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Preface

The attainment of higher power densities in modern hydraulic turbomachinery is
invariably obtained by running the impeller at the maximum allowable speed and
lower shaft torque. Accordingly, operation under cavitating conditions can occur
under special circumstances in hydroturbines and nuclear power plant cooling
systems and is often tolerated in liquid propellant rocket feed systems, exposing the
machine to the onset of dangerous self-sustained, cavitation-induced fluid dynamic
and rotordynamic instabilities. Since these phenomena actually represent the major
source of life and reliability degradation of the machine, fundamental information
on their nature and behavior is of crucial importance for the effective design of
today’s high-performance hydraulic turbomachinery. However, the extreme com-
plexity and imperfect understanding of the phenomena involved pose formidable
obstacles to the modeling, prediction, and control of cavitation-induced instabilities.
For this reason, nowadays theoretical analyses and simulations alone are still of
limited value for the solution of specific technical problems and progress in this
field must rely on the support of dedicated experimentation.

The objective of this monograph consists in providing the reader with a com-
prehensive approach to the physics, fluid dynamics, modeling, experimentation, and
numerical simulation of cavitation phenomena and their implications on the design
and operation of high-performance hydraulic turbomachinery. The material pre-
sented herein is, therefore, intended to illustrate some of the most recent
advancements concerning both the occurrence of cavitation-induced instabilities
and rotordynamic effects in high-performance turbopumps and hydroturbines, as
well as the development of more refined and efficient numerical tools for the
simulation of the complex cavitating flows involved in these machines.

The book contains most of the material presented in the lectures given by some
of the world leading experts at the advanced school Cavitation Instabilities and
Rotordynamic Effects in Turbopumps and Hydroturbines, held at the Centre
International des Sciences Mecaniques (CISM), Udine, Italy, in July 2014.

The course opens with an introduction by d’Agostino and coworkers to the
fundamental aspects of cavitation phenomena and induced flow instabilities, with
special emphasis to the operation of hydraulic turbomachinery for space propulsion
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applications. Next, Ceccio and Mkiharju review the traditional and novel experi-
mental methods for the investigation of hydrodynamic cavitation, and illustrate
some of their recent developments in the use of ionizing radiation as a means to
visualize cavitating flows. Tsujimoto presents the experimental results, theoretical
analyses and numerical simulations he and his collaborators have been using for
their pioneering work on cavitation-induced instabilities and rotordynamic effects in
inducers, turbopumps and hydroturbines. The fundamental aspects of the prelimi-
nary hydraulic design of inducers and centrifugal turbopumps is discussed by
d’Agostino et al., which illustrate the development and experimental validation
of their reduced-order models capable of jointly providing the geometrical defini-
tion and performance prediction of these machines. The last three contributions
concern the numerical simulation of cavitating flows. The article by Goncalves
presents a comparison of different turbulence and cavitation models, with and
without thermal effects, in unsteady RANS simulations, while the contribution by
Salvetti focuses on numerical simulation of cavitating flows in complex geometry.
Finally, Saurel et al. present a flow model for the numerical simulation of interfacial
flows with phase transition and its applications to cavitating nozzle flows.

The monograph is addressed to doctoral/postdoctoral students, researchers,
scientists, scholars, and professionals interested in perfecting their knowledge and
understanding of cavitating flow phenomena and research occurring in a wide range
of applications in aerospace, mechanical, hydraulic, naval and chemical engineer-
ing, applied mechanics, applied mathematics, industrial chemistry, and applied
physics.

The editors are especially grateful to Prof. Steve Ceccio, Prof. Eric Goncalves,
Prof. Richard Saurel, and Prof. Yoshinobu Tsujimoto for their contributions to the
present volume. The editors are also very thankful to Prof. B. Schrefler, Secretary
General, Prof. A. Soldati, Deputy Secretary General, and to Prof. P. Serafini,
Executive Editor, as well as to the staff of the CISM, for their support and assistance
in the organization of the Course and in the publication of the present volume.

Pisa, Italy Luca d’Agostino
Maria Vittoria Salvetti
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An Introduction to Cavitation in Inducers
and Turbopumps

Luca d’Agostino, Lucio Torre, Angelo Cervone, Giovanni Pace,
Dario Valentini and Angelo Pasini

Abstract After a brief review of the fundamental aspects of cavitation relevant to
the operation of high-performance inducers and turbopumps, the article summarizes
their application to the analysis of pumping systems, illustrates the scaling of
cavitation phenomena from model tests to full-scale operation, describes the
occurrence of flow-induced instabilities in turbomachinery, and introduces the
concepts of static and dynamic instability of pumping systems and their general-
ization to cavitating turbopump systems.

1 General Aspects of Cavitation

The term cavitation was first introduced by R. E. Froude to indicate the change of
phase occurring within a liquid due to local pressure reductions generated by
dynamic actions. In this respect cavitation is closely related to boiling, where phase
changes are due instead to the increase of temperature as a consequence of heat
transfer to the liquid. In both cases the phase change ideally occurs in the presence
of some nucleating agents when the vapor pressure of the liquid locally exceeds its
static pressure.

From the physical point of view cavitation represents a complex phenomenon
because it involves the simultaneous dynamic and thermodynamic interaction of
two phases, it is greatly affected by the uncertain concentration and susceptibility of
nucleating agents, it manifests itself in a variety of topological forms, and can be
strongly coupled with the fully wetted flow of the liquid phase. Cavitation
phenomena in hydraulic machines are, therefore, only partially understood and
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Università di Pisa, Pisa, Italy
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predicted by theoretical means and numerical simulations alone. Hence, extensive
use of experimentation is still necessary for addressing and solving cavitation
problems in engineering applications.

As a consequence of its relevance a vast literature exists on both the more
fundamental aspects of cavitation and its technical implications. One can refer, for
example, to the reviews of Eisenberg (1961), Acosta (1974), Acosta and Parkin
(1975); or to the textbooks of Knapp et al. (1970), Pearsall (1972), Brennen (1995),
Franc and Michel (2004), Brennen (2005). More specific aspects of cavitation
phenomena have been addressed in the Annual Reviews of Fluid Mechanics, in
various specialistic meetings, like the International Symposia on Cavitation (CAV),
the conference of the International Association for Hydro-Environment Engineering
and Research (IAHR), in the yearly sessions of the ASME Cavitation and Mul-
tiphase Flow Forum, in the Proceedings of the International Towing Tank Con-
ference and in other symposia and publications on hydraulic machinery, naval
hydrodynamics, marine propulsion, underwater acoustics, etc.

2 Cavitation Nuclei

Early studies have shown (Plesset 1969; Knapp et al. 1970) that the maximum
tensile strength that pure liquids can theoretically sustain according to thermody-
namic considerations is much larger than observed in practice. The highest tensions
attained in experiments with extremely pure water at room temperature are on the
order of a few hundred atmospheres. On the other hand, values comparable to the
vapor pressure at the liquid temperature are usually observed in cavitation exper-
iments on technical liquids. It has therefore been postulated that the tensile strength
of liquids is considerably reduced by the presence of weak spots for the onset of
liquid rupture, generically called “nuclei”

It has long been recognized that small bubbles (Fox and Herzfeld 1954; Plesset
1969) and gas pockets contained inside crevices and cracks of a liquid–solid
interface (Harvey et al. 1947) act as cavitation nuclei (Holl 1970). The thermo-
dynamic equilibrium of bubbles and/or pockets of gas is influenced by the content
of dissolved gas in the liquid, which therefore represents an important parameter in
the study of cavitation inception. Local fluctuations of the liquid density of ther-
mostatistical nature or due to the interaction with high energy radiation are also
thought to act as cavitation nuclei, although their role is quite negligible in most
practical applications where the effects of the abundant supply of weaker nuclei
from other sources usually prevail.

Cavitation nuclei can be suspended in the fluid stream or located at the flow
boundaries. The relative importance of the cavitation susceptibility of surface and
free stream nuclei often determines the form of cavitation developing in a specific
flow configuration. There are indications that the effects of free stream nuclei

2 L. d’Agostino et al.



usually prevail in laboratory tests on reduced-scale models and that this situation
may sometimes be reversed in full-scale prototype operation.

The concentration of nuclei which become unstable at a given level of tension—
synthetically indicated as “liquid quality”—represents an important aspect for
predicting the inception and later development of cavitation, as well as for deducing
scaling laws capable of extending the results obtained from model tests to full-scale
operation.

Since the size of nuclei can be measured more easily than their susceptibility by
means of optical, acoustical, and electrical methods (O’Hern et al. 1988), in cavi-
tation research the liquid quality is usually expressed in terms of the nuclei con-
centration density distribution:

n Roð Þ= −
dN Roð Þ
dRo

where N Roð Þ is the concentration of nuclei whose equilibrium radius is not smaller
than Ro. The nuclei concentration density distributions of many liquids of technical
interest (including natural and laboratory waters) spread in practice over a very
wide range and in most cases approximately follow an inverse (hyperbolic) power
law distribution (Bader 1970) over a relatively large interval of sizes.

The main drawback of using the nuclei concentration density distribution for
measuring the liquid quality is that the critical tension that makes each nucleus
unstable, as required for cavitation studies, must be deduced indirectly from the
measurement of its size. This can only be done with the necessary accuracy in the
case of microbubbles. In the nuclei model proposed by Harvey et al. (1947), for
example, surface tension effects provide a mechanism capable of stabilizing
microscopic pockets of gas trapped in small crevices of hydrophobic solid surfaces
with respect to diffusion of their contents in the liquid even at pressures much
higher than the saturation value, consistently with the available empirical evidence.
However, since in technical liquids the geometry of these crevices and the prop-
erties of their surfaces are utterly uncertain, the above method for the characteri-
zation of the liquid quality cannot provide accurate predictive indications on the
susceptibility of this kind of nuclei. In practice, quantitative information about the
actual critical tension of solid particulates, when detected and recognized, must be
deduced experimentally.

In principle these limitations are eliminated by making use of standard cavita-
tors, where the intensity of cavitation is suitably monitored under controlled flow
conditions, and cavitation susceptibility meters, which in principle should measure
the liquid pressure capable of destabilizing individual cavitation nuclei (d’Agostino
and Acosta 1991a, b). Unfortunately, also this family of direct methods is affected
by significant limitations, mostly introduced by the imperfect control of the nominal
flow and by the occurrence of dynamic interactions between nearby nuclei, which
prevent the obtainment of accurate liquid quality measurements (d’Agostino and
Acosta 1991a, b, c).

An Introduction to Cavitation in Inducers and Turbopumps 3



3 Forms and Occurrence of Cavitation

Usually the inception of cavitation manifests itself with the sporadic formation of
isolated voids in the low pressure regions of the flow when the pressure drops
below some critical value, and is associated with the emission of sharp noise bursts
due to the sudden collapse of the cavities as they are convected in a region of higher
pressure (Holl 1969). Acoustic detection of these bursts is routinely used for the
identification of cavitation inception conditions.

Cavitation occurs in different forms as a consequence of various aspects and
conditions of the liquid flow. In the absence of separation, it generally takes place
either at or close to the boundaries where the minimum pressure occurs, depending
on which among surface and freestream nuclei are more susceptible to cavitate. On
the other hand, when the flow is separated, cavitation takes place far from the
boundaries in the turbulent wake (cloud cavitation) or in the core of shedding
vortices (vortex cavitation).

When free stream nuclei are more susceptible than surface nuclei, cavitation
develops in the formation of bubbles traveling with the liquid. This form of cavi-
tation is characterized by cavities originating in the low pressure regions of the flow
and collapsing further downstream as they are convected in higher pressure regions.
When, on the other hand, surface nuclei are more susceptible to cavitate than free
stream nuclei, cavitation develops either in a thin recirculation region generated by
the separation of the liquid flow (attached cavitation), or as a wake of cavities
sequentially released from localized nuclei on the boundary surface (spot cavita-
tion). When developing in regions where the flow is laminar, attached cavities have
a quasi-steady glossy appearance in their upstream portion (sheet cavitation) and
become increasingly unsteady and fuzzy further downstream as a consequence of
the Rayleigh–Taylor destabilization of the liquid/vapor interface. On the other hand,
cloud cavitation leads to the formation of large intermittent clusters of bubbles in
the fully separated wake of the flow. The latter forms of cavitation are collectively
indicated as developed cavitation and, in particular, as partial cavitation when the
cavities collapse before reaching the trailing edge of the cavitating body, and
supercavitation when a further drop of the pressure leads to the formation of a
cavity extending downstream beyond the trailing edge of the body. The above
classification should, however, only be considered as indicative since in many
practical cases several forms of cavitation can occur simultaneously and variously
interact.

4 Classical Theory of Cavitation Scaling

Cavitation scaling consists in correlating the results of cavitation tests on geo-
metrically similar models to full-scale operation. In the classical (Eulerian) theory
of cavitation (Holl and Wislicenus 1961) it is assumed in first approximation that:

4 L. d’Agostino et al.



• cavitation inception occurs as soon as the static pressure p in the flow locally
drops below the vapor pressure pV , corresponding to the liquid temperature;

• pressure changes in the flow are solely due to dynamic (inertial) actions.

Then the fundamental parameter for cavitation scaling is the Euler number (also
indicated as cavitation number):

σ =
po − pV
ρLU2

o 2̸

where ρL is the liquid density and the subscript o indicates the relevant reference
values of the flow pressure p and velocity U. By comparison of the Euler number
with the pressure coefficient:

Cp =
p− po
ρLU2

o 2̸

which in the stated assumptions is equal for geometrically similar steady flows,
cavitation is therefore predicted when:

pmin ≤ pV ⇒ σ ≤ −Cpmin

The suction performance of turbopumps is usually specified by assigning the
admissible value of the Net Positive Suction Pressure:

NPSP=
pt1 − pV

ρL

(or, equivalently, the Net Positive Suction Head NPSH=NPSP g̸, where g is the
acceleration of gravity) in order to define the required total pressure pt1 of the inlet
flow to the machine at nominal flow rate for operation under acceptable cavitation
conditions (typically at –3% head degradation).

Although more informative for engineering purposes, both NPSP and NPSH are
dimensional numbers, unsuited for similarity considerations. Hence, from dimen-
sional analysis, either the design values of σ,

τ=
pto − pV
ρLU2

o 2̸
ðcavitation indexÞ

or:

ΩSS =
Ω

ffiffiffiffi
V ̇

p

pt1 − pVð Þ ρ̸L½ �3 4̸ ðsuction specific speedÞ

are more efficiently used for scaling the cavitation performance of geometrically
similar machines rotating at speed Ω and displacing the volumetric flux V ̇. Two

An Introduction to Cavitation in Inducers and Turbopumps 5



geometrically similar flows are therefore considered to be equivalent for the pur-
pose of cavitation (i.e., cavitation is predicted to occur in similar form and extent)
when they have the same values of σ, τ or ΩSS, as applicable.

The Euler theory of cavitation scaling provides in first approximation an ade-
quate correlation of cavitation phenomena between full-scale and model flows.
However, in specific cases violation of the underlying assumptions as a conse-
quence of:

(1) changes of the fully wetted flow field due to viscosity, gravity, and com-
pressibility, including boundary layer development, separation, transition, tur-
bulence, reattachment, fully separated shear and vortical flows, turbulent
pressure fluctuations;

(2) changes of the geometric similarity, including surface roughness;
(3) changes of the cavity growth, due to inertia, heat transfer, surface tension,

liquid viscosity and compressibility, transport phenomena between dissolved
and noncondensable gas, susceptibility and concentration of cavitation nuclei.

can lead to significant discrepancies, collectively indicated as “cavitation scaling
effects” (Arndt 1981). In particular, the available evidence indicates that the latter
set 3) of scaling effects usually prevails in developed cavitation.

Scaling effects from various sources often overlap and influence each other,
making it very difficult to recognize their ultimate causes and to predict their
intensity. The literature on cavitation scaling effects is therefore quite vast and
intricate. Not all of it is, however, of immediate relevance to the analysis of the
steady and unsteady performance of hydraulic turbomachinery, which is mostly
concerned with fully developed cavitation. Thus, here we limit our attention to this
form of cavitation, which is the decisive factor for the occurrence of major diffi-
culties in the operation of high power density turbopumps.

5 Cavitation and Bubble Dynamics

Whatever the initial nature and size of cavitation nuclei may be, one can in first
approximation visualize their growth into larger cavities (and their later collapse)
with reference to the idealized case of a spherical bubble in an unbounded
incompressible liquid subject to a change of its far field pressure. In practice there
can be significant departures from this simplified model, especially in the initial
stages of growth and in the final stage of collapse, or as a consequence of various
causes such as the proximity of the boundaries, interactions with other bubbles,
flow shearing effects, instabilities of the cavity interface, etc. However, consider-
ation of spherical cavities greatly simplifies the analysis, while still retaining the
most important aspects of the physical phenomena governing the interactions of the
bubbles with the surrounding liquid. Under these assumptions the bubble radius

6 L. d’Agostino et al.



R is determined by the Rayleigh–Plesset equation (Knapp et al. 1970; Plesset and
Prosperetti 1977):

RR̈+
3
2
Ṙ
2 + 4νL

Ṙ
R
+

2S
ρLR

=
pB − pL
ρL

Here dots indicate Lagrangian derivatives with respect to time t, S is the surface
tension, νL = μL ρ̸L is the kinematic viscosity of the liquid, pL is the far field liquid
pressure and pB is the bubble internal pressure, which consists of the partial pres-
sures of vapor pV and noncondensable gas pG. When mass diffusion effects within
the bubbles are neglected, pV is constant and pG is expressed by the perfect gas
equation:

pG = pGo
Ro

R

� �3 TB
TBo

where pGo is the gas partial pressure at the initial radius Ro, TBo is the corresponding
temperature and TB is in general determined by the simultaneous solution of the
energy equation for the thermal contact of the bubble with the surrounding liquid.
In this case, if the initial state (indicated by the subscript o) is a mechanical
equilibrium state, then the corresponding pressure in the liquid is:

pLo = pGo + pVo −
2S
Ro

For a bubble containing a fixed amount of gas behaving isothermally TB = TLð Þ,
the quasi-static stability condition (Blake 1949; Knapp et al. 1970):

d
dR

2S
R

� �
≥

dpG
dR

shows that no stable mechanical equilibrium exists when the tension applied to the
bubble exceeds the critical value expressed by:

pV − pLð Þcr =
4S
3Ro

3 1+
pLo − pV
2S R̸o

� �� �− 1 2̸

In this case, neglecting thermal and diffusive effects, the bubble growth rate is
determined by the inertia of the liquid and, when pV − pL is constant, for large times
approaches the value:

R ̇=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 pV − pLð Þ

3ρL

s

An Introduction to Cavitation in Inducers and Turbopumps 7



Conversely, when thermal effects dominate (Plesset and Zwick 1954):

Ṙ=

ffiffiffi
3
π

r
kL TLo − TRð Þ
qLVρV

ffiffiffiffiffiffiffi
αLt

p

where kL is the thermal conductivity of the liquid, TR is the temperature at the
bubble interface (assumed equal to the bubble internal temperature TB), TLo is the
unperturbed temperature of the liquid, qLV is the latent heat of vaporization, ρV is
the vapor density, αL is the thermal diffusivity of the liquid and t is the time from
the beginning of the bubble growth. On the other hand, in the presence of surface
tension free bubbles in an infinite liquid are unstable with respect to diffusion of
their noncondensable gas into the liquid (Epstein and Plesset 1950) because a
reduction of the bubble radius increases their pressure, driving the gas into solution
and resulting in a further reduction in size. The opposite happens when the bubble
radius increases. The situation is, however, different when a finite amount of liquid
is considered and the concentration of the dissolved gas in the liquid is appreciably
affected by the diffusion from the bubble (Mori et al. 1977). The rate of bubble
diffusion in liquids is especially relevant in cavitation loop experiments when
bubble resorption is longer than the recirculation time of the liquid and the bubbles
created by the earlier collapses of cavities can accumulate and become a significant
source of nuclei. Various stabilization mechanisms have, therefore, been proposed
in order to explain the low tensile strength of waters where bubbles are not expected
nor observed to remain in suspension. Among these mechanisms, the model pro-
posed by Harvey et al. (1947) where a gas pocket is stabilized against diffusion by
surface tension in a crevice of an hydrophobic solid surface, seems to be the most
consistent with experimental observation (Apfel 1970).

6 Thermal Cavitation Effects

Thermodynamic or thermal effects on cavitation originate from the difference
between the vapor pressure in the cavities and the vapor pressure corresponding to
the bulk temperature of the liquid. Scaling of thermal effects is very important in the
attempt to extrapolate the results from cavitation tests in cold water to cavitation in
liquids with relatively high vapor pressures, such as light hydrocarbons and cryo-
genic fluids, where testing is impractical, dangerous, or expensive. In general,
thermal effects are not restricted to the case of travelling bubble cavitation alone,
but also occur in attached cavitation and supercavitation.

The detailed physical mechanism originating thermal effects is, however, dif-
ferent in the two cases. In travelling bubble cavitation thermal effects occur as a
consequence of the evaporation rate required to sustain the individual bubble
growth (or collapse) produced by the mutual interaction of the cavities with the rest
of the flow field. In developed attached cavitation and in supercavitating flows

8 L. d’Agostino et al.



thermal effects originate from the evaporation rate necessary to balance the flux of
vapor entrained in the wake of the cavity. In the absence of entrainment and
diffusion of noncondensable, gas the pressure in a steady attached cavity would be
equal to the vapor pressure of the liquid at its bulk temperature and no thermal
effects would occur. Thus, in principle, a comprehensive scaling theory of thermal
effects should also account for the type of cavitation occurring in a specific
application. This, however, proved at first exceedingly complex, and therefore
simplified scaling theories have initially been developed on the basis of averaged
homogeneous flow models, which do not account for any specific topological form
of cavitation.

The first method to scale thermal effects in cavitating turbopumps has been
proposed by Stahl and Stepanoff (1956), and later by Stepanoff (1961, 1964). They
suggested to correlate the cavitation characteristics of different liquids using the
parameter B, defined as the vapor to liquid volume ratio consequent to the flashing
of various liquids subject to the same “dynamic depression” produced by the
operation of the machine:

B=
ρL
ρV

cpLΔT
qLV

Here ΔT is the temperature drop due to the phase change and cpL is the specific
heat of the liquid. Implicit in this method is the assumption that phase changes take
place adiabatically (Acosta and Hollander 1959) and that the same “dynamic
depression” is produced in geometrically similar machines independently on the
nature of the cavitating liquid, thus neglecting both the dynamic aspects of cavi-
tation and its mutual interactions with the liquid flow. From the relative value of the
parameter B in various liquids it would then be possible to infer, for example,
whether a certain NPSH reduction is possible for a pump operating at design
conditions in a specific flow application. The temperature and vapor pressure drops
are related by the Clausius–Clapeyron equation:

ΔpV =
dpV
dT

� �
o
ΔT =

qLV
T vV − vLð ÞΔT

where vV =1 ρ̸V is the specific volume of the vapor, vL =1 ρ̸L is the specific volume
of the liquid, and, for small changes ΔpV and ΔT , dpV d̸T is computed along the
saturation line at the reference unperturbed conditions, indicated by the subscript
o. Then, neglecting the specific volume of the liquid with respect to the specific
volume of the vapor, the corresponding positive correction to the cavitation index is
expressed by

ΔσV =B
ρV
ρL

� �2 q2LV
TLocpLU2

o

An Introduction to Cavitation in Inducers and Turbopumps 9



The parameter B for given values of Uo and ΔσV varies greatly in different
liquids and correctly indicates the observed trends of resistance to cavitation. The
results of Salemann (1959) indicate that the values of B for many commonly used
liquids at cut-off conditions are well correlated by an approximately hyperbolic
variation with vapor pressure. Thus, for example, at the two opposite sides of the
spectrum, very high values of B characterize water at room temperature with respect
to liquid hydrogen at 20 K, thus suggesting that cavitation tests in cold water are
quite conservative when compared to most other liquids, as confirmed by
experience.

The method of Stahl and Stepanoff has later been generalized by Gelder et al.
(1966), Moore and Ruggeri (1968), Ruggeri and Moore (1969), Hord et al. (1972),
Hord (1973a, b), Hord (1974), Moore (1974), to include the influence of the flow
characteristics on thermal effects. In their work a plausible functional dependence of
the B-factor on the flow parameters is initially postulated. Then, by comparison
with experimental results, semi-empirical correlations are obtained for various
liquids (particularly cryogenic fluids) in relatively simple flow configurations such
as venturi tubes, ogives, hydrofoils as well as in the more complex case of tur-
bopumps (Ruggeri and Moore 1969; Hord 1974; Moore 1974).

Most of the above analyses only predict the minimum NPSH necessary for pump
operation without cavitation or the NPSH corresponding to some standard cavita-
tion conditions, usually the 3% efficiency degradation point. On the other hand, the
method proposed by Ruggeri and Moore (1969), Moore (1974) predicts the suction
performance throughout the pump’s cavitation range from the knowledge of two
reference suction characteristics under different thermal cavitation conditions. This
method claims a high accuracy, but is very sensitive to the choice of the reference
characteristics.

Some useful semi-empirical correlations of thermodynamic effects on the min-
imum NPSH of cavitating turbopumps have been proposed by Zika (1984). Also
these correlations, however, are essentially based on the B-factor method and do not
provide any additional understanding of the mechanisms responsible for the
occurrence of thermodynamic effects.

In travelling bubble cavitation some of the most important cavitation scaling
effects can be identified and interpreted using the Rayleigh–Plesset equation. Any
positive value of the right hand side will determine the growth of the bubble. Of
particular interest for turbomachinery application is the case of developed travelling
bubble cavitation, which involves large changes of the bubble volume. In this
situation the effects of surface tension and gas content quickly become negligible as
the radius increases. Hence, the growth of the bubble can be controlled either by the
inertial effects due to the acceleration of the surrounding liquid or by the decrease of
the pressure differential that drives the motion. One possible way the latter situation
can occur is through an increase of the far field pressure of the bubble as a con-
sequence of the interactions of cavitation with the rest of flow field. Clearly, this
effect cannot be accounted for by the equation of an isolated bubble, where the
external pressure in the liquid must be assigned as a known input of the dynamic
problem. Another possible limitation of the bubble growth is a decrease of the
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bubble internal pressure. Since the effect of gas content quickly becomes negligible,
this implies a drop of the vapor pressure due to the inability of the heat transfer from
the liquid to the bubble surface to sustain the evaporation rate required to keep pace
with the increase of the bubble volume (thermal effects). This type of cavitation is
usually indicated as vaporous cavitation and can be viewed as an intermediate
regime between inertially controlled cavitation and boiling.

As previously mentioned, the asymptotic growth of the bubble radius is linear in
time when controlled by inertial effects and is proportional to the square root of
time when controlled by thermal effects with purely conductive heat transfer. This
situation is modified, but not fundamentally changed, by the simultaneous presence
of convection due to the relative motion of the bubble in the liquid. One important
consequence is that, the other conditions being the same, a bubbly mixture will
display a larger tensile strength when the growth of the cavities is controlled by
thermal rather than inertial effects. This phenomenon provides a qualitative inter-
pretation of the lower cavitation susceptibility and more gradual performance
breakdown commonly observed in pumps operating in travelling bubble cavitation
conditions with liquids closer to the boiling point (Chivers 1969).

In view of the above considerations, inertial effects tend to be important in the
initial stages of bubble growth, especially if the vapor pressure is small, but at some
later time thermal effects will inevitably prevail. In some situations, for example
when the vapor pressure is large and therefore the required evaporation rate is high,
inertial effects are never significant and the bubble growth will be controlled by
thermal effects alone. Whether in a practical case the bubble growth will be con-
trolled by thermal effects rather than by inertial effects clearly depends on the
relative importance of the two phenomena during the largest portion of bubble
growth.

A quantitative description of this phenomenon clearly requires the determination
of the behavior of the bubble pressure pB through the simultaneous solution of the
Rayleigh–Plesset equation and the energy equations for the two phases. The
resulting mathematical problem is quite complex due to its nonlinear nature and to
the strong coupling between mechanical and thermodynamic effects. This analysis
for a stream of bubbles travelling with velocity Uo in a liquid stream at temperature
TLo has been outlined by Brennen (1973). It is assumed that the pressure and
temperature of the vapor inside the bubble are uniform and that the temperature
boundary layer at the liquid–vapor interface is small with respect to the bubble
radius (Plesset and Zwick 1954; Zwick and Plesset 1955). The drop of the liquid
temperature at the bubble surface ΔTR = TR −TLo is related to the corresponding
drop of the vapor pressure inside the bubble ΔpV = pV − pVo using the Clausius–
Clapeyron equation. Then, by only retaining the prominent terms in the energy
equations and neglecting inertial effects in the momentum equation for the bubble
growth, it follows that vaporous cavitation will occur when
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In this equation L is the typical length of the reduced pressure region crossed by
the bubbles and Σ TLð Þ is a very strong dimensional function of the flow temperature
TL (Brennen 1973) which represents the combined thermodynamic properties of the
liquid and the vapor with respect to the insurgence of vaporous cavitation.
Therefore, the above equation implicitly defines a transitional temperature of the
flow depending on the value of the parameter

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3

oσV L̸
p

. Vaporous cavitation will
occur when the flow temperature is higher than the above transitional temperature,
oth-erwise inertially dominated cavitation will take place. Assuming, for example,
Uo =100m s̸, L=0.5 m, and σV =0.1, the transitional temperatures of water and
liquid oxygen, respectively, are 60 °C and 70 K ca., while, on the other hand,
cavitation in liquid hydrogen would virtually always be of the vaporous type.

Experimental evidence also suggests the existence of a correlation between the
relative magnitude of thermal effects with respect to inertial effects and the topo-
logical form of cavitation. In particular, travelling bubble cavitation has been
consistently observed in connection with the predominance of thermal effects,
whereas attached cavitation is increasingly more likely when inertial effects prevail
(Salemann 1959; Sarosdy and Acosta 1961). Quantitative evaluation of thermal
effects in travelling bubble cavitation is difficult because the departure of the vapor
pressure from its unperturbed value depends on various uncertain factors, including
the size and the growth time of the bubble. As a first orientation, the maximum
change of the vapor pressure according to Plesset (1957) is expressed by

ΔpV =
Rmax

3
ffiffiffiffiffiffiffiffiffiffiffiffi
αLtmax

p qLV
cpL

ρV
ρL

dpV
dT

where Rmax is the maximum radius reached by the individual bubble during its
growth time tmax. Due to the different physical characteristics of the problem, the
above analysis of thermal effects in travelling bubble cavitation is not directly
applicable to developed attached cavitation. In this case entrainment theories have
been proposed by various authors (Brennen 1969; Billet 1970; Holl et al. 1975,
Billet et al. 1978) on the assumption that the cavity behavior and the hydraulic
performance degradation in geometrically similar cavitating turbomachines are only
functions of the cavitation index based on the cavity pressure pC:

σC =
po − pC
1
2ρLU2

o

In steady-state conditions, equating the heat flux q ̇= qLVṁV necessary to evap-
orate the mass flow rate ṁV of vapor entrained at the trailing edge of the cavity to
the heat flux q ̇= hLAC TLo − TCð Þ transferred from the liquid to the cavity results in
the following expression (Billet et al. 1981) for the temperature drop in the cavity:
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ΔT =
CM

CA

Pe
Nu

ρL
ρV

qLV
cpL

where Pe =UoD α̸L is the Péclet number based on the characteristic transversal
dimension D of the cavity and Nu= hLD k̸L is the Nusselt number based on the heat
transfer coefficient hL and thermal conductivity kL of the liquid. The cavity surface
area coefficient CA =Ac D̸2 and, in particular, the vapor entrainment coefficient
CM = ṁV ρ̸VD

2Uo depend in a complex way on the specific flow configuration. For
simple geometries CA can sometimes be estimated from free streamline theories of
cavity flows as a function of the cavitation index. No reliable theoretical methods
exist, on the other hand, for evaluating the coefficient CM , which has to be deter-
mined experimentally.

The above expression of the temperature drop in attached cavitation can be
considered as a generalization of the B-factor method where

ΔT =B
ρV
ρL

qLV
cpL

More complex empirical correlations, which include the effects of viscosity,
turbulence, gravity, surface tension and geometry of the cavity, are obtained upon
comparison with experimental results by assuming a plausible functional depen-
dence of ΔT on the Reynolds number Re=UoD ν̸L, Prandtl number Pr = νL α̸L,
Froude number Fr =Uo ̸

ffiffiffiffiffiffi
gD

p
, Weber number We=Uo

ffiffiffiffiffiffiffiffiffiffiffiffi
ρLD S̸

p
and on the cavity

aspect ratio L D̸. The relatively large number of free parameters makes these cor-
relations rather flexible for representing available experimental results and, not
surprisingly, satisfactory agreement has been obtained in several simple flow
configurations. For the same reason, however, the above correlations are of little use
in the more general case when trying to extrapolate thermal effects observed in a
specific application to geometrically different flow configurations. Thus, for
example, the experimental information currently available on thermal effects in
simple flow geometries cannot be safely generalized to the more complex case of
cavitating turbomachines.

7 Steady Cavitation in Turbomachines

As mentioned earlier, in the majority of technical applications cavitation takes place
long before other constraints (structural, dynamic, etc.) become critical and there-
fore represents the most severe limitation to the increase of the specific power of
hydraulically operating turbomachines. Among the various undesirable effects of
cavitation, such as erosion, vibrations, noise, operation irregularities, instabilities,
etc., the progressive head and efficiency degradation and final breakdown are the
most crucial ones from the strict fluid dynamic point of view.
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Cavitation occurs when the local pressure in the liquid stream drops below the
inception value as a consequence of a combined decrease of the inlet liquid pressure
and a simultaneous increase of the rotational speed and volume flux. When
investigating cavitation in turbomachines it is, however, more convenient to con-
sider the situation where the inlet pressure is quasi-statically reduced, while the
rotational speed and volume flow rate are kept constant. The resulting variation of
the head rise is the cavitation performance curve (or cavitation characteristics) of
the turbomachine. The development of cavitation in turbomachines can ideally be
divided in four steps: inception, usually first appearing as a laminar separation
cavity at the leading edges of the blade tips, or as tip vortex cavitation; blade
cavitation, a more extensive form of cavitation in some cases occurring on alternate
blades only; developed cavitation, characterized by larger, periodically pulsating
cavities; cavitation breakdown, where the cavities greatly interfere with the flow
and produce a rapid drop of the turbomachine’s performance. This rather idealized
situation is complicated in practice by the simultaneous presence of separation, tip
clearance vortex cavitation, secondary and leakage flows, real fluid effects, and
other interfering phenomena. The steady cavitation problem in turbomachines
essentially consists in the prediction of head and efficiency degradation and final
breakdown as a function of the inlet pressure at constant flow rate and rotational
speed.

The theoretical analysis of steady cavitation in turbomachines has mostly relied
on the application of free streamline theory on simplified models of the cavitating
flow. A classic example is the work of Gongwer (1941) who used the theory of Betz
and Petersohn (1931) for flat plate cavitating cascades (essentially derived from the
corresponding theories for isolated hydrofoils) to predict the cavitation performance
of centrifugal impellers. The same approach has been applied to axial machines
and, more specifically, to helical inducers by Stripling and Acosta (1962).
Neglecting radial velocity components, the flow in the inducer is assumed to occur
on cylindrical surfaces, which are then developed on a plane. Cavitation in the
resulting cascade of flat plate hydrofoils is then represented by a free streamline
model, where flow separates at the leading edges and reattaches downstream on
fictitious surfaces, parallel to the hydrofoils, whose only function is to guide and
stabilize the flow in the wake. At the end of these surfaces the flow undergoes a
sudden expansion, with the simultaneous occurrence of diffusion losses and pres-
sure recovery. The cavity is assumed to be much shorter than the blade passages
(partial cavitation), so that the uniform downstream flow is perfectly guided and not
affected by the occurrence of cavitation upstream. The height of the cavity relative
to the blade spacing determines the flow blockage and therefore the diffusion losses
in the wake, which crucially contribute to the performance degradation and
breakdown of the turbomachine. The solution clearly depends on the cavitation
number and on other geometric and kinematic parameters: inlet flow velocity, angle
of attack, blade angle and spacing. In their paper Stripling and Acosta extensively
document the variation of diffusion losses and cavity height, length, and aspect ratio
as functions of the cavitation number (or other equivalent cavity pressure param-
eter) for various values of the attack and blade stagger angles.

14 L. d’Agostino et al.



The above theory has been extended and modified by Stripling (1962) in order to
predict head rise performance and breakdown conditions of cavitating inducers as a
function of the inlet pressure. The results are first expressed in terms of the NPSH
and all radially varying parameters are reduced to blade tip station. Head break-
down is assumed to occur when the cascade reaches supercavitation conditions. In
this situation the cavity length becomes infinite and the cavitation number attains its
lowest possible value, which only depends on the angle of attack and on the blade
stagger angle. The maximum value of the cavitation number at breakdown, which
determines the suction performance of the inducer, is achieved when the angle of
attack is equal to one half the blade stagger angle measured from the circumferential
direction. Comparison with experimental results shows, however, that the theory
significantly underestimates the inducer NPSH at breakdown. Stripling speculates
that this discrepancy is due to real fluid displacement effects, which effectively
reduce the available through flow area in the blade passages. Consequently he
introduces an empirical correction coefficient of the through flow area accounting
for the difference between the ideal and actual blockage of the cavity. Small
changes of this correction coefficient have a large influence on the suction per-
formance of the inducer. Stripling shows that the minimum NPSH at breakdown
and the blockage correction coefficient of a helical inducer can be expressed as a
function of a single parameter, which only involves the inducer’s flow coefficient,
the angle of attack and the blade angle. The minimum NPSH at breakdown and the
whole cavitation performance curve predicted by the modified theory are in sub-
stantial agreement with the experimental results from various helical inducers of
different geometric characteristics. In his paper Stripling also discusses the effects of
different leading edge shapes on the inducer cavitation characteristics. Theoretical
considerations (Stripling and Acosta 1962) suggest that superior suction perfor-
mance should be obtained when the blade leading edge is fully contained in the
cavity (i.e., when the suction side does not interfere with the separating streamline)
and the actual flow more closely follows the ideal free streamline model. The
experimental results presented by Stripling (1962) and relative to inducers with
various leading edge shapes confirm this conclusion, indicating that maximum
suction performance and better agreement with the theory are achieved when the
suction side, rather than the pressure side, is filed in order to obtain a sharp corner
for fixed separation to occur from the pressure side without any flow rotation
around the leading edge. The modified theory by Stripling (1962) proved to be
fairly successful in predicting the cavitation characteristics of helical inducers in
water and represents a very useful tool in inducer design analysis. However, caution
must be exercised in generalizing its results to liquids with important thermody-
namic effects, where cavitation is more homogeneous and the free streamline model
may be misleading. The same consideration holds for the extension of Stripling’s
theory to inducers of significantly different geometries, such as aerodynamically
designed inducers with variable cross-sectional area and spiraling leading edges,
where the assumption of cylindrical flow is less applicable and tip vortex cavitation
may play a larger role with respect to cavitation on the blade suction surfaces.
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An attempt to incorporate the influence of thermodynamic properties of the
liquid in the free streamline model of inducer flow proposed by Stripling and
Acosta has been carried out by Jakobsen (1964). He starts from the observation that
in liquids with significant thermodynamic effects cavitation takes place in a rather
homogeneous way, with the presence of a bubbly stream of cavities dispersed in the
liquid phase. Therefore, Jakobsen postulates that the cavity collapse in the wake can
then be represented as the steady propagation of a shock wave in the compressible
bubbly mixture, whose speed of sound depends on the individual properties of the
two phases and on their volume ratio. Head breakdown is assumed to occur when
sonic conditions are reached in the inducer passages, corresponding to a certain
critical volume ratio of the two phases. By identifying this volume ratio with the B-
factor for the correlation of thermodynamic effects in cavitating flows, the maxi-
mum dynamic depression (and therefore the minimum NPSH) possibly occurring in
the bubbly mixture in adiabatic conditions can be calculated. The actual dynamic
depression will be lower due to the heat transfer between the two phases. The form
of the functional dependence of the NPSH on the B-factor at breakdown conditions
is then estimated from qualitative consideration of the thermal and dynamic
problem of the cavitation bubbles. The theory seems to correlate successfully
experimental data for inducers operating at design conditions in water and liquid
oxygen. At higher flow coefficients the agreement is, however, less satisfactory,
although still within the intrinsic indetermination of available test data.

8 Flow-Induced Instabilities in Turbomachines

In high-performance hydraulically operating turbomachines, the development of
higher power densities through the increase of the rotational speed has aggravated,
especially in space applications with stringent space and weight limitations, the
local instability problems generated by the interaction of the flow with the rotating
and static parts. Instability phenomena in turbomachines can affect the rotordy-
namic operation of single components or the overall behavior of the flow system.
A typical example of rotordynamic instability is represented by the forced or
self-excited orbital (whirl) motion of turbomachine impellers under the influence of
destabilizing forces. These forces can be of mechanical or fluid dynamic origin.
Among the destabilizing forces of mechanical origin are those due to internal
damping and hysteresis of the rotor and shaft (Kimball 1924), anisotropic stiffness
of the rotating parts and bearings (Grabowski 1982), dynamic imbalance (Gunter
et al. 1982), interference of stationary and rotating parts (Goggin 1982; Matsushita
et al. 1982), system nonlinearities (Wachel and Szenasi 1980), and possibly other
sources. Destabilizing forces of fluid dynamic origin are, among others, those
produced by seals (Childs 1983) and lubricated bearings (Lund 1974), liquid
trapped between the rotating and stationary parts (Ehrich 1967), flow asymmetries
(Colding-Jorgensen 1980), unsteady phenomena and, in many cases, cavitation.
The global instabilities of a flow system depend instead on the interactions among
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the various components and therefore vary widely in the specific applications. Apart
from the case of turbomachines operating in the positively sloped part of their
characteristic curve, the large majority of the global instabilities observed in tur-
bomachines are related to the interaction of the inertia and the compressibility of the
flow system or of some of its components, in the presence of an excitation source
capable to initiate the instability.

Excluding the case of acoustic phenomena (Abbott et al. 1963; Jeager 1963), in
liquid pumping systems unsteady cavitation, especially near rotating parts, often
represents the main source of fluid volume changes and can be responsible for the
onset of operational instabilities similar to rotating stall and surge phenomena
commonly observed in compressors. The first type of unsteady cavitation is usually
indicated as rotating cavitation and consists in a blade to blade variation of the
extent of cavitation, which rotates with respect to the inducer (or the impeller) of the
machine. This type of instability involves significant perturbations of the inlet
pressure and generates circumferential flow distortions similar to those observed
during rotating stall phenomena (Taylor et al. 1969; Kamijo et al. 1977; Brennen
1994; Hashimoto et al. 1997; Zoladz 2000; Pace et al. 2015), but is not associated to
time-dependent fluctuations of the output pressure and mass flow rate of the
machine. The second type of unsteady cavitation phenomena consists, instead, of
perturbations of volume fluxes and pressures at the input and output of the machine
as a consequence of axial fluctuations of the flow caused by simultaneous changes
in the volume of the cavities. This type of instability, called auto-oscillation or
surge, is generally more severe, since it often involves rather large and violent
fluctuations of the flow parameters with respect to their steady-state values (Sack
and Nottage 1965; Young et al. 1972; Hobson and Marshall 1979). In turbopumps
belonging to more complex systems, unsteady cavitation can also be strongly
coupled with other related components capable to provide positive feedback and
therefore sustain joint oscillations. A typical example is the POGO instability in
liquid propellant rockets (Fashbaugh and Streeter 1965; Rubin 1966; Zielke 1969).
Here the longitudinal vibrations of the rocket structure generate inertial pressure
fluctuations in the vertical lines of the fuel feed system, which can interfere with the
occurrence of cavitation in the turbopumps. The resulting unsteady perturbations of
the fuel and/or oxidizer fluxes to the rocket engine can in turn induce thrust fluc-
tuations capable to excite the structure and make the oscillations self-sustained.

The occurrence of cavitation-induced auto-oscillations depends greatly on the
specific characteristics of the pumping system in addition to the characteristics of
the pumping elements alone. If the conditions are favorable, auto-oscillations ini-
tiate when a critical value of the cavitation number is reached and can seriously
compromise the overall performance of a pumping system even before the occur-
rence of large scale performance breakdown due to chocking and flow blockage
effects (Braisted 1979). The cavitating element of the hydraulic system is respon-
sible for initiating the auto-oscillations, while the other components only influence
their development. The onset of instabilities is greatly facilitated by the presence of
the compliant volume due to the presence of the cavities, in conjunction with the
inherently unsteady nature of cavitation, which provides a natural excitation and

An Introduction to Cavitation in Inducers and Turbopumps 17



triggering mechanism (Kamijo et al. 1977). The unsteady character of cavitation is
particularly enhanced when either the length of the cavity approaches the chord of
the inducer blades (Barr 1967) or when the trailing edge of the cavity just enters the
passage formed by the adjacent blade (Etter 1970). As anticipated earlier, the
problem of cavitation-induced instabilities has, in general, both fluid mechanical
and dynamic aspects, since it manifests itself as a time-dependent perturbation of
the flow, which generates in turn unsteady forces on rotating and/or stationary
elements of the pumping system.

9 Flow Stability of Pumping Systems

In consideration of their widespread occurrence and great practical importance
instability problems in turbomachinery have been the subject of intense studies in
the past (Greitzer 1981). The final objectives of these studies is twofold, consisting
in the identification of the conditions which will lead to the onset of instabilities
(stability criteria) and in the prediction of the system behavior once the instability
has been initiated, in order to control its effects. The first step in the analysis of a
system consists in specifying its nature and in defining a suitable model to represent
it. For pumping systems this analysis is normally carried out using a “lumped
parameter model,” where the various components are identified, ideally isolated
from each other and their behavior is represented by a suitable set of discrete
parameters. Distributed parameter models are also used in some cases, when nec-
essary. Then a definition of stability must be introduced. According to the com-
monly accepted definition, an operational point of a dynamic system is considered
stable when any small disturbance will decay in time and the system will tend to
return to its original state. With reference to pumping systems, two different kinds
of instability can be identified. The former, normally indicated as static instability,
implies the divergence of the system response to perturbations from the standpoint
of purely quasi-steady operational properties and therefore only requires consid-
eration of the characteristic curves of both the pump and the system resistance. The
latter kind of instability, usually called dynamic instability, also involves the action
of unsteady parameters such as inertances and capacitances and manifests itself
with the occurrence of diverging oscillations of the system away from the original
operational point. The conditions for dynamic stability are usually more stringent
than those for static stability.

The relationships between static and dynamic stability can be illustrated in a
more formal way following the approach outlined by Greitzer (1981) if it is
assumed, as often is the case in practice, that the system under examination can be
described by a second order linear system:
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X ̈+2αX ̇+ βX =0

with α and β constant. By assuming solutions of the form est for the controlled
variable X as a function of time t, one is reduced to the determination of the roots of
the associated characteristic equation:

s2 + 2αs+ β=0

for the complex parameter s. Then, the transient response of the system is expressed
by:

X tð Þ= c1 exp − α+
ffiffiffiffiffiffiffiffiffiffiffiffi
α2 − β
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h i
+ c2 exp − α−

ffiffiffiffiffiffiffiffiffiffiffiffi
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with the two constants c1 and c2 depending on the initial conditions. Thus, clearly,
the system will be statically and/or dynamically stable when either of the following
two conditions is satisfied:

(1) 0< β< α2 with α>0, leading to converging exponential growth;
(2) β> α2 with α>0, leading to exponentially converging oscillations.

Viceversa, the system will be statically and/or dynamically unstable in any of the
complementary situations, i.e., when

(3) β> α2 with α<0, leading to exponentially diverging oscillations;
(4) 0< β< α2 with α<0, leading to diverging exponential growth;
(5) β<0 with any α, leading to diverging exponential growth.

Thus, in general, a system will be stable when both α and β are positive and will
be unstable when the reverse is the case. On the other hand, from the standpoint of
quasi-static considerations the system reduces to a first order system with α=1 and
the condition for static stability simply requires β>0, i.e., that the system response
to any perturbation is of restoring type. Note that static stability (β>0) is necessary
for dynamic stability (conditions 1 and 2), but that a statically stable system can still
be dynamically unstable (conditions 3 and 4).

The above approach can easily be applied to a simple liquid pumping consisting
of a pump, a pressurized storage vessel, a throttle and the necessary pipelines for
connection to the inlet and outlet constant pressure reservoirs. Assuming that the
liquid is inviscid and incompressible and upon linearization for small perturbations
from the steady-state equilibrium conditions, the following characteristic equation
is obtained (Greitzer 1981):

dΔpT
dṁ

s2
γp1
ρLVG

−
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L
dΔpP
dṁ

dΔpT
dṁ

� �
s+

dΔpT
dṁ

−
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dṁ

� �
γp1Ao

ρLVGL
=0

Here p1 is the inlet liquid pressure, dΔpP d̸ṁ and dΔpT d̸ṁ are, respectively, the
slopes of the steady-state characteristic curves of the pump and of the throttle, VG is
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the volume of the pressurizing gas in the vessel, which behaves isoentropically with
specific heat ratio γ, and L is the effective inertial length of the liquid piping system
(including the pump and the inlet and outlet lines), expressed by

L=Ao

Z x2

x1

dx
A xð Þ

where Ao is a convenient reference area, A xð Þ is the duct cross-sectional area at
station x, and the integral extends from the inlet to the outlet sections x1 and x2.
Since the slope dΔpT d̸ṁ of throttle characteristics is always positive, from the
above equation the well-known condition for static stability of a pumping system is
obtained:

dΔpT
dṁ

<
dΔpP
dṁ

As indicated earlier, dynamic stability requires that the coefficient of s in the
characteristic equation be positive. In most applications the slopes of the throttle
characteristics and the volume of gas in the pressurized vessel are comparatively
large, therefore this condition is usually verified near the peak of the pump char-
acteristic curve.

A similar approach can also be applied to the analysis of the stability of a
cavitating pumping system with respect to the occurrence of fluctuations of the
input and output mass flow rates and pressures as a consequence of unsteady
changes of the cavitation volume. Let the pumping system consist of a liquid
reservoir at constant pressure (station 0) connected by a pipeline to the inlet section
(station 1) of a cavitating pump, whose outlet section (station 2) is in turn connected
through a throttle to a second reservoir at constant pressure (station 3). With respect
to the noncavitating case previously examined, volumetric changes in the system
are now due to cavitation inside the pump rather than to the external pressurized
storage tank. In a simplified approach the analysis is only concerned with small
in-phase departures (here indicated with the symbol δ) from the steady-state
operational conditions (Greitzer 1981). Then, the pressure perturbation at the pump
inlet is

− δp1 =
L1
A1

dδṁ1

dt

where A1 is a suitable reference cross-sectional area and L1 is the corresponding
inertial length of the pump inlet duct. Neglecting the effects of changes of the
rotational speed, it is then assumed that the unsteady cavitating performance of the
pump is only a function of its inlet pressure p1 and mass flow rate ṁ1. Therefore:
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δp2 − δp1 =
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and, assuming ρG ≪ ρL:

δṁ2 − δṁ1 = ρL
dδVC

dt

where LP is the inertial length of the pump (from the inlet to the outlet section) and
VC is the cavitation volume. Finally, the linearized pressure drop in the throttle is
expressed by

δp2 =
L2
A2

∂ΔpT
∂ṁ

δṁ2

In the linearized quasi-steady approximation the derivatives appearing in the
above equations are known quantities computed from the steady-state operational
conditions. The characteristic equation for the system of previous perturbation
equations is
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In addition to the steady-state slopes of the pump and throttle characteristics, the
above equation also involves the derivatives of the cavitation volume with respect
to the inlet pressure and mass flow. These parameters, respectively called com-
pliance (− ∂VC ∂̸p1) and mass flow gain factor (− ∂VC ∂̸ṁ), characterize the
behavior of cavitation in the pump with respect to changes of the independent inlet
variables p1 and ṁ1. Since the pressure versus flow characteristics of the pump at
the conditions of interest and the pump compliance are both negative, the system
will become unstable when the mass flow gain factor exceeds a critical value:
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∂ṁ
>

1+ ∂ΔpP
∂p1

+ LP
L1

ρLA1
L1

∂ΔpT
∂ṁ

The above analysis can be made nondimensional by introducing the usual
expressions for the flow and head coefficients and for the cavitation number of the
pump, based on the impeller tip speed ΩrT and pump inlet area A1. In this form the
above characteristic equation for the nondimensionalized frequency sLP Ω̸rT
becomes independent on the pump speed. Therefore, contrary to the results for the
noncavitating case, the point of critical stability in dimensionless coordinates
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should be independent on the pump speed. The same analysis also indicates that the
natural frequency of the cavitation-induced flow oscillations should be proportional
to the pump speed, a result which seems to be in agreement with the experimental
observations of Braisted (1979), Brennen and Braisted (1980).

10 Flow Stability of Cavitating Turbopump Systems

The above simplified treatment of the unsteady performance of a cavitating tur-
bopump clearly indicates the importance of the cavitation compliance and, in
particular, of the mass flow gain factor for the onset of auto-oscillations in cavi-
tating pumping systems. Early theoretical attempts to describe the dynamic
behavior of cavitating turbopumps used the slopes of the steady-state characteristics
of head rise versus flow rate and cavitation number in conjunction with an empirical
compliance coefficient in order to account for the volume changes due to cavitation
(Rubin 1966; Wagner 1971; Vaage et al. 1972; Farrel and Fenwick 1973; Brennen
and Acosta 1973; Brennen 1973). A more quantitative and systematic approach to
the problem has been proposed by Brennen and Acosta (1976) and their co-workers
(Ng et al. 1976; Ng and Brennen 1978; Brennen 1978a, b; Brennen et al. 1982). In
the linear limit for small perturbations the unsteady performance of each component
of a pumping system is represented by a transfer matrix which relates the unsteady
fluctuations of the inlet variables to their corresponding outlet values. The inlet
pressure and mass flow rate are used as the independent variables for each com-
ponent. In order to account for the possibility of phase lags, periodically fluctuating
quantities (denoted by primes) are represented in complex exponential form:

p′ tð Þ=Re p ̂e− iωt	 

; ṁ′ tð Þ=Re m̂̇e− iωt	 


by means of their complex amplitudes, here indicated by hats. Therefore, for the
generic component of the pumping system:

p2̂ − p1̂
m̂̇2 − m̂̇1

� �
=

Z11 Z12
Z21 Z22

� �
p ̂1
m̂̇1

� �

where the indexes 1 and 2 refer to the inlet and outlet conditions. In another slightly
different representation the pressure and mass flow fluctuation amplitudes at dis-
charge are expressed as functions of the corresponding inlet values:

p2̂
m̂̇2

� �
=

Y11 Y12
Y21 Y22

� �
p ̂1
m̂̇1

� �
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Clearly the two transfer matrices are related by

Y = Z +1

where 1 is the unitary matrix of order two. In general, the coefficients of the transfer
matrices Z and Y are complex and are expected to depend on the frequency, the
mean operating point and the extent of cavitation. In the limit for low frequencies
the above equations reduce to the steady-state operational characteristics.

Of particular interest is the case of a cavitating turbopump. In a more generalized
treatment also the rotational speed could be included in the modeling of the
unsteady flow through a turbopump, leading to 2 × 3 matrix representation.
However, usually the fluctuations of the pump rotational speed in response to
fluctuating loads on the impeller blades are insignificant, being effectively limited
by the large inertia of the rotating parts. The influence of the pump rotational speed
can only become important where there exists the potential for significant inter-
actions between the performance of the pumping system and the operational speed
of the pump itself. Conceivably this situation may occur when the pump is driven
by a turbine powered by fluid bled from the pump output, a configuration that is
typical of low pressure turbopumps (prepumps) of liquid propellant rocket engine
feed systems, like in the Space Shuttle Main Engine. In general, Brennen and
Acosta (1976) have shown that angular speed changes have a negligible effect on
the dynamics of the pump as long as their relative value is small compared with the
relative change of the cavitation number. In cavitating turbopumps Z11 is the change
of the pressure rise versus inlet pressure, which is expected to be zero in the absence
of cavitation (or of a second gaseous component of the flow), since in this case the
pressure rise produced by the pump does not depend on the value of the inlet
pressure. Clearly, for very low frequencies Z11 reduces to the slope of the cavitation
performance curve versus the cavitation number of the pump. The element Z12 is
the change of the pressure rise versus inlet mass flow rate and therefore represents
the impedance of the pump, comprising a resistive and an inertial component At
low frequencies the pump resistance simply approaches the slope of the steady-state
characteristic curve of the pump. The elements Z21 and Z22 account for the effects of
the inlet pressure and mass flow rate on the cavitation volume of the pump and
therefore on the instantaneous difference between the inlet and outlet mass fluxes.
Hence, Z21 and Z22 ,respectively, represent the pump compliance and mass flow
gain factor. Neglecting the effects of liquid compressibility and the deformability of
the pump casing, Z21 and Z22 are only due to the occurrence of cavitation or to the
presence of a second gaseous component in the flow. Therefore, the pump com-
pliance and mass flow gain factor are expected to vanish either in fully wetted flow
conditions or in the limit for very low frequencies, when the cavitation volume (if
any) remains constant in time.

Similar considerations can be made for other typical elements of an hydraulic
system. For example, the transfer matrix of an incompressible flow in a rigid duct of
reference cross- sectional area A and inertial length L is given by:
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Y = 1 −R+ iω L
A

0 1

� �

where I =R− iωL A̸ is the impedance of the duct, consisting of a resistive contri-
bution R due to the hydrodynamic dynamic losses, and of an inertial component
− iωL A̸, which depends on the oscillation frequency ω. On the other hand, the
transfer matrix of a simple compliant volume Va containing a gas at pressure p is
given by:

Y =
1 0

iω ρLVG
γp1

1

� �

Once the transfer matrix of each element of a pumping system is known it is then
possible to determine by simple multiplication the transfer matrix of the whole flow
line.

The stability analysis of the pumping system can then be carried out using
energy considerations, as proposed by Brennen and Braisted (1980). Since any
form of instability requires the supply of a certain amount of energy in order to
sustain the oscillations, Brennen and Braisted suggested to consider as an instability
parameter the net output change of the mechanical energy flux developed by the
system in an oscillation cycle:

ΔE=
Z t+ T

t

ṁ′

2p
′

2 − ṁ′

1p
′

1

ρLg
dt

which they called dynamic activity parameter. When applied to an individual
component, this parameter would indicate whether that component would have a
potentially stabilizing or destabilizing effect for the onset of auto-oscillations. Each
component would be characterized as active or passive with respect to the occur-
rence of instabilities depending on the positive or negative value of its dynamic
activity parameter. When applied to the whole system, the dynamic activity
parameter would provide a measurement of the overall tendency to develop
instabilities, higher positive values being again characteristic of increasingly
unstable systems. Clearly the stability condition is

ΔE≤ 0

corresponding to no net positive energy addition to the oscillation phenomenon in a
cycle. This criterion is of rather general applicability. In a noncavitating system, for
example, it reduces to

Re I1 − Z12 + I2f g≥ 0

where I1 and I2 are, respectively, the impedances of the inlet and outlet lines and Z12
is the only nonzero term of the transfer matrix of the pumping element. Thus, the
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stability condition simply requires that the resistance of the pumping element must
be smaller than the combined resistances of the inlet and outlet lines. Violation of
this condition can lead to surge both in compressors (Pearson and Bowmer 1949;
Greitzer 1976a, b) and in pumps (Stepanoff 1948). In the cavitating case all of the
pump transfer matrix elements are in general different from zero and the condition
for stability becomes formally more complex (Braisted 1979):

Re
I1 1 +Z11ð Þ+ I2 1 + Z22ð Þ− Z12 − I1I2Z21

1 +Z22 − I1Z21

� �
≥ 0

The above two equations confirm that stability is a global characteristics of the
pumping system, involving the combined properties of each individual component.
It is also evident from the first of these equations that only the pumping element(s)
can actively induce instability in a system and that increasing the (positive) resis-
tances of the remaining elements have a favorable stabilizing effect. In general, the
above equations indicate that the system stability can be improved by properly
modifying and/or combining the characteristics of its components. Attempts to this
effect have actually been made for example in order to suppress auto-oscillations in
the Space Shuttle Main Engine (Murphy 1969; Dorian 1977).

In general, the dynamic activity parameter is expected to depend on the cavi-
tation number, the mean operational point and the frequency of the auto-oscillation.
Specifically, the observations of Braisted (1979) indicate that the dynamic activity
parameter goes through a maximum for a certain value of the oscillation frequency
and increases at low cavitation numbers. These considerations, therefore, suggest a
simple method for the determination of both the frequency of auto-oscillation and
of the cavitation number at which the auto-oscillation will occur. In particular,
given the mean operational conditions of the pumping system, one would expect
that auto-oscillations would initially develop with frequency corresponding to the
peak in the spectral distribution of the dynamic activity parameter and at the highest
value of the cavitation number for which the peak becomes positive. The analysis
also indicates that the auto-oscillation frequency is proportional to the pump rota-
tional speed for given values of the flow coefficient and of the cavitation number.
Another noteworthy result is that the stability of the system is most sensitive to
changes of the mass flow gain factor and, to a lesser degree, of the pump impedance
(Braisted 1979). Braisted and Brennen (1980) have used the above stability analysis
in conjunction with experimentally determined characteristics of the pumping
system and found reasonable in agreement with direct observation of the
auto-oscillations. Experimental data also confirm that the auto-oscillation frequency
tends to decrease with the cavitation number, as indicated by the stability analysis.

Thus, within the limits of a linearized analysis, the dynamic problem of a cav-
itating turbopump consists in the determination of the possibly complex elements of
its transfer matrix. Transfer matrices of cavitating pumps have been investigated
both theoretically (Brennen and Acosta 1973; Brennen and Acosta 1976; Brennen
1978a; Brennen and Braisted 1980) and experimentally (Ng 1976; Ng et al. 1976;
Ng and Brennen 1978; Brennen 1978b; Braisted 1979; Brennen et al. 1982;
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Franz 1989; Bhattacharyya 1994; Bhattacharyya et al. 1997). Theoretical investi-
gations have been based on quasi-steady analysis of the flow, using two different
approaches to model cavitation in the pump inducer. In the first approach (Brennen
and Acosta 1973, 1976) radial velocities are neglected in the inducer flow and linear
free streamline theory is applied to the resulting two-dimensional cavitating cascade
problem in order to evaluate the cavity volume at each radial location from the axis
of rotation. The results are then integrated from the hub to the tip radius of the
inducer, possibly accounting for the radial variations of several geometrical
parameters (blade and attack angles, blade thickness), in order to estimate the total
volume of the cavity. Finally, the compliance and the mass flow gain factor are
computed from the response of the cavity volume to small quasi-steady changes of
the inlet pressure and mass flow rate. The remaining elements of the transfer matrix
are deduced from steady-state operational conditions. This approach involves rather
crude simplifying assumptions with respect to the observed features of the inducer
flow. However, it is relatively simple from the mathematical standpoint and has the
distinct advantage of being virtually self-contained, i.e., capable to derive both the
compliance and the mass flow gain factor of the inducer from purely theoretical
considerations. Considering its limitations, the results of this model are remarkably
consistent with the known dynamic characteristics deduced from some tests on
rocket engine turbopumps (Brennen and Acosta 1973, 1976).

A second theoretical approach to the description of the dynamic transfer matrices
of cavitating turbopumps has been proposed by Brennen (1978a) as a possible
interpretation of some of the unexpected features of the experimental transfer
matrices reported by Ng and Brennen (1978).

Direct observation had shown that cavitation in high suction specific speed
inducers mostly occurs in the form of a bubbly mixture on the suction side of the
blades (especially in liquids close to boiling), rather than as a relatively steady fully
developed attached cavity. Thus, in Brennen’s approach cavitation in the blade
passages is modeled as a one-dimensional homogeneous bubbly mixture originating
from the blade leading edge. The length and the uniform average void fraction of
the cavitation region depend on the cavitation number and the flow coefficient and
can be estimated from experimental data. The dynamic transfer matrix of the
inducer is then described in terms of two additional free parameters, the compliance
and the mass flow gain factor of the cavitation region, whose values must also be
estimated from experience or obtained from comparison with experimentally
determined transfer matrices. Contrary to the previous approach by Brennen and
Acosta (1976), the present model with its four free parameters has a distinct
semi-empirical character and therefore is not capable to derive the dynamic transfer
matrix of a cavitating turbopump from purely theoretical considerations. However,
with proper choice of these parameters, good qualitative and quantitative agreement
is obtained with the complex transfer matrices measured in the experimental tests
by Ng and Brennen (1978), thus strongly suggesting that the most significant
dynamic effects observed in cavitating turbomachinery are indeed consequences of
the physical mechanisms and phenomena intimately connected with the compliance
and the mass flow gain factor of the cavitation volume.
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11 Conclusions

As anticipated in the introduction and illustrated later, cavitation is an extremely
articulated and complex phenomenon. These complexities arise as a consequence of
a variety of aspects:

• the simultaneous presence of two phases in dynamic and thermodynamic
equilibrium;

• the stochastic nature of the inception process, due to the interaction of nuclei
with the local static pressure field, either in a Lagrangian frame for free stream
nuclei or in an Eulerian frame in the case of surface nuclei;

• the uncertain dynamic behavior of cavitation nuclei, often involving the
unknown and uncontrollable interfacial and diffusion properties of microscopic
and submicroscopic impurities or inhomogeneities in the liquid and/or at the
flow boundaries;

• the extremely rapid speed of cavity growth and collapse especially in the initial
and final stages, which control cavitation inception and erosion effects;

• the often unpredictable form of cavitation form and development in response to
the specific flow conditions;

• the strong interactions of the cavities with the fully wetted flow and with
neighboring cavities;

• the already involved fluid dynamic field of the liquid phase where cavitation
occurs, often characterized by complex phenomena due to viscosity, boundary
layers, flow separation, turbulence, etc.

The analysis of three-dimensional unsteady cavitating flows in turbomachines is
therefore a complex and challenging problem. No comprehensive treatment is yet
available for capturing all of the above effects in a general way.

Theoretical analyses are limited to simplified situations (idealized geometry,
reduced dimensionality, linearized dynamics, etc.). They can be useful for the study
of specific problems, but are difficult to integrate in a global picture because they
cannot model many of the existing interactions between different phenomena.

Simulation methods for turbomachines do not suffer, in theory, from such lim-
itations, however, insufficient space and time resolution, computational stability and
numerical stiffness constraints have so far prevented their widespread application to
three-dimensional unsteady cavitating turbomachinery flows, except for a few
exploratory research studies. This limitation may, however, be eventually lifted,
since progress in this field is very rapid and the potential for practical application is
enormous.

The further inclusion of cavitation adds one more dimension to the complexity
of the problem. In this respect the most crucial implications of cavitation for the
performance and survival of high power density cryogenic turbopumps are:

• auto-oscillations
• system coupled oscillations (i.e., POGO instability)
• cavitation-induced forces on rotors and stators
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As of today only linearized theories of auto-oscillations and system coupled
oscillations (POGO instability) are available. They seem to predict with reasonable
accuracy the onset of instability (stability limits), but they are unable to describe its
following development beyond the linear range (limit cycles) and do not provide
any quantitative indication on how to control the system once the oscillation has
started.

Cavitation-induced forces represent another area where reliable information is, at
the same time, vital and almost completely lacking in the open literature. Fluid
forces, in general, are often responsible for very serious problems in
high-performance turbopumps, ranging from long-term fatigue failure of the sup-
ports and bearings to the onset and development of explosive rotordynamic insta-
bilities. Cavitation forces due to mass and/or blade load imbalance can represent a
real danger for themselves and at the same time a powerful source of excitation for
the onset of rotordynamic instabilities. Therefore, further research in the following
cavitation related areas appears to be particularly significant for progress in this
field.

Because of the extreme complexity and articulation of the phenomena involved
cavitating and noncavitating flows in turbomachines are only partially understood
and imperfectly predicted by theoretical means alone. Hence, today one must recur
extensively to experimentation in addressing and solving specific technical prob-
lems. For the same reasons it is not likely that significant progress in the under-
standing of cavitating turbomachines may be achieved only through further
theoretical studies, either analytical or numerical, without the orientation, the
guidance and, most importantly, the validation obtained from direct observational
experience. For the foreseeable future the most viable and profitable strategy for
progress in the fluid mechanical design of high-performance cavitating turboma-
chines must forcibly rely on the careful combination of guided intuition, simplified
theoretical analyses, numerical simulations, and experimental results.
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Experimental Methods for the Study
of Hydrodynamic Cavitation

Steven L. Ceccio and Simo A. Mäkiharju

Abstract A review of traditional and novel experimental methods for the investi-

gation of hydrodynamic cavitation is presented. The importance of water quality is

discussed, along with its characterization and management. Methods for the direct

and indirect experimental determination of cavitation inception are presented. Along

with traditional optical visualization, methods of measuring developed cavitation

are described, including point and surface electrical probes, optical bubble probes,

acoustic measurements, and indirect measurements of noise and vibration. Recent

developments in the use of ionizing radiation as a means to visualize cavitating flows

are also discussed.

1 Introduction

Hydrodynamic cavitation can occur in a variety of important liquid flows, including

those associated with turbines, pumps, and other turbomachinery, ship propulsors,

ventricular assist devices, fuel injectors, and other macro and micro fluidic systems.

The presence of cavitation can degrade the performance of these devices, and can

lead to excessive noise, vibration, and erosion. However, cavitation can be used to

enhance the performance of some systems, such as high-speed underwater vehicles

(Ceccio 2010).

Given the complexity of many cavitating flows, engineers have often resorted to

experimental testing in order to reveal the presence of cavitation and its effect on sys-

tem performance. And, for physically large systems such as turbines and propulsors,

testing of scale models is often the only practical means of developing an optimized

S.L. Ceccio (✉)

Department of Naval Architecture and Marine Engineering, University of Michigan,

Ann Arbor MI, USA

e-mail: ceccio@umich.edu

S.A. Mäkiharju

Department of Mechanical Engineering, University of California, Berkeley, CA, USA

e-mail: makiharju@berkeley.edu

© CISM International Centre for Mechanical Sciences 2017

L. d’Agostino and M.V. Salvetti (eds.), Cavitation Instabilities and Rotordynamic
Effects in Turbopumps and Hydroturbines, CISM International Centre

for Mechanical Sciences 575, DOI 10.1007/978-3-319-49719-8_2

35



36 S.L. Ceccio and S.A. Mäkiharju

design before its manufacture at full scale. Experimental testing has also been used

to illuminate the basic processes of cavitating flows, usually through the examination

of canonical flows that may be used to study specific cavitating flow processes, such

as flows with variable area ducts and Venturis, and over headforms and hydrofoils.

The goal of this chapter is to review some experimental methods that have been

successfully employed to study hydrodynamic cavitation (e.g., cavitation produced

by flowing liquids). However, many of the methods are also useful for examination of

cavitation produced by acoustic fields as well as other gas–liquid multiphase flows,

including boiling flows. And some are also applicable to gas–solid and liquid–solid

flows as well. The focus will be on the experimental methods that are available to

researchers as they examine the flow processes that lead to cavitation inception, its

development, and its effect on system performance, and its erosive potential rather

than the test facility itself. But, a brief summary is provided here.

Experimental examination of hydrodynamic cavitation is often performed in a

dedicated test facility. These can be broadly classified into flow loops and towing

tanks. In the former, a prime mover delivers liquid (usually trough flow condition-

ers and a contraction) to the inlet of a test section where the cavitating flow will be

examined. The flow is then returned (usually after passing through a diffuser where

the pressure rises) to the prime mover to continue recirculation. Examples of modern

cavitation tunnels are the Grand Tunnel Hydrodynamique (GTH) in France (Lecof-

fre et al. 1987), the Large Cavitation Channel (LCC) in the U.S.A. (Etter et al. 2005),

and the Hydrodynamics and Cavitation Tunnel (HYKAT) in Germany (Wetzel and

Arndt 1994a; Wetzel and Arndt 1994b). Turbomachinery may be tested with closed

recirculating flow loops as well, as described by Avellan et al. (1987). Cavitation may

also be studied by towing a test article in a stationary liquid, and facilities have been

developed to allow for the ambient pressure over the free surface to be varied such

that cavitation can form under a variety of flow conditions, such as the Depressurized

Wave Basin in The Netherlands (Van der Kooij and De Bruijn 1984). The Interna-

tional Towing Tank Committee (ITTC) offers a catalog of many of these facilities,

and Brandner et al. (2007) describe the recent design of a modern cavitation tunnel.

The capabilities and quality of the test facility is, of course, of central impor-

tance to the conduct of experimental investigations of cavitating flows. Many of the

criteria used to assess a cavitation test facility are identical to those used for any

aerodynamic or hydrodynamic test apparatus, including the uniformity and quality

of the freestream flow, including the level of freestream turbulence, and the preci-

sion and range over which flow speed and pressure may be fixed. Many of the design

requirements and approaches of subsonic wind tunnels presented by Rae and Pope

(1984) apply equally to conventional water tunnels.

The acoustic characteristics of a cavitation flow facility may also be important

to manage, as the acoustic emission of cavitation may be an important aspect of the

testing program. The recently developed cavitation flow facility of the Japan Defense

Agency is a modern example of a channel developed with these acoustic considera-
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tions (Sato et al. 2003). The tunnel was designed to reduce the amount of background

noise and reverberation to improve the signal-to-noise ratio of for both noncavitat-

ing and cavitating flows. Finally, an important consideration for cavitating flow is

management of the freestream water quality, which will be discussed below.

2 Characterization and Management of Water Quality

The inception and development of cavitation can be strongly related to the amount

of free and dissolved gas within the cavitating liquid. Liquid that is supersaturated

with dissolved gas and has many large free gas nuclei would be considered “weak”,

and cavitation may form where the liquid pressure falls below vapor pressure. Con-

versely, liquid that is undersaturated with dissolved gas and has few free gas nuclei

can sustain pressures below vapor pressure (e.g., can be in tension), and is considered

“strong”. Determination and control of the liquids cavitation “water quality” or “sus-

ceptibility” is an important consideration for many experimental studies of cavitating

flows. Discussions of the importance of water quality with regard to the conduct and

interpretation of cavitation experiments are found in Lecoffre and Bonnin (1979),

Kuiper (1985), Gindroz and Billet (1998), Arndt (2002), and Atlar (2002).

Cavitation inception occurs when a reduction in the liquid pressure results in a

local pressure below the vapor pressure, and the liquid begins to change phase into

vapor. Homogeneous nucleation process can occur in the bulk of the liquid as a result

of inclusions that naturally form due to the random motion of the liquid molecules

(Brennen 1995). Homogeneous nucleation typically requires a significant level of

liquid tension, and ultraclean water can sustain tensions of over 30 MPa at room

temperature (Mørch 2007). Yet, for many practical situations, cavitation incepts as

a result of heterogeneous nucleation whereby nucleation sites within the bulk of

the fluid or at solid boundaries grow when exposed to sufficiently strong tension.

The characterization of the fluid’s susceptibility to nucleation is an important aspect

of many cavitation studies, especially those concerned with inception. In turn, the

susceptibility of the flow is related to both the free and dissolved gas content as well

as the nature of potential surfaces and flow-borne nucleation sites.

Water quality can also affect developed cavitation. For example, the presence of

many freestream nuclei can lead to the suppression of sheet cavitation through the

formation of traveling bubbles upstream of the cavity separation location (Li and

Ceccio 1996; Keller 2001), and diffusion of dissolved gas into a developed tip vortex

can significantly alter its core size (Gowing et al. 1995). As a consequence, it is

incumbent upon the cavitation research engineer to adequately characterize and, if

possible, manage the facility’s water quality before conducting experimental studies

and scale testing.
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2.1 Dissolved Gas Content

Henry’s law states that the equilibrium amount of a dissolved gas in a liquid at a given

temperature is related to the partial pressure of the gas. When the gas concentration is

at equilibrium, this is the saturated condition. Then, a reduction in the liquid pressure

would result in supersaturation, and outgassing can occur. Likewise, if the pressure of

the liquid is increased, the undersaturated liquid can dissolve more free gas. Hence,

as a saturated liquid flows into regions of low pressure and cavitates, it is possible

that significant amounts of outgassing may accompany any vaporization. Moreover,

the level of gas saturation will influence the stability of free gas nuclei, which will be

discussed below. The total dissolved gas content can be determined using a van Slyke

apparatus developed for measurement of blood gas (Simoni et al. 2002). The van

Slyke apparatus uses a vacuum placed over the liquid sample to produce outgassing,

and it is quite accurate. Traditionally, the vacuum was created by the movement of a

mercury manometer, which has led to its replacement by other methods that do not

require the manual manipulation of mercury reservoirs.

For many practical applications, the cavitating liquid is water, and the dissolved

gases are the main components of air, molecular nitrogen, and oxygen. But, other

dissolved gases may be of interest, especially noble gases (Rooze et al. 2013). Mea-

surement of dissolved gas content can be achieved with a Total Dissolved Gas Pres-

sure (TDGP) probe. A sample of the liquid is placed in a probe beneath a headspace

of gas at a known pressure that is separated from the liquid by a permeable mem-

brane. Over a period the transfer of dissolved gas into or out of the headspace will

change the gas pressure, and this change can then be related to the original dissolved

gas concentration of the liquid sample. In order to relate the pressure change to the

gas concentration, the chemical composition of the dissolved gases must be known,

and some systems combine the probe with a separate instrument to sample and char-

acterize the composition of the gas released into the headspace. For air dissolved in

water, it is often assumed that the ratio of the dissolved gases track the ratio of nitro-

gen and oxygen in air at standard conditions (Yu and Ceccio 1997; Lee et al. 2016). In

fact, in many test facilities, only the dissolved oxygen is measured, and it is assumed

that the level of oxygen saturation parallels the overall dissolved air concentration.

Dissolved oxygen (DO) probes employ a measurement technique similar to that of

pH meters. Two electrodes are suspended in a liquid electrolyte, which is separated

from the test sample by a semipermeable membrane. A low DC voltage is applied

between the electrodes within the electrolyte, and when oxygen molecules from the

test liquid cross the membrane, the magnitude of current between the electrodes will

change.
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2.2 Free Gas Content and Cavitation Nuclei

Measurement of the free gas content is more difficult. The intent is to characterize

the nucleation sites in the freestream liquid, and a variety of methods have been pro-

posed and evaluated (Lecoffre and Bonnin 1979; Oldenziel 1982; d’Agostino and

Acosta 1991; Ceccio et al. 1995; Billet 1985; Pham et al. 1999). Freestream nuclei

are any inclusion in the fluid that will cavitate when exposed to a sufficient tension

(as opposed to surface nucleation sites which reside on flow boundaries). An ideal

nucleus is a clean gas bubble, and the nucleation characteristics of such a bubble

can be readily predicted. However, a wider variety of nucleation sites exist in the

flow, including gas pockets on the surface of particles and bubbles that have signifi-

cant surface contamination. Nevertheless, it is useful to review the basic nucleation

process of a clean bubble in order to give us a reference to compare with practically

observed nuclei.

Consider a nucleus that is a clean gas bubble with a radius RN that contains vapor

and noncondensable gas. The pressure inside the bubble, PB = PV + PG is the sum of

the partial pressures of the vapor and noncondensable gas, respectively. This pressure

is balanced by the liquid pressure on the bubble surface, P∞, such that

P∞ = PV + PG − 2S
RN

,

where S is the surface tension. When a nucleus experiences a drop in the surround-

ing liquid pressure, the radius may grow quasi-statically from its initial equilibrium

radius to a larger equilibrium radius. However, if a tension is applied below a criti-

cal value, PV = PC − P∞, the radius will grow unboundedly. This critical tension is

given by

4S
3RN

< PV − P∞ <

2S
RN

(Brennen 1995). Note that since the fluid is in tension, PV > P∞, and that the static

pressure is in fact negative. While not all nuclei are clean bubbles, the fluids nuclei

content is often reported as a distribution of nuclei with a given critical radius, RC.

This is the radius that corresponds to the required critical pressure, PC, needed to

produce explosive growth of the nucleus. Therefore, the nuclei content of a liquid is

typically reported as a Nuclei Number Density Distribution (NNDD) as a function of

RC, where NNDD(RC) has units of [Number]/[Length]
−4

. Then, the number of nuclei

over a range of critical radius ΔRC is given by NNDD(RC)⋅RC. Alternatively, if the

bin size of the distribution is fixed, the Nuclei Number Distribution (NND) with

units of [Number]/[Length]
−3

can be presented, as shown in Fig. 1 (Chang et al.

2011). The typical range of nuclei critical radii in test facilities spans 1 micron <

RC < 500 micron, and the critical tensions range from 0 > PC > −100 kPa. Nuclei

concentrations can range widely, with order 1 per cubic centimeter for the smallest

nuclei and order 10 per cubic meter for the largest (Gindroz 1998).
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Fig. 1 Example nuclei

concentration measured with

a centerbody Venturi (Chang

and Ceccio 2011). The

different spectra are for

varying freestream dissolved

oxygen levels and

concentrations of long-chain

polymer

2.3 Direct Measurement of the Cavitation Nuclei Distribution

Measurement of the nuclei distribution can be accomplished with both direct and

inferred means. In direct methods, a sample of the flow is exposed to a known tension,

resulting in the cavitation of nuclei that incepts at (or above) that critical pressure.

These devices are collectively known as Cavitation Susceptibility Meters (CSMs),

as first discussed by Schiebe (1972). The most common CSM consists of a simple

venture through which the liquid is passed. The pressure in the throat is measured or

inferred, the occurrence of single cavitation events are detected optically, electrically,

and/or acoustically. CSMs of this type have been developed by Oldenziel (1982),

Chahine and Shen (1986), d’Agostino and Acosta (1991), Chambers et al. (2000), for

example. During typical operation, a sample of the freestream liquid is drawn from

the flow facility and delivered to the CSM inlet. Care must be taken to ensure that

the sampling process does not significantly alter the nuclei distribution itself. Then,

the flow is passed through the CSM. Changing the flow rate then varies the throat

pressure, and the number of cavitation inception events is counted at each level of

throat tension. Knowledge of the flow rate and throat tension yields the concentration

of nuclei that incept at or above the given tension. This data is then converted into

the nuclei number distribution.

One limitation of Venturi-based CSMs is the limited volume of the throat. If the

nuclei distribution is too dense, multiple bubbles may simultaneously form in the

throat, creating a blockage. A solution is to use a centerbody Venturi (Lavigne 1991),

as shown in Fig. 2. Now the high-tension region is an annulus of fluid around the cen-

terbody, increasing the volume of liquid that is in tension. Keller (1987) developed
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Fig. 2 Schematic diagram

of a centerbody venturi

cavitation susceptibility

meter (Gindroz and Billet

1998)

a CSM that used a swirling flow passed through a vortex to create the region of low

pressure.

While the operation of a CSM can be somewhat cumbersome, it is a device that

directly measures the number of cavitation nuclei and their critical tension. It is

important to note that not all nuclei are clean gas bubbles. In fact, particulates with

small gas pockets on their surface can readily act as nuclei, and free gas bubbles

can be coated by an organic skin, effectively modifying their interfacial properties.

(Mørch 2007). Hence, a measurement of the size of the nucleus in the flow may not

necessarily yield an accurate measure of its critical tension.

2.4 Indirect Measurement of the Cavitation Nuclei
Distribution

Indirect measurement of the nuclei distribution can be operationally advantageous,

especially if online or in situ measurement is required. Unlike CSMs, indirect mea-

surements ascertain some aspect of suspected nuclei, such as its light or acoustic scat-

tering properties. From this, the critical tension of the detected nucleus is inferred.

As noted above, this relationship may not be easily determined. Nevertheless, the

advantages of indirect methods have motived their development and use.

Bubble populations in liquids can be determined via acoustic scattering.

Duraiswami et al. (1998) and Chahine and Kalumuck (2003) report on a method

that employs the dispersion of sound passing through a bubbly medium. Both the

attenuation and phase velocity are measured, and analytical relationships are used

to invert these data into the bubble population. Once the bubble population is deter-

mined, the cavitation susceptibility can be inferred.

Light scattering can be used to detect the presence of nuclei in the flow (Keller

1972). Mie scattering by small spherical nuclei can be detected as they pass through

a focused region of laser light, for example. A somewhat more sophisticated method

employs Phase Doppler Anemometry (PDA), where multiple detectors are used to
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record the light scattered from a particle passing through the probe volume made

by two crossed laser beams (Tanger and Weitendorf 1992). PDA systems can more

readily determine the radius and velocity of the presumably spherical nucleus pass-

ing through the control volume. Care must be taken to relate the measured event

rate to the actual nuclei density, since the effective measurement volume may not

be easily determined given that nuclei may not pass directly through the measure-

ment volume, for example. And, it is important to discriminate between bubbles and

particles as they pass through the probe volume.

A direct optical measurement of the nuclei distribution can be made using holog-

raphy (Katz et al. 1984; Katz and Sheng 2010). Holographic imaging can yield the

absolute nuclei distribution in a volume of fluid, and with proper resolution, can be

used to distinguish between bubbles, particulates, and other contaminants. Hence,

holography is often used as the calibration standard for other nuclei measurement

systems. Holographic systems have been used to measure nuclei distributions both

in the laboratory and in the environment (Katz and Acosta 1981; O’Hern et al. 1985).

Kawanami et al. (2002) used laser holography to study the structure of a cloud shed

from a hydrofoil and estimated the bubble size distribution. Holography is not typ-

ically used as a routine nuclei measurement method, but recent advances in both

camera technology and digital processing have made its everyday use more feasible.

2.5 Management of Water Quality

Characterization of the freestream dissolved and free gas content can be an essen-

tial component of any experimental test and evaluation effort. Moreover, it may be

advantageous to actively manage these quantities through the addition or removal

of dissolved gas and freestream nuclei. Besides filtering, the most basic method to

control the water quality is through degassing the bulk of the test liquid, and deaer-

ation is a common practice to reduce both the free and dissolved gas during testing.

Typically, the dissolved gas concentration will be reduced to levels below 50%.

Control of the water quality can be improved via the active management of the free

and dissolved gas content. The major flow facilities that have implemented these sys-

tems include the Grand Tunnel Hydrodynamique in France (Lecoffre et al. 1987) and

the Australian Maritime College Cavitation Tunnel (Brandner et al. 2007). Figure 3

shows an image of latter facility that highlights the means of gas control. The facility

is equipped with bulk degassing systems to control the average dissolved gas concen-

tration. Additionally, small gas bubbles can be controllably injected directly into the

flow upstream of the test section, while both small and large gas bubbles are removed

downstream of the test section via gravity separation, coalescence, and resorption. In

this way, the nuclei distribution can be prescribed and maintained during an experi-

ment.
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Fig. 3 A schematic diagram of the water quality management systems of the Australian Mar-

itime College Cavitation Tunnel (Brandner et al. 2007). Nuclei can be injected upstream of the test

section, and the tunnel is designed to remove gas by separation, coalescence, and resorption

3 Detection and Measurement of Incipient Cavitation

Cavitation inception occurs when cavitation is first observed in the flow, and the

determination of inception conditions is important characterization of the flow itself

as well as an important consideration for the scaling of the performance of model

hydraulic systems. Inception usually occurs when the first freestream or surface

nuclei encounter sufficient tension in the flow field to cavitate. Since a distribu-

tion of nuclei exists in the flow, and the pressure field producing the tension can

often have important contributions from flow unsteadiness, inception is usually a

stochastic process. Therefore, the average flow conditions under which inception is

determined is, many cases, subjective. Moreover, the extent of cavitation chosen as

necessary to call inception can vary widely. In some cases, such as the characteriza-

tion of naval systems, only a minimal amount of cavitation is required to call incep-

tion, and the cavitation may not be easily visible to the naked eye. Conversely, limited

cavitation may not be of practical interest to the operators of industrial hydraulic sys-

tems, and inception would be called only when the amount of cavitation begins to

alter the performance of the device. And finally, proper use of inception observations

in the scaling of model hydraulic systems to full scale is also of vital importance.

Acosta and Parkin (1975) and Rood (1991) review the basic elements of cavitation

inception for a variety of cavitation forms.
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3.1 Detection of Inception with Acoustic, Vibration,
and Force Measurements

Since the presence of incipient cavitation will many times be accompanied by emis-

sion of sound from the cavitating nuclei, the detection of inception is often accom-

plished through acoustic means. Hydrophones can be placed directly within the flow

field (Ran and Katz 1994), within the cavitating test article itself (Ceccio and Bren-

nen 1991; Kuhn de Chizelle et al. 1995) or in acoustically coupled chambers that

are separated from the flow by an acoustic window (Choi and Ceccio 2007). Since

the acoustic impedance of acrylic (3.1× 10
6

Pa s / m
3
) is only about twice that of

Fig. 4 Schematic diagram of the quiescent laser-induced cavitation bubble experiment (a) and a

bubble–vortex interaction experiment (b). A single laser pulse is used to create a cavitation bubble

in the bulk of the fluid from Oweis et al. (2004). The acoustic emission of the bubble is captured

with a hydrophone within the flow (a) and in an external chamber through an acoustic window (b)



Experimental Methods for the Study of Hydrodynamic Cavitation 45

water (1.5 × 10
6

Pa s / m
3
), it is commonly used as a rigid acoustic flow boundary.

(A metal boundary would be much more reflective, with impedance mismatches in

excess of ten times that of water.) Fig. 4 shows two typical setups from Oweis et al.

(2004).

The noise produced by incipient cavitation bubbles often takes to form of discrete

bursts or pulses, and example sound traces are shown in Fig. 5 from Chang and Cec-

cio (2011). In this case, the bubbles were formed in the cores of stretched vortices,

Fig. 5 Images and sound traces of a growing and collapsing vortex cavitation bubble in the sec-

ondary vortex producing an a acoustic “pop” and b a “chirp”. The broadband acoustic pulse was

abrupt lasting approximately 1 ms (Chang and Ceccio 2011)
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and the sounds recorded from individual bubbles could be a pulse (“pop”) or a

periodic tonal burst (“chirp”). The hydrophone array can be seen in the image, and,

in this case, an array of hydrophones was used to localize the sound source (Chang

and Dowling 2009).

As the cavitation develops, the amount of sound emitted and the cavitation’s

effect on the overall flow begins to increase. Hence, measurement of vibration and

changes to the system performance (e.g., lift coefficient, flow coefficient, efficiency)

can be used to call inception. See, for example, Arndt (1981), McNulty and Pearsall

(1982), Shen and Dimotakis (1989), and Koivula (2000). Indirect methods of incep-

tion detection are often calibrated against visual observations when optical access

to the incepting flow is available. Escaler et al. (2006) report on a comprehensive

study that illustrates how cavitation inception can be detected using measurements

of structural vibrations, acoustic emissions, and hydrodynamic pressures measured

in turbomachinery where optical access may be limited or unavailable.

3.2 Optical Measurement and Light Scattering for Inception
Detection

Direct visual observations of incepting nuclei are often used to call inception. Tradi-

tionally, the flow is illuminated with stroboscopic lighting, and a human observer is

tasked with determining which conditions have produced detectable and sustained

cavitation. The availability of high-speed video systems have enabled the digital

recording and analysis of the incepting flow, making inception calls with the naked

human eye less common. However, at the first moments of inception, the cavitation

bubbles may be quite small and difficult to locate; and they may occur infrequently.

Such limited event rate cavitation inception is difficult to discern with visual detec-

tion alone, and the camera systems can be synchronized with acoustic detection sys-

tems (see, for example, Gopalan et al. (1999) and Chang and Ceccio (2011)). If the

location of inception is known a priori, then focused light scattering can be used to

detect the onset and rate of bubble formation. Keller (1972) developed such a system

by directing a focused light source into the inception region of a headform and then

into a photodetector. The presence of the bubble in the measurement volume would

block the light to produce a signal.

4 Optical Measurement of the Cavitating Flow Field

Many optically based methods that have been developed for fluid measurements can

also be effectively employed to study cavitating flows. General reviews of optical

methods are provided by Goldstein (1996) and Tropea et al. (2007), and these meth-

ods and their applications are wide raging and varied. With this in mind, this section

will concentrate on the use of optical methods in cavitating flows.
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4.1 High-Speed Imaging

The need to study the dynamics of cavitation has stimulated the development of high-

speed imaging. From the early work of Benjamin and Ellis (1966), Kling and Ham-

mitt (1972), and Lauterborn and Bolle (1975), high-speed photography has played

a key role in understanding bubbly dynamics and cavitation. A recent review by

Thoroddsen et al. (2008) provides a good summary of the history and recent methods.

As the resolution and frame rate of high-speed digital imaging systems has improved,

the ability for detailed examination of cavitating flows has significantly improved.

Frame rates of order 1 Khz with spatial resolution of 10
3 × 10

3
pixels are now com-

monly available, and cameras with much higher imaging speeds are commercially

available. Ultrahigh-speed imaging systems have been created as well, with frame

rates in excess of 1 million per second. Such systems can resolve the fine details

of cavitation bubble dynamics, as shown by Lauterborn and Hentschel (1985), Ohl

et al. (1995), and Obreschkow et al. (2006).

The study of high-speed bubble dynamics often requires the controlled creation

of single or multiple bubbles. In many cases cited above, a laser pulse is focused

to create the bubble in the imaging region of the camera. The bubble creation can

then be synchronized with the imaging system. This technique can be used to con-

trollably place nuclei into the freestream flow as well, as shown by Choi and Ceccio

(2007). Figure 6 presents a time series from high-speed imaging of a laser-induced

bubble from Ohl et al. (1998), including a schematic of the setup and an example

of an aspherically collapsing bubble with detected luminescence. And, Fig. 7 shows

images of a vortex cavitation bubble formed after a laser-induced nucleus was cre-

ated within the upstream core of the vortex.

4.2 Laser Doppler Velocimetry and Light Scattering Methods

Laser Doppler Velocimetry (LDV) (also known as Laser Doppler Anemometry) is a

well-established technique to measure local flow velocity. In this method, two beams

of laser light are crossed within the flow domain to create a probe volume consisting

of an interference pattern of light. As flow-borne particles pass through the probe

volume, the scattered light from the fringe pattern is detected. The frequency of the

light “burst” is related to the fringe spacing (and fringe velocity if one laser beam

is frequency shifted) and to the velocity of the particle. If it can be assumed that

the particle travels at the local flow speed, inference of the particle velocity yields

a nonintrusive measurement of the flow velocity. Laser beams with multiple colors

(wavelengths) can be used to measure two or three components of the flow speed

in the same probe volume. A comprehensive review of this method can be found in

Durst (1982) and Goldstein (1996).
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Fig. 6 High-speed imaging of a laser-induced bubble from Ohl et al. (1998). A schematic of the

setup used to create the laser-induced bubbles is shown in along with images of an aspherically

collapsing bubble with detected luminescence

LDV can be a useful method to examine cavitating flows. Kubota et al. (1989)

used conditional sampling of the LDV for velocity measurements in a flow around

a shedding partial cavity, as shown in Fig. 8. More recently, Roth et al. (2002) used

similar methods to examine the cavitating flow in a fuel injector. In these cases,

LDA was used to measure the velocity of the liquid flow around and outside the



Experimental Methods for the Study of Hydrodynamic Cavitation 49

Fig. 7 Images of a vortex cavitation bubble created by a laser-induced nucleus; the images were

used to compute the length and average radius of the bubble as a function of position within the

Venturi. Also shown is the corresponding acoustic signal detected from a hydrophone Choi and

Ceccio (2007)

Fig. 8 Local measurements of flow velocity acquired with Laser Doppler Velocimetry were con-

ditionally sampled and correlated to the measured surface pressure during the shedding of cloud

cavitation on a hydrofoil (Kubota et al. 1989)

region of developed cavitation. When employing LDV in this way, it is important to

determine if the flow tracers are small seed particles or small bubbles generated by

the cavitation itself since large bubbles may not necessarily behave as Lagrangian

flow tracers, especially in regions of high turbulence and shear.



50 S.L. Ceccio and S.A. Mäkiharju

4.3 Particle Imaging Velocimetry

Particle Imaging Velocimetry (PIV) is a full-field method used to measure two or

three components of the flow velocity in a plane or volume. In this method, the flow

is densely seeded with flow tracers, and a plane or volume of the flow is illuminated

with pulsed laser light. Two or more images of the flow tracers are compared to

determine the motion of the tracers over a known time interval, and the motion of

many particles are analyzed to determine the spatial distribution of velocities within

the illuminated flow region. Since PIV’s development in the 1990s there have been

significant advances in its development and use, and a general review is provided

by Adrian and Westerweel (2011). The use of PIV to study dispersed multiphase

flows has also been progressing. In these cases, care is taken to distinguish the tracer

particles (which are intended to be nonintrusive) from those that constitute the dis-

persed phase itself, such as larger particles or bubbles. Hassan et al. (1992), Lindken

and Merzkirch (2002), and Balachandar and Eaton (2010) provided examples of PIV

applied to such dispersed multiphase flows.

As in the case of LDV, PIV can be used to study the low void fraction flow around

developed cavitation. Examples include the work of Vogel and Lauterborn (1988),

Leger and Ceccio (1998), Leger et al. (1998), Gopalan and Katz (2000), Laberteaux

and Ceccio (2001a), Laberteaux and Ceccio (2001b), Dular et al. (2005), and Foeth

et al. (2006). Figure 9 presents results from Foeth et al. (2006), who examined the

dynamic flow around shedding partial cavities. The figure shows the steps needed to

separate the images of the PIV tracer particles from the cavity and resulting bubbly

flow. Synchronization of the image acquisition with periodically shedding cavity

flows can yield phase-averaged flow data.

For limited cavitation, PIV can be used to interrogate the flow in and around the

cavitation bubbles. Examples include Ran and Katz (1994), Iyer and Ceccio (2002),

and Straka et al. (2010) who examined inception and bubble–vortex interactions in

shear flows, and Wosnik et al. (2003) who examined the bubbly wake of supercavi-

ties. Figure 10 presents an example of the use of PIV in limited cavitating flows from

Iyer and Ceccio (2002) who examined the influence of cavitation on the dynamics of

a planar shear layer. The setup and an example image of the cavitating shear layer are

shown in (a), and the mean flow and vorticity profiles are shown in (b) for increasing

levels of cavitation (void fraction) in the shear layer. Recent advances in PIV sys-

tems include digital holographic PIV, micro-PIV, tomographic (volume) PIV, and

high frame-rate cinemagraphic PIV. All of these methods have the potential to bring

new insights into our understanding of cavitating flows.
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Fig. 9 The image processing steps employed by Foeth et al. (2006) to determine the flow field

around a developed cavitation forming on a twisted hydrofoil
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Fig. 10 Examination of the influence of cavitation on a shear layer using PIV (Iyer and Ceccio

2002). The setup and an example image of the cavitating shear layer are shown in (a) and (b),

and the mean flow and vorticity profiles are shown in (c) for increasing levels of cavitation (void

fraction) in the shear layer
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5 Measurement of Cavity Flows with High Void Fraction

As the void fraction of the cavitating flow begins to exceed a few percent, the bubbly

flow becomes opaque, and optical methods such as LDV and PIV begin to fail due

to multiple scattering of the incident and reflected light. For very high void fraction

flows, alternative techniques must be used, as described below.

5.1 Surface Pressure, Acceleration, and Forces

Cavitating flows with high void fraction often occur near solid boundaries, and it is

therefore possible to place instruments close to or flush against the cavitating sur-

face. The most common flush-mounted instruments measure the static and dynamic

pressure. These measurements can be combined with local or average acceleration

and forces on the test article to help elucidate the underlying flow. For example,

Kjeldsen et al. (2000) measured the static and dynamic pressures on the surface of a

cavitating hydrofoil, along with the time-varying lift force. Callenaere et al. (2001)

employed dynamic and ultrasonic transducers to measure the reentrant flow beneath

a partial cavity, and Le et al. (1993) employed arrays of dynamic pressure trans-

ducers to examine the unsteady pressures developed by partial cavitation. Escaler

et al. (2006) illustrated how a range of nonoptical methods can be used to detect

and quantify cavitation in turbomachinery, including external vibrations and noise

signatures.

5.2 Electrical Impedance Probes

Since the gas and liquid phases of the cavitating flow have quite different electrical

properties, measurements of the local or average mixture impedance can be used to

infer the void fraction of the flow, and a review of these general methods is pro-

vided by Ceccio and George (1996). Measurement of the mixture impedance can

be accomplished with flush-mounted electrodes or intrusive probes, albeit the lat-

ter may excessively perturb the cavitating flow. The electrodes can be made large

enough to measure the bulk-averages void fraction, or small enough to measure the

local void fraction or the passage of individual gas pockets. A high-frequency alter-

nating current can be applied as the probing signal, making the temporal response

of the transducers very rapid. However, as the path lines of the applied current are

strongly affected by the presence of the gas phase, it is not always possible to fix the

measurement volume of the probe. And, the relationship between the measure bulk

impedance and the void fraction may not be straightforward. For bubbly flows, a

mixture relationship can be developed that can relate the bulk impedance to the void

fraction and electrical properties of the liquid and gas components (Hewitt 1978;
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Fig. 11 The near-surface gas-phase velocity beneath a partial cavity measured with flush-mounted

electrical impedance probes (George et al 2000a). The electrode locations on the hydrofoil (a), sam-

ple voltage signal transduced from the probes (b), and the gas-phase velocity determined through

cross-correlation of the signals (c)

George et al. 2000b). But such relationships will generally fail for highly stratified

flows.

Flush-mounted impedance probes have been used successfully to quantify cavi-

tating flows. Examples include the work of Ceccio and Brennen (1991) and Kuhn de

Chizelle et al. (1995) for the study of traveling bubble cavitation; and Ceccio and

Brennen (1992), Pham et al. (1999), and George et al (2000a) for the study of partial

cavitation. Cross-correlation of signals from multiple electrodes can be used to deter-

mine the gas-phase interface velocity, as reported by George et al (2000a) (Fig. 11).

Intrusive conductivity probes with one or more electrode pairs have also been devel-

oped for gas–liquid flows, as discussed by Wu and Ishii (1999), Lucas and Mishra

(2005), and Elbing et al. (2013).
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5.3 Fiber Optic Probes

Fiber optic probes can be used to detect the presence of bubbles and gas–liquid inter-

faces via the difference in the index of refraction between the liquid and gas. The end

of the fiber is placed in the flow, and light is directed toward the sharpened tip. If

the tip is immersed in the pure liquid, the majority of the light will be transmitted

into the fluid. But, if gas is present at the tip, the light will internally reflect within

the fiber and return to its source to be detected. Fiber optic probes have been suc-

cessfully employed to measure bubble size populations, average void fraction, phase

speed, and interfacial area density, and a review is provided by Boyer et al. (2002)

and Chang et al. (2003). The performance of optical and conductivity probes for

measurement of bubbly flow was compared by Le Corre et al. (2003). The use of

intrusive optical probes in cavitating flow has been limited due to the probes’ delicate

construction and their ability to perturb the flow, but such probes were successfully

used to study the dynamics of partial cavitation by Stutz and Reboud (2000) and

Stutz (2003). Figure 12 presents the probe employed by Stutz and Reboud (2000) to

measure the bubbly flow within a partial cavity, the time traces from two probes that

can be used to measure the local volume fraction and phase speed, and an exam-

ple data set showing the average volume fraction within the cavity. As in the case

of electrical impedance probes, care must be taken to carefully determine how the

signal transduced from the probe relates to the flow quantity of interest (e.g., bubble

size and velocity) and what the influence volume of the probe may be. Single point

probes have shown the best results when they are oriented in a flow with a strong

rectilinear velocity and when the probe tip is small compared to the bubbles to be

measured (Cartellier 1992; Mäkiharju et al. 2013).

Images of a high void fraction bubbly cavitating flow were acquired by Coutier-

Delgosha et al. (2006) by traversing an endoscope within a partial cavity flow. They

were able to demonstrate that the bubbly flow within the cavity often consists of

highly distorted gas bubbles, as shown in Fig. 13.

5.4 Ionizing Radiation

The use of X-ray and gamma-ray densitometry and tomography for the study of

multiphase flows has been well established, and reviews are provided by Kumar et al.

(1997), George et al. (2000b), and Heindel (2011). These methods have also been

applied for the study of high void fraction cavitating flows.

The underlying principal of these systems relies the material and density depen-

dent attenuation coefficient of high-energy photons as they pass through the multi-

phase mixture. When a beam of high-energy X-ray photons, for example, encounters

the mixture, a fraction of the photons passes through without scattering or absorp-

tion, and this fraction depends on the mixture’s attenuation coefficient, 𝜇, density, 𝜌,

and thickness, x. For a beam encountering a domain with N distinct materials, the
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Fig. 12 The fiber optic probe used by Stutz and Reboud (2000) to measure flow within a partial

cavity (a), example the time traces from two probes that can be used to measure volume fraction

and phase speed (b), and a plot showing the average volume fraction within the cavity (c)



Experimental Methods for the Study of Hydrodynamic Cavitation 57

Fig. 13 Images of the bubbly flow within a partial cavity obtained by traversing an endoscope into

the bubbly mixture (Coutier-Delgosha et al. 2006)

Beer–Lambert law provides a relationship between the transmitted, I, and incident,

IO, beam intensity:

I
IO

= e−
∑N

n=1 xn𝜇n∕𝜌n

The attenuation coefficient is a function of material properties and photon energy,

and is a known property for most common materials. Given this relationship, we can

determine the void fraction, 𝛼, of a two-phase mixture, M, of liquid, L, and gas, G,

for a monochromatic beam of photons:

𝛼 = ln

(
IM

IL

)

∕ln

(
IG

IL

)

The transmitted beam intensities IL, IG, and IM are values obtained for the pure

liquid, pure gas, and mixture, respectively. For densitometry, average mixture void

fraction is determined along a known linear beam path, while tomography involves

the reconstruction of the two- or three-dimensional spatial distribution of attenuation

through many measurements of linear path-averaged attenuation.

Stutz and Legoupil (2003) used X-ray densitometry to nonintrusively measure

void fraction in a partial cavity. The setup consisted of a single row of 24 detectors

that could acquire void fraction profiles along a line at a rate of 1000 samples per

second. The measurements were compared with optical probes, and it was found

that the maximum void fraction for the case of periodic shedding was about 25%.
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Fig. 14 A time series of X-ray densitometry-based images of a shedding partial cavity illustrating

the presence of a condensation shock (Ganesh et al. 2016)
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Coutier-Delgosha et al. (2007) used the same diagnostic setup to measure void frac-

tion profiles on a plano-convex foil. They reported a maximum averaged void frac-

tion values of close to 60% with instantaneous values exceeding 85%. These systems

provided the time- and phase-averaged void fraction averaged across the span of the

cavity. Mäkiharju et al. (2013) recently developed an cinemagraphic X-ray densito-

metry system that measures two-dimensional void fraction flow fields of gas–liquid

flows, and this system was used to examine the dynamic void fraction within shed-

ding partial cavities with frame rates up to 1000 per second Ganesh et al. (2016).

Figure 14 shows X-ray densitometry images of the partial cavity forming at the apex

of a wedge revealing the presence of a condensation shock. While the spatial and tem-

poral resolution of these radiation-based techniques is presently nonideal for many

cavitating flows, rapid technological advances (e.g., in X-ray detectors) will make

these nonintrusive techniques increasingly useful.
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An Introduction to Flow-Induced
Instabilities in Rocket Engine Inducers
and Turbopumps

Luca d’Agostino, Angelo Cervone, Lucio Torre, Giovanni Pace,
Dario Valentini and Angelo Pasini

Abstract The article reviews the main forms of flow-induced instabilities detected
in the liquid propellant turbopumps systems of modern rocket engines, with special
reference to rotating stall, rotating cavitation, cavitation surge and higher order
surge modes, illustrating their characteristics, origin and damage potential.

1 Introduction

Propellant feed turbopumps are a crucial component of all liquid propellant rocket
engines because of the severe limitations associated with the design of high power
density, dynamically stable machines capable of meeting the extremely demanding
suction, pumping and reliability requirements of modern space transportation sys-
tems. Figure 1 illustrates the power/weight ratio of the main propellant feed tur-
bopumps used by US space rocket engines powering the Mercury, Gemini, Apollo,
and Space Shuttle programs in the two decades from the early 60s to the 80s. The
tenfold increase of the power density clearly indicates that today’s rocket propellant
feed turbopumps belong to a very special family of machines with respect to earlier
more conventional land- or sea-based machines.

Such high power/weight ratios are obtained by running the impeller at the
maximum allowable rotational speed, in order to reduce the size—and therefore the
weight—of the machine. However, the resulting higher velocity of the flow also
reduces the pressure on the suction sides of the blades, creating the conditions for
the development of cavitation where the flow pressure drops below the vapor
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pressure of the liquid. Indeed, operation under limited cavitation, and sometimes at
supercritical speeds, is usually tolerated in rocket propellant feed turbopumps in
order to maximize their performance, exposing the machine to the risk of devel-
oping dangerous cavitation-induced fluid dynamic and rotordynamic instabilities.

Cavitation usually represents the most stringent fluid mechanical constraint to
the increase of the power density of hydraulic machinery and in particular the major
source of degradation of the suction performance, efficiency, useful life, and reli-
ability of turbopumps (Stripling and Acosta 1962; Stripling 1962). Its occurrence is,
in fact, connected to the insurgence of undesirable phenomena ranging from effi-
ciency deterioration to operational irregularities, mechanical erosion, noise, vibra-
tions, as well as fluid mechanical and/or dynamical instabilities of the machinery
exposed to the cavitating flow. This is particularly true in feed systems of cryogenic
liquid propellant rocket engines, where propellant storage under saturation condi-
tions greatly facilitates the occurrence of cavitation. More specifically, in space
propulsion applications cavitation can provide the flow compliance and excitation
for triggering dangerous fluid mechanic and/or rotordynamic instabilities (Sack and
Nottage 1965; Natanzon et al. 1974; Brennen and Acosta 1973; Brennen and
Acosta 1976; Ng and Brennen 1978; Braisted 1979; d’Agostino et al. 1998; Cer-
vone et al. 2005; Cervone et al. 2006; d’Agostino and Salvetti 2007; d’Agostino
2013; Pace et al. 2015) or even, through the coupling with thrust generation, of the
entire space vehicle (POGO auto-oscillations, Rubin 1966).

The most critical rotordynamic instability in high-performance turbopumps is
the development of self-sustained lateral motions (whirl) of the impeller under the
action of destabilizing forces of mechanical and fluid dynamic origin (Ehrich and
Childs 1984). The role of rotordynamic fluid forces in promoting rotordynamic
instabilities by significantly modifying, in conjunction with cavitation, the dynamic
properties of the impeller, and therefore the critical speeds of the whole machine,
has long been recognized (Rosenmann 1965). However, because of their com-
plexity and the experimental difficulties in their measurement, so far rotordynamic
fluid forces in cavitating inducers and turbopumps have received relatively little

Fig. 1 Power/weight
evolution of propellant feed
turbopumps in the US space
rocket engines (Rockwell
International, personal
communication)
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attention in the open literature (Franz 1989; Bhattacharyya 1994; Bhattacharyya
et al. 1997; d’Agostino et al. 1998; Torre et al. 2010; Pasini et al. 2010; Pasini et al.
2011a, b; Torre et al. 2011a, b; Valentini et al. 2015).

Typically cavitation of the liquid propellant is confined to the turbopump
inducer, an initial axial-flow or mixed-flow impeller routinely used to sufficiently
raise the fluid pressure for suppressing cavitation in the main centrifugal impeller
(s). The main forms of cavitation developing in turbopump inducers are schemat-
ically illustrated in Fig. 2.

Cavitation first appears in the core of the vortex generated by the blade tips when
the Euler (or cavitation) number:

σ =
pref − pV
1
2ρLΩ

2r2T

(based on the reference pressure pref , the vapor pressure pV , and the tip-speed
dynamic pressure 1

2ρLΩ
2r2T ) drops below the inception value, which essentially

depends on the geometry and operational conditions of the machine. Next, more
extensive cavitation develops, starting in the leakage flow at the blade tips and
progressively extending on the suction sides of the blades toward the hub. The
bubbly, cloudy, or attached nature of blade cavitation depends on the dominant
location and susceptibility of the nuclei responsible for the inception of cavitation,
as well as on the thermodynamic state of the liquid and the nature of the flow
(laminar/turbulent, separated/unseparated, etc.). Finally, especially at high blade
loads, cavitation can also appear in the separated, recirculating and slowly
co-rotating backflow that develops at the inlet of the inducer near the side wall of
the casing as a consequence of the combined effects of tip blade and leading edge
flow leakage. Figure 3 illustrates the typical progression of cavitation in turbopump
inducers as a function of the NPSH (Net Positive Suction Head) or, in nondi-
mensional form, of the inlet cavitation number.

Fig. 2 Main form of
cavitation in turbopumps
(from Brennen 1994)
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With reference to Fig. 4, flow-induced instabilities of turbopumps can be con-
ventionally classified as proposed by Brennen (1994) in: global oscillations (cate-
gory A, including surge, cavitation auto-oscillations, rotating stall, rotating
cavitation, unsteady partial-blade, and vortex cavitation, higher order cavitation
surge), which affect the whole machine or even the entire pumping system on a
large scale, local oscillations (category B, like blade flutter and rotor–stator inter-
actions), of more limited impact, and rotordynamic instabilities (category C),
caused by fluid forces on the impellers.

Another useful classification of cavitation-induced turbopump instabilities has
been proposed by Franc (2001), who distinguishes between system instabilities,
also involving the other components of the pumping system (inlet and outlet lines,
tanks, valves), and intrinsic instabilities, whose features are dependent on the
characteristics of the pump.

The cavitating behavior of a rotating machine can often be usefully interpreted
with reference to the equivalent features of the flow through static cascades of
hydrofoils. In this order of approximation, cavitation surge, sometimes observed in
supercavitating hydrofoils (Wade and Acosta 1966) as a result of the interactions of
long cavities with the dynamics the other components of the circuit, is probably the
most well-known system instability. On the other hand, unsteady cloud cavitation,
characterized by the periodic break-up of the cavity developing on highly loaded
lifting surfaces and by the subsequent shedding of a large-scale vortex containing a
cluster of many small bubbles (Kubota et al. 1989), is a typical example of intrinsic
instability. Experiments carried in out facilities with different characteristics or

Fig. 3 Evolution of cavitation in the SSME liquid hydrogen turbopump inducer as a function of
the NPSH (Rockwell International, personal communication)
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adjustable configurations (Tsujimoto et al. 1998) led to very similar Strouhal
numbers for the cloud oscillations and proved the correlation between cloud cav-
itation and the re-entrant jet generated at the cavity closure for cavity lengths greater
than about 50% of chord (Callenaere et al. 1998; Kawanami et al. 1997; Sakoda
et al. 2001).

2 Rotating Stall

Rotating stall typically occur in compressors operating at high incidence, where it
has been extensively investigated because of its critical impact on the performance
and stability of the machine (Greitzer 1981). However, it has also been observed in
noncavitating turbopumps at low flow rates operating near the maximum of the
pumping characteristic. As a consequence of the distortions generated in the flow
field, partial stall cells tend to rotate in the opposite direction of the impeller with an
absolute speed equal to 50–70% of the rotor speed. Rotating stall is most frequently
observed in compressors with a large number of blades, but it has also been
detected in pumps with a just 3 or 4 blades. Actually, in Murai (1968), was the first
to detect and investigate rotating stall in an axial-flow pump with 18 blades.

Fig. 4 Original classification of flow instabilities by Brennen (1994)
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He measured stall propagation velocities between 0.45 and 0.6 times the impeller
rotational speed, and observed that is was somewhat affected by the occurrence of a
limited amount of cavitation.

A useful approximate criterion in compressors predicts the onset of rotating stall
when the maximum of the total head rise curve is approached as the flow coefficient
decreases. As a consequence, a number of authors postulated that also rotating stall
in inducers could be associated to areas of positive slope of the pumping perfor-
mance curve (see for example Kamijo et al. 1977). This is, however, no more than
an approximation (Greitzer 1981). More sophisticated stall criteria typically take
into consideration the evolution of the displacement thickness on the blade suction
side. In particular, following this approach, Leiblein (1965) has been able to
demonstrate the correlation of stall with a simple integral parameter of the flow, the
diffusion factor, predicting the occurrence of stall on typical blade profiles when its
value exceeds about 0.6.

3 Rotating Cavitation

At low Euler numbers, cavitating inducers and pump impellers can exhibit a phe-
nomenon similar to rotating stall, known as rotating cavitation. Even the two
phenomena look similar, significant differences exist. Rotating stall occurs at
locations of the head-flow characteristic where the slope of the curve is positive and
therefore unstable. Rotating cavitation, on the other hand, is normally observed in
the zone of negative slope at cavitation numbers between 2 and 3 times larger than
the breakdown value. Even if subsynchronous (or “backward rotating”) rotating
cavitation has sometimes been observed, usually it is supersynchronous (forward
rotating with respect to the impeller blades) with frequencies between 1.1 and 1.2
times the pump’s rotational speed, as indicated in Fig. 5 (from Brennen 1994) with
reference to the inducer tested by Kamijo et al. (1977).

Fig. 5 Influence of rotating
cavitation and auto-oscillation
on the performance of a
cavitating inducer (Brennen
1994)
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The first observation of rotating cavitation was probably documented by
Rosenmann (1965), who reported a vibration with similar characteristics in some of
his experiments on inducers operating at cavitation numbers between 2 and 3 times
higher than the breakdown value. However, Rosenmann did not recognize this
phenomenon as rotating cavitation. It has first been identified explicitly in by
Kamijo et al. (1977) and associated to the portion of the inducer performance curve
with negative slope, where the head is starting to be affected by cavitation.

A detailed theoretical analysis of rotating cavitation was proposed by Tsujimoto
et al. (1993). They used a simplified analytical model based on the actuator disk
equations, able of reproducing fairly well the experimental results available at that
time (in particular, those obtained by Kamijo et al. 1977). The most interesting
results of their model were:

• Rotating cavitation is a completely different phenomenon from rotating stall,
which is not significantly affected by the occurrence of cavitation. In particular,
rotating cavitation is caused by a positive mass flow gain factor, while rotating
stall is caused by the positive slope of the performance curve.

• The two driving parameters for the onset of rotating cavitation are the mass flow
gain factor M and the cavitation compliance C. Other parameters, like flow
coefficient and cavitation number, do not affect rotating cavitation directly.

• Two modes of rotating cavitation are predicted by the model: not only a “for-
ward” rotating mode (i.e., rotating faster than the impeller speed), but also a
“backward” rotating mode (slower than the impeller speed).

Similar results were obtained with a more refined model based on annular
cascade equations, and presented by Watanabe et al. (1999). Several instability
modes were obtained by the model as solutions of the characteristic equation,
including rotating stall, forward and backward rotating cavitation, and various
secondary radial modes.

Hashimoto et al. (1997a) first investigated the behavior of rotating cavitation on
a 3-bladed inducer, observing that it was almost suppressed using a casing with a
forward-facing step. In a second paper (Hashimoto et al. 1997b) they analyzed the
influence of the rotational speed of the inducer, showing that the operational con-
ditions for the occurrence of rotating cavitation, asymmetric cavitation and
low-cycle oscillations (or cavitation surge) can be different depending on the
geometry of the inducer casing. Rotating cavitation can eventually disappear at
higher rotating speeds. Backward rotating cavitation, predicted by Tsujimoto et al.
(1993), was first detected and recognized by analyzing the cross-correlation phase
of pressure signals from transducers flush-mounted on the casing at different
angular stations near the leading edges of the inducer. These results were also
confirmed by Tsujimoto et al. (1997), who observed backward rotating cavitation
with a propagation speed of about 0.9 times the inducer rotational speed.

Rotating cavitation has also been detected by Zoladz (2000) in both water and
LOX tests of the Fastrac engine turbopump, where a connection with cavitation
surge has also been observed. The frequency of rotating cavitation decreased
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(tending to synchronous frequency) as the cavitation number approached break-
down conditions. This result is consistent with the predictions of the linear 2D
cascade model with closed cavities proposed by Tsujimoto 2001, who also found
that 4-bladed inducers are expected to show higher rotating cavitation frequencies
than 3-bladed ones and, furthermore, that the onset point of cavitation corresponds
to a cavity length equal to about 70% of the blade spacing.

Recent 3D simulations (see for example Kimura et al. 2006; Kang et al. 2007)
indicate that the interaction between the tip leakage vortex and the next blade plays
a central role in the onset of rotating cavitation. The design of inducer leading edge
shape is therefore of great importance for the suppression of the rotating cavitation
(Cervone et al. 2012; Pace et al. 2015). Furthermore, it has been recognized that
rotating instability modes can be controlled by changing the shape of the inducer
casing. In particular, Shimiya et al. (2006), have shown that the use of J-Grooves on
the inducer casing can effectively reduce or suppress rotating cavitation, but also
promotes the occurrence of cavitation surge modes generated by the interference of
the tip leakage vortex cavitation and the leading edge of the next blade. At higher
cavitation numbers, these modes can be reduced by extending the J-Groove further
upstream of the inducer leading edges, but cannot be suppressed in this way at
lower cavitation numbers. Furthermore, the use of J-Groove seems not to be
effective for the control of the rotating cavitation at higher flow coefficients near
design conditions.

More recently, rotating cavitation has been observed at Pratt-Whitney Rocket-
dyne laboratories in a 3-bladed LH2 inducer (Sergeant et al. 2008). The 2D sim-
ulations reported by Ohta and Kajishima (2008), also predicted a forward-running
rotating cavitation mode in a 3-bladed inducer and a backward-running mode with
similar characteristics in a 4-bladed inducer.

4 Other Rotating Instabilities

Attached uneven cavitation (also called “steady asymmetric cavitation” or “syn-
chronous rotating cavitation”) and alternate blade cavitation are synchronous
rotating instabilities frequently occurring in cavitating inducers (see Fig. 6).
Attached uneven cavitation is characterized by nonuniform length of the cavities
developing on the inducer blades. It can be considered as a single-cell rotating
cavitation moving with the same angular velocity of the inducer and generates a
peak in the pressure spectra at the synchronous frequency. Alternate blade cavi-
tation is frequently observed in inducers with an even number of blades when
alternate blades experience different intensities of cavitation. It can be considered as
a synchronous rotating cavitation mode with a number of cells equal to one half of
the number of blades and generates a peak in the pressure spectra at a frequency
equal to the synchronous frequency multiplied by the number of cells.

Experimental observations of synchronous rotating instabilities were presented
by Hashimoto et al. (1997a). Attached uneven cavitation was observed in both a
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3-bladed and a 4-bladed inducer operating at lower cavitation numbers near
breakdown conditions. Alternate blade cavitation was observed on the 4-bladed
inducer at higher cavitation numbers, around 2–3 times the breakdown value. Both
instabilities occurred at high flow coefficients close to the design point. Not sur-
prisingly, alternate blade cavitation, unlike attached uneven cavitation, did not
induce significant shaft vibrations because of the polar symmetry of the perturbed
flow field.

A detailed analysis of the influence of the blade number, angle, and solidity on
synchronous rotating instabilities is presented in by Furukawa et al. (2002). It was
found that the range of cavitation numbers for which it is possible to detect both
attached uneven cavitation and alternate blade cavitation tends to be narrower for
inducers with higher number of blades, longer blade length, or higher blade angle.

Using a quasi-3D analytical model of steady cavitation in a 2-bladed inducer,
Horiguchi et al. (2003b) predicted that alternate blade cavitation starts to occur
when the cavity length on the inducer blades reaches about 65% of the blade
spacing, confirming the results obtained for rotating cavitation from simpler 2D
analyses of blade cascades.

An analysis of the characteristics of synchronous uneven cavitation on a
3-bladed inducer is presented by Shimagaki et al. (2006). Figure 7 shows the
waterfall plot of mid-chord pressure fluctuations and the suction characteristic of
the inducer at its design flow coefficient. A significant decrease of the head is
present when synchronous asymmetric cavitation occurs, and the authors report that
the head loss can be different depending on which inducer blade experiences the
asymmetry in cavitation.

Finally, Yoshida et al. (2008) conducted a detailed experimental and numerical
investigation to elucidate the mechanism of generation and development of
asymmetric cavitation by means of measurements taken by pressure transducers
installed along the blade channels. They reported that the synchronous blade
vibration generated by uneven cavitation appeared to be a self-excited vibration,
hydrodynamically coupled with the rotordynamic characteristics of the impeller.

Fig. 6 Schematic representation of the asymmetric cavitation (left) and the alternate blade
cavitation (right)
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Backflow vortex cavitation was first detected and identified by Tsujimoto et al.
(1997) in inducers operating at flow coefficients lower than design conditions and
cavitation numbers either close to breakdown or significantly higher (3–4 times the
breakdown value). As illustrated in Fig. 8, it is a rotating instability of the inducer
backflow with the formation of multiple cells of axial vorticity (5 cells in Tsujimoto
et al. 1997), which slowly rotate at an angular speed less than 0.2 times the inducer
rotating speed.

The occurrence of a backflow vortex instability with 8 cells rotating at about
32% of the impeller speed has been documented by Zoladz (2000) with reference to
the tests of the Fastrac turbopump. Imamura et al. (2003) showed that backflow

Fig. 7 Left suction performance curve of a 3-bladed inducer at the design flow coefficient. Right
waterfall plot of the power spectra of mid-chord pressure fluctuations, for the same flow conditions
(Shimagaki et al. 2006)

Fig. 8 Schematic
representation of the
“backflow vortex cavitation”
instability (Tsujimoto et al.
1997)
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vortex cavitation can be suppressed by means of J-grooves in the inducer casing,
similar to those used for the control of rotating cavitation.

Rotating choke is another form of cavitation instability first identified by Tsu-
jimoto and Semenov (2002), Semenov et al. (2004), with reference to the phe-
nomenon observed by Shimura et al. (2002), Uchiumi et al. (2003) in the LH2
inducer of the Japanese H-II engine and indicated as “rotating stall cavitation.” It
occurred near the inducer operational conditions (with a negative slope of the
performance curve) at rotating speeds close to the second critical speed of the rotor,
and was eventually eliminated by redesigning the inducer casing with slightly
conical tip blade shape. Tsujimoto and Semenov (2002) indicated that rotating
choke is not related to blade stall as originally postulated, but rather to the transition
of pumping performance from negative to positive slope when breakdown are
approached, as illustrated in Fig. 9.

They proposed to name this instability “rotating choke” in order to highlight its
dependence on the “choking” cavitation conditions that develop near inducer
breakdown. As the Euler number decreases the cavities on the suction side of the
blades increase, eventually “choking” the flow and rapidly increasing the head
losses as soon as they extend into the throat between adjacent blades. If this head
loss is sufficiently large the slope of the pumping characteristic becomes positive.
Under these conditions choking in a blade channel propagates in the opposite
direction of the inducer rotation with the same mechanism as for rotating stall.

A similar kind of “rotating stall” was observed by the author and his collabo-
rators in a series of tests conducted in the Cavitating Pump Rotordynamic Test
Facility at Alta, Pisa, Italy, on a 3-bladed commercial inducer (Cervone et al. 2005)
and, later, on a 2-bladed inducer with the same blade geometry of the 3-bladed
LOX inducer for the Vinci engine (Cervone et al. 2006). In these tests, however, the
phenomenon was detected at high blade loads (flow coefficients lower than the
design value) over a wide range of cavitation conditions, even if it was more intense

Fig. 9 Left Suction performance and rotor vibration as a function of the cavitation number, at two
different flow coefficients (95% and 98% of the operating conditions), for the liquid hydrogen
inducer of the Japanese LE-7 engine. Right schematic representation of the change of slope in the
performance curve (Tsujimoto and Semenov 2002)
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near breakdown. The rotating nature of the phenomenon was later confirmed by
flow visualization by means of a high-speed camera (Cervone et al. 2007).

In a series of experiments on several inducers intended for use in liquid
hydrogen Uchiumi and Kamijo (2008) showed that “rotating stall cavitation”
occurred when the flow incidence on the leading edges of the inducer was larger
than about 43% of the tip blade angle measured from the tangential direction.

5 Cavitation Surge

Surge and cavitation surge (or cavitation auto-oscillation) are instabilities of
pumping systems resulting in pressure and flow rate oscillations that can often
generate excessive vibration and performance degradation of the machine and, in
the worst case, even affect the integrity of the entire system.

With reference to Fig. 10, consideration of the effects of small perturbations
shows that the operational point O in the left diagram, at the intersection between
the head characteristic and the load curve of the system, is quasi-statically stable if
the slope of the load characteristic is larger than the slope of the pumping char-
acteristic (Greitzer 1981). Hence, for instance, point A in the right diagram is stable,
B is neutrally stable, and C is unstable. Operation of the machine under unstable
conditions leads to the development of potentially dangerous large-amplitude surge
oscillations both in compressors and pumps. As frequently observed in nonlinear
dynamic oscillation, also surge instabilities of pumping systems usually display an
hysteresis cycle (Greitzer 1981).

Clearly the rapid increase of the slope of the performance characteristic of
cavitating turbopumps as breakdown is approached suggests that in these machines
cavitation surge becomes increasingly more likely at low cavitation numbers.

Fig. 10 Schematic of stable and unstable characteristic curves of a pumping system (Brennen
1994)
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Indeed in cavitating pumps violent oscillations of the pressure and flow rate of the
entire pumping system have routinely been observed when the cavitation number is
decreased at values for which the head rise begins to be affected, as documented by
Rosenman (1965), Sack and Nottage (1965), Natanzon et al. 1974, Brennen and
Braisted (1980), among others. This surge phenomenon, named “cavitation
auto-oscillation” in the original classification by Brennen (1994), has been later
indicated as “cavitation surge” by other researchers. It can lead to very large
fluctuations across the pumping system and can also cause substantial axial forces
on the shaft, on the order of 20% of the steady axial thrust on the impeller. Brennen
and Braisted (1980), and later Yamamoto (1991), showed that the frequency of
cavitation surge oscillations is roughly proportional to the pump’s rotating speed
and the square root of the cavitation number.

With reference to space propulsion applications, the onset of cavitation surge is
especially dangerous in liquid propellant rocket feed systems because the resulting
flow rate fluctuations, by modulating the engine thrust, can trigger self-sustained
POGO oscillations of the entire space vehicle, a global instability characterized by
extremely dangerous large-amplitude fluctuations of the thrust (NASA 1970).

A violent cavitation surge instability at very low frequency (<10 Hz) was
observed by Hashimoto et al. (1997a) on a 3-bladed model of the liquid oxygen
inducer of the Japanese LE-7 engine operating near breakdown conditions and at
flow coefficients close to the nominal design value. The authors called this insta-
bility “low cycle oscillations” and reported a significant interaction with steady
uneven cavitation and backflow vortices. A similar surge mode, but at higher
frequency (about 18 Hz), was detected on a similar 3-bladed inducer by Tsujimoto
et al. (1997), who interpreted it as the result of a resonance between the vibration
mode of the system at 18 Hz and the oscillations of the blade cavities due to the
occurrence of rotating cavitation.

A surge mode instability at about 2 Hz was detected by Furukawa et al. (2001)
in water tests on a 2-bladed inducer with a relatively high tip blade angle (about 11
degrees) operating near breakdown conditions at flow coefficients significantly
lower than the nominal design value (Fig. 11). The onset pressure of this instability
mode is reported to coincide with the value for which the cavities on the blades
reach the inlet of the blade channels.

The dependence of the frequency of cavitation surge on the Euler number is
probably the consequence of a strong connection between this form of instability
and rotating cavitation, as documented by Zoladz (2000) in connection with the
tests carried out on the LOX turbopump of the Fastrac engine. If Ω is the pump
rotational speed, frc is the frequency of rotating cavitation instability and Z is the
number of blades of the inducer, the frequency f of the cavitation surge mode is
reported to be equal to:

f = Z frc −Ωð Þ
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Several observations under different test conditions confirmed this relationship,
which is also compatible with the cavitation surge frequencies reported by other
research groups on different pumps.

The influence of number of blades, blade angle and blade solidity on the cavi-
tation surge instability was investigated by Furukawa et al. (2002) by means of
experimental observations on several test inducers. It was found that:

• when the blade number is increased (and, consequently, the head rise is
decreased), the range of cavitation numbers for which the cavitation surge is
detected tends to become wider;

• when blade solidity is increased (by increasing the axial length of the blades)
and head rise is therefore increased, the range of cavitation numbers for the
existence of cavitation surge becomes narrower;

• finally, when the blade angle is decreased, the field of existence of the cavitation
surge in terms of s tends to be wider.

6 Higher Order Cavitation Instabilities

Free oscillation modes with frequencies significantly higher than the inducer
rotational speed are generically indicated as higher order instabilities and can
involve unstable flow motion in the streamwise (higher order surge modes) and
azimuthal (higher order rotating modes) directions. They have been detected and
investigated in detail only in recent years and are universally recognized as
extremely important in the design and characterization of space rocket inducers
because of their potential for coupling with the lower critical speeds of the tur-
bopump or with the flutter frequencies of the inducer blades, possibly leading to
catastrophic failures of the machine. As an example, the failure of the Japanese H-II
rocket in 1999 is thought to have been caused by the fatigue rupture of the inducer
blades under the resonant excitation of an unstable high-order cavitation instability

Fig. 11 Left suction performance curve of a 2-bladed inducer at φ = 0.017, including the field of
existence of the surge mode instability. Right waterfall plot of the power spectrum of outlet
pressure fluctuations on the same inducer, under the same test conditions (Furukawa et al. 2001)
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(NASDA 2000a, b). Furthermore, several recent flight tests on important compo-
nents of the Space Shuttle main engine have suffered from vibration problems at
frequencies compatible with the characteristic frequencies of high-order rotating
cavitation instabilities observed in the propellant feed turbopumps.

High-order streamwise and azimuthal instabilities were first predicted on theo-
retical grounds by Tsujimoto (2001) as unstable modes resulting from the appli-
cation of his 2D linear cavity model originally developed for the investigation of
rotating cavitation. He anticipated the occurrence of these modes with
system-independent frequencies between 4.2 and 4.7 times the inducer rotating
speed and at Euler numbers equal or larger than about four times the breakdown
value, just above those characteristic of conventional rotating cavitation. The author
also suggested that the high-order azimuthal mode might be caused by the modu-
lation of the inlet backflow structure, also in consideration that it was predicted to
occur even without cavitation on the blades.

Experimental evidence of the occurrence of higher order instabilities was first
provided by Fujii et al. (2002) in a test campaign on a 3-bladed inducer similar to
the LOX inducer of the LE-7 turbopump, whose main results are illustrated in
Fig. 12. The spectral analysis of the pressure fluctuations, recorded at the inlet and
outlet cross-sections of the inducer when operating at nearly nominal flow and
variable inlet pressure, indicated the presence, together with conventional rotating
cavitation denoted by 1 in the figure, of two additional higher order instabilities:

• A higher order surge (denoted by 2 in the figure) with a frequency about 5 times
the rotational speed of the inducer at cavitation numbers higher than for con-
ventional rotating cavitation.

• A higher order rotating cavitation (denoted by 3 in the figure) at frequencies and
cavitation numbers close to those of the higher order surge oscillations. It was

Fig. 12 Waterfall plots of the power spectra of inlet and outlet pressure fluctuations in a 3-bladed
inducer at flow coefficient φ = 0.080 ([28] Fujii et al. 2002)
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also found that the cavity size fluctuation for this instability mode is smaller than
for conventional rotating cavitation. Furthermore, while in conventional rotating
cavitation the outlet pressure fluctuations are significantly smaller than those at
the inlet, for the higher order rotating cavitation mode the situation is reversed.

In the same paper the authors also indicate that the above instabilities could be
eliminated almost completely by means of the introduction of a suitable step in the
design of the inducer casing. Finally, the detection of a higher order surge insta-
bility with the same features observed by Fujii et al. (2002) was confirmed by
Tsujimoto and Semenov (2002) also in full-scale tests on the liquid hydrogen
turbopump of the LE-7 engine.

Figure 13 summarizes the results of similar tests conducted in the U.S. by
Subbaraman and Patton (2006) on a 4-bladed inducer for the characterization of
higher order instabilities at frequencies up to ten times the rotational speed of the
impeller.

The plot in the figure clearly shows the occurrence of higher order surge cavi-
tation (HOSC) and higher order rotating cavitation (HORC) at nearly nominal flow
conditions and cavitation numbers equal to or higher than about four times the
breakdown value. The HORC and HOSC frequencies only differ by about one tenth
of the inducer rotational speed and, not surprisingly, the HORC component displays
both forward and backward running modes. These higher order instabilities also
produced many nonlinear modulations and harmonics over the whole range of
experimental observation, including a component at very low frequency indicated
as “Low Freq Cav-Induced” in the above plot. The most intense harmonic

Fig. 13 2D Color plot of the power spectra of the pressure fluctuations versus the cavitation
number in a 4-bladed inducer, at a flow coefficient equal to 1.02 times the design value
(Subbaraman and Patton 2006)
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component occurred at a frequency equal to 6.4–6.6 times the rotational speed,
which was therefore considered as the “nominal” frequency of the instability.

The author present in the paper a “Tip Vortex Suppressor”, consisting of some
devices able to provide a re-circulate flow from the inducer discharge to the inducer
inlet. This device showed to be quite effective, shifting the higher order phenomena
to low values of the flow coefficient (significantly lower than the operating point)
and eventually suppressing most of them when an additional through flow was
provided by the device. However, in the latter case the detected oscillations due to
alternate blade cavitation were significantly stronger.

A higher order surge mode was detected by Cervone et al. (2006) on a 2-bladed
inducer with the same blade geometry of the 3-bladed LOX inducer for the Vinci
engine. Two harmonics of the phenomenon have been identified, at 4.4 and 6.6
times the inducer rotational speed. The phenomenon was observed at all values of
the flow coefficient and cavitation number, but became more evident at higher flow
rates near the design point and tended to disappear as breakdown conditions were
approached.

7 Conclusions and Perspectives

In the past generation the technology and knowledge base of liquid propellant feed
turbopumps has been completely revolutionized. The development of the propul-
sion systems for the Space Shuttle in the 1970s and of the Japanese launchers in the
1980s and early 1990s have represented corner points in the quest for higher
performance and more detailed insight on the hydrodynamics of the flow field
through the machine. As a consequence of these development efforts the design of
turbopumps for space propulsion applications has rapidly evolved and their power
density has raised by more than one order of magnitude with the successful
introduction of faster, lighter and often supercritical machines. A large number of
new types of fluid dynamic instabilities, mostly induced by the occurrence of
cavitation, have been identified both theoretically and experimentally, and field
experience has confirmed their potentially dangerous nature. In addition, operation
at supercritical speeds with non-negligible cavitation has significantly increased the
importance of rotordynamic instabilities and the need for more accurate prediction
of the critical speeds and their dependence on the properties of the flow.

Today cavitation phenomena in hydraulically operating turbomachinery cannot
be safely predicted by theoretical or numerical methods because of the complexity
of the physical phenomena involved, the imperfections and approximations of the
physical models, and the insufficient temporal and spatial resolution of current
numerical simulation tools. Hence experimentation still plays an essential role for
technology progress in this field. Operational and economic limitations also clearly
indicate that detailed experiments can only be effectively carried out on turbopumps
under fluid dynamic and thermal cavitation similarity.

An Introduction to Flow-Induced Instabilities in Rocket … 81



In recognition of these aspects, the research group at Pisa University has
designed and realized the Cavitating Pump Rotordynamic Test Facility (CPRTF),
the first openly documented facility in Europe—and one of the few in the world—
capable of carrying out the direct measurement of the unsteady rotordynamic fluid
forces on scaled turbopumps in fluid dynamic and thermal cavitation similarity.

The final objective of the research in this field consists in giving the designers of
high-performance turbopumps a deeper insight on the development of dangerous
flow instabilities of crucial importance in rocket propulsion applications. In more
practical terms, the experimental results will shed some light on the dependence of
these instabilities on the scaling parameters describing the operational conditions of
the machine and the intensity of thermal effects, which commonly occur in most
cryogenic propellants. By proper extrapolation based on well-established similarity
laws, this information will allow for realistic predictions of these phenomena in
full-scale turbomachines to be made, thereby effectively contributing to identify the
operational regimes that are likely to develop into dangerous and potentially
destructive fluid dynamic instabilities.

Together with the numerical simulations and theoretical analyses, the results of
similarity experiments represent an integrated approach to the analysis of
cavitation-induced instabilities in liquid propellant fuel feed systems and are
expected to effectively contribute to the advancement of technology in an important
sector of space engineering.
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Three-dimensional Simulation
of Cavitation Instabilities

Yoshinobu Tsujimoto

1 Three-Dimensional Simulation of Cavitation
Instabilities

In real three-dimensional inducers, most of the cavitation instabilities appear when
the steady cavity length at the tip becomes about 65% of the blade spacing. This
agrees with the result of two-dimensional stability analysis (Watanabe et al. 1999;
Horiguchi et al. 2000). However, the two-dimensional stability analysis is based on
the blade surface cavitation while the cavitation occurs most significantly at the tip
in real inducers. So, we need to clarify the cause of cavitation instabilities under the
conditions with real three-dimensional tip cavitation. This generally requires
unsteady, three-dimensional calculation of cavitating flow.

1.1 Simulation of Alternate Blade Cavitation
(Kang et al. 2009a)

Since the flow under alternate blade cavitation is steady, the cause of alternate blade
cavitation can be found from steady calculations. So, steady flow calculations were
made on two pitches of a four-bladed inducer. The commercial software,
ANSYS-CFX11.0, was used for the simulation of the cavitating flow through the
inducer. Three-dimensional Reynolds averaged Navier–Stokes (RANS) equations
were solved by finite volume method with hybrid unstructured grids. The k-ω
turbulence model was used. The cavitation model is based on the homogenous
multiphase flow framework of the CFD solver taking into the dynamics of cavi-
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tation bubbles by solving a simplified Reyleigh–Plesset equation. The effect of
cavitation is taken into account by adding a special source term into the continuity
equation. The working fluids are water and its vapor. The total pressure and no
circumferential velocity were specified at the inlet and the mass flow rate was
specified at the outlet. The rotational speed was fixed at 3000 rpm, which is the
same as the experiments.

Figure 1 shows the suction performance and Fig. 2 the cavity length as com-
pared with experimental results (Kang, Yonezawa et al. 2009a). As shown in Fig. 2,
alternate blade cavitation starts to occur when the cavity length becomes about 65%
of the blade spacing, h, at the tip.

Figure 3 shows the shape of the cavity shown by void fraction and the velocity
field in a cylindrical plane with r R̸t =0.98. In the present calculation with a bubbly
flow cavity model, the velocity vector is not parallel to the cavity surface but
penetrates the surface, unlike the two-dimensional blade surface cavitation.

In order to find the cause of alternate blade cavitation, the velocity disturbance
caused by the cavitation was evaluated by subtracting the non-cavitating flow
vector from cavitating flow vector and is shown in Fig. 4. Near the leading edge
where the cavitation bubbles grow, a source like outward flow is found. Towards
the cavity trailing edge where the cavity bubbles collapse, a jet-like flow occurs.
This flow has an axial flow component directed downstream. This component has
an effect to reduce the incidence angle to the next blade. At σ =0.06, the flow
towards the cavity trailing edge is about to interact with the leading edge of the next
blade.

Figure 5 shows the velocity disturbance in meridional planes. Near the cavity
leading edge shown in (a) and (c), where the bubbles are growing, we observe an
outward flow. Near the cavity trailing edge shown in (d), a strong axial flow
disturbance can be observed. The leading edge of the upstream blade (Blade 2) is
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exposed to the strong axial flow and the cavity on this blade is suppressed, as shown
in Fig. 4c, due to the decreased incidence angle to the blade. The radial component
of the disturbance flow in the meridional plane is much smaller than the axial
component. This is one of the reasons why the two-dimensional analysis can predict
the cavitation instabilities correctly.
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1.2 Simulation of Rotating Cavitation

Encouraged by the success of the simulation of alternate blade cavitation, unsteady
calculations were made on a three-bladed inducer to simulate rotating cavitation.
The time pitch was 1/400 of one rotation of the inducer.

Figure 6 shows the rotating cavitation simulated in a three-bladed inducer at the
design flow coefficient ϕ=0.078 and the cavitation number σ =0.04. The propa-
gation velocity ratio ω Ω̸=5 4̸ = 1.25 is close to experimental results. Figure 7
shows the velocity disturbance in the meridional plane at θ θ̸s =0.9 under rotating
cavitation. At 16.65−19.15 Rev., a strong axial flow component directed down-
stream can be observed. The leading edge of upstream blade, Blade 2, is exposed to
this downward flow and the cavity on this blade is smaller as shown in Fig. 6.

Figure 8 shows the pressure distribution under rotating cavitation. As typically
shown at 16.05 Rev. on the blade whose leading edge is at θ θ̸s =0 (Blade 1), a
high pressure region can be seen at the trailing edge of the cavity. This is caused by
the collapse of the cavity or the flow deceleration at the cavity trailing edge. With
the growth of the cavity, this higher pressure region extends to the suction side of
the next blade, as shown at 17.3 Rev. This also has the effect to decrease the cavity
length on the next blade.

Although not shown here, cavitation surge occurred at σ =0.050, 0.045, 0.035. It
was found that, when the cavity becomes longer, the leading edge of the next blade
is exposed to the axial flow disturbance at the trailing edge of the cavity and hence
the cavity is decreased. Thus, the cavitation surge can also be explained by the
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interaction of the flow towards the cavity trailing edge with the leading edge of the
next blade.

As mentioned above, in real three-dimensional flow with significant tip cavita-
tion, there exists a local flow near the cavity trailing edge in which the incidence
angle to the next blade is decreased. Cavitation instabilities such as alternate blade
cavitation, rotating cavitation, and cavitation surge start to occur when this local
flow starts to interact with the leading edge of the next blade. Figure 9 shows the
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relative velocity field around the tip cavity, obtained by experiments. As shown in
(b), the flow penetrates into the cavity and does not round about the cavity in the
same way as for the calculated result shown in Fig. 3. By subtracting the
non-cavitating velocity vector shown in (a) from the cavitating flow vector shown
in (b), the disturbance flow vector is obtained and shown in (c). The disturbance
field shown in (c) is similar to that in Fig. 4 with outward flow near the cavity
leading edge and the flow towards the cavity trailing edge. Thus, the existence of
disturbance flow field predicted by CFD was confirmed by experiments.

In many cases, the tip cavitation is more significant than blade surface cavitation.
This means that cavitation instabilities can be avoided by designing the inducers so
that the interaction of the tip cavity with the next blade can be avoided. Actually
several inducers were designed based on this guideline and it was confirmed by
experiments that cavitation instabilities are successfully suppressed (Kang et al.
2009b).

2 Suppression of Rotating Cavitation Using
a Circumferential Groove on the Casing

Since it was found in the last section that cavitation instabilities occur due to the
interaction of the flow near the cavity trailing edge with the leading edge of the next
blade, it might be possible to avoid cavitation instabilities by avoiding the inter-
action by trapping the tip leakage flow by a circumferential groove on the casing.

(a) σ = 0.375 (b) σ = 0.10 (c) Disturbance velocity, (b)-(a)
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This method has been used for suppressing rotating stall for compressors (Hah et al.
2008). This section describes about the application of this method for inducers to
illustrate the usefulness of CFD for developments (Kang et al. 2010).

2.1 Design of Circumferential Grooves

First, we numerically investigated the effect of groove geometries on the tip leakage
vortex and found the optimum geometries to “pack” the tip leakage vortex in the
circumferential groove.

Figure 10 shows the geometry of circumferential groove tested. The width of
groove is 19.5 mm and the upstream edge is located 3.5 mm upstream of the
leading edge of blade tip. The depth of groove is 10 mm for the impeller with
diameter 149.8 mm. Table 1 shows the static pressure coefficient ψ s obtained from
the calculation. With the grooved casing, the pressure coefficient is about 5% lower
than that with the straight casing.

2.2 Flow Characteristics

Figure 11 shows the cavity geometries at σ =0.04. The cavitation number σ is
defined as ðp1 − pvÞ ð̸ρU2

t 2̸Þ, where pv is the vapor pressure and p1 is the inlet
pressure. The cavity is shown by the surface with the void fraction α=0.01. With
the grooved casing, the cavity volume is remarkably reduced as compared with the

Fig. 10 Geometry of
circumferential groove

Table 1 Static pressure
coefficient at ϕ ϕ̸d =1

Straight casing Grooved casing

ψ s σ =∞ð Þ 0.1263 0.1213
ψ s σ =0.1ð Þ 0.1256 0.1190
ψ s σ =0.04ð Þ 0.1267 0.1214
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straight casing and the separating point of tip leakage vortex cavity is moved
downstream.

To clarify the effect of cavity, the velocity disturbance caused by the cavity was
evaluated by subtracting the velocity of non-cavitating flow from that of cavitating
flow. The disturbance velocity vectors and void fraction distributions in z, θ and
r, z-planes are shown in Fig. 12. With the straight casing, the disturbance flow near
the cavity trailing edge has an axial component which reduces the incidence angle
to the next blade. It has been shown in the last section that the axial disturbance
flow causes alternate blade cavitation, cavitation surge, and rotating cavitation.
With the grooved casing, the disturbance flow is weaker and no positive axial flow
is found near the leading edge of the blade. This is preferable to suppress cavitation
instabilities.

Figures 13 and 14 show the velocity vectors and void fraction distributions at
ϕ ϕ̸d =1.0 and σ =0.04 in r-z planes. With the straight casing, the tip leakage vortex
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core appears near the leading edge at blade tip shown in Fig. 13a, and then it extends
upstream as θ is increased. The cavity appears not in the tip leakage vortex but in the
lower pressure region around the junction of blade suction surface and the casing.

With the grooved casing, the tip leakage vortex cavity develops only in the cir-
cumferential groove. The vortex is enhanced by the jet at θ=170◦ from the clearance
between the pressure surface of the blade and the rear wall of the groove. At θ=110◦,
a weak cavity is observed on the pressure surface. This is caused by the interaction
with the tip leakage vortex cavity. However, the head ψ s =0.1214 at ϕ=0.04 is not
significantly lower than the head ψ s =0.121 under non-cavitating condition. Inward
radial velocity is observed in the upstream edge of the circumferential groove, sup-
pressing the tip leakage vortex cavity on the suction side of blade tip.

Figure 15 shows the blade pressure distributions at r R̸t =0.98. At σ =0.10 a
cavity appears on the suction surface in 90◦ < θ<135◦ with the straight casing but
no cavity is found with the grooved casing. With the grooved casing, negative blade
loading is found near the leading edge and the blade loading is moved downstream.
Thus, we can control the blade loading by the groove. At σ =0.04 the cavitating
region is extended to 90◦ < θ<175◦ with the straight casing. With the grooved
casing, the effect of cavitation number is smaller although a cavity appears in
100◦ < θ<120◦ on the pressure surface. The pressure on the pressure surface is
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σ =0.04
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lower and the cavity appears caused by the interaction with the tip leakage vortex
from the preceding blade.

2.3 Experimental Results

2.3.1 Non-cavitating Performance

Figure 16 shows the non-cavitating performance curves obtained from the exper-
iments and the computation. With the grooved casing, the static pressure coeffi-
cients at lower flow coefficients are lower than that with the straight casing.
However, the decrease of static pressure coefficient is acceptable at the design flow
coefficient, ϕd =0.078.
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2.3.2 Suction Performance

Figure 17 compares the suction performance curve with andwithout the groove.With
the straight casing (Tsujimoto et al. 1997), the test was conducted at 3000 rpm with
orifice plates at the inlet, while the test was conducted at 4500 rpm without the orifice
plates for the case with the grooved casing. The larger scatter with the straight casing
is caused by cavitation instabilities with some effects of bubbles from the orifice
plates. We find that the suction performance is somewhat improved by the groove.

2.3.3 Cavitation Instabilities

Figures 18, 19 and 20 show the spectra of inlet pressure fluctuations measured by
the pressure transducers flush mounted 44 mm upstream of the blade leading edge
at the tip. The horizontal axis shows the frequency, the vertical axis shows the
magnitude of the pressure fluctuation Δψ defined as Δp ρ̸U2

t ) and the depth axis
shows the cavitation number σ. N is the frequency 50 Hz of the impeller rotation.
The phase difference of pressure fluctuations measured at two circumferential
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Fig. 18 Inlet pressure fluctuation, ϕ ϕ̸d =0.9
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locations 90˚ apart are shown for typical components. The negative/positive phase
difference means that the pressure pattern rotates in the same/opposite direction of
the impeller rotation.

In 0< f <150 Hz, with the circumferential groove, rotating cavitation, cavitation
surge, and asymmetric cavitation were successfully suppressed at all flow rates
except for weak instabilities observed at ϕ ϕ̸d =1.1.

In 150< f <500 Hz, instabilities with higher frequency components are
observed. A higher frequency component with 4.8N was observed in the initial
engine firing tests and water tests on liquid hydrogen turbopump inducer for HII
rocket (Tsujimoto and Semenov 2002). In this case, the phase difference was 0°.
The higher frequency components are important since they can be closer to the
natural frequencies of blade bending mode. For this reason, extensive studies have
been made to avoid the higher frequency components. In the present tests, we find
components around 5N, 7 ∼ 8N, and 10N. The phase difference is different from

Fig. 19 Inlet pressure fluctuation, ϕ ϕ̸d =1

Fig. 20 Inlet pressure fluctuation, ϕ ϕ̸d =1.1

Three-dimensional Simulation of Cavitation Instabilities 99



case to case but can be assorted into groups around zero (surge mode), − 90◦ (one
cell rotating forward) and + 90◦ (one cell rotating backward). The cause of these
higher frequency modes is discussed later.

2.3.4 Cavity Geometry

Figures 21 and 22 compare the pictures of cavities at the design flow coefficient at
ϕ ϕ̸d =1.0 with and without the groove. We observe the following differences.

1. With the straight casing, the cavity occupies the entire tip region while the
cavity mostly occurs in the groove with the grooved casing. This agrees with the
numerical results shown in Figs. 13 and 14.

2. With the straight casing, the backflow vortex cavitation extends more upstream
than the case with the groove. With the grooved casing, the backflow vortex
cavitation extends only slightly from the upstream edge of the groove.

(c) = 0.06
(Shorter cavity)

(a) = 0.10 (b) = 0.08 (d) = 0.06
(Longer cavity)

Fig. 21 Cavitation geometry, straight casing, ϕ ϕ̸d =1

(c) = 0.06(a) = 0.1 (b) = 0.08 (d) = 0.04

Groove

Fig. 22 Cavitation geometry, grooved casing, ϕ ϕ̸d =1
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Although not shown, it was found that the increase of cavity volume with the
decrease of flow rate was much smaller with the grooved casing.

2.3.5 Propagation of Backflow Vortex Cavity

Figure 23 shows the pictures of cavities from high-speed video to examine the
propagation of backflow vortex cavities for the case with the grooved casing, at
ϕ ϕ̸d =1.0 and σ =0.045. The propagation speed Ωv is measured from the pictures
and number of vortices Nv was evaluated by counting the passage of vortices. The
results are shown in Table 2 where Ωn is the impeller speed.

For the case without groove, the backflow vortex structure has been studied
extensively (Yokota et al. 1998) and it was found that the vortex structure is caused
by the roll-up of the shear layer between the straight main flow and swirling
backflow. It was found that the number of vortices is determined from the stability
of vortices and the number decreases with the decrease of flow rates caused by the
inward shift of the radial location of the vortices. It was also found that both the
velocity and the number of vortices fluctuate largely with time. So, the values in
Table 2 are only representative values.

(a) 0 s (b) 0.0088s (c) 0.0177s (d) 0.0267s (e) 0.0355s

Fig. 23 Propagation of backflow vortex cavities, ϕ ϕ̸d =1, σ =0.045

Table 2 Propagation speed
and number of vortices

ϕ ϕ̸d σ Ωvv Nv

0.9 (Grooved casing) 0.055 0.16 Ωn 7.99
1.0 (Grooved casing) 0.045 0.13 Ωn 8.84
1.0 (Grooved casing) 0.080 0.15 Ωn 10.7
1.1 (Grooved casing) 0.080 0.11 Ωn 16.4

1.0 (Straight casing) 0.050 0.12 Ωn 8−16
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2.4 Cause of Higher Frequency Oscillations

2.4.1 Unsteady Calculation

To confirm the suppression of rotating cavitation and to clarify the cause of higher
frequency components, unsteady calculations were made on full passage with the
grooved casing, at ϕ ϕ̸d =0.9 and σ =0.05.

Figure 24 shows the spectrum of inlet pressure fluctuation at the same location
with the experiments. As expected, we do not have significant component around
N =50 Hz, suggesting that the rotating cavitation has been suppressed. In addition
to the blade passing component and its modulations around 3N =150 Hz we
observe a component with 5.44N.

Figure 25 shows the three-dimensional representation of iso-pressure surface of
ψ c = ðp− pvÞ ρ̸U2

t =0.083 and the pressure distributions in the planes of r R̸t =0.87
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and of z D̸t = − 0.2. We observe five vortices interacting with the blades. It was
found that the vortices rotate at an absolute speed of 0.122Ωn. Then, the vortex
passage frequency observed on a blade is 5 × 1− 0.112ð ÞΩn =4.44Ωn. This is
different from the frequency 5.44N found in the upstream pressure fluctuation.

2.4.2 Rotating Modes Due to Interaction

It is known that rotating modes occur due to rotor–stator interaction (Tyler and
Sofrin 1962). We first consider a rotor with R blades r=1, . . . Rð Þ rotating with an
angular speed of Ω and a stator with S blades s=1, . . . Sð Þ as shown in Fig. 26.

We represent the pressure component caused by the interaction of a stator blade
s=1 with R rotor blades (r=1, . . .R) by

ps=1
m, n ðθ, tÞ= am, n ⋅ cosðmθ− nRΩtÞ, ð1Þ

where m and n are the harmonic order in θ and t. Then the pressure pattern caused
by the interaction of a stator blade s= q with R rotor blades r=1, . . . Rð Þ can be
represented by

ps= q
m, n ðθ, tÞ= am, n ⋅ cos m θ−

2π
S

q− 1ð Þ
� �

− nRΩ t−
2π
SΩ

q− 1ð Þ
� �� �

ð2Þ

By adding up the effects of all stator blades q=1 ∼ Sð Þ, we obtain

pm, nðθ, tÞ= am, n ⋅ ∑
S

q=1
cos mθ− nRΩt− m− nRð Þ 2π

S
q− 1ð Þ

� �

=
S ⋅ am, n ⋅ cos mθ− nRΩtð Þ m= nR+ kS

0 m≠ nR+ kS

� ð3Þ

where k is an arbitrary integer.

Fig. 26 Rotor–stator
interaction model
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We consider the case when the “stator” is also rotating and represent the stator
speed by Ωv and the rotor speed by Ωn. We introduce an absolute circumferential
coordinate θ* = θ+Ωvt. By putting θ= θ* −Ωvt and Ω=Ωn −Ωv, we obtain

pm, nðθ*, tÞ= S ⋅ am, n ⋅ cos mθ* − nR Ωn −Ωvð Þ+mΩv½ �t� � ð4Þ

for the case with m= nR+ ks.
Now we examine the pressure pattern caused by the interaction of Nv inlet

backflow vortices with the impeller blades. We replace the number of stator blades
S with the number of vortices Nv.

Table 3 shows possible cases of

m= nR+ kNv ð5Þ

for the case of R=3 and the frequency

ω= nR Ωn −Ωvð Þ+mΩv ð6Þ

obtained by assuming Ωn =0.15. We find

1. The circumferential mode number m changes easily with the change of vortex
number Nv.

2. The frequency is nearly constant in the groups of Nv = 5, 6, 7ð Þ, Nv = 8, 9, 10ð Þ,
Nv = 11, 12, 13ð Þ and changes largely between Nv =7 and 8 or 10 and 11.

This corresponds to the experimental observations that

1. Various modes occur with nearly the same frequency.
2. The frequencies are around 5, 7, and 10 Ωn.

Table 4 compares the components observed in the experiments and the fre-
quency of possible modes obtained by Eq. (6). Experimental values are used for Ωv.
Although not perfect, general agreement is obtained. This suggests that the higher

Table 3 Mode analysis with k= − 1, R=3 and Ωv =0.15Ωn

m= nR+ kNv

n=2, Nv =5, 6, 7ð Þ
m= nR+ kNv

n=3, Nv =8, 9, 10ð Þ
m= nR+ kNv

n=4, Nv =11, 12, 13ð Þ
m=1 1 = 2× 3 − 1 × 5

ω = 5.5Ωn

1 = 3 × 3 − 1 × 8
ω = 7.8Ωn

1 = 4 × 3 − 1 × 11
ω = 10.35Ωn

m=0 0 = 2 × 3 − 1 × 6
ω = 5.1Ωn

0 = 3 × 3 − 1 × 9
ω = 7.65Ωn

0 = 4 × 3 − 1 × 12
ω = 10.2Ωn

m= − 1 −1 = 2 × 3 − 1 × 7
ω = 4.95Ωn

−1 = 3 × 3 − 1 × 10
ω = 7.5Ωn

−1 = 4 × 3 − 1 × 13
ω = 10.1Ωn
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frequency components are caused by the interaction of the backflow vortices with
the blades. The discrepancy might be caused by the unsteady nature of the backflow
vortices; the number of vortices and the propagation velocity changes irregularly
with time.

Figure 27 shows the spectra of pressure fluctuation in a four-bladed inducer
measured at 0.03Dt axial distance downstream from the blade leading edge at the
tip (Subbaraman and Patton 2006). We have a case of 0= 2× 4− 1× 8 for
m= nR+ kNv. For this case, the estimated frequency with Ωv =0.15 is
ω=2×4× 1− 0.15ð Þ Ωn =6.8. Another case is 0= 3× 4− 1 × 12 with the fre-
quency ω=3× 4× 1− 0.15ð Þ Ωn =10.2. The frequencies are 4/3 times the fre-
quencies for the three-bladed inducer shown in Table 4. Figure 27 includes the
components close to these frequencies.

3 Conclusions

It has been shown that CFD has been developed to the level that three-dimensional
unsteady cavitating code can be used to simulate cavitation instabilities such as
rotating cavitation and cavitation surge. These cavitation instabilities are caused by
the interaction of local flow near cavitation trailing edge with the leading edge with
the next blade. This shows that cavitation instabilities can be avoided by avoid-
ing the interaction. As an example, an avoidance method using circumferential

Fig. 27 Spectra of pressure fluctuation in a four-bladed inducer, from Subbaraman and Patton,
2006
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groove on the casing was shown. This lead to the explanation of higher frequency
oscillation which may cause structural resonance.

Qualitative simulation of cavitation instabilities is rather easy as compared with
the simulation of instabilities caused by flow separation since the pressure around
cavity is kept nearly constant at the saturated vapor pressure while the back pressure
in separated flow region largely depends on the shear stress. The flow disturbance
near the cavity trailing edge occurs through the continuity relation, and not through
the momentum relation in which the shear stress plays an important role. However,
the precise prediction of onset range of cavitation instabilities is still difficult since it
depends also on the shear stress. So, further progress in CFD technique is needed in
order to examine the occurrence of cavitation instabilities at the design stage of
machines.
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Rotordynamics of Turbopumps
and Hydroturbines

Yoshinobu Tsujimoto

1 Introduction

In modern turbomachinery, acceptability and reliability depend heavily on the
degree of vibration and noise, and therefore, it is becoming a common practice to
carry out shaft vibration analysis at the development stage. In such analysis, the
estimation of the unsteady fluid dynamic forces acting on various parts of the shaft
system is crucial for the successful simulation of shaft vibration.

The unsteady fluid dynamic forces on the impeller include

1. Unbalanced fluid dynamic forces due to manufacturing errors.
2. Forces due to interaction of impeller vanes with stationary structures such as

stator vanes or volute.
3. Forces caused by fluid dynamic flow instabilities such as surge, rotating stall,

precession of inlet or outlet vortex, and von Karman vortices from vanes and
struts.

Although there might be some interaction of these forces with structural
vibration as exemplified by the lock-in of the von Karman vortices, these forces can
be basically treated as (given) external forces in the preliminary rotordynamic
analysis. In most cases the frequency of these forces is proportional to the impeller
speed. The shaft vibration amplitude increases when the excitation frequency is
close to one of the natural frequencies of the shaft vibration, as shown in Fig. 1a.

There is another class of fluid forces, which occur in response to shaft vibration.
This is herein called “rotordynamic forces.” In many cases the fluid forces are
treated as equivalent mass, damping, and stiffness and all of which alter the
dynamic characteristics of the shaft system. The rotordynamic forces may cause
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self-excited vibration of the rotor. Generally, this occurs when the shaft speed
exceeds a certain “critical speed” and the amplitude does not decrease even if the
speed becomes much larger than the critical speed. This is quite different from
forced vibrations. The frequency is maintained as one of the natural frequencies of
the shaft system. These circumstances are shown in Fig. 1b, which is partly
modified from a figure in Ehrich and Child’s article (1984).

Rotordynamic forces are found in various parts of turbomachinery such as
hydrodynamic bearings, annular or labyrinth seals and impellers. In the first part of
this note we focus on rotordynamic impeller forces simply because the author has
not been involved in other forces. Textbooks such as Vance (1988), Ehrich (1992),
and Childs (1993) cover other rotordynamic forces and rotordynamic analysis.
Brennen’s book (1994) focuses more on the fluid dynamic explanations of the
forces. However, there are certain cases when self-excited vibration occurs even
when the rotational speed is lower than the critical speed. These cases are treated in
the second part of this note.

2 Example of Forced and Self-Excited Vibrations
in Pumps

It might be appropriate to start with an example of forced and self-excited vibrations
(Yoshida et al. 1992). Figure 2 shows an experimental apparatus designed to reduce
the natural frequency of the shaft system using a pendulum structure.

Figure 3 shows the shaft vibration of a 2-D centrifugal impeller with an outlet
blade angle β2 = 25◦ in a vaned diffuser with the vane angle β=20◦, at various
values of flow coefficient ϕ (the design point is ϕd = 0.1). The ratio of the natural
frequency, Ω*, to the rotational frequency, ω, is set at Ω* ω̸ = 0.206. ε d̸2 is the
vibration amplitude/impeller diameter ratio and Ω ω̸ is the vibration
frequency/rotational frequency (400 rpm = 6.67 Hz) ratio. Δp ρ̸u22 is the normal-
ized pressure fluctuation at the impeller outlet. We observe forced vibrations caused
by the impeller (with Ω ω̸≈ 0.8, near ϕ = 0.016, denoted by IRS) and diffuser
(with Ω ω̸≈ 0.05, near ϕ = 0.04, denoted by DRS) rotating stalls at smaller ϕ, and

Fig. 1 Forced and
self-excited vibrations

110 Y. Tsujimoto



self-excited vibration (with Ω ω̸ = Ω*ω̸ = 0.206, near ϕ =0.14 denoted by
“Forward Whirl”, FW) at higher flow rate. Figure 4 shows the effects of shaft
natural frequency, Ω ω̸*, on each component of the shaft vibration. We observe that

Fig. 2 Experimental apparatus for the measurements of shaft vibrations at supercritical speed

Fig. 3 Forced and self-excited shaft vibrations at supercritical speed (Ω*ω̸=0.206)
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the frequencies of forced vibration caused by impeller and diffuser stalls are kept
nearly constant, and that their magnitude increases as the natural frequency, Ω*ω̸,
approaches their own frequencies, Ω ω̸≈ 0.08 for impeller rotating stall,
Ω ω̸≈ 0.05 for diffuser rotating stall. The frequency of self-excited vibration is
identical to the natural frequency Ω*ω̸ and it occurs when Ω*ω̸ < 0.5. In other
words, self-excited vibration occurs when the rotational frequency, ω, exceeds
twice the natural frequency, 2Ω*. This is caused by the rotordynamic forces on the
impeller, which is the main focus of the present note.

(a) Self-excited vibrations

(b) Forced vibrations

Fig. 4 Effects of critical speed/shaft speed ratio, Ω*ω̸, on self-excited and forced vibrations
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3 Effects of Rotordynamic Force and Moment
on Rotordynamic Instability

We consider an overhung rotor rotating with an angular velocity ω and executing a
whirling motion with an angular velocity Ω with a whirl radius εj j as shown in
Fig. 5b. The fluid force F and moment M are represented as follows

F = εj jfeiðΩt+ θÞ = εfeiθ ð1Þ

M = εj jmei Ωt+φð Þ = εmeiφ ð2Þ

The displacement of the shaft ε = εj jeiΩt caused by the force F* and the moment
M* applied on the shaft by the rotor can be represented as follows, by using the
stiffness coefficients k and km of the shaft.

ε = F* ̸k+ i M* k̸m ð3Þ

If we consider the inertia −maε ̈ and the damping force on the rotor − cε ̇, the
momentum equation of the rotor for the lateral vibration can be given by

F* = F −maε ̈− cε ̇ ð4Þ

If we assume that the angular displacement of the rotor is so small that the inertia
moment and damping can be neglected, we can write

M* = M ð5Þ

Fig. 5 Force and moment acting on the rotor in whirling motion
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By putting Eqs. (3) and (5) into (4), we obtain

maε ̈ + cε ̇ + kε = F + i
k
km

M ≡ ε fn −
k
km

mt

� �
+ i ft +

k
km

mn

� �� �
≡ εfeeiθ*,

ð6Þ

where

fn = f cosθ, ft = f sinθ, mn = mcosφ, mt = m sinφ

fe = fen + ifetj j, fen = fn − ðk k̸mÞmt, fet = ft + ðk k̸mÞmn

Then, Eq. (6) can be rewritten as

maε ̈ + cε ̇ + ðk − feeiθ*Þε = 0 ð7Þ

If we put ε= eλt in Eq. (7), and assume that c and fe are sufficiently small, we
obtain

λ = −
c

2ma
∓

kI
2

ffiffiffiffiffiffiffiffiffiffi
makR

p ± i

ffiffiffiffiffiffi
kR
ma

r
ð8Þ

where kR = k − fe cosθ* and kI = − fe sinθ*. Equation (8) shows that the whirl
frequency Ω is given by

Ω = ΩR = ±

ffiffiffiffiffiffi
kR
ma

r
ð9Þ

The forward whirl with ΩR =
ffiffiffiffiffiffiffiffiffiffiffiffi
kR m̸a

p
grows when

−
c

2ma
−

kI
2

ffiffiffiffiffiffiffiffiffiffi
makR

p > 0

That is,

fet
1

2maΩR
>

c
2ma

or εj jfet > c εj jΩR ð10Þ

This means that the whirl radius εj j grows when the equivalent tangential force
εj jfet = εj j ft + ðk k̸mÞmnf g becomes larger than the damping force c εj jΩR. Equa-
tion (10) also shows that the backward whirl with ΩR = −

ffiffiffiffiffiffiffiffiffiffiffiffi
kR m̸a

p
occurs when

εj jfet < − c εj jΩR. The contribution of the tangential force ft was shown by Shoji
and Ohashi et al. (1981). Present result shows that the whirl instability can occur
also when the normal moment mn has the same sign as the whirl angular velocity Ω.
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We should stress here that the radial force, fen, has the effect of simply modifying
the shaft effective stiffness but that the tangential force, fet, has the effect of pro-
moting the whirling instability in the direction of fet.

Generally, the rotordynamic forces (fn, ft) are functions of the whirl velocity
ratio, Ω ω̸, where Ω and ω are whirl and impeller rotational frequencies. For the
case of Fig. 6a or b, forward or backward whirl instability will occur when

ΩR ω̸ < Ω ω̸ð Þcr
�� �� ð11Þ

where ΩR is the shaft natural frequency of Eq. (9) and Ω ω̸ð Þcr is the critical whirl
frequency ratio at which

ft = μ εj jΩR ð12Þ

For the forward whirl, Eq. (12) shows that the instability occurs when the
rotational frequency, ω, exceeds a critical speed, ωcr:

ω > ωcr = ΩR ̸ Ω ω̸ð Þcr ð13Þ

As shown above, it is most appropriate to represent the rotordynamic forces
fn, ftð Þ as functions of the whirl velocity ratio,Ω ω̸. They are made dimensionless as

Fn = fn ̸ ρπR2L
� 	

ω2ε

 � ð14Þ

Ft = ft ̸ ρπR2L
� 	

ω2ε

 �

, ð15Þ

where R and L are representative radial and axial length dimensions of the device. ε
is used to represent εj j hereafter. For centrifugal impellers, the impeller outlet
radius, r2, and breadth, b2, are used for R and L.

4 Rotordynamic Forces on Centrifugal Impellers

In this section we consider only the whirling forces F. The fluid force moment will
be discussed in the next section.

Fig. 6 Destabilizing regions for forward and backward whirl
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4.1 Two-Dimensional Impeller in a Vaneless Space

As the most fundamental case, Ohashi and Shoji (1987) measured the rotordynamic
forces on a 2-D centrifugal impeller executing a circular motion with a constant
radius ε at various whirl speed ratios, Ω ω̸, in a vaneless space as shown in Fig. 7.

The forces on the outer surfaces of frond and back shrouds have been subtracted
by using the data of a dummy impeller without flow channel. Figure 8 shows the
dependences of Fn and Ft on the whirl speed ratio, Ω ω̸, at five different flow rates.
This figure shows that

Fig. 7 2-D impeller in vaneless diffuser

Fig. 8 Rotordynamic forces on a 2-D centrifugal impeller in vaneless space
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1. Rotordynamic forces are basically stabilizing with Ft <0 for Ω ω̸>0 and Ft >0
for Ω ω̸<0 except for the cases of ϕ ϕ̸sf <0.6, where ϕsf is the incidence free
flow coefficient.

2. At smaller flow rates with φ φ̸sf <0.6, the tangential force becomes positive for
0<Ω ω̸<0.5. Thus, the impeller forces become destabilizing for forward whirl
at smaller flow rates.

The radial component is explained as the total of centrifugal force on the added
mass, Ma, for lateral acceleration, and the Kutta–Joukovsky force on the impeller
circulation due to the whirl velocity, εΩ. This is expressed by

Fn = Ma ̸ ρπr22b2
� 	

Ω ω̸ð Þ2 − ψ η̸ð Þ Ω ω̸ð Þ ð16Þ

where ψ is the head coefficient and η is the hydraulic efficiency. This result is
plotted in Fig. 8 as “simple theory”.

Another type of 2-D flow analysis has been made by Tsujimoto and Acosta
(1987). In this model the analysis is simplified by assuming an infinite number of
impeller vanes. However, the effects of vaneless diffuser and of impeller loss are
taken into account, instead. Figure 9 shows the results. At the shock-free flow
coefficient φ φ̸* = 1.0 the rotordynamic force is stabilizing. However, at reduced
flow rates, a destabilizing region appears at small positive whirl speed ratio. Large
changes of forces occur when the flow coefficient and the whirl speed ratio
approach the onset flow coefficients and the stall propagation velocity ratios of
impeller and vaneless diffuser rotating stalls.

Fig. 9 Rotordynamic forces
on a 2-D centrifugal impeller
with r1 r̸2 = 0.5 and β=30◦ in
a vaneless diffuser of radius
ratio r3 r̸2 = 1.5
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4.2 Interaction with Volutes and Vaned Diffusers

Experiments at Caltech (Chamieh et al. 1985: Jery et al. 1985) were started with a
3-D impeller (Impeller X) combined with a volute casing (Volute A). The measured
rotordynamic forces were significantly larger than the results shown in Fig. 8 and a
destabilizing region was found for 0<Ω ω̸<0.5 even at the design point. To find
out the reason of the differences, a two-dimensional impeller (Impeller Z) was
tested in Volute A (Franz and Arndt 1986). The results are shown in Fig. 10.

The magnitude of the forces is equivalent to that shown in Fig. 8 but a desta-
bilizing region is found at 0<Ω ω̸<0.3 even near the design flow coefficient
ϕd =0.092. This is caused by the interaction with the volute.

To confirm this, a 2-D linear inviscid flow analysis assuming an infinite number
of impeller vanes was made by representing the effect of volute by a singularity
method (Tsujimoto et al. 1988a). The results are shown in Fig. 11.

We observe reasonable agreements with the 2-D impeller experiments and the
destabilizing region 0<Ω ω̸<0.3 is well simulated by the model. It was also
confirmed by the analysis that the destabilizing region disappears when the volute is
neglected or when the normal velocity disturbance on the volute is allowed. It was
also found by the calculation that the radial location of the volute tongue rt should

Fig. 10 Rotordynamic forces on a 2-D impeller (Impeller Z) in a volute (Volute A)

Fig. 11 Comparison of theoretical results with experiments on 2-D (Impeller Z) and 3-D
(Impeller X) impellers in Volute A
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satisfy rt r̸2 > 1.6 to substantially remove the destabilizing region. These facts show
that the destabilizing region is caused by the interaction with the volute.

A similar 2-D inviscid flow analysis was made to examine the effects of the
interaction with vaned diffusers (Tsujimoto et al. 1988). Figure 12 shows the effects
of the diffuser inlet/impeller outlet radius ratio, r3 r̸2 at the design flow rate.
A destabilizing tangential force occurs at 0 <Ω ω̸<0.5 for the cases with realistic
values of r3 r̸2. This is the cause of the self-excited vibration shown in Fig. 4.

The impeller forces can be calculated from the pressure distributions around the
inlet and outlet of the impeller, momentum flux at the inlet and outlet of the
impeller, and the change of the momentum of the fluid in the impeller. It was found
that the component due to the pressure distribution around the impeller is the largest
and determines the rotordynamic forces.

The impeller forces under the conditions of strong interaction with a volute or a
vaned diffuser can be explained as follows. We consider the cases when the angle of
the volute or the diffuser vanes measured from the circumferential direction is very
small. In this case the fluctuation of radial absolute velocity is strongly regulated by
the existence of the volute or the vane surfaces. The radial velocity fluctuation can
be divided into the components caused by

(a) whirling motion,
(b) dislocation of the steady flow around the impeller represented by a source and a

vortex,
(c) Nonuniform relative flow through the impeller flow passage.

Fig. 12 Effects of the diffuser inlet/impeller outlet radius ratio r3 r̸2 at the design flow rate,
diffuser vane angle α=11◦
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Under the condition with the strong interaction, the component (c), i.e., the
nonuniform flow through the impeller, occurs so as to cancel the components
(a) and (b). Then the pressure distribution around the impeller is established such as
to balance the inertia due to the fluctuation of the flow through the impeller. By
integrating the pressure distribution around the impeller, we obtain the following
rotordynamic forces

Ft = M r̸2ð Þ 1−Ω ω̸ð Þϕ ð17Þ

Fn = M r̸2ð Þ 1−Ω ω̸ð Þ ψ −Ω ω̸ð Þ ð18Þ

where ϕ and ψ are the flow and head coefficients of the impeller, and

M =
Z r2

r1

r2
r sin2β rð Þ dr

is the inertial length of the impeller flow channel (βðrÞ is the local vane angle from
the tangent). The results of Eqs. (17) and (18) are shown in Fig. 13.

4.3 Rotordynamic Forces on the Shroud

We have seen that the rotordynamic forces on a 3-D impeller are significantly larger
than those on a 2-D impeller (Fig. 11). In order to determine the rotordynamic
forces on the shroud, experiments were made by Guinzburg et al. (1994), using the
apparatus shown in Fig. 14.

The leakage flow was generated by using an external pump. The forces were
normalized by Eqs. (14) and (15) using the axial length of the leakage path for L.
The leakage flow rate, Q, was normalized as ϕ=Q 2̸πr22Hω, where H is the
clearance between the rotor and casing. Figure 15 shows the effect of leakage flow
rate. The dimensional magnitude of the rotordynamic forces is the same order as
that of 3-D impeller and a destabilizing region is found at small positive whirl. The

Fig. 13 Rotordynamic forces
under strong interaction with
a volute or a vaned diffuser
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normal force significantly increases as the leakage flow increases. It was also found
by giving inlet swirl, that the tangential force and the destabilizing region is sig-
nificantly increased by adding a swirl at the inlet, in the direction of the rotor
rotation (Fig. 16). It was also found that the magnitude of the force is inversely
proportional to the clearance.

For the calculation of the shroud forces a bulk flow model proposed by Childs
(1989) was examined. In this model, dependent variables are averaged over the
clearance and the averaged 2-D flow in the variable clearance is calculated taking
account of the empirical shear stress on the wall. Figure 16 shows an example of
calculated results. Reasonable agreement is obtained for Ω ω̸ < 0.5 without inlet
swirl Γ=0ð Þ, but the calculated results are too sensitive to the inlet swirl. The large
changes of the forces in Ω ω̸ > 0.5 are called “resonance” but this was not
observed throughout the experiments.

Other examples showing the importance of the shroud forces are given in
Figs. 17 and 18 (Ohashi et al. 1991). In Fig. 18, the results with and without the
spacer are shown, together with the case of a spacer having radial grooves to reduce
the swirl of leakage flow. The forces are larger for the case with the spacer, i.e., with
smaller clearance. More important is the fact that a destabilizing region appears at

Fig. 14 Experimental
apparatus for the
measurement of shroud forces

Fig. 15 Effects of leakage flow rate, ε=0.0254 cm, H =0.14 cm, at 1000 rpm
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0 < Ω ω̸ < 0.5 with the spacer. The tangential force and hence the destabilizing
region is decreased by using the grooves on the spacer.

This is explained as follows. The tangential velocity of the leakage flow at the
clearance approaches one-half of the tangential velocity of the rotor, from the
balance of the tangential stresses exerted by the rotor and the casing. Then, the
swirling flow will push the rotor in the direction of the whiling motion if the whirl
speed ratio Ω ω̸ is smaller than the tangential velocity ratio 0.5 of the swirling
leakage flow. This is the reason why the destabilizing region was found for the
smaller clearance. This explanation also applies to the destabilizing forces on
journal bearings and seals. If we have grooves on the casing, the tangential velocity
ratio of the leakage flow will be decreased. This is the reason why the upper limit of
the destabilizing region was decreased for the case with the grooves.

The characters of rotordynamic forces on centrifugal impellers can be summa-
rized as follows:

(1) Rotordynamic forces on a 2-D impeller are basically stabilizing at the design
flow coefficient. It can become destabilizing for forward whirl at smaller flow
rate caused by rotating stalls in the impeller or the diffuser.

Fig. 16 Comparison with bulk flow calculation, ε=0.0118 cm, H =0.14 cm, at 1000 rpm

Fig. 17 Casing configuration
around a 3-D impeller
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(2) Rotordynamic forces on a 2-D impeller can become destabilizing for forward
whirl caused by the interantion with volute or vaned diffuser placed down-
stream of the impeller.

(3) Rotordynamic forces on a 3-D impeller can become significantly larger than
those on 2-D impeller, caused by the forces on the front shroud of the impeller.
In addition, the shroud forces can cause forward whirl in the range Ω ω̸ < 0.5.
The destabilizing region can be decreased by increasing the clearance between
the shroud/casing, or by decreasing the tangential flow velocity by grooves on
the casing.

(4) Although not shown in the present text, rotordynamic forces promoting forward
whirl has been measured also for an open type compressor impeller (Yoshida
et al. 1999). The magnitude of the rotordynamic forces is in the same order as
the closed type impellers as shown in Fig. 18. It was found that the destabi-
lizing force is caused by the pressure on the hub, caused by the change in the
thickness of the flow cannel due to the whirling motion (Hiwata and Tsujimoto,
2002).

Fig. 18 Influence of
clearance configuration on the
rotordynamic forces on 3-D
impeller shown in Fig. 17
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4.4 Rotordynamic Problem in a Rocket Turbopump

A rotordynamic problem was found in the fuel turbopump for the main engine
LE7A of HIIA rocket and it was suppressed successfully by a small design mod-
ification (Motoi et al. 2003). The rotational speed of this pump is 42,200 rpm
ω=703 Hzð Þ, which is between third and fourth critical speeds. The spectra of
shaft vibration are shown in Fig. 19 for the LE7 and LE7A turbopumps. For the
LE-7 turbopump for HII rocket, no significant frequency peak is found. For the
LE-7A turbopump, two peaks are found at 250 Hz and near 500 Hz. These fre-
quencies correspond to the first and the third critical frequencies of the rotor.

The vibration modes of the LE7A turbopump are shown in Fig. 20. For the first
and the third modes, for which the frequency peak is found in the data in Fig. 19, a
large amplitude is found at the turbine end (to the right). From this result, it was
conjectured that the vibration is caused by the forces on the turbine.

cr1  cr1  
(a) LE-7 (b) LE-7A 

Fig. 19 Spectra of shaft vibration of turbopumps for LE7 and LE7A engines

DRF

Fig. 20 Vibration modes of
the turbopump for LE7A
engine
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For axial flow turbines, it is well known as “steam whirl” that forward whirl is
promoted by the difference of the driving forces caused by the difference of the tip
clearance due to the eccentricity. Figure 21 explains the tangential rotordynamic
forces resulting from the nonuniform driving forces.

It is expected that we have a larger driving torque with smaller tip clearance. The
torque with the minimum tip clearance at θ=0 is represented by T1 and the average
torque with the mean tip clearance by T0. If we integrate the tangential force
component dF cosθ= ðT R̸Þ cosθðdθ 2̸πÞ at the mean radius R by assuming a
sinusoidal dependence on θ as shown in Fig. 21, the total tangential force can be
evaluated to be

Ft = T1 − T0ð Þ T̸0½ � T0 2̸Rð Þ ð19Þ

This shows that Ft >0 and forward whirl is promoted for axial turbines. Thomas
(1958) represents the tangential force by

Ft = ε βðT0 D̸LÞ, ð20Þ

where ε is the eccentricity, D the mean diameter of the rotor, L the length of the
turbine blades and β is a nondimensional empirical factor. To determine the values
of the turbine torques T0 and T1 with nominal and minimum tip clearance,
numerical calculations of the flow were made by assuming uniform tip clearance
corresponding each case. It was found that the value of the empirical factor for the
expression of Eq. (20) is β=0.56 for the present case.

To provide sufficient damping to the rotor system, the direction of the injection
of the seal liquid (high-pressure liquid hydrogen) to the seal between the turbine
and the pump was changed as shown in Fig. 22, in such a way as to decrease the
mean tangential flow velocity in the seal. Then the sub-synchronous vibration was
successfully suppressed as shown in Fig. 23. This is because the mean tangential
velocity of the leakage flow is decreased by the injection of the seal liquid in the
direction opposite to the rotation of the rotor and hence the destabilizing force on
the seal is decreased.

Fig. 21 Evaluation of tangential forces from nonuniform driving force due to eccentricity
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5 Rotordynamic Problems in Hydraulic Turbines

Severe flexural vibration of the rotor shaft of a Francis turbine generator shown in
Fig. 24 was experienced in its test operation and reported by Tomita and Kawamura
(1965).

The mechanism of vibration is explained as follows (Ohashi 1991). Figure 25
shows the leakage flow model. As long as the runner remains in the center of the
casing, the leakage is uniform around the runner. Once the runner deviates from the
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(a) Turbine Seal ( Cross-Section of FTP )

(b) Conventional Type (c) Improvement Type

Fig. 22 Modification of the direction of seal fluid injection

(a) Conventional type (b) Improved type 

cr1  cr1  

Fig. 23 Shaft vibration in engine firing tests
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center of the casing by y1, the uniformity will be broken and the resulting change of
the leakage flow, represented by q in Fig. 25 will occur in the back chamber. When
the runner vibrates, the variational flow must change its direction accordingly, thus
causing the variation of the pressure in the chamber. As the first step of under-
standing, the rotor is modeled by a plate with an entrance orifice and the leakage
flow is modeled by a one-dimensional flow as shown in Fig. 26. We assume that
the leakage flow rate q is proportional to the leakage flow velocity U in the entrance
orifice and the width B and the height y, i.e., q=BUy. The pressure distribution

Fig. 24 Flexural vibration of
a Francis turbine

Fig. 25 Leakage flow model
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caused by the acceleration of the leakage flow rate is given by
p xð Þ= ρ L− xð Þ ̸ BHð Þ ⋅ q ̇. Then the equation of motion of the plate can be expressed
by

my ̈+ cy ̇+ ky=
Z L

0
p xð ÞB dx= ρ

L2

2H
q ̇= ρ

L2

2H
BUy ̇ ð21Þ

This equation shows clearly that the pressure distribution caused by the accel-
eration of the leakage flow causes negative damping for the vibration of the plate.

Then, a lateral vibration model of an overhung rotor is proposed as shown in
Fig. 27. The upper end is rigidly supported and a bearing is placed at y2. The lateral
force on the rotor is represented by Ph =Af y1̇ and the moment on the rotor by
Mh =Amy1̇. Here, the influence factors ξi, j giving the lateral displacement at the
node i due to the force at j, and ηi, j giving the lateral displacement at the node i due
to the moment at j are introduced. Then, the equation of motion can be expressed by

y1 = ξ11 −My ̈1 +Af y1̇
� 	

+ ξ12 − cy ̇2ð Þ+ η11 Amy1̇ð Þ
y2 = ξ21 −My ̈1 +Af y1̇

� 	
+ ξ22 − cy ̇2ð Þ+ η21 Amy1̇ð Þ ð22Þ

From these equations, it can be shown that the lateral vibration grows when

cξ221 < Af +
η11
ξ11

Am

� �
ξ211 ð23Þ

This result shows that fluid moment on the rotor can cause lateral vibration
through structural coupling.

Thus, the possible mechanism of the vibration has been shown by the simplified
models. However, rotors generally exhibit whirling and precession motion and it is

Fig. 26 One-dimensional
flow model
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not clear under what conditions the self-excited vibration occurs. The rotordynamic
analysis presented in Sect. 3 was developed to obtain the criterion of the whirl
instability caused by whirl moments.

5.1 Rotordynamic Fluid Force Moment

As shown in Fig. 28, the vibration of an overhung rotor shown in (a) can be
decomposed to the whirling motion shown in (b) and the precession motion shown
in (c). When the overhung is large compared with the lateral displacement, the
displacement due to precession motion can be neglected as compared with
the displacement due to whirling motion. This assumption was made also in the

Fig. 27 Lateral vibration
model

Fig. 28 Coordinate system
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analysis in Sect. 3. The fluid force moment due to the leakage flow was measured
on the facility shown in Fig. 29.

The backshroud of the runner is modeled by a disk set close to the casing. The
forced whirl motion was given by a special bearing system supporting the shaft and
the leakage flow was given by an external pump. Figure 30 shows the whirl
moment normalized by the reference moment M0ω = ρ ωj j εj j C̸2 ⋅ vlπR4

T

� 	
where

C2 = 4 mm is the axial clearance, vl is the mean leakage flow velocity in the radial
clearance C1 = 1 mm and RT =149.5 mm is the radius of the disk (Song et al.
2010a, 2010b). The moment was measured by a force balance attached to the shaft
and also evaluated by the unsteady pressure distribution on the casing. The results
agree qualitatively. The moment was evaluated also numerically using a bulk flow
model (Childs 1989) in which the flow in the clearance is averaged over the
clearance and the effect of wall stress is taken into account. Although quantitative
difference is found, the tendency can be reproduced by the model. The rotordy-
namic analysis in Sect. 3 shows that the whirl instability occurs when the normal
momentMn has the same sign as the whirl frequency Ω. The result in Fig. 30 shows
that the moment can destabilize both forward and backward whirl at any whirl
frequency. This is quite different from the rotordynamic forces which destabilize
only forward whirl with the frequency less than a certain percentage of the rotor
frequency, as discussed in Sect. 4.

5.2 Moment Whirl

To demonstrate the moment whirl, free vibration tests were carried out using a
facility similar to that shown in Fig. 2. The length of the main shaft 1000 mm is
significantly larger than the seal radial clearance C1 = 1 mm of the disk with the
diameter of 299 mm. The maximum axial displacement of the disk 0.15 mm =

Fig. 29 Schematic of
experimental facility
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150 mm/1000 is significantly smaller than the axial clearance between the disk and
the back casing, C2 = 4 mm. This verifies the assumption that the tilting motion of
the disk can be neglected as compared with the lateral motion, which was made in
the simplified analysis in Sect. 3 as Eq. (5).

The spectrum of shaft vibration with the leakage flow rate of 9 l/min and the
natural frequency of the vibration ωn 2̸π =2.35 Hz is shown in Fig. 31 for two
different initial condition of the shaft vibration.

The results of the test with zero initial velocity without displacement are shown
in (a). The rotational speed ω and the frequency Ω of shaft vibration are normalized
by the natural frequency ωn of the shaft. The amplitude of natural frequency

Fig. 30 Fluid force moments obtained by the force sensor, the unnsteady pressure, and the
computation

n
n

n
n30 Hz

(a) zero initial velocity (b) forward initial velocity

Fig. 31 Spectrum of shaft vibration, Leakage flow rate 9 l/min, natural frequency
ωn 2̸π =2.35 Hz
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component with becomes larger when the rotational speed exceeds 30 rpm or
ω ω̸n =0.21. The direction of whirl was found to be the same as the disk rotation
and the amplitude was the maximum value allowed by the restrictor on the shaft.
We can observe the rotational frequency component with Ω ω̸n =ω ω̸n although the
magnitude is much smaller.

The results with the initial velocity in the direction of forward whirl with
maximum displacement are shown in (b). Similar results are obtained also with the
backward initial velocity. By giving the initial velocity, the vibration with natural
frequency with Ω ω̸n =1 occurs at all rotational speed ω ω̸n of the disk. The
direction of whirl is the same as the initial velocity.

These results show that the moment due to the leakage flow causes both forward
and backward whirl, at all rotational speed of the disk. This is consistent with the
rotordynamic moment shown in Fig. 30a and is quite different from the rotor whirl
due to rotordynamic forces discussed in Sect. 4, in which only forward whirl occurs
when the rotational frequency is sufficiently higher than the first critical speed. The
whirl direction is the same as that given as the initial condition. When no initial
velocity is given, impeller rotation triggers forward whirl if the rotational speed is
sufficiently high. This may be caused by the rotordynamic forces due to the
interaction of the swirling flow induced by the disk rotation with the uneven
clearance due to displacement.

Similar tests were conducted also for outward flow, with inner and outer seals. It
was confirmed that the self-excited vibration occurs when the seal is placed at the
entrance of the leakage flow, outer seal with inward flow and inner seal with
outward flow. However, exit seal can be destabilizing if the seal is designed so that
the seal clearance is increased with the deflection with which the clearance of
normal design is decreased.

5.3 Examples of Vibrations in a Large Pump
and a Hydraulic Turbine

Two examples of vibrations at higher frequency than the rotational frequency are
introduced here. In the Deriaz pump (Ruud 1976) shown in Fig. 32, violent
counter-rotation shaft whirl with the frequency of 3.3−7 Hz occurred during the
shutdown transient from the nominal rotating speed of 120 rpm or 2 Hz, after
breaking the siphon downstream and the power shutoff. Even when the shaft is
stopped, the vibration at 5 Hz was observed although the amplitude is decreased.
This is quite different from the rotordynamic problems in high speed centrifugal
pumps discussed in Sect. 4 where forward whirl is expected at the rotational speed
higher than the first critical speed. Since a rotating pressure pattern was observed in
the space between the head cover and the top of the impeller when it is filled with
water, air was injected into the space from the ports (a)−(e) in Fig. 32. Injection
from ○a and ○e helped to mitigate the vibration. At nominal speed of 120 rpm, it
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is expected that there is sufficient pumping action to remove water from this space
but when the rotational speed decreased during shut down, the pumping action is
decreased and the space is flooded resulting in the vibration. Thus, it is quite
possible that the vibration was caused by the moments caused by the leakage flow.

Next example is the vibration of a hydraulic turbine runner (Crawford and Ruud
1967) around 11.5−8 Hz, at the rotational speed of 200 rpm or 3.33 Hz. It is stated
“The typical whirl was in the direction of rotation, while counter-rotational whirl
was relatively rare.” The turbine has a fixed plate behind the runner, as shown in
Fig. 33. In the space between the fixed plate and the runner, outward flow occurs
due to the centrifugal force on the swirling flow in the space driven by the runner.
An orifice is placed at the inner radius of the fixed plate. If the runner moves to the
right, the clearance is decreased and the pressure in the space would decrease and
results in the self-excited vibration as explained in Sect. 5. However, the authors of
the paper focus on the disturbance of flow due to the change in the thickness of the
gap between the fixed plate and the runner and the gyroscopic effect of the runner.
We need to make quantitative analysis to determine which of the mechanisms is
more important. Air injection was used also for this case to mitigate the vibration.

Fig. 32 Deriaz pump
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6 Conclusion

Rotordynamic forces on pump impellers and turbine runners are reviewed. In many
cases where the leakage flow swirl is important, rotordynamic forces causes for-
ward whirl at supercritical speeds where the rotor is running more than twice the
first critical speed. For this case the destabilizing region can be reduced by reducing
the swirl velocity. However, when the change of the leakage flow due to dis-
placement is important, the fluid force moment can cause rotor whirl even when the
rotor speed is significantly lower than the first critical speed. The instability can be
avoided by placing the seal at the exit of the leakage flow or changing the
opening/closing convention of the seal associated with the deflection of the rotor.

So far it was difficult to predict the rotordynamic forces by CFD since it is
usually small as compared with steady force component. However, it is becoming
possible to predict the forces by careful application of CFD. Further progress is
expected in this field making use of CFD.
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On the Preliminary Design and
Performance Prediction of Centrifugal
Turbopumps—Part 1

Luca d’Agostino, Dario Valentini, Angelo Pasini, Lucio Torre,
Giovanni Pace and Angelo Cervone

Abstract A reduced-order model for the preliminary design and performance
prediction of radial turbopumps is illustrated. The model expresses the 3D,
incompressible, inviscid, irrotational flow through helical blades with slow axial
variations of their pitch and backsweep angles by superposing a 2D axial vorticity
correction to a fully guided forced vortex flow with axisymmetric stagnation velocity
in the meridional plane. Application of the relevant governing equations allows for
the closed-form definition of the impeller geometry and flowfield in terms of a
reduced number of controlling parameters. Mass and momentum conservations are
used for coupling the flow leaving the impeller with the 2D reduced-order models of
the flow in the diffuser and/or the volute, as well as for the evaluation of the mixing
losses in the transfer between successive components of the machine. This infor-
mation completes the geometric definition of the turbopump and determines its ideal
noncavitating performance in accordance with the resulting flowfield. As a conse-
quence of the neglect of viscous effects, the slip factor predicted by the present
model exceeds those obtained from theoretical/semi-empirical formulas reported in
literature for centrifugal pumps, but correctly captures their trend.
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1 Introduction

The range of applications of turbomachines is so wide that even relatively minor
gains in their efficiency and performance translate into major economic impacts
worldwide (Laskshminarayana 1985). More specifically, in space transportation
systems turbopumps represent one of the most crucial components of all primary
propulsion concepts powered by liquid-propellant rocket engines, where stringent
limitations are associated with the design of high power density, dynamically stable
machines capable of meeting the extremely demanding pumping, suction and
reliability requirements of the propellant feed systems (Stripling and Acosta 1962).
In these applications turbopumps often employ an inducer upstream of the cen-
trifugal stage in order to pressurize the flow sufficiently for the main pump, usually
one or more centrifugal stages, to avoid unacceptable cavitation, improve its suction
performance, and reduce the pressure and weight of the propellant storage system.

Significant analogies exist between the impeller geometry of centrifugal tur-
bopumps and compressors, as they rely on similar physical phenomena for raising
the pressure of the working fluid. In both cases the structural resistance of the
blades under the loads imposed by centrifugal and fluid dynamic forces represents
the main limiting factor affecting the structural design of these components.
However, in centrifugal turbopumps and compressors the relative importance of
these forces is reversed because of the widely different densities of their working
fluids. Centrifugal forces prevail in radial compressors, allowing for the adoption of
a larger number of slender blades. On the other hand, fewer and thicker blades are
used in radial turbopumps in order to sustain the higher bending loads generated by
liquids (Brennen 1994).

Because of their relative simplicity, inviscid methods have been the first to be
developed for describing the flow in turbopumps. They can be broadly classified in
streamline curvature, potential, and Euler methods.

Streamline curvature methods essentially derive from the original idea of Wu
(1952), of projecting the equations for the steady, ideal flow relative to the impeller
on two pseudo-orthogonal meridional and circumferential surfaces. The 3D flow
problem is thus split into two coupled two-dimensional flow problems in the
hub-to-shroud and blade-to-blade planes, which are then solved by a number of
methods, including finite differences, finite elements, and (again) streamline cur-
vature methods (Senoo and Nakase 1971; Bosman and El-Shaarawi 1976; Adler
and Krimerman 1978; Hirsch and Warzee 1979).

Potential methods generate the solution of the irrotational ideal fluid equations
for the velocity potential, in most cases by means of finite differences, finite ele-
ments, or finite volume algorithms in two or three dimensions. They are relatively
fast, intrinsically accurate, and can treat unsteady flow problems precisely both in
two and three dimensions. However, the hypothesis of irrotationality severely their
applicability to turbomachinery since the relative flow in impellers is necessarily
rotational, and even for stationary elements inlet flow prerotation is a common
occurrence.
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Finally, Euler methods use similar numerical approaches to the solution of the
ideal fluid equations, without necessarily requiring the flow to be irrotational.

Clearly, all inviscid methods are inherently uncapable to account for real fluid
effects and dissipative phenomena such as turbulence, boundary layers, separation,
flow reversal, and secondary flows. In order to address these aspects of turboma-
chinery flows, viscous methods must be used, which can be generally divided into
distributed loss, boundary layer, and Navier–Stokes methods.

Distributed loss methods are based on the idea of correcting the inviscid flow
models by accounting for dissipative effects in complex turbomachinery flows on
an averaged basis, without detailed consideration of the specific mechanisms and
locations where energy dissipation actually occurs (Ainley and Mathieson 1951;
Dunham and Came 1970; Horlock and Marsh 1971; Bosman and Marsh 1974;
Kacker and Okapuu 1982). The appropriate intensity of dissipative effects strongly
depends on the operational conditions and must be either deduced from experi-
mental observations or, in more sophisticated models, estimated from the analysis
of the various sources of dissipation. Clearly, a sizable amount of information is
missed in this intrinsically phenomenological approach. Therefore, distributed loss
methods are of little or no use when accurate results are required as, for instance, in
direct optimization of turbopump design where the sensitivity of the loss model to
minor changes of the controlling parameters is indispensible. However, when
supported by adequate experimental data, these models represent an economic and
rapid way to include in first approximation the global effects of energy dissipation
in turbomachinery analyses.

Boundary layer methods are based on Prandtl’s original intuition that viscous
effects in unseparated flows at high Reynolds numbers are confined to relatively
thin layers of the fluid adjacent to the solid surfaces, while the rest of the flow is
virtually inviscid. Therefore, the flow in the two regions can be studied with sep-
arate approaches and the solutions matched together in order to obtain an
approximate description of the entire flow field. Boundary layers have been studied
extensively and a number of reliable boundary integral methods exist for their
efficient evaluation in the steady 2D case (White 2006; White and Christoph 1972).
The effects of surface roughness, free stream turbulence and, with some uncertainty,
turbulent transition can also be included. The problem of steady viscous/inviscid
coupling between the two flow regions can either be neglected in the case of weak
interaction, or otherwise treated iteratively in order to satisfactorily match the inner
and outer flow solutions (Carter 1979; Le Balleur 1981; Whitfield et al. 1981).
Boundary layer methods in two dimensions are relatively simple and, in the absence
of flow separation, accurate and computationally efficient. On the other hand,
extensions to three-dimensional and/or unsteady cases are more difficult and
uncertain because of the lack of reliable experimental correlations for solving the
integral boundary layer equations and because of the complexity of the
computations.

Navier–Stokes methods solve the viscous flow equations, and therefore represent
the most general and comprehensive approach to the analysis of turbopump flows.
Current methods typically employ either the Reynolds-Averaged Navier–Stokes
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(RANS) equations or the large-eddy simulation (LES) equations with a suitable
turbulence model, in order to reduce the computational requirements to within
affordable levels. A very wide variety of algorithms have been proposed in order to
better circumvent computational stability problems of Navier–Stokes solvers and
improve their overall efficiency. Nowadays they are extensively used in the sim-
ulation of turbopump flows, being the most realistic and promising alternative to
direct experimentation in the analysis of complex viscous flow phenomena.

The above methods make use of the machine geometry as an input to evaluate its
performance (direct methods), and therefore they do not explicitly provide any
guidance for its most efficient design. Their use to this purpose in direct optimization
loops is very severely limited by the prohibitive cost of exhaustive nonlinear searches
over the large number of free parameters that should conceivably be used to define the
geometry of the machine in a sufficiently general way. This is especially the case
when the complexity and time requirements of each computation are increased for
improving the accuracy of the results. Inverse (or indirect) methods, on the other
hand, yield the optimum geometry of the machine under given requirements but, in
spite of their theoretical appeal, the difficulties associated with their application to the
generation of realistic turbopump geometries still make them rather impractical.

The use of the above methods for the fluid dynamic design of the blading and
flow path in centrifugal turbopumps satisfying assigned requirements and specifi-
cations typically starts by sizing the main components and evaluating their per-
formance by means of simplified 2D or quasi-1D flow models, possibly with
empirical corrections for major sources of flow losses (Laskshminarayana 1985).
A first approximation of the machine geometry is then generated and a relatively
elaborate optimization process is carried out, usually with the objective of attaining
maximum efficiency within the assigned specifications, requirements, and opera-
tional constraints. At increasing levels of complexity, this process may involve the
use of blade-to-blade and/or hub-to-tip flow models, boundary layer calculations,
and three-dimensional inviscid/viscous, steady/unsteady numerical simulations.
The real fluid performance of the machine is evaluated from the flow velocity field
by accounting for energy losses either explicitly, using empirical correlations of
specific databases, or indirectly from boundary layer computations or viscous flow
simulations. Finally, the geometries of the blade channels and of the other com-
ponents are iteratively modified in order to attain the desired velocity/pressure
distribution along the flow path, reduce residual spurious and/or detrimental effects,
and optimize the overall performance of the machine.

Generally desirable features of practical methods for preliminary design of
mixed-flow centrifugal turbopumps are

• the capability of defining the geometry of the machine consistently with the
principles of its operation and of predicting its performance in terms of a rel-
atively small number of significant parameters;

• rapid execution times and adequate accuracy and sensitivity to geometrical
changes, for more effective iterative optimization of the machine.
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The observation that none of the above methods satisfactorily matches these
requirements justifies the search for more efficient alternatives. In this context, the
development of accurate 3D, closed-form, reduced-order models capable of jointly
predicting the geometry and performance of radial impellers and turbopumps is of
particular interest to rocket engineers in their search for effective, rapid, and pos-
sibly accurate tools for the preliminary design of these machines. However, no such
model has been proposed so far, mainly due to the difficulty of adequately
describing the 3D flowfield through the impeller. Hence, even today turbopump
designers still refer to simple “rules of thumb” or the general indications of specific
manuals (Douglass 1973) for the preliminary definition of their machines.

In rocket engine turbopumps the attainment of high power/weight ratios is
invariably obtained by running the impeller at the maximum allowable speed and
lowest shaft torque. Operation under limited cavitation conditions with lighter—but
also more flexible—shafts is therefore tolerated, exposing rocket propellant feed
turbopumps to the onset of dangerous fluid dynamic and rotordynamic instabilities
(d’Agostino 2013a, b). However, the development of cavitation inside the blade
channels should possibly be avoided, because the highly compressible and rever-
berating nature of the flow would greatly promote the onset of potentially lethal
self-sustained flow instabilities at frequencies susceptible to become resonant with
the flutter oscillations of the impeller blades. The occurrence of this phenomenon in
the inducer of the LE-7 engine has actually been identified as the likely cause of the
catastrophic failure of the Japanese H-II launcher in November, 1999 (NASDA
2000a, b). It is therefore advisable to design the impellers, both axial and radial, for
cavitation to concentrate on the initial part of the blades at all operational condi-
tions. This can be realized if, for any positive value of the inlet flow incidence, the
fully wetted flow pressure on the suction sides of the blades is minimum at the
leading edges, and monotonically increasing further downstream. Hence, in par-
ticular, the local value of the blade lift vanishes identically at zero incidence, when
the stagnation point is located at the leading edge.

These considerations provided the fundamental basis for the selection and jus-
tification of the flowfield assumptions adopted by d’Agostino and his collaborators
in the development of their closed-form methods for jointly defining the geometry
and performance of high-head radial inducers (d’Agostino et al. 2008a, b) and
mixed-flow impellers (d’Agostino et al. 2011) optimized for operation under lim-
ited cavitation conditions. Specifically, they first showed that in helical inducers the
condition of minimum flow pressure at the leading edges, when associated with the
preservation of radially uniform axial flow velocity through the rotor (as commonly
required in axial turbomachines), results in a functional relation between the local
values of the blade angle and hub radius. Later, with a similar approach d’Agostino
et al. (2011) demonstrated that, when applied to mixed-flow centrifugal impellers,
the same condition links together the axial variations of the blade pitch and
backsweep angle.

The present formulation of the preliminary design of mixed-flow turbopumps
represents therefore the natural extension of the earlier model developed by some of
the authors for the simultaneous geometry definition and noncavitating performance
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prediction of high-head axial inducers for liquid-propellant rocket engine feed
systems. This model has been used for designing several tapered-hub,
variable-pitch inducers with different hydrodynamic features, and successfully
validated in a series of dedicated characterization experiments (d’Agostino et al.
2008a; Torre et al. 2009, 2011; Cervone et al. 2012; Pace et al. 2013).

More specifically, the present approach is suitable for application to centrifugal
pumps with uniform axial inlet flow, variable impeller tip/hub radii, and helical
blades with slow axial changes of the pitch and backsweep angles. Following the
same approach used in the case of inducers, the 3D incompressible, inviscid,
irrotational flow field inside the blade channels is expressed by superposing a 2D
cross-sectional axial vorticity correction to a fully guided flow with axisymmetric
stagnation velocity in the meridional plane. This choice allows for a radially uni-
form axial velocity distribution on each plane orthogonal to the axis of the machine,
with the additional advantage of providing hub and tip profiles potentially less
prone to develop flow separation. Moreover, the assumed flowfield through the
blade channels intrinsically accounts for the influence of slip-flow effects, which are
known to be one of the major factors adversely affecting the pumping performance
of centrifugal turbopumps.

Due to space limitations, the inclusion of flow losses as first proposed
d’Agostino et al. (2012) and the results of dedicated validation experiments on a
turbopump designed in accordance with the present model are illustrated in a
companion paper of the present volume (d’Agostino et al. 2017). Here, for pre-
liminary assessment of the proposed approach, the slip factors predicted by the
present model are compared with those obtained from some of the most popular
theoretical/semi-empirical formulas reported in the literature for centrifugal pumps
(Stodola 1927; Busemann 1928; Wiesner 1967).

2 Turbopump Flow and Geometry

The present model jointly describes the flow and geometry of the three main
components of a radial machine: the impeller, the diffuser, and the volute, as
schematically indicated in Fig. 1.

The radial impeller transfers energy to the working fluid as a consequence of its
rotational speed Ω and the hydrodynamic forces developing on its blades. The
geometry of its flow channels is defined by the intersection of N blades, with
variable helical and backsweep angles γh and χ, and the rotational surfaces gen-
erated by the axial profiles of the hub and tip radii, rH and rT . The exit flow of the
impeller is then collected by a vaneless diffuser with constant axial width bD, and
finally guided into the discharge line by a single-spiral volute with elliptical cross
sections, continuously varying in the azimuthal direction from a straight segment at
the tongue to a circular cross section with radius R4 at the exit.

As mentioned in the introduction, the flow through the machine is considered as
incompressible, inviscid, and irrotational. For relatively large values of the blade
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solidity the 3D velocity field inside the blade channels is approximated as the
superposition of a fully guided axisymmetric flow and a 2D axial vorticity cor-
rection on each impeller cross-sectional orthogonal to the centerline. The merid-
ional component of the fully guided axisymmetric flow is chosen as the velocity
field of an incompressible axisymmetric stagnation flow with stagnation plane
located at the station (st), as illustrated in Fig. 1. Perfect mixing is assumed to take
place at the exit of the impeller, so that the flow in the diffuser can be considered
steady, axisymmetric, and axially uniform. Finally, steady axisymmetric flow is
also assumed in the volute at design flow rate. Consistently with the ideal nature of
the present model, mixing losses at the entrance of the diffuser and the volute are
neglected, even if they could be evaluated without explicit consideration of real
flow effects.

2.1 Impeller Flow and Geometry

In the stated assumptions, the ideal flow through the impeller is held by the conti-
nuity and irrotationality equations for the velocity u=u ̂+u ̃, sum of the (rotational)
fully guided axisymmetric flow field û, which generates the volumetric flux through
the machine and most of its total head rise, and a 2D cross-sectional slip velocity
correction u ̃ (Fig. 2), which does not contribute to the flowrate but is necessary to
satisfy the irrotationality condition and decreases the fully guided head rise.

Fully Guided Flow and Geometry of the Impeller. With reference to Fig. 3,
the azimuthal velocity component of the fully guided flow is expressed by

v ̂ r, zð Þ=Ωr− ŵ zð Þ tan γ r, zð Þ− u ̂ rð Þ tan χ zð Þ

Fig. 1 Radial turbopump
schematic and nomenclature
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in terms of the radial and axial velocities u ̂ and ŵ, where the angle γ, measured from
the axial direction, includes the effects of the axial variations of the helical pitch Ph

and of the logarithmic backsweep angle χ of the blades:

tan γ =
2πr
Ph

+ r
d
dz

ln
r
rbs

� �
tan χ

� �
=

2πr
P

In this expression rbs zð Þ is the radius where the azimuthal coordinate ϑ′bs (as-
sociated to the axial variation of χ) vanishes (Fig. 3) and P is an equivalent helical
pitch of the blades accounting for the combined axial changes of Ph and χ.

The relatively narrow range of variation of the radial coordinate
rH ≤ r≤ rmax =min rT , r2f g in the blade channels justifies the approximation
ln r≃ ln r ̄χ = ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rHrmax

p
, so that P is only function of the axial coordinate z.

Hence, in particular, the equivalent pitch of the blades reduces to P≃Ph zð Þ when
choosing rbs ≃ r ̄χ .

The 2D slip velocity components on each axial cross section of the impeller are
most synthetically expressed and solved in terms of a scalar axisymmetric stream
function ψ ̃ r′,ϑ′, z′

� �
in the rotating cylindrical coordinates r′ = r, ϑ′ =ϑ−Ωt, z′ = z.

Fig. 2 Schematic of the 2D cross-sectional slip flow in the impeller blade channels

Fig. 3 Helical angle in the meridional plane (left), backsweep angle in the axial cross-sectional
plane (center), and velocity triangle in the blade-to-blade plane (right)
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Moreover, in the proposed approximation the axial variation of the slip flow is
neglected, so that ∂ψ ̃ ∂̸z≃ 0. Imposition to the assumed velocity field u=û+ ũ of
the irrotationality condition along the radial, azimuthal, and axial coordinates yields

∂

∂z
4π

ŵ
P
−

dŵ
dz

tan χ
� �

=0

d2ŵ
dz2

= 0

1
r
∂

∂r
r
∂ψ ̃
∂r

� �
+

1
r2

∂
2ψ ̃

∂ϑ′2
= 2Ω− 4π

ŵ
P
+

dŵ
dz

tan χ

Successive integration of the azimuthal vorticity and continuity equations, with
the conditions ŵ z1ð Þ= ŵ1 at the inlet Sect. (1), ŵ zstð Þ=0 at the stagnation plane (st)
and u ̂=0 on the axis, determines the meridional components of the fully guided
flow through the impeller:

ŵ zð Þ= ŵ1
z− zst
z1 − zst

and

u ̂ rð Þ= −
1
2
r
dŵ
dz

= −
1
2
r

ŵ1

z1 − zst

which, in turn, define the profiles of the hub and tip radii rH zð Þ and rT zð Þ as the
corresponding streamlines through rH1, z1 and rT1, z1.

The blade surfaces are defined by the azimuthal coordinate ϑ′B resulting from the
combined effects of the helical pitch and backsweep:

ϑ′B = ϑ′h + ϑ′bs = ϑ′B1 −
Z z

z1

2π
Ph

dz− ln
r
rbs

� �
tan χ

where ϑ′B1 (possibly function of r) is the azimuthal position of the blade at the inlet
section z= z1. The adoption of this blade shape yields a forced vortex flow design of
the impeller with

v ̂′ = v ̂−Ωr= −
2πr
P

ŵ+
1
2
r
dŵ
dz

tan χ ∼ r

It is worth noting that the radial component of the vorticity equation implies that
the azimuthal components of the fully guided flow velocities do not depend on the
axial coordinate:
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∂

∂z
4π

ŵ
P
−

dŵ
dz

tan χ
� �

=0 ⇒
∂v ̂
∂z

=
∂v ̂′

∂z
=0

Furthermore, integration of this equation in z with the pertinent initial condition
at the inlet station (1) determines the backsweep angle χ zð Þ:

tan χ = tan χ1 +
4π

dŵ d̸z
ŵ
P
−

ŵ1

P1

� �

as a function of the axial schedule of the blade pitch P zð Þ (or viceversa). For
simplicity, in the present analysis a cubic variation of 1 P̸ has been assumed, with

• finite inlet pitch (P1) and vanishing first and second axial derivatives of tan χ at
the blade leading edge (z= z1);

• infinite pitch (1 P̸st =0) at the stagnation plane z= zst .

The first condition assures a second-order smooth transition of the blading into a
helical surface of assigned pitch at the impeller eye, while the second has been
imposed to control the angle of the blade root w.r.t. the hub surface at the rotor exit.
Although these conditions seemed suitable for first validation of the proposed
model, they have not been optimized and further refinements can possibly lead to
better results in the generation of more efficient and realistic impeller bladings.

Impeller Slip Flow. The Poisson’s boundary value problem for the stream
function ψ ̃ r, ϑ′

� �
of the slip flow on each axial cross section of the blade channels

(see Fig. 4), together with the impermeability condition ψ ̃=0 on the boundaries, is
transformed in a rectangular domain, where it can be solved in closed form by
standard spectral methods (Hildebrand 1976).

In particular, using as comparison functions the (orthogonal) eigenfunctions of the
corresponding homogeneous problem for the Laplace’s equation, the solution writes

ψ ̃= ∑
+∞

m=1
∑
+∞

n=1
Cm, n sin nπ

ln r r̸Hð Þ
ln rmax r̸Hð Þ

� �
sin

2n− 1ð ÞN ϑ′ − ϑ′Bk
� �
2

Fig. 4 Blade channel cross
section
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with

Cm, n = −
2Ω− 4πŵ1 P̸1 + dŵ d̸zð Þ tan χ1½ �r2Hm 1− − 1ð Þmr2max r̸2H

	 

n− 1

2ð Þ 1+m2π2 l̸n2 r2max r̸2H
� �	 


m2π2 n− 1
2ð Þ2N2ln2 rmax r̸Hð Þ c̸os2 χ

h i

From this solution for ψ ̃ r′, ϑ′
� �

the radial and tangential slip velocity compo-
nents are readily computed, thus completing the definition of the impeller flow.

2.2 Diffuser Flow and Geometry

In the stated assumptions, the steady, axisymmetric, axially uniform flow in the
diffuser is held by the continuity and momentum equations. In order to satisfy the
condition of axially uniform flow in the diffuser, perfect mixing of the impeller
discharge flow is assumed to occur at the diffuser inlet, with flow velocity equal to
the mass-averaged velocity at rotor discharge, station (2). The radial and azimuthal
components of the velocity inside the diffuser can then be computed by radially
integrating the continuity and azimuthal momentum equations in cylindrical
coordinates. The resulting flow inside the diffuser is characterized by constant axial
velocity and log spiral streamlines with flow angle (φD) with respect to the radial
direction in a cross-sectional plane. Finally, the flow streamlines through the hub
and tip surfaces of the impeller at its discharge station (2) define the lateral surfaces
of the diffuser in the meridional plane.

2.3 Volute Flow and Geometry

With reference to Fig. 5, the geometry of the spiral volute is designed for alignment
of the tongue with the flow leaving the diffuser at nominal operational conditions
and smooth transition to azimuthal flow discharge at the exit section, station (4).

The meridional cross sections of the volute are assumed to be segments of
ellipses of width b3 = bD at the diffuser exit radius r3, transitioning from a (de-
generate) straight segment at the tongue (ϑ=0) to a segment of a circle of radius R4

at the exit of the volute (station 4, ϑ=2π), as schematically illustrated in Fig. 6.
In the assumption of axisymmetric flow in the volute at design flow conditions,

integration of the azimuthal momentum equation results in a free vortex distribution
of the azimuthal velocity component. The volumetric flux can then be computed on
each meridional cross section of the volute and equated to the radial inlet flow rate
from the diffuser. If, in addition, the external radius rV of the volute is assigned, the
above condition fully defines the geometry of the volute as a function of the
azimuthal angle ϑ. Here, in particular, the following expression for
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rV = r3 exp
1

tanφD
ϑ−

ϑκ +1

2πð Þκ 1+ κð Þ
� �� �

with

κ= 1−
2π

tanφD ln rV4 r̸3ð Þ
� �− 1

has been used, corresponding to a smooth variation of the spiral angle βV of the
volute from φD at the tongue (ϑ=0) to zero at the exhaust cross section (ϑ=2π).

The average flow velocities in the volute have been approximated as

tan v ̄= u3
A3

A4

rV4
rV

and u ̄= v ̄ tan βV

Fig. 6 Elliptical meridional
cross sections of the volute

Fig. 5 Volute schematic and
nomenclature
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Finally, in the assumption of a perfect mixing in the outlet duct, the flow at the
discharge section (station 5) of the machine is taken uniform with velocity
u5 =V ̇ ̸ πR2

4

� �
.

3 Turbopump Performance

In the present work the pumping performance of the machine has been evaluated
neglecting all sources of energy dissipation, consistently with the ideal flow
assumption originally introduced to solve for the machine geometry and flowfield.
Clearly, the major contributions to fluid dynamic losses (typically arising from
viscous and secondary flow effects, turbulent mixing, and flow incidence at the
leading edges of wetted surfaces) play a crucial role for realistic performance
prediction and optimization of turbopumps. Their inclusion is illustrated in detail in
a companion paper of the present volume (d’Agostino et al. 2017), where it is
shown to lead to excellent predictions of the measured performance of the machine
over a wide range of operation above and below design conditions.

Under the stated assumptions, the impeller is the only element affecting the total
pressure of the flow through the machine. Hence, in the reference frame r,ϑ′, z
rotating with the impeller the (steady) pressure of the (absolutely) irrotational flow
in the blade channels is obtained from the Bernoulli’s equation:

p+
1
2
ρu′ ⋅u′ −

1
2
ρr ⋅ r= pt0

where u′ = u−Ω× r is the relative velocity and pt0 is the total pressure on the
centerline (r=0) at the upstream station (0).

In the absence of losses the total pressure of the flow downstream of the impeller
is uniform. Therefore, using the Euler’s equation, the pressure in the diffuser and
the volute is computed from the relevant flow velocity u by means of

p+
1
2
ρu ⋅ u= pt0 + ρΩr2v2̄ = pt5

where v ̄2 is the mass-averaged azimuthal velocity at the impeller discharge.
Finally, with the above results the total head coefficient is expressed by

Ψ =
pt5 − pt0
ρΩ2r22

In summary, under the stated assumptions and approximations the requirement
for axisymmetric stagnation flow in the meridional plane at design conditions
determines the profiles of the impeller tip and hub radii, while the irrotationality of
the flow completes the geometric definition of the blades by specifying the
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dependence between the axial schedules of their backsweep and helical pitch
angles. The relevant conservation equations and assumptions also parametrically
determine the shape of the remaining components (diffuser and volute) and the total
head rise of the machine. Both the geometry and performance of the turbopump
have therefore been defined in terms of a reduced number of controlling parameters.

4 Model Discussion

In order to illustrate the versatility of the proposed design approach, three examples
of pump geometries, indicated as A, B, and C, and representative of mixed-flow
machines with different shapes and number of blades have been generated for
suitable inputs of the free design parameters of the model. The 3D renderings of the
three pump samples A, B, and C and the meridional cross sections of their impellers
are shown in Figs. 7, 8, and 9, while Table 1 summarizes their main geometrical
characteristics.
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Fig. 7 3D rendering of the impeller of the first sample of centrifugal pump geometry (A, left) and
meridional cross section of the impeller (right)
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Fig. 8 3D rendering of the second sample of centrifugal pump geometry (B, left) and meridional
cross section of the impeller (right)
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Figure 10 illustrates the ideal pumping performance of the sample machines.
Since all sources of losses have been neglected, the predicted head characteristics
exhibit the linear trend typical of the ideal performance of turbopumps as function
of the flow rate.

0 0.02 0.04 0.06 0.08 0.1
0
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Fig. 9 Cut-out rendering of
the third sample of centrifugal
pump geometry (C, left) and
meridional cross section of
the impeller (right)

Table 1 Main characteristics
of the three sample
geometries of radial
turbopumps obtained by
means of the present model

Pump geometry A B C

Number of blades 6 8 10
Inlet tip radius (mm) 71.7 60 90
Inlet hub radius (mm) 46 24 54
Stagnation plane (mm) 91.7 60 105
Inlet tip blade angle (deg) 53.1 54 63
Impeller discharge radius (mm) 150 150 150
Diffuser width (mm) 12.3 8.1 24.2
Diffuser discharge radius (mm) 180 195 165
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Geometry A

Geometry B

Geometry C

Fig. 10 Comparison
between the predicted
noncavitating performance of
the sample turbopump
geometries A, B, and C
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In the present inviscid flow approximation, the deviation of the flow leaving the
impeller w.r.t. the exit angle of the blades is the major source of head degradation in
centrifugal turbopumps. In particular, flow deviation at the impeller outlet is mainly
due to the slip flow effect generated by the irrotationality condition and the
imperfect guidance of the flow in the blade channels, especially at higher loads
(Peterson and Hill 1992). Of these two effects, the former is actually predicted by
the present model and can be assessed here, while the latter is rather small in high
solidity bladings like those typical of centrifugal impellers with large backsweep
angles, and in first approximation can be neglected.

In order to preliminarily assess the performance of the ideal flow model before
inclusion of fluid dynamic losses and final validation against experimental data
from relevant turbopump geometries, the predicted slip factors have been compared
to the results of the theoretical/semi-empirical methods reported in literature for
centrifugal pumps (Stodola 1927; Busemann 1928; Wiesner 1967; Dixon 1978;
Ferguson 1963; Wislicenus 1947).

In particular, as shown in Figs. 11 and 12, the comparison has been focused on
the influence of the main parameters affecting the slip factor, such as the number of
blades and the exit backsweep angle. The results indicate that the model usually
slightly overestimates the slip factor at low number of blades and small exit
backsweep angle. However, it is worth noticing that the geometry obtained by the
model is more complex than the infinitely thin, logarithmic spiral blades used by
Busemann to compute his theoretical slip factors. Moreover, the approximate for-
mula proposed by Stodola provides a reasonable first approximation of the more
exact results of Busemann, but underestimates the slip factor when applied to radial
impellers with a small number of blades. Both of these methods do not account,
even indirectly, for viscous effects:
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Fig. 11 Comparison
between the slip factor
computed from the model and
the available semi-empirical
formulas for radial impellers
based on the hub and tip
profiles of sample geometry C
with variable χ2
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σB =
AB +BBϕ2 tan χ2
1−ϕ2 tan χ2

Busemann

σS =1−
0.63π N̸

1−ϕ2 tan χ2
Stodola

σW =1−
ffiffiffiffiffiffiffiffiffiffiffiffi
cos χ2

p
N̸0.7

1−ϕ2 tan χ2
Wiesner

On the other hand, the approach proposed by Wiesner is based on empirical slip
factor data. It provides better agreement with the experimental measurements and
implicitly accounts for the additional contributions of viscous effects. Figures 11
and 12 show that the predictions of the present model well reproduce the trend of
Wiesner’s results but, not surprisingly, are systematically higher because of the
neglect of viscous effects. The introduction of the fluid viscosity decreases the value
of the slip factor as a consequence of the acceleration and the additional deviation
of the relative flow at the rotor exit induced by blockage and asymmetric boundary
layer displacement effects on the two sides of the impeller blades. Both of these
effects produce in fact the systematic reduction of the azimuthal component of the
absolute flow velocity at the exit of the impeller, and therefore of the head
developed by the machine, justifying the observed discrepancy between Wiesner’s
semi-empirical data and the theoretical results of the present inviscid flow model.

5 Conclusions

The present theoretical model proved to be capable of rapidly and efficiently pro-
viding quantitative indications for the geometry definition, the 3D flowfield
description, and the prediction of the ideal noncavitating pumping characteristics of
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Fig. 12 Comparison
between the slip factor
computed from the model and
the available semi-empirical
formulas for radial impeller
geometries based on geometry
C with variable number of
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radial turbopumps with complex and realistic geometries in terms of a relatively
small number of controlling parameters. As illustrated in detail in the companion
paper of the present volume (d’Agostino et al. 2017), because of these features the
present inviscid flow model is especially suited for easy inclusion of the major
forms of flow losses in centrifugal turbopumps and integration in a parametric
optimization procedure, with the purpose of generating an effective tool for rapid
identification of the machine geometry and performance best satisfying the given
set of requirements, specifications, and constraints.

The limitations of the model are mostly related to the ideal flow assumption and
simplifying approximations introduced in order to attain a practical closed-form
solution. The experimental validation presented in the companion paper of the
present volume (d’Agostino et al. 2017) clearly demonstrates that these limitations
can be effectively removed and that major improvements can be gained by intro-
ducing the main sources of flow losses in centrifugal turbopumps. Hence, the
capability of the present ideal flow model of rapidly and rationally defining the
shape of the machine confirms its effectiveness as a design tool of radial
turbopumps.
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On the Preliminary Design and
Performance Prediction of Centrifugal
Turbopumps—Part 2

Luca d’Agostino, Dario Valentini, Angelo Pasini, Lucio Torre,
Giovanni Pace and Angelo Cervone

Abstract The ideal flow model for the preliminary design and performance pre-
diction of radial turbopumps presented in the companion paper of the present
volume (d’Agostino et al. 2017) is here interfaced with the calculation of the
boundary layers inside the blade channels and other major forms of flow losses,
with the aim of developing an effective tool for rapid parametric optimization of the
machine performance and geometry under appropriate design constraints, such as
assigned values of the specific speed, flow coefficient, and blade solidity.
A mixed-flow turbopump, with a six-bladed impeller, a vaneless diffuser, a
single-spiral volute and nondimensional performance characteristics similar to those
typically used in liquid propellant rocket engine feed systems, has been designed,
parametrically optimized and manufactured in accordance with the indications of
the present model. The pumping and suction performance of the machine has been
determined in a series of tests in the cavitating pump rotordynamic test facility
(CPRTF). Under fully wetted flow conditions the measured pumping characteristics
of the machine (hydraulic head and efficiency as functions of the flow coefficient)
proved to be in excellent agreement with the model predictions, thus successfully
confirming the validity of the proposed model as an effective tool for rapid and
efficient design of high-performance centrifugal turbopumps.
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1 Introduction

Performance, simplicity, reliability, operating range and cost-effectiveness are some
of the assets that make centrifugal pumps a very popular component of an almost
endless variety of liquid management systems. More specifically, high
power-density turbopumps currently represents the most weight-effective solution
for liquid propellant feed systems of rocket engines for primary space propulsion.
These applications are in fact characterized by the joint requirements for high total
and specific impulses, where large amounts of usually cryogenic propellants are to
be injected at high pressures in the engine’s combustion chamber. Under these
conditions, turbopump-fed systems are preferable, because the mass reduction
allowed by the use of low-pressure tanks far outbalances the additional weight of
the machine.

Typically, in modern liquid propellant rocket engine feed systems an axial
inducer is also present upstream of the main pump in order to increase its suction
performance, while the desired delivery pressure is mostly generated by a suitable
number of mixed-flow centrifugal stages. Severe limitations are associated with the
design of the high power-density, dynamically stable turbomachines capable of
meeting the extremely demanding pumping, suction, and reliability requirements of
modern space transportation systems (Stripling and Acosta 1962). In these appli-
cations, operation under limited cavitation conditions is usually tolerated in order to
minimize the weight of the propellant storage system, exposing rocket engine feed
turbopumps to the onset of dangerous fluid dynamic and rotordynamic instabilities
(d’Agostino 2013a, b).

The design of centrifugal turbopumps determines about 80% of their final cost
(Busby et al. 2008), and therefore its importance cannot be underestimated. Usu-
ally, it starts with the development a 2D flow model, which is progressively refined
in a sequence of iterative trades between architectural, fluid dynamic, mechanical,
structural, rotordynamic, manufacturing, and assembling aspects of the pump, until
the relevant requirements and specifications are met. The definition of the
inducer/impeller bladings, as well as of the flow paths in the diffuser (if any) and the
volute, is typically finalized at this stage of the design process. Next, steady-state
3D fluid dynamic and structural analyses are carried out and additional details are
included, as required by the specific application. Off-design, transient, and unsteady
flow analyses finally complete the design process.

Optimization strategies based on the radial basis neural network (RBNN) have
recently been applied by many researches to the design of turbopumps (Huppertz
et al. 2007; Kim et al. 2010; Choi et al. 2010; Rai and Madyavan 2000; Kim et al.
2011). Other systematic optimization approaches commonly used in the refinement
of the design of turbopumps are based on the mean streamline analyses (Oh and
Kim 2011), three-dimensional inverse methods coupled with optimization algo-
rithms (Ashihara and Goto 2011), and steady/unsteady numerical flow simulations
(Visser et al. 2000). Significant efforts are currently being developed for accurately
predicting and improving the performance of turbopumps with the help of complex
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3D simulations and numerical optimization methods, which are extremely
demanding in terms of computational time and power (Laskshminarayana 1985).

However, the expensive iterative nature of this approach intrinsically imposes
significant limitations to its effective use for preliminary design of turbopumps. On
the other hand, the availability of rational and efficient tools, capable of rapidly
providing a realistic and accurate definition of both the machine geometry and
performance since the early stages of its design, translates into very significant
advantages for turbopump engineers and manufacturers. Up to date, however,
efficient methods with these characteristics are lacking, and their development has
therefore been selected as the main focus of the work illustrated in this publication.

The present activity starts from the observation that the ideal flow model
illustrated in a companion paper (d’Agostino et al. 2017) proved to be quite efficient
in making use of the relevant conservation equations for rationally deducing real-
istic geometries of mixed-flow centrifugal turbopumps specifically designed for
locating the occurrence of cavitation on the initial portion of the blades, where its
destabilizing effects on the flow field are less pronounced. On the other hand, the
ideal flow approximation clearly prevented this model from being equally effective
in the accurate prediction of the pumping performance of the machine.

In order to overcome this limitation, in the present approach the above flow
model has been interfaced with the calculation of the boundary layers inside the
blade channels and of other major forms of fluid dynamic losses (d’Agostino et al.
2012), with the aim of developing an effective tool for rapid parametric opti-
mization of the machine geometry and performance under appropriate design
constraints, such as, for instance, assigned values of the specific speed, flow
coefficient, and blade solidity. The combined model has then been used, in con-
junction with a standard parametric maximization algorithm, to design and optimize
a mixed-flow turbopump (named VAMPIRE) with a six-bladed impeller, a vaneless
diffuser, a single-spiral volute and nondimensional performances similar to those
typical of space rocket applications (Pasini et al. 2011). The pumping and suction
characteristics of the VAMPIRE pump have been determined in a series of steady
operation tests in the CPRTF. Finally, the measured pumping characteristics (hy-
draulic head and efficiency) of the machine have been compared with the theoretical
predictions, with the aim of assessing and confirming the validity of the proposed
model.

2 Hydraulic Losses and Efficiency

The main fluid dynamic losses to be considered for more realistic performance
prediction and optimization of mixed-flow centrifugal turbopumps typically arise
from flow incidence at the leading edges of the impeller blades and the volute
tongue, from viscous and secondary flow effects in the impeller, and from turbulent
mixing in the diffuser and the volute, as schematically indicated in Fig. 1.

On the Preliminary Design and Performance … 159



Their contributions have been included in the present model and are illustrated in
detail in this Section.

Notice that, in order to provide effective indications for parametric optimization
of the machine, the evaluation of fluid dynamic losses must be sensitive to specific
and relatively small changes of the geometry of the various components. Standard
empirical loss correlations, such as those commonly used for preliminary assess-
ment of viscous, slip flow, and turbulent mixing effects in centrifugal impellers, are
therefore inadequate to this purpose, and have therefore been replaced here by more
detailed and realistic loss models.

2.1 Impeller

Incidence losses due to the sudden change of the flow direction at the leading edge
of the inducer blades are expressed in terms of the nondimensional equivalent
length Leq =DchΔα 3̸ (function of the turning angle Δα, in degrees, evaluated on
the mean streamline) by means of:

ΔptI1 = f
Leq
Dch

� �
1
2
ρV ′2

1 ,

where ρ is the density of the liquid, V ′

1 is the relative flow velocity at the mean inlet
radius and the friction factor f is obtained from Moody’s chart using the Reynolds
number based on the hydraulic diameter Dch and the relative roughness of the blade
channel.

Viscous effects developing on the surfaces of the blade channels generate fric-
tional losses, flow blockage and, as a consequence of the asymmetric growth of the
boundary layers on the pressure and suction sides of the blades, deviation of the
flow at the impeller discharge. Moreover, the effective flow cross-section is also
reduced by the blade thickness.

Fig. 1 The main sources of
losses included in the model
and their locations in the
machine
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In order to account for the influence of these aspects on the pumping perfor-
mance of the machine, the evolution of the boundary layers has been evaluated
along the four streamlines passing through the mid-points of the blade channel sides
at the impeller exit. The results so obtained have been considered as representative
of the average viscous effects on the corresponding surfaces, as schematically
illustrated in Fig. 2.

Consequently, the flow blockage at the impeller exhaust has been approximated
by the following expression:

BBL2 ≃
1
Ach

δ*H2
2πr2
N

−
δ*2ss

cos χ2

� �
+ δ*T2

2πr2
N

−
δ*2ps

cos χ2

 !"

+
δ*2ss b2 − δ*T2
� �
cos χ2

+
δ*2ps b2 − δ*H2

� �
cos χ2

#
,

where δ*2ss, δ
*
2ps and δ*H2, δ

*
T2 are respectively, the displacement BL thicknesses on

the suction and pressure sides of the blades and on the impeller hub and tip, while
b2 is the exhaust axial blade height, N is the blade number and Ach is the nominal
channel area. Then the flow velocity at the impeller exit, corrected for blockage
effects, is:

u′2b =
u′2

1−B2ð Þ

where B2 =BB2 +BBL2 is the total blockage at the impeller exit r= r2ð Þ, sum of the
contributions generated by the blade thickness and the boundary layers.

Fig. 2 Schematic for the
approximate evaluation of BL
blockage effects at the exit
section of the impeller blade
channels
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The flow deviation generated by the boundary layer growth at the impeller
exhaust mainly affects the azimuthal velocity and is expressed by:

δ◦2 =
1
2

dδ*ss
dx

����
2
sin λss2 −

dδ*ps
dx

�����
2

sin λps2

 !
,

where x is the curvilinear coordinate along the streamline and λ is the angle between
the rotational axis and the streamline in the meridional plane. With these correc-
tions, the relative azimuthal velocity at the impeller discharge becomes:

v′2bδ◦ = − u′2b tan − tan− 1 v′2b u̸
′

2b

� �
+ δ◦2

� �
Similarly, with the same approach used for the evaluation of viscous blockage

effects (Fig. 2), the total pressure loss at the impeller exhaust due to boundary layer
friction is expressed by:

ΔptBL2 ≃
θH2

Ach

2πr2
N

− θ2ss
cos χ2

� �
ρU′2

H2

2
+ θT2

Ach

2πr2
N

− θ2ps
cos χ2

� �
ρU′2

T2

2

+ θ2ss bI2 − θT2ð Þ
Ach cos χ2

ρU′2
ss2

2
+ θ2ps bI2 − θH2ð Þ

Ach cos χ2

ρU′2
ps2

2
,

where θ2ss, θ2ps and θH2, θT2 are the momentum boundary layer thicknesses on the
suction and pressure sides of the blades and on the impeller hub and tip and U′ is
the streamwise velocity of the free stream in the relative frame.

The streamlines for the evaluation of the boundary layers along the impeller
blade channels have been determined by numerical integration of the relevant
ordinary differential equations:

dr
dx

=
u′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u′2 + v′2 +w′2
p

dϑ′

dx
=

v′

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u′2 + v′2 +w′2

p

dz
dx

=
w′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u′2 + v′2 +w′2
p

using the relative velocity field obtained from the ideal flow model and the
appropriate (final) conditions at the impeller discharge (Fig. 3).

The governing equations for the laminar incompressible boundary layers on the
impeller blades have then been obtained by writing the relative continuity and
momentum equations:
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∇ ⋅ u′ =0

u′ ⋅ ∇u′ = −
1
ρ
∇p+ ν∇ ⋅ ∇u′ + ∇u′

� �Th i
− 2Ω× u′ +Ω2r

in body-fitted coordinates x and y along the streamwise and normal directions.
Coriolis forces are intrinsically small in the inner layers where the relative flow
velocity is low, and approximately accounted for in the outer layers by the matching
with the freestream velocity, which includes the vorticity correction. Hence, with
usual quasi-parallel flow approximations and neglecting Coriolis forces, obtain:

∂ r0uxð Þ
∂x

+ r0
∂uy
∂y

=0

uy
∂ux
∂y

+ ux
∂ux
∂x

= −
1
ρ

∂p
∂x

+ v
∂
2ux
∂y2

+Ω2r sin λ cos μ,

0≃ −
1
ρ

∂p
∂y

+Ω2r0 cos λ

where r0 is the radial distance from the axis, λ is the meridional angle of the
boundary layer surface from the axial z-direction and μ is the angle of the boundary
layer free streamline from the meridional plane.

The pressure can now be eliminated by differentiating the steady Bernoulli’s
equation:

Fig. 3 Relative streamlines of the inviscid flow on the impeller blade channels for turbulent BL
computations
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p
ρ
+

1
2

U′ ⋅U′ −Ω2r ⋅ r
� �

=constant

along a relative streamline:

−
1
ρ

∂p
∂x

≃U
dU
dx

−Ω2r
dr0
dx

≃U
dU
dx

−Ω2r0 sin λ cos μ

−
1
ρ

∂p
∂y

= −Ω2r
dr
dy

≃ −Ω2r0 cos λ,

where U is the relative streamwise velocity of the freestream.
In the stated assumptions, centrifugal effects in the boundary layer and in the

freestream balance each other. Hence, the momentum equation in the normal
direction y is identically satisfied, while in the streamwise direction x reduces to:

uy
∂ux
∂y

+ ux
∂ux
∂x

=U
dU
dx

+ v
∂
2ux
∂y2

(independent on Ω).
Finally, the equations for the turbulent boundary layers on the impeller blades

can be obtained by standard Reynolds averaging in the form:

∂ r0ux̄ð Þ
∂x

+
∂ r0uȳ
� �
∂y

=0

u ̄x
∂ux̄
∂x

+ uȳ
∂ux̄
∂y

=U
dU
dx

+
1
ρ

∂τt
∂y

where bars indicate the mean flow properties, primes the turbulent fluctuations and
τt = μ ∂ux̄ ∂̸y− ρu′xu′y is the turbulent shear stress (equal to τw at the wall).

These equations have been solved by extending the method proposed by White
(1974) to axisymmetric configurations, as required for application to mixed-flow
impellers. The basic idea of White’s method consists in eliminating uȳ with the
continuity equation and integrating the boundary layer momentum equation from
the blade surface ðy=0Þ to the freestream ðy= δÞ. The velocity profile is approx-
imated by the logarithmic law of the wall:

u+ ≃
1
0.4

ln y+ + 5.5 +w y+ , ξð Þ

expressed in terms of the inner variables:

u+ =
ux̄
v*

; v+ =
uȳ
v*

; y+ =
yv*

v
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with frictional velocity v* =
ffiffiffiffiffiffiffiffiffi
τw ρ̸

p
and an outer wake w x, y+ð Þ=0.6y+ ξ xð Þ, linear

in y+ and in the pressure-gradient correlation parameter (Mellor 1966):

ξ xð Þ= μU
τwv*

dU
dx

Upon introduction of the nondimensional streamwise coordinate x* = x 2̸r2 and
freestream velocity U* =U Ω̸r2, the following ordinary differential equation for
the skin friction parameter λ=U + has been obtained (Valentini 2011, 2015;
d’Agostino et al. 2012):

dλ
dx*

=
U*ReD − λ2δ+ −G λ, ξð Þ� �

λ d ln U*
dx*

+ λ4H λ, ξð Þ
ReD

d2
dx2*

U − 1
*

� �
−K λ, ξð Þλ d ln r0

dx*

G λ, ξð Þ− 3λ3H λ, ξð Þ
ReD

d
dx*

U − 1
*

� �
Here ReD =2Ωr22 v̸ is the Reynolds number based on the impeller tip speed Ωr2

and diameter 2r2,

G λ, ξð Þ=
Z δ+

0
u+2dy+

and:

H λ, ξð Þ=
Z δ+

0
u+ ∂u+

∂ξ
−

∂u+

∂y+

Z y+

0

∂u+

∂ξ
dy+

 !
dy+

have the same expressions as in White (1974), while:

K λ, ξð Þ=
Z δ+

0

∂u+

∂y+

Z y+

0
u+ dy+

 !
dy+

is an additional function to be included when dr0 d̸x≠ 0.
The above ordinary differential equation for λ has been numerically integrated

along the four relative streamlines passing through the mid-points of the blade
channel sides at the impeller exit with the IC δ+ 0ð Þ≃ 10 imposed by the lower limit
of validity of the law of the wall (merging with the laminar sublayer), which in turn
determines the initial value of λ 0ð Þ= 1

0.4 ln 10+ 5.5+ 6ξ.
Finally, at any location x* the boundary layer nominal, displacement and

momentum thicknesses have been computed as:

δ=2r2
δ+ λ

U*ReD
; δ* = 2r2

δ*+ λ

U*ReD
and θ=2r2

θ+ λ

U*ReD
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Their evolution along the blade channels of the VAMPIRE pump operating at
nominal conditions is illustrated in Fig. 4. The results are similar for δ, δ* and θ,
which in turbulent boundary layers are nearly proportional to each other. Specifi-
cally, the development of the boundary layer is predicted to proceed rather regularly
on the suction side of the blades and, even if not relevant to the present case of
unshrouded impeller as indicated later, also on the casing surface at the blade tip
radius. On the other hand, the evolution of δ, δ* and θ is slightly more irregular on
the pressure side of the blades and on the hub surface where, however, flow turning
effects tend to oppose the separation of the flow. The regular growth of the
boundary layer is indicative of a favorable pressure distribution and is especially
significant on the suction side of the blades, where the flow is generally more
susceptible to separation. As a whole, the results of Fig. 4 fully confirm the validity
of the proposed method for the definition of hydrodynamically efficient impeller
geometries.

By supporting the blades on both sides, impeller shrouds can be quite useful to
reduce bending stresses and flutter instabilities. But they also add to the manu-
facturing complexity and weight of impellers, thus reducing their critical speeds.
Besides, the narrow recirculating leakage flow between their outer surface and the
machine casing increases ventilation losses and generates spurious and uncertain
rotordynamic effects. For these reasons, whenever possible unshrouded impellers

Fig. 4 Streamwise evolution
of the boundary layer
thicknesses along the blade
channels

166 L. d’Agostino et al.



are typically favored in space applications (Droege et al. 2000). In these impellers
the boundary layers developing on the impeller casing are continuously wiped out
by passing blades. Therefore, an approximate but practical way to account for the
absence of the shroud in the present model consists in simply not considering the
boundary layers on the inner surface of the impeller casing.

The above approach allows for the quantitative evaluation of viscous effects
(blockage, deviation and losses) taking place in the flow through centrifugal
impellers as functions of their geometry and operating conditions. Perfect mixing is
assumed to occur at rotor discharge at the inlet cross-section of the diffuser. The
resulting total pressure losses have then been be evaluated as the mass averaged
integral difference between the dynamic pressures of the mean flowfield at the
diffuser inlet and the nonuniform velocity distribution at the impeller discharge
station, that is:

ΔptM2 zð Þ= N
4π

ρ

Z 2π N̸

0
v ̃22 − v2S
� �

dϑ′

where v2̃ is the local azimuthal component of the vorticity correction and vs is the
azimuthal slip velocity.

2.2 Diffuser

Friction on the side walls and the sudden increase of the flow passage area at the
exit of the impeller are the main sources of fluid dynamic losses in vaneless dif-
fusers. Frictional losses can be evaluated along the nominal streamlines (consisting
in log-spirals with constant angle φ from the radial direction) by means of the
expression:

ΔptF3 =
1
2
ρ u23 + v23
� �

fD
r3 r3 − r2ð Þ
2bDr2 cos φ

where bD is the width of the diffuser and the friction factor fD depends on the flow
Reynolds number based on the hydraulic diameter DHdiff =2bD. Finally, diffusion
losses due to the sudden variation of the flow passage area from the impeller
discharge to the diffuser can be estimated using the following expression:

ΔptD2 =
1
2
ρ ū2b2 −u22
� �

=
1
2
ρ u ̄2b2 − u ̄22

b2I2
b2D

� �

where ub̄2 and u2̄ are the average values of the radial velocity at the impeller exit
with and without corrections for blockage effects.

On the Preliminary Design and Performance … 167



2.3 Volute

The flow losses occurring in the volute typically include radial diffusion losses at
the volute entrance, incidence losses at the tongue, frictional losses on the walls,
azimuthal diffusion losses in the volute and mixing losses in the exhaust duct. The
volute flowfield is relatively complex, being intrinsically 3D, unsteady, and, in most
cases, turbulent. Accurate prediction of the resulting losses would in principle call
for the simultaneous simulation of the entire flow through the turbopump, quite an
ambitious task, computationally very expensive and time-consuming. As antici-
pated in the first part of this publication (d’Agostino et al. 2017), such simulations
are indeed capable of evaluating the flow properties in the volute with spatial
resolution dependent on the size of the computational grid (Van den Braembussche
2006), but do not provide any direct indication for the selection of the machine
geometry, which must be assigned as a known input to the computations.

On the other hand, the present model is intended as a rapid and effective tool for
simultaneous and accurate definition of the geometry of the machine and prediction
of its fluid dynamic performance, as required in the preliminary phase of the design.
For most efficient definition of the model it is worth noting that total pressure losses
in the volutes of radial turbopumps are usually dominant, especially at off-design
conditions, with respect to the contributions from other components. This is
because the separated/swirling nature of the flow in the volute promotes large-scale
turbulent mixing and because the geometry of the volute can only be optimally
adapted to the impeller for one single value of the flow coefficient. Based on these
considerations, only incidence losses at the tongue and mixing losses in the volute
have been taken into account in the present model. Available evidence demon-
strates that this approximation is capable of providing accurate predictions of the
magnitude and trends of flow losses occurring in the volute of the test turbopump,
thus supporting the conclusion that it can be safely applied to similar machines
designed in accordance with the indications of the present model.

The total pressure loss due to the flow incidence at the tongue of the volute has
been computed as:

ΔptLVi ≃ ξtLVi
1
2
ρ u23 − u3j j cos φ3 −φTð Þ½ �2
n o

corresponding to the dissipation of a constant portion ξtLVi (here equal to 0.9) of the
kinetic energy of the approach velocity component normal to the orientation φT of
the tongue w.r.t. the azimuthal direction φT =φ3desð at design conditions).

For simplicity, mixing losses in the volute have been included only when the
incoming flow velocity is faster than at the exit cross-section and correspond to
losing a constant portion ξtLVd (here equal to 0.9) of the associated dynamic pres-
sure change:
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ΔptLVd = ξtLVd
1
2
ρ u23 − u24
� �

Finally, frictional losses along the walls of the volute have been neglected
because of their relatively small magnitude.

2.4 Overall Performance

With the above results, the pumping performance of the machine becomes:

Ψ =
Δpt

ρΩ2r22
=

ΔptE2 −ΔptLOSS
ρΩ2r22

,

where the total pressure increase computed from Euler equation includes the effects
of flow blockage and deviation generated by the BLs developing along the blade
channels:

ΔptE2 = ρΩr2v2̄bδ◦

and the total pressure loss comprises all of the sources of dissipation considered
above:

ΔptLOSS =ΔptI1 +ΔptBL2 +ΔptM2 +ΔptD2 +ΔptF3 +ΔptLVi +ΔptLVd

Finally, the hydraulic efficiency of the machine has been evaluated by means of
the expression:

ηh =
QΔpt
Ωτ

where Q is the volumetric flow rate, Δpt is the total pressure increase, Ω is the
rotational speed and τ is the torque applied to the pump shaft.

3 Experimental Apparatus

The Test Facility. The experimental activity reported in the present paper has been
carried out in the Cavitating Pump Rotordynamic Test Facility (CPRTF, Fig. 5).

This facility is specifically designed for characterizing the performance of cav-
itating and noncavitating turbopumps in a wide variety of alternative configurations
(axial, radial or mixed flow, with or without an inducer (Cervone et al. 2012; Pace
et al. 2012; Rapposelli et al. 2002). It operates in water at temperatures from room
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conditions up to 90 °C and is intended as a flexible apparatus readily adaptable to
conduct experimental investigations under hydrodynamic, Reynolds, and thermal
cavitation similarity conditions on virtually any kind of fluid dynamic phenomena
relevant to high-performance turbopumps. The test section can be equipped with a
rotating dynamometer, for the measurement of the forces and moments acting on
the impeller, and with a mechanism designed for adjusting and rotating the
eccentricity of the impeller axis in the range 0 ÷ 2 mm and ±3000 rpm. The inlet
section and mounting elements of the turbopump in the housing can be easily
replaced in order to allow for testing inducers and machines with different diameters
and geometries.

In present experiments, the CPRTF has been equipped with the rotating
dynamometer in order to eliminate the uncertainties related to friction in the seals
and bearings of the shaft in the measurement of the torque applied to the pump
impeller. The dynamometer is realized in one solid piece of AISI 630 H1025 phase
hardening steel and consists of two flanges connected by four square pillars acting
as flexing elements in a classical squirrel-cage configuration. The deformation of
the pillars is measured by 40 semiconductor strain gauges arranged in 10 full
Wheatstone bridges, which provide redundant measurements of the instantaneous
forces and moments acting on the impeller along the axial and lateral directions.

Each bridge is temperature self-compensated, with separate bipolar excitation
and read-out for better reduction of cross-talking. The inlet pressure and the pres-
sure rise, necessary for the characterization of the pump performance, have been
measured by means of an absolute pressure transducer (Druck, model PMP 1400,
0 ÷ 1.5 bar, 0.25% precision) installed about two impeller diameter upstream of the
inlet cross-section and a differential pressure transducer (Druck, model PMP 5073,
range 0–5 bard, 0.1% precision) installed between the inlet and the outlet sections of
the test pump (with the low-pressure tap at the same location as the absolute
pressure tap and the high pressure tap more than one impeller diameter downstream
of the exit cross-section of the volute).

The desired values of the blade tip clearance have been obtained by adjusting
the inner diameter of the interchangeable casing of the impeller (see Fig. 5).

p (5 bar FS)

P (1 bar FS)

Fig. 5 The cavitating pump rotordynamic test facility (left) and cut-out of the test section showing
the pump assembly and the locations of the pressure transducer (right)
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This feature is particularly useful when conducting rotordynamic tests in order to
tailor the clearance as necessary for accommodating the imposed eccentricity of the
rotor and avoiding rotor/stator contact.

Two electromagnetic flowmeters (mod. 8732E by Fisher-Rosemount, range
0–100 l/s, 0.5% precision), mounted on the suction and discharge lines, measure the
pump’s inlet/outlet flow rates and a thermocouple monitors the temperature of the
working fluid with ±0.5 K precision.

A custom-made Silent Throttle Valve, designed for NASA by Innerspace Corp.,
Covina, California (USA), has been used for adjusting the pump load.

The Test Pump. The pump, named VAMPIRE, used in present experiments has
been designed by means of the present model and parametrically optimized as
documented in d’Agostino et al. (2012). It has been manufactured in 7075-T6
aluminum alloy, and comprises a six-bladed unshrouded impeller (see Fig. 6), a
vaneless diffuser and a single-spiral volute. Its main operational parameters and
geometrical characteristics are summarized in Table 1.

Fig. 6 The six-bladed centrifugal impeller of the VAMPIRE turbopump

Table 1 Main operational
parameters and geometrical
characteristics of the
VAMPIRE turbopump

Parameter Units Symbol Value

Design flow coefficient – Φ 0.092
Number of blades – N 6.00
Outlet radius mm r2 105.0
Inlet tip radius mm rT1 57.2
Inlet hub radius mm rH1 31.8
Axial length (fully developed
blade)

mm zH2 46.4

(continued)
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4 Results and Discussion

A series of tests has been conducted on the VAMPIRE pump with the aim of
experimentally validating the proposed model for preliminary design and noncav-
itating performance prediction of centrifugal pumps.

The model has been generalized in order to account for the results of a parallel
test campaign aimed at investigating the influence of thermal cavitation effects on
the rotordynamic whirl forces on the VAMPIRE pump with different values of the
tip clearance (Pace et al. 2014, 2016; Valentini et al. 2016). The presence of a tip
clearance in unshrouded impellers significantly increases the complexity of the flow
structure. Since the detailed treatment of this aspect is too demanding in terms of
additional complexity and/or computational cost of the model, a simplified
approach has been adopted to approximately describes its influence on the tur-
bopump performance.

Tip clearance changes have long been known to affect both the head and flow
coefficients of the machine, as recently confirmed by some of the authors in the case
of inducers (Torre et al. 2011). Specifically, the presence of blade tip clearance in
unshrouded rotors involves three major effects since it:

• affects the secondary flow in the blade channels;
• induces the occurrence of tip leakage flows as a consequence of the pressure

difference on the two sides of the blades;
• modifies the intermittent “scraping” caused by the blade passage on the

boundary layers developing on the inner surface of the impeller casing (Koshide
and Nielson 1973).

With reference to Fig. 7, the operating point of the test pump is defined by the
intersection between its head characteristic and the load curve of the facility, which
can be considered constant for given setting of the silent throttle valve and

Table 1 (continued) Parameter Units Symbol Value

Inlet tip blade angle deg γT1 56.60
Inlet backsweep angle deg χ1 0.00
Diffuser outlet radius mm r3 126.0
Rotational speed rpm Ω 1500
Design volumetric flowrate l/s VD 16.8
Tip solidity – σT 2.26
Incidence tip angle @ design deg α 17.40
Outlet tip blade mean angle deg γT2 67.78
Outlet tip backsweep angle deg χ2 66.00
Exit blade height mm b2 10.5
Exit cross-section volute radius mm R4 38.2
Volute maximum radial dimension mm rV4 201.5
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approximately quadratic in the flow rate at Reynolds numbers higher than 106 based
on the impeller tip diameter and speed. Then, all other operating conditions being
the same, the relation between the head and flow coefficients of the machine for two
values (subscripts l for lower and h for higher) of the blade tip clearance becomes:

Φl =Φh

ffiffiffiffiffiffi
Ψ l

Ψ h

r

This equation allows for scaling the noncavitating performance of the machine
for different tip clearances once the associated head change is known. To this
purpose it is worth noting that, as reported in the literature (Torre et al. 2011;
Koshide and Nielson 1973; Brennen 1994), the noncavitating head coefficient is
approximately linear in the relative tip clearance c%ð Þ, defined as the ratio between
the tip clearance ðcÞ and the average height of the impeller blades bað Þ.

With reference to Fig. 8 (where the head coefficient has been nondimensional-
ized with its nominal design value Φ0Þ, the interpolating straight line for the
VAMPIRE pump has been evaluated from the experimental results for two different
tip clearances (squares). For any given value of the relative clearance, the corrected
head coefficient is then obtained from this correlation and the corresponding flow
coefficient from the above equation. In turn, these coefficients have been used to
modify the pumping characteristics predicted by the model in order to account for
the actual value of the blade tip clearance.

The relative tip clearances of the reference turbopump configurations used for
the definition of the above correction procedure are c% = 5.6% and 11.2%, corre-
sponding to 1 and 2 mm blade tip clearances, respectively. Each experimental point
has been obtained by averaging the readings of the differential pressure and flow
rate acquired over 2 s at 5,000 sps (samples per second). In order to attain fully
developed turbulent flow conditions, rotational speed of the pump and the water

Low clearance

High clearance

Loading curve

l

h

lh

2
losses a=

Fig. 7 Noncavitating
operating points (solid
circles) of a turbopump
respectively operating with
higher (subscript h) and lower
(subscript l) impeller blade tip
clearances at constant settings
of the test facility
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temperature have been kept respectively constant at 1500 ± 3 rpm and
19.5 ± 1 °C, corresponding to a Reynolds number Re= 2Ωr22 v̸=5.01 × 106.

In order to validate the above procedure for tip clearance correction, two dif-
ferent series of tests have been conducted, where the pumping performance of the
VAMPIRE pump has been measured for two different clearances equal to 1 mm
c%ð = 5.6%) and 0.16 mm c%ð = 0.9%). Figure 9 shows the comparison of the
experimental pumping performance (squares and upward-pointing triangles) with
the corrected predictions of the analytical model (circles and stars).

Figure 9 also shows the hydraulic efficiency characteristics for the same two
configurations of the pump. It is worth recalling that in the experimental evaluation
of the hydraulic efficiency ηh the shaft power has been obtained by means of the
rotating dynamometer and is therefore not affected by the uncertain influence of
frictional torque in the bearings and seals.

Due to numerical limitations of the boundary layer solver under severe flow
separation on the suction/pressure sides of the impeller blades (see White 1974), the
predictions of the model are restricted to flow coefficients in the range from 65 to
160% of the design value. Anyway, the accessible operational range of the model
covers with wide margins the conditions typically encountered by liquid propellant
feed turbopumps in space propulsion applications.

The relative deviations of the measured head coefficients from the theoretical
results are illustrated in Fig. 10 for two values of the relative blade tip clearance.
The shaded area indicates the ±5% bandwidth above and below the observed
performance. In the same figure, the dashed and dotted lines show for each
clearance setting the mean deviation between the experimental and the theoretical
results. In both cases, the calculated pumping performance at design conditions is
quite accurate and, in particular, in the low clearance case it is less than 0.5% off the
measured value. As a whole, the results of the present investigation clearly indicate
that the calculated performance closely matches the experimental measurements
and successfully confirm the predictive capability of the proposed model.
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Fig. 8 Normalized
nondimensional head of the
VAMPIRE turbopump as a
function of the relative tip
clearance. The linear
correlation of the diagram
(solid line) has been obtained
from two experiments at
different blade tip clearances
(solid squares)
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5 Conclusions

The noncavitating tests conducted on the VAMPIRE turbopump, designed, and
parametrically optimized by means of the reduced-order model recently developed
by some of the authors and extended in the present work with the inclusion of the
major sources of fluid dynamic losses, successfully confirmed that the proposed
model is indeed capable of efficiently defining the geometry of mixed-flow cen-
trifugal turbopumps and accurately predicting their noncavitating performance.

By expressing the performance of these machines in terms of a relatively small
number of controlling parameters, the proposed model is especially suited for rapid
and efficient optimization. This feature has been fully and successfully exploited in
the design of the VAMPIRE pump to given requirements and specifications.

For lack of space, the illustration of the optimization procedure used for the
design of the test pump has been postponed to a later publication, but the quality of
its results is well documented here by the very close match between the predicted
and measured values of the hydraulic performance (head and efficiency) of the
VAMPIRE pump. To this effect, special attention has been paid to obtaining an
accurate measurement of the torque actually applied to the impeller by making use
the CPRTF rotating dynamometer, thus eliminating the uncertain and spurious
influence of seal and bearing torques.

The tests conducted on the VAMPIRE pump are also in excellent agreement
with the semi-heuristic approach used to account for the influence on the machine
performance of the impeller blade tip clearance, which is not explicitly incorporated
in the model.

As a whole, the results of present experiments successfully confirm the validity
of the proposed model as a very effective tool for rapid and efficient preliminary
definition of the geometry and hydraulic performance of mixed-flow centrifugal
turbopumps, as required in the conceptual, feasibility and initial stages of their
development and design.
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Numerical Simulation of Cavitating Flows
with Different Cavitation and Turbulence
Models

Eric Goncalves

Abstract The simulation of cavitating flows is a challenging problem both in terms

of modelling the thermodynamic path during the phase transition and the com-

plex interaction with the turbulence. Based on a one-fluid compressible Reynolds-

Averaged Navier-Stokes (RANS) solver, a numerical study is proposed to investigate

and to compare different turbulence and cavitation models (with and without thermal

effects). Steady and unsteady numerical results are given for 1D rarefaction cases and

2D Venturi geometries for which experimental data are available.

1 Introduction

Several physical and numerical models have been developed to investigate cavitating

flows within the framework of averaged two-phase model. For the averaged model,

there are different approaches according to the assumptions made on the local ther-

modynamic equilibrium and the slip condition between phases. A hierarchy of mod-

els exists, with the numbers of equations ranging from seven to three only. The full

non-equilibrium two-fluid models with relaxation procedures have been tested on

inviscid high-speed applications (see for example Petitpas et al. 2009; Zein et al.

2010), whereas one-fluid models have been massively used for industrial applica-

tions and turbomachineries.

An important class of reduced models is formed by the five-equation models, in

which velocity equilibrium and pressure equilibrium are considered. The archetype

five-equation model is that of Kapila et al. (2001). It is composed of four conservation

laws: two for masses, one for the mixture momentum and one for the mixture energy.

It is completed by an equation for a non-conservative quantity describing the flow
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topology, usually the void ratio. Such a model has been used for inviscid high-speed

cavitating applications and cavitation pocket in fuel injector nozzles (Saurel et al.

2008, 2009).

By assuming the thermal equilibrium between phases, a four-equation model can

be expressed. A very popular formulation has been developed to simulate turbu-

lent cavitating flows (Merkle et al. 1998; Kunz et al. 2000; Senocak and Shyy 2002;

Singhal et al. 2002; Venkateswaran et al. 2002; Vortmann et al. 2003; Hosangadi and

Ahuja 2005; Utturkar et al. 2005; Wu et al. 2005; Zhang et al. 2008; Ji et al. 2013).

It is composed by three conservation laws for mixture quantities (mass, momen-

tum, energy) plus a mass equation for the vapour or liquid density including a cav-

itation source term. The main difficulty is related to the formulation of the source

term and the tunable parameters involved for the vaporisation and condensation

processes (different sets of parameters are presented in Utturkar et al. 2005). More-

over, the thermodynamic coherence was not attested and that constitutes a major

problem (Goncalves and Patella 2011). Recently, another formulation for the mass

transfer between phases was proposed using a void ratio transport-equation model.

The mass transfer was closed assuming its proportionality to the divergence of the

homogeneous velocity field (Goncalves 2013, 2014; Goncalves and Charriere 2014).

Another popular model devoted to ebullition problems uses a mass fraction equation

with a relaxation term (Homogeneous Relaxation Model). The source term involves

a relaxation time, that is the time for the system to regain its thermodynamic equilib-

rium state. This time is very difficult to determine and is estimated from experimental

data (Downar-Zapolski et al. 1996; Bilicki et al. 1996; Barret et al. 2002).

With the assumption of complete thermodynamic equilibrium between phases

(local temperature, pressure and free Gibbs enthalpy equality between phases), we

obtain the 3-equation models or homogeneous equilibrium models (HEM). Vapor-

isation or condensation processes are assumed to be instantaneous. An equation of

state (EOS) is necessary to close the system. Different closure relations (tabulated

EOS or combination of pure phase EOSs) that link the pressure to the thermody-

namic variables have been proposed (Delannoy and Kueny 1990; Saurel et al. 1999;

Schmidt et al. 1999; Clerc 2000; Edwards and Franklin 2000; Ventikos and Tzabiras

2000; Shin et al. 2003; Liu et al. 2004; Vuyst et al. 2005; Schmidt et al. 2006; Sini-

baldi et al. 2006; Ihm and Kim 2008; Goncalves and Patella 2009; Goncalves et al.

2010b; Hu et al. 2011).

In addition, the turbulence modelling plays a determinant role in the capture of

unsteady behaviours. Cavitation sheets that appear on solid bodies are characterized

by a closure region, which always fluctuates with the existence of a re-entrant jet and

the propagation of pressure waves. Moreover, compressibility effects on turbulence

are involved. These effects and interactions with two-phase structures are not yet

well known and understood. For usual applications, the Reynolds decomposition is

often used with an averaged statistical processing resulting in the RANS equations

for the mean flow quantities. The limitation of the turbulent viscosity evaluated with

transport-equation turbulence models (through the Boussinesq assumption) is a key

point to capture realistic cavitation sheets. Different methods have been investigated

to limit or to correct standard turbulence models. One of the most popular limiter
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was proposed by Reboud to reduce the turbulent viscosity (Reboud et al. 1998), and

has successfully been used by different authors (Coutier-Delgosha et al. 2002; Chen

et al. 2006; Zhou and Wang 2008; Srinivasan et al. 2009; Goncalves 2011; Ahn and

Kwon 2013).

The final goal of the present work is to compare various 3- and 4-equation mod-

els for the simulation of realistic turbulent cavitating flows involving unsteady sheet

cavities. A comparison with incompressible numerical simulation is also proposed.

Moreover, the turbulence modelling is investigated, especially the compressibility

effects and the eddy viscosity limitation. The considered test cases are the following.

First, 1D inviscid rarefaction tubes are computed allowing a comparison of models

without the turbulence model influence. Second, two Venturi geometries are consid-

ered involving unsteady partial cavities for which the dynamic behaviour is different

(an aperiodic quasi-stable sheet and a self-sustained periodic sheet). A good model

should be able to simulate both dynamics. Finally, another Venturi case is studied

for which the running fluid is freon R-114 in order to compare cavitation models

including thermal effects.

This paper is organized as follows. We first review the theoretical formulation

including cavitation models, equation of state and mass transfer formulations. Tur-

bulence equations are detailed followed by the description of the 1-fluid solver. The

preliminary studies carried out in inviscid test cases are presented. This is followed

by sets of results on two turbulent Venturi flows and discussions.

2 The 1-Fluid Inviscid Formulation

The homogeneous mixture approach is used to model two-phase flows. The phases

are assumed to be sufficiently well mixed and the disperse particle size are suffi-

ciently small thereby eliminating any significant relative motion. The phases are

strongly coupled and moving at the same velocity. In addition, the phases are

assumed to be in thermal and mechanical equilibrium: they share the same tem-

perature T and the same pressure P. The evolution of the two-phase flow can be

described by the conservation laws that employ the representative flow properties as

unknowns just as in a single-phase problem.

To obtain the one-fluid equations, we use the phase average of a phase quantity

𝜙k defined by Ishii and Hibiki (2006):

𝜙k =
1
Tk ∫ 𝜙kd𝜏 (1)

where Tk is the time period of phase k. The mass-weighted average or Favre average

is commonly used for compressible flows. In the following, () and ̃() will denote

a phase average and a Favre average, respectively. Fluctuations with respect to the

average will be ()′ and ()′′, respectively. Using this definition and starting from the
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instantaneous conservation equations, the equations for each phase can be expressed.

The equation for mixture quantities are obtained by the summation of the separate

equations of the phase quantities.

We introduce 𝛼k the void fraction or the averaged fraction of presence of phase k.

The density 𝜌, the center of mass velocity u and the internal energy e for the mixture

are defined by

𝜌 =
∑

k
𝛼k𝜌k (2)

𝜌ui =
∑

k
𝛼k𝜌k ũk,i (3)

𝜌e =
∑

k
𝛼k𝜌k ẽk (4)

The mass gain per unit volume due to phase change (evaporation or condensation)

is noted Γk = 𝜌k(uI − uk).nk𝛿I where 𝛿I is a Dirac distribution having the different

interfaces as a support, uI the interface velocity and nk the vector normal to the

interface directed outward from phase k.

2.1 The Conservations Laws

The 3-equation system consists in mixture balance laws for density, momentum and

total energy. In order to simplify the formulation, we present below the inviscid one-

dimensional equations, expressed in conservative variables w = (𝜌, 𝜌u, 𝜌E):

𝜕𝜌

𝜕t
+ 𝜕𝜌u

𝜕x
= 0 (5)

𝜕(𝜌u)
𝜕t

+ 𝜕(𝜌u2 + P)
𝜕x

= 0 (6)

𝜕(𝜌E)
𝜕t

+ 𝜕(𝜌uH)
𝜕x

= 0 (7)

where E = e + u2∕2 denotes the mixture total energy and H = h + u2∕2 the mixture

total enthalpy.

2.2 The Pure Phases EOS

In the present study, we used the convex stiffened gas EOS for the pure phases (see

Metayer et al. 2004):
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P(𝜌, e) = (𝛾 − 1)𝜌(e − q) − 𝛾P∞ (8)

P(𝜌,T) = 𝜌(𝛾 − 1)CvT − P∞ (9)

T(𝜌, h) =
h − q

Cp
(10)

where 𝛾 = Cp∕Cv is the heat capacity ratio, Cp and Cv are thermal capacities, q the

energy of the fluid at a given reference state and P∞ is a constant reference pressure.

The speed of sound c is given by

c2 = 𝛾

P + P∞
𝜌

= (𝛾 − 1)CpT (11)

2.3 Mixture EOS

Stiffened gas EOS On the basis of the stiffened gas EOS for each pure phase, an

expression for the pressure can be deduced from the mechanical equilibrium assump-

tion (Saurel et al. 2008). These expressions are available in all possible fluid states,

function of the void ratio 𝛼 = 𝛼v and the vapour mass fraction Y = Yv = 𝛼𝜌v∕𝜌:

P(𝜌, e, 𝛼,Y) = (𝛾(𝛼) − 1)𝜌(e − q(Y)) − 𝛾(𝛼)P∞(𝛼) (12)

1
𝛾(𝛼) − 1

= 𝛼

𝛾v − 1
+ 1 − 𝛼

𝛾l − 1
(13)

q(Y) = Yqv + (1 − Y)ql (14)

P∞(𝛼) = 𝛾(𝛼) − 1
𝛾(𝛼)

[

𝛼

𝛾v

𝛾v − 1
Pv
∞ + (1 − 𝛼)

𝛾l

𝛾l − 1
Pl
∞

]

(15)

The 3-equation system form a system of conservation laws having a hyperbolic

nature. Without heat and mass transfer, the eigenvalues of the system are u − cwallis,

u and u + cwallis.

Without mass transfer, the propagation of acoustic waves follows the Wood or

Wallis speed of sound (Wallis 1967). This speed cwallis is expressed as a weighted

harmonic mean of speeds of sound of each phase ck:

1
𝜌c2wallis

= 𝛼

𝜌vc2v
+ 1 − 𝛼

𝜌lc2l
(16)

Sinusoidal EOS A sinusoidal law (Delannoy and Kueny 1990; Goncalves and

Patella 2009) is considered for the mixture. This law is characterized by its maxi-

mum slope 1∕c2baro. The quantity cbaro is an adjustable parameter of the model, which

can be interpreted as the minimum speed of sound in the mixture.
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When the pressure is smaller than Pvap + ΔP, the following relationship applies:

P(𝛼) = Pvap +
(
𝜌

sat
l − 𝜌

sat
v

2

)

c2baro Arcsin (1 − 2𝛼) (17)

where ΔP represents the pressure range of the law and, for a void ratio value of 0.5,

the pressure is equal to the saturation pressure Pvap at the reference temperature.

This law introduces a small non-equilibrium effect on the pressure. The cavitation

phenomenon is assumed to be isothermal and thermodynamic effects are neglected.

The void ratio is computed with saturation values of densities as follows:

𝛼 =
𝜌 − 𝜌

sat
l

𝜌
sat
v − 𝜌

sat
l

(18)

The speed of sound in the mixture can be computed easily as follows:

c2 =
(
𝜕P
𝜕𝜌

)

s
=

(
𝜕P
𝜕𝜌

)

T
=

c2baro

2
√
𝛼(1 − 𝛼)

(19)

The system is hyperbolic with eigenvalues (u − c, u, u + c).
Properties of the model (such as convexity conditions of the EOS) and the influ-

ence of the parameter cbaro have been studied in Goncalves and Patella (2009).

2.4 A Void Ratio Transport-Equation Model

The model consists in three conservation laws for mixture quantities (mass, momen-

tum and total energy) and an additional equation for the void ratio. It is obtained

from a reduction of a 5-equation model (Goncalves 2013) assuming the liquid is at

its saturation state. The expression for the void ratio equation is

𝜕𝛼

𝜕t
+ div (𝛼V) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎝

𝜌lc2l − 𝜌vc2v
𝜌lc2l
1−𝛼

+ 𝜌vc2v
𝛼

⎞
⎟
⎟
⎠

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=K

+𝛼

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

div V +
⎛
⎜
⎜
⎝

c2v
𝛼

+ c2l
1−𝛼

𝜌lc2l
1−𝛼

+ 𝜌vc2v
𝛼

⎞
⎟
⎟
⎠

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=1∕𝜌I the interfacial density

Γv (20)

where Γv is the mass transfer between phases and V the velocity vector. The term K
involves the speed of sound of pure phases ck and it reflects the effects of changes in

volume of each phase. Without mass transfer the system is hyperbolic, eigenvalues

are (u-cwallis, u, u, u+cwallis).
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By assuming that the mass transfer is proportional to the divergence of the veloc-

ity, it is possible to build a family of models in which the mass transfer is expressed

as Goncalves (2013)

Γv =
𝜌l𝜌v

𝜌l − 𝜌v

(

1 − c2

c2wallis

)

div V (21)

When heat and mass transfer effects are involved in the flow, the sound speed c
decreases to the thermodynamic equilibrium one (Petitpas et al. 2009). This limit

speed is evaluated with the assumption of local thermodynamic equilibrium: equal-

ities of pressure, temperature and free enthalpy.

With this generic form for the mass transfer, we remark that all models in which

the mixture speed of sound is the Wallis one cannot produce void ratio during the

phase transition (that is the case of most of models proposed in the literature). The

void ratio is only modified through the term K div V .

Using different mixture EOS it is possible to built different models. Two models

were built using the stiffened gas mixture equation and the sinusoidal EOS.

2.5 Other Formulations for the Void Ratio Equation

A class of cavitation models introduces a mass transfer between phases involving

a separate contribution for vaporisation and condensation processes. Two tunable

parameters are associated for each process. This empirical source term can be cal-

ibrated with experimental data base. Different formulations and sets of parameters

are presented in Utturkar et al. (2005).

This kind of model reproduces propagation of acoustic disturbance at the Wal-

lis speed of sound that is not thermodynamically coherent. Moreover, when pure

phases are assumed to be constant at their saturation state, the void ratio is therefore

proportional to the mixture density:

𝛼 =
𝜌 − 𝜌

sat
l

𝜌
sat
v − 𝜌

sat
l

(22)

The mass and void ratio equations are not two independent equations. The compati-

bility of the system is not clear.

First model A formulation derived from the model proposed by Hosangadi and

Ahuja (2005) can be expressed as:

Γv = Cprod
𝜌v

𝜌l
(1 − 𝛼)

Min (0,P − Pvap)
0.5𝜌ref U2

ref

+ Cdes
𝜌v

𝜌l
𝛼

Max (0,P − Pvap)
0.5𝜌ref U2

ref

(23)

where Cprod, Cdes are constants to calibrate.
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With this formulation, the void ratio value can be higher than one. A limiter is

added in the solver to clip the void ratio into its physical domain of evolution.

Second model The second model, implemented in the OpenFOAM solver (Weller

et al. 1998), is derived from the Kunz model (Kunz et al. 2000). It is based on the

incompressible RANS equations for an homogeneous mixture. The phase change is

modelled using a transport-equation for the liquid volume fraction 𝛼l that reads

𝜕𝛼l

𝜕t
+ uj

𝜕𝛼l

𝜕xj
= Γv (24)

Following Kunz development, the source term is expressed as the sum of a

vapourisation term mv and a condensation term mc:

Γv = mv + mc (25)

with

mc =
𝜌

𝜌l𝜌v
Cc

𝜌v

t∞
𝛼

2
Llim

max
(
P − Pvap ; 0

)

max
(
P − Pvap ; 0.01Pvap

) (26)

mv =
𝜌

𝜌l𝜌v
Cv

𝜌v
1
2
𝜌lU2

∞t∞
min

(
P − Pvap ; P0

)
(27)

Cc, Cv, U∞ and t∞ are constant set by the user, whereas P0 and 𝛼Llim are included

to avoid non- physical values. Usually U∞ is set to the freestream value, and t∞
represents a relaxation time not well defined in the literature. For the present com-

putations, the following values are specified:

Cc = 10 ; Cv = 8000 ; t∞ = 0.005

3 The Thermal Effects Modelling

We detailed the formulation in the case of thermo-sensitive fluid and non isothermal

thermodynamic path.

3.1 A Mixture of Stiffened Gas EOS

By assuming the thermal equilibrium between phases, the mixture temperature is

expressed as
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T(𝜌, h,Y) =
hl − ql

Cpl

=
hv − qv

Cpv

=
h − q(Y)

Cp(Y)
(28)

Cp(Y) = YCpv
+ (1 − Y)Cpl

(29)

We assume that the vaporisation pressure varies linearly with the temperature:

Pvap(T) = Pvap(Tref ) +
dP
dT

(T − Tref ) (30)

The constant quantity dP∕dT is evaluated with a thermodynamic table. The speed

of sound in the mixture can be expressed as Goncalves (2014):

C1 = 1
𝛾 − 1

+
𝜌vhv − 𝜌lhl

(𝜌l − 𝜌v)
dP
dT

(

𝛼

d𝜌v

dT
+ (1 − 𝛼)

d𝜌l

dT

)

(31)

𝜌c2 = 1
C1

[
𝜌v𝜌l

(𝜌l − 𝜌v)
(hv − hl)

]

(32)

Enthalpies of pure phase hl and hv are computed with the mixture temperature T .

Due to numerical problems, the derivatives of densities with the temperature are not

taken into account in this study.

3.2 A Modified Sinusoidal EOS

A modified sinusoidal relation (Goncalves and Patella 2010) can be considered for

the mixture. When the pressure is smaller than Pvap(T) + ΔP, the following relation-

ship applies:

P(𝛼,T) = Pvap(T) +
(
𝜌

sat
l − 𝜌

sat
v

2

)

c2baro Arcsin (1 − 2𝛼) (33)

where ΔP represents the pressure range of the law and, for a void ratio value of 0.5,

the pressure is equal to the saturation pressure Pvap(T) at the local temperature T .

This temperature is evaluated using the relation (29). 𝜌
sat
l and 𝜌

sat
v are pure phases

densities at saturation evaluated at the reference temperature Tref . The quantity cbaro
is a parameter of the model, it is no more the minimum sound speed in the mixture.

As previously we assume that the vaporisation pressure varies linearly with the

temperature and follows the relation (30). The speed of sound in the mixture can be

evaluated (Goncalves and Patella 2010):

c2 =
𝜌v𝜌l

𝜌(𝜌l−𝜌v)
(hv − hl)

dP
dT

+ 𝜌Cpc2T

𝜌Cp −
dP
dT

(34)
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c2T =
(
𝜕P
𝜕𝜌

)

s
=

(
𝜕P
𝜕𝜌

)

T
=

c2baro

2
√
𝛼(1 − 𝛼)

(35)

where cT is the isothermal speed of sound (i.e. when dP/dT = 0).

3.3 A Void Ratio Transport-Equation Model

We use the generic formulation previously presented:

Γv =
𝜌l𝜌v

𝜌l − 𝜌v

(

1 − c2

c2wallis

)

div V (36)

The liquid density 𝜌l is assumed to be in its equilibrium state at the reference

temperature: 𝜌l = 𝜌

sat
l (Tref ). We did not test to introduce a thermal variation for the

liquid density. The vapour density 𝜌v varies with the temperature through the pure

phase EOS.

Two models can be built using the stiffened gas and sinus EOSs. As the tempera-

ture and pressure relations are coupled, an iterative procedure on the temperature is

introduced. The temperature is initialized by the liquid temperature computed with

the pure phase EOS. Five iterations are done and it has been checked that the numer-

ical solution did not change with a higher number of iteration. More details are given

in Goncalves (2014).

4 The 1-Fluid RANS Formulation

We detailed the RANS formulation associated with the Boussinesq approximation

and transport-equation turbulence models.

4.1 The Mixture Conservation Laws

The classical form for the homogeneous mixture balance equations are Ishii and

Hibiki (2006):

𝜕𝜌

𝜕t
+

𝜕

(
𝜌ui

)

𝜕xj
= 0 (37)
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𝜕

𝜕t
(
𝜌ui

)
+

𝜕

(
𝜌uiuj + P𝛿ij

)

𝜕xj
=

𝜕

(
𝜏

v
ij + 𝜏

t
ij

)

𝜕xj
(38)

𝜕

𝜕t
(𝜌E) +

𝜕

[
(𝜌E + P)ui

]

𝜕xj
=

𝜕

[
(𝜏v

ij + 𝜏

t
ij)uj − Qv

i − Qt
i

]

𝜕xj
(39)

where E is the mixture total energy. The mixture total stress tensor 𝜏ij (with viscous

and turbulent contributions) is evaluated using the Stokes hypothesis, Newton’s law

and the Boussinesq assumption. The mixture total heat flux vector Qi is obtained

from the Fourier law involving a turbulent thermal conductivity 𝜆t with the constant

Prandtl number hypothesis.

𝜏ij = 𝜏

v
ij + 𝜏

t
ij = (𝜇 + 𝜇t)

[

(
𝜕ui

𝜕xj
+

𝜕uj

𝜕xi
) − 2

3
𝜕ul

𝜕xl
𝛿ij

]

+ 2
3
𝜌k𝛿ij

Qi =Qv
i + Qt

i = −
(
𝜆 + 𝜆t

)
𝜕T
𝜕xi

with 𝜆t =
𝜇tCp

Prt
(40)

where 𝜇t is the mixture eddy viscosity, k the mixture turbulent kinetic energy (TKE),

Cp the mixture thermal capacities and Prt the turbulent Prandtl number set to 1.

In pure liquid, the viscosity is determined by an exponential law and, in pure

vapour, the viscosity follows the Sutherland law. The mixture viscosity is defined as

the arithmetic mean of the liquid and vapour viscosities (fluctuations of viscosity are

neglected) (Ishii and Hibiki 2006):

𝜇l(T) =𝜇0l
exp (B∕T) (41)

𝜇v(T) =𝜇0v

√
T
293

1 + TS∕293
1 + TS∕T

(42)

𝜇(𝛼,T) =
∑

k
𝛼k𝜇k (43)

where 𝜇0l
, 𝜇0v

, B and TS are constants.

The mixture thermal conductivity 𝜆 is also defined as the arithmetic mean of the

liquid and vapour values:

𝜆 =
∑

k
𝛼k

𝜇kCpk

Prk

(44)
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4.2 Mixture Turbulence Equations for Two-Phase Flows

The mixture TKE equation Different authors have studied the turbulent kinetic

energy equation for a gas-liquid flow. The mixture equation can be obtained by the

summation of the separate equations of the phase turbulent quantities with homoge-

neous mixture assumptions (Besnard and Harlow 1988; Elghobashi and Abou-Arab

1983; Kataoka and Serizawa 1989; Lance et al. 1984). The expression of the mixture

TKE equation is

𝜕𝜌k
𝜕t

+
𝜕𝜌kul

𝜕xl
= 𝜌Pk + 𝜌Π − 𝜌𝜖 + 𝜌M + 𝜌D + Γ (45)

where k =
∑

k
𝛼k

̃u′′

k,iu
′′

k,i

2
, Pk is the mixture production term,Π is the mixture pressure-

dilatation term, 𝜀 is the mixture TKE dissipation rate which can be split into a

solenoidal part 𝜀s and a dilatational part 𝜀d, M is the mixture turbulent mass flux, D
is the mixture turbulent and viscous diffusions. The last term Γ is specific to multi-

phase flows. It involves the mass transfer due to phase change and is usually set to

zero.

In multiphase flow, even if pure phases are assumed to be incompressible, the

divergence of the fluctuating phase velocity is not zero, caused by the presence

of interfaces. Indeed, with this assumption, the divergence of the fluctuating phase

velocity is

𝜕u′′

k,i

𝜕xi
= −

𝜕ũk,i

𝜕xi
= 1

𝛼k
u′′k .nk𝛿I (46)

Therefore, the dilatational dissipation rate 𝜀d = 4
3

∑

k
𝛼k𝜇k s′

k,jjs
′

k,ll is not zero. And

the pressure-dilation term Π =
∑

k
𝛼kP′

k

𝜕u′′

k,i

𝜕xi
is instantaneously present but null in

mean as P′

k = 0.

The modelling of these additional terms is very complex to realize in turbulent

cavitating flows due to the lack of experimental data for turbulent quantities and

DNS of cavitation flows. Only closure relations developed for aerodynamic high-

speed flows have been tested.

TKE dissipation rate equation for the mixture Kataoka and Serizawa (1989)

derived a transport equation for the mixture turbulent dissipation rate assuming that

both phases were considered as incompressible. This equation put in evidence that

the turbulent dissipation is affected by interfacial transport terms. Nevertheless, no

theoretical or experimental results regarding these terms are available in case of two-



Numerical Simulation of Cavitating Flows . . . 191

phase flows with phase change. Usually, it is used the same equation for 𝜀 than in

single-phase flows.

4.3 Turbulence Models

Various popular turbulence models are considered: the Smith k − 𝓁 model (KL)

(Smith 1994), the one-equation Spalart–Allmaras model (SA) (Spalart and Allmaras

1994), the Wilcox k − 𝜔 model (Wilcox 1988) and the Jones-Launder k − 𝜀 model

(KE) (Jones and Launder 1972). For comparisons with the OpenFOAM solver, the

Menter k − 𝜔 SST model (Menter 1994) is used, assuming the validity of the Brad-

shaw assumption in a two-phase turbulent boundary layer.

Compressible terms have been included in both the k − 𝜀 and k − 𝜔 models.

A k − 𝜀 model in compressible form We include the compressible terms Π, M and

𝜀d into the Jones- Launder k − 𝜀 model:

𝜕𝜌k
𝜕t

+ 𝜕

𝜕xj

[

𝜌kuj −
(

𝜇 +
𝜇t

𝜎k

)
𝜕k
𝜕xj

]

= Pk − 𝜌𝜀s + 𝜌𝜀d + 𝜌Π + 𝜌M

𝜕𝜌𝜀s

𝜕t
+ 𝜕

𝜕xj

[

𝜌𝜀suj −
(

𝜇 +
𝜇t

𝜎
𝜀

)
𝜕𝜀s

𝜕xj

]

= c
𝜀1
𝜀s

k
Pk − 𝜌c

𝜀2f2
𝜀s

2

k
+ E

The low Reynolds number term E, the damping functions f
𝜇

and f2 and all constants

follow the Jones–Launder formulation (Jones and Launder 1972).

The additional terms Π and 𝜀d are modelled according to Sarkar propositions

(Sarkar 1992):

𝜌Π = −𝛼2𝜌PkMt + 𝛼3𝜌𝜀sM2
t

𝜀d = 𝛼1𝜀sM2
t (47)

where Mt =
√

k
2c

is the turbulent Mach number defined with the mixture speed of

sound c and 𝛼i are constants to calibrate.

The turbulent mass flux M is closed with the Jones formulation (Jones 1979):

𝜌M = −
𝜇t

𝜌
2
𝜎p

𝜕𝜌

𝜕xi

𝜕P
𝜕xi

(48)

where 𝜎p is a turbulent Schmidt number close to one.

A k − 𝜔 model in compressible form Wilcox (1998) proposed a compressible ver-

sion of his k − 𝜔 model:
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𝜕𝜌k
𝜕t

+ 𝜕

𝜕xj

[

𝜌kuj −
(
𝜇 + 𝜎

∗
𝜇t
)
𝜕k
𝜕xj

]

= Pk − 𝛽

∗
c 𝜌k𝜔 (49)

𝜕𝜌𝜔

𝜕t
+ 𝜕

𝜕xj

[

𝜌𝜔uj −
(
𝜇 + 𝜎𝜇t

)
𝜕𝜔

𝜕xj

]

= 𝛼

𝜔

k
Pk − 𝛽c𝜌𝜔

2
(50)

with 𝜇t = 𝜌

k
𝜔

. The compressibility effects on turbulence is accounted through the

coefficients 𝛽
∗
c and 𝛽c functions of the turbulent Mach number:

𝛽

∗
c = 𝛽

∗ (1 + 𝜉

∗F(Mt)
)

(51)

𝛽c = 𝛽 − 𝛽

∗
𝜉

∗F(Mt) (52)

F(Mt) =
(
M2

t − M2
t0
)

H
(
Mt − Mt0

)
(53)

with Mt0 = 0.25 and 𝜉

∗ = 1.5.

4.4 Eddy Viscosity Limitation

Turbulence models always leads to the generation of stable cavities, because very

strong turbulent eddy viscosity 𝜇t inside the cavity avoids the re-entrant jet develop-

ment and unsteadiness formation. The link to compressibility effects on turbulence

is not clear. In cavitating flows, supersonic regime is reached in the mixture area,

because of the drastic diminution of the speed of sound. The detailed mechanisms

of the interaction between turbulent flows and cavitation have not yet been clearly

revealed especially for the phenomena occurring at small scales.

As a remedy to limit the turbulent viscosity, one can use an eddy viscosity limiter

in the mixture area. The most famous limiter is the one proposed by Reboud et al.

(1998), which has shown its efficiency in the simulation of sheet cavities (Coutier-

Delgosha et al. 2002; Chen et al. 2006; Zhou and Wang 2008; Srinivasan et al. 2009;

Goncalves 2011; Ahn and Kwon 2013). Other corrections can be used, for example

the Shear Stress Transport (SST) correction proposed by Menter (1994) to reduce the

eddy viscosity in case of positive pressure gradient and a variant of the latter based

on realizability constraints (Durbin 2009). Applications to cavitating simulation can

be found in Decaix and Goncalves (2012).

Reboud correction Reboud proposed an arbitrary limiter by introducing a function

f (𝜌) in the computation of the turbulent viscosity for the k − 𝜀 model:

𝜇t = f (𝜌)C
𝜇

k2
𝜀

with f (𝜌) = 𝜌v + (1 − 𝛼)n(𝜌l − 𝜌v) (54)

where n is a parameter fixed to 10.

This correction can be extended to other turbulence models with the same func-

tion f (𝜌).



Numerical Simulation of Cavitating Flows . . . 193

Recent experimental works in a cavitating mixing layer (Aeschlimann et al. 2011)

showed that the turbulent kinetic energy decreased when the cavitation developed but

the turbulent viscosity (evaluated through the Boussinessq approximation) remained

quasi constant. As a consequence, the Reboud limiter is not valid in all cavitating

flows.

Menter SST correction The Menter correction is based on the empirical Brad-

shaw’s assumption, which binds the shear stress to the turbulent kinetic energy for

two-dimensional boundary layer. The stress ratio predicted by two-equation models

scales with the ratio of production Pk to dissipation 𝜀 as

−u′v′
k

=
√

Pk

𝜀

√
C
𝜇

with C
𝜇

= 0.09 (55)

Single-phase experiments show that the quantity −u′v′∕k ≤ 0.3. Menter devised

his SST limiter from this inequality. The empirically based constraint is expressed as

𝜈t = min

[
k
w
,

0.3k
√
2 ∣ Ω ∣ F2(y)

]

(56)

where F2 is a blending function that tends to zero outside the boundary layer, and Ω
is the vorticity.

The evolution of the ratio −u′v′∕k was recently measured by Aeschlimann and

Barre (2009) in the case of a cavitating mixing layer. The authors showed that

this ratio decreased significantly and continuously when cavitation developed. They

observed a factor 2 between the non-cavitating regime and the most severe cavitating

case. Yet, the evolution of this ratio for cavitating flows involving sheet cavities is

unknown.

Realizability constrains By replacing the vorticity Ω with the stress tensor S in the

SST formula, a correction is derived based on the realizability principle (Durbin

2009). The correction involves a parameter c varying between 0 and 1 and set to 0.3.

4.5 Scale-Adaptive Simulation

The Scale-Adaptive Simulation first appeared in the formulation of the KE1E one-

equation model for the eddy viscosity derived from the standard k − 𝜀model (Menter

1997). This model provided a dynamical behaviour similar to a Detached Eddy Sim-

ulation (DES) model but without an explicit grid dependence, allowing the devel-

opment of a turbulent spectrum in the detached regions. Later, Menter and Egorov

(2004) showed that the exact transport equation for the turbulent length scale l as

derived by Rotta actually introduces the second derivative of the velocity field. They

proposed a model for this term which introduces the von Karman length-scale Lvk.
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This term, referred to as SAS, was inserted in the existing k − 𝜔 SST model and they

calibrated it for the decay of a homogeneous isotropic turbulence. Various test cases

(Menter 2010a, b; Davidson 2006) have showed the ability of the SST-SAS model to

resolve turbulent structures down to the limit grid and have confirmed that the SAS

term reduces the turbulent eddy viscosity and predicts resolved fluctuations much

larger than standard models.

It is possible to include scale-adaptive terms into the k − 𝓁 and Spalart–Allmaras

turbulence models following the works of Menter and Egorov. Details of the for-

mulation are given in Decaix and Goncalves (2012, 2013b). The SAS term is only

activated in the mixture area when 𝛼 > 0.

4.6 Wall Functions

For the modelling of flow close to the wall, a two-layer wall law approach is used as

follows:

u+ = y+ if y+ < 11.13
u+ = 1

𝜅

ln y+ + 5.25 if y+ > 11.13

u+ = u
U

𝜏

; y+ =
yU

𝜏

𝜈w
; U

𝜏

=
√

𝜏w

𝜌w

(57)

where 𝜅 = 0.41 is the von Karman constant and the subscript ‘w’ is used for a wall

value.

With regard to the turbulent transport-equation models, the production of k is

computed according to the formulation proposed by Viegas and Rubesin (1983).

The value of 𝓁 in the first cell is computed with the linear relation l = 𝜅y.

For the one-equation Spalart–Allmaras model, the transported quantity is calcu-

lated using the model’s closure relations, the velocity profile and a mixing-length

formulation for the eddy viscosity. More details concerning the wall law approach

are given in Goncalves and Decaix (2012).

We assume that wall functions are similar in a two-phase flow and in a single-

phase flow. For unsteady flows, the existence of a wall law is assumed to be valid at

each instant. In order to investigate the validity of these assumptions, comparisons

were proposed with a thin boundary layer approach (TBLE). This approach is based

on the integration of a simplified averaged set of partial equations derived from the

Navier–Stokes equations:

𝜕ui

𝜕t
+

𝜕uiuj

𝜕xj
+ 1

𝜌

dP
dxi

= 𝜕

𝜕y

[

(𝜇 + 𝜇t)
𝜕ui

𝜕y

]

(58)

A fine one-dimensional grid is embedded between the first grid point and the wall

(see Fig. 1), and the turbulent boundary-layer equations are discretized and solved in
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Fig. 1 Embedded grid in

the adjacent cells to walls

the embedded mesh. The integration is performed using a Newton algorithm for

the wall shear stress 𝜏w. In the present computations, the number of nodes in the

embedded grid is 30. More details can be found in Goncalves and Decaix (2012).

5 The 1-Fluid Filtered Formulation

The major difficulty in modelling multiphase turbulence is the wide range of length

and time scales on which turbulent mixing occurs. The Direct Numerical Simulation

(DNS) approach, with no modelling, resolves all the scales present in the flow. How-

ever, it is not feasible for practical engineering problems involving high Reynolds

numbers. The large-eddy simulation (LES) is an intermediate way between DNS

and RANS in terms of the fraction of the resolved scales. In LES, the large-scale

turbulent motions are resolved while the effects of the smaller ones are modelled.

This approach allows a significant decrease in the computational cost over direct

simulation and captures more dynamics than a simple RANS model.

A first point is to identify the scales at which the governing equations are to be

applied: micro-scales (scales which are small enough to describe individual bub-

ble shapes), meso-scales (which are comparable to bubble sizes) and macro-scales

(which entail enough bubbles for statistical representation). When LES is applied at

a micro-scale, filtering of turbulent fluctuations needs to be combined with interface

tracking methods (for example Liovic and Lakehal (2012)). When LES is applied at

a macro-scale, the interface resolution is not considered.

Different authors have studied the 1-fluid filtered equations for incompressible

gas–liquid flows (Labourasse et al. 2007; Vincent et al. 2008; Toutant et al. 2009;

Larocque et al. 2010; Bois et al. 2010). The scale separation is mathematically

obtained by applying a convolution product using a large-scale-pass filter function

G. For a quantity 𝜙, the filtered variable is defined as 𝜙 = G◦𝜙 and the Favre filtered

variable: ̃
𝜙 = 𝜌𝜙∕𝜌. Let Xk be the phase indicator function (Xk = 1 in phase k and 0

elsewhere). The filtered phase indicator function Xk = G◦Xk = 𝛼k can be interpreted

as a filtered volume fraction of phase k.
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It is assumed that the filtering operator commutes with time and spatial deriva-

tives. The mass transfer is assuming to be proportional to the velocity divergence

through a constant C. Applying the filter G to the governing system leads to the

filtered 1-fluid equations system:

𝜕𝜌

𝜕t
+

𝜕

(
𝜌ũi

)

𝜕xj
= 0 (59)

𝜕𝜌ũi

𝜕t
+

𝜕

(
𝜌ũiũj + P𝛿ij

)

𝜕xj
= div

(
2𝜇̃S + 2𝜏

𝜇S − 2𝜏
𝜌S − 𝜏

𝜌uu
)

(60)

𝜕𝜌
̃E

𝜕t
+

𝜕

(
𝜌
̃Hũi + Q

v
i

)

𝜕xj
= div

(
2𝜏

𝜇Su − 2𝜇 ̃V𝜏
𝜌S − 2𝜇̃S𝜏

𝜌u + 4𝜇𝜏
𝜌u𝜏𝜌S + 𝜌

̃H𝜏
𝜌u − 𝜏

𝜌Hu
)

𝜕𝛼

𝜕t
+ ̃V .∇𝛼 − C

𝜕ũi

𝜕xj
= −𝜏u𝛼 − C div

(
𝜏
𝜌u
)

(61)

with the appearance of subgrid terms:

𝜏u𝛼 = V .∇Xv − ̃V .∇𝛼 ; 𝜏
𝜌u = ̃V − V

𝜏
𝜇S = 𝜇S − 𝜇S ; 𝜏

𝜌S = ̃S − S
𝜏
𝜌Hu = 𝜌HV − 𝜌

̃H ̃V ; 𝜏
𝜇Su = 𝜇SV − 𝜇SV

𝜏
𝜌uu = 𝜌

(
̃V ⊗ V − ̃V ⊗

̃V
)

The subgrid terms must be formally modelled. A part of theses terms is present in

standard single-phase compressible LES equations (the subgrid stress tensor), while

the subgrid interfacial transport 𝜏u𝛼 is specific to two-phase flows. The magnitude

of the different subgrid terms was a priori evaluated in the case of phase separa-

tion flows and turbulence bubble interaction (Labourasse et al. 2007; Vincent et al.

2008). Following these studies, the influence of 𝜏u𝛼 is highly dependent on the flow

configurations and/or on the chosen two-phase description. Yet, in cavitating flows,

the influence and the hierarchy of all these terms have never been investigated.

Following the works of Bois et al. (2010) about the concept of continuous LES in

two-phase flows, a supplementary term appears in the viscous stress tensor formu-

lation due to the mass transfer and the jump relations:

𝜏ij = 2𝜇Sij −
2
3
𝜇Skk𝛿ij + 𝜇Γv

(
1
𝜌v

− 1
𝜌l

)(
2 − 2

3
𝛿ij

)
ni𝛿I (62)

This term has never been studied in cavitation.
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6 The Cavitation Software CaviFlow

The numerical simulations are carried out using an implicit compressible solver for

multi-domain structured meshes. This solver is based on a cell-centred finite-volume

discretization.

6.1 Spatial Discretization

For the mean flow, the convective flux density vector on a cell face is computed

with the Jameson scheme (Jameson et al. 1981). The viscous terms are discretized

by a second-order space-centred scheme. For the turbulence transport equations, the

upwind Roe scheme (Roe 1981) is used to obtain a more robust method. The second-

order accuracy is obtained by introducing a flux-limited dissipation.

6.2 The Low Mach Number Preconditioner

For low Mach number applications, a well-known problem concerns the stiffness

on the solution convergence. In this situation, the dominance of convection terms

renders the system stiff and compressible solvers converge slowly. To overcome this

difficulty, a preconditioning method is necessary. The physical acoustic waves are

replaced by pseudo-acoustic modes that are much closer to the advective velocity,

reducing the stiffness and enhancing the convergence. The method is based on the

modification of the derivative term by a premultiplication with a suitable precon-

ditioning matrix. In order to simplify the formulation, we present below the one-

dimensional formulation. With the primitive variables W = (P, u, e, 𝛼) the precondi-

tioned Euler equations can be expressed as

P−1
e
𝜕W
𝜕t

+ Ae
𝜕W
𝜕x

= 0 (63)

We use the preconditioning matrix based on the Turkel approach (Guillard and

Viozat 1999; Turkel 1987):

Pe =
⎡
⎢
⎢
⎢
⎣

𝛽

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

; Ae =
⎡
⎢
⎢
⎢
⎣

u 𝜌c2 0 0
1∕𝜌 u 0 0
0 P∕𝜌 u 0
0 −K 0 u

⎤
⎥
⎥
⎥
⎦

𝛽 is a parameter on the order of the Mach number expressed by Choi and Merkle

(1993): 𝛽
2 = min

[
max

(
M2

, 𝜃M2
∞
)
, 1

]
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This form implies that there is no preconditioning used in transonic and super-

sonic flow regions (in the mixture). When 𝛽

2 = 1, the preconditioning matrix

becomes the identity matrix and the system returns to its classical non-preconditioned

form. Moreover, for a very small flow velocity, 𝛽
2

is not allowed to be less than a

given percentage of the freestream velocity, determined by the coefficient 𝜃.

The eigenvalues of the preconditioned system are

u; u ; 𝜆± = 1
2

[
u(1 + 𝛽

2) ±
√
(𝛽2 − 1)2u2 + 4𝛽2c2

]
(64)

For the variables w = [𝜌, 𝜌u, 𝜌E, 𝛼], the method involves the preconditioning

matrix P−1
c = 𝜕w

𝜕W
P−1

e
𝜕W
𝜕w

and the Jacobian matrix of the convective fluxes Ac.

Expressions of matrices are given in Goncalves and Charriere (2014).

6.3 Temporal Discretization

Time integration is achieved using the dual time stepping approach and a low-cost

implicit method consisting in solving, at each time step, a system of equations arising

from the linearization of a fully implicit scheme. The derivative with respect to the

physical time is discretized by a second-order formula. The main advantage of this

method is that the storage of the Jacobian matrix is completely eliminated, which

leads to a low-storage algorithm (Goncalves and Patella 2009).

With the preconditioned method, the dissipation matrices are modified and the

preconditioned matrix P−1
c remains in the formulation. By judiciously exploiting the

idempotence propriety of the matrix M, it is possible to preserve a low-cost system

where matrix operations and matrix-vector products can be easily computed.

For the turbulence transport equations, the diffusive flux Jacobian matrix is

replaced by its spectral radius. The source term needs special treatment (Merci et al.

2000). Only the negative part of the source term Jacobian matrix is considered and

replaced by its spectral radius. The system obtained is solved with a line-alternated

Jacobi relaxation algorithm.

6.4 Inlet and Outlet Boundary Conditions

The numerical treatment of the boundary conditions is based on the use of the pre-

conditioned characteristic relations of Euler equations. The number of variables to

impose at boundaries is given by the number of characteristics directed into the

domain of interest. The characteristic relations obtained for the preconditioned sys-

tem, in two-dimensional flows, are
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− c2(𝜌c − 𝜌

s) + (Pc − Ps) = 0 (65)

Vc
t − Vs

t = 0 (66)

𝜌(𝛼c − 𝛼

s) − K(𝜌c − 𝜌

s) = 0 (67)

(𝜆+ − Vn)(Pc − Ps) + 𝜌𝛽

2c2(Vc
n − Vs

n) = 0 (68)

(𝜆− − Vn)(Pc − Ps) + 𝜌𝛽

2c2(Vc
n − Vs

n) = 0 (69)

The variables with superscript c denote the variables to be computed at the boundary.

Variables with superscript s denote the variables obtained by the current numerical

scheme. Vt and Vn are the tangential and the normal component of the mean velocity,

respectively.

At inflow, we impose the stagnation pressure Pi, the stagnation temperature Ti,

the direction of the velocity and the initial values of the void ratio. The pressure is

evaluated with the relation (69) and all variables can be evaluated at the boundary.

At outflow, the static pressure is imposed. The conservative variables are com-

puted with four characteristic relations (65)–(68).

7 Test Cases Used for the Numerical Studies

To investigate and to compare models various test cases are considered as follows:

∙ 1D inviscid tube cases

These cases involve a large rarefaction area in a tube which leads to the apparition

of cavitation. The ability of cavitation models to reproduce the physical phenom-

enon without viscosity and turbulence problems can be evaluated.

∙ Cavitation sheet in Venturi geometries in turbulent flow

Two Venturi configurations are studied for which the divergent angle is different.

Partial sheet cavities appear along the solid wall downstream the Venturi throat.

Two dynamics behaviour were experimentally observed: a transitional aperiodic

phenomenon and a self-sustained periodic one.

∙ For the study of thermal effects, a Venturi configuration in which the running fluid

is freon R-114.

For this case, a steady cavitation sheet develops downstream the throat of the Ven-

turi.

7.1 Water–Gas Mixture Expansion Tube at Different
Velocities

A double rarefaction tube problem is considered with an initial velocity discontinuity

located at the middle of the tube. This test, proposed by Saurel et al. (2008), consists

in a one meter long tube filled with liquid water at atmospheric pressure and with
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Fig. 2 Expansion waves and pressure evolution in the tube, extracted from Zein et al. (2010)

density 𝜌l =1150 kg/m3
. The temperature of water is Tref = 355K. A weak volume

fraction of vapor 𝛼 = 0.01 is initially added to the liquid. The initial discontinuity

is set at 0.5 m, the left velocity and the right velocity have the same value but an

opposite sign. Two velocities are tested: u = ±2 m/s and u = ±100m/s. The vapour

pressure Pvap(Tref ) is set to 51000 Pa at the initial temperature.

The solution involves two expansion waves. As gas is present, the pressure cannot

become negative. To maintain positive pressure, the gas volume fraction increases

due to the gas mechanical expansion and creates a pocket. Liquid water is expanded

until the saturation pressure is reached then evaporation appears and quite small

amount of vapor is created. The solution with phase transition is composed of four

expansion waves. The extra two expansion waves correspond to the evaporation

fronts (see Fig. 2).

These cases were computed in Zein et al. (2010) using a two-fluid model in which

instantaneous relaxation processes towards equilibrium are included for the temper-

ature and the Gibbs free energy. The mesh contains 5000 cells. The time step is set

to 10−7 s. The value of cbaro is set to 1.31 m/s for the 4-equation sinus model as

presented in Goncalves (2013).

7.2 Venturi Data in Cold Water

Experiments have been performed in a closed loop at CREMHyg (Centre d’Essais

de Machines Hydrauliques de Grenoble). Two flow configurations have been tested

corresponding to flat upper and side walls, whereas the height of the lower wall

varied in order to form a convergent-divergent nozzle. In the present considered

experiments, case 1 was constituted by an angle of the divergent part of 4
◦
. Case

2 corresponds to a convergent part of about 18
◦

and the divergent part was 8
◦
. The

pressure Pinlet was lowered until the desired cavitation number allowing two specific

behaviours of the sheet cavity. The cavitation number in the inlet section is defined
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Table 1 Flow configuration, Venturi geometries

Experimental parameters Case 1 Case 2

Angle of the divergent 4
◦

8
◦

Inlet velocity Uinlet 10.8 m/s 7.04 m/s

Inlet pressure Pinlet 0.35 bar 0.52 bar

Cavitation parameter 𝜎inlet 0.547 ± 0.05 2.15 ± 0.06

Reynolds number ReLref
2.7 106 1.57 106

Sheet cavity Smoothly fluctuating Self-oscillating

Clouds shedding frequency None 45 Hz

Time-averaged cavity length ∼80 mm –

Fig. 3 Venturi design and probe locations, 4
◦

divergence angle (left) and 8
◦

angle (right)

as: 𝜎inlet =
Pinlet − Pvap

0.5𝜌U2
inlet

, where Pvap is the vapour pressure at 20
◦
C and Pinlet, Uinlet

are the pressure and velocity respectively at the reference section upstream of the

Venturi. The flow conditions are given in Table 1.

With these previous parameters and according to experimental observations

(Barre et al. 2009; Aeschlimann et al. 2013), cavitation sheets developed from the

Venturi throat (Fig. 3). The obtained cavity length is ranging from 70 to 85 mm for

case 1 and having a relatively stable aspect (see Fig. 4). The attached cavity length

corresponding to the end of the re-entrant jet is around 30 mm. For this case, no

periodic cycles with large shedding were observed.

For case 2, a typical self-oscillation behaviour was observed with quasi-periodic

vapour clouds shedding and the maximum cavity length (before the break-off of the

cavity) was 45 ± 5 mm. Figure 4 shows an instantaneous photograph of the cav-

ity with a large structure shedding. The cloud shedding frequency was about 45 Hz

leading to the classical Strouhal number based on the cavity length of about 0.3. The

divergent part was equipped with eight probe holes to take various measurements

such as the instantaneous pressure, local void ratio and velocity in the sheet cavity.

Specific probe locations are presented in Fig. 3 for the two tested cases.

Numerical data Both grids used for simulations are a H-type topology. For the non-

cavitating regime, computations are started from an uniform flow-field using a local

time step. For the unsteady cavitating regime, computations are performed with the

dual time stepping method and are started from the non-cavitating numerical solu-

tion. All numerical values are obtained by a time-averaged treatment. For case 2, a
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Fig. 4 Photograph of cavities, 4
◦

Venturi (left) and 8
◦

Venturi (right)

direct Fourier transformation (DFT) of the vapour volume signal was performed to

evaluate the frequency of the phenomenon.

7.3 Venturi Data in Freon R-114

The freon R-114 experimental facility of the CREMHyG is a closed loop operating

with a reference pressure, obtained by pressurizing a tank with nitrogen gas. The

cavitation tunnel was designed to simulate cavitating flows developing on the blades

of space turbopump inducers (Stutz 1996; Fruman et al. 1999). The loop is fitted

with a test section having the shape of a two-dimensional Venturi, characterized by

a divergence angle of 4
◦

(similar to the previous case 1). This geometry is equipped

with three probing holes to take various measurements. Optical probes and micro-

thermocouples are used to evaluate the local void ratio and the wall temperature,

respectively. Flow conditions and experimental parameters are given in Table 2. With

these parameters, a cavity length around 80 mm was obtained, with a relatively stable

aspect.

The freon R-114 allows to study the thermodynamic effect in ambient conditions.

It provides the same temperature depression ΔT∗ = 1.22 K in comparison with the

liquid hydrogen at Tref = 22K.

All cavitating simulations are steady computations, which are started from the

non-cavitating numerical solution. The H-type grid contains 251 nodes in the flow

direction and 77 in the orthogonal direction.

Table 2 Flow configuration for the Venturi case with freon R-114

Inlet velocity Vinlet 14.4 m/s

Inlet pressure Pinlet 265300 Pa

Reference temperature Tref ≃293 K

Vapour pressure at Tref 181100

Cavitation parameter 𝜎inlet ≃0.55

Reynolds number ReLref
18.4 × 106
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8 Comparison of Turbulence Models

We present here only results obtained on the first Venturi (4◦ divergence angle). All

unsteady simulations were performed with the same cavitation model: the 3-equation

sinus model.

8.1 Eddy Viscosity Limitation

A qualitative view of the cavity sheet is plotted in Fig. 5 with the contours of the den-

sity gradient modulus (Schlieren-like visualization). On the left, the simulated cavity

using the Spalart–Allmaras model with the Reboud correction is in good agreement

with the experimental visualization. The numerical sheet presents an attached cav-

ity up to the abscissa x = 0.03 m and downstream a recirculating area with small

cavitation clouds. The re-entrant jet is well captured. On the contrary, the solution

obtained without the Reboud limiter presents an extended attached cavity (up to the

abscissa x = 0.06 m) followed by a very small recirculation. The re-entrant is not

developed.

The effect of the eddy viscosity limiter is shown in Fig. 6 where are plotted the

profiles of the ratio 𝜇t∕𝜇 at station 3 (the re-entrant jet reaches this station). On the

left, we can clearly observed the drastic reduction of 𝜇t using the Reboud limiter in

comparison with the computation without correction. In the sheet cavity, the ratio

is close to zero. On the left, a similar observation is done using the KE model and
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Fig. 5 Contour of the density gradient: with (left) and without (right) the Reboud limiter
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Fig. 6 Time-averaged ratio 𝜇t∕𝜇 at station 3: SA model (left) and KE model (right)
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the Reboud limiter. Moreover, the use of realizability constrains allows similarly to

strongly reduce the eddy viscosity and to make possible the re-entrant jet develop-

ment.

The Reboud limiter can be associated to different transport-equation models with

the same value of the parameter n = 10. It clearly improves the behaviour of the

model and the prediction of the re-entrant jet. Figure 7 shows the time-averaged lon-

gitudinal velocity profiles (on the right) and void ratio profiles (on the left) for the

experiments and computations using different turbulence models. Four models are

tested: Spalart–Allmaras, k − 𝓁, k − 𝜀 and k − 𝜔 SST and three limiters are consid-

ered: Reboud, realizability and SST correction. For all simulations, the re-entrant jet

is well developed and the intensity of the recirculation is correctly simulated except

with the KE Reboud model. For the void ratio profiles, discrepancies appear between

models especially for the near-wall value. All models over-estimate the void ratio

value at wall. The thickness of the cavity is well predicted by all simulations. More

comparisons can be found in Goncalves (2011).

Using the Wilcox k − 𝜔 turbulence model, we observed a strong influence of the

value of the parameter n. Contours of the density gradients are illustrated in Fig. 8

for two values of the parameter n. On the left, with n = 4, we obtained a sheet cavity

in correct agreement with the experiments. Using the reference value n = 10, a large

shedding of two-phase structures is simulated and the re-entrant jet is too extended.

Moreover, the calibration of n depends on the configuration. For the second Venturi
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case (8◦ of divergence angle), the value n = 4 is not adapted, whereas the value n =
10 allows to correctly simulate the sheet cavity dynamic (see Decaix and Goncalves

2013a).

The SST correction can be associated to other turbulence models. For exam-

ple, we simulated the Venturi case using a KL-SST model. The value of the ratio

u′v′∕k = c is a key point. The original value is c = 0.3. Yet, we have no idea of this

value in cavitating flows. We performed three simulations by varying the parameter

c from 0.3 to 0.1. Using the original value c = 0.3, we obtained a similar result in

comparison with a computation without correction. The instantaneous density gradi-

ent contours are plotted in Fig. 9 for c = 0.2 (on the left) and c = 0.1 (on the right).

The intermediate value c = 0.2 allows to simulate a sheet cavity in correct agree-

ment with the experimental data. Using the smallest value c = 0.1, a large shedding

of two-phase structures is computed, which is not observed in the experiments.

The time-averaged velocity and void ratio profiles at station 3 are plotted in

Fig. 10. The three simulations with the KL-SST model are presented and also a KL

realizable computation with c = 0.2. Using the value c = 0.3, the re-entrant jet is

not computed at station 3 and the void ratio is close to 1. The decrease of the con-

stant allows the development of the re-entrant jet. More comparisons can be found

in Decaix and Goncalves (2012).

Fig. 9 Contour of density gradients: c = 0.2 (left) and c = 0.1 (right)
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8.2 Compressibility Effects

We consider here the compressible formulation of the k − 𝜀 model including the

pressure-dilation term Π, the extra-dissipation 𝜀d and the mass flux term M. All

these terms appear in the mixture TKE equation due to the fact that the divergence

of the fluctuating velocity field is not null in two-phase flows. Unfortunately, closure

relations in cavitating flows do not exist. In the following, we show numerical results

obtained using the high-speed aerodynamic closure relations proposed by Sarkar.

The contours of density gradients at two instants are illustrated in Fig. 11 using

the k − 𝜀 model with all compressible terms Π, M and 𝜖d and with the original Sarkar

values. We clearly observed the large shedding of two-phase structures and a very

small attached cavity, which is absolutely not in agreement with the experiments.

We tried to evaluate separately the influence of the additional terms. First, we

computed the Venturi case with the k − 𝜀 model including only the mass flux term

M. The closure relation involves a turbulent Schmidt number 𝜎p close to 1. Different

values were tested for this parameter. The contours of the density gradient modu-

lus are illustrated in Fig. 12 computed with 𝜎p = 1 (left) and 𝜎p = 0.0001 (right).

Both results simulations exhibit a large attached cavity and a small recirculation on

the closure part, which is similar to those obtained with the standard model. The

influence of the mass flux term seems to be weak in the mixture TKE equation.

A computation using the k − 𝜀 model with only the pressure-dilation term Π is

presented in Fig. 13 where the density gradients are plotted. The influence of the

parameter 𝛼3 for the Sarkar correction is shown, the value of the constant 𝛼2 being
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Fig. 11 Contours of the density gradient, k − 𝜖 + Π + M + 𝜖d using Sarkar values, at 2 instants
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set to 0.15. A weak value of 𝛼3 leads to the large shedding of two-phase structures. By

increasing 𝛼3, it is possible to simulate a sheet cavity in relatively correct agreement

with the experiments. Unfortunately, the simulation of the second Venturi case using

this value 𝛼3 = 0.025 did not provide a correct result. A similar conclusion was done

for the calibration of the extra-dissipation term. As a consequence, it was impossible

to calibrate these compressibility corrections for both Venturi cases (see Decaix and

Goncalves 2013a).

8.3 Wall Models and Near-Wall Mesh

This numerical work investigates the mesh influence in the near-wall area when a

partial cavity develops and interacts with the turbulent boundary layer. All meshes

contain 251 nodes in the flow direction and vary by the first cell size and the dis-

tribution in the orthogonal direction. The y+ values obtained from a non cavitating

simulation vary between 9 and 60 near the throat (Fig. 14). All meshes are computed

using a two-layer wall model.

Comparisons are focused on the velocity profiles at station 3 and the develop-

ment of the re-entrant jet. Four meshes and four turbulence models (coupled with

the Reboud correction except the SST model) are compared in Fig. 15. According to

Fig. 14 Evolution of y+
values near the throat, 4◦
Venturi
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Fig. 15 Time-averaged velocity profiles at station 3, mesh and turbulence model comparisons

the turbulence model, different behaviour can be highlighted. For the k − 𝓁 model,

results provided by all meshes are similar and in very close agreement with the exper-

imental values. For the k − 𝜀model, the re-entrant jet is not predicted using the coars-

est mesh 251 × 59. With the other meshes, results are relatively similar and in close

agreement with the experiments. For the Spalart–Allmaras model, large discrepan-

cies between meshes appear. Using the coarsest and finest meshes, the re-entrant jet

is not predicted. For the intermediate mesh, the recirculating area obtained with the

mesh 251 × 62 is in better agreement in comparison with the experimental data. The

sensitivity to the near-wall mesh refinement seems important with this turbulence

model. Using the Menter SST model, the best result is also obtained with the mesh

251 × 62. The finer mesh provides a less intense recirculating area and the solution

is degraded when a coarser mesh is used. With the coarsest mesh, the re-entrant jet

is not predicted. To conclude, the near-wall mesh can be determinant for the good

simulation of the re-entrant jet.

Computations were performed to compare the two-layer wall functions and the

TBLE model, associated with the Smith k − 𝓁 turbulence model and the mesh

251 × 62 nodes. Figure 16 shows the velocity and void ratio profiles at station 3.

Results obtained with both wall treatments are similar and in very good agreement

with the experimental data. A similar conclusion has been done for the computa-

tion of the second Venturi case (see Goncalves and Decaix (2012)). The two-layer

single-phase wall functions seem to be a good approximation.

For the second Venturi case, the experimental frequency of the periodic shedding

is around 45 Hz and the inlet cavitation parameter 𝜎inlet ∼ 2.15. Similar to the pre-
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Fig. 16 Time-averaged velocity and void ratio profiles at station 3, two-layer model versus TBLE

Table 3 Frequency and CPU cost

Mesh y+ 𝜎inlet Frequency (Hz) CPU ratio

174 × 77 2 2.13 30 1

2.18 No frequency

174 × 62 4 2.13 35 0.817

2.17 40

174 × 60 8 2.13 35 0.80

2.19 43.5

174 × 59 12 2.14 44 0.776

174 × 57 20 2.145 46 0.747

174 × 56 30 2.14 46 0.736

vious study, different meshes varying by the first cell size are compared using the

k − 𝓁 Reboud turbulence model coupled with a two-layer wall model. The simula-

tion time is around 2 s. The numerical frequency and the cavitation parameter are

given in Table 3.

The ratio between CPU time for a given case and the fine mesh computation is also

given. With the coarsest mesh, the gain is around 25%. About the frequency predic-

tion, with the finest mesh 174 × 77 computed without wall functions, it was not pos-

sible to capture a periodic self-oscillating cavity with a frequency close to 45 Hz. For

values of the inlet cavitation parameter near 2.15, the obtained frequency is around

30 Hz. For higher values of 𝜎inlet, no frequency appears. For all other meshes com-

puted with wall functions, a correct frequency can be obtained. According to the

mesh refinement, the 𝜎inlet increase allows to reach the experimental value. For the

coarsest meshes, both the frequency and the 𝜎inlet value are close to the experimental

data. Moreover, the local velocity profiles obtained with all meshes are similar (not

presented here).
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8.4 Scale-Adaptive Simulation

We compare unsteady simulations performed on the 4◦ Venturi case using the k − l
turbulence model coupled with the Reboud correction and the scale-adaptive term.

This term is activated in the mixture area and allows to reduce the eddy viscosity.

A qualitative description of the computed sheet cavities is presented in Fig. 17 with

the plot of the the density gradient contours. The attached cavity and downstream the

recirculating area are well predicted by both models. The k − 𝓁 SAS model simulates

a more homogeneous cavity in comparison with the k − 𝓁 Reboud model.

About the velocity and void ratio profiles, both models provided similar results

close to the experimental data (see Decaix and Goncalves 2012). The dimensionless

wall pressure distribution (P − Pvap)∕Pvap is plotted in Fig. 18 (on the left) along

the wall. The first five data are located inside the cavity (where the void ratio and

velocity profiles are measured). All models provide a pressure distribution similar

to the experimental measurements. The Root Mean Square (RMS) wall pressure

fluctuations are plotted in the right part. The pressure fluctuation is divided by the

time-averaged pressure Pav. Experimental data indicate an augmentation of pressure

fluctuations at the end of the sheet cavity, with a peak located at the fifth station. The

standard model (without any corrections) yields a pressure fluctuation profile close

to the experimental profile even if the peak is slightly over-estimated. The pressure
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Fig. 17 Contours of density gradient: k − 𝓁 SAS (left) versus k − 𝓁 Reboud (right)
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fluctuation computed by the k − 𝓁 Reboud model presents a different behaviour with

two peaks more than three times higher than the experimental peak. Finally, the pro-

file simulated by the k − 𝓁 SAS model is in good agreement with the experimental

data even if the peak is over-estimated.

A three-dimensional study of the same Venturi case was performed. The square-

section of the tunnel was meshed and a similar distribution was used in the span

direction z and the y direction leading to 251 × 62 × 62 nodes. The three-dimensional

sheet cavity topology and the interaction with the side walls can be observed using

an iso-surface of the void fraction. Figure 19 displays such an iso-surface for a value

of the void fraction equal to 60%, for a k − 𝓁 SAS computation, at two different

instants.

Comparisons between 2D and 3D simulations concern time-averaged quantities

extracted on the mid-span plane. Figure 20 shows the longitudinal velocity and void

ratio profiles at station 3 obtained with 2D and 3D SAS computations (k − 𝓁 and

Spalart-Allmaras models). The void fraction predicted by the 3D computations is

lower than in the 2D computations. For the velocity profiles, all simulations provide

similar results in good agreement with the experimental data.

Fig. 19 Iso-surface of the void fraction for the value of 60% at two different instants, k − 𝓁 SAS
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Fig. 20 Time-averaged velocity (right) and void ratio (left) profiles at station 3, mid-span plane
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Fig. 21 Time-averaged wall pressure (left) and RMS fluctuations (right), mid-span plane

The time-averaged wall pressure, plotted in Fig. 21, does not evolve in the same

way for the 3D computations. For the Spalart–Allmaras model, the 3D computation

leads to a stronger re-compression area in comparison with the 2D computation. It

is the inverse situation for the k − 𝓁 model. The RMS wall pressure fluctuations (on

the right) put in evidence large discrepancies between 2D and 3D computations. For

the 2D computations, the peak of fluctuations is correctly located with an amplitude

in correct agreement with the experimental measurements. Moreover, the decrease

of the fluctuations level in the wake of the cavitation sheet is well captured. This

is not the case for the 3D computations since the level of pressure fluctuations is

largely over-estimated in the wake. More details concerning the investigation of 3D

computations can be found in Decaix and Goncalves (2013b).

8.5 Concluding Remarks

The turbulence modelling in cavitating flows is confronted with numerous questions

such as the compressibility effects, the small scale effects, the near-wall modelling,

the 3D phenomenon, the anisotropy of the Reynolds tensor, etc.

Hybrid RANS-LES models is a way to improve the level of resolved scales. We

expect that large-eddy simulation of cavitating flows will bring us information on

the flow dynamics, the turbulence structure and the interaction with cavitation.

9 Comparison of Cavitation Models

9.1 Inviscid Tube Cases

Different simulations were performed to compare the 4-equation sinus model and

the 4-equation Hosangadi model by varying the initial discontinuity velocity uinit
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Fig. 22 Water–gas double rarefaction with cavitation u = 2 m/s, 𝛼init = 10−2, mesh 5000 cells, t =

3.2 ms. Void ratio, pressure, velocity, and speed of sound profiles

and the initial value of the void fraction 𝛼init. For these cases, only the evaporation

process is present and only the Cprod parameter is studied. For the sinus model, the

parameter cbaro is set to 1.31 m/s for all computations.

First, we computed the case uinit = 2 m/s and 𝛼init = 10−2. Solutions are com-

pared in Fig. 22 at time t = 3.2 ms with the two-fluid solution of Zein et al. (2010).

The Cprod parameter was calibrated using the two-fluid solution and set to 1. Results

obtained with both models are in close agreement with the 2-fluid solution for the

void ratio and velocity profiles. For the pressure evolution, a small discrepancy

appears for the location of the rarefaction fronts, certainly due to a small difference

on the mixture speed of sound. An important difference between 4-equation mod-

els concerns the evaporation fronts, which are not simulated using the Hosangadi

model. A part of the physics is missing with this model. Finally, large discrepancies

are noticed about the mixture speed of sound profiles (plotted in log scale). It is due to

the fact that the speed of sound associated to the Hosangadi model is the Wallis one.

Second, we computed the case uinit = 100m/s and 𝛼init = 10−2. Solutions are

compared in Fig. 23 at time t = 1.5 ms with the two-fluid solution of Zein et al.

(2010). The Cprod parameter was calibrated using the two-fluid solution and set to

100. Results obtained with both models are in good agreement with the 2-fluid solu-

tion for the void ratio and the velocity. In this case, evaporation is much more intense

resulting in a large cavitation pocket where the gas volume fraction is close to 1.

However, this pocket does not contain pure gas but a mixture at thermodynamic equi-

librium. Moreover, thermal effects are not negligible and a large temperature drop
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Fig. 23 Water–gas double rarefaction with cavitation u = 100 m/s, 𝛼init = 10−2, mesh 5000 cells,

t = 1.5 ms. Void ratio, pressure, velocity and speed of sound profiles

appears leading to a pressure drop in the cavitation area. This phenomenon is not

taken into account by both 4-equation models, which explains the large difference

with the 2-fluid solution (see the next section for the use of non isothermal mod-

els). As previously observed, evaporation fronts are not simulated by the Hosangadi

model and large differences are put in evidence for the mixture speed of sound.

Finally, we computed the case uinit = 100 m/s with a small initial value of gas

𝛼init = 10−10. For this case, no reference solutions are available. Various Cprod values

were tested. From the value 106, the numerical solution did not move any more and

we set the parameter to this value. Solutions are compared in Fig. 24 at time t =
0.2 ms. The rarefaction fronts are stiffer in comparison with the previous case. The

cavitation area and the evaporation fronts can be clearly observed with the 4-equation

sinus solution, that is not the case for the other model. The mixture speed of sound

is plotted with a logarithmic scale for both 4-equation models. Large variations are

highlighted, from the pure liquid high value to small values in the cavitation pocket.

At the middle of the tube where the void ratio is close to 1 the speed of sound is close

to the vapour value. For the sinus speed of sound, the four waves can be observed

and the ratio between extremal sound velocities is higher than 1000. These variations

make the numerical solving of the system very stiff.

For the considered test cases, the domain of evolution of Cprod is [1, 106] that is

really questionable. Other comparisons can be found in Goncalves (2013).
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Fig. 24 Water–gas double rarefaction with cavitation u = 100 m/s, 𝛼init = 10−10, mesh 5000 cells,

t = 0.2 ms. Pressure and speed of sound profiles
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Fig. 25 Time-averaged void fraction downstream the Venturi throat

9.2 𝟒◦ Venturi Case

Various unsteady simulations were performed in order to compare cavitation models

on the 4◦ Venturi case. The same mesh 251 × 62 is used for all simulations. The sim-

ulation time is around 2 s. The considered turbulence model is the Spalart–Allmaras

one coupled with the Reboud correction.

3-equation models We compared 3-equation models for which the mixture EOS

is different: a mixture of stiffened gas versus a sinus law. A qualitative view of the

sheet cavities is presented in Fig. 25 in which are plotted the time-averaged void ratio

fields downstream the Venturi throat. Using the mixture of stiffened gas EOS, the re-

entrant jet is not predicted and the repartition of void ratio is not in agreement with

the experiments. On the contrary, using the sinus EOS, we can clearly observed the

attached cavity with large values of void ratio (in red).

Figure 26 shows the time-averaged velocity and void ratio profiles at station 3.

Except for the cavity thickness, similar results are obtained for the void ratio profiles.

The velocity profiles clearly illustrates the absence of re-entrant jet for the mixture of

stiffened gas EOS solution. This model seems not adaptable for such partial cavities.

3-equation versus 4-equation models We compared the 3-equation and 4-equation

models coupled with the sinus EOS. A qualitative description of the sheet cavities

is illustrated in Fig. 27 with the density gradient contours. Both simulations provide

a solution in good agreement with the experimental visualizations.

In Fig. 28 are plotted the time-averaged velocity and void ratio profiles at station

3. Results obtained with both models are quite similar. For this test case, the use of a
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Fig. 26 Void ratio (left) and velocity (right) profiles at station 3

Fig. 27 Contours of the density gradient modulus: 3-equation model (left) and 4-equation model

(right)
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Fig. 28 Time-averaged void ratio and velocity profiles at station 3

transport-equation model did not improve the numerical results in comparison with

the 3-equation sinus model (see Goncalves and Charriere 2014).

4-equation models Two formulations of 4-equation models have been previously

presented in the theoretical part, based on either a mixture of stiffened gas EOS

(called 4-equation SG model) or a sinus law (called 4-equation sinus model). The

sheet cavities obtained with these models are compared in Fig. 29 with the plot of

the instantaneous density gradient modulus. Both simulations put in evidence a quite

similar dynamics involving an attached cavity (up to the abscissa x = 0.04 m) and a

recirculating area with the generation of small vapour cloud shedding.

A local analysis is led by studying void ratio and velocity profiles, which are pre-

sented in Fig. 30 at station 3. Results obtained with both models are in good agree-

ment with the experiments. The 4-equation SG cavitation model slightly provides a

better prediction of the void ratio wall value. Moreover, this model provides a better
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Fig. 29 Contours of the density gradient modulus: 4-equation SG model (left) and 4-equation

sinus model (right)

Fig. 30 Time-averaged void ratio and velocity profiles at station 3

estimation of the pressure fluctuations decrease in the re-compression area (Char-

riere et al. 2015).

Comparison with incompressible codes Based on homogeneous models, two

numerical approaches using compressible and incompressible codes can be applied

to capture large density variations and unsteady behaviours of cavitating flows. Both

approaches seem to have strong and weak points. In this study, we compared the

compressible CaviFlow solver with the incompressible IZ solver. This code solves a

barotropic system coupled with transport-equation turbulence models. The numeri-

cal resolution is a pressure-correction method derived from the SIMPLE algorithm.

All computations are time-dependent to take into account the variation of density.

A sinus relation links the density to the pressure (Delannoy and Kueny 1990). More

details can be found in Coutier-Delgosha et al. (2002).

Simulations were performed on the 4◦ Venturi case using the same mesh and a

k − 𝜀 turbulence model coupled with the Reboud correction. A qualitative view of

the simulated sheet cavities is presented in Fig. 31 where the instantaneous void ratio

is plotted. The numerical solutions obtained with both codes present some marked

differences. The compressible code captured a sheet behaviour in good agreement

with the experimental view. We can observe the attached cavity from the throat of the

Venturi up to x = 0.3m. Downstream, the recirculating area with two-phase structure
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Fig. 31 Instantaneous contour of void fraction, incompressible code (left) and compressible code

(right)
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Fig. 32 Void ratio (left) and velocity (right) profiles at station 3

shedding is well illustrated. On the other hand, the incompressible code captured a

low frequency periodic sheet dynamics without re-entrant jet (around 6 Hz).

Figure 32 shows the longitudinal velocity and void ratio profiles for experiments

and numerical results at station 3. For the void ratio profiles, both codes provided

a similar solution in good agreement with the experimental data. The recirculating

behaviour with a re-entrant jet is well simulated by the compressible code. On the

contrary, using the incompressible code the re-entrant jet is not captured. At stations

4 and 5, the re-entrant is largely under-estimated (see Goncalves et al. 2010a).

Another comparison is proposed with the incompressible code OpenFOAM. Sim-

ulations were performed on the 4◦ Venturi case using a similar mesh and the k − 𝜔

SST turbulence model. The considered cavitation models are the 4-equation SG

model and the Kunz model for the CaviFlow and OpenFOAM codes, respectively

(see Charriere et al. 2015).

Figure 33 shows the instantaneous void fraction field downstream the Venturi

throat for both computations. Using the openFOAM solver, the attached cavity is

extended with void ratio values close to 1 and a small liquid film can be observed

along the wall from abscissa x = 0.05 m. On the contrary, the attached sheet cav-

ity computed with the compressible CaviFlow solver is in good agreement with the

experiments. Downstream, we can observe the recirculating area with two-phase

structure shedding.
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Fig. 33 Instantaneous contour of void fraction, incompressible code (left) and compressible code

(right)
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Fig. 34 Time-averaged void ratio (left) and velocity (right) profiles at station 3

In Fig. 34 are presented the time-averaged velocity and void ratio profiles at sta-

tion 3. The compressible solver provides a better prediction of the void ratio profile

due to the presence of a mixture in this area. The OpenFOAM computation over-

predicts the vapour quantity inside the cavity, which can reach 95%. Moreover, the

thickness of the cavity is under-estimated and a pure liquid phase is simulated close to

the wall. As regard to the re-entrant jet, the OpenFOAM simulation badly reproduces

the recirculation area. On the contrary, the recirculating behaviour with a re-entrant

jet is correctly simulated by the compressible code.

To conclude, the topology of the cavitation pocket marks large discrepancies

between compressible and incompressible codes, especially concerning the re-entrant

jet development. Comparisons with measurements suggest that the compressible for-

mulation provides an improved description of the cavitation dynamics compared

with incompressible computations.

9.3 𝟖◦ Venturi Case

Unsteady simulations were performed on the 8◦ Venturi case, which involves a self-

sustained oscillating sheet cavity. The same mesh 174 × 56 is used for all simula-



220 E. Goncalves

tions. The simulation time is around 2 s. The considered turbulence model is the

Spalart–Allmaras one with the Reboud limiter.

3-equation versus 4-equation We compare the 3-equation and 4-equation models

coupled with the sinus EOS. The obtained frequency is close to the experimental for

both codes (around 45 Hz). A qualitative description of the sheet cavities is illustrated

in Fig. 35 with the instantaneous density gradient contours. Using the 4-equation

model, results provide a shedding phenomenon in better agreement with the experi-

mental data. With the 3-equation model, we can observe an extended attached cavity,

and downstream the fluctuating recirculation with two-phase structures shedding.

These shedding are rapidly eliminated and under-estimated in comparison with the

experimental visualizations and the 4-equation simulations.

Figure 36 presents the time-averaged void ratio and longitudinal velocity pro-

files at station 1. Near the throat, the void ratio is largely over-estimated using the

3-equation model. The attached cavity is too extended. Results are similar for the

velocity profiles in good agreement with the experiments.

In Fig. 37 are plotted the time-averaged void ratio profiles at station 3 and the

time-averaged dimensionless wall pressure distribution. Using the 3-equation model,

the averaged value of the void ratio is null. As commented previously, the cloud

shedding is not enough developed. On the contrary, it is more intense using the 4-

equation model. For the average pressure, both models provide a result in correct

agreement with the experimental data. More comparisons can be found in Goncalves

and Charriere (2014).

To conclude between the 3 and 4-equation models and their ability to compute

both Venturi cases:
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Fig. 37 Time-averaged void ratio profile at station 3 (left) and wall pressure evolution (right)

Fig. 38 Contours of the density gradient modulus: 4-equation SG model (left) and 4-equation

sinus model (right)

∙ For the quasi-stable cavity, the void ratio transport-equation does not clearly

improve the previous simulations obtained with a 3-equation model.

∙ For the periodic self-oscillating cavity, the two-phase structures shedding is more

intense and in better agreement with the experimental data using the 4-equation

model. The transport of void ratio seems to be a key point to correctly predict the

sheet cavity dynamics.

4-equation models We compare the two formulations of 4-equation models based

on a mixture of stiffened gas EOS and a sinus EOS. First, the obtained frequency

using the 4-equation SG model is around 20 Hz instead of 45 Hz. Except the fre-

quency, the overall agreement with the experimental visualizations is correct. The

instantaneous density gradient contours are plotted in Fig. 38 for both models. The

two-phase shedding is well captured by both models.

Figure 39 presents the time-averaged void ratio and longitudinal velocity profiles

at station 1. For the velocity profile, both models provide a result in correct agreement

with the experimental data. The void ratio profile is better predicted using the 4-

equation SG model, especially the near-wall values.

Void ratio profiles at stations 2 and 3 are plotted in Fig. 40. As previously, a bet-

ter agreement is observed using the 4-equation SG model, but the frequency of the

phenomenon is not correct.

Comparison with an incompressible code Unsteady simulations obtained using

the incompressible IZ and compressible CaviFlow codes are compared. The same

mesh is used (251 × 61 nodes) and the turbulence model is a k − 𝜀 with the Reboud
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Fig. 39 Void ratio (left) and velocity (right) profiles at station 1

Fig. 40 Void ratio profiles at station 2 (left) and station 3 (right)
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Fig. 41 Instantaneous void ratio field: incompressible code (left) and compressible code (right)

limiter. The 3-equation sinus model is considered for the compressible simulations

and a barotropic sinus model for the incompressible ones. Both codes provided an

oscillating phenomenon with the correct frequency in comparison with the experi-

mental value.

An instantaneous view of the cavity (void ratio contours) obtained with the incom-

pressible code is illustrated in the left part of Fig. 41. Large-scale two-phase structure

shedding is clearly observed. The re-entrant jet is very intense and flows upstream to

the throat of the Venturi, leading to the disappearance of the attached cavity. The

solution obtained with the 3-equation compressible model presented in the right

part of Fig. 41 is different. As previously commented, an extended attached cavity is

predicted and two-phase structures convected in the flow are smaller and condense

rapidly. Results are improved with the use of the 4-equation sinus model.
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Fig. 42 Time-averaged void ratio (left) and velocity (right) profiles at stations 1 and 2

Figure 42 illustrates the time-averaged void ratio and velocity profiles at stations

1 and 2. At station 1, with the compressible code, the recirculating behaviour is very

well captured, yet the void ratio is over-predicted. For the incompressible code, the

void ratio is slightly under-estimated due to the disappearance of the attached cavity.

At station 2, both codes under-evaluated the recirculating area thickness. For the void

ratio profile, values obtained with the incompressible code are largely over-predicted,

whereas values obtained by the compressible code are in better agreement with the

experimental data.

To conclude these studies between compressible and incompressible codes:

∙ The incompressible IZ code seems to be unable to correctly simulate the quasi-

stable Venturi case using a barotropic model and a Reboud limiter. Similarly, the

openFOAM code using the Kunz’s void ratio transport-equation model and the

Menter SST model is unable to reproduce the re-entrant jet phenomenon. Is it due

to a problem of waves propagation or compressibility effects?

∙ For the second Venturi case, using the incompressible IZ code a very intense re-

entrant jet is captured, which flows upstream to the throat and completely elimi-

nates the attached cavity. For the compressible CaviFlow code, large-scale cavita-

tion structure shedding are under-predicted using the 3-equation model, whereas

the phenomenon is correctly simulated using the void ratio transport-equation.
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10 Cavitation Models and Thermodynamic Effects

10.1 Inviscid Tube Cases

As previously discussed, when the initial discontinuity velocity is high, thermal

effects are no more negligible. We compare the two formulations of 4-equation mod-

els including thermal effects for the double rarefaction case for which the initial

velocity is 100 m/s. For the sinus model, the parameter cbaro is set to 1.31 m/s, as

previously. The value of dPvap∕dT , evaluated with a thermodynamic table, is set to

300 Pa/K (see Goncalves 2014).

The volume fraction, pressure, velocity and temperature evolutions are plotted in

Fig. 43, at time t = 1.5 ms. No differences appear on the void ratio between models.

For the pressure profiles, the pressure drop under Pvap(Tref ) is around 0.3 bar with

both models, in close agreement with the two-fluid solution. Discrepancies appear

for the velocity profile in comparison with the two-fluid solution: variations across

the evaporation front are stiffer using the 4-equation models. The temperature drop

inside the cavitation pocket due to the phase transition is very large. It reaches more

than 70 K with the 4-equation SG model and 90 K with the 4-equation sinus model.

Yet, we have no reference solution for the temperature profile.

A similar test case is based on the same conditions except regarding the initial

discontinuity velocity which is set to u = 500 m/s. A large cavitation area is cre-

ated. Inside the cavity, according to the solution presented in Zein et al. (2010), the
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Fig. 43 Water–gas double rarefaction with cavitation u = 100 m/s, 𝛼init = 10−2, mesh 5000 cells,

t = 1.5 ms. Void ratio, pressure, velocity and temperature profiles
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pressure drop is near 0.5 bar under the vapour pressure at the reference temperature.

The value of dPvap∕dT is set to 130 Pa/K. In Fig. 44 are presented the void ratio and

pressure profiles at time t = 0.58 ms. Results obtained with both 4-equation models

are in good agreement with the two-fluid solution.

10.2 Venturi Case with Freon R-114

Steady simulations were performed on the freon R-114 Venturi case to investigate

cavitation models. The considered mesh contained 251 × 77 nodes and the Spalart-

Allmaras turbulence model was used for all simulations.

Isothermal and non isothermal 3-equation models Comparisons between the

isothermal and non isothermal formulations of the 3-equation sinus model are pro-

posed. The value of the constant dPvap∕dT is set to 5900 K/Pa and the parameter cbaro
is set to 0.74 m/s. A study of the influence of this parameter is given in Goncalves

and Patella (2010).

For both models, a steady pocket for witch the length is around 80 mm was simu-

lated. Void ratio profiles at stations 1 to 3 are plotted in Fig. 45 with the experimental

data. The cavity thickness is well predicted using the isothermal model but the maxi-

mal values of void ratio are too high (85% instead of 45% at station 1). Using the non

isothermal model, the thickness is increased and the maximum values are decreased.

The cooling effect during the phase transition is studied by plotting the temperature

difference Tref − T at station 1 (Fig. 45). The measured wall temperature is 2.1 K.

The wall value is correctly predicted by the non isothermal model. With the isother-

mal model, temperature variations are important inside the cavity and the peak of

temperature deficit can reach 12 K.

Simulations were performed with other flow conditions: Tref = 303K and Uinlet =
22 m/s. Two inlet cavitation parameters were considered: 𝜎inlet = 0.55 and 𝜎inlet =
0.59. The goal was to obtain a stable cavitation sheet with a length close to the experi-

mental one. Results provided by the 3-equation non isothermal model are compared

with the experimental data. The wall temperature depression is plotted in Fig. 46
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Fig. 46 Wall cooling Tref − T (K) at different inlet cavitation parameter

versus the distance (x − xthroat)∕Lcav for the two inlet cavitation numbers. The tem-

perature deficit is well predicted by computations and results are in good agreement

with the experimental data. Yet, for higher inlet velocities, the model fails to predict

the temperature depression (in comparison with the experimental data, the error is

around 50%, see Goncalves and Patella 2010).

3-equation versus 4-equation models Both non isothermal sinus formulations have

been compared on the Venturi case. The void ratio follows an analytical relation

for the 3-equation model, whereas it follows a transport-equation for the 4-equation

model.
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Figure 47 shows the temperature deficit T − Tref inside the Venturi divergent. The

cooling effect due to the vaporisation process is clearly observed for all simulations

(negative values). A large discrepancy appears between the 3- and 4-equation mod-

els downstream the cavity in the re-compression area. Using the 3-equation model,

the temperature deficit is close to zero downstream the cavitation pocket, that is the

temperature goes back to the freestream temperature. On the contrary, we observe

a warming effect downstream the cavity using the 4-equations model. Locally, the

temperature exceeds the freestream temperature and values reach more than 4 K.

The temperature gradient is illustrated in Fig. 48 for both models. The grey scale

is the same for all computations. We clearly observe differences on the behaviour

of models in the closure part of the cavitation pocket. Using the 3-equation model,

there is no temperature gradient at the end of the pocket. We just see a small gradient

at the interface in the vicinity of the throat. With the 4-equation model, strong gra-

dients are put in evidence in the closure part of the pocket and downstream in the re-

compression area. Such a phenomenon was depicted in Petkovsek and Dular (2013)

on a hot water Venturi flow due to the collapse of bubbles. Using high-speed infra-red

thermography, authors measured a temperature depression of approximately 0.4 K

in the vicinity of the throat and a temperature rise up to 1.4 K was recorded in the

region of pressure recuperation.

Figure 49 illustrates the numerical void ratio obtained with three models (3-

equation sinus, 4-equation sinus and 4-equation SG models) in comparison with the

measurements at stations 2 and 3. The cavity thickness is clearly better predicted

by the 4-equation sinus model. Using the 3-equation model, the thickness is over-

estimated with a factor 2. An intermediate result is provided by the 4-equation SG

model. Other comparisons can be found in Goncalves (2014).
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Fig. 49 Void ratio profiles at stations 2 and 3

11 Conclusion and Perspectives

The simulation of cavitating flows using 1-fluid RANS tools is confronted to open

questions as regard to the turbulence modelling, the thermodynamic path during the

phase transition, the mass transfer modelling and the turbulence-cavitation interac-

tion. In this paper, various turbulence and cavitation models have been compared

and tested in their ability to correctly simulate cavitation pockets which can occur in

a variety of practical cases. Models has been implemented in a compressible RANS

solver including a low Mach number preconditioning algorithm and has been applied

for the simulation of two different partial cavities developing along Venturi geome-

tries. Furthermore, a comparison with incompressible pressure-based solvers were

proposed. Results lead to different concluding remarks:

(i) For the quasi-stable cavity, it was shown that both tested incompressible codes

were unable to predict such sheet dynamics. The presence of wave propagation

involved in the sheet dynamics is a possible explanation. Moreover, it seems that

a void ratio transport-equation is not necessary to correctly simulate this case using

the compressible code.

(ii) For the periodic self-oscillating cavity, the two-phase structures shedding was

more intense and in better agreement with the experimental data using the 4-equation

model in comparison with the 3-equation model. Using the incompressible code, the

re-entrant jet phenomenon was over-estimated leading to the disappearance of the

attached cavity near the Venturi throat.

On the other hand, the turbulence models comparison put in evidence the impor-

tance of the eddy viscosity limitation (Reboud limiter, SST correction, realizability

constrains, scale-adaptive term) and the near-wall boundary-layer treatment for both

Venturi cases. Moreover, it was impossible to calibrate the compressible or dilata-

tional terms appearing in the mixture TKE equation for both cases using aerody-

namic closures. The modelling of theses terms in cavitating flows is still an open

question. Given that it is extremely difficult to quantify this term, it seems obvi-

ous to report the modelling assumptions to the dissipative scales by developing a
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large-eddy simulation formalism adapted to cavitating flows. Yet, the 1-fluid filtered

equations have not been clearly expressed and investigated.

Finally, a study of cavitation models in the case of thermo-sensitive fluid was pre-

sented. A 4-equation model was developed to study thermal effects based on a void

ratio transport equation and assuming a linear variation of the vapour pressure with

the mixture temperature. First validations on inviscid one-dimensional cases showed

the ability of 4-equation non isothermal models to simulate the cavitation develop-

ment in which the running fluid is hot water. Secondly, RANS simulations were per-

formed to study a stable cavitation pocket developing along a Venturi geometry in

which the working fluid is freon R-114. In comparison with 3-equation simulations,

the cavity thickness was clearly improved. Moreover, a warming effect was exhib-

ited downstream the cavity in the re-compression area. The intensity of this warming

effect is higher than the cooling effect observed near the Venturi throat. This rise of

temperature is due to the collapse of bubbles in the closure part of the pocket. This

new 4-equation model is therefore very attractive to study thermodynamic effects

and cryogenic cavitation.
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Numerical Simulation of Cavitating Flows
in Complex Geometries

Maria Vittoria Salvetti

Abstract The present contribution focusses on numerical simulation of cavitating

flows in complex geometries. We consider compressible flows and cavitation models

assuming a homogeneous barotropic flow behavior. Different numerical issues are

analyzed and possible solutions are presented and validated. Finally, an application to

the simulation of the flow in a real turbopump inducer designed for liquid-propelled

rockets is presented.

1 Introduction

Cavitating flows occur in many engineering devices, as, for instance, rocket turbop-

umps, turbomachinery, hydrofoils, marine propellers, or nozzles. It is well known

that cavitation has strong effects, usually negative, on performance and life of such

devices. These kinds of engineering problems have some common features, which

impact on physical modeling and numerical methodology adopted in numerical sim-

ulations of these flows. First, the fluid flows over solid walls having complex geome-

try and in many cases moving. Moreover, the characteristics of the inlet flow stream

are only partially known; for instance, the size and distribution of active cavitation

nuclei are usually not known. In general, for engineering applications, the aim is to

obtain predictions of the global performance of the device and of the effects of cavita-

tion rather than a detailed description of the flow or of cavitation phenomena. On the

other hand, the various effects of cavitation may have different importance depend-

ing on the engineering application; for instance, the analysis of liquid-propellant fed

turbopumps for space application put especial prize on the suction and dynamic per-

formance of the machine rather than on its resistance to erosion and other long-term

effects of cavitation, which are typically a major concern in other applications.

From a physical viewpoint, cavitating flows are characterized by complex phe-

nomena interacting each other, such as change of phase, evolving vapor to liquid
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interfaces and turbulence. Therefore, the modeling of cavitating flows is a very com-

plex task. Several models exist in the literature of different levels of complexity. We

focus here on the so-called one-fluid or homogeneous-flow models, in which the cavi-

tating flow is described in terms of a single fluid or mixture, whose properties depend

on the void fraction. We refer to the contributions by Goncalves and by Saurel et al.

in this volume for more complex two-phase cavitation models. Homogeneous-flow

cavitation models are based on the following assumptions: (i) local kinematic equi-

librium, i.e., same local velocity for both liquid and vapor phases; (ii) local thermo-

dynamic equilibrium, i.e., local temperature and pressure equality between phases;

and (iii) instantaneous vaporization or condensation processes. Clearly, this kind of

modeling is not suitable if strong non-equilibrium effects between the two phases are

present. On the other hand, these models are attracting because of their simplicity

and because they a-priori have the capability of describing the global effects of cav-

itation, which are the most interesting for practical applications. In the framework

of the previous simplifying assumptions, the thermodynamic properties for the pure

liquid, the pure vapor, and the mixture must be specified through an equation of state

(EOS). Different ways have been followed in the literature, e.g., tabulated EOS and

thermodynamic properties (e.g., Clerc 2000 or Ventikos and Tzabiras 2000), entropy

maximization procedure (e.g., Barberon and Helluy 2005), partial mass and partial

density properties (e.g., Meng and Yang 2003), and saturation equations and ther-

modynamics tables (e.g., Saurel et al. 1999). Homogeneous-flow cavitation models

using the assumption of a barotropic behavior for pure liquid and vapor and for the

liquid–vapor mixture (see e.g., Delannoy and Kueny 1990; d’Agostino et al. 2011;

Qin et al. 2003; Liu et al. 2004) are considered herein.

In the homogenous-flow description, the physical properties of the flow change

dramatically between the zones of pure liquid and the cavitating regions. In partic-

ular, in non-cavitating zones the flow is almost incompressible, while the cavitating

mixture is described as a highly compressible fluid, characterized by speed of sound

values of several orders of magnitude lower than those of the pure liquid. More-

over, an abrupt transition from the wetted (incompressible) to the cavitating (highly

supersonic) regimes occurs. These features yield strong difficulties for numerical

simulation, in spite of the simplifying assumptions made and the apparent simplic-

ity of barotropic homogeneous-flow cavitation models. It is clear, on the basis of the

previous considerations, that the numerical schemes must be designed in order to

cope with nearly incompressible and highly compressible regions coexisting in the

flow. Two opposite approaches can be found in the literature: adaptation to compress-

ible flows of methods developed for incompressible flows, usually through pressure

correction (e.g., Srinivasan et al. 2009; Senocak and Shyy 2002; Coutier-Delgosha

et al. 2003) or adaptation to the incompressible limit, usually through ad-hoc pre-

conditioning, of compressible flow solvers (e.g., Sinibaldi et al. 2006; Bilanceri et al.

2010; Goncalves and Patella 2009; Coutier-Delgosha et al. 2005; Kunz et al. 2000).

Each one of these approaches has advantages and drawbacks. Incompressible solvers

may lead to erroneous acoustic speeds in the cavitating regions, while compressible

solvers have well-known accuracy and efficiency/robustness problems in the low

Mach number regions (Sinibaldi et al. 2006; Guillard and Viozat 1999).



Numerical Simulation of Cavitating Flows in Complex Geometries 237

A mixed finite-volume/finite-element compressible flow solver on unstructured

grids is considered herein. Unstructured grids are interesting when complex geome-

tries are considered. Due to the previously mentioned difficulties, the numerical

method should be robust and efficient. Two key ingredients are used in this work.

First, a HLL flux function for the convective terms is used, in which an anti-diffusive

term is introduced to counteract accuracy problems for viscous flows typical of this

class of schemes. On the basis of an asymptotic analysis in power of Mach, a precon-

ditioning of the same kind of that used in Guillard and Viozat (1999) for perfect gases

was adapted to barotropic flows and introduced in the upwind part of the numeri-

cal flux, in order to counteract the accuracy problems encountered in the low Mach

regime. Since the preconditioning matrix multiplies the upwind part of the flux only,

consistency in time is preserved. The second key point is the linearization in time of

the numerical flux function in a implicit time-advancing algorithm: a linearization

taking into account the time variation of the flux upwind part is presented.

As an example of a real engineering application, all these numerical ingredients

are applied to the simulation of the flow in a real inducer for space rocket turbopumps

in non-cavitating and cavitating conditions.

2 Governing Equations and Cavitation Modeling

As previously said, a homogeneous-flow cavitation model is considered, together

with a barotropic EOS. Therefore, the energy equation can be discarded since it is

decoupled from the mass and momentum balances.

An additional modeling issue for cavitating flow simulations is turbulence and

its interaction with cavitation phenomena. This aspect is not investigated in detail

herein; we refer to the contribution by E. Goncalves in this volume. We simply con-

sider the unsteady Reynolds-averaged Navier–Stokes (URANS) equations, together

with the standard k-𝜀 model (Launder and Spalding 1974). Although corrections

aimed at limiting the turbulent viscosity have been proposed for cavitating flows

(see again the contribution by E. Goncalves), the standard k-𝜀 model is commonly

applied to a wide range of cases and its limitations for non-cavitating flows are well

known. As a consequence, this model seems a good starting point for a first appraisal

of turbulence effects.

Thus, considering a reference frame rotating with constant angular velocity 𝝎,

the following system of equations is obtained:

𝜕𝐖
𝜕t

+ 𝜕

𝜕xj
𝐅j(𝐖) + 𝜕

𝜕xj

̃𝐅j(𝐖) − 𝜕

𝜕xj
𝜇𝐕j(𝐖,∇𝐖)

− 𝜕

𝜕xj
𝜇t
̃𝐕j(𝐖,∇𝐖) = 𝛀(𝐖) + 𝐒 (𝜔, 𝐱,𝐖) . (1)



238 M.V. Salvetti

In Eq. (1) the Einstein notation is used and the vector of unknowns 𝐖 is defined as

follows:

𝐖 = (𝜌, 𝜌u, 𝜌v, 𝜌w, 𝜌k, 𝜌𝜀)T , (2)

where 𝜌 is the density; u, v, and w are the velocity components in the x, y, and z direc-

tions; k is the turbulent kinetic energy; and 𝜀 is the turbulent dissipation. The other

terms appearing in Eq. (1) are the convective fluxes Fj, the turbulence contribution

to convective fluxes ̃Fj, the viscous laminar fluxes Vj, the viscous turbulent fluxes ̃Vj,

and the source term Ω related to the k-𝜀 model. Their expressions are the following:

⎧
⎪
⎨
⎪
⎩

𝐅1 =
(
𝜌u, 𝜌u2 + p, 𝜌uv, 𝜌uw, 𝜌uk, 𝜌u𝜀

)T

𝐅2 =
(
𝜌v, 𝜌vu, 𝜌v2 + p, 𝜌vw, 𝜌vk, 𝜌v𝜀

)T

𝐅3 =
(
𝜌w, 𝜌wu, 𝜌wv, 𝜌w2 + p, 𝜌wk, 𝜌w𝜀

)T
(3)

⎧
⎪
⎨
⎪
⎩

̃𝐅1 =
(
0, 2

3
𝜌k, 0, 0, 0, 0

)T

̃𝐅2 =
(
0, 0, 2

3
𝜌k, 0, 0, 0

)T

̃𝐅3 =
(
0, 0, 0, 2

3
𝜌k, 0, 0

)T
(4)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝐕1 =
(

0, 𝜎11, 𝜎12, 𝜎13,
𝜕k
𝜕x1

,

𝜕𝜀

𝜕x1

)T

𝐕2 =
(

0, 𝜎21, 𝜎22, 𝜎23,
𝜕k
𝜕x2

,

𝜕𝜀

𝜕x2

)T

𝐕3 =
(

0, 𝜎31, 𝜎32, 𝜎33,
𝜕k
𝜕x3

,

𝜕𝜀

𝜕x3

)T

(5)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

̃𝐕1 =
(

0, 𝜎11, 𝜎12, 𝜎13,
1
𝜎k

𝜕k
𝜕x1

,

1
𝜎
𝜀

𝜕𝜀

𝜕x1

)T

̃𝐕2 =
(

0, 𝜎21, 𝜎22, 𝜎23,
1
𝜎k

𝜕k
𝜕x2

,

1
𝜎
𝜀

𝜕𝜀

𝜕x2

)T

̃𝐕3 =
(

0, 𝜎31, 𝜎32, 𝜎33,
1
𝜎k

𝜕k
𝜕x3

,

1
𝜎
𝜀

𝜕𝜀

𝜕x3

)T

,

(6)

in which p is the pressure, 𝜎ij are the components of the viscous stress tensor, while

𝜎
𝜀

and 𝜎k are empirical parameters.

The formulation of the source term 𝛀 (𝐖) is:
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⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

 = −
(
2
3
𝜌k𝛿ij − 𝜇t

(
𝜕ui

𝜕xj
+

𝜕uj

𝜕xi
− 2

3
𝜕uk

𝜕xk
𝛿ij

))
𝜕ui

𝜕xj
𝜔k = −𝜌𝜀 + 
𝜔
𝜀

= c
𝜀1

k
𝜀

 − c
𝜀2
𝜌𝜀

2

k
𝛀 (𝐖) =

(
0 0 0 0 𝜔k 𝜔

𝜀

)T
,

(7)

 being the production term of the turbulent kinetic energy and c
𝜀1 and c

𝜀2 are empir-

ical parameters.

The molecular and turbulent viscosities are, respectively, 𝜇, defined in the follow-

ing (Eq. (12)) and 𝜇t defined as follows:

𝜇t = C
𝜇

𝜌k2

𝜀

, (8)

C
𝜇

being an additional empirical parameter. For all the empirical parameters con-

tained in the k-𝜀model, the standard values proposed in Launder and Spalding (1974)

are used herein.

Finally, 𝐒 is the source term due to reference frame rotation:

⎧
⎪
⎨
⎪
⎩

𝐒 = − (2𝝎 ∧ 𝜌𝐮 + 𝜌𝝎 ∧ (𝝎 ∧ 𝐱))

𝐒 (𝝎, 𝐱,𝐖) =
(
0, 𝐒

T
, 0, 0

)T
,

(9)

𝐱 and 𝐮 being the position and velocity vectors, respectively.

System (1) is completely defined once a suitable constitutive equation p = p(𝜌) is

introduced. In this work a weakly compressible liquid at constant temperature TL is

considered as working fluid. The liquid density 𝜌 is allowed to locally fall below the

saturation limit 𝜌Lsat = 𝜌Lsat
(
TL
)

thus originating cavitation phenomena. A regime-

dependent (wetted/cavitating) constitutive relation is therefore adopted. As for the

wetted regime (𝜌 ≥ 𝜌Lsat), a barotropic model of the form

p = psat + 1
𝛽sL

ln
(

𝜌

𝜌Lsat

)

(10)

is adopted, psat = psat
(
TL
)

and 𝛽sL = 𝛽sL
(
TL
)

being the saturation pressure and

the liquid isentropic compressibility, respectively. As for the cavitating regime (𝜌 <

𝜌Lsat), a homogeneous-flow model explicitly accounting for thermal cavitation effects

and for the concentration of the active cavitation nuclei in the pure liquid has been

adopted (d’Agostino et al. 2011):

p
𝜌

d𝜌
dp

= (1 − 𝛼)

[

(1 − 𝜀L)
p

𝜌Lsata2
Lsat

+ 𝜀Lg⋆
(

pc

p

)
𝜂

]

+ 𝛼

𝛾V
, (11)
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where g⋆, 𝜂, 𝛾V , and pc are the liquid parameters, aLsat is the liquid sound speed at

saturation, 𝛼 = 1 − 𝜌∕𝜌Lsat, and 𝜀L = 𝜀L (𝛼, 𝜁 ) is a given function (see d’Agostino

et al. 2011 for its physical interpretation and for more details). The resulting uni-

fied barotropic state law for the liquid and for the cavitating mixture only depends

on the two parameters TL and 𝜁 . For instance, for water at TL = 293.16K, the

other parameters involved in (10) and (11) are psat = 2806.82 Pa, 𝜌Lsat = 997.29
kg/m

3
, 𝛽sL = 5 10−10 Pa

−1
, g∗ = 1.67, 𝜂 = 0.73, 𝛾V = 1.28, pc = 2.21 107 Pa and

aLsat = 1415 m/s (Torre et al. 2010). Note that, despite the model simplifications

leading to a unified barotropic state law, the transition between wetted and cavitat-

ing regimes is extremely abrupt. Indeed, the sound speed falls from values of order

103 m/s in the pure liquid down to values of order 0.1 or 1 m/s in the mixture. The

corresponding Mach number variation renders this state law very stiff from a numer-

ical viewpoint.

As for the definition of the molecular viscosity, a simple model, which is linear

in the cavitating regime, is considered:

𝜇(𝜌) =
⎧
⎪
⎨
⎪
⎩

𝜇L if 𝜌 ≥ 𝜌Lsat
𝜇v if 𝜌 ≤ 𝜌v
𝛼𝜇v + (1 − 𝛼)𝜇L otherwise,

(12)

in which 𝜇v and 𝜇L are the molecular viscosity of the vapor and liquid, respectively,

which, consistently with the assumptions made in the adopted cavitation model, are

considered constant and computed at T = TL.

3 Numerical Methodology

The spatial discretization of the governing equations is based on a mixed finite-

element/finite-volume formulation on unstructured grids. Starting from an unstruc-

tured tetrahedral grid, a dual finite-volume mesh is obtained by the rule of medians:

a cell Ci is built around each vertex i, and boundaries between cells are made of

triangular interface facets. Let us consider the integral formulation of system (1) for

the case in which the control volume  is the finite-volume cell Ci:

∫ Ci

𝜕𝐖
𝜕t

d + ∫
𝜕Ci

nk

(
𝐅k + ̃𝐅k

)
d − ∫ Ci

𝜕

𝜕xk

(
𝜇𝐕k + 𝜇t

̃𝐕k

)
d =

∫ i

(𝛀 + 𝐒)d ,
(13)

where 𝜕Ci is the boundary of Ci and nk are the components of the unit vector normal

to 𝜕Ci. It is possible to reformulate (13) in the following semi-discrete form:
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i
d𝐖i

dt
+

∑

j∈N(i)
𝚽ij + 𝚼i = 𝛀i + 𝐒i, (14)

where 𝐖i is the semi-discrete unknown associated with Ci, defined as follows:

𝐖i =
1
i ∫Ci

𝐖d , (15)

where i is the cell volume, and N(i) represents the set of neighbors of the ith cell.

The numerical discretization of the convective flux crossing the boundary 𝜕Cij shared

by Ci and Cj (positive towards Cj) is denoted 𝚽ij, while 𝚼i, 𝛀i, and 𝐒i are the numer-

ical discretizations for, respectively, the viscous fluxes and the source terms.

3.1 Numerical Discretization for a 1D Inviscid Flow

Since the key ingredients of the proposed numerical discretization are the numerical

approximation of the convective fluxes and time advancing, the 1D inviscid case is

used as a first step for the definition of the numerical convective fluxes:

𝜕𝐖
𝜕t

+ 𝜕𝐅(𝐖)
𝜕x

= 0 (16)

where𝐖 = (𝜌, 𝜌u, 𝜌𝜉)T and𝐅(𝐖) =
(
𝜌u, 𝜌u2 + p, 𝜌u𝜉

)T
, 𝜉 denoting a passive scalar.

The associated semi-discrete problem is the following:

𝛿xi
d𝐖i

dt
+𝚽i,i+1 −𝚽i−1,i = 0, (17)

𝛿xi being the width of the finite-volume cell centered around node i.

3.1.1 First-Order Numerical Approximation of Convective Fluxes

The numerical scheme herein considered belongs to the so-called approximate Rie-

mann solvers, and, more particularly, to the HLL schemes (Harten et al. 1983), which

assume one intermediate state between two acoustic waves in the approximate Rie-

mann problem. The simplest HLL scheme is the so-called Rusanov scheme (Rusanov

1961; Park and Kwon 2003):

𝚽i,j =
𝐅(𝐖i) + 𝐅(𝐖j)

2
−

𝜆ij

2
(𝐖j −𝐖i), (18)
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where the first term of the right-hand side is a centered approximation of the fluxes

and the second one the upwind part, introducing numerical viscosity, with 𝜆ij = sR
being an upper bound for the fastest wave speed. A classical choice for 𝜆ij is the

largest absolute value of the Roe matrix eigenvalues (Roe 1981). A suitable Roe

matrix for a generic barotropic EOS was defined in Sinibaldi et al. (2006); its eigen-

values are the following:

̃
𝜆1 = ũij + ãij ,

̃
𝜆2 = ũij − ãij and ̃

𝜆3 = ũij,

where ũij is the classical ‘Roe average’ of u:

ũij =
√
𝜌juj +

√
𝜌iui

√
𝜌j +

√
𝜌i

, (19)

whereas ãij, which can be considered as a Roe average for the sound speed, is defined

as:

ãij =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

√
p(𝜌j) − p(𝜌i)

𝜌j − 𝜌i
if 𝜌j ≠ 𝜌i

a
(
𝜌
⋆

, p(𝜌
⋆

)
)

if 𝜌i = 𝜌j = 𝜌
⋆

.

(20)

Therefore, we obtain

𝜆ij = max
p

(| ̃𝜆p|) = |ũij| + ãij.

The Rusanov scheme, as all the HLL schemes, is known to introduce excessive

numerical diffusion in the presence of contact discontinuities. Indeed, due to the

assumption of a two-wave configuration with only one intermediate state, the two

intermediate states of the exact Riemann solution are averaged, smearing, in this

way, the contact discontinuity. In the barotropic case, since density, velocity and

pressure are continuous across the contact discontinuity, the presence of two differ-

ent intermediate states in the Riemann problem is only due to the passive scalar (see

Sinibaldi 2006). Moreover, only one eigenvalue is associated with the contact dis-

continuity. Thus, a possible way to counteract the excessive diffusion of the Rusanov

scheme is to introduce an anti-diffusive term in the discretization of the third equa-

tion of system (16). Based on this idea, the following LD-HLL (Low-Diffusive HLL)

was proposed in Bilanceri et al. (2010):

𝚽i,j =
𝐅(𝐖i) + 𝐅(𝐖j)

2
− 1

2

⎛
⎜
⎜
⎝

𝜆ij 0 0
0 𝜆ij 0
0 0 |ũij|

⎞
⎟
⎟
⎠

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Qij

(𝐖j −𝐖i). (21)
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Compared with the original Rusanov scheme, the first two equations, which are

related to the acoustic waves, are unchanged, while for the third equation, i.e., the

one directly related to the contact discontinuity, the diffusive part of the scheme has

been reduced (see Bilanceri et al. 2010 for more details).

As mentioned in the Introduction, compressible flow solvers suffer of accuracy

and efficiency problems for nearly incompressible flows, as encountered in the non-

cavitating flow regions. Following the approach proposed by Guillard and Viozat

(1999), it was shown in Bilanceri (2011) that, as expected, also the LD-HLL scheme

(21) suffers of accuracy problems in the low Mach number limit. Therefore, suitable

preconditioning is needed. It was also shown in Bilanceri (2011) that the correct

asymptotic behavior can be recovered by acting on the acoustic terms of the matrix

Qij. This can be done by multiplying Qij by the following preconditioning matrix:

Pij =
⎛
⎜
⎜
⎝

𝜃

−1 0 0
0 𝜃 0
0 0 1

⎞
⎟
⎟
⎠

, (22)

in which

𝜃 = 𝜃(M) =
{

10−6 if M ≤ 10−6
min(M, 1) otherwise

. M =
|ũij|

ãij
. (23)

This leads to the following preconditioned LD-HLL scheme:

𝚽i,j =
𝐅(𝐖i) + 𝐅(𝐖j)

2
− 1

2

⎛
⎜
⎜
⎝

𝜆ij𝜃
−1 0 0

0 𝜆ij𝜃 0
0 0 |ũij|

⎞
⎟
⎟
⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Qij

(𝐖j −𝐖i). (24)

Note that since preconditioning acts only on the upwind part of the scheme, con-

sistency in time is preserved. Moreover, preconditioning does not affect the low-

diffusion correction introduced for the passive scalar equation.

3.1.2 Linearized Implicit Time Advancing

Let us consider an implicit backward Euler method applied to the semi-discrete prob-

lem (17):

𝛿xi

Δt
Δn𝐖i + Δn𝚽i,i+1 − Δn𝚽i−1,i = −

(
𝚽n

i,i+1 −𝚽n
i−1,i

)
, (25)

where Δn(⋅) = (⋅)n+1 − (⋅)n. To avoid the solution of a nonlinear system at each time

step, a linearization of ΔnΦij is usually adopted. A way to obtain such a linearization

is to find two matrices D1 and D2 such that
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Δn𝚽ij ≃ D1(𝐖n
i ,𝐖

n
j ) Δ

n𝐖i + D2(𝐖n
i ,𝐖

n
j ) Δ

n𝐖j (26)

In this case (25) is reduced to the following block tridiagonal linear system:

Bi,n
−1 Δ

n𝐖i−1 + Bi,n
0 Δn𝐖i + Bi,n

1 Δn𝐖i+1 = −
(
𝚽n

i,i+1 −𝚽n
i−1,i

)
, (27)

where

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Bi,n
−1 = −D1(𝐖n

i−1,𝐖
n
i )

Bi,n
0 =

𝛿xi

Δt
I + D1(𝐖n

i ,𝐖
n
i+1) − D2(𝐖n

i−1,𝐖
n
i )

Bi,n
1 = D2(𝐖n

i ,𝐖
n
i+1).

(28)

A classical linearization of type (26) consists in applying a first-order Taylor expan-

sion in time but with a complete differentiation only for the centered part of the

numerical flux function while the matrix Qij in the upwind part is frozen at time tn

(see, e.g., Yee 1987; Delis et al. 2000; Luo et al. 2001). This results in the following

approximation:

Δn𝚽ij ≃
1
2

(
A(𝐖n

i )Δ
n𝐖i + A(𝐖n

j )Δ
n𝐖j

)

− 1
2

Qn
ij (Δ

n𝐖j − Δn𝐖i),
(29)

in which A is the Jacobian matrix of 𝐅. Note that this approach can be used indepen-

dently of the differentiability or of the complexity in the differentiation of Qij.

This linearization can be reinterpreted by rewriting the time variation of the

upwind term of 𝚽ij as follows:

Δn𝚽ij,u = −
Qn

ij

2
(Δn𝐖j − Δn𝐖i) − 𝚪n,n+1

ij , (30)

in which 𝚪n,n+1
ij ≐ ΔnQij

2
(𝐖n+1

j −𝐖n+1
i ).

Linearization (29) is obtained just by neglecting the term 𝚪n,n+1
ij . This term can be

neglected as long as that the solution is regular enough to satisfy

𝐖n+1
j −𝐖n+1

i ∝ O(𝛿x) and ΔnQij ∝ O(Δt). (31)
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Even if the assumption (31) is in general a reasonable one, there are situations of

practical interest in which it is not satisfied. Indeed, if a discontinuity is present the

magnitude of the term 𝐖n+1
j −𝐖n+1

i can be large independently of the size of Δx.

Moreover, the term ΔnQij can also be large. This can happen again in the presence

of large variations of the flow velocity but also when the speed of sound has a stiff

change in magnitude. The latter is a typical situation occurring in the presence of

cavitation. A more complete linearization was proposed by Bilanceri et al. (2010)

for cavitating barotropic flows, which takes into account, at least in an approximate

way, the term 𝚪n,n+1
ij . This linearization exploits the fact that Qij is a diagonal matrix

such that any of its diagonal coefficients, qk, can be written as a composite function

of two variables, ã and ũ. Then, through differentiation, by neglecting terms of higher

order and after some mathematical developments (see Bilanceri et al. 2010 for the

detailed procedure), the following approximation of the previously neglected term

is obtained:

𝚪n,n+1
ij ≃ 1

2
Kij Δn𝐖i −

1
2

Kji Δn𝐖j, (32)

in which the generic element of Kij is defined by the following expression:

(
Kij

)
km =

(
𝜕qk

𝜕ũ
𝜕ũ

𝜕Wi,m
+

𝜕qk

𝜕ã
𝜕ã

𝜕Wi,m

)(
Wn

j,k − Wn
i,k

)
, (33)

where Wi,m denotes the m-th element of the vector 𝐖i. Finally, considering 𝚪n,n+1
ij

from (32) and (33) in the evaluation of the upwind part of the numerical flux time

variation, the following more complete approximation is obtained instead of (29):

Δn𝚽ij ≃
1
2

(

A(𝐖n
i ) + Qn

ij − Kij

)

Δn𝐖i

+ 1
2

(

A(𝐖n
j ) − Qn

ij + Kji

)

Δn𝐖j.

(34)

Some simplifications can be made, based on physical considerations related to

the particular kind of applications of interest. Since ũ and ã are directly related to

the flow velocity and speed of sound, respectively, we have that the derivatives of

ũ respect to the flow variables are much smaller than the ones of ã, because, when

a transition from vapor to liquid occurs, in the used cavitation model this leads to a

step-like change of the speed of sound of a few order of magnitudes. Consequently,

it seems reasonable to neglect the variation in ũ in the computation of Kij in (33),

and then, to approximate the variation of the matrix Qij only through the variation in

ã. Under this assumption and using the fact that ã only depends on the density, i.e.,

ã = ã(𝜌i, 𝜌j), the matrix Kij previously defined in (33) reduces here to
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Kij =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜕
𝜌i

q1
(
𝜌

n
j − 𝜌

n
i

)
0 0

𝜕
𝜌i

q2

(

(𝜌u)nj − (𝜌u)ni

)

0 0

𝜕
𝜌i

q3

(

(𝜌𝜉)nj − (𝜌𝜉)ni

)

0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (35)

in which 𝜕
𝜌i

qk represents the partial derivative of qk with respect to 𝜌i, but consider-

ing only the variation in ã, i.e.,

𝜕
𝜌i

qk =
𝜕

𝜕𝜌i

(

qk
(
ũ, ã(𝜌i, 𝜌j)

)
)

.

These partial derivatives are numerically computed through centered finite differ-

ences (see Bilanceri 2011 for more details).

3.1.3 Extension to Second-Order Accuracy

The extension to second-order accuracy in space can be achieved using a classical

MUSCL technique (van Leer 1979), in which instead of 𝚽i,i+1 = 𝚽(𝐖i,𝐖i+1), the

numerical flux 𝚽i+ 1
2
= 𝚽(𝐖−

i+ 1
2

,𝐖+
i+ 1

2

) is considered at the cell interface xi+ 1
2
. The

considered values 𝐖±
i+ 1

2

are defined by piecewise linear reconstruction of the solu-

tion. They can be expressed by the following 𝛽-scheme (Harten et al. 1983) including

limiters (Leveque 1994):

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝐖−
i+ 1

2

= 𝐖i +
hi+1

2

(

(1 − 𝛽) Λ−
i+ 1

2

𝐖i+1 −𝐖i

hi+1
+ 𝛽 Λ+

i− 1
2

𝐖i −𝐖i−1
hi

)

𝐖+
i+ 1

2

= 𝐖i+1 −
hi+1

2

(

(1 − 𝛽) Λ+
i+ 1

2

𝐖i+1 −𝐖n
i

hi+1
+ 𝛽 Λ−

i+ 3
2

𝐖n
i+2 −𝐖i+1

hi+2

)

,

(36)

in which 𝛽 is a free parameter, hi = xi − xi−1, and Λ±
l are diagonal matrices introduc-

ing the (nonlinear) limiter function. Several classical choices can be used to obtain

a total variation diminishing scheme (Toro 1997). We adopted the Minmod limiter

(see e.g., Toro 1997). An analogous procedure is obviously carried out for the cell

interface xi− 1
2
.

The second-order accuracy in time is then achieved through the use of a backward

differentiation formula for the discretization of the time derivative; this leads to the

following implicit formulation:
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𝛿xi
3𝐖n+1

i − 4𝐖n
i +𝐖n−1

i

2Δt
+ Δn𝚽i+ 1

2
− Δn𝚽i− 1

2
= −

(

𝚽n
i+ 1

2

−𝚽n
i− 1

2

)

, (37)

where 𝚽i± 1
2
= 𝚽(𝐖−

i± 1
2

,𝐖+
i± 1

2

) are the second-order accurate numerical fluxes com-

puted using extrapolated variable values at the cell interface (36).

Similar to the first-order case, a linearization of Δn𝚽i± 1
2

must be carried out in

order to avoid the solution of a nonlinear system at each time step. However, the lin-

earization for the second-order accurate fluxes and the solution of the resulting linear

system implies significant computational costs and memory requirements. Thus, a

defect correction technique (DeC see e.g., Martin and Guillard 1996) is used here,

which consists in iteratively solving simpler problems obtained by considering the

same linearization as used for the first-order scheme:

⎧
⎪
⎪
⎨
⎪
⎪
⎩


0 = 𝐖n

i,s
−1Δ

s i−1 + i,s
0 Δ

s i + i,s
1 Δ

s i+1 = 
s
i s = 0,… ,m − 1

𝐖n+1 = 
m
,

in which

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

i,s
−1 = −D1(

s
i−1,

s
i )

i,s
0 =

3𝛿xi

2Δt
I + D1(

s
i ,

s
i+1) − D2(

s
i−1,

s
i )

i,s
1 = D2(

s
i ,

s
i+1)


s
i = −

(
𝛿xi

2Δt
(3 s

i − 4𝐖n
i +𝐖n−1

i ) +𝚽s
i+ 1

2

−𝚽s
i− 1

2

)

,

D1 and D2 being the generic matrices of the approximation (26). Only a few iter-

ations are needed to obtain second-order accuracy in time (Bilanceri 2011; Martin

and Guillard 1996).

3.2 Extension to 3D URANS Equations in a Rotating Frame

3.2.1 Convective Fluxes

The preconditioned LD-HLL scheme (24), previously defined for the 1D case, can

be extended to 3D turbulent flows by defining 𝐧ij as the integral over 𝜕Cij of the
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outer unit normal to the cell boundary. Indeed, it is possible to approximate 𝚽ij by

exploiting a 1D flux function between 𝐖i and 𝐖j, along the direction 𝐧ij and the fact

that each additional variable can be considered as a passive scalar. In the turbulent

flow case, the generalization of the scheme presented in Sect. 3.1 must be done by

considering the sum of the laminar and turbulent convective fluxes nk

(
𝐅k + ̃𝐅k

)
.

As a result, it is possible to approximate 𝚽ij by the following preconditioned flux

function (we refer to Bilanceri 2011 for details):

𝚽ij =
nij,k

(
𝐅k(𝐖i) + 𝐅k(𝐖j)

)

2
+

nij,k

(
̃𝐅k(𝐖i) + ̃𝐅k(𝐖j)

)

2
− 1

2
Sij(𝐖j −𝐖i) (38)

Sij =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜆

p
1 0 0 0 0 0
0

(
Δ32

𝜆

p) n2ij,1 + 𝜆

p
3

(
Δ32

𝜆

p) nij,1nij,2
(
Δ32

𝜆

p) nij,1nij,3 0 0
0

(
Δ32

𝜆

p) nij,2nij,1
(
Δ32

𝜆

p) n2ij,2 + 𝜆

p
3

(
Δ32

𝜆

p) nij,2nij,3 0 0
0

(
Δ32

𝜆

p) nij,3nij,1
(
Δ32

𝜆

p) nij,3nij,2
(
Δ32

𝜆

p) n2ij,3 + 𝜆

p
3 0 0

0 0 0 0 𝜆

p
3 0

0 0 0 0 0 𝜆

p
3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(39)

where Δ32
𝜆

p = 𝜆

p
2 − 𝜆

p
3, 𝜆

p
1 = 𝜃

−1
𝜆ij, 𝜆

p
2 = 𝜃𝜆ij, 𝜆

p
3 = 𝜆ij; the parameters 𝜃 and 𝜆ij

were defined in Sect. 3.1.

The second-order extension of the convective fluxes is carried on using a MUSCL

reconstruction technique similar to the one described for the 1D case in Sect. 3.1. In

particular the flux function 𝚽ij is not computed using the values 𝐖i and 𝐖j but con-

sidering two suitable states which, except in the presence of discontinuities, approxi-

mate with second-order accuracy the solution at the boundary between the two cells,

that is,

𝚽ij = 𝚽ij

(
𝐖−

ij ,𝐖
+
ij

)
(40)

where

𝐖−
ij = 𝐖i +

1
2
∇𝐖i ⋅ 𝐝ij, 𝐖+

ij = 𝐖j −
1
2
∇𝐖j ⋅ 𝐝ij (41)

where 𝐝ij is the vector joining the i-th node with the j-th one and ∇𝐖i is an approx-

imation of the gradient in the i-th cell, possibly taking into account slope limiters.

The definition of ∇𝐖j ⋅ 𝐝ij in this work is based on the same approach considered in

Camarri et al. (2004), Farhat et al. (1991) when limiters have to be included. First, a

linear approximation ∇𝐖|Th
of the gradient in each tetrahedron Th is considered:

∇𝐖|Th
=

∑

k∈i(Th)
𝐖k∇𝜁 k

Th
, (42)

where i(Th) is the set of nodes belonging to Th, 𝜁
k
Th

are the barycentric coordinates

associated with the kth-vertex of Th, while t(i) is the set of the tetrahedrons which
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share the ith vertex. Once ∇𝐖|Th
is available, a centered approximation of the gra-

dient in the i-th cell is derived as follows:

∇𝐖c
i =

∑

h∈t(i)
Th

∇𝐖|Th

∑

h∈t(i)
Th

, (43)

Th
being the volume of the h-tetrahedron. Following Farhat et al. (1991), it is now

possible to obtain a second-order MUSCL reconstruction operator with slope lim-

iters by defining ∇𝐖i ⋅ 𝐝ij and ∇𝐖j ⋅ 𝐝ij by:

{
∇𝐖i ⋅ 𝐝ij = minmod{𝐖j −𝐖i, 2∇𝐖c

i ⋅ 𝐝ij −
(
𝐖j −𝐖i

)
}

∇𝐖j ⋅ 𝐝ij = minmod{𝐖j −𝐖i, 2∇𝐖c
j ⋅ 𝐝ij −

(
𝐖j −𝐖i

)
}, (44)

where minmod{a, b} is defined as follows:

minmod{a, b} =
⎧
⎪
⎨
⎪
⎩

min{a, b} if a > 0, b > 0
max{a, b} if a < 0, b < 0
0 otherwise.

(45)

3.2.2 Viscous Fluxes

The discretization of the viscous fluxes is instead based on P1 finite elements, in

which the test functions are linear on the tetrahedral element. The approximation of

the viscous fluxes in each tetrahedron is the following (see Bilanceri 2011 for details

on its derivation):

𝚼i = −
∑

Th∈t(i)
Th

𝜇

T
h (𝐕Th

j + ̃𝐕Th
j ) 𝜕𝜙

(i,Th)

𝜕xj

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐i
, (46)

where 𝜙
(i,Th) is the P1 finite-element test function associated to the vertex i restricted

to the tetrahedron Th and 𝜇

T
h is given by

𝜇

Th =
∑

L∈i(Th)

𝜇L

4
.

Finally, 𝐕Th
j and ̃𝐕Th

j are P1 approximations of the laminar and turbulent viscous

fluxes on the tetrahedron Th. For instance, for laminar viscous fluxes they are given

by
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⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝐕Th
1 =

(
0, 𝜎Th

11 , 𝜎
Th
12 , 𝜎

Th
13

)T

𝐕Th
2 =

(
0, 𝜎Th

21 , 𝜎
Th
22 , 𝜎

Th
23

)T

𝐕Th
3 =

(
0, 𝜎Th

31 , 𝜎
Th
32 , 𝜎

Th
33

)T
,

(47)

where

𝜎

Th
ij =

⎛
⎜
⎜
⎝

∑

L∈i(Th)
−2
3

(

uL,k
𝜕𝜙

(L,Th)

𝜕xk

)

𝛿ij

+
⎛
⎜
⎜
⎝

uL,i
𝜕𝜙

(L,Th)

𝜕xj
+ uL,j

𝜕𝜙

(L,Th)

𝜕xi

)⎞
⎟
⎟
⎠

, (48)

where uL,i is the i-th component of the velocity at node L.

3.2.3 Source Terms

The discretization of the turbulence source term appearing in (7), and, in particular,

of the term  , is carried out as previously described for the viscous terms.

The source term due to the frame rotation is discretized as follows:

𝐒i ∶=
(

0
− 2𝝎 ∧ 𝜌i𝐮i + 𝜌i 𝐫i

)

𝐫i ∶= −𝝎 ∧
(
𝝎 ∧ 𝐠i

)
, (49)

𝐠i being the position vector of the centroid of the ith cell.

3.2.4 Time Advancing

The time discretization for the 3D numerical method can be readily obtained from its

1D counterpart. Let us consider a second-order accurate in space and time approach

(the modifications for the first-order case are straightforward). Then the implicit for-

mulation of (14) is

i
3

2Δnt
Δn𝐖i +

∑

j∈N(i)
Δn𝚽ij + Δn𝚼i − Δn(𝛀i + 𝐒i) =

i
1

2Δnt
(
−𝐖n−1

i +𝐖n
i
)
−

∑

j∈N(i)
𝚽n

ij − 𝚼n
i +𝛀n

i + 𝐒n
i . (50)

It is now necessary to define a suitable approximation for Δn𝚽ij, Δn𝚼i, and Δn(𝛀i +
𝐒i).
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Concerning the variation of the convective part, Δn𝚽ij, the time linearizations

proposed in Sect. 3.1 are applicable to the 3D case.

Concerning the term Δn𝚼i, a simple linearization technique is sufficient since 𝚼i
is linearly dependent on the velocity vector. In particular Δn

𝜎

Th
ij can be written as

Δn
𝜎

Th
ij =

⎛
⎜
⎜
⎝

∑

L∈i(Th)
−2
3

(

ΔnuL,k
𝜕𝜙

(L,Th)

𝜕xk

)

𝛿ij

+
(

ΔnuL,i
𝜕𝜙

(L,Th)

𝜕xj
+ ΔnuL,j

𝜕𝜙

(L,Th)

𝜕xi

))

. (51)

By approximating ΔnuL,k as

ΔnuL,k = −
un

L,k

𝜌

n
L
Δn

𝜌L +
1
𝜌

n
L
Δn

𝜌uL,k + O
(
(Δnt)2

)
, (52)

a second-order time linearization for the viscous fluxes is achieved. With a similar

approach a second-order time linearization can be obtained also for the source terms.

Once Δn𝚽ij, Δn𝚼i, and Δn(𝛀i + 𝐒i) are given, the second-order defect correction

approach described in Sect. 3.1 can be applied also for the 3D case.

In order to reduce the memory and computational requirements, we adopted a

weakly coupling between the mass and momentum balance equations and the equa-

tions for k and 𝜀, i.e., in the implicit time advancing of the mass and momentum

equations, we consider 𝜌k and 𝜌𝜀 frozen at time step n, while when advancing the

equations for k and 𝜀, 𝜌, 𝜌u, 𝜌v, and 𝜌w are frozen. This permits to successively solve

two linear systems of smaller dimensions: one composed by 4 × 4 blocks, which

updates the flow variables, 𝜌, 𝜌u, 𝜌v, 𝜌w, and another one for the turbulent variables,

𝜌k, 𝜌𝜀, composed by 2 × 2 blocks. Note that, even if this introduces an additional

approximation to the discretization technique described in the previous sections, a

linear system composed by modified blocks as previously described can be consid-

ered as a particular instance of the DeC approach (see also Bilanceri 2011). As a

consequence, even if for this case we do not have theoretical results of a finite termi-

nation property, the second-order approximation should be recovered asymptotically

when a full convergence of the DeC iteration is obtained.

4 Application to the Flow in a Turbopump Inducer

In this section the modeling and numerical tools previously described are applied

to the simulations of the flow in a real three-blade axial inducer designed for liquid-

propelled rockets (Torre et al. 2010). It is a three-blade inducer with a tip blade radius
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(a) Global view (b) Detailed view

(c) Front view (d) Lateral view

Fig. 1 Geometry of the inducer considered in this work

of 81-mm and 2-mm radial clearance between the blade tip and the external case (see

Fig. 1).

Experimental data are available for all the numerical simulations described in

the following. The pressure jump between two different stations has been measured

for a wide range of working conditions: from small to large mass flow rates, non-

cavitating and cavitating conditions, and different values of the rotational speed 𝜔z.

The results are presented in terms of the mean adimensionalized pressure jump 𝛹 as

a function of the adimensionalized discharge 𝛷:

𝛹 = ΔP
𝜌L𝜔

2
z R2

T

𝛷 = Q
𝜋R2

T𝜔zRT
, (53)

where Q is the discharge, RT is the radius of the tip of blade, 𝜌L is the density of

the liquid, and 𝜔z is the angular velocity. Note that the numerical pressure jump is

averaged over one complete revolution of the inducer.
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Table 1 Conditions of the numerical simulations and of the experiments

Benchmark Ind1 Ind2 Ind3 Ind4 Ind5 Ind6
𝛷 0.0584 0.0391 0.0185 0.0531 0.0531 0.0531
𝜔z (rpm) 1500 1500 1500 3000 3000 3000
pout (kPa) 125 125 125 60 85 82.5
T (

◦
C) 25 25 25 16.8 16.8 16.8

𝜎 – – – 0.056 0.084 0.077

A cylindrical computational domain is used, whose external surface is coincident

with the inducer case. The inlet is placed 249 mm ahead of the inducer nose and

the outlet is placed 409 mm behind. A second computational domain, characterized

by a larger streamwise length (the inlet 1120 mm ahead the inducer nose), has also

been considered. Two different grids have been generated to discretize the shorter

domain: the basic one G1 (1926773 cells) and G2 (3431721 cells) obtained from G1

by refining the region between the blade tip and the external case. The larger domain

has been discretized by grid G1L (2093770 cells), which coincides with G1 in the

original domain.

The working conditions considered in this work are shown in Table 1, where pout
is the outlet pressure of the flow and the cavitating number (only shown for cavitating

simulations) is defined as follows:

𝜎 =
p − pLsat

0.5𝜌𝜔2
z R2

T

.

Note that, except when differently stated, the simulations do not include turbulence

effects.

As shown in Table 1, all the simulations in non-cavitating conditions use the same

rotational velocity of 1500 rpm. In the 𝛷-𝛹 plane the experimental curves of the

performances of the inducer are roughly independent from the rotational velocity 𝜔z
(Torre et al. 2010). As a consequence, validating the numerical tool for a specific

rotational velocity and different flow rates should validate the proposed numerical

tool for a generic rotational velocity.

Table 2 shows the results for the non-cavitating simulations. It clearly appears

that the lower is the discharge 𝛷, the worse are the results. Already with the coarsest

grid G1, rather satisfactory results are obtained for intermediate and high discharge

values, Ind2 and Ind1, respectively. The quantitative agreement is further improved

considering the more refined grid G2 for the case Ind2. Conversely, for the low dis-

charge case, Ind3, the simulations with the grid G1 and G2 greatly overestimate the

pressure jump by, respectively, 41% and 30%. The magnitude of this error could be

ascribed to the backward flow between the inducer blades and the external case. The

correct resolution of this flow is of crucial importance for the determination of the

performance of an inducer. Since the smaller is the mass flow rate the greater is the
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Table 2 Pressure jump in non-cavitating conditions

Experimental 𝛹 Numerical 𝛹 Error%
G1-Ind1 0.122 0.114 −6.6
G1-Ind2 0.186 0.204 +9.7
G2-Ind2 0.186 0.179 −3.8
G1-Ind3 0.214 0.302 +41
G2-Ind3 0.214 0.278 +30
G1L-Ind3 0.214 0.297 +39
G1L-Ind3-T 0.214 0.239 +12

Table 3 Numerical results for the cavitating simulations

Experimental 𝛹 Numerical 𝛹 Error%
G1-Ind4 0.105 0.143 +36
G2-Ind5 0.143 0.130 −8.9
G2-Ind6 0.137 0.130 −5.0

backflow (see Fig. 2), we investigated two possible explanations of this behavior.

The first one is the distance of the inlet from the inducer nose, which could be not

large enough to avoid spurious effects on the solution; the second one is turbulence

effect, which for this case could be important. The results of the first simulations

for the longer computational domain, G1L-Ind3, show that even if there is a small

effect, i.e., a decrease of the error from 41% to 39%, this is not the source of the error.

Instead the results of the simulation G1L-Ind3-T, i.e., the one done considering the

RANS model, show that in this case turbulence is a key issue. Indeed, in this case

the error falls down to 12%, less than the error obtained with the refined grid G2 in

laminar conditions. As expected the effects of turbulence are particularly important

near the gap between the blades and the external case, as it is shown in Fig. 3 by

considering the isocontours of k.

This strongly affects the backflow and, thus, the pressure jump. This also explains

why for larger flow rates, for which the backflow is less important, the effects of

turbulence are not so strong and a good agreement with experimental data can be

obtained also in laminar simulations.

The mass flow rate for the cavitating cases is large enough to prevent the issues

related to the backflow previously described, and thus only laminar simulations are

considered. The results for the cavitating conditions, reported in Table 3, show that

the first grid G1 is not enough refined to correctly describe cavitation for this case.

The pressure jump is greatly overestimated: for these conditions the error is related

to the underestimation of the cavitating region: the experimental data for 𝜎 = 0.056
show a large cavitating zone and consequently the performance of the inducer is sig-

nificantly deteriorated. Instead, in the simulation with grid G1, the extension of the

cavitating region is greatly underestimated and, as a consequence, the “numerical”
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(a) Benchmark Ind1

(b) Benchmark Ind2

(c) Benchmark Ind3

Fig. 2 Comparison of the averaged axial velocity for the three non-cavitating benchmarks, grid

G1

performance of the inducer is similar to the non-cavitating case. Grid refinement is

particularly effective as shown by the results for the simulations, G2-Ind5 and G2-

Ind6. The error in the prediction of the pressure jump is reduced and the extension

of the cavitating region, even if it is still underestimated, is closer to the one found in

experiments, as it is shown in Fig. 4 which plots the isocontours of the void fraction,

corresponding to the cavitating region.
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Fig. 3 Cross section of the averaged k field, simulation G1L-Ind3 (view of the shorter domain)

Fig. 4 Isocontours of the

void fraction, 𝛼, for the

simulation G2-Ind6

As a final remark, in this complex engineering application, the proposed numer-

ical methodology proved to be robust and reliable in non-cavitating but also in cavi-

tating conditions. The cavitating simulations have been carried out using CFL num-

bers up to 500 without encountering stability problems. Since in the definition herein

adopted the time step is proportional to the mesh size and to the CFL and inversely

proportional to the maximum local speed of sound, large values of CFL allow rea-

sonable time steps to be used and thus simulations to be carried out at affordable

computational costs to be carried out also for complex applications as the one herein

considered.

5 Concluding Remarks

A numerical methodology has been presented for the simulation of cavitating flows

in realistic engineering problems through a barotropic homogeneous-flow cavita-

tion model. The key ingredients of this methodology are (i) the use of unstructured
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grids to deal with complex geometries and local refinement, (ii) a low-diffusive HLL

scheme for convective fluxes, and (iii) implicit time advancing together with a lin-

earization in time accounting for speed of sound variations and a defect correction

approach to reduce the computational costs.

As an example of a real engineering problem, the application to the flow in a real

turbopump inducer designed for liquid-propelled rockets in both cavitating and non-

cavitating conditions. The obtained results showed a global good agreement with the

experimental data and the proposed methodology appeared to be robust and efficient,

leading to simulations requiring reasonable computational costs also in cavitating

conditions.
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From Cavitating to Boiling Flows

Richard Saurel, Olivier Le Métayer and Pierre Boivin

Abstract A flow model is derived for the numerical simulation of interfacial flows

with phase transition. The model arises from the classical multi-component Euler

equations, but is associated to a non-classical thermodynamic closure: each phase is

compressible and evolves in its own subvolume, with phases sharing common pres-

sure, velocity and temperature, leading to non-trivial thermodynamic relations for

the mixture. Phase transition is made possible through the introduction of Gibbs free

energy relaxation terms in the equations. Capillary effects and heat conduction—

essential in boiling flows—are introduced as well. The resulting multi-phase flow

model is hyperbolic, valid for arbitrary density jumps at interfaces as well as arbi-

trary flow speeds. Its capabilities are illustrated successively through examples of

nozzle induced cavitation and heated wall induced boiling.

1 Introduction

Cavitating, boiling and evaporating are three phenomena that involve phase transi-

tion in multi-phase flows. They appear in countless engineering applications: steam

generators, marine propellers, liquid fuel combustion, etc. Yet, modelling these

phenomena remains an unsettled problem.
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Cavitation in a liquid is a phase change phenomenon created by a pressure drop

driven by (fast) acoustic waves, generating—as it name suggests—cavities and bub-

bles. When pressure becomes lower than the saturation one at the local tempera-

ture, phase change appears as the liquid internal energy or temperature is greater

than the saturated one: the liquid is overheated. Indeed, during a pressure drop, the

liquid temperature varies weakly and at low pressure it becomes hot compared to the

saturation temperature, this one being strongly dependant of pressure.

Boiling is yet another phase transition phenomenon created by heat deposition in

a liquid, most times by heat conduction from a hot wall. The heating increases the

liquid temperature and when it becomes greater than the saturation temperature at

local pressure (most times uniform in the domain) phase change appears. Therefore,

unlike cavitation, this process is governed by (slow) heat conduction.

In both instances, the liquid is overheated due to a departure from the saturation

conditions, whether it comes from a pressure drop (cavitation) or from a tempera-

ture rise (boiling). Consequently, phase change occurs, provided that some impurities

(nucleation sites) are present. In industrial and natural fluids impurities are always

present in large enough concentrations (solute gases, trapped bubbles in wall rough-

ness etc.). Cavitation is oftentimes assumed to be isothermal, with severe pressure

gradients, whereas boiling and evaporation are roughly isobaric, with important tem-

perature gradients (Sinibaldi et al. 2006; d’Agostino and Salvetti 2008; Goncalves

and Patella 2009). Although they have different characteristic times, as pressure gra-

dients are associated to acoustic waves (fast), and temperature gradients to heat con-

duction (slow), cavitation, boiling and evaporation are driven by phase transition and

may therefore be modelled by the same approach.

However, in the literature, cavitation and boiling flows are considered through

very different approaches. Most cavitation models consider liquid and two-phase

mixture evolving at uniform temperature (Coutier-Delgosha et al. 2003; Barre et al.

2009). In these formulations the flow model is barotropic and the energy conserva-

tion principle as well as the second law of thermodynamics are omitted. In these

models, the EOS is built to mimic some behaviour of two-phase mixtures, such as

the mixture sound speed that evolves non-monotonically with respect to the volume

fraction.

Boiling flows are considered by different approaches, most of them being based

on Cahn and Hilliard (1958) approach of capillary fluids. Here the energy equation is

considered as the importance of energetic effects are obvious. Contrarily to cavitation

models, sound propagation is wrongly considered, as the square sound speed may

become negative in the phase change domain (Menikoff and Plohr 1989). Indeed,

the EOS is of cubic-type (van der Waals for example), with undefined sound speed

in specific thermodynamic domain. Many other restrictions appear with the Cahn-

Hilliard second gradient theory, such as for example the need to enlarge interfaces

to make possible practical computations (Jamet et al. 2001). Fundamental issues

also arise, such as shock wave existence in these media. The two most popular

approaches for cavitating and boiling flows have consequently obvious limitations

and restrictions.
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In the present work a unified approach is provided and its ability to model and

compute cavitating and boiling flows is shown with computational examples. Most

of the scientific material results from former investigations by Saurel (2008), Le

Martelot et al. (2013, 2014). The flow model is a hyperbolic system of partial dif-

ferential equations with Gibbs free energy relaxation. The thermodynamic closure is

built without ambiguity and results in a mixture EOS valid in pure liquid, pure vapour

and two-phase mixture. The presence of non-condensable phase may be considered

as well. The sound speed is defined in all space of variables. Nonlinear waves, such

as shocks have a clear definition too. Last, the formulation is valid for any flow speed

and any fluid density ratio at interfaces.

2 Basic Flow Model Specification

The flow model has to deal with:

(a) Liquid and gas compressibility: liquid compressibility consideration is manda-

tory in cavitating flows and gas compressibility must be addressed in most situ-

ations of flows with phase change.

(b) Pure liquid and pure gas dynamics as well as interfaces motions, these ones

separating pure phases and those of two-phase mixtures.

(c) Mass exchange in mixtures and at interfaces, for both evaporation and conden-

sation.

(d) Heat conduction, important in boiling flows.

(e) Capillary effects, important in boiling flows as well.

Obviously the flow model has to be in agreement with the basic principles of physics

such as mass, momentum and energy conservation, second law of thermodynam-

ics, frame invariance and thermodynamic consistency (convexity of the EOS and

sound speed existence) resulting in hyperbolicity. In the basic flow model version

we address items (a) and (b) that are the most challenging. The model we address

considers mixtures and material interfaces in:

∙ velocity and pressure equilibrium (mechanical equilibrium),

∙ temperature equilibrium (thermal equilibrium).

This set of constraints is obviously valid in pure phases. In two-phase mixtures it

assumes that velocity slip is absent and that the mixing is fine enough to reach

temperature equilibrium. It means that the two-phase mixture is made of small

drops, small bubbles or foams. Experimental observations of cavitating and flashing

flows near macroscopic interfaces support these assumptions (Simoes-Moreira and

Shepherd 1999). From these assumptions it is possible to reduce non-equilibrium

two-phase flow models to mechanical and thermal equilibrium one. Such reduction

method is addressed in Kapila et al. (2001), Murrone and Guillard (2005), Saurel

et al. (2008), Lund (2012), Le Martelot et al. (2014) in various contexts. When both



262 R. Saurel et al.

mechanical and thermal relaxation are assumed to be stiff, it results in the following

system of partial differential equations:

𝜕(𝛼𝜌)1
𝜕t

+ div
(
(𝛼𝜌)1u

)
= 0, or alternatively

𝜕𝜌

𝜕t
+ div(𝜌u) = 0

𝜕(𝛼𝜌)2
𝜕t

+ div
(
(𝛼𝜌)2u

)
= 0

𝜕𝜌Y1
𝜕t

+ div(𝜌Y1u) = 0

𝜕𝜌u
𝜕t

+ div
(
𝜌u⊗ u + pI

)
= 0

𝜕𝜌E
𝜕t

+ div ((𝜌E + p)u) = 0 (1)

where 𝛼k, Yk, 𝜌k (k = 1, 2) denote respectively the volume fraction, the mass frac-

tion and the material density. 𝜌 represents the mixture density (𝜌 = 𝛼1𝜌1 + 𝛼2𝜌2), u
represents the centre of mass velocity, p denotes the pressure and E the mixture total

energy (E = e + u2∕2). The mixture internal energy is defined as e = Y1e1 + Y2e2.

System (1) is clearly reminiscent of the reactive (or multi-component) Euler equa-

tions widely used in chemically reacting flows. However, the thermodynamic closure

departs significantly of the one used in gas mixtures. Indeed, in the present context

it results from the following algebraic system:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

T1 = T2 = T ,
e = Y1e1(T , p) + Y2e2(T , p),
p1 = p2 = p,
𝛼1 + 𝛼2 = 1 or alternatively, Y1v1(T , p) + Y2v2(T , p) = v

(2)

In this algebraic system, the phases are in pressure equilibrium and each one occu-

pies its own sub-volume or volume fraction 𝛼k. System (2) corresponds to a nonlinear

system of two equations with the two unknowns T and p. To determine its explicit

solution, EOS for the phases have to be provided. This is addressed in the forthcom-

ing section. This thermodynamic closure differs significantly from that of ideal gas

mixtures. In ideal mixtures each fluid occupies the entire volume, this assumption

replacing the last equality of System (2). Also, the pressure is defined by the Dalton’s

law p =
∑

k pk instead of the pressure equilibrium condition. In formulation (1) with

thermodynamic closure (2) each phase occupies its own volume (and not the entire

one) and evolves in temperature and pressure equilibrium with the other phase.

At interfaces separating pure liquid and pure gas the assumption of single tem-

perature seems unrealistic as interface conditions, in the absence of mass transfer

and heat diffusion, reduce to normal equal velocities and equal pressures, implying

arbitrary temperature jumps. However, when heat diffusion is present an additional

interface condition appears, corresponding to temperatures equality. Thus System

(2) is valid for the computation of interfacial flows when:
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∙ Heat diffusion is present and when it is possible to resolve the heat diffusion layer,

as for example in the boiling flow configurations that will be considered latter.

This is similar to laminar flames computations.

∙ A mushy zone is present at the interface. This is the case for example with flash-

ing and super-cavitating flows where the interface is not a clear discontinuity but a

sharp mixture layer in which thermodynamic relaxation and heat exchanges occur

intensively. This is similar to turbulent flames computations, where it is not possi-

ble to resolve all heat diffusion and chemical relaxation layers at subscale, but for

which ‘turbulent heat conduction’ imply global turbulent flame propagation.

System (1) with closure (2) is thus valid for the computation of:

∙ local interface dynamics when heat transfer is considered (this effect will be

inserted later),

∙ global (or macro-scale) interface dynamics when a micro-scale or subscale struc-

ture such as a mushy zone is present. Indeed, at subscale, heat transfer is neces-

sarily present, imposing temperature equality at the interface.

When phase transition is addressed Gibbs free energy relaxation terms have to be

considered in one of the mass equations:

𝜕𝜌Y1
𝜕t

+
𝜕𝜌uY1
𝜕x

= 𝜌𝜈(g2 − g1) (3)

where gk = hk − Tsk denotes the phase k Gibbs free energy. hk and sk represent the

specific enthalpy and specific entropy. 𝜈 represents a relaxation parameter that con-

trols the rate at which thermodynamic equilibrium is reached. The way this relax-

ation parameter is estimated will be addressed later. The entropy equation associated

to System (1)–(3) reads,

𝜕𝜌s
𝜕t

+ 𝜕𝜌su
𝜕x

=
𝜌𝜈(g2 − g1)2

T
, (4)

with the following definition for the mixture entropy: s = Y1s1 + Y2s2.

The same type of remark as before with temperature equality at interfaces is

needed to explain the validity of a single velocity model to compute interfacial flows

with phase transition. When heat diffusion and Gibbs energy relaxation are addressed

and solved at the interface, i.e., when the interface structure is solved, three velocities

appear at the global scale even if a single local velocity is present in the flow model.

The three velocities that appear at the global scale are the liquid one, the vapour one

and the phase transition front one.

This is similar to flames computation in which the reactive Navier–Stokes equa-

tions are appropriate to compute the reacting and burnt gas dynamics as well as flame

front dynamics.

The model has been shown to converge to exact sharp interface solutions in

Le Martelot et al. (2014). When the interface has more complex structure with tur-

bulent mixing at subscale, the same three velocities appear with different dynamics.
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This is a consequence of turbulent heat diffusion and effective properties of fluid

media. In the limit, when flash evaporation is considered, the front velocity doesn’t

exceed the acoustic wave speed of System (1) or its thermodynamic equilibrium

analogue when the relaxation parameter 𝜈 in Eq. (3) tends to infinity. Indeed,

metastable liquid is produced at a rate controlled by expansion waves, themselves

propagating at the speed of acoustic waves (Saurel et al. 2008). In this limit, the

deflagration speed of Chapman-Jouguet (Chaves 1984) is recovered as kinetic rela-

tion for the global phase change front velocity. To summarize the discussion on the

validity of flow model (1), it is unable to compute accurately interfaces of simple

mechanical contact but it becomes valid:

∙ when heat conduction is considered and the interface structure is resolved, as done

for boiling flows (Le Martelot et al. 2014),

∙ when phase change occurs through interfaces with subscale structure, such as

cavitating and flashing flows (Saurel et al. 2008; Le Martelot et al. 2013).

For practical use of System (1)–(2), EOSs have to be specified for the various

phases. This is the aim of the next section.

2.1 Equations of State

Phase transition and equations of state is a long lasting challenge.

About the van der Waal EOS

As mentioned in the introduction, the Cahn-Hilliard (1958) approach is quite popular

with boiling flows modelling, not with cavitating ones. It uses the van der Waals

(VdW) equation of state (EOS) to compute the pressure. This EOS provides the

pressure for the liquid phase, the gas phase and the two-phase mixture. It reads,

p = 𝜌RT
1 − 𝜌b

− c𝜌2 (5)

where R denote the specific gas constant (R = r
W

) with r = 8.314 J/mol/K and

W (kg/mol) the molar mass. b represents the specific covolume, i.e. the volume occu-

pied by the molecules (m
3
/kg) and c is a constant associated to attractive effects.

This EOS contains a fundamental drawback schematized in Fig. 1 where an isen-

trope for the VdW EOS is shown.

EOS (5) thus presents unphysical behaviour during the phase change process. The

following interpretations follow:

∙ Equation (5) is aimed to close the balance equations of mass, momentum and

energy of the mixture. Unlike System (1), the volume or mass concentrations are

not considered in such formulations. A possible reason for choosing models with
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Fig. 1 Thermodynamic path along an isentrope showing an expansion process starting from a pure

liquid to the pure vapour region. The square sound speed c2 = −v2
(
𝜕p
𝜕v

)

s
is well defined in the pure

liquid and pure gas but is undefined in the two-phase region, between the metastable liquid and the

metastable gas

three equations only is that adding a concentration equation requires additional

information, such as the thermo-chemical relaxation rate 𝜈. These options, how-

ever, lead to the loss of hyperbolicity.

∙ In the VdW representation, phase transition is modelled as a thermodynamic path

and not as a kinetic one. Consequently the time variable is obviously absent in the

EOS. However, phase transition is a time delayed phenomenon and a thermody-

namic path seems a crude representation.

These remarks naturally lead us to the following thermodynamic closure, based

on three parameters P(𝜌, e,Y) instead of two P(𝜌, e) in the Van der Waals approach.

EOS for pure fluids

In the following we adopt an approach where each phase has its own EOS, each

EOS being thermodynamically consistent (convex) with well defined sound speed.

The connexion between the two phases is done through a kinetic path instead of a

thermodynamic one. Determination of the kinetic relaxation rate will be addressed

later. Schematic representation of the thermo-kinetic approach of phase transition is

shown in Fig. 2. This idea was promoted by Saurel et al. (2008).

In this frame, liquid and gas require their own EOS, these ones being linked by

the phase diagram. The building of such EOS has been addressed in Le Métayer et al.

(2004) on the basis of the stiffened gas (SG) EOS. The main formulas for this EOS

read for a given phase k = 1, 2:
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Fig. 2 Liquid and gas

isentropes are connected

through a kinetic path (Gibbs

free energy relaxation

process) during phase change

pk(𝜌k, ek) = 𝜌k(𝛾k − 1)(ek − qk) − 𝛾kp∞k,

Tk(pk, 𝜌k) =
pk + p∞k

𝜌kCvk(𝛾k − 1)
, (6)

gk(pk,Tk) = (𝛾kCvk − q′k)Tk − CvkTk ln
T𝛾k

k

(pk + p∞k)𝛾k−1
+ qk.

For a given phase, the following parameters are needed: 𝛾k, p∞k, Cvk, qk, and

q′k. As shown by Le Métayer et al. (2004) there is no difficulty to determine these

parameters once the saturation curves for the liquid and gas are known. For liquid

water and steam, the fluid parameters, optimized in the [300–500 K] temperature

range, are the following:

Liquid water:

𝛾liq = 2.62 P∞,liq = 9058.29 × 105 Pa Cv,liq = 1606.97 J ⋅ kg−1 ⋅ K−1

qliq = −1.150975 106 J

Water vapour:

𝛾vap = 1.38 P∞,vap = 0Pa Cv,vap = 1192.51 J ⋅ kg−1 ⋅ K−1

qvap = 2.060759 × 106 J

These parameters are used in the computational examples of boiling and cavitating

flows.

Expressing the thermal EOS of System (6) differently the following relation

appears:

pk(𝜌k,Tk) = 𝜌k(𝛾k − 1)CvkTk − p∞k. (7)
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The agitation part is 𝜌k(𝛾k − 1)CvkTk and is similar to the 𝜌RT part of (5). The attrac-

tive part (−p∞k) is here a constant while it is density varying with the VdW EOS.

The repulsive part (1 − 𝜌b)−1 is neglected in the SG formulation. Its consideration

is addressed in Le Métayer and Saurel (2016).

The sound speed of a given phase reads,

ck =

√

𝛾k
pk + p∞k

𝜌k
. (8)

With this formulation the phases sound speed are always defined as pk > −p∞k. Hav-

ing in hands EOS (6) for each phase we now address building of the EOS for the

mixture.

Mixture EOS

The mixture EOS is the one that closes System (1) with the help of mixture rules (2)

on the basis of formulation (6) for each phase. The algebraic system to solve is thus,

e = Y1e1(T , p) + Y2e2(T , p),
v = Y1v1(T , p) + Y2v2(T , p), (9)

where e and v are obtained from the resolution of (1) and combination of the mass,

momentum and energy equations. The unknowns in (9) are consequently the mixture

temperature T and pressure P. Combining the caloric and thermal EOSs of (6) the

energy for a given phase reads,

ek(Tk, 𝜌k) = CvkTk +
p∞k

𝜌k
+ qk.

Inserting this expression in the first equation of (6) the specific volume as a function

of pressure and temperature is obtained:

vk(Tk, pk) =
(𝛾k − 1)CvkTk

pk + p∞k
. (10)

Inserting this expression in one of the EOS (6) the internal energy as a function of

pressure and temperature is obtained:

ek(Tk, pk) =
(pk + 𝛾kp∞k)CvkTk

pk + p∞k
+ qk.

With these definitions, System (9) becomes,
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T(e, p,Y1) = (e − q̄)
(∑

i

YiCvi(p + 𝛾ip∞i)
p + p∞i

)−1

, (11)

T(v, p,Y1) = v
(∑

i

(𝛾i − 1)YiCvi

p + p∞i

)−1

, (12)

with q̄ = Y1q1 + Y2q2.

Eliminating the temperature from these two equations the EOS for the pressure

is obtained as solution of the following quadratic equation:

a2p2 + a1p + a0 = 0

a2 = Y1Cv1 + Y2Cv2

a1 = Y1Cv1(p∞2
+ 𝛾1p∞1 − (𝛾1 − 1)Q) + Y2Cv2(p∞1

+ 𝛾2p∞2 − (𝛾2 − 1)Q)
a0 = −Q((𝛾1 − 1)Y1Cv1p∞2 + (𝛾2 − 1)Y2Cv2p∞1) + p∞1p∞2(𝛾1Y1Cv1 + 𝛾2Y2Cv2)

where

Q = 𝜌(e − q̄)

The pressure is given by the only positive root:

p =
−a1 +

√
a2
1 − 4a0a2

2a2
(13)

Once the pressure is determined, the temperature is computed by either (11) or

(12). The mixture sound speed has a non-monotonic behaviour versus the volume

fraction as shown in Fig. 3.

Fig. 3 Representation of the mechanical equilibrium mixture sound speed (in lines) and the

pressure-temperature equilibrium mixture sound speed (in dashed lines). Both sound speeds present

a non-monotonic behaviour versus volume fraction. The mechanical equilibrium sound speed is

always slightly higher than the pressure-temperature equilibrium one
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From the results shown in Fig. 3 it appears that there is no practical need to com-

pute the mixture sound speed that is quite complex and computationally expensive

(its explicit expression is given in Le Martelot et al. (2014)). As it is always lower

than the mechanical equilibrium one, this one is preferred in the numerical computa-

tions, as better stability is guaranteed with this estimate. The mechanical equilibrium

sound speed obeys the well known Wood (1930) formula:

1
𝜌c2w

=
𝛼1

𝜌1c21
+

𝛼2

𝜌2c22
(14)

The volume fractions are determined from the resolution of System (1) and the spe-

cific volumes computed by (10) with the pressure given by (13) and temperature

given by (12). The phase sound speeds are given by (8).

3 Kinetic Relaxation Rate—Thermo-Chemical Relaxation
Solver

When dealing with phase transition the relaxation rate 𝜈 present in the concentration

equation (3) has to be specified. Following Saurel et al. (2008), the guess 𝜈 → ∞ is

appropriate in most situtations. In other words, pure liquid and pure gas are allowed

to have any temperature during the hyperbolic step and instantly reach thermody-

namic equilibrium at the saturation conditions where both liquid and gas are present

(interface and mixture zones). This assertion is justified as follows:

∙ When dealing with the direct numerical simulation of boiling flows, the fluids

become metastable as a consequence of heat diffusion. Heat conduction is slow

and controls the global rate of phase change. Thus, one can assume that phase

transition occurs at any rate, given it is greater than heat conduction. For the sake

of simplicity, infinitely fast relaxation is adopted.

∙ When dealing with cavitating flows, it is assumed that the fluids contain enough

impurities to have many nucleation sites. Around evaporating interfaces, phase

transition happens and their collective effects result in macroscopic cavitation

fronts surrounded by mushy zones. In these mushy zones the interfacial area is

so large that heat and mass exchange are intense enough so that a flow model with

a unique temperature and stiff Gibbs energy relaxation is appropriate.

∙ When none of the fluids is metastable (pure liquid state and pure gas state) no

thermo-chemical relaxation occurs and the flow model reduces to single phase

equations, with appropriate thermodynamics.

With this approach the thermodynamic path that the fluid follows during an isen-

tropic expansion is shown in Fig. 4.

As the thermo-chemical solver is used as soon as metastable states appear, the

effective thermodynamic path that the fluid follows is that of Fig. 4. Such a path could

be reproduced by a reduced version of the flow model (1) with three equations only
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yy
xx

liq

gas

Fig. 4 As metastable states are transformed stiffly to equilibrium mixture states the effective ther-

modynamic path corresponds in the two-phase region to a line whose slope has been exaggerated

in the figure. The slope is non zero but is weak, as sound propagates slowly in two-phase mixtures

(mixture mass, mixture momentum and mixture energy). However, the sound speed

of such a model is not convenient, as it is costly to compute, and most importantly,

discontinuous at the phase diagram boundaries.

Here, the flow model has a sound speed always defined and continuous. As men-

tioned earlier, Eq. (14) is a fair approximation. Also, extending System (1) to the

presence of non-condensable gas is straightforward while it is non-trivial with a more

reduced model.

The presence of a stiff relaxation term in (3) does not result in computational

difficulties as integration of such term is never addressed: in the following, only the

equilibrium state is required.

The relaxed solution corresponding to thermodynamic equilibrium is obtained

considering the mixture mass and mixture energy definition:

v = 1
𝜌

= Y1v1 + Y2v2 = cst = v0 (15)

e = Y1e1 + Y2e2 = cst = e0 (16)

where Y1 =
𝛼1𝜌1
𝜌

and Y2 =
𝛼2𝜌2
𝜌

= 1 − Y1 are the varying mass fractions of both

phases. In the following the liquid and its vapour are denoted respectively by the

subscripts ‘1’ and ‘2’.

The specific volumes and internal energies are given by the SG EOS:

vk =
(𝛾k − 1)CvkTk

pk + p∞,k
, (17)

ek = CvkTk

(

1 +
(𝛾k − 1)p∞,k

pk + p∞,k

)

+ qk. (18)

All parameters appearing in relations (17), (18) and (19) are computed in order

to satisfy the experimental liquid/vapour saturation curves (Le Métayer et al. 2004).
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The final relaxed state, denoted by the superscript ‘∗’ corresponds to the thermo-

dynamic equilibrium state. The liquid and vapour phases have a common pressure,

temperature and Gibbs free energy. Equality of Gibbs free energy of both phases,

gk = hk − Tksk = (𝛾kCvk − q′k)Tk − CvkTkln
T𝛾k

k

(p + p∞,k)𝛾k−1
+ bkPk + qk, (19)

provides a relation between the pressure and the temperature:

T∗(p∗) = Tsat(p∗) (20)

This relation represents the evolution of the saturation temperature as a function of

pressure. Thanks to (20), the relation (15) reads,

v0 = Y∗
1 v∗1(p

∗) + Y∗
2 v∗2(p

∗) = Y∗
1 v∗1(p

∗) + (1 − Y∗
1 )v

∗
2(p

∗), (21)

with,

v∗k (p
∗) =

(𝛾k − 1)CvkT∗(p∗)
p∗ + p∞,k

. (22)

Variables v∗1 and v∗2 thus correspond to the saturated specific volumes of the liquid

and vapour phases respectively.

A first relation linking the liquid mass fraction and the pressure is obtained from

(21):

Y∗
1 =

v∗2(p
∗) − v0

v∗2(p∗) − v∗1(p∗)
. (23)

In relation (23) the existence of physical solution is fulfilled by the following condi-

tion:

0 < Y∗
1 < 1 ⇔ v∗1(p

∗) < v0 < v∗2(p
∗) (24)

By using once more the saturation relation (20), the total energy equation (16)

becomes,

e0 = Y∗
1 e∗1(p

∗) + Y∗
2 e∗2(p

∗) = Y∗
1 e∗1(p

∗) + (1 − Y∗
1 )e

∗
2(p

∗), (25)

where,

e∗k (p
∗) = CvkT∗(p∗)

(

1 +
(𝛾k − 1)p∞,k

p∗ + p∞,k

)

+ qk. (26)

A second relation linking the liquid mass fraction and the final pressure is obtained,

Y∗
1 =

e0 − e∗2(p
∗)

e∗1(p∗) − e∗2(p∗)
. (27)



272 R. Saurel et al.

It is more convenient to rewrite relation (27) in terms of specific enthalpies by

combining (21) and (25),

e0 + p∗v0 = Y∗
1
(
e∗1(p

∗) + p∗v∗1(p
∗)
)
+ Y∗

2
(
e∗2(p

∗) + p∗v∗2(p
∗)
)
=

Y∗
1h∗1(p

∗) + Y∗
2h∗2(p

∗), (28)

which directly introduces the latent heat of vaporization Lv(p∗),

Lv(p∗) = h∗2(p
∗) − h∗1(p

∗). (29)

Equation (27) then becomes:

Y∗
1 =

h∗2(p
∗) − (e0 + p∗v0)

h∗2(p∗) − h∗1(p∗).
(30)

In relation (30) a second existence condition appears,

0 < Y∗
1 < 1 ⇔ h∗1(p

∗) < e0 + p∗v0 < h∗2(p
∗). (31)

Equating relations (23) and (30) leads to an equation where the final pressure p∗
is

the only unknown,

h∗2(p
∗) − (e0 + p∗v0)

h∗2(p∗) − h∗1(p∗)
−

v∗2(p
∗) − v0

v∗2(p∗) − v∗1(p∗)
= 0. (32)

Once the solution of (32) is obtained—through Newton’s method for instance—

the other thermodynamic variables are easily obtained by the preceding relations

presented above.

However Eq. (32) may not provide a physical solution depending on the initial

energy e0 and specific volume v0. This is the case when conditions (24) and (31) are

not fulfilled. In such instances the liquid/vapour system tends towards a final state

where a single phase is present. Total evaporation or condensation thus occurs dur-

ing the relaxation process, and the corresponding thermodynamic state is computed

with Eq. (13) where the mass fraction of one of the phases has been set to 1.

4 Hyperbolic Solver

For the sake of simplicity, the presentation of the solver is one-dimensional, and

limited to first order. Details about higher order extensions may be found in Toro

(2009).

System (1) is written in compact form as,
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𝜕U
𝜕t

+ 𝜕F(U)
𝜕x

= 0, (33)

where U =
[
𝜌 𝜌u 𝜌E 𝜌Y

]t
is the conservative variables vector, and F =

[
𝜌u 𝜌u2 + p (𝜌E + p)u 𝜌uY

]t
represents the associated flux vector.

Godunov scheme

System (33) is a hyperbolic system of conservation laws, with wave speeds u, u − ceq
and u + ceq.

The first-order Godunov method reads,

Un+1
i = Un

i −
Δt
Δx

(F∗
i+1∕2 − F∗

i−1∕2), (34)

under the CFL stability condition,

Δt ≤ Δx
max(u ± ceq)

. (35)

The cell boundary fluxes Fi±1∕2 are computed with the following approximate

solver.

HLLC solver

The HLLC solver (Toro et al. 1994) is an approximate Riemann solver for the Euler

equations that is easy to adapt to the present “real gas” context. In the HLLC context,

each wave is considered as a discontinuity:

∙ a contact discontinuity wave, with characteristic speed SM , through which pressure

and velocity is constant

∙ two discontinuities, with characteristic speed SL and SR (left facing and right facing

waves), through which mass fractions Yi are constant.

As shown in Fig. 5, each of these waves separate the states: ( ̄UL,
̄U∗

L,
̄U∗

R,
̄UR), from

which it is possible to compute the appropriate flux between the two cells during the

time step.

In the example depicted in Fig. 5, U∗
L is the appropriate state to compute the inter-

cell flux F, since it is the state which persists at the physical position of the cell

discontinuity during the time step. In a more general context, there are four possible

cases depending on the signs of the three wave velocities:

case a SL > 0 → F = F(UL)
case b SR < 0 → F = F(FR)
case c SM > 0, SL < 0 → F = F(U∗

L)
case d SM < 0, SR > 0 → F = F(U∗

R)
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x

t

SM

SR

SL

UR

UL

U∗
R

U∗
L

Fig. 5 Schematic representation of the Riemann problem emerging at each cell boundary. Three

nonlinear waves are emitted, each one being considered as a discontinuity

Wave speeds estimates and fluxes computation

Following Davis (1988), the right and left velocities are approximated as,

SR = max((u + cw)R, (u + cw)L), (36)

SL = min((u − cw)R, (u − cw)L). (37)

Knowledge of ceq is not required as it is replaced everywhere by its approximation

cw, given by (14), in the solver that follows.

Each discontinuity obeys the Rankine-Hugoniot conditions given by:

[F] − Sk[U] = 0 (38)

where Sk denotes the speed of the kth discontinuity and [...] denotes the jump of a

given variable across the discontinuity.

Under HLL approximation, the intermediate wave speed is given by

SM = u∗ =
pR − pL + 𝜌RuR(uR − SR) − 𝜌LuL(uL − SL)

𝜌R(uR − SR) − 𝜌L(uL − SL)
(39)

Using again the Rankine–Hugoniot jump conditions, one can derive the following

relations for the intermediate state:

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝜌

∗
R = 𝜌R

uR−SR
SM−SR

u∗R = u∗ = SM

p∗
R = pR + 𝜌R(uR − SR)(uR − SM)

E∗
R = ER + pR(uR−SM)

𝜌R(uR−SR)
− SM(uR − SM)

Y∗
R,i = YR,i

(40)
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�ηf

right stateleft state

Fig. 6 3D Godunov method applied to computational control volumes made of tetrahedrons. The

code is cell-centered, and the Riemann problem is solved at each face. ▴ tetrahedron center. ∙ face

center

These relations fully define the intercell set of conservative variables U∗
R, and con-

sequently the flux F(U∗
R) given by,

F∗
R = FR − SR(UR − U∗

R). (41)

Substituting the L index to the R index in the above formula leads to a similar expres-

sion for the remaining flux F(U∗
L).

The computational examples that follow were achieved with the DALPHADT

code based on tetrahedron meshes. In this frame, the Godunov method reads,

Un+1
k,i = Un+1

k,i − Δt
Vi

4∑

f=1
(F∗

k ⋅ 𝜂)f Sf , (42)

where Sf is the face area, and (F∗
k .𝜂)f represents the flux solution of the Riemann

problem solved along the face normal vector 𝜂f of a given face of the tetrahedron, as

illustrated in Fig. 6.

We now address computational examples.

5 Cavitating Flows

In this section, 2D two-phase flow computations in Venturi nozzle are addressed.

The configuration studied corresponds to the experimental facility built at LEGI

Laboratory in Grenoble, France by the group leaded by S. Barre. The test section

corresponds to a Venturi channel with a nozzle divergent inclined at an angle of 8◦.

The geometry is shown in Fig. 7.

The fluids considered correspond to liquid and vapour water, with the equation of

state parameters given in Sect. 2.1. The boundary conditions correspond to imposed

mass inflow with both imposed stagnation enthalpy and entropy at the inlet and
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A B C

D

E

F G

H

X (abscissa) (m) Y (m) X(abscissa) (m) Y (m)
A 0 0 E 1.225 -0.114
B 0.1 0 F 0 0.0488
C 0.153 0.0157 G 0.271 0.0488
D 0.588 -0.0517 H 1.233 -0.00845

Fig. 7 Geometrical data of the Venturi 8◦ nozzle of LEGI, France

(a) (b)

(c) (d)

Fig. 8 Experimental photographs of the break off cycle observed in the 8◦ Venturi nozzle with

the boundary conditions aforementioned. Flow direction is from right to left. A cavitation pocket

appears, extends and separates in two sub-pockets, one transported with the mean flow and another

one collapsing close to the nozzle. Courtesy of S. Barre (LEGI)

prescribed pressure at the outlet. The imposed conditions at the inlet are the fol-

lowing,

⎧
⎪
⎪
⎨
⎪
⎪
⎩

m = 7514.917 kg.m−2
.s−1

𝜌liq = 1067.56 kg.m−3

𝜌vap = 0.387 kg.m−3

𝛼liq = 0.999
P = 51825 Pa

while, at the right outlet, the prescribed pressure is P = 72025 Pa.

With these boundary conditions a periodic flow has been observed experimentally

as shown in the Fig. 8.

In the first stage of the cycle (a), a cavitation sheet is attached to the throat

and grows. In a second stage, the sheet reaches its maximum length (b) and breaks

into two main parts (c). At the end, the downstream part is swept along within the
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Fig. 9 Computed volume fraction of water vapour. This example shows the same four different

parts as those observed during the experimental studies and shown in Fig. 8. The mean attached

cavity length is about 45 mm, in perfect agreement with the experiments

stream and starts to collapse while the attached part starts another cycle (d). The

mean attached cavity length value is 45 ± 5 mm while the quasi-periodic vapour

cloud shedding frequency is about 45 Hz.

To compute this unstable flow a 2D unstructured mesh containing 52450 cells is

used. The grid is refined at the throat in order to capture the cavitation pocket. The

average cell size is 0.13 mm at throat and 0.8 mm elsewhere.

The explicit scheme summarized in Sect. 4 is extended to time implicit integration

and the Riemann problem is preconditioned with the method detailed in Le Martelot

et al. (2013). The flow is computed during 1.8 s of physical time, this time being long

enough to obtain a quasi-stationary flow with quasi-periodic vapour clouds shedding.

An example of the obtained cloud shedding is shown in the volume fraction contours

of Fig. 9. Examining the water vapour volume fraction contours oscillations, we were

able to determine a vapour pocket shedding frequency of about 43 Hz, in excellent

agreement with the measured frequency for the pressure fluctuations (45 Hz.).

By performing measurements during every cycle, an average attached cavity

length of about 45 mm has been measured from the computations. These results

show very good agreement with the experiments. Indeed, experimental measure-

ments gave a mean attached cavity length equals to 45 ± 5 mm.

These results show that it is possible to reproduce the large structures of such

cavitating flows with a flow model free of parameters. In particular, no turbulence

model is used.

6 Boiling Flows

To deal with DNS-type of boiling flows, System (1) has to be enhanced by introduc-

ing additional physical effects:

∙ buoyancy,

∙ surface tension,

∙ heat conduction.
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Surface tension effects are considered through the Continuum Surface Force (CSF)

method of Brackbill et al. (1992). The capillary force is modelled as,

F
𝜎

= 𝜎𝜅
⃖⃖⃖⃖⃖⃖⃗∇Y1 (43)

where 𝜎 represents the surface tension coefficient (N.m−1
), 𝜅 represents the local

curvature (m−1
) and Y1 is the mass fraction of phase 1. The local curvature reads,

𝜅 = −div

(
⃖⃖⃖⃖⃖⃗∇Y
|⃖⃖⃖⃖⃖⃗∇Y|

)

. (44)

The gravity force is modelled as,

Fg = 𝜌g,

where g represents the gravity constant.

Heat conduction is inserted in the total energy equation of the model through

the Fourier law q = −𝜆c
⃖⃖⃖⃖⃖⃗∇T where the “mixture” thermal conductivity is given by

𝜆c = 𝛼1𝜆1 + 𝛼2𝜆2 and 𝜆k represents the thermal conductivity of phase k. Details are

given in Le Martelot et al. (2014).

Inserting these extra effects, the flow model now becomes:

𝜕𝜌Y1
𝜕t

+ div
(
𝜌Y1u

)
= 𝜌𝜈(g2 − g1)

𝜕𝜌

𝜕t
+ div (𝜌u) = 0

𝜕𝜌u
𝜕t

+ div
(
𝜌u⊗ u + PI

)
= 𝜎𝜅

⃖⃖⃖⃖⃖⃖⃗∇Y1 + 𝜌g
𝜕𝜌E
𝜕t

+ div ((𝜌E + P)u) = div
(
𝜆c
⃖⃖⃖⃖⃖⃗∇T

)
+ 𝜎𝜅

⃖⃖⃖⃖⃖⃖⃗∇Y1 ∙ u + 𝜌g ∙ u

(45)

A conservative form is available as well,

𝜕𝜌Y1
𝜕t

+ div
(
𝜌Y1u

)
= 𝜌𝜈(g2 − g1)

𝜕𝜌

𝜕t
+ div (𝜌u) = 0

𝜕𝜌u
𝜕t

+ div
(
𝜌u⊗ u + PI − 𝜎m

)
= 𝜌g

𝜕𝜌E + 𝜎|⃖⃖⃖⃖⃖⃖⃗∇Y1|

𝜕t
+ div

(
(𝜌E + P + 𝜎|⃖⃖⃖⃖⃖⃖⃗∇Y1|)u − 𝜎m ∙ u − 𝜆c

⃖⃖⃖⃖⃖⃗∇T
)
= 𝜌g ∙ u

(46)
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where m =

(

|⃖⃖⃖⃖⃖⃖⃗∇Y1|I −
⃖⃖⃖⃖⃖⃖⃗∇Y1 ⊗ ⃖⃖⃖⃖⃖⃖⃗∇Y1

|⃖⃖⃖⃖⃖⃖⃗∇Y1|

)

.

This system is closed by the EOS (13). The entropy equation associated to System

(45) reads,

𝜕𝜌S
𝜕t

+ div

(

𝜌Su −
𝜆c
⃖⃖⃖⃖⃖⃗∇T
T

)

=
𝜌𝜈(g2 − g1)2

T
+ 𝜆c

(∇T)2

T2 (47)

with S = Y1s1 + Y2s2, and shows agreement with the second law of thermodynam-

ics, as the right hand side of (47) is positive.

System (46) is considered hereafter to compute boiling flow examples.

A closed and adiabatic rectangular domain (12 cm× 7 cm) in which the lower half

is filled with saturated liquid water and the upper half is filled with saturated vapour

is considered.

The surface tension coefficient is set to 𝜎 = 73.10−3 N.m−1
, the contact angle

is taken constant and equal to 𝜃 = 45◦ and the gravity acceleration is set to |g| =
9.81m.s−2.

At start, the initial volume fraction of vapour is 𝛼vap = 0.0001 in the lower half

domain and 𝛼vap = 0.9999 in the upper part. Moreover, the initial pressure and tem-

perature are initialised with the hydrostatic gravity profile with the

constraint T = TSAT (P) in each cell. The bottom wall temperature is set constant at

TSAT (Patm) + 15K.

The numerical scheme presented in the former section is rendered time implicit

and the Riemann solver is low Mach pre-conditioned (Le Martelot et al. 2014). A

mesh made of 960× 560 cells is used in the computations that follow.

Three vapour bubbles (radius = 3 mm) are set initially at the bottom wall as shown

in the first image of Fig. 10. The volume fraction of vapour inside these bubbles is

𝛼vap = 0.9999. The computed vapour mass function is shown in the same figure.

The first instants show the three first bubbles moving toward the surface due to

buoyancy effects while, as the bottom wall of the box is heated, liquid water begins

to boil, creating a vapour film. The boiling phenomenon appears as consequence

of wall heating effect that renders the liquid locally slightly overheated. Indeed, the

assumption made is that the liquid contains enough impurities to not accept over-

heating, as pure liquids are able to become metastable while real liquids are not.

Therefore, using the phase transition solver of Sect. 4 after checking that the liquid

is not in stable state, the equilibrium state is computed on the basis of Eq. (32) and a

mixed cell appears. From this “nucleation cell site” and merging effects due to sur-

face tension, convection and inertia, new bubbles appear. Once created, theses new

bubbles begin to rise and, as there is now again liquid in contact with the bottom

wall, new bubbles appear behind them and begin to grow.

It is worth to mention that the bottom wall of the box is a perfect surface, where

uniform temperature and constant contact angle are set. According to the velocity
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Fig. 10 Vapour mass fraction contours at times t = 0 s, t = 50ms, t = 100ms, t = 200ms, t =
300ms and t = 400ms. A vapour film appears at the first instants. As a result of wall effects com-

bined with capillary ones a big elongated bubble is created at the centre and breaks up in several

bubbles. New bubbles appear at the bottom wall as a consequence of wall heating

profiles, the first bubbles seem to be created between the convective rolls, where the

velocity is the lowest, as shown in Fig. 10.

7 Conclusions

Boiling, evaporation and cavitation are essentially the same phenomenon, driven by

phase transition, but in different pressure and temperature conditions. Consequently,
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they ought to be described by the same model, and deriving such a model is the object

of the present work. The flow model is essentially a hyperbolic system with relax-

ation terms. Coping with boiling, evaporation and cavitation, it is—in the authors

knowledge—the first approach showing such a wide range of applicability. It is also

a very robust computational approach of phase transition compared to existing alter-

natives. Although not shown here, our preliminary investigations show that the flow

model can be extended to cope not only with a liquid–vapour couple, but also with

multi-component gas mixtures.

Acknowledgements Part of this work has been carried out in the framework of the Labex MEC

(ANR-10-LABX-0092) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the

Investissements d’Avenir French Government program managed by the French National Research

Agency (ANR). We also acknowledge funding from ANR through project ANR-14-CE22-0014. Pr.

Stéphane Barre (LEGI) is also gratefully acknowledged for providing the photographs of Fig. 8.

References

Barre, S., Rolland, J., Boitel, G., Goncalves, E., & Fortes Patella, R. (2009). Experiments and mod-

eling of cavitating flows in Venturi: Attached sheet cavitation. European Journal of Mechanics-
B/Fluids, 280(3), 444–464.

Brackbill, J. U., Kothe, D. B., & Zemach, C. I. (1992). A continuum method for modeling surface

tension. Journal of Computational Physics, 1000(2), 335–354.

Cahn, J. W., & Hilliard, J. E. (1958). Free energy of a nonuniform system. I. Interfacial free energy.

The Journal of Chemical Physics, 280(2), 258–267.

Chaves, H. (1984). Changes of phase and waves on depressurization of liquids with high specific

heat. NASA STI/Recon Technical Report N, 84, 25003.

Coutier-Delgosha, O., Fortes-Patella, R., & Reboud., J.-C. (2003). Evaluation of the turbulence

model influence on the numerical simulations of unsteady cavitation. Journal of Fluids Engi-
neering, 1250(1), 38–45.

d’Agostino, L., & Salvetti, M. V. (2008). Fluid dynamics of cavitation and cavitating turbopumps
(Vol. 496). Springer Science & Business Media.

Davis, S. F. (1988) Simplified second-order Godunov-type methods. SIAM Journal on Scientific
and Statistical Computing, 90(3), 445–473.

Goncalves, E., & Patella, R. F. (2009). Numerical simulation of cavitating flows with homogeneous

models. Computers & Fluids, 380(9), 1682–1696.

Jamet, D., Lebaigue, O., Coutris, N., & Delhaye, J. M. (2001). The second gradient method for the

direct numerical simulation of liquid–vapor flows with phase change. Journal of Computational
Physics, 1690(2), 624–651.

Kapila, A. K., Menikoff, R., Bdzil, J. B., Son, S. F., & Stewart, D. S. (2001). Two-phase modeling of

deflagration-to-detonation transition in granular materials: Reduced equations. Physics of Fluids
(1994–present), 130(10), 3002–3024.

Le Martelot, S., Nkonga, B., & Saurel, R. (2013). Liquid and liquid-gas flows at all speeds. Journal
of Computational Physics, 255, 53–82.

Le Martelot, S., Saurel, R., & Nkonga, B. (2014). Towards the direct numerical simulation of nucle-

ate boiling flows. International Journal of Multiphase Flow, 66, 62–78.

Le Métayer, O., & Saurel, R. (2016). The Noble-Abel—Stiffened-Gas equation of state. Physics of
Fluids 28(4), 046102.



282 R. Saurel et al.

Le Métayer, O., Massoni, J., & Saurel, R. (2004). Elaboration des lois d’état d’un liquide et de sa

vapeur pour les modèles d’écoulements diphasiques. International Journal of Thermal Sciences,
430(3), 265–276.

Lund, H. (2012). A hierarchy of relaxation models for two-phase flow. SIAM Journal on Applied
Mathematics, 720(6), 1713–1741.

Menikoff, R., & Plohr, B.J. (1989). The Riemann problem for fluid flow of real materials. Reviews
of Modern Physics, 610(1), 75.

Murrone, A., & Guillard, H. (2005). A five equation reduced model for compressible two phase

flow problems. Journal of Computational Physics, 2020(2), 664–698.

Saurel, R., Petitpas, F., Abgrall, R., et al. (2008). Modelling phase transition in metastable liquids:

Application to cavitating and flashing flows. Journal of Fluid Mechanics, 6070(1), 313–350.

Simoes-Moreira, J. R., & Shepherd, J. E. (1999). Evaporation waves in superheated dodecane. Jour-
nal of Fluid Mechanics, 382, 63–86.

Sinibaldi, E., Beux, F., & Salvetti, M. V. (2006). A numerical method for 3D barotropic flows in

turbomachinery. Flow, Turbulence and Combustion, 760(4), 371–381.

Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics: A practical intro-
duction. Springer Science & Business Media.

Toro, E. F., Spruce, M., & Speares, W. (1994). Restoration of the contact surface in the HLL-

Riemann solver. Shock Waves, 40(1), 25–34.

Wood, A. B. (1930). A textbook of sound. London: G. Bell and Sons Ltd.


	Preface
	Contents
	1 An Introduction to Cavitation in Inducers and Turbopumps
	Abstract
	1 General Aspects of Cavitation
	2 Cavitation Nuclei
	3 Forms and Occurrence of Cavitation
	4 Classical Theory of Cavitation Scaling
	5 Cavitation and Bubble Dynamics
	6 Thermal Cavitation Effects
	7 Steady Cavitation in Turbomachines
	8 Flow-Induced Instabilities in Turbomachines
	9 Flow Stability of Pumping Systems
	10 Flow Stability of Cavitating Turbopump Systems
	11 Conclusions
	References

	Experimental Methods for the Study  of Hydrodynamic Cavitation
	1 Introduction
	2 Characterization and Management of Water Quality
	2.1 Dissolved Gas Content
	2.2 Free Gas Content and Cavitation Nuclei
	2.3 Direct Measurement of the Cavitation Nuclei Distribution
	2.4 Indirect Measurement of the Cavitation Nuclei Distribution
	2.5 Management of Water Quality

	3 Detection and Measurement of Incipient Cavitation
	3.1 Detection of Inception with Acoustic, Vibration,  and Force Measurements
	3.2 Optical Measurement and Light Scattering for Inception Detection

	4 Optical Measurement of the Cavitating Flow Field
	4.1 High-Speed Imaging
	4.2 Laser Doppler Velocimetry and Light Scattering Methods
	4.3 Particle Imaging Velocimetry

	5 Measurement of Cavity Flows with High Void Fraction
	5.1 Surface Pressure, Acceleration, and Forces
	5.2 Electrical Impedance Probes
	5.3 Fiber Optic Probes
	5.4 Ionizing Radiation

	References

	3 An Introduction to Flow-Induced Instabilities in Rocket Engine Inducers and Turbopumps
	Abstract
	1 Introduction
	2 Rotating Stall
	3 Rotating Cavitation
	4 Other Rotating Instabilities
	5 Cavitation Surge
	6 Higher Order Cavitation Instabilities
	7 Conclusions and Perspectives
	References

	4 Three-dimensional Simulation of Cavitation Instabilities
	1 Three-Dimensional Simulation of Cavitation Instabilities
	1.1 Simulation of Alternate Blade Cavitation (Kang et al. 2009a)
	1.2 Simulation of Rotating Cavitation

	2 Suppression of Rotating Cavitation Using a Circumferential Groove on the Casing
	2.1 Design of Circumferential Grooves
	2.2 Flow Characteristics
	2.3 Experimental Results
	2.3.1 Non-cavitating Performance
	2.3.2 Suction Performance
	2.3.3 Cavitation Instabilities
	2.3.4 Cavity Geometry
	2.3.5 Propagation of Backflow Vortex Cavity

	2.4 Cause of Higher Frequency Oscillations
	2.4.1 Unsteady Calculation
	2.4.2 Rotating Modes Due to Interaction


	3 Conclusions
	Acknowledgements

	5 Rotordynamics of Turbopumps and Hydroturbines
	1 Introduction
	2 Example of Forced and Self-Excited Vibrations in Pumps
	3 Effects of Rotordynamic Force and Moment on Rotordynamic Instability
	4 Rotordynamic Forces on Centrifugal Impellers
	4.1 Two-Dimensional Impeller in a Vaneless Space
	4.2 Interaction with Volutes and Vaned Diffusers
	4.3 Rotordynamic Forces on the Shroud
	4.4 Rotordynamic Problem in a Rocket Turbopump

	5 Rotordynamic Problems in Hydraulic Turbines
	5.1 Rotordynamic Fluid Force Moment
	5.2 Moment Whirl
	5.3 Examples of Vibrations in a Large Pump and a Hydraulic Turbine

	6 Conclusion
	References

	6 On the Preliminary Design and Performance Prediction of Centrifugal Turbopumps—Part 1
	Abstract
	1 Introduction
	2 Turbopump Flow and Geometry
	2.1 Impeller Flow and Geometry
	2.2 Diffuser Flow and Geometry
	2.3 Volute Flow and Geometry

	3 Turbopump Performance
	4 Model Discussion
	5 Conclusions
	References

	7 On the Preliminary Design and Performance Prediction of Centrifugal Turbopumps—Part 2
	Abstract
	1 Introduction
	2 Hydraulic Losses and Efficiency
	2.1 Impeller
	2.2 Diffuser
	2.3 Volute
	2.4 Overall Performance

	3 Experimental Apparatus
	4 Results and Discussion
	5 Conclusions
	References

	Numerical Simulation of Cavitating Flows with Different Cavitation and Turbulence Models
	1 Introduction
	2 The 1-Fluid Inviscid Formulation
	2.1 The Conservations Laws
	2.2 The Pure Phases EOS
	2.3 Mixture EOS
	2.4 A Void Ratio Transport-Equation Model
	2.5 Other Formulations for the Void Ratio Equation

	3 The Thermal Effects Modelling
	3.1 A Mixture of Stiffened Gas EOS
	3.2 A Modified Sinusoidal EOS
	3.3 A Void Ratio Transport-Equation Model

	4 The 1-Fluid RANS Formulation
	4.1 The Mixture Conservation Laws
	4.2 Mixture Turbulence Equations for Two-Phase Flows
	4.3 Turbulence Models
	4.4 Eddy Viscosity Limitation
	4.5 Scale-Adaptive Simulation
	4.6 Wall Functions

	5 The 1-Fluid Filtered Formulation
	6 The Cavitation Software CaviFlow
	6.1 Spatial Discretization
	6.2 The Low Mach Number Preconditioner
	6.3 Temporal Discretization
	6.4 Inlet and Outlet Boundary Conditions

	7 Test Cases Used for the Numerical Studies
	7.1 Water--Gas Mixture Expansion Tube at Different Velocities
	7.2 Venturi Data in Cold Water
	7.3 Venturi Data in Freon R-114

	8 Comparison of Turbulence Models
	8.1 Eddy Viscosity Limitation
	8.2 Compressibility Effects
	8.3 Wall Models and Near-Wall Mesh
	8.4 Scale-Adaptive Simulation
	8.5 Concluding Remarks

	9 Comparison of Cavitation Models
	9.1 Inviscid Tube Cases
	9.2 4° Venturi Case
	9.3 8° Venturi Case

	10 Cavitation Models and Thermodynamic Effects
	10.1 Inviscid Tube Cases
	10.2 Venturi Case with Freon R-114

	11 Conclusion and Perspectives
	References

	Numerical Simulation of Cavitating Flows  in Complex Geometries
	1 Introduction
	2 Governing Equations and Cavitation Modeling
	3 Numerical Methodology
	3.1 Numerical Discretization for a 1D Inviscid Flow
	3.2 Extension to 3D URANS Equations in a Rotating Frame

	4 Application to the Flow in a Turbopump Inducer
	5 Concluding Remarks
	References

	From Cavitating to Boiling Flows
	1 Introduction
	2 Basic Flow Model Specification
	2.1 Equations of State

	3 Kinetic Relaxation Rate---Thermo-Chemical Relaxation Solver
	4 Hyperbolic Solver
	5 Cavitating Flows
	6 Boiling Flows
	7 Conclusions
	References




