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Preface (First Edition)

Thistextbook isintended to introduce engineering graduate students to the essentials of
modern Continuum Mechanics. The objective of an introductory course is to establish certain
classical continuum models within a modern framework. Engineering students need afirm
understanding of classical models such as the linear viscous fluids (Navier-Stokes theory) and
infinitesimal elasticity. This understanding should include an appreciation for the status of the
classical theories as special cases of general nonlinear continuum models. The relationship of the
classical theories to nonlinear modelsis essential in light of the increasing reliance, by engineering
designers and researchers, on prepackaged computer codes. These codes are based upon models
which have a specific and limited range of validity. Given the danger associated with the use of
these computer codes in circumstances where the model is not valid, engineers have aneed for an
in depth understanding of continuum mechanics and the continuum models which can be
formulated by use of continuum mechanics techniques.

Classical continuum models and othersinvolve a utilization of the balance equations of
continuum mechanics, the second law of thermodynamics, the principles of material frame-
indifference and material symmetry. In addition, they involve linearizations of various types. In
thistext, an effort is made to explain carefully how the governing principles, linearizations and
other approximations combine to yield classical continuum models. A fundamental understanding
of these models evolve is most hel pful when one attempts to study models which account for a
wider array of physical phenomena.

This book is organized in five chapters and two appendices. Thefirst appendix contains
virtually all of the mathematical background necessary to understand the text. The second
appendix contains specialized results concerning representation theorems. Because many new
engineering graduate students experience difficulties with the mathematical level of amodern
continuum mechanics course, this text begins with a one dimensional overview. Classroom
experience with this material has shown that such an overview is helpful to many students. Of
course, more advanced students can proceed directly to the Chapter 1. Chapter 11 is concerned
with the kinematics of motion of a general continuum. Chapter |11 contains a discussion of the
governing equations of balance and the entropy inequality for a continuum. The main portion of
the text is contained in Chapter 1V. Thislong chapter contains the complete formulation of various
general continuum models. These formulations begin with general statements of constitutive
equations followed by a systematic examination of these constitutive equationsin light of the
restrictions implied by the second law of thermodynamics, material frame-indifference and material
symmetry. Chapter IV ends with an examination of the formal approximations necessary to
specialize to the classical models mentioned above. So asto illustrate further applications of
continuum mechanics, the final chapter contains an introductory discussion of materials with
internal state variables.

The book is essentially self contained and should be suitable for self study. It contains
approximately two hundred and eighty exercises and one hundred and seventy references. The
references at the end of each chapter are divided into References and General References. The
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References are citations which relate directly to the material covered in the proceeding chapter.
The General References represent additional reading material which relate in a general way to the
material in the chapter.

Thistext book evolved over an extended period of time. For anumber of years, early
versions of the manuscript were used at Rice University. | am indebted for the assistance my many
students gave me as the lecture notes evolved into a draft manuscript. The final manuscript has
been utilized at the University of Kentucky by my colleague, Professor Donald C. Leigh, in an
introductory graduate course. | am indebted to him for his many comments and suggestions.

Ray M. Bowen
Lexington, Kentucky

Preface (Revised Edition)

This electronic textbook is arevision to the textbook, Introduction to Continuum Mechanics
which was published by Plenum Pressin 1989. A small amount of new material has been added in
Chapters 1, 3 and 4. In addition, an effort has been made to correct numerous typographical errors
that appeared in the first edition. It isinevitable that other typographical errors creep into the
manuscript when it is retyped. | hope there has been a net reduction in these kinds of errors from
thefirst edition to this revised edition

| remain indebted to my colleagues that have pointed out errors over the years. A special
mention needs to be made to my good friends Dr. C.-C. Wang of Rice University and Dr. Donald
C. Leigh of the University of Kentucky. Not only were they kind enough to adopt the first edition
as atextbook, they informed me of many corrections and improvements that could be made.

| am also indebted to my students at Texas A& M University that endured my teaching from
the revised edition after being out of the classroom for many years.

It is my desire and intention that this revised textbook be made available for free to anyone
that wishesto have acopy. For the immediate future, the access will be provided by posting it on
the website of the Mechanical Engineering Department of Texas A&M University. | would
appreciate being informed of any typographical and other errors that remain in the posted version.

Ray M. Bowen
rbowen@ anu. edu

College Sation, Texas
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1

One-Dimensional Continuum M echanics

It is often not clear to engineering students that there is a common basis for their coursesin
thermodynamics, fluid mechanics and elasticity. The pace of most undergraduate curriculumsis
such that there is no opportunity to stress the common features of these courses. In addition, many
undergraduate engineering students have limited skill with vector analysis and Cartesian tensor
analysis. These problems make it awkward to teach a modern introductory course in Continuum
Mechanicsto first year engineering graduate students. Experience has shown that an elementary
preview of the modern course can be agreat asset to the student. This chapter contains such a
preview. Itisabrief survey of the elements of continuum mechanics presented for one
dimensional continuous bodies. This survey allows the student to encounter a new notation and
several new concepts without the problem of learning three dimensional vector and tensor analysis.

This chapter contains a devel opment of the one dimensional forms of the equations of
balance of mass, momentum and energy. The entropy inequality is presented, and it is utilized to
derive the thermodynamic restrictions for a particular material model.

1.1. Kinematicsof Motion and Strain

We shall denote by 23" the one dimensional body. The symbol X denotes an element or
particle of thebody 23" . Itisuseful at this point not to distinguish between the body @5 and the
portion of one dimensional space it occupies. Thus, X isarea number. Itiscustomary to refer to
X asthe material or Lagrangian coordinate of the particle. The set of material coordinatesis a
subset of the real numbers called the reference configuration. If t denotesthetimeand #¢' isthe
set of real numbers, then the deformation function isafunction y(,,t): 28 — 22 which, for each t,

maps <3 into its present configuration. We write
X=y(X,t) (1.1.2)

where x isthe spatial position or coordinate of the particle X at thetime t. The spatial
coordinates are also called Eulerian coordinates. We shall assume that for each t, y hasan

inverse y " such that
X = 77 (xt) (1.1.2)

Theses assumptionsinsurethat X and x are in oneto one correspondence for each t and are, in
effect, a statement of permanence of matter. The particle X cannot break into two particlesas a
result of the deformation, and two particles X, and X, cannot occupy the same spatial position x

at the same instant of time.

Thevelocity of X at timetis
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= (X0 (113)
ot
Theacceleration of X atthetimet is
L))
K =L 1.1.4
6t2 ( )
The displacement of X atthetimet is
w= z(X,t)- X (1.1.5)

Because of (1.1.2), we can regard x, X and w to be functionsof (x,t) or (X,t). Thepair (X,t)
are called material variables, and the pair (x,t) are called spatial variables. Clearly, by use of

(1.1.1) and (1.1.2) any function of one set of variables can be converted to afunction of the other
Set.

If v isafunction of (X,t), thenits material derivative, written v, is defined by

. 0w (X,t)
et i SAL LS4 116
v - (1.1.6)
If the function w of (x,t) isdefined by
() =y (xt)1) (1.17)

an elementary application of the chain rule yields

J e Oy (X.t) _op(xt) , ay(xt) (1.1.8)
ot ot ox

Equation (1.1.8) givesthe material derivative in terms of spatial derivatives. For notational
simplicity, we shall write (1.1.8) as

. Oy Oy .
=——+—"1X 1.1.9
V=t o (1.1.9)
where it isunderstood that oy /ot iscomputed at fixed x, and dw /ox iscomputed at fixed t. As
an illustration of (1.1.9), we can take y = x and obtain
OX OX

X=—+—X (1.1.10)
ot ox
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The deformation gradient is defined by

F_@MXM
oX

Since y hasaninverse, itistrivialy truethat y(y " (x,t),t) = x and, thus,

ox(X,t) ot (x,t) _1

oX OX

Equation (1.1.12) showsthat F # 0and

Ffl :l — 8Z_l(x’t)
F OX

The displacement gradient is defined by

L _ WX,
oX

It followsfrom (1.1.11), (1.1.14), and (1.1.5) that H and F arerelated by

H=F-1

(1.1.11)

(1.1.12)

(1.1.13)

(1.1.14)

(1.1.15)

If dX denotesadifferential element of thebody at X , then it follows from (1.1.1) and

(1.1.11) that

dx = FdX

(1.1.16)

Equation (1.1.16) showsthat if dX isamaterial element at X then FdX = dx isthe deformed
element at x. Therefore, F measuresthe local deformation of material in the neighborhood of

X.

If X isexpressed asafunction of (x,t), then

X

L=2
OX

isthe velocity gradient. Because

0 9x(X.0) _ 3% _axax(X.)

oX ot oX 0OX

(1.1.17)

(1.1.18)
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it follows from (1.1.11), (1.1.17) and (1.1.6) that
F=LF (1.1.19)
Exercise1.1.1

Show that

Fi=—F'L (1.1.20)

Next we shall state and prove an important result known as Reynold’ s theorem or the
transport theorem. Consider afixed portion of the body in X, < X < X,. The deformation
function, for each t, deforms this portion into aregionin 22" . Without loss of generality, we can
take thisregionto be x, < X< x,, where x, = y(X,,t), X, = y(X,,t) and x= y(X,t). Reynold’'s
theorem states that if WV isasufficiently smooth function of x and t, then

JXZ oY

J:Z‘P(x,t)dx = étx’t) X+ P (X,, ) X(X,, 1) — P (%, 1) X(%, 1) (1.1.21)

x

The derivation of (1.1.21) is best approached by utilizing a formalism which does not
depend upon the use of a deformation function, and its associated motion. Wefirst let d(x,t) be

the indefinite integral, with respect to x, of afunction W (x,t) . In other words, let

d(x,t) = '[‘P(x,t)dx+ constant (1.1.22)
It follows then that
PO _ yix.ty (1.1.23)
OX
and, for two points x, and X,,
j:qf(x,t)dx= D(x,,1) — D(X,1) (1.1.24)

If we allow the limitsin (1.1.24) to be functions of time, i.e.,
J (S) F(x)dx = B(x(t),) - P(%(1),1) (1.1.25)
X

Thetotal derivative of sz(:;)‘l’(x,t)dx is
X
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g sz‘{’(x,t)dx= dd(x,(t),t) B dd(x(t),t)
dt Jx® dt dt
_ 0D(x%(t).1) | OD(x,(0).1) dx, (1) (1126
ot X dt -
_0D(x(t),t)  o@(x(t).t) dx(t)
ot OX dt

If (1.1.25) is used, (1.1.26) can be written

d O (x )k 8®(x2(t),t) FE( (1), t)dxz(t) oD(x(t),1) S () t)dxl(t)

dt % (1) ot dt
_ jXZ”qf(xt)dH\P(xz(t) t)dxz(t) N T0) t)d (t)

(1.1.27)

The next formal step is to interchange the order of integration on x with the partial differentiation
with respect to t. Theresult of thisfinal stepis

9 Owona= [ D g w000 %O w0 %O a1

Theresult (1.1.28) isamathematical identity that holds for the function W of (x,t) and functions
x, and x, of t that are sufficiently smooth that the various derivatives above exist. In calculus, it

sometimes goes by the name Leibnitz'srule. It isone of the standard results one needs in applied
mathematics for the differentiation of integrals. We have not been precise about the smoothness
assumptions sufficient to give the result (1.1.28). More rigorous derivations of this result can be
found in many Calculus textbooks. References 1 and 2 contain this derivation. In any case, we are
interested in this result in the special case where the functions x, and x, of t are derived from the

deformation function y . Inthiscase, (1.1.27) immediately becomes (1.1.21)

Exercise 1.1.2
Show that (1.1.21) can be derived by a change of variables in the integral J. U )‘P( x,t)dx. The
first step isto write
o=x(Xz.1)
j ¥ (x,t)dx = j P (xt)dx= j P (y(X,t),t)FdX (1.1.29)

Differentiate (1.1.29) and rearrange the result to obtain (1.1.21).

The name "transport theorem" is suggested by viewing the last two termsin (1.1.21) asthe net
transported out of the spatial region x, < x < X, by the motion of the material.
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Equation (1.1.28) and its special case (1.1.21) assumethat @ isdifferentiable and, thus,
from (1.1.23), ¥ continuous as afunction of x in x < x< x,. Next we wish to remove the

assumption that ¥ iscontinuousin x, < X< X, and derive ageneralization of (1.1.21). The

derivation simply utilizes the general result (1.1.27) in two different intervals and carefully joins
the results so as they apply to theinterval x, < X< x,. Weassume ¥ iscontinuous except at a

point y(t) intheinterval x, < x<X,. Asshown in thefollowing figure, at the point y(t) the
function ¥ isalowed to undergo adiscontinuity asafunction of x at afixedtimet.

Asindicated on the figure

¥ = [im P (xt) (1.1.30)
xTy(t)
and
P = lim P (xt) (1.1.31)
xby(t)

We use the notation [\V'] to denote the jump of W defined by

[¥]=¥ - (1.1.32)

| |
| |
| |
x oy X
Figurel.1.1

Exercise1.1.3

If ¥ and @ undergo jump discontinuitiesat y(t) show that
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[YO]=[P]D +¥'[DP] =¥ [D]+[¥]D"
=[V][@]+ ¥ [D]+[V]D"
and

:%(‘P* +‘I’)[<I)]+%[‘P](<I>+ +<I>’) (1.1.33)

Exercise1.1.4

If ¥ undergoes ajump discontinuity at y(t), show that

j Xza—q’dx P (%,,1) - W(x,t) +[¥] (1.1.34)

Given afunction ¥ which undergoes ajump discontinuity at y(t) , Reynold’s theorem
takes the form

j ‘I’(x t)dx _j za—lPdX+ P (%,,1)X(%,,1) (1.1.35)

—P (6, OX0q, ) + [y

where y(t) isthevelocity of the point y(t). The derivation of (1.1.35) is elementary. Because ¥
isdifferentiablein x, < x< y(t) andin y(t) < X< x,, (1.1.27) yields

d y

FARICILS jxlaqja(“)dx WY — W (%, XX, 1) (1.1.36)
and

% ‘W (x,t)dx _jza‘PéX ) i W 0, X001~ WY (1.1.37)

The addition of (1.1.36) and (1.1.37) yields (1.1.35). If (1.1.34) isused, (1.1.35) can also be
written

NN L. 2 2 o
le W(x,t)dx :le (EJerdx—[‘P(x—y)] (1.1.38)

1.2. Balance of Mass

In this section we shall state the one dimensional form of the equation of balance of mass.
This equation is the first of four fundamental principles which form the basis of continuum
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mechanics. The others are balance of momentum, balance of energy and the entropy inequality.
These equations of balance will be discussed in subsequent sections.

We shall denote by p the mass density (mass/length) of @3 in its deformed configuration.
Therefore,

p=p(X,t) (1.2.1)
The corresponding quantity in the reference configuration is
Pr = pr(X) (1.22)

Balance of massisthe simple physical statement that the mass of the body and any of its parts are
unaltered during adeformation. If an arbitrary part of the body isdefined by X, < X < X,, then it

isdeformed into X, < x< X, by the deformation, where x, = y(X,,t) and x, = y(X,,t). Balance of
mass is the assertion that

X, X9
. PedX = le pdx (1.2.3)

for al parts of the one dimensional body @5 . Because the left side of (1.2.3)is independent of t,
an alternate form of balance of massis

le pdx =0 (1.2.4)

Next we shall derive thelocal statement of balance of mass. The statement islocal in the
sense that it holds at an arbitrary point X at an arbitrary time t rather than for an interval
X, <X < X,. By useof (1.1.16), (1.2.3) can be written

[ (pF - pe)ax =0 (1.2.5)

If we assume the integrand pF — p,, isacontinuous function of X, the fact that (1.2.5) must hold
for every interval X, < X < X, forcesthe following local statement of balance of mass:

PF = pq (1.2.6)

For reasons that will become clear later, we shall refer to (1.2.6) as the material form of the local
statement of balance of mass. Other local statements follow by differentiation of (1.2.6). It follows
from (1.2.6) that

oF = pF+pE =0 (1.2.7)
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If we now use (1.1.19) and thefact that F =0, (1.2.7) yields
p+pL=0 (1.2.8)
Exercise1.2.1

Show that (1.2.8) can be written in the alternate forms

1.1 (1.2.9)
p P
and
9P LPX_ (1.2.10)
ot ox

Equations (1.2.8), (1.2.9) and (1.2.10) are local statements of balance of mass which hold at
pointswhere p and x aredifferentiable. If thereisapoint for which p and x undergo ajump

discontinuity, we must proceed from (1.2.3) more carefully. If p and x suffer ajump
discontinuity at y(t), it follows from (1.2.4) and (1.1.38) that

X ap pr . S AT
jxl (E+§jdx [p(X—y)]=0 (1.2.11)

Equation (1.2.11) holdsfor al (x;,%,). Theintegrand is assumed to be continuous at all points
except y(t). If (x,X,) isan arbitrary interval which does not contain y(t), then (1.2.11) implies
(1.2.10). Given (1.2.10), (1.2.112) thenyields

[p(x=¥)]=0 (1.2.12)

a x=y(t). Thephysical meaning of (1.2.12) isquite clear. It simply states that the flux of mass
across the point y(t) iscontinuous.

Exercise1.2.2
Use (1.2.12) and show that the jump in specific volume, [1/ p], is given by

p (X =y p]=[X] (1.2.13)
Exercise1.2.3

Use (1.2.10) and show that
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IP _ 6p‘P + 8plPX

1.2.14
ot OX ( )
where ¥ isany function of (x,t).
Exercise1.2.4
Use (1.2.14) and show that
Ll PP (X 1)dx = jxl PPAX—[ PP (X— V)] (1.2.15)

1.3. Balanceof Linear Momentum

In the three dimensional theory, the statement of balance of momentum consists of two
parts. Thefirst isthe statement concerning the balance of linear momentum, and the second is a
statement concerning the balance of angular momentum. For a one dimensional theory the concept
of angular momentum does not arise.

The linear momentum of the part of 23" in x, < X< X, is
szdex
X

The rate of change of linear momentum is required to equal to the resultant force on the part of
24" . Theformal statement iswritten

j:pmx = f (13.1)

for al parts of thebody 23", where f isthe resultant force acting on the part. We shall assume
that f consistsof two contributions and write

f =T t)-T(x,t)+ Ll pbdx (132)

The quantity b(x,t) is called the body force density (body force/mass), and the integral of pb isthe
resultant body force acting on the part of 23" in x, < x<X,. The quantity T(X,t) isacontact

force. It results from the contact of the part of 28" in X, < X< X, withthat notin x, <X<X,.

T(x,t) isthe one dimensional counterpart of stress. If T(x,t) > 0 (< 0) the material pointisin
tension (compression). If we combine (1.3.1) and (1.3.2), we obtain
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le pxdx =T (x,t) =T (x,t)+ le pbdx (1.3.3)

Next, we wish to deduce from (1.3.3) alocal statement of balance of linear momentum. For the
sake of generality, weallow T, p and x to suffer jump discontinuities at apoint y(t) in 23 . It
easily follows from (1.1.34) that

X2 GT
T, ) -T(x,t)= [ =—dx—[T 1.34
06,0 -T0q,0)=[ " —dx[T] (134)
and, from (1.2.15), that
le pxdX = j:dex—[pX(x—y)] (13.5)
These results allow (1.3.3) to be written
Xa .. aT v .
Ll (px—&— pbjdx—[px(x— Y]+[T]=0 (1.3.6)

Since (1.3.6) must hold for all partsof 24, it follows by the same argument that produced (1.2.10)
and (1.2.12) from (1.2.11) that

pX:g—;r(erb (1.3.7)

for all x# y(t), and
[pX(x=¥)]-[T]=0 (1.3.8)

at x=y(t)

Exercise 1.3.1

Show that an aternate form of the acceleration X is

. )
_ 9% | OpX. (1.3.9)

.
PP T o

Exercise1.3.2

Show that (1.3.8) can be written
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[p(x-y)*-T]=0 (1.3.10)
and
y[X]-[T]=0 (1.3.11)
where y = p" (X" = y)=p (X —Y).
Exercise1.3.3
Show that
> [T
7o = i )] (1.3.12)

Equation (1.3.12) showsthat [T] and [1/ p] must have the same sign. Equation (1.3.12) is known
as the Rankine-Hugoniot relation.

Just as (1.2.6) isthe material version of balance of mass, equation (1.3.7) can be manipulated into a
material version of balance of linear momentum. This material versionis

pRX=S—;+pr (1.3.13)

Equation (1.3.13) follows by multiplication of (1.3.7) by F and making use of (1.2.6).
1.4. Balance of Energy
Balance of energy, or the First Law of Thermodynamics, is the statement that the rate of

change of total energy equals the rate of work of the applied forces plus the rate of heat addition.
The total energy includes the sum of the internal energy and the kinetic energy. If g(x,t) isthe

internal energy density (internal energy/mass),

["pte + Ly
% 2

isthe total energy of the part of 23" in x < X< x,. Therate of work or power of the applied forces
is

T(Xz,t)X(Xz,t)—T(><1,t)>‘<(x1,t)+j:p>'<bdx
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The rate of heat addition arises from heat generated at points within the body 24" and from contact
of thepart of 23 in x < X< X, withthat notin x <Xx<x,.If r(xt) denotesthe heat supply

density (rate of heat addition/mass), then

J.XZ prax
X
isthe rate of heat addition resulting from heat generated within the body. The rate of heat addition
from contact is written
q(Xiat) - q(XZ’t)

where q(x,t) isthe heat flux. The mathematical statement which reflects balance of energy is
therefore

j:p(ﬁ%xz)dx =T(x2,t)>'((x2,t)—T()g,t)X()g,t)+I):2prdx

(1.4.1)
+00%,8) ~ (%) + [~ prax
Exercise1.4.1
Show that (1.4.1) implies
pletssey =X, o+ pr (1.4.2)
2 oX OX
foral x= y(t) and
1.,.,. . :
[p(€+§x J(X—y)-Tx+q]=0 (1.4.3)
a x=y(t).
Exercise 1.4.2
Show that when [g] =0 (1.2.12) and (1.3.8) can be used to write (1.4.3) in the forms
[e—1+1(x=y)’]=0 (1.4.4)
p 2

and
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[g]—%(r Ty =0 (1.4.5)
P

Equation (1.4.5) is known as the Hugoniot relation. It is often written in terms of a different
thermodynamic quantity than the internal energy density ¢. The quantity that is used isthe
enthalpy density defined by

Yo (1.4.6)

Exercise 1.4.3

Given the definition (1.4.6), show that (1.4.5) takes the form

[x]+%(i+ {J[T] =0 (1.4.7)
PP

Exercise 1.4.4
Derive amaterial version of (1.4.2).

Next we shall use (1.3.7) to derive from (1.4.2) athermodynamic energy equation. If
(1.3.7) ismultiplied by x, the result can be written

,o1 2 =x pXb (1.4.8)
2 oX

If this equation is subtracted from (1.4.2), the result is

pé=TL ‘%* or (1.4.9)

where the definition (1.1.17) has been used. Theterm ? in (1.4.2) arose from the rate of work of
X

the contact forces. Since

X _ 9 1 (1.4.10)
OX OX
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this rate of work decomposes into a part which changes the mechanical energy, xZ—T , and a part
X

which changes the internal energy, TL. Theterm TL is sometimes called the stress power.
Exercise 1.4.5

Derive the material version of (1.4.9).

Exercise 1.4.6

On the assumption that none of the field quantities undergo jump discontinuities, show that

le pedx =q(x,t)— g%, t)+ Ll prdx+ jxl TLdx (1.4.11)

and

ﬁ ‘ . X
[, PN =T 06, 0%06,0) =T (%, 0X0g, 1)+ | * ool (14.12)

. j Xl TLdx

Equations (1.4.11) and (1.4.12) show how the stress power couples the internal energy and the
kinetic energy of the part of thebody 23'in x < X< X,.

1.5. General Balance

The reader has probably noticed aformal similarity between the three balance equations
discussed thus far in this chapter. Each balance equation is a special case of the following equation
of general balance:

jxl pydx =T(x,t)—T(x,t)+ le Ppdx (15.1)

In equation (1.5.1) the left side represents the rate of change of the amount of y in X <x<X,. The
term I'(x,,t) —IT"(x,t) representsthe net influx of y , and the last term presents the supply of .
The following table shows the choices of y, I' and ¢ appropriate to the equations of balance of
mass, momentum and energy.
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4 r %
Mass 1 0 0
Momentum X T b
Energy e+%)’(2 TX—q | r+xb

Exercise1.5.1

Derive the following local statements of the general balance:

. or
pY ==+ PP (1.5.2)
X
for x= y(t), and
[py (x-y)-TT=0 (15.3)

for x=y(t). Equation (1.5.3) isaone dimensional version of aresult known as Kotchine's
theorem.

Exercise 1.5.2
Derive amaterial version of (1.5.2).
1.6. The Entropy Inequality

The entropy inequality is the mathematical statement of the Second Law of
Thermodynamics. In order to state thisinequality, we introduce three new quantities. The entropy
density (entropy/mass) is denoted by 77(x,t) . The entropy flux is denoted by h(x,t), and the

entropy supply density is denoted by k(x,t) . These three quantities are required to obey the
following entropy inequality or Clausius-Duhem inequality:

le pndx > h(x,t)—h(x,,t) + Ll okdx (1.6.1)

for al parts of the body 24'. Thetemperature isintroduced by forcing the ratio of entropy flux to
heat flux to equal the ratio of entropy supply density to heat supply density. The temperature
6(x,t) isdefined to be the common value of these two ratios, i.e.,

T (16.2)

a(x,t) = K

> |lo
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We also require 6 to be a positive number and, thus,

-2

and

r(xt)

K=o

Given (1.6.3) and (1.6.4), (1.6.1) becomes

> 900t A0t | e pr

* ppdx >
J,, o o(x.1) 00,1 I 6

By anow familiar argument, (1.6.5) can be written

x( . oql@ pr .o 0
—— L dx- X— —]=0
[ (pfﬁ ~ o j Lon(x=y)+-]

for al partsof @5 . Thefollowing local inequalities are valid:

77+_8q/6?_p_r20
OX o

for x= y(t), and

[pn(X- y)+§1 <0

for x=y(t)

If (1.6.7) iswritten

920,30 )0
0° ox 6O\ ox

q

the term a——pr can be eliminated by use of (1.4.9). The result of thiselimination is
X

o q 06
0rn—&)+TL-—=2>0
p(On—¢) 2 o

17

(1.6.3)

(1.6.4)

(1.6.5)

(1.6.6)

(16.7)

(1.6.8)

(1.6.9)

(1.6.10)
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A more convenient version of (1.6.10) results if we introduce the Helmholtz free energy density
defined by

w=c-n0 (1.6.11)
This definition allows (1.6.10) to be written

—p(y)+n9)+TL—%g—fZ 0 (1.6.12)

Exercise1.6.1

If 6, isapositive number, show that

j:p(z,y+77(e—eo)+%x2)dx ST (%, X(%, 1) =T (%, ) X(%,, )

‘90 _ _ 90
+q(xl,t)(1—9(xpt)] q(xz,t)(l 19(x2,t)] (1.6.13)

X, X2 90
+J‘X1 PX bdx+jx1 (1 7 jprdx
Equation (1.6.13) isa useful representation of the entropy inequality (1.6.5) when one wantsto
study the stability of certain types of bodies.
Exercise 1.6.2

Use (1.6.12) and prove that the Helmholtz free energy density cannot increase in an isothermal
constant deformation process.

Exercise 1.6.3
The enthalpy density y was defined by equation (1.4.6). The Gibbs function is defined by

S=y I (1.6.14)
2
Use these definitions and show that
o07— ) -T-9%9 5 ¢ (1.6.15)
0 ox

and
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. .. qoo
—p(g+n9)—T—%&20 (1.6.16)

Exercise 1.6.4

Use (1.6.16) and prove that the Gibbs function cannot increase in an isothermal constant stress
process.

Exercise 1.6.5

Use the definition (1.6.11) and show that (1.4.9) can be written

pOn =—p(y +n0)+TL —Z—q+ pr (1.6.17)
X

Exercise 1.6.6

Show that material versions of (1.6.7), (1.6.12) and (1.6.17) are

. 0910 pgr
+ -=2->0 1.6.18
PRI X ) ( )
) . . o6
- +1n0)+TF ———2>0 1.6.19
Pry +106) X ( )
and
. ) : . 0q
PO =—pr(y +10)+TF s (1.6.20)
respectively.
Exercise 1.6.7

Throughout this chapter, we have developed jump expressions which govern balance of
mass, momentum and energy across a jump discontinuity. We have also, with (1.6.8), developed a
jump inequality which follows from the entropy inequality. It isinteresting to develop material
versions of these jump equations. As afirst step, combine (1.2.6) and (1.2.12) and show that

[FY(x-y)]=0 (1.6.21)

The physical quantity Y* = Ft (y—x") isthe velocity in the reference configuration of theimage

of the spatial discontinuity. The notation + means that the equation Y* = F* (y— x°) isrealy
two equations, one evaluated on the + side of the discontinuity and one evaluated on the — side.



20 Chapter 1

In any case, it follows from (1.6.11) that conservation of mass forces [Y]=0. Thus, the physical

quantity Y isactually continuous across the discontinuity. Show that material versions of
eguations (1.3.8), (1.4.3) and (1.6.8) are

P[] +[T]=0 (1.6.22)
pe¥le+5 X1+ ~[] =0 16.23)
and
peY17] —[%] >0 (1.6.24)
Exercise 1.6.8

Use the definition of Y given above and show that the jumps [X] and [F] are related by
[X]=-Y[F] (1.6.25)
Exercise 1.6.9

Derive the material version of the Rankine-Hugoniot relation

: T]
Ul 1.6.26
Pr [F] ( )
Equation (1.6.26) is useful in the study of one dimensiona shock waves in certain types of
materials. It givesthe velocity of the shock in the reference configuration in terms of jumpsin
stress and jumps in deformation. Itis, inreality, the material version of (1.3.12).
Exercise 1.6.10

Show that material versions of (1.4.5) and (1.4.7) are

pele] —%(T FT[F]=0 (16.27)

and
pR[;(]+%(F_ +E)[T]=0 (1.6.28)

Aswith (1.4.5) and (1.4.6), these results also assume [g] =0.
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1.7. Example Constitutive Equations

The equations of balance are indeterminate in that they involve more variables than there
are equations. Thisindeterminacy isto be expected since the balance equations apply to every
continuous body. Experience shows that continuous bodies behave in radically different ways.
There must be equations of state or constitutive equations which distinguish various types of
materials. Animportant part of continuum mechanicsisthe study of constitutive equations. Inthis
section we shall give examples of constitutive equations which define certain well know types of
materials.

Thefirst exampleis taken from gasdynamics. The material defined by the constitutive
equations to be listed below is a heat conducting compressible gas with constant specific heats.
The constitutive equations which define this material are

e=cl+s&" (1.7.2)
n=c,Ing-Rinp+n’ (1.7.2)
T=-7=-pRo (1.7.3)
and
q= % (1.7.4)
oX

where ¢, isapositive constant that represents the specific heat at constant volume, R is a positive

constant that represents the gas constant, ¢* is a constant representing the reference internal
energy, 7 isaconstant representing the reference entropy, 7 isthe one dimensional pressure and
x(0, p) isthe one dimensional thermal conductivity. The one dimensional pressure is the force of
compression on the gas. It isaproperty of the thermal conductivity that

x(0, p) >0 (1.7.5)

As our notation indicates, x can depend upon @ and p . It followsfrom (1.7.1), (1.7.2) and
(1.6.11) that

w=c0-6c,In6+0RINnp+¢&" —6n" (1.7.6)

It follows from (1.7.6), (1.7.2) and (1.7.3) that

oy
= 1.7.7
n="">, (1.7.7)



22 Chapter 1

and

7= p? % (1.7.8)

Therefore, the Helmholtz free energy, as afunction of (€, p), determines  and 7. Thus, v isa
thermodynamic potential for the material defined by (1.7.1) through (1.7.4). Given v, then  and

7 aredetermined by (1.7.7) and (1.7.8). Theinterna energy density ¢ isthen determined from
(1.6.11).

It is reasonable to question why (1.7.7) and (1.7.8) happen to hold. Other questions one

could ask are why isit only the heat flux that depends upon 2—9 , why does q vanish when 2—9
X X

vanishes, and why must the thermal conductivity be nonnegative. In the next section we shall show
that the entropy inequality places restrictions on the constitutive equations. In particular, the
restrictions (1.7.5), (1.7.7) and (1.7.8) are consequences of the entropy inequality. How one
establishes these results will be explained in the next section. It isimportant to note that certain of
the features of (1.7.1) through (1.7.4) are not a consequence of the entropy inequality. For
example, ¢, isrequired to be a positive number. This requirement is a consequence of

thermodynamic stability considerations.

For reference later, we shall give several other example constitutive equations. The
example stress constitutive equations are the following:

1. Linear elasticity

T_gMW (1.7.9)
X

where E isamaterial constant called the one-dimensional modulus of elasticity.
2. Linear viscoelagticity (Volterramaterial)

T = E(0) aw(x ) B )Md (1.7.10)
where E(s) isthe stress relaxation modulus.
3. Linear Viscous Material (Voight or Kelvin Material)
oW oW
T=E—+u— 1.7.11
ox  Hox (L7.11)

where E and p are material constants. The constant x isthe coefficient of viscosity.
4. Maxwellian Material
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TN (1.7.12)
oX
where 7 and E are material constants.
5. Linear Themoelasticity
oW
T=E—-pB(0-6 1.7.13
X BO-6,) ( )

where E istheisotherma modulus of elasticity and £ isaconstant that can be related to the
coefficient of thermal expansion.

Example constitutive equations for the heat flux are the following:

1. Nonconductor

q=0 (1.7.14)
2. Fourier Heat Conductor
g= —K% (1.7.15)
OX

3. Maxwell-Cattaneo Heat Conductor

rq+q=—K§Q (1.7.16)
OX
4. Gurtin-Pipkin Heat Conductor
® 00(x,t—s)
=—| a(s)————=ds 1.7.17
q=-, 9=~ (1.7.17)

In the formulation of any theory of material behavior there are certain principles which
restrict constitutive equations. Thefirst is arequirement of consistency. This requirement is that
constitutive assumptions must be consistent with the axioms of balance of mass, momentum and
energy and with the entropy inequality. This requirement will be the one we begin to investigate in
the next section. When we consider three dimensional models, the requirements of material frame
indifference and material symmetry will be used to restrict constitutive equations. As an operating
procedure, we shall utilize the concept of equipresence. This concept states that an independent
variable present in one constitutive equation should be present in all unlessits presence can be
shown to be in contradiction with consistency, and, for three dimensional models, material frame
indifference or material symmetry.
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1.8. Thermodynamic Restrictions

In this section we shall establish the type of thermodynamic restrictions described in the last
section. We shall illustrate our results by examining the thermodynamic restrictions which follow
for aparticular set of constitutive assumptions.

By athermodynamic process, we mean a set consisting of the following nine functions of
(X, 0): x,0,w,n,T,q,p,r and b. The members of this set are required to obey balance of mass,

balance of momentum and balance of energy. It is convenient to introduce a special symbol for the
function whose valueis ¢ and write

0 =0(X,t) (18.1)

The constitutive equations we shall study in this section are characterized by requiring v,n,T and
g to be determined by the functions ® and y . Formally, we shall write

Thefunction f iscalled the response function. An admissible thermodynamic processisa
thermodynamic process which is consistent with (1.8.2). If weregard p,(X) asgiven, then for
every choice of ® and y there exists an admissible thermodynamic process. To prove this
assertion, we must construct from ® and y the seven remaining functions v,7,T,q, o,r and b
such that balance of mass, momentum and energy are satisfied. Given (1.8.2), ® and y determine
the four functions w,7, T and . Thefunction p isdetermined by balance of mass (1.2.6) written

p=pglF (1.8.3)
The function b is determined by balance of linear momentum (1.3.7) written

b=x_ 20T (18.4)
L OX

Finaly, the function r isdetermined by balance of energy (1.6.17) written

r=60n+y +779'—1TL+1@ (1.8.5)
Y2

p OX

The impact of the last argument is that when (1.8.2) is given, the balance equations are aways
satisfied no matter how we select ® and y .

Asyet, we have not made use of the entropy inequality. Theinequality (1.6.12), rewritten,
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—p(y +10)+TL —%qg >0 (1.8.6)
where
g= el (1.8.7)
OX

If we were to substitute (1.8.2) into (1.8.6), the resulting inequality depends, in a complicated way,
on ® and y, and theresponse function f . We can view (1.8.6) as arestriction of the response

function f or arestriction on the functions ® and y . We shall require that (1.8.6) be arestriction
on f.

Asan illustration, consider the case where (1.8.2) specializesto

v =y(0,9,F,F) (1.8.8)

n=n(0,9,F,F) (1.8.9)

T=T(0,9,F,F) (1.8.10)
and

q=q(6,9,F,F) (1.8.11)

These constitutive assumptions clearly contain (1.7.1) through (1.7.4) as aspecial case. They
define anonlinear one dimensional material that is compressible, viscous and heat conducting. Our
objective isto determine how (1.8.6) restricts the functions y,,, T and q. First we differentiate

(1.8.8) to obtain

_6y/t9-+61//g+81//':-+6y/|-:- (1.8.12)

V=0 Teg YT ok o

If this result, along with (1.8.9), (1.8.10) and (1.8.11), are substituted into (1.8.6), theresult is

ow(d,q,F,F) .
o v (0,9 )g
og

WOSEF) s WOLER g
F oF -

_ (oy(6,9.F,F)
p( 20

+77(¢9,g,F,F)j9—

+(T(0,g,F,F’)—pF

—%gq(@,g,F,F’)zo
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Equation (1.8.13) isrequired to hold for every choice of the functions ® and y . By selecting a

family of functions ® and y each having thesame 6, g,F and F , the quantities 6, gand F can

be assigned any value. In particular they can be assigned values which violate the inequality
(1.8.13) unless

oy (9,9.F,F)

> +n(0,9,F,F)=0 (1.8.14)
w(0.9.F.F) _, (1.8.15)
og
and
oy (0.9.F.F) _, (1.8.16)
oF
Therefore,
v =w(0,F) (1.8.17)
and
7 =1(0,F) :_% (18.18)

Thus, 7 isdetermined by  and both quantities cannot depend upon gand F . Given (1.8.17)and
(1.8.18), (1.8.13) reducesto

(T(@, 9.F,F)-pF %j FFl—%gq(H, 9,F,F)>0 (1.8.19)

Because T can depend on g and q can depend on F , it is not possible to conclude that the two
termsin (1.8.19) are separately positive. It does follow from (1.8.19) that

(T(H,O, F.E)-pF %j FF1>0 (1.8.20)
and

—% 0q(6,9,F,0)>0 (1.8.21)
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Equation (1.8.21) shows that when F =0, the heat flux must be opposite in sign from the

temperature gradient. We shall show below that pF —a"//(i’ F)

isthe stress in a state of

thermodynamic equilibrium. Equation (1.8.20) shows that, when g =0, the stressin excess of

oF oy (0,F)

F necessarily has a nonnegative stress power.

Next we shall derive the equilibrium restrictions from (1.8.19). Asafunction of

(0,9,F,F), theleft side of (1.8.19) isaminimum at (8,0,F,0) for al @ and F . Because of this
fact, the material defined by (1.8.8) through (1.8.11) is said to be in thermodynamic equilibrium

when g=F =0. If wedefineafunction ® of (9,9,F,F) by

®(0,9,F,F) =(T(0,g, F,F)-pF Mj FF‘l—%gq(ﬁ,g, F,F)>0

oF

then ® isaminimum at (¢,0,F,0). Therefore,

do(9.4a,F, AN _ g
di |
and
d’0(0,4a,F,2A

dA?

|/'{:O

for all real numbers a and A. Since

dd(0,1a,F, 1A| _0%(0,0,F,0)  0(0,0,F,0) ,

dA Lo o9 oF
(1.8.23) isequivalent to

o®(0,0,F,0) o®(0,0,F,0)
a9 oF

0

Equation (1.8.24) is equivaent to the requirement that the 2x2 matrix

(1.8.22)

(1.8.23)

(1.8.24)

(1.8.25)

(1.8.26)
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8°®(0,0,F,0) &°®(8,0,F,0)

dg? dgoF
o°®(0,0,F,0) &°®(6,0,F,0)
dgoF oF?

is positive semi-definite. It easily follows from (1.8.22) and (1.8.26) that

q(¢,0,F,0)=0 (1.8.27)
and
T(0.0,F,0)= pF 2V 0. F) (1.8.28)
oF
—_ : A oy (0,F)
Thus, the equilibrium heat flux must vanish and the equilibrium stress must equal pF —F
If we define afunction T°(6,F) by
T0(0,F) = pF ¥ (0.F) (1.8.29)
oF
and afunction T%(0,g,F,F) by
T%(,9,F,F)=T(,9,F,F)-T°®,F) (1.8.30)

then TCisthe equilibrium stressand T© is the dissipative or extra stress. The result (1.8.28) shows
that T° vanishesin equilibrium.

Exercise1.8.1

Calculate the elements of 2x2 matrix defined above and show that the matrix is positive semi-
definiteif and only if

04(0,0,F,0) _

1.8.31
o (1.831)

and
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1 = 0q(0,0,F,0) 0T°(0,0,F,0)
0 o9 oF
) (1.8.32)
_1(aT*(8,0.F,0) a1 0q(6,0,F,0)
4 a9 0 oF
Note, in passing, that (1.8.31) and (1.8.32) combine to yield
F1TW0O0F0),, (1.833)

oF

Exercise1.8.2

Show that when the constitutive equations (1.8.8) through (1.8.11) are independent of F , that
(1.8.17), (1.8.18),

T(0,F)=pF % (1.8.34)
and
—% 90(6,9,F) >0 (1.8.35)

are the thermodynamic restrictions.
Exercise 1.8.3

Show that when the constitutive equations (1.8.8) through (1.8.11) are independent of g, that
(1.8.17), (1.8.18),

q=0 (1.8.36)
and
T¢(6,F,F)FF*>0 (1.8.37)
are the thermodynamic restrictions.
Exercise 1.8.4

Express the formula (1.8.29) in terms of the variables & and p and show that
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=72 (1.8.38)
where
z=p2¥0.p) (1.8.39)
op

Exercise 1.8.5

If (1.8.18) and (1.8.29) are used, the derivative of (1.8.17) is
A
w=-nl+—FF* (1.8.40)
Y2
Equation (1.8.40) is called the Gibbs relation. Show that
L
é=0n+—FF™ (1.8.41)
2

Also, on the assumption that (1.8.18) can be solved for 8 asafunction of (77,F), show that

p=2200.F) (1.8.42)
on
and
T°(n,F)=pF% (1.8.43)

Exercise 1.8.6

Use the results of Exercise 1.8.5 and show that the energy equation (1.6.17) (or (1.4.9)) reducesto
. o OQ
pOn=T°L _6_+ or (1.8.44)
X

Exercise1.8.7

Show that the material version of (1.8.44) is
) e OQ
pR977 =T°F —&4‘ PRl (1845)

Exercise 1.8.8
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Derive the thermodynamic restrictions for a material whose constitutive equations are

v = (6,6,9,F,F) (1.8.46)

n=n(0,0,9,F,F) (1.8.47)

T=T(6.6,9,F,F) (1.8.48)
and

q=9(9,6,9,F,F) (1.8.49)

The material model defined by these constitutive equations could possibly yield a hyperbolic
partial differential equation for . The model defined by (1.8.8) through (1.8.11) yieldsa
parabolic equation which has the undesirable feature that thermal disturbances propagate with
infinite speed. Will the above model yield a hyperbolic equation?

1.9. Small Departuresfrom Thermodynamic Equilibrium

The mathematical model which results from the constitutive equations (1.8.8) through
(1.8.11) is quite complicated. A less complicated model results if we assume that the departure
from thermodynamic equilibrium issmall. In this case we can derive approximate formulasfor q

and T°. Departures from the state (0,0, F,0) are measured by a positive number ¢ defined by

=g’ +F? (1.9.1)
Given
T°=T°0.9,F.F) (1.9.2)
and
q=q(6,9,F,F) (19.3)

we can write the following series expansions

T® (€ (1.9.4)

_or (H,Q,F,O) F+8T (6,0,F,0) g+0
oF a9

and
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0q(6,0,F,0)  4q(6,0,F,0
o ) 44 2900.0.F,0)

F +0O(&? 1.95
P F +0(€7) (1.9.5)

The leading terms in both expansions vanish because of the equilibrium results (1.8.27) and
(1.8.28). The coefficientsin the expansions (1.9.4) and (1.9.5) correspond to material properties of
the body. We shall write

x(0,F) = -240.0.F.0) (1.9.6)
a9
A(6,F)=F ar’(0.0.F.0 (1.9.7)
oF
a(0,F) = — 2400 F.0) (1.9.8)
oF
and
o, F)= I 0.0F.0) (1.9.9)
o9
Therefore, (1.9.4)and (1.9.5)can be rewritten
Te=L+vg+0O(s?) (1.9.10)
and
q=-xg-alL+0(&%) (1.9.11)

where (1.1.19)has been used. The quantity « isthe coefficient of thermal conductivity and 1 is
the bulk coefficient of viscosity. The coefficients v and « are zero in many of the standard
applications of our model and, thus, are not given names which will be familiar to the reader.
Material symmetry considerations, which we have not discussed, show that v and « must vanish
for materials with a center of symmetry. This means that the constitutive equations are invariant
under an inversion in the reference configuration. In any case, the material coefficientsin (1.9.10)
and (1.9.11)must obey the restrictions (1.8.31) and (1.8.32). Theserestrictionsyield

x(6,F) =0 (1.9.12)

and
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KaszuaF)z%e(v+%) (1.9.13)

Because of (1.9.12), it follows from (1.9.13)that
A(6,F)=0 (1.9.14)

Equations (1.9.12)and (1.9.14)are the classical results that the thermal conductivity and the
viscosity cannot be negative.

When the remainder terms are omitted from (1.9.10) and (1.9.11), the result is a material
model with linear dissipation. The field equations which result from utilizing these
approximations are still nonlinear. 1n the next section we shall proceed one additional step and
assume the departure from a static solution & = const and F —1 issmall. The resulting
constitutive equations are linear and yield a set of linear governing partial differential equations.
1.10. Small Departuresfrom Static Equilibrium

If we consider the state of constant temperature and constant deformation defined by
O(X,t)=6" (1.10.1)
and

x(X,t)=X (1.10.2)

it followsthat, inthisstate, F =1,F =0and g=0. Itimmediately follows from (1.8.17), (1.8.18)
and (1.8.29)that w ,  and T°are constants in the state defined by (1.10.1) and (1.10.2). Also,

from (1.8.27), (1.8.28), (1.8.29) and (1.8.30) it follows that gand T* vanish. It follows from
(1.3.7) that, in the state defined by (1.10.1)and (1.10.2),

b=0 (1.10.3)
Likewise, the energy equation (1.8.44) yields

r=0 (1.10.4)
Therefore, given (1.10.1)through (1.10.4), the field equations are identically satisfied. Such a
solution is appropriately called a static solution. Our objective in this section isto derive the

approximate constitutive and field equations which are valid near the static solution.

Departures from the static solution are measured by a positive number €, defined by
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=(0-60)Y+g°+(F-1)?+F? (1.10.5)

Note that the static solution istrivially athermodynamic equilibrium state. In order to obtain
expressions for 77 and T° which are correct up to terms of order O(e,) , we must have a

representation for y (9, F) correct up to terms O(”) . The necessary expansion of (1.8.17) is

oy(@".)

D o, Op(e,
— g (0-0)+

y(O.F) =y (@ D+ WDy

L1, )
GV T (96
Y2 g OO

182 01
2%0: ~1)%+0(e)

M(9 0°)(F 1) (1.10.6)

For the sake of asimplified notation, (1.10.6) shall be written

w(e,F)zw*—n+(e—9+)+1(F—1)

Pr
2 _ B oo\ E -
-3 9+ (19 0"y o @-6")(F-1 (1.10.7)

+%i(F -1 +O(el)

Pr

where
v =yw(0]) (1.10.8)

. oy (67,1
N i '} 1.10.9
7 00 ( )

oy (67,1

T ==

(1.10.10)

Oy (07,9

7 (1.10.11)

c, =-0"

Dy (07,9

ﬂ:_pR OO0F

(1.10.12)

and
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0% (6" ,1)

A= o

(1.10.13)
From (1.8.18)and (1.8.29), " and T" are the entropy and stressin the equilibrium state. The
coefficient ¢, isthe specific heat at constant volume and A isthe isothermal modulus of elasticity.

Asfollowsfrom (1.2.6), p, isthe density in the static equilibrium state. Given (1.10.7), it follows
from (1.8.18)and (1.8.29)that

n=n +—(9 0" )+ p (F-1)+0(&?) (1.10.14)
Pr
and
- B(O—-0")+A(F -1 +0(d) (1.10.15)

Next, we need expressions for T®and g valid near the static solution. Recalling that both
T® and g must vanish whenever g and F are zero, we obtain from (1.9.2) and (1.9.3)

Te=

aT'(0°.010) ,, OTHO",010) p | 2 (1.10.16)
og oF
and

_89(6°,0,1, 0) ,09(6°,0.1,0)
- og oF

F +0(c?) (1.10.17)

By use of (1.8.7) and (1.1.11),

_ 00 _00..,_ 00 1
ox X oX 1+ (F -1
00

=—+0
X (61)

(1.10.18)

Thisresult, along with (1.9.6) through (1.9.9) allows equations (1.10.16) and (1.10.17) to be
written

Te=yp* %M*F’ +0(e?) (1.10.19)

and
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q :—K+2—§—a+|:' +0(e?)

where

v =v(6",])

1" =2(6"0)

k' =x(0",2)
and

a =a(f])

Chapter 1

(1.10.20)

(1.10.21)
(1.10.22)

(1.10.23)

(1.10.24)

Equations (1.10.14), (1.10.15), (1.10.19) and (1.10.20) are the basis for our linear
constitutive equations. If we simply drop the remainder terms in these equations, the following

linear constitutive equations are obtained:

n=n'+0-0"+L(F-1)
0 Pr

TO=T'—B(O-0")+A(F -1

T® :v+%+f|:'
oX
and
q:—/c+%—a+|:'
oX

If follows from (1.9.12), (1.9.13) and (1.10.14) that

and

(1.10.25)

(1.10.26)

(1.10.27)

(1.10.28)

(1.10.29)

(1.10.30)

(1.10.31)
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The field equations which result from these linear constitutive equations follow by
substitution into the material statements of balance of momentum and energy. Because of (1.10.3),
balance of momentum (1.3.13) yields

OF . OF 00 0’0
5= 8 e 500 .
PRR= At A T P T o

(1.10.32)

The material statement of balance of energy for our material is (1.8.45). This equation repeated
here, is

001 =T°F —§—Q+ X, (1.10.33)

If (1.10.4), (1.10.25), (1.10.27) and (1.10.28) are used, the energy equation (1.10.33) reduces to

) )
pR§q9+9ﬂF=K+ae « OF +(v+ oo

o —— —+1'F |F (1.10.34)
oX oX oX

Note that (1.10.34) isnot alinear partial differential equation because of the products

eé,elf,(g—jjlf and FF . If (1.10.34) islinearized, the result is

L 00 L OF
~+a—
oX oX

PrCO+0"PF =k (1.10.35)

Since we have formally linearized our constitutive equations, it is reasonable to utilize the linear
partial differential equation (1.10.35) rather than (1.10.34) as the equation governing balance of
energy. The coupled partial differential equations (1.10.32) and (1.10.35), along with suitable
initial and boundary data, determine y and € for our model.

Exercise 1.10.1

Asin elementary thermodynamics, it is sometimes convenient to use independent variables other
than @ and F . Solve (1.10.25) for —-6" intermsof —7"and F —1 and use thisresult to
eliminate @ infavor of 7 in(1.10.26). The result should be

TO=T +A'(F —1)—9;5 n-n") (1.10.36)

where
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H+
PR,

X =+ —— B (1.10.37)

Recalling that A isthe isothermal modulus of elasticity, the coefficient 4™ istheisentropic
modulus of elasticity.

Exercise 1.10.2

Express ¢ intermsof  and F and show that

+ + + T 0" +
=& +0" (n-n)+—F-D+>—@-1")
Pr 26 1.10.38
N L i (1.10.38)
Pl )F ~D+ S (F -1
R Pr

and, from (1.8.42),

<9=¢9*+9—(77—77+)— 0 L(F -1 (1.10.39)
G PRG
Also show that (1.8.43) yields (1.10.36).
1.11. Some Features of the Linear Model
It isinteresting to investigate certain features of the model formulated in Section 1.10. For
simplicity, we shall assume that the material is such that none of the constitutive equations depend
upon F . Thisspecial caseis achieved by taking

It=a*=0 (111.1)

This assumption implies, from (1.10.30), that
v =0 (1.11.2)
Therefore, T°® vanishes and the constitutive equations reduce to

- +%(e_e+)+ﬁgﬂx (111.3)
Pr
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T=T - po-0)+ 2 (1.11.4)
X
and
00
e 1115
a=-K— ( )

where (1.1.14) and (1.1.15) have been used to express the results in terms of the displacement

gradients. In order to simplify the notation, we have written « rather than x* for the thermal
conductivity. Of course from (1.9.12), x isrestricted by

x>0 (1.11.6)

The field equations in our special case follow from (1.11.1), (1.11.2), (1.10.32) and (1.10.35).
They are

0w 0w 00
OW_,9W_ 500 1117
Prg = Ao TP (1117
and
O gp oW _ 00 (1.11.8)
PR& aax . oX? o

where the displacement has been introduced from (1.1.15).
Exercise1.11.1

Show that for the special case of a nonconductor (x = 0) that (1.11.8) yields 77 =0.

Exercise1.11.2

Show that for a nonconductor with initially uniform entropy that the displacement is a solution of
the following wave equation:

o’w %7 o0°w
2 2
ot oX

(1.11.9)

where

ar2=2 (1.11.10)
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Because (1.11.9) isawave equation, a* iscalled the isentropic wave speed.
Exercise1.11.3

Show that in the limit of very large conductivity (x — o) that suitable boundary conditions can

always be prescribed such that ¢ = const. Note that in this case the displacement satisfies the
following wave equation:

o*w , 0°w
=a 1.11.11
ot? OX 2 ( )
where
a2- 2 (111.12)
Pr

is the isothermal wave speed squared.
Exercise1.114

The definitions (1.11.10) and (1.11.12) presume that both 4 and A* are non-negative quantities.
Show that if ¢, > 0, the isentropic wave speed is larger than the isothermal wave speed. Calculate

theratio a*/a for the case where the material is air modeled as a heat conducting compressible
perfect gas with constant specific heats.

Certain properties of the solutionsto (1.11.7) and (1.11.8) are revealed by deriving the
single partial differential equation obeyed by w(X,t) . Thisequation, which is aso obeyed by
O(X,t) istheresult of expanding the following 2x 2 operator determinant.

2 2
e L
0 (1.11.13)
o5t o 0
aox RS H TN

If this determinant is expanded and rearranged, the result is the following fourth order partial
differential equation:

2 2 2 2 2
El a\;v_a*zav;/ K 82 a\;v_azav;/ -0 (1.11.14)
ol at X% ) puc, X2\ at oX
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where a and a* are the wave speeds defined by (1.11.12) and (1.11.10), respectively. Itis
convenient to define a characteristic time 7, by

r = (1.11.15)

and rewrite (1.11.14)as

(1.11.16)

o(o*w _ ,0w)| _, 0°(d°w _,d0%w
alae ) vl Y axe )0

The characteristic time 7_can be used to assign meaning to the expressions "short time" and "long
time". For fixed t, thedimensionlesstime t/z_islargeif r_issmall andissmall if r_islarge. A
short time approximation to (1.11.16) isasolution valid for small t/z_. A longtime
approximation to (1.11.16) isasolution valid for large t/z_. For large 7_ the second termin
(1.11.16) dominates and, as a result, disturbances propagate with the isothermal wave speed.
Likewise, for small z_ thefirst termin (1.11.16) dominates and disturbances propagate with the
isentropic wave speed. It isreasonable to expect that short time approximations to the solutions of
(1.11.16) approach solutions of (1.11.11) and long time approximations approach solutions of
(1.11.9). Theintuitive argument which is sometimes used to support this assertion is that for short
times the heat conduction has not yet influenced the material, and the material actsasif itisin an

isothermal process. For long times, the dissipative effects of heat conduction have taken place and,
after this, the material actsasif it isin an isentropic process.

It is helpful when one triesto get some general feelings about the behavior of the one

dimensional material defined by (1.11.16) to look at some representative numerical values. The
following table is adapted from one in Ref. 3.

Properties of Four Metalsat 20°C

Quantity Aluminum Copper Iron Lead
a(m/sec) 6320 4360 5800 2140
a (m/sec) 6432 4396 5801 2217
7. (Sec) 2.15(10) 5.78(10) 571(10) 5.24(10) "
Table1.11.1

To the extent that these metals are typical, the small characteristic time z_ would cause solutions of
(1.11.16) to behave like long term approximations.
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Exercise1.11.5

Calculate the three parameters a, a’

and z_ for the two materials defined by the following table:

Chapter 1

Quantity Air (as a Perfect Gas) AL 2024-T3
0" (°C) 20 20
Pr(kg/m’) 1.205 2770
¢, (J/kg°K) 717.4 963
K (W/m°K) .0257 190.5
A (Pa) 101.4 108308270
S (Pal®K) 346 4876

Additional insight into the behavior of the material described by (1.11.7) and (1.11.8) can
be obtained by investigating the propagation of harmonic waves defined by solutions of the form

w(X,t) = de X g/ dx-®) (1.11.17)

and

(X, t)—0" = fe X/ ax-a (1.11.18)

In (1.11.17) and (1.11.18), it is understood that the real part of the assumed solution isused. The
quantity « isarea number and represents the frequency of the harmonic wave. The quantity qis

area number which represents the phase vel ocity of the wave. The quantity ¢ isareal number

called the attenuation coefficient. The coefficients a and b are complex numbers which
correspond to the amplitudes of the wave. The wave number is defined by

k=2+1ip (1.11.19)
q
This definition allows (1.11.17) and (1.11.18) to be written
w(X,t) = dg®*-" (1.11.20)
and
O(X,t)—6" = fe*- (1.11.21)

In order that (1.11.20) and (1.11.21) represent a solution of (1.11.7) and (1.11.8), k and @ cannot
be independent. Since @ isaprescribed real number, k will be determined as afunction of o .
Such arelation is known as the dispersion relation.
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Exercise1.11.6

Substitute (1.11.20) into (1.11.16) and show that the dispersion relation k(w) isasolution of
a’r k*(@k* - 0®)—iw(@** k> - »*) =0 (1.11.22)

Equation (1.11.22) isaquadratic in k*. Therefore, there are four modes of propagation of the form
(1.11.20). Since high frequency corresponds to short time, the phase velocity in the high frequency
approximation for two of the modesis easily shown to be +a and —a. Likewise, thelow
frequency approximation yields phase velocities +a* and —a* .

In circumstances where the two limiting cases of high and low frequency does not apply,
the phase velocities and the attenuation coefficients depend upon the frequency. A dispersion
relation which yields a frequency dependent phase velocity is called adispersive mode. The
approximations just cited correspond to the nondispersive limits of the solutions k(®) . The other
modes are dispersive and, roughly speaking, correspond to the propagation of the thermal
disturbance.

The explicit formulasfor k implied by (1.11.22) are complicated but can be derived. The
details can be found in the work of P. Chadwick in Ref. 3

Exercise1.11.7

Show that the roots of (1.11.22) can be written

2fak:i \/a)—i-ia),((i] +@Q+i)/ 20 @ i\/w+iw{%j —A+i)20.0 (1.11.23)
1)

a
where o_ = }/ .
TK

In equation, (1.11.23) the positive root corresponds to waves propagating in the +x direction. We

shall only consider this case below. Chadwick gives approximationsfor k(). One family of

approximations to (1.11.23) involves the assumption that a and a” are close. Theformal way this
*2 2

approximation is generated is to expand (1.11.23) for small values of the ratio & ~2 Jtis

a

2 2 +
readiily established from (1.10.37), (1.11.10) and (1.11.12) that 2 a2a - 92C (2. Therefore,
pR v

a*Z _ a.2
a2

the equation of motion (1.11.7) and the energy equation (1.11.8). Table 1.11.1 shows that for the

small values of

correspond to small values of the coefficient f. Itis g which couples
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metals given, the isothermal wave speed and the isentropic wave speeds are very close. Thistype
of approximation would not be good for air, where, the ratio azz is approximately the ratio of
the specific heat at constant pressure to the specific heat at constant volume. If air ismodeled asa

perfect gas, thisratio is 1.4. Exercise 1.11.4 asksthat theratio a’/a be calculated in the case
where air is modeled as a perfect gas with constant specific heats.

The other family of approximations is one where the ratio % issmall. Table1.11.1

showsthat 7_ issmall, and, thus, o, =% islarge. The characteristic time for air, as calculated

K

in Exercise 1.11.5, is approximately 3.5(10)"° sec. Asaresult, an approximation based upon the
assumption that the corresponding ratio% issmall appears to be broadly useful. Chadwick

K

gives the following results for the two phase velocities and the associated attenuation coefficients.

Oy =& (1_ (a?/a 8‘( ;)ga‘z;a /&) (o)) + o((a)/wK)4)] (1.11.24)
Oy = %«/Z(w/a),() (1—%%2)13(@/@) + O((a)/a),()z)j (1.11.25)
a’/a®-1 ) .
Pw :%((Z(azzﬁz)z)(w/a)x) +0((e/@,) )j (1.11.26)
and
Py = %«/(0/2@( (1—%@/@) - O((a)/a),()z)] (1.11.27)

These approximate expressions display the two modes of propagation. The first mode depends
upon the frequency through second order terms, while the second mode has a stronger dependence.
It isthe first mode that propagates with a phase velocity near the isentropic speed a . Additional
discussion of plane harmonic waves in thermoel astic materials can be found in references 4, 5 and
6.

In the last four sections, we have examined the constitutive equations of a special one
dimensional material. Our thermodynamic results, along with the approximations introduced in
Sections 9 and 10, allowed a brief consideration of the behavior of waves propagating in the one
dimensional material. If one were interested in the behavior of abroader class of initial boundary
value problems, one would need some sort of existence and uniqueness theorem. Uniqueness
theorems in elasticity usually arise from some sort of energy argument. An illustration, in the
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context of the one dimensional material being discussed here, is provided by the following
exercise.

Exercise1.11.8

Use (1.11.4), (1.11.5), (1.11.7) and (1.11.8) and show that

lpRv . ow 1fowY
_I{ (6-6") + Zz(axj +pR2(at”dx

=(T(b,t)-T" )aw(bt) (Tat)-T* )Mé?t)
(2B )ty 22D N qa (11129
9+ q 1 9 q
—jbi(%)zdx
2 6"\ oX

where a and b arefixed positions.
Exercise 1.11.9

Consider a boundary-initial value problem for (1.11.7) and (1.11.8) where the velocity and heat
flux vanish at each end of the material. Show that

—j lpRV(e 0y + 2/1@’:] +%pR(%‘N] }dx <0 (1.11.29)

Exercise1.11.10

Assumethat ¢, -0 and A >~0. For initial conditions, assume that

0(X,0)=8" (1.11.30)
MX,0) _ (1.11.31)
oX
and
MX.0) _ (1.11.32)
ot

Show that (1.11.29) implies that



46

and

Chapter 1

o(X.1) = 0" (1.11.33)

WX, _ (1.11.34)
ox

MXY (1.11.35)
o

for al t > 0. The argument used in this exercise provides a uniqueness theorem for solutions of
(1.11.7) and (1.11.8). Given the assumptions made in the problem, it is necessary that (1.11.33),
(1.11.34) and (1.11.35) hold. Noticethat ¢, >0 and A >0 were among the assumptions made.

These stability results are not consequences of the second law of thermodynamics.
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Kinematics of Motion

This chapter is concerned with the three dimensional kinematics of motion and strain. The material
presented represents the three dimensional generalization of the material contained in Section 1.1.
After the introduction of the concepts of deformation, velocity, acceleration and deformation
gradient in Sections 2.1 and 2.2, Section 2.3 contains a discussion of the transformation of linear,
surface and volume elements which are induced by a deformation. This discussion leads naturally
to adiscussion of nonlinear strain kinematics in Section 2.4 and linear, or infinitessimal, strain
kinematicsin Section 2.5.

2.1. Bodies and Deformations

Given the limited mathematical background established in the Appendix A, it is convenient
here to regard abody @8 to be a primitive concept. Precise mathematical definitions of a body can
be found, for example, in Reference 1, 2 and 3. Roughly speaking abody isaset @° endowed
with atopological and differentiable structure. 1n addition, a body is endowed with afamily of
functions, called configurations, which map @3" into asubset of <& . The structure of @" issuch
that it is meaningful to require configurations to be diffeomorphisms. In addition, bodies are
required to be connected. We shall denote the elements of @8, called particles, by X. If y isa

configuration, then
x=x(X) (2.1.1)

isthe positionin <& occupied by Xin @8".
Definition: A motion of the body @8 is aone parameter family of configurations.

The parameter isthe timet and a motion iswritten
x=x(X,t) (2.1.2)

for al (X, t) in @8 x (—0,) . Since aconfiguration is a diffeomorphism, for each t the motion
has a smooth inverse such that
X=x7"(xt) (2.1.3)

foral (x,t) iny(2) x(—oo,oo). The point x isthe place occupied by the particle X at the timett.

Physical observations can never be made on a body except in some region of physical space <& . In
many casesit is convenient to reflect this fact by use of afixed configuration, called areference
configuration. We shall denote this fixed configuration by . The configuration k may be, but
need not be, a configuration actually occupied by the body in the course of its motion. The position
of Xin k will be denoted by X. Thus,

47
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X =k (X) (2.1.4)
Figure 2.1.1 shows the geometric arrangement reflected in equations (2.1.2) and (2.1.4).
Thefunction yx, defined by
x:Z(K’l(X),t) (2.1.53)

= 7. (X,1) (2.1.5b)

for al (X,t) in k(8" x (—oo,oo) is called the deformation function relative to the reference

configuration k . As the above notation suggests and the definition (2.1.5) shows, the deformation
function depends upon the choice of the reference configuration.

X

Figure 2.1.1

The coordinates of the point X , denoted by (X,, X,, X;), are called the material coordinates

of the particleat X, while the coordinates of the point x, denoted by (x,,X,,%;) are caled the

gpatial coordinates of the particleat x. Asamatter of convention, the subscripts on the material
coordinates will always be in Latin majuscules and those on the spatia coordinates will be Latin
minuscules. Therefore, in components, (2.1.2) and (2.1.5b) can be written

X =x(Xt) (2.1.6)

and
X =7, (X, X5, X5, )= 7, (X,.1) (2.1.7)
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where

X =(x=0)-i, (2.1.8)

and
X, =(X=0), (2.1.9)

In the following sections it will be assumed, without comment, that the diffeomorphisms y,
and y,_ have sufficient smoothnessin order to allow for the existence of any derivatives that

2.2.  Velocity, Acceleration and Deformation Gradients

Given amotion ¥, there are severa kinematic quantities which can be calculated. Inthis
section several of these quantities are defined.

Definition: The velocity of the particle X, written x is defined by

x=ax(x’t) (2.2.1)
ot
It follows from (2.1.5) and (2.2.1) that

Of course, the velocity computed by (2.2.2) does not depend upon the special configuration x.

Definition: The acceleration of the particle X, writtenx , is defined by

2
XZW (2.2.3)
Also, it istrue that
oy (Xt
% =% (2.2.4)

Definition: The displacement of X relative to the configuration « is defined by

w=y, (X,t)-X (2.2.5)
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Any time dependent scalar, vector, or tensor field Wcan be regarded as afunction of (X, t),
(X, t) or (x, t) whenever themotion x=y (X ,t)=g, (X,t) isgiven. If weregard ¥ to be a
function of (X, t), we are using material variables. If weregard 'Y to be function of (x, t), we are
using spatial variables. For the sake of notational simplicity, it is convenient to use the same

symbol for the three possible functions whose valueis . For example, the following equations
should not be confusing:

V=¥ (X,t) (2.2.68)

Y=¥(Xt) (2.2.60)
and

Y=w(x,t) (2.2.6c)

It should be remembered also that the function ' in (2.2.6b) will depend upon the configuration .
Definition: The material derivative of P, written ¥ is defined by

T:a\y(x,t):a\y(x,t)

" o (2.2.7)
It follows from (2.2.5) and the above definitions that
W=% (2.2.8)
and
W=x (2.2.9)

The material derivative can be expressed in terms of ¥ (x,t). By the chainrule, it follows
that

\P:aq](x’t)jt(grad‘ll(x,t))x (2.2.10)
In components, (2.2.10) is
. ov. . .. (xt) o¥. . . (xt
W, = 0, ’“zax’k" = )Xk (2.2.11)

As an example of (2.2.10), consider the velocity, x . Then, the acceleration can be written
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6X(x,t)
ot

X=

+(grad x(x,t))x (2.2.12)
or
Lo (xt) L% (x,1)

%
: ot OX,

% (2.2.13)

In (2.2.10) and (2.2.12) the gradient with respect to spatial coordinates (X, X,, X; ) has been

denoted by "grad". The gradient with respect to material coordinates will be denoted by "GRAD".
The divergence with respect to spatial coordinates will be denoted by "div", and the divergence
with respect to material coordinates will be denoted by "Div".

Definition: The deformation gradient at (X, t) isalinear transformation in & (9;9")
defined by

F=GRAD Y, (X,t) (2.2.14)
In those cases where no confusion can arise, F(X t) will be written F(t) or, simply, F.

Since the functions y and « are diffeomorphisms, the composition of % and k™, which s
x.., isadiffeomophism. The differentiability of g,  hasbeen used in the definition (2.2.14).

Thefact that y_and x_* are one-to-one has an important and clear physical significance. It

omits the possibility of amaterial point at X being mapped into more than one point x, and,
conversely. It isawell known theorem of general topology that a homeomorphism maps connected
sets into connected sets. [Ref. 4]. If this theorem is applied to the function g, , it follows that a point

ismapped into apoint, alineinto aline, a surface into a surface and aregion into aregion.
Exercise 2.1.1

Show that
F(X,t)grady ' (x,t)=gradz ' (x,t)F(X,t)=I (2.2.15)

Equation (2.2.15) showsthat grad z.*(x,t) istheinverse of the linear transformation F. Inthe

following, this linear transformation will be denoted by F*. It follows from (2.2.15) and (A.5.22)
that
detF=0 (2.2.16)

forall (X, t)in y(@8)x(-w,»).
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The component representation of the deformation gradient F follows from (A.8.14), (2.1.5b)
and (2.2.14). Theresult shall be written

F=5 ®i, (2.2.17)
oX,

In addition, if the component version of X=y.*(x,t) iswritten

X, =203 (X0 %, %, 1) (2.2.18)
we can write
F'= X, i, ®i (2.2.19)
0%

Definition: The displacement gradient at (X, t) isalinear transformationin & (9;9")
defined by

H(X,t) =GRADw(Xt) (2.2.20)
It easily follows from (2.2.5) and (2.2.14) that
H=F-1I (2.2.21)
Definition: The velocity gradient at (x, t) isalinear transformation in & (9 ;9") defined by
L(x,t)=gradx(x,t) (2.2.22)
Often, we shall write L. or L(t) for L(x,t).

The component representation for L. can be shown to be

X
L:a—xii | ®i, (2.2.23)

Given (2.2.14) and (2.2.22), we shall prove that
F=LF (2.2.24)

The argument necessary to establish (2.2.24) is asfollows:
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: : oz, (Xt
F=GRAD 7, (X.t) :GRAD%
=grad xGRAD g, (X.t)
=LF
Exercise 2.1.2
Show that
tr L=divx (2.2.25)
and
Fl=—FL (2.2.26)
Equation (2.2.24) implies that
(detF) =(detF)trL (2.2.27)
Equation (2.2.27) follows by the following argument.
By the definition (A.5.19), we can write
(detF)u-(vxw):Fu-(vaFw) (2.2.28)

whereu, v and w are arbitrary vectorsin 9 . If (2.2.28) isdifferentiated, the result is

(detF) u-(wa)zFu-(vaFw)—i-Fu-(vaFw)+Fu-(vaFw)
=LFu-(FvxFw)+Fu-(LFvxFw)+Fu-(FvxLFw)
=(trL)Fu-(FvxFw)

where (A.5.36) and (2.2.24) have been used. Because u, v and w are arbitrary the result (2.2.27)
iS obtained.

Exercise 2.1.3

Use (2.2.27) and show that

O(detF)
oF

=(detF)F™ (2.2.29)

It isaso true that
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Div((detF)F™ }=0 (2.2.30)

and
div((det F)F )=0 (2.2.31)

The proof of these resultsis rather complicated and will be summarized in the following exercises.
Exercise 2.1.4

Show that (2.2.30) is equivalent to the component formula

9 (detF)(aXJ ~0 (2.2.32)
oX OX,
Exercise 2.1.5
Use equation (A.5.27) and show that
0X OX.
o (CetF) 20— 1 0% (2.2.33)
OX, 0X; 0X,
Exercise 2.1.6
Multiply equation (2.2.33) by &g, and show that
X, 1 OX; 0%,
detF R=—Zt . €, — 2.2.34
( )a 2 P TIOEX | aX ( )

Exercise 2.1.7

Use (2.2.34) and prove the validity of (2.2.30).The proof of (2.2.31) follows an identical argument
with x and X interchanged.

Exercise 2.2.8

Use (2.2.31) and show that
div((det F")Fu) = (det F ") Divu (2.2.35)
for an arbitrary vector field u .

2.3. Transformation of Linear, Surface and Volume Elements
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It follows from (2.2.14) that
dx=FdX (2.3.1)

The vector dX at X represents an infinitesimal segment of material in the reference configuration,
and the vector dx at x represents an infinitesimal segment of material in the deformed
configuration. Equation (2.3.1) represents the transformation law for linear elements of material

under the deformation x= g, (X,t).

If dV isamaterial element of volume at X and dv denotes its image under the mapping
x=7%, (X,t) then we wish to show that

dv=|det F|dV (23.2)
By definition, the volume elements dV and dv are given by

dV =[dX, -(dX, x dX, )| (2.3.3)
and
dv=|dx, -(dx, x dx, )| (2.3.4)

where dx, =F dX,, dx, =F dX, and dx,=F dX,. Therefore, by (A.5.19),

dv=|F dX, -(FdX,xF dX, )|
=|(detF)dX,-(dX, x dX,)|=|det F|dV

Equation (2.3.2) shows us again the physical importance of (2.2.16). By (2.3.2), we see that
(2.2.16) isin redlity a statement about the permanence of the material.

Next, we wish to obtain aformulathat relates a material element of area at X to itsimage at
x. It will not be possible to discuss here, in a careful fashion, the idea of an oriented surface
element. However, we can obtain the desired result by the following argument. If dS denotesa
material element of areaat X, we require that
dv =dX,-dS (2.3.5)
If we compare (2.3.3) and (2.3.5), it is seen that dS must be given by

dS=+ dX, x dX, (2.3.6)

where the plus or minus sign is used, depending upon the orientation of the vectors dX, and dX,
relativeto dX,. A formulasimilar to (2.3.5) can be written to define ds, theimage of dS, at x. Itis



56 Chapter 2

dv=dx,-ds (2.3.7)
where dx, = FdX,. Therefore, by (2.3.2),
dx, -ds=|det F|dX, -dS (2.3.8)
or
(FdX,)-ds= dX,-(F'ds)=|det F|dX, -dS (2.3.9)
Therefore, equation (2.3.9) can be written,
dX, -(F'ds—|detF|dS)=0 (2.3.10)

If we now regard dX, asarbitrary, equation (2.3.10) yields the transformation law for material
surface elements,
ds=|det F|F™* dS (2.3.11)

The next formulas we shall discuss are expressions for differentiating volume, surface and line
integrals. If @ isapart of thebody @8°, then y(&7°,t) istheregion occupied by &7 at thetimet.

It isamaterial region in the sense that it moves with the part & such that every point within
1(97",1) hasthe material velocity x. We shall denote the surface of y(¢7,t) by oy(97,t). The

vector ds denotes the outward drawn vector element of area. The geometric arrangement is shown
in the figure below.

For avolume integral the following result, known as Reynold’' s Theorem, shall be established:

[ wdv= a—\Pdeﬁ Px-ds (2.3.12)
) 1o ot (e )
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Figure 2.3.1

In order to prove (2.3.12), wefirst utilize (2.3.2) and write

L(@q‘t) v = jk(@)w |det F|dV = L(@ﬂ)(\P |det F)dv

=, (P lcetF] +9[deF av

By use of (2.2.27) and (2.3.2), thisresult can be rewritten

fx(@,t)TdV = L(gp’t)(ql +WirL)dv (2.3.13)
If we now use (2.2.10) and (2.2.25), it is seen that
¥y trL:%—TdeiV(‘PX) (2.3.14)

If (2.3.14) is substituted into (2.3.13), the divergence term can be converted, by use of (A.8.27), to
the surface integral which appearsin (2.3.12).

Equation (2.3.12) isthe three dimensional generalization of (1.1.21). The reader should note
that the derivation of (2.3.12) is the three dimensional version of the solution to Exercise 1.1.2.

Exercise 2.1.8

If @ (t) denotesamaterial surface, i.e., asurface that always consists of the same material points,
show that

“P ds = ¥ ds+(trL)¥ ds-¥L" ds (2.3.15)
(1) (1) (rL)

The geometric arrangement appropriate to this exerciseisillustrated in the Fig. 2.3.2.

X

ds ort)

<

\7
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Figure 2.3.2
Exercise 2.1.9

If &(t) denotesamaterial curve, i.e., acurve that always consists of the same materia points,
show that

jg(t)\ifdx = fg(t)(‘i’ dx +'¥ Lx) (2.3.16)

Exercise 2.1.10

The circulation about a closed curve & (t) isdefined by

(@ ()=, ¥ dx (2.3.17)
Show that

F(Q’(t)) =g X Ox (2.3.19)

Equation (2.3.18) is useful in discussing the kinematics of vorticity and in proving classical
theorems regarding circulation.[Ref. 5]

It isimportant to recognize that (2.3.12) can be generalized to the point whereit is divorced
from theideathat x(¢7°,t) isamaterial region. Infact, if &2'(t) denotesaregionin <& and if

points on the boundary of @7'(t), 097'(t) move with velocity v(x, t), then it is possible to show that

9 wav=] Paved  wyeds (2.3.19)
dt () a(t) Ot o (t)

[Ref.6, Sect.112]

The derivation of (2.3.12) assumed, among other things, that ¥ was differentiable throughout
x(@7,1) . Itisuseful to have a generalization of (2.3.12) valid when W suffers ajump discontinuity
on asurface X(t) in y(@7',t). The generalization we seek is the three dimensional generalization of
(1.1.31). Consider Fig. 2.3.3.
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oy(@”,t)"

(1)

ox(@,t)

Figure 2.3.3

The surface Z(t) dividesy(&7,t). into the two regions shown, x(&7',t)" and y(@”,t)". Itis
important to note that x(¢7°,t)" and y(¢7',t)” are not material volumes. This assertion becomes
clear when one recognizes that the surface X(t) dividing y(¢7,t).isnot fixed in x(&*,t). The
unit normal n to X(t) isdirected into yx(¢7",t)". Thesurface X(t) isallowed to be moving and its
normal velocity iswritten nu, . If weassume ¥ isdifferentiablein both y(¢7,t)” and y(&7,t)",
then ¥ approaches limiting values W~ and W¥" as X(t) isapproached from y(¢>,t)” and
1(@”,1)", respectively. Equation (2.3.19) can be used to obtain

Ar wav=]  avi]  wkeds-[ wu,do (2.3.20)
dt e P T st

for y(e>,t)", and
d wav=[  Pave|  wieds+[ Wy do (2.3.21)
dt Jxe v ot (@) 2(t)

for y(@7,t)". In(2.3.20) and (2.3.21), do isthe element of area of the surface X(t). The sum of
(2.3.20) and (2.3.21) yields

Y oY ,
J o ¥ V= L(@H)Edw Do FEOH [ (¥ do (2.3.22)
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where the jump [¥] isdefined by (A.8.31). Equation (2.3.22) generalizes (1.1.35). By use of
(A.8.30), (2.3.22) can be written

j = j (—erlv ¥x) jdv— J 1Y (x-n-u,)ldo (2.3.239)
If we now use (2.3.14), the result (2.3.23) can be rewritten in the form

Ydv= (¥+¥trL )dv- jm [¥(x-n-u,)do (2.3.24)

Ix(@,t) 20
The reader should recognize (2.3.23) as the three dimensional generalization of (1.1.38).
Exercises 2.3.4-2.3.8:

Kinematics of Rotating Coordinates. Consider the geometric arrangement shown in the Fig. 2.3.4.
The point ¢ = ¢(t) isthe origin of atranslating and rotating coordinate system with orthonormal

basis {i;, i, . Since {i,,i,,i,} isabasisfor 7, we can write
i, =Qui, (2.3.25)

where [ij ] isan orthogonal time-dependent matrix.

Figure 2.3.4

Exercise 2.1.11
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Show that

i .
=24 (Vi (2.3.26)

where | Z, (t) ]is a skew-symmetric matrix defined by

Z, (t)=Qq dQ;t(t) (2.3.27)
Exercise 2.1.12
Define Z(t) in &(9;07) by
Z(t)=Z,(t)i; ®i (2.3.28)
and show that
di _ 7i (2.3.29)
dt .

The linear transformation Z measures the angular velocity of {111213} with respect to {il ,iz,is} :
Exercise 2.1.13

If o isthe angular velocity vector of the basis {iy, i, i3} defined by

Zv=0xvV (2.3.30)
foral vin @, show that
O =—%5E4Zs (2.3.31)
and
di; i (2.3.32)
— —@xi; 3.
adt !

Exercise 2.1.14

If u=u(X,t) isatime dependent vector field, show that

ﬁ:@Jrcoxu (2.3.33)
ot
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where du/ ot isthe material derivation of u seen by an observer in the trandating and rotating
coordinate system, i.e., if u=ui; then

ou .
E:Ujlj
Exercise 2.1.15
From the figure above, we have
x—0=p(t)+c(t)-0 (2.3.34)

The velocity x associated with the motion x=, (X,t)isthus given by
._Op .
x=——+axp+¢(t) (2.3.35)
ot
where we have used (2.3.33). Show that
op

2.4. Strain Kinematics
In this section, the kinematics of local strain are discussed. The discussionis"local” in the sense
that the kinematical ideas apply to the deformation of infinitesimal linear elements of material. The
ideas introduced here will aid in understanding certain quantities that will appear later when special
types of materials are considered.

If the polar decomposition theorem, Theorem A.5.12, is applied to F we have

F=RU (2.4.13)

=VR (2.4.1b)

where R is orthogonal and U and V are symmetric and positive definite. The tensor R is called the
rotation tensor, while U and V arethe right and left stretch tensors, respectively. The positive
definite and symmetric tensors B and C, defined by

B=FF' (2.4.2)
and
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C=F'F (2.4.3)
are the left and right Cauchy- Green tensors, respectively.
It follows from (2.4.1) and (2.3.1) that

dx=RUdX (2.4.42)

=VRdX (2.4.4b)

The meaning of (2.4.4a) should be clear. Given the material element dX, UdX isthe material
element stretched by U. The orthogonal linear transformation R then rotates the stretched material
element into the deformed element dx . Equation (2.4.4b) represents the same deformation, but
with the rotation and stretch taking place in areverse order. Therefore, U and V measure the
stretch (or strain) of alinear element, while R measuresitsrotation. It easily follows from (2.4.1),
(2.4.2) and (2.4.3) that

V=RUR' (2.4.5)

B=RCR’ (2.4.6)

B=V? (2.4.7)
and

C=U? (2.4.8)

As observed in the proof of Theorem A.5.11, U and V have the same eigenvalues. Thus, they
correspond to the same stretch. If n isan eigenvector of U, then we know that Rn isthe
corresponding eigenvector of V. Therefore, V and U correspond to the same stretch but in different
directions related by the orthogonal linear transformation R.

Exercise 2.4.1

Show that
V"=RU"R" (2.4.9)

where nis an integer.
It follows from (2.4.7) and (2.4.8) that B and C are al'so measures of the strain. An equivalent

method of reaching this conclusion isto consider the following argument. The squared lengths of
the linear element at X and x are

dS*=dX.dX (2.4.10)
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and

ds? =dx-dx

The difference in these squared lengths is clearly a measure of the strain. It isasimple calculation,
based upon (2.3.1), to show that

ds’ —dS’ =dX-((C-T)dX)=dx-((1-B*)dx) (2.4.11)
Equations (2.3.11) indicate that C and B measure the strain. The tensor
E=1(C-I) (24.12)

is caled the material strain tensor or the Lagrangian strain tensor.

Exercise 2.4.2

Show that
C=I+H+H' +H'H (2.4.13)
B=I+H+H' +HH' (2.4.14)
and
E=3(H+H'+H"H) (2.4.15)
Exercise 2.4.3
Show that
lo=3+2l, (2.4.16)
o =3+4l_+4ll, (2.4.17)
and
o =1+21_+411_+8lll (2.4.18)

where 1,1, 11l arethe fundamental invariants defined by (A.5.44) through (A.5.46).



Kinematics of Motion 65

Given the various strain measures introduced in this section, their material derivatives are
rate of strain measures. Given the deformation gradient F, its derivativeF measures the rate of

deformation. If (2.2.24) iswritten
L=FF* (2.4.19)

it follows that L. al'so measures the rate of deformation. More precisaly, it follows from (2.4.19)
that

L=F| (2.4.20)

F=I
and, thus, L isthe rate of deformation measured with respect to a configuration which
instantaneously coincides with the reference configuration.

Given the decompositions (2.4.1), it is natural to use (2.4.20) and attempt to decompose L
into a part which measures rate of rotation and a part which measures rate of deformation. From
(24.19),

F=RU+RU (2.4.21)

When F =1, it follows from the polar decomposition theorem that U =1 and R = 1. Therefore,
(2.4.21) yields

H_ =0 +R| (2.4.22)

Therefore, in the state which instantaneously coincides with the reference configuration, U| .

measures the rate of deformation and R| ., measures the rate of rotation. Because R is orthogonal,

RR' =1 (2.4.23)
The derivative of (2.4.23) yields
RR'=—(RR")" (2.4.24)
Therefore, RR" is a skew symmetric linear transformation, and, thus,

R =-R| (2.4.25)

F=I
Because U is symmetric, U is symmetric and, thus,

y _=U (2.4.26)

F=I
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Therefore, (2.4.22) is a decomposition of F|F=I into its symmetric and skew symmetric parts.

Because of (2.4.20), (2.4.22) is the decomposition of L into its symmetric and skew symmetric
parts. Therefore

(L+U)=0 (2.4.27)
and
%(L-LT):R‘ ) (2.4.28)

We shall use the symbols D and W for the symmetric and skew symmetric parts of L, respectively.
These quantities are, of course, defined by

D:%(L + LT) (2.4.29)
and
W=4(L-L") (2.4.30)

The linear transformation D measures the rate of strain with respect to a state which
instantaneously coincides with the reference configuration, and W measures the rate of rotation
with respect to the same state. D is called the stretching tensor and W is called the spin tensor. D
is sometimes called the rate of strain tensor, and the vector formed from the skew symmetric W is
called the vorticity vector.

Exercise 2.4.4

Show that
C=2F'DF (2.4.31)
Exercise 2.4.5
Show that
D=iR(UU+U"U )R’ (2.4.32)
and
W=RR+1iR(UU'-U"U )R’ (2.4.33)

Equations (2.4.32) and (2.4.33) show that D is not a pure rate of stretching and W is not a pure rate
of rotation when these rates are measured with respect to afixed configuration. If the body isrigid,

U=Ifor al X. Equation (2.4.32) yields D = 0 for arigid body, and (2.4.33) yieldsW=RR" . The
term RR" represents the angular velocity of the rigid body.
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Exercise 2.4.6

Show that, for arigid body with velocity x, at the point x,, the velocity of any point x in the body
isgiven by
x=%,+RR" (x—x,) (2.4.34)

Equation (2.4.34) shows that the velocity of arigid body can always be represented by a trandation
of apoint x, in the body plus arotation about that point.

Exercise 2.4.7

Show that
D =%{grad (%) +grad (i—f)T } (2.4.35)
and
W =%[grad (i—fj —grad (%)T } +Z, (2.4.36)

where p isthe position vector introduced in (2.3.34). These results show that the spin tensor is
sensitive to rigid rotations while stretching tensor is not.

Exercise 2.4.8

For certain types of viscoelastic fluids an important kinematic quantity is the nth Rivliin-Ericksen
tensor, A, for n=12,..., defined by

dT:ﬁAJ (2.4.37)
dt"
Show that
A,=2D (2.4.38)
and
A,=gradx+(grad 'X)T +2L'L (2.4.39)
Exercise 2.4.9

If F(X, t) isorthogonal for every X and for all t and if F isdifferentiable, show that F is
independent of X and that the body isrigid.
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Exercise 2.4.10
Consider the homogeneous deformation of the form
x=FX (2.4.40)

where F is the deformation gradient defined in Exercise A.5.22 of Appendix A. Given amaterial
element in the shape of a unit cube aligned with the coordinate axes, construct the deformed
element which results from the deformation (2.4.40).

Exercise 2.4.11

Show that
div((detF')V) = (detF) DivR (2.4.41)

One approach to working this exercise isto choose u = R"v in (2.2.35) where v is an arbitrary
vector.

2.5. Infinitesimal Strain Kinematics
If the displacement gradients are, in some sense, small, the results of Section 2.4 are
simplified considerably. This section is concerned with a discussion of the kinematics of strainin

this special circumstance. The results are important in the classical theory of linear elasticity.

The magnitude of a deformation is measured by a positive number € defined by

e=,tr(HH")=|H]| (2.5.1)

In components, e isdefined by

OW. OW,
e= |[——L (25.2)
o0X, oX,

Equation (2.5.1) defines the norm of alinear transformation H in terms of the trace operation. Itis
easy to show that this definition of norm is consistent with the definition (A.3.1), and it has the
properties summarized in Theorem A.3.1.

It follows from (2.5.1) that when € is small every component of H is necessarily small. We
shall denote by O(<) any function of H with the property that

lo(e)|<M e (25.3)
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ase—0, where M is any positive number. If e <« 1, the deformation is said to be small or
infinitesimal.

It isaconsequence of (2.5.1) that

H=0(¢) (2.5.4)
and
H =0(<) (2.5.5)
Since
O(€")O(e™)=0(e™™) (25.6)

for positive integers n and m, it follows from (2.5.4) and (2.5.5) that
H'H=0(e’) (25.7)

and
HH' =0(&?) (2.5.8)

it follows from (2.4.13), (2.4.14), (2.4.15), (2.5.7) and (2.5.8) that

C=1+2E+0(&’) (2.5.10)
B=1+2E+0(<’) (25.12)

and
E=E+0(s*) (2.5.12)

Equations (2.5.10) through (2.5.12) show that E is ameasure of the strain whenever terms like
O(€”)are neglected. Itisfor thisreason that E is called the infinitesimal strain measure.

It is also possible to derive approximate expressions for U, V, and R that are valid for
infinitesimal deformations. These expressions are
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U=I+E+0(€) (2.5.13)

V=I+E+0(&’) (25.14)
and

R=I1+R+0(&*) (2.5.15)
where

ﬁ:%(H-HT) (25.16)

Equations (2.5.13) and (2.5.14) follow from (2.4.7) and (2.4.8) by extracting the square root of
(2.5.10) and (2.5.11). Equations (2.5.15) follows from (2.4.1a), written in the form

-1

R =FU'=(I+H)[ I+E+0(&’) | =(1+H)[ 1-E+O(¢?)|
~ 1
:I+H—E+O(ez):I+H-§(H+HT)+O(62)
1 .

:I+§(H—HT) +O(ez):I+R+O(ez)
The kinematical meaning of R should be clear from (2.5.15). It isthe linear correction to the
rotation R = I. Thisisthereason R iscalled theinfinitesimal rotation tensor. It follows from
(2.5.9) and (2.5.16) that

H=E+R (2.5.17)

Equation (2.5.17) is a decomposition of the infinitesimal deformation into the sum of an
infinitesimal strain and an infinitesimal rotation.

Exercise 2.1.16

Show that

det F=1+tr H+0(&”) (2.5.18)
=1+trE+0(*) (2.5.19)

|. =3+2trE+O(&? (2.5.20)
C
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Il =3+4trE+0(<’) (2.5.21)
and

Il =1+2trE+0(%) (2.5.22)

Equation (2.5.18) shows that H =tr E measures volume deformationsin the case of small
deformations. In linear elasticity, trEiscalled the dilatation.
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Equations of Balance

This chapter is concerned with the three dimensional statements of the equations of balance. Asin
Chapter 1, the discussion will include statements of balance of mass, linear momentum, energy and
the entropy inequality. In addition, we shall discuss balance of moment of momentum. This
balance equation istrivial in one dimension.
3.1. Balance of Mass

Thebody @8 isassumed to be endowed with a nonnegative scalar property known as the mass.
For our purposes, the idea of mass will be introduced by assuming the existence of a positive

valued function on @8" called the mass density. The mass density, or smply the density, of X in
98" at thetime ¢ isgiven by

pzp(X,t) (3.1.1)

By use of (2.1.2), we canregard p to beafunctionof (x,¢). Inthiscase, weshall write

p=p(x,t) (3.1.2

where, for notational simplicity, we have used the same symbol for the two different functions
which appear in (3.1.1) and (3.1.2). Also, when the independent variables are (X, ) we shall again

write
p=p(X1) (3.1.3)

The above notational convention will not cause any confusion since the context will always
indicate which function is intended.

If x isthe reference configuration, the density of @8" in k will be written
Pr = Pr (X) (3.14)

The mass of apart @7 of @8 inthe configuration y at thetime ¢ is

m(&7,t) = j pdv (3.1.5)

1(&7.1)

72
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Axiom (Balance of Mass). For dl parts & in &8,
m(27,t) = const (3.1.6)

or, equivaently,

m(@.1)=0 (317)

Notethat m(-, ) isaset function; i.e., the domain of m(-,) isacollection of sets. Each element

of the domain represents apart of @8°. Clearly, the axiom of balance of massis equivalent to the
following statements:

1. m(@z’“,t):m(@‘,r) (3.1.8)
fort#r,

2, jx(m pdv=0 (3.1.9)
and

3. jx(@’t) pdv= L(m PodV (3.1.10)
foral @ in @8

If we use (2.3.2), equation (3.1.10) can be written

L(@p)(/’|dEtF| ~pg)dV =0 (3.1.11)

Since @' isan arbitrary part of @8, (3.1.11) isequivaent to

p|detF| = p, (3.1.12)

for all (X,z) in k(28")x(—o,). Equation (3.1.12) isalocal version of the axiom of balance of
mass. When p and F are differentiable functions, it follows from (3.1.12) and (3.1.4) that

p|détF| =0 (3.1.13)

Exercise 3.1.1
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Show that (3.1.13) is equivalent to the following equations:

p(lj =div x (3.1.14)
o

p+pdivk=0 (3.1.15)
and

op . .

5+dlv,ox:0 (3.1.16)

Exercise 3.1.2
Derive (3.1.16) from (3.1.9) by use of (2.3.12).

Equations (3.1.12), (3.1.14), (3.1.15) and (3.1.16) summarize the usual local statements of the
axiom of balance of mass. Equation (3.1.12) is the form usually used in solid mechanics while the
others are common in fluid mechanics. All of these equations hold at pointswhere p, x, and F

are differentiable.
Exercise 3.1.3

Start with (3.1.16) and derive an integral statement of the axiom of balance of mass for an arbitrary
region 97'(t). Theanswer is

d .
_I@m)p dv= ‘950@(,)/’ (x—v)-ds (3.1.17)

dt
where v denotes the velocity of a point on the surface a@?(t) . What do thetermsin (3.1.17)
represent physicaly?

In deriving (3.1.14), (3.1.15) and (3.1.16), we assumed that p, x, and F are differentiable
within (&7,t). From our one dimensional discussion in Chapter I, we know that in certain

physical problemsthisis not the case. Across athree dimensional shock wave p, x,and F are

not continuous. They undergo jump discontinuities. A typica problem in continuum mechanicsis
to compute the properties of these discontinuities. In order to relax the assumptions leading to
(3.1.14), (3.1.15) and (3.1.16), we shall now consider the casewhen p, x,and F are

differentiable at all points except on asurface Y(¢), where p, x, and F suffer jump
discontinuities. It follows from (3.1.9) and (2.3.23) that
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P ) .
L(@w)( ot +dIVpdev_Iz(t)[p (&, ~u,)ldo (3.1.18)

where

X, =X-n (3.1.19)

isthe normal component of xat 3 (¢). Thearbitrary nature of y(£7",¢) alows usto conclude

from (3.1.18) that (3.1.16) holds at points where p and x are differentiable. In addition, (3.1.18)
shows that

J.Z(t)[p()'cn ~u,)ldo =0 (3.1.20)

Equation (3.1.20) yields

[o(%, —u,)]=0 (3.1.21)

at points x on ¥ (¢). Equation (3.1.21) follows from (3.1.20) and the arbitrary nature of ().

The physical meaning of (3.1.21) should be clear. It smply states that the mass flux per unit of
area is continuous across Z(t) . The reader has no doubt noticed the formal similarity of the

derivation of (3.1.21) and its one dimensional version (1.2.12).

Exercise 3.1.4

Show that
pyr = —822” +div(pyx) (3.1.22)
Exercise 3.1.5
Show that
J.)((/’/’ i) pl//dv - J.x(.ﬂ/) ,t)pl//dv B Iz(r) [pl// (x" —u, )] do (3123)

Exercise 3.1.6

Use (2.3.36) and show that

div x = div(@j (3.1.24)
St
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Since (1 p)=6(1p)/5t, (3.1.24) and (3.1.14) combineto yield

s(Up) 5p
pT = dlv( 5 j (3.1.25)

which isthe local statement of balance of mass appropriate to an observer in arotating and
trandating coordinate system.

Exercise 3.1.7

Show that (3.1.25) can be written

: op
+div| p— |=0 3.1.26
(p &j ( )

op

ot

p

where 2—’0 denotes the time derivative of p = p(p,) at constant p.
t

p

Exercise 3.1.8

Thebody @8 isincompressible if p=0 foral X in @8 . Show that in this case
|det F| =1 (3.1.27)

and

divik =0 (3.1.28)

3.2. Balance of Linear Momentum
In this section, the axiom of balance of linear momentum is stated and discussed.

The linear momentum of the part &°° of thebody 98" is

k(o7.0)=]

z(@y)px dv (3.2.1)

The center of mass of the part @7 of thebody @8" is

X, (97,1)= pxdv (32.2)

m(@“,z‘)L(m)
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where m(&7",t) isgiven by (3.1.5).
Exercise 3.2.1

Show that the linear momentum of the part &°°, no matter what deformation it undergoes, equals
the linear momentum of a mass point of mass m(&7",t) located at the center of mass moving with

the velocity of the center of mass, i.e., show that
k(97,t)=m(97,1)x, (323

It should be stressed that (3.2.3) depends strongly on the fact that the mass within y(97,¢) is

constant. The concept of center of massis of little value in those cases where the mass is not
constant.

The statement of the axiom of balance of linear momentum takes the concept of force as
fundamental. If f (@”‘t) denotes the resultant force acting onthe part 27" in @8° at thetime ¢,

the axiom of balance of linear momentum is the following:

Axiom (Balance of Linear Momentum) For al parts 22’ in @8’
k(97.t)=1(07,1) (3.2.4)

Equation (3.2.4) will be referred to as the equation of motion of &7 . Also, note that this
axiom is stated for the material occupying the volume y(&7",¢). Theimportant property of

x(@‘,t) isthat is contains a constant mass. It will be shown in an exercise how (3.2.4) is modified
when aregion with variable massis used.

Equation (3.2.4) isusualy referred to as "Newton's second law," athough it was stated
explicitly for thefirst time by Euler [Ref. 1]. Equivalent forms of (3.2.4) are

J‘X(@ﬁ‘t)'p)kdv =f(27,1) (3.2.5)
and
m(97,1)X, =1(97,1) (3.2.6)

Exercise 3.2.2

Show that if (3.2.6) iswritten with respect to the trandating and rotating system, it takes the form
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2

I’I’Z(Q),l‘)(é-i- 5;"’ +Oxp, +2mx%+mx(mxpc)]=f(@,t) (3.2.7)

t2

where p_ denotes the position vector to x, from ¢(7). Identify thetermsin (3.2.7).

Assume that the body @8" and its motion are given.

Definition. A system of forces for the body in motion is characterized by the following
conditions [Ref. 2, Sect. 16]:

1. For every ¢ in (—o,0) there exists avector field b(-,7) defined on (7,¢).
2. Forevery ¢ in (—oo,) and for every @' in 98" there existsavector field t(-,97,1)
defined on oy (97',1).

The vector field b(-, ¢) iscalled the external body force density on 98" . The vector f,(97,1)
defined by

f,(97,1)= L(m) pbdv (3.2.8)

isthe resultant external body force exerted on &7 at thetime ¢. The vector field t(-,@,t) IS

called the stress vector and represents the contact force acting on &7 at thetime ¢. The resultant
contact force f.(97",t) exerted on &7 at thetime ¢ is defined by

f(07,1)= @W(@J)t(x,@*,t)ds (3.2.9)

where ds = |ds| . Physically, f,(&7",1) isthe resultant force exerted by the material outside of &7

which isin contact with the surface 0y (97",¢). Theresultant force f(27",¢) exerted on &7 in 98
at thetime ¢ isdefined by

f(97,1)=1,(97,t)+1.(97,1) (3.2.10)

Under certain rather formal mathematical assumptions, one can prove that there exists a vector
field t(-,n,7), where n isthe unit exterior normal to oy (&7",¢), such that

t(x,@”’,t):t(x,n,t) (3.2.112)

forall x on oy (97,t) and ¢ in (—o0,0). The mathematical argument leading to (3.2.11) can be
found in Ref. 3. Additional discussion relevant to this argument can be found in Refs. 4, 5, and 6.
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By use of (3.2.8), (3.2.9), (3.2.10) and (3.2.11), the axiom (3.2.5) can be written

Lpnkav=6  t(xmi)ds+§  pbay (3.2.12)

The normal stress a x on oy (97",t) is
t(x,n,¢)-n

Since t(x,n,7) isthelocal effect of the material outside of y(&7",¢) on the material inside of
x(97,t),if t(x,n,7)-n isnegative, the normal stressis compressive and, if t(x,n,¢)-n is
positive, the normal stressis atension. The projection of t(x,n,t) in the direction of aplane

normal to n isthe shear stress. If t(x,n,t) isparalel to n, and if the factor of proportionality is
independent of n, the stress is hydrostatic.

Next, we shall show that if t(x,n,t) is a continuous function of x, there existsalinear

transformation T , depending upon x and ¢, such that all stress vectors t(x,n,t) a x and ¢ are
determined by
t(x,n,7)=T(x,7)n (3.2.13)

Thisresult is known as Cauchy's theorem, and it asserts that t(x,n,s) depends upon the surface

orientation only in alinear fashion. Thetensor T is called the stress tensor. The proof of (3.2.13)
is based on a preliminary result which is stated as follows:

If d denotesacharacteristic dimension of y(&7",¢) andif pxand pb are bounded for all
x(97,1), then

.1
lim—

d—0 g? Ex(@’t)t(X,n,t)ds =0 (3.2.19)

Because d isthe characteristic dimension of y(&",1), then 3 (&7 ,t) is proportional to ¢° and
oy (&7,t) isproportional to d %, The proportionality factors depend only on the shape of 2 (971).

If we select y(£7",¢) such that it does not contain a surface of discontinuity, we can use (3.1.23)
with 7 = x towrite (3.2.12) in theform

P o txmt)ds =] _ p(%—b)dv (3.2.15)

If wedivide (3.2.15) by ¢ and let d — 0, weimmediately obtain (3.2.14) since, by assumption,
pX and pb are bounded. Returning to the proof of Cauchy's Theorem, consider the tetrahedron
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shown in the following figure. Thisis tetrahedron has three of its faces parallel to the coordinate
planes through x and the fourth with normal n. If ds isthe element of areafor the slant face, the

element of areafor the face perpendicular to the coordinate axis i, is ds; =(n-i,)ds. If (3.2.14) is
applied to the tetrahedron, it follows that

X3
n
X X3
X
Figure 3.2.1

Therefore,
3
t(x,n,t)=—[Zt(x,—ij,t)®ij]n =T(x,/)n
j=1

By use of (A.4.3), the component representation for the stress tensor can be written

T=T,i, ®i, (3.2.16)

Exercise 3.2.3

Use (3.2.13) and (3.2.16) and show that the components of T, 7, , represents the force per unit of

areain the jth direction of the & th face of aunit cube. The following figureillustrates the results
of this exercise.
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_> 23
T Ty
T }+ I,

Figure 3.2.2

X1
If equation (3.2.13) is substituted into (3.2.12), the result can be written

j —gS T(x,t)ds + j Phav (3.2.17)

If we assume y (£7",¢) does not contain a surface of discontinuity, we can follow the same
procedure used to derive (3.2.15) from (3.2.12) and deduce from (3.2.17) that

I(@,)PX V—SB T(x,1) dHI pbdv (3.2.18)

If the surface integral in (3.2.18) is converted into avolume integral by use of (A.8.29), it follows
that

L(m( pX —divT — pb)dv =0 (3.2.19)

Because y(97,¢) isarbitrary, (3.2.19) implies the following local statement of balance of linear
momentum:

pX=divT + pb (3.2.20)

Thisresult holds at points x not on a surface of discontinuity. The component version of (3.2.20)
is
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oT

_Jk

3.2.21
- (32.21)

+ pb

J

px; =

Exercise 3.2.4

Show that the following equations are equivalent statements of the local statement of balance of
l[inear momentum.

1. pX=divT + pb (3.2.22)
ox N\ .
2. p(a+(gradx)xj =divT + pb (3.2.23)
3 §§§+dVUKCW):dVT+pb (3.2.24)
Ox x° . :
4. Yo, = +grad > +2Wx |=divT + pb (3.2.25)

Exercise 3.2.5

Show that, for the material in 7' (¢), the balance equation for linear momentum is

d . e
o J/ o PX dv = —qSM P (x—v)-ds+ Cf)ﬁ/ 0 Tds+ I/ o pbdv (3.2.26)

What do the termsin (3.2.26) represent physically?

Equation (3.2.20) represents the form of the equation of balance of linear momentum that occurs
frequently in textbooks on fluid mechanics. While (3.2.20) applies to any continuum material, in
theories of nonlinear elasticity it is useful to derive amaterial form of the axiom of balance of

linear momentum. This result, derived below, is expressed in terms of the first Piola-Kirchhoff
stress tensor. Thistensor is given the symbol T, , and is defined by

T, =|det F| TF " (3.2.27)

Exercise 3.2.6
Show that

Tds =T, dS (3.2.28)
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This results shows that T, is the stress tensor measured per unit of undeformed area.

The local statement of the material form of the axiom of balance of linear momentum will now
be shown to be

p:X=DIVT, + p,b (3.2.29)

The derivation of (3.2.29) follows by first multiplication of (3.2.20) by |det F| and making use of
(3.1.12). Theresultis

pgX = |det F|divT + p,b (3.2.30)
By use of (2.2.30), it follows that
|det F|divT = div(|det F| TF* ) = DivT, (3.2.31)

which yields the desired result. The reader should compare the derivation of (3.2.19) with its one
dimensional version (1.3.13). In some applications the second Piola-Kirchhoff stress tensor is
introduced. It isdefined by

T=F'T, (3.2.32)
Exercise 3.2.7

Show that the following jump equation governs linear momentum across a singular surface z(t) .
[p(%, —u,)X]1-[TIn=0 (3.2.33)
Equation (3.2.33) is the three dimensional generalization of (1.3.8).
Exercise 3.2.8
Show that (3.2.33) can also be written
[p(x—un)®(x—u,n)-TIn=0 (3.2.34)
and

7IXI-[TIn=0 (3.2.35)

where y=p" (%} —u,)=p (%, —u,). Equations (3.2.34) and (3.2.35) generalize (1.3.10) and
(1.3.112), respectively.
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Exercise 3.2.9

Show that when T isgivenby T =—xzI, where 7 isthe pressure, that (3.2.34) is equivalent to
[7+p (%, —u,)’1=0 (3.2.36)

and
nx[x]=0 (3.2.37)

if ¥ 0. Equation (3.2.37) shows that the tangential component of x is continuous across the
discontinuity whenever T=—-zI and y #0.

Exercise 3.2.10

Show that

2
p[é+§p+cbxp+2mx%+cox(mxp)J=divT+,0b (3.2.38)

o
Equation (3.2.38) is the equation of motion which is utilized in geophysical continuum mechanics.

3.3. Balance of Angular Momentum

The moment of momentum or angular momentum of apart of &7° of @8" about the origin 0 is
defined by

h, (2.6)=]  p(x—0)xkdv (33.)

1@ 1)

Itisclear from (3.3.1) that the moment of momentum has been assumed to be due entirely to the
velocity x. Thisis certainly the most common case. However, there are theories of polar

materials from which h, (7',1) contains apart due to an intrinsic spin moment of momentum. We
shall not consider such theoriesin thistext [Refs. 2, 7].

Axiom (Balance of Moment of Momentum) The rate of change of moment of momentum of an
arbitrary part &7° of @8" about the origin 0 isequal to the resultant of the torques about the origin.

If 1,(97,t) denotesthis resultant torque, then

h,(97,t)=1,(97.1) (332
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It is assumed herethat 1,(27,¢) is due to the body and contact forces. Therefore, surface couples
and body couples are not allowed. With this assumption, 1, (&7,¢) isgiven by

1, (@"‘,t)=€'5&(@t)(x—0)xT(x,t)ds+ p(x=0)xbdy (3.3.3)

2o )

Therefore, the axiom of balance of angular momentum can be written

p(x.— 0)x Xdv = (]S ( t)(x— 0)x T(x,t)ds+ L(@ t)p(x —0)xbdv (3.34)

o™

J.x(@’,t)

It should be clear to the reader that one could use (A.5.17) and (A.5.18) to rewrite (3.3.4) asan
equivalent tensor equation. In this equivalent statement, moment of momentum and torque are
treated as skew-symmetric linear transformations.

Exercise 3.3.1

Show that, when linear momentum is balanced, the balance of angular momentum with respect to
one fixed point is necessary and sufficient for the balance of angular momentum with respect to
any other fixed point.

Exercise 3.3.2

If

b (572)- |

1(@7.1)

p(x—x,)xxdv

is the angular momentum about the variable point x,, show that the balance equation for h, (47,¢)
is

h,(97,t)=1,(97.t)-m(97,1)%, x X, (3.3.5)

where 1,(&7,t) isthe resultant of moments taken about x, and x, isthe velocity of the point x, .
In what cases does the above result reduceto h, (&7',t)=1,(9”,t)?

Exercise 3.3.3

If

b (67.0) =

(e 1)
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isthe relative angular momentum about the variable point x_, show that the balance equation for
h) (97,1) is

h (97,t)=1,(97,t)+ m(97,t)X, x(x. - x,) (3.3.6)

where X isthe acceleration of the point x,. In what cases does the above result reduce to
h, (97,t)=1,(97,t)?

Exercise 3.3.4
Use the results of Exercise 3.3.3 and derive Euler's equations for arigid body 48" .

Next, we wish to derive alocal version of the axiom (3.3.4). This derivation requiresthat we
define the operation of the cross product of a vector with alinear transformation. If v isin @~
and A isin &(97;97) then vx A isalinear transformation defined by

(vxA)u=vx(Au) (3.3.7)

forall u in 7 . Equation (3.3.7) can be used to derive the following component formula:
vxA=¢, v A, ®i (3.3.8)

Jqm

Given (3.3.4), we can follow a now standard argument and show that

p((x—b)xx):div((x—o)xT)+p(x—0)xb (339

at points x not on asingular surface.
It isafact that equation (3.3.9) and balance of linear momentum, (3.2.20), are equivalent if and
only if the stress tensor is symmetric, i.e.
T=T" (3.3.10)

The proof of this assertion depends upon the identities
((x—0)xx)=(x-0)xx (3.3.11)
and

div((x—O)xT)=(X—0)><divT+gA T i (3.3.12)

Jmk* km™ j
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Equation (3.3.11) follows directly, since

(X;O)xyk:)kxi(:ﬂ

Equation (3.3.12) ismost easily obtained by expressing the left side in components, differentiating
the result, and then writing the answer in direct notation. In components, the left side of (3.3.12) is

8(€jskx877(”1 )i

div((x—0)xT)= e (3.3.13)
Therefore,
div((x—0)xT)=¢,,x, %ij + & %nmij (3.3.14)
If the identity
2;“5 =5, (3.3.15)

isused, (3.3.14) reducesto (3.3.12). By useof (3.3.11) and (3.3.12), it follows that (3.3.9) can be
written

(x=0)x(px—-divl—pb)=¢,,T,.i, (3.3.16)

It is easy to conclude that the right side of (3.3.16) iszero if and only if T issymmetric. Thus, if
T issymmetric, (3.3.16) implies (3.2.20). Conversely, if (3.2.20) isused in (3.3.16), then T must
be symmetric. Theresult just established is atheorem proven by Cauchy in 1827. Thistheoremis
no longer true if the material isapolar material, i.e., amateria with intrinsic spin, surface couples,
and body couples. From our standpoint, it is an extremely useful result, since we can avoid the use
of the balance equation for moment of momentum in the complicated form (3.3.9) by replacing it
with (3.3.10). Interms of the first Piola-Kirchhoff stresstensor T, defined by (3.2.27), the result

(3.3.10) can be written
T,F =FT, (3.3.17)

thus T, isnot symmetric. Anelementary calculation shows that T defined by (3.2.32) is
Symmetric.

No additional information is obtained from (3.3.4) by allowing a surface of discontinuity to
occur in the material. The jump equation for angular momentum turns out to be equivalent to
(3.2.33).
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3.4. Balance of Energy (First Axiom of Thermodynamics)

In this section the axiom of balance of energy is considered. In addition to the quantities
previously introduced in this chapter, the balance of energy axiom introduces the ideas of internal
energy and heat. Asin Chapter |, these two concepts are regarded as fundamental undefined
properties of the material.

The kinetic energy of apart @°° of 98" at thetime ¢ isdefined by

1
T(97,t)= L(@J)E pxdv (34.2)

If & denotes the internal energy density (i.e., the internal energy/mass), the internal energy
of &' in @8 atthetimet is

E(@7,t)= L(m) pe dv (3.4.2)

The total energy of & in @8 atthetime ¢ isthesumof 7(97,¢) and E(97,t). The power (rate
of work) of the applied forces actingon @7° in @8" at thetime ¢ is

P(o.1)=¢, iy X (Tds)+ L(@«,f) px-bdv (34.9

(o™

The rate of heat addition to @7 isregarded as arising from the generation of heat within the body
and from contact of &7° with the material outside of ©?" (conduction). Thus, if Q(@”,t) denotes

the rate of heat additionto &7 at thetime ¢, we can write
0(27,t)= —q.)ax(@’t)q(x,@"“,t)ds + L(m pr(x,t)dv (3.4.4)

The quantity ¢ in (3.4.4) represents the rate of heat flow per unit of areaacross oy (97',t). Itis

positive when heat is being removed from @2°. The quantity » in (3.4.4) represents the rate of
generation of heat at x in (&7 ,t) at thetime ¢. Itiscalled the heat supply density. Equation

(3.4.4) has the same interpretation for heat as (3.2.10) has for resultant force.

Axiom (The First Axiom of Thermodynamics). For al parts @' in @8’

E(@“,t)%T(@“,t):P(@“,t)+Q(@“,t) (3.4.5)

In terms of the definitions (3.4.1) through (3.4.4), the axiom (3.4.5) takes the form
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Loy, o |
_[X(mt)p(8+§x jdv_qsax(@,,)x'(Tds)_¢m(@,;)q(x’@’t)ds+Ix(@,,)p(x'b+r)dv (3.4.6)

By use of (3.3.10), (3.1.23) and (A.8.27), (3.4.6) can be written
gsﬁx(gp’t)q(x,@‘,t)ds = L(@q‘l) div(Tx)+ px-b+ pr —p(g +%X2j dv (3.4.7)

when one assumes y(&7,¢) does not contain a surface of discontinuity. The same type of
argument which produced (3.2.11) and (3.2.13) can be used to show that

q(x,97,t)=q(x,n,t)=q(x,7)-n (3.4.8)

The vector q(x,?) isknown asthe heat flux vector. Equation (3.4.8) is aresult first established by
Stokes. With (3.4.8) and (3.3.10), (3.4.6) and (3.4.7) become

1), | |
J‘X(@ﬁ‘t)p(e +§x jdv = Sﬁq(@,z)(Tx —q)-ds + Ix(@ﬂ,t)p(x'b + r)dv (3.4.9)

and
Loy p(“%"‘zj— div(Tx)— px-b— pr+divq |dv=0 (3.4.10)

Equation (3.4.10) immediately yields the following local statement of the axiom of balance of
energy:

p(€+%izj=diV(TX)—ddi+pX-b+pr (3.4.112)
Of course, (3.4.11) generalizes (1.4.2). Thisresult holds at points x not at a surface of
discontinuity.
Exercise 3.4.1

Show that the following forms of (3.4.11) are equivalent:
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1. p(€+%izj=diV(TX)—ddi+pX-b+pr (3.4.12)
0 1., 1oV . oo : :
2. p5(3+§x )+p[grad(g+§x D-x:dlv(Tx)—dzvq+px-b+pr (3.4.13)
and
0 1., , 1.,). Ry : :
3. Ep(g%rix j+dlv(p(5+§x jxj=le(Tx)—dzvq+px-b+pr (3.4.14)

Exercise 3.4.2

Assume that the body force b isgiven by b =—gradv, where v(x,¢) isthe potential energy.
Show that (3.4.11) can be written

p(s+v+%i&2j=diV(TX)—ddi+pr+p% (3.4.15)

Exercise 3.4.3

Show that, for the material in 97 (t) , the balance of energy equation the energy is

d 1.,), 1.,),.
E.[@p(t)p(g-’_ix jdv__qgam(t)p(g-'—EX j(x_v)‘ds

+<I>m(t)(TX—q)-ds (3.4.16)

+I@(t)p(x ‘b+r)dy

Exercise 3.4.4

Show that the material form of the axiom of balance of energy is

Pr (5+%X2j=Div(T,fX)—Diqu+pRX-b+pRr (3.4.17)

where
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q, =|detF|Fq (3.4.18)

Asin Section 1.4, it is possible to derive a balance equation for the internal energy density
alone by "removing the kinetic energy"” from (3.4.11) with the equation of motion (3.2.20). Itis
convenient to call the resulting equation a thermodynamic energy equation. However, this does not
imply that the internal energy density is not influenced by things that might be attributed physically
to mechanical origins. It must be stressed that the thermodynamic energy equation does not
represent anew axiom. It will be derived from (3.4.11) and (3.2.20). It follows from (3.2.20) that

pX-i:%p(Xz):X-divT+pX-b (3.4.19)

It should be clear that (3.4.19) can be used to subtract the kinetic energy and the rate of work of the
body force from (3.4.11). Theresultis

pé =div(Tx)-x-divT —divq + pr (3.4.20)

Equation (3.4.20) shows that the internal energy density ¢ is changed because of the heat
addition and what is |eft over from div(Tx)— x-divT. Important physical information can be

obtained by examination of the quantities div(Tx) and x-divT. It should be clear that

1. div (Tx) = rate of work/vol of the surface forces, and it contributes to the change of total
energy density, ¢ +%x2 [See (3.4.11)];

2. x-divT = arate of work/vol of the surface forces; however, it contributes only to the
change in the kinetic energy [See (3.4.19)]

We can conclude that the difference, div(TX) —x-divT, isarate of work of the surface forces that

contributes to a change in the internal energy density. Therefore, except in certain trivia cases,
there is always a coupling between the rate of work of the surface forces and the internal energy.

If the term div(Tx) isexpanded, it follows that
div(Tx)=tr(TL)+x-divT (3.4.21)

where (3.3.10) has been used. Equation (3.4.21) is a decomposition of the rate of work per unit
volume of the context forces into a part which represents that part of the rate of work per unit
volume of the contact forces which changes the kinetic energy and a part that changes the internal
energy.

In summary, the balance energy equation (3.4.11) and the balance of linear momentum
equation (3.2.20) imply the following balance of thermodynamic energy equation:
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pé=tr(TL)-divq+ pr (3.4.22)

Conversaly, (3.4.22) and (3.2.20) imply (3.4.11).
Exercise 3.4.5
Show that (3.4.22) can be written

pé =tr(TD)—divq+ pr (3.4.23)

Thus, the skew part of L. does not contribute to the thermodynamic energy equation. The term
trTL=trTD in (3.4.22) and (3.4.23) isusually called the stress power-.

txercise 3.4.6
Show that the material version of (3.4.22) is

pré =tr(TyF)-Divq, + pr (3.4.24)

The jump statement of balance of energy can be derived by allowing x(f/) t) to contain a surface
of discontinuity aswas donein Section 3.1 for balance of mass.

Exercise 3.4.7

Show that
1.,),. .
[p(e+§x j(x—unn)—Tx+q]-n:0 (3.4.25)
Exercise 3.4.8
Show that
1., .
y[(g—i-zx j]—[Tx]-n—i—[q]-n =0 (3.4.26)

where y isdefined below equation (3.2.35).
Exercise 3.4.9

If T=-xI and [q]-n =0, show that (3.4.26) can be written
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1
[8+%+§(xn —u,)1=0 (3.4.27)
Exercise 3.4.10
Show that (3.4.27) can be written
[€] +%(7z* +7° )Y pl=0 (3.4.28)

Equation (3.4.28) is called the Hugoniot relation and is the three-dimensional generalization of
(1.4.5).

Exercise 3.4.11
Derive the three-dimensional version of equation (1.4.12).

Several interesting applications require statements of the axiom of balance of energy where the
velocities are measured with respect to atranslating and rotating coordinate system. The required
equations are easily derived if one first recognizesthat (3.4.22) or (3.4.23) isa scalar equation
which isinvariant under atransformation to translating and rotating coordinate systems.

Exercise 3.4.12

Show that with respect to atranslating and rotating coordinate system (3.4.11) takes the form.

o 16p op . op : op .
—| e+=—-— |=div| T— |-divq+ p—(b—-¢— - + 3.4.29
pét(g 2 ot §tj ( §tj a p5t ( cToxp (ox((oxp)) pr( )

Exercise 3.4.13

On the assumption that @ =0, show that (3.4.29) can be written

pg[5+%%.%—%(mxp)~(mxp)} = diV(T%J—ddi+p%'(b—é)+PV (3-4-30)

It is possible to formulate an argument which yields the axioms of balance of mass, linear
momentum and angular momentum from the axiom of balance of energy and assumptions of
invariance [Refs. 8, 9, 10, 11, 12]. Insight into this argument is provided by the following
EXErcises.

Exercise 3.4.14

Without utilizing balance of mass, linear momentum and angular momentum show that the local
statement of balance of energy which follows from (3.4.6) is
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%p(s%—%i&zj—kdiv(p(g—kéﬁzj)kj = div(T"x)-divg + px-b+ pr (3.4.31)

at points x not occupied by asingular surface.
Exercise 3.4.15

Show that (3.4.31) can be written

pé—tr(TTL)+divg - pr+ X-(pX—diVT—pb)+(5+%X2](p+ptrL) =0 (3432
Exercise 3.4.16
Consider amotion y, (X,) defined in terms of y, (X,7) by [see (A.7.8)]

T (Xo1) =¢(2)+Q(1) (% (X.2)—0) (3.4.33)

where ¢(7) isapointin < for each ¢ in (—o,0) and Q(¢) isin ©(9") for each ¢ in (—o0,0).
If an asterisk denotes quantities associated with the motion y.. ,show that

F =QF (3.4.34)
X =¢(t)+Qx+Q(x, (X,1)-0) (3.4.35)
X =¢(r)+Qx+2Qx +Q(x, (X,1)—0) (3.4.36)
and
L =QLQ" +QQ" (3.4.37)

where QQ" is a skew-symmetric linear transformation.
Exercise 3.4.17

If, in addition to (3.4.34) through (3.4.37), the following transformation rules hold:
p =p (3.4.38)

& = (3.4.39)
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T =QTQ" (3.4.40)
q =Qq (3.4.41)
r=r (3.4.42)
and
b’ =Qb+&+2Qx+Q(7, (X,1)-0) (3.4.43)

then show that if we postulate

pE —tr(T*TL*)eriV*q* —pr +X (px —div'T —p*b*)
1 L S (3444)
+(g +§x J(p + p trL ):O

forall ¢(-):(—o0,00) - & which have second derivativesand al Q(-):(-,%0)— &(9 ") which
have second derivatives, then it is necessary and sufficient that

p+ptrL=0 (3.4.45)
pX=divT + pb (3.4.46)

and
T=T' (3.4.47)

3.5. The Entropy Inequality

Asin Section 1.6, the mathematical statement of the second axiom of thermodynamics takes the
form of an entropy inequality or the Clausius-Duhem inequality [Ref. 2, 6, 7, 8, 9, 13, 14,
15,16,17].

In order to discuss the second axiom of thermodynamicsit is necessary to accept as
fundamental the concepts of an entropy density n, body entropy supply density k and acontact
entropy supply density h .

Definition. The entropy of apart &' in @8’ at thetime ¢ is defined by
NEOE J.x(@“,t) pndv (35.1)

Definition. The entropy flux into &7 in @8 at thetime ¢ is defined by
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M(@f",t)=—<f>

iy 1) ds + jx(m) pk(x,t)dv (35.2)
Axiom (The Second Axiom of Thermodynamics). For al parts " of 28,
S(7.t)2M(\t) (35.3)
By the same kind of argument which produced (3.2.11), (3.2.13) and (3.4.8), it follows that
h(x,(P,t):h(x,n,t)zh(x,t)-n (3.5.49)

[Ref. 6]. Itisappropriateto cal h the entropy flux vector. By use of (3.5.1), (3.5.2) and (3.5.4),the
axiom (3.5.3) can be written

’p77 dv > —4)

fx(@,t> o B(X01) s L(gﬁyl)pk(x,t)dv (3.5.5)

Asin Section 1.6, the temperature is introduced with the formal assumption that theratios ¢/# and
r/k areequal.

Definition. The temperature 6 at x in y(97,t) a thetime ¢ is defined to be the common
ratio

q r
O==>=— 3.5.6
P (35.6)
By assumption, & shall be regarded as a positive valued function of (x,7),i.e.
6=06(x,t)>0 (35.7)

Formulations of the Second Axiom of Thermodynamics do exist for which the definition (3.5.6) is
not adopted. These formulations are available in Refs. 13 and 16. Reference 17 contains a slightly
different formulation of the entropy inequality from that given here and in Refs. 13 and 16. These
alternate statements of the Second Axiom of Thermodynamics are briefly discussed in Section 5.4.
The definition (3.5.6) is essentially classical and has been adopted here for that reason. Given
(3.5.6), (3.5.4) and (3.4.8), we can replace (3.5.5) by

1

| .
Jypndv==9, . Za-ds+f Llay (35.8)

Next, we wish to use (3.5.8) to derive local statements of the second axiom of thermodynamics.
It follows from (A.8.33) and (3.1.23) that (3.5.8) can be written
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L(m)( pii+div(q/0) - pr/0)dv - J.Z(l)([pn(icn ~u,)+[q/0]-n)do >0 (35.9)
where Y'(¢) isasingular surface. Because &7 isarbitrary, (3.5.9) implies that
pri+div(q/0)-pr/0>0 (3.5.10)
for al x not on asingular surface and
[pn (%, —u,)l+[q/6]-n <0 (3.5.11)
forall x on Y (). Equations(3.5.10) and (3.5.11) generalize (1.6.7) and (1.6.8), respectively.

Asin Section 1.6, it isuseful to eliminate the term divq — pr between (3.5.10) and the

thermodynamic energy equation (3.4.22). This calculation can be carried out if we write (3.5.10) in
the form

on +%(ddi—pr)—6—12q-grad020 (3.5.12)
It immediately follows from (3.4.22) that (3.5.12) can be written
p(eﬁ—g)anL—%gradezo (3.5.13)

which is obviously the three dimensional generalization of (1.6.10). Asin Section 1.6, equation
(3.5.13) isacombined statement of the entropy inequality (3.5.10) and the energy equation
(3.4.22).
The firee energy density or the Helmholtz free energy density is defined asin Section 1.6, by
w=c-n6 (3.5.14)

Interms of y theinequality (3.5.13) is
~p(v+76)+tTL —%grad@ >0 (3.5.15)

Exercise 3.5.1

Show that the material form of the inequality (3.5.15) is
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~pp (v +16)+ T} F—%R-GRADe >0 (3.5.16)

Exercise 3.5.2

Show that (3.4.9) can be written

1.,
IX(@’Z)p(g -0,n +§X jdv

_cﬁ Tds Cﬁox(@‘,t)(l ng ds+j px -bdv

(3.5.17)
+.[ 1- % prdv
i(Zam)) 2]
-0, [I( )p?] +<ﬁ j —pra’vj
where 6, isany constant.
Exercise 3.5.3
If 6, isapositive number, show that
J P 1//+77((9—9)+£X2 dv
bz 0 2
90
< qS (Tds) @q(@’t)(l— 5] q-ds (3.5.18)

) 6,
+ L(@,z) pX-bdv+ IX(@’Z) [1— gj prdv

Equation (3.5.18) is the three dimensional version of (1.6.13). It isuseful in the study of
thermodynamic stability [Ref. 18 through 31]. For linearized models of materials, (3.5.18) is
useful in the proof of uniqueness theorems. (See Exercises 8, 9, 10, of Section 1.11 and Exercise 6

of Section 4.12.)
Exercise 3.5.4

If the temperature @ isonly afunction of ¢, show that

08 (2,12 Q(t) (35.19)
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Exercise 3.5.5

Use the definition (3.5.14) and show that the thermodynamic energy equation (3.4.22) can be
written

pOr; =—p(y +160)+tTL—divq + pr (3.5.20)
Exercise 3.5.6
Show that the material version of (3.5.20) is
P07 =—py (v +10)+ T F - Divq, + p,r (3.5.21)
3.6. Jump Equations of Balance - Material Versions

Equations (3.1.21), (3.2.33), (3.4.25) and (3.5.11) are the spatial forms of the jJump balance
equations. In this section the corresponding material forms are derived. The argument is
complicated by the fact that x and F are not necessarily continuous across the singular surface

>(¢). Indeed, for ashock wave, these quantities have nonzero jumps.

If 3(¢) isrepresented in the form

f(x)=0 (3.6.1)
then it istrue that
n=grad £ (x,¢)/|grad f (x,¢)) (3.6.2)
isthe unit normal to Z(t) , and
%=—Wgﬂﬂymfﬁﬂu (3.6.3)

isthe normal speed of . (t) .

It is convenient to consider afamily of surfaces defined by

f(xt)=a (3.6.4)
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where o =0 definesthe surface Z(z) . Without loss of generality we can regard n to be directed

from the surface o =0 towards surfaceswith ¢ > 0. We assume that (3.6.4) can be inverted to
yield

t=t(x,a) (3.6.5)

Given (3.6.5), afunction ¢ of (x,r) can be replaced by afunction ¢ of (x,«) by therule

o(x.a)=9(xi(xa)) (3.6.6)

It follows from (3.6.6) that
. dp(x,1) .
grad(/)(x,a)=gradgo(x,t)+Tgradt(x,a) (3.6.7)

Likewiseit follows from (3.6.4) and (3.6.5) that

grad? (x,a) = —gradf(x,t)/af E,;t) (3.6.9)
By formulas like (3.6.2) and (3.6.3), (3.6.8) can be written
~ ()

grad? (x,a)=—= (3.6.9)
Uya)

where n, is the unit normal to the surface (3.6.4) and Uy () isitsnormal speed. The special

surface o =0 hasits normal and normal speed denoted by n and u, , respectively. Given (3.6.9),
equation (3.6.7) becomes

- n,) op(x,
grad ¢ (x, o) = gradep (x,¢) + —2. p(x1) (3.6.10)
Uy ot
The jump of ¢ acrossthe surface o =0 isdefined by
[pl=¢ —¢" (3.6.11)

where

o =limo(x.a) (3.6.12)
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and

9" =limo(x,a) (3.6.13)

al0

Because differentiation at constant &« commutes with the jJump operation, the jump of (3.6.10)
yields

grad[e] = [grad o (x,¢)] +[%—f] ui (3.6.14)
If, asa special case, the jump of [¢] iszero, (3.6.14) yields

8
[grad(p(x,t)]={a—f ui (3.6.15)

Equation (3.6.15) isknown as Maxwell's theorem [Ref. 7, Sec. 175].

Given amotion (2.1.5), we can construct a material image of each spatial surface defined by
(3.6.4). Each of these surfacesis given by

fi(Xt)=a (3.6.16)
where f_ is defined by
fe(Xt) = f (ne (Xo1).t) (36.17)

The material image of Y (¢), definedby o =0, isdenoted by 3 (¢). Differentiation of (3.6.17)
yields

fo(Xt)= afg’t) +(grad / (x,1))-x (3.6.18)
and
GRADY, (X,)=F"gradf (x7) (3.6.19)
Formulas like (3.6.2) and (3.6.3) allow (3.6.18) and (3.6.19) to be written
J (X,1)==|orads (x,0)|(14,1,) ~ 1y - ) (3.6.20)

and



102 Chapter 3

GRAD f, (X,) = |grad f (x,¢)[¥"n,,, (3.6.21)

At this point, it is convenient to define a normal speed and a unit normal for each of the surfaces
(3.6.16) by the usual definitions

UN

(a

= f.(X,t)/|GRADS, (X.1)| (3.6.22)
and

N, = GRADY, (X,1)/|GRADf, (X.z)| (3.6.23)
Given these definitions, (3.6.20) and (3.6.21) become

_ |orads (x,1)) (u
Yo |GRADS, (X, 1) N

-n," x) (3.6.24)

and

|aradf (x.2)|

" [GRADE (%] n,, (3.6.25)

If the surface Z(z) Isashock wave, then [X] and [F] are not zero. Asaresult, (3.6.24) yieldstwo
values for the normal speed on ¥ (¢) and (3.6.25) yields two values of the unit normal. If

(3.6.24) and (3.6.25) are evaluated in the limit as each side of Y (7) is approached, these multiple
values are given by

Jorady (x.0) —(u, -n-x*) (3.6.26)
HGRADf (x.0)f
and
loradr (x )] @627)
HGRADf (X, r)H

Fortunately, we can provethat N equals N~ and, in addition, that U,, equals U,,. The proof of
the first assertion will be given next.
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In order to establish that [N]=N"—N" is zero, we utilize (3.6.15) where ¢ isthe jth
component of y,*(x,7). Theresulting identity can be written

(Fi = [ax“ ] ®n (3.6.28)

Because n istheunit normal to 3 (¢), if ¢ isany vector tangent to 3 (¢) then

-1 ,t
u, ot
If ds isthe vector element of areaof Y(7), it can be written

ds = dx, x dx, (3.6.30)

for tangent vectors dx, and dx,. Theimage of ds under the motion is determined by the
transformation rule (2.3.11). It follows from (2.3.11) that

ds* =|detF[ F*'ds (3.6.31)
If (3.6.30) is used, (3.6.31) can be written
dS* =F* dx,xF* dx, (3.6.32)

where (A.5.25) has been used. The result (3.6.29) showsthat [F']dx, = [F ']dx, = 0. Therefore
(3.6.32) yields

[dS]=dS™ —dS" =0 (3.6.33)
Because
_ % (3.6.34)
it follows that
[NJI=N"=N*=0 (3.6.35)

Theresult U, =U,, will be established next. Given (3.6.33), it follows from (3.6.31) that
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|@S| =|det|” [F*"n]||ds] (3.6.36)
Therefore,
pU S| = p* (u,—n-x" )| ds] (3.6.37)
where (3.1.12) and the result
F'n =% (3.6.39)

have been used. Equation (3.6.38) follows from (3.6.26), (3.6.27), (3.6.35) and thefact that N isa
unit vector. The jump balance of mass statement (3.1.21) tells us that

o (un —n-X*):p_ (un —n-)'(_) (3.6.39)
Therefore, (3.6.37) yields the desired result
[U,1=Uy-U;; =0 (3.6.40)

As our derivation indicates, the result (3.6.40) is, in effect, the material version of jJump balance of
mass. The remaining jump balance equations are given below.

Given jump balance of linear momentum in the form (3.2.35), the material versionis
Uy [X]+[T,IN =0 (3.6.41)

where (3.6.37), (3.2.28) and (3.6.34) have been used. Likewise, the material version of jump
balance of energy (3.4.26) is

pUyle +%x2] +[T;X]-N—[q,]-N=0 (3.6.42)

Exercise 3.6.1

Show that the material version of (3.5.11) is
PUyl-14,/61-N>0 (3.6.43)
Exercise 3.6.2

By the same derivation that produced (3.6.28), except for an interchange of x and X, it follows
that
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[F]= —Ui [X|®N (3.6.44)

N

Use (3.6.44) and (3.6.41) and derive the Rankine-Hugoniot relation

) _n-([TR]N)

= 3.6.45
pR N n([F]N) ( )

Equation (3.6.45) generalizes (1.3.12) and is useful in the study of shock wavesin solids.
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MODELS OF MATERIAL BEHAVIOR

This chapter is concerned with the investigation of various models of material behavior. Since
materials are defined by constitutive equations, we will be examining various constitutive
assumptions and the implication of these assumptions. It is useful, therefore, to list briefly the
general requirements that constitutive equations must obey [Ref. 1, Sect. 293].

1. Consistency: Constitutive equations must be consistent with the axioms of balance of mass,
momentum, energy, and the entropy inequality.

2. Coordinate invariance: Constitutive equations must be stated by arule that is equally valid
in all fixed coordinate systems.

3. Just setting: Boundary value problems resulting from the constitutive equations must be
well posed. In other words, there should exist unique solutions corresponding to
appropriate initial and boundary data, and these solutions should depend continuously on
this data.

4. Material frameindifference: The response of the material as characterized by the
constitutive equations must be independent of the frame of reference.

5. Material symmetry: If the material possesses any symmetry, the fact must be reflected in
the constitutive equations.

6. Equipresence: Anindependent variable present in one constitutive equation of a material
should also be present in al constitutive equations unless its presence can be shown to bein
contradiction with 1 — 5 above.

Therestriction 3 will not be considered in thiswork. The restriction 2 will be satisfied trivialy by
writing our equationsin either direct notation or in afixed rectangular Cartesian coordinate system.
This chapter will be concerned with proposing constitutive equations for various types of materials
and then systematically examining the restrictions imposed by 1, 4, 5 and 6.

4.1. Examples
In order to give direction to the discussion of this chapter, in this section we shall give two
examples of constitutive equations which occur in the classical theories of continuous materials.

The material in this section, in some aspects, parallels the material in Section 1.7.

In order to model a particular material we need constitutive equationsfor v, n, T, and q.

The first example constitutive equations are those of a compressible conducting viscous fluid. In
this case, the material is defined by the following constitutive equations:

v =v(0,p) (4.1.1)

108
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n=n(0.p) (4.12)
T=—7(6,p)1+A(0,p) (D)L +2u(6, p)D (4.13)

and
q=—x(0,p)gradd (4.1.4)

where

n(6,p)= —w (4.1.5)
7(0,p)= pz%i’p) (4.1.6)
A(0,p)+21(0,p) 20 (4.17)
1(6,p)=0 (4.1.8)

and
x(6,p)20 (4.1.9)

The quantity 7 isthe pressure. The coefficients 4 and u are the viscosities, while x isthe
thermal conductivity. The quantity A+ % x iscalled the bulk viscosity and 4 is called the shear
viscosity. In many applications the bulk viscosity is taken to be zero. Given (4.1.1) and (4.1.2),
(3.5.14) shows that

e=¢(6,p) (4.1.10)
An example expression for y asafunction of (6, p) is[see(1.7.6)]
v(0,p)=c0-c0Ind+RIInp+s* —0n* (4.1.11)

where ¢, and R are positive constantsand ¢ and n* are constants. It follows from (4.1.5),
(4.1.6), and (4.1.11) that

n(6,p)=c,In0-RIinp+n* (4.1.12)
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and
z(0,p)=pRO (4.1.13)

The reader will recognize (4.1.11) as defining a perfect gas with constant specific heat ¢,. The
constant R isthe gas constant. Equations (4.1.11) and (4.1.12) combine with (3.5.14) to yield

e(0,p)=co+¢&" (4.1.14)

Thus, for a perfect gas the internal energy density isindependent of density.

Returning to the more general case (4.1.1), we see that

. oy , Oy .
A i 4 4.1.15
V=24 o p ( )

By (4.1.5) and (4.1.6), we can write (4.1.15) in the form
w=-n0+—p (4.1.16)
Yo

Equation (4.1.16) is called the Gibbs relation for the material being discussed. By use of (3.5.14),
it follows from (4.1.16) that

é:9ﬁ+§p (4.1.17)

Next we wish to present the special forms taken by the axioms of balance of linear
momentum and energy for the material defined by (4.1.1) through (4.1.4). Note that the axiom of
balance of angular momentum is automatically satisfied because T in (4.1.3) issymmetric. First
we shall consider the axiom of balance of linear momentum. If (4.1.3) is substituted into (3.2.20),
we can use (2.2.22), (2.2.25) and (2.4.29) to obtain

pX = —grad 7 + grad (A divx)+div(ygradx)+div(y(gradx)T )+pb (4.1.18)
In the specia case where the viscosities are constant, (4.1.18) can be written
pi=—grad;r+(/1+,u)grad(diVX)+,uAX+pb (4.1.19)

where Ax denotesthe Laplacian of x. This operator is defined by equation (A.8.25). Equations
(4.1.19) are called the Navier-Sokes equations.

The special form taken by the thermodynamic energy equation in this caseis
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PO =div(xgradd)+® + pr (4.1.20)

where @ is called the viscous dissipation and is defined by

®=A(trD)’ + 2utr D? (4.1.22)
If x isaconstant, (4.1.20) becomes
PO =KkAO+ D+ pr (4.1.22)
Exercise 4.1.1
Derive (4.1.20).
Exercise 4.1.2
Show that (4.1.21) can be written
2 2 1 ’
<D=(ﬂ, +§,uj(trD) +2,utr(D—§(trD)Ij (4.1.23)
Exercise 4.1.3
Show that (4.1.21) can be written
@ =(A+2p)1% —4ull, (4.1.24)

where 1, and Il,, arethefirst two fundamental invariantsof D. Inthose caseswhere 4, u, and

Kk are constant, equations (3.1.15), (4.1.19) and (4.1.22) represent the field equations appropriate to
the viscous compressible fluid with heat conduction.

The next example we wish to discussis that of an isotropic linear thermoelastic solid with
heat conduction. Unlike the previous example, this one is approximate in the sense that it only
holds when the displacement gradients are small. Thus, it corresponds to a thermomechanical
version of classical linear elagticity.

The defining constitutive equations are

P = — ’;F;CV (0-6,Y ~B(0-0,) U E+3A(trE) + utr E? (4.1.25)
0
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PRIl = pRC\,[e_ % J +BtrE (4.1.26)
0
T, = A(trE)1+2uE - B(0-6,)1 (4.1.27)
and
qr =—-kGRAD@ (4.1.28)

where ¢, 6,, #, 4, u,and x areconstants. The coefficient ¢, isapositive number called the
specific heat, 6, isareferencetemperature, A and u are the isothermal Lame parameters and x
isthe thermal conductivity. The conductivity must obey the inequality

K20 (4.1.29)

The coefficient 1 isalso called the isothermal shear modulus while A4+ % isthe isothermal bulk
modulus. The constant « , defined by

ae— P (4.1.30)

is called the coefficient of thermal expansion. The constant v, defined by

oA (4.1.31)

2(/1 + y)
isthe isothermal Poisson'sratio. Finally, the constant E ,defined by

e H(34+2u) (4.1.32)

A+u
isthe isothermal Young's modulus.

Equations (4.1.26) and (4.1.27) can be written

oy
S 4.1.33
=>4 ( )
and
d
T, = p, % (4.1.34)

JOE
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It easily follows from (4.1.27) that
T, =T, (4.1.35)

In the small displacement approximation being explained here, it is possible to show that (3.3.10)
and (4.1.35) are equivalent. Thus, balance of angular momentum is satisfied in thistheory. Itis
possible to show that the axioms of balance of linear momentum and energy in this model become

PeW = (A+ 1)GRAD (Divw)+ uDiv(GRADw)- SGRAD @ (4.1.36)
and

Hﬁ( prC,0+ 30, Div ) = x Div(GRAD 0) (4.1.37)

0

respectively. Inthe classical theory the left side of (4.1.37) islinearized by approximating the ratio
6/6, by unity. Theresultisalinear equation of the form

PrC,0+ 6, Divw = k Div(GRAD6) (4.1.38)

Equations (4.1.36) and (4.1.38) are the field equations of classical linear thermoelasticity. They
represent the three dimensional generalizations of of (1.11.7) and (1.11.8).

Exercise 4.1.4

Show that the Gibbs relation for the material defined by (4.1.25) through (4.1.38) is

V= -0+t TE (4.1.39)

Pr

Exercise 4.1.5
Show that T, and E have the same eigenvectors.
Exercise 4.1.6

Show that (4.1.27) can be solved for E and that the result is
E =1LEVTR —é(trTR)I+a(9—t90)I (4.1.40)

Exercise 4.1.7
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Eliminate 6 -6, from (4.1.27) by use of (4.1.26) and show that

The quantity

T, =(ﬂ+&ﬂ2](trl~§)l+2,uﬁl—%nl

PrG

,1+i52+3ﬂ
PRG 3

isthe isentropic bulk modulus.

Exercise 4.1.8

Solve (4.1.41) for E and show that

where

and

. 1+v 1 a6
E= E”TR—E”(trTR)I+ 72

n n

nl

,1+&132
V. = pRCv

! 0
2 /’t+°ﬂ2+,uj
[ PrG,

_ B

n
3(/1 L % L%+ 2 yj
PrG, 3

ﬂHmw}z@
E - PrRG

' /1+i,82+/1
PrG,

Chapter 4

(4.1.41)

(4.1.42)

(4.1.43)

(4.1.44)

(4.1.45)

The quantity v, istheisentropic Poisson'sratio and E, istheisentropic Young's modulus.

Exercise 4.1.9
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Adopt the governing equations of linear thermoelasticity given in this section and derive the three
dimensional version of (1.11.28).

In closing this section it is useful to mention afew additional examples of constitutive
equations which occur in the applications. The first is one which has been proven to be useful in
rubber elasticity. It isaMooney-Riviin material. This model is one where thermodynamic
influences and compressibility are taken to be unimportant. Asaresult, the only constitutive
eguation of importance is the one for the stress. In this case, this constitutive equation takes the
form

T=-pl+u(:+8)B-u(3-4)B™ (4.1.46)

where 4 and g are constants, p isthe hydrostatic stress, and B isthe left Cauchey-Green tensor

defined by (2.4.2). In Section 4.5, we shall formulate a model of an incompressible isothermal
elastic material. Equation (4.1.46) isaspecia case of the class of incompressible materials
discussed in this section. Another example isthat of a Rivliin-Ericksen fluid. This model
isaso validin the isothermal case and is defined by

T=-7(p)I+G(p, A, A, .0 A,) (4.1.47)

where A, isthe nth Rivlin-Ericksen tensor defined by (2.4.37). More precisely, (4.1.47) definesa
Rivlin-Ericksen fluid of grade n. Inthe special case where n=1, (4.1.47) defineswhat iscalled a
Reiner-Rivlin fluid. Intheincompressible case, (4.1.47) is altered by replacing the pressure 7 ( p)

by an indeterminate pressure p and omitting the dependence of G on the density o . A fluid of
the second grade is a special incompressible Rivlin-Ericksen fluid of grade 2 defined by

T=-pl+uA, + A, +a,A? (4.1.48)
where u, o, , and a, are material constants.

4.2.  Isothermal Elasticity — Thermodynamic Restrictions

Asour first model of amaterial, we shall consider a purely mechanical theory of an elastic
material. First we shall investigate the implications of the entropy inequality on the constitutive
equations which define this type of material. In the following sections we shall examine the
additional restrictions imposed by material frame indifference and by material symmetry.

Because we are interested in an isothermal model, the entropy inequality (3.5.15) reduces to

—py +tr(TL)>0 (4.2.1)
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Therefore, as far as the entropy inequality is concerned, » and q areindeterminate. This

indeterminacy indicates that we are formulating a theory of a constrained material. Rather than
presenting a detailed discussion of the implication of various types of constraints, it will simply be
stated that the isothermal constraint causes the energy equation (3.4.22) to be identically satisfied.
The necessary field equations for our isothermal formulation are balance of mass and balance of
momentum.

The constitutive equations which define an elastic material are
v (Xt)=u,(F(Xt),X) (4.2.2)
and
T(X,t)=G, (F(X,t),X) (4.2.3)

As the notation indicates, the response functions, whose values are  and T , depend upon the
reference configuration k . This dependence is necessary because F is calculated from (2.1.5), and
the deformation function y, depends upon the reference configuration k . The response function

u. and G, are alowed to depend upon the particle X through the position X = K(X) . Asa

result, if two different particles are subjected to the same deformation gradient, they need not have
the same free energy and the same stress. Therefore, the elastic material defined by (4.2.2) and
(4.2.3) isdlowed to be inhomogeneous.

A comment isin order regarding the domain of the response functions u, and G,_. The

deformation gradient F must obey (2.2.16), which rejects a deformation gradient with zero
determinant. Therefore, the first argument of the response functions must lie in a subset of

&G (97), the set of automorphismsin & (9;9), such that all elements have the same sign

for their determinants. Without loss of generality, we can take this subset of & (") to contain
elements with positive determinant.

If we regard the density p, to be aknown function of X, athermodynamic process for an
isothermal model isthe following set of five functionsof (X,t): %, (X.t), w(X.t), T(Xt),
p(X,t), and b(X,t), which obey balance of mass,

p|detF| = pg (4.2.4)

and balance of linear momentum,

px=divT+ pb (4.2.5)
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An admissible thermodynamic process is a thermodynamic process which satisfies (4.2.2) and
(4.2.3). Notethat for every choice of the function g, there exists an admissible thermodynamic
process. The proof of this assertion is essentially the same as the corresponding assertion given in
Section 1.8. Given y, one can calculate p(X,t) from (4.2.4), y (X,t) from (4.2.2) and T(X,t)

from (4.2.3). Thisinformation can then be used to calculate b(X,t) from (4.2.5).

Asin Section 1.8, we require that (4.2.1) hold for every admissible thermodynamic process.
In addition, balance of moment of momentum, in the form (3.3.10), isrequired to hold for every
admissible thermodynamic process. Thus (4.2.1) and (3.3.10) are restrictions on the response
functions u_ and G,_. Therestriction implied by (3.3.10) is simply that the function G, has

symmetric values. We shall assume this restriction is satisfied and next investigate the restrictions
implied by (4.2.1). It follows from (4.2.2) that

W= tr[{%j F} = tr[[Fau"(aF—l;X)TJL] (4.2.6)

where (2.2.24) and (A.5.39) have been used. The partial derivative of u_ with respect to the linear
transformation F which appearsin (4.2.6) requires a careful definition. For each X, u_ isdefined
on acertain open subset of & (9 ~). Thegradient of u, with respect to F is defined by the
definition given in Section 8 of Appendix A. Inthe notation used in (4.2.6), the formula (A.8.6)

takes the special form
ou, (F,X)Y d
tr{(;j AJ—d—uK (F+7A,X) (4.2.7)

oF T

=0

where A isan arbitrary linear transformationin & (9;9"). Equation (4.2.7) defines the partial
derivative ou, (F,X)/oF . If (4.2.6) and (4.2.3) are substituted into (4.2.1), the result is

tr[[GK (F,X)- pFau“(aLF’X)JL} >0 (4.2.8)

Equation (4.2.8) must hold for every admissible thermodynamic process. Thus, it must hold for
every deformation function. Next, we shall provethat L in (4.2.8) can be assigned arbitrarily. Let
F be afixed but arbitrary element in the domain of u_ and G_, andlet X and t befixed. Given

these quantities, we can define a deformation y,. by

£ (X 6) =1 (X,t)+{[l FA(Y —t)]F}(X -X) (4.2.9)
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where A isan arbitrary linear transformation. The deformation gradient of the deformation
function ¥ is

F(X,1)= [1+ At —t)]F (4.2.10)
and itsrateis
F (X' ,t')=AF (4.2.11)
Therefore, at t' =t and X =X,
F (X,t)=F (4.2.12)
and
L=F(Xt)F =A (4.2.13)

If (4.2.8) is evaluated on the deformation function y, , and wethenlet X' — X and t” —t, the
resultis

t{[GK (F,X)- pFauK(aLF"X)] A} >0 (4.2.14)

Because (4.2.14) must hold for every linear transformation A , it immediately follows that the
response function G, isdetermined by u_ through the formula

au, (F,X)'

G _(F,X)=pF
«(F.X)=pF—= 0

(4.2.15)

Conversely, given (4.2.15), the entropy inequality (4.2.8) istrivially satisfied. Thus, (4.2.15) is
necessary and sufficient for the entropy inequality (4.2.1) to hold for every admissible
thermodynamic process. Equation (4.2.15) is the three dimensional generalization of the
isothermal version of (1.8.33).

Asindicated above, moment of momentum requiresthat G, have symmetric values and, as
aresult, (4.2.15) yields

o 2 (F.X)' _au,(F.X) -

(4.2.16)
oF OF
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Equation (4.2.16) is arestriction which must be obeyed by the function u, .

Exercise 4.2.1

Show that (4.2.3) and (4.2.15) combine to yield

au, (F,X)
T.=p,—< "/ 4217
R~ PR oF ( )
Exercise 4.2.2
Show that the material defined by (4.2.2) and (4.2.3) obeys the following Gibb's relation
y):itrT;letrTLzltrTD (4.2.18)
Pr p p

Because of the simplicity of (4.2.17), it is convenient to replace the equation of motion in
the form (4.2.5) by its material version (3.2.29). In components, (3.2.29) is

. aTRiJ
pRXj = E + prJ (4219)
If (4.2.17) is substituted into (4.2.19) theresult is
y %%, b 9o
PrXj = AijK W+qj + PR (4.2.20)
where the fourth-order elasticity tensor A is defined by
o%u, (F,X
AijK (F’ X) = Pr —aFjJ(aFkK ) (4.2.21)
where F,; = 0x; /0X; , and
0 ou, (F,X)
(F,X)= = 4.2.22
! ( ) X, (pR aFJ'J \]F_cona ( )

Equation (4.2.20) is the governing differential equation of finite elasticity. Theterm q; arisesfrom
the explicit dependence of u. on X and, thus, represents a body force resulting from the
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inhomogeneous nature of the material. From (4.2.21) it isreadily seen that the elasticity tensor A
is symmetric in the following sense:

AijK = A<KjJ (4.2.23)
Exercise 4.2.3

Show that for the isothermal elastic material defined in this section, (3.5.17) reducesto

L(@ﬂ) On (V/'+ 1%°)av = gSaK(@)x (T, dS)+ L(@ﬂ) px-baV (4.2.24)

Equation (4.2.24) isin the form of an energy equation for our isothermal elastic material.
However, because of the isothermal assumption, it is an identity derivable from the equations in
this section.

4.3. Isothermal Elasticity-Material Frame Indifference

In this section we shall introduce the axiom of material frame indifference and show how it
restricts the constitutive equations for an isothermal elastic material.

By definition aframe of referenceisthe set @ x @2 . Inwords, aframe of referenceis a set
that provides information about positionin <¢ and thetime t. We are interested in mappings of
& xR — & x9R with the properties that distances, time intervals, and temporal order are
preserved. Such mappings are called changes of frame. However, they are mappings of & x @&
into itself. Theformal definition isasfollows:

Definition. A change of frame is a one-to-one mapping & x @& — & x 97" defined by
x =c(t)+Q(t)(x-0) (4.3.1)
and
t=t-a (4.3.2)

where ¢(t) isatime-dependent element of &, Q(t) isatime-dependent of ©(9"), and a isin
@R . The geometric interpretation of (4.3.1) has been discussed in Section A.7 of Appendix A.

Because of the special nature of the constitutive equations of an elastic material, we actually
will not need to capitalize on the time dependence of ¢ and Q. However, for the more general
materials to be investigated later, this time dependence will be important. Also, in this section, we
can always take a =0 without any loss of generality. Given amotion y, , we construct a new

motion by use of (4.3.1). Theresultis
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1 (X,t)=¢(t)+Q(t)(x. (X,t)-0) (4.3.3)

The deformation gradient associated with the new motion is by definition

F'(X,t)=GRADy (Xt) (4.3.4)
It follows from (4.3.3) that
F =QF (4.3.5)
Exercise 4.3.1
Show that
C =C (4.3.6)
U =U (4.3.7)
R =QR (4.3.8)
B =QBQ’ (4.3.9
and
p =p (4.3.10)

Equation (4.3.5) indicates how the independent variablesin (4.2.2) and (4.2.3) transform
under the transformation (4.3.3). The dependent variables are required to transform according to
therules

v =y (4.3.11)
and
T =QTQ’ (4.3.12)

The derivation of (4.3.12) isasfollows. Given (3.2.13), we require that the stress vector t and the
normal n transform by the following rules:

t =Qt (4.3.13)

and
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n =Qn (4.3.14)
It follows from (3.2.13) and (4.3.14) that (4.3.13) can be written
t =QTQ'n’ (4.3.15)
Equation (4.3.15) implies (4.3.12) because t and n" must be related by
t =Tn (4.3.16)
for every normal vector n’ .

The axiom of material frame indifference for our isothermal elastic material isthe following
statement [Ref. 3, Sect. 19].

Axiom. The constitutive equations (4.2.2) and (4.2.3) must be invariant under a change of
frame. In particular, if

v (Xt)=u,(F(Xt),X) (4.3.17)

and
T(X,t)=G, (F(X,t),X) (4.3.18)

then
v (X,t)=u (F (Xt),X) (4.3.19)

and
T (X,t) =G, (F (X1),X) (4.3.20)

where

v (X,t)=y(Xt) (4.3.21)
T =QT(X,t)Q" (4.3.22)

and

F (X,t)=QF(Xt) (4.3.23)
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for all orthogonal linear transformations Q, such that F* (X,t) isinthedomain of u, and G, .

It isimportant to note that the reference configuration is fixed in the statement of the above
axiom. Equations (4.3.17) through (4.3.23) are summarized by the following two equations:

u. (F,X)=u,(QF,X) (4.3.29)
and
QG, (F,X)Q" =G, (QF,X) (4.3.25)

Equations (4.3.24) and (4.3.25) must hold for every orthogonal linear transformation Q such that
QF isinthedomain of u, and G,_. Asexplained in Section 4.2, thedomainsof u_ and G,

contains linear transformations F which obey detF > 0. Therefore, because det QF =detQdetF,
the orthogonal linear transformations Q in (4.3.24) and (4.3.25) must have positive determinants.

Because of the thermodynamic restriction (4.2.15), it is reasonable to suspect that (4.3.24)
implies (4.3.25). In fact, thisisthe case, and we shall now present the proof. The key formulais

ou (F,X)" au, (QFX)
oOF  OF

Q (4.3.26)

This equation results from differentiation of (4.3.24) with respect to F according to the definition
(4.2.7). It follows from (4.3.26) that

ou, (F,X)'
oF

au, (QF,X)'

4327
F (4.3.27)

Q {pF ]QT = pQF
Because of (4.2.15), equation (4.3.27) implies (4.3.25).
Exercise 4.3.2

Derive (4.3.26).

Next, we shall deduce the solution of (4.3.24). Because (4.3.24) must hold for every
orthogonal Q with positive determinant, we can obtain necessary conditions by making various

choicesfor Q. Following Noll, if wetake Q =R", (2.4.1a) allows (4.3.24) to be written

u, (F,X)=u,(U,X) (4.3.28)
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[Ref. 4, Sect. 15]. Therefore, (4.3.24) yields the necessary condition that u_ evaluated on F equals
u, evaluated on U. Thus, therotation part of F =RU does not effect thevalueof u_. If wecan

show that (4.3.28) is sufficient for (4.3.24) to be valid for all Q, then we have established that
(4.3.28) isasolution of (4.3.24). If we assume (4.3.28), then

u, (QF,X)=u, (((QF)T QF)W ,xj —u ((FTQTQF)”2 ,X)

(5 le N (4.3.29)
(e

(U.X)

K

Therefore,
u.(QF,X)=u,(F,X) (4.3.30)

for al orthogonal linear transformations Q . Thus, (4.3.28) reflects all of the restrictions implied
by the axiom of material frame indifference for an isothermal elastic material.

Given (4.3.28), we can defineafunction U_ of C and X by
0, (C,X)=u,(U,X) (4.3.31)

The choice of C as an independent variable is convenient because, from (2.4.3), C isarational
function of the deformation gradient. In summary, if

v (Xt)=0,(C(X,t),X) (4.3.32)

then the axiom of material frame indifference is satisfied.

The stressis calculated from (4.2.15). It follows from (4.3.28), (4.3.31) and (2.4.3) that

T ~
ou, (F.X) _,00,(CX) (4.3.33)
OF oC
Therefore,
oG, (C,X)
and, from (4.2.3),
oG, (C,X)
T(F,X) _ o, & (4.3.35)
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As afinal observation of this section, note that the symmetry condition (4.2.16) is satisfied.
Thisfact follows from (4.3.33) or, more directly, from (4.3.35) which clearly yields a symmetric
stress tensor.

Exercise 4.3.3

Derive (4.3.33).

Exercise 4.3.4

Show that
G, (C,X)
T,=2p.,F ———~ 4.3.36
R LR oC ( )
and
. a0, (C,X)
T=2 K 4.3.37
LR oC ( )

Exercise 4.3.5

Take Q =R in(4.3.24) and show that the resulting necessary condition is not sufficient to satisfy
(4.3.24) for al orthogona Q.

Exercise 4.3.6

Given (4.2.15), it was shown in the text that (4.3.24) implies (4.3.25). Show that (4.3.25) implies
(4.3.24). Therefore, given (4.2.15), (4.3.24) and (4.3.25) are equivalent.

Exercise 4.3.7

Given (4.2.15), it was shown in the text that (4.3.24) implies (4.2.16). Show that (4.2.16) implies
(4.3.24). Therefore, given (4.2.15), (4.2.16) and (4.3.25) are equivalent.

Exercises 4.3.6 and 4.3.7 combine to yield Noll's result that frame indifference of the free
energy, frame indifference of the stress and symmetry of the stress are equivalent for the material
defined by (4.2.2) and (4.2.3) [Ref. 4, Sect. 4].

Exercise 4.3.8
Define astresstensor T® by the formula

™ = %(TFIR +R'Ty) (4.3.39)
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and show that

TV = p,— 2~ (4.3.39)

The stress tensor T® is sometimes called the Biot stress tensor or the Jaumann stress tensor. [Ref.
6]
4.4. Isothermal Elasticity-Material Symmetry

In this section we shall present the concept of material symmetry and show how the
response function U isrestricted for special types of material symmetry. The presentation will be

brief. Material Symmetry will be discussed in greater detail later in Section 4.10.

Roughly speaking, the concept of material symmetry arises when one attempts to determine
in what fashion the response function U, depends upon the choice of reference configuration.

Recall from (2.1.4), areference configuration isamapping k : @8° — <& , and we wrote
X=xk(X) (4.4.1)

to indicate the position occupied by X in the reference configuration k. If k isadifferent
reference configuration, then

X =k(X) (4.4.2)

is the position occupied by X inthe reference configuration k . It follows from (4.4.1) and (4.4.2)
that the positions X and X arerelated by

X =k(k*(X))=1(X) (4.4.3)

Figure 4.4.1 reflects the construction of the function A . Equation (4.4.3) is a change of reference
configuration. It maps particles which occupy pointsin k(48°) into theregion k(28") . In general

such a mapping will deform the body @8". We shall denote by H the gradient defined by
H=GRADA(X) (4.4.4)

There should be no confusion between this quantity and the displacement gradient defined by
(2.2.20). H isthe deformation gradient associated with the deformation (4.4.3).
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Figure 4.4.1

The deformation function y,. isdefined by (2.1.5). Likewise, we can define a deformation
function y, by

i (Xot) =7 (&7 (X).t) (4.45)

where 3 isthemotion for @8°. Figure 4.4.2 illustrates the construction of yx, and .. Of course, if
the motion  isthe same as , the spatial regions 7(28,t) and y (% ,t) arethe same.
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Figure 4.4.2

The deformation function j, can be expressed in terms of positionsin k by use of (4.4.3). The
resultis

i:ﬁﬁ(i,t):gﬁ(x(x),t) (4.4.6)

The deformation gradient associated with the deformation function 7 is denoted by F andis
defined by

F = GRAD7, (Xt) (4.4.7)
If we use (4.4.6) to define a deformation function y,. by
T (X01) = Xe (M(X), ) (4.4.8)

then 7, isadeformation function which, for each t, describes deformations from k(28") to
% (98,1) . If wedifferentiate (4.4.8) and use the definitions (4.4.7) and (4.4.4), it follows that

N

GRADZ, (X,t)=FH (4.4.9)

This equation relates the deformation gradients constructed from viewing the same motion from
two different reference configurations. Figure 4.43 illustrates the construction of these deformation
gradients.
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The concept of material symmetry arises when one tries to characterize those changes of
reference configuration which, in some sense, do not affect the response of the isothermal elastic
material. If the materia is subjected to adeformation gradient F, then (2.4.3) and (4.3.32) yield

y =0, (C,X) (4.4.10)
Thevalue of y isthe free energy density one obtains when the particleat X in the reference
configuration x issubjected to adeformation F . If the same particleis subjected to the
deformation FH , then the resulting value of the free energy density is
v =0, (H'CH,X) (4.4.11)
Conceptually, (4.4.11) arises when one deforms X by the amount H followed by a deformation of

the amount F. The second deformation is the same as that which appeared in (4.4.10) except that
itisapplied from k(23') to (%4 ,t). Figure4.4.4 should be useful.
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In rough terms, we are interested in characterizing those linear transformations H which
produce the same value of the free energy from (4.4.11) as obtained from (4.4.10). In order that the

mass density p = p|det FH|7l equals the mass density p = py |det F|7l , we shall only consider
changes of reference configuration which obey

detH| =1 (4.4.12)

Because F and H are nonsingular, they are members of the general linear group §< (0)/ )
defined in Section A.2. The set of linear transformations H in & (9) which obey (4.4.12)

form a subgroup of &< (") called the unimodular group. It is denoted by the symbol @/ (97).

Roughly speaking, a subgroup is a subset of a group which obeys all of the group axioms. The
orthogonal group ©(9"), defined in Section A.3, isasubgroup of @/ (9") because al of its

elements obey (4.4.12). However, one can construct examples of unimodular linear
transformations which are not orthogonal. Thus, 0(@/ ) isaproper subgroup of @/ (6)/ ) The

groups F (9), @/ (9") and ©(9") have positive components. These positive components
are defined to be the subsets, of each group, which have positive determinants. For example,
&2 (9") isthe set of nonsingular linear transformationsin & (9 ~;&") which have positive

determinant. Thesets @/ ()" and ©(9 )" are defined accordingly. Because of (A.5.22),
&2 (9") isactualy asubgroup of the group & (9"). Identical observationsyield that
@((9")" isasubgroup of @/(9") and ©(9")" isasubgroup of &(9 ). It should also be
clear that ©(9")" isasubgroup of @/ (9", which, inturn, is asubgroup of & (&) . The
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group @(@/ )+ is often called the proper orthogonal group because its elements represent proper
rotations. Animproper rotation isillustrated by theinversion —I in 0(0)/ ) Likewise, one could
call @/ (9~ )+ the proper unimodular group. More often, it isreferred to as the special linear
group.

Definition. The symmetry group C@K(X) (isotropy group) of the isothermal elastic particle

X in the reference configuration xk isthe set of linear transformations H which obey the
following two conditions:

1. detH =1 (4.4.13)

and
2. 0, (C,X) =0, (H'CH,X) (4.4.14)

for al symmetric linear transformations C.

It isimportant to note that, as defined, the symmetry group depends upon the particle X
and the reference configuration k . This dependence arises because the response function 0,

dependsupon k and X. If (_ isindependent of X, then accordingly &(X) is independent of

X . Inthis case we write & for the symmetry group of the body. The dependence of ggx( X) on
the reference configuration will be examined briefly later in this section.

Exercise 4.4.1

Prove that &((X) isinfact agroup. In particular, provethat it is asubgroup of the genera linear
group @/ (97)" .

Note that (4.4.14) isunchanged if H isreplaced by —H . For thisreason, one could have
defined the symmetry group to be the set of linear transformations H which obey (4.4.14) and

|det H| =1 rather than (4.4.13). Inthiscase, &(X) would be asubgroup of @/ (") and could

contain elements with negative determinant. Insofar as the results of this section are concerned,
these two possible definitions are equivalent. For more general materials, like the one discussed in
Section 4.6, the condition which replaces (4.4.14) isatered if H isreplaced by —H .

The dependence of &,(X) on k can be characterized by investigating how it is altered
under a change of reference configuration. Such a change is caused by a mapping

X=a(X) (4.4.15)
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whose gradient is written

P =GRADa(X) (4.4.16)
By the same type of calculation that yielded (4.4.9), if F isthe deformation gradient from

k(28") > %(28,t) , then FP™ isthe deformation gradient from k(28) to y(48',t). These
relationships are illustrated in Figure 4.4.5.

< N ¥ e

k(%) N\ FP™

Figure 4.4.5

Because the free energy density of X at thetime t must be independent of the choice of reference
configuration, we define U, , the response function relative to k , by

0 (€.X)=0,(C.X) (4.4.17)
where X = a(X) and, from (2.4.3),
C=(Fp?) (FP)=P F'FP =P CP? (4.4.18)

isthe right Cauchy-Green tensor relative to the reference configuration k . Equation (4.4.17) is
required to hold for every particle X (or position X) and every symmetric linear transformation
C. Equation (4.4.17) characterizes to what extent 0, depends on the reference configuration k .

Given C and X, one must know the value of a at X and the value of the first gradient of o at
X . One does not really need to know any more about the function e in order to construct U, for
the particleat X . Thisobservation showsthat U, really only dependson k in aneighborhood of
X . Such aneighborhood is usually called alocal reference configuration.
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Given the function U, we can define the symmetry group &((X) by adefinition identical
to (4.4.13) and (4.4.14). Because (i, isdetermined by 0, it followsthat &;( X) is determined by
&K( X ) . The explicit relationship between these groups follows by writing (4.4.14) in terms of the

function U, which is defined by (4.4.17). It follows from (4.4.17) and (4.4.18) that (4.4.14) can be
written

6, (C.X)= 0, (P H'CHP™,X) (4.4.19)
or, by (4.4.18),
0 (€, X) =0, (P H'PTCPHP ™, X) =, ((PHP‘l)T C(PHP™), X) (4.4.20)
Becauise

det PHP ' =detPdetHdetP ' = det PP *detH = det H

(4.4.20) showsthat if H isan element of & (X),then PHP™ isan element of &(X). The
result, which was first obtained by Noll, can be written symbolically as

Gi(X)=PG(X)P" (4.4.21)
[Ref. 5.

A reference configuration k issaid to be undistorted for the elastic particle X if &( X)
contains the proper orthogonal group 0(@/ )+ or if C@K( X) is contained in the proper orthogonal
group ©(9") . Theelastic particle X isisotropic if there exists an undistorted reference
configuration for X suchthat ©(9")" isin &(X). Theelastic particle X isan elastic solid
particleif there exists an undistorted reference configuration for X suchthat & (X) isin
@(O)/)+ . These two definitions show that X isan elastic isotropic solid particle if there exists an

undistorted reference configuration for X suchthat & (X)=6(9")". Itisimportant in these

definitions of an isotropic particle and of a solid particle to require the existence of an undistorted
reference configuration. If k issuch aconfiguration for X and H is an orthogonal el ement of

&.(X), then asimple manipulation shows that the corresponding element in &(X), PHP™, is
not orthogonal for arbitrary P. Therefore, for example, if X isan elastic isotropic solid particle in
the configuration k its symmetry group ggﬁ(x) is not necessarily equal to @(O)/ )+. Our

definition requiresthat &.(X)=0(@")" for some reference configuration .
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Exercise 4.4.2

Verify the assertion that if H isin ©(9) then PHP™" isnotin ©(9")" for arbitrary P.

Following Noll, an elastic particle X isan elastic fluid particleif &.(X)=a@/(9")" [Ref.
3, Sect 32; Ref. 5]. Notethat if G(X) equals @/ ()", then from (4.4.21) &.(X) also equals

A (0)/ )+ . Thus, we need not make reference to a particular reference configuration when

asserting that X isafluid particle. From our definitions, it followsthat afluid particleis an
isotropic particle. It ispossible to show that isotropic solids and fluids are the only isotropic
particles[Refs. 6, 7].

If X isanelastic fluid particle, then (4.4.14) must hold identically for every linear
transformation H with determinant equal to +1. In order to display how G isrestricted in this
case we first derive anecessary condition. Given adeformation gradient F, it readily follows from
(A.5.32) that

H=F*(detF)"” (4.4.22)
isin 62((0)/)+ . If (4.4.22) is substituted into (4.4.14), it follows that
G, (C,X) =0, ((detF)**1,X] (4.4.23)

Therefore, it is necessary that 0, depend on C only through the determinant of F. From Section

(2.3), we know that det F measures the deformation of volume elements. Equation (4.4.23) simply
states that for an elastic fluid particle it is only the volume deformations which affect the free
energy.

Exercise 4.4.3
Show that (4.4.23) is sufficient, as well as necessary, for (4.4.14) to hold for every H in @/ (9)".

Given the result (4.4.23), we can use balance of massin the form (3.1.12) to define a
function t,_ of p and X by

0, (p.X) =0, (/)" LX) (4.4.24)
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Notice that the dependence of U, on the particle position X arises from the dependence of (., on
X and the possible dependence of p; on X. Given (4.4.23) and (4.4.24), we can use (4.3.35) to
calculate the stress on our fluid particle. Because

a0, (C,X) _au (p.X) op

(4.4.25)
oC op oC
and
P T o pct (4.4.26)
oC
It follows that (4.3.35) reducesto
au_ (p, X
T(X,t):—pz"(a—p)l (4.4.27)
0

Exercise 4.4.4
Use (3.1.12), (2.4.3) and (2.2.29) and derive the identity (4.4.26).
We see from (4.4.27) that our definition of an elastic fluid particle implies that the stress on

our isothermal elastic fluid particle is necessarily hydrostatic, i. e. the elastic fluid particle will not
support ashear stress. Equation (4.4.27) is usually written

T(X,t)=-7l (4.4.28)
where 7 isthe pressure defined by
u X
T = ,02 M (4.4.29)
op

If every particle of @8 isafluid particle, then (4.4.23) and (4.4.29) hold for every X in @8. In
this case our constitutive equations define an isothermal elastic fluid body.

Exercise 4.4.5

Show that for an isothermal elastic fluid body that the equation of motion (3.2.20) can be written

X= —lgrad7r+b (4.4.30)
Y2

Exercise 4.4.6
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If the fluid body is such that T isindependent of X, usetheresult in Exercise 2.3.3 and show that

r(€(t)=0 (4.4.31)
if you assume b =—gradv(x),i. e, b isconservative.

Exercise 4.4.7

If b isaconservative body force asin Exercise 4.4.6, then according to (4.4.30), in equilibrium,
the pressure 7 must obey

gradﬂ(x)+p(x)gradv(x) =0 (4.4.32)
Continue to assume the fluid is homogeneous and show that (4.4.32) integratesto yield

7(p())

U, (p(x))+ (%)

+v(x)=const (4.4.33)

Equation (4.4.33) determines the equilibrium density distribution in the presence of the
conservative body force b = —gradv(x).

Next we shall record the restrictions on the function 0, in the case where X isan elastic
isotropic solid particle in its undistorted reference configuration. In this case (4.4.14) must hold for
every orthogonal linear transformation in @(0)/ )+. Thus, we must determine how 0, isrestricted
if itisrequired to obey

0, (C,X)=0,(Q"CQ,X) (4.4.34)

for every orthogonal linear transformation in 0(0)/ )+ . Animmediate necessary condition is
obtained if onetakes Q =R in (4.4.34) and utilizes (2.4.6). Theresult is

0, (C,X)=0,(B,X) (4.4.35)

Therefore, in this case, the value of (. on C equasitsvalueon B=RCR'. Equation (4.4.35) is
not sufficient to satisfy (4.4.34) foral Q in ©(9")".

Exercise 4.4.8
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Given (4.4.35) show that equation (4.4.34) is obeyed if

0, (B,X) =0, (Q"BQ,X) (4.4.36)

for al orthogona Q in ©(97)".

Exercise 4.4.9
Use (4.4.35) and show that

20, (B,X) , 20, (B,X)
N @ 7 = p—

T=2poB
r OB

B (4.4.37)

Equation (4.4.34) or, equivalently, (4.4.36) defineswhat is called a scalar valued isotropic function
of asymmetric linear transformation. Itisaclassical result that the solution of (4.4.34) isthat U,

depends upon C through the three fundamental invariants of C [Ref. 3, Sect. 10]. Because B and
C have the same fundamental invariants (see Section A.5), it follows that (4.4.36) is satisfied if
and only if

G, (C,X) =u (15,114, 111,,X) (4.4.38)

For the sake of completeness, a proof of this representation theorem is given in Appendix B.

Exercise 4.4.10
Show that (4.4.38) is sufficient for (4.4.34) to hold for all orthogonal Q in ©(9”)".

Given (4.4.38), we can calculate the stress by use of (4.4.37). Clearly,

o0, (B,X) ou, al, ou. oll,  ou. alll,

+ + (4.4.39)
oB o, oB oll, 6B dlll, OB
From (A.5.44), (A.5.49) and (A.5.46), the fundamental invariants of B are defined by
l,=trB (4.4.40)
I, :%((trB)z —trBz) (4.4.41)

and

I, =detB (4.4.42)
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The derivatives which appear in (4.4.39) are thus given by

oy

B _ 4.4.43
B ( )
ol
=|.I1-B 4.4.44
B ( )
and
8”1'; =111,B™ (4.4.45)

Exercise 4.4.11
Derive the results (4.4.43) through (4.4.45).

If (4.4.43), (4.4.44) and (4.4.45) are substituted into (4.4.39) and the result is substituted
into (4.4.37), the following formula is obtained:

T=ay(1y 105, 11, X) T+ a, (1,105, 1y, X)B 4y (15,11, 11, X)B2 (4.4.46)
where
ou, (15115, 111, X)
o (1. 1151115, X) = 20111, (4.4.47)
a,
ou (1, 1,,111,,X ou_ (1,1, 11,,X
al(IB,“B,HIB,X)=2p K( B aIB B )+2p|B K( B aIIB B ) (4-4.48)
B B
and
ou. (15,115, 111,.X)
o, (1 11 111, X) =—2p (4.4.49)

ol

Equation (4.4.46) is the representation for the stress of an isothermal isotropic elastic solid particle
in its undistorted reference configuration. Inthe state B=1, (4.4.46) reducesto

T=-pl (4.4.50)
where p istheresidual pressure defined by

p=-(33LX)-(33LX)-a,(331X) (4.4.51)
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Equation (4.4.50) shows that the stressin the state B =1, the residual stress, is necessarily
hydrostatic for the isotropic particle in its undistorted reference configuration.

Exercise 4.4.12

It is desired to approximate (4.4.46) for the case where B—1 issmall in some sense. Expand
(4.4.46) about the state B =1 and show that the result is

T=—pl+3(2+p)(tr(B-1))I+(u—p)(B-I) (4.4.52)

where second-order terms have been dropped and the coefficients 4 and x are defined by

A+p=2 0 00, 0 (@ +a,+a,) (4.4.53)
o, Call, ol s
=1
and
- p=2a,(331X)+22,(331LX) (4.4.54)

Of course, p isdefined by (4.4.51). Equation (4.4.52) defines what is known as a finite-linear
elastic particle. Asafunction of strain B, T islinear. Asafunction of displacement gradient, B

isnot linear (see (2.2.14) and (2.2.2)). Thus, (4.4.52) is a possible model for large (finite)
displacement elasticity.
Exercise 4.4.13

If the model developed in Exercise 4.4.12 is specialized by the assumptions of no residual stress
(p=0) andinfinitesimal strains, show that (4.4.52) reduces to

T=A(trE)I+2uE (4.4.55)

Exercise 4.4.14
Equation (4.4.55) is almost the isothermal version of (4.1.27). The difference is the appearance of

the Cauchy stressin (4.4.55) and the first Piola-Kirchhoff stressin (4.1.27). Show that to the order
of approximation used in Exercises4.4.12 and 4.4.13 T and T, are equal and, thus, (4.4.55)

reduces to

T = A(trE)I+24E (4.4.56)

Clearly, the coefficients 4 and u aretheisothermal Lame parameters introduced in Section 4.1.
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Exercise 4.4.15

Given (4.4.56), use (3.2.29) and show that the displacement w(X,t) must be asolution of the
Navier equation of motion

PrW = (A + 1) GRAD(Divw )+ Div(GRAD w) (4.4.57)

Notice that the body force b in (3.2.29) has been taken to be zero. This choice reflected our
assumption that w =0 isasolution to the equation of motion. Equation (4.4.57) isthe isothermal
version of (4.1.36). During the derivation of (4.4.57), the reader will need to assume A and u are
constants, independent of X . Such adependenceis still allowed in (4.4.52) and, thus, (4.4.56).

Exercise 4.4.16
Equation (4.4.57) isavector partia differential equation for the displacement vector w. Viewed

as a system of three partial differential equations, the systemiscoupled. Decouple the system
(4.4.57) and show that the displacement, w , isa solution of

2 2
[6—2—’“2” Aj(a—z—ﬁAjw 0 (4.4.58)
ot Pr s pg

Each factor in the operator in (4.4.58) is awave operator. The squared speeds are (/1 + 2,u) / Pr

and u/py . These speeds are called the longitudinal and transver se speeds, respectively. The
result (4.4.58) was first obtained by Cauchy in 1840 [Ref. 9].

Exercise 4.4.17
Consider the group &(X) defined by the set of linear transformations H that obey

detH=1 (4.4.59)
and

G, (F,X)=G,(FH,X) (4.4.60)

for all linear transformations F in the domain of G,_. Given (4.2.15), (4.3.28) and (4.3.31), show
that &(X) can be defined by the set of linear transformations H that obey (4.4.59) and

0, (C,X) =0, (H'CH,X)+0, (I,X) -0, (H"H,X) (4.4.61)
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foral C inthedomain of (. Equation (4.4.61) showsthat & (X) isa subgroup of &(x) [Ref.

10]. Inother words, if an H in @/ (9~ )+ obeys (4.4.14), then (4.4.61) and, thus, (4.4.60) is
satisfied.

4.5. Incompressible Isothermal Elasticity

Asexplained in Section 4.2, the isothermal assumption defines a constrained material. If, in
addition, we assume the deformations are constrained such that

P(X,t)=pr(X) (4.5.1)

then the material point X isincompressible. From (3.1.12) and (3.1.15), we see that (4.5.1)
implies that

|det F| =1 (45.2)
and
divx=trL=0 (4.5.3)

where (2.2.25) has been used. Noticethat if the body @8" isincompressible, it is not necessarily
truethat p(X,t) isuniformin X. Our definition allows for the possihility that

GRAD p(X,t)=GRAD p, (X)#0. Inany case, given (4.5.3) we see that the isothermal entropy
inequality (4.2.1) allowsfor T to have an indeterminate hydrostatic part. This assertion becomes
clear if one observes that

tr((T+pI)L)=tr(TL)+ ptrL=tr(TL) (4.5.4)

for arbitrary real number p. Thisindeterminacy suggests that our constitutive equations (4.2.2)
and (4.2.3) be replaced by

v (X,t)=u (F(X,t),X) (4.5.5)
and
T(X,t)+pI =G, (F(Xt),X) (4.5.6)
where, at thispoint, p issimply an arbitrary multiplier.

Our objectivein this section isto deduce the thermodynamic restrictions on the constitutive
equations (4.5.5) and (4.5.6). The formalism isroughly the same as that in Section 4.2 except that
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we must utilize the constraint (4.5.3) in some fashion. Our first technical assumption concerns the
response functions u, and G, . In Section 4.2, the response functions were defined on an open

subset of & () . Asaresult, if F isinthisdomain, F+zA isinthe domain for arbitrary A

in &(97;97) for some nonzero real numbers 7 . Thisfeature of the domain of u, and G, make

it meaningful to require the response functions to be differentiable. Without thisfeature, (4.2.7) is
meaningless. In this section, the elementsin thedomain of u, and G, must obey (4.5.2). Without

loss of generality, we can take these elements to have determinants equal to +1. Therefore, the
domain of u, and G, isasubset of @/ ()", the special linear group. Unfortunately, this
domain is not an open set. Asaresult, without further assumptions, it is meaninglessto regard u,_
and G, asbeing differentiable. The technical assumption we shall make is to assume the domains
u. and G, have differentiable extensions to an open set. This purely formal assumption alows us

to write, from (4.5.5),
Wt([M) FJIL(FMJL] w5
OF oF

where the partial derivative du, (F,X)/oF isagain defined by (4.2.7).

If (4.5.7) and (4.5.6) are substituted into (4.2.1), it follows that

t{[GK (F,X)- pFa“K(aLF:X)H >0 (458

where (4.5.4) has been used. Equations (4.5.8) and (4.2.8) are formally identical. Like (4.2.8),
(4.5.8) must hold for every admissible thermodynamic process. However, for an incompressible
particle, the definition of an admissible thermodynamic process must be such that the constraint
(4.5.2) must be obeyed. By the same argument that produced (4.2.14), we can again obtain

t{[GK (F,X)- pFauK(aLF"X)] A} >0 (4.5.9)

where A isthe velocity gradient for the motion .. Because of the constraint (4.5.3), at this point
in the discussion (4.5.9) holdsfor all A such that
trA=0 (4.5.10)

Our next formal step will be familiar to readers proficient in analytical mechanics or the calculus of
variations [Refs. 10, 11]. We shall adlow p to take on whatever value is necessary asa
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consequence of taking A in (4.5.9) to be arbitrary. When the constraint (4.5.10) isfreed, then
(4.5.9) yields

ou, (F,X)'

G_(F,X)= oF
«(F.X)=pF—op

(4.5.11)

just asin Section 4.2. Thedifferenceisthat T isnot determined by u,_. From (4.5.11) and (4.5.6),
we see that

au, (F,X)"

T =—pl+ pF
pl+p OF

(4.5.12)

In physical terms, p isthe extra hydrostatic pressure necessary to constrain the motion to obey

(4.5.2). 1t becomes one of the unknowns in the problem. Unlike in Section 4.2, where the
appropriate field equations are (3.1.12) and (3.2.20), for an incompressible body one has the extra

field equation given by the constraint (4.5.2) to aid in the computation of y, (Xt) and p.

Therestrictions implied by material frame indifference and material symmetry explained in
Sections 4.3 and 4.4 carry over to the incompressible case with minor modification. One point
worthy of mention here isthat for an incompressible isothermal isotropic elastic solid particle, in its
undistorted reference configuration the representation (4.4.46) is replaced by

T=-pl+a; (I, 115, X)B+a,(l,11,,X)B? (4.5.13)

because |11, =1 and the hydrostatic term proportional to ¢, is simply incorporated into the

indeterminate term. Equation (4.1.46), which defines a Mooney-Rivlin material, is a special case
of (4.5.13).

Exercise 4.5.1
Thereis an interesting argument which produces the results of this section as alimit of the
compressible case. In this exercise the argument is devel oped for an isothermal infinitesimal

elastic material. The isothermal version of the inverse of (4.4.56) is a special case of (4.1.40) and
is

EzH?VTR—é(trTR)I (4.5.14)

where v and E aredefined by (4.1.31) and (4.1.32). If the material isincompressible, (4.5.14)
must be made consistent with the constraint

trE=0 (4.5.15)
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Equation (4.5.15) follows from (4.5.2) and (2.5.18b). Show that (4.5.14) implies that

trE: 1-2v

(tr ;) (4.5.16)
Therefore, (4.5.16) tells us that
1
== 4517
V= ( )

for the incompressible limit. Show that in this limit

1Y21=0 (4.5.18)
E=3u (4.5.19)

and
T, =—pl+2uE (4.5.20)

where p isarbitrary. Equation (4.5.20) isthe infinitesimal elasticity version of (4.5.13).

The reader interested in a carefully constructed formulation of the constitutive theory of
elastic materials with internal constraints should consult Cohen and Wang [Refs. 12 and 13].

4.6. Thermoelastic Material with Heat Conduction and Viscous Dissipation — Constitutive
Assumptions

Sections 4.2 through 4.4 serve to illustrate how one uses the entropy inequality, material
frame indifference and material symmetry for arather smple material model. In the remainder of
this chapter we shall, essentially, retrace the material in Sections 4.2 through 4.4 except that the
material model is more complicated. This model is one which has presented the effects of heat
conduction and viscous dissipation in addition to the nonlinear elasticity effects of the previous
model. Many of the fundamental definitions and concepts are repeats of topics presented in
Sections 4.2 through 4.4. In some cases these ideas are refined and stated with more precision than
originally. It ishoped that the reader will find this repetition helpful in understanding the ideas
being presented. The material in Sections 1.8, 1.9 and 1.10 also relates to the contents of the
remainder of this chapter. The constitutive assumptions adopted in Section 1.8 are one-
dimensional versions of constitutive equations which will be studied in detail in this and the
following sections.

Before we present the explicit specia constitutive assumptions, it is useful to characterize
our constitutive equationsin rather general terms. We are interested in constitutive equations for
each particle X . The general class of materials of interest are those for which w, , T, and q
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for the particle X are determined by the motion ¥ and the temperature 6. Given amotion y , we
can define afunction ®: @ x @ — @&* by

O(X,t)=0(x(X,t).t) (4.6.1)

forall (X,t) in @ x@# . With the definition (4.6.1), both 3 and ® are functions defined on

@8 xR . Likethe definition (2.1.5), if we are given areference configuration k we can define a
function O, 1k (98" )x % — 97" by

0, (X,t)=0(x*(X),t)=0(1. (X,1).t) (4.6.2)

Therefore, the two fields which are going to determine y, , T, and q are ® and y or ®,_ and
1. » When areference configuration is given. In the following discussion, we shall assume an

arbitrary but fixed reference configuration k isgiven. Inaddition, asin Section 4.2, we shall
regard the density p, in k to beaprescribed function of X in k(48").

Definition. A thermodynamic processis a set consisting of the two functions ®,_ and
and the seven functions of (X,t) whosevauesarey, , T, q, p, r and b which satisfy

1. Baanceof Mass(3.1.12):
p|det F| = Pr (4.6.3)
2. Baance of Linear Momentum (3.2.20):
px=divT+ pb (4.6.4)
3. Baance of Thermodynamic Energy (3.5.20):
,0977=—p(t/)+n¢9)+trTL—ddi+pr (4.6.5)

Aswe have stated, we are interested in atheory of material behavior for which v, , T, and q
aredetermined by ® and y . More precisely, we shall requirethat v, , T, and q for each
particle X at thetime t be determined by the historiesof ®_ and y, up to thetime t defined by

oY (X,s)=0, (X,t-s) (4.6.6)

and
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1 (X,8) =1 (X,t-59) (4.6.7)

for all (X,s) in k(48")x[0,%0). Symbolically, we can write

(v (X,t).7(X0), T(X,1),q(X,t) = £ (O (-, )2 (). X) (4.6.8)

Equation (4.6.8) shows that we have assumed that v, 7, T, and q are not influenced by future
valuesof ®,_ and y, . Equation (4.6.8) does allow these quantities to be influenced by all past
valuesof ®_ and y, aswell astheir values over the region K(@“) . A dependence on the particle
X isincluded in order to alow for the possibility that thevalues v, , T, and q could be
different for two particles X, and X, subjected tothe same ©!" and . Since areference
configuration k is presumed to be given, we can aways use (2.1.4) to express the particle X in
terms of its position X in k. However, it is convenient at this point to take f_ to be an explicit
function of X . Thefunction f_iscalled the response function relativeto k . Itisimportant to
stressthat the values of f_ for aparticle X areindependent of k . If thiswere not the case, one
could alter v, nn, T, and q by smply selecting a different reference configuration. Itisalso

important to note that (4.6.8) obeys the equipresence condition mention in the Introduction to this
chapter.

Asin Section 4.2, an admissible thermodynamic process is a thermodynamic process which
is consistent with the constitutive assumption (4.6.8). Also, asin Section 4.2, for every choice of
®, and g, there exists and admissible thermodynamic process [Refs. 2, 14]. The proof of this

assertionisasfollows. Given ®,_ and y, , we can compute y, 7, T, and q from (4.6.8). Given
1. and theknown value of p, , wecan calculate p from (4.6.3). Thiscollection of information
can then be used to calculate b from (4.6.4) and r from (4.6.5).

Notice that the definition of a thermodynamic process made no mention of balance of
angular momentum (3.3.10) or the entropy inequality (3.5.15). We shall utilize these axioms by
requiring that they be satisfied for all admissible thermodynamic processes. In thisway (3.3.10)
and (3.5.15) restrict the constitutive function f_. For example, if (3.3.10) is satisfied for every

admissible thermodynamic process it must be satisfied for all choices of the functions ®, and y,_ .
Immediately, we see from (4.6.8) that f_ must be restricted such that it yields a symmetric stress

tensor. In the remaining sections we shall assume that this restriction is obeyed and focus our
attention on determining the restrictions on the response function forced by the entropy inequality.
When this has been done, the requirement of consistency, discussed in the Introduction to this
chapter, will be satisfied.

The special case of (4.6.8) which we wish to investigate in detail is the one with the
following properties:
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t

1. Foreach X in 7, the dependence on ©
and the present gradient at X .
2. Foreach X in 7, the dependence on % ( -,- ) is only through the present deformation

K

gradient at X and the present rate of deformation gradient at X .

(-,-) isonly through the present value at X

It will be clear in Section 4.9 that a dependence on the value of xff) at (XO) would violate

material frame indifference. For simplicity, we have omitted such a dependence at this point in the
discussion. Asaresult of our specialization, the constitutive assumption which defines each
particle in the body is

(v (X, )( 1), T(X,1).a(X.1))

= T, (0, (X,t),GRADO, (X,t),F(X,t),F(X,t),X) (469
where
0, (X,t)=0"(X,0) (4.6.10)
GRADO, (X,t)=GRADO! (X,0) (4.6.11)
F(X,t)=GRAD%" (X,0)=F"(X,0) (4.6.12)
and
F(Xt)=- dF(t)d(j’Sﬂ 0 _dF g’f)L (4.6.13)
Since (4.6.2) shows that
GRADO, (X,t)=F" (X,t)gradf(x,t) (4.6.14)

we can use grad(x,t) asan independent variable if we chose. It is convenient to define a vector
g(x,t) by

g(x,t)=gradd(x,t) (4.6.15)
and rewrite the defining constitutive assumption in the ssmplified form

(y/,n,T,q):K((G,g,F,F,X) (4.6.16)
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where k_ is defined by
kK(H,g,F,F,X): f (9,FTg,F,F,x) (4.6.17)

Equation (4.6.16) does not contain all of the important classical theories of continuous
materials. It does contain, as special cases, the two examples summarized in Section 4.1. The most
obvious case excluded by (4.6.16) isthe case of aviscoelastic material. Viscoelastic materials have

among their independent variables the quantity F (X,-) [Refs. 3, 14, 15, 16, 17]. It is perhaps
helpful to think of the dependence of k, on (F,F) as arising as an approximation of adependence

on F(X,-). Thisapproximation is suggested by the formal series expansion of F" (X,-) about
s=0 intheform

dF(X,s)

S+--- =F—Fs+--. (4.6.18)
ds

s=0

FY(X,s)=F"(X,0)+

Clearly, more general types of materials would allow for a dependence on more derivatives of
FY(X,-) a s=0.

The constitutive assumption (4.6.16) reflects another special feature. The point made in the
last paragraph above can be explained by saying that v, , T, and q at (X,t) depend upon
Y (X,-) and x (X, ) local to the point s=0. Likewise, v, , T, and q a (X,t) depend
upon @ (-,s) and (-, s) local to the point X . By including a dependence on higher
gradientsof ®(-,s) and " (-,s) than their first, one can formulate a theory of material
behavior for which long-range spatial effects are allowed [Refs. 18, 19, 20, 21].

Some comments are in order concerning the domain of the response function k_ in (4.6.16).
The temperature & must obey the natural restriction

6>0 (4.6.19)
In addition, the deformation gradient F must obey the condition (2.2.16),

detF =0 (4.6.20)

Since @?"" denotes the subset of 98 consisting of the positive real numbers, then @ isin 62" .
Equation (4.6.20) showsthat F(X,t), asanonsingular linear transformation, must either have a

positive or negative determinant. Recall from Appendix A that &< (9) denotes the set of
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automorphisms of @ , i.e. the set of regular or nonsingular linear transformationsin
Z(97507). Wewrite g2 (97)" and 2 (9) for the subsets of @ (9") defined by

G2 (07) ={A[Ain&(9707) and detA > 0f (4.6.21)
and

g2 (9") ={A[AIn&(97307) and detA <0 (4.6.22)

The subset § (9")" wasintroduced in Section 4.4. The condition (4.6.20) shows that F(X,t)
must lie in only one of the components of ggg(@/ ) defined by (4.6.21) and (4.6.22). Asin

Section 4.2, without |oss of generality, we can assumethat F(X,t) liesin §@ (@) . Therefore,

for each X, the domain of k_isasubset of & x9 " x GZ (9") xZ(9;07). Ithasvauesin
theset G7 xR x& (9,07 )x9” , where & (9,9 denotes the symmetric members of
Z(97;07). Weassumethat, for each X, k_ isat least of class C* on an open subset of

G XV xGL(V ) xZ(97507).

Next we wish to characterize the dependence of k_ on the reference configuration k. By
(2.1.5), we can define a deformation function relative to a reference configuration k by

% (Xot) =2 (k7 (X).t) (4623)
It easily follows from (2.1.5) and (4.6.23) that

T (Xot) =2 (M (X) 1) (4.6.24)
where & :k(@8) > k(28") isdefined by

A=kKok™ (4.6.25)

By differentiation of (4.6.24), it follows that

F =FP (4.6.26)

where

IAT:GRADXR()A(,t):lA?()A(,t) (4.6.27)
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and
P =GRADA(X)=P(X) (4.6.28)

In understanding (4.6.23) through (4.6.28), it is helpful to consider the Figure 4.6.1.
K(48)

k(%)
Figure 4.6.1

Because values of k. must be independent of k , it follows from (4.6.16) that one can
define a response function with respect to k by

Kz(@,g,ﬁ,f,x)= k.(6.g.F.F.X) (4.6.29)

or, with (4.6.26) and (4.6.28),

ki (0,8, FP™ FP™,X) =k, (0,g,F,F,X) (4.6.30)

Equation (4.6.30) must hold for all (e,g,F,F,X) inthedomain of k_. Theimportant messagein

(4.6.30) is that the dependence of the response function on the reference configuration is such that
only the gradient of A at X isneeded in order to characterize the change of reference
configuration. Thisresult reflects again the local nature of the constitutive assumption (4.6.16).

In order to make the local dependence of k. on k explicit, we shall introduce the concept
of alocal reference configuration [Ref. 3, Sect. 22; Refs. 5, 22, 23].

Definition. Two reference configurations k, and k, areequivalentat X in 23 if
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1 (4.6.31)

GRAD (k, ok, ™)
Exercise 4.6.1

If x, and k, and k, and k, areequivalentat X in &8, then show that k, and k, are equivalent.

Definition. The local reference configurationat X in @8 istheset K, of al reference
configurations equivalent at X .

It follows from (4.6.31) that, when k and k areequivaentat X, P =1 and from (4.6.30) that
ki = Ko (4.6.32)

Therefore, at X in @8, k. depends on the configuration k through the local reference
configuration K, . For thisreason, we define afunction k, by

ke, (0.8.F.F)=k (0,8,FFX) (4.6.33)

for all (6,g,F,F) inthedomain of k, andforal x in K, . With (4.6.33), our constitutive
assumption (4.6.16) becomes

(t//,n,T,q) = kKX (H,g,F,F) (4.6.34)

Many of our later manipulations require that we introduce symbols for the component
functionsof k, . Thesefunctions are defined by

(UKX e Gyl )= K., (4.6.35)
For example, (4.6.35) showsthat T isgiven by
T=Gy, (6.g.F.F) (4.6.36)

4.7. Thermoelastic Material with Heat Conduction and Viscous Dissipation — General
Thermodynamic Restrictions

Asindicated in the last section, we require that (3.5.15) be satisfied for al admissible
thermodynamic processes. In this section we shall investigate the restrictions on the response
function ki in (4.6.34) implied by this requirement [Ref. 15].

From (4.6.34) and (4.6.35), we have
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w=ug (0.8,FF) (4.7.1)

For sufficient smooth ®, and y, , the material derivative of y can be expressed in terms of the
material derivativesof @, g, F and F by the chainrule. Theresultis

ou, . ou ou, T . ou, ' ..
W= P p g tr| —XF |4 tr| —2—F (4.7.2)
og OF OF

00

If (4.7.2) and (4.6.34) are substituted into (3.5.15), the result can be written

00

ouy, (6.8.F,F)
v o8 OF

+hy, (Qg,F’F)JéP—u"* (0.2 F.F) -g/’t{GUKX L FJ
(473)

- \T
o (0er ) JF -y (0.8 .F) 2020

+tr Fl[GKX (6.8.F,F)—pF

Equation (4.7.3) must hold for every choice of the functions ®,_ and 7, .

Let (6,g,F,F) beanarbitrary element of the domain of k. andlet (X,t) befixed.

Given these quantities, we can define functions ® and y, by
O, (Y, 7)=0+(r-t)c+[g+(r-t)a] | F(Y-X)] (4.7.4)
and
%o (Yi0) = (Xot) [ F (r=t) P 4 (e -1)° A | (Y- X) (4.7.5)

where (c,a,A) isany elementin o' x9 x & (9;9). Itfollowsfrom (4.7.4) and (4.7.5) that
ay=Xx

2 (r)z@i (X,T)=H+(r—t)c (4.7.6)
¢ (r)=F" GRADO, (X,7)=g+(r~t)a (4.7.7)

F' (r)=GRADy. (X,7)=F+(r-t)F+1(z-t)’A (4.7.8)
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and
F (r)=F+(r-t)A (4.7.9)

Thetime 7 isrequired to liein the internal [t,t+5],where o isapositive number chosen so that
(6' (7). (r).F (r).F (r)) isinthedomain of k, forall z in [t,t+5]. Since(4.7.3) must

hold for all ®,_ and ¥, , we can evaluateit on ®, and y,.. If thisevaluation is done and we then
consider the limit of theresult as 7 — t, theresult is

. . T
oug (0.8 F.F i oug (0.8, F,F oug (0.8, F.F
_p( - (ae )+th (Q,g,F,F)JC—P - (ag )'a_ptr - (8F ) A

(4.7.10)
\T
ouy, (0.8,FF)

oF

+tr Fl[GKX (6.8,F.¥)— pF F|-1 (0.2.FF)-g/6>0

In (4.7.10), the quantities ¢, a and A are arbitrary. By selecting different values of these
quantities for fixed (H,g,F,F) we can clearly violate (4.7.10) unless their coefficients are zero.

Consequently, (4.7.10) yields

ouy, (0.8.F.F)

0 M (0 FF)=0 @iy
ouy, (0.8FF) (4.7.12)
og
and
ou, (0.8 F.F) (47.13)

oF

Because (0, gFF) isan arbitrary element of the domain of ki , (4.7.12) and (4.7.13) yield the

important result that the free energy density of the material defined by (4.6.34) isindependent of g
and F. Thus,

w=u. (6,F) (4.7.14)

and, from (4.7.11), (4.6.34) and (4.6.35),
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ouy, (6,F)

n=he (6,F)=- (4.7.15)

Equation (4.7.15) showsthat h, isdetermined by u,_ .

Given (4.7.14) and (4.7.15), theinequality (4.7.3) [or (4.7.10)] reducesto

ou, (6.F)

P JFJ—]KX (6.8,F.F)-g/0>0 (4.7.16)

tr{Fl[GKX (6.8.F,F)—pF

Equation (4.7.16) is called the residual entropy inequality. Equations (4.7.14), (4.7.15), and
(4.7.16) represent necessary conditions which follow from requiring that (4.7.3) hold for all
admissible thermodynamic processes. They are also sufficient conditions because if we assume
(4.7.14), (4.7.15), and (4.7.16) are valid, then (4.7.3) is necessarily true.

If weset F=0 in (4.7.16) we obtain the heat conduction inequality

. (0.2.F,0)-g/620 (4.7.17)

Equation (4.7.17) shows that when F = 0, the angle between a nonzero temperature gradient and a
nonzero heat flux vector must be greater than or equal to ninety degrees. If weset g =0 in (4.7.16)

we obtain the mechanical dissipation inequality

tr| F*| G (QOFF)—pFM F|>0 (4.7.18)
Ky L i 8F = A

Exercise 4.7.1

Specialize (4.6.34) by omitting the dependence on F and show that (4.7.14) and (4.7.15) are again
obtained and that (4.7.16) is replaced by

T

ouy, (6,F)

4.7.19
F (4.7.19)

T=Gy (0,F)=pF

Ot (6.F)" ou, (0,F)

F' (4.7.20)
oF oF

and

-1, (6,2,F)-g/6>0 (4.7.22)
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This example defines athermoelastic material with heat conduction.

Exercise 4.7.2

If in Exercise 4.7.1 adependence on g is omitted, show that (4.7.14), (4.7.15), (4.7.19) and
(4.7.20) remain valid but that (4.7.21) is replaced by

q :le (HF) =0 (4.7.22)

This exampl e defines a thermoelastic nonconductor. Note that it is not necessarily truethat 6 is
constant for thismodel. Thus, it does not correspond to the one formulated in Section 4.2.

Exercise 4.7.3

In an effort to produce a theory of heat conduction for which thermal disturbances propagate with
finite, rather than infinite, speed, it is reasonable to investigate a material for which

(l//,n,T,q) = kKX (H,Q,g,F,F) (4.7.23)

Derive the thermodynamic restrictionsin this case. Reference 25 provides information useful for
the solution of this exercise.

Exercise 4.7.4

In order to include additional memory effects, the discussion in Section 4.6 suggests that higher
time derivativesof F beincluded in the response function. Assume that

(v.1.T.q) =k (e,g,F,F,F‘) (4.7.24)

Derive the thermodynamic restrictionsin this case.
Exercise 4.7.5

In order to include additional spatial effects, the discussion in Section 4.6 suggests that higher
gradientsof ®, and y, beincluded in the response function. As an example assume that

(v.n,T.q)=kg (0.2, F,GRADF) (4.7.25)

and show that the resulting thermodynamic restrictions are such that (4.7.25) reduces to the case of
athermoelastic material with heat conduction studied in Exercise 4.7.1 above except that 1, in

this case will depend upon GRADF . Additional discussion of spatial effects can be found in Refs.
16, 17, 18, and 19.
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It is convenient for manipulations which will be carried out in Section 4.8 to define a
function G of (6,g,F,F) asfollows

. . . ou, (0,F)
Gy, (0.8.F.F)=G, (0,g.FF)- pF— (4.7.26)
If we denote the value of Gi';x by T°, we can rewrite (4.7.16) in the more simple form
trT°L—q-g/6>0 (4.7.27)

where (2.2.24) and (4.6.34) have been used.
4.8. Thermoelastic Material with Heat Conduction and Viscous Dissipation — Equilibrium
Thermodynamic Restrictions

In this section, we shall investigate certain results implied by the residual entropy
inequality. They correspond to specia conditions which hold at thermodynamic equilibrium.

Definition. The material defined by (4.6.34) isin thermodynamic equilibrium at (Xt) if
g=0and F=0.

Of course, we have made the obvious assumption that elements of the form (6, 0,F, 0) areinthe

domain of the response function ki . If we define afunction of (e,g,F,F) by

®(6,g,F.F)=trT°L—-q-g/6 (4.8.1)
it follows from (4.7.27) that
®(0,,F,F)>0 (4.8.2)
and
®(6,0,F,0)=0 (4.8.3)

Thus, the function @ isaminimum at athermodynamic equilibrium state. Consequently, it must
be true that

dd (0, 1a,F,1A)|
da

=0 (4.8.4)

-
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and

d’® (6, 1a,F, 1A )|
dA?

‘z:o
for all vectors a and linear transformations A .

It follows from (4.8.1), (4.7.26), (4.6.34) and (4.6.35) that
®(0,4a,F,AA) = 1tr (F'Gy (0,4a,F,AA)A)- Ay (0,1a,F,AA)-a/0

A simple calculation yields

dd (0, 1a,F,AA)|
di

=tr(F'Gg, (6,0,F,0)A)-1, (6,0,F,0)-a/0

-

and
’ dGg (9,2a,F,AA
d <I>(9,/1a2,F,2,A)| oy pe 96k, (022 ) R
dl ‘/1:0 dl ‘1:0
2di, (0,4a,F,1A)|
0 dA -
where
dGy, (6.4a,F.2A)| _ 0Gy, (9,0,F,0)[A]+ oGy, (H,O,F,O)[a]
dz - oF og
and

o, (6,0,F,0) - o, (6,0,F,0)

[A]+ Kx a
oF og

157

(4.8.5)

(4.8.6)

(4.8.7)

(4.8.8)

(4.8.9)

(4.8.10)

Equations (4.8.9) and (4.8.10) introduce three algebraic operations which we have not encountered

previousdly. In components, these operations are defined by

oGy, (H,O,F,O)[A] _0Gy, (6.0.F,0)
OF oF,, "

(4.8.11)
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oGy, (0.0.F,0) - 0Gy (6,0,F,0)

0g;

a (4.8.12)

l

[a]

and

_dl, (6,0,F,0)

F [A]= O, 3 (4.8.13)
Because a and A are arbitrary in (4.8.7), it follows from (4.8.4) that
I (6,0,F,0)=0 (4.8.14)
and
G; (6,0,F,0)=0 (4.8.15)

for al (GF) inthe domain of k, . Equation (4.8.14) shows that the heat flux vector must vanish

in equilibrium. Equations (4.8.15) and (4.7.26) show that in equilibrium the stress is determined by
the free energy by the formula

ou, (6,F)
G, (6.0,F,0)= o5 2 (OF) (4.8.16)
X OF
Since G has symmetric values, it follows from (4.8.16) that the condition
ou, (6,F) ou, (6,F
F . (OF) = o { )FT (4.8.17)

oF oF

must hold. The result (4.8.16) shows that the value of the function Gy defined by (4.7.26) isa
symmetric linear transformation which represents the extra or nonequilibrium part of the stress. If

we denote thevalue of G at (6,0,F,0) by T°, it follows from (4.7.26) that
T=T°+T® (4.8.18)

where

(4.8.19)
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and
T°=G; (0.g.F.F) (4.8.20)

The decomposition of the stress into the sum of an equilibrium part and a nonequilibrium part isa
characteristic of the two examples discussed in Section 4.1. Equation (4.1.3) and (4.1.27)

correspond to (4.8.18). In the case of the thermoelastic solid, the stress T® isidentically zero.
Exercise 4.8.1

Show that the Gibbs relation for the material defined by (4.6.34) is
. A 1 0
v =-n0+—trT°L (4.8.21)
Yo

If equations (4.8.9) and (4.8.10) are substituted into (4.8.8) it follows from the resulting
equation along with (4.8.5) that

tr[Fl[aG;X (0.0.F.0) [A]] A} tr[Fl(acix (6,0,F,0) [a]] A]
oF og
1 (alKJ@z"’F’“)[A]J : [GIKX(Q’O'F'O)ajzo

__a. —_a.
0 OF 0 og

(4.8.22)

foral (a,A) in 9" x(97;97). Equations (4.8.14), (4.8.15) and (4.8.22) are results which
necessarily hold in equilibrium. It isimportant to stress that they are generally not equivalent to the
residua inequality (4.7.27). In other words, (4.7.27) contains information in addition to the results
(4.8.14), (4.8.15) and (4.8.22).

Exercise 4.8.2

Use (4.8.22) and derive the inequalities (4.1.7), (4.1.8) and (4.1.9) for the material defined by
(4.1.1) through (4.1.6).

Exercise 4.8.3

Show that for the material defined by (4.1.1) through (4.1.6), equation (4.8.22) is equivalent to the
residual inequality (4.7.27).

Exercise 4.8.4

Show that for the material defined by (4.6.34) the thermodynamic energy equation takes the form
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p0n=—divq+trT°L + pr (4.8.23)
Exercise 4.8.5

Show that Ty , the equilibrium first Piola-Kirchhoff stress tensor, is given by

ou, (6,F)

4.8.24
F (4.8.24)

Tlg = Pr

Exercise 4.8.6

Theresultsin Sections 4.7 and 4.8 can be written in an alternate form by changing variables from
(6.8.F.F) to (r,g,F,F). Assume equation (4.7.15) can beinverted to obtain ¢ asafunction f,

of n and F and show that

- &, (1.F)
o= (nF)=—2D"7 (4.8.25)
Ky ( ) 877
and
08 (77,F)
T = pF —>~ " 7 4.8.26
p F ( )
where
e=8&, (n.F) (4.8.27)

4.9. Thermoelastic Material with Heat Conduction and Viscous Dissipation — Material
Frame Indifference

In this section the axiom of material frame indifference is stated, and it is used to further

restrict the form of the constitutive equations for the material defined by (4.6.34). Recall from
Section 4.3 that a change of frame is a one-to-one mapping & xR — & xR, defined by

X =c(t)+Q(t)(x~0) (4.9.1)
and
t'=t-a (4.9.2)

where ¢(t) isatime-dependent element of &, Q(t) isatime-dependent element of ©(9"), and
a isin @ . Itissufficient to assume herethat ¢ and Q are of class C?.
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The axiom of material frame indifference isthe following statement [Ref. 3, Sect. 19].

Axiom. The constitutive equations (4.6.8) must be invariant under changes of frame. If
(w7, T,q) & (X,t) isgivenby afunction f, of the pair (®,%), thevalue (y",n",T".q") at

(X.t") isgiven by the same function f, ~of thepair (®",y), where

(v’ T .0 ) = (w10 TQ() . Q(t)a) (493)
O (X,7')=0(X,7) (4.9.4)
x*(X,r*)=c(r)+Q(r)(x(X,z')—0) (4.9.5)
and
T =r-a (4.9.6)

forall ain &', Q(r) in ©(9") and ¢(r) in & suchthat (®",y) isinthedomainof f, .

As stated in Section 4.3, it isimportant to realize that the reference configuration plays no
roleinthe axiom. If areference configuration isused, it isnot atered by the transformations
(4.9.4), (4.9.5), and (4.9.6). The physical idea behind this axiom is the feeling that trand ations of
the time scale and rigid motions of the body should not influence the response functions for the
material. Equation (4.9.3) implies that

v o=y (4.9.7)
n=n (4.9.8)
T =Q(t)TQ(t)' (4.9.9)
and
q =Q(t)q (4.9.10)

Equation (4.9.7) and (4.9.9) are simple restatements of (4.3.11) and (4.3.12), respectively.
Equation (4.9.8) is an assumption based upon the physical assumption that the entropy density is
not altered by the transformations (4.9.4), (4.9.5) and (4.9.6). Equation (4.9.10) follows by an
argument similar to the one used to derive (4.9.9). Thisargument isoutlined in the following
exercise.

Exercise 4.9.1
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Given (3.4.8) and g =q -n’, assume that the quantities g and n" transform by the rules
q=q (4.9.11)
and
n =Q(t)n (4.9.12)
Derive the transformation (4.9.10).

For the special material defined by (4.6.34), the constitutive functions depend only on
guantities evaluated at the present time. It is possible to show that thereis no loss of generality in
taking a=0 in (4.9.6). We shall adopt this choice in the following discussion. It follows from
(4.9.4) and (4.9.5) that

g =Q(t)g (4.9.13)
F =Q(t)F (4.9.14)
and
B = Q()F =Q(t)F+Q(1)F (4.9.15)
Exercise 4.9.2
Show that (4.9.14) implies that
R =Q(t)R (4.9.16)
U =U (4.9.17)
and
V' =Q(t)vQ(t) (4.9.18)

Therefore, the axiom of material frame indifference states that if
(v.7.T.q) =k, (6.8.F.F) (4.9.19)

then
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(v .QMTQ(1)" . Q(t)a) =k, (6.Q(1)2.Q()F.Q(1)F+Q(1)F) (4.9.20)

foral Q(t) in ©(9) and Q(t) in (97,07) with Q(1)Q(t)' =—(Q(1)Q(t)")" such that
(G,Q(t)g,Q(t)F,Q(t)F+Q(t)F) liesin the domain of k, . Sincethedomain of k, isasubset
of Hx xGZ (") x&(9;97), itisclearly necessary for Q(t) in (4.9.20) toliein
©(9")", the proper orthogonal group, introduced in Section 4.4. A formal definition of 6(9")"
is

+

oY ={Q|Q in @2 (97)" and QQ" =1} (4.9.21)

The condition on Q(t) stated above arises becauise Q(t) isorthogonal for each t. To seethis
condition, ssmply note that

Q(1)Q(1) =Q(1)Q(t) +(Q(1)Q(t)") =0 (4.9.22)
We have used results like (4.9.22) in Sections 2.4 and 3.4.

Next, we shall deduce the solutions to equations (4.9.19) and (4.9.20) and, thus, derive the
restrictions implied by the axiom of material frame indifference. The procedure we shall useis one
originated by Noll [Ref. 4; Ref. 3, Sect. 29]. Asin Section 4.3, this procedure involves first
deducing necessary conditions from (4.9.19) and (4.9.20) The resulting necessary conditions will

then be shown to be sufficient in that (4.9.19) and (4.9.20) will be satisfied for all proper
orthogonal necessary condition. At any instant t we take

Q(t)=R" (4.9.23)
and
Q(t)=-R'W (4.9.24)

where W is the spin tensor defined by (2.4.30). Clearly Q(t) isin ©(9")" and

Q(t)Q(t )T = -—R"WR isskew-symmetric. If (4.9.23) and (4.9.24) are substituted into (4.9.20),
we can use (2.4.1a) and (2.4.29) to write the result in the form

(w.7.R"TR,R"q) =k (6,R"g,U,R"DRU) (4.9.25)

If we now use (4.6.35), it follows from (4.9.19) and (4.9.25) that
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ug, (6.8.F.F)=u, (6,R"g,U,R'DRU) (4.9.26)
he, (e,g,F,F) =h, (H,RTg,U,RTDRU) (4.9.27)
Gy, (0.8.F,F)=RG, (6,R"g,U,R'DRU)R’ (4.9.28)
and
I, (0.¢,F,F)=Rl, (6,R"g,U,R"DRU) (4.9.29)

where the thermodynamic restrictions deduced in Sections 4.7 and 4.8 have not, as yet, been
utilized. Next, we wish to show that if (4.9.26) through (4.9.29) are assumed, then (4.9.19) and

(4.9.20) are satisfied for all Q(t) isin ©(9)" andal Q(t) suchthat Q(t)Q(t)" isskew-
symmetric. When this argument is complete, we will have established that (4.9.26) through
(4.9.29) are both necessary and sufficient for (4.9.19) and (4.9.20) to be satisfied. For the sake of
brevity, we shall only provide the sufficient proof for (4.9.28). The reader can work out the
corresponding proofs for (4.9.26), (4.9.27) and (4.9.29). From (4.9.19), (4.9.20) and (4.6.35) it
follows that we must establish that

Q(1)Gy, (0.2 F.F)Q(t)' =G, (6.Q(1)g.Q(t)F,Q(1)F+Q(t)F) (4.9.30)
when (4.9.28) istrue. Given (4.9.28), then
Gy, (0.Q(t)g,Q(1)F,Q(t)F+Q(t)F)
—Q(t)RGy (9,(Q(t)R)T Q(t)g U,(Q(t)R)' (Q(t)DQ(t)T)(Q(t)R)U)(Q(t)R)T (4.9.31)
- Q(t (6.R"g,U,R"'DRU)RQ(t)'

If we substitute (4.9.28) into the right side of (4.9.31), it iseasily seen that (4.9.30) isidentically
satisfied.

)
)RG,

X

Given (4.9.26) through (4.9.29), it is convenient in certain applications to use (2.4.1a) and
(2.4.8) to definefunctions G, , b, , G ,and I, by

0y, (6,F'g,C.F'DF)=u, (6,C**F'g,C**,C**F'DF) (4.9.32)

h, (0.F'g,C.F'DF)=h (6,C*°F'g,C**,C""’F'DF) (4.9.33)



Models of Material Behavior 165

Gy, (0.F'g,C.F'DF)=C"’G, (0,CVF'g,C**,C""’F'DF)C " (4.9.34)
and
I, (0.F'g,C.F'DF)=C"1, (0,C*F'g,C**,C"’F'DF) (4.9.35)

With these assumptions, the constitutive assumption (4.6.34) takes the form

y =0y, (6.F'g,C,F'DF) (4.9.36)
n=he, (0.F'g,C,F'DF) (4.9.37)
T=FG, (6,F'g,C.F'DF)F' (4.9.38)
and
q=Fl, (6,Fg,C,F'DF) (4.9.39)

Note that the dependence on F is through the special combination F'DF . This dependency is
consistent with the first example of Section 4.1.

If we now utilize the restrictions (4.7.14) and (4.7.15), it follows that (4.9.36) and (4.9.37)
are simplified to

v =0, (6,.C) (4.9.40)

. a0, (6,C)

n=h, (6.0)=-—" (4.9.41)

Next, we wish to show that the restriction (4.8.17) is automatically satisfied when y isgiven by
(4.9.40). The argument given in Section 4.3 to derive (4.3.35) is essentially the same as the one to
be given here. From (4.7.14) and (4.9.40), we have

ue (6.F)=0, (6.C) (4.9.42)

The derivative 00, /6F isalinear transformation defined by [see (4.2.7)]

! du, (6,F+1A
tr[au“(e’F) AJ U, (F +24) (4.9.43)
OF da

‘1:0
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foral A in & (97;97). Itfollowsfrom (2.4.3) that
U, (0.F+2A) =0 (6,C+A(FTA+ATF)+A°ATA| (4.9.44)

The derivative o0, /0C isasymmetric linear transformation defined by

(4.9.45)

o 0%, (0:€) ) _ ddy, (6.C+4J)|
oC - dA

o

for all symmetric J in & (9;97). Given (4.9.43) and (4.9.45), it follows from (4.9.44) that

tr(w A} =tr (M( A'F+F' A)J (4.9.46)
oC

oF
Because (4.9.46) holdsfor dl A in & (9;97), it follows that

F T A~
%, (0.F) P (H’C)FT (4.9.47)
OF oC

Therefore, asin Section 4.3, material frame indifference insures that (4.8.17) is satisfied. It also
follows from (4.9.47) and (4.8.19) that

o0, (60.C)

T° = 2pF
P o

T (4.9.48)

The result developed in Exercises 4.3.6 and 4.3.7 can be established in the context of the material
defined by (4.6.34). Thisresult isthat, given (4.8.15), the following equations are equivalent:

G, (0,0,F,0)=G,_(6,0,F,0)' (4.9.49)
G, (0,0,QF,0)=QG,_(6.0,F,0)Q’ (4.9.50)

foral Q in©(9”)", and
U, (6,QF)=uy (6,F) (4.9.51)

foral Q in ©(9") [Ref. 4, Sect.4; Ref. 25].
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Exercise 4.9.3

Show that the equilibrium value of the second Piola-Kirchhoff stress tensor is given by

NG (6,C)
T=2—"" (4.9.52)
oC
where
Tk, (6.C) = pauy, (6.C) (4.9.53)

The quantity Y (¢,C) isthe strain energy per unit of undeformed volume.

Exercise 4.9.4
Show that the material defined by (4.1.1) through (4.1.4) satisfies material frame indifference.
Exercise 4.9.5

Show that the material defined by (4.1.25) through (4.1.28) does not satisfy material frame
indifference.

Exercise 4.9.6

Show that the material defined by (4.1.25) through (4.1.28) does satisfy arestricted version of
material frame indifference where Q issmall in some sense. Explain the physical meaning of this
result.

Exercise 4.9.7

Consider amaterial for which
q=1l (0.8,8F) (4.9.54)

Show that the axiom of material frame indifference applied to 1, yields

q=RI, (6,R'g,R"d,U) (4.9.55)

d= ([EJ : g]i (4.9.56)
lel) = )lel

where,
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[Refs. 26, 27].
Exercise 4.9.8

Given (4.9.9), show that
T =Q(t)TQ(t) (4.9.57)
where T isastress rate given by either one of the following formulas:

T=T-WT+TW (4.9.58)

or
T=T+L'T+TL (4.9.59)

The quantity T™ is given by formulas identical to (4.9.58) or (4.9.59) with T replaced by T" and
L replaced by L. The stressrate (4.9.58) is called the corotational stress rate and (4.9.59) is
called the convected stressrate. These stress rates arise when one studies materials of the rate type
such as the Maxwellian material [Ref. 3, Sect. 36]. Maxwellian materials will be discussed in
Chapter V.

4.10. Thermoelastic Material with Heat Conduction and Viscous Dissipation — Material
Symmetry

In Section 4.4 the concept of material symmetry was investigated for the isothermal elastic
material. These ideas are expanded in this section and applied to the material defined by (4.6.34).
The material in this section is discussed in greater detail in Refs. 3, 5, 20, and 21.

It is useful to attempt to assign a mathematical meaning to the intuitive idea that two
particlesareidentical. The only physical properties of the particle X in @8 areitsdensity p and

its response function k. Therefore, in asserting that two particles areidentical, it is reasonable to

express this condition in terms of their densities and their response functions. In the following
discussion, it is convenient not to make use of the restrictions obtained in Sections 4.7, 4.8 and 4.9.

Definition. Consider two particles X and Y inthebody @8". Theparticles X and Y are
identical if local reference configuration K, for X and J, for Y exist such that

Pr(X)=pr(Y) (4.10.1)
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where p,(X) isthedensity of X a X=«(X) inany x in K, and p,(Y) isthedensity of Y
a Y=x(Y)inay k inJ,, and

ke, (0.8.F.F)=k, (0,gFF) (4.10.2)
for all (6,g,F,F) inthedomain of k, and k; .

Physically, the above definition attempts to convey the statement that X and Y are
identical if we can find alocal reference configuration for X and alocal reference configuration

for Y suchthat X and Y have the same density, and, for the samevaluesof @, g, F, and F, we
obtain the samevauesof v, , T, and q. The geometric arrangement that applies here is shown

in the Figure 4.10.1.
X

K(R) /f

Figure 1.10.1

When two particles are identical in the sense of the above definition, they are said to be
materially isomorphic. The local reference configurations K, and J, are called the materially

isomorphic local reference configurationsfor X and Y, respectively.

Next we shall investigate the case where X in 23 ismaterially isomorphic toitself. If k
isin K, and k isin J, , then

X=kok " (X)=1(X) (4.10.3)
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relates the position of X in k toitspositionin k (see (4.4.3) and (4.6.25)). For X tobe
materially isomorphic to itself, it follows from (4.10.2) that

K, (e,g,F,F) =k, (e,g,F,F) (4.10.4)

Next we need aformulawhich relates the response function k; to k, . The necessary formula

has been developed in Section 4.6. From (4.6.30) and (4.6.33)
k (H,g,FP-l,FP‘l) =Ky, (G,g,F,F) (4.10.5)

Jx

where P isdefined by (4.6.28). Asexplained in Section 4.6, equation (4.10.5) reflects the fact that
the values of the response function are independent of the specia choice of local reference
configuration. Figure 4.10.2 is useful when trying to justify (4.10.5).

K@) —
KX J

N~ 7’
S< - J
X

(%) —
Figure 4.10.2

Since (4.10.5) holdsfor all (e,g,F,F) inthe domain of k, , we canformally replace F by FH,
where H =P, to obtain

k,, (0.8.F,F)=k, (6,2, FH,FH) (4.10.6)
Equations (4.10.4) and (4.10.6) combine to yield the important result

ke, (6.8.F.F)=k (6.2, FH,FH) (4.10.7)
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for all (6,g,F,F) suchthat (0,g,FH,FH) isin the domain of k, . Thisequation and the

condition (4.10.1) characterize the circumstance where X is materially isomorphic to itself.
Figure 4.10.3 indicates the geometric interpretation of (4.10.7).

k(98" \x

F
—>
Ky
[ X & H
|\ ,'
~No - JX ¢\ F
cery —
Figure 4.10.3
In order that (4.10.1) be satisfied it is necessary and sufficient that
|det H| =1 (4.10.8)

To seethisresult ssimply use (3.1.12) for the deformation (4.10.3) and force the density at X to
equal the density at X . Since thedomain of k, ~isa subset of

A0 xGL(97) xZ(9707), wemust replace (4.10.8) by the more restrictive condiition
detH =1 (4.10.9)
or otherwise FH in (4.10.7) would bein g/ () .

As explained in Section 4.4, the subset of §& (") such that (4.10.8) is satisfied is called

the unimodular group. It isasubgroup of g& (9 ~). Weshall continue to denote it by @/ (9").

Again, asin Section 4.4, the proper unimodular group or the special linear group is the subgroup
of @/ (o) defined by

@ (9"7) ={HHIingZ (9 ), detH=1] (4.10.10)
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Definition. The symmetry group of X in @8 relativeto the local reference configuration
K, isthe group of material isomorphismsof X with itself.

We shall denote the symmetry group of X relativeto K, by & . Itfollowsfrom
(4.10.7) and (4.10.9) that

Ge, = {H[Hin 2 (07)

X

andk,, (6.8.F.F)=k,, (9,g,FH,FH)} (4.10.12)
Exercise 4.10.1
Show that &, isindeed asubgroup of @/(9")".

Asthe definition (4.10.11) indicates, the symmetry group & depends upon the local
reference configuration K, . In order to characterize this dependencelet k bein K, and x bein
Kx . It follows from (4.10.5) that

ke, (0.8.F.F)= K. (6.g,FP,FP?) (4.10.12)

where P isdefined by (4.6.28). Given (4.10.12), we can formally replace F by FH to obtain

ke, (0.8, FH,FH) =k, (6,8, FHP",FHP ™) (4.10.13)
For H in &KX , it follows from the definition (4.10.11), and equations (4.10.12) and (4.10.13) that
ke (0.8, FPFP )=k, (60,8, FHP™FHP™) (4.10.14)

If we formally replace F by FP in (4.10.14), we see that

ke (6.8.FF)= ke (6.¢,FPHP ™, FPHP ) (4.10.15)

It follows from the definition (4.10.11), that &kx is defined by

G ~{

X

Hina (o) andk (6,8FF)=k (6. FHFH)| (4.10.16)

Thisresult and (4.10.15) show that when H isin & the corresponding element H in &kx is
given by
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H=PHP* (4.10.17)
It is convenient to express (4.10.17) by the relationship

Gr =PG P (4.10.18)

Theresult (4.10.18) wasfirst proven by Noll [Ref. 4]. In group theory, the group &; would be

called the conjugate group to & . We established a special case of (4.10.18) in Section 4.4.
However, in that section we did not stress the dependence on the local reference configuration.

Exercise 4.10.2
Show that if H isin ©(@)", then H isnot generally orthogonal.

The symmetry group of aparticle X isgenerally not related in any special way to the
symmetry group of aparticle Y. However, if X and Y are materially isomorphic, then we shall
show that the two symmetry groups are equal providing the appropriate local reference
configurationsfor X and Y areused. Recall that when X and Y are materially isomorphic, there
exist local reference configurations K, for X and J, for Y, such that (4.10.1) and (4.10.2) hold.

What we shall show isthat
Gk, = &, (4.10.19)

The proof is elementary. From (4.10.11) we can write

&, {H|H in(97) andk, (6,8.F.F)=k, (9,g,FH,FH)} (4.10.20)

From (4.10.2), this definition can be written

g {H|H ina(97) andk, (6.8.F.F)=k,, (e,g,FH,FH)} (4.10.21)

A comparison of (4.10.21) and (4.10.11) shows that (4.10.19) holds.

Definition. A local reference configuration K isundistorted if & contains ©(9~ )+ or
o(9”)" contains g .

Another way to state this definition isto say that &, iscomparableto ©(9)" with respect to
inclusion.
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Definition. A particle X ishemitropic if there exists an undistorted local reference
configuration K, suchthat ©(9")" isin &, .

Definition. A particleisisotropicif it is hemitropic and if
Gy, (0.8.F.F)=G, (0,~g,F.F) (4.10.22)
and
I, (0., F.F)=-1, (0,~g,FF) (4.10.23)

Thus, X isisotropic if there exists alocal reference configuration such that any proper rotation is
inthe symmetry group and if G, isanevenfunctionof g and 1, isanodd functionof g.

Definition. The particle X isasolid particleif there exists an undistorted local reference
configuration K, suchthat &, iscontainedin o(9")" .

It isimportant to stress that in order to assert that X isasolid particle, it is necessary to put
itinaspecial local reference configuration. From the last exercise, it followsthat if & is

contained in ©(97)", the conjugate group &; = P&, P isnot generaly in ©(9")". It

follows from the above definitions that for an isotropic solid particle g, = o9~ )+ and (4.10.22)
and (4.10.23) hold.

+

Definition. A particle X isafluidif itisisotropic and if C@KX(O)/)=@((0)/) :
Exercise 4.10.3

Show that if X isafluid particle with respect to K, , it isafluid particle with respect to every

local reference configuration. Thus afluid particle does not have a preferred reference
configuration.

Itisafact in group theory that if ©(9 )" iscontained in &, ad & iscontainedin

@((97) ,theneither &, =0(9") or & =@ (9") [Refs. 6, 7]. Therefore, among the
materials defined by (4.6.34), the only isotropic ones are either fluids or solids.

Next we wish to derive the explicit restrictions imposed by material symmetry for the cases
where X isanisotropic solid particle and where X isafluid particle. If we incorporate the
definition (4.10.11) with the restrictions deduced in Sections 4.7, 4.8, and 4.9, it follows from

(4.9.39), (4.9.40), (4.9.38) and (4.10.11) that &, isasubsetof @/(9)" suchthat
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(g, (6,C) =0, (6,H'CH) (4.10.24)
Gy, (0.F'g,C.F'DF)=HG, (6,H"F'g,H"CH H'F'DFH)H’ (4.10.25)

and
I, (6.F'g,C.F'DF)=Hl, (6,H"F'g,H'CH,H"F'DFH) (4.10.26)

If weassumethat X isanisotropic solid and K, isitsundistorted reference configuration, then
(4.10.24), (4.10.25), and (4.10.26) hold for all H is ©(@")" and, in addition, éKX isan even

function of g (see (4.10.22)) and in iIsan odd function of g (see(4.10.23)). These factswill be
used to establish the following results:

For an isotropic solid particle in its undistorted reference configuration,

y =0 (6,B) (4.10.27)
T=G,, (6.2,B,D) (4.10.28)

and
q=1L (6.2,B,D) (4.10.29)

where B is the left Cauchy-Green tensor defined by (2.4.2) and, for al Q in 6(9")",

y, (0,B)=0,, (6,QBQ") (4.10.30)
QG (0.2.B.D)Q" =G, (¢.Qs.QBQ".QDQ’) (4.1031)

and
Ql, (6.2.B,D)=1 (6.Qz,.QBQ",QDQ") (4.10.32)

In addition (_}KX isan even function of g and ch isan odd function of g .

In order to establish (4.10.27) through (4.10.32) we follow an argument similar to the one
used to establish. (4.4.35) Wetake H=R" in (4.10.24) and use (2.4.6) to obtain the necessary
condition
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~

G, (6.C)=0, (6,B) (4.10.33)

Thus, in the case under discussion, G, hasthe samevalueon (#,B) ason (#,C). Given
(4.10.33), it follows from (4.10.24) and (2.4.6) that, for all Q in @(0)/)+,

U, (6,0BQ")=0, (8,QRCR'Q")=0, (6,C)=0, (6,B (4.10.34)
Kx ( ) Kx ( ) Ky ( ) Ky ( )

because QR isasoin @(0)/)+ = &, - Conversely, given (4.10.30) and (4.10.33) it follows that
(4.10.24) holds. Consequently, (4.10.30) and (4.10.33) are equivalent to (4.10.24). By an entirely
similar argument, it follows from (4.10.25) and (4.10.26) that a necessary condition is

FG, (0,F'g,C.F'DF)F' =BG, (6,B"’g,B,B"’DB"*)B"’ (4.10.35)

and
Fl, (0,F'g,C,F'DF)=B"1, (6,B"’g,B,B’DB"*) (4.10.36)
Next we define the functions (_}Kx and i(x by
Gy, (0.g,B,D)=B"’G, (0,B"’g,B,B*DB"*)B" (4.10.37)
and
I, (6.¢,8,0)=B"1, (0,B"’g,B,B"’DB"*) (4.10.38)
Equation (4.10.31) follows easily because by (4.10.37) and (4.10.35),

Gy, (6,Q2,QBQ",QDQ")
=QBYQ'G, (¢,QB’Q'Qg,QBQ",QB’Q'QDQ'QB"*Q")QB"’Q" (4.10.39)
- QB"Q'G, (0,QB*’g,QBQ",QB’DB*’Q" ) QB**Q’

Because (4.10.25) holdsfor al Q in ©(9)", (4.10.39) can be rewritten as

Gy, (6.Q2,QBQ".QDQ")

I » oo ey (4.10.40)
=QB"’G, (e,B ¢, B,BY’DB )B Q
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with the definition (4.10.37), (4.10.40) becomes the desired result (4.10.31). Conversely, given
(4.10.31), (4.10.35), and the definition (4.10.37), equation (4.10.25) can easily be shown to hold.
Therefore, with the definition (4.10.37), (4.10.31), and (4.10.35) are equivalent to (4.10.25).
Equation (4.10.32) follows by an identical argument. Equation (4.10.27) follows from (4.10.40)
and (4.10.33). Equation (4.10.28) follows from (4.10.37), (4.10.35), and (4.10.38). Finally,

(4.10.29) follows from (4.10.38), (4.10.36), and (4.9.39). The function CKX isan even function of

g because éKx iseven. Likewise i(x isan odd function of g because iKX is an odd function.

Thus, the assertion is established. Notice that the even and odd dependence on g follows from
(4.10.31) and (4.10.32) if we extend the allowable orthogonal linear transformations to include all
of ©(9"). To seethisassertion, simply take Q = I in (4.10.31) and (4.10.32). If (4.10.30)

through (4.10.32) are viewed as holding for all Q in ©(9"), thefunctions G, , G, and I
are said to beisotropic.

Exercise 4.10.4

Show that for an isotropic solid particle in its undistorted local reference configuration

A

oG, (6,B)
=Kt 4.10.41
7 50 ( )

and

oG, (6,B) _ oG, (6,B)
T =2pB——Xx """/ _p, ®x 177/ 4.10.42
PR P oB ( )

Aswe used in Section 4.4, equation (4.10.30) implies the existence of afunction u;x of the
fundamental invariants of B in addition to the temperature 6. Therefore,

w ="l (H,B)zu;X (0,15, 1, 1115) (4.10.43)
Exercise 4.10.5
Use (4.10.43) and (4.10.42) and show that
T° =t (6,15, 1, ) T+, (6,15, 115, 1115)B+a, (6,1, IIB,IIIB)B2 (4.10.44)

where

O (0,15, 15, 1115)

4.10.45
alll, ( )

oo (0,15, 115, 1115)=2plll,
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u (8,15,115,111,) U (8,15,115,111,)

a,(0,15,115,111,)=2p +2pl,

ol all,

and

o (0,15,115,111,)
ol

a, (0,15, 115, 111,)=—2p

Note that T° is necessarily hydrostatic in the undistorted local reference configuration.

Exercise 4.10.6

Show that (4.10.32) is satisfied in the state (0,g,B,0) by the representation
K, (0.2,B,0)=(cl+0B+0,B%)g
where

o, =0, (01,11, 11,2 8.2 (Bg). & (B)),

Chapter 4

(4.10.46)

(4.10.47)

(4.10.48)

(4.10.49)

for 7=0,12 [Ref. 29]. Note that asimilar representation could be stated for I, in the state
(6,2,1,D) by formally replacing B by D. Equation (4.10.48) shows that when D=0 inthe

undistorted local reference configuration, q and g have acommon line of action.

If weassume X isafluid particle, then (4.10.24), (4.10.25), and (4.10.26) hold for all H
in @((O)/)+. In addition, éKX isan even function of g and fKX isan odd function of g. These

facts will next be used to establish the following results:

For afluid particle
v =0, (0.p)
T=G, (0.g.p.D)

and

le (e’g’p'D)

q

where, for al Q in ©(97)",

(4.10.50)

(4.10.51)

(4.10.52)
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QGy, (0.8,0.D)Q" =G (6.Qg,p.QDQ") (4.10.53)
and

Qly, (6.8,0.D) =1 (0.Qg.p.QDQ") (4.10.54)

In addition, GKX is an even function of g and in isan odd function of g. These conditions,
along with (4.10.53) and (4.10.54), make (}KX and iKX isotropic functions.

It is convenient in this case not to work with (4.10.24), (4.10.25), and (4.10.26) asin the
proof of (4.10.27) through (4.10.32). We shall work with the definition (4.10.11). Given the
thermodynamic restrictions derived in Section 4.7, it follows that & isthe set of linear

transformations H such that detH =1 and

ue (6.F)=u, (6,FH) (4.10.55)
Gy, (0.8.F.F)=G (0,8 FH,FH) (4.10.56)

and
I, (0.¢.F.F)=1, (6.g,FH,FH) (4.10.57)

for al (e,g,F,F) inthe domain of k, . Following the argument used in Section 4.4, we deduce a
necessary condition by taking

H=F*(detF)"” (4.10.58)
If (4.10.58) iis substituted in (4.10.55), (4.10.56) and (4.10.57), the results are

U, (60.F) =y (0.(cetF)”1) (4.10.59)

Gy, (0.8.F.F)=G, (0.g,(detF)"1,(detF)" L) (4.10.60)
and

I, (0.8, F.F)=1, (0,g.(detF)"1,(detF)”L) (4.10.61)
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where (2.2.24) has been used. Conversely, if (4.10.59) through (4.10.61) are assumed, then
(4.10.55) through (4.10.57) are satisfied for all H in & = /¢ (0)/ )+. Next, we must insure that
material frameindifferenceis satisfied. For the function Ug, equations (4.9.19), (4.9.20) and
(4.6.35) show that we must have

U (6,F)=uy (6,QF) (4.10.62)

Since detQF =detQdetF =det F, (4.10.59) shows that (4.10.62) is satisfied. If we use (3.1.12) to
defineafunction G, of (6,p) by

Oy, (6,0)=uy, (0,080 1) (4.10.63)

then (4.10.50) is established. Material frame indifferencefor G, istherestriction (4.9.30). From
(4.10.60), this restriction takes the form

T

Q(1)Gy, (0.8, (detF) 1, (cetF) L) Q(1) (4.10.64

=Gy, (0.Q(t)g,(detF)"1(detF)* Q(1)LQ(1) +(det )" Q(1)Q(1)")

By an argument similar to the one used in Section 4.9, wetake Q(t)=1 and Q(t)=-W in
(4.10.64). With (2.4.29) and (2.4.30), the result can be written

Gy, (e,g,(detF)J/sI,(detF)J/gL)zGKX (G,g,(detF)l/SI,(detF)l/gD) (4.10.65)
If thisresult is substituted back into (4.10.64), it follows that
QG (0.2,(detF)"1,(detF)* D)Q"
" " ] (4.10.66)
-Gy, (0.Qg,(detF)’1,(detF) Q(t)DQ(t)'
If we define G, by

GKX (60.82,0.D)=Gy_ (H,g,pfp’ml,p;/sp‘%D) (4.10.67)

then (4.10.51) follows from (4.10.60), (4.10.65), and (4.10.67). Equation (4.10.53) follows from
(4.10.66) and (4.10.67). The derivation of (4.10.52) and (4.10.54) follows by an identical
procedure.
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The function GKX isan even function of g because of (4.10.22). Likewise, iKX isan odd
function of g because of (4.10.23). Aswith the case of an isotropic solid particle, for the fluid
case the even and odd dependence on g follows from (4.10.53) and (4.10.54) if weuseall Q in
0(0)/) In order to verify this assertion simply take Q = -1 in (4.10.53) and (4.10.54).

Given (4.10.50), it follows from (4.7.15) that

3 a0, (6,
n=h (6.p)= —% (4.10.68)

for afluid particle X . Equation (4.10.68) is equivalent to (4.1.5). From (4.8.19) and (4.10.50), it
follows that

ou. (0,F)  aa. (6,
T = oF e, (0.F) _ P G (0,7 )F(a—”j (4.10.69)
OF op OF

From (3.1.12) and (2.2.29),

(a_pjT w{a(dem)l] =pR(detF)_2(a(detF)JT

oF OF oF (4.10.70)
= pp(detF) 'F* = —pF™*
With (4.10.70), (4.10.69) can be written
T =-xl (4.10.71)
where
oh, (0,
= p2M (4.10.72)
op

isthe hydrostatic pressure. Equation (4.10.72) is equivalent to (4.1.6). Asin Section 4.4, equation
(4.10.71) shows that the definition of afluid particle given hereis consistent with the intuitive idea
that afluid will not support a shear stress in equilibrium.

By arepresentation theorem first proven by Noll, (4.10.54) and the condition that iKX be an
odd function of g can be shown to yield

q=I (6.2,0,D)=(cl+oD+0,D’)g (4.10.73)
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where
o =0 (e,lD,||D,|||D,g-g,g-(Dg),g-(D2g)) (4.10.74)
for £=0,1,2 [Ref. 29]. Thelast six argumentsin (4.10.74) arethe six joint invariants of (g, D).

Exercise 4.10.7

Show that (4.10.73), along with (4.10.74), forces iKX to be an isotropic function.

In closing this section we shall indicate how one extends a symmetric property of aparticle
to that of abody. We have previously shown that if X and Y are materially isomorphic there exist
local reference configurations K, and J,, such that

Gk, = &, (4.10.75)

Definition. A body @8 is materially uniformif each pair of particlesis materialy
isomorphic.

We shall assumethat @8" is materially uniform in the remainder of these lectures.
Therefore, for each particle X there corresponds alocal reference configuration K, used to

establish the material isomorphism with any other particle. Following Noll, we define afunction
K on @8 by

K(X)=K, (4.10.76)

foral X in @8, were K, isthe materially isomorphic local reference configuration for X [Ref.

23]. Thefunction K iscalled auniformlocal reference configuration. Actually, not al materially
uniform bodies have a uniform local reference configuration as introduced here. However, in this
work we shall not complicate the discussion by considering such bodies [Ref. 24].

Giventhat @8 is materially uniform, an equation such as (4.10.2) holdsfor all pairs of
particles. Consequently, we can define afunction k. by

Ky (H,g,F,F) =k, (H,g,F,F) (4.10.77)

for all (6,g,F,F) inthe domain of k, . Because of (4.10.2), the function k, isindependent of

the particle. Thus, for amaterially uniform body thereis asingle function k, which determines

the response of every particlein the body. With an obvious change of notation, the reader can
easily use (4.10.77) to simplify the results in Sections 4.7 through 4.10 to the case of amaterially
uniform body. Animmediate simplification, which follows from (4.10.75), isthat for amaterially
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uniform body in its uniform local reference configuration there is a single symmetry group for the
body. We shall denote this group by & . Itiscalled the symmetry group for @8 relativeto K. It

should be clear to the reader that the definitions given earlier which involve the symmetry group of
aparticle X relativeto alocal reference configuration can be restated as definitions for a
materially uniform @8 by replacing "local reference configuration K, " by "uniform local

reference configuration K ", "particle X " by "body @' " and "particle” by "body".

Given areference configuration k for @8, we can select aparticle X and regard k asin
K, . For adifferent particle, k would bein adifferent local reference configuration. Given the

particle X and the corresponding materially uniform local reference configuration K(X) , We can

findak in K(X) and define alinear transformation P, in & (9;9) by [see (4.6.25) and
(4.6.29)]

P, =GRAD(kox (X)) (4.10.78)
We can carry out this construction for every X in @8 . Whileasingle k can be used for the body,

we could be forced to find a different x for each particle of the body. Without further
assumptions, there need not be asingle function k suchthat k isin K(X) forall X in@8. In

any case, by carrying out the above construction for every X in @8 we can define afunction
P —>&(907) by
P(X)=P, (4.10.79)

for every X in @8". Since there does not necessarily exist asingle function k such that x isin
K(X) forall X in @8, we cannot combine (4.10.78) and (4.10.79) to obtain afield equation

P(x*(-))=GRAD(kok™(+)) (4.10.80)

Given the reference configuration k , then from (4.6.27)

A

F(-,t)=GRADy,(.t) (4.10.81)

This equation is afield equation holding for every X in k(9. Givenan X in @ andak in
K(X), we can use (4.6.26), (4.10.79) and (4.10.81) to write

F(X,t)=(GRAD (X,t)|P(X) (4.10.82)

By constructing (4.10.82) at every X in @8, we obtain afield equation
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F(-t)=[ GRADy (k(-).t)[P(-) (4.10.83)
Because (4.10.80) does not hold, we cannot write afield equation
F(-,t)=GRADy, (x(-).t) (4.10.84)

Thus, we see from (4.10.83) the important fact that for a materially uniform body, the quantity F
in the argument of the response function k. is generally not a gradient of asingle function y,

defined on some subset of & . Thisfact givesrise to theories of continuous distributions of
dislocations [Refs. 22, 23].

Exercise 4.10.8

Consider an isotropic solid body in its undistorted uniform local reference configuration. By the
argument above, the strain is measured by the tensor B.. Show that for each X in k(28"), the

strain is measured by
B(f{,t) =GRADy, (X,t)G (X)GRAD e (5<,t)T (4.10.85)

where G(f() is apositive definite symmetric linear transformation. How is G(f() related to
P(-) in(4.10.83)?

Clearly, some formal simplification would arise if we could adopt (4.10.80) and thus
(4.10.84). Whenever there exists asingle reference configuration k such that k isin K(X) for

al X in @8 the materially uniform body @8" is said to be homogeneous. Thus, itisfor
homogeneous materially uniform bodies that (4.10.84) holds. It follows from (4.10.77) and
(4.10.84), that the constitutive equations for a materially uniform homogeneous body are

(v (0 (-1),T(1).a(-1))

: (4.10.86)
=k (0, (1) 8(+t).GRAD, (,),GRAD, (1) )

Equation (4.10.86) holds for every X in k(24'). Thesinglefunction k, characterizes the
response of each particle of the materially uniform, homogeneous, body.

This textbook is concerned with the introduction of awide variety of concepts which arise
in continuum mechanics. Not all of these concepts will be exploited here. In particular, in the
remainder of thiswork we shall only be concerned with materially uniform homogeneous bodies.

4.11. Constitutive Equations for a Compressible, Conducting, Viscous Fluid
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From the results of Section 4.10, for afluid body we have

w = Uy (e,p)

T=-71+Gj (6,2 p.D)
and

q=1(0.2,p.D)

185

(4.11.1)

(4.11.2)

(4.11.3)

(4.11.4)

where C}f( and fK areisotropic functionsand 7 isgiven by (4.10.72). The defining properties for

isotropic functions are
QG (0.2,0,D)Q" =G (6.Qg,0,.QDQ" )
and
Qi (6.g.0.D)=1(6,Q2,0,QDQ")
foral Q ino(97), and
G (0,g,0,D)=Gg (0,~g p,D)
and
I, (6,g,p.D)= 1, (6,—g,p,D)
Because of (4.7.27), we must have
tr(G (0.8,0,D)D)-g I (6,8,0.D)/0>0
From the results of Section 4.8 [see (4.8.14) and (4.8.15)], it follows from (4.11.9) that
G (6,0,0,0)=0

and

(4.11.5)

(4.11.6)

(4.11.7)

(4.11.8)

(4.11.9)

(4.11.10)
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1,(6,0,0,0)=0 (4.11.11)
Of course, (4.11.11) is automatically satisfied by the stronger result

1, (6,0,p,D)=0 (4.11.12)

which follows from (4.11.8) evaluated at g =0 .

Given theresults (4.11.1) through (4.11.12), in this section we wish to speciaize the
constitutive equations to the case where the departure from equilibrium is small. This argument
will produce (4.1.3), (4.1.4), (4.1.7), (4.1.8), and (4.1.9). For one-dimensional materials, Section
1.9 contains a calculation similar to the one given here. If we define a nonnegative number o by

a’=g-g+trD? (4.11.13)

it followsthat « =0 if andonly if D=0 and g =0. Consequently, « measures the departure
from the equilibrium state. It follows that

0G, (6,0,p,0)

Gi (0.8,9:D) =G, (0.0,p,0)+ 22220

) (4.11.14)
9G (0,0,,0)

oD

+

[D]+O(a2)

and

T . a1, (0,0,p,0)  01.(6,0,p,0
I (6.2,0,D)=1,(6,0,p,0)+ K(ag )g+ K(al) )

[D]+0(a?) (4.11.15)

From (4.11.10) and (4.11.11), the leading term in each expansion is zero. In addition, it follows
from (4.11.7) that

Gy (0.2,0.D) _ 3G, (6,-g,p,D) (4.11.16)

and, from (4.11.12), that

=0 (4.11.17)

These two equations imply that
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6G, (6,0, p,0)

0 (4.11.18)
og
and
1
o (6.0,0.0) o (4.11.19)
oD

Therefore, the expansions (4.11.14) and (4.11.15) simplify to

Gy (6..p.D)=A(0,p)[D]+0(a*) (4.11.20)
and
I, (6.8.0,D)=-K(0,p)g+0(a’) (4.11.21)
where
A(6,p)= a(;K(gi)o,p 0) (4.11.22)
and
K(0,p)= _aiK(eé—(g),p,o) (4.11.23)

The coefficients A (6, p) and K (8, p) must also satisfy the restrictions implied by (4.11.5) and
(4.11.6). It follows from (4.11.20) and (4.11.5) that A (&, 0) must obey

Q(A(6,p)[D])Q" =A(6,p)[QDQ"] (4.11.24)

foral Q in ©(9")" and al symmetric linear transformations D .. It follows from (4.11.6) and
(4.11.21) that K (6, p) must obey

QK (0,p)=K(6,p)Q (4.11.25)

foral Q in ©(97) . Equation (4.11.24) showsthat A (0, p) isafourth-order isotropic tensor.
Equation (4.11.25) shows that K(@,p) is a second-order isotropic tensor. Asshown in Appendix
B, A(8,p)[D] takestheform
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A(6,p)[D]=2(6,p)(tr D)1 +2u(0,p)D (4.11.26)
and K (0, p) takestheform
K(6,p)=x(8,p)I (4.11.27)
Equations (4.11.26), (4.11.20), and (4.11.3) combine to yield
T=—z1+4(0,p)(trD)1+24(6,p)D+0(c*) (4.11.28)
Equations (4.11.27), (4.11.21) and (4.11.4) combineto yield

q=-x(0,p)g+0(a’) (4.11.29)

Clearly (4.1.3) follows from (4.11.28) by neglecting the terms O(a?). Likewise, (4.1.4) follows

from (4.11.29) by neglecting the terms O(az). If (4.11.28) and (4.11.29) are substituted into
(4.11.9), the result can be written

(2(6,p)+21(0,p))(tr DY +2u(0, p)tr(D-1(trD)I)’

+—K(Z’p)g~g+0(a3)20

(4.11.30)

In the same way that (4.8.2) implies (4.8.22), (4.11.30) yields (4.1.7), (4.1.8), and (4.1.9). Because
of theterms O(°) in (4.11.30), (4.1.7), (4.1.8), and (4.1.9) are not equivalent to (4.11.30).

However, if the linearized theory happens to be exact, the terms O(az) in (4.11.28) and (4.11.29)
do not appear. In thiscase, we obtain

(2(6,p)+21(0,p))(tr DY +2u(0, p)tr(D-1(trD)I)’

+@g~g20

(4.11.31)

instead of (4.11.30). Equation (4.11.31) isequivalent to (4.1.7), (4.1.8), and (4.1.9) because each
termin (4.11.31) is algebraically independent of the others.

Exercise 4.11.1

Neglect O(a”) termsin (4.11.28) and (4.11.29) and derive (4.1.18) and (4.1.20).
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Exercise 4.11.2

Given (4.11.1), (4.11.2), and (4.10.72), change variables from (&, p) to (77, p) and show that

e=¢(n.p) (4.11.32)
p-2201:p) (4.11.33)
on
and
= pzM (4.11.34)
op

where, for notational simplicity, the function whose valueis & has aso been denoted by ¢.
Exercise 4.11.3

The enthalpy density y and the Gibbs function ¢ are defined by

y=e+2 (4.11.35)
o,
and
C=p+2 (4.11.36)
0
respectively. Show that
x=x(mr) (4.11.37)
ox(n,
o= 22(1:7) (4.11.39)
on
1_ox(n.x) (4.11.39)
P or

§=¢(0,7) (4.11.40)
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¢ (0,7)
_ 41141
. - ( )
and
1_%(0.7) (4.11.42)
P or
Exercise 4.11.4
Show that
oz(n.p) _ 7 06(1.p) (4.11.43)
on op
o—(n,x
ae(n,fz): ,0( ) (4.11.44)
or on
0r(0.p) __ 2 n(0:p) (4.11.45)
00 op
and
1
o—(0,x
on(0.x) ,0( ) (4.11.46)

Equations (4.11.43) through (4.11.46) are examples of Maxwell relations in thermodynamics.
Exercise 4.11.5

By suitable changes of variables one can obtain
e=¢(6,p) (4.11.47)

and

x=x(0.7) (4.11.48)

Show that
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L 06(0.p) __,0m(0.p) (4.11.49)
and
1
8—(6’,7[)
ox(0r) 1 g P (4.11.50)

Exercise 4.11.6

The specific heat at constant volume, ¢, , and the specific heat at constant pressure, ¢, are defined
by

0(0,p)
_oe\bp) 41151
RV (LS
and
- 0x(0.7) (4.11.52)
00
respectively. Show that
2
_g2n0p) __4ov(0.p) (4.11.53)
00 00
on(0,x 0% (0,7
¢~ 0 77;0 )_ 56(92 ) (4.11.54)
ac, (6, p 0 0°z(0,p
((3 ):__2# (4.11.55)
P p- 00
1
?=(0,x
ac, (0.7) _ _QL (4.11.56)
or 06°
1
8—(9,7[)
o (6,p)
Ce—p P 41157
&%~ G 00 00 ( )

and
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o (1, p) :&67:(0,,0)

(4.11.58)
op G Oop

Equations (4.11.49), (4.11.50) and (4.11.55) through (4.11.58) are useful in thermodynamics when
oneis given athermal equation of state (6, p).

In the next collection of exercisesthe fluid is assumed to be nonviscous and a
nonconductor. Therefore, it isto be assumed that

A=u=x=0 (4.11.59)
These assumptions reduce (4.1.18) and (4.1.20) to

ok =—grad (4.11.60)

and
PO =0 (4.11.61)

where, in addition, we havetaken b and r to be zero. Equation (4.11.61) shows that the motion is
isentropic, i.e., the entropy density does not change for a particle along its path. However, =0

implies 7 = n(X) and entropy changes from particle to particle are allowed. If, in fact, the entropy
density is constant, then the motion is said to be homentropic.

Exercise 4.11.7
Show that (4.11.60) can be written

Xx=—grad y +@gradn (4.11.62)
Exercise 4.11.8

Use (4.11.60), (4.11.61) and any necessary thermodynamic identities to show that

(z+15%) :%%’z (4.11.63)

The combination y +1x” is called the stagnation enthalpy. Equation (4.11.63) showsthat itisa
constant along particle paths in steady flow problems.

Exercise 4.11.9
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Show that an alternate form of (4.11.62) is

%+grad(;(+%xz)+zwxzegradn (4.11.64)

For steady motion, (4.11.64) is known as the Crocco-Vazsonyi theorem. In gasdynamics, this
theorem is used to establish that an irrotational flow (W = 0) does not remain irrotational when it

passes through a curved shock wave.

Exercise 4.11.10

In Appendix A, the curl of avector field was not defined. If g(x) isavector field, itscurl isa
vector field defined by

(curlg(x))xu=(gradg(x))u—(gradg (x))T u (4.11.65)

foral u in & . Equation (4.11.65) yields the following component formula:

curl g(x)=—¢; (4.11.66)

For example, the definition (4.11.65) allows usto write theterm 2Wx in (4.11.64) in the form
{xx = 2Wx (4.11.67)
where { isthe vorticity vector defined by
¢ =curl x(x,t) (4.11.68)

Utilize the definition of the curl and show that
curl X =grad@xgradn = —gradlxgradﬂ (4.11.69)
o

Exercise 4.11.11

Use (2.2.12) and (3.1.14) and show that

5

curl x = p( -L¢ (4.11.70)
Yo

N—
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and, as aresult,

p[F‘lij =F'curl x (4.11.72)
Y2

Equation (4.11.70) is known as Beltrami's equation. When combined with (4.11.69) it yields the
vorticity equation of Vazsonyi. For a homentropic flow, (4.11.69) and (4.11.71) yield

ot (4.11.72)
Yo,
where { isthevorticity in the reference configuration. If £, =0, then the resulting flow is
irrotational.
Exercise 4.11.12
If the velocity field x isgiven by

x(x,t)=gradg(x,t) (4.11.73)

where ¢ isthe velocity potential, then an elementary cal culation shows that c(x,t) =0. Given

(4.11.73), assume the flow is homentropic and derive the following compressible Bernoulli
equation:

%Hﬁ% 2—C (4.11.74)

where C isaconstant.
Exercise 4.11.13

Show that the velocity potential ¢ isasolution of

2
a’Ag = % +2gradg- grad% +gradg- {(grad (oradg))grad ¢} (4.11.75)
where a’ isthe squared speed of sound defined by

42 97(n.p)

(4.11.76)
op
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4.12. Constitutive Equations for an Isotropic Linear Thermoelastic Solid with Heat
Conduction

If we omit the dependence on F in the constitutive assumption (4.6.34), then from the
results of Exercise 4.7.1 and from those of Section 4.10, it follows that for an isotropic solid body
in its undistorted uniform local reference configuration we have

y =0 (6,B) (4.12.1)
n =" (6,B)= _ 0 (0.B) (4.12.2)
20

T=G,(6,B)= ZpBw (4.12.3)

and
q=1(0,g,B) (4.12.4)

where

(y (6.B) =y (6,QBQ" ) (4.12.5)

and
QI (0.2.B)=1(6.Qg,QBQ") (4.12.6)

foral Q in @(97) . Inaddition, I, isan odd function of g. For the case under discussion, the

condition which correspondsto (4.10.31) is automatically satisfied because of (4.12.5) and
(4.12.3). The proof of this assertion is essentially the same as the proof that (4.3.24) implies

(4.3.25). From (4.7.21), the function 1. in (4.12.4) isrestricted by
—g-TK(H,g,B)/é’ZO (4.12.7)
In the case under discussion (4.8.14) is equivaent to

1.(6,0,B)=0 (4.12.8)

Equation (4.12.8) is also implied by the fact that I, isan odd functionof g .
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Given the results (4.12.1) through (4.12.7), in this section we wish to specialize the
constitutive equations to the case where the displacement gradients, temperature gradients, and
temperature variations are small. Thisargument will produce (4.1.25) through (4.1.29). In
carrying out this derivation, it is algebraically more convenient to utilize the function U, in
(4.12.1) rather than the function uj, in (4.10.43). We shall carry out the speciaization in two

distinct steps. First we define a positive number o by
a® =%tr(B—I)2 +g-g+(t9—<90)2 (4.12.9)

where 6, isaconstant. From its definition, « =0 if andonly if B=1, g=0 and #=6,. Asa
first step, we shall derive approximate formulasfor w, T, and q valid for small « . The next step

involves regarding B to be afunction of H [see (2.4.14)] and then deducing an approximate
relation for B intermsof H. The resulting approximate equations will be (4.1.25) through
(4.1.29).

By expansion of (4.12.1) about the state B=1 and & =6, , it follows that

~

v = aK(90,1)+w(9_go)w(%w_l)};a Gy (6,,1)

2 06

+tr(M(B—I)j(9—90)+%tr[[w[B—l]J(B—I)]+O(a3)

060B OB?

(‘9 - 90 )2
(4.12.10)

From (4.12.5), it follows that the tensor coefficientsin (4.12.10) must be isotropic. It then follows
from the same arguments which produced (4.11.26) and (4.11.27) that the tensor coefficients have
the representations

Ay (6,.1)
2 K \~0 =—pl 41211
LR B P ( )

Al (6, T)
- _8I 4.12.12
R 000B d ( )

and
on

o P )81 2(8-1) (41213

where p, S, A,and u areconstants. In order to smplify the notation somewhat, we aso define
constants 7, and ¢, by
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Ay (6y,1)
—_ 4.12.14
o 20 ( )
and
0°0y (6,,1
c,= —90% (4.12.15)

Given (4.12.11) through (4.12.15), we can rewrite (4.12.10) as

PrY = PR ('9011)_:0R770(0_ Ho)_% ptr (B _I)_ /;Tgcv (9_ 90)2
; 0 (4.12.16)

—1pt(B —I)(¢9—<90)+E(tr%(B—I))2 +%,utr((B —1)2)+o(a3)

From equations (4.12.16) and (4.12.2),

Prll = Prllo +pRCV[0;90}+%ﬂtr(B—I)+O(a2) (4.12.17)
0
It also follows from (4.12.16) that
pR%g’B) =—3pl-18(0-6,)1+3A(tr(B-I))I+3u(B-1)+0(ca’) (4.1218)

By use of (3.1.12) and (2.4.2), equation (4.12.3) can be written

%0 (6.B)

T=2p,(detB)"’ (4.12.19)

Exercise 4.12.1
Show that

(detB)"* =1-1tr(B-1)+O(a?) (4.12.20)
If (4.12.18) and (4.12.20) are substituted into (4.12.19), theresult is

T=-pl+3(1+p)(tr(B-1))I+(u-p)(B-1)-B(0-6,)1+0(a’)  (4.12.21)
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The isothermal version of (4.12.21) is the earlier result (4.4.52). Equation (4.12.17) shows that 7,
isthe entropy density inthe state B=1 and € =6,. Equation (4.12.21) showsthat p isthe
pressureinthestate B=1 and 6 =46,.

From (4.12.4) and (4.12.8), it follows that

q =(ﬁ"(+;’0’l)g+0(a2) (4.12.22)

Because of (4.12.6), the tensor ol (6,,0,1)/0g isasecond-order isotropic tensor. It then follows
that

ol (6,,0,1
M =—xI (4.12.23)
g
Therefore, (4.12.22) can be rewritten
q=-xg+0(ca?) (4.12.24)

If (4.12.24) is substituted into (4.12.7), the result can be written

K
K g.g+0(a?)20 4.12.25
PR («°) ( )

Thisresult implies
k>0 (4.12.26)

However, (4.12.26) does not imply (4.12.25) unlesstheterm O(a?) in (4.12.24) is omitted.

If the terms O(a?) in (4.12.17), (4.12.21), and (4.12.24) are omitted, the resulting

equations correspond to atheory of thermoelasticity whichislinear in 6 -6, and B—1. From

(2.4.14), B-1 isanonlinear function of H. In order to bring equations (4.12.16), (4.12.17),
(4.12.21), and (4.12.24) closer to (4.1.25) through (4.1.28), we shall now define a positive number
o by

o’ =trHH +g-g+(0-6,) (4.12.27)

If 0=0,itisnecessary and sufficientthat g=0, #=6,,and H=0. Since H hasthe
representation (2.5.17), H=0 implies E=R =0. Thus, asmall o corresponds to small
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infinitesimal strains, small infinitesimal rotations, small temperature gradients, and small
temperature variations. It followsfrom (2.5.11) that

B=I+2E+0(o?) (4.12.28)
It follows from (4.12.28), (4.12.27), and (4.12.9) that
a*=0(c?) (4.12.29)
and, asaresult,
O(a*)=0(c?) (4.12.30)

If we use (4.12.28) and (4.12.30), equations (4.12.16), (4.12.17), (4.12.21), (4.12.24), and (4.12.25)
become

~ ~ C
PrY = PrUK (‘9011)_,0R770 (9_90)_ ptrE—'OZLQV(H—HO)Z
0 (4.12.31)

- B(trE)(0-0,)+ 2 (E) + ute(E) +0(o%)

Pell = Pelle + PrCy (@] +BtrE+0(o?) (4.12.32)
T=-pl+(1+ p)(trE)I+2(u- p)E-B(0-6,)1+0(c?) (4.12.33)
q=-xg+0(c?) (4.12.34)
and
Hﬁog.g+o(a3)zo (4.12.35)

Given (2.2.21), (2.5.18), (3.2.27), (3.4.18) and (4.6.14) it follows that

T, =T+ p[HT —(trE)I]+o(az) (4.12.36)

4r=q+0(0?) (4.12.37)

and
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GRAD@ =g+0(o?) (4.12.38)
Therefore,
To=-p(I-H" )+ A(trE)1+2(u- p)E- B(0-6,)1+0(c?) (4.12.39)
and
qr =-xGRAD+0(c?) (4.12.40)

Equations (4.1.25) through (4.1.28) follow from (4.12.31), (4.12.32), (4.12.39), and (4.12.40) by
omitting the terms O( o), by selecting the datum for the free energy density to be such that

A

U, (6,,1)=0, by selecting the datum for the entropy density to be such that 7, =0 and, finally,
by assuming the undistorted state is a natural state,i.e. p=0.

Exercise 4.12.2

Use (4.10.44) and show that
-p=0,(6,,3.31)+,(6,,3.31)+,(6,,331) (4.12.41)
A+p=2 0,9 , 0 (a+a,+a,) (4.12.42)
olg 201, allly 0=0,1,=3
p=3,1l5=1
u—p=a(6,331)+2a,(6,,331) (4.12.43)
and
—ﬂ:i(a +a,+a,) (4.12.44)
00 % Tt T g1,
g=3,111=1
Exercise 4.12.3
Show that the linearized equations of motion and energy take the forms
PrW = (A + 1) GRAD(Divw)+(x— p)Aw - BGRAD ¢ (4.12.45)

and
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PrC,O+ B0, Divw = kAO (4.12.46)
Exercise 4.12.4
Show that
P (W +71(0+6,)) = peli (G 1)~ P E+ 25 (0- g, + 2 (r E)’
20, 2 (4.12.47)
+,utI’(E)2 +O(0'3)

Exercise 4.12.5
Use the result (4.12.47) and show that (3.5.17) reducesto

%R .ds (4.12.48)

0

%L(U))(mng)dv < a.c(m)w'((TR + pI)dS)_SBaK(w)

where

> =%(9—90)2 +%(trﬁl)2 +utr(E) (4.12.49)
0

and terms O(o°) are dropped. The inequality (4.12.48) is the three dimensional version of the
inequality which follows from (1.11.23) by noting that « >0 in (1.11.23)

Exercise 4.12.6

Use the result of Exercise 4.12.5 and prove that for an isolated body the total energy decreasesin
time. Thisassertion isarough statement of a precise theorem in thermoelasticity. It isrough
because one must provide definitions of an isolated body and of total energy.

Exercise 4.12.7

In Exercise 1.11.10 it was pointed out how an energy argument implies unigqueness of certain types
of initial-boundary value problemsin one-dimensiona thermoelasticity. The three-dimensional
version is due to Wiener and was published in 1957. Asin Section 1.11, one must make certain
assumptions about the material constants. These assumptions are restrictions which are not
provided by the second law of thermodynamics. For the three-dimensional theory, these
restrictions follow from the requirement that ¥ in (4.12.49) is a positive definite function of  and

E . Show that this assumption implies that

c,>0 (4.12.50)
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A+2u>0

and

u>0

Chapter 4

(4.12.51)

(4.12.52)

A full discussion of uniqueness in thermoelasticity can be found in Ref. 30. Stability argumentsin

thermoelasticity are discussed in Ref. 31.
Exercise 4.12.8
Decouple (4.12.45) and (4.12.46) (with p=0) and show that & and w obey

2 2
%(ZT?— ”A@]— chV A(Zt—f—a%e] -0
R

and

2 2 2
g(a—z—aﬂAj— K A(a—z—azA] (a—z—ﬁAJw=0

where a istheisothermal longitudinal wave speed defined by

a2=i+2,u
Pr

a istheisentropic longitudinal wave speed defined by

a’ =i(l+iﬁ2 + Zy]
Pr Pr

Theratio u/py isthe squared transverse wave speed. Equations (4.12.53) and (4.12.54)

(4.12.53)

(4.12.54)

(4.12.55)

(4.12.56)

generalize to three dimensions the result (1.11.14). They generalize to thermoel asticity the result
(4.4.58). Equations (4.12.53) and (4.12.54) werefirst obtained by Cristeain 1952 [Ref. 30].
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MATERIALS WITH INTERNAL STATE VARIABLES

So asto illustrate a continuum model which possesses a rel axation phenomena, this chapter is
concerned with aclass of materials known as materials with internal state variables. Such models
have been found to be useful in alarge number of cases. They turn out to contain the Maxwellian
material and the Maxwell-Cattaneo heat conductor mentioned in Section 1.7. The mathematical
model of arelaxing gasis another example [Ref. 1]. Roughly speaking, one introduces additional
"state variables' and requires that they obey a constitutive relation of the form of an ordinary
differential equation. Depending upon the phenomenato be analyzed, the state variables have
many different physical interpretations. Admittedly, in some cases, the physical interpretation of
the state variables can be vague. One example where thisis not the case, is when one wishes to
model a chemically reacting mixture without diffusion. It turns out that the equations of balance
given in Chapter 111 remain valid in this case. In addition, one has additional equations of balance
which gives the exchange of mass between the constituents. In this model, the state variables are
called "extents of reaction” and measure the progress of the independent chemical reactions taking
place in the mixture. Background on this particular model of a material with internal state
variables can be found in References 2 and 3.

The fundamental results for materials with internal state variables are presented in Section
5.1. With few exceptions, the resultsin Section 5.1 are taken from References 4 and 5. Section 5.2
shows how the resultsin 5.1 can be specialized so as to obtain the model of a Maxwell-Cattaneo
heat conductor. Section 5.3 contains a brief discussion of Maxwellian materials. Finaly, Section
5.4 contains a discussion of several proposals for an entropy inequality which generalizes equation
(3.5.8).

5.1.  Constitutive Assumptions and Thermodynamic Results

The internal state variable shall be represented by the following R-tuple:
§=(& & &) (5.1.1)
It is assumed to be given by the function =_of (X, t) such that
§=2,(X, 1) (5.1.2)

The explicit tensor character of the state variable is not important at this point. Its components
could be components of vectors or tensors or, as in the chemical reaction cases, they are convenient
collections of scalar quantities.

A thermodynamic process for a material with internal state variablesis the set consisting of
the three functionsé__,y,.,and =, and the seven functions of (X,t) whose valuesare

207
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v,n,T,q,p,r, and b which satisfy balance of mass (3.1.12), balance of linear momentum (3.2.20),

and balance of thermodynamic energy (3.5.20). The constitutive equations which define the
material to be studied here are generalizations of the onesintroduced in Section 4.6. It isassumed
that

(w1, T.q.8)=1(0.8,F.5.2) (5.1.3)

The reader can see that (5.1.3) allows for the same effects presented in the model analyzed in
Chapter 1V. Inaddition y,n, T, andq are allowed to depend in a general way on the internal state

variable &. Thisquantity is, in turn, given by arelaxation rate law of the general form
¢=o(0,g,FF5) (5.1.4)
Equation (5.1.4) is a consequence of (5.1.3) and our defining the component functions of f by
f=(uhG,10) (5.1.5)

For notational simplicity, the dependence of f on the reference configuration and the particle has
not been shown explicitly in equations (5.1.3), (5.1.4), and (5.1.5). If necessary, the reader can
make such dependencies explicit as was done in Chapter V.

By definition, an admissible thermodynamic process is a thermodynamic process which is
consistent with the congtitutive assumption (5.1.3). Asin Sections 1.8, 4.2, and 4.6, one can next
prove atheorem to the effect that certain functions can be selected arbitrarily in the construction of
admissible thermodynamic processes. In the case under discussion, we must make a technical
assumption prior to the statement of this theorem. The assumption isthat the ordinary differential
equation (5.1.4) subject to the arbitrary initial condition

=, (X,1)=¢, (5.1.6)

has an unique solution on someinterval [t ,t, +0] whered isapositive number. This assumption
isassumed to hold for al 6_,y,,and&,. Asaconsegquence of thisassumption, it isnow true that

for every choiceof 0,y ,and&, thereexistsaunique admissible thermodynamic process. The
proof of this assertion is the same as the corresponding assertion in Sections 1.8, 4.2, and 4.6.
Given 0_,y,,andg, then =_ can be calculated from (5.1.4). Equation (5.1.3) determines
wv,n,T,q. Given thisinformation, p can be calculated from (3.1.12), b can be calculated from
(3.2.20) and r can be calculated from (3.5.20). Asearlier, the reference density p, isregarded as

given. Asthe reader should have anticipated, we shall require that balance of angular momentum
(3.3.10) and the entropy inequality (3.5.15) hold for every admissible thermodynamic process. The
symmetry of the stress tensor is achieved by selecting G to have symmetric values. The
restrictionsimplied by (3.5.15) shall be examined next.

Given (5.1.3), it follows that
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w=u(0.g,F,F) (5.1.7)
and, as aresult,
T T
W:@9+a—u-g+tr M | —6-& (5.1.8)
06 og OF OF
where o isthe R-tuple defined by
ou(6,g,F,F,
o OBFFE) (5.1.9)
23
and, in addition,
. R .
c-§=Y 0., (5.1.10)

In theories of chemical reactions, ¢ isknown asthe chemical affinity. Here, we shall refer to it
simply as the affinity. We shall see later that it is an important parameter for internal state variable
models. Given (5.1.8), theinequality (3.5.15) becomes

ou . 0u ou’ .. : ou').
—p| —=+h|0-p—-g-ptr| — ¥ |+pc-E+tr| F'|G-pF— |F |-1-g/0>0(5.1.11
p(ae j Pog 87F [aF JPG% ( ( paF] J g (5.1.11)

where the argument of each function is (H,g,F,F,F,) . By an argument similar to the one used in
Section 4.6, (5.1.11) yields

w=u(6,F,E) (5.1.12)
n=h(6.F,&)=- U F8) (5.1.13)
00
and
ps-%+tr(F'l(G—pFZ—;TjFJ—I-gIHZO (5.1.14)

Exercise 5.1.1

If the response functions are independent of F show that (5.1.14) implies
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: ou(6,F,&)"

T:G(@,F,g)zpF% (5.1.15)

and
pe-&—1.g/0>0 (5.1.16)

Exercise 5.1.2
If, in addition, the response functions are independent of g show that (5.1.16) yields

q=0 (5.1.17)

and
p6-& >0 (5.1.18)

In Section 4.8 we defined a thermodynamic equilibrium state as the state where
g=0andF=0. Inthis state, we were able to extract additional information from the residual

entropy inequality because the function defined by (4.8.1) was a minimum at the thermodynamic
equilibrium state. We now wish to extend the argument of Section 4.8 so as to apply to the
material defined by (5.1.3). The residual entropy inequality is (5.1.14). Therefore, we define a

function ® of (0,g,F,F,&)

.
d)(é’,g,F,F,i)sz-&Hr(F'l[G—pFS—; jFJ—l-g/GZO (5.1.19)

This function has the property that

®(0,g,F,F,£)20 (5.1.20)

for al (49, g,F,F,g) in the domain of the constitutive functions. Unfortunately, the function ® does
not vanish in the state (6,0, F,0,&). We have the slightly more complicated situation where one
must characterize the thermodynamic equilibrium state by requiring the terme-& to vanishin
addition to g and F being zero. In theories of chemical reactions w(@,g,F,F,F,) is the chemical

reaction rate. Therefore, it isreasonable to require o to yield azero valuein the state called the
thermodynamic equilibrium state. Following Truesdell, we shall call astate (¢*,0,F*,0,&") such

that

©(6",0,F,0,&")

0 (5.1.21)
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a state of weak thermodynamic equilibrium.[Ref. 6, Chap. 6] On the assumption that such a state
exists, (5.1.19) yields

®(6,0,F",0,£")=0 (5.1.22)
Therefore, in a state of weak thermodynamic equilibrium,

dO (0" + A, 20, F" + 10, AAE* + A7)
dA

=0 (5.1.23)

L:O

and
00 (0" +Ae, 20, F' + 20, 2AE + A7)
dA

>0 (5.1.24)

L:o

for al real numbers o, al vectors a, all linear transformations J and A and all R-tuples.

Exercise 5.1.3

Show that (5.1.23) implies that

00 (67,0, F*,0,8")

o(0F &) ~ =0 (5.1.25)
(0" F &) 8&)(0+,0(,3FF 0.8) =0 (5.1.26)

0w (0,0, F",0,&"
o8

) (0 F",&)=0 (5.1.27)

0 (07,0,F*,0,8")

1(0°,F,0,8")=p"6(6°,0,F",0,&"): o

(5.1.28)

and
ou(6,0, &%)’
OF

oo (6",0, F,0,&")
oF

G(0°,0,F"&")=p'F" ~6(0",F",0,&")- (5.1.29)

Relative to the results of Section 4.8, equations (5.1.28) and (5.1.29) might be unexpected. We
cannot conclude that the heat flux vanishes and that the stress is determined by the free energy



212 Chapter 5

density whenever the material isin weak thermodynamic equilibrium. If, however, the equilibrium
state is such that

c(6F",&")=0 (5.1.30)

in addition to (5.1.21), then (5.1.25), (5.1.26), and (5.1.27) are satisfied, and (5.1.28) and (5.1.29)
reduce to results similar to those in Section 4.8. Again following Truesdell, the state

(6",0,F*,0,&" ) such that both (5.1.21) and (5.1.30) hold is called a strong thermodynamic

equilibrium state [Ref.6, Chap.6]. Equation (5.1.27) contains the important result that a weak
equilibrium state is necessarily astrong oneif the Rx R matrix 80)(9*,0,?,0,&*)/8& isregular.

In chemistry a state where the reaction rate vanishes and the chemical affinity does not iscaled a
false equilibrium state [Ref. 7].

We now see that without additional assumptions aweak equilibrium state is not necessarily a

strong equilibrium state. It is also interesting to question whether or not the vanishing of the
affinity implies anything about the function . We assume that there exists a state (¢',0,F’,0,&')

such that
6(6,F,&')=0 (5.1.31)
Given (5.1.31), it is necessarily true that

d®(0'+Acr, Aa,F'+ A3, AAE + An)|

0 (5.1.32)

dz o
4°0 (0" +Act, A, F+ A3, AAE +m)| . 5133
. o

Exercise 5.1.4
Show that (5.1.32) implies that
M.w(g’o, F,0,5)=0 (5.1.34)
06

M.w(g’o, F,0,&)=0 (5.1.39)

oF
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o6(0',F,&)

% -®(6,0, F,0,5')=0 (5.1.36)

1(6,0, F,0,£')=0 (5.1.37)
and

ou(6',0, F,g")’

G 6', 0, F', N\ = p'F'
( )=r OF

(5.1.38)

The state (6',0,F’,0,&") such that (5.1.31) is satisfied is another candidate for the name

equilibrium. This alternate definition is appealing since, in this state, the heat flux vanishes and the
stress is determined by the free energy density. However, as (5.1.34), (5.1.35), and (5.1.36)

indicate, the relaxation rate m(@’,O,F’,O,é‘,’) need not be zero. Equation (5.1.36) contains an
important result. It asserts that the vanishing of the affinity when g and F are zero implies
©(6,0,F,0,&') that must vanish if the Rx R matrix de (&', F',&")/ % isregular. It follows from
(5.1.9) that

o6(0,F,&) 0°u(6,F,§)

@ (5.1.39)

and, thus, de /g isasymmetric matrix. In chemistry, achemical reaction which takes place with
azero chemical affinity is called a spinodal decomposition. For many of the classical applications
of this subject, the symmetric matrix oo (49, F, 2;)/82‘, is taken to be negative definite and, thus,

regular. In summary, the formulasin Exercises 5.1.3 and 5.1.4 combineto tell usthat if at a state
©(6,0,F,0,%) both of the Rx R matrices dw(6,0,F,0,5)/6& and oo (6,F,§)/0E areregular, then

the vanishing of ¢(6,F,§) is equivalent to the vanishing of (6,0,F,0,§) .
In the applications, it is frequently assumed that (5.1.9) can be inverted to obtain
£=£(9,F,o) (5.1.40)

This equation alows for the elimination of & infavor of ¢ asan independent variable. For
example, (5.1.4) can be replaced by

E=6(0,2FFo) (5.1.41)
where

®(0.g.F.F,6)=0(0,g F.F.£(0.F,c)) (5.1.42)
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Theinversion leading to (5.1.40) forcesthe Rx R matrix de(6,F,&)/ ¢ to beregular for all
(6,F,§) inthedomain of . Thus, the results of Exercise 5.1.4 tell us that

&(6,0,F,0,0)=0 (5.1.43)
Exercise 5.1.5
Define functions 4, G,and 1 by
G(0,F,0)=u(0,F.£(0,F,0)) (5.1.44)
é(e,g,F,F,c)=G(e,g,F,F,%(@,F,c)) (5.1.45)
and
i(e,g,F,F,o):l(e,g,F,F,%(e,F,o)) (5.1.46)
Show that
G(6,0,F,0,0)= pF@T (5.1.47)
and
1(6,0,F,0,0)=0 (5.1.48)

Equations (5.1.43), (5.1.47), and (5.1.48) show that departures from thermodynamic equilibrium
aremeasured by g,F and . For aprocesswith g =0 and F =0, the relaxation process is driven

by the affinity. This statement is often argued by analogy with heat conduction models where the
heat flux is driven by the temperature gradient. In any case, it must be stressed that the inversion
leading to (5.1.40) was essential to the argument leading to (5.1.43), (5.1.47), and (5.1.48).

The concept of shifting equilibriumisimportant in applications of internal state variable
models. A thermodynamic processisin shifting equilibriumif ¢ =0 for all time t. Inthiscase

the state variable is determined from (6,F)by
£=£(6,F,0) (5.1.49)

aresult which follows from (5.1.40). In certain specia cases, the shifting equilibrium case arises as
a consequence of relaxation processes which occur very fast relative to other characteristic timesin
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themodel. A material with interna state variablesisfrozenif & does not changeintime. This
caseis achieved formally by taking the response function ® in (5.1.4) to be zero. The frozen
assumption simply reduces the model defined by (5.1.3) to the one analyzed in Sections 4.6
through 4.12. The frozen case can be viewed as arising from the assumption that the relaxation
processisinfinitely slow. Inthissense, it isthe opposite extreme from the shifting equilibrium
case discussed above.

Exercise 5.1.6

Show that
0G(0,F, o) _ou (6.F.8) +6(6,F, i)-(ac - é)j_l eors) (5.1.50)
00 00 38 o0
04(0,F,0) _ou(0,F.8) +c(9,F,§)-(aG(9’F,§)j_l elnrs) (5.1.51)
OF OF 08 oF
and
aﬁ(gfﬁ):(ac(z;’é)jIG(Q’F’ ) (5.152)

Exercise 5.1.7

Given (5.1.40) and itsimplications (5.1.43), (5.1.47), and (5.1.48), show that &(6,g,F.F, ¢ ) must

obey

M F

n{&m(@,g, ’O’O)HJZO (5.1.53)
(9

for all R-tuples n.
Exercise 5.1.8

Consider the case where the response functions are independent of F . (See Exercise 5.1.1). Show
that the Gibbsrelation is

y):-né+1trTL—c-g (5.1.54)
Yo

and that balance of thermodynamic energy takes the form

pOn=—divq+pe-&+ pr (5.1.55)
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Exercise 5.1.9

In the case where the response functions are independent of g and F, the results of Exercise 5.1.2
arevalid. A special version of thismodel is used to describe relaxation in gases. It isconvenient in
this application to utilize (,F,&) asthe independent variables rather than(8,F,&). Follow the

same line of reasoning utilized in Exercise 4.8.6 of Section 4.8 and show that

e=e(n,F,§) (5.1.56)
PG UARD) (5.1.57)
on
T= pFw (5.1.58)
and
L UARS) (5.1.59)
o 1.

Exercise 5.1.10

In problems where the shifting equilibrium is assumed, it is often convenient to change variables
from(n,F,&)to(n,F,c). The formal argument is similar to that used earlier in this section to

change variables from(6,F,&)to(6,F,s). Carry out this change and show that

5=§(77,F,c) (5.1.60)
p-Ce(nFe)  %&(nFo) (5.1.61)
on on
and
T= pF[aé(g’FF"’) ‘o a‘t’(g’FF’“)j (5.162)
where
&=¢&(n.F,o) (5.1.63)

istheinverse of (5.1.59).

The restrictions on the constitutive equations of this section implied by material frame
indifference can be read off from the results of Section 4.9 for those cases where the state variable
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isinvariant under the transformation (4.9.1). The chemical reaction model is an example of this
case. Therestrictions implied by material symmetry follow the same formal development as
presented in Section 4.10. For the sake of brevity, we shall not record material frame indifference
and material symmetry restrictionsin this section. Reference 5 does contain a discussion of these
two concepts for the chemical reaction model.

Asanillustration of amodel of a material with internal state variables, consider an isotropic
linear thermoelastic solid with heat conduction and asingle internal state variable. Thisexampleis
the one developed in Section 4.12 except that an internal state variableis present. The linearization
is about a state of uniform temperature €, no deformation, i.e., x = X and zero affinity. Itis

readily shown that such a state is a solution of the field equationsif we take

b=0 (5.1.64)
and
r=0 (5.1.65)

The equation which replaces (4.12.31) is

P =pi(6,1.8,) =P, (0-6,) - pU -2 (0-6,)°

(o]

_ﬂ(trE)(9—00)+%(trE)2+,utr( E) +1p.0(E-¢,) (5.1.66)
+3(E-E)(0-6,)+a(s-E)E

where, for simplicity, the order term has been omitted. Of course the symbol @ in (5.1.66)(5.1.66)
should not be confused with the function @ introduced in (5.1.19). In (5.1.66) the coefficients, @,
d, and a arise from the dependence of y on the single state variable £. The quantity & isthe

value of the internal state variable in the reference state. The reference state has a zero affinity.
Therefore, from (5.1.49),

&=¢(6,1,0) (5.1.67)

Given (5.1.66), it follows from (5.1.13), (5.1.15) and (5.1.9) that the entropy density, the stress and
the affinity are given by

0-6, +BUE-5(E-E) (5.1.68)

PRIT=PrN, T

(o]

To=—p(I-H")+ A(trE)1+2(u—p)E-B(0-0,)1+a(é-&,)1 (5.1.69)

and
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o a ., =
o=—0(&-¢)-—(0-6,)-—trE (5.1.70)
PR Pr

Because we are assuming (5.1.9) can be inverted to obtain (5.1.40), the linearized expression
(5.1.70) must beinvertiblefor &—-¢& . Therefore, the material constant @must obey

=0 (5.1.71)

Below, we shall see reasonsto require that ® be positive.
The heat flux vector and the relaxation rate are taken to be

qr=—x GRAD ¢ (5.1.72)
and

5250 (5.1.73)

With the exception of the order term, equation (5.1.72) is formally the same as (4.12.40). Ina
linearized isotopic model a dependence of the heat flux vector on ascalar such as & isnot allowed.

Equation (5.1.73) isour special case of (5.1.41). It follows from the assumption that the departure
from thermodynamic equilibrium is small and that the material isisotropic. In our case, where we
have a single state variable and a dependence on F is not allowed, (5.1.41) reduces to

£=a(0,g,F,0) (5.1.74)
The constant 1/ 7® in (5.1.73) isrelated to® by the formula

1 0a(6,0,1,0)

(5.1.75)
@ oo
Given (5.1.75), equation (5.1.53) tells us that
1
—2>0 (5.1.76)
@
Equation (5.1.76) is one of the implications of the entropy inequality (5.1.16). The other
implication is, asin Section 4.12,
k>0 (5.2.77)

Because, from (5.1.70),
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oo (6,,1,¢,)

b= 5.1.78
oe ( )
it iseasily shown that the coefficient t in (5.1.73) is given by
1__00(0,0.1.5) (5.1.79)
T o0&

The physical dimension of 7z istime and it represents a characteristic relaxation time in our model.
After we establish that @ is positive, (5.1.76) will tell usthat 1/7 cannot be negative.

Exercise 5.1.11

Show that the linearized field equations which replace (4.12.45) and (4.12.46) are

prW=(A+1)GRAD(Divw)+(x— p)Aw - BGRADO+a GRADE (5.1.80)
PeC,0+ 6, Div W -5 = kAO (5.1.81)
and
= (£-£)-2 (6-6,)-—% Divw (5.1.82)
PrP PP

Exercise 5.1.12

Show that (4.12.47) is replaced by

prv +1(0-6,)=pgu(6,,1,E)- ptrﬁ+%(9—ﬁo)2
P , , 0 (5.1.83)
+§(trf§ ) +,utr(E) +1p®(E-&) +a(E-¢ E
Exercise 5.1.13
Show that (4.12.48) is replaced by

9
ot (o)

(2+%Wz)dv S@@K(@”)W‘((TR + pI)dS) B ¢6K(@”) 9500 U= s (5184)

o

where

2 Ay =\2 = \2 2 =
z=%(9—90) +2(UE) +utr(B) +3p@(6-&) va(s-E)UE  (5189)

(o]
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Exercise 5.1.14

Show that X is positive definite if and only if

c, >0 (5.1.86)
® >0 (5.1.87)
>0 (5.1.88)
and
P +2 50 (5.1.89)
PP 3

Equation (5.1.87) is the result anticipated above. Given (5.1.87) and (5.1.76), we see that

10 (5.1.90)
-

Also, given (5.1.89), it is true that

A+2u>0 (5.1.91)

The material properties c,, 5, 4,and y arise in the representation (5.1.66) and are thus partial
derivatives of w computed at constant £. For example,

6,-0 o°u(0,1,¢,)

b a2 (5.1.92)

It is convenient to refer to these properties as frozen properties. In the limit where the characteristic
time t approaches infinity, (5.1.82) reducesto & =& and, thus, £=¢&,. Thislimit isthe frozen limit

for our model. Thelimit 7— 0 yields, from (5.1.73), o =0. Thislimit isthe shifting equilibrium
[imit for our model.

Exercise 5.1.15

Show that in the shifting equilibrium case

5° 0—-6 ox ~
PR77 PR770 pR( v op;q)j( 9 } (ﬂ pR(DJ ( )

(o]

and
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2

Thz—pu—HT%{l_‘x:yUE)I+20k—mE—(ﬂ+p

Pr®
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GI)](49—90)1 (5.1.94)

These results enable us to identify ¢, + 6,6°/ p2® as the specific heat at constant volume for the

shifting equilibrium case. In addition 8 + da/ pe® and A —a’/ p® are the shifting equilibrium
properties which replace the frozen properties f and 4. Equation (5.1.89) asserts that the shifting

equilibrium bulk modulus must be positive.

Exercise 5.1.16

Take p=0 and decouple (5.1.80), (5.1.81) and (5.1.82). Theresultsarethat 8, and w obey

LO=LE=0

2
L(ég—liA]w=O
oA pg

and

where L isthe differential operator

2 2
L=c 2| 9 & _qoa |- K A[ 9 _a2a
ot at| et PG, Lot

2
+(1+i02 ° jg[—z—s*zA —~
PrCD ) Ot ot PrC,

The four constants a,a’, s, and s are longitudinal wave speeds defined by

2 = A+2u
PR

a’ :i(i+&ﬂ2 +2,uj

Pr Pr
2
szziL(z— & +2y]
Pr Pr®

and

(5.1.95)

(5.1.96)

(5.1.97)

(5.1.98)

(5.1.99)

(5.1.100)
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2
ad
1 20 [ﬂ+ q)j
§?= |- “®+—°¢52+2y (5.1.101)
Pr PR Pr (Cv+90 : ]
Pr

The speeds aand a are frozen isothermal and frozen isentropic speeds, respectively. Likewises
and s* are equilibrium isothermal and equilibrium isentropic speeds, respectively. It ispossibleto
show that

a’>s’>¢ (5.1.102)

and
a’>a’>s’ (5.1.103)

There are many aspects of the model with internal state variables which have not been
touched on in this chapter. In particular, the stability theorems established by Coleman and Gurtin
should be of interest to the reader.[Ref. 4]

5.2. Maxwell -Cattaneo Heat Conductor
Asan illustration of amateria with internal state variables which is not a reacting mixture
or something similar, in this section we shall formulate the model of a Maxwell-Cattaneo heat
conductor. The fundamental constitutive equation for thismodel is, in one dimensional form,
(1.7.16). Therefore, we shall present an argument leading to a constitutive equation for the heat
flux of the form
Tq+q=—«g (5.2.1)

For simplicity, in this section we shall deal with the case of arigid heat conductor. This
assumption allows us to avoid a discussion of material frame indifference. A rigid material at rest
isamateria constrained by the deformation

x=X (5.2.2)

Given (5.2.1), the entropy inequality (3.5.15) (or (3.5.16)) reducesto
—p(lﬂ+n9)—q-g/920 (5.2.3)

and the stress T is completely indeterminate in so far as the entropy inequality is concerned.
Balance of massin the form (3.1.12) reduces to

p=pr (5.2.4)
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and we shall take p, to be aconstant. The thermodynamic energy equation (3.5.20) reducesto

p497'7=—p(1//+776")—ddi+pr
intherigid case.

The constitutive equations to be investigated are as follows:

(v.m.q)="f(0,2.q)

(5.2.5)

(5.2.6)

Relative to (5.1.3), it can be seen that we have taken the state variable to be the heat flux vector q.
Because of this choice, we have in effect taken the function 1 in (5.1.5) to be the identity function.

Given (5.2.6), we can write

and, thus,

where the affinity ¢ isthe vector defined by

ou(d,g.q)
oq

o =-

If (5.2.8) is combined with (5.2.3), the same argument used in Section 5.2 yields
w=u(6.q)

au(d.q)

n=h(0.a)=-—7,

And
po-0—q-g/0>0
where the relaxation rate law has been written

q=0(0,8.q)

(5.2.7)

(5.2.8)

(5.2.9)

(5.2.10)

(5.2.11)

(5.2.12)

(5.2.13)
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For simplicity, we shall consider the equilibrium state defined by g =6 =0 and assume
(5.2.9) can beinverted to obtain

q=q(0,0) (5.2.14)

where (5.2.10) has been used to justify the omission of the argument g from (5.2.9). Asin Section
5.1, the assumed inversion leading to (5.2.14) implies that the linear transformation ac(e,q)/aq is

regular. Given (5.2.14), we can replace (5.2.13) by

q4=0(6.g,0) (5.2.15)
where

o(0,g,6)=0(6,2,q(0,0)) (5.2.16)

Exercise 5.2.1

Show that in thermodynamic equilibrium the following results must hold:

®(60,0,0)=0 (5.2.17)
q(6,0)=0 (5.2.18)
aQ(e,o)sz 0»(6,0,0) (5.2.19)
06 og
and
a-(MaJZO (5.2.20)
06

for all vectors a.

In order to reach alinear isotropic model, we take

1
w:u(e,q):u(eo,o)—no(9—90)—%(9—90)%5@1-(1 (5.2.21)

Essentialy, (5.2.21) isaspecia case of (5.1.66). Relativeto (5.1.66) we see that the terms arising
from the deformation have been omitted and, in addition, atermlike §(&—¢,)(6—6, ) has been
omitted. Such aterm is not allowed by material symmetry where & isthe vector q. Asin Section
5.1, (5.2.21) is proposed as being a valid approximation about a state of constant temperature 6,
and zero affinity. Given (5.2.21), it then follows from (5.2.11) and (5.2.9) that
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(5.2.22)

and

6 = —q (5.2.23)

Of course, the coefficient ® must be nonzero in order to construct theinversion (5.2.14). Also,
given (5.2.23), the thermodynamic restriction (5.2.18) is satisfied. It followsfrom (5.2.21) and
(5.2.22) that

1//+77(9—z90):u(6’0,0)+%(9—00)2+%®q-q (5.2.24)

Roughly speaking, equation (5.2.24) isaspecial case of (5.1.83). The corresponding specia case
of (5.1.84) is

0 (6-6,)
— zdv<- ~——22q-dS 5.2.25
ot Ix(@) 43@4@) 6, a ( )
where
5=5 (9-0,7+L0qq (5.2.26)
20, 2
The usual requirement that ~ be positive definite yields
c,>0 (5.2.27)
and
®>0 (5.2.28)

For small departures from the state €=6,ande=0 (5.2.15) isreplaced by
] —ic— a (5.2.29)
q s g e
where (5.2.17) has been used. It follows from (5.2.28) and (5.2.20) that

10 (5.2.30)
-

Based upon the resultsin Section 5.1, the reader will recognize t as the characteristic relaxation
time. It followsfrom (5.2.19), (5.2.29) and (5.2.23) that
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a= 010@ (5.2.31)
Given (5.2.28), it follows from (5.2.31) that
a>0 (5.2.32)
If we define a coefficient k by
K=Ta (5.2.33)
then (5.2.29) reduces to
7qQ+q=—kKg (5.2.34)

where (5.2.23) has been used. Equation (5.2.34) is the Maxwell-Cattaneo constitutive equation
(5.2.2).

Exercise 5.2.2

Show that the temperature is a solution of the following partial differential equation:

H+6=""n0 (5.2.35)
PG,

For t =0, (5.2.35) reduces to the parabolic diffusion equation. For t = 0, (5.2.35) isthe hyperbolic
damped wave equation. The wave-like solutions of (5.2.35) are the advantage of the Maxwell-
Cattaneo constitutive equation over the Fourier equation (1.7.15). The Fourier constitutive
equation implies that thermal disturbances propagate with infinite velocity.

The reader interested in additional details about the thermodynamic basis of the Maxwell-Cattaneo
model should consult reference 8.

5.3. Maxwellian Materials

As an additional illustration of a material with internal state variables which is not areacting
mixture or something similar, in this section we shall formulate the model of what is known as a
Maxwellian material. The argumentsin this section should be viewed as a generalization of the
model discussed in Section 4.2. Asin Section 4.2, all thermodynamic effects will be suppressed by
forcing the temperature to be constant. Unlike Section 4.2, we will allow the constitutive equations
to depend upon F . In thisway, viscous dissipation isincluded in the model. The constitutive
eguations which define the Maxwellian material are asfollows:

(v, T)=f (F,F,T) (5.3.1)
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As should be apparent to the reader, we have taken the internal state variable to be the Cauchy
stresstensor T. Because of this choice, we have in effect taken the response function G in (5.1.5)
to be the identity function. Of course, equation (1.7.12) is a one dimensional special case of the

constitutive equation for T implied by (5.3.1).

Given (5.3.1), we can write

v=u(FF,T) (5.3.2)
and

T=Q(F,F,T) (5.3.3)

Exercise 5.3.1

Show that the axiom of material frame indifference forces the functions u and Q to obey the
following restrictions:

u(F,F,T)=u(QF,QF+QF,QTQ") (5.3.4)
and

QQ(F,F,T)Q" + QTQ" +QTQ" =Q(QF,QF +QF,QTQ" ) (5.3.5)

for al Q(t) in @(@)and Q(t) in Z(9;97) with Q(1)Q(t)" =—(Q(t)Q(t)")" such that
(QF,QF+QF,QTQ" )isin the domain of uand Q.

Exercise 5.3.2
Show that (5.3.4) and (5.3.5) force the two response functions to obey the following rel ationships:

u(F,F,T)=u(U,R'DRU,R"TR) (5.3.6)
and

Q(F,F,T)=RQ(U,R'DRU,R'TR)R" + WT-TW (5.3.7)
Note that (5.3.7) and (5.3.3) can be combined to obtain
T-WT+TW=RQ(U,R'DRU,R'TR)R’ (5.3.8)

The |eft side of (5.3.8) is the co-rotational stress rate introduced in Exercise 4.9.8.
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Exercise 5.3.3

By an argument entirely similar to one given in Section 4.9, constitutive functions with argument
(U,R"DRU,R"TR ) can be replaced by functions of the argument (C,F'DF,F'TF). Providethe

details of this argument and show that one can define functions G andQ such that (5.3.2) and
(5.3.3) can be replaced by

w=0(C,F'DF,F'TF) (5.3.9)
and

T+L'T+TL=FQ(C,F DF,F TF)F' (5.3.10)

The left side of (5.3.10)(5.3.10) is the convected stress rate introduced in Exercise 4.9.8.
Exercise 5.3.4

Show that (5.3.10) is equivaent to

(F'TF)=CQ(C,F'DF,F'TF)C (5.3.11)

Equation (5.3.11) suggests an alternate formulation of the results of this section by taking the
internal state variable to be the tensor F' TF.

Exercise 5.3.5

Adopt definitions like those given in Section 4.10 and show that for an isotropic solid in its
undistorted reference configuration

y=U(B,D,T) (5.3.12)
and

T+L'T+TL=Q(B,D,T) (5.3.13)

where the functions tandQ are defined analogous to the definition (4.10.37) and they must obey
the following restrictions:

u(B,D,T)=0U(QBQ",QDQ",QTQ") (5.3.14)
and

QQ(B,D,T)Q"=Q(QBQ",QDQ",QTQ") (5.3.15)
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for all orthogonal linear transformationsQ in @(9 )" .

Exercise 5.3.6

Show that for afluid the constitutive equations (5.3.2) and (5.3.3) reduceto

y/zl](p,D,T) (5.3.16)
and

T+L'T+TL=Q(p,D,T) (5.3.17)
where tandQ) must obey the following restrictions:

i(p,D,T)=0(p,QDQ",QTQ") (5.3.18)
and

QQ(p,D,T)Q"=Q(p,QDQ",QTQ") (5.3.19)
for al orthogonal linear transformations Q in &))"

Next, we wish to investigate the thermodynamic restrictions implied by the entropy inequality
on the constitutive equations (5.3.1). It follows from (5.3.2) that

T T
w=tr M || M +tr(@T) (5.3.20)
OF OF oT
If (5.3.2), (5.3.3) and (5.3.20) are substituted into the isothermal form of the entropy
inequality, (4.2.1), it isreadily shown that
w=u(F,T) (5.3.21)
and

tr LF-l(T_ng—; jF]+ptr (Z(F, T)Q(F,F,T))zo (5.3.22)

where the affinity £ isasymmetric linear transformation defined by

Z_au

== 5.3.23
po (5.3.23)
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We shall restrict ourselves to the case where the equilibrium state is defined by F=%=0 and

assume (5.3.23) can be inverted to yield

T=T(F.x)

(5.3.24)

Asin Section 5.1, the assumed inversion leading to (5.3.24) implies that the symmetric fourth order
tensor oX.(F,T)/oTisregular asalinear transformation from & (9 ;97) to Z(9;97). Given

(5.3.24), we can replace (5.3.3) by
T:fz(F,F, x)
where
ﬁ(F,F,Z):Q(F,F,%(F,z ))
By the same type of argument, we can replace (5.3.21) by

w=0(F,X)
where

G(F,Z):U(F,"}(F,Z))

Exercise 5.3.7

Show that

aa(F,z):(’au(F,T)_z (F,T)
oF oF A oF

Exercise 5.3.8

Show that in thermodynamic equilibrium the following results must hold:

Q(F,0,0)=0

T(F,0) = pF

(5.3.25)

(5.3.26)

(5.3.27)

(5.3.28)

(5.3.29)

(5.3.30)

(5.3.31)
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[ oK (F,0) aﬁ(F,o,o) B
tr(F (T[B]]AJ+ ptr B[a—F[A]J =0 (5.3.32)
and
. [M”J 6 533
ox

for al linear transformations A and symmetric linear transformations B. The quantity K(F,):) in
(5.3.31) isdefined by

2 ou(F,T)"

K(F,Z)=T(F,X)-pF (5.3.34)

T=T(F,X)

The formal similarity of the resultsin this section with those in Section 5.2 should be clear to
the reader. The results (5.3.29), (5.3.30), (5.3.31) and (5.3.32) are similar in form to (5.2.17),
(5.2.18), (5.2.19) and (5.2.20), respectively. The reduction of the resultsin this section to various
linear isotropic models can also be carried out. The results are formally very complicated and will
not be developed here. The reader interested in additional information on the thermodynamics of
Maxwellian materials should consult Reference 9.

The literature on continuum mechanicsis full of models which utilize internal state variables.
The example contained in this section and in Sections 5.1 and 5.2 represent a short introduction to
an extensive subject. The reader interested in additional references on models which utilize
internal state variables might wish to consult References 10 through 13.

5.4. Closing Remarks-Alternate Forms of the Entropy Inequality

Asthe resultsin Chapter 4 and 5 illustrate, one can make productive use of the entropy
inequality in the formulation of constitutive equations for materials. The entropy inequality we
have adopted was introduced in Sections 1.6 and 3.5. In this closing section of thistextbook, it is
useful to comment on other forms of the entropy inequality which have been introduced in the
continuum mechanics literature as generalizations of the one given here.

Mdiller, in Ref. 14, proposed that (3.5.8) be replaced by

. ) | .
jx(m)pndvz gsax(m)h ds + L(m)?ﬂv (5.4.1)

where h isthe entropy flux vector. In the formulation proposed by Mdiller, h, like v,7,T,and q, iS
prescribed by a constitutive equation. In reference 14, Mller discusses cases where the restrictions
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implied by his entropy inequality, combined with material frame indifference and material
symmetry considerations, impliesthat h is given by

h=

S Y-

(5.4.2)

The motivation for replacing (3.5.8) with the more general statement (5.4.1) can be found in
Reference 15. Inthiswork, Mller formulated a model of a Maxwellian gas for the purpose of
obtaining a model which did not imply that temperature disturbances propagate with infinite
velocity. In effect, his results show that if one does not assume in advance the special relationship
(5.4.2), aresult could be obtained which was sufficiently general to alow temperature disturbances
to propagate with finite velocity. More importantly, results were obtained by Mdller in Ref. 15
which were self consistent with predictions of the kinetic theory of gases.

Exercise 5.4.1

Given (5.4.1), show that (3.5.15) must be replaced by
—p(t/)+n9)+trTL+0din—%-grad020 (5.4.3)
where the vector p is given by

p=k-1 (5.4.4)

Exercise 5.4.2

Consider amateria defined by the following specia constitutive equations:
(v.n,T,q,p)="(0,gF) (5.4.5)

Derive al of therestrictions implied by (5.4.3) on these constitutive equations. Among the results
you should obtain is that the vector p must take the special form

Pr=|det F|F'p=0(0)GRAD 6+ (0) (5.4.6)

where Q(6) isan arbitrary skew-symmetric linear transformation and @ () isan arbitrary vector.
Therefore, in this case p is not necessarily zero.

Exercise 5.4.3
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Show that if the material defined by (5.4.5) is an isotropic material, then it follows from (5.4.6) that
p iszero, and thus (5.4.2) is obeyed.

Mller has also formulated a procedure for exploiting the entropy inequality (5.4.1) by taking
the external heat supply density r and the body force density b to be zero [Ref. 16].

Gurtin and Williams, in Ref. 17, proposed an entropy inequality of the form

- q pr
> — 2. d
J.x(@”'t)/m7 dv= (ﬁfrx(@‘,t) ) ds +.L(@’,t) P2 v (5.4.7)

where ¢ is a surface-relevant temperature and @is a volume-relevant temperature.
Exercise 5.4.4

Given (5.4.7) show that (3.5.15) must be replaced by

—p(l,'/+n9)+trTL+[£—1Jdivq—%q-grad¢ >0 (5.4.8)
4 Q
Exercise 5.4.5

Consider amaterial defined by the following special constitutive equations:
(v.1.T,q,0)= f (p,grado,F) (5.4.9)

Derive al of therestrictions implied by (5.4.9) on these constitutive equations. In particular,
determine for the material defined by (5.4.9) whether or not one can provethat 8 = ¢ . Additional

discussion of the Gurtin and Williams proposal can be found in references 18 through 22.

Green and Laws, in reference 23, proposed an entropy inequality in the form

- q pr
> — 2. d
J.x(@”'t)/m7 dv= Cﬁfrx(@‘,t) ) ds + .L(@‘,t) o v (5.4.10)

where o is positive valued function that is prescribed by a congtitutive equation. In the Green and
Laws formulation the temperature @is regarded as a primitive quantity which need not necessarily
equal the quantity ¢. They do require that ¢ equals & in equilibrium.

Exercise 5.4.6

Given (5.4.10) show that (3.5.15) must be replaced by
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—p(w'+77gb)+trTL-1q-grad¢)20 (5.4.11)
4
when y isdefined by
y=£-NQ (5.4.12)
rather than by (3.5.14).
Exercise 5.4.7

Green and Laws considered the case where the material is at rest and proposed the following
constitutive equations:

(v.1.9.0)=f (0,0,grad0) (5.4.13)

Substitute (5.4.13) into (5.4.11) and show that

oy O
Y% 0 5.4.14
P RUPY: (5419
ol ¥, 0P | 490 _, (5.4.15)
ogradd "ograd 9 ) ¢ 06
q©—2 9% gq-0 (5.4.16)
ograd¢ ogradé@
and
_p{a_h,]@_(/’]g_ 9. gad 90 (5.4.17)
00 00 00 ¢
Exercise 5.4.8

Assume that the heat flux vector q is not zero and prove from the above results that

p=0(0,6) (5.4.18)

Exercise 5.4.9

On the assumption that d¢/30=0anddy /& grad @0, show that q must obey
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.
99 _[_0a (5.4.19)
ogradg |\ ogradd

Green and Laws pointed out that for a material which conducts heat according to a Fourier
law of the form

q=-K(0,6)grad6 (5.4.20)

eguation (5.4.19) shows that the conductivity tensor K must be symmetric. The formulation of
Green and Laws has been used by Green and Lindsay to formulate a thermoel asticity theory. [Ref.
24]. Thistheory has been adopted by Prevost and Tao to numerically analyze transient phenomena
in thermoelastic solids.[Ref. 25]
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Appendix A

Mathematical Preliminaries

The purpose of this appendix isto present certain of the mathematical concepts which are necessary
for the study of three dimensional continuum mechanics. This appendix contains a brief discussion
of vector spaces, linear transformations, inner product spaces, Euclidean point spaces, cross
products, determinants, tensor algebra and vector calculus.

This appendix is not self contained. The reader is assumed to be familiar with the concept
of a set, with the definition of the Cartesian product of afinite number of sets and with the
definition of afunction. In addition, the reader is assumed to be familiar with the algebraic concept
of agroup. These concepts, aswell as the others discussed below, can be found in any linear
algebra textbook.

A.1. Vector Spaces

In this appendix, the symbol @7 denotes the set of real numbers. Subsets of @7° are defined
asfollows:

1. o ={x|xisin @ and 0< x< o},

2. (ab)={x|xisin o anda<x<b},

3. [ab]={x|xisin ¥ anda< x<b},

4. [a,b)={x|xisin g# anda< x<b}
and

5. (ab]={x|xisin g7 anda< x<b}

Definition. Let @~ beaset and 97 the set of real numbers. @ isareal vector spaceif it
satisfies the following rules:

(8) Thereexistsabinary operationin @ caled addition and denoted by + such that
1. (u+v)+w=u+(v+w),foral u,v,w in g .
2. u+v=v+u,dluving .
3. Thereexistsanelement 0in @ suchthat u+0=u, foral u in 9.
4. Forevery u in 9 |, thereexistsan element —uin @~ suchthat u+(—u)=0.

(b) There exists an operation called scalar multiplication in which every real number
Ain @ can be combined with every u in 9 to give an element Au in 9~ such
that

1. A(pm) =(Au)u.

237
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2. (A+p)u=Au+ .
3. A(u+v)=Au+Av.
4, lu=u,foral A,uin@@andal u,vin 9.

Since we shall always deal with vector spaces over the real numbers, we shall simply call @~ a
vector space. The elementsof @~ are called vectors and the elements of @7° are called scalars.

Example. A common example of avector spaceisthe set of all ordered n-tuples of real
numbers

u=(u,u,,Uu,,..,u,) (A1)
where n isafixed integer. Addition of two n-tuplesis defined by

u+v=(U,Uu,..,u)+(V,V,,...,V,)

(A.1.2
=(u +V,U, +V,,....,u +V,)
and multiplication by a scalar is defined by
Au = (Au,, Au,, Au,, ..., AU.) (A.1.3)

With these definitions, it is easy to prove that the set of all n-tuples form a vector space. We shall
always denote this vector space by &7".

TheoremA.1.1. Av=0ifandonlyif A=0or v=0.
TheoremA.1.2. (-A)v=-Av.
TheoremA.1.3. A(-v)=-Av.

The proofs of these theorems can be found in any linear algebratext.

It is easily shown by induction that the distributive laws in the definition of a vector space
imply

(Zk:)‘k}v: :Miv) (A.1.9)

i1

and

AD V=2 AV, (A.L5)



Mathematical Preliminaries 239

for k equal to afinite integer.

Definition. A setof p (p>1) vectors {v,,v,,..,v,} of avector space 9~ issaid to be
linearly dependent if there exist coefficients {Al,...,/ip} not all zero such that

P
2 AV, =0
j=1
Definition. A setof p (p>1) vectors {v,,v,,..,v,} of avector space 9~ issaidtobe

linearly independent if they are not linearly dependent..

Therefore, for aset of p linearly independent vectors, the sum
p
Z /7,j v, = 0
j=1
implies
A=Ay=-=2,=0
Definition. A vector space @ issaid to have dimension n (n a positive integer) if there
exists aset of nlinearly independent vectors and if there exists no set of more than n linearly
independent vectors.
In this discussion we are only interested in vector spaces which have afinite number of
independent vectors, i.e., finite dimensional vector spaces. We shall write dim@~ to denote the

dimension of avector space 9.

Definition. A set of n linearly independent vectorsin @ issaid to beabasisof @~ when
n=dimg .

TheoremA.14, If {e,,...e } isabasisfor 9, then every vector v in @ can be written

v=>¢e, (A.16)
i1

Proof . Since n=dimg ", it followsthat then + 1 vectors {v,e,,....e,} arelinearly
dependent. Therefore

v+ Ae =0
j=1
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where at least one coefficient isnot zero. In particular 4 =0, because 4 =0 would require that
Ay =2, =---=2,=0, and then we would be forced to conclude that the n + 1 vectors {v,e,,....e,}

are linearly independent. Therefore,
V=2 (A1 A)e; =D e,
j=1 j=1

TheoremA.15. Thescaars {&,&,,....¢

n

} in the formula

are unigue.
Proof. Let
v :ijei = Zfi'ej
j=1 j=1
Therefore,

i(f, _fj')ej =0
=1

Since the vectors {e,,...,e,} arelinearly independent, it immediately follows that

é:j :é:]’
for j=12,..,n

Definition: Thescaars (&,,...,&,) intheformula

are the components of v with respect to the basis {e,,....e,} .

Example. In 2" itiseasily seen that the n vectors
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i,=(0,..,0),
i,=(01..,0),
i =(0,0,...,1)

arelinearly independent. Since any vector v in ¢ " can be written

vV=(V,Vy,..., V) = Vi, + Vi, +.. 4+ Vo

241

(A.17)

(A.18)

it follows that there exists no set of vectorsin 2" which contains more than n linearly
independent vectors. Consequently dim@#" =n and {i,,...,i,} isabasisfor &7".

It must be pointed out that a basis of a vector spaceis not unique. If {e,,...e,} and {€,... €} are

both bases of @, then by application of Theorem A.1.4 it follows that

and

These formulas characterize the basis transformation from {e,,...,e,} to {e,,
It is elementary to use (A.1.9) and (A.1.10) to show that

and

(A.1.9)

(A.1.10)

.., } and vice versa

(A.1.11)

(A.1.12)

(A.1.13)
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Equations (A.1.11) and (A.1.12) show that the basis transformation is characterized by a matrix
[Tjk] whoseinverseis [‘I:jk] :

Exercise A.1.1

n n
If v=> v, and v=> V€, show that the two sets of components are related by
j=1 j=1

V=) TV, (A.1.14)
and

v, =) T,V (A.115)

Equations (A.1.14) and (A.1.15) characterize the transformation rule for the components of a
vector.

A.2. Linear Transformations

Definition. Let 7/and @~ denote vector spaces. A linear transformation isafunction
A0 — G¢ suchthat

A(u+v)=A(u)+A(V) (A.2.2)
and

A(AV) = ZA(Y) (A.2.2)

foral u,v in®” and 1 in &7

It isobviousthat (A.2.1) and (A.2.2)are equivalent to the single condition,
A(Au+ uv)=A1A(u)+ pA(v) . For simplicity of notation, it is often convenient to write

A(v)=Av
Prove the following theorems:

Exercise A.2.1
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A linear transformation A : 9~ — &¢ mapsthe zero vector of ¢ into the zero vector of &/ .

Exercise A.2.2

If {Vl,vz,...,vp} isasystem of linearly dependent vectorsin @, then {Avl,sz,...,Avp} isa
system of linearly dependent vectorsin @/ .

Linearly independent vectorsin @ are not necessarily mapped into linearly independent vectors
in @ . Asanexample, consider the linear transformation A that maps every vector in @ into the
zero vector in @/ .

Definition. A nonempty subset @/ of avector space @ is asubspaceif:

1. u,vin @/ impliesu+wisin @/ ,foral u,v in @/ ; and
2. uin @/ implies Au isin @/ ;foral u in @/ and Ain o

Definition. Thekernel of A, written ker A is defined by
ker A={v|Av=0,vin 9}
Itiseasily shown that ker A isasubspaceof 9 .

Definition. A linear transformation A:9~ — @/ isregular if ker A ={0} .

Itiseasily shown that ker A = {0} impliesthat A isone-to-one. Also, regular linear

transformations map a system of linearly independent vectorsinto a system of linearly independent
vectors.

Definition. Theimage spaceof A, written ImA , isdefined by
ImA ={Av|vin 9}
The image space is a subspace of @/ .
Definition. If ImMA =@/, A isamapping of @~ onto @/ .
Definition. Therank of A isdimIimA..
TheoremA.2.1. dmImA =dim&/ if andonly if A isonto.

Proof. If dimImA =dim&, then ImA = @¢ because ImA isasubspace of &/ .
Conversaly, if A isonto, ImA =@/, which impliesthat dmIimA =dimay .
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It is possible to show that
dmg~ =dimimA +dimker A (A.2.3)
for alinear transformation A: &~ — &¢ . Therefore,
dmImA <dimg~ (A.2.4)
and
dimker A <dimg~ (A.2.5)
In the specia case where dim@~ =dima& , it is possible to state the following important theorem.

TheoremA2.2. If A:9~ — G isalinear transformation and if dim@~ =dima¢ , then
A isalinear transformation onto ¢/ if and only if A isregular.

Proof. Assumethat A:9~ — @ isonto @/ , then (A.2.3) and Theorem A.2.1 show that
dmg~ =dim&( =dima@/ +dimker A

Therefore dimker A =0 and thus ker A = {0} and A isonetoone. Next, assume A isoneto

one. Therefore, ker A ={0} and dimker A =0. Equation (A.2.3) yields dim®~ =dimImA.

Because dim@~ =dimay , it then followsthat dim@/ =dimImA . Thisfact and Theorem A.2.1
show that A isonto.

Definition. A regular onto linear transformation A : 9~ — @¢ isan isomorphism
Therefore, for an isomorphism A : @~ — @/, there exists an inverse function A™: @ — 9.

Exercise A.2.3

Show that the inverse function A™: @/ — @ isalinear transformation and, thus, an
isomorphism.

Definition. Two linear spaces, @ and &/ , areisomorphic if there exists an isomorphism
of &~ onto &/ .

TheoremA2.3. If A:9” — G/ isanisomorphism, then dim@~ =dim&/ .

Proof. Since A isregular, dimker A =0. Therefore, by this result, Theorem A.2.1 and
(A.2.3), dm&@/ =dimimA =dimg~ .

Definition. A linear transformation A of @ into @~ isan endomorphism.
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Definition. A regular linear transformation A of @ into @ is an automor phism.
Definition. Let. %7, @ and & bethreelinear spaces. If A: % — @ and
B: @ — @ arelinear transformations, then the product of B and A , written BA isalinear
transformation from 27" to & defined by
(BA)(u) =B(A(u))
foral u in & .
It follows from this definition that the product of two linear transformationsis distributive

and associative. Ingenera, AB=BA. If A and B areisomorphisms, then BA isan
isomorphism. Therefore, there exists an isomorphism (BA)™.

TheoremA.24. If A: %7 — @ and B:@8 — & areisomorphisms, then
(BA)'=A"B* (A.2.6)

Proof. If u isan arbitrary vector in % ,then v=Au isin @ and ¢ =BAu isin €.
Because BA isanisomorphism

u=(BA)"c
But
u=A'lv and v=Bc
Therefore,
u=A"Bc=(BA)'c
and, thus,
A'B'=(BA)"
Definition. The identity automorphism I is defined by
v=Iv (A.2.7)
foral ving .

TheoremA.25. If A:Q7 — @ isanisomorphism, then
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AATT=ATA=1 (A.2.8)
Proof. By definition,
u=Av
foral vino , uin @ and
v=ATu

foral vin @ ,uin @/ . Therefore,
u=AA"u and v=A'Av
which isthe desired result.

Given two vector spaces @~ and @/ , consider the set & (9 ; @) of all linear
transformations A : 9~ — @¢ . By the definitions

(A, +A,)V=AV+A,v (A.2.9)
and
(1A)v = u(Av) (A.2.10)

theset & (9 ;@) isavector space. The proof of this assertion isleft as an exercise. Equation

(A.2.9) defines the addition of two linear transformations while (A.2.10) defines the product of a
linear transformation by a scalar. It ispossible to show that dim.@(9;@¢) =dim&®~ dima/ .

Definition. $2(97)={A|Ain &(9;97) and A an automorphism} .

It can be shown that &< (®") isagroup under the operation of multiplication of linear
transformations. This group is called the general linear group.

Consider alinear transformation A: 9~ — @( . Let {e,,...,e,} denote the basis for 9~ and
{g,,.-.8,,} denotethebasisfor @/ . Itfollowsthat Ae,, sinceitisavector of @/, can be
expanded in the basis {g;,...,g,,} . Therefore we can write

m

Ae, =D Ag, (A.2.11)

k=1
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for j=12,...,n.

Definition. Thematrixof A, written [A], with respect to the bases {e,,...,e, } and

{8118} iSthe mxn array of scalars,

Au ALz Als I Am 1
Ay Ay Ay A,
[a]=|
L Am Anz AnS T Am |

In thiswork, the reader is assumed to be familiar with elementary matrix algebra.
Exercise A.2.4

Show that
[A+B]=[A]+[B]
and
[24]=1[A]
Exercise A.2.5

If the basisof @ istransformed by (A.1.9) and the basis of 7/ istransformed by

P

where [ésp]:[s T, j,k=1..nands p=1..m.

247

(A.2.12)

(A.2.13)

(A.2.14)

(A.2.15)

(A.2.16)

Wedenote by S7"™" the set of matriceswith m rowsand n columns. It isroutine to show that

™" isavector space and, in addition, isisomorphicto & (9 ;@) .
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A.3. Inner Product Spaces

From the definition of areal vector space, we see that such things as distance, angles, and
length do not have any meaning unless we postulate that @ has some additional structure. In
order to introduce these concepts, we introduce the concept of an inner produce space.

Definition. Aninner product space is avector space ¢~ and afunction from
O xy — @&, written u-v , having the following properties:

1. Forall w and v in 9,
u-v=v-u
2. Foralwandving and u in o7,
(pu)-v=u-(uv)=pu-v
3. Foral u,vand w in 9,

(u+v)-w=u-w+v-w

u-(v+tw)=u-v+tu-w
4. Foral u in 9,
u-u>0

5. Fordl uin g,

ifandonly if u=0.

The above axioms of an inner product can be paraphrased asfollows. (1) assertsthat u-v
issymmetric, (2) and (3) assert that u- v isalinear function of each variable, and (4) and (5) assert
that u-u ispositive definite.

Definition. The length or norm of avector u in 9 is

||u|| = (u-u)"? (A.3.2)

Definition. The distance between two vectors u and v in @~ isdenoted by d(u,v) and
is defined by

d(u,v) :||u—v||:{(u—v)-(u—v)}1/2 (A.3.2)
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Theorem A.3.1. The length function has the following properties:

1. Foral u in 9,

Ju=0
2. If uisin 9, then

Ju =0
ifandonly if u=0.
3. Foradluwing and u in &7,

[eul] = Ju]
where |4 isthe absolute value of 4.
4. Forall w and v in 9,
u-v|<[u]v] (Schwarz inequality)
5 Foral uandving
o+ v < [ju]| + | v]| (Triangle inequality)

Parts (1), (2), and (3) are immediate consequences of the definition of the inner product. The proof
of (4) and (5) can be found in any linear algebrabook. The essentials are straight forward. First,
we note that that the Schwarz inequality istrivially trueof u or v iszero. Next, assume neither u
or v iszero and calculate the length equared of the vector (u-u)v—(v-u)u. Theresult of this

cadculationis

||(u‘u)v—(v'u)u||2 =((u-u)v—(v-u)u)-((u-u)v—(v-u)u)

(A.3.3)
= (PP 17 = C-u)?
Because of the property 1. above, and the fact that u isnonzero, (A.3.3) implies that
Jul IV = (v-u)* =|v-u (A.34)

The positive square root of (A.3.4) isthe Schwarz inequality. The triangle inequality follows from
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||u+v||2=(u+v)-(u+v)

, , (A.3.5)
= [ul" V" +2v-u
If Schwartz'sinequality isused, (A.3.5) yields
2=l + v +2v-u< ’ A36
o+ [ =l 7 + 2w = (o +]+]) (36
The positive square root of this equation yields the triangle inequality.
Definition. Theangle @ between u and v in @~ isdefined by
oS = (A3.7)
[ul[v]
It follows from the Schwarz inequality that
-1<cosf <1
Definition. Two vectors u and v in @~ aresaid to be orthogonal if u-v=0.
Example. In 2", theinner product of u, v isdefined to be
u-v= ZUkvk (A.3.8)
k=1
It follows then from (A.1.7) that
1 ifi=]j
i-i = =0, A.39
bl {o ifi;tj} A (A-39)

From (A.3.1) and (A.3.8), the norm of avector u in g¢"" can be written

n 12
u]| = [Z u,u J} (A.3.10)
j=1

From (A.3.10), the vector i; hasaunit norm. From (A.3.2), the distance between u and v in
@7°" can be written
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n

d(u,v) :[Z(uj -Vv,)(u, —vj)J (A.3.11)

j=1

and, from (A.3.7), cos@ can be written

n
D uy
i=1

cosé = (A.3.12)
\/[Zuj“i j{ZVka]
j=1 k=1
We shall assume in the following that all vector spaces have the inner product
structure.
Definition. A basis {i,,...,i,} for avector space &~ isorthonormal if
ij-i, =0, (A.3.13)

It is possible to show that every inner product space has an orthonormal basis. Clearly, equations
(A.3.8), (A.3.10), (A.3.11) and (A.3.12)are valid for the space &~ when the components are those
with respect to the orthonormal basis.

Definition. If A isin (9 ;@) , thetranspose of A isalinear transformation A" in
Z(Q;9") defined by

v-(ATu) = (Av)-u (A.3.14)
foral ving anduin @ .
Exercise A.3.1
If A, and A, arein &(9;@/), show that
(AA + 1A, = AA + uAT (A.3.15)
foral A,u in o7 .

Exercise A.3.2

Show that
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[AT]=[A] (A.3.16)
TheoremA3.2. If A:. % > @B and B: @ — @ are linear transformations, then
(BA)' =A'B’ (A.3.17)
Proof. By definition (BA)" isdefined by
a-((BA)Tc) = (BAa)-c
But,
(BAa)-c=(B(Aa))-c=(Aa)-(Bc)
=r (AT (BTc)) =a. (ATBTC)
Therefore,
a~((BA)Tc) = a~(ATBTc)
which is the desired result.
Exercise A.3.3
Showthat A = A" if A isanisomorphism.
Definition. Anendomorphism A:9~ — @~ issaidto be symmetricif A=AT.

Definition. An endomorphism A9~ — @ issaid to be skew - symmetricif A=-AT.

Theorem A.3.3. An endomorphism A:9~ — @~ can be uniquely decomposed into the
sum of a symmetric endomorphism and a skew-symmetric endomorphism.

It is easily seen that the decomposition,
1 1 T
A:E(A+A )+§(A—A ) (A.3.18)

has the properties asserted in the theorem.

Definition. A linear transformation A : 9~ — @/ issaid to be orthogonal if the inner
product is preserved under A | i.e,,
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Av,-Av, =V, vV, (A.3.19)
fordl v,v, in g .
If weset v, =v, , it followsfrom (A.3.19) that

|Av]=]v| (A.3.20)

Thus, when A isorthogonal, the length of v in @ equalsthe length of Av in &/ .
Theorem A.3.4. An orthogonal linear transformation is regular.
The proof of this result follows immediately from (A.3.20). Therefore, if

dim@~ =dim& , an orthogonal mapping A : 9~ — & hasaninverse. It followsfrom (A.3.19)
and (A.3.14) that, in this case,

AT=A" (A.3.21)
Definition. The orthogonal group is a subgroup (a subset of agroup that is aso agroup) of
&< (97) defined by
0(9)={Q|Qin&Z(9") andQ'Q =1} (A.3.22)
Exercise A.3.4
Provethat ©(9 ") isindeed a subgroup of g<(9").

Definition. A symmetric endomorphism A :9~ — @/ issaid to be

positive definite >0
positive semidefinite | . >0
, . if v-Av , (A.3.23)
negative definite <0
negative semidefinite <0

for all nonzero vectors v in ¢ .
Exercise A.3.5

Show that the set of all symmetric linear transformations does not form a group under
multiplication.
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Definition. If v isin @~ and u isin &, their tensor product, written u® v, isalinear

transformation in & (9; /) defined by
(u®v)w=u(v-w)
foral w in g .

Exercise A.3.6

Show that

(Au, + pu,)@v=Au, @ v+ ,u,®v
Exercise A.3.7
Show that

u®(Av, +uv,)=u®v, + u®v,
Exercise A.3.8
Show that

(u®v) =vQu
Exercise A.3.9
Show that
(u®v)(a®b)=(v-a)(u®b)

Exercise A.3.10

Show that
uv, uv, uv; - - - UV,
wv, WV, Wwv; - - - WV,
u.V,
[u®v] =| 31
_umvl umV2 umVS ' : ’ umVn_

with respect to the orthonormal bases {i,,...,i,} and {i,,....i,} . Itisimportant to note that
u@vveu

(A.3.24)

(A.3.25)

(A.3.26)

(A.3.27)

(A.3.28)

(A.3.29)
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A.4. Components of Vectors and Linear Transformations
It is necessary to be able to express some of the previous formulasin terms of components.
For simplicity, we deal with asingle vector space @~ and consider only linear transformations

from @~ into @ . Recall that the vectors defined by (A.3.13) constitute abasisfor 9.
Therefore, every vector v of @~ can be written in the form

v=Vi, (A.4.1)

17

where {i,,...,i,} isan orthonormal basis. The reader should note that from this point on a

summation convention is adopted. Rather than indicate a summation from 1 to n explicitly, the
presence of the repeated index tells the reader to automatically sum the equation from 1 to
n=dimg . Itiseasily seen that many of the previous equations in this appendix which involved
summations could have been simplified in their formal appearanceif this convention had been
adopted.

TheoremA.4.1. If A isin 2@ ;97), then the components of A with respect to the
basis {i,,...,i,} aregiven by

A; =i, - (Ai)) (A.4.2)
Proof. From (A.2.11), it follows that
Ai, = Al
and, since i, -i, =, , we have
i (AL) = Ajigi = Ady = A
TheoremA.4.2. If A isin @ ;97), then

A=A, ®i, (A.4.3)

Proof. From (A.2.11), Ai, = Aji,. Therefore,

A, = AiJ,
= A(qik(iq lJ)
= (A(qik ®iq)ij
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Thisresult immediately yields (A.4.3).

Asaspecia case of (A.4.3), it is possible to show that theidentity I in &(@;0) hasthe
component representation

1=5,i, ®i, =i, ®i, (A.4.4)
TheoremA4.3.: If A isin &@;97), then

AT = Ai, ®i, (A.4.5)

Thisresult follows directly from (A.4.3), (A.3.15) and (A.3.27)
Theorem A.4.4. For a symmetric endomorphism,

A = A, (A.4.6)

Theorem A.4.5. For a skew-symmetric endomorphism,

A, =—A, (A.47)

These theorems are trivial consequences of (A.3.14) and (A.4.3). In passing, it isworthwhile to
note that the component version of (A.3.18) is

A =%(Aq. +/ﬁk)+%(pkj “A) (A4.8)

TheoremA46. If A:9 ->&@ and B:9 — @  , then

BA = B, A, ®i, (A.4.9)

]

Proof. (BA)(v)=B(Av) for v in @~ . From (A.4.3) it follows that
Av = Ajkai j
Therefore,

(BA)(v) = AVB(i,) = AV, B

ik 'k =g "q

= By A, (V-1 )iy = (B Ayd, ®i )V

q " ik

Thelast equality yields (A.4.9)



Mathematical Preliminaries 257

Exercise A.4.1

Use (A.4.9) and show that

[AB] =[A][B] (A.4.10)
Exercise A.4.2
If A isregular show that

[A™]=[A]" (A.4.11)

Exercise A.4.3

If Q isan orthogonal linear transformationin & (9 ;@) show that

Qi Qy =S (A.4.12)
and

QiaQik = I (A.4.13)
wherethe Q. , g, j =1,...,n arethe components of Q with respect to an orthonormal basis.

Exercise A.4.4
If wand v arein 9, show that

u®v=UVi ®i, (A.4.14)
A.5. Cross Products, Determinants and the Polar Decomposition Theorem

The next concept that is needed isthat of the cross product. In order to carry out this
discussion, in this section the argument is restricted to the case of a vector space of dimension three

Definition. A crossproduct in @ isafunction, written ux v, from @~ x@~ — @ such
that

1 uxv=-vxu (A.5.2)

2. wx(U+V)=wxu+wxv (A.5.2)

3. y(uxv)=(uu)xv (A.5.3)
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foral u,v,w in @~ and u in &;

4, u-(uxv)=0 (A.5.49)
5. ||u><v|| = ||u||||V||SIn9 (A.5.5)
where
cosf =V
[ul[¥]

and 0< 6 <180°.

Geometrically, |ux v| isthe area of the parallelogram with sides |ju]| and | v| intersecting
atanangle 4.

Exercise A.5.1

Show that
(U+V)XW=UXW+VXW (A.5.63)
Exercise A.5.2
Show that
puuxv)=ux(uv) (A.5.6b)
Exercise A.5.3
Show that
uxu=0 (A.5.60)

Definition. If u,v and w arein 9 , the scalar triple product is u-(vxw).

Geometrically, [u-(vxw)| isthe volume of the parallelepiped formed by the coterminus
sidesu,v and w.

Exercise A.5.4

Show the following
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u-(vxw)=-v-(uxw)=v-(wxu)

A5.7
=—w-(vxu)=w-(uxv)=—u-(wxv) ( )
TheoremA5.1. Let {i,,i,,i,} denotean orthonormal basisfor &~ . Then

i, xi, =i

SO (A5.8)
I, X1, =71,

and

i, xiy ==+

Proof. : Since i, xi, isin &~ , we can expressit as i, xi, = i, + Ai, + &i,, but
i,-(i,xi,)=0and i,- (i, xi,) =0 from (A.5.4). Therefore, x=1=0 andthus i, xi, =¢i,. Since
li, xi,||=1 from (A.5.5) we have & =+1. The other two results follow by an identical argument.

Exercise A.5.5

Use (A.5.7) and show that when i, xi, =1i,, then i, xi, =i, and i,xi, =i,. Likewise when

i, xi, =—i,, then i, xi, =—i,and i, xi, =—i,.

It follows from Theorem A.5.1 and the above exercise that @~ has two possible cross products. In
the case where i, xi, =i,, it is elementary to show that

uxv=UVi; xi, = (UV; — UV, + (U, —UV,)i, (A59)
+(UV, — U,V )i

On the other hand, if i, xi, =—i,, then
ux v =—(U,v, —UV,)i; — (U, —UuV,)i, — (UV, — U\ )i, (A.5.10)
Thus, the two possible cross products differ in sign.

Definition. A vector space @~ with the cross product (A.5.9) is said to have positive
orientation.

Definition. A vector space @~ with the cross product (A.5.10) is said to have negative
orientation.

Definition. The symbol &, is defined asfollows:
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+1 if ijk isan even permutation of 123
g =11 if ijk isan odd permutation of 123
0 otherwise

The symbol &, is known as the permutation symbol.

It easily follows from this definition that

Eip3 = Egmy = E3p =1,
Exnz = E1gp = Egn =1, (A.5.11)

Eppp = Ea3 = &1, =0, €lC
It follows from the above definition that in @, with positive orientation,
i i, =&y dy
andina @, with negative orientation,
i, %1, = —ggd,

As amatter of convention, we shall always assumethat @~ has positive orientation. Therefore,

iy xi; =gy dy (A.5.12)
and
i (g %)) =y = &g (A.5.13)
Exercise A.5.6
Show that
Eqkqs = 00k — 0t0%ks (A.5.14)
Exercise A.5.7
Show that
uxv=gyuUVi, (A.5.15)

and
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ux(vxw)=(u-w)v—(u-v)w (A.5.16)

Definition. If uw and v arein @, their exterior product u A v is askew-symmetric
endomorphism defined by

UAV=u®v-vQ®u (A.5.17)

If (wAv), denotesthe kj of uA v with respect to an orthonormal basis, it is easily shown that
4 i A.5.18
uxv—qujk(U/\V)jqu (A.5.18)
Theorem A5.2. For every set of three vectors {u,v,w} in 9@, u-(vxw) =0 if and only if

the set islinearly dependent.

Proof. First assume {u,v,w} islinearly dependent. It followsthenthat u=Av+puw. It
easily follows from (A.5.4) and (A.5.6b) that

u-(vxw)=Av-(vxw)+uw-(vxw)=0

Next assumethat u-(vxw)=0. If vxw =0, then (A.5.5) showsthat v and w are colinear which
forces {u,v,w} to belinearly dependent. If vxw =0 then {v,w} islinearly independent. If

u=0, then {u,v,w} islinearly dependent. If u= 0, then it must be orthogonal to vxw .
Consequently, u liesin the subspace of @~ for which {v,w} isabasis. It immediately follows
that {u,v,w}islinearly dependent.

In the case where {u, v, w} islinearly independent, it is possible to prove that the scalar,
Au-(AvxAw)/u-(vxw), dependsonly on A .

Definition. If A isin &(9 ;9 ) then the determinant of A, written det A, isascalar
defined by

(det A)u-(vxw)=Au-(Avx Aw) (A.5.19)
foral u,v and w in 9~ .
Theorem A.5.3. An endomorphism A in &(9;97) isregular if and only if det A #0.

Proof. Without loss of generality, we can take u =i,, v=i, and w =i, in (A.5.19). By
(A.5.13), (A.5.19) can be written
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det A = Ai, - (Ai, x Ai,) (A.5.20)

If det A =0, then (A.5.20) and Theorem A 5.2 show that {Ai,, Ai,, Ai,} islinearly independent. If
b isin @, then clearly the equation Ab =0 can be written

Ab =bAi, +b,Ai, +b,Ai, =0 (A.5.21)

The linear independence of {Ai,, Ai,, Ai,} forcesb =b, =b,=0. Thus ker A={0} and A is
regular.

Next assume A isregular, then {Ai,, Ai,, Ai,} islinearly independent and by Theorem
A.5.2, det A #0.

TheoremA5.4. If A and B are endomorphismsof & . then
det AB=det AdetB (A.5.22)
Proof.

det(AB)u-(vxw) = ABu-(ABvx ABw)
= A(Bu) - [A(Bv)x A(Bw)]
= (det A)(Bu)-[(Bv) x (Bw)]
= (det A)(detB)u - (vxw)

Thus,
det AB =det AdetB
Corollary. If A isanautomorphismof ¢, then

1

det A = e (A.5.23)
Proof. Thisresult follows from Theorem A.5.4 and the equations
AAT =1
and
detI=1 (A.5.24)

Theorem A5.5. If A isanautomorphism of @, then
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AvxAw = (det A)A™" (vxw) (A.5.25)
foral v,w in 9.
Proof. From (A.3.14) and (A.5.19), it follows that
u-[AT(Avx Aw)] = (det A)u- (vxw)
Therefore,

0

u-{[A" (Avx Aw)] - (det A)(vx w)}
which yields
AT (Avx Aw) = (det A)(vxw) (A.5.26)

since u isarbitrary. Equation (A.5.25) followsimmediately from (A.5.26) and A" = AT .

Theorem A.5.6.

&g et A =gy A AA (A.5.27)

Proof. In(A.5.19), take u=i,, v=i; and w=i, then Ai = A i , etc. Therefore,
(A.5.19) can be written

i, (i, xi,) det A =i, - (i, xi,) Ay AA,

If we now use (A.5.13), we immediately obtain (A.5.27). Notethat if wetake r =1,s=2 and
t =3, then (A.5.27) yields

det A = ¢, AuALAG (A.5.28)
If we multiply (A.5.27) by ¢, and use the identity,

£yt =3, (A.5.29)

it follows that

1
det A =~ et A A (A.5.30)
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Exercise A.5.8

Use (A.5.30) and show that
det A =det A’ (A.5.31)

Exercise A.5.9
Show that detQ =+1forall Q in ©(9").
Exercise A.5.10
Show that

det AA=A1%detA  and detA =det[A] (A.5.32)
Exercise A.5.11
Show that detu® v=0
Exercise A.5.12

Define alinear transformation K, in & (9;97) by
(K u)-(vxw)=u-(AvxAw) (A.5.33)

foral u,v and win @~ . Select and orthonormal basisfor @&~ and show that the components of
K, arerelated to the componentsof A by the formula

1
Kai = 5 &inadia AssPy (A.5.34)

Show that the matrix [K, ], called the adjoint matrix , is equal to the transposed matrix of
cofactors of [A]. Inaddition, show that

K, A = (det A)I (A.5.35)

In the special case where A isregular, (A.5.35) yields the following formulafor A™,

A=K
det A

(A.5.36)
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It is possible to prove that the sum {Au-(vxw)+u-(Avxw)+u-(vxAw)}/u-(vxw)

dependsonly on A .

Definition. Thetrace of an endomorphism A in & (9 ;) , written trA , isascalar

defined by

(trA)u-(vxw)=Au-(vxw)+u-(Avxw)+u-(vxAw)

foral u,v and win 9~

Theorem A.5.7. The component representation of tr A is
trA:Ah"'Azz"'%s:Ajj

Proof. Let u=i,v=i,,and w=i, in (A.5.37), then, since A = Aji, ®i, and

i (ipxi;) =1,

(trA) = Aji, - (i xi5) +iy - (A, xig) +i; - (i, x Agi,)
= Ay - (i xd) iy - (Al x5) +1 - (1, < Agl,)

:Ah"'Azz"'Aas

Show the following:

Exercise A.5.13

tr(AA, + uA,) = Atr A + utrA,

Exercise A.5.14

tr AB=trBA = A, B,

Exercise A.5.15

Exercise A.5.16

Exercise A.5.17

If A isin &(9;9) thenfrom (A.3.18)

trA=trA"

tra®v=u-v

(A.5.37)

(A.5.38)

(A.5.39)

(A.5.40)

(A.5.41)

(A.5.42)
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A=B+C
where B = %(A +A") isasymmetric endomorphism and C = % (A—A") isaskew-symmetric
endomorphism. Show that trA=trB.

Definition. If A isin 22 and A isin & (9 ;9 ) the characteristic polynomial of A is
the polynomia f (1,A) defined by

f(A,A) = det(A — AI) (A.5.43)
Theorem A.5.8

f(A,A) ==+, A2 =11, A+, (A.5.44)

where
|, =trA (A.5.45)
I, =trK, (A.5.46)

and

I, =detA (A.5.47)

Proof. : From (A.5.19), it istrue that
f(4,A)u-(vxw)=(A-ADu-[(A-AD)vx(A-Al)w] (A.5.48)
By expansion of (A.5.48), it easily follows that

f(A,Au-(vxw)=—2%u-(vxw)+ A’ [Au-(vxw)+u- (Avxw) +u-(vx Aw)]
—A[Au-(Avxw)+Au- (v AW) +u-(Avx Aw)] (A.5.49)
+Au- (Avx Aw)

From (A.5.37), the coefficient of A% in (A.5.49) is (tr A)u-(vxw). Likewise, the coefficient of
-4 istrK, . Thisfact followsfrom (A.5.37) and (A.5.33). Sincethelast termin (A.5.49) is
(det A)u-(vxw), (A.5.44) holds. A more useful formulafor I1,is

1 2 2
I, :E[(trA) —trA? ] (A.5.50)
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The derivation of (A.5.50) will be presented later in this section.

The quantities I, 11, and 11, are the fundamental invariantsof A. Thisname arises
because

| gi=1, (A.5.51)
o =114 (A552)

and
=1, (A.5.53)

for al regular linear transformations B in & (9 ;9 ). The proof of (A.5.51), (A.5.52) and
(A.5.53) iselementary. For example,

I (tr BAB™)*~tr(BAB'BAB ™))

ok
= %((tr BAB™)’ - tr(BA’B™))
= %((tr B'BA)* - tr(B'BA?))
=%((trA)2 ~tr(A%)) =11,

If A isregular, it followsfrom AA™ and (A.5.23) that

1

", ., = (A.5.54)
AT,
Likewise, (A.5.36). (A.5.46) and (A.5.47) yield
1IN
L= (A.5.55)
AT,
By interchanging A and A™, we see from (A.5.54) and (A.5.55) that
I, =t (A.5.56)

Al T
1,

Theorem A5.9. (Cayley-Hamilton) For every A in (9 ;97),
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~AP+ 1 AP =11 A+, =0 (A.5.57)
Proof. From (A.5.35) and (A.5.43), it follows that
K, ,(A-AI)=f(41,A) (A.5.58)

The definition (A.5.33) showsthat K, ,, isasecond degree polynomial in A and, thus, we can
write

K, , =4°B,- 1B, +B, (A.5.59)

where B,,B, and B, are endomorphismsto be determined. If we place 4 equal to zero, (A.5.59)
yields

B,-K, (A.5.60)

If (A.5.44) and (A.5.59) are substituted into (A.5.58) and the result isrequired to hold for all 4, it
follows that

B,A =11 (A.5.61)
BA+B,=Il,1 (A.5.62)
B,A+B, =11 (A.5.63)

and
B, =1 (A.5.64)

With (A.5.60) and (A.5.45) it isclear that (A.5.61) isjust the result (A.5.35). Theresult (A.5.57)
follows directly from (A.5.61) through (A.5.64) by simply observing that

B,A-(B,A+B,)A+(B,A+B)A’-B,A°=0
identically.
Often, the Cayley-Hamilton theorem is stated by saying that an endomorphism satisfiesits

own characteristic equation. It isuseful to note that (A.5.60), (A.5.62). (A.5.63) and (A.5.64)
combineto yield the following expression for K, :

K,=A"-1,A+Il,I (A.5.65)
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Since trI=dimg@~ = 3, the trace of (A.5.65) yields (A.5.50)

Next we wish to briefly discuss the eigenval ue problem for an endomorphism A in
Z(97;97). Inorder to save space, it will be assumed that the reader is familiar with the

corresponding problem in matrix algebra and, thus, proofs of theorems are not necessary.

Definition. If Aisin £ (9 ;9) aneigenvalueof A isascalar A such that

Av = Av (A.5.66)
for some nonzero vector v in 9.
The vector v in (A.5.66) isthe eigenvector of A for the eigenvalue 4. It clearly follows

that in order for (A.5.66) to be satisfied for nonzero v it isnecessary and sufficient for A —AI not
to beregular. It follows then from Theorem A.5.3 that the eigenvalues of f (4, A) = det(A — AI)

are the roots of the characteristic polynomial
f(4,A)=det(A-AI)=0 (A.5.67)

Theorem A.5.10. If A isasymmetric endomorphismin & (9 ;9 ") then the eigenvalues
of A arereal and there exists an orthonormal basisfor ¢~ consisting of eigenvectors of A

The proof of this theorem can be found in any linear algebra textbook.

If {n,,n,,n,} isthe orthonormal basis constructed in Theorem A .5.10, it follows from (A.4.3) that
A=/n®n +4n,®n,+4in,®n, (A.5.68)
for a symmetric endomorphismin & (9;97). In (A.5.68)

Anl = ﬂlnl

An, = ﬁznz

and (A.5.69)

An, = A;n,

where 4,4, and 4, arethethreeroots of (A.5.67). The formula (A.5.68) isknown as the spectral
representation for A .

Exercise A.5.18

Show that
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[, =A4+4+4 (A.5.70)
Exercise A.5.19
Show that
I, =44+ AL+ 44, (A.5.71)
and
Exercise A.5.20
Show that
1, =444, (A.5.72)

for a symmetric endomorphism A in &(9;97).

The results (A.5.70) through (A.5.72) are actually valid for an arbitrary A in &(9,97).
However, in this case the eigenvalues of A need not bereal.

Theorem A5.11. A symmetric endomorphism A in £ (9 ;9 ) ispositive definiteif and
only if its eigenvalues are positive.

The proof of this theorem is an immediate consequence of (A.5.68) and the definition
(A.3.23). Of course corresponding results hold for negative definite, negative semidefinite and
positive semidefinite symmetric linear transformations.

Theorem A.5.12. (Polar Decomposition Theorem) An automorphism F in §&(9) has
two unique multiplicative decompositions

)
Il

RU (A.5.72a)
and

F=VR (A.5.72b)

where R isin ©(9) and U and V are symmetric and positive definite.

Proof. Since (F'F)' =F'F and u-(F"Fu) = Fu-Fu = ||Fu||2 the linear transformation

F'F issymmetric and positive definite. Consequently, the spectral representation (A.5.68) isvalid
for A=F'F. Weshal write
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F'F=An,®n,+4n,®n,+An,®n, (A5.74)
where 4, > 0,4, >0and A, >0. Thelinear transformation U isdefined by
U=4""n,®n,+4n,®n,+ 1, ®n, (A.5.75)
It is easily established from (A.5.75) that
U’=F'F (A.5.76)

It is obvious from (A.5.75) that U is both symmetric and positive definite. By direct calculation, it
IS seen that

U’l:inl@)n1+in2®n2+in3®n3 (A5.77)

ﬂlll2 11/2 @/2
2
By definition, the regular linear transformation R is given by
R=FU" (A.5.78)
An elementary calculation showsthat RR™ =1, aresult which provesthat R is orthogonal.

Equation (A.5.78) is equivaent to (A.5.72a). Clearly the above construction yields unique R and
U. Inorder to obtain (A.5.72b), we define

V =RUR’ (A.5.79)
A simple computation showsthat V issymmetric and positive definite. Given (A.5.79) and

(A.5.72a), equation (A.5.72b) immediately follows. It isuseful to note that (A.5.79) and (A.5.75)
show that

V = 4"’Rn, ® Rn, + 2)’Rn, ® Rn, + ;’’Rn, ® Rn, (A.5.80)

Thus, the eigenvalues of V are the same asthose of U while the eigenvectors of V are obtained
fromthose of U by an orthogonal transformation. It follows from (A.5.72b) that

V?=FF' (A.5.81)
Exercise A.5.21
Show that U and V inthe polar decomposition theorem have the same fundamental invariants.

Exercise A.5.22
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Apply the Polar Decomposition Theorem to the linear transformation Fin &2 (&) defined by

Fi, = 24/2i, - 2i,

. .3 , 1 =,
ad Fi, = (EJE+1)11+(3—5\/§)12

Fi, =i,

By calculation of the eigenvectors and eigenvalues of F'F , show that U is defined by

Ui, = (2++/2)i, + (2-/2)i,
and Ui, = (2-/2)i, + 1+ 24/2)i,
Ui, =i,
while R isdefined by
Ri, =%\/§il—%«/§i2

Ri, zéﬁil+%\/§i2

Ri, =i,

It isauseful computational check in working this exercise to know that the spectral representation
of F'F isgiven by

F'F=18n,®n,+9,®n, +n, ®n,

where
1. 2,
nl :ﬁll +E12
and nzz—%il+%i2
n; =1,

Exercise A.5.23
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Apply the Polar Decomposition Theorem to the linear transformation Fin &2 (&) defined by

. 246, 228,
i =—i+—I,
125 © 125

272, 129,

Fi, =22 220
2= o T o5

and
Fi, =1,
By calculation of the eigenvectors and eigenvalues of F'F, show that U is defined by

U=2n,®n, +3n,®n,+n,®n,

where
. 4,

n, —ll+g12

n,=——i +—1i

2 5 1 5 2
and

n, =i,

Exercise A.5.24

Apply the Polar Decomposition Theorem to the linear transformation Fin &< (9 ") defined by

Fi, = 2.38i, +1.02i, —.74i,
Fi, =—1.34i, +1.61i, +1.18i,

and
Fi, = 2i, —1.5i, + 4.33i,
By calculation of the eigenvectors and eigenvalues of F'F , show that U is defined by

Ui, = 2.65i, — .48i,

i Ui, = —.48i, + 2.35i,

Ui, = 4.99i,
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while R is defined by

Ri, = .8253i, +.529i, —.1953i,
Ri, = —.40i, +.7928i, +.459%i,

Ri, =.4003i, —.3005i, +.8657i,

It isauseful computational check in working this exercise to know that the spectral representation
of F'F isgiven by

F'F =3.9865n, ®n, +9.0459n, ®n, + 24.998%n, ®n,

where
n, =.5953i, +.8034i,
and n, =—.8034i, +.5953i,
n, =i,
Exercise A.5.25

Prove that a symmetric linear transformation is positive definite if and only if its fundamental
invariants are positive.

A.6. Multilinear Functionals and Tensor Algebra

In this section, the concepts of multilinear functionals and tensor algebrawill be briefly
discussed. We allow the vector space @ to have any finite dimension.

Definition. A linear functional isafunction f :9~ — @& such that
f(Au+puv)=Af(u)+uf(v) (A.6.1)
foral w,ving  and A, in &7
Example. If u isafixed vector in & ,then f :9~ — @7 defined by

f(v)=u-v (A.6.2)

isalinear functional.
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Definition. A bilinear functional isafunction &~ x@~ — @& such that
A(Au, + pu,, v) = AA(uy, v) + 1A, v) (A.6.3)
and
A, Av, +uv,)=1A(,v,)+ uA(u,v,) (A.6.9)
foral v,v,,v,u,u,,uin @ and 4,u in &2
Examples.
(1) The function defined by
A(u,v)=u-v (A.6.5)
for all u,v in @ isabilinear functional.
(2) More generally, if A isin &(9;9) then the function defined by
A(u,v)=u-(Av) (A.6.6)
isabilinear functional.

Definition. If pisapositiveinteger, ap-linear functional isafunction with p arguments

QXY XY x---xOQY >R

p times

that islinear, in the sense of (A.6.1) in each of its arguments.

Definition. A tensor of order p (p>1) on @ isap-linear functional.

The set of tensors of order pon @~ isdenoted by &7(9). Addition and scalar
multiplication in this set is defined by

(A+B)(vy,.y V) = A(Vyyee, V) + B(Vy, ey V)
and (A.6.7)
(AA) vy, v ) = A(A(Vy,e0 V)

foral v,,..,v,in 9~ and 1 in o7".
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With these definitions, 77, () becomes avector space. The zero vector in 7,(97) is
the p-linear functional that maps all sets of p vectorsin ) into zero.
Examples
(1) If dm9o~ =3, thefunctional D
D(u,v,w)=u-(vxw) (A.6.8)

isatensor of order three. Thetensor D clearly has additional properties not shared by all elements
of 7,(97). They are

D(v;,v;,v,) =&;D(vy,V,,Vs3) (A.6.9)

Equations (A.6.9) follows easily from (A.6.8). Thetensor D with the properties (A.6.9), isa
completely skew-symmetric tensor of order three.

(2) Thefunction u defined by
u(v)=u-v (A.6.10)

where u isin @ isatensor of order one. It can be shown that the tensor u isuniquely
determined by the vector u and conversely. Thus @~ and (@) areisomorphic vector spaces.

It is customary to suppress this isomorphism and, thus, regard elements of these two spaces as the
same. This procedure will be followed here.

(3) Thefunction A defined by
A(u,v)=u-(Av) (A.6.11)

isatensor of order 2. It can also be shown here that the second order tensor A isuniquely
determined by the linear transformation A and conversely. Thus, & (9;0) and 7,(9") are

isomorphic vector spaces. Thisisomorphism shall be suppressed as was the one in Example (2).
A.7. Euclidean Point Spaces, Coordinate Systems

In vector analysis, the idea of arectangular Cartesian coordinate system is accepted and
used. Inthissection, it will be shown how thisidea can be introduced in a somewhat formal
fashion. Thefirst concept we shall introduce is that of a Euclidean point space.

Definition. A set <& isaEuclidean point space if there exists afunction
f @& x& — 9 suchthat

1. f(x,y)=f(x,2)+ f(z,y) foral x,y,z in &.
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2. Forevery x in < and v in @ , there existsaunique element y in < such that
f(x,y)=v.

The elements of <& are called points. The vector space @ is called the tranglation space.
We say that f (x,y) isthe vector determined by the end point x and initial point y. Condition (2)

above is equivalent to requiring the function f_defined by f_(y) = f(x,y) to beonetoone. The
dimension of <&, written dim< , isdefined to be n, the dimension of 9 .

A Euclidean point spaceis not a vector space. However, avector space with inner product
is a Euclidean point space with f(v,,v,)=v,—v,. Foran arbitrary point space & , the function

f iscalled the point difference, and it is customary to use the suggestive notation
f(x,y)=x-y (A.7.2)
In this notation (1) and (2) above take the forms
X-y=X—Z+Z-Yy (A.7.2
and
X-y=vV (A.7.3)
Theorem A.7.1. InaEuclidean point space &
1 x—x=0,
2. x-y=-(y-x),
3 if x—y=x-y', then x—-x'=y-y".
Proof. For (1) take x=y =2z in (A.7.2) then
X—X=X—X+X—X
which implies x—x=0. Toobtain (2) take y =x in (A.7.2) and use (1). For (3) observe that
X-y'=X-y+y-y'=x—-x+x-y'
from (A.7.2). However wearegiven x—y =x'-y' which implies (3).
The equation

X-y=V (A.7.4)
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has the property that given v and x, y isuniquely determined or given v and y, x isuniquely
determined. For thisreason, it is customary to write

X=y+V (A.7.5)

for the point x uniquely determined by y in & and v in @~ . Thedistancefrom x to y written
d(x,y), isdefined by

]1/2

d(x,y) =[(x-y)-(x~-y) (A.7.6)

Definition. A rectangular Cartesian coordinate system consists of afixed element of &,
denoted by 0, called the origin, and an orthonormal basis {i,.i,,...,i,} for 9.

For every point x in <& , thevector x—0 isin &~ and can be represented by
x—0= X (A.7.7)

Definition. The n-tuple of scalars (x;, X,,..., X,) arecalled the coordinatesof x relativeto
the rectangular Cartesian coordinate system.

The origin has the coordinates (0,0,0,...,0). Inathree-dimensional case, & is represented

by Fig. A.7.1. Thereader is cautioned that we have introduced three different zeros. The zero
scalar, the zero vector and the origin. The context will always indicate which of these zerosis
being used.

Figure A.7.1
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In Chapters |11 and IV we had occasion to make use of a certain type of mapping of <& onto
<& . Thismapping was of the form

x*=c+Q(x-0) (A.7.8)

where ¢ and 0 arefixed elementsof <& and Q isin ©(9). Such mappings are called rigid
affine mappings.

Exercise A.7.1

Show that the mapping (A.7.8) has the following properties:
1. x,—y,=X,-y, implies x; -y, =x, -y,,
2 ¢ - |-l

Equation (A.7.8) can be viewed geometrically as follows:

For simplicity, we take n=2 and then <& can be represented by the plane of the page. The
element 0 isshown below. Equation (A.7.8) then yields the geometric construction shown in the
following figure:

c x*—c=Q(x-0) x*

Figure A.7.2
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It isimportant not to view the mapping (A.7.8) as a change of coordinates. Theideaof a
rectangular Cartesian coordinate system was introduced earlier in this section and these ideas were
not needed in order to discuss arigid affine mapping.

A.8. Vector Analysis

In this section we shall record certain elementary results from vector analysis. Thereader is
assumed to be familiar with elementary definitions from analysis such as an open set and a
continuous function.

A function f :@¢ — &', where @ isan open subset of <& and <& isaEuclidean point
space or avector space, isdifferentiableat x in &/ if there existsalinear transformation A _in
(9,97 such that

f(x+v)= f(x)+AxV+0(x,||v||) (A.8.1)
where

ofx,|v) _

A.8.2
Cut— (A.82)

In this definition, &~ denotes the trandation space of <& and @' denotes the translation space of
&' if &'isapoint space and denotes &' if <& " isavector space. Itispossibleto provethat A
isunique.

If f isdifferentiable at every point of &/, then we can define afunction
grad f :G¢ > & (97;097"), caled the gradient of f , by

grad f (x) = A (A.8.3)

foral x in @ . If grad f iscontinuouson @, then f issaidtobeof class C'. If grad f exists
and isitself of class C', then f isof class C>. Moregeneraly f isof class C" if itisof class
C'*and its (r-1)* gradient, written grad’ ™ f , isof class C'. A function f isof class C° ifitis
merely continuouson @/ . If f isa C", onetoone, function witha C" inverse f* defined on
f(2/),then f iscalleda C" -diffeomorphism.

If fisdifferentiableat x then we can show from (A.8.1) and (A.8.2) that
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A v= d f(x+7v) (A.8.49)
dr

X
7=0

foral vin @~ . Toobtain (A.8.4), replace v by rv, >0, in (A.8.1) and write the result as

_ fx+rv)—f(x) o(x.[e]][v])
T T

Ay (A.8.5)

By (A.8.2) thelimit of the last term is zero as 7 — 0 and (A.8.4) isobtained. Equation (A.8.4)
holdsfor al v in @~ because we can aways choose 7 in (A.8.5) small enough to insure that
x+7v isin @/,thedomainof f. If f isdifferentiableat every x in &, then (A.8.4) can be
written

[grad f (x)] V= di f(x+7v) (A.8.6)
T

=0

A function f : @/ — @&, where @/ isan open subset of <& , iscalled ascalar field.
Similarly, f:@ — @ isavector field, and f : @ — 77,(9") isatensor field of order p.

If f:@ — 7,(9") isatensor field, we can construct a function f defined on an open
subset of o7" withvaluesin 77,(9") by

f (%o X ) = f(x) (A.8.7)

where x,,..., X, are the coordinates of x as defined by (A.7.7). In order to simplify the notation in
the following, we shall often not distinguish the function f in (A.8.7) and its coordinate function

f.

If ¢:@&¢ — o7 denotes adifferentiable scalar field defined on an open subset @/ of &,
then

grad p(x) :a—(oik (A.8.8)
29

with respect to arectangular cartesian coordinate system. To establish (A.8.8), we use (A.8.6) to
write

gradp(x)-v = di(p(x+ V) (A.8.9)
T

=0
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By the definition (A.8.7)
P(X+7V) =@(X + 7V, X + TV, ..., X +TV,)
Therefore,

_ 09X, % %)
7=0 aXk

%gp(x +7V)

Since v in 9 isarbitrary, (A.8.11) and (A.8.9) combineto yield (A.8.8).
Exercise A.8.1
Show that
grad(p+y) =grade + grady
and

grad(py ) = pgrady +y gradg

Appendix A

(A.8.10)

(A.8.11)

(A.8.12)

(A.8.13)

If g:&¢ — 9 denotes adifferentiable vector field defined on an open subset &/ of <& ,

then

gradg:%i. ®i,
ox,

(A.8.14)

with respect to arectangular cartesian coordinate system. To establish this result, we again use

(A.8.6) to write

[gradg(x)]v = d%_g(x +7V)

=0

By the same argument which produced (A.8.11)

_ o8 % %)
=0 aXk

%g(x +7V)

Since g =g;i;, and the i, are constant vector fields, (A.8.16) can be replaced by

(A.8.15)

(A.8.16)
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09, (% %1 %)

d .
Eg(x +7V) . = o Vi (A.8.17)
If (A.8.17) is substituted into (A.8.15), the result can be written
[gradg(x) _% (Xlaxz %) i ®i, |[v=0 (A.8.18)

Since v isarbitrary, (A.8.18) yields (A.8.14).

Definition. The divergenceof g: @/ — & isascalar field, written divg , defined by
divg =tr(gradg) (A.8.19)

From (A.5.38) and (A.8.14), the component representation for divg is
divg = 29 (A.8.20)
0%,

Exercise A.8.2
Show that
div(eg) =pdivg+g-grade (A.8.21)

By the same type of argument which produced (A.8.14), the gradient of afield
A:Q — Z(97;,07) hasthe component representation

OA
gradA = 05 @i @i (A.8.22)
axk i q k

where i; ®i, ®i,, for each j,qand k, isathird order tensor defined by
(i, ®i, ®i)(u,v,w) = (i, -u)(i, v)(i, -w) (A.8.23)

foral u,v,w in @ . Thedivergence of thefield A(x) is

A,
divA =—Xi, (A.8.24)
ox,
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The Laplacian of avector field g(x) isavector field Ag defined by

2

Ag = div(gradg) = 29 ;. (A.8.25)
OX;0X

[y

The Laplacian of ascalar field ¢(x) isascalar field Ag defined by

2

. 8
Ag = div(grad g) = axg( (A.8.26)

i

For avector field g(x) , the divergence theoremis the statement that

$._gx)-ds=| divg(xav (A.8.27)

where &7 denotes aregion of & with closed surface 097, dv isthe element of volume, and ds is

the outward drawn vector element of area. Equation (A.8.27) isa special case of amore general
result, called Gauss' theorem,

956@ A(x)®ds = j@ grad A (x)dv (A.8.28)

where A(x) isan arbitrary tensor field and the tensor product A(x) ® ds is defined in a manner
similar to that used in (A.8.23). A specia case of (A.8.28) we shall need is

A(x)ds= [ divA(x)dv (A.8.29)
@6@” J.@“

for alinear transformation A(x).
Exercises A.8.3

Take g(x) = A(x)"u(x) in (A.8.27) and require u to be an arbitrary constant vector field. Derive

equation (A.8.29) from the result of this substitution. This exercise can be generalized to a
derivation of (A.8.28) from (A.8.27).

Exercise A.8.4

There are applications in mechanics for which (A.8.28) is not valid because A(x) is not

differentiable throughout &7 . Inthe case where A isdifferentiable everywherein 09> except on
asurface ¥, where A suffers adiscontinuity, show that

SBWA(X) ®ds = j@p div A (x)dv— L [A]®ndo (A.8.30)
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where [A] denotesthejump of A at ¥ defined below. The geometric arrangement appropriate for

(A.8.30) isshowninthe Fig. A.8.1. Theregion & consists of the two parts @~ and & with
surfaces 0@7~ and 09> respectively. The surface 697" isthe union of 07~ and 0@7". The

unit vector n isnormal to the surface X and isdirected into @»*. The quantity ndo isthe vector
element of areaof .

o0 o0&

Figure A.8.1
Thejump [A] is defined by
[A]=A -A" (A.8.31)

where A” isthelimiting value of A asapointon X isapproached from &2 while A~ isthe
[imiting value of A asthe same point is approached from &> .

It should be evident that (A.8.30) is the three dimensional generalization of (1.1.30).
Important special cases of (A.8.30) are

gSa@A(x)ds = j@ div A (x)dv— L [Alndo (A.8.32)
and

gSa@g(x) -ds = j@ div g(x)dv— L[g] ‘ndo (A.8.33)
where A(x) isalinear transformation and g(x) isavector.
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Appendix B

Representation Theorems

In Chapter 4 it was necessary to utilize three representation theorems involving certain isotropic
functions and isotropic tensors. In this appendix, short proofs will be given of these
representations.

In Sections 4.4 and 4.10 it was asserted that if a scalar valued function u of a symmetric
linear transformation B obeys

u(B) =u(QBQ") (B.1)

for all orthogona Q in @(@ )", then there exists afunction u* of the fundamental invariants
I, 11, and IIl, such that

u(B)=u*(l,,1,,11,) (B.2)

In order to establish this result, first recall from (A.5.50) through (A.5.52) that B and QBQ' have
the same fundamental invariantsfor all Q in ©(97)"

Conversely, if asymmetric linear transformation B and a symmetric linear transformation
A satisfy

I =1, (B.3)

N, =1, (B.4)
and

i, =i, (B.5)

then (A.5.43) and (A.5.66) show that A and B have the same eigenvalues 4,4, and A,. If
{e,.e,,e,} isthebasisof orthonormal eigenvectorsof B and {f,.f,.f,} isthe basis of orthonormal
eigenvectorsof A, then (A.5.65) shows that

Be, = 1€, (B.6)

and

287
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and

Af = Af, (B.7)

where thereis no sum on theindex j. Because {e,,e,,e,} and {f,f,,f,} areorthonormal sets, we
candefinea Q in ©(9")" by

Qe, =f, (B.8)
for | =1,2,3. Therefore, from (B.6), (B.7) and (B.8)
QBe, = 1Qe; = A,f, = Af, = AQe, (B.9)
for j=1,2,3. Therefore, A and B must be related by
A=QBQ’" (B.10)

What we have shown isthat (B.3) through (B.5) hold if and only if thereexistsa Q in ©(9")"
such that (B.10) holds. Therefore, the only way (B.1) can be satisfied isfor (B.2) to hold.

In Section 4.11 it was asserted that if the linear transformation K obeyed

QK =KQ (B.11)
foral Q in ©(97)", then K must be given by

K =1 (B.12)

Equation (B.12) is clearly sufficient for (B.11) to be satisfied for all Q in G(9 )" . Conversdly, if
in (B.11) we consider a smooth family of proper orthogonal linear transformations Q(z) such that
Q(0) =1, it follows by differentiation of (B.11) that

Q0K =KQ(0) (B.13)

Because Q(r) isorthogonal for each 7 and because Q(0) =1, it follows that Q(0) is skew
symmetric [See equation (4.9.22) of Section 4.9]. Thus, (B.13) implies that

ZK =KZ (B.14)

for al skew-symmetric linear transformations Z . Because the matrix of Z must be of the form
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0 le le
[Z] = _212 0 Zzs
_213 _223 0

we can easily express (B.14) in components and conclude that

K, =K, =K, (B.15)
K,=K, =0 (B.16)
Ky =Ky, =0 (B.17)
and
K=Ky, =0 (B.18)
If we define
k=K, (B.19)

then (B.15) through (B.19) yield (B.12) as a necessary condition. As observed above, (B.12) is
sufficient to insure that (B.11) is satisfied for all Q in (9 )".

It also was asserted in Section 4.11 that if A isafourth-order tensor that obeys
Q(A[D])Q" = A[QDQ'] (B.20)
forall Q in ©(@ )" andfor all symmetric linear transformations D, then
A[D] = A(tr D)+ 2uD (B.21)
It isan elementary calculation to establish that (B.21) is sufficient for (B.20) to hold. In order to

prove necessity, we shall first prove that (B.20) forces D and A[D] to have the same eigenvectors.
If n;,n, and n, are eigenvectorsof D, then

Dn, =dn, (B.22)
Dn, =d,n, (B.23)

and
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Dn, =d;n, (B.24)

By Theorem (A.5.10), the eigenvectors form an orthonormal basis of ¢~ and the eigenvalues
d,,d, and d, arereal. Since Q in(B.20) isan arbitrary element of ©(9")", we select one
defined by

Qn, =n, (B.25)
Qn,=-n, (B.26)

and
Qn, =-n, (B.27)

A straight forward calculation based upon (B.22) through (B.27) yields

QDQ'n, =Dn, (B.28)

QDQ'n, =Dn, (B.29)
and

QDQ'n, =Dn, (B.30)

Since {n,,n,,n,} isabasisfor &, (B.28) through (B.30) yield
QDQ' =D (B.31)
Utilizing (B.31), we see that (B.20) reducesto
Q(A[D])Q" = A[D] (B.32)

We need to prove that A[D]n; isparallel to n; for j=1,2,3. Thisresult followsif we can prove
that A[D]n; isorthogonal to n, and n, j#k=q. For example,

n, '(A[D]nl) =n, '(QA[D]QTnl)
=Q'n,-(A[D]Q"n,)
=-n,-(A[D]n,)

where (B.25), (B.26) and (B.32) have been used. Thisresult yields



Representation Theorems 291

n,-(A[D]n)=0 (B.33)
Similar calculationsyield
n,-(A[D]n,)=0 (B.34)
for j =k, which provesthat D and A[D] have the same eigenvectors.
If wewrite N, =n; ®n, for j=12,3, then the result just established shows that
AIN,]=AyN, (B.35)

wherethe A,; are the components of the forth order tensor A with respect to the basis of
eigenvectors. An elementary manipulation of (B.35) shows that

Ay =tr(N (AN, ]) (B.36)
With (B.20), we can rewrite (B.36) as
Ay =tr(QN, Q" (A[QN,Q"])) (B.37)

where Q isan arbitrary element of ©(9")". If wetake Q to bedefinedby Qn, =n,, Qn, =n,
and Qn, =n,, then an elementary calculation showsthat QN,Q" =N,, QN,Q" =N, and
QN.Q'" =N,. When these facts are used in (B.37) one finds that

A=A, =Agy (B.38)
and
A,=A=A=A,,=A,=A, (B.39)
Without loss of generality, we can write
A=A, (B.40)
and
2u=A,-A,=A, A (B.41)

Thus, (B.35) reducesto
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AIN,]= A1+ 24N, (B.42)

after (B.38) through (B.41) are used. By the spectral representation of D, [see (A.5.67)] we can
write

D=dN, +d,N,+d,N, (B.43)

Therefore,

A[D] = d,A[N,]+d,A[N,]+d;A[N;] (B.44)
Given (B.42), (B.44) can be shown to reduce to the desired result (B.21).
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Angular velocity, 61, 66
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Bernoulli equation, 194
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Binary operation, 237
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Body couple, 85, 87

Body entropy supply density, 95

Body force density, 10, 78

Bulk coefficient of viscosity, 32, 109
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Cauchy's theorem, 79

Cayley-Hamilton theorem, 267
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Circulation, 58
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Completely skew-symmetric tensor 276
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Conduction, 88
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Conjugate group, 173
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Constrained material, 116, 141, 204
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Contact force, 10, 78, 85
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Coordinate function, 281
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Corotational stressrate, 168
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Cross product of vectors, 257

Curl of avector field, 193

Deformation function, 1, 4, 48
Deformation gradient, 3, 51

Determinant of alinear transformation, 261
Diffeomorphism, 47, 49, 281
Differentiable function, 280

Dilatation, 71

Dimension of avector space, 239
Dispersion relation, 42

Displacement, 2, 36, 49

Displacement gradient, 3, 39

Dissipative stress, 28

Distance between vectors, 248
Divergence of alinear transformation, 283
Divergence of avector field, 283
Divergence theorem, 284

Eigenvalue of alinear transformation, 63, 269
Eigenvalue problem, 269
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Eigenvector of alinear transformation, 63,
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Elastic fluid particle, 134

Elastic isotropic solid, 133, 136

Elastic material, 115

Elasticity tensor, 119

Endomorphism, 244

Enthalpy density, 14, 18, 189

Entropy density, 16, 95

Entropy flux, 16, 90

Entropy flux vector, 96, 231

Entropy inequality, 16, 24, 95

Entropy supply, 16, 95

Equation of general balance, 15
Equation of motion, 77, 84

Equilibrium isentropic wave speed, 222
Equilibrium isothermal wave speed, 222
Equilibrium restrictions, 27
Equipresence, 23, 108, 146

Euclidean point space, 276

Eulerian coordinates, 1

Euler's equations, 86

Extents of reaction, 207

Exterior normal, 78

Exterior product of vectors, 261

Extra hydrostatic pressure, 143

Extra part of the stress, 28, 158
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Finite dimensional vector space, 239
Finite-linear elastic particle, 139

First Axiom of Thermodynamics, 88
First Law of Thermodynamics, 12, 88
First Piola-Kirchhoff stress tensor, 82, 87,
139, 160
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Fourier's law of heat conduction, 23, 235
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Frozen properties, 220
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Gas constant, 21, 110

Gauss Theorem, 284

General balance, 15

Genera linear group, 130, 246
Geophysical continuum mechanics, 84
Gibbs function, 18, 189
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Gradient of afunction, 280

Gradient of alinear transformation, 283
Gurtin-Pipkin heat conductor, 23
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Heat conduction inequality, 154
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Heat flux vector, 89

Heat supply density, 13, 16, 838
Heat-conducting compressible gas, 21, 40
Helmholtz free energy density, 18, 97
Hemitropic particle, 174

Histories, 145

Homentropic motion, 192

Homogeneous body, 184

Homogeneous deformation, 68
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Hugoniot relation, 14, 93

Hydrostatic stress, 79
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Image space of alinear transformation, 243
Incompressible body, 76

Incompressible isothermal elastic material
115, 141

Incompressible isothermal elasticity, 141
Indeterminant hydrostatic stress, 115, 141
Infinitesimal deformation, 69
Infinitesimal rotation tensor, 70
Infinitesimal strain kinematics, 68
Infinitesimal strain measure, 69
Infinitesimal strain tensor, 69, 70
Inhomogeneous material, 116, 120

Inner product space, 248

Internal energy, 12, 88

Internal energy density, 12, 88

Intrinsic spin, 84, 87
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Isentropic bulk modulus, 114

Isentropic longitudinal wave speed, 202
Isentropic modulus of elasticity, 38, 114

I sentropic motion, 192

Isentropic Poisson'sratio, 114

| sentropic wave speed, 40, 44, 202
Isolated body, 201

Isomorphic vector spaces, 244
|somorphism, 244

Isothermal bulk modulus, 112

Isothermal elastic fluid, 135
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Isothermal longitudinal wave speed, 202
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Isothermal Poisson's ratio, 112

Isothermal shear modulus, 112

Isothermal wave speed, 40, 44, 202
Isothermal Y oung's modulus, 112
Isotropic elastic particle, 138, 143
Isotropic function, 137, 179, 182, 185, 287
Isotropic linear thermoelastic solid, 111, 217
Isotropic linear thermoelasticity, 111, 195,
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I sotropic particle, 133, 174

Isotropic solid particle, 133, 174

I sotropy group, 131, 203

Joint invariants, 182

Jump balance of energy, 92, 104

Jump balance of linear momentum, 83, 104
Jump balance of mass, 75, 104

Jump discontinuity, 7, 9, 19, 58, 285

Jump entropy inequality, 17, 97, 104

Jump equations of balance, 99

Jump of afunction, 5, 285

Just setting, 108

Kelvin material, 22

Kernel of alinear transformation, 243
Kinematics of motion, 1, 47
Kinematics of strain, 1, 47
Kinematics of vorticity, 58

Kinetic energy, 12, 88

Kotchine's theorem, 16

Kronecker delta, 241

295

Lagrangian coordinates, 1

Lagrangian strain tensor, 64

Laplacian of ascalar field, 284
Laplacian of avector field, 284

L eft Cauchy-Green tensor, 63, 115, 175
L eft stretch tensor, 62

Length of a vector, 248

Linear constitutive equations, 36, 37, 198,
217,224

Linear dissipation, 33

Linear elasticity, 22, 68, 111

Linear functional, 274

Linear momentum, 10, 76

Linear thermoelasticity, 23, 106, 113, 115
Linear transformation, 242

Linear viscoelasticity, 22

Linear viscous material, 22

Linearly dependent set, 239

Linearly independent set, 239

Local deformation, 3

Local reference configuration, 132, 150
Long range spatial effects, 148
Longitudinal wave speed, 140, 202, 221
Long time approximation, 41

Mass density, 8, 72

Material coordinates, 1, 48

Material curve, 58

Material derivative, 2, 50

Material element of area, 55

Material element of volume, 55

Material form of balance of energy, 90
Material form of balance of linear
momentum, 12, 83

Material form of balance of mass, 8, 73
Material frame indifference, 23, 108, 120,
160, 227

Materially isomorphic reference
configuration, 169, 182

Material strain tensor, 64

Material surface, 56, 57

Material symmetry, 23, 32, 126, 168, 217
Material variables, 2, 50

Materialy uniform body, 182

Materials with internal state variables, 207
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Matrix of alinear transformation, 247 Proper unimodular group, 131, 171
Maxwell relations, 190 p-linear functional, 275
Maxwellian gas, 232
Maxwellian material, 22, 168, 207, 226 Rank of alinear transformation, 243
Maxwell's theorem, 101 Rankine-Hugoniot relation, 12, 20, 105
Maxwell-Cattaneo heat conductor, 23, 222, Rate of deformation, 65, 147
226 Rate of heat addition, 12, 13, 88
Mechanical dissipation inequality, 154 Rate of rotation, 65
Mooney-Rivlin material, 115, 143 Rate of strain, 65
Motion, 1, 47 Rate of strain tensor, 66
Mduller, 231 Rate of work, 12, 88, 91
Rate of work, 88
Navier-Stokes equations, 110 Rectangular Cartesian coordinate system, 278
Negative definite linear transformation, 253 Reference configuration, 1, 8, 32, 47
Negative semidefinite linear transformation Regular linear transformation, 243
253 Reiner-Rivlin fluid, 115
Newton's second law, 77 Relative angular momentum, 86
Nonconductor, 23, 39, 155, 192 Relaxation rate law, 208, 223
Nonequilibrium part of the stress, 28, 158 Relaxation time, 219, 225
Norm of alinear transformation, 68 Residual entropy inequality, 154, 210
Norm of avector, 248 Response function, 146
Normal speed, 99 Resultant body force, 10, 78
Normal stress, 79 Resultant contact force, 78
Normal velocity, 59 Resultant external body force, 78
Resultant force, 10, 77
Ordered n-tuple, 238 Resultant torque, 84
Orthogonal group, 253 Reynold's theorem, 4, 7, 56
Orthogonal linear transformation, 253 Right Cauchy-Green tensor, 53, 132
Orthogonal vectors, 250 Right stretch tensor, 62
Orthonormal basis, 251 Rigid affine mapping, 279
Rigid heat conductor, 222
Particle, 1, 47 Rivlin-Ericksen fluid, 115
Perfect gas, 21, 40, 42, 110 Rivlin-Ericksen fluid of grade n, 115
Permutation symbol, 260 Rivlin-Ericksen tensor, 67, 115
Phase velocity, 42, 44 Rotating coordinate system, 60, 76, 93
Point difference, 277 Rotation tensor, 62
Polar decomposition theorem, 62, 65, 270
Polar material, 84, 87 Scalar, 238
Positive definite linear transformation, 253 Scalar field, 281
Positive semidefinite linear transformation Scalar multiplication, 237
253 Scalar triple product, 258
Power, 12, 88 Scalar valued isotropic function, 137, 287
Pressure, 21, 84, 109, 135 Schwarz inequality, 249
Product of linear transformations, 245 Second Axiom of Thermodynamics, 96
Proper orthogonal group, 131, 163 Second Law of Thermodynamics, 16, 46, 231

Proper subgroup, 130 Second Piola-Kirchhoff stress tensor, 83, 167
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Second-order isotropic tensor, 187, 196, 198,
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Set function, 73

Shear stress, 79

Shear viscosity, 109

Shifting equilibrium, 214, 220
Shifting equilibrium properties, 221
Shock wave, 20, 74, 102, 105

Short time approximation, 41
Skew-symmetric linear transformation, 252
Small departures from equilibrium, 31, 33,
186, 225

Small departures from thermodynamic
equilibrium, 31, 186

Solid elastic particle, 133

Solid particle, 174

Spatial coordinates, 1, 48

Spatial position, 1

Spatial variables, 2

Specid linear group, 131, 142, 171
Specific heat, 21, 35, 44, 110, 112, 191, 221
Specific volume, 9

Spectral representation for alinear
transformation, 269

Spin tensor, 66, 163

Spinodal decomposition, 213
Stability, 18, 22, 46, 98, 202, 222
Stagnation enthalpy, 192

Strain energy, 167

Strain kinematics, 62

Stress, 10, 79

Stress power, 15, 92

Stress tensor, 79

Stress vector, 78, 121

Stretching tensor, 66

Strong thermodynamic equilibrium, 212
Subspace of avector space, 243

Sum of linear transformations, 246
Summation convention, 255

Surface couple, 85, 87
Surface-relevant temperature, 233
Symmetric linear transformation, 252
Symmetry group, 131, 172, 183
System of forces, 78

Temperature, 16, 96

297

Tensor, 275

Tensor field, 281

Tensor product of vectors, 254, 284
Thermal conductivity, 21, 32, 39, 109, 112
Thermal equation of state, 192
Thermodynamic energy equation, 14, 91
Thermodynamic equilibrium, 27, 156, 210
Thermodynamic equilibrium, 27, 156, 210,
224, 230

Thermodynamic potential, 22
Thermodynamic process, 24, 117, 145, 207
Thermodynamic stability, 22, 98
Thermoelastic material, 155
Thermoelastic nonconductor, 155
Thermoelastic stability, 202

Total energy, 12, 88

Trace of alinear transformation, 265
Transformation of linear elements, 55
Transformation of surface elements, 55
Transformation of volume elements, 55
Transformation rule, 242

Trandation space, 277

Transport theorem, 4, 5

Transpose of alinear transformation, 251
Transverse wave speed, 140, 202

Triangle inequality, 249

Undistorted local reference configuration,
174

Undistorted natural state, 200

Undistorted reference configuration, 133,
175, 228

Uniform local reference configuration, 182,
195

Unimodular group, 130, 171

Unit normal, 99

Vector field, 281

Vector space with negative orientation, 259
Vector space with positive orientation, 259
V ector spaces, 237

Velocity, 1, 7, 49

Velocity gradient, 3, 52

Velocity potential, 194

Viscodlastic fluids, 67

Viscoelastic material, 148
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Viscosity, 109

Viscous dissipation, 111

Voight material, 22
Volume-relevant temperature, 233
Vorticity equation of Vazsonyi, 194
Vorticity vector, 66, 193

Vorticity vector, 193

Wave number, 42
Weak thermodynamic equilibrium, 211
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