to one given in Section 4.9, constitutive functions with argument 
( ), ,T TU R DRU R TR can be replaced by functions of the argument ( ), , .T TC F DF F TF   Provide the 

details of this argument and show that one can define functions ˆˆ andu Ω  such that (5.3.2) and 
(5.3.3) can be replaced by 
 
 ( )ˆ , ,T Tuψ = C F DF F TF  (5.3.9) 
and 
 
 ( )ˆ , ,T T T T+ + =T L T TL FΩ C F DF F TF F  (5.3.10) 
 
The left side of (5.3.10)(5.3.10) is the convected stress rate introduced in Exercise 4.9.8. 
 

Exercise 5.3.4  
 
Show that (5.3.10) is equivalent to  
 

 ( ) ( )ˆ , ,T T T
⋅

=F TF C C F DF F TF CΩ  (5.3.11) 
 
Equation (5.3.11) suggests an alternate formulation of the results of this section by taking the 
internal state variable to be the tensor .TF TF  
 

Exercise 5.3.5  
 
Adopt definitions like those given in Section 4.10 and show that for an isotropic solid in its 
undistorted reference configuration 
 
 ( ), ,uψ = B D T  (5.3.12) 
and 
 
 ( ), ,T+ + =T L T TL B D TΩ  (5.3.13) 
 
where the functions andu Ω  are defined analogous to the definition (4.10.37) and they must obey 
the following restrictions: 
 
 ( ) ( ), , , ,T T Tu u=B D T QBQ QDQ QTQ  (5.3.14) 
and 
 
 ( ) ( ), , , ,T T T T=Q B D T Q QBQ QDQ QTQΩ Ω  (5.3.15) 
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for all orthogonal linear transformations Q in ( )+d i . 
 

Exercise 5.3.6  
 
Show that for a fluid the constitutive equations (5.3.2) and (5.3.3) reduce to 
 
 ( ), ,uψ ρ= D T  (5.3.16) 
and 
 
 ( ), ,T ρ+ + =T L T TL D TΩ  (5.3.17) 
 
where andu Ω  must obey the following restrictions: 
 
 ( ) ( ), , , ,T Tu uρ ρ=D T QDQ QTQ  (5.3.18) 
and 
 
 ( ) ( ), , , ,T T Tρ ρ=Q D T Q QDQ QTQΩ Ω  (5.3.19) 
 
for all orthogonal linear transformations Q in d(i)+. 
 

Next, we wish to investigate the thermodynamic restrictions implied by the entropy inequality 
on the constitutive equations (5.3.1).  It follows from (5.3.2) that 
 

 tr tr tr
T Tu u uψ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
F F T

F F T
 (5.3.20) 

 
If (5.3.2), (5.3.3) and (5.3.20) are substituted into the isothermal form of the entropy 

inequality, (4.2.1), it is readily shown that 
 
 ( ),uψ = F T  (5.3.21) 
and 
 

 ( ) ( )( )-1tr tr , 0
Tuρ ρ

⎛ ⎞⎛ ⎞∂
− + ≥⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

F T F F Σ F T Ω F F T
F

, ,  (5.3.22) 

 
where the affinity Σ  is a symmetric linear transformation defined by 
 

 u∂
=

∂
Σ

T
 (5.3.23) 
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We shall restrict ourselves to the case where the equilibrium state is defined by =Σ =F 0 and 
assume (5.3.23) can be inverted to yield 
 

 ( )ˆ̂ ,=T T F Σ  (5.3.24) 
 
As in Section 5.1, the assumed inversion leading to (5.3.24) implies that the symmetric fourth order 
tensor ( ), /∂ ∂Σ F T T is regular as a linear transformation from ( ; )_ i i  to ( ; )_ i i .  Given 
(5.3.24), we can replace (5.3.3) by 
 

 ( )ˆ̂ , ,=T Ω F F Σ  (5.3.25) 
 
where 
 

 ( ) ( )( )ˆ ˆˆ ˆ, , , ,=Ω F F Σ Ω F F T F Σ,  (5.3.26) 

 
By the same type of argument, we can replace (5.3.21) by 
 
 ( )ˆ̂ ,uψ = F Σ  (5.3.27) 
where 
 

 ( ) ( )( )ˆˆ ˆˆ , , ,u u=F Σ F T F Σ  (5.3.28) 

 
Exercise 5.3.7  

 
Show  that 
 

 ( ) ( ) ( ) ( )ˆˆ ˆˆ , , ,
, rk

rk
jJ jJ jJ

u u T
F F F

∂ ∂ ∂
= − ∑

∂ ∂ ∂
F Σ F T F Σ

F T  (5.3.29) 

 
Exercise 5.3.8  

 
Show that in thermodynamic equilibrium the following results must hold: 
 

 ( )ˆ̂ =F 0 0 0Ω , ,  (5.3.30) 
 

 ( ) ( )ˆ̂ ,ˆ̂ ,
T

u
ρ

∂
=

∂
F 0

T F 0 F
F

 (5.3.31) 
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 ( ) ( )1
ˆ̂, , ,

tr [ ] tr [ ] 0ρ−
⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂⎛ ⎞ ⎜ ⎟⎜ ⎟+ =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

K F 0 Ω F 0 0
F B A B A

Σ F
 (5.3.32) 

and 
 

 ( )ˆ̂ , ,
tr [ ] 0

⎛ ⎞⎛ ⎞∂⎜ ⎟⎜ ⎟ ≥
⎜ ⎟∂⎜ ⎟

⎝ ⎠⎝ ⎠

Ω F 0 0
B B

Σ
 (5.3.33) 

 
for all linear transformations A  and symmetric linear transformations B.  The quantity ( ),K F Σ in 
(5.3.31) is defined by 
 

 ( ) ( ) ( )

( )ˆ̂ ,

,ˆ̂, ,
Tu

ρ
=

∂
= −

∂
T T F Σ

F T
K F Σ T F Σ F

F
 (5.3.34) 

 
The formal similarity of the results in this section with those in Section 5.2 should be clear to 

the reader.  The results (5.3.29), (5.3.30), (5.3.31) and (5.3.32) are similar in form to (5.2.17), 
(5.2.18), (5.2.19) and (5.2.20), respectively.  The reduction of the results in this section to various 
linear isotropic models can also be carried out.  The results are formally very complicated and will 
not be developed here.  The reader interested in additional information on the thermodynamics of 
Maxwellian materials should consult Reference 9. 
 

The literature on continuum mechanics is full of models which utilize internal state variables.  
The example contained in this section and in Sections 5.1 and 5.2 represent a short introduction to 
an extensive subject.  The reader interested in additional references on models which utilize 
internal state variables might wish to consult References 10 through 13. 
 
5.4. Closing Remarks-Alternate Forms of the Entropy Inequality 
 

As the results in Chapter 4 and 5 illustrate, one can make productive use of the entropy 
inequality in the formulation of constitutive equations for materials.  The entropy inequality we 
have adopted was introduced in Sections 1.6 and 3.5.  In this closing section of this textbook, it is 
useful to comment on other forms of the entropy inequality which have been introduced in the 
continuum mechanics literature as generalizations of the one given here. 

 
Müller, in Ref. 14, proposed that (3.5.8) be replaced by 

 

 
( ) ( ) ( ), , ,t t t

rdv d dvρρη
θ

⋅

∂
≥ − ⋅ +∫ ∫ ∫χ χ χ

h s
c c c

 (5.4.1) 

 
where h is the entropy flux vector.  In the formulation proposed by Müller, h, like , ,ψ η T , and q, is 
prescribed by a constitutive equation.  In reference 14, Müller discusses cases where the restrictions 
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implied by his entropy inequality, combined with material frame indifference and material 
symmetry considerations, implies that h is given by 
 

 
θ

=
qh  (5.4.2) 

 
The motivation for replacing (3.5.8) with the more general statement (5.4.1) can be found in 
Reference 15.  In this work, Müller formulated a model of a Maxwellian gas for the purpose of 
obtaining a model which did not imply that temperature disturbances propagate with infinite 
velocity.  In effect, his results show that if one does not assume in advance the special relationship 
(5.4.2), a result could be obtained which was sufficiently general to allow temperature disturbances 
to propagate with finite velocity.  More importantly, results were obtained by Müller in Ref. 15 
which were self consistent with predictions of the kinetic theory of gases. 
 

Exercise 5.4.1  
 
Given (5.4.1), show that (3.5.15) must be replaced by 
 

 ( ) tr div grad 0ρ ψ ηθ θ θ
θ

− + + + − ⋅ ≥
qTL p  (5.4.3) 

 
where the vector p is given by 
 

 
θ

= −
qp k  (5.4.4) 

 
 

Exercise 5.4.2  
 
Consider a material defined by the following special constitutive equations: 
 
 ( ) ( ), , , , , ,fψ η θ=T q p g F  (5.4.5) 
 
Derive all of the restrictions implied by (5.4.3) on these constitutive equations.  Among the results 
you should obtain is that the vector p must take the special form 
 
 ( ) ( )1det GRADR θ θ θ−≡ = +p F F p Ω ω  (5.4.6) 
 
where ( )θΩ  is an arbitrary skew-symmetric linear transformation and ( )θω  is an arbitrary vector.  
Therefore, in this case p is not necessarily zero. 
 

Exercise 5.4.3  
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Show that if the material defined by (5.4.5) is an isotropic material, then it follows from (5.4.6) that 
p is zero, and thus (5.4.2) is obeyed. 
 

Müller has also formulated a procedure for exploiting the entropy inequality (5.4.1) by taking 
the external heat supply density r and the body force density b to be zero [Ref. 16]. 
 

Gurtin and Williams, in Ref. 17, proposed an entropy inequality of the form 
 

 
( ) ( ) ( ), , ,t t t

rdv d dvρρη
ϕ θ

⋅

∂
≥ − ⋅ +∫ ∫ ∫χ χ χ

q s
c c c

 (5.4.7) 

 
where ϕ is a surface-relevant temperature and θ is a volume-relevant temperature. 
 

Exercise 5.4.4  
 
Given (5.4.7) show that (3.5.15) must be replaced by 
 

 ( ) 2tr 1 div grad 0θ θρ ψ ηθ ϕ
ϕ ϕ

⎛ ⎞
− + + + − − ⋅ ≥⎜ ⎟

⎝ ⎠
TL q q  (5.4.8) 

 
Exercise 5.4.5  

 
Consider a material defined by the following special constitutive equations: 
 
 ( ) ( ), , , , ,grad ,fψ η θ ϕ ϕ=T q F  (5.4.9) 
 
Derive all of the restrictions implied by (5.4.9) on these constitutive equations.  In particular, 
determine for the material defined by (5.4.9) whether or not one can prove that θ ϕ= .  Additional 
discussion of the Gurtin and Williams proposal can be found in references 18 through 22. 
 

Green and Laws, in reference 23, proposed an entropy inequality in the form 
 

 
( ) ( ) ( ), , ,t t t

rdv d dvρρη
ϕ ϕ

⋅

∂
≥ − ⋅ +∫ ∫ ∫χ χ χ

q s
c c c

 (5.4.10) 

 
where ϕ is positive valued function that is prescribed by a constitutive equation.  In the Green and 
Laws formulation the temperature θ is regarded as a primitive quantity which need not necessarily 
equal the quantity ϕ.  They do require that ϕ equals θ  in equilibrium. 
 

Exercise 5.4.6  
 
Given (5.4.10) show that (3.5.15) must be replaced by 
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 ( ) 1 grad 0ρ ψ ηϕ ϕ
ϕ

− + + ⋅ ≥tr TL - q  (5.4.11) 

 
when ψ  is defined by 
 
 ψ ε ηϕ= −  (5.4.12) 
 
rather than by (3.5.14). 
 

Exercise 5.4.7  
 
Green and Laws considered the case where the material is at rest and proposed the following 
constitutive equations: 
 
 ( ) ( ), , , , ,gradfψ η ϕ θ θ θ=q  (5.4.13) 
 
Substitute (5.4.13) into (5.4.11) and show that 
 

 0ψ ϕη
θ θ

∂ ∂
+ =

∂ ∂
 (5.4.14) 

 

 
grad grad

ψ ϕ ϕρ η
θ θ ϕ θ

⎛ ⎞∂ ∂ ∂
+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠

q 0  (5.4.15) 

 

 
grad grad

ϕ ϕ
θ θ

∂ ∂
⊗ + ⊗ =

∂ ∂
q q 0  (5.4.16) 

and 
 

 grad 0ψ ϕ ϕρ η θ θ
θ θ θ ϕ

∂ ∂ ∂⎛ ⎞− + − ⋅ ≥⎜ ⎟∂ ∂ ∂⎝ ⎠
q  (5.4.17) 

 
 
 

Exercise 5.4.8  
 
Assume that the heat flux vector q is not zero and prove from the above results that 
 
 ( ),ϕ ϕ θ θ=  (5.4.18) 

Exercise 5.4.9  
 
On the assumption that / 0and / gradϕ θ ψ θ∂ ∂ ≠ ∂ ∂ ≠ 0,  show that q must obey 
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grad grad

T

θ θ
⎛ ⎞∂ ∂

=⎜ ⎟∂ ∂⎝ ⎠

q q  (5.4.19) 

 
Green and Laws pointed out that for a material which conducts heat according to a Fourier 

law of the form 
 
 ( ), gradθ θ θ= −q K  (5.4.20) 
 
equation (5.4.19) shows that the conductivity tensor K must be symmetric. The formulation of 
Green and Laws has been used by Green and Lindsay to formulate a thermoelasticity theory. [Ref. 
24]. This theory has been adopted by Prevost and Tao to numerically analyze transient phenomena 
in thermoelastic solids.[Ref. 25] 
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Appendix A 
 
 
Mathematical Preliminaries 
 
 
The purpose of this appendix is to present certain of the mathematical concepts which are necessary 
for the study of three dimensional continuum mechanics.  This appendix contains a brief discussion 
of vector spaces, linear transformations, inner product spaces, Euclidean point spaces, cross 
products, determinants, tensor algebra and vector calculus. 
 

This appendix is not self contained.  The reader is assumed to be familiar with the concept 
of a set, with the definition of the Cartesian product of a finite number of sets and with the 
definition of a function.  In addition, the reader is assumed to be familiar with the algebraic concept 
of a group.  These concepts, as well as the others discussed below, can be found in any linear 
algebra textbook. 
 
A.1.  Vector Spaces 
 

In this appendix, the symbol e denotes the set of real numbers.  Subsets of e  are defined 
as follows: 

1. { }|  is in and 0x x x= < < ∞>e e  , 

2. { }( , ) |  is in and a b x x a x b= < <e  , 

3. { }[ , ] |  is in and a b x x a x b= ≤ ≤e  , 

4. { }[ , ) |  is in and a b x x a x b= ≤ <e   
and 
 

5. { }( , ] |  is in and a b x x a x b= < ≤e   
 

Definition.  Let i  be a set and e  the set of real numbers.  i is a real vector space if it 
satisfies the following rules: 
 

(a) There exists a binary operation in i called addition and denoted by +  such that 
1. ( ) ( )+ + = + +u v w u v w , for all , ,u v w  in i . 
2. + = +u v v u , all ,u v  in i . 
3. There exists an element 0 in i such that + =u 0 u , for all u  in i . 
4. For every u  in i , there exists an element −u in i such that ( )+ − =u u 0 . 

 
(b) There exists an operation called scalar multiplication in which every real number 

λ in e can be combined with every u  in i to give an element λu  in i such 
that 

1. ( ) ( )λ µ λµ=u u . 
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2. ( )λ µ λ µ+ = +u u u . 
3. ( )λ λ λ+ = +u v u v . 
4. 1 =u u , for all ,λ µ  in e and all ,u v in i . 

 
Since we shall always deal with vector spaces over the real numbers, we shall simply call i  a 
vector space.  The elements of i  are called vectors and the elements of e  are called scalars. 
 

Example.  A common example of a vector space is the set of all ordered n-tuples of real 
numbers 
 
 1 2 3( , , ,..., )nu u u u=u  (A.1.1) 
 
where n  is a fixed integer.  Addition of two n-tuples is defined by 
 

 1 2 1 2

1 1 2 2

   ( , ,..., ) ( , ,..., )
( , ,..., )

n n

n n

u u u v v v
u v u v u v

+ = +
= + + +

u v
 (A.1.2) 

 
and multiplication by a scalar is defined by 
 
 1 2 3( , , ,..., )nu u u uλ λ λ λ λ=u  (A.1.3) 
 
With these definitions, it is easy to prove that the set of all n-tuples form a vector space.  We shall 
always denote this vector space by ne . 
 

Theorem A.1.1.  λ =v 0  if and only if 0λ =  or =v 0 . 
 

Theorem A.1.2.  ( ) .λ λ− = −v v  
 

Theorem A.1.3.  ( ) .λ λ− = −v v  
 
The proofs of these theorems can be found in any linear algebra text. 
 

It is easily shown by induction that the distributive laws in the definition of a vector space 
imply 
 

 
1 1

( )
k k

k j
j j
λ λ

= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ ∑v v  (A.1.4) 

 
and 
 

 
1 1

k k

j j
j j

λ λ
= =

=∑ ∑v v  (A.1.5) 
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for k equal to a finite integer. 
 

Definition.  A set of  ( 1)p p ≥  vectors { }1 2, ,..., pv v v  of a vector space i  is said to be  

linearly dependent if there exist coefficients { }1,..., pλ λ  not all zero such that 
 

 
1

p

j j
j

λ
=

=∑ v 0  

 
Definition.  A set of  ( 1)p p ≥  vectors { }1 2, ,..., nv v v  of a vector space i  is said to be 

linearly independent if they are not linearly dependent.. 
 

Therefore, for a set of p linearly independent vectors, the sum 
 

 
1

p

j j
j

λ
=

=∑ v 0  

 
implies 
 
 1 2 0pλ λ λ= = ⋅⋅⋅ = =  
 

Definition.  A vector space i  is said to have dimension n (n a positive integer) if there 
exists a set of n linearly independent vectors and if there exists no set of more than n linearly 
independent vectors. 
 

In this discussion we are only interested in vector spaces which have a finite number of 
independent vectors, i.e., finite dimensional vector spaces.  We shall write dimi  to denote the 
dimension of a vector space i . 
 

Definition.  A set of n linearly independent vectors in i is said to be a basis of i  when 
dimn = i . 

 
Theorem A.1.4,  If  { }1,..., ne e  is a basis for i , then every vector v  in i can be written 

 

 
1

n

j j
j
ξ

=

=∑v e  (A.1.6) 

 
 Proof .  Since dimn = i , it follows that the n + 1 vectors { }1, ,..., nv e e  are linearly 
dependent.  Therefore 
 

 
1

n

j j
j

λ λ
=

+ =∑v e 0  
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where at least one coefficient is not zero.  In particular 0λ ≠ , because 0λ =  would require that 

1 2 0nλ λ λ= = ⋅⋅⋅ = = , and then we would be forced to conclude that the n + 1 vectors { }1, ,..., nv e e  
are linearly independent.  Therefore, 
 

 
1 1

( / )
n n

j j j j
j j

λ λ ξ
= =

= − ≡∑ ∑v e e  

 
Theorem A.1.5.  The scalars { }1 2, ,..., nξ ξ ξ  in the formula 

 

 
1

n

j j
j

ξ
=

=∑v e  

 
are unique. 
 

Proof.  Let 
 

 
1 1

n n

j j j j
j j

ξ ξ
= =

′= =∑ ∑v e e  

 
Therefore, 
 

 
1
( )

n

j j j
j

ξ ξ
=

′− =∑ e 0  

 
 
Since the vectors { }1,..., ne e  are linearly independent, it immediately follows that 
 
 j jξ ξ ′=  
for 1, 2,...,j n=  
 

Definition :  The scalars 1( ,..., )nξ ξ  in the formula 
 

 
1

n

j j
j

ξ
=

=∑v e  

 
are the components of v  with respect to the basis { }1,..., ne e . 
 

Example.  In ne  it is easily seen that the n vectors 
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1

2

(1,0,...,0),
(0,1,...,0),

    
    
    

(0,0,...,1)n

=
=
⋅
⋅
⋅
=

i
i

i

 (A.1.7) 

 
are linearly independent.  Since any vector v  in ne can be written 
 
 1 2 1 1 2 2( , ,..., ) ...n n nv v v v v v= = + + +v i i i  (A.1.8) 
 
it follows that there exists no set of vectors in ne  which contains more than n linearly 
independent vectors.  Consequently dim n n=e  and { }1,..., ni i  is a basis for ne . 
 
It must be pointed out that a basis of a vector space is not unique.  If { }1,..., ne e  and { }1,..., ne e  are 
both bases of i , then by application of Theorem A.1.4 it follows that 
 

 
1

n

k jk j
j

T
=

= ∑e e  (A.1.9) 

 
and 
 

 
1

ˆ
n

j qj q
q

T
=

=∑e e  (A.1.10) 

 
These formulas characterize the basis transformation from { }1,..., ne e  to { }1,..., ne e and vice versa.  
It is elementary to use (A.1.9) and (A.1.10) to show that 
 

 
1

ˆ
n

qj jk qk
j

T T δ
=

=∑  (A.1.11) 

 
and 
 

 
1

ˆ
n

qj jk qk
j

T T δ
=

=∑  (A.1.12) 

 
where qkδ  denotes the Kronecker delta defined by 
 

 
1 if 
0 if qk

q k
q k

δ
=⎧

= ⎨ ≠⎩
 (A.1.13) 



242  Appendix A 

 
Equations (A.1.11) and (A.1.12) show that the basis transformation is characterized by a matrix 

jkT⎡ ⎤⎣ ⎦  whose inverse is ˆ
jkT⎡ ⎤⎣ ⎦ . 

 
Exercise A.1.1 
 

If 
1

n

j j
j

v
=

= ∑v e and 
1

n

j j
j

v
=

= ∑v e , show that the two sets of components are related by 

 

 
1

ˆ
n

q qj j
j

v T v
=

= ∑  (A.1.14) 

 
and 
 

 
1

n

j jk k
k

v T v
=

=∑  (A.1.15) 

 
 
Equations (A.1.14) and (A.1.15) characterize the transformation rule for the components of a 
vector. 
 
A.2.  Linear Transformations 
 

Definition.  Let h and i  denote vector spaces.  A linear transformation  is a function 
: →A i h  such that 

 
 ( ) ( ) ( )+ = +A u v A u A v  (A.2.1) 
 
and 
 
 ( ) ( )λ λ=A v A v  (A.2.2) 
 
 
for all u, v  in i  and λ  in e . 
 
It is obvious that (A.2.1) and (A.2.2)are equivalent to the single condition, 

( ) ( ) ( )λ µ λ µ+ = +A u v A u A v .  For simplicity of notation, it is often convenient to write 
 
 ( ) =A v Αv  
 
Prove the following theorems: 
 
Exercise A.2.1 
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A linear transformation : →A i h  maps the zero vector of i into the zero vector of h . 
 
Exercise A.2.2 
 
If { }1 2, ,..., pv v v  is a system of linearly dependent vectors in i , then { }1 2, ,..., pAv Av Av  is a 
system of linearly dependent vectors in h . 
 
Linearly independent vectors in i are not necessarily mapped into linearly independent vectors 
in h .  As an example, consider the linear transformation A  that maps every vector in i into the 
zero vector in h . 
 

Definition.  A nonempty subset h of a vector space i is a subspace if: 
 

1. ,u v  in h implies +u w is in h , for all ,u v  in h ;  and 
2. u  in h  implies λu  is in h ; for all u  in h and λ in e  

 
Definition.  The kernel of A , written ker A  is defined by 

 
 { }ker | ,  in = =A v Av 0 v i  
 
It is easily shown that ker A  is a subspace of i . 
 

Definition.  A linear transformation : →A i h is regular if { }ker =A 0 . 
 

It is easily shown that { }ker =A 0 implies that A  is one-to-one.  Also, regular linear 
transformations map a system of linearly independent vectors into a system of linearly independent 
vectors. 
 

Definition.  The image space of A , written Im A , is defined by 
 
 { }Im |  in =A Av v i  
 
The image space is a subspace of h . 
 

Definition.  If Im =A h , A  is a mapping of i  onto h . 
 

Definition.  The rank of A  is dim Im A . 
 

Theorem A.2.1.  dim Im dim=A h  if and only if A  is onto. 
 

Proof.  If dim Im dim=A h , then Im =A h because Im A  is a subspace of h .  
Conversely, if A  is onto, Im =A h , which implies that dim Im dim=A h . 
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It is possible to show that 
 
 dim dim Im dim ker= +A Ai  (A.2.3) 
 
for a linear transformation : →A i h .  Therefore, 
 
 dim Im dim≤A i  (A.2.4) 
 
and 
 
 dim ker dim≤A i  (A.2.5) 
 
In the special case where dim dim=i h , it is possible to state the following important theorem. 
 

Theorem A.2.2.  If : →A i h  is a linear transformation and if dim dim=i h , then 
A  is a linear transformation onto h  if and only if A  is regular. 
 

Proof.  Assume that : →A i h is onto h , then (A.2.3) and Theorem A.2.1 show that 
 
 dim dim dim dim ker= = + Ai h h  
 
Therefore dim ker 0=A  and thus { }ker =A 0  and A  is one to one.  Next, assume A  is one to 

one.  Therefore, { }ker =A 0  and dim ker 0=A .  Equation (A.2.3) yields dim dim Im= Ai .  
Because dim dim=i h , it then follows that dim dim Im= Ah .  This fact and Theorem A.2.1 
show that A  is onto. 
 

Definition.  A regular onto linear transformation : →A i h  is an isomorphism 
 
Therefore, for an isomorphism : →A i h , there exists an inverse function 1 :− →A h i . 
 
Exercise A.2.3 
 
Show that the inverse function 1 :− →A h i  is a linear transformation and, thus, an 
isomorphism. 
 

Definition.  Two linear spaces, i and h , are isomorphic if there exists an isomorphism 
of i  onto h . 
 

Theorem A.2.3.  If  : →A i h is an isomorphism, then dim dim=i h . 
 

Proof.  Since A  is regular, dim ker 0=A .  Therefore, by this result, Theorem A.2.1 and 
(A.2.3), dim dim Im dim=Ah P i . 
 

Definition.  A linear transformation A  of i into i  is an endomorphism. 
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Definition.  A regular linear transformation A  of i into i is an automorphism. 

 
Definition.  LetT , U  and V  be three linear spaces.  If : →A T U  and 

: →B U V are linear transformations, then the product of B  and A , written BA  is a linear 
transformation from T  to V  defined by 
 
 ( )( ) ( ( ))=BA u B A u  
 
for all u  in T . 
 

It follows from this definition that the product of two linear transformations is distributive 
and associative.  In general, ≠AB BA .  If A  and B  are isomorphisms, then BA  is an 
isomorphism.  Therefore, there exists an isomorphism 1( )−BA . 
 

Theorem A.2.4.  If : →A T U  and : →B U V are isomorphisms, then  
 
 1 1 1( )− − −=BA A B  (A.2.6) 
 

Proof.  If u  is an arbitrary vector in T ,then =v Au  is in U and =c BAu  is in V .  
Because BA  is an isomorphism 
 
 1( )−=u BA c  
 
But 
 
 1 1and− −= =u A v v B c  
 
Therefore, 
 
 1 1 1− − −= =u A B c (BA) c  
 
and, thus, 
 
 1 1 1− − −=A B (BA)  
 

Definition.  The identity automorphism I is defined by 
 
 =v Iv  (A.2.7) 
 
for all v  in i . 
 

Theorem A.2.5.  If : →A i h  is an isomorphism, then 
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 1 1− −= =AA A A I  (A.2.8) 
 

Proof.  By definition, 
 
 =u Av  
 
for all v  in i , u  in h  and 
 
 1−=v A u  
 
 
for all v  in i , u  in h .  Therefore, 
 
 1 1and− −= =u AA u v A Av  
 
which is the desired result. 
 

Given two vector spaces i and h , consider the set ( ; )_ i h  of all linear 
transformations : →A i h .  By the definitions 
 
 1 2 1 2( )+ = +A A v A v A v  (A.2.9) 
 
and 
 
 ( ) ( )µ µ=A v Av  (A.2.10) 
 
the set ( ; )_ i h  is a vector space.  The proof of this assertion is left as an exercise.  Equation 
(A.2.9) defines the addition of two linear transformations while (A.2.10) defines the product of a 
linear transformation by a scalar.  It is possible to show that dim ( ; ) dim dim=_ i h i h . 
 

Definition.  { }( ) |  in ( ; ) and  an automorphism= A A AZ_ i _ i i . 
 

It can be shown that ( )Z_ i  is a group under the operation of multiplication of linear 
transformations.  This group is called the general linear group. 
 

Consider a linear transformation : →A i h .  Let { }1,..., ne e denote the basis for i and 

{ }1,..., mg g  denote the basis for h .  It follows that jAe , since it is a vector of h , can be 

expanded in the basis { }1,..., mg g .  Therefore we can write 
 

 
1

m

j kj k
k

A
=

=∑Ae g  (A.2.11) 
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for 1, 2,...,j n= . 
 

Definition.  The matrix of A , written [ ]A , with respect to the bases { }1,..., ne e and 

{ }1,..., mg g is the m n×  array of scalars, 
 

 [ ]

11 12 13 1

21 22 23 2

31

1 2 3

n

n

m m m mn

A A A A
A A A A
A

A A A A

⋅ ⋅ ⋅⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥⋅⎢ ⎥
⎢ ⎥⋅
⎢ ⎥

⋅ ⋅ ⋅⎢ ⎥⎣ ⎦

A  (A.2.12) 

 
In this work, the reader is assumed to be familiar with elementary matrix algebra. 
 
Exercise A.2.4 
 
Show that 
 
 [ ] [ ] [ ]+ = +A B A B  (A.2.13) 
 
and 
 
 [ ] [ ]λ λ=A A  (A.2.14) 
 
Exercise A.2.5 
 
If the basis of i is transformed by (A.1.9) and the basis of h  is transformed by 
 

 
1

m

k jk j
j

S
=

= ∑g g  (A.2.15) 

 
for 1,...,k m= , show that the components of A  transform according to the formula 
 

 
1 1

ˆ
m n

sk sp pj jk
p j

A S A T
= =

=∑∑  (A.2.16) 

 
where 

1ˆ
sp spS S

−⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦ , , 1,...,j k n=  and , 1,...,s p m= . 

We denote by m n×`  the set of matrices with m  rows and n  columns.  It is routine to show that 
m n×`  is a vector space and, in addition, is isomorphic to ( ; )_ i h . 
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A.3.  Inner Product Spaces 
 
 From the definition of a real vector space, we see that such things as distance, angles, and 
length do not have any meaning unless we postulate that i has some additional structure.  In 
order to introduce these concepts, we introduce the concept of an inner produce space. 
 

Definition.  An inner product space is a vector space i and a function from 
× →i i e , written ⋅u v  , having the following properties: 

 
1. For all u  and v  in i , 

 
 ⋅ = ⋅u v v u  
 

2. For all u  and v  in i and µ  in e , 
 
 ( ) ( )µ µ µ⋅ = ⋅ = ⋅u v u v u v  
 

3. For all ,u v  and w  in i , 
 

 
( )

( )
⋅ = ⋅ ⋅

⋅ = ⋅ ⋅
u + v w u w + v w

u v + w u v + u w
 

 
4. For all u  in i , 

 
 0⋅ ≥u u  
 

5. For all u  in i , 
 
 0⋅ =u u  
 
 if and only if =u 0 . 
 

The above axioms of an inner product can be paraphrased as follows:  (1) asserts that ⋅u v  
is symmetric, (2) and (3) assert that ⋅u v  is a linear function of each variable, and (4) and (5) assert 
that ⋅u u  is positive definite. 
 

Definition.  The length or norm of a vector u  in i is 
 
 1/ 2( )= ⋅u u u  (A.3.1) 
 

Definition.  The distance between two vectors  u  and v  in i  is denoted by ( , )d u v  and 
is defined by 
 
 { }1/ 2( , ) ( ) ( )d = − = − ⋅ −u v u v u v u v  (A.3.2) 
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Theorem A.3.1.  The length function has the following properties: 

 
1. For all u  in i , 

 
 0≥u  
 

2. If u  is in i , then 
 
 0=u  
 

if and only if =u 0 . 
 

3. For all u  in i and µ  in e , 
 
 µ µ=u u  
 

where µ  is the absolute value of µ . 
 

4. For all u  and v  in i , 
 
 (Schwarz inequality)⋅ ≤u v u v  
 

5. For all u  and v  in i , 
 
 (Triangle inequality)+ ≤ +u v u v  
 
Parts (1), (2), and (3) are immediate consequences of the definition of the inner product.  The proof 
of (4) and (5) can be found in any linear algebra book.  The essentials are straight forward.  First, 
we note that that the Schwarz inequality is trivially true of u  or v  is zero.  Next, assume neither u  
or v  is zero and calculate the length equared of the vector ( ) ( )⋅ − ⋅u u v v u u .  The result of this 
calculation is 
 

 
( ) ( )

( )
2

2 2 22

( ) ( ) ( ) ( ) ( ) ( )

( )

⋅ − ⋅ = ⋅ − ⋅ ⋅ ⋅ − ⋅

= − ⋅

u u v v u u u u v v u u u u v v u u

u v v u u
 (A.3.3) 

 
Because of the property 1. above, and the fact that u  is nonzero, (A.3.3) implies that 
 
 2 2 22( )≥ ⋅ = ⋅u v v u v u  (A.3.4) 
 
The positive square root of (A.3.4) is the Schwarz inequality.  The triangle inequality follows from 
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2

2 2

( ) ( )

2

+ = + ⋅ +

= + + ⋅

u v u v u v

u v v u
 (A.3.5) 

 
If Schwartz’s inequality is used, (A.3.5) yields 
 
 ( )22 2 2 2+ = + + ⋅ ≤ +u v u v v u u v  (A.3.6) 
 
The positive square root of this equation yields the triangle inequality. 
 

Definition.  The angle θ  between u  and v  in i  is defined by 
 

 cosθ ⋅
=

u v
u v

 (A.3.7) 

 
It follows from the Schwarz inequality that 
 
 1 cos 1θ− ≤ ≤  
 

Definition.  Two vectors u  and v  in i are said to be orthogonal if 0⋅ =u v . 
 

Example.  In ne , the inner product of ,u v  is defined to be 
 

 
1

n

k k
k

u v
=

⋅ =∑u v  (A.3.8) 

 
It follows then from (A.1.7) that 
 

 
1 if 
0 if j k jk

i j
i j

δ
=⎧ ⎫

⋅ = =⎨ ⎬≠⎩ ⎭
i i  (A.3.9) 

 
From (A.3.1) and (A.3.8), the norm of a vector u  in ne can be written 
 

 
1/ 2

1

n

j j
j

u u
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑u  (A.3.10) 

 
From (A.3.10), the vector ji  has a unit norm.  From (A.3.2), the distance between u  and v  in 

ne can be written 
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1/ 2

1

( , ) ( )( )
n

j j j j
j

d u v u v
=

⎛ ⎞
= − −⎜ ⎟
⎝ ⎠
∑u v  (A.3.11) 

 
and, from (A.3.7), cosθ  can be written 
 

 1

1 1

cos

n

i i
i

n n

j j k k
j k

u v

u u v v

θ =

= =

=
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑

∑ ∑
 (A.3.12) 

 
 
We shall assume in the following that all vector spaces have the inner product 
 structure. 
 

Definition.  A basis { }1,..., ni i  for a vector space i  is orthonormal if 
 
 j k jkδ⋅ =i i  (A.3.13) 
 
 
It is possible to show that every inner product space has an orthonormal basis.  Clearly, equations 
(A.3.8), (A.3.10), (A.3.11) and (A.3.12)are valid for the space i  when the components are those 
with respect to the orthonormal basis. 
 

Definition.  If  A  is in ( ; )_ i h , the transpose of A  is a linear transformation TA  in 
( ; )_ h i  defined by 

 
 ( ) ( )T⋅ = ⋅v A u Av u  (A.3.14) 
 
for all v  in i and u  in h . 
 
Exercise A.3.1 
 
If 1A  and 2A  are in ( ; )_ i h , show that 
 
 1 2 1 2( )T T Tλ µ λ µ+ = +A A A A  (A.3.15) 
 
for all ,λ µ  in e . 
 
Exercise A.3.2 
 
Show that 
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 [ ]TT⎡ ⎤ =⎣ ⎦A A  (A.3.16) 
 

Theorem A.3.2.  If : →A T U  and : →B U V are linear transformations, then 
 
 ( )T T T=BA A B  (A.3.17) 
 

Proof.  By definition ( )TBA  is defined by 
 
 ( )( ) ( )T⋅ = ⋅a BA c BAa c  
 
But, 
 

 
( )

( ) ( )
( ) ( ) ( ) ( )

( )

T

T T T T

⋅ = ⋅ = ⋅

= ⋅ = ⋅

BAa c B Aa c Aa B c

a A B c a A B c
 

 
Therefore, 
 
 ( ) ( )( )T T T⋅ = ⋅a BA c a A B c  
 
which is the desired result. 
 
Exercise A.3.3 
 
Show that 

11T T −− =A A  if A  is an isomorphism. 
 

Definition.  An endomorphism : →A i i  is said to be symmetric if T=A A . 
 

Definition.  An endomorphism : →A i i is said to be skew - symmetric if T= −A A . 
 

Theorem A.3.3.  An endomorphism : →A i i  can be uniquely decomposed into the 
sum of a symmetric endomorphism and a skew-symmetric endomorphism. 
 

It is easily seen that the decomposition, 
 

 1 1( ) ( )
2 2

T T= + + −A A A A A  (A.3.18) 

 
has the properties asserted in the theorem. 
 

Definition.  A linear transformation : →A i h  is said to be orthogonal if the inner 
product is preserved under A , i.e., 
 



Mathematical Preliminaries 253 

 1 2 1 2⋅ = ⋅Av Av v v  (A.3.19) 
 
for all 1 2,v v  in i . 
 

If we set 1 2=v v  , it follows from (A.3.19) that 
 
 =Av v  (A.3.20) 
 
Thus, when A  is orthogonal, the length of v  in i equals the length of Av  in h . 
 

Theorem A.3.4.  An orthogonal linear transformation is regular. 
 

The proof of this result follows immediately from (A.3.20).  Therefore, if 
dim dim=i h , an orthogonal mapping : →A i h has an inverse.  It follows from (A.3.19) 
and (A.3.14) that, in this case, 
 
 1T −=A A  (A.3.21) 
 

Definition.  The orthogonal group is a subgroup (a subset of a group that is also a group) of 
( )Z_ i  defined by 

 
 
 { }( ) |  in ( ) and T= =Q Q Q Q Ib i Z_ i  (A.3.22) 
 
Exercise A.3.4 
 
Prove that ( )b i  is indeed a subgroup of ( )Z_ i . 
 

Definition.  A symmetric endomorphism : →A i h  is said to be 
 

 

positive definite 0
positive semidefinite 0

if ,
negative definite 0
negative semidefinite 0

>⎧ ⎫ ⎧
⎪ ⎪ ⎪≥⎪ ⎪ ⎪⋅⎨ ⎬ ⎨<⎪ ⎪ ⎪
⎪ ⎪ ⎪≤⎩ ⎭ ⎩

v Av  (A.3.23) 

 
for all nonzero vectors v  in i . 
 
Exercise A.3.5 
 
Show that the set of all symmetric linear transformations does not form a group under 
multiplication. 
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Definition.  If v  is in i  and u  is in h , their tensor product, written ⊗u v , is a linear 
transformation in ( ; )_ i h  defined by 
 
 ( ) ( )⊗ = ⋅u v w u v w  (A.3.24) 
 
for all w  in i . 
 
Exercise A.3.6 
 
Show that 
 
 1 2 1 2( )λ µ λ µ+ ⊗ = ⊗ + ⊗u u v u v u v  (A.3.25) 
 
Exercise A.3.7 
 
Show that 
 
 1 2 1 2( )λ µ λ µ⊗ + = ⊗ + ⊗u v v u v u v  (A.3.26) 
 
Exercise A.3.8 
 
Show that 
 
 ( )T⊗ = ⊗u v v u  (A.3.27) 
 
Exercise A.3.9 
 
Show that 
 
 ( )( ) ( )( )⊗ ⊗ = ⋅ ⊗u v a b v a u b  (A.3.28) 
 
Exercise A.3.10 
 
Show that 

 [ ]

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1

1 2 3

n

n

m m m m n

u v u v u v u v
u v u v u v u v
u v

u v u v u v u v

⋅ ⋅ ⋅⎡ ⎤
⎢ ⎥⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥⋅

⊗ = ⎢ ⎥⋅ ⋅⎢ ⎥
⎢ ⎥⋅ ⋅
⎢ ⎥

⋅ ⋅ ⋅⎢ ⎥⎣ ⎦

u v  (A.3.29) 

 
with respect to the orthonormal bases { }1,..., ni i  and { }1,..., mi i .  It is important to note that 
⊗ ≠ ⊗u v v u  
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A.4.  Components of Vectors and Linear Transformations 
 

It is necessary to be able to express some of the previous formulas in terms of components.  
For simplicity, we deal with a single vector space i  and consider only linear transformations 
from i  into i .  Recall that the vectors defined by (A.3.13) constitute a basis for i .  
Therefore, every vector v  of i  can be written in the form 
 
 j jv=v i  (A.4.1) 
 
where { }1,..., ni i  is an orthonormal basis.  The reader should note that from this point on a 
summation convention is adopted.  Rather than indicate a summation from 1 to n explicitly, the 
presence of the repeated index tells the reader to automatically sum the equation from 1 to 

dimn = i .  It is easily seen that many of the previous equations in this appendix which involved 
summations could have been simplified in their formal appearance if this convention had been 
adopted. 
 

Theorem A.4.1.  If A  is in ; )_;i i , then the components of A  with respect to the 
basis { }1,..., ni i  are given by 
 
 ( )kj k jA = ⋅i Ai  (A.4.2) 
 

Proof.  From (A.2.11), it follows that 
 
 j sj sA=Ai i  
 
and, since s k skδ⋅ =i i , we have 
 
 ( )k j sj s k sj sk kjA A Aδ⋅ = ⋅ = =i Ai i i  
 

Theorem A.4.2.  If A  is in ; )_;i i , then 
 
 kj k jA= ⊗A i i  (A.4.3) 
 
 

Proof.  From (A.2.11), j kj kA=Ai i .  Therefore, 
 

 ( )

( )

j kq k qj

kq k q j

kq k q j

A

A

A

δ=

= ⋅

= ⊗

Ai i

i i i

i i i
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This result immediately yields (A.4.3). 
 

As a special case of (A.4.3), it is possible to show that the identity I  in ; )_;i i  has the 
component representation 
 
 kj k j k kδ= ⊗ = ⊗I i i i i  (A.4.4) 
 

Theorem A.4.3. :  If A  is in ; )_;i i , then 
 
 T

jk k jA= ⊗A i i  (A.4.5) 
 
 
This result follows directly from (A.4.3), (A.3.15) and (A.3.27) 
 

Theorem A.4.4.  For a symmetric endomorphism, 
 
 kj jkA A=  (A.4.6) 
 

Theorem A.4.5.  For a skew-symmetric endomorphism, 
 
 kj jkA A= −  (A.4.7) 
 
These theorems are trivial consequences of (A.3.14) and (A.4.3).  In passing, it is worthwhile to 
note that the component version of (A.3.18) is 
 

 1 1( ) ( )
2 2kj kj jk kj jkA A A A A= + + −  (A.4.8) 

 
Theorem A.4.6.  If : →A i i  and : →B i i , then 

 
 qj jk q kB A= ⊗BA i i  (A.4.9) 
 

Proof.  ( )( ) ( )=BA v B Av  for v  in i .  From (A.4.3) it follows that 
 
 jk k jA v=Av i  
 
Therefore, 
 

 
( )( ) ( )

( ) ( )
jk k j jk k qj q

qj jk k q qj jk q k

A v A v B

B A B A

= =

= ⋅ = ⊗

BA v B i i

v i i i i v
 

 
The last equality yields (A.4.9) 
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Exercise A.4.1 
 
Use (A.4.9) and show that 
 
 [ ] [ ][ ]=AB A B  (A.4.10) 
 
Exercise A.4.2 
 
If A  is regular show that 
 
 1 1[ ] [ ]− −=A A  (A.4.11) 
 
Exercise A.4.3 
 
If Q  is an orthogonal linear transformation in ( ; )_ i i  show that 
 
 qj kj qkQ Q δ=  (A.4.12) 
 
and 
 
 jq jk qkQ Q δ=  (A.4.13) 
 
where the qjQ , , 1,...,q j n=  are the components of Q  with respect to an orthonormal basis. 
 
Exercise A.4.4 
 
If u  and v  are in i , show that 
 
 j k j ku v⊗ = ⊗u v i i  (A.4.14) 
 
A.5.  Cross Products, Determinants and the Polar Decomposition Theorem 
 

The next concept that is needed is that of the cross product.  In order to carry out this 
discussion, in this section the argument is restricted to the case of a vector space of dimension three 
 

Definition.  A cross product in i is a function, written ×u v , from × →i i i such 
that 
 

1.  × = − ×u v v u   (A.5.1) 
 

2.  ( )× + = × + ×w u v w u w v   (A.5.2) 
 

3.  ( ) ( )µ µ× = ×u v u v   (A.5.3) 
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for all , ,u v w  in i  and µ  in e ; 
 

4.  ( )⋅ × =u u v 0   (A.5.4) 
 

5.  sinθ× =u v u v   (A.5.5) 
 

where 
 

 cosθ ⋅
=

u v
u v

 

 
and 0 180oθ< < . 
 

Geometrically, ×u v  is the area of the parallelogram with sides u  and v  intersecting 
at an angle θ . 
 
Exercise A.5.1 
 
Show that 
 
 ( )+ × = × + ×u v w u w v w  (A.5.6a) 
 
Exercise A.5.2 
 
Show that 
 ( ) ( )µ µ× = ×u v u v  (A.5.6b) 
 
Exercise A.5.3 
 
Show that 
 
 × =u u 0  (A.5.6c) 
 
 

Definition.  If ,u v  and w are in i , the scalar triple product is ( )⋅ ×u v w . 
 

Geometrically, ( )⋅ ×u v w  is the volume of the parallelepiped formed by the coterminus 
sides ,u v  and w . 
  (A.5.6) 
Exercise A.5.4 
 
Show the following 
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( ) ( ) ( )

( ) ( ) ( )
⋅ × = − ⋅ × = ⋅ ×

= − ⋅ × = ⋅ × = − ⋅ ×
u v w v u w v w u

w v u w u v u w v
 (A.5.7) 

 
Theorem A.5.1.  Let { }1 2 3, ,i i i  denote an orthonormal basis for i .  Then 

 

 1 2 3

3 1 2

× = ±
× = ±

i i i
i i i

 (A.5.8) 

and 
 2 3 1× = ±i i i  
 

Proof. :  Since 1 2×i i  is in i , we can express it as 1 2 1 2 3µ λ ξ× = + +i i i i i , but 

1 1 2( ) 0⋅ × =i i i  and 2 1 2( ) 0⋅ × =i i i  from (A.5.4).  Therefore, 0µ λ= =  and thus 1 2 3ξ× =i i i .  Since 

1 2 1× =i i  from (A.5.5) we have 1ξ = ± .  The other two results follow by an identical argument. 
 
Exercise A.5.5 
 
Use (A.5.7) and show that when 1 2 3× =i i i , then 2 3 1× =i i i   and 3 1 2× =i i i .  Likewise when 

1 2 3× = −i i i , then 2 3 1× = −i i i and 3 1 2× = −i i i . 
 
It follows from Theorem A.5.1 and the above exercise that i  has two possible cross products.  In 
the case where 1 2 3× =i i i , it is elementary to show that 
 

 2 3 3 2 1 3 1 1 3 2

1 2 2 1 3

( ) ( )

( )
j k j ku v u v u v u v u v

u v u v

× = × = − + −

+ −

u v i i i i

i
 (A.5.9) 

 
On the other hand, if 1 2 3× = −i i i , then 
 
 2 3 3 2 1 3 1 1 3 2 1 2 2 1 3( ) ( ) ( )u v u v u v u v u v u v× = − − − − − −u v i i i  (A.5.10) 
 
Thus, the two possible cross products differ in sign. 
 

Definition.  A vector space i  with the cross product (A.5.9) is said to have positive 
orientation. 
 

Definition.  A vector space i  with the cross product (A.5.10) is said to have negative 
orientation. 
 

Definition.  The symbol ijkε  is defined as follows: 
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1 if  is an even permutation of 123
1 if  is an odd permutation of 123

0 otherwise
ijk

ijk
ijkε

+⎧
⎪= −⎨
⎪
⎩

 

 
The symbol ijkε is known as the permutation symbol. 
 

It easily follows from this definition that 
 

 
123 231 312

213 132 321

112 333 122

1,
1,

0, etc

ε ε ε
ε ε ε
ε ε ε

= = =
= = = −
= = =

 (A.5.11) 

 
It follows from the above definition that in i , with positive orientation, 
 
 q j qjk kε× =i i i  
 
and in a i , with negative orientation, 
 
 q j qjk kε× = −i i i  
 
As a matter of convention, we shall always assume that i  has positive orientation.  Therefore, 
 
 q j qjk kε× =i i i  (A.5.12) 
 
and 
 
 ( )k q j qjk kqjε ε⋅ × = =i i i  (A.5.13) 
 
Exercise A.5.6 
 
Show that 
 
 qjk qst js kt jt ksε ε δ δ δ δ= −  (A.5.14) 
 
Exercise A.5.7 
 
Show that 
 
 qjk j k qu vε× =u v i  (A.5.15) 
 
and 
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 ( ) ( ) ( )× × = ⋅ − ⋅u v w u w v u v w  (A.5.16) 
 

Definition.  If u  and v  are in i , their exterior product ∧u v  is a skew-symmetric 
endomorphism defined by 
 
 ∧ = ⊗ − ⊗u v u v v u  (A.5.17) 
 
If ( )kj∧u v  denotes the kj  of ∧u v  with respect to an orthonormal basis, it is easily shown that 
 

 1 ( )
2 qjk jk qε× = ∧u v u v i  (A.5.18) 

 
Theorem A.5.2.  For every set of three vectors { }, ,u v w  in i , ( ) 0⋅ × =u v w  if and only if 

the set is linearly dependent. 
 

Proof.  First assume { }, ,u v w  is linearly dependent.  It follows then that λ µ= +u v w .  It 
easily follows from (A.5.4) and (A.5.6b) that 
 
 ( ) ( ) ( ) 0λ µ⋅ × = ⋅ × + ⋅ × =u v w v v w w v w  
 
Next assume that ( ) 0⋅ × =u v w .  If × =v w 0 , then (A.5.5) shows that v  and w  are colinear which 
forces { }, ,u v w  to be linearly dependent.  If × ≠v w 0  then { },v w  is linearly independent.  If 

=u 0 , then { }, ,u v w  is linearly dependent.  If ≠u 0 , then it must be orthogonal to ×v w .  

Consequently, u  lies in the subspace of i for which { },v w  is a basis.  It immediately follows 

that { }, ,u v w is linearly dependent. 
 
 In the case where { }, ,u v w  is linearly independent, it is possible to prove that the scalar, 

( ) / ( )⋅ × ⋅ ×Au Av Aw u v w , depends only on A . 
 

Definition.  If A  is in ( ; )_ i i  then the determinant of A , written det A , is a scalar 
defined by 
 
 (det ) ( ) ( )⋅ × = ⋅ ×A u v w Au Av Aw  (A.5.19) 
 
for all u, v  and w  in i . 
 

Theorem A.5.3.  An endomorphism A  in ( ; )_ i i  is regular if and only if det 0≠A . 
 

Proof.  Without loss of generality, we can take 1=u i , 2=v i  and 3=w i  in (A.5.19).  By 
(A.5.13), (A.5.19) can be written 
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 1 2 3det ( )= ⋅ ×A Ai Ai Ai  (A.5.20) 
 
If det 0≠A , then (A.5.20) and Theorem A.5.2 show that { }1 2 3, ,Ai Ai Ai  is linearly independent.  If 
b  is in i , then clearly the equation =Ab 0  can be written 
 
 1 2 2 3 3b b b= + + =1Ab Ai Ai Ai 0  (A.5.21) 
 
The linear independence of { }1 2 3, ,Ai Ai Ai  forces 1 2 3 0b b b= = = .  Thus { }ker =A 0  and A  is 
regular. 
 

Next assume A  is regular, then { }1 2 3, ,Ai Ai Ai  is linearly independent and by Theorem 
A.5.2, det 0≠A . 
 

Theorem A.5.4.  If A  and B  are endomorphisms of i . then 
 
 det det det=AB A B  (A.5.22) 
 

Proof. 
 

 

det( ) ( ) ( )
( ) [ ( ) ( )]

(det )( ) [( ) ( )]
(det )(det ) ( )

⋅ × = ⋅ ×
= ⋅ ×
= ⋅ ×
= ⋅ ×

AB u v w ABu ABv ABw
A Bu A Bv A Bw

A Bu Bv Bw
A B u v w

 

 
Thus, 
 
 det det det=AB A B  
 

Corollary.  If A  is an automorphism of i , then 
 

 1

1det
det −=A

A
 (A.5.23) 

 
Proof.  This result follows from Theorem A.5.4 and the equations 

 
 1− =AA I  
 
and 
 
 det 1=I  (A.5.24) 
 

Theorem A.5.5.  If A  is an automorphism of i , then  
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 1(det ) ( )
T−× = ×Av Aw A A v w  (A.5.25) 

 
for all ,v w  in i . 
 

Proof.  From (A.3.14) and (A.5.19), it follows that 
 
 [ ( )] (det ) ( )T⋅ × = ⋅ ×u A Av Aw A u v w  
 
Therefore, 
 
 { }[ ( )] (det )( ) 0T⋅ × − × =u A Av Aw A v w  
 
which yields 
 
 ( ) (det )( )T × = ×A Av Aw A v w  (A.5.26) 
 
since u  is arbitrary.  Equation (A.5.25) follows immediately from (A.5.26) and 

11T T −− =A A . 
 

Theorem A.5.6. 
 
 detrst qjk qr js ktA A Aε ε=A  (A.5.27) 
 
 

Proof.  In (A.5.19), take r=u i , s=v i  and t=w i , then r qr qA=Ai i , etc.  Therefore, 
(A.5.19) can be written 
 
 ( )det ( )r s t q j k qr js ktA A A⋅ × = ⋅ ×i i i A i i i  
 
If we now use (A.5.13), we immediately obtain (A.5.27).  Note that if we take 1, 2r s= =  and 

3t = , then (A.5.27) yields 
 
 1 2 3det qjk q j kA A Aε=A  (A.5.28) 
 
If we multiply (A.5.27) by rstε  and use the identity, 
 
 3!,rst rstε ε =  (A.5.29) 
 
it follows that 
 

 1det
3! qjk rst qr js ktA A Aε ε=A  (A.5.30) 

 



264  Appendix A 

Exercise A.5.8 
 
Use (A.5.30) and show that 
 
 det det T=A A  (A.5.31) 
 
Exercise A.5.9 
 
Show that det 1= ±Q  for all Q  in ( )b i . 
 
Exercise A.5.10 
 
Show that 
 
 3det det and det det[ ]λ λ= =A A A A  (A.5.32) 
 
Exercise A.5.11 
 
Show that det 0⊗ =u v  
 
Exercise A.5.12 
 
Define a linear transformation AK  in ( ; )_ i i  by 
 
 ( ) ( ) ( )⋅ × = ⋅ ×AK u v w u Av Aw  (A.5.33) 
 
for all u, v  and w in i .  Select and orthonormal basis for i  and show that the components of 

AK  are related to the components of A  by the formula 
 

 1
2ij jpq ist ps qtK A Aε ε=A  (A.5.34) 

 
Show that the matrix [ ]AK , called the adjoint matrix , is equal to the transposed matrix of 
cofactors of [ ]A .  In addition, show that 
 
 (det )=AK A A I  (A.5.35) 
 
In the special case where A  is regular, (A.5.35) yields the following formula for 1−A , 
 

 1

det
− = AKA

A
 (A.5.36) 
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It is possible to prove that the sum { }( ) ( ) ( ) / ( )⋅ × + ⋅ × + ⋅ × ⋅ ×Au v w u Av w u v Aw u v w  
depends only on A . 
 

Definition.  The trace of an endomorphism A  in ( ; )_ i i , written trA , is a scalar 
defined by 
 
 (tr ) ( ) ( ) ( ) ( )⋅ × = ⋅ × + ⋅ × + ⋅ ×A u v w Au v w u Av w u v Aw  (A.5.37) 
 
for all u, v  and w in i  
 

Theorem A.5.7.  The component representation of tr A  is 
 
 11 22 33tr jjA A A A= + + =A  (A.5.38) 
 

Proof.  Let 1 2,= =u i v i , and 3=w i  in (A.5.37), then, since kj k jA= ⊗A i i  and 

1 2 3( ) 1⋅ × =i i i , 
 

 
1 2 3 1 2 3 1 2 3

11 1 2 3 1 22 2 3 1 2 33 3

11 22 33

(tr ) ( ) ( ) ( )
( ) ( ) ( )

r r r r r rA A A
A A A
A A A

= ⋅ × + ⋅ × + ⋅ ×
= ⋅ × + ⋅ × + ⋅ ×
= + +

A i i i i i i i i i
i i i i i i i i i  

 
Show the following: 
 
Exercise A.5.13 
 
 1 2 1 2tr( ) tr trλ µ λ µ+ = +A A A A  (A.5.39) 
 
Exercise A.5.14 
 
 tr tr jk kjA B= =AB BA  (A.5.40) 
 
Exercise A.5.15 
 
 tr tr T=A A  (A.5.41) 
 
Exercise A.5.16 
 
 tr ⊗ = ⋅u v u v  (A.5.42) 
 
Exercise A.5.17 
 
If A  is in ( ; )_ i i  then from (A.3.18) 
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 = +A B C  
 

where 1 ( )
2

T= +B A A  is a symmetric endomorphism and 1 ( )
2

T= −C A A  is a skew-symmetric 

endomorphism.  Show that tr tr=A B . 
 

Definition.  If λ  is in e and  A  is in ( ; )_ i i  the characteristic polynomial of A  is 
the polynomial ( , )f λ A  defined by 
 
 ( , ) det( )f λ λ= −A A I  (A.5.43) 
 

Theorem A.5.8 
 
 3 2( , )f I II IIIλ λ λ λ= − + − +A A AA  (A.5.44) 
 
where 
 
 trI =A A  (A.5.45) 
 
 trII =A AK  (A.5.46) 
 
and 
 
 detIII =A A  (A.5.47) 
 

Proof. :  From (A.5.19), it is true that 
 
 ( , ) ( ) ( ) [( ) ( ) ]f λ λ λ λ⋅ × = − ⋅ − × −A u v w A I u A I v A I w  (A.5.48) 
 
By expansion of (A.5.48), it easily follows that 
 

 
[ ]

[ ]

3 2( , ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

f λ λ λ

λ

⋅ × = − ⋅ × + ⋅ × + ⋅ × + ⋅ ×

− ⋅ × + ⋅ × + ⋅ ×

+ ⋅ ×

A u v w u v w Au v w u Av w u v Aw

Au Av w Au v Aw u Av Aw
Au Av Aw

 (A.5.49) 

 
From (A.5.37), the coefficient of 2λ  in (A.5.49) is (tr ) ( )⋅ ×A u v w .  Likewise, the coefficient of 
λ−  is tr AK .  This fact follows from (A.5.37) and (A.5.33).  Since the last term in (A.5.49) is 

(det ) ( )⋅ ×A u v w , (A.5.44) holds.  A more useful formula for IIA is 
 

 2 21 (tr ) tr
2

II ⎡ ⎤= −⎣ ⎦A A A  (A.5.50) 
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The derivation of (A.5.50) will be presented later in this section. 
 

The quantities ,I IIA A and IIIA are the fundamental invariants of A .  This name arises 
because 
 
 1 AI I− =

BAB
 (A.5.51) 

 
 1 AII II− =

BAB
 (A.5.52) 

 
and 
 
 1III III− = BBAB

 (A.5.53) 
 
for all regular linear transformations B  in ( ; )_ i i .  The proof of (A.5.51), (A.5.52) and 
(A.5.53) is elementary.  For example, 
 

 

( )

( )

( )

( )

1
1 2 1 1

1 2 2 1

1 2 1 2

2 2

1 (tr ) tr( )
2
1 (tr ) tr( )
2
1 (tr ) tr( )
2
1 (tr ) tr( )
2

II

II

−
− − −

− −

− −

= −

= −

= −

= − =

BAB

A

BAB BAB BAB

BAB BA B

B BA B BA

A A

 

 
If A  is regular, it follows from 1−AA  and (A.5.23) that 
 

 1

1III
III− =

A
A

 (A.5.54) 

 
Likewise, (A.5.36). (A.5.46) and (A.5.47) yield 
 

 1

III
III− = A

A
A

 (A.5.55) 

 
By interchanging A and 1−A , we see from (A.5.54) and (A.5.55) that 
 

 1

III
III− = A

A
A

 (A.5.56) 

 
Theorem A.5.9.  (Cayley-Hamilton)  For every A  in ( ; )_ i i , 
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 3 2I II III− + − + =A A AA A A 0  (A.5.57) 
 

Proof.  From (A.5.35) and (A.5.43), it follows that 
 
 ( ) ( , )fλ λ λ− − =A IK A I A  (A.5.58) 
 
The definition (A.5.33) shows that λ−A IK  is a second degree polynomial in λ  and, thus, we can 
write 
 
 2

0 1 2λ λ λ− = − +A IK B B B  (A.5.59) 
 
where 0 1,B B  and 2B are endomorphisms to be determined.  If we place λ equal to zero, (A.5.59) 
yields 
 
 2 = AB K  (A.5.60) 
 
If (A.5.44) and (A.5.59) are substituted into (A.5.58) and the result is required to hold for all λ , it 
follows that 
 
 2 III= AB A I  (A.5.61) 
 
 1 2 II+ = AB A B I  (A.5.62) 
 
 0 1 I+ = AB A B I  (A.5.63) 
 
and 
 
 0 =B I  (A.5.64) 
 
With (A.5.60) and (A.5.45) it is clear that (A.5.61) is just the result (A.5.35).  The result (A.5.57) 
follows directly from (A.5.61) through (A.5.64) by simply observing that 
 
 2 3

2 1 2 0 1 0( ) ( )− + + + − =B A B A B A B A B A B A 0  
 
identically. 
 

Often, the Cayley-Hamilton theorem is stated by saying that an endomorphism satisfies its 
own characteristic equation.  It is useful to note that (A.5.60), (A.5.62). (A.5.63) and (A.5.64) 
combine to yield the following expression for AK : 
 
 2 I II= − +A A AK A A I  (A.5.65) 
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Since tr dim 3= =I i , the trace of (A.5.65) yields (A.5.50) 
 

Next we wish to briefly discuss the eigenvalue problem for an endomorphism A  in 
( ; )_ i i .  In order to save space, it will be assumed that the reader is familiar with the 

corresponding problem in matrix algebra and, thus, proofs of theorems are not necessary. 
 

Definition.  If A is in ( ; )_ i i  an eigenvalue of A  is a scalar λ  such that 
 
 λ=Av v  (A.5.66) 
 
for some nonzero vector v  in i . 
 

The vector v  in (A.5.66) is the eigenvector of A  for the eigenvalue λ .  It clearly follows 
that in order for (A.5.66) to be satisfied for nonzero v  it is necessary and sufficient for λ−A I  not 
to be regular.  It follows then from Theorem A.5.3 that the eigenvalues of ( , ) det( )f λ λ= −A A I  
are the roots of the characteristic polynomial 
 
 ( , ) det( ) 0f λ λ= − =A A I  (A.5.67) 
 

Theorem A.5.10.  If A  is a symmetric endomorphism in ( ; )_ i i  then the eigenvalues 
of A  are real and there exists an orthonormal basis for i  consisting of eigenvectors of A  
 

The proof of this theorem can be found in any linear algebra textbook. 
 
If { }1 2 3, ,n n n  is the orthonormal basis constructed in Theorem A.5.10, it follows from (A.4.3) that 
 
 1 1 1 2 2 2 3 3 3λ λ λ= ⊗ + ⊗ + ⊗A n n n n n n  (A.5.68) 
 
for a symmetric endomorphism in ( ; )_ i i .  In (A.5.68) 
 

and 

1 1 1

2 2 2

3 3 3

λ
λ

λ

=
=

=

An n
An n

An n

 (A.5.69) 

 
where 1 2,λ λ  and 3λ  are the three roots of (A.5.67).  The formula (A.5.68) is known as the spectral 
representation for A . 
 
Exercise A.5.18 
 
Show that 
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 1 2 3I λ λ λ= + +A  (A.5.70) 
 
Exercise A.5.19 
 
Show that 
 
 1 3 2 3 1 2II λ λ λ λ λ λ= + +A  (A.5.71) 
 
and 
 
Exercise A.5.20 
 
Show that 
 1 2 3III λ λ λ=A  (A.5.72) 
 
for a symmetric endomorphism A  in ( ; )_ i i . 
 

The results (A.5.70) through (A.5.72) are actually valid for an arbitrary A  in ( ; )_ i i .  
However, in this case the eigenvalues of A  need not be real. 
 

Theorem A.5.11.  A symmetric endomorphism  A  in ( ; )_ i i  is positive definite if and 
only if its eigenvalues are positive. 
 

The proof of this theorem is an immediate consequence of (A.5.68) and the definition 
(A.3.23).  Of course corresponding results hold for negative definite, negative semidefinite and 
positive semidefinite symmetric linear transformations. 
 

Theorem A.5.12.  (Polar Decomposition Theorem) An automorphism F  in ( )Z_ i  has 
two unique multiplicative decompositions 
 
 =F RU  (A.5.72a) 
 
and 
 
 =F VR  (A.5.72b) 

 (A.5.73) 
 
where R  is in ( )b i  and U  and V  are symmetric and positive definite. 
 
 Proof.  Since ( )T T T=F F F F  and 2( )T⋅ = ⋅ =u F Fu Fu Fu Fu , the linear transformation 

TF F  is symmetric and positive definite.  Consequently, the spectral representation (A.5.68) is valid 
for T=A F F .  We shall write 
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 1 1 1 2 2 2 3 3 3
T λ λ λ= ⊗ + ⊗ + ⊗F F n n n n n n  (A.5.74) 

 
where 1 20, 0λ λ> > and 3 0λ > .  The linear transformation U  is defined by 
 
 1/ 2 1/ 2 1/ 2

1 1 1 2 2 2 3 3 3λ λ λ= ⊗ + ⊗ + ⊗U n n n n n n  (A.5.75) 
 
It is easily established from (A.5.75) that 
 
 2 T=U F F  (A.5.76) 
 
It is obvious from (A.5.75) that U is both symmetric and positive definite.  By direct calculation, it 
is seen that 
 

 1
1 1 2 2 3 31/ 2 1/ 2 1/ 2

1 2 3

1 1 1
λ λ λ

− = ⊗ + ⊗ + ⊗U n n n n n n  (A.5.77) 

 
By definition, the regular linear transformation R  is given by 
 
 1−=R FU  (A.5.78) 
 
An elementary calculation shows that T =RR I , a result which proves that R  is orthogonal.  
Equation (A.5.78) is equivalent to (A.5.72a).  Clearly the above construction yields unique R  and 
U .  In order to obtain (A.5.72b), we define 
 
 T=V RUR  (A.5.79) 
 
A simple computation shows that V  is symmetric and positive definite.  Given (A.5.79) and 
(A.5.72a), equation (A.5.72b) immediately follows.  It is useful to note that (A.5.79) and (A.5.75) 
show that 
 
 1/ 2 1/ 2 1/ 2

1 1 1 2 2 2 3 3 3λ λ λ= ⊗ + ⊗ + ⊗V Rn Rn Rn Rn Rn Rn  (A.5.80) 
 
Thus, the eigenvalues of V  are the same as those of U  while the eigenvectors of V are obtained 
from those of U  by an orthogonal transformation.  It follows from (A.5.72b) that 
 
 2 T=V FF  (A.5.81) 
 
Exercise A.5.21 
 
Show that U and V  in the polar decomposition theorem have the same fundamental invariants. 
 
Exercise A.5.22 
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Apply the Polar Decomposition Theorem to the linear transformation F in ( )Z_ i  defined by 
 

and 

1 1 2

2 1 2

3 3

2 2 2
3 1( 2 1) (3 2)
2 2

= −

= + + −

=

Fi i i

Fi i i

Fi i

 

By calculation of the eigenvectors and eigenvalues of TF F , show that U is defined by 
 

and 

1 1 2

2 1 2

3 3

(2 2) (2 2)

(2 2) (1 2 2)

= + + −

= − + +

=

Ui i i

Ui i i

Ui i

 

 
while R is defined by 
 

 

1 1 2

2 1 2

3 3

1 12 2
2 2
1 12 2
2 2

= −

= +

=

Ri i i

Ri i i

Ri i

 

 
It is a useful computational check in working this exercise to know that the spectral representation 
of TF F  is given by 
 
 1 1 2 2 3 318 9T = ⊗ + ⊗ + ⊗F F n n n n n n  
 
where 
 

and 

1 1 2

2 1 2

3 3

1 2
3 3

2 1
3 3

= +

= − +

=

n i i

n i i

n i

 

 
Exercise A.5.23 
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Apply the Polar Decomposition Theorem to the linear transformation F in ( )Z_ i  defined by 
 

 1 1 2
246 228
125 125

= +Fi i i  

 

 2 1 2
272 129
125 125

= − +Fi i i  

and 
 
 3 3=Fi i  
 
By calculation of the eigenvectors and eigenvalues of TF F , show that U is defined by 
 
 1 1 2 2 3 32 3= ⊗ + ⊗ + ⊗U n n n n n n  
 
where 
 

 1 1 2
3 4
5 5

= +n i i  

 

 2 1 2
4 3
5 5

= − +n i i  

and 
 
 3 3=n i  
 
Exercise A.5.24 
 
Apply the Polar Decomposition Theorem to the linear transformation F in ( )Z_ i  defined by 
 

and 

1 1 2 3

2 1 2 3

3 1 2 3

2.38 1.02 .74
1.34 1.61 1.18

2 1.5 4.33

= + −
= − + +

= − +

Fi i i i
Fi i i i

Fi i i i

 

 
By calculation of the eigenvectors and eigenvalues of TF F , show that U is defined by 
 

and 

1 1 2

2 1 2

3 3

2.65 .48
.48 2.35

4.99

= −
= − +

=

Ui i i
Ui i i

Ui i
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while R is defined by 
 

 

1 1 2 3

2 1 2 3

3 1 2 3

.8253 .529 .1953
.40 .7928 .4596

.4003 .3005 .8657

= + −
= − + +

= − +

Ri i i i
Ri i i i

Ri i i i

 

 
It is a useful computational check in working this exercise to know that the spectral representation 
of TF F  is given by 
 
 1 1 2 2 3 33.9865 9.0459 24.9989T = ⊗ + ⊗ + ⊗F F n n n n n n  
 
where 
 

and 

1 1 2

2 1 2

3 3

.5953 .8034
.8034 .5953

= +
= − +

=

n i i
n i i

n i

 

 
Exercise A.5.25 
 
Prove that a symmetric linear transformation is positive definite if and only if its fundamental 
invariants are positive. 
 
A.6.  Multilinear Functionals and Tensor Algebra 
 
 

In this section, the concepts of multilinear functionals and tensor algebra will be briefly 
discussed.  We allow the vector space i to have any finite dimension. 
 

Definition.  A linear functional is a function :f →i e  such that 
 
 ( ) ( ) ( )f f fλ µ λ µ+ = +u v u v  (A.6.1) 
 
for all ,u v  in i  and ,λ µ  in e . 
 

Example.  If u  is a fixed vector in i , then :f →i e defined by 
 
 ( )f = ⋅v u v  (A.6.2) 
 
 
is a linear functional. 
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Definition.  A bilinear functional  is a function × →i i e  such that 

 
 1 2 1 2( , ) ( , ) ( , )λ µ λ µ+ = +A u u v A u v A u v  (A.6.3) 
 
and 
 
 1 2 1 2( , ) ( , ) ( , )λ µ λ µ+ = +A u v v A u v A u v  (A.6.4) 
 
for all 1 2 1 2, , , , ,v v v u u u  in i  and ,λ µ  in e . 
 

Examples. 
 

(1) The function defined by 
 
 ( , ) = ⋅A u v u v  (A.6.5) 
 
for all ,u v  in i is a bilinear functional. 
 

(2) More generally, if A  is in ( ; )_ i i  then the function defined by 
 
 ( , ) ( )= ⋅A u v u Av  (A.6.6) 
 
is a bilinear functional. 
 

Definition.  If p is a positive integer, a p-linear functional is a function with p arguments 
 
 

 timesp

× × ×⋅⋅ ⋅× →i i i i e  

 
that is linear, in the sense of (A.6.1) in each of its arguments. 
 

Definition.  A tensor of order p ( 1)p ≥  on i is a p-linear functional. 
 

The set of tensors of order p on i  is denoted by ( )pg i .  Addition and scalar 
multiplication in this set is defined by 
 

and 
1 1 1

1 1

( )( ,..., ) ( ,..., ) ( ,..., )

( )( ,..., ) ( ( ,..., ))

p p p

p pλ λ

+ = +

=

A B v v A v v B v v

A v v A v v
 (A.6.7) 

 
for all 1,..., pv v in i  and λ  in e . 
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With these definitions, ( )pg i  becomes a vector space.  The zero vector in ( )pg i  is 
the p-linear functional that maps all sets of p vectors in i  into zero. 
 

Examples 
 

(1) If dim 3=i , the functional D  
 
 ( , , ) ( )= ⋅ ×D u v w u v w  (A.6.8) 
 
is a tensor of order three.  The tensor D  clearly has additional properties not shared by all elements 
of ( )pg i .  They are 
 
 1 2 3( , , ) ( , , )i j k ijkε=D v v v D v v v  (A.6.9) 
 
Equations (A.6.9) follows easily from (A.6.8).  The tensor D  with the properties (A.6.9), is a 
completely skew-symmetric tensor of order three. 
 

(2) The function u  defined by 
 
 ( ) = ⋅u v u v  (A.6.10) 
 
where u  is in i is a tensor of order one.  It can be shown that the tensor u  is uniquely 
determined by the vector u  and conversely.  Thus i  and 1( )g i  are isomorphic vector spaces.  
It is customary to suppress this isomorphism and, thus, regard elements of these two spaces as the 
same.  This procedure will be followed here. 
 

(3) The function A  defined by 
 
 ( , ) ( )= ⋅A u v u Av  (A.6.11) 
 
is a tensor of order 2.  It can also be shown here that the second order tensor A  is uniquely 
determined by the linear transformation A  and conversely.  Thus, ( ; )_ i i  and 2( )g i  are 
isomorphic vector spaces.  This isomorphism shall be suppressed as was the one in Example (2). 
 
A.7.  Euclidean Point Spaces, Coordinate Systems 
 

In vector analysis, the idea of a rectangular Cartesian coordinate system is accepted and 
used.  In this section, it will be shown how this idea can be introduced in a somewhat formal 
fashion.  The first concept we shall introduce is that of a Euclidean point space. 
 

Definition.  A set X  is a Euclidean point space if there exists a function 
:f × →X X i such that 

 
1.  ( , ) ( , ) ( , )f f f= +x y x z z y  for all , ,x y z  in X . 
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2.  For every  x  in X  and v  in i , there exists a unique element y  in X such that 
( , )f =x y v . 

 
The elements of X  are called points.  The vector space i  is called the translation space.  

We say that ( , )f x y  is the vector determined by the end point x  and initial point y .  Condition (2) 
above is equivalent to requiring the function fx  defined by ( ) ( , )f f=x y x y  to be one to one.  The 
dimension of X , written dimX , is defined to be n , the dimension of i . 
 

A Euclidean point space is not a vector space.  However, a vector space with inner product 
is a Euclidean point space with 1 2 1 2( , )f = −v v v v .  For an arbitrary point space X , the function 
f  is called the point difference, and it is customary to use the suggestive notation 

 
 ( , )f = −x y x y  (A.7.1) 
 
In this notation (1) and (2) above take the forms 
 
 − = − + −x y x z z y  (A.7.2) 
 
and 
 
 − =x y v  (A.7.3) 
 

Theorem A.7.1.  In a Euclidean point space X  
 
1.  − =x x 0 , 

 2.  ( )− = − −x y y x , 
3.  if ' '− = −x y x y , then ' '− = −x x y y . 

 
Proof.  For (1) take = =x y z  in (A.7.2) then 

 
 − = − + −x x x x x x  
 
which implies − =x x 0 .  To obtain (2) take =y x  in (A.7.2) and use (1).  For (3) observe that 
 
 ' ' ' ' '− = − + − = − + −x y x y y y x x x y  
 
from (A.7.2).  However we are given ' '− = −x y x y  which implies (3). 
 

The equation 
 
 − =x y v  (A.7.4) 
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1x

2x

3x

0

x

2i

3i

1i

has the property that given v  and x , y  is uniquely determined or given v  and y , x  is uniquely 
determined.  For this reason, it is customary to write 
 
 = +x y v  (A.7.5) 
 
for the point x  uniquely determined by y  in X  and v  in i .  The distance from x  to y  written 

( , )d x y , is defined by 
 
 [ ]1/ 2( , ) ( ) ( )d = − ⋅ −x y x y x y  (A.7.6) 
 

Definition.  A rectangular Cartesian coordinate system consists of a fixed element of X , 
denoted by 0 , called the origin, and an orthonormal basis { }1 2, ,..., ni i i  for i . 
 For every point x  in X , the vector −x 0  is in i  and can be represented by 
 
 j jx− =x 0 i  (A.7.7) 
 

Definition.  The n-tuple of scalars 1 2( , ,..., )nx x x  are called the coordinates of x  relative to 
the rectangular Cartesian coordinate system. 
 

The origin has the coordinates (0,0,0,...,0) .  In a three-dimensional case, X is represented 
by Fig. A.7.1.  The reader is cautioned that we have introduced three different zeros.  The zero 
scalar, the zero vector and the origin.  The context will always indicate which of these zeros is 
being used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.7.1 
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Q(x-0)

x-0

0

x*-0=c-0
+Q(x-0)

c-
0

x

c *x* ( )− = −x c Q x 0

Q(x-0)

x-0

0

x*-0=c-0
+Q(x-0)

c-
0

x

c *x* ( )− = −x c Q x 0

 
In Chapters III and IV we had occasion to make use of a certain type of mapping of X  onto 

X .  This mapping was of the form 
 
 * ( )= + −x c Q x 0  (A.7.8) 
 
where c  and 0  are fixed elements of X  and Q  is in ( )b i .  Such mappings are called rigid 
affine mappings. 
 
Exercise A.7.1 
 
Show that the mapping (A.7.8) has the following properties: 
 

1.  1 1 2 2− = −x y x y  implies * * * *
1 1 2 2− = −x y x y , 

2.  * *− = −x y x y . 
 
Equation (A.7.8) can be viewed geometrically as follows: 
 For simplicity, we take 2n =  and then X can be represented by the plane of the page.  The 
element 0  is shown below.  Equation (A.7.8) then yields the geometric construction shown in the 
following figure: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.7.2 
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It is important not to view the mapping (A.7.8) as a change of coordinates.  The idea of a 
rectangular Cartesian coordinate system was introduced earlier in this section and these ideas were 
not needed in order to discuss a rigid affine mapping. 
 
 
A.8.  Vector Analysis 
 

In this section we shall record certain elementary results from vector analysis.  The reader is 
assumed to be familiar with elementary definitions from analysis such as an open set and a 
continuous function. 
 

A function : 'f →h X , where h  is an open subset of X and 'X  is a Euclidean point 
space or a vector space, is differentiable at x  in h  if there exists a linear transformation xA in 

( ; ')_ i i  such that 
 
 ( ) ( ) ( , )f f o+ = + +xx v x A v x v  (A.8.1) 
 
where 
 

 
( , )

lim
o

→
=

v 0

x v
0

v
 (A.8.2) 

 
In this definition, i denotes the translation space of X and 'i  denotes the translation space of  

'X  if 'X is a point space and denotes 'X  if 'X is a vector space.  It is possible to prove that xA  
is unique. 
 

If f  is differentiable at every point of h , then we can define a function 
grad : ( ; ')f →h _ i i , called the gradient of f , by 
 
 grad ( )f = xx A  (A.8.3) 
 
for all x  in h .  If grad f  is continuous on h , then f  is said to be of class 1C .  If grad f  exists 
and is itself of class 1C , then f is of class 2C .  More generally f  is of class rC  if it is of class 

1rC − and its (r-l)st gradient, written 1gradr f− , is of class 1C .  A function f  is of class 0C  if it is 
merely continuous on h .  If f  is a rC , one to one, function with a rC  inverse 1f −  defined on 

( )f h , then f  is called a rC -diffeomorphism. 
 
 
 
 
 

If f is differentiable at x  then we can show from (A.8.1) and (A.8.2) that 
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0

( )d f
d τ

τ
τ =

= +xA v x v  (A.8.4) 

 
 
for all v  in i .  To obtain (A.8.4), replace v  by τ v , 0τ > , in (A.8.1) and write the result as 
 

 
( , )( ) ( ) of f ττ

τ τ
+ −

= −x

x vx v xA v  (A.8.5) 

 
By (A.8.2) the limit of the last term is zero as 0τ →  and (A.8.4) is obtained.  Equation (A.8.4) 
holds for all v  in i  because we can always choose τ  in (A.8.5) small enough to insure that 

τ+x v  is in h , the domain of f .  If f  is differentiable at every x  in h , then (A.8.4) can be 
written 
 

 [ ]
0

grad ( ) ( )df f
d τ

τ
τ =

= +x v x v  (A.8.6) 

 
A function :f →h e , where h is an open subset of X , is called a scalar field.  

Similarly, :f →h i is a vector field, and : ( )pf →h g i  is a tensor field of order p . 
 

If : ( )pf →h g i  is a tensor field, we can construct a function f̂ defined on an open 

subset of ne  with values in ( )pg i  by 
 
 1

ˆ ( ,..., ) ( )nf x x f= x  (A.8.7) 
 
where 1,..., nx x are the coordinates of x  as defined by (A.7.7).  In order to simplify the notation in 
the following, we shall often not distinguish the function f  in (A.8.7) and its coordinate function 
f̂ . 

 
If :ϕ →h e denotes a differentiable scalar field defined on an open subset h of X , 

then 
 

 grad ( ) k
kx
ϕϕ ∂

=
∂

x i  (A.8.8) 

 
with respect to a rectangular cartesian coordinate system.  To establish (A.8.8), we use (A.8.6) to 
write 
 

 
0

grad ( ) ( )d
d τ

ϕ ϕ τ
τ =

⋅ = +x v x v  (A.8.9) 
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By the definition (A.8.7) 
 
 1 1 2 2( ) ( , ,..., )n nx v x v x vϕ τ ϕ τ τ τ+ = + + +x v  (A.8.10) 
 
Therefore, 
 

 1 2

0

( , ,..., )( ) n
k

k

x x xd v
d xτ

ϕϕ τ
τ =

∂
+ =

∂
x v  (A.8.11) 

 
Since v  in i is arbitrary, (A.8.11) and (A.8.9) combine to yield (A.8.8). 
 
Exercise A.8.1 
 
Show that 
 
 grad( ) grad gradϕ ψ ϕ ψ+ = +  (A.8.12) 
 
and 
 
 grad( ) grad gradϕψ ϕ ψ ψ ϕ= +  (A.8.13) 
 

If : →g h i denotes a differentiable vector field defined on an open subset h of X , 
then 
 

 grad j
j k

k

g
x
∂

= ⊗
∂

g i i  (A.8.14) 

 
with respect to a rectangular cartesian coordinate system.  To establish this result, we again use 
(A.8.6) to write 
 

 [ ]
0

grad ( ) ( )d
d τ

τ
τ =

= +g x v g x v  (A.8.15) 

 
By the same argument which produced (A.8.11) 
 

 1 2

0

( , ,..., )( ) n
k

k

x x xd v
d xτ

τ
τ =

∂
+ =

∂
gg x v  (A.8.16) 

 
Since j jg=g i , and the ji  are constant vector fields, (A.8.16) can be replaced by 
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 1 2

0

( , ,..., )
( ) j n

k j
k

g x x xd v
d xτ

τ
τ =

∂
+ =

∂
g x v i  (A.8.17) 

 
If (A.8.17) is substituted into (A.8.15), the result can be written 
 

 1 2( , ,..., )
grad ( ) j n

j k
k

g x x x
x

∂⎡ ⎤
− ⊗ =⎢ ⎥∂⎣ ⎦

g x i i v 0  (A.8.18) 

 
 
Since v  is arbitrary, (A.8.18) yields (A.8.14). 
 

Definition.  The divergence of : →g h i is a scalar field, written divg , defined by 
 
 div tr(grad )=g g  (A.8.19) 
 
From (A.5.38) and (A.8.14), the component representation for div g  is 
 

 div k

k

g
x
∂

=
∂

g  (A.8.20) 

 
Exercise A.8.2 
 
Show that 
 
 div( ) div gradϕ ϕ ϕ= + ⋅g g g  (A.8.21) 
 
By the same type of argument which produced (A.8.14), the gradient of a field 

: ( ; )→A h _ i i  has the component representation 
 

 grad jq
j q k

k

A
x

∂
= ⊗ ⊗
∂

A i i i  (A.8.22) 

 
where j q k⊗ ⊗i i i , for each ,j q and k , is a third order tensor defined by 
 
 ( )( , , ) ( )( )( )j q k j q k⊗ ⊗ = ⋅ ⋅ ⋅i i i u v w i u i v i w  (A.8.23) 
 
for all , ,u v w  in i .  The divergence of the field ( )A x  is 
 

 div jk
j

k

A
x

∂
=
∂

A i  (A.8.24) 
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The Laplacian of a vector field ( )g x  is a vector field ∆g  defined by 
 

 
2

div(grad ) k
k

j j

g
x x
∂

∆ = =
∂ ∂

g g i  (A.8.25) 

 
The Laplacian of a scalar field ( )ϕ x  is a scalar field ϕ∆  defined by 
 

 
2

div(grad )
j jx x
ϕϕ ϕ ∂

∆ = =
∂ ∂

 (A.8.26) 

 
For a vector field ( )g x , the divergence theorem is the statement that 
 
 ( ) div ( )d dv

∂
⋅ =∫ ∫g x s g x

c c
 (A.8.27) 

 
where c denotes a region of X with closed surface ∂c , dv  is the element of volume, and ds  is 
the outward drawn vector element of area.  Equation (A.8.27) is a special case of a more general 
result, called Gauss' theorem, 
 
 ( ) grad ( )d dv

∂
⊗ =∫ ∫A x s A x

c c
 (A.8.28) 

 
where ( )A x  is an arbitrary tensor field and the tensor product ( ) d⊗A x s  is defined in a manner 
similar to that used in (A.8.23).  A special case of (A.8.28) we shall need is 
 
 ( ) div ( )d dv

∂
=∫ ∫A x s A x

c c
 (A.8.29) 

 
for a linear transformation ( )A x . 
 
Exercises A.8.3 
 
Take ( ) ( ) ( )T=g x A x u x  in (A.8.27) and require u  to be an arbitrary constant vector field.  Derive 
equation (A.8.29) from the result of this substitution.  This exercise can be generalized to a 
derivation of (A.8.28) from (A.8.27). 
 
Exercise A.8.4 
 
There are applications in mechanics for which (A.8.28) is not valid because ( )A x  is not 
differentiable throughout c .  In the case where A  is differentiable everywhere in ∂c  except on 
a surface Σ , where A  suffers a discontinuity, show that 
 
 ( ) div ( )d dv dσ

∂ Σ
⊗ = − ⊗∫ ∫ ∫A x s A x [A] n

c c
 (A.8.30) 
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where [ ]A denotes the jump of A at Σ  defined below.  The geometric arrangement appropriate for 

(A.8.30) is shown in the Fig. A.8.1.  The region c  consists of the two parts −c and +c  with 
surfaces −∂c  and +∂c  respectively.  The surface ∂c  is the union of −∂c  and +∂c .  The 
unit vector n  is normal to the surface Σ and is directed into +c .  The quantity dσn  is the vector 
element of area of Σ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.8.1 
 
The jump [ ]A  is defined by 
 
 [ ] − += −A A A  (A.8.31) 
 
where +A  is the limiting value of A  as a point on Σ  is approached from +c while −A  is the 
limiting value of A  as the same point is approached from −c . 
 

It should be evident that (A.8.30) is the three dimensional generalization of (1.1.30).  
Important special cases of (A.8.30) are 
 
 ( ) div ( )d dv dσ

∂ Σ
= −∫ ∫ ∫A x s A x [A]n

c c
 (A.8.32) 

 
and 
 
 ( ) div ( )d dv dσ

∂ Σ
⋅ = − ⋅∫ ∫ ∫g x s g x [g] n

c c
 (A.8.33) 

 
where ( )A x  is a linear transformation and ( )g x  is a vector. 
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Appendix B 
 
 
Representation Theorems 
 
 
In Chapter 4 it was necessary to utilize three representation theorems involving certain isotropic 
functions and isotropic tensors.  In this appendix, short proofs will be given of these 
representations. 
 

In Sections 4.4 and 4.10 it was asserted that if a scalar valued function u  of a symmetric 
linear transformation B  obeys 
 
 ( ) ( )Tu u=B QBQ  (B.1) 
 
for all orthogonal Q  in ( )+b i , then there exists a function *u  of the fundamental invariants 

,I IIB B  and IIIB  such that 
 
 ( ) *( , , )u u I II III= B B BB  (B.2) 
 
In order to establish this result, first recall from (A.5.50) through (A.5.52) that B  and TQBQ  have 
the same fundamental invariants for all Q  in ( )+b i  
 

Conversely, if a symmetric linear transformation B  and a symmetric linear transformation 
A  satisfy 
 
 I I=A B  (B.3) 
 
 II II=A B  (B.4) 
 
and 
 
 III III=A B  (B.5) 
 
then (A.5.43) and (A.5.66) show that A  and B  have the same eigenvalues 1 2,λ λ  and 3λ .  If 

{ }1 2 3, ,e e e  is the basis of orthonormal eigenvectors of B  and { }1 2 3, ,f f f  is the basis of orthonormal 
eigenvectors of A , then (A.5.65) shows that 
 
 j j jλ=Be e  (B.6) 
 
and 
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and 
 
 j j jλ=Af f  (B.7) 
 
where there is no sum on the index j.  Because { }1 2 3, ,e e e  and { }1 2 3, ,f f f  are orthonormal sets,  we 

can define a Q  in ( )+b i  by 
 
 j j=Qe f  (B.8) 
 
for 1, 2,3j = .  Therefore, from (B.6), (B.7) and (B.8) 
 
 j j j j j jλ λ= = = =QBe Qe f Af AQe  (B.9) 
 
for 1, 2,3j = .  Therefore, A  and B  must be related by 
 
 T=A QBQ  (B.10) 
 
What we have shown is that (B.3) through (B.5) hold if and only if there exists a Q  in ( )+b i  
such that (B.10) holds.  Therefore, the only way (B.1) can be satisfied is for (B.2) to hold. 
 

In Section 4.11 it was asserted that if the linear transformation K  obeyed 
 
 =QK KQ  (B.11) 
for all Q  in ( )+b i , then K  must be given by 
 
 κ=K I  (B.12) 
 
Equation (B.12) is clearly sufficient for (B.11) to be satisfied for all Q  in ( )+b i .  Conversely, if 
in (B.11) we consider a smooth family of proper orthogonal linear transformations ( )τQ  such that 

(0) =Q I , it follows by differentiation of (B.11) that  
 
 (0) (0)=Q K KQ  (B.13) 
 
Because ( )τQ  is orthogonal for each τ  and because (0) =Q I , it follows that (0)Q  is skew 
symmetric [See equation (4.9.22) of Section 4.9].  Thus, (B.13) implies that 
 
 =ZK KZ  (B.14) 
 
for all skew-symmetric linear transformations Z .  Because the matrix of Z  must be of the form 
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 [ ]
12 13

12 23

13 23

0
0

0

Z Z
Z Z
Z Z

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

Z  

 
we can easily express (B.14) in components and conclude that 
 
 11 22 33K K K= =  (B.15) 
 
 12 21 0K K= =  (B.16) 
 
 23 32 0K K= =  (B.17) 
 
 
and 
 
 13 31 0K K= =  (B.18) 
 
If we define 
 
 11Kκ =  (B.19) 
 
then (B.15) through (B.19) yield (B.12) as a necessary condition.  As observed above, (B.12) is 
sufficient to insure that (B.11) is satisfied for all Q  in ( )+b i . 
 

It also was asserted in Section 4.11 that if Λ  is a fourth-order tensor that obeys 
 
 ( [ ]) [ ]T T=Q Λ D Q Λ QDQ  (B.20) 
 
for all Q  in ( )+b i  and for all symmetric linear transformations D , then 
 
 [ ] (tr ) 2λ µ= +Λ D D D  (B.21) 
 
It is an elementary calculation to establish that (B.21) is sufficient for (B.20) to hold.  In order to 
prove necessity, we shall first prove that (B.20) forces D  and [ ]Λ D  to have the same eigenvectors.  
If 1 2,n n  and 3n  are eigenvectors of D , then 
 
 1 1 1d=Dn n  (B.22) 
 
 2 2 2d=Dn n  (B.23) 
 
and 
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 3 3 3d=Dn n  (B.24) 
 
By Theorem (A.5.10), the eigenvectors form an orthonormal basis of i  and the eigenvalues 

1 2,d d  and 3d  are real.  Since Q  in (B.20) is an arbitrary element of ( )+b i , we select one 
defined by 
 
 1 1=Qn n  (B.25) 
 
 2 2= −Qn n  (B.26) 
 
and 
 
 3 3= −Qn n  (B.27) 
 
A straight forward calculation based upon (B.22) through (B.27) yields 
 
 1 1

T =QDQ n Dn  (B.28) 
 
 2 2

T =QDQ n Dn  (B.29) 
 
and 
 
 3 3

T =QDQ n Dn  (B.30) 
 
 
Since { }1 2 3, ,n n n  is a basis for i , (B.28) through (B.30) yield 
 
 T =QDQ D  (B.31) 
 
Utilizing (B.31), we see that (B.20) reduces to 
 
 ( [ ]) [ ]T =Q Λ D Q Λ D  (B.32) 
 
We need to prove that [ ] jΛ D n  is parallel to jn  for 1, 2,3j = .  This result follows if we can prove 
that [ ] jΛ D n  is orthogonal to kn  and qn  j k q≠ ≠ .  For example, 
 

 
2 1 2 1

2 1

2 1

( [ ] ) ( [ ] )
( [ ] )

( [ ] )

T

T T

⋅ = ⋅

= ⋅
= − ⋅

n Λ D n n QΛ D Q n

Q n Λ D Q n
n Λ D n

 

 
where (B.25), (B.26) and (B.32) have been used.  This result yields 
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 2 1( [ ] ) 0⋅ =n Λ D n  (B.33) 
 
Similar calculations yield 
 
 ( [ ] ) 0j k⋅ =n Λ D n  (B.34) 
 
for j k≠ , which proves that D  and [ ]Λ D  have the same eigenvectors. 
 

If we write j j j= ⊗N n n , for 1, 2,3j = , then the result just established shows that 
 
 [ ]j kj k= ΛΛ N N  (B.35) 
 
where the kjΛ  are the components of the forth order tensor Λ  with respect to the basis of 
eigenvectors.  An elementary manipulation of (B.35) shows that 
 
 tr( ( [ ]))kj k jΛ = N Λ N  (B.36) 
 
With (B.20), we can rewrite (B.36) as 
 
 tr( ( [ ]))T T

kj k jΛ = QN Q Λ QN Q  (B.37) 
 
where Q  is an arbitrary element of ( )+b i .  If we take Q  to be defined by 1 2=Qn n , 2 3=Qn n  
and 3 1=Qn n , then an elementary calculation shows that 1 2

T =QN Q N , 2 3
T =QN Q N  and 

3 1
T =QN Q N .  When these facts are used in (B.37) one finds that 

 
 11 22 33Λ = Λ = Λ  (B.38) 
 
and 
 
 12 21 23 32 13 31Λ = Λ = Λ = Λ = Λ = Λ  (B.39) 
 
Without loss of generality, we can write 
 
 12λ = Λ  (B.40) 
 
and 
 
 11 12 112µ λ= Λ −Λ = Λ −  (B.41) 
 
Thus, (B.35) reduces to 
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 [ ] 2j jλ µ= +Λ N I N  (B.42) 
 
after (B.38) through (B.41) are used.  By the spectral representation of D , [see (A.5.67)] we can 
write 
 
 1 1 2 2 3 3d d d= + +D N N N  (B.43) 
 
Therefore, 
 
 1 1 2 2 3 3[ ] [ ] [ ] [ ]d d d= + +Λ D Λ N Λ N Λ N  (B.44) 
 
Given (B.42), (B.44) can be shown to reduce to the desired result (B.21). 
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Coordinate function, 281 
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Corotational stress rate, 168 
Crocco-Vazsonyi theorem, 193 
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Deformation function, 1, 4, 48 
Deformation gradient, 3, 51 
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Diffeomorphism, 47, 49, 281 
Differentiable function, 280 
Dilatation, 71 
Dimension of a vector space, 239 
Dispersion relation, 42 
Displacement, 2, 36, 49 
Displacement gradient, 3, 39 
Dissipative stress, 28 
Distance between vectors, 248 
Divergence of a linear transformation, 283 
Divergence of a vector field, 283 
Divergence theorem, 284 
 
Eigenvalue of a linear transformation, 63, 269 
Eigenvalue problem, 269 
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Elasticity tensor, 119 
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Entropy flux, 16, 90 
Entropy flux vector, 96, 231 
Entropy inequality, 16, 24, 95 
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Equation of general balance, 15 
Equation of motion, 77, 84 
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Euler's equations, 86 
Extents of reaction, 207 
Exterior normal, 78 
Exterior product of vectors, 261 
Extra hydrostatic pressure, 143 
Extra part of the stress, 28, 158 
False thermodynamic equilibrium, 212 
Finite dimensional vector space, 239 
Finite-linear elastic particle, 139 
First Axiom of Thermodynamics, 88 
First Law of Thermodynamics, 12, 88 
First Piola-Kirchhoff stress tensor, 82, 87, 
139, 160 
Fluid of the second grade, 115 
Fluid particle, 134, 174, 178 
Fourier's law of heat conduction, 23, 235 
Fourth-order isotropic tensor, 187, 289 
Frame of reference, 120 
Frequency, 42 
Frozen equilibrium, 220 
Frozen isentropic wave speed, 222 
Frozen isothermal wave speed, 222 
Frozen properties, 220 
Fundamental invariants of a linear 
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Gas constant, 21, 110 
Gauss' Theorem, 284 
General balance, 15 
General linear group, 130, 246 
Geophysical continuum mechanics, 84 
Gibbs function, 18, 189 
Gibbs relation, 30, 110, 113, 159, 215 
Gradient of a function, 280 
Gradient of a linear transformation, 283 
Gurtin-Pipkin heat conductor, 23 
 
Harmonic waves, 42, 44 
Heat, 12, 88 
Heat conduction inequality, 154 
Heat flux, 13, 16, 23, 89 
Heat flux vector, 89 
Heat supply density, 13, 16, 88 
Heat-conducting compressible gas, 21, 40 
Helmholtz free energy density, 18, 97 
Hemitropic particle, 174 
Histories, 145 
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Homogeneous deformation, 68 
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Hugoniot relation, 14, 93 
Hydrostatic stress, 79 
 
Identity linear transformation, 245 
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Indeterminant hydrostatic stress, 115, 141 
Infinitesimal deformation, 69 
Infinitesimal rotation tensor, 70 
Infinitesimal strain kinematics, 68 
Infinitesimal strain measure, 69 
Infinitesimal strain tensor, 69, 70 
Inhomogeneous material, 116, 120 
Inner product space, 248 
Internal energy, 12, 88 
Internal energy density, 12, 88 
Intrinsic spin, 84, 87 
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Isentropic bulk modulus, 114 
Isentropic longitudinal wave speed, 202 
Isentropic modulus of elasticity, 38, 114 
Isentropic motion, 192 
Isentropic Poisson's ratio, 114 
Isentropic wave speed, 40, 44, 202 
Isolated body, 201 
Isomorphic vector spaces, 244 
Isomorphism, 244 
Isothermal bulk modulus, 112 
Isothermal elastic fluid, 135 
Isothermal Lame parameters, 112, 139 
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Isothermal modulus of elasticity, 23, 35, 38, 
112 
Isothermal Poisson's ratio, 112 
Isothermal shear modulus, 112 
Isothermal wave speed, 40, 44, 202 
Isothermal Young's modulus, 112 
Isotropic elastic particle, 138, 143 
Isotropic function, 137, 179, 182, 185, 287 
Isotropic linear thermoelastic solid, 111, 217 
Isotropic linear thermoelasticity, 111, 195, 
217 
Isotropic particle, 133, 174 
Isotropic solid particle, 133, 174 
Isotropy group, 131, 203 
 
Joint invariants, 182 
Jump balance of energy, 92, 104 
Jump balance of linear momentum, 83, 104 
Jump balance of mass, 75, 104 
Jump discontinuity, 7, 9, 19, 58, 285 
Jump entropy inequality, 17, 97, 104 
Jump equations of balance, 99 
Jump of a function, 5, 285 
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Kelvin material, 22 
Kernel of a linear transformation, 243 
Kinematics of motion, 1, 47 
Kinematics of strain, 1, 47 
Kinematics of vorticity, 58 
Kinetic energy, 12, 88 
Kotchine's theorem, 16 
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Lagrangian coordinates, 1 
Lagrangian strain tensor, 64 
Laplacian of a scalar field, 284 
Laplacian of a vector field, 284 
Left Cauchy-Green tensor, 63, 115, 175 
Left stretch tensor, 62 
Length of a vector, 248 
Linear constitutive equations, 36, 37, 198, 
217, 224 
Linear dissipation, 33 
Linear elasticity, 22, 68, 111 
Linear functional, 274 
Linear momentum, 10, 76 
Linear thermoelasticity, 23, 106, 113, 115 
Linear transformation, 242 
Linear viscoelasticity, 22 
Linear viscous material, 22 
Linearly dependent set, 239 
Linearly independent set, 239 
Local deformation, 3 
Local reference configuration, 132, 150 
Long range spatial effects, 148 
Longitudinal wave speed, 140, 202, 221 
Long time approximation, 41 
 
Mass density, 8, 72 
Material coordinates, 1, 48 
Material curve, 58 
Material derivative, 2, 50 
Material element of area, 55 
Material element of volume, 55 
Material form of balance of energy, 90 
Material form of balance of linear 
momentum, 12, 83 
Material form of balance of mass, 8, 73 
Material frame indifference, 23, 108, 120, 
160, 227 
Materially isomorphic reference 
configuration, 169, 182 
Material strain tensor, 64 
Material surface, 56, 57 
Material symmetry, 23, 32, 126, 168, 217 
Material variables, 2, 50 
Materially uniform body, 182 
Materials with internal state variables, 207 
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Matrix of a linear transformation, 247 
Maxwell relations, 190 
Maxwellian gas, 232 
Maxwellian material, 22, 168, 207, 226 
Maxwell's theorem, 101 
Maxwell-Cattaneo heat conductor, 23, 222, 
226 
Mechanical dissipation inequality, 154 
Mooney-Rivlin material, 115, 143 
Motion, 1, 47 
Müller, 231 
 
Navier-Stokes equations, 110 
Negative definite linear transformation, 253 
Negative semidefinite linear transformation 
253 
Newton's second law, 77 
Nonconductor, 23, 39, 155, 192 
Nonequilibrium part of the stress, 28, 158 
Norm of a linear transformation, 68 
Norm of a vector, 248 
Normal speed, 99 
Normal stress, 79 
Normal velocity, 59 
 
Ordered n-tuple, 238 
Orthogonal group, 253 
Orthogonal linear transformation, 253 
Orthogonal vectors, 250 
Orthonormal basis, 251 
 
Particle, 1, 47 
Perfect gas, 21, 40, 42, 110 
Permutation symbol, 260 
Phase velocity, 42, 44 
Point difference, 277 
Polar decomposition theorem, 62, 65, 270 
Polar material, 84, 87 
Positive definite linear transformation, 253 
Positive semidefinite linear transformation 
253 
Power, 12, 88 
Pressure, 21, 84, 109, 135 
Product of linear transformations, 245 
Proper orthogonal group, 131, 163 
Proper subgroup, 130 

Proper unimodular group, 131, 171 
p-linear functional, 275 
 
Rank of a linear transformation, 243 
Rankine-Hugoniot relation, 12, 20, 105 
Rate of deformation, 65, 147 
Rate of heat addition, 12, 13, 88 
Rate of rotation, 65 
Rate of strain, 65 
Rate of strain tensor, 66 
Rate of work, 12, 88, 91 
Rate of work, 88 
Rectangular Cartesian coordinate system, 278 
Reference configuration, 1, 8, 32, 47 
Regular linear transformation, 243 
Reiner-Rivlin fluid, 115 
Relative angular momentum, 86 
Relaxation rate law, 208, 223 
Relaxation time, 219, 225 
Residual entropy inequality, 154, 210 
Response function, 146 
Resultant body force, 10, 78 
Resultant contact force, 78 
Resultant external body force, 78 
Resultant force, 10, 77 
Resultant torque, 84 
Reynold's theorem, 4, 7, 56 
Right Cauchy-Green tensor, 53, 132 
Right stretch tensor, 62 
Rigid affine mapping, 279 
Rigid heat conductor, 222 
Rivlin-Ericksen fluid, 115 
Rivlin-Ericksen fluid of grade n, 115 
Rivlin-Ericksen tensor, 67, 115 
Rotating coordinate system, 60, 76, 93 
Rotation tensor, 62 
 
Scalar, 238 
Scalar field, 281 
Scalar multiplication, 237 
Scalar triple product, 258 
Scalar valued isotropic function, 137, 287 
Schwarz inequality, 249 
Second Axiom of Thermodynamics, 96 
Second Law of Thermodynamics, 16, 46, 231 
Second Piola-Kirchhoff stress tensor, 83, 167 
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Second-order isotropic tensor, 187, 196, 198, 
288 
Set function, 73 
Shear stress, 79 
Shear viscosity, 109 
Shifting equilibrium, 214, 220 
Shifting equilibrium properties, 221 
Shock wave, 20, 74, 102, 105 
Short time approximation, 41 
Skew-symmetric linear transformation, 252 
Small departures from equilibrium, 31, 33, 
186, 225 
Small departures from thermodynamic 
equilibrium, 31, 186 
Solid elastic particle, 133 
Solid particle, 174 
Spatial coordinates, 1, 48 
Spatial position, 1 
Spatial variables, 2 
Special linear group, 131, 142, 171 
Specific heat, 21, 35, 44, 110, 112, 191, 221 
Specific volume, 9 
Spectral representation for a linear 
transformation, 269 
Spin tensor, 66, 163 
Spinodal decomposition, 213 
Stability, 18, 22, 46, 98, 202, 222 
Stagnation enthalpy, 192 
Strain energy, 167 
Strain kinematics, 62 
Stress, 10, 79 
Stress power, 15, 92 
Stress tensor, 79 
Stress vector, 78, 121 
Stretching tensor, 66 
Strong thermodynamic equilibrium, 212 
Subspace of a vector space, 243 
Sum of linear transformations, 246 
Summation convention, 255 
Surface couple, 85, 87 
Surface-relevant temperature, 233 
Symmetric linear transformation, 252 
Symmetry group, 131, 172, 183 
System of forces, 78 
 
Temperature, 16, 96 

Tensor, 275 
Tensor field, 281 
Tensor product of vectors, 254, 284 
Thermal conductivity, 21, 32, 39, 109, 112 
Thermal equation of state, 192 
Thermodynamic energy equation, 14, 91 
Thermodynamic equilibrium, 27, 156, 210 
Thermodynamic equilibrium, 27, 156, 210, 
224, 230 
Thermodynamic potential, 22 
Thermodynamic process, 24, 117, 145, 207 
Thermodynamic stability, 22, 98 
Thermoelastic material, 155 
Thermoelastic nonconductor, 155 
Thermoelastic stability, 202 
Total energy, 12, 88 
Trace of a linear transformation, 265 
Transformation of linear elements, 55 
Transformation of surface elements, 55 
Transformation of volume elements, 55 
Transformation rule, 242 
Translation space, 277 
Transport theorem, 4, 5 
Transpose of a linear transformation, 251 
Transverse wave speed, 140, 202 
Triangle inequality, 249 
 
Undistorted local reference configuration, 
174 
Undistorted natural state, 200 
Undistorted reference configuration, 133, 
175, 228 
Uniform local reference configuration, 182, 
195 
Unimodular group, 130, 171 
Unit normal, 99 
 
Vector field, 281 
Vector space with negative orientation, 259 
Vector space with positive orientation, 259 
Vector spaces, 237 
Velocity, 1, 7, 49 
Velocity gradient, 3, 52 
Velocity potential, 194 
Viscoelastic fluids, 67 
Viscoelastic material, 148 
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Viscosity, 109 
Viscous dissipation, 111 
Voight material, 22 
Volume-relevant temperature, 233 
Vorticity equation of Vazsonyi, 194 
Vorticity vector, 66, 193 
Vorticity vector, 193 
 
Wave number, 42 
Weak thermodynamic equilibrium, 211 




