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Preface

The purpose of this book is to provide a detailed presentation of a novel block
backstepping based control law that can address the control problems of a large
class of underactuated mechanical systems in a generalized manner. Study of
control problems of the underactuated systems and thereafter devising appropriate
control actuations for those are presently being pursued with utmost vigor by the
control research groups. The reason behind this is the appeal of the dynamic nature
of the systems along with the challenges they pose. Such systems belong to a class
that has a wide spectrum in reality not even restricting their domains related to
Robotics, Aerospace, Industrial Processes, Marine systems etc. Consequently, a lot
of theoretical propositions as well as practical application oriented approaches have
been reported in the literature during the last few decades. Undoubtedly, those
research contributions have enriched the literature of control engineering to a great
extent, but quite often they fail to compromise between the theory and practice.
Theoretical approaches can ensure global asymptotic stability during analysis,
while their complicated mathematical formulations restrict their implementations on
the practical systems in real-time. On the other hand, application-oriented
approaches are absolutely system specific, and eventually they fail to answer the
control problems of the other systems of similar nature. Therefore, design of a
generalized control law based on block backstepping has been presented in this
book in a structured manner.

The theory and further employment of Block backstepping based control law has
been developed in a versatile manner, so that the control action generated, thereby,
can ensure global asymptotic stability for most of the underactuated mechanical
systems and at the same time can guarantee a desired performance during real-time
implementations.

Indeed complicated state model of underactuated mechanical system restricts the
straightforward applications of naïve integrator backstepping method. Therefore,
the authors of this book have endeavored to establish an algebraic transformation

vii



that could be used to reconfigure the original system model into a reduced order
block-strict-feedback form. To be more precise, through this generic matrix-
algebraic transformation, a higher order nonlinear underactuated system can be
transfigured as a system having two cascaded blocks; the reduced order system
modelled and depicted in strict feedback form followed by a dynamic block that
actually represents the unobservable internal dynamics of the transformed system.
Thereafter, integrator backstepping has been explored to devise a control law for the
reduced order system as well as to assess and ensure the stability of internal
dynamics of the entire system. Further, applications of the so devised control law on
ten different systems (having completely different system dynamics) have been
demonstrated in the simulation and real-time environment to corroborate the the-
oretical findings.

We reiterate that this book is intended to be used as a reference book by the
graduate students and incumbent researchers in the areas of nonlinear control
systems, mechanical systems, mechatronics, and robotics.

The book originates from the doctoral thesis prepared by the first author at the
Jadavpur University of India and supervised by the second and third authors.
Chapter 2 has been incorporated to provide with the prerequisite knowledge of
nonlinear control theory that might be helpful to the new yet potential researchers in
this domain. Thereafter, Chap. 3 has systematically presented the derivation of
Block backstepping control law. At the onset, stepwise formulation of the control
law has been described for the 2-DOF underactuated mechanical systems. After
that, a generalized version of the control law has been presented to address the
control problems of n-DOF underactuated mechanical systems. Chapter 4 has been
devoted to demonstrate the applications of the control law on seven different
underactuated systems, namely, inertia wheel pendulum, TORA, Furuta pendulum,
acrobot, pendubot, inverted pendulum, and single dimensional Granty crane. For
the first five systems, mentioned above, performances of the control law have been
evaluated in the Matlab® Simulation environment. Moreover, the block backstep-
ping control law has been employed for the inverted pendulum and overhead crane
in real-time environment in a benchmark laboratory environment. For both the
cases, it has been observed that the experimental outcomes have nearly corrobo-
rated with the theoretical findings. In Chap. 5, applications of the control law on
higher-order systems have been portrayed, and have been substantiated with
detailed simulation results. The authors hope that this reference book would be able
to impart subtle yet sufficient knowledge about mathematical and implementation-
oriented nuances towards control of under actuated nonlinear systems. The
experiences gained by the authors while pursuing the work, are being conveyed to
the research community of the future through this book.
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Chapter 1
Introduction

Abstract It was early 1970s, when researchers have observed that a large number of
modernmechanical systems were using fewer control inputs (actuating inputs) than the
number of output variables. Further inspections have revealed that those systems were
exhibiting some of the common dynamical properties, and thereby could be catego-
rized as a different subclass of the mechanical systems. Since those systems use fewer
numbers of actuating inputs, they have been classified as the Underactuated
mechanical systems (UMSs). A few examples of such systems are as follows different
robotic systems, spacecrafts, underwater vehicles, surface vessel, helicopter, space
robots, underactuated manipulators, etc. It has also been observed that this class of
systems generates interesting control problems towhich the naive design approaches of
orthodox control theory could not be applicable. Inspired by their increasing demand in
diverse industrial applications, control of the UMSs started to gain its popularity as one
of the most active research fields among the control systems community.

1.1 Underactuated Mechanical System

As stated earlier, Underactuated mechanical systems (UMSs) are a special class of
mechanical systems that have fewer actuating inputs (control inputs) than config-
uration variables (outputs from the system).

A cart-pole system, which is a typical example of the two degrees of freedom
UMS, is shown in Fig. 1.1. In the cart-pole system, the actuating force is applied on
the cart in a horizontal direction, and it regulates the motion of the cart.
A free-moving pendulum is pivoted to the cart, whose motion is indirectly con-
trolled by the back and forth movement of cart. The two outputs from the cart-pole
system are defined as follows: horizontal deflection of the cart from the center of the
rail (denoted by x), and angular displacement of the pendulum bob from its inverted
position (denoted by h). Both these outputs from the system are controlled by
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application of a horizontal force along the direction of the cart motion. Thus, a
cart-pole system uses only one actuating input (F) to control the motion of both the
configuration variables (x and h), and therefore, justifies such categorization.

Underactuated systems possess some unique constructional features, which
make them more apt for practical applications. From this perspective, there exist at
least two distinct advantages in the design of controllers for underactuated systems.
First, underactuated systems require less numbers of control inputs than that of the
fully actuated MIMO systems, as an ordinary MIMO system is generally equipped
with more actuators to generate the necessary control actions. Accordingly, those
additional devices increase the cost and weight of such systems [14]. Thus, finding
a way to control an underactuated version of the system would eliminate some of
the actuating devices, and would either improve the overall performance or would
reduce the cost of operation or would be able to achieve both the goals. Second, the
underactuation provides a backup control strategy for an ordinary MIMO system as
in case of actuator failure of a fully actuated MIMO system, availability of an
underactuated controller may save the system from catastrophic consequences. One
can think of hard real-time systems like aircraft or spacecraft, where actuator
failures can be cataclysmic to the vehicle or its mission.

It is apparent that to synthesize the control objectives for such kind of systems,
first the state models of these are to be derived, which are complicated enough and
hence those often make the controller design tasks more difficult than that of the
ordinary MIMO systems. Obtaining such a state model for devising appropriate
control algorithms, a proper understanding about the reason of underactuation
comes out to be an essential prerequisite.

Root causes that could make a system an underactuated one are

(i) Inherent dynamics of the system as one can find in spacecraft, helicopter,
underwater vehicle, wheeled mobile robot (this type of underactuation often
termed as natural underactuation).

Fig. 1.1 A cart-pole system: a typical example of 2-DOF underactuated system
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(ii) Deliberate design of the system for some practical purposes. Examples of
such systems are satellites with two thrusters, flexible-link robot (this type of
underactuation often termed as intentional underactuation).

(iii) Accidental failure of an actuator in a MIMO system. In this case, the system
automatically starts behaving like an underactuated system for the same
output configuration.

(iv) Thoughtful use of low-order complex underactuated system. This is often
done to gain the physical insights of the higher order mechanical systems’
control aspects, e.g., the cart-pole system, the beam-and-ball system, the
Acrobot, and the Pendubot.

Underactuation itself poses severe challenges on controller design. This is true
for regulator kind of problem as well as for tracking kind of problem. Moreover,
lack of controllability of UMS makes the controller design task even more com-
plicated. These compel the researchers to have some indepth knowledge about the
controllers and associated controls algorithms devised so far.

1.2 Brief State-of-the-Art on the UMSs Control

Over the last two decades, different algorithms have been proposed to address the
stabilization problem of the underactuated systems. Joint research endeavors from
academia and industry have led to the propositions of several advanced control
algorithms. Nonetheless, among those numerous control strategies only a few could
stand out as strong contenders. The followings are such a few relevant control
techniques employed for the UMSs.

1.2.1 Linear Control Approaches

Linear control theory offers a very simple and easily implementable control design
approach for real-world systems. In the early days of research, several linear control
design techniques were proposed to address the control problem of underactuated
systems. Although linear techniques are able to provide plausible solution for a
particular application, even then the complicated nonlinear dynamics of such sys-
tems severely limits the generalized applications of the control laws. As a result,
several redesign of the same algorithm became necessary to address the control
problem of the similar types of systems.

In addition, linear approximation of the UMSs, often results in uncontrollable
systems, which are not amenable to orthodox linear control algorithms for stabi-
lization and tracking purposes. Furthermore, approximate linearization (Jacobean
linearization) of a complicated nonlinear system only provides accurate linear
approximation of the original system at a closed proximity of the equilibrium
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points. Therefore, in case of the trajectory-tracking problem, where the desired
equilibrium point is continuously moving along the reference trajectory, several
linear models of the system must be obtained in order to acquire a true physical
insight of the actual nonlinear system. However, the intricate mathematical
manipulations make the design task extremely tedious and time consuming.
Moreover, linear approximate model for the original nonlinear system often reduces
the speed of response. All these shortcomings of linear control approaches have
greatly motivated the design of several nonlinear control algorithms for UMSs.

1.2.2 Nonlinear Control: Present Day Approaches

To overcome the shortcomings of linear design techniques, several nonlinear
control algorithms have been evolved in the last few decades. Feedback lin-
earization is a well-known nonlinear design tool, which is widely used to address
the control problem of the UMSs. Feedback Linearization is mainly a
lie-algebra-based control design algorithm that transforms a nonlinear system into a
linear system by a state diffeomorphism and a feedback transformation. Conversely,
the complicated state model of an under actuated mechanical system restricts the
direct application of feedback linearization on its control problem. Consequently, a
special form of feedback linearization, namely partial feedback linearization is
being used to address the control problem for such class of systems. The main
advantage of this method is that it decouples the actuated and unactuated dynamics
of the original underactuated systems. Therefore, from a given n-dimensional
Lagrangian model of a system, it produces two decoupled state model of order n1
and n2. This decoupling property of partial feedback linearization simplifies the
control design tasks for underactuated system. Another salient advantage of the
partial feedback linearization is that it is applicable for all types of the underactu-
ated systems irrespective of their system dynamics. The two main genres of partial
feedback linearization are collocated feedback linearization and non-collocated
feedback linearization. Collocated linearization refers to a feedback law, which
linearizes the nonlinear equations of the underactuated systems’ associated with the
actuated degrees of freedom. On the other hand, non-collocated linearization refers
to a special class of partial feedback linearization method that linearizes the system
with respect to the passive degrees of freedom. Nonetheless, the new control
appears in the both actuated and unactuated parts of the original system, and this
highly complicates the controller design exercise for the decoupled system.
Furthermore, like the ordinary feedback linearization approach, partial feedback
linearization also suffers from the problem of lack of robustness.

Since uncertainty is a common yet intractable issue for the control of the
underactuated systems, sliding mode approach-based robust controller design could
be treated as a reasonable solution for the control problem of such class of systems.
The behavior of the sliding mode depends only on the switching surface. Thus,
sliding mode controller becomes insensitive to the parameter variations and external
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disturbances. The basic idea of sliding mode design is to alter the dynamics of the
system by applying a discontinuous feedback control input that forces the system to
“slide” along a predefined state surface, and the system produces a desired behavior
by restricting its state to this surface.

A large numbers of underactuated systems fail to satisfy the Brockett’s condition
of smooth feedback stabilization. Hence, those systems cannot be stabilized using
smooth control input. Therefore, the non-smooth control input generated by the
sliding mode control could be opted for as a natural choice to stabilize the
underactuated system. Accordingly, sliding mode control finds its wide range of
application on several underactuated systems like underactuated satellite, surface
vessel, helicopter, TORA, ball and beam, biped robot, etc.

However, the discontinuous nature of sliding mode control often suffers with the
problem of chattering, which in turn reduces the longevity of the actuators due to
wear and tear of the mechanical parts. Another drawback of the sliding mode is that
most of the time sliding mode controller assumes a very high value of disturbance
bound. Consequently, most of the time sliding mode controller yields overcon-
servative design approach. In order to solve the drawback of the conventional
sliding mode several modifications have already been proposed. Proposed modi-
fications, though have theoretical appeals, are too complicated for real-time
applications.

Another popular nonlinear control algorithm, the Passivity-based control
approach is also commonly used to address the stabilization problems of the
underactuated system. The said method exploits the concept of passivity to design a
stabilizing control law for complicated nonlinear systems. More precisely, the
control objective is to passivize the system with a storage function, which has a
minimum at the desired equilibrium point. Simply stated, this passivity-based
approach is just a modified version of the orthodox energy-based control approach.
This method is particularly well suited for simple mechanical systems, where the
system can be stabilized by shaping the potential energy of the system. Nonetheless,
the main shortcoming of the passivity-based method is that they can only be applied
to address the control problems of nonlinear systems with relative degree one.
A modification of the conventional passivity-based design has been proposed in the
work of Ortega et al. to extend the application of passivity-based control approach
for more complicated nonlinear systems. They have proposed a method of damping
assignment in the passivity design to extend its application in the control problem of
the higher order systems. However, similar to the complicated sliding mode design
technique, this method also results in a very complex control law, which is inapt for
real-time applications.

Another energy-based method, commonly known as backstepping, evolved in
the early 1990s, has become an effective design tool to address the control problem
of the nonlinear systems. Backstepping is a Lyapunov method-based versatile
control design approach that ensures the convergence of the regulated variables to
zero for nonlinear systems. The main advantage of the backstepping is that this is
the only nonlinear design tool, which allows the designers to treat the control
problem of an nth order system as a control problem of n numbers of first order
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interconnected system. In the last two decades, backstepping has gained immense
popularity as a nonlinear control design algorithm.

Backstepping is a nonlinear control design method that provides an alternative to
feedback linearization. The main idea of the backstepping method is to partition the
entire system into n numbers of cascaded subsystems. As a result, the states of the
first subsystem acted as the control variables for the next subsystem. In backstep-
ping approach, at first, the ideal input that can stimulate the desired output from the
first subsystem is computed. Since the subsystems are connected in cascade, input
to the first subsystem automatically comes from the output of the second subsystem.
Ideal input to the second subsystem is computed in a similar manner to that of first
subsystem. The desired inputs for all the subsystems are calculated in a sequential
manner until the last subsystem is arrived. As a case in point, the desired input for
the last subsystem gives the expression for the actual control input, and accordingly,
the designers can implement a state feedback law for the entire nonlinear system.
This recursive approach of the backstepping often serves as an advantageous fea-
ture during the design of control law for complicated nonlinear dynamic systems.
Since control of UMSs is considered as a challenging design problem,
backstepping-based design technique could be thought of as one the most suitable
option to address the regulation problem for such class of systems.

However, the ordinary integral backstepping relies on the fact that the system
under consideration is in strict feedback form. Generally, single-input single-output
(SISO) nonlinear systems satisfy this condition under some simplifying assump-
tions. Nonetheless, in case of multivariable control problem, quite often the system
structure is not available in the strict feedback or semi-strict feedback (i.e., lower
triangular) form. Consequently, it is not possible to apply the integral backstepping
technique in the usual manner to devise a control law for MIMO systems. Now as a
case in point, the state model of an underactuated system typically resembles the
structure of MIMO system, and it never possesses the strict feedback form. As a
result, direct application of the ordinary integral backstepping algorithm on the
stabilization problem for underactuated system is not possible. Subsequently,
several research endeavors have been made in the last few years to extend the
applications of backstepping control algorithm on the field of underactuated control
systems. Nevertheless, most of these proposed control algorithms are either too
complicated for real-time applications or they are subjected to several simplifying
assumptions that make the proposed algorithm inapt for real-time applications.

1.2.3 Block Backstepping Approach

Recently, several research endeavors have been directed towards arriving at a more
generalized backstepping algorithm that can efficiently address the stabilization
problems of complex nonlinear systems. Block backstepping technique has
emerged as one of the most efficient backstepping-based algorithm, which can
address the control problem of different nonlinear multiple-input multiple-output
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(MIMO) systems. At the initial stage of block backstepping design, the state model
of the system is transformed into a cascade combination of two reduced order
nonlinear systems. The transformation is defined in such a manner that it yields the
first subsystem in strict feedback form, whereas the second subsystem represents
the internal dynamics of the original system. Since the first subsystem possesses the
strict feedback form, it allows the direct application of conventional integrator
backstepping without any further modification. However, mere stabilization of the
first subsystem does not imply the stability of the entire nonlinear systems. The
stability of the overall system hinges on the stability of the internal dynamics.
Therefore, proper stability analysis of the internal dynamics is required to ensure
the global stability of the nonlinear system. A distinct advantage of the block
backstepping control algorithm is that it possesses all the salient features of
backstepping control algorithm. Conversely, it can address the control problem for
a large class of nonlinear systems, where the complicated dynamics of the system
restricts the straightforward application of the ordinary backstepping. Hence, block
backstepping-based design technique could be regarded as the most appropriate
alternative to a conventional backstepping-based feedback law for UMSs.

1.3 Motivations of Designing an Advanced Control Law

It is clear from the above discussions that tracking and stabilization kind of control
problems of any UMS have gained their relevance over the last few years. The
researchers identified the problems yet to be explored further. As mentioned, two
important control problems for such systems, which have been focused on afresh,
are stabilization problem and trajectory-tracking problem. Eventually, the stabi-
lization problem appeared to be more challenging because most of the UMSs fall
under the category of nonholonomic mechanical systems. Hence, this class of
systems could not be stabilized by a smooth time-invariant state feedback law.
However, simple the system is (namely, old-aged cart-pole system). Whereas, in
contrast, with the control tools already in hand, in case of the trajectory-tracking
problem, naïve approaches of the nonlinear control theory could be used in
designing a suitable controller. As a result, several research initiatives have been
developed in the last few decades to address the stabilization control problem of
such systems in a generalized manner. Hence, it was established in the past that the
very backstepping-based design approach might yield a solution for the convenient
control of the complicated nonlinear systems. Therefore, the obvious conclusion
that could be drawn is that backstepping could be treated as an alternative way of
devising a generalized control law for the UMSs.

Nonetheless, all those previously proposed control algorithms are either too
theoretical in nature, or they are intended to address the control problems of a
particular underactuated mechanical system. Consequently, application-oriented
approaches can only serve a particular control objective, but they often fail to
address the control problem of similar type of systems in a generalized manner.
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Main problem of the theoretical contributions is that they often produce a com-
plicated control law that is not apt for real-life applications. In addition, those
theoretical contributions often rely on many simplifying assumptions, which
severely restrict their applications on practical systems. Moreover, in most of the
cases, those propositions only ensure local stability of the control system around the
desired equilibrium point. Keeping in view all the shortcomings of all those pre-
viously proposed approaches, a research endeavor has been undertaken during the
doctoral study of the first author. Prime objective of the research endeavor was to
devise an enhanced version of backstepping-based control algorithm, which can
effectively address the stabilization control problems for a large class of UMSs.

Indeed, modeling error of the complicated real-time system often results in
degradation of the controller performance. A control algorithm, which seems to be
efficacious in the theoretical framework, may fail to provide a satisfactory perfor-
mance during practical applications. This type of deterioration in the controller
performance may produce catastrophic effects to the system or its mission.
Therefore, proper measures should be taken to reduce the harmful effects of the
modeling error. One can vet for controllers employing robust control laws, those
may render the system insensitive to modeling error and parameter variations.
Nevertheless, robust controllers often yield an overconservative design that is too
complicated for real-time implementations. Hence, formulation of the control
algorithm should be compact enough in a sense that it can provide a plausible
solution for the control problems of the practical systems in real-time. Keeping this
in view, need for a generic and flexible control law for the above-mentioned sys-
tems has been realized and that has led to the formulation of a novel block
backstepping-based stabilization control algorithm. Further, in this work, it has
thoroughly been established that such a generic control solution would be able to
address the control problem of broad class of UMSs without any significant
modifications. The main outcomes of the research endeavor are described below

• Development of a modified Block backstepping controller

This book presents a comprehensive description of designing a novel control law
for a large class of UMSs in a generalized manner. However, as mentioned before,
complicated state model of an UMS prevents the direct application of conventional
integrator backstepping approach. Hence, an algebraic state transformation tech-
nique has been proposed to convert the state model of such systems into a strict
feedback form. Basically, the proposed state transformation decomposes the state
model of an n-DOF UMS into two parts, while the first part is represented by a
reduced order strict feedback state model, the other part is used to represent the
“internal dynamics” of the transformed system. Backstepping algorithm has been
utilized to derive the complete expression of the control law for the entire nonlinear
system. In addition, integral action has been incorporated in the proposed control
law to reduce the adverse effects of modeling error on the controller performance.
Since stability of the entire block backstepping controller depends on the stability of
the zero dynamics of the transformed system, stability of the zero dynamics has
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thoroughly been analyzed to ensure the global asymptotic stability of the overall
system at its desired equilibrium point. Simplicity and generalized nature are the
two distinctive features of this proposed control law, which make it more effective
than its predecessor backstepping-based control algorithms. Use of simple algebraic
manipulations makes the proposed block backstepping algorithm quite amenable to
the real-time applications. Another important feature of this control algorithm is that
it could be used to address the control problems of different categories of UMSs
without any significant modifications.

• Applications of the proposed control law on 2-DOF underactuated
mechanical systems

Needless to say, most of the UMSs naturally fall under the category of two degrees
of freedom system. Therefore, in this book applications of the proposed method on
several 2-DOF UMSs are described. During the aforesaid research program,
applications of the proposed control algorithm have been studied on the following
2-DOF UMSs:

• Acrobot
• Pendubot
• Translational Oscillator and Rotating Actuator (TORA)
• Rotating Pendulum
• Inertia Wheel Pendulum (IWP)

Since all these above-mentioned UMSs belong to different categories of
mechanical systems (e.g. holonomic, nonholonomic, “actuated shape variable,”
“unactuated shape variable,” flat underactuated system, etc.), they have been
selected to verify the effectiveness of the proposed control algorithm for various
stabilization problems. In addition, effectiveness of the proposed control algorithm
has also been corroborated to form the results of different real-time experiments. At
first, the proposed control algorithm has been implemented on the real-time test bed
of the inverted pendulum system to stabilize it. Thereafter, it has been employed to
control the motion of a single dimension overhead crane and to reduce the oscil-
lation of the payload during its motion. Moreover, the control law has been proved
to be quite effectual in case of trajectory tracking of the holonomic systems (such as
inverted pendulum, overhead crane).

• Applications of the proposed control law on higher order underactuated
mechanical systems

In order to justify the generalized nature of the algorithm devised in this work,
block backstepping control law has further been employed extensively on different
higher order UMSs to study the efficacy and applicability of the same. Similar to the
case of 2-DOF systems, three different UMSs have been selected for the purpose.
Applications of the proposed control algorithm have been studied on the following
higher order UMSs:
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• Underactuated Surface Vessel (USV)
• Vertical Takeoff and Landing Aircraft (VTOL)
• 3-DOF Redundant Manipulator

Successful applications of the proposed control law on the above-mentioned
systems have substantiated the generalized nature of the block backstepping control
approach. Simulation results have established the theoretical claim that the pro-
posed control algorithm requires little modifications and is versatile enough to
ensure global asymptotic stability of generic UMSs.

1.4 Outline of the Book

The outline of this book is as follows:
This chapter provides an introduction and describes the main contributions of the

book.
Chapter 2 provides the prerequisite knowledge of nonlinear control theory that

might be helpful to the new potential researchers in this domain.
Chapter 3 is devoted for devising control algorithm for 2-DOF underactuated

systems, and subsequently the proposition is extended to address the control
problem of a generic n-DOF UMS.

Chapter 4 is devoted to demonstrate the applications of the control law on seven
different UMSs, namely, inertia wheel pendulum, TORA, Furuta pendulum, acro-
bot, pendubot, inverted pendulum, and single dimensional Granty crane. For the
first five systems, mentioned above, performances of the control law are studied in
the Matlab® Simulation environment. Moreover, the performances of the block
backstepping control law are also studied in real-time environment, where its
application on inverted pendulum and overhead crane are considered.

Stabilization control problem of higher order UMSs are discussed in Chap. 5.
Three higher order UMSs like USV, VTOL, and 3-DOF redundant manipulator are
used to study the applications of the control law on the higher order systems.

Finally, Chap. 6 concludes the work described in this book. It also accentuates
some open rather unexplored area of research within the field of UMSs control.

All being well, the authors expect that this book will play the role of a complete
reference and give the readers subtle yet sufficient knowledge that helps them to
design control laws for the other complicated UMSs.
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Chapter 2
Theoretical Preliminaries

Abstract Over the last two decades, different algorithms have been proposed to
address the stabilization problem of the underactuated systems. Joint research
endeavors from academia and industry have led to the propositions of several
advanced control algorithms. Nonetheless, among those numerous control strate-
gies only a few could stand out as strong contenders. In this chapter, a few relevant
control algorithms are being discussed to provide the prerequisite knowledge to the
readers. All being well, after going through this chapter reader will not face any
kind of difficulties in comprehending the contents of subsequent chapters.

2.1 Feedback Linearization

Feedback linearization is a control system design methodology especially appli-
cable for nonlinear systems. The key idea of this approach is to algebraically
transform a nonlinear system dynamics into an equivalent linear system, such that
linear control technologies can be applied on the transformed system. The feedback
linearization methodology is entirely different from the Jacobian linearization
technique. Indeed, it can be viewed as a methodology to transform a complex
nonlinear dynamics into an equivalent simpler linear model. The technique has two
subsections one is input-state feedback linearization and the other is Input–Output
Feedback Linearization [8].

2.1.1 Input-State Feedback Linearization

A generic single input nonlinear system is described by the following equation:

_x ¼ f ðxÞþ gðxÞu ð2:1Þ

Electronic supplementary material The online version of this article (doi:10.1007/978-981-
10-1956-2_2) contains supplementary material, which is available to authorized users.
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where x 2 R
n, f ðxÞ:Rn ! R

n, gðxÞ 2 R
n�1, u is a single dimensional control input.

Basically the input-state linearization is a two-step control design methodology.
At the onset it employs a state transformation to convert the system into a linear
one. Thereafter, a linear control technique is being used to design a linear control
law to obtain the desired performance from the system. For the sake of better
comprehensibility, following second-order nonlinear system is considered to
explain the design procedure of input-state feedback linearization

_x1 ¼ �x1 � x31 þ x2
_x2 ¼ x1 � x2 þ bu

ð2:2Þ

In the above state model, b is nonzero system parameters. A careful observation
of the above equations reveals that the equilibrium point of the system is located at
(0, 0). Linearization of the above state model using Jacobian linearization yields the
following linear state model of the system:

_x1
_x2

� �
¼ �1 1

1 �1

� �
x1
x2

� �
þ 0

b

� �
u ð2:3Þ

Linear control law can be exploited to design a control law that would give a
satisfactory performance around the equilibrium point. However, performance of the
system gets worse as soon as the system states start deviating from the equilibrium
point. This is not at all a surprising outcome, a careful observation on the first equation
reveals that the dynamics of x1 state deviates a lot from the linearized onewhen x1j j � 1.
Consequently, it is very easy to understand that linear control laws fail to generate a
satisfactory performance when operating point is located away from the equilibrium.

In this context, feedback linearization can give us a plausible solution. Basically
the input-state linearization is a two-step control design methodology. At the onset
it finds a state transform z ¼ zðxÞ and an input transform u ¼ uðx; vÞ, which
transform the original nonlinear system into an equivalent linear system. Thereafter,
in the second step it uses some linear control design techniques to design v.

However, before start discussion on feedback linearization, let us have a close
look on the system of (2.2). Minute observation reveals that the nonlinear terms not
only appear in the dynamics of x2, but it also appears in the dynamics of x1, which
further complicates the design procedure. Now if all the nonlinear terms appear in
the second equation, then it would become an easier task for the designer to cancel
all the nonlinearities using state feedback in a single step. However, in this case, at
first a state transformation is required to convert the system model in such a way
that all nonlinear terms would only appear with input u, then only one can easily
utilize a state feedback to cancel all the nonlinear terms. In order to accomplish the
task, following state transformation can be defined as shown in Eq. (2.4) below

z1 ¼ x1

z2 ¼ �x31 þ x2
ð2:4Þ
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Above state transformation yields

_z1 ¼ �z1 þ z2

_z2 ¼ 2z31 � 3z21z2 þ z1 � z2 þ bu
ð2:5Þ

Now the following state feedback control law can be employed to make the
system a linear one:

u ¼ 1
b

�2z31 þ 3z21z2 þ v
� � ð2:6Þ

That yields

_z1 ¼ �z1 þ z2
_z2 ¼ z1 � z2 þ v

ð2:7Þ

Now the system would behave like a linear system in z1, z2 coordinate, and
numerous linear control laws are there which can give us a satisfactory response
from this system. Poles of the system (2.7) are located at −2, 0. The above system
behaves like a badly damped linear system; now further inspection on the linear
model of Eq. (2.7) reveals that the system is fully state controllable at origin.
Therefore, one can design a state feedback control law to place the pole of the linear
systems at desired location. Hence, if we want that the closed system will behave
like a linear system with damping ratio f = 0.7, and natural frequency xn = 5 rad/s,
then the pole must be placed at (−3.5 + 3.75j and −3.5 − 3.75j). Now, this can be
easily achieved by designing a state feedback law with gain matrix
k ¼ 19:999 5½ �. Readers are encouraged to verify this design by their own.
Hence, the feedback law will take the form

v ¼ � 19:999 5½ � z1
z2

� �
ð2:8Þ

Which yields the following stable dynamics:

_z1
_z2

� �
¼ �1 1

�18:999 �6

� �
z1
z2

� �
ð2:9Þ

Therefore, the control input u will take the form

u ¼ 1
b

�19:999z1 � 6z2 � 2z31 þ 3z21z2
� � ð2:10Þ
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In x1 and x2 coordinate, input u will take the following form:

u ¼ 1
b

�19:999x1 � 6x2 þ 4x31 � 3x51 þ 3x21x2
� � ð2:11Þ

A pictorial representation of the control law is given in Fig. 2.1.

Important Observations

• The input-state linearization process consisting of state transformation and input
transformation, with state feedback used in both. So this is a linearization by
feedback and that is why this methodology is termed as feedback linearization.
It is fundamentally different from a Jacobian linearization which linearized a
nonlinear system around a small region of the state plane.

• In order to implement the control law, the new state components (z1, z2) must be
available. If they are not physically meaningful or cannot be measured directly,
the original state x must be measured, and used to compute them from (2.4). In
the next section, concept of output feedback linearization will be discussed in
Sect. 2.1.2.

2.1.2 Output Feedback Linearization

In the preceding discussions, it has been assumed that all the states are readily
available for measurement, and they can be utilized to design a state feedback
according to the designer’s disposal. However, most of the times practical systems
fail to satisfy this requirement of state feedback linearization. Most of the cases,
only output from the systems become available to the designers. In such a situation,
design of input-state feedback linearization is not possible [8]. However, output
from the system can be utilized to design a feedback law for the system. More
precisely, output signal can be used to design a feedback law to cancel out the

Fig. 2.1 Schematic diagram of the control law

14 2 Theoretical Preliminaries



nonlinear terms of systems equations. Consider the following nonlinear system as
shown below in Eqs. (2.12.a, 2.12.b):

_x ¼ f ðxÞþ gðxÞu ð2:12:aÞ

y ¼ hðxÞ ð2:12:bÞ

Prime objective of the tracking control algorithm is to make the output yðtÞ, to
track a desired trajectory ydðtÞ, while keeping all the states bounded. It is assumed
that the time derivatives of the reference signal (up to a sufficiently high order) are
known and bounded. In order to elaborate the concept with a design problem,
tracking control for the nonlinear system of Eq. (2.13) is considered.

_x1 ¼ cos x2 þ x2 þ 1ð Þx3
_x2 ¼ x31 þ x3

_x3 ¼ x21 þ u

y ¼ x1

ð2:13Þ

As stated above, prime objective of the controller design is to find out a control
law that will ensure guaranteed tracking of the reference signal yd(t). However, the
main challenge of this tracking control is that the input to the system has got no
direct relationship with the output y. Nonetheless, successive differentiation of
output with respect to time may yield an explicit relationship between output and
input. Thereafter it is always possible to manipulate the input u that will ensure the
guaranteed tracking of the output signal. Hence, the output signal is differentiated
twice with respect to time to establish an explicit relation between input and output,

€y ¼ ðx2 þ 1Þuþ f1ð~xÞ ð2:14Þ

where f1 ~xð Þ is a function of state vector defined by

f1ð~xÞ ¼ ðx31 þ x3Þðx3 � sin x2Þþ ðx2 þ 1Þx21 ð2:15Þ

Clearly, Eq. (2.14) depicts an explicit relationship between output y and input
u. Now a feedback control law can be used to cancel out all the nonlinearities
present in the Eq. (2.14) as shown in Eq. (2.16) below

u ¼ 1
x2 þ 1

v� f1 ~xð Þð Þ ð2:16Þ

where v is an equivalent input to be designed according to the design requirement.
Application of the above-mentioned control input u yields a simple double inte-
grator relationship between equivalent input v with the output y as shown in
Eq. (2.17)
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€y ¼ v ð2:17Þ

At this stage, it is very easy to deploy standard linear control algorithm to get a
desired tracking performance from the system. Tracking error e can be defined as
e ¼ y� yd , now it is easy to relate the tracking error e and new control input v as
shown in the following Eq. (2.18)

v ¼ yd � k1e� k2 _e ð2:18Þ

with k1 and k2 are two positive design constants, which yield the following equation
for closed loop error dynamics as shown in Eq. (2.19) below:

€eþ k2 _eþ k1e ¼ 0 ð2:19Þ

which represents an exponential stable error dynamics. Therefore, perfect tracking
can be achieved in almost all cases except the singular point that is located at
x2 ¼ �1. Otherwise, this control algorithm ensures perfect tracking of a smooth
reference signal. Since in this case output signal is being used to convert the system
in linear form, this type of linearization is known as input–output linearization.

For an nth order nonlinear system at the time of Input–Output Linearization, if
r differentiation is required to establish an explicit relationship between input u and
output y, then the system can be termed as a system with relative degree r [1].
Therefore, it is easy to conclude that the system of Eq. (2.13) has a relative degree
equal to two. At the time of Input–Output Linearization algorithm one only con-
siders a part of closed-loop system. Frequently a part of the system dynamics is
rendered unobservable at the time of Input–Output Linearization. In general, this
part of the dynamics of the system is termed as the Internal Dynamics of the
original system. Indeed, it cannot be seen from the external relationship, between
equivalent input and output relationship of the system. For the tracking control of
the system shown in Eq. (2.13), the internal dynamics is represented by the fol-
lowing equation,

_x3 ¼ x21 þ
1

x2 þ 1
€yd � k1e� k2 _eþ f1 ~xð Þð Þ ð2:20Þ

In case of Input–output linearization it is possible to design tracking control
algorithm, only when internal dynamics of the system is stable.

Zero Dynamics: The Zero Dynamics is defined to be the internal dynamics of the
system when the system output is kept at zero by the input [1, 3]. In case of a linear
system the poles of the zero dynamics are exactly the zeros of the original system.
The zero dynamics is an intrinsic property of the nonlinear system, while stability of
the same ensures the stability of the internal dynamics of the nonlinear system in
local sense.
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2.1.3 Partial Feedback Linearization

It is a special type of feedback linearization method that is being considered as one
of the most useful control technique for underactuated mechanical systems [UMS]
[5–7]. This method provides a natural global change of coordinates that transforms
the system into a strict feedback form, and thereafter the conventional control
method can be easily applied to the transformed system [9]. However, in case of the
UMS neither input feedback linearization nor input–output linearization can pro-
vide a satisfactory result. Let us consider the Lagrangian model of UMS as shown
in Eq. (2.21)

m11ðqÞ€q1 þm12ðqÞ€q2 þ h1ðq; pÞ ¼ 0

m21ðqÞ€q1 þm22ðqÞ€q2 þ h2ðq; pÞ ¼ BðqÞs ð2:21Þ

where, q1 2 R
n1 , q2 2 R

n2 and q ¼ col q1; q2ð Þ 2 R
n is the configuration vector of

nth degree of freedom underactuated mechanical system. In the above representa-
tion, q1 represents passive joint configuration variables, and q2 represents active
joint configuration variables. The dimension of the overall configuration manifold is
n1 + n2 = n. The time derivative of the configuration vector q is expressed as
p ¼ col p1; p2ð Þ 2 R

n, and s 2 R
n2 is the control input. In the above representation,

h1ðq; pÞ: R2n ! R
n1 and h2 q; pð Þ: R2n ! R

n2 contain the coriolis, centrifugal, and
gravity terms. Whereas, mij qð Þ q = 1, 2, represents the components of the n� n
inertia matrix, which is symmetric and positive definite for all q. B qð Þ 2 R

n2�n2

represents a full rank matrix. Due to Spong, there exists an invertible change of the
control input s as shown in Eq. (3.19)

s ¼ B�1ðqÞ h2ðq; pÞ � m21ðqÞm�1
11 ðqÞh1ðq; pÞ

� �þ m22ðqÞ � m21ðqÞm�1
11 ðqÞm12ðqÞ

� �
u

� �
ð2:22Þ

that transforms the Lagrangian model of Eq. (2.23) into

_q1 ¼ p1
_q2 ¼ p2
_p1 ¼ f ðq; pÞþ gðqÞu
_p2 ¼ u

ð2:23Þ

where, f ðq; pÞ: R2n ! R
n1 , gðqÞ 2 R

n1�n2 are given by

f ðq; pÞ ¼ �m�1
11 ðqÞh1ðq; pÞ

gðqÞ ¼ �m�1
11 ðqÞm12ðqÞ

ð2:24Þ
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The state vector can be expressed as X ¼ q1 p1 q2 p2½ � 2 R
2n. Now it is

easy to understand that control law of Eq. (2.22) can only ensure partial lin-
earization of the system. State model of Eq. (2.23) is partially linearized. The q1 and
p1 subsystem represents a nonlinear subsystem as shown in Eq. (2.25), whereas
Eq. (2.26) represents linear subsystem

_q1 ¼ p1
_p1 ¼ f ðq; pÞþ gðqÞu ð2:25Þ

and

_q2 ¼ p2
_p2 ¼ u

ð2:26Þ

Therefore, it is defined as partial feedback linearization. There are two PFL
techniques that have been mentioned in the literature of control engineering; one is
termed as collocated feedback linearization, and other one is referred as
non-collocated feedback linearization.

(a) Collocated feedback linearization
Collocated linearization refers to a feedback law, which linearizes the non-
linear equations of the UMS associated with the actuated degrees of freedom
[5–7]. This method globally transforms all the UMSs model in the form of two
parallel connected fully actuated system, where the new control input appears
in the dynamics of both subsystems. Collocated linearization has been
extensively applied to the control of the different underactuated system like
Acrobot, the three-link pendulum, rotational pendulum, etc. [9].

(b) Non-Collocated feedback linearization
Non-collocated linearization refers to a special class of partial feedback lin-
earization method that linearizes the system with respect to the passive degrees
of freedom. Nonetheless, the non-collocated feedback linearization is not a
global transformation technique like collocated feedback linearization. It is
only applicable for “Strongly Inertially Coupled” underactuated mechanical
system. “Strongly Inertially coupled” system is a special class of UMSs, where
the number of unactuated configuration variables is less than or equal to the
number of actuated configuration variables (Spong M.W.). The major
advantage of the collocated and the non-collocated linearization is that they
produce a structural simplification of the control problems of any UMSs.
Consequently, they are always utilized as an initial simplifying step for
reduction and control of the UMSs.
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In order to explain the collocated PFL and non-collocated PFL, let us consider
the Lagrangian model of inertia wheel pendulum, which is expressed in Eq. (2.27)
below

m11ðqÞ€q1 þm12ðqÞ€q2 þ h1ðq; pÞ ¼ 0

m21ðqÞ€q1 þm22ðqÞ€q2 þ h2ðq; pÞ ¼ s
ð2:27Þ

Schematic diagram of the system is shown in Fig. 2.2.
Indeed, collocated linearization is a kind of input-state feedback linearization for

UMS. Now from the above Eq. (2.27), one can write

€q1 ¼ �m�1
11 ðqÞ m12ðqÞ€q2 þ h1ðq; pÞð Þ ð2:28Þ

Now, second actuated dynamics equation of (2.27) can be rewritten after
replacing the value of q1 by the above equation

m22ðqÞ � m21ðqÞm�1
11 ðqÞm12ðqÞ

� �
€q2 þ h2ðq; pÞ � m�1

11 ðqÞh1ðq; pÞ
� � ¼ s ð2:29Þ

The above equation can be linearized by applying the following control input of
Eq. (2.30)

s ¼ m22ðqÞ � m21ðqÞm�1
11 ðqÞm12ðqÞ

� �
uþ h2ðq; pÞ � m�1

11 ðqÞh1ðq; pÞ
� �� � ð2:30Þ

In the above Eq. (2.30) u is actually a new control input that has to be defined
according to the requirement of control designer. Therefore, equation of (2.27)
takes the following form:

Fig. 2.2 Schematic diagram of inertia wheel pendulum
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m11ðqÞ€q1 þ h1ðq; pÞ ¼ �m12ðqÞu
€q2 ¼ u

ð2:31Þ

Eventually, the above Eq. (2.31) can be rewritten in a simplified form as shown
below:

_q1 ¼ p1
_p1 ¼ f ðq; pÞþ gðqÞu
_q2 ¼ p2
_p2 ¼ u

ð2:32Þ

where

f ðq; pÞ ¼ �m�1
11 ðqÞh1ðq; pÞ

gðqÞ ¼ �m�1
11 ðqÞm12ðqÞ

ð2:33Þ

Indeed, it is one of the most common forms of feedback linearization. Please
note that the collocated linearization actually linearizes the actuated degree of
freedom, and decouples it from the unactuated degrees of freedom. However,
non-collocated linearization is kind of input output feedback linearization. Now, if
one wants to linearize the unactuated configuration variable that is q1, an obvious
choice of control input is

v ¼ m�1
11 h1 � m12uð Þ ð2:34Þ

That yields

€q1 ¼ v

€q2 ¼ �m�1
11 ðqÞ m12ðqÞv� h1ðq; pÞð Þ ð2:35Þ

Consequently, the state model for the IWP can be expressed as

_q1 ¼ p1
_p1 ¼ v

_q2 ¼ p2

_p2 ¼ v� f
g

ð2:36Þ

Therefore, it is clear from the above-stated model that non-collocated lin-
earization yields decoupling of unactuated degrees of freedom. However, the
non-collocated linearization is not widely used to treat the control problems of
UMSs, while the collocated linearization is very popular to reshape the Lagrangian
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model of UMSs in a partially feedback linearized form. However, feedback lin-
earization is not enough to address the control problem of nonlinear systems. In the
next section, authors will describe a few shortcomings of feedback linearization,
and then they will describe a successor of feedback linearization, namely
backstepping.

2.2 Control Lyapunov Function

Before describing the concept of backstepping, authors would like to discuss a few
relevant topics that would give the readers a prerequisite knowledge, which will
help them to comprehend the concepts of backstepping design. Best of the authors’
knowledge, Lyapunov stability criterion is one the most famous and reliable sta-
bility analysis technique that has been used to analyze the stability of any auton-
omous dynamical systems. However, the naïve approach of Lyapunov stability
analysis does not lead to any constructive approach that could be utilized to devise a
control law for complicated nonlinear systems. Therefore, a new Lyapunov func-
tion approach has been conceived to assist the design procedure for nonlinear
nonautonomous control systems. Let us consider a nonautonomous time invariant
nonlinear system as shown in Eq. (2.37)

_x ¼ f ðx; uÞ; f ð0; 0Þ ¼ 0 ð2:37Þ

It is easy to understand from that the equilibrium point of the nonlinear system
mentioned in Eq. (2.37) is located at X ¼ 0. Nonetheless, if someone wants to
devise a state feedback control law u = a(x) such that the origin of the system
becomes a global asymptotic stable system, then a modified Lyapunov function
approach may yield a conducive solution. It is not a difficult task to construct a
positive definite, radially unbounded, continuous and smooth scalar function VðXÞ
as a Lyapunov function candidate. Moreover, an additional requirement can be
placed on its time derivative along f(x, a(x)) as shown in Eq. (2.38) below

dV
dt

¼ @V
@x

f ðx; aðxÞÞ\0; x 6¼ 0 ð2:38Þ

Now, a state feedback control law may be designed to achieve the aforesaid
condition of Eq. (2.38). Careful observation reveals that in this context the
Lyapunov function VðXÞ is not used to analyze stability of the system, rather it is
used to find out a conducive control law that yields the condition of Eq. (2.38).
Since here Lyapunov function is used to design a control law for the nonau-
tonomous systems, it is known as Controlled Lyapunov Function (clf) [2].
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Let us consider the scalar system of the Eq. (2.39) below

_x ¼ � sin x� x3 þ u ð2:39Þ

Input-State feedback stabilization control law will yield a control law that cancel
out all the nonlinear entries of the above equation

u ¼ sin xþ x3 � kx ð2:40Þ

Application of the control input of Eq. (2.40) makes the system’s origin a global
asymptotically stable equilibrium. However, such inveterate approach of feedback
linearization always raises a few questions, which are very important and need to be
answered before practical implementation. First, what is the essence of canceling
out the term x3, while it can assist the stabilization process of the overall system?
Second, what is the price a designer has to pay for introducing the x3 term in
feedback equation? Third, what are the alternative approaches that could be utilized
to address the above-mentioned control problem?

Indeed, one can design u ¼ a x; uð Þ ¼ �kxþ sin x and may select a simple clf
like VðXÞ ¼ 1

2 x
2 that will yield

_V ¼ @V
@x

f ðx; uÞ ¼ x �x3 � kx
� � ¼ �x4 � kx2 ð2:41Þ

which is negative definite. The same negative definiteness can also be achieved
with the control law of Eq. (2.40), which will yield the following time derivative for
the same clf

_V ¼ @V
@x

f ðx; uÞ ¼ xð�kxÞ ¼ �kx2 ð2:42Þ

However, let us first consider the control law u ¼ aðx; uÞ ¼ �kxþ sin x and
corresponding time derivative of the clf as shown in Eq. (2.41). A careful obser-
vation will reveal that the control signal increases linearly with x. Furthermore, the
time derivative of Lyapunov Function (as shown in 2.41) decreases at a faster rate
due to the presence of �x4. Actually, the term �x3 of the original system assists the
stabilization process, and thereby it is termed as the beneficial nonlinearities or
useful nonlinearities. Conversely, application of the control law of Eq. (2.40) yields
a different time derivative of the clf that is shown in Eq. (2.42). Needless to say that
here the amplitude of control signal is quite high due to the presence of þ x3 term in
Eq. (2.40). Moreover, in this case the rate of decay of the time derivative of the clf
is very poor (as shown in Eq. 2.42). In addition, it should be noted that the presence
of term þ x3 in the feedback path makes the control law more sensitive with respect
to slight change of systems parameter.
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2.3 Integrator Backstepping

In order to find out an alternative control approach to overcome the shortcomings of
feedback linearization, designers have conceived the concept of backstepping
control law [3]. Indeed, the simplicity for first-order design can easily be extended
to find out the control law for higher order nonlinear systems. In a recursive
manner, one can easily construct the clf for n dimensional systems. For the sake of
understandability, the authors have augmented the system of (2.39) by a simple
integrator. Second-order state model of the resultant system is shown below in
Eqs. (2.43.a, 2.43.b)

_x ¼ � sin x� x3 þ z ð2:43:aÞ

_z ¼ u ð2:43:bÞ

Now, if the intended control objective is to ensure the regulation of x(t), that is
xðtÞ ! 0; as t ! 1, for all x(0) and z(0). The state variable z(t) must remain bounded
during the stabilization process. Indeed, it is clear from Eqs. (2.43.a, 2.43.b) that the
equilibrium of the system is located at (0, 0). Simply stated the design objective is to
find out a feedback control input u for the system such that this equilibrium becomes a
GAS one. The system is shown in the block diagram form in Fig. 2.3.

To construct a clf for system of Eqs. (2.43.a, 2.43.b), one can first construct a clf
for its subsystem shown in the dashed box (dynamics of x). Instead of u, if z is
being considered as the control input to the system of Eq. (2.43.a), then the system
of Eqs. (2.43.a, 2.43.b) would become identical to that of the first-order system of
Eq. (2.39). Therefore, one can easily construct a clf that is just a quadratic function
of state variable x. That is Vx ¼ 0:5x2

Fig. 2.3 Schematic diagram of Eqs. (2.43.a, 2.43.b)
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According to the previous discussion of our last section, one can devise a feedback
law�c1xþ sin x to ensure the proper regulation of the state variable x. If Eq. (2.43.a)
is only considered then z appears as an input to the system as shown below

z ¼ �c1xþ sin x ð2:44Þ

However, one should not forget that z is not the actual control input; rather it is
just an ordinary state variable. Simply stated it is not possible for the designers to
shape the signal z according to their own requirements. One can only define the
ideal value of the z as shown below in Eq. (2.45)

zdes ¼ �c1xþ sin x ffi asðxÞ ð2:45Þ

Indeed, z is not the actual control input to the system; it only plays the role of a
virtual input to the system of Eq. (2.43.a). The desired value of virtual control is
defined as the stabilization function for the system of Eq. (2.43.a) [4]. Error can be
defined as the difference between the virtual control and stabilization function as
shown below

e ¼ z� zdes ¼ z� asðxÞ ¼ zþ c1x� sin x ð2:46Þ

Now, one can rewrite the system Eqs. (2.43.a, 2.43.b) in (x, e) coordinate that
will make the controller design task quite easy as illustrated in Fig. 2.4.

_x ¼ � sin x� x3 þðzþ c1x� sin xÞ � c1xþ sin x ¼ �c1x� x3 þ e ð2:47:aÞ

_e ¼ _z� _asðxÞ ¼ _zþðc1 � cos xÞ _x ¼ uþðc1 � cos xÞ �c1x� x3 þ e
� � ð2:47:bÞ

The stabilizing function as(x) can be added up and accordingly subtracted from
the _x1 equation as shown in Fig. 2.4.

Then the signal asðxÞ is being used as a feedback control inside the dashed box
and “backstep” �asðxÞ through the integrator as shown in Fig. 2.5.

Fig. 2.4 Addition and subtraction of same stabilizing function in _x equation
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One of the key features of backstepping is that it does not require any differen-
tiator to realize the time derivative of _asðxÞ [3, 4]. Since it is a known function, it is
always possible to compute its derivative analytically as shown in Eq. (2.48) below

_asðxÞ ¼ @as
@x

_x ¼ �ðc1 � cos xÞ �c1x� x3 þ e
� � ð2:48Þ

A clf for the overall nonlinear system [as shown in Eqs. (2.43.a, 2.43.b)] must be
constructed to design the control input for the system of Eqs. (2.43.a, 2.43.b). One
obvious way of constructing the clf for the entire system is to augment a quadratic
term of error variable e with it as shown in Eq. (2.49) below

Vaðx; zÞ ¼ VðxÞþ 1
2
e2 ¼ 1

2
x2 þ 1

2
ðzþ c1x� sin xÞ2 ð2:49Þ

Differentiation of Va with respect to time yields

_Vaðx; e; uÞ ¼ xð�c1x� x3 þ eÞþ e uþðc1 � cos xÞ �c1x� x3 þ e
� �� �

¼ �c1x
2 � x4 þ e xþ uþðc1 � cos xÞ �c1x� x3 þ e

� �� � ð2:50Þ

Assuming that _Va be an analytic function, the design goal is to construct a
control input in such a way that it could ensure the negative definiteness of _Va. In
order to achieve the control objective, a feedback control law can be designed to
cancel out the cross-term xe, and the undesirable nonlinear terms. This is possible
because u is multiplied by e due to chosen form of augmented Lyapunov function
Va. This is another salient feature of the backstepping. Hence, control input u can be
chosen to make _Va negative definite in x and e. One obvious design choice is to
make the bracketed term of the last Eq. (2.50) equal to −c2e, where c2 > 0

u ¼ �c2e� x� c1 � cos xð Þ �c1x� x3 þ e
� �

¼ �c2 zþ c1x� sin xð Þ � x� c1 � sin xð Þ z� sin x� x3
� � ð2:51Þ

Fig. 2.5 Backstepping signal _asðxÞ
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With this control input the derivative of the clf becomes

_Va ¼ �c1x
2 � x4 � c2e

2 ð2:52Þ

Now the above definition of _Va proves that in (x, e) coordinate system the equi-
librium point (0, 0) is globally asymptotically stable. Now, e = 0 implies that z = zdes
that is virtual control becomes equal to stabilizing function, and it will ensure
asymptotic stabilization of x. A careful observation of Eq. (2.45) reveals that x = 0
implies z = 0. Hence, the equilibrium point of the original system in (x, z) coordinate
system (0, 0) is also globally asymptotically stable. The resulting closed loop system
in (x, e) coordinate is

_x
_e

� �
¼ �c1 � x2 1

�1 �c2

� �
x
e

� �
ð2:53Þ

In the above equation, we are representing a nonlinear system in linear-like form.
An important structural property of this system is that it is nonlinear “system
matrix.” This is another noteworthy feature of backstepping, it only cancels out
undesirable nonlinear entries, whereas it does not to pay any extra effort to elimi-
nate helpful nonlinearities from the system equation. However, another flexibility of
the design is explained in the following example and consider the following system
(2.54)

_x ¼ x2 þ xz

_z ¼ u
ð2:54Þ

Careful observation reveals that the system is uncontrollable at origin. Needless
to say that feedback linearization fails to answer the control problems of the
uncontrollable systems. However, backstepping can yield a fruitful solution to the
above-mentioned problem. Now, if the equation of _x is considered, then it turns out
to be f ðxÞ ¼ x2 and gðxÞ ¼ x. Hence, clf can be constructed as VðxÞ ¼ 1

2 x
2.

Therefore, stabilizing function as can be designed to ensure the stabilization

asðxÞ ¼ �c1x
2 � x ð2:55Þ

Indeed, like the previous example here also z is playing the role of virtual
control. Similar to the previous case error function can be defined as shown below

e ¼ z� as ¼ zþ c1x
2 þ x ð2:56Þ

Similar to the previous case the system state model is again to be constructed in
(x, e) coordinate
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_x ¼ �c1x
3 þ ex

_e ¼ uþð1þ 2c1xÞ x2 þ xz
� � ð2:57Þ

Now, the derivative of the augmented Lyapunov function Va ¼ 1
2 x

2 þ 1
2 e

2 is
shown below

_Va ¼ �c1x
4 þ e uþð1þ 2c1xÞ x2 þ xz

� �þ x2
� � ð2:58Þ

The control law which makes the derivative of Va negative definite is given by

u ¼ �c2e� ð1þ 2c1xÞ x2 þ xz
� �� x2 ð2:59Þ

The resulting system in the (x, z) coordinate is

_x ¼ x2 þ xz ð2:60Þ

_z ¼ �c2z� c2x� ðc1c2 þ 2Þx2 � zx� 2c1x2z� 2c1x3 ð2:61Þ

And its equilibrium (0, 0) is global asymptotic stable (Fig. 2.6).
It is clear from the Fig. 2.6 that an unstable and uncontrollable system can be

stabilized using integrator backstepping. However, only one shortcoming of the
backstepping control is that it requires the system to be in strict feedback system.
However, if the system is not in strict feedback form, block backstepping can yield
a plausible solution to such control problem [4]. Concept of block backstepping will
be presented in the next section.

Fig. 2.6 Stabilization of an
unstable system with
integrator backstepping
control design
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2.4 Block Backstepping Design

Before proceeding to the actual concept of block backstepping, let us consider the
state model of inertia wheel pendulum as shown in Fig. 2.2. As discussed above,
collocated feedback linearization yields the following state model as shown in
Eq. (2.62):

_q1 ¼ p1
_p1 ¼ C sin q1 � Du

_q2 ¼ p2
_p2 ¼ u

ð2:62Þ

where C and D are just two design constants (detailed description of C and D as
well as the derivation of the state model are available in Appendix A.1). It is very
easy to understand that the above-stated model is not in strict feedback form, and
thereby restricts the application of conventional integrator backstepping. Therefore,
one obvious choice left for the designers is to convert the state model into a form
that is suitable for application of backstepping algorithm. Therefore, one can rely on
algebraic state transformation as shown below

z1 ¼ q2 � kðq1 þ p1 þDp2Þ ð2:63Þ

Now the time derivative of z1 yields

_z1 ¼ p2 � kðp1 þC sin q1Þ ð2:64Þ

However, the stabilizing function for Eq. (2.63) can be defined according to the
following Eq. (2.65):

a ¼ �c1z1 þ kðp1 þC sin q1Þ ð2:65Þ

Now, second error variable z2 can be defined as shown in Eq. (2.66) below

z2 ¼ p2 � a1 ð2:66Þ

Above definition of the z2 yields

_z1 ¼ z2 � c1z1 ð2:67Þ

Differentiation of z2 with respect to time

_z2 ¼ u� c1ð�c1z1 þ z2Þþ kð2C sin q1 � DuÞ ð2:68Þ

28 2 Theoretical Preliminaries



Now, desired dynamics of z2 is

_z2 ¼ �z1 � c2z2 ð2:69Þ

Therefore, one can select the following control input to ensure the desired
dynamics for z2 as shown below

u ¼ 1
1� kD

�c21z1 � c1z2 � 2kC sin q1
� � ð2:70Þ

The control law u transforms the system into a block-strict feedback system

_z1 ¼ �c1z1 þ z2
_z2 ¼ �z1 � c2z2

ð2:71Þ

However, it is not possible to reduce the order of the actual system. Therefore, it
is easy to understand that the two states of the system comprise internal dynamics
that has become unobservable from input output relationship of the system, where
u is being considered as the input to the system and z is considered to be the output
from the system. Therefore, two states of the original system can be chosen to
represent the internal dynamics of the transformed system. Nevertheless, in order to
derive the zeroing input for the system, let us start the derivation considering z1 as
the output from the system. Now the first-order time derivative of z1 is shown below

_z1 ¼ p2 � kðp1 þC sin q1Þ ð2:72Þ

Subsequent differentiation of z1 with respect to time yields

€z1 ¼ uð1þ kDÞ � kðC sin q1 þC cos q1p1Þ ð2:73Þ

Hence, €z1 ¼ 0 yields

u ¼ k
ð1þ kDÞ ðC sin q1 þC cos q1p1Þ ð2:74Þ

That is zeroing input to the system, so when zeroing input to the system is
applied to the system then the zero dynamics of the transformation can be expressed
as shown below

_q1 ¼ p1

_p1 ¼ C sin q1 � kD
ð1þ kDÞ ðC sin q1 þC cos q1p1Þ

ð2:75Þ
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Now, k should be selected in a judicial manner to ensure the stability of the
entire nonlinear system. However, detailed discussions of block backstepping is
beyond the scope of this book; for a comprehensive treatment on the said topic,
readers may refer the book Nonlinear and Adaptive Control Design by Krstic et al.

2.5 Notes

Last few decades, the literature of nonlinear control engineering has been enriched
by the potential contributions from applied mathematics and practicing engineers.
However, it is impossible to discuss about all the potential design approaches of
nonlinear control engineering in a single volume, as well as it is beyond the scope
of this presentation. However, for detailed in-depth discussions on the said topic
researchers may go through the references.
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Chapter 3
Block Backstepping Control
of the Underactuated Mechanical Systems

Abstract Underactuated mechanical system [UMS] is a particular class of a multi
output mechanical system that has more degrees of freedom than that of control
inputs. According to Spong “Underactuated mechanical systems have fewer control
inputs than degrees of freedom and arise in applications, such as space and
undersea robots, mobile robots, flexible robots, walking, brachiating, and gym-
nastic robots” (Spong in Control problems in robotics and automation. Springer,
Berlin, pp 135–150, 1998, [5]). Nonetheless, the complicated state model of this
class of systems often makes the controller design tasks more difficult than that of
the ordinary MIMO systems (Yu and Liu in IET Control Theory Appl 7:921–935,
2013, [6]). Comprehensive research on existing literature reveals that all the pro-
posed approaches are either too complicated for practical implementation and only
capable of ensuring guaranteed performance during theoretical analysis, or they are
just apt for a particular application that reduces their scope of applicability on other
control problems of similar nature (Rudra et al.). All these shortcomings of the
previously proposed approaches had strongly motivated the authors to conceive an
alternate control approach for achieving a tradeoff between theory and practice.
However, while the authors were looking for a suitable control law that could be
utilized to serve the said purpose, they observed different features of backstepping
could help them to reach their objective. After that they toiled for a period of
eighteen months, around the clock, and eventually they have devised a block
backstepping control law, which is generalized enough to address the control
problem of most of the UMS. Indeed, the proposed control law has initially been
formulated to address only the stabilization problem of the UMS; even so, during
further research it has been revealed that it can also be used to solve the tracking
control problem for the same. This chapter presents a comprehensive description of

This chapter is based on :

“Nonlinear state feedback controller design for underactuated mechanical system: A modified
block backstepping approach” by Shubhobrata Rudra, Ranjit Kumar Barai, and Madhubanti
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the control law together with some illustrations so as to make this book an
easy-reading one. For the ease of understanding, at first, the proposed algorithm is
described for 2-DOF UMS, and thereafter generalized version of the proposed
control algorithm is presented to address the control problem of n-DOF UMSs.

3.1 Formulation of Generalized Block Backstepping
Control Law for Underactuated Systems with Two
Degrees of Freedom (2-DOF)

This section is structured as follows. At first, a precise description of the control
problem with its proper analytical description is presented in Sect. 3.1.1. Thereafter,
Sect. 3.1.2 describes the formulation of the proposed control algorithm for 2-DOF
UMS in a systematic manner. After that, the stability aspects of the zero dynamics
of the same is thoroughly analyzed in Sect. 3.1.3.

3.1.1 Problem Formulation

The state model of a 2-DOF underactuated system can be expressed as shown in the
following Eq. (3.1):

_q1 ¼ p1
_q2 ¼ p2
_p1 ¼ f1 q; pð Þþ g1 qð Þu
_p2 ¼ f2 q; pð Þþ g2 qð Þu

ð3:1Þ

In the above equation, elements of column vector q ¼ col q1; q2ð Þ 2 R
2 represent

the output variables of a generic 2-DOF UMS. Basically, the q vector represents the
configuration vector of 2-DOF UMS. In addition, the time derivative of the con-
figuration vector q, is expressed as p ¼ col p1; p2ð Þ 2 R

2. Without any loss of
generality, p vector can be termed as the velocity vector of the system. Additionally,
u 2 R denotes the control input to the system. In above definitions, “col” denotes
the column vector. Actually, f1(q, p) and f2(q, p) are the nonlinear functions of q and
p defined as f1 q; pð Þ : R4 ! R and f2 q; pð Þ : R4 ! R. In addition g1(q) and
g2(q) are the functions of the output variables (q1, q2) defined as g1 qð Þ : R2 ! R

and g2 qð Þ : R2 ! R. Also f1(q, p), f2(q, p), g1(q) and g2(q) are all C1 functions. It
implies all the four above-mentioned functions are differentiable, and they have
continuous time derivatives. In addition, f1 0; 0ð Þ ¼ 0 and f2 0; 0ð Þ ¼ 0. Moreover,
the state vector X can be expressed as X ¼ q1 q2 p1 p2½ �T2 R

4.
The prime objective of the proposed control law is to devise a nonlinear state

feedback control law, employing block backstepping technique such that it would
ensure the asymptotic stability of the entire nonlinear system. In other words, if the
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state error E is defined as E ¼ X tð Þ � X0, where X(t) denotes the system states at
time t and X0 denotes the desired equilibrium point in the state space. Now, the goal
of the control law u is to ensure that |E| ! 0 as t ! ∞.

3.1.2 Derivation of the Control Algorithm for 2-DOF
Underactuated Mechanical Systems

This subsection describes systematic development of the proposed control algorithm
for 2-DOF mechanical systems. However, as discussed earlier in Sect. 2.2, appli-
cation of conventional backstepping requires the system state model to be in the
strict feedback form [1]. On the other hand, a minute observation on Eq. (3.1)
reveals that the state model of the underactuated system is not in strict feedback
form. Therefore, at the onset of the design, the state model of the system has been
transformed into a block-strict feedback form. Interested readers may find the
detailed mathematical formulation of block-strict feedback form in Chap. 2, Sect. 2.
3.

Indeed, it is clear from the above discussion that direct application of conven-
tional backstepping on the state model of the underactuated system is not possible.
Hence, one left with an obvious choice of transforming the same into a convenient
one. The pioneering work on converting the state model of the underactuated
system in a convenient form was carried out by Olfati Saber [3]. Since it involves a
few complex mathematical manipulations, it becomes too complicated for practical
applications. So to get rid off from the shortcomings of Olfati’s method, an effective
transform has been proposed based on simple algebraic manipulations. At the onset
of the design, state model of the system of Eq. (3.1) has been transformed into a
reduced order model by means of an algebraic state transformation. Actually, the
mentioned transform converts the system into a block-strict feedback form.
Subsequently, in the next stage of design, expression of the control input u has been
found out to stabilize the reduced order system at its origin. The derivation of the
control algorithm is shown in the following steps of 1–4 as given below:

Step 1: At the onset, a new control variable z1 2 R has been defined in terms of
the original states. Quite often, the variable z1 is also termed as first error
variable.

z1 ¼ q2 � k q1 þ g2p1 � g1p2ð Þ ð3:2Þ

where k is a design constant. Now, the dynamics of z1 is expressed in
Eq. (3.3) as shown below:

_z1 ¼ p2 � k p1 þ g2 _p1 þ _g2p1 � g1 _p2 � _g1p2ð Þ
¼ p2 � k p1 þ g2 f1 þ g1uð Þþ p1dg2 � _q� g1 f2 þ g2uð Þ � p2dg1 � _qð Þ
¼ p2 � k p1 þ g2f1 þ p1dg2 � p� g1f2 � p2dg1 � pð Þ

ð3:3Þ
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In the above equation, dg ¼ @g
@q1

@g
@q2

h i
. Henceforth, for ease of repre-

sentation f1 q; pð Þ, f2 q; pð Þ, g1 qð Þ, g2 qð Þ will be represented by f1; f2; g1; g2
respectively.

Step 2: In this step, a suitable stabilizing function should be defined to realize the
desired value of the virtual input for the first subsystem. In this case a
stabilizing function has been selected in a judicious manner to convert the
original state model of the system into a strict feedback form. Therefore, a
suitable stabilizing function has been selected to serve the said purpose,
which is shown below in Eq. (3.4)

a1 ¼ �c1z1 þ k p1 þ g2f1 þ p1dg2 � p� g1f2 � p2dg1 � pð Þ ð3:4Þ

From the basic concepts of control system, it is very easy to understand
that incorporation of integral action improves the steady state performance
of the systems. Following the same philosophy, an integral action has also
been incorporated with the state feedback law. As a matter of fact,
expression of the stabilizing function [as described in Eq. (3.4)] has been
modified as expressed in the following Eq. (3.5):

a1 ¼ �c1z1 � kv1 þ k p1 þ g2f1 þ p1dg2 � p� g1f2 � p2dg1 � pð Þ ð3:5Þ

where v1 ¼
R t
0 z1dt and k is a design constant.

With the above definition of stabilizing function, now the time derivative
of z1 could be expressed as shown in following Eq. (3.6):

_z1 ¼ p2 � a1 � c1z1 � kv1 ð3:6Þ

Step 3: In accordance with Eq. (3.6), the second error variable z2 2 Rð Þ has been
defined as the difference between stabilizing function and the virtual
control in such a manner that the two variables z1 and z2 could be used to
represent a reduced state model of the system in strict feedback form. The
term reduced order will be explained in detail at Sect. 3.2.3. In this case, it
has been defined according to Eq. (3.7):

z2 ¼ p2 � a1 ð3:7Þ

Consequently, from Eqs. (3.6) and (3.7) one can represent the time
derivative of z1 as shown below in Eq. (3.8):

_z1 ¼ z2 � c1z1 � kv1 ð3:8Þ
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Differentiation of second control variable z2 with respect to time has
resulted in:

_z2 ¼ _p2 � _a1
¼ f2 þ g2uþ c1 _z1 þ kz1

� k _p1 þ _g2f1 þ g2 _f1þ _p1dg2 � pþ p1dg2 � _pþ p1
@2g2
@q21

p21 þ 2
@2g2

@q1@q2
p1p2 þ @2g2

@q22
p22

� �� ��

� _g1f2 þ g1 _f2 þ _p2dg1 � pþ p2dg1 � _pþ p2
@2g1
@q21

p21þ 2
@2g1

@q1@q2
p1p2 þ @2g1

@q22
p22

� �� ��
¼ f2þ g2uð Þþ c1 z2 � c1z1 � kv1ð Þþ kz1

� k f1þ g1uf þ f1dg2½ � pþ g2df 1: _Xþ f1 þ g1uð Þdg2 � p

þ p1
@g2
@q1

f1 þ g1uð Þþ @g2
@q2

f2 þ g2uð Þ
� �

þ p1
@2g2
@q21

p21 þ 2
@2g2

@q1@q2
p1p2þ @2g2

@q22
p22

� ��
� f2dg1 � pþ g1df 2 � _Xþ f2 þ g2uð Þdg1 � p
�

þ p2
@g1
@q1

f1 þ g1uð Þ +
@g1
@q2

f2 þ g2uð Þ
� �

þ p2
@2g1
@q21

p21 þ 2
@2g1

@q1@q2
p1p2þ @2g1

@q22
p22

� ���

¼ f2þ g2uð Þþ c1 z2 � c1z1 � kv1ð Þþ kz1 � k f1 þ g1uf þ f1dg2½ � pþ f1þ g1uð Þdg2 � p

þ g2
@f1
@q1

p1 þ @f1
@p1

f1 þ g1uð Þ
�

þ @f1
@q2

p2 þ @f1
@p2

f2 þ g2uð Þ
�

þ p1
@g2
@q1

f1 þ g1uð Þþ @g2
@q2

f2 þ g2uð Þ
� �

þ p1
@2g2
@q21

p21þ 2
@2g2

@q1@q2
p1p2 þ @2g2

@q22
p22

� ��

� f2dg1 � pþ f2 þ g2uð Þdg1 � pf þ g1
@f2
@q1

p1 þ @f2
@p1

f1þ g1uð Þ
�

þ @f2
@q2

p2 þ @f2
@p2

f2þ g2uð Þ
�

þ p2
@g1
@q1

f1 þ g1uð Þþ @g1
@q2

f2 þ g2uð Þ
� �

þ p2
@2g1
@q21

p21þ 2
@2g1

@q1@q2
p1p2 þ @2g1

@q22
p22

� ���
¼ wuþ kz1þ c1 z2 � c1z1 � kv1ð Þþ/

ð3:9Þ

where,

w ¼ g2 � k g1 þ g1g2
@f1
@p1

þ g22
@f1
@p2

�
þ g1dg2 � pþ p1

@g2
@q1

g1 þ p1
@g2
@q2

g2

� g21
@f2
@p1

� g1g2
@f2
@p2

�g2dg1 � p� p2
@g1
@q1

g1 � p2
@g1
@q2

g2

�
ð3:10Þ
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and

/ ¼ f2�k f1 þ 2f1dg2 � pþ p1
@g2
@q1

f1þ @g2
@q2

f2 þ @2g2
@q21

p21 þ 2
@2g2

@q1@q2
p1p2þ @2g2

@q22
p22

� ����

þ g2
@f1
@q1

p1 þ @f1
@q2

p2 þ @f1
@p1

f1 þ @f1
@p2

f2

� �
� g1

@f2
@q1

p1 þ @f2
@q2

p2 þ @f2
@p1

f1 þ @f2
@p2

f2

� �� �

� 2f2dg1 � pþ p2
@g1
@q1

f1þ @g1
@q2

f2
@2g2
@q21

p21þ 2
@2g2

@q1@q2
p1p2 þ @2g2

@q22
p22

� �� ��

ð3:11Þ

As stated earlier, the design Steps 1–3 has actually transformed the
original state model of the underactuated system described in Eq. (3.1)
into a strict feedback form. This approach has eventually yielded a con-
venient design of control law.

Step 4: It is the final step and it gives the control law u so as to attain the desired
dynamics of the z1 and z2 i.e. _z1 ¼ �k1v1 � c1z1 þ z2 and
_z2 ¼ �z1 � c2z2. The desired dynamics of z2 is expressed in Eq. (3.11) as
following:

_z2 ¼ �z1 � c2z2 ð3:12Þ
Please note that the dynamics z1 as mentioned in Eq. (3.8) together with
the desired dynamics of z2 as shown in the above Eq. (3.12) describe the
dynamics of a stable system, which resembles the state model of a second
order stable system with two poles located at −c1, and −c2, respectively.
State model of the reduced order system in z1, z2 coordinate is shown
below:

_z1 ¼ z2 � c1z1 � kv1
_z2 ¼ �z1 � c2z2

ð3:13Þ

Consequently, from Eqs. (3.8) and (3.12), expression of the desired con-
trol law could be found out in the following manner:

wuþ kz1 þ c1 z2 � c1z1 � kv1ð Þþ/ ¼ �z1 � c2z2
or, wu ¼ �kz1 � c1 z2 � c1z1 � kv1ð Þ � /� z1 � c2z2

or, u ¼ w�1 � 1� c21 þ k
	 


z1 � c1 þ c2ð Þz2 þ kc1v1 � /
� � ð3:14Þ

The proposed control law of Eq. (3.14) transforms the closed loop system
in the state model of Eq. (3.13).
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3.1.3 Zero Dynamics Analysis of 2-DOF Underactuated
Mechanical System

Systematic derivation of the proposed control law for the 2-DOF UMS has been
presented in Sect. 3.1.2. Expression of the control input is shown in Eq. (3.14).
However, a minute observation on the proposed control law reveals that the control
law [described in Eq. (3.14)] only ensures the stability of the transformed system in
z1, z2 coordinate system [4]. Nonetheless, the algebraic state transformation has just
converted the original fourth order underactuated state model of Eq. (3.1) into a
reduced order state model (described by z1 and z2). Conversely, from the basic
concepts of control engineering it can be stated that if a state model that does not
contain any redundant state represents a system, it is impossible to reduce the
dimension of that very system by means of any feasible state transformation! and
herein lies the importance of internal dynamics. For an in-depth study on Internal
Dynamics readers may refer to [2]. Actually, the proposed state transformation of
Sect. 3.2.2 just has transfigured the system into a block-strict feedback form, while
the z1 − z2 subsystem describes the system in strict feedback form, other two state
variables (among q1, q2, p1, and p2) must be selected to represent the internal
dynamics of the block-strict feedback form. In this case, q1 and p1 have been
selected to represent the zero dynamics of the system. Needless to say, that the
stability of internal dynamics can only be assessed by means of zero dynamics
analysis [4]. Hence, in the subsequent section, zero dynamics state model will be
utilized to represent the internal dynamics of the system.

In this research, during the derivation of zero dynamics, z1 has been considered
as a virtual output from the nonlinear system. Hence, it can be easily concluded that
if someone wants to derive the zero dynamics for the above-mentioned nonlinear
system, he must have to find out the expression of control input u that drives z1
identically equal to zero. Subsequently, z1, first time derivative of z1, and second
time derivative of z1 have been found out to realize the desired expression of control
law u that will drive z1 identically equal to zero.

The first order differentiation of z1 yields the dynamics of Eq. (3.15). Thus, the
second order differentiation of z1 results in the following dynamics.

€z1 ¼ _z2 � c1 _z1 � kz1
¼ wuþ kz1 þ c1 _z1 þ#� c1 _z1 � kz1
¼ wuþ#

ð3:15Þ

So it is quite evident from the above expression (3.15) that the two successive
differentiations of z1 establishes an explicit relationship between z1 (output) and
u (input). Therefore, if z1 is treated as an output of the system then the relative degree
of the overall underactuated system becomes two [4]. Hence, from the concept of
output feedback linearization one can conclude that the state transformation
described in Sect. 3.2.2, has yielded an unobservable internal dynamics of order two.
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Since two successive differentiation of z1 is required to establish an explicit
relationship between input and output, the variable z1, the first derivative of z1 _z1ð Þ
and second derivative of z1 €z1ð Þ must be equal to zero for the derivation of zero
dynamics [4]. Now, in order to represent the system’s internal dynamics in terms of
q1 and p1, the other two variables q2 and p2 must be expressed in terms of q1 and p1.
Therefore, from the following equations, it is possible to represent the zero
dynamics of the system in terms of q1 and p1 as shown in the following equation set
(3.16.a–3.16.c):

z1 ¼ q2 � k q1 þ p1 � g1p2ð Þ ¼ 0 ) q2 ¼ k q1 þ p1 � g1p2ð Þ ð3:16:aÞ

_z1 ¼ p2 � k p1 þ f1 � p2dg1 � pð Þ ¼ 0 ) p2 ¼ k p1 þ f1 � p2dg1 � pð Þ

p2 ¼ k p1 þ f1ð Þ= 1þ kdg1 � pð Þ ð3:16:bÞ

€z1 ¼ wuþ# ¼ 0 ) u ¼ �w�1# ð3:16:cÞ

Consequently, one can represent the dynamics of q1, p1 subsystem together with
the input u of Eq. (3.16.c) as:

_q1 ¼ p1

_p1 ¼ f1 þ g1u ¼ f1 � g1 w�1#
	 
 ¼ F q1; p1ð Þ ð3:17Þ

Now, if the parameter k is selected in such a manner to ensure the zero dynamics
[vide Eq. (3.17)] stability of the transformed system, it will ensure the asymptotic
convergences of q1 and p1 to their desired equilibriums. Now, convergences of z1,
q1 and p1, automatically ensure the asymptotic convergence of each of q2 and p2 to
their desired equilibrium points.

Remark 3.1 The above formulation is not rigid or specific for a particular under-
actuated system. Similar type of control algorithms can be obtained by defining a
new set of state variables like: z1 ¼ q2 � kq1.

Remark 3.2 The control law relies on the fact that w is invertible. In case of control
law design for real-time implementations, it is always possible to select a value of
k that will ensure the invertibility of w and the stability of the zero dynamics,
simultaneously. In this context, it must be noted that although k is a crucial design
factor and calculation of zero dynamics appeared to be a complicated one, yet the
designers can always find out the value of parameter k offline, before the real-time
run. Needless to say that this facility of evaluating the suitable value of controller
parameter k by offline calculation, considerably simplifies the implementation of the
proposed control law during practical applications.

Remark 3.3 The proposed control law asymptotically stabilizes the equilibrium of
the original fourth order state model of the 2-DOF UMS in large.
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Remark 3.4 The state model of the underactuated system shown in Eq. (3.3) is not
in strict feedback form. Therefore, an algebraic transformation has been utilized to
convert the system into a reduced order strict feedback form. The aforementioned
transformation together with the control input u of Eq. (3.14) has resulted in the
reduced order system of Eq. (3.13) and the zero dynamics equation of (3.17).

Remark 3.5 Another significant feature of the proposed block backstepping design
is that the transformation of the system into block-strict feedback form is carried out
during the design of control algorithm, which makes it more compact than its
predecessor backstepping based approaches.

Remark 3.6 The integral action is incorporated into the proposed backstepping
technique by modifying the conventional stabilizing function. Thus, the ultimate
control input that is derived by the proposed modified block backstepping technique
would enhance the steady state performance of the system.

3.2 Formulation of Generalized Block Backstepping
Control Law for Underactuated Systems
with N Degrees of Freedom

In this section, the systematic derivation of the control law for a generic n-DOF
underactuated system is described. Similar to the earlier Sect. 3.1, here also at first
the dynamics of a generalized UMS model is discussed, and then the formulation of
a generalized block backstepping based control algorithm is described in a sys-
tematic manner.

3.2.1 Problem Formulation

The generic Lagrangian model of an n-DOF underactuated system is shown in
Eq. (3.18)

m11 qð Þ€q1 þm12 qð Þ€q2 þ h1 q; pð Þ ¼ 0

m21 qð Þ€q1 þm22 qð Þ€q2 þ h2 q; pð Þ ¼ B qð Þs ð3:18Þ

where, q1 2 R
n1 , q2 2 R

n2 and q ¼ col q1; q2ð Þ 2 R
n is the configuration vector of

nth degree of freedom UMS. In the above representation q1 represents passive joint
configuration variables, and q2 represents active joint configuration variables. The
dimension of the overall configuration manifold is n1 + n2 = n. The time derivative
of the configuration vector q is expressed as p ¼ col p1; p2ð Þ 2 R

n, and s 2 R
n2 is

the control input. In the above representation, h1 q; pð Þ : R2n ! R
n1 and h2 q; pð Þ :
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R
2n ! R

n2 contain the coriolis, centrifugal and gravity terms. Whereas, mij qð Þ
q = 1, 2, represents the components of the n� n inertia matrix, which is symmetric
and positive definite for all q. B qð Þ 2 R

n2�n2 represents a full rank matrix.
According to Spong, there exists an invertible change of the control input s as
shown in Eq. (3.19) [5].

s ¼ B�1 qð Þ h2 q; pð Þ � m21 qð Þm�1
11 qð Þh1 q; pð Þ	 
þ m22 qð Þ � m21 qð Þm�1

11 qð Þm12 qð Þ	 

u

	 

ð3:19Þ

that transforms the Lagrangian model of Eq. (3.18) into

_q1 ¼ p1
_q2 ¼ p2
_p1 ¼ f q; pð Þþ g qð Þu
_p2 ¼ u

ð3:20Þ

where, f q; pð Þ : R2n ! R
n1 , g qð Þ 2 R

n1�n2 are given by

f q; pð Þ ¼ �m�1
11 qð Þh1 q; pð Þ

g qð Þ ¼ �m�1
11 qð Þm12 qð Þ ð3:21Þ

The state vector can be expressed as X ¼ q1 p1 q2 p2½ � 2 R
2n. Now, the

objective is to design a nonlinear state feedback control input u for the UMS of
Eq. (3.21) by employing block backstepping technique such that it would ensure
the asymptotic stability of the system. In other words, if the state error E is defined
as E ¼ XðtÞ�X0, where X(t) denotes the system states at time t and X0 denotes the
desired equilibrium point in the state space, then the goal of the control law u is to
ensure that |E| ! 0 as t ! ∞.

3.2.2 Derivation of the Control Law for n-DOF
Underactuated Mechanical Systems

A minute observation of the state model, which is described in Eq. (3.20), reveals
the fact that like 2-DOF underactuated system state model it also fails to satisfy the
prerequisite condition of integrator backstepping. Hence, following the similar state
transformation approach of last section, at first the state model of a n-DOF system
has been transfigured [shown in (3.21)] into a reduced order state model in
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block-strict form, and then the expression of control input u is found out to stabilize
the reduced order system at its desired equilibrium. The derivation of the control
algorithm is shown in the following steps 1–4 as given below:

Step 1: Following the same design philosophy, which the authors have introduced
for 2-DOF underactuated system, the control law for n-DOF system has
been derived. Therefore, a new control variable z1 2 R

n2 has been defined
to convert the state model of the system in block-strict form. Please note
that the dimension of actuated configuration variable is also n2. During this
design, the authors have defined z1 in such a manner that dimension of z1
has also become n2. Formal definition of z1 is shown below in Eq. (3.22)

z1 ¼ q2 � K q1 þ p1 � gp2ð Þ ð3:22Þ

where, K 2 R
n2�n1 is a constant matrix such that Kij ¼ k only when i = j or

Kij ¼ 0 otherwise. In the above equation, g qð Þ is represented by g, and
henceforth for the ease of representation, f q; pð Þ and g qð Þ will be denoted
by f and g, respectively. Construction of K matrix can be illustrated with
the following examples of a six dimensional system where the dimension
of actuated configuration variable is 4 q2 2 R

4
	 


, and the dimension of
unactuated configuration variable is 2 q1 2 R

2
	 


. structure of K matrix is
shown in Eq. (3.23)

K ¼
k1 0
0 k2
0 0
0 0

2
664

3
775 ð3:23Þ

In order to find out the expression of stabilizing function, time derivative
of z1 has been calculated as shown in the following Eq. (3.24):

_z1 ¼ p2 � K p1 þ f þ gu� gu� D gð Þp2ð Þ
¼ p2 � K p1 þ f � D gð Þp2ð Þ ð3:24Þ

In above representation D gð Þ 2 R
n1�n2 represents the time differentiation

of matrix g(q), where any element of D(g) can be expressed as

D gij
	 
 ¼Pn

k¼1
@gij
@qk

pk, where i and j indicates the position of the elements

of D(g) matrix. Construction of D(g) matrix is explained in the following
example.
Consider a very simple underactuated system in which q2 2 R

n2 and
q1 2 R, the state model of the system can easily be represented by the
following generic state model:
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_q1 ¼ p1
_q21
_q22

� �
¼ p21

p22

� �

_p1 ¼ f q; pð Þþ g1 qð Þ g2 qð Þ½ � u1
u2

� �
_p21
_p22

� �
¼ u1

u2

� �
ð3:25Þ

Please note that in the above state model two bracketed terms q21 and q22
basically represent the elements of q2 vector, similarly p21 and p22 rep-
resent the components of p2 vector. Clearly the above state model repre-
sents a 3-DOF underactuated system with two inputs and 3 outputs. Now
if we try to realize the structure of D(g) matrix then it will take the
following shape as described in Eq. (3.26)

DðgÞ ¼ @g1
@q1

p1 þ @g1
@q21

p21 þ @g1
@q22

p22
@g2
@q1

p1 þ @g2
@q21

p21 þ @g2
@q22

p22
h i

ð3:26Þ

Step 2: Similar to the previous case, stabilizing function for the z1 subsystem has
been chosen to ensure the desired dynamics behavior of z1. Mathematical
expression of the stabilizing function is shown in Eq. (3.27) below:

a1 ¼ �c1z1 � kv1 þK p1 þ f � D gð Þp2ð Þ ð3:27Þ

Needless to say that the second term of the right hand side of the above
equation denotes integral action (v1 ¼

R t
0 z1dt and k is an arbitrary positive

design constant) that has been incorporate to enhance the steady state
performance. In above equation c1 is a positive design constant that
controls the rate of convergence of the regulated variables.

Step 3: Likewise the previous case, a second error variable z2 2 R
n2 has been

defined according to Eq. (3.28):

z2 ¼ p2 � a1 ð3:28Þ

By virtue of the above definition of second control variable z2 variable, _z1
has become:

_z1 ¼ z2 � c1z1 � kv1 ð3:29Þ
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Dynamics of second error variable z2 can be expressed as:

_z2 ¼ _p2 � _a1

¼ uþ c1 _z1 þ kz1 � K _p1 þ _f � DðgÞ _p2 � D2ðgÞp2
	 


¼ uþ c1 z2 � c1z1 � kv1ð Þþ kz1
� K f þ guþDfq1

�
p1 þDfq2p2 þDfp1 f þ guð Þ

þDfp2u� DðgÞu� D2ðgÞp2
�

ð3:30Þ

In Eq. (3.30), Dfq1 2 R
n1�n1 , Dfq2 2 R

n1�n2 , Dfp1 2 R
n1�n1 and Dfp2 2

R
n1�n2 represent the matrices of partial derivatives of f vector with respect

to different sub-component of state vector such as q1, q2, p1 and p2. In
order to enhance the comprehensibility of this text, the authors have again
considered the generic 3-DOF state model of Eq. (3.25) to explain the
construction of the above-mentioned matrices. For the system of (3.25)
they will take the following shape as shown in equation series (3.31.a–
3.31.d) below:

Dfq1 ¼ @f
@q1

ð3:31:aÞ

Dfq2 ¼ @f
@q21

@f
@q22

h i
ð3:31:bÞ

Dfp1 ¼ @f
@p1

ð3:31:cÞ

Dfp2 ¼ @f
@p21

@f
@p22

h i
ð3:31:dÞ

D2 gð Þ 2 R
n1�n2 is given by D2 gð Þ ¼ D2

1 gð ÞþD2
2 gð Þ� �

. The definition of
D2

1 gð Þ and D2
2 gð Þ are as follows:

D2
1 gij
	 
 ¼Xn

l¼1

Xn
k¼1

@2gij
@qk@ql

pkpl ð3:32Þ

D2
2 gij
	 
 ¼Xn

k¼1

@gij
@qk

_pk ð3:33Þ

In the above expression, pk and pl represents the individual elements of
p vector. similar to the previous case, we can exemplify the structure of
D2

1 gð Þ and D2
2 gð Þ matrix as shown in the following equation series (3.34.a,

3.34.b):
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D2
1ðgÞ ¼

@2g1
@q21

p21 þ
@2g1
@q221

p221 þ
@2g1
@q22

p222 þ 2
@2g1
@q21q1

p1p21 þ 2
@2g1
@q22q1

p1p22 þ 2
@2g1

@q21q22
p22p21

@2g2
@q21

p21 þ
@2g2
@q221

p221 þ
@2g2
@q22

p222 þ 2
@2g2
@q21q1

p1p21 þ 2
@2g2
@q22q1

p1p22 þ 2
@2g2

@q21q22
p22p21

2
66664

3
77775

T

ð3:34:aÞ

D2
2ðgÞ ¼

@g1
@q1

_p1 þ @g1
@q21

_p21 þ @g1
@q22

_p22
@g2
@q1

_p1 þ @g2
@q21

_p21 þ @g2
@q22

_p22

� �
ð3:34:bÞ

Now, it is very clear from the construction of D2
2 gð Þ that its element

contains the elements of input vector. Therefore, proper measures should
be taken to group the input vector elements together so as to find out a
compact expression of the control law.
However, from the structure of D2

2 gð Þ matrix it can be easily inferred that
D2

2ðgÞp2 can be further partitioned into three parts as shown in the fol-
lowing equation:

D2
2ðgÞp2 ¼ D2

2p1
ðgÞf þD2

2p1
ðgÞguþD2

2p2
ðgÞu ð3:35Þ

where the elements of each fragment are:

D2
2p1 gmrð Þ ¼

Xn2
i¼1

@gmi
@q1r

p2i ð3:36Þ

where D2
2p1ðgÞ 2 R

n1�n1 and m = 1,…, n1 indicates the row index of
g matrix, q1r is the elements of the vector q1, where r denotes the index of
the particular configuration variables and p2i denotes element of p2 vector.

D2
2p2 gmrð Þ ¼

Xn2
i¼1

@gmi
@q2r

p2i ð3:37Þ

where D2
2p2ðgÞ 2 R

n1�n2 m = 1,…, n1 indicates the row number of gmatrix,
q2r is the elements of the vector q2, where r denotes the index of the
particular configuration variables. Construction of the matrices that have
been described in Eqs. (3.36) and (3.37) can also be explained with the
help of the state model of Eq. (3.25).
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D2
2ðgÞp2 ¼

@g1
@q1

f þ g1 g2½ � u1
u2

� �� �
þ @g1

@q21
u1 þ @g1

@q22
u2

@g2
@q1

f þ g1 g2½ � u1
u2

� �� �
þ @g2

@q21
u1 þ @g2

@q22
u2

2
6664

3
7775
T

p21
p22

� �

¼ @g1
@q1

p21 þ @g2
@q1

p22

� �
f þ g1 g2½ �

u1

u2

" # !"

þ @g1
@q21

p21 þ @g2
@q21

p22

� �
u1 þ @g1

@q22
p21 þ @g2

@q22
p22

� �
u2

�
ð3:38Þ

Hence, with the above mentioned simplification technique, it is always
possible to represent the time derivative of z2 in the following compact
form as shown in Eq. (3.39)

_z2 ¼ uþ c1 z2 � c1z1 � kv1ð Þþ kz1
� K f þ guþDfq1

�
p1 þDfq2p2 þDfp1 f þ guð ÞþDfp2u

� DðgÞu�D2
1ðgÞp2 � D2

2p1ðgÞf � D2
2p1ðgÞgu� D2

2p2ðgÞu
i

¼ wuþ kz1 þ c1 z2 � c1z1 � kv1ð ÞþU

ð3:39Þ

where the expressions of w 2 R
n2�n2 and U 2 R

n2 are shown in following
equations:

w ¼ I � K gþDfp1gþDfp2 � DðgÞ � D2
2p1ðgÞg� D2

2p2ðgÞ

 �h i

ð3:40Þ

and

U ¼ �K f þDfq1p1 þDfq2p2 þDfp1 f � D2
1ðgÞp2 � D2

2p1ðgÞf
h i

ð3:41Þ

In Eq. (3.40), I denotes an identity matrix of order n2. Similar to the case
of 2-DOF UMS (described in Sect. 3.2.2), above three steps transform the
state model of an n-DOF underactuated system of (3.20) into the
block-strict feedback form.

Step 4: The control law u is designed to ensure the desired dynamics for z2. The
desired dynamics of z2 is expressed in Eq. (3.42) as following:

_z2 ¼ �z1 � c2z2 ð3:42Þ

where c2 is an arbitrary positive design constant.
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Consequently, from Eqs. (3.40) and (3.42) the desired control input can be
derived in the following manner:
or,

u ¼ w�1 � 1� c21 þ k
	 


z1 � c1 þ c2ð Þz2 þ kc1v1 �U
� � ð3:43Þ

such choice of control input u results in the following dynamics:

_z1 ¼ z2 � c1z1 � kv1
_z2 ¼ �_z1 � c2z2

ð3:44Þ

3.2.3 Zero Dynamics Analysis of n-DOF Underactuated
Mechanical System

Similar to the analysis of zero dynamics stability presented in Sect. 3.2.3, it is
also possible to analyze the stability of the zero dynamics for the n-DOF under-
actuated system (3.20). Akin to the previous case of 2 DOF UMS, two successive
differentiation of z1 yields an explicit relationship between the input vector u and
the output vector z1. From Eq. (3.32), one can write:

€z1 ¼ _z2 � c1 _z1 � kz1
¼ wuþ kz1 þ c1 _z1 þU� c1 _z1 � kz1
¼ wuþU

ð3:45Þ

Hence, one can proceed in a similar manner to derive the expressions of the zero
dynamics system (here the authors have exactly followed Eqs. (3.16.a–3.16.c) to
derive the expression of zero dynamics). As a result,

z1 ¼ 0 ) q2 ¼ K q1 þ p1 � gp2ð Þ ð3:46:aÞ

_z1 ¼ p2 � K p1 þ f � DðgÞp2ð Þ ¼ 0 ) p2 ¼ K p1 þ f � DðgÞp2ð Þ ð3:46:bÞ

€z1 ¼ wuþU ¼ 0 ) u ¼ w�1U ð3:46:cÞ

Consequently, one can represent the dynamics of q1, p1 subsystem together with
the input u of Eq. (3.46.c) as:

_q1 ¼ p1
_p1 ¼ f þ gu ¼ f � gw�1U

ð3:47Þ

Furthermore, after a few algebraic manipulations, it is always possible to replace
all the terms containing q2 and p2 by the expressions of Eqs. (3.46.a, 3.46.b),
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respectively. Hence, it is possible to describe the dynamics of the transformed
system with the reduced order model as shown in Eq. (3.47) and subsequently the
zero dynamics model as shown in Eq. (3.48),

_q1 ¼ p1
_p1 ¼ F q1; p1ð Þ z1 ¼ 0j ð3:48Þ

The schematic diagram of the overall control system is shown in Fig. 3.1. Now,
if the elements of matrix K is selected in such a manner that it can ensure zero
dynamics [vide Eq. (3.48)] stability of the transformed system, then it will also
ensure the asymptotic convergences of q1 and p1 to their desired equilibriums.

It is evident from the expressions of w, andU of Eqs. (3.46.c) and (3.48) that the
zero dynamics stability of the system depends on the choice of the elements (pa-
rameters) of K matrix. Therefore, K should be selected in a sensible manner to
assure the stability of the zero dynamic system, which in turn would guarantee the
global asymptotic stability of the entire system [shown in Eq. (3.22)].

Indeed, it is also clear from the expression of (3.44) that the controller param-
eters c1 and c2 control the rate of convergence of the regulated variables. It is also
clear from Eq. (3.44) that c1, c2, and k should be selected from the set of all positive
real numbers Rþð Þ to ensure the asymptotic stability of the proposed control
algorithm. Since a very high value of k may generate some adverse affect on the
controller performance, a comparatively small value of k has been chosen to control
the integral action.

Remark 3.7 The dimension of the reduced order system described by Eq. (3.44) is
2n2 and the dimension of the zero dynamics described in (3.48) is 2n1. The
dimension of the overall system state model (3.20) is 2n. Hence, the above results

Fig. 3.1 Schematic diagram of the controlled system
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corroborate the fact that the order of overall system (2n) = the order of reduced
order system in z1, z2 (2n2) +the order of zero dynamics (2n1).

Remark 3.8 The stability of the zero dynamics system (3.48) ensures the asymp-
totic convergence of q1 and p1 to zero (i.e. q1 ! 0 and p1 ! 0; as t ! 1).

3.3 Analysis of Global Diffeomorphism of the Control Law

Previous section presents the systematic formulation of the proposed control law for
2-DOF system and n-DOF system, respectively. The algebraic state transformation,
which is described in Sect. 3.2.2, has converted the original n-DOF UMS of
Eq. (3.22) into a reduced order state model of Eq. (3.44). Since X is a 2n dimen-
sional state vector, another 2n1 number components will be required to completely
describe the diffeomorphic state transformation from X coordinate to Z coordinate.
In this work, q1 and p1 have been chosen to be these two components.
Consequently, the proposed diffeomorphic transformation can be expressed as
shown in the Eq. (3.49) below:

Z ¼ T(X) ¼
z1
z2
z3
z4

2
664

3
775 ¼

q2 � K q1 þ p1 � g1p2ð Þ
p2 þ c1z1 þ kv1 � K p1 þ f � DðgÞp2ð Þ

q1
p1

2
664

3
775 ð3:49Þ

In order to verify the fact that T(X) is indeed a global diffeomorphism, the
Jacobian of the proposed state transformation T(X) has been computed as shown
below:

@T
@X

¼

�KþK @g
@q1

p2 �K 1þK @g
@q2

p2 Kg

�K c1þ @D gð Þ
@q1

p2

�

þ @f
@q1

� c1
@g
@q1

p2

� �K 1þ c1ð

þ @f
@p1

þ @D gð Þ
@p2

� c1 þK c1
@g
@q2

p2

�

� @f
@q2

� @D gð Þ
@q2

p2

� K c1g� @f
@p2

�

þD gð Þþ @D gð Þ
@p2

p2

�
1 0 0 0
0 1 0 0

2
6666666664

3
7777777775

ð3:50Þ

Therefore, determinant of @T
@X can be expressed as:

D ¼ 1þK
@g
@q2

p2

� �
K c1g� @f

@p2
þD gð Þþ @D gð Þ

@p2

� �

� c1 þK c1
@g
@q2

p2 �
@f
@q2

� @D gð Þ
@q2

p2

� �� �
kg ð3:51Þ
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Consequently, it can be inferred that the full rank of the Jacobian @T
@X implies a

nonzero Δ. Hence, global invertibility of @T
@X implies the state transformation

described in Eq. (3.51) is a global diffeomorphism. Equation (3.51) reveals that the
nonsingularity of the Jacobian @T

@X depends on the controller parameter K, but the
other controller parameters (e.g. c1, c2, k) do not alter the rank of the Jacobian @T

@X.

3.4 Stability Analysis of the Proposed Controller

In this section, stability of the proposed control algorithm is analyzed using
Lyapunov’s stability criterion. At first, the stability of the reduced order system of
equation is proved using the Barbalat’s Lemma (3.38)

Theorem 3.1 If the underactuated system is represented by the state model of
Eq. (3.22), then the system can be transformed into a block-strict feedback form by
a global state transformation as described by Eqs. (3.22)–(3.27). Moreover, there
exists a state feedback control law as given in Eq. (3.43), which ensures the global
stabilization of the equilibrium for the underactuated system.

Proof The first part of the theorem (i.e. the transformation of the underactuated
system in block-strict feedback form) can be proved by direct calculation. Since it
has already been established in the last section that global diffeomorphism is
automatically ensured, it can be concluded that the invertibility of w ensures
existence of the proposed state feedback control law. Now, the proof of the sta-
bilizing property of the control law is given below.

The proposed control law of Eq. (3.43) transforms the closed loop system in the
closed loop forms of Eq. (3.44).

Now, the following Lyapunov function has been defined for the transformed
system as described in the following Eq. (3.44):

V ¼ 1
2
kvT1v1 þ

1
2
zT1 z1 þ

1
2
zT2 z2 ð3:52Þ

The derivative of the Lyapunov Function can be computed as:

_V ¼ kvT1 z1 þ zT1 z2 � c1z1 � kv1ð Þþ zT2 z1 � c2z2ð Þ
¼ �c1zT1 z1 � c2zT2 z2

ð3:53Þ

The expression of Eq. (3.53) reveals the negative-definiteness of _V and also
implies the fact that VðtÞ�Vð0Þ. Therefore, it ensures the boundedness of z1 and z2.

Now, define the following function:
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NðtÞ ¼ c1zT1 z1 þ c2zT2 z2 ð3:54Þ

Integration of Eq. (3.53) results the following expression:

VðtÞ ¼ V v1 0ð Þ; z1 0ð Þ; z2 0ð Þð Þþ
Z t

0

_V sð Þds

¼ V v1 0ð Þ; z1 0ð Þ; z2 0ð Þð Þ �
Z t

0

N sð Þds
ð3:55Þ

Thus,

Z t

0

N sð Þds ¼ V v1 0ð Þ; z1 0ð Þ; z2 0ð Þð Þ � V tð Þ ð3:56Þ

Considering _V tð Þ� 0 and V tð Þ� 0, the following results can be obtained easily:

lim
t!1

Z t

0

N sð Þds�1 ð3:57Þ

The derivative of _V can be expressed as

€V ¼ 2c1zT1 _z1 þ 2c2zT2 _z2
� � ð3:58Þ

Since z1; z2; _z1; _z2 are bounded, Eq. (3.58) implies the fact that _V tð Þ is a con-
tinuous function of time. Hence, with the application of Barbalat’s Lemma it can be
proved that z1 and z2 converge to zero as t ! 1.

Theorem 3.2 The global asymptotic stability of the reduced order system of (3.44)
together with the global asymptotic stability of the zero dynamics system (3.48)
ensures the global asymptotic stability of the original underactuated system of
(3.20).

Proof The global asymptotic stability of the reduced order system of Eq. (3.44)
ensures that the state vectors of the reduced order system (i.e. z1, z2) will asymp-
totically converge to the desired equilibrium. That is z1 will asymptotically con-
verge to zero as t ! 1.

z1 ¼ q2 � K q1 þ p1 � gp2ð Þ ! 0 ð3:59Þ
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In addition, the global asymptotic stability of the zero dynamic system [vide
Eq. (3.42)] ensures that the q1 and p1 will asymptotically converge to zero as
t ! 1 (Vide Remark 3.8).

That is, with t ! 1

q1 ! 0 and p1 ! 0 ð3:60Þ

Therefore, t ! 1 results in,

q2 þKgp2 ! 0 ð3:61Þ

The above Eq. (3.52) reveals the fact that q2 þKgp2 must converge to zero when
z1 converges to the zero.

Now according to the definition of the state model of Eq. (3.20) _q2 ¼ p2.
Consequently, it can be concluded that the state q2 and p2 are orthogonal to each
other. In addition, K is a constant matrix. Furthermore, by definition, g(q) is not a
null matrix [vide Eq. (3.21)].

Therefore, asymptotic convergence of q2 þKgp2 to zero clearly implies that the
individual element q2 and p2 must converge to zero when t ! 1. Hence, the
proposed control law ensures the global stabilization of the original n-DOF
underactuated system [as shown in Eq. (3.20)].

3.5 Notes

A theoretical framework is presented for designing a block backstepping controller
for nonlinear UMSs. The proposed control algorithm can ensure the global
asymptotic stability of the origin of the underactuated system. At the onset of the
design, a global change of coordinates is introduced to transform the state model of
the underactuated system into a block-strict feedback form, which is convenient for
backstepping design for MIMO systems. Thereafter, a nonlinear block backstep-
ping control law is designed for the generic underactuated system. Integral action is
incorporated in the control law to enhance the steady state performance of the
controller. In addition, the zero dynamic stability of the controller is thoroughly
analyzed to ensure the global asymptotic stability of the overall nonlinear system.
Furthermore, global diffeomorphism of the control law is analyzed to ensure the
fact that the proposed state transformation will work well for any initial value of
state ordinate. Therefore, in a nutshell it can be inferred that the proposed control
law will ensure global asymptotic stability of the system.
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Chapter 4
Applications of the Block Backstepping
Algorithm on 2-DOF Underactuated
Mechanical Systems: Some Case Studies

Abstract Before dealing with the actual content of this chapter, the authors would
like to refer the definition of engineering from Merriam-Webster dictionary. It
defines engineering as “the application of science and mathematics by which the
properties of matter and the sources of energy in nature are made useful to people.”
Indeed, engineers should deal with the practical problem instead of spending time
in analyzing theoretical issues. In order to make the book compatible as well as a
primed one for engineering readers, applications of the proposed control law on
different members of underactuated mechanical system (UMS) family have been
presented in a systematic manner. Several important UMSs such as acrobot, pen-
dubot, Translational oscillator and rotational actuator (TORA), Furuta pendulum,
Inertia wheel pendulum (IWP), inverted pendulum, single dimensional overhead
crane fall under the category of two degrees of freedom UMSs. Quite often 2-DOF
systems are being used as a standard laboratory test bed to gain physical insight of
the complicated real-time systems [37, 38]. In addition, several higher order non-
linear systems can be represented as a cascade combination of 2-DOF systems.
Keeping in view the immense importance of 2-DOF underactuated mechanical
systems, this chapter presents systematic formulations of the proposed control
algorithm on seven different 2-DOF systems. For the sake of better comprehensi-
bility, at first, the system with most simple construction (having simple Lagrangian
dynamic model) has been selected for demonstrating application of the proposed
control law on an UMS. Thereafter, based on the constructional complexity of the
other family members of the same class (i.e., 2-DOF underactuated mechanical
systems) one after another system has been selected for the aforesaid purpose.
Prime objective of this chapter is to ensure the fact that regardless of configuration
of the concerned UMS, proposed control law is versatile enough to offer a satis-
factory stabilizing performance for any kind of 2-DOF underactuated mechanical
systems. Authors are very much confident with the fact that lucid treatment of this
chapter would be able to convince the readers to implement the control law on
different 2-DOF underactuated mechanical systems. Since the Inertia wheel
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pendulum (IWP) possesses a comparatively simple dynamic model, at the onset, a
comprehensive description of the application of proposed control law on an IWP is
presented in Sect. 4.1 for better comprehensibility. However, for the sake of
brevity, demonstrations of the control law on other 2-DOF systems are succinctly
presented in the subsequent sections.

4.1 Application on the Inertia Wheel Pendulum1

Stabilization of an inertia wheel pendulum [IWP] is being considered as an active
research area for control system engineers [17, 21, 24, 39]. The system comprises of
a rigid mass link that is connected to the base at a pivot point, with one free moving
spinning wheel attached to its free end. IWP falls under the category of flat holo-
nomic underactuated systems. Nowadays, inertia wheel system has received a
significant amount of research attention from control theorists [17, 40]. Indeed, IWP
resembles the control problem of an underactuated spacecraft [16]. Therefore,
during early days of research while designing a control law for spaceship, control
engineers used to utilize it lab scale model to formulate the control law for the
actual system [21]. Needless to say that the interaction between two different
configuration variables makes the control problem pretty complicated.
Out-of-the-way, set point control of IWP has been being considered as an active
area of research since the time of its invention [16, 21, 39]. Needless to say that the
control design of IWP is more complicated than that of a fully actuated system.
A schematic diagram of the system is shown in Fig. 4.1.

State model of the system can be described by the following Eq. (4.1.a).
(Detailed state model of the system is derived in Appendix A.1.)

_q1 ¼ p1
_p1 ¼ f þ gu

_q2 ¼ p2
_p2 ¼ u

ð4:1:aÞ

where

f ¼ m21m0g
m11

sin q1ð Þ ð4:1:bÞ

1This section 4.1 is based on “Global Stabilization of a Flat Underactuated Inertia Wheel: A Block
Backstepping Approach,” by S. Rudra, R.K. Barai, M. Maitra, D. Mandal, S. Ghosh, S. Dam,
P. Bhattacharyya, and A. Dutta, appeared in Proc. of 2nd International Conference Computer
Communication and Informatics, 2013, pp. 1–4. (C) 2013 IEEE. Permission obtained from IEEE.
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g ¼ �m12

m11
ð4:1:cÞ

Salient Features of Inertia Wheel Pendulum: Actuated shape variable system,
flat underactuated system, holonomic constraint.

Control Objective: The control objective is to ensure the asymptotic stabi-
lization of the inertia wheel system. That is, the control algorithm is required to
ensure the asymptotic convergence of all the state variables toward their equilib-
rium [21, 39, 40].

4.1.1 Derivation of the Control Law for Inertia Wheel
Pendulum

During derivation of control law for IWP, the authors have precisely followed the
design procedure of Chap. 3. At first, the first error variable z1 has been defined as
shown in the following Eq. (4.2):

z1 ¼ q2 � k q1 þ p1 � gp2ð Þ ð4:2Þ

Thereafter, the time derivative of z1 has been computed accordingly:

_z1 ¼ p2 � k p1 þ f � p2dg � pð Þ ð4:3Þ

Fig. 4.1 Schematic diagram of the inertia wheel pendulum
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After that, the stabilizing function has been defined according to Eq. (3.5) as
shown in Eq. (4.4):

a1 ¼ �c1z1 � kv1 þ k p1 þ f � p2dg � pð Þ; ð4:4Þ

where v1 ¼
R t
0 z1dt and c1, k are two arbitrary positive design constant.

Now, the second error variable z2 has been defined in accordance with Eq. (3.7)
as shown in the following Eq. (4.5):

z2 ¼ p1 � a1 ð4:5Þ

Subsequently, the time derivative of z2 has become

_z2 ¼ uþ c1 z2 � c1z1ð Þ � k f þ guþ df _X � udg � pþ p2
@g
@q1

f þ guð Þþ @g
@q2

uð Þ
� ���

þ p2
@2g
@q21

p21 þ 2
@2g

@q1@q2
p1p2 þ @2g

@q22
p22

� ���

ð4:6Þ

Hence, comparison of Eq. (4.6) with Eq. (3.9) has yielded the following
expression for w and /:

w ¼ 1� k gþ g
@f
@p1

þ @f
@p2

� dg � p� p2
@g
@q1

g� p2
@g
@q2

� �
ð4:7Þ

/ ¼ �k f þ @f
@q1

p1 þ @f
@q2

p2 þ @f
@p1

f � p2
@g
@q1

f þ p2
@2g
@q21

p21 þ 2
@2g

@q1@q2
p1p2 þ @2g

@q22
p22

� �� �� �

ð4:8Þ

The above choices of w and / have resulted in the compact expression of control
input as shown below:

€z2 ¼ wuþ kz1 þ c1 z2 � c1z1 � kv1ð Þþ/ ð4:9Þ

However, the desired dynamics of z2 can be found out from Eq. (3.12) as shown
below:

_z2 ¼ �z1 � c2z2 ð4:10Þ

Similar to the method described in Sect. 3.1.2, comparison of the above equation
of _z2 with the desired dynamics of z2 yields:

56 4 Applications of the Block Backstepping Algorithm on 2-DOF …

http://dx.doi.org/10.1007/978-981-10-1956-2_3
http://dx.doi.org/10.1007/978-981-10-1956-2_3
http://dx.doi.org/10.1007/978-981-10-1956-2_3
http://dx.doi.org/10.1007/978-981-10-1956-2_3
http://dx.doi.org/10.1007/978-981-10-1956-2_3


u ¼ w�1 � 1� c21 þ k
� 	

z1 � c1 þ c2ð Þz2 þ kc1v1 � /

 � ð4:11Þ

In the above expressions the differentials can be calculated as follows:

@f
@p1

¼ 0 ð4:12Þ

@f
@p2

¼ 0 ð4:13Þ

@g
@q1

¼ 0 ð4:14Þ

@g
@q2

¼ 0 ð4:15Þ

@f
@q1

¼ m21m0g
m11

cos q1ð Þ ð4:16Þ

@f
@q2

¼ 0 ð4:17Þ

(Detailed description of the variables, which are used in the above equations, can
be found in Appendix A.1.) As it has already been stated in Sect. 3.1.3,
Eqs. (3.16.a)–(3.16.c) represent the zero dynamics structure for a 2-DOF under-
actuated mechanical system. Consequently, in the special case of the IWP z1 ¼
0 and _z1 ¼ 0 has resulted in the following expression of q2 and p2.

z1 ¼ q2 � k q1 þ p1 � gp2ð Þ ¼ 0 ) q2 ¼ k q1 þ p1 � gp2ð Þ ð4:18:aÞ

_z1 ¼ p2 � k p1 þ f � p2dg � pð Þ ¼ 0 ) p2 ¼ k p1 þ f � p2dg � pð Þ ð4:18:bÞ

Now, if the q2 and p2 terms of f, g, w, and / could be replaced by the expressions
of (4.18.a) and (4.18.b), respectively, then the equations of zero dynamics for the
inertia wheel pendulum will take the following form:

_q1 ¼ p1

_p1 ¼ f q1; p1ð Þ � g q1; p1ð Þw�1 q1; p1ð Þu q1; p1ð Þ ð4:18:cÞ

In Eq. (4.18.c), f q1; p1ð Þ; g q1; p1ð Þ;w�1 q1; p1ð Þ and u q1; p1ð Þ represent the same
functions f, g, w−1 and u, with the only difference that the last equation, all the q2
and p2 terms have been replaced by the expression of (4.18.a) and (4.18.b),
respectively. Constant k has been selected in such a manner that it could ensure the
stability of the zero dynamics system. Following Lyapunov function has been
defined to analyze stability of the internal dynamics of Eq. (4.18.c)
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Vz ¼ 1
2
q21 þ

1
2
p21 ð4:19Þ

Now, time derivative of the above Lyapunov function Vz has resulted in:

_Vz ¼ q1p1 þ p1F ð4:20Þ

Now, the controller parameter k has been selected in a judicial manner to ensure
the negative definiteness of the _Vz. The other three controller parameters do not alter
the negative definiteness of _Vz [27]. However, they have been chosen in a manner
so that they could satisfy the condition c1 > 0, c2 > 0 and k > 0. (Detailed criteria
of controller parameter selection have been discussed in Chap. 3, Sect. 3.2.3.)

4.1.2 Simulation Results and Performance Analysis

The effectiveness of the proposed control law has been verified after simulating the
closed-loop system in MATLAB® (version: 7.14) Simulink (version: 7.9) envi-
ronment. In this section, stepwise development of the proposed control law on IWP
is systematically described in detail so that the reader can carry out the similar
design process for other 2-DOF underactuated mechanical systems. During the
simulation study, the authors have used the parameters of Table 4.1 to simulate the
state model of IWP system’s model in the simulation environment. Initial value of
the state variables, which have been chosen for simulation experiment, are as
following: q1 ¼ p=6; q2 ¼ p=3; p1 ¼ 0 and p2 ¼ 0:

Now for IWP, the elements of mass matrix can be expressed as shown in
Eq. (4.21):

M ¼ 4:45� 10�3 24:95� 10�6

24:95� 10�6 24:95� 10�6

� �
ð4:21Þ

Therefore, according to Eqs. (4.1.b) and (4.1.c) one can write:

f ¼ 1:99� 10�3 sin q1ð Þ ð4:22:aÞ

g ¼ �5:60� 10�3 ð4:22:bÞ

Table 4.1 Parameters of the inertia wheel system (SI unit)

m1 m2 I1 I2 l1 l2
0.2164 0.0850 0.0002233 0.00002495 0.1173 0.1270
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Therefore, from Eq. (3.47), equation of zero dynamics can be derived as shown
in Eq. (4.23):

_q1 ¼ p1

_p1 ¼ 1:99� 10�3 sin q1 þ 5:6� 10�3 � k � 1:99� 10�3 sin q1 þ cos q1ð Þ
1� 5:6� 10�3 � k

ð4:23Þ

Consequently, the _V1 (as described in Eq. 4.20) has become

_V1 ¼ p1 q1 þ 1:99� 10�3 sin q1 þ 5:6� 10�3 � k � 1:99� 10�3 sin q1 þ cos q1ð Þ
1� 5:6� 10�3 � k

� �

ð4:24Þ

Variation of the time derivative of V1 is plotted for k = 0.9 as shown in Fig. 4.2.
Minute observation of Fig. 4.2 reveals that the value of parameter k = 0.9 en-

sures negative definiteness of the _V1. Parameters of the proposed block backstep-
ping controllers are tabulated in Table 4.2. (Please note that the stability of internal
dynamics does not depend on any other controller’s parameters.)

Variation of the state variables q1 and p1 are shown in Figs. 4.3 and 4.4.
It can be inferred from Figs. 4.3 and 4.4 that the proposed control law can ensure

the global asymptotic stabilization of the state variables q1 (i.e., angle of the base

Fig. 4.2 Variation of the time derivative of V1 for different values of k

Table 4.2 Parameters of the
proposed block backstepping
controller

c1 c2 k k

8 8 0.9 0.05
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link) and p1 (i.e., angular velocity of the base link). Convergence of the state
variables, q1 and p1, has corroborated the fact that the asymptotic stability of the
zero dynamics ensures the asymptotic convergence of q1 and p1 at their desired
equilibrium.

It can be inferred from Figs. 4.5 and 4.6 that the control input u could ensure the
global asymptotic stabilization of the actuated state variables. Proposition of the-
orem 2 (Chap. 3, Sect. 3.4), which states the global asymptotic stability of the
reduced order system together with the global asymptotic stability of the internal
dynamics ensures asymptotic stabilization of the actuated shape variables, has been
corroborated by the stabilization of the actuated state variables.

Being a flat underactuated mechanical system, inertia wheel pendulum requires
smooth control input for its stabilization. Figure 4.7 reveals the fact that the

Fig. 4.3 Variation of the state variable q1 with time

Fig. 4.4 Variation of the state variable p1 with time
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Fig. 4.6 Variation of the state variable p2 with time

Fig. 4.5 Variation of the state variable q2 with time

Fig. 4.7 Variation of the control input u with time
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proposed control law generates a smooth control input for the stabilization of inertia
wheel pendulum.

Authors are very much confident with the fact that the lucid presentation of
devising control law for 2-DOF flat underactuated IWP will definitely help the
reader to understand the concepts, and it will encourage them to apply the same on
the control problems of other 2-DOF underactuated mechanical systems. In the next
section, formulation of control law for TORA (Translational Oscillator with a
Rotational Actuator) system and its implementation on the same test bench will be
discussed in a systematic manner.

4.2 Application on the TORA System2

TORA system possesses just a bit more complicated dynamics than that of IWP
[21]. Due to its actuation pattern and complicated nonlinear dynamics TORA
system has been drawing conspicuous amount of research attention for the last three
decades [2, 9]. Indeed, TORA system resembles the complex control problem of a
dual-spin aircraft [21]. Needless to say, the interaction between spin and nutation
complicates the algorithm design task for the control system engineers [11–13].
However, it is a quite difficult task to verify the versatility of a control algorithm on
an actual dual-spin aircraft, and it may even lead to a catastrophic system failure.
Therefore, during the developmental stage, quite often control engineers used to
implement the same control law on a lab scale TORA system model to check its
suitability for the intended real-time applications.

Nonetheless, not only TORA is being used to resemble the dynamics of dual-spin
aircraft; moreover, stabilization of TORA is also considered as a benchmark problem
in the literature of control system engineering [2, 9, 11–13]. Consequently, devising
an efficient control algorithm for a TORA system remains as an active area of
research [26]. Needless to say that the control design of a TORA system is more
complicated than that of a fully actuated system [9, 11]. Furthermore, coupling
action between translational motion of the cart and angular rotation of the eccentric
mass makes the control design task more complicated [2, 9, 26].

Figure 4.8 illustrates the top view of this nonlinear benchmark mechanical
system in which the rotational motion of an eccentric mass controls the translational
oscillations of the platform. Assuming that the platform moves in the horizontal
plane, the dynamics of the system can be described by the following state equations
of (4.25.a). (Detailed state model of the system is derived in Appendix A.2.)

2Section 4.2 is based on “ Design of Nonlinear State Feedback Control Law for Underactuated
TORA System: A Block Backstepping Approach,” by S. Rudra, R.K. Barai, M. Maitra,
D. Mandal, S. Ghosh, S. Dam, P. Bhattacharyya, A. Dutta, appeared in Proc. of 7th
International Conference on Intelligent Systems and Control, 2013, pp. 93–98. (C) IEEE 2013.
Permission obtained from IEEE.
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_q1 ¼ p1
_p1 ¼ f þ gu

_q2 ¼ p2
_p2 ¼ u

ð4:25:aÞ

where

f ¼ �k3q1 þ k2 sin q2ð Þp21 ð4:25:bÞ

g ¼ �k2 cos q2ð Þ ð4:25:cÞ

k2 ¼ m2r= m1 þm2ð Þ ð4:25:dÞ

k3 ¼ �K= m1 þm2ð Þ ð4:25:eÞ

Salient Features: Holonomic constraint, actuated shape variable, badly
damped equilibrium.

Control Objective: In case of a TORA system, prime objective of the controller
design is to devise an elegant control law that would ensure smooth convergence of
the state variables of the TORA system [21, 40] to their desired equilibrium.

4.2.1 Derivation of the Control Law for TORA System

Indeed, for the TORA system, authors have followed the same design steps that had
been utilized during formulation of the control law for IWP. At first, the first error
variable z1 has been defined as shown in the following Eq. (4.26):

Similar to Eq. (4.2), the first state variable z1 has been defined as shown in the
following Eq. (4.26):

Actuated Variable: θ

Unactuated Variable: x 

Fig. 4.8 Schematic diagram
of the TORA system
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z1 ¼ q2 � k q1 þ p1 � gp2ð Þ ð4:26Þ

Consequently, the time derivative of z1 has taken the form of Eq. (4.27):

_z1 ¼ p2 � k p1 þ f � p2dg � pð Þ ð4:27Þ

Since TORA system is also a member of actuated configuration variables type
UMS like the IWP, similar to the previous case one can define the stabilization
function for TORA system (in case of the given model
f1 ¼ f ; g1 ¼ g; f2 ¼ 0; g2 ¼ 1) as shown in Eq. (4.28):

a1 ¼ �c1z1 � kv1 þ k p1 þ f � p2dg � pð Þ ð4:28Þ

Indeed, v1 ¼
R t
0 z1dt represents the integral action in the feedback law.

Following Eq. (4.5), the second error variable z2 has been defined to ensure the
desired expression for _z1. Definition of z2 is shown in Eq. (4.29):

z2 ¼ p2 � a1 ð4:29Þ

Obtaining time derivative of z2 has resulted in the following expression of
Eq. (4.30):

_z2 ¼ uþ c1 z2 � c1z1 � kv1ð Þ � k f þ guþ @f
@q1

p1 þ @f
@q2

p2 þ @f
@p1

f þ g
@f
@p1

uþ @f
@p2

u

��

�udg � p� p2
@g
@q1

f þ guð Þþ @g
@q2

uð Þ
� �

� p2
@2g
@q21

p21 þ 2
@2g

@q1@q2
p1p2 þ @2g

@q22
p22

� ���

ð4:30Þ

Hence, comparison of Eq. (4.30) with Eq. (3.9) has yielded the following
expression for w and /:

w ¼ 1� k gþ g
@f
@p1

þ @f
@p2

� dg � p� p2
@g
@q1

g� p2
@g
@q2

� �
ð4:31Þ

/ ¼ �k f þ @f
@q1

p1 þ @f
@q2

p2 þ @f
@p1

f � p2
@g
@q1

f

�
þ p2

@2g
@q21

p21 þ 2
@2g

@q1@q2
p1p2 þ @2g

@q22
p22

� ��� �

ð4:32Þ

The above definitions of w and / have resulted in the compact expression of
control input as shown in Eq. (4.33):

_z2 ¼ wuþ kz1 þ c1 z2 � c1z1 � kv1ð Þþ/ ð4:33Þ

However, the desired dynamics of z2 is
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_z2 ¼ �z1 � c2z2 ð4:34Þ

Similar to the method described in Sect. 3.1.2, comparison of the above equation
of _z2 with the desired dynamics of z2 has resulted in:

u ¼ w�1 � 1� c21 þ k
� 	

z1 � c1 þ c2ð Þz2 þ kc1v1 � /

 � ð4:35Þ

In the above expressions the differentials can be calculated as follows:

@f
@p1

¼ 2k2 sin q2ð Þp1 ð4:36Þ

@f
@p2

¼ 0 ð4:37Þ

@g
@q1

¼ 0 ð4:38Þ

@g
@q2

¼ �k2 cos q2ð Þ ð4:39Þ

@f
@q1

¼ �k3 ð4:40Þ

@f
@q2

¼ k2 cos q2ð Þp21 ð4:41Þ

@2g
@q22

¼ k2 sin q2ð Þ ð4:42Þ

(Detailed description of the variables, which are used in above equations, can be
found in Appendix A.2.) As it has already been mentioned in Sect. 3.1.3,
Eqs. (3.16.a)–(3.16.c) depict the zero dynamics structure for a 2-DOF underactu-
ated mechanical system. Consequently, in the special case of the TORA
(z1 ¼ 0 and _z1 ¼ 0) has yielded the following expression of q2 and p2.

z1 ¼ q2 � k q1 þ p1 � gp2ð Þ ¼ 0 ) q2 ¼ k q1 þ p1 � gp2ð Þ ð4:43:aÞ

_z1 ¼ p2 � k p1 þ f � p2dg � pð Þ ¼ 0 ) p2 ¼ k p1 þ f � p2dg � pð Þ ð4:43:bÞ

Now, if the q2 and p2 terms of f, g, w and / has been replaced by the expressions
of (4.43.a) and (4.43.b), respectively, then the equations of zero dynamics for the
TORA system has taken the following form:
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_q1 ¼ p1

_p1 ¼ f q1; p1ð Þ � g q1; p1ð Þw�1 q1; p1ð Þu q1; p1ð Þ ð4:43:cÞ

In Eq. (4.43.c), f q1; p1ð Þ; g q1; p1ð Þ;w�1 q1; p1ð Þ and u q1; p1ð Þ have represented
the same functions f, g, w−1, and u, where all the terms which contain q2 and p2
terms have been replaced by the expressions of (4.43.a) and (4.43.b), respectively.
Constant k has been selected in such a manner that it would ensure the stability of
the zero dynamic system of (4.43.c). The detailed procedure of calculating
parameter k has already been described in Sect. 4.1.2. Following Lyapunov func-
tion has been defined to analyze stability of the internal dynamics of Eq. (4.43.c) as
shown in Eq. (4.44):

Vz ¼ 1
2
q21 þ

1
2
p21 ð4:44Þ

Consequently, time derivative of the above Lyapunov function Vz has resulted in:

_Vz ¼ q1p1 þ p1F ð4:45Þ

Now, the controller parameter k has been selected in a judicial manner to ensure
the negative definiteness of the _Vz. The other three controller parameters do not alter
the negative definiteness of _Vz (Rudra et al.). However, they have been chosen in a
manner so that they satisfy the conditions c1 > 0, c2 > 0, and k > 0. (Detailed criteria
of controller parameter selection have been discussed in Chap. 3, Sect. 3.2.3.)

4.2.2 Simulation Results and Performance Analysis

In order to verify the effectiveness of the proposed control law on TORA system, at
first the state model has been developed in MATLAB® (version: 7.14) Simulink
(version: 7.9) environment. During the simulation study, parameters of Table 4.3
have been used to replicate the model of TORA system in the simulation envi-
ronment. The controller parameters are tabulated in Table 4.4. Initial value of the
state variables, which have been chosen for simulation experiment, are as follows:
q1 ¼ 1; q2 ¼ p=3; p1 ¼ 0 and p2 ¼ 0:

Table 4.3 Parameters of
TORA system (SI unit)

M K l1 m R l2
2.7 300 0.1 0.2 0.18 0.148

Table 4.4 Parameters of the
proposed block backstepping
controller

c1 c2 k k

5 5 0.5 0.05
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It is clearly evident from Figs. 4.9 and 4.10 that the control law ensures con-
vergence of the state variables q1 (i.e., longitudinal displacement of the cart) and p1
(i.e., cart velocity) to their desired value. Detailed study on the topic reveals that the
stability of zero dynamics ensures the convergence of the variables q1 and p1 to
their desired values. Asymptotic convergence of the state variables, q1 and p1, have
corroborated the fact that the asymptotic stability of the zero dynamics would
ensure the asymptotic convergence of q1 and p1 at their desired equilibrium.

On the other hand, Figs. 4.11 and 4.12 the actuated configuration variable q2 and
its derivative p2 converge to their desired value, which in turn implies that the
stability of reduced order system together with the stability of zero dynamics ensure

Fig. 4.9 Variation of the state variable q1 with time

Fig. 4.10 Variation of the state variable p1 with time
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the convergence of the actuated variable toward their desired value. The above
findings corroborate the assertion of the theorem 2 of Sect. 3.4, which states the
global asymptotic stability of the reduced order system together with the global
asymptotic stability of the internal dynamics ensures asymptotic stabilization of the
actuated shape variables.

Since TORA system belongs to the category of a holonomic system, it does not
require nonsmooth input for its stabilization purpose. Figure 4.13 reveals the fact
that the proposed control law generates a smooth control input for the stabilization
of the TORA system.

In the next section, application of the present control law on Furuta Pendulum
will be presented in a systematic matter. Since Furuta Pendulum belongs to a group
of nonholonomic UMSs, it requires either nonsmooth or time-varying control action
for its stabilization. Therefore, aptness of the proposed control law can be verified
on the platform of Furuta Pendulum to study the suitability and applicability of the
same on control problems of nonholonomic systems.

Fig. 4.12 Variation of the state variable p2 with time

Fig. 4.11 Variation of the state variable q2 with time
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4.3 Application on the Furuta Pendulum3

Furuta Pendulum was invented by Katsuhisa Furuta and his colleagues in 1992 at
Tokyo Institute of Technology, and since then it has been being used as an important
test bed for 2-DOF nonlinear UMSs [3, 6, 8]. Early research activities on Furuta
Pendulum were initiated by the need of designing an elegant controller that could
address the balance of the rockets during a vertical takeoff [6, 8, 16]. Being a member
of nonholonomic underactuated mechanical systems, Furuta pendulum fails to satisfy
the Brocket condition of feedback linearization [21]. Therefore, it needs time-varying
or nonsmooth control law for stabilization [16, 20, 21]. Indeed, Furuta pendulum
executes rotational motion in two different planes, which in turn makes the control
problem more complicated than other ordinary 2-DOF nonholonomic systems that
usually executes rotary motion only in a single plane [28, 35]. Therefore, in this
section application of the proposed control law on Furuta Pendulum is described to
verify its aptness for other nonholonomic underactuated systems.

The Furuta pendulum system consists of an inverted pendulum connected to a
moving shaft, which is able to execute a rotational motion in horizontal plane
(Fig. 4.14). The controller is required to serve a twofold control objective. First
objective is to stabilize the pole in its upright position, and the second objective is to
ensure the proper orientation control of the shaft q1 ¼ uð Þ. The state model of the
Furuta pendulum can be described by the following equation

q1 ¼ u; p1 ¼ _u; q2 ¼ h; p2 ¼ _h
� 


(4.46.a). (Detailed derivation of the state model

is given in Appendix A.3.)

Fig. 4.13 Variation of the control input u with time

3Setion 4.3. is based on “Stabilization of Furuta Pendulum: A Backstepping Based Hierarchical
Sliding Mode Approach with Disturbance Estimation,” by S. Rudra, R.K. Barai, M. Maitra,
D. Mandal, S. Ghosh, S. Dam, P. Bhattacharyya, and A. Dutta, appeared in Proc. of 7th
International Conference on Intelligent Systems and Control, 2013, pp. 99–105. (C) IEEE 2013.
Permission obtained from IEEE.
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_q1 ¼ p1
_p1 ¼ u

_q2 ¼ p2
_p2 ¼ f þ gu

ð4:46:aÞ

where

f ¼ k2 tan q2ð Þþ k3 sin q2ð Þp21 ð4:46:bÞ

g ¼ �k1=cos q2ð Þ ð4:46:cÞ

Fig. 4.14 Schematic diagram of Furuta pendulum
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k1 ¼ J2 þm2l
2
2

� 	
=m2l1l2 ð4:46:dÞ

k2 ¼ gl1=L1l2 ð4:46:eÞ

k3 ¼ l2=L1 ð4:46:fÞ

Salient Features of the Rotating Pendulum: Unactuated Shape Variable, 2nd
order nonholonomic constraints, unstable equilibrium.

Control Objective: The goal of the control design is to ensure the asymptotic
stabilization of the underactuated rotating Pendulum in its upright position as well
as the control law should ensure the proper orientation control of the movable shaft
[35].

4.3.1 Derivation of the Control Law for Furuta Pendulum
System

Although Furuta Pendulum is a member of 2-DOF underactuated systems like IWP
and TORA, yet its control problem is more complicated than that of the previously
mentioned systems. Furuta Pendulum falls under the category of systems with
unactuated shape variables; therefore, the definition of first error variable of z1 has
also been modified according to Eq. (4.47) as shown below:

z1 ¼ q1 � k q2 þ p2 � gp1ð Þ ð4:47Þ

Unlike the previous two cases where the systems belong to the class of UMSs
with actuated shape variable, while defining the variable z1, the authors have altered
the position of configuration variables, and their corresponding derivatives
according to the actuation pattern of the system. As a matter of fact, time derivative
of z1 has taken the form of Eq. (4.48):

_z1 ¼ p1 � k p2 þ f � p1dg � pð Þ ð4:48Þ

Likewise the previous two cases, the stabilizing function has been defined as
shown in Eq. (4.49):

a1 ¼ �c1z1 � kv1 þ k p1 þ f � p1dg � pð Þ ð4:49Þ

where v1 ¼
R t
0 z1dt and c1, k are two arbitrary positive design constant.

Since in this case q1 is the actuated configuration, the second error variable z2
has been defined according to Eq. (4.50):
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z2 ¼ p1 � a1 ð4:50Þ

Consequently, the time derivative of z2 has become:

_z2 ¼ uþ c1 z2 � c1z1ð Þ � k f þ guþ @f
@q1

p1 þ @f
@q2

p2 þ @f
@p1

f þ g
@f
@p1

uþ @f
@p2

u

��

�udg � p� p1
@g
@q1

uð Þþ @g
@q2

f þ guð Þ
� �

� p1
@2g
@q21

p21 þ 2
@2g

@q1@q2
p1p2 þ @2g

@q22
p22

� ���

ð4:51Þ

Hence, comparison of Eq. (4.51) with Eq. (3.9) have yielded the following
expression for w and /:

w ¼ 1� k gþ g
@f
@p1

þ @f
@p2

� dg � p� p1
@g
@q1

g� p1
@g
@q2

� �
ð4:52Þ

/ ¼ �k f þ @f
@q1

p1 þ @f
@q2

p2 þ @f
@p1

f � p1
@g
@q1

f þ p1
@2g
@q21

p21 þ 2
@2g

@q1@q2
p1p2 þ @2g

@q22
p22

� �� �� �

ð4:53Þ

The above choice of w and / have resulted in the compact expression of _z2 as
follows

_z2 ¼ wuþ kz1 þ c1 z2 � c1z1 � kv1ð Þþ/ ð4:54Þ

However, as it has been already mentioned in the earlier sections that the desired
dynamics of z2 is

_z2 ¼ �z1 � c2z2 ð4:55Þ

Similar to the method described in Sect. 3.1.2, comparison of the Eq. (4.54) with
the desired dynamics of z2 [as shown in Eq. (4.55)] has resulted in the following
expression of the control input

u ¼ w�1 � 1� c21 þ k
� 	

z1 � c1 þ c2ð Þz2 þ kc1v1 � /

 � ð4:56Þ

In the above expressions the differentials can be calculated as follows

@f
@p1

¼ 2k3 sin q2ð Þp1 ð4:57Þ

@f
@p2

¼ 0 ð4:58Þ
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@g
@q1

¼ 0 ð4:59Þ

@g
@q2

¼ �k1 sec q2 tan q2 ð4:60Þ

@f
@q1

¼ 0 ð4:61Þ

@f
@q2

¼ k2 sec2 q2ð Þþ k3 cos q2ð Þp21 ð4:62Þ

@2g
@q22

¼ k1 sec q2 tan2 q2 þ sec2 q2
� 	 ð4:63Þ

(Detailed description of the variables, which are used in above equations, can be
found in Appendix A.3.) Since Furuta pendulum belongs to the class of unactuated
shape variables, definition of zero dynamics has to be modified suitably to find the
controller gain k.

z1 ¼ q1 � k q2 þ p2 � gp1ð Þ ¼ 0 ) q1 ¼ k q2 þ p2 � gp1ð Þ ð4:64:aÞ

_z1 ¼ p1 � k p2 þ f � p1dg � Pð Þ ¼ 0 ) p1 ¼ k p2 þ f � p1dg � pð Þ ð4:64:bÞ

Now, if the q1 and p1 terms of f, g, w, and / could be replaced by the expressions
of (4.64.a) and (4.64.b), respectively, then the equations of zero dynamics for the
Furuta pendulum will take the following form:

_q2 ¼ p2

_p2 ¼ f q2; p2ð Þ � g q2; p2ð Þw�1 q2; p2ð Þ/ q2; p2ð Þ ð4:64:cÞ

In Eq. (4.64.c), f q2; p2ð Þ; g q2; p2ð Þ; w�1 q2; p2ð Þ and / q2; p2ð Þ have represented
the same functions f, g, w−1 and /, with all the q1 and p1 terms of the expressions
have been replaced by the expressions of (4.64.a) and (4.64.b), respectively.
Constant k has been selected in such a manner that it can ensure the stability of the
zero dynamic system of (4.64.c). Following Lyapunov function has been defined to
analyze stability of the internal dynamics of Eq. (4.64.c)

Vz ¼ 1
2
q22 þ

1
2
p22 ð4:65Þ

Now time derivative of the above Lyapunov function Vz has resulted in:
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_Vz ¼ q2p2 þ p2F ð4:66Þ

Hence, the controller parameter k has been selected in a judicial manner to ensure
the negative definiteness of the _Vz. The other three controller parameters do not alter
the negative definiteness of _Vz [27]. However, they have been chosen in a manner so
that they could satisfy the condition c1 > 0, c2 > 0 and k > 0. (Detailed criteria of
controller parameter selection have been discussed in Chap. 3, Sect. 3.2.3.)

4.3.2 Simulation Results and Performance Analysis

Effectiveness of the proposed control law has been verified after simulating the
closed-loop system in MATLAB® (version: 7.14) Simulink (version: 7.9) envi-
ronment. Indeed from the discussion of the previous section, it is clearly evident
that no such significant alteration is required to make the control law applicable for
unactuated shape variable systems. Although the theoretical analysis has already
established the fact that proposed control law can ensure global asymptotic stability
of the system, yet in order to corroborate the same in simulation environment the
authors have used the parameters of Table 4.5. The controller parameters are tab-
ulated in Table 4.6. Initial value of the state variables that have been chosen for
simulation experiment, are as follows: q1 ¼ p=3; q2 ¼ p=6; p1 ¼ 0 and p2 ¼ 0:

In case of IWP and TORA, at first time variation of the unactuated configuration
variable and its derivative (namely q1 and p1) have been shown to assure that zero
dynamics stability ensure convergence of the unactuated state variable toward their
desired equilibrium state. Since in case of the Furuta pendulum q2 and p2 represent
unactuated configuration variable, the authors have first shown variation of the
above-mentioned variables.

It is clear from Figs. 4.15 and 4.16 that judicial selection of k, which is able to
ensure stability of the zero dynamics, also ensure convergence of the unactuated
variable and its derivative to their desired state coordinate. Now, the time variation
of actuated variables is shown in the following Figs. 4.17 and 4.18.

It can be inferred from Figs. 4.17 and 4.18 that the control input u can also
ensure the global asymptotic stabilization of the actuated state variables.

Table 4.5 Parameters of the Furuta pendulum (SI unit)

J1 I1 m1 l1 J2 I2 m2 l2

3:127� 10�2 0.1 0.08 0.150 2:169� 10�3 0.148 0.098 0.215

Table 4.6 Parameters of the
proposed block backstepping
controller

c1 c2 k k

15 15 1.35 0.05

74 4 Applications of the Block Backstepping Algorithm on 2-DOF …

http://dx.doi.org/10.1007/978-981-10-1956-2_3


Convergence of the actuated shape variables to their desired value, which in turn
corroborates the fact that stability of the reduced order system together with the
stability of zero dynamics ensure convergence of the actuated variable toward their
desired value. The above findings substantiate the assertion of the theorem 2 of

Fig. 4.15 Variation of the state variable q2 with time

Fig. 4.16 Variation of the state variable p2 with time

Fig. 4.17 Variation of the state variable q1 with time
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Sect. 3.4, which states the global asymptotic stability of the reduced order system
together with the global asymptotic stability of the internal dynamics ensures
asymptotic stabilization of the actuated shape variables.

Indeed it has been mentioned earlier that Furuta pendulum falls under the system
with nonholonomic motion constraints; therefore, they requires nonsmooth or
time-varying state feedback for their stabilization. Now, it is clear from Eq. (4.56)
and the partial derivatives of (4.57)–(4.63) that the control law generates nons-
mooth actuating signal. In the following Fig. 4.19 variation of control input with
time as shown below.

Indeed, all the three above-mentioned systems possess different dynamics, and
aptness of the proposed control law has already established its versatility and
suitability for different UMSs. However, the authors think without validating the
application of proposed control law on two different benchmark underactuated
systems, namely acrobot and pendubot, which have been invented by the great

Fig. 4.18 Variation of the state variable p1 with time

Fig. 4.19 Variation of the control input u with time
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scientist M.W. Spong himself; this demonstration would not take a complete shape.
Therefore, in the subsequent sections, application of the proposed control law on
acrobot and pendubot will be explained in a systematic manner.

4.4 Application on the Acrobot System

An acrobot is a typical example of an underactuated mechanical system with two
degrees of freedom (DOF) [10, 15, 18]. It executes planar motion in the vertical
plane and resembles a gymnast on a high bar where the first and second joint can be
thought of as the mechanical analog of the gymnast’s hands and hips respectively
[18, 29–34]. In the acrobat, an actuator is mounted only at the second joint although
it is a 2-DOF mechanical system, leaving its first joint without any actuation
[21, 29]. A common control objective for an acrobot is to swing it up from the
straight down position and stabilize it at the straight up position, which imitates the
motion of a gymnast going from a natural hanging position to a handstand on the
bar [21, 29–34]. One of the important control problems for acrobot is the set point
control (regulation or stabilization) of acrobot at vertical upright position [21, 22].
During the last two decades, several research articles have been published on the
design of the swing up and stabilizing controller for the acrobot system [21, 22]. An
acrobot is a complicated nonlinear underactuated system with a second-order
nonholonomic constraint (SNC) and is not a full-state feedback linearizable system
[13, 22]. Consequently, its controller design is being considered as a challenging
problem [13, 21].

The nonlinear two-link planar robot considered in this section, popularly known
as acrobot system, was first introduced by M.W. Spong [23, 29–31]. Figure 4.20
illustrates the schematic diagram of the geometrical structure of this nonlinear
benchmark robotic system in which the rotational motion of the elbow joint controls
the motions of the two links of the robot. Assuming the robot links are made up of
rigid elements, the following mathematical model can be used to describe the
dynamics of the acrobot system. (Detailed mathematical model is derived in
Appendix A, Sect. A.4.)

The state model of the acrobot is shown in following Eqs. (4.67.a)–(4.67.c). (For
detailed derivation of the state model, please refer Appendix A.4.)

_q1 ¼ p1
_p1 ¼ f þ gu

_q2 ¼ p2
_p2 ¼ u

ð4:67:aÞ
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where

f ¼ � h1
m11

þ /1

m11

� �
ð4:67:bÞ

g ¼ �m12

m11
ð4:67:cÞ

Salient Features of Acrobot: Actuated shape variable system, unstable equi-
librium, second-order nonholonomic motion constraint.

Control Objective: Stabilize the acrobot at its vertical upright position.

4.4.1 Derivation of the Control Law for Acrobot System

Since the system belongs to a class of actuated shape variable systems, the first error
variable z1 has been defined like the authors have defined it for IWP and TORA
system. Definition of first error variable is shown in the following Eq. (4.68):

Fig. 4.20 Schematic diagram of the acrobot
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z1 ¼ q2 � k q1 þ p1 � gp2ð Þ ð4:68Þ

The derivative of z1 has been computed as shown in the following Eq. (4.69):

_z1 ¼ p2 � k p1 þ f � p2dg � pð Þ ð4:69Þ

The stabilizing function has been defined as

a1 ¼ �c1z1 � kv1 þ k p1 þ f � p2dg � pð Þ ð4:70Þ

where v1 ¼
R t
0 z1dt and c1, k are two arbitrary positive design constant.

Now, the second error variable z2 has been defined

z2 ¼ p2 � a1 ð4:71Þ

Subsequently, the time derivative of z2 has taken the shape of Eq. (4.72):

_z2 ¼ uþ c1 z2 � c1z1 � kv1ð Þ � k f þ guþ @f
@q1

p1 þ @f
@q2

p2 þ @f
@p1

f þ g
@f
@p1

uþ @f
@p2

u

��

� udg � p� p2
@g
@q1

f þ guð Þþ @g
@q2

uð Þ
� �

� p2
@2g
@q21

p21 þ 2
@2g

@q1@q2
p1p2 þ @2g

@q22
p22

� ���

ð4:72Þ

Hence, comparison of Eq. (4.72) with Eq. (3.9) has resulted in the following
expression for w and /:

w ¼ 1� k gþ g
@f
@p1

þ @f
@p2

� dg � p� p2
@g
@q1

g� p2
@g
@q2

� �
ð4:73Þ

/ ¼ �k f þ @f
@q1

p1 þ @f
@q2

p2 þ @f
@p1

f

� �
� p2

@g
@q1

f þ p2
@2g
@q21

p21þ 2
@2g

@q1@q2
p1p2 þ @2g

@q22
p22

� ���� �

ð4:74Þ

The above choice of w and / has yielded the compact expression of control
input as follows:

€z2 ¼ wuþ kz1 þ c1 z2 � c1z1 � kv1ð Þþ/ ð4:75Þ

However, the desired dynamics of z2 is

_z2 ¼ �z1 � c2z2 ð4:76Þ

Similar to the method described in Sect. 3.1.2, comparison of the above equation
of _z2 with the desired dynamics of z2 has resulted in:
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u ¼ w�1 � 1� c21 þ k
� 	

z1 � c1 þ c2ð Þz2 þ kc1v1 � /

 � ð4:77Þ

In the above expressions, the differentials can be calculated as shown below:

@f
@p1

¼ 2Ml sin q2ð Þp2
m11

ð4:78Þ

@f
@p2

¼ �4Ml sin q2ð Þ p2 � p1ð Þ
m11

ð4:79Þ

@g
@q1

¼ 0 ð4:80Þ

@g
@q2

¼ �M1 M2 þMlð Þ sin q2ð Þ
m2

11
ð4:81Þ

@f
@q1

¼ /0 sin q1ð Þþ/00 sin q1 þ q2ð Þ
m11

� �
ð4:82Þ

@f
@q2

¼ Ml cos q2ð Þ p22 � 2p2p1
� 	þ/00 sin q1 þ q2ð Þþ 2Ml sin q2ð Þf

m11
ð4:83Þ

@2g
@q22

¼ 2 1þ 2gð ÞM2
l sin

2 q2ð Þþm11 1þ 2gð ÞMl cos q2ð Þ
m2

11
ð4:84Þ

(Calculation of all the partial differential equations are shown in Appendix A.4.)
As it has already been stated in Sect. 3.1.3, Eqs. (3.16.a)–(3.16.c) depict the zero
dynamics structure for a 2-DOF underactuated mechanical system. Therefore, in the
special case of the acrobot z1 ¼ 0 and _z1 ¼ 0 has yielded the following expressions
of q2 and p2:

z1 ¼ q2 � k q1 þ p1 � gp2ð Þ ¼ 0 ) q2 ¼ k q1 þ p1 � gp2ð Þ ð4:85:aÞ

_z1 ¼ p2 � k p1 þ f � p2dg � pð Þ ¼ 0 ) p2 ¼ k p1 þ f � p2dg � pð Þ ð4:85:bÞ

Now, if the q2 and p2 terms of f1, g1, w, and / have been replaced by the
expressions of (4.85.a) and (4.85.b), respectively, then the equations of zero
dynamics for the acrobot has taken the following form:

_q1 ¼ p1

_p1 ¼ f q1; p1ð Þ � g1 q1; p1ð Þw�1 q1; p1ð Þu q1; p1ð Þ ð4:85:cÞ

In Eq. (4.85.c), f q1; p1ð Þ; g q1; p1ð Þ;w�1 q1; p1ð Þ and u q1; p1ð Þ have represented
the same functions f1, g1, w

−1, and u, where all the q2 and p2 terms have been
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replaced by the expression of (4.85.a) and (4.85.b), respectively. Constant k has
been selected in such a manner that it can ensure the stability of the zero dynamic
system of (4.85.c). Following Lyapunov function has been defined to analyze
stability of the internal dynamics of Eq. (4.85.c):

Vz ¼ 1
2
q21 þ

1
2
p21 ð4:86Þ

Now, time derivative of the above Lyapunov function Vz has shown in the
following equation:

_Vz ¼ q1p1 þ p1F ð4:87Þ

It is clear from the above discussion that the controller parameter k has been
selected in a judicial manner to ensure the negative definiteness of the _Vz. The other
three controller parameters do not alter the negative definiteness of _Vz [27].
However, they have been chosen in a manner so that they satisfy the condition
c1 > 0, c2 > 0 and k > 0. (Detailed criteria of controller parameter selection have
been discussed in Chap. 3, Sect. 3.2.3.)

4.4.2 Simulation Results and Performance Analysis

Effectiveness of the proposed control law has been verified after simulating the
closed-loop system in MATLAB® (version: 7.14) Simulink (version: 7.9) envi-
ronment. During the simulation study, parameters of Table 4.7 have been used to
develop the model of the acrobot system in simulation environment. Parameters of
the proposed controller are tabulated in Table 4.8. Initial value of the state vari-
ables, which have been chosen for the present simulation experiment, are as fol-
lows: q1 ¼ p=3; q2 ¼ p=4; p1 ¼ 0 and p2 ¼ 0:

Variation of the state variable q1 with time is shown in Fig. 4.21, and time
variation of p1 is shown in the following Fig. 4.22.

It can be inferred from Figs. 4.21 and 4.22 that the proposed control law could
ensue the global asymptotic stabilization of the state variable q1 (i.e., angle of the
base link), and p1 (i.e., angular velocity of the base link). Asymptotic convergence
of the state variables, q1 and p1, has corroborated the fact that the asymptotic

Table 4.7 Parameters of the
acrobot (SI unit)

m1 m2 l1 l2 lc1 lc2 I1 I2 G

1 1 1 2 0.5 1 0.083 0.33 9.8

Table 4.8 Parameters of the
proposed block backstepping
controller

c1 c2 K k

10 10 0.9 0.05
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stability of the zero dynamics would ensure the asymptotic convergence of q1 and
p1 at their desired equilibrium.

Similar to Figs. 4.21 and 4.22, variation of the state variable q2 is shown in
Fig. 4.23 and variation of the state variable p2 is shown in Fig. 4.24.

It can be inferred that Figs. 4.23 and 4.24 that the control input u can ensure the
asymptotic stabilization of the actuated state variables. Proposition of theorem 2
(Chap. 3, Sect. 3.4), which states the global asymptotic stability of the reduced
order system together with the global asymptotic stability of the internal dynamics
ensures asymptotic stabilization of the actuated shape variables which have been
corroborated by the stabilization of the actuated state variables.

Being a nonholonomic mechanical system, acrobot fails to satisfy the Brockets’
condition of feedback linearization [23]. Therefore, it requires a nonsmooth control
input for its stabilization. Figure 4.25 reveals the fact that the proposed control law
can generate a nonsmooth control input for the stabilization of acrobot system. In
the next section, application of control law on pendubot will be demonstrated in a
systematic manner.

Fig. 4.21 Variation of the state variable q1 with time

Fig. 4.22 Variation of the state variable p1 with time
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Fig. 4.23 Variation of the state variable q2 with time

Fig. 4.24 Variation of the state variable p2 with time

Fig. 4.25 Variation of the control input u with time
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4.5 Application on the Pendubot System4

A pendubot is a two-link planar robot, whose first link is actuated and second link is
unactuated [1, 3, 7]. It is a complicated 2-DOF underactuated mechanical system [7,
18, 21, 39]. Schematic diagram of the pendubot is shown in Fig. 4.26. The con-
struction of pendubot is almost similar to that of acrobot. However, in case of
pendubot the actuated joint is the base joint, as a result the system becomes an
unactuated shape variable system. Hence, the control problem of pendubot becomes
more complicated than that of the previous one [13, 21]. In order to feedback
stabilize the pendubot to its vertical upright position, swing up control is frequently
used to move the pendubot close to the equilibrium position, and thereafter a
balance control action is activated to keep the pendubot at its vertical upright
position [18, 21]. Over the past few decades, several research endeavors have been
made to devise a proper swing up control algorithm for the pendubot system [1, 7].
In addition, several researchers have dealt with the stabilizing control problem of
pendubot at its vertical upright position [29–32]. Spong has used a linear quadratic
regulator (LQR) and pole placement controller for the balancing and stabilizing
controller for the stabilization of the Pendubot [33]. Fantoni, Lozano and Spong
have devised another type of swing up and balancing controller for pendubot using
energy based control approach [5, 18]. Pendubot also possesses some unique
construction features that make the controller design task for the system more
challenging than that of the other 2-DOF underactuated mechanical systems
[18, 39]. Similar to acrobot, pendubot also belongs to the class of nonholonomic
underactuated systems, and hence it is not possible to stabilize the system using
smooth feedback law [16, 21]. However, unlike acrobot, pendubot belongs to the
class of unactuated shape variable 2-DOF underactuated mechanical systems
[15, 16, 18]. As a result, control problem of pendubot is considered to be more
challenging than that of acrobot system [16, 21].

The nonlinear state model of pendubot considered in this section was first
introduced by M.W. Spong [29–32]. Figure 4.26 illustrates the schematic diagram
of the geometrical structure of this nonlinear benchmark robotic system in which
the rotational motion of the base joint controls the motions of the two links of the
robot. Assuming the robot links are made up of rigid elements, following mathe-
matical model can be used to describe the dynamics of the pendubot system. The
state model of pendubot is shown in Eq. (4.88.a). (The detailed mathematical
modeling of pendubot could be found in Appendix A.5.)

4Section 4.5 is based on Design of block backstepping based nonlinear state feedback controller
for pendubot by S. Rudra and R.K. Barai, appeared in Proc. of Conference on IEEE First
International Conference on Control, Measurement and Instrumentation (CMI), 2016, pp. 1–5.
(C) IEEE 2016. Permission obtained from IEEE.
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_q1 ¼ p1
_p1 ¼ u

_q2 ¼ p2
_p2 ¼ f þ gu

ð4:88:aÞ

where

f ¼ � h2
m22

þ /2

m22

� �
ð4:88:bÞ

g ¼ �m21

m22
ð4:88:cÞ

Salient features of Pendubot: Unactuated shape variable systems,
second-order nonholonomic constraints, and unstable equilibrium point.

Control Objective: Stabilize the pendubot at its vertical upright position.

Fig. 4.26 Schematic diagram of the pendubot
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4.5.1 Derivation of the Control Law for Pendubot System

At first, state variable z1 has been defined according to Eq. (4.89):

z1 ¼ q1 � k q2 þ p2 � gp1ð Þ ð4:89Þ

Since pendubot also belongs to the class of unactuated shape variable system
like Furuta pendulum, first error variable for pendubot has also been defined in a
similar fashion.

Therefore, time derivative of z1 has been computed as shown in Eq. (4.90):

_z1 ¼ p1 � k p2 þ f � p1dg � pð Þ ð4:90Þ

Accordingly, the stabilizing function has been defined as shown in the following
Eq. (4.91):

a1 ¼ �c1z1 � kv1 þ k p2 þ f � p1dg � pð Þ ð4:91Þ

where v1 ¼
R t
0 z1dt and c1, k are two arbitrary positive design constant.

Like Furuta pendulum, the second error variable z2 has also been defined in
accordance with Eq. (4.50), which is shown in Eq. (4.92):

z2 ¼ p1 � a1 ð4:92Þ

Subsequently, the derivative of z2 has become:

_z2 ¼ uþ c1 z2 � c1z1 � kv1ð Þ � k f þ guþ @f
@q1

p1 þ @f
@q2

p2 þ @f
@p1

f þ g
@f
@p1

uþ @f
@p2

u

��

�udg � p� p1
@g
@q1

uð Þþ @g
@q2

f þ guð Þ
� �

� p1
@2g
@q21

p21 þ 2
@2g

@q1@q2
p1p2 þ @2g

@q22
p22

� ���

ð4:93Þ

Hence, comparison of Eq. (4.93) with Eq. (3.9) has yielded the following
expression for w and /:

w ¼ 1� k gþ g
@f
@p1

þ @f
@p2

� dg � p� p1
@g
@q1

� p1
@g
@q2

g2

� �
ð4:94Þ

/ ¼ �k f þ @f
@q1

p1 þ @f
@q2

p2 þ @f
@p1

f

� �
� p1

@g
@q1

f þ p1
@2g
@q21

p21þ 2
@2g

@q1@q2
p1p2 þ @2g

@q22
p22

� �� �� �

ð4:95Þ
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The above choice of w and / has resulted in the compact expression of control
input as shown in the following Eq. (4.96):

€z2 ¼ wuþ kz1 þ c1 z2 � c1z1 � kv1ð Þþ/ ð4:96Þ

Likewise the previous design case, desired dynamics of z2 can be defined as:

_z2 ¼ �z1 � c2z2 ð4:97Þ

Similar to the method described in Sect. 3.1.2, comparison of the Eq. (4.96) with
the desired dynamics of z2 has resulted in:

u ¼ w�1 � 1� c21 þ k
� 	

z1 � c1 þ c2ð Þz2 þ kc1v1 � /

 � ð4:98Þ

In the above expressions the differentials can be calculated as follows:

@f
@p1

¼ 2Ml sin q2ð Þp2
m11

ð4:99Þ

@f
@p2

¼ �4Ml sin q2ð Þ p2 � p1ð Þ
m11

ð4:100Þ

@g
@q1

¼ 0 ð4:101Þ

@g
@q2

¼ �M1 M2 þMlð Þ sin q2ð Þ
m2

11
ð4:102Þ

@f
@q1

¼ /0 sin q1ð Þþ/00 sin q1 þ q2ð Þ
m11

� �
ð4:103Þ

@f
@q2

¼ Ml cos q2ð Þ p22 � 2p2p1
� 	þ/00 sin q1 þ q2ð Þþ 2Ml sin q2ð Þf

m11
ð4:104Þ

@2g
@q22

¼ 2 1þ 2gð ÞM2
l sin

2 q2ð Þþm11 1þ 2gð ÞMl cos q2ð Þ
m2

11
ð4:105Þ

(Calculation of all the above-mentioned partial derivatives are shown in
Appendix A.5.) As it has already been stated in Sect. 3.1.3, Eqs. (3.16.a)–(3.16.c)
represent the zero dynamics structure for a 2-DOF underactuated mechanical sys-
tem. Consequently, in special case of the pendubot z1 ¼ 0 and _z1 ¼ 0 has yielded
the following expression of q1 and p1.
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z1 ¼ q1 � k q2 þ p2 � gp1ð Þ ¼ 0 ) q1 ¼ k q2 þ p2 � gp1ð Þ ð4:106:aÞ

_z1 ¼ p1 � k p2 þ f � p1dg � Pð Þ ¼ 0 ) p1 ¼ k p2 þ f � p1dg � pð Þ ð4:106:bÞ

Now, if the q1 and p1 terms of f, g, w and / have been replaced by the
expressions of (4.106.a) and (4.106.b), respectively, then the equations of zero
dynamics for the pendubot has taken the following form:

_q2 ¼ p2

_p2 ¼ f q2; p2ð Þ � g q2; p2ð Þw�1 q2; p2ð Þ/ q2; p2ð Þ ð4:106:cÞ

In Eq. (4.106.c), f q2; p2ð Þ; g q2; p2ð Þ; w�1 q2; p2ð Þ and / q2; p2ð Þ have repre-
sented the same functions f, g, w−1 and /, with the only difference that all the q1 and
p1 terms of the equations have been replaced by the expressions of (4.106.a) and
(4.106.b), respectively. Therefore, constant k has been selected in such a manner
that it would ensure the stability of the zero dynamic system of Eq. (4.106.c).
Following Lyapunov function has been defined to analyze stability of the internal
dynamics of Eq. (4.106.c)

Vz ¼ 1
2
q22 þ

1
2
p22 ð4:107Þ

Now, time derivative of the above Lyapunov function Vz has shown in the
following equation:

_Vz ¼ q2p2 þ p2F ð4:108Þ

Now, the controller parameter k has been selected in a judicial manner to ensure
the negative definiteness of the _Vz. The other three controller parameters do not alter
the negative definiteness of _Vz [27]. However, they have been chosen in a manner
so that they satisfy the condition c1 > 0, c2 > 0 and k > 0. (Detailed criteria of
controller parameter selection have been discussed in Chap. 3, Sect. 3.2.3.)

Table 4.9 Parameters of the
pendubot (SI unit)

m1 m2 l1 l2 lc1 lc2 I1 I2 g

1 1 1 2 0.5 1 0.083 0.33 9.8

Table 4.10 Parameters of
the proposed block
backstepping controller

c1 c2 K k

5 5 1.5 0.05
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4.5.2 Simulation Results and Performance Analysis

Effectiveness of the proposed control law has been verified after simulating the
closed-loop system in MATLAB® (version: 7.14) Simulink (version: 7.9) envi-
ronment. During the present simulation study, parameters of Table 4.9 have been
used to develop the model of pendubot in simulation environment. Parameters of
the proposed controller are tabulated in Table 4.10. Initial value of the state vari-
ables, which have been chosen for simulation experiment, are as following:
q1 ¼ p=4; q2 ¼ p=3; p1 ¼ 0 and p2 ¼ 0:

Similar to the case of Furuta pendulum at first the variation of unactuated
configuration variable (q2) and its derivative (p2) have been shown in Figs. 4.27 and
4.28.

It is clear from Figs. 4.27 and 4.28 that judicial selection of k, which is able to
ensure stability of the zero dynamics, also ensure convergence of the unactuated
variable and its derivative to their desired state coordinate. Now, the time variation
of actuated variables is shown in the following Figs. 4.29 and 4.30.

It can be inferred from Figs. 4.29 and 4.30 that the control input u can ensure the
global asymptotic stabilization of the actuated state variables. Proposition of

Fig. 4.27 Variation of the state variable q2 with time

Fig. 4.28 Variation of the state variable p2 with time
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theorem 2 (Chap. 3, Sect. 3.5), which states the global asymptotic stability of the
reduced order system together with the global asymptotic stability of the internal
dynamics ensures asymptotic stabilization of the actuated shape variables has been
corroborated by the stabilization of the actuated state variables.

Fig. 4.30 Variation of the state variable p1 with time

Fig. 4.29 Variation of the state variable q1 with time

Fig. 4.31 Variation of the control input u with time
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Being a nonholonomic mechanical system, pendubot fails to satisfy the
Brockets’ condition of feedback linearization [21]. Therefore, it requires nonsmooth
control input for its stabilization. Figure 4.31 reveals the fact that the proposed
control law generates a nonsmooth control input for the stabilization of pendubot
system.

Indeed, the authors have already demonstrated applications of the proposed
control law on five different underactuated systems. It is also important to note that
all of them possess some unique constructional features, and each of the systems is
having their unique dynamic models. Moreover, all the above-mentioned systems
belong to different classes of mechanical systems like flat, holonomic, nonholo-
nomic, etc. As a matter of fact, their control problems become quite unique in nature
with their individual design constraints. Since the proposed control law has suc-
cessfully addressed their control problems in simulation environment, without any
loss of generality, one can assume that the same is versatile enough to address the
control problem of most of the 2-DOF systems in simulation environment.
However, the zeal of engineering lies in performing the real-time experiments, not
in the rigorous analysis of complicated mathematical formulations. The authors
have also realized the same, and they have applied the proposed control law on a
real-time platform to verify the efficacy of the proposed law during practical
applications. The authors have selected the test bed of digital inverted pendulum for
the said purpose, which will be described in the following two Sects. 4.6 and 4.7.

4.6 Application on the Inverted Pendulum5

The inverted pendulum on cart has been treated as an interesting and classical
control problem for control system engineers since 1950 [3, 16, 19, 21]. Balancing
or stabilization control of such an inverted pendulum in the vertical upright position
(which is its unstable equilibrium point) has become a very popular benchmark
control problem for the derivation of advanced control algorithms for inherently
unstable nonlinear systems [4, 14, 17, 19]. Dynamics of the inverted pendulum
resembles the dynamics of numerous other systems of interest [4, 16, 21, 25].
Therefore, inverted pendulum has been a popular test rig for the research and
illustration of various control methods like feedback stabilization, variable structure
control, and passivity based control, backstepping and forwarding control, non-
linear observer, friction compensation, task oriented control, hybrid system control,
and chaotic system control [35, 41]. It is quite interesting to note that biped walking
robot control resembles the inverted pendulum control problem [4, 21]. The main
control objectives of the most of the research contributions were to control the

5Section 4.6 is based on “Nonlinear state feedback controller design for underactuated mechanical
system: A modified block backstepping approach” by Shubhobrata Rudra, Ranjit Kumar Barai,
and Madhubanti Maitra, which appeared in ISA Transactions, vol 53, issue 2, pp 317–326, March
2014, Copyright © 2013 ISA. Published by Elsevier Ltd. Permission obtained from Elsevier.
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inverted pendulum on the cart so that the unstable equilibrium point could be
stabilized [39, 41]. Inverted pendulum also provides a simple model for stabiliza-
tion control of rockets when it is being launched [4, 27]. It has two equilibrium
points: vertical upright equilibrium point and downward equilibrium point [16, 27].
The vertical upright equilibrium point is inherently unstable, as any small distur-
bance may cause the pendulum to fall on the either side when the cart is at rest
[21, 27]. However, this equilibrium can be maintained indefinitely by properly
controlling the motion of the cart [21, 27]. Schematic diagram of the inverted
pendulum is shown in Fig. 4.32.

The state model of the cart-pole system is shown in Eq. (4.109) (where
x1 = x and x2 = h). (Detailed modeling of the inverted pendulum can be found in
Appendix A.6.) In the following state model, l ¼ l Mþmð Þ d ¼ Jþ ll sin2 x2 and
a ¼ l2 þ J

Mþm, where M is the mass of the cart, m is the mass of the pendulum bob,
l represents the length of the rod, J represents the moment of inertia, and b repre-
sents the coefficient of viscous friction between cart’s wheels and rails.

_x1 ¼ x3
_x2 ¼ x4

_x3 ¼ lgl sin 2x2
2d

� lx24 sin x2
d

� bx3
d

þ au
d

_x4 ¼ lg sin 2x2
2d

� lx24 sin x2
d

� bx3
d

þ lu
d

ð4:109Þ

Salient features of 1-D inverted pendulum: Unactuated shape variable,
holonomic motion constraint, complex nonlinear dynamics, and unstable
equilibrium.

Fig. 4.32 Schematic diagram of the inverted pendulum
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Control Objective: Stabilize the pendulum at vertical upright position, while
stabilize the motion of the cart at any desired equilibrium manifold. Unlike the
previous cases, state model of the inverted pendulum has been derived from
Newtonian modeling equation. Therefore, the control law should be derived
according to derivation process of Sect. 3.1, which was intended for solving
control problems of 2-DOF system equation derived from Newtonian equation.

4.6.1 Derivation of the Control Law for Inverted Pendulum

In case the above state model of Eq. (4.109) is compared with the standard state
model of 2-DOF underactuated system shown in Eq. (3.1), then the state variables
can be written as x1 ¼ q1; x2 ¼ q2; x3 ¼ p1; x4 ¼ p2.

The drift vector field for x3 and x4 are as shown below:

f1 ¼ lgl sin 2x2
2d

� lx24 sin x2
d

� bx3
d

ð4:110Þ

f2 ¼ lg sin 2x2
2d

� lx24 sin x2
d

� bx3
d

ð4:111Þ

The control fields are given by, g1 ¼ a
d and g2 ¼ l

d. Moreover,

_d ¼ llx4 sin 2x2 ð4:112Þ
€d ¼ 2llx24 cos 2x2 þ ll _x4 sin 2x2 ð4:113Þ

_f1 ¼ lgl cos 2x2
d

x4 � 2lx4 sin x2
d

f2 þ lu
d

� �
� lx34 cos x2

d
� b
d

f1 þ au
d

� 

ð4:114Þ

and

_f2 ¼ lg cos 2x2
d

x4 � 2lx4 sin x2
d

f2 þ lu
d

� �
� lx34 cos x2

d
� b
d

f1 þ au
d

� 

ð4:115Þ

Please note that as stated earlier, the state model of the inverted pendulum
(4.109) has been derived from Newtonian equation, and it resembles the state
models of Eq. (3.1). Therefore, z1 can be defined according to Eq. (3.2) (here
g1 ¼ a

d and g2 ¼ l
d). Hence, z1 has been defined in accordance with Eq. (3.2), as

shown below:
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z1 ¼ x2 � k x1 þ ldx3 � adx4ð Þ ð4:116Þ

Hence, the dynamics of z1-has become

_z1 ¼ x4 � k x3 þ _d lx3 � ax4ð Þþ d lf1 � af2ð Þ� 	 ð4:117Þ

The stabilization function a1 has been defined as shown in Eq. (4.118):

a1 ¼ �kv1 � c1z1 þ k x3 þ _d lx3 � ax4ð Þþ d lf1 � af2ð Þ� 	 ð4:118Þ

The second control variable z2 has been defined as z2 ¼ x4 � a1. Hence, the time
derivative of z2 can be computed as shown in the following Eq. (4.119):

_z2 ¼ f2þ lu
d
þ kz1 þ c1 z2 � c1z1 � kv1ð Þ � k f1 þ au

d
þ 2llx24 cos 2x2 lx3 � ax4ð Þ

h
þlgl2x4 cos 2x2

þ 2llx4 sin 2x2 lf1 � af2ð Þþ ll sin 2x2 f2þ lu
d

� �
� 2llx4 sin x2 f2þ lu

d

� �
� llx34 cos x2 � blf1

� blau
d

� lagx4 cos x2 � 2lax4 sin x2 f2 þ lu
d

� �
�lax34 cos x2 � baf1 � ba2u

d

�

ð4:119Þ

Hence, comparison of Eq. (4.119) with Eq. (3.9) has resulted in the following
expression for w and /:

w ¼ l
d
� k

a
d
þ ll2 sin 2x2

d
�

�
2ll2 sin x2x4

d
� ba

d
l� að Þþ 2lalx4 sin x2

d

�
ð4:120Þ

/ ¼ f2 � k f1 þ 2llx24 cos 2x2 lx3 � ax4ð Þ
 þ 2llx4 sin 2x2 lf1 � af2ð Þþ lgl2x4 cos 2x2

� 2llx4 sin x2f2 � llx34 cos x2 � blf1 � lagx4 cos x2 þ 2lax4 sin x2f2

þ lax34 cos x2 þ baf1 þ llf2 sin 2x2
�

ð4:121Þ

The above choice of w and / has yielded following compact expression of the
control input:

¼ wuþ kz1 þ c1 z2 � c1z1 � kv1ð Þþ/ ð4:122Þ

However, the desired dynamics of z2 can be defined according to Eq. (4.123):

_z2 ¼ �z1 � c2z2 ð4:123Þ

Similar to the method describe in Sect. 3.1.2, comparison of Eq. (4.123) with the
desired dynamics of z2 (described in Eq. (4.119) has resulted in:
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u ¼ w�1 � 1� c21 þ k
� 	

z1 � c1 þ c2ð Þz2 þ kc1v1 � /

 � ð4:124Þ

As it has already been stated in Sect. 3.1.3, Eqs. (3.16.a)–(3.16.c) depict the zero
dynamics structure for a 2-DOF system. Consequently, in the special case of the
inverted pendulum (z1 ¼ 0 and _z1 ¼ 0) has yielded the following expressions of x2
and x4:

x2 ¼ k 1� adk2lg l2 � að Þ
1þ kdaþ ak2dlg l2 � að Þ

� �
x1 þ k ld � 1þ dlþ b a� lð Þþ lklgd

1þ kdaþ ak2dlg l2 � að Þ
� �

x3

ð4:125:aÞ

x4 ¼ k2lg l2 � að Þx1 þ k 1þ dlþ bða� lÞþ lklgd½ �x3
1þ kdaþ ak2dlg l2 � að Þ ð4:125:bÞ

Now, the x2 and x4 terms of f1, w, and / have been replaced by the expressions
of (4.125.a) and (4.125.b), respectively, then the equations of zero dynamics for the
inverted pendulum has taken the following form:

_x1 ¼ x3

_x3 ¼ f1 x1; x3ð Þ � g1 x1; x3ð Þw�1 x1; x3ð Þ/ x1; x3ð Þ ð4:125:cÞ

In Eq. (4.125.c), f1 x1; x3ð Þ; g1 x1; x3ð Þ; w�1 x1; x3ð Þ and / x1; x3ð Þ represent the
same functions f1, g1, w

−1 and /, with all the x2 and x4 terms have been replaced by
the expressions of (4.125.a) and (4.125.b), respectively. The gain k has been

Fig. 4.33 Real-time experimental setup of the inverted pendulum
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selected in such a manner that it will ensure the stability of the zero dynamic system
of (4.125.c).

4.6.2 Results Obtained from Real-Time Experiments

The real-time experimental setup of an inverted pendulum is shown in Fig. 4.33.
The length and weight of the pendulum are 0.402 m and 0.095 kg. The cart mass is
1.12 kg. The moment of inertia of the inverted pendulum is 0.014 kg m2. The
dynamic friction coefficient between cart and rail is 0.05 kg/s. These values of the
physical parameters of the digital pendulum setup are obtained from Rudra et al.
[27]. Although the maximum force that can be applied on the Cart is 16.5N, the
maximum control force actually applied on the cart has been limited to 6N for
smooth operation of actuator. The resolution of the encoder is 2048 increments per
one revolution.

The experiment has been performed for 100 s. MATLAB® (version 6.5),
Simulink (version 5.2) environment and real-time windows target has been used to
implement and test the proposed control algorithm in real time. The control algo-
rithm has been developed as a Simulink model and then it has been passed through
the “Build” operation to create all the executable files that are necessary for the
real-time implementation.

The control input u has been defined according to Eq. (3.9). The design parameters
c1, c2, k have been chosen in such a manner that the condition c1 > 0, c2 > 0, and
k > 0 has been satisfied. Constant k has been selected in such a manner that it ensures
the stability of the zero dynamic system of (4.125.c). (Detailed criteria of controller
parameter selection have been discussed in Chap. 3, Sect. 3.2.3.) The control
parameters values are shown in Table 4.11.

Since inverted pendulum is also a type of unactuated shape variable system like
Furuta pendulum, and Pendubot, like the previous design studies here also at first
time variation of the unactuated configuration variables q2 and p2 have been shown
in Fig. 4.34a, b.

It is clear from Fig. 4.34a, b that judicial selection of k, which is able to ensure
stability of the zero dynamics, also ensure convergence of the unactuated variable
and its derivative to their desired state coordinate. Now, the time variation of
actuated variables is shown in the following Fig. 4.35a, b.

In order to verify the effectiveness of this proposed controller in real situation, an
external disturbance has been introduced by applying an impulse force on the
pendulum after 47 s in an experimental run while it was in the vertical upright

Table 4.11 Parameters of
the proposed block
backstepping controller

c1 c2 k K

10 10 0.001 1
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position. It is clear that the proposed control law is quite robust against such
bounded external impact.

The variation of the input voltage on the driving motor terminal is shown in
Fig. 4.36. From these results, it can be observed that just after the application of
external impact, the cart was quickly executing a to and fro motion to reduce the
impact of the disturbance on the pendulum. Another noticeable feature of the
proposed approach that after application of external impact, within a few seconds
the cart was able to follow its desired trajectory. Moreover, the control input to the
system (the voltage applied on the dc motor armature) was varying within a safe
limit. Therefore, it is easy to understand that the proposed control law can ensure

Fig. 4.34 a Pendulum angle variation with time. b Pendulum angular velocity
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that the control input will never generate high stress on the associated mechanical
accessories.

Unlike the other case studies of stabilization problems of different underactuated
mechanical systems, in this case the control algorithm has been used to address the
tracking control problem of inverted pendulum system. Experimental results have
revealed the fact that the proposed control law can ensure a guaranteed tracking of
actuated variable of the holonomic underactuated systems. In this case, the actuated
configuration variable (i.e., motion of the cart) has smoothly tracked the reference
trajectory. Further observation has unveiled the fact that proposed control law can
ensure guaranteed tracking performance even in the presence of bounded external
impact. Therefore, it can be concluded from the above experimental results that the

Fig. 4.35 a Motion of the cart on the rail. b Velocity of the cart
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proposed control algorithm can be used as a tracking control algorithm for holo-
nomic underactuated system.

4.7 Application on the Single Dimension Granty Crane

Indeed, in the last six sections, authors have described the application of control law
on different complicated underactuated systems. However, without considering the
case of single dimension overhead crane, discussion on 2-DOF underactuated
mechanical systems does not take a complete shape. Therefore, in this section a
concise description of real-time application of proposed control law on overhead
Granty crane is presented.

The fundamental motions of a Granty crane consist of travel, load hoisting, and
load lowering. The control problem of a crane is a typical example of the under-
actuated motion control problems [16, 21]. Noteworthy feature of a gantry crane is
that all motions are performed simultaneously at relatively high speed [16, 21].
Crane travel and transverse motions, especially when starting or stopping, induce
undesirable swinging of the suspended load [16, 21]. Therefore, a crane designer
should seek a satisfactory control method to suppress the unwanted load swing
during transport [36, 39]. In this demonstration, control of the single dimension
crane model has been considered to verify the effectiveness of the proposed control
algorithm. The same experimental setup of inverted pendulum has been used as a
setup of single dimension crane.

The state model of the single dimension Granty crane is shown below (where
x1 = x and x2 = h). (For detailed modeling please refer Appendix A.6.)

Fig. 4.36 Variation of the control input with time
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_x1 ¼ x3
_x2 ¼ x4

_x3 ¼ lgl sin 2x2
2d

þ lx24 sin x2
d

� bx3
d

þ au
d

_x4 ¼ lg sin 2x2
2d

þ lx24 sin x2
d

� bx3
d

þ lu
d

ð4:126Þ

In the above state model, l ¼ l Mþmð Þ d ¼ Jþ ll sin2 x2 and a ¼ l2 þ J
Mþm,

where M is the mass of the cart and m represents the mass of the payload bob,
l represents the length of the rod, J represents the moment of inertia, and b repre-
sents the coefficient of viscous friction between cart’s wheels and rails.

Salient features of 1-D crane: Unactuated shape variable, holonomic motion
constraint, complex nonlinear dynamics, badly damped system (payload dynamics).

Control Objective: Minimize the oscillation of the payload during load hoist-
ing, stabilization of the cart to a desired manifold.

4.7.1 Derivation of the Control Law for Granty Crane
System

In case, the above state model of Eq. (4.126) is compared with the standard state
model of 2-DOF underactuated system shown in Eq. (3.1), then the state variables
can be written as x1 ¼ q1; x2 ¼ q2; x3 ¼ p1; x4 ¼ p2

The drift vector field for x3 and x4 are as follows:

f1 ¼ lgl sin 2x2
2d

þ lx24 sin x2
d

� bx3
d

ð4:127Þ

f2 ¼ lg sin 2x2
2d

þ lx24 sin x2
d

� bx3
d

ð4:128Þ

The control fields are given by, g1 ¼ a
d and g2 ¼ l

d. Moreover,

_d ¼ llx4 sin 2x2 ð4:129Þ
€d ¼ 2llx24 cos 2x2 þ ll _x4 sin 2x2 ð4:130Þ

_f1 ¼ lgl cos 2x2
d

x4 þ 2lx4 sin x2
d

f2 þ lu
d

� �
þ lx34 cos x2

d
� b
d

f1 þ au
d

� 

ð4:131Þ
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and

_f2 ¼ lg cos 2x2
d

x4 þ 2lx4 sin x2
d

f2 þ lu
d

� �
þ lx34 cos x2

d
� b
d

f1 þ au
d

� 

ð4:132Þ

Now, z1 has been defined as shown in the following Eq. (4.133):

z1 ¼ x2 � k x1 þ ldx3 � adx4ð Þ ð4:133Þ

Hence, the derivative of z1-has taken the shape of Eq. (4.134):

_z1 ¼ x4 � k x3 þ _d lx3 � ax4ð Þþ d lf1 � af2ð Þ� 	 ð4:134Þ

The stabilization function a1 has been defined according to Eq. (4.135):

a1 ¼ �kv1 � c1z1 þ k x3 þ _d lx3 � ax4ð Þþ d lf1 � af2ð Þ� 	 ð4:135Þ

The second control variable z2 has been defined as z2 ¼ x4 � a1. Consequently,
the time derivative of z2 can be computed as shown in the following Eq. (4.136):

_z2 ¼ f2 þ lu
d
þ kz1 þ c1 z2 � c1z1 � kv1ð Þ � k f1þ au

d
þ 2llx24 cos 2x2 lx3 � ax4ð Þ

h
þ lgl2x4 cos 2x2

þ 2llx4 sin 2x2 lf1 � af2ð Þþ ll sin 2x2 f2 þ lu
d

� �
� 2llx4 sin x2 f2þ lu

d

� �
� llx34 cos x2 � blf1

� blau
d

� lagx4 cos x2 � 2lax4 sin x2 f2 þ lu
d

� �
�lax34 cos x2 � baf1 � ba2u

d

�

ð4:136Þ

Hence, comparison of Eq. (4.136) with Eq. (3.9) has resulted in the following
expression for w and /:

w ¼ l
d
� k

a
d
þ ll2 sin 2x2

d
�

�
2ll2 sin x2x4

d
� ba

d
l� að Þþ 2lalx4 sin x2

d

�
ð4:137Þ

/ ¼ f2 � k f1 þ 2llx24 cos 2x2 lx3 � ax4ð Þ
 þ 2llx4 sin 2x2 lf1 � af2ð Þþ lgl2x4 cos 2x2

� 2llx4 sin x2f2 � llx34 cos x2 � blf1 � lagx4 cos x2 þ 2lax4 sin x2f2

þ lax34 cos x2 þ baf1 þ llf2 sin 2x2
�

ð4:138Þ

The above choice of w and / has resulted in the compact expression of control
input as follows

¼ wuþ kz1 þ c1 z2 � c1z1 � kv1ð Þþ/ ð4:139Þ
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However, the desired dynamics of z2 is

_z2 ¼ �z1 � c2z2 ð4:140Þ

Similar to the method describe in Sect. 3.1.3, comparison of Eq. (4.140) with the
desired dynamics of z2 has resulted in the following Eq. (4.141):

u ¼ w�1 � 1� c21 þ k
� 	

z1 � c1 þ c2ð Þz2 þ kc1v1 � /

 � ð4:141Þ

As it has already been stated in Sect. 3.1.3, Eqs. (3.16.a)–(3.16.c) depict the zero
dynamics structure for a 2-DOF system. Therefore, in this case of Granty crane the
zero dynamics equation can be derived in a similar manner. Like the previous cases,
z1 ¼ 0 and _z1 ¼ 0 has yielded the following expressions of x2 and x4:

x2 ¼ k 1� adk2lg l2 � að Þ
1þ kdaþ ak2dlg l2 � að Þ

� �
x1 þ k ldþ 1þ dlþ b a� lð Þþ lklgd

1þ kdaþ ak2dlg l2 � að Þ
� �

x3

ð4:142:aÞ

x4 ¼ k2lg l2 � að Þx1 þ k 1� dlþ bða� lÞþ lklgd½ �x3
1þ kdaþ ak2dlg l2 � að Þ ð4:142:bÞ

Fig. 4.37 Real-time experimental setup of single dimensional Granty crane
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Now, if the x2 and x4 terms of f1, w, and / can be replaced by the expressions of
(4.142.a) and (4.142.b), respectively, then the equations of zero dynamics for the
crane will take the following form:

_x1 ¼ x3

_x3 ¼ f1 x1; x3ð Þ � g1 x1; x3ð Þw�1 x1; x3ð Þ/ x1; x3ð Þ ð4:142:cÞ

In Eq. (4.142.c), f1 x1; x3ð Þ; g1 x1; x3ð Þ; w�1 x1; x3ð Þ and / x1; x3ð Þ represent the
same functions f1, g1, w

−1, and /, with all the terms of last equation, all the x2 and
x4 terms have been replaced by the expression of (4.142.a) and (4.142.b), respec-
tively. The gain k has been selected in such a manner that it will ensure the stability
of the zero dynamic system of (4.142.c).

4.7.2 Results Obtained from Real-Time Experiments

The real-time experimental setup of an inverted pendulum is shown in Fig. 4.37.
The link length and weight of the payload are 0.402 m and 0.095 kg. The cart mass
is 1.12 kg. The moment of inertia of the payload is 0.014 kg m2. The dynamic
friction coefficient between cart and rail is 0.05 kg/s. These values of the physical
parameters of the digital pendulum setup are obtained from Rudra et al. [27].
Although the maximum force that can be applied on the cart is 16.5N, the maxi-
mum control force actually applied on the cart has been limited to 6N for smooth
operation of actuator. The resolution of the encoder is 2048 increments per one
revolution.

The experiment has been performed for 100 s. MATLAB® Simulink environ-
ment and Real-time Windows Target has been used to implement and test the
proposed control algorithm in real time. The control algorithm has been developed
as a Simulink model and then it has been passed through the “Build” operation to
create all the executable files that are necessary for the real-time implementation.
Parameters of the proposed controller are shown in Table 4.12.

In order to verify the effectiveness of this proposed controller in real situation, an
external disturbance has been introduced by applying an impulse force on the
payload after 40 s. The dynamic responses of the payload for the angular position in
space and angular velocity are shown in Fig. 4.38a, b, respectively, during the
application of this impulse disturbance. Position of the cart on the rail and the
velocity of the cart during the application of the impact disturbance are shown in

Table 4.12 Parameters of
the proposed block
backstepping controller

c1 c2 k k

4 4 0.001 0.75
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Fig. 4.39a, b, respectively. The variation of the input voltage on the driving motor
terminal is shown in Fig. 4.40.

From these results, it can be observed that the cart was moving quickly to reduce
the impact of the disturbance on the payload. In addition, it can be observed that
after application of the external impact within a few seconds the cart was able to
follow its desired trajectory. Moreover, the control input to the system (the voltage
applied on the dc motor armature) was varying within a safe limit, which has
established the fact that the control input will never generate high stress on the
associated mechanical accessories. Thus, the block backstepping controller with
integral action has manifested a very fast response during the motion control of the
single dimension overhead crane system, and has maintained the stability of the
payload even in the face of bounded external disturbance.

Fig. 4.38 a Payload angle variation with time. b Payload angular velocity
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4.8 Notes

This chapter presents the detailed implementation of the proposed control law on
seven 2-DOF underactuated mechanical systems. It can be inferred from the fore-
going discussions that the proposed control law is versatile enough to address the
control problem of any 2-DOF underactuated system without any significant
modifications. Simplicity and generalized nature are the two distinctive features of
the proposed control law. Extensive simulation studies have revealed that the
proposed control law can successfully address the control problems of different
2-DOF underactuated mechanical systems, which belong to different classes of
UMSs. Along with verification of the proposed control law in simulation

Fig. 4.39 a Motion of the cart on the rail. b Velocity of the cart
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environment, it has also been applied on the real-time test bed (inverted pendulum
setup and granty crane model) to corroborate the theoretical findings of the present
proposition. Experimental results have established that the theoretical design of the
control law is apt for real-time applications. In addition, it can be observed from
real-time results that the proposed control algorithm can also address the tracking
control problem of holonomic UMSs. However, it is important to note that not all
the UMSs are 2-DOF in nature, rather in reality most of the times engineers have to
deal with more complicated systems having more degrees of freedom. Therefore, in
the next chapter, application of the proposed control law on different important
higher order UMSs will be described in a systematic manner. Authors are quite
confident with the fact that reader has already gained an insightful view of
designing control law for 2-DOF underactuated mechanical systems. All being
well, after going through the next chapter, reader will gain enough confidence to
design control law for any UMSs.
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Chapter 5
Applications of the Block Backstepping
Algorithm on Underactuated Mechanical
Systems with Higher Degrees of Freedom:
Some Case Studies

Abstract Applications of the proposed control algorithm on 2-DOF underactuated
mechanical systems (UMS) have already been discussed in the previous chapter.
Needless to say that during real-life applications, most of the practical UMSs that
comes in the scenario has more degrees of freedom. Therefore, only dealing with
the 2-DOF systems would not give readers full working knowledge. Keeping in
view the immense importance of higher order UMSs, authors dedicate this chapter
to describe the applications of the proposed control algorithm on the same in a
systematic manner. Following the similar presentation approach of Chap. 4, at the
onset, a very simple flat 3-DOF system model is considered to demonstrate the
controller design procedure for higher order systems. Since flat UMS has most
simple dynamic characteristics than that of the other UMSs, it is always easy to deal
with the control problems for such type of systems. Application of the proposed
control algorithm on a vertical-takeoff-landing air craft (VTOL), which is also a
type of flat UMS, is described in the first section. Thereafter, Sect. 5.2 describes
application of control law on underactuated surface vessel (USV). Being a member
of nonholonomic systems, it fails to satisfy the Brocket’s condition of feedback
linearization. Therefore, USV requires nonsmooth or time varying control input for
its stabilization. Needless to say that designing a control law for USV is more
difficult than that of other holonomic UMS (e.g., VTOL). Nonetheless, without
considering robotic applications, discussions on UMSs would not be able to take its
complete shape. Therefore, at the end, Sect. 5.3 demonstrates application of the
control law on the robotic manipulator. Like USV, 3-DOF manipulator also belongs
to the class of nonholonomic systems; however, unlike USV it possesses interacting
control inputs. Hence, it is easy to understand that control law design for the same is
more difficult than that of USV. Like the previous chapter, here also the reader will
observe that no such significant modification is required to recast the control law for
individual systems. Proposed control law is generalized enough that it can address
the control problems of most of the higher order UMSs. All being well after going
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through this chapter, the readers will find themselves ready to design control law for
any practical underactuated systems.

5.1 Application on the VTOL

The VTOL aircraft has a strong coupling between rolling moments and lateral
acceleration, and thereby the stabilization control of the center of mass in the lateral
direction tends to cause rolling of the aircraft [1, 2]. Needless to say that interacting
control input makes the control law designing task quite complicated [3, 4]. Further
research on VTOL has revealed that the system possesses unstable zero dynamics,
and thereby it could be treated as a type of nonminimum phase nonlinear systems
[5–10]. Consequently, several design methods have been proposed to stabilize the
system at its equilibrium [11–13]. In recent years, trajectory tracking and config-
uration stabilization of the VTOL has been extensively studied by many researchers
[14, 15]. A few researchers have relied on output feedback controller for the
tracking of VTOL [16]. Nonetheless, the control laws that they have conceived can
ensure only local stability of the VTOL system [17, 18], but have failed to ensure
global stability. On the other hand, a robust optimal control law has been designed
by the authors of [8] to address the hovering control problem of a VTOL aircraft.
Not only that a few researchers have also exploited the concept of dynamic
inversion and robust control techniques to deal with the nonminimum phase
dynamics [2]. In the recent past, a dynamic high-gain approach-based control law
has also been proposed to ensure the global tracking of a reference trajectory [11].
Nevertheless, all this previously proposed approaches have devised several elegant
control algorithms to address the stabilization control problem of VTOL, yet those
methods often become too complex for real-time implementation [9, 10]. Therefore,
stabilization problem of VTOL is still being considered as an open research
problem [1, 6], and that is why the authors have chosen it as a standard test bed to
demonstrate their proposed control algorithm on the same. The present section
describes application of the proposed control law on nonminimum phase, under-
actuated VTOL system. Schematic diagram of the VTOL is shown in Fig. 5.1.

Fig. 5.1 Schematic diagram
of the VTOL
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The dynamic equation of the VTOL is described in Eq. (5.1). With the following
choice of state variables: x1 ¼ x; x2 ¼ vx, x3 ¼ y; x4 ¼ vy, x5 ¼ h; x6 ¼ x: The
nonlinear state equation of the VTOL takes the structure of state model that is
described in following Eq. (5.1).

_x1 ¼ x2
_x2 ¼ v1
_x3 ¼ x4
_x4 ¼ v2
_x5 ¼ x6

_x6 ¼ k
e
v1 cos x5 þ v2 sin x5 þ g sin x5½ �

ð5:1Þ

However, the case of strong input coupling has been considered during this
demonstration that yields e 6¼ 0. The above-stated model can be rearranged with the
following definitions of Eq. (5.2.a), so that it will take the shape of a 3-DOF system
as shown in Eq. (5.2.b):

q1 ¼ x5
p1 ¼ x6
q2 ¼ x1 x3½ �T
p2 ¼ x2 x4½ �T

ð5:2:aÞ

and,

_q1 ¼ p1
_q2 ¼ p2
_p1 ¼ f þ gu

_p2 ¼ u

ð5:2:bÞ

where

f ¼ k
e
g sin x5 ð5:2:cÞ

g ¼ g1 g2½ � ¼ k
e

cos x5 sin x5½ � ð5:2:dÞ

(Detailed description of the state model is given in Appendix A.8).
Salient Control Features of VTOL Aircraft: Actuated Shape variable, inter-

acting input configuration, flat underactuated system, nonminimum phase zero
dynamics.

Control Objective: Stabilize the aircraft at a desired configuration point.
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5.1.1 Derivation of the Control Law for VTOL

Step 1: Following the design procedure of Sect. 3.2.2, a new control variable
z1 2 R

2 has been defined according to Eq. (3.22). The new control vari-
able has taken the form of Eq. (5.3) below:

z1 ¼ q2 � K q1 þ p1 � gp2ð Þ ð5:3Þ

where, K 2 R
2�1 is a constant matrix such that K ¼ k 0½ �. In the above equation,

gðqÞ is represented by g.
Time derivative of z1 has been computed as shown in the following Eq. (5.4):

_z1 ¼ p2 � K p1 þ f � D gð Þp2ð Þ ð5:4Þ

In above representation D gð Þ 2 R
1�2 represents the time differentiation of matrix

g(q), where any element of D(g) can be expressed as D gij
� � ¼Pn

k¼1
@gij
@qk

pk, where

i and j indicate the position of the elements of D(g) matrix. (Please note that
g 2 R

1�2:) Therefore, construction of D(g) matrix can be simply explained with the
following Eq. (5.5):

DðgÞ ¼ @g1
@q1

p1 þ @g1
@q21

p21 þ @g1
@q22

p22
@g2
@q1

p1 þ @g2
@q21

p21 þ @g2
@q22

p22

� �
ð5:5Þ

Further simplification has resulted in

DðgÞ ¼ k
e

X3
k¼1

@ cos x5
@qk

pk
X3
k¼1

@ sinx5
@qk

pk

" #
¼ k

e
� sin x5x6 cos x5x6
� � ð5:6Þ

Step 2: The stabilizing function has been defined in accordance with Eq. (3.27) to
ensure the desired dynamic behavior of z1. Expression of the stabilizing
function has been shown in Eq. (5.7)

a ¼ �c1z1 � k v1 þK p1 þ f � DðgÞp2ð Þ ð5:7Þ

Step 3: Following Eq. (3.28), the second error variable z2 2 R
2 has been defined

according to Eq. (5.8) as shown below

z2 ¼ p2 � a ð5:8Þ
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with the above definition of second control variable, the dynamics of first error
variable has become:

_z1 ¼ z2 � c1z1 � kv1 ð5:9Þ

Consequently, time derivative of the second error variable z2 is as shown in
Eq. (5.10) below

_z2 ¼ _p2 � _a

¼ uþ c1 z2 � c1z1 � kv1ð Þþ kz1
� K f þ guþDfq1

�
p1 þDfq2p2 þDfp1 f þ guð Þ

þDfp2u� DðgÞu� D2ðgÞp2
�

ð5:10Þ

In Eq. (5.10), Dfq1 2 R
1�1, Dfq2 2 R

1�2, Dfp1 2 R
1�1 and Dfp2 2 R

1�2 represent
the matrices of partial derivatives of f vector with respect to different
sub-component of state vector such as q1, q2, p1 and p2 as shown below:

Dfq1 ¼ @f
@q1

ð5:11:aÞ

Dfq2 ¼ @f
@q21

@f
@q22

� �
ð5:11:bÞ

Dfp1 ¼ @f
@p1

ð5:11:cÞ

Dfp2 ¼ @f
@p21

@f
@p22

� �
ð5:11:dÞ

D2 gð Þ 2 R
n1�n2 is given by D2 gð Þ ¼ D2

1 gð ÞþD2
2 gð Þ� �

. The definition of D2
1 gð Þ

and D2
2 gð Þ are shown in the following equations:

D2
1 gij
� � ¼Xn

l¼1

Xn
k¼1

@2gij
@qk@ql

pkpl ð5:12Þ

D2
2 gij
� � ¼Xn

k¼1

@gij
@qk

_pk ð5:13Þ

In the above expression, pk and pl represent the individual elements of p vector.
Similar to the previous case, one can represent the structure of D2

1 gð Þ and D2
2 gð Þ

matrix as shown in the following equation series (5.14.a, 5.14.b):
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D2
1ðgÞ ¼

@2g1
@q21

p21 þ
@2g1
@q221

p221 þ
@2g1
@q22

p222 þ 2
@2g1
@q21q1

p1p21 þ 2
@2g1
@q22q1

p1p22 þ 2
@2g1

@q21q22
p22p21

@2g2
@q21

p21 þ
@2g2
@q221

p221 þ
@2g2
@q22

p222 þ 2
@2g2
@q21q1

p1p21 þ 2
@2g2
@q22q1

p1p22 þ 2
@2g2

@q21q22
p22p21

2
6664

3
7775
T

ð5:14:aÞ

D2
2ðgÞ ¼

@g1
@q1

_p1 þ @g1
@q21

_p21 þ @g1
@q22

_p22
@g2
@q1

_p1 þ @g2
@q21

_p21 þ @g2
@q22

_p22

� �
ð5:14:bÞ

However, from the structure of D2
2 gð Þ matrix it can be easily inferred that D2

2 gð Þp2
can be further partitioned into three parts as shown in the following equation:

D2
2 gð Þp2 ¼ D2

2p1
gð Þf þD2

2p1
gð ÞguþD2

2p2
gð Þu ð5:15Þ

where the elements of each components are

D2
2p1 gmrð Þ ¼

Xn2
i¼1

@gmi
@q1r

p2i ð5:16Þ

where D2
2p1 gð Þ 2 R

n1�n1 and m = 1,…, n1 indicates the row index of g matrix, q1r is
the elements of vector q1, where r denotes the index of the particular configuration
variables and p2i denotes the element of p2 vector.

D2
2p2 gmrð Þ ¼

Xn2
i¼1

@gmi
@q2r

p2i ð5:17Þ

where D2
2p2 gð Þ 2 R

n1�n2 m = 1,…, n1 indicates the row number of g matrix, q2r
belongs to the vector q2, where r denotes the index of the particular configuration
variables. Construction of the matrices that are described in Eqs. (5.16) and (5.17)
can also be explained with the help of the state model of Eqs. (5.2.a–5.2.d).

D2
2 gð Þp2 ¼

@g1
@q1

f þ g1g2
� � u1

u2

2
4

3
5

0
@

1
Aþ @g1

@q21
u1 þ @g1

@q22
u2

@g2
@q1

f þ g1g2
� � u1

u2

2
4

3
5

0
@

1
Aþ @g2

@q21
u1 þ @g2

@q22
u2

2
66666664

3
77777775

T

p21

p22

" #

¼ @g1
@q1

p21 þ @g2
@q1

p22

� 	
f þ g1g2
� � u1

u2

" # !
þ @g1

@q21
p21 þ @g2

@q21
p22

� 	
u1 þ @g1

@q22
p21 þ @g2

@q22
p22

� 	
u2

" #

ð5:18Þ

Hence, with the above mentioned simplification technique, it is always possible
to represent the time derivative of z2 in the following compact form as shown in
Eq. (5.19)
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_z2 ¼ uþ c1 z2 � c1z1 � kv1ð Þþ kz1
� K f þ guþDfq1

�
p1 þDfq2p2 þDfp1 f þ guð ÞþDfp2u

� D gð Þu�D2
1ðgÞp2 � D2

2p1ðgÞf � D2
2p1ðgÞgu� D2

2p2ðgÞu
i

¼ wuþ kz1 þ c1 z2 � c1z1 � kv1ð ÞþU

ð5:19Þ

where the expressions of w 2 R
n2�n2 and U 2 R

n2 are shown in following
equations:

w ¼ I � K gþDfp1gþDfp2 � D gð Þ � D2
2p1 gð Þg� D2

2p2 gð Þ

 �h i

ð5:20Þ

and

U ¼ �K f þDfq1p1 þDfq2p2 þDfp1f � D2
1 gð Þp2 � D2

2p1 gð Þf
h i

ð5:21Þ

In Eq. (5.20), I denotes an identity matrix of order n2. Similar to the case of 2-DOF
UMSs (described in the previous chapter), above three steps have transformed the
state model of an n-DOF underactuated system of (5.1) into the block-strict feed-
back form.

Step 4: The control law u has been designed to ensure the desired dynamics for
z2. The desired dynamics of z2 has been defined in the following
Eq. (5.22) as shown below:

_z2 ¼ �z1 � c2z2 ð5:22Þ

where c2 is an arbitrary positive design constant.

Consequently, from Eqs. (5.20) and (5.22) the desired control input has been
derived in the following manner:

u ¼ w�1 � 1� c21 þ k
� �

z1 � c1 þ c2ð Þz2 þ kc1v1 �U
� � ð5:23Þ

such choice of control input u has resulted in the following dynamics:

_z1 ¼ z2 � c1z1 � kv1
_z2 ¼ �z1 � c2z2

ð5:24Þ

The partial differential terms of the above Eq. (5.19) are shown below

Dfq1 ¼ k
e
gcosx5 ð5:25Þ

Dfq2 ¼ 0 0½ � ð5:26Þ
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Dfp1 ¼ 0 ð5:27Þ

Dfp2 ¼ 0 0½ � ð5:28Þ

D2
p1 gð Þ ¼ k

e

X2
i¼1

@ cos x5
@x5

p2i

" #
¼ � k

e
sin x5 x2 þ x4ð Þ ð5:29Þ

D2
p2 gð Þ ¼ @ cos x5ð Þ

@x1
x2 þ @ sin x5ð Þ

@x1
x4

@ cos x5ð Þ
@x2

x2 þ @ sin x5ð Þ
@x2

x4

� �
¼ 0 0
� � ð5:30Þ

As it has already been stated in Sect. 3.2.3, Eqs. (3.46.a)–(3.46.c) depict the zero
dynamics structure for an n degrees of freedom system. Consequently, in the special
case of the VTOL z1 ¼ 0 and _z1 ¼ 0 yield the following expression of q2 and p2.

z1 ¼ q2 � K q1 þ p1 � gp2ð Þ ¼ 0 ) q2 ¼ K q1 þ p1 � gp2ð Þ ð5:31:aÞ

_z1 ¼ p2 � K p1 þ f � D gð Þp2ð Þ ¼ 0 ) p2 ¼ K p1 þ f � D gð Þp2ð Þ ð5:31:bÞ

�z1 ¼ wuþU ¼ 0 ) u ¼ w�1U ð5:31:cÞ

Now, q2 and p2 terms of f, w, and U have been replaced by the expressions of
(5.31.a) and (5.31.b), respectively, then the equations of zero dynamics for the
VTOL has taken the following form of Eq. (5.32):

_q1 ¼ p1

_p1 ¼ f q1; p1ð Þ � g q1; p1ð Þw�1 q1; p1ð ÞU q1; p1ð Þ ð5:32Þ

In Eq. (5.32), f q1; p1ð Þ; g q1; p1ð Þ;w�1 q1; p1ð Þ and u q1; p1ð Þ represent the same
functions f, g, w−1, and u, with the only difference being that the last equation, all
the q2 and p2 terms have been replaced by the expression of (5.31.a) and (5.31.b),
respectively. Constant k has to be selected in such a manner that it would ensure the
stability of the zero dynamics system. Following Lyapunov function has been
defined to analyze stability of the internal dynamics of Eq. (5.33)

Vz ¼ 1
2
q21 þ

1
2
p21 ð5:33Þ

Now, time derivative of the above Lyapunov function Vz results in

_Vz ¼ q1p1 þ p1F ð5:34Þ

Now, the controller parameter k has been selected in a judicial manner to ensure
the negative definiteness of the _Vz. The other three controller parameters do not alter
the negative definiteness of _Vz. However, they have been chosen in a manner so that
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they could satisfy the condition c1 > 0, c2 > 0, and k > 0. (Detailed criteria of
controller parameter selection have been discussed in Chap. 3, Sect. 3.2.3).

5.1.2 Simulation Results and Performance Analysis

Effectiveness of the proposed control law has been verified after simulating the
closed-loop system in Matlab® (version: 7.14) Simulink (version: 7.9) environment.
Parameters of Table 5.1 have been used to develop a virtual model of VTOL in the
simulation environment. Parameters of the block backstepping controller are
mentioned in Table 5.2. Initial value of the state variables that have been chosen for
simulation experiment are as follows: q1 ¼ 2; q2 ¼ 4 p=3½ �; p1 ¼ 3 and
p2 ¼ 1 0½ �

Figure 5.2 shows the variation of state variable x with time, whereas the time
variation of the state variable _x (the time derivative of x) is shown in Fig. 5.3.
Similarly, Fig. 5.4 shows the variation of state variable y with time, while the time
variation of the state variable _y (the time derivative of y) has been shown in
Fig. 5.5. Figure 5.6 shows the variation of state variable h with time, whereas the
variation of the state variable _h (the time derivative of h) is shown in Fig. 5.7.
Following the representation style of Chap. 4, at first, time variation of the

Table 5.1 Parameters of the VTOL (SI unit)

M J k E g

392 1.617 1 1 9.8

Table 5.2 Parameters of the proposed

c1 c2 k K

10 10 0.01 0:9 0½ �T
Block backstepping controller

Fig. 5.2 Variation of the state variable x with time
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unactuated configuration variable and corresponding velocity component variation
with time are presented to investigate the zero dynamics stability of the system.
Thereafter, time variations of the actuated variables are presented to corroborate the
theoretical findings.

Fig. 5.3 Variation of the state variable _x with time

Fig. 5.4 Variation of the state variable y with time

Fig. 5.5 Variation of the state variable _y with time
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It can be inferred from the above figures that the proposed control law can ensure
the global asymptotic stabilization of the unactuated state variables. Consequently,
it has corroborated the fact that asymptotic stability of the zero dynamics ensures
the asymptotic convergence of unactuated state variables to zero.

Convergences of the actuated variables are shown in Figs. 5.4, 5.5, 5.6 and 5.7.
Hence, it is quite clear from the above simulation studies that the proposed control
law is able to ensure the global asymptotic stability of the VTOL system.
Proposition of theorem 2 (Chap. 3, Sect. 3.4), which states the global asymptotic
stability of the reduced order system together with the global asymptotic stability of
the internal dynamics ensures asymptotic stabilization of the actuated shape vari-
ables, has also been corroborated by the stabilization of the actuated state variables.

Figure 5.8 shows the variation of control input v1 of VTOL, and Fig. 5.9 shows
the control input v2 of VTOL. Figures 5.8 and 5.9 reveal the fact that the proposed
control law is capable of generating adequate control action to stabilize the con-
figuration variable of a nonminimum phase, strongly coupled, flat underactuated
system. In the next section, formulation of control law for USV (Underactuated
surface vessel) system and its implementation on the same test bench will be
discussed in a systematic manner.

Fig. 5.6 Angular displacement of the VTOL

Fig. 5.7 Angular velocity of the VTOL
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5.2 Application on the USV

Over the past few decades, stabilization problem of USV have drawn conspicuous
amount of research attentions from control theorist and engineers [19–21]. The
authors of [22–25] have shown that the dynamics of USV fails to satisfy the
Brocket’s necessary condition of feedback linearization. As a matter of fact the
system requires nonsmooth or time varying control input for its asymptotic stabi-
lization [12, 13]. In order to provide nonsmooth control input to the system, the
authors of [26] and [27] have proposed a discontinuous feedback control law to
ensure exponential stability of the system. However, the control law can only
ensure local stability of the system. On the other hand, a time varying feedback
control law has been devised by a group of researchers to ensure exponential
stability of the desired equilibrium point [19]. Indeed, several research articles have

Fig. 5.8 Variation of control input v1 with time

Fig. 5.9 Variation of control input v2 with time
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proposed in the last few years to address the stabilization problem of USV, yet none
of them could ensure ultimate performance for the system. Only they have achieved
a tradeoff between different performance requirements, and thereby designing a
control law for the USV is still being considered as an open research problem in the
literature of nonlinear control engineering. Therefore, authors have also considered
the stabilization problem of USV for demonstrating the versatility of the proposed
control approach.

The schematic diagram of the USV is shown in Fig. 5.10. The dynamic equation
of the USV is described in Eq. (5.35). With the following choice of state variables:
x1 ¼ x; x2 ¼ h; x3 ¼ y, x4 ¼ vx; x5 ¼ x; x6 ¼ vy. Consequently, nonlinear state
equation of the USV has taken the structure of state model as described in the
following Eq. (5.35)

_x1 ¼ x4
_x2 ¼ x5
_x3 ¼ x6
_x4 ¼ u1
_x5 ¼ u2

_x6 ¼ u1 tan x2 þ cy
m

x4 tan x2 � x6ð Þ

ð5:35Þ

In the above representation, x1 and x2 represent the actuated variable, where x3
represents unactuated variable. Similarly, x4 and x5 represent the actuated velocity
components, whereas x6 is the unactuated velocity components. Two control inputs
to the system are longitudinal acceleration and angular acceleration, denoted by u1
and u2, respectively.

However, the above state model can be represented as higher order UMS as
shown below

Fig. 5.10 Schematic diagram
of the USV
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q1 ¼ x3
p1 ¼ x6
q2 ¼ x1 x2½ �T
p2 ¼ x4 x5½ �T

ð5:36:aÞ

and,

_q1 ¼ p1
_q2 ¼ p2
_p1 ¼ f þ gu

_p2 ¼ u

ð5:36:bÞ

where

f ¼ cy
m

x4 tan x2 � x6ð Þ ð5:36:cÞ

g ¼ tan x2 0½ � ð5:36:dÞ

(Detailed derivation of the state model is given in Appendix A.8).
Salient Control Features of USV: Actuated Shape Variables, noninteracting

inputs, 2nd-order nonholonomic systems.
Control Objective: Stabilize the USV at any desired equilibrium point (parking

at a desired configuration).

5.2.1 Derivation of the Control Law for USV

Step 1: Following the design procedure of VTOL, a new control variable z1 2 R
2

has been defined according to Eq. (5.37) as shown below

z1 ¼ q2 � K q1 þ p1 � gp2ð Þ ð5:37Þ

where, K 2 R
2�1 is a constant matrix such that K ¼ k 0½ �. In the above

equation, g qð Þ is represented by g.

Similar to the previous design case, time derivative of z1 has been computed as
shown in the following Eq. (5.38):

_z1 ¼ p2 � K p1 þ f � D gð Þp2ð Þ ð5:38Þ

In the above representation D gð Þ 2 R
1�2 represents the time differentiation of

matrix g(q), where any element of D(g) can be expressed as D gij
� � ¼Pn

k¼1
@gij
@qk

pk,
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where i and j indicate the position of the elements of D(g) matrix. (Please note that
g 2 R

1�2). Therefore, construction of D(g) matrix can be simply explained with the
following Eq. (5.39):

DðgÞ ¼ @g1
@q1

p1 þ @g1
@q21

p21 þ @g1
@q22

p22
@g2
@q1

p1 þ @g2
@q21

p21 þ @g2
@q22

p22

� �
ð5:39Þ

Further simplification has resulted in:

D gð Þ ¼
X3
k¼1

@tanx2
@qk

pk 0

" #
¼ sec2 x2 0
� � ð5:40Þ

Step 2: The stabilizing function has been defined in accordance with Eq. (3.27)
to ensure the desired dynamic behavior of z1. Expression of the stabi-
lizing function has been shown in Eq. (5.41)

a ¼ �c1z1 � kv1 þK p1 þ f � D gð Þp2ð Þ ð5:41Þ

Step 3: Following Eq. (3.28), the second error variable z2 2 R
2 has been defined

that is shown in Eq. (5.42) below:

z2 ¼ p2 � a ð5:42Þ

with the above definition of second control variable, the dynamics of first
error variable has become

_z1 ¼ z2 � c1z1 � kv1 ð5:43Þ

Consequently, time derivative of the second error variable z2 can be expressed as
shown in Eq. (5.44) below

_z2 ¼ _p2 � _a

¼ uþ c1 z2 � c1z1 � kv1ð Þþ kz1
� K f þ guþDfq1

�
p1 þDfq2p2 þDfp1 f þ guð Þ

þDfp2u� D gð Þu� D2 gð Þp2
�

ð5:44Þ

In Eq. (5.44), Dfq1 2 R
1�1, Dfq2 2 R

1�2, Dfp1 2 R
1�1 and Dfp2 2 R

1�2 repre-
sent the matrices of partial derivatives of f vector with respect to different
sub-component of state vector such as q1, q2, p1, and p2 as shown below

Dfq1 ¼ @f
@q1

ð5:45:aÞ
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Dfq2 ¼ @f
@q21

@f
@q22

� �
ð5:45:bÞ

Dfp1 ¼ @f
@p1

ð5:45:cÞ

Dfp2 ¼ @f
@p21

@f
@p22

� �
ð5:45:dÞ

D2 gð Þ 2 R
n1�n2 is given by D2 gð Þ ¼ D2

1 gð ÞþD2
2 gð Þ� �

. The definition of D2
1 gð Þ

and D2
2 gð Þ are shown in the following equations:

D2
1 gij
� � ¼Xn

l¼1

Xn
k¼1

@2gij
@qk@ql

pkpl ð5:46Þ

D2
2 gij
� � ¼Xn

k¼1

@gij
@qk

_pk ð5:47Þ

In the above expression, pk and pl represent the individual elements of p vector.
Similar to the previous case, one can represent the structure of D2

1 gð Þ and D2
2 gð Þ

matrix as shown in the following equation series (5.48.a, 5.48.b):

D2
1ðgÞ ¼

@2g1
@q21

p21 þ
@2g1
@q221

p221 þ
@2g1
@q22

p222 þ 2
@2g1
@q21q1

p1p21 þ 2
@2g1
@q22q1

p1p22 þ 2
@2g1

@q21q22
p22p21

@2g2
@q21

p21 þ
@2g2
@q221

p221 þ
@2g2
@q22

p222 þ 2
@2g2
@q21q1

p1p21 þ 2
@2g2
@q22q1

p1p22 þ 2
@2g2

@q21q22
p22p21

2
6664

3
7775
T

ð5:48:aÞ

D2
2ðgÞ ¼

@g1
@q1

_p1 þ @g1
@q21

_p21 þ @g1
@q22

_p22
@g2
@q1

_p1 þ @g2
@q21

_p21 þ @g2
@q22

_p22

� �
ð5:48:bÞ

However, from the structure of D2
2 gð Þ matrix it can be easily inferred that

D2
2 gð Þp2 can be further partitioned into three parts as shown in the following

equation:

D2
2 gð Þp2 ¼ D2

2p1
gð Þf þD2

2p1
gð ÞguþD2

2p2
gð Þu ð5:49Þ

where the elements of each components are

D2
2p1 gmrð Þ ¼

Xn2
i¼1

@gmi
@q1r

p2i ð5:50Þ
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where D2
2p1 gð Þ 2 R

n1�n1 and m = 1, …, n1 indicates the row index of g matrix, q1r
is the elements of the vector q1, where r denotes the index of the particular con-
figuration variables and p2i denotes element of p2 vector.

D2
2p2 gmrð Þ ¼

Xn2
i¼1

@gmi
@q2r

p2i ð5:51Þ

where D2
2p2 gð Þ 2 R

n1�n2 m = 1, …, n1 indicates the row number of g matrix, q2r is
the elements of the vector q2, where r denotes the index of the particular configu-
ration variables. Construction of the matrices that have been described in Eqs. (5.50)
and (5.51) can also be explained with the help of the state model of Eq. (5.35).

D2
2 gð Þp2 ¼

@g1
@q1

f þ g1g2
� � u1

u2

2
4

3
5

0
@

1
Aþ @g1

@q21
u1þ @g1

@q22
u2

@g2
@q1

f þ g1g2
� � u1

u2

2
4

3
5

0
@

1
Aþ @g2

@q21
u1þ @g2

@q22
u2

2
66666664

3
77777775

T

p21

p22

" #

¼ @g1
@q1

p21 þ @g2
@q1

p22

� 	
f þ g1g2
� � u1

u2

" # !
þ @g1

@q21
p21 þ @g2

@q21
p22

� 	
u1 þ @g1

@q22
p21 þ @g2

@q22
p22

� 	
u2

" #

ð5:52Þ

Hence, with the above mentioned simplification technique, it is always possible
to represent the time derivative of z2 in the following compact form as shown in
Eq. (5.53)

_z2 ¼ uþ c1 z2 � c1z1 � kv1ð Þþ kz1
� K f þ guþDfq1

�
p1 þDfq2p2 þDfp1 f þ guð ÞþDfp2u

� D gð Þu�D2
1 gð Þp2 � D2

2p1 gð Þf � D2
2p1 gð Þgu� D2

2p2 gð Þu
i

¼ wuþ kz1 þ c1 z2 � c1z1 � kv1ð ÞþU

ð5:53Þ

where the expressions of w 2 R
n2�n2 and U 2 R

n2 are shown in following
equations:

w ¼ I � K gþDfp1gþDfp2 � D gð Þ � D2
2p1 gð Þg� D2

2p2 gð Þ

 �h i

ð5:54Þ

and

U ¼ �K f þDfq1p1 þDfq2p2 þDfp1f � D2
1 gð Þp2 � D2

2p1 gð Þf
h i

ð5:55Þ

In Eq. (5.54), I denotes an identity matrix of order n2. Similar to the case of
2-DOF UMS (described in previous Chap. 4), above three steps have transformed
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the state model of an n-DOF underactuated system of (5.35) into the block-strict
feedback form.

Step 4: The control law u has been designed to ensure the desired dynamics for z2.
The desired dynamics of z2 has been expressed in Eq. (5.56) as following:

_z2 ¼ �z1 � c2z2 ð5:56Þ

where c2 is an arbitrary positive design constant.

Consequently, from Eq. (5.53) and (5.56) the desired control input has been
derived in the following manner: or,

u ¼ w�1 � 1� c21 þ k
� �

z1 � c1 þ c2ð Þz2 þ kc1v1 �U
� � ð5:57Þ

such choice of control input u has resulted in the following dynamics:

_z1 ¼ z2 � c1z1 � kv1
_z2 ¼ �z1 � c2z2

ð5:58Þ

The partial differential terms of the above Eq. (5.57) are shown below

Dfq1 ¼ cy
m

@

@x3
x4 tan x2 � x6ð Þ

� 	
¼ 0 ð5:59Þ

Dfq2 ¼ cy
m

@

@x1
x4 tan x2 � x6ð Þ @

@x2
x4 tan x2 � x6ð Þ

� �
¼ cy

m
0 x4 sec2 x2
� �

ð5:60Þ

Dfp1 ¼ cy
m

@

@x6
x4 tan x2 � x6ð Þ

� 	
¼ � cy

m
ð5:61Þ

Dfp2 ¼ cy
m

@

@x4
x4 tan x2 � x6ð Þ @

@x5
x4 tan x2 � x6ð Þ

� �
¼ cy

m
tan x2 0
� � ð5:62Þ

D2
2p1 gð Þ ¼ @tanx2

@x3
x4 þ @0

@x3
x5

� �
¼ 0 ð5:63Þ

D2
2p2 gð Þ ¼ @tanx2

@x1
x4 þ @ 0ð Þ

@x1
x5

@tanx2
@x2

x4 þ @ 0ð Þ
@x2

x5

� �
¼ 0 sec2 x2x4
� �

ð5:64Þ

As it has already been stated in Sect. 3.2.3, Eqs. (3.46.a)–(3.46.c) depict the zero
dynamics structure for n degrees of freedom system. Consequently, in the special
case of the USV z1 ¼ 0 and _z1 ¼ 0 yield the following expression of q2 and p2.
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z1 ¼ q2 � K q1 þ p1 � gp2ð Þ ¼ 0 ) q2 ¼ K q1 þ p1 � gp2ð Þ ð5:65:aÞ

_z1 ¼ p2 � K p1 þ f � D gð Þp2ð Þ ¼ 0 ) p2 ¼ K p1 þ f � D gð Þp2ð Þ ð5:65:bÞ

€z1 ¼ wuþU ¼ 0 ) u ¼w�1U ð5:65:cÞ

Now, if the q2 and p2 terms of f, w, and U have been replaced by the expressions
of (5.65.a) and (5.65.b), respectively, then the equations of zero dynamics for the
USV has taken the following form:

_q1 ¼ p1

_p1 ¼ f q1; p1ð Þ � g q1; p1ð Þw�1 q1; p1ð ÞU q1; p1ð Þ ð5:66Þ

In Eq. (5.66), f q1; p1ð Þ; g q1; p1ð Þ;w�1 q1; p1ð Þ and u q1; p1ð Þ represent the same
functions f, g, w−1, and u, with the only difference being that the last equation, all
the q2 and p2 terms have been replaced by the expression (5.65.a) and (5.65.b),
respectively. Constant k has been selected in such a manner that it would ensure the
stability of the zero dynamics system. Following Lyapunov function has been
defined to analyze stability of the internal dynamics of Eq. (5.67)

Vz ¼ 1
2
q21 þ

1
2
p21 ð5:67Þ

Now, time derivative of the above Lyapunov function Vz has resulted in

_Vz ¼ q1p1 þ p1F ð5:68Þ

Now, the controller parameter k has been selected in a judicial manner to ensure
the negative definiteness of the _Vz. The other three controller parameters do not alter
the negative definiteness of _Vz. However, they have been chosen in a manner so that
they can satisfy the condition c1 > 0, c2 > 0 and k > 0. (Detailed criteria of con-
troller parameter selection have been discussed in Chap. 3, Sect. 3.2.3).

5.2.2 Simulation Results and Performance Analysis

Effectiveness of the proposed control law has been verified after simulating the
closed-loop system in Matlab® (version: 7.14) Simulink (version: 7.9) environment.
During simulation study the parameters of Table 5.3 have been used to construct
the model of USV in simulation environment. Parameters of the controller are listed
in Table 5.4. Initial values of the state variables that have been chosen for the
simulation experiment are as follows: q1 ¼ 0:8; q2 ¼ �0:19 p=2½ �; p1 ¼ 0:1
and p2 ¼ 1:6 p=2½ �
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Likewise the previous case of VTOL, here also authors follow the same rep-
resentation style of demonstrating the time variation of unactuated state variable y at
first in Fig. 5.11, while the time variation of another unactuated state variable _y is
shown in Fig. 5.12.

It can be inferred from the above Figs. 5.11 and 5.12 that the proposed control
law can ensure the global asymptotic stabilization of the state variable q1 (i.e.,
lateral displacement), and p1 (i.e., lateral velocity). Convergence of the state vari-
ables, q1 and p1, have corroborated the fact that the asymptotic stability of the zero
dynamics ensures the asymptotic convergence of q1 and p1 at their desired
equilibrium.

Similar to the previous case of VTOL, after demonstrating unactuated variables,
time variation of actuated variables are presented in Figs. 5.13, 5.14, 5.15 and 5.16.
Figure 5.13 shows the variation of state variable x with time, whereas the time
variation of the state variable _x has been shown in Fig. 5.14. Figure 5.15 shows the

Table 5.4 Parameters of the
proposed

c1 c2 k K

5 5 0.01 1:15 0½ �T
Block backstepping controller

Fig. 5.11 Lateral displacement of the USV

Table 5.3 Parameters of the
USV (SI unit)

mx my I cx cy cz
200 200 80 70 100 50
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Fig. 5.12 Lateral velocity of the USV

Fig. 5.13 Longitudinal displacement of the USV

Fig. 5.14 Longitudinal velocity of the USV
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variation of state variable h with time, while the time variation of the state variable
_h is shown in Fig. 5.16.

Figures 5.11 and 5.12 corroborate the fact that the asymptotic stability of zero
dynamics (described by Eq. (5.65)) of the closed-loop system yields the conver-
gence of the state variables q1 and p1 to their desired equilibrium. Convergences of
the actuated variables have already been shown in Figs. 5.13, 5.14, 5.15 and 5.16.
Therefore, it can be inferred that the above control inputs u1 and u2 can ensure the
asymptotic stabilization of the actuated state variables. Proposition of theorem 2
(Chap. 3, Sect. 3.4), which states the global asymptotic stability of the reduced
order system together with the global asymptotic stability of the internal dynamics
ensures asymptotic stabilization of the actuated shape variables, have been cor-

Fig. 5.15 Angular displacement of the USV

Fig. 5.16 Angular velocity of the USV
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roborated by the stabilization of the actuated state variables. Hence, it is quite clear
from the above simulation studies that the proposed controller is able to ensure the
global asymptotic stability of the USV system.

Being a nonholonomic system USV fails to satisfy the Brockets’ condition of
feedback linearization [19, 20]. Therefore, it requires nonsmooth control input for
its stabilization. Figure 5.17 shows the longitudinal acceleration input, and
Fig. 5.18 shows the angular acceleration input. Figures of 5.17 and 5.18 reveal the
fact that the proposed control law has generated a nonsmooth control input for the
stabilization of USV system. However, as stated before without demonstrating
application of the control law on a robotic system this chapter would not take its
complete shape, in the next section a 3-DOF manipulator example is considered.

Fig. 5.17 Control input applied to USV (longitudinal acceleration)

Fig. 5.18 Control input applied to USV (angular acceleration)
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5.3 Application on Three Degree of Freedom Redundant
Manipulator

A planar 3-DOF robot arm is a particular type of robot manipulator with two
prismatic and one revolute joint, moving on a horizontal plane. The two prismatic
joints are rigid, whereas the revolute joint is coupled to the end-effectors through an
elastic degree of freedom. In addition, all the prismatic joints are actuated [5].

An idealized model of this manipulator is shown in Fig. 5.19. The model con-
sists of a base body, which can translate and rotate freely in the plane, and a
mass-less arm at the tip of which the end effector is attached [5]. The base body is
connected to the mass-less arm by a linear torsional spring whose neutral position is
u ¼ 0 [28]. The Cartesian position of the base body as well as the angle through
which the base body is rotated can be controlled [28]. The variable u measures the
deviation of the mass-less arm from the assigned (u = 0) value [28]. Whenever the
variable is displaced from zero, it induces a restoring torque −Ku, where K denotes
the torsional spring constant. The state model of 3-DOF manipulator is shown in
following Eq. (5.69). The following state variables are chosen to represent the
dynamics of 3-DOF manipulator: x1 ¼ x; x2 ¼ h, x3 ¼ y; x4 ¼ vx, x5 ¼ x; x6 ¼ vy

_x1 ¼ x4
_x2 ¼ x5
_x3 ¼ x6
_x4 ¼ u1
_x5 ¼ u2
_x6 ¼ u1 tan x2

ð5:69Þ

Fig. 5.19 Schematic diagram
of the three degree of freedom
redundant manipulator
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Salient Control Features of 3 DOF Redundant Planar Robot: Actuated
Shape variable, interacting input configuration, 2nd order nonholonomic system.

Control Objective: Stabilize the robot arm at a desired configuration.
Please note that 3-DOF system possesses interacting control inputs, as well as it

belongs to the class of nonholonomic systems. Therefore, it is easy to understand
that designing a control law for the same is a more difficult job than the previous
demonstration.

The state model of Eq. (5.69) can be represented as higher order UMS as shown
below:

q1 ¼ x3
p1 ¼ x6
q2 ¼ x1 x2½ �T
p2 ¼ x4 x5½ �T

ð5:70:aÞ

and,

_q1 ¼ p1
_q2 ¼ p2
_p1 ¼ f þ gu

_p2 ¼ u

ð5:70:bÞ

where,

f ¼ 0 ð5:70:cÞ

g ¼ tan x2 0½ � ð5:70:dÞ

5.3.1 Derivation of the Control Law for 3-DOF Robotic
Manipulator

Step 1: Following the design procedure of Sect. 3.2.2, a new control variable
z1 2 R

2 has been defined according to Eq. (3.22). The new control vari-
able is shown in Eq. (5.71) below:

z1 ¼ q2 � K q1 þ p1 � gp2ð Þ ð5:71Þ

where, K 2 R
2�1 is a constant matrix such that K ¼ k 0½ �. In the above

equation, g qð Þ is represented by g.
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Similar to the previous design case, time derivative of z1 has been computed as
shown in the following Eq. (5.72):

_z1 ¼ p2 � K p1 þ f � D gð Þp2ð Þ ð5:72Þ

In above representation D gð Þ 2 R
1�2 represents the time differentiation of matrix

g(q), where any element of D(g) can be expressed as D gij
� � ¼Pn

k¼1
@gij
@qk

pk, where

i and j indicate the position of the elements of D(g) matrix. (Please note that
g 2 R

1�2). Therefore, construction of D(g) matrix can be simply explained with the
following Eq. (5.73):

DðgÞ ¼ @g1
@q1

p1 þ @g1
@q21

p21 þ @g1
@q22

p22
@g2
@q1

p1 þ @g2
@q21

p21 þ @g2
@q22

p22

� �
ð5:73Þ

Further simplification has resulted in

D gð Þ ¼
X3
k¼1

@tanx2
@qk

pk 0

" #
¼ sec2 x2x5 0
� � ð5:74Þ

Step 2: The stabilizing function has been defined in accordance with Eq. (3.27) to
ensure the desired dynamic behavior of z1. Expression of the stabilizing
function has been shown in Eq. (5.75)

a ¼ �c1z1 � kv1 þK p1 þ f � D gð Þp2ð Þ ð5:75Þ

Step 3: Following Eq. (3.28), the second error variable z2 2 R
2 has been defined

that is shown in Eq. (5.76) below

z2 ¼ p2 � a ð5:76Þ

with the above definition of second control variable, the dynamics of first
error variable has become

_z1 ¼ z2 � c1z1 � kv1 ð5:77Þ

Consequently, time derivative of the second error variable z2 can be expressed as
shown in Eq. (5.78) below
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_z2 ¼ _p2 � _a

¼ uþ c1 z2 � c1z1 � kv1ð Þþ kz1
� K f þ guþDfq1

�
p1 þDfq2p2 þDfp1 f þ guð Þ

þDfp2u� DðgÞu� D2 gð Þp2
�

ð5:78Þ

In Eq. (5.78), Dfq1 2 R
1�1, Dfq2 2 R

1�2, Dfp1 2 R
1�1 and Dfp2 2 R

1�2 repre-
sent the matrices of partial derivatives of f vector with respect to different
sub-component of state vector such as q1, q2, p1 and p2 as shown below:

Dfq1 ¼ @f
@q1

ð5:79:aÞ

Dfq2 ¼ @f
@q21

@f
@q22

� �
ð5:79:bÞ

Dfp1 ¼ @f
@p1

ð5:79:cÞ

Dfp2 ¼ @f
@p21

@f
@p22

� �
ð5:79:dÞ

D2 gð Þ 2 R
n1�n2 is given by D2 gð Þ ¼ D2

1 gð ÞþD2
2 gð Þ� �

. The definition of D2
1 gð Þ

and D2
2 gð Þ are shown in the following equations:

D2
1 gij
� � ¼Xn

l¼1

Xn
k¼1

@2gij
@qk@ql

pkpl ð5:80Þ

D2
2 gij
� � ¼Xn

k¼1

@gij
@qk

_pk ð5:81Þ

In the above expression, pk and pl represent the individual elements of p vector.
similar to the previous case, one can represent the structure of D2

1 gð Þ and D2
2 gð Þ

matrix as shown in the following equation series (5.82.a, 5.82.b):

D2
1ðgÞ ¼

@2g1
@q21

p21 þ
@2g1
@q221

p221 þ
@2g1
@q22

p222 þ 2
@2g1
@q21q1

p1p21 þ 2
@2g1
@q22q1

p1p22 þ 2
@2g1

@q21q22
p22p21

@2g2
@q21

p21 þ
@2g2
@q221

p221 þ
@2g2
@q22

p222 þ 2
@2g2
@q21q1

p1p21 þ 2
@2g2
@q22q1

p1p22 þ 2
@2g2

@q21q22
p22p21

2
6664

3
7775
T

ð5:82:aÞ

D2
2ðgÞ ¼

@g1
@q1

_p1 þ @g1
@q21

_p21 þ @g1
@q22

_p22
@g2
@q1

_p1 þ @g2
@q21

_p21 þ @g2
@q22

_p22

� �
ð5:82:bÞ
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However, from the structure of D2
2 gð Þ matrix it can be easily inferred that

D2
2 gð Þp2 can be further partitioned into three parts as shown in the following

equation:

D2
2 gð Þp2 ¼ D2

2p1
gð Þf þD2

2p1
gð ÞguþD2

2p2
gð Þu ð5:83Þ

where the elements of each components are:

D2
2p1 gmrð Þ ¼

Xn2
i¼1

@gmi
@q1r

p2i ð5:84Þ

where D2
2p1 gð Þ 2 R

n1�n1 and m = 1, …, n1 indicates the row index of g matrix, q1r
is the elements of the vector q1, where r denotes the index of the particular con-
figuration variables and p2i denotes element of p2 vector.

D2
2p2 gmrð Þ ¼

Xn2
i¼1

@gmi
@q2r

p2i ð5:85Þ

where D2
2p2 gð Þ 2 R

n1�n2 m = 1, …, n1 indicates the row number of g matrix, q2r is
the elements of the vector q2, where r denotes the index of the particular config-
uration variables. Construction of the matrices that have been described in
Eqs. (5.84) and (5.85) can also be explained with the help of the state model
Eqs. (5.70.a–5.70.d).

D2
2 gð Þp2 ¼

@g1
@q1

f þ g1g2
� � u1

u2

2
4

3
5

0
@

1
Aþ @g1

@q21
u1þ @g1

@q22
u2

@g2
@q1

f þ g1g2
� � u1

u2

2
4

3
5

0
@

1
Aþ @g2

@q21
u1þ @g2

@q22
u2

2
66666664

3
77777775

T

p21

p22

" #

¼ @g1
@q1

p21 þ @g2
@q1

p22

� 	
f þ g1g2
� � u1

u2

" # !
þ @g1

@q21
p21 þ @g2

@q21
p22

� 	
u1 þ @g1

@q22
p21 þ @g2

@q22
p22

� 	
u2

" #

ð5:86Þ

Hence, with the above-mentioned simplification technique, it is always possible
to represent the time derivative of z2 in the following compact form as shown in
Eq. (5.87)

_z2 ¼ uþ c1 z2 � c1z1 � kv1ð Þþ kz1
� K f þ guþDfq1

�
p1 þDfq2p2 þDfp1 f þ guð ÞþDfp2u

� D gð Þu�D2
1 gð Þp2 � D2

2p1 gð Þf � D2
2p1 gð Þgu� D2

2p2 gð Þu
i

¼ wuþ kz1 þ c1 z2 � c1z1 � kv1ð ÞþU ð5:87Þ
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where the expressions of w 2 R
n2�n2 and U 2 R

n2 are shown in following
equations:

w ¼ I � K gþDfp1gþDfp2 � D gð Þ � D2
2p1 gð Þg� D2

2p2 gð Þ

 �h i

ð5:88Þ

and

U ¼ �K f þDfq1p1 þDfq2p2 þDfp1f � D2
1 gð Þp2 � D2

2p1 gð Þf
h i

ð5:89Þ

In Eq. (5.88), I denotes an identity matrix of order n2. Similar to the case of
2-DOF UMS (described in previous Chap. 4), above three steps have transformed
the state model of an n-DOF underactuated system of (5.89) into the block-strict
feedback form.

Step 4: The control law u has been designed to ensure the desired dynamics for z2.
The desired dynamics of z2 has been expressed in Eq. (5.90) as following:

_z2 ¼ �z1 � c2z2 ð5:90Þ

where c2 is an arbitrary positive design constant.

Consequently, from Eq. (5.87) and (5.90) the desired control input has been
derived in the following manner: or,

u ¼ w�1 � 1� c21 þ k
� �

z1 � c1 þ c2ð Þz2 þ kc1v1 �U
� � ð5:91Þ

such choice of control input u has resulted in the following dynamics:

_z1 ¼ z2 � c1z1 � kv1
_z2 ¼ �z1 � c2z2

ð5:92Þ

The partial differential terms of the above Eq. (5.57) are shown below

Dfq1 ¼ 0 ð5:93Þ

Dfq2 ¼ 0 ð5:94Þ

Dfp1 ¼ 0 ð5:95Þ

Dfp2 ¼ 0 ð5:96Þ

D2
2p1 gð Þ ¼ @tanx2

@x3
x4 þ @0

@x3
x5

� �
¼ 0 ð5:97Þ
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D2
2p2 gð Þ ¼ @tanx2

@x1
x4 þ @ 0ð Þ

@x1
x5

@tanx2
@x2

x4 þ @ 0ð Þ
@x2

x5

� �
¼ 0 sec2 x2x4
� �

ð5:98Þ

As it has already been stated in Sect. 3.2.3, Eqs. (3.46.a)–(3.46.c) depict the zero
dynamics structure for an n degrees of freedom system. Consequently, in the special
case of the manipulator z1 ¼ 0 and _z1 ¼ 0 has yielded the following expression of
q2 and p2.

z1 ¼ q2 � K q1 þ p1 � gp2ð Þ ¼ 0 ) q2 ¼ K q1 þ p1 � gp2ð Þ ð5:99:aÞ

_z1 ¼ p2 � K p1 þ f � D gð Þp2ð Þ ¼ 0 ) p2 ¼ K p1 þ f � D gð Þp2ð Þ ð5:99:bÞ

€z1 ¼ wuþU ¼ 0 ) u ¼w�1U ð5:99:cÞ

Now, the q2 and p2 terms of f, w, and U have been replaced by the expressions of
(5.99.a) and (5.99.b), respectively, then the equations of zero dynamics for the USV
will take the following form:

_q1 ¼ p1

_p1 ¼ f q1; p1ð Þ � g q1; p1ð Þw�1 q1; p1ð ÞU q1; p1ð Þ ð5:100Þ

In Eq. (5.100), f q1; p1ð Þ; g q1; p1ð Þ;w�1 q1; p1ð Þ and u q1; p1ð Þ represent the same
functions f, g, w−1, and u, with the only difference being that the last equation, all
the q2 and p2 terms have been replaced by the expression of (5.99.a) and (5.99.b),
respectively. Constant k has to be selected in such a manner that it would ensure the
stability of the zero dynamics system. Following Lyapunov function has been
defined to analyze stability of the internal dynamics of Eq. (5.101)

Vz ¼ 1
2
q21 þ

1
2
p21 ð5:101Þ

Now, time derivative of the above Lyapunov function Vz has resulted in:

_Vz ¼ q1p1 þ p1F ð5:102Þ

Now, the controller parameter k has to be selected in a judicial manner to ensure
the negative definiteness of the _Vz. The other three controller parameters do not alter
the negative definiteness of _Vz. However, they have been chosen in a manner so that
they could satisfy the condition c1 > 0, c2 > 0 and k > 0. (Detailed criteria of
controller parameter selection have been discussed in Chap. 3, Sect. 3.2.3).
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5.3.2 Simulation Results and Performance Analysis

Effectiveness of the proposed control law has been verified after simulating the
closed-loop system in MATLAB® (version: 7.14) Simulink (version: 7.9) envi-
ronment. Initial value of the state variables are chosen for simulation experiment is
as following: q1 ¼ 0:755; q2 ¼ 1 p=4½ �; p1 ¼ 0:5 and p2 ¼ 0:5 0½ �

Figure 5.20 shows the variation of state variable y with time, whereas the time
variation of the state variable _y (the time derivative of y) is shown in Fig. 5.21.
Similarly, Fig. 5.22 shows the time variation of state variable x, while the time
variation of the state variable _x (the time derivative of x) is shown in Fig. 5.23.
Figure 5.24 shows the variation of state variable h with time, and the time variation
of the state variable _h (the time derivative of h) is shown in Fig. 5.25 (The
parameter of the robot is not appearing into the state model description. Therefore,
for the sake of simplicity, the authors have assumed values of all the parameters are
equal to one (Table 5.5).

Fig. 5.20 Variation of the state variable y with time

Fig. 5.21 Variation of the state variable _y with time
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Fig. 5.22 Variation of state variable x with time

Fig. 5.23 Variation of state variable _x with time

Fig. 5.24 Variation of state variable h with time
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Figures 5.20 and 5.21 corroborate the fact that the asymptotic stability of zero
dynamics (described by Eq. (5.100)) of the closed-loop system yields the conver-
gence of the state variables q1 and p1 to their desired equilibrium. Convergences of
the actuated variables are shown in Figs. 5.22, 5.23, 5.24 and 5.25. Hence, it is
quite clear from the above simulation studies that the proposed controller is able to
ensure the global asymptotic stability of the 3-DOF redundant manipulator system.
Proposition of theorem 2 (Chap. 3, Sect. 3.4), which states the global asymptotic
stability of the reduced order system together with the global asymptotic stability of
the internal dynamics ensures asymptotic stabilization of the actuated shape vari-
ables, has been corroborated by the stabilization of the actuated state variables.

Figure 5.26 shows the variation of control input u1, and Fig. 5.27 shows the
control input u2. Figures 5.26 and 5.27 reveal the fact that the proposed control law

Fig. 5.25 Variation of state variable _h with time

Table 5.5 Parameters of the
proposed

c1 c2 k K

10 10 0.01 0:57 0½ �T
Block backstepping controller

Fig. 5.26 Control input u1
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is capable of generating adequate control action to stabilize the configuration
variables of a nonholonomic system with 2nd-order nonholonomic constraint.
Unlike USV, 3-DOF redundant manipulator possesses interacting control inputs.
Indeed, the proposed algorithm is so generalized that it can address the control
problem of 3-DOF system without any significant modifications.

5.4 Notes

This chapter demonstrates the detailed implementation of proposed control law on
three different higher-order UMSs, namely VTOL, USV, 3-DOF manipulator.
Although VTOL belongs to the family of flat UMSs, yet interacting control input
makes the control law design quite complicated. On the other hand, USV system
possesses two noninteracting inputs, but it falls within the class of nonholonomic
systems, and thereby it has got its own set of motion constraints. Finally, in case of
3-DOF robotic manipulator, it is a nonholonomic system, and also possesses
interacting control inputs. Therefore, it is easy to understand that design a control
law for the 3-DOF redundant manipulator is always a more complicated problem
than the previous two cases. Indeed, extensive simulation studies, which have been
carried out on three different systems, have substantiated the fact that proposed
control law can effectively address the control problems of the higher order UMSs
without any significant modifications. Another noteworthy feature of the control
algorithm is that the proposed control law automatically modifies itself according to
the dynamics of the system. Hence, in a nutshell, it can be concluded that the
proposed control law is versatile enough to stabilize the control problem of any
higher order UMS. Authors are quite confident about the fact that after going
through this chapter, the readers will definitely be able to design control law for the
same class of systems.

Fig. 5.27 Control input u2
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Chapter 6
Challenges and New Frontiers in the Field
of Underactuated Mechanical Systems
Control

This concluding chapter epitomizes the major work described in this book.
Comprehensive analysis on the generalized formulation of a novel block back-
stepping control law, and detailed description of its applications on ten different
underactuated systems have been studied in the last three chapters. Nonetheless, a
concise discussion at the end always assists the readers to feel the zest. Therefore, in
this chapter, the authors briefly reiterate all the pros and cons of the present research
endeavor. Finally, a few plausible directions in the field of UMS control problems
are discussed to assist the prospective researchers.

6.1 Different Aspects of the Proposed Control Law

Over the past few decades, several research endeavors have been carried out to
address the stabilization problem of the UMSs [1–11]. Owing to its practical rel-
evance such as stabilization of robot arm, parking of underactuated vehicles, etc.,
this field of study has drawn significant research interests from the modern industry
[5, 7]. On the other hand, captivated by the complex mathematical formulation of
such problem, applied mathematicians have devoted their sincere efforts to address
the same set of problems from completely different perspectives [6]. As stated
earlier, nonholonomic systems fail to satisfy the Brocket’s condition of feedback
linearization, and thereby it is impossible to stabilize such systems using a smooth
time-invariant feedback law. Since most of the UMSs fall under the nonholonomic
systems, naïve approaches of nonlinear control theory often fail to address the
stabilization problem of such systems [5–7, 12, 13]. As a result, devising a con-
troller that would ensure global asymptotic stability of the generic UMSs is being
considered as a quite challenging problem in the literature of control engineering
[6–8, 14–21]. In addition, different aspects of the practical implementations such as
compactness of the control law, complexity of the mathematical operations, total
computation time, etc., make the design problem more complicated during real-time
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applications [3, 22–25]. A control law, which seems to be foolproof in the theo-
retical framework, quite often fails to produce a plausible control input for real-time
applications. On contrary, a meticulously designed application-oriented approach
frequently becomes too intended to a particular application that it fails to address
the similar type of control problem of other practical systems [6, 15]. Keeping in
view the aspects of generality in the theoretical framework as well as different
prerequisites of practical implementation, this book has described a novel block
backstepping control algorithm to address the stabilization control problem of
generic UMS. The control algorithm is truly novel in the sense that it does not
adhere to several unrealistic assumptions, and yet it can ensure the global asymp-
totic stability for a large class of the UMSs. Furthermore, another significant feature
of the proposed control algorithm is that it is quite compact and perfectly suitable
for real-world applications.

As mentioned earlier, backstepping is a recursive design approach that simplifies
the control problem of an nth order nonlinear system by treating it as a control
problem of the n numbers of cascade connected first-order systems [6, 7, 15].
Therefore, from the time of its inception, it has been being preferred by the control
theorist, especially during the controller design task for complicated real-life sys-
tems [15]. However, a drawback of integrator backstepping is it relies on the
conjecture that system under consideration is in strict feedback form. Needless to
say, the complicated nonlinear state model of a UMS quite often fails to satisfy the
prerequisite of backstepping approach [6, 7, 15]. Hence, in order to extend the
advantageous features of backstepping to address the control problems of the
UMSs, an algebraic state transformation has been utilized to convert the state model
of such systems into a convenient feedback form [15]. Indeed, the proposed
algebraic state transformation converts the system into a block-strict feedback form.
Simply stated, it decomposes the state model of the n-DOF UMS into two parts,
while the first part is represented by a reduced order strict feedback state model, the
other part is used to represent the “internal dynamics” of the transformed system
[15]. Thereafter, integrator backstepping algorithm has been utilized to derive the
complete expression of the control law for the entire nonlinear system [15]. In
addition, integral action has been incorporated with the control law to enhance the
steady-state performance of the control law [15]. Since stability of the entire block
backstepping controller depends on the stability of the zero dynamics of the
transformed system, stability of the zero dynamics has thoroughly been analyzed to
ensure the global asymptotic stability of the overall system at its desired equilibrium
point [15]. In a nutshell, it can be inferred that the proposed algorithm is generalized
enough to address the control problem of the large class of UMSs, as well as it
yields a compact expression of control law for real-time applications [15].

Indeed, the merit of a theoretical proposition could only be assessed by ana-
lyzing its performance during practical applications. Hence, applications of the
proposed control algorithm on different UMS have been discussed in this book.
Since most of the important UMS belong to the category of two degree of freedom
system [6], five different 2-DOF mechanical systems having different system
dynamics have been selected to verify the theoretical claims of the present
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proposition. Extensive simulation studies have revealed the fact that the proposed
algorithm can ensure global asymptotic stability of the different UMS without
significant modifications. In addition, the proposed control law has been applied on
two real-time systems to corroborate the stabilization ability of the block back-
stepping algorithm during real-time applications.

Similar to the case of 2-DOF UMS, the block backstepping control law has been
applied to higher order UMSs to justify the generalized nature of the proposed
control algorithm. Consequently, it applications have been studied on three different
higher order UMSs, namely USV, VTOL, and 3-DOF redundant manipulator.
Extensive simulation studies have corroborated the fact that the proposed control
law can ensure global asymptotic stability of the higher order UMSs. Hence, it can
be concluded that the proposed algorithm is generalized enough to address the
control problem of UMSs.

6.2 Major Inferences

(I) A novel block backstepping control algorithm has been devised to address
the control problem of a generic underactuated mechanical systems.

(II) Proposed control algorithm utilizes an algebraic state transformation to
convert the state model of the UMS into a system having two cascaded
blocks; the reduced order system modeled and depicted in strict feedback
form followed by a dynamic block that actually represents the unobservable
internal dynamics of the transformed system.

(III) Stability of the internal dynamics can easily be analyzed using the concept
of zero dynamics.

(IV) In this work, a control law has been devised that can ensure the global
asymptotic stability for a large class of UMSs.

(V) Use of simple algebraic state transformation makes the control law amen-
able to real-time implementation.

(VI) Control law, which has been described in this book, can successfully
address the stabilization problems of different UMSs (including holonomic,
nonholonomic, “actuated shape variable,” “unactuated shape variable,” and
flat underactuated mechanical systems).

(VII) Real-time experiments have revealed the fact that the proposed control law
can be used to address the tracking control problem of the holonomic
underactuated mechanical system.

6.3 Scope of the Future Work

In this section, a few active areas of research on the UMSs are explored to assist the
budding researchers. They are as follows:
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6.3.1 Robust Adaptive Block Backstepping Design
for Underactuated Mechanical Systems

Design of a novel block backstepping control law has been presented in Chap. 3.
Although the proposition is versatile enough to provide a plausible solution to the
control problems a large class of UMSs, yet further advancement of the same could
make it more flexible to deal with the control problem of uncertain systems.
Therefore, future research can be pursued to develop a robust adaptive block
backstepping control law for such class of systems.

Similar to the present method, an algebraic transformation could be utilized to
convert the system in a block-strict feedback form, and thereafter an adaptive
version of the same control law could be devised to address the control problem of
UMSs. Concept of tuning function can be exploited to circumvent the problem of
over parameterization, which commonly occurred with certainty equivalence-type
adaption law. The prime design advantage offered by the tuning function approach
is the reduction of dynamic order of the controller to its minimum. The number of
parameter estimations becomes exactly equal to the number of unknown parame-
ters. The minimum order design is advantageous not only for implementation but
also because it ensures the strongest achievable stability and convergence proper-
ties. In the tuning function design, the parameter update law is designed recursively.
At each consecutive step, designers utilize a tuning function as a potential update
law. In contrary with normal adaptive backstepping, these intermediate update laws
are not implemented, only the controller uses them to compensate the effect of
parameter estimation transients. Eventually, the final tuning function is used for the
parameter update law. Hence, the conventional adaptive block backstepping control
law that utilizes certainty equivalence adaptation law should be redesigned using
the concept of tuning function.

However, uncertainty is an intractable issue in real-time design problem. In case
of practical applications, where the knowledge of the parameters of an underac-
tuated mechanical system is incomplete, approximation errors may creep into the
feedback loop. Needless to say, such type of approximation errors quite often leads
to a very high rate of adaptation, which eventually destabilizes the performance of
the entire control system. Therefore, the control law should be judicially redesigned
to maintain a desirable adaptation rate for the entire nonlinear system. One may
employ the concept of r-switching function to make the controller robust against
such type of unmodeled dynamics. Switching function can be incorporated in the
tuning function to control the high rate of adaptation. Subsequently, a robust
adaptive block backstepping control law could be designed to address the control
problems of UMSs.
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6.3.2 Industrial Needs

Owing to their cost-effective operation, nowadays UMSs are widely being used in
manufacturing and transportation industry. Examples of these systems include
USV, underwater autonomous vehicle, VTOL, helicopter, mobile robot, space
platform, capsubot, robotic manipulator, flexible joint robot, etc. As stated in the
foregoing discussion that most of the control law performs well in the
well-structured environment [6]. However, due to presence of structured and
nonstructured uncertainties during practical implementation, it becomes quite dif-
ficult to address the control problem of UMSs [26]. Concept of robust adaptive
control law has been put forward in the previous subsection. However, a feasible
solution, which considers all the aspects of real-time implementation like fuel
optimization, actuator saturation, and many others issues, is still an open research
problem. Soft computing approach may be considered to fulfill the needs for a few
applications [26]. On the other hand, an adaptive higher order sliding mode is also a
good option to deal with such kinds of control problems. Although lots of research
contributions from practicing engineers have already published on the said topics,
yet none of them can be claimed to be impeccable [6, 26]. Moreover, with the
advent of modern technology one can always expect a more self-sufficient operation
from UMSs in an unstructured and dynamically changing environment. Thus,
design a control law that can satisfy all these needs is still an active area of research.

6.3.3 High-DOF Complex UMS

Since the UMSs use fewer numbers of actuators to generate the required input, the
overall design of the system becomes more compact and lightweight. Use of fewer
actuators not only reduces the weight, it also reduces the fuel consumption of the
overall system. All these distinctive features of UMSs make it more amenable to
real-time applications than that of fully actuated MIMO systems. However, when
the degrees of freedom of a particular UMS increase, it affects the reliability of the
overall system. One may consider the case of a 6-DOF autonomous vehicle or a
6-DOF haptic device, which uses a large number of control loops [26]. Indeed, most
of the times they are intended to operate in an uncertain environment. Robust
design of control law can always yield a solution in face of model uncertainties and
external disturbances. However, one must consider the economic constraints, as
well as feasibility of implementing an advanced control law at the time of practical
applications.
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6.3.4 Fault Tolerant Deduction and Control

Failure of an actuator makes a fully actuated MIMO system a UMS one, even more
it may convert a strongly coupled UMS to a UMS having more unactuated degrees
of freedom than that of the actuating inputs [26]. On the other hand, sensor failure
results in unavailability of feedback signal that further affects the tracking perfor-
mance of the overall system. Keeping in view the chances of actuator and sensor
failure during real-time operation, an elegant backup control plan should be ready to
avoid the catastrophic accidents [26]. Moreover, an efficacious switching strategy
must be designed to activate the fault tolerant mechanism. Therefore, designing of a
suitable control law that could provide a plausible solution during occurrence of
faults, is currently an active area of research.

6.3.5 Networked UMS

Different issues that arise from networking of several UMSs while operating in a
group, is also an open area of research. Nowadays, mobile robots are being used in
rescue operation, and surveillance [26]. Ensuring proper communication and
coordination between all the team members while the operating environment may
also differ considerably for individual members, is a popular topic of distributed
control [26]. Packet loss and communication delays may also eventually result in an
undesirable situation. Therefore, new research could be pursued to devise an ele-
gant control law that is robust as well as can yield an efficacious performance in
distributed environment [26].

6.4 Notes

Indeed, UMS is an important class of mechanical systems that has treasured it
applications in the different corners of modern civic life. Needless to say that
covering up the entire research areas in a single book is quite a difficult task, and
also beyond the scope of this present discussion. Only a particular control design
approach and its application on several systems are being discussed here in this
book. The authors are quite hopeful that this presentation would be able to impart
subtle yet sufficient knowledge about mathematical and implementation-oriented
approaches toward control of the underactuated nonlinear systems. However, in
order to understand the breadth and depth of the UMSs control problems, readers
may refer the references [1–66].
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Appendix
Modeling of Different Underactuated
Mechanical Systems

A.1 Mathematical Modeling of Inertia Wheel Pendulum

Schematic diagram of the inertia wheel pendulum is shown in Fig. A.1.
The Lagrangian model of the inertia wheel system has been shown below:

m11€q1 þm12€q2 þ h1 q; _qð Þ ¼ 0 ðA:1Þ

m21€q1 þm22€q2 ¼ s ðA:2Þ

where,

m12 ¼ m21 ¼ m22 ¼ I2 ðA:3Þ

h1 ¼ �m0g sin q1 ðA:4Þ

Mj j ¼ m11m22 � m12m21 ðA:5Þ

The use of the following global feedback yields the following state feedback
structure

s ¼ m22 � m21m12

m11

� �
uþ m21m0

m11

� �
sin q1ð Þ ðA:6Þ

One may able to realize the following state model structure for underactuated
mechanical system

_q1 ¼ p1
_p1 ¼ f þ gu

_q2 ¼ p2
_p2 ¼ u

ðA:7Þ
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where,

f ¼ m21m0g
m11

sin q1ð Þ ðA:8Þ

g ¼ �m12

m11
ðA:9Þ

A.2 Mathematical Modeling of TORA System

Figure A.5 illustrates the top view of this nonlinear benchmark mechanical system
in which the rotational motion of an eccentric mass controls the translational
oscillations of the platform. Assuming that the platform moves in the horizontal
plane, the dynamics of the system are described by Fig. A.2.

The Lagrangian model of the TORA system has been shown below:

m11€q1 þm12€q2 þ h1 q; _qð Þ ¼ 0

m21€q1 þm22€q2 þ h2 q; _qð Þ ¼ s
ðA:10Þ

Fig. A.1 Inertia wheel system
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where,

m11 ¼ Mþm ðA:11Þ

m12 ¼ m21 ¼ mr cos h ðA:12Þ

m22 ¼ Iþmr2 ðA:13Þ

h1 ¼ �mr sin h _h2 þ kx ðA:14Þ

h2 ¼ �m2gr sin q2 ðA:15Þ

D ¼ m11m22 � m12m21 ðA:16Þ

Applying the following feedback law:

u ¼ s
D
� m2

2
r2 sin 2q2ð Þp22 þ kq1m2r cos q2ð Þ � m2gr sin q2ð Þ m1 þm2ð Þ ðA:17Þ

One may able to realize the following state model structure for underactuated
mechanical system

Fig. A.2 The TORA system
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_q1 ¼ p1
_p1 ¼ f þ gu

_q2 ¼ p2
_p2 ¼ u

ðA:18Þ

where,

f ¼ �k3q1 þ k2 sin q2ð Þp21 ðA:19Þ

g ¼ �k2 cos q2ð Þ ðA:20Þ

k2 ¼ m2r=ðm1 þm2Þ ðA:21Þ

k3 ¼ �k1=ðm1 þm2Þ ðA:22Þ

A.3 Mathematical Modeling of Furuta Pendulum

Schematic diagram of Furuta Pendulum is shown in Fig. A.3.
The Lagrangian model of the Furuta pendulum system has been shown below:

m11€q1 þm12€q2 þ h1 q; _qð Þþ g1 qð Þ ¼ s

m21€q1 þm22€q2 þ h2 q; _qð Þþ g2 qð Þ ¼ 0
ðA:23Þ

where

m11 ¼ J1 þm2l
2
1 þm2l

2
2 sin

2 q2ð Þ ðA:24Þ

m12 ¼ m21 ¼ m2L1l2 cos q2ð Þ ðA:25Þ

m22 ¼ J2 þm2l22 ðA:26Þ

h1 ¼ 2m2l
2
2 sin q2ð Þ cos q2ð Þ _q1 _q2 � m2L1l2 sin q2ð Þ _q22 ðA:27Þ

h2 ¼ �m2l
2
2 sin q2ð Þ cos q2ð Þ _q21 ðA:28Þ

g1 ¼ 0 ðA:29Þ

g2 ¼ �m2gl1 sin q2ð Þ ðA:30Þ
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D ¼ m11m22 � m12m21 ðA:31Þ

Noting that cos(q2) 6¼ 0 ðq2 2 ð�p=2; p=2ÞÞ, and applying the following feed-
back law:

s ¼ � D
m12

u� m11

m12
h2 þ h1 � m11

m12
g2 ðA:32Þ

One may able to realize the following state model structure for underactuated
mechanical system as follows

Fig. A.3 Furuta pendulum system
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_q1 ¼ p1

_p1 ¼ f þ gu k2 tan q2ð Þþ k3 sin q2ð Þp21 � k1u= cos q2ð Þ
_q2 ¼ p2
_p2 ¼ u

ðA:33Þ

where,

f ¼ k2 tan q2ð Þþ k3 sin q2ð Þp21 ðA:34Þ

g ¼ �k1 cosðq2Þ ðA:35Þ

k1 ¼ J2 þm2l
2
2

� �
=m2l1l2 ðA:36Þ

k2 ¼ gl1=L1l2 ðA:37Þ

k3 ¼ l2=L1 ðA:38Þ

A.4 Mathematical Modeling of Acrobot

Referring to Fig. A.4, the Lagrangian model of the acrobot system can be described
by the following equations:

m11€q1 þm12€q2 þ h1 q; _qð Þþ/1 qð Þ ¼ 0

m21€q1 þm22€q2 þ h2 q; _qð Þþ/2 qð Þ ¼ s
ðA:39Þ

where,

m11 ¼ m1l
2
c1 þm2 l21 þ l2c2 þ 2l1lc2 cos q2ð Þ� �þ I1 þ I2 ðA:40Þ

m12 ¼ m21 ¼ m2 l2c2 þ l1lc2 cos q2ð Þ� �þ I2 ðA:41Þ

m22 ¼ m2l
2
c2 þ I2 ðA:42Þ

h1 ¼ �m2l1lc2 sin q2ð Þ _q22 � 2m2l1lc2 sin q2ð Þ _q2 _q1 ðA:43Þ

h2 ¼ m2l1lc2 sin q2ð Þ _q21 ðA:44Þ

/1 ¼ m1lc1 þm2l1ð Þg cos q1ð Þþm2lc2g cos q1 þ q2ð Þ ðA:45Þ
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/2 ¼ m2lc2g cos q1 þ q2ð Þ ðA:46Þ

D ¼ m11m22 � m12m21 ðA:47Þ

Ml ¼ m2l1lc2 ðA:48Þ

M1 ¼ m11 � 2Ml cos q2ð Þ ðA:49Þ

M2 ¼ m2l
2
c2 þ I2 ðA:50Þ

/0 ¼ m1lc1 þm2l1ð Þg ðA:51Þ

Fig. A.4 Schematic diagram of acrobot
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/00 ¼ m2lc2g ðA:52Þ

The parameters mi, li, lci, and Ii denote the mass, link length, distance of the mass
center of the link from their respective joint end, and moment of inertia of the ith
link respectively.

Applying the following feedback control input as shown in equation (A.53), one
may be able to formulate the state model structure for the underactuated acrobot
system as shown in equation (A.54.a).

s ¼ m11

D
m11h2 � m21h1 þm11/2 � m21/1

m11
þ D

m11
u

� �
ðA:53Þ

With the above choice of state feedback, the state model of the acrobot system
becomes:

_q1 ¼ p1
_p1 ¼ f1 þ g1u

_q2 ¼ p2
_p2 ¼ u

ðA:54:aÞ

where

f1 ¼ � h1
m11

þ /1

m11

� �
ðA:54:bÞ

g1 ¼ �m12

m11
ðA:54:cÞ

A.5 Mathematical Modeling of Pendubot

Referring to Fig. A.5, the Lagrangian model of the Pendubot system can be
described by the following equations:

m11€q1 þm12€q2 þ h1 q; _qð Þþ/1 qð Þ ¼ s

m21€q1 þm22€q2 þ h2 q; _qð Þþ/2 qð Þ ¼ 0
ðA:55Þ

where,

m11 ¼ m1l
2
c1 þm2 l21 þ l2c2 þ 2l1lc2 cos q2ð Þ� �þ I1 þ I2 ðA:56Þ

162 Appendix: Modeling of Different Underactuated Mechanical Systems



m12 ¼ m21 ¼ m2 l2c2 þ l1lc2 cos q2ð Þ� �þ I2 ðA:57Þ

m22 ¼ m2l
2
c2 þ I2 ðA:58Þ

h1 ¼ �m2l1lc2 sin q2ð Þ _q22 � 2m2l1lc2 sin q2ð Þ _q2 _q1 ðA:59Þ

h2 ¼ m2l1lc2 sin q2ð Þ _q21 ðA:60Þ

/1 ¼ m1lc1 þm2l1ð Þg cos q1ð Þþm2lc2g cos q1 þ q2ð Þ ðA:61Þ

/2 ¼ m2lc2g cos q1 þ q2ð Þ ðA:62Þ

Fig. A.5 The Schematic diagram of pendubot
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D ¼ m11m22 � m12m21 ðA:63Þ

Ml ¼ m2l1lc2 ðA:64Þ

M1 ¼ m11 � 2Ml cos q2ð Þ ðA:65Þ

M2 ¼ m2l
2
c2 þ I2 ðA:66Þ

/0 ¼ m1lc1 þm2l1ð Þg ðA:67Þ

/00 ¼ m2lc2g ðA:68Þ

The parameters mi, li, lci, and Ii denote the mass, link length, distance of the mass
center of the link from their respective joint end, and moment of inertia of the ith
link respectively.

Applying the following feedback control input as shown in equation (A.69), one
may be able to formulate the state model structure for the underactuated Pendubot
system as shown in equation (A.70.a).

s ¼ m22

D
m11h2 � m21h1 þm11/2 � m21/1

m22
þ D

m22
u

� �
ðA:69Þ

With the above choice of state feedback, the state model of the acrobot system
becomes:

_q1 ¼ p1
_p1 ¼ u

_q2 ¼ p2
_p2 ¼ f þ gu

ðA:70:aÞ

where

f1 ¼ � h1
m11

þ /1

m11

� �
ðA:70:bÞ

g1 ¼ �m12

m11
: ðA:70:cÞ
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A.6 Mathematical Modeling of Cart-Pole System

The model of a digital inverted pendulum has been shown in Fig. A.6, where h is
the angle of the pendulum, x is the displacement of the cart, and F is the control
force, parallel to the rail, applied to the cart.

The dynamic equation of the system can be derived based on the second law of
Newton. The following equation of motions can be obtained using force law of
Newton

Mþmð Þ d
2

dt2
x� l sin hð Þ ¼ F � T ðA:71Þ

Mþmð Þ d
2

dt2
l cos hð Þ ¼ V � ðMþmÞg ðA:72Þ

J
d2h
dt2

¼ F � Tð Þl cos hþVl sin h ðA:73Þ

The masses of the cart and the pendulum are denoted by M and m. In particular,
l is the distance from axis of rotation to the center of mass of the inverted pendulum.
J is the moment of inertia of the inverted pendulum with respect to the center of
masses. The force of reaction of the rail V acts vertically on the cart. T denotes the
friction between cart and the rail. Here, it is assumed that T = fx3, where f is the
friction coefficient of the cart with the rail. Combining the above three equations, it
is possible to realize the state model of the pendulum cart system which is given
below

_x1 ¼ x3 ðA:74Þ

_x2 ¼ x4 ðA:75Þ

x

f

Fig. A.6 Dynamics of cart pole system
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_x3 ¼ aðF � T � lx24 sin x2Þþ l cos x2lg sin x2
Jþ ll sin2 x2

ðA:76Þ

_x3 ¼ lðF � T � lx24 sin x2Þþ lg sin x2
Jþ ll sin2 x2

ðA:77Þ

where a ¼ l2 þ J
Mþm and l ¼ l Mþmð Þ. The state vector of the system is consisting

of four state variables as X ¼ ½x1; x2; x3; x4�T. In the above representation, x1 is the
cart position (distance from the center of the rail), x2 is the pendulum angle between
the upright vertical and the axis of the centre of mass of the pendulum, measured
counter-clockwise from the cart x3is the cart velocity, and x4 is the angular velocity
of the pendulum. The same state model can be used as a state model for crane.

A.7 Mathematical Modeling of VTOL

Here we consider a very simplified PVTOL (Planar Vertical Take-off and Landing)

aircraft (see Fig. A.7). Let (~i;~j;~k) be a fixed inertial frame and ( ib
!
; jb
!
; kb
!
), with

jb
!¼~j be a moving frame attached to the aircraft (body axes). The forces acting on
the system are (Fig. A.7):

Fig. A.7 VTOL aircraft
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~T ¼ Tkb
! ðA:78Þ

F1
�! ¼ sin a ib

!þ cos akb
!� �

F ðA:79Þ

F2
�! ¼ sin a ib

!� cos akb
!� �

F ðA:80Þ

m~g ¼ �mg~k ðA:81Þ

The equations of motion is written in terms of the centre of mass C as

mac
!¼ ~T þ F1

�!þ F2
�!þm~g ðA:82Þ

rc
!¼ CM1

�!� F1
�!þCM2

�!� F2
�! ðA:83Þ

where ac
! is the acceleration of C and rc

! is the angular momentum about C. M1 and
M2 are the points at which the forces F1 and F2 are located. Expanding these
equations gives

m €x~iþ€y~k
� �

¼ Tkb
!þ 2F sin sin a ib

!� mg~k ðA:84Þ

�J€h jb
!¼ �2lF cos a jb

! ðA:85Þ

where J is the moment of inertia about C, and l is the distance from C to points M1

and M2. Now setting

u1 ¼ T
m

ðA:86Þ

u2 ¼ 2F
m

cos a ðA:87Þ

e ¼ tan a ðA:88Þ

k ¼ ml
J

ðA:89Þ

Therefore, projecting into the fixed frame, we finally get the equation of
acceleration as follows

€x ¼ �u1 sin hþ eu2 cos h ðA:90Þ

€z ¼ u1 cos hþ eu2 sin h� g ðA:91Þ
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€h ¼ ku2 ðA:92Þ

Now if we apply the following control inputs u1 and u2

u1 ¼ v2 cos x5 � v1 sin x5 þ g cos x5½ � ðA:93Þ

u2 ¼ 1
e
v1 cos x5 þ v2 sin x5 þ g sin x5½ � ðA:94Þ

yield the following state model of VTOL system

_x1 ¼ x2
_x2 ¼ v1
_x3 ¼ x4
_x4 ¼ v2
_x5 ¼ x6

_x6 ¼ k
e
v1 cos x5 þ v2 sin x5 þ g sin x5½ �

ðA:95Þ

A.8 Mathematical Modeling of Underactuated
Surface Vessels

The schematic diagram of the underactuated surface vessel is shown in Fig. A.8.
The dynamic equation of the underactuated surface vessel is described in equation
(A.96).

m €x cos hþ€y sin hð Þþ cx _x cos hþ _y sin hð Þ ¼ F

I€hþ cz _h ¼ T

m �€x cos hþ€y sin hð Þþ cy � _x cos hþ _y sin hð Þ ¼ 0

ðA:96Þ

Fig. A.8 Schematic diagram
of the underactuated surface
vessel
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The above dynamic equation can be equivalently expressed as follows

€x ¼ u1
€h ¼ u2

€y ¼ u1 tan hþ cy
m

_x tan h� _yð Þ
ðA:97Þ

where,

u1 ¼ 1
m

F cos h� _x cy sin2 hþ cx cos2 h
� �� þ cy � cx

� �
_y sin h cos h

� ðA:98Þ

u2 ¼ 1
I

T � cz _h
� �

ðA:99Þ

The above expression of the control inputs yield the following state space
structure (where the state variables are chosen as x1 ¼ x; x2 ¼ h; x3 ¼ y; x4 ¼ vx;
x5 ¼ x; x6 ¼ vy)

_x1 ¼ x4
_x2 ¼ x5
_x3 ¼ x6
_x4 ¼ u1
_x5 ¼ u2

_x6 ¼ u1 tan x2 þ cy
m

x4 tan x2 � x6ð Þ

ðA:100Þ

A.9 Mathematical Modeling of 3-DOF Redundant Manipulator

A planar 3-DOF robot arm is a particular type of robot manipulator with two
prismatic and one revolute joint, moving on a horizontal plane. The two prismatic
joints are rigid, whereas the revolute joint is coupled to the end effector through an
elastic degree of freedom. In addition, all the prismatic joints are actuated. An
idealized model of this manipulator is shown in Fig. A.9. The model consists of a
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base body, which can translate and rotate freely in the plane, and a massless arm at
the tip of which the end-effector is attached. The base body is connected to the
massless arm by a linear torsional spring whose neutral position is u ¼ 0. The
Cartesian position of the base body as well as the angle through which the base
body is rotated can be controlled. The variable u measures the deviation of the
massless arm from the assigned (u = 0) value. Whenever the variable is displaced
from zero, it induces a restoring torque −Ku, where K. denotes the torsional spring
constant.

We can write the following equation of motions:

ðMþmÞ€xþMl€h sin hþMl _h2 cos h ¼ ux

ðMþmÞ€y�Ml€h cos hþMl _h2 sin h ¼ uy

I€h ¼ uh
€x sin h� €y cos h ¼ 0

ðA:101Þ

In order to satisfy the above equations it is required that

uh ¼ I
Ml

ðux sin h� uy cos hÞ ðA:102Þ

The above selection yields the following equations of accelerations:

€x ¼ u1
€h ¼ u2
€y ¼ u1 tan h

ðA:103Þ

Fig. A.9 Schematic diagram
of the three degree of freedom
redundant manipulator
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where,

u1 ¼ 1
Mþm

ux cos hþ uy sin h�Ml _h2
� �

cos h

u2 ¼ 1
Ml

ux sin h� uy cos h
� � ðA:104Þ

The above selection of u1, and u2 yield the following state space structure:

_x1 ¼ x4
_x2 ¼ x5
_x3 ¼ x6
_x4 ¼ u1
_x5 ¼ u2
_x6 ¼ u1 tan x2

ðA:105Þ

The state variables are chosen as: x1 ¼ x; x2 ¼ h; x3 ¼ y; x4 ¼ vx; x5 ¼ x;
x6 ¼ vy.
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