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Preface

Most real physical systems are nonlinear in nature. Control and filtering of
nonlinear systems are still open problems due to their complexity natures.
These problem becomes more complex when the system’s parameters are un-
certain. A common approach to designing a controller/filter for an uncertain
nonlinear system is to linearize the system about an operating point, and uses
linear control theory to design a controller/filter. This approach is successful
when the operating point of the system is restricted to a certain region. How-
ever, when a wide range operation of the system is required, this method may
fail.

This book presents new novel methodologies for designing robust H . fuzzy
controllers and robust Ho, fuzzy filters for a class of uncertain fuzzy systems
(UFSs), uncertain fuzzy Markovian jump systems (UFMJSs), uncertain fuzzy
singularly perturbed systems (UFSPSs) and uncertain fuzzy singularly per-
turbed systems with Markovian jumps (UFSPS-MJs). These new method-
ologies provide a framework for designing robust H., fuzzy controllers and
robust Ho, fuzzy filters for these classes of systems based on a Tagaki-Sugeno
(TS) fuzzy model. Solutions to the design problems are presented in terms of
linear matrix inequalities (LMIs). To investigate the design problems, we first
describe a class of uncertain nonlinear systems (UNSs), uncertain nonlinear
Markovian jump systems (UNMJSs), uncertain nonlinear singularly perturbed
systems (UNSPSs) and uncertain nonlinear singularly perturbed systems with
Markovian jumps (UNSPS-MJs) by a TS fuzzy system with parametric un-
certainties and with/without Markovian jumps. Then, based on an LMI ap-
proach, we develop a technique for designing robust H.. fuzzy controllers and
robust Heo fuzzy filters such that a given prescribed performance index is
guaranteed.

To clarify this approach, this book is divided into two parts. Part I is fo-
cused on the uncertain fuzzy systems, while Part II is concentrated on the
uncertain fuzzy singularly perturbed systems. Contributions of each part can
be summarized as follows. Part I presents the new design methodology on a
robust Heo fuzzy controller and a robust Heo fuzzy filter for a class of UFSs
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and UFMJSs. This new design approach allows us to achieve the design of the
robust H, fuzzy controller and fuzzy filter for a class of UNSs and UNMJSs
in a unified framework, which is based on the TS fuzzy model and the LMIs
approach. The proposed design result satisfies all admissible noises, distur-
bances and uncertainties. In parallel, Part II presents the design methodology
on a robust H fuzzy controller and a robust H, fuzzy filter for a class of
UFSPSs and UFSPS-MJs. The proposed design approach in this part for a
class of UFSPSs and UFSPS-MJs does not involve the separation of states
into slow and fast ones and it can be applied not only to standard, but also to
nonstandard nonlinear singularly perturbed systems. Furthermore, the pro-
posed approach shows that the design result satisfies all admissible noises,
disturbances and uncertainties.

Finally, to demonstrate the effectiveness and advantages of the proposed
design methodologies, applications to UNS, UNMJS, UNSPS and UNSPS-
MJ (for instance; a motor, a tunnel diode circuit and an economic model)
are given as examples in each chapter. The simulation results show that the
proposed design methodologies can achieve the prescribed performance index.
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Introduction

1.1 Preliminary Background

Most real physical systems are nonlinear in nature. Controlling and filtering
nonlinear systems are still open problems due to their complexity natures.
These problem becomes more complex when the system’s parameters are un-
certain. A common approach to designing a controller/filter for an system is to
linearize the system about an operating point, and uses linear control theory
to design a controller/filter. This approach is successful when the operating
point of the system is restricted to a certain region. However, when a wide
range operation of the system is required, this method may fail.

In recent years, a large number of practical control problems have involved
designing a controller/filter that minimizes the worst-case ratio of output
energy (filter error energy) to disturbance energy which is known as an Ho,
control (filter) problem. The Hoo control or filter problem is able to address
the issue of system parameter uncertainty, and also be applied to the typical
problem of disturbance input control. So far, in the literature, the problem of
nonlinear H., control and filter has been extensively studied by a number of
researchers; e.g., [1, 2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].
In general, there are two commonly used approaches for providing solutions
to nonlinear H, control and filter problems. One is based on the dissipativity
theory and theory of differential games; see [1, 4], and the other is based
on the nonlinear version of classical Bounded Real Lemma as developed by
Willems [20], and Hill and Moylan [21]; also see [6, 7, 22]. Both of these
approaches convert the problem of nonlinear H, control to the solvability of
the so-called Hamilton-Jacobi equation (HJE). Recently, the interconnection
between the robust nonlinear H, control (filter) problem and the nonlinear
Hoo control (filter) problem in terms of a scaled HJE has been studied; e.g.,
[23, 24, 25, 26]. A good feature of these results is that they are parallel to
the linear H, results. Even, until now, it is very difficult to solve for a global
solution to the HJE either analytically or numerically [27, 28]. In general, a
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globally smooth solution to the HJE cannot be solved because the derivative
may experience discontinuity across certain lower-dimensional set [29].

In the last two decades, various schemes have been developed to overcome
the aforementioned difficulties in the design of a controller and filter for an
uncertain nonlinear system, among which a successful approach is fuzzy logic
control (FLC). FLC was first introduced as the foundation of the linguistic
model by L.A. Zadeh, [30], in 1965. Zadeh also proposed the fuzzy set theory to
provide a tool to solve an ill-defined problem. Until 1973, Zadeh, [31], outlined
the basic concept underlying FLC which is the linguistic variable, the fuzzy
IF-THEN rules, the fuzzy algorithm, the composition rule of inference, and
the execution of fuzzy instructions. FLC has been considered as an efficient
and effective tool in managing uncertainties and nonlinearity of the system
since Zadeh’s seminar paper, [30]. Among many applications of FLC appear
to be one that has attracted a large number of researchers in the past two
decades with many successful applications. The work of Mamdani and Asilian,
[32], in 1975 showed the first practical application of FLC that implemented
Zadeh’s fuzzy set theory. This method is known as the Mamdani model. The
other method is the Takagi-Sugeno (TS) fuzzy model which was introduced
by Takagi and Sugeno, [33], in 1985.

The Mamdani type fuzzy model is often called a pure fuzzy model and
consists of a series of rules that cover most of the state space of the system.
Each rule maps fuzzy inputs to fuzzy outputs. While the TS fuzzy model also
consists of fuzzy rules, the input fuzzy rules are used to select functions of
the input variables for outputs. In this way, the mathematical model of the
system can be more directly implemented in the fuzzy model. The TS fuzzy
model typically acts to select various linear equations over the state space
of the system and provides a smooth transition between each one. Generally
speaking, the TS fuzzy model is a nonlinear model consisting of a number
of rule-based linear models and membership functions which determine the
degrees of confidence of the rule. The TS fuzzy model can be used to approx-
imate global behavior of a highly complex nonlinear system. In the TS fuzzy
model, local dynamics in different state space regions are represented by local
linear systems. The overall model of the system is obtained by “blending”
these linear models through nonlinear fuzzy membership functions.

Recently, there have been a number of researchers studying the TS fuzzy
system and control; e.g., [34, 35, 27, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53]. For example, Tanaka et.al., [43], have investigated the
fuzzy control based on quadratic performance function—an LMI approach, and
Nguang and Shi, [27], have considered the H, fuzzy output feedback control
design for nonlinear systems based on an LMI approach. Fuzzy control systems
have proven to be superior in performance when compared with conventional
control systems especially in controlling nonlinear, ill-defined system and in
managing complex system.
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1.2 Motivation

Key motivation to this book comes from several sources. The most general
motivation is that most real physical systems are nonlinear and parametric
uncertainties often exist in the systems, but until now we do not have a sys-
tematic way for designing a robust H, fuzzy controller and filter for it. So far,
although the HJE-based sufficient conditions for nonlinear systems to have
an H,, performance has been derived, it is still very difficult to find a global
solution to the HJE either analytically or numerically; e.g., [27, 28].

A second motivation arises from the successful approach of FLC that over-
comes the design problem for nonlinear systems. Fuzzy system theory enables
us to utilize qualitative, linguistic information about a highly complex nonlin-
ear system to construct a mathematical model for it. Recent studies show that
a TS fuzzy model can be used to approximate global behaviors of a highly
complex nonlinear system; e.g., [34]—[53]. In this thesis, the TS fuzzy model
has been chosen in our investigation due to the fact that the TS fuzzy model
can replace the fuzzy sets in the consequent part of the Mamdani rule with
a series of linear equations of input variables with smooth transition between
each one. Recently, a great amount of effort has been made on the design of
fuzzy Heo for a class of NSs which can be represented by the TS fuzzy model;
e.g., [30, 31, 34, 35, 27, 38, 39, 40, 41, 54, 55, 56, 57, 58]. In the TS fuzzy
model, local dynamics in different state space regions are represented by local
linear systems. The overall model of the system is obtained by “blending”
these linear models through nonlinear fuzzy membership functions. Unlike
conventional modelling which uses a single model to describe the global be-
havior of a system, fuzzy modelling is essentially a multi-model approach in
which simple sub-models (linear models) are combined to describe the global
behavior of the system.

However, it is also necessary for us to further consider the robust stability
against parametric uncertainties in the TS fuzzy model. This is because the
parametric uncertainties play an important factor responsible for the stability
and performance of an uncertain nonlinear control system. So far, there have
been some attempts in the area of UNSs based on the TS fuzzy model in
the literature; e.g., [41, 48, 59]. However, these existing design methods have
not distinguished nonlinearity from uncertainty when analyzing the design
problems which makes the results conservative. Hence, we need to investigate
and find a new technique for designing a robust Hy fuzzy control and filter
of a class of UNSs by distinguishing nonlinearity from uncertainty.

The final and somewhat peripheral motivation is that many control design
problems are normally formulated in terms of inequalities rather than simple
equalities and a lot of problems in control engineering systems can be for-
mulated as LMI feasibility problems; e.g., [60, 61, 62, 63, 64]. Some common
convex programming tools, such as ellipsoid methods, interior point meth-
ods and methods of alternating convex projections, can be applied to solve
the LMIs. However, the interior-point method has been proven that it is ex-
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tremely efficient in solving the LMI with significant computational complexity.
The LMI framework provides a tractable method to solve the problems which
has either analytical solution or non-analytical solution. Furthermore, a very
powerful and efficient toolbox in MATLAB has been available for solving LMI
feasible and optimization problems by interior point methods.

1.3 Contribution of the Book

The focus of this book is to establish novel methodologies for designing robust
Ho fuzzy controllers and robust H, fuzzy filters for a class of UNSs, UN-
MJSs, UNSPSs and UNSPS—MJs which are described by a TS fuzzy system
with parametric uncertainties and with/without MJs. In this book, we distin-
guish nonlinearities from uncertainties when analyzing the design problems.
This is because if the design problems for a system are analyzed by treating
nonlinearities as uncertainties, the results will be conservative in general; e.g.,
[48, 59]. The derivations of the solutions shown here are based on fuzzy control
theory and robust control theory such as an H., control and an LMI.

To investigate the design problems, we first describe a class of UNSs, UN-
MJSs, UNSPSs and UNSPS-MJs by a TS fuzzy system with parametric uncer-
tainties and with/without MJs. Then, based on an LMI approach, we develop
a technique for designing robust Ho, fuzzy controllers and robust H., fuzzy
filters such that a given prescribed performance index is guaranteed. To un-
derstand our proposed approach better, this thesis has been divided into two
parts. Part I is focused on the uncertain fuzzy systems, while Part II is concen-
trated on the uncertain fuzzy singularly perturbed systems. The achievement
in each part can be summarized as follows:

In Part I, the new design methodology on a robust H, fuzzy controller and
a robust Ho, fuzzy filter for a class of UFSs and UFMJSs has been developed.
This new design approach allows us to achieve designing the robust H., fuzzy
controller and the robust H, fuzzy filter for a class of UNSs and UNMJSs in a
unified framework, which is based on the TS fuzzy model and LMIs approach.
The proposed design result satisfies all admissible noises, disturbances and
uncertainties.

In Part II, the design methodology on a robust H., fuzzy controller and
a robust Ho, fuzzy filter for a class of UFSPSs and UFSPS-MJs has been
presented. The proposed design approach in this part for a class of UFSPSs
and UFSPS-MJs does not involve the separation of states into slow and fast
ones and it can be applied not only to standard, but also to nonstandard
nonlinear singularly perturbed systems. Furthermore, the proposed approach
shows that the design result satisfies all admissible noises, disturbances and
uncertainties.

Finally, to demonstrate the effectiveness and advantages of the proposed
design methodologies in this thesis, applications to UNS, UNMJS, UNSPS
and UNSPS-MJ (i.e., a motor, a tunnel diode circuit and an economic model)
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are given as examples in each chapter. The simulation results show that the
proposed design methodologies can achieve the prescribed performance index.

1.4 Book Organization

The general layout of presentation of this book is divided into two parts;
i.e., Part I: Uncertain Fuzzy Systems and Part II: Uncertain Fuzzy Singularly
Perturbed Systems.

Part I presents the synthesis design procedure of a robust H., fuzzy
control and filter for a class of UFSs and UFMJSs. Part I which begins with
Chapter 2 consists of five chapters as follows.

Chapter 2 presents some background and motivation in the area of UFSs,
and then provides the outline of Part I before proceeding to the main results
from Chapter 3 to Chapter 6.

Chapter 3 presents the synthesis design procedure of a robust H., fuzzy
state-feedback control and output feedback control for a class of UFSs. The
resulting fuzzy controller shows that it guarantees the L£o-gain of the mapping
from the exogenous input noise to the regulated output to be less than the
prescribed value.

Chapter 4 presents the synthesis design procedure of a robust H, fuzzy
filter for a class of UFSs such that it guarantees the L£o-gain of the mapping
from the exogenous input noise to the estimated error output to be less than
the prescribed value.

Chapter 5 presents the synthesis design procedure of a robust H., fuzzy
state-feedback control and output feedback control for a class of UFMJSs. Due
to the fact that many real physical systems may experience abrupt changes in
their structure and parameters, this chapter will provide a design technique
corresponding to that problem. Solutions to the design problem of the robust
Ho fuzzy control have been derived in terms of the LMIs.

Chapter 6 presents the synthesis design procedure of a robust H., fuzzy
filter for a class of UFMJSs. The sufficient conditions to the design problem
of the robust H, fuzzy filter have been derived in terms of the LMIs.

Part IT presents the synthesis design procedure of a robust H, fuzzy con-
trol and filter for a class of UFSPSs and UFSPS-MJs. Part II which begins
with Chapter 7 also consists of five chapters as follows.

Chapter 7 presents some background and motivation in the area of UFSPSs,
and then provides the outline of Part II before proceeding to the main results
from Chapter 8 to Chapter 11.
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Chapter 8 presents the synthesis design procedure of a robust H., fuzzy
state-feedback control and output feedback control for a class of UFSPSs. In
the case of having a small “parasitic” parameter in a general nonlinear system,
the design result might end up with a solution to a family of e-dependent LMIs
which normally are ill-conditioned when ¢ is very small. Then, this chapter
will provide a design technique to handle these problems.

Chapter 9 presents the synthesis design procedure of a robust H., fuzzy
filter for a class of UFSPSs. Solutions to the design problem of the robust Ho,
fuzzy filter have been derived in terms of the LMIs.

Chapter 10 presents the synthesis design procedure of a robust Hs, fuzzy
state-feedback control and output feedback control for a class of UFSPS-M.Js.
Since many real physical systems may experience not only a small “parasitic”
parameter in the system but also abrupt changes in their structures and pa-
rameters, in order to deal with these problems, this chapter will provide a
design technique for handling with this case.

Chapter 11 presents the synthesis design procedure of a robust H, fuzzy fil-
ter for a class of UFSPS—MJs. The sufficient conditions to the design problem
of the robust H, fuzzy filter have been derived in terms of the LMIs.
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Uncertain Fuzzy Systems

2.1 Background and Motivation

In the last decade, TS fuzzy systems have been studied by many researchers
with a number of successful applications. The TS fuzzy system has been shown
to be an universal approximator of nonlinear dynamic systems; e.g., [49, 51].
The TS fuzzy system is described by fuzzy IF-THEN rules of the following
form:

Plant Rule i: IF v4(¢) is M;; and --- and vy(t) is M;y THEN
z(t) = Ajz(t) + Biu(t), z(0)=0 (2.1)

wherei =1,2,--- ,r, M;;(j =1,2,--- ,9) are fuzzy sets that are characterized
by membership functions, z(t) € R™ is the state vector, u(t) € R™ is the input
vector, the matrices A; and B; are of appropriate dimensions, v (), -+, vy(t)
are premises variables that may be functions of the state variables, and r is
the number of IF-THEN rules.

Given a pair [z(t),u(t)] , the final fuzzy system is inferred as follows

B(t) = > pi(v(t))[Aiz(t) + Biu(t)] (2.2)
i=1
where

@i (v(t))
> i @i(v(t))

M;x(v(t)) is the grade of membership of vy (t) in M;y. It is assumed that

9
pi(v(t)) = ) and @;(v(t)) = [T Mir(vn(t)).
k=1

wi(v(t) >0, i=1,2,..,m; Zw7(y(t)) >0
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for all ¢t. Therefore,
wi(w(t) >0, i=1,2,..,r; > piv(t) =1
i=1

for all ¢. Figure 2.1 shows the structural diagram of the TS fuzzy system.

Plant Model

= X() = A;x(t) + B,u(t)

Y

weighted

Rule r
= x(t) = Ax(t) + Bu(t) ~| weighted

Fig. 2.1. The TS type fuzzy system.

2.1.1 TS Fuzzy Modelling

There are two major ways in TS fuzzy modeling. One is the TS fuzzy model
identification ([33], [50] and [65]) using input-output data, and the other is
the TS fuzzy model construction, by the idea of sector nonlinearity ([50], [66]
and [67]). Fuzzy Modeling and Identification (FMID) toolbox from Matlab
can be utilised for the construction of a TS fuzzy model from data. This
section only discusses the construction of a TS fuzzy model by the idea of
sector nonlinearity. Three examples will be used to illustrate the procedures
of constructing TS fuzzy models.
Consider the following class of nonlinear system

gi(t) =Y fii(x(t)z;(t) + > gin(@(t))uk(t) (2.3)
j=1 k=1

where n and m are, respectively, the numbers of state variables and inputs.
x(t) = [x1(t) -+ x,(t)] is the state vector and u(t) = [u1(t) - - wun(t)] is
the input vector. f;;(x(t)) and g;x(z(t) are functions of z(t). To obtained a
TS fuzzy model, we find the minimum and maximum values of f;;(z(t)) and
gir (1)),

@j1 = max {fij(x(t))}’ Qijo = gl(ltf)l {fv:j(ﬂf(t))},



2.1 Background and Motivation 11

biss = max {gux (w(0)) } biro = min { g (x(1)) }.

By using these variables, f;; and g;; can be represented as

2
fz] § hlj( azjl

=1

gm E Uzld bire

where 25:1 hije(x(t)) = 1 and 25:1 vige(x(t)) = 1. The membership func-
tions are assigned as follows:

hiji(z(t)) = Fialt) — aija hija(z(t)) = aijr — fij (@(t)

Aij1 — Q552 Qij1 — Q452

gz’kl(x(t)) = %’ i (z(t)) - %ﬁg))

By using the fuzzy mode representation, (2.3) can be rewritten as

n 2 m 2
=3 > hae(e(®))ayex(t) + Y vike(@(t))bineu ). (2.4)

j=1¢=1 k=1 /=1

Example 1: Lorenz Chaotic System

To design a fuzzy static output feedback controller, the Lorenz chaotic
system needs to be represented by a TS fuzzy model. An exact TS fuzzy
modelling [66] is employed to construct a TS fuzzy model for the Lorenz
chaotic system. The method utilises the concept of sector nonlinearity. For
more details, see [50] and [67]. The following Lorenz chaotic system with the
input term will be considered in the sequel:

.i‘l(t) = —axl(t) + al'g(t) + U(t)
i‘g(t) = CX1 (t) - xg(t) - Z‘l(t)xg(t) (25)
5'63(25) = l‘l(t)l‘g(t) — bl‘g(t)

where a = 10, b = 8/3, ¢ = 28, x1(t), z2(t) and x3 are the state variables, and
u(t) is the control input. Assume that z1(t) € [N NJ, the nonlinear terms
—z1(t)x3(t) and x1(t)z2(t) can be expressed as

7%11’3@) = 7h1(1’1(f)) [ — N.’Kg(t)] — hg(l’l(t)) [ng(t)]

and
mlIg(t) = hl(ml(t)) [ — Nﬂfg(t)] + hg(dfl(t)) [NIQ(t)]

where
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i (1) = ~HOEN n@+ N

Then, using the above membership functions, we can have the following TS
fuzzy model which exactly represents (2.5) under the assumption on bounds
of the state variable z1(t) € [-N NJ.

@(t) = Y0, ha(x(t) A (t) + S0, hi((t)) Biu(t)

and hQ (1’1 (t)) =

) (2.6)
y(t) = Xiy hiz(t))Cix(t)
where x(t) = [21(t) z2(t) 1‘3(t)}T,
—a a 0 —a a 0 1
Alz c —1-—-N ,AQZ c -1 N 7B1:.BQZ 0 ,01202[100].
0 N —b 0 —N —-b 0

The TS fuzzy model (2.6) exactly represents (2.5) under the assumption on
bounds of the state variable x1(t) € [-N N] where N > 0. However, this
assumption is not strict because of two reasons. It is well know that state
variables of the chaotic system are bounded. In addition, N can be set to
any value. Even if the nonlinear equations of the Lorenz chaotic system are
unknown, recently developed fuzzy modeling techniques ([33], [51] and [65])
using observed data can be utilised to obtain fuzzy models.

Example 2: Nonlinear Mass-Spring-Damper System
Consider a nonlinear mass-spring-damper mechanical system with a non-
linear spring:

21(t) = —0.112521 (t) — 0.0222(t) — 0.673(t) + u(t)

.Z:Q(t) = $1(t) (27)

where () is the spring’s displacement and 1 (t) = d2(t). The term —0.6723
is due to the nonlinearity of the spring. The spring is attached to a fixed
wall, therefore the spring’s displacement x5 (¢) is physically constrained by the
length of the spring and the wall. The length of the spring could be any value,
in this paper, we assume x2(t) € [—1, 1.5]. The lower limit is the minimum
length that the spring can be compressed. Same as Example 1, the concept
of sector nonlinearity [66] is employed to construct an exact TS fuzzy model
for the mass-spring-damper system. Using the fact that zo(¢) € [—1, 1.5], this
nonlinear term can be expressed as

where by (z2(t) = 1 — 20 and hy(ws(t)) = S8
Using hi(x2(t)) and ho(z2(t)), we obtain the following TS fuzzy model
which exactly represents (2.7) under the assumption on bounds of the state

variable xo(t) € [—1 1.5]:
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#() = Y0y ha(w(8) Aia() + Sy hi((8) Biu(t) (2:8)

where z(t) = [21(t) xz(t)]Tv

—0.1125 —0.02 —0.1125 —1.5275 1
A1={ 1 0 ],A2={ 1 0 }7312322{0}

Example 3: Three Tanks System

Consider an interconnected tank system which consists of three tanks [68]
denoted as Tank I, Tank II, and Tank III. Liquid levels x;(t) are regulated by
manipulating the inlet flow rates. Pumps P; and P, are used to pump liquid
into Tank I and II with flow rates ¢11(t) and go2(¢) that are proportional to
control inputs u(t) and us(t), respectively, as follows

¢ii(t) = pius(t), i€ {1,2} (2.9)

where p;; are the section of the opening valves. Liquids from Tanks I and II
flow into Tank IIT with flow rates ¢1(¢) and ga(t), respectively. Liquid flows
out from Tank III is at the flow rate, ¢3(t). The amount of liquid flowing off
by an outlet valve is according to Torricelli’s law is

qz(t) =P xi(t)7 (&S {13273} (210)

where p; = pS;/2g, S; are the section of valves, g is the earth’s gravity, and
p is the liquid’s density.

The differential equations that describe this three tank systems are as
follows:

a(t) = ——F=wxa(t) + pr1u(?) (2.11)

P3

y1(t) = g3(t) = mﬂh(t)

ya(t) = =i (t) — FE=ws(1)

\/:Eg(t)

where the parameter « is assumed to be greater than zero to guarantee a fixed
relative concentration. Suppose that, in this example, the nonlinear term

(2.12)

fitz(t)) = = €lar ] (2.13)
and let the weighting function

wi(z(t)) = Lletl=ar (2.14)
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Thus, the normalized time varying weighting function for each rule can be
expressed as

ha(z(t)) = wi(x(t))wa (2(t))ws(z(t))

ho(x(t)) = wy (x(t))wa(2(t)) (1 — wz(x(t)))

ha(z(t)) = wi(x(t))(1 — wa(z(t)))ws(=(t))

ha(z(t)) = (1 — wi(2(t)))wa(z(t))ws(z(t)) (2.15)
hs(z(t)) = wi(x(t))(1 — wa(2(t)))(1 — ws(x(t))) '
he(z(t)) = (1 —wi(x(t)))wa(z(t))(1 — wz(x(t)))

ha(z(t)) = (1 —wi(x(t)))(1 — wa(z(t)))ws(z(t))

hs(z(t)) = (1 —wi(x(t)))(1 — w2 (x(1))) (1 — ws(z(t)))

Using the rule above, we have the following TS fuzzy model under the as-
sumption on bounds of f;(z(t)) € [a1 a2]

B(t) = S5y ha(x () A (t) + S5 bl (t)) Bu(t)
y(t) = 35y hi(z(t))Cia(t)

= [ma(t) w2t 2] w®) = [w@)  w@®)] yt) =
[yl (t) yz(t)]T, with for example

(2.16)

where x(t)

[—pras 0 0 ] p11 O
0 0 a
A= 0 —poaz O Bi=10 pa|.,Ci= {pmz —ap2a2p302}’
| P1az  p2a2 —p3az | | 0 0 |
[—praz 0 0 ] [p11 0 |
0 0 a
Ap = 0 —poaz O ;Ba=1] 0 pa2|,C2= {pmz ap2a2p301}7
| Piaz  p2a2 —p3aq | | 0 0 |
and, so on.

2.1.2 TS fuzzy Controller

For a fuzzy controller design, it is supposed that the fuzzy system is locally
controllable. Then, the local state feedback controller is designed as follows:

Controller Rule i: IF v4(t) is M;; and --- and vy(¢) is My THEN
u(t) = —K;x(t), for i=1,2,---,r (2.17)
where K is the controller gain. Then, the final TS fuzzy controller is

u(t) = = 3" i (t) Kia(0) (2.18)

The block diagram of the TS fuzzy controller is given in Figure 2.2.
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Controller Model

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

weighted x }

I

) ) :

Rule r :
I

I

I

|

|

= u(t) = -K;x(t)

Y

u(t) = -Kx(t) weighted

Y

Y

Fig. 2.2. The TS type fuzzy controller.

The resulting fuzzy controller (2.18) is nonlinear in general since the coef-
ficients of the controller depend nonlinearly on the system input and output
fuzzy weights. Moreover, the resulting fuzzy controller (2.18) could be repre-
sented as a particular form of a gain scheduled controller where the gains are
varied as a function of operating conditions. The TS type fuzzy control scheme
has a major advantage over the existing crisp gain scheduling scheme. That is,
it provides a general method for the interpolation of available local control law
into an overall gain scheduling control law which is computationally efficient.

Recently, there have been some attempts for designing a fuzzy controller
and a fuzzy filter for a class of uncertain nonlinear systems which is described
by a TS fuzzy model with parametric uncertainties; e.g., [41, 48, 59]. This is
due to the fact that uncertainties are often a source of instability. However,
the existing design results of the TS fuzzy model with parametric uncertain-
ties in [41, 48, 59] are quite conservative since they treat nonlinearities as
uncertainties when analyzing the problems. Thus, it is necessary to have an
approach that can help us to overcome the conservativeness.

It is also clear that many practical application systems may experience
abrupt changes in their structure and parameters, caused by phenomena such
as parameters shifting, tracking, and the time required to measure some of
the variables at different stages. Such a system can be modelled by a hybrid
system with two components in the state vector. The first one which varies
continuously is referred to as the continuous state of the system and the second
one which varies discretely is referred to as the mode of the system. A special
class of hybrid systems known as a Markovian jump system (MJS) has been
widely used to model manufacturing systems [69] and communication systems
[70]. Although linear Markovian jump systems (LMJSs) have been extensively
studied; e.g., [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84], to the best
of our knowledge, the control design of nonlinear Markovian jump systems
(NMJSs) has still not been considered in the literature. Recently, there has
been some attempt in this area. In [74], the Hamilton-Jacobi equation (HJE)
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based on sufficient conditions for NMJS to have an H, performance has been
derived. Even, until now, it is still very difficult to find a global solution to
the HJE either analytically or numerically.

Therefore, in order to bridge the gap of the parametric uncertainties is-
sue in NSs and NMJSs, Part I will present a new novel methodology on de-
signing a robust H, fuzzy controller and a robust Ho fuzzy filter for these
classes of systems which are described by a TS fuzzy system with paramet-
ric uncertainties by distinguishing nonlinearity from uncertainty in order to
avoid conservativeness. Then, based on an LMI approach, we develop a tech-
nique for designing a robust H, fuzzy controller and a robust Hy fuzzy filter
such that a given prescribed performance index is guaranteed. The detail of
the design problems for UNSs and UNMJSs is presented in Chapter 3 to
Chapter 6.

2.2 Outline of Part I

In Part I, the synthesis design procedure of a robust Ho fuzzy controller and
a robust H filter for a class of UNSs and UNMJSs which is described by a
TS fuzzy system with parametric uncertainties and with/without MJs is pre-
sented. The outline of Part I is presented as follows. Chapter 2 provides some
background and motivation on UFSs. Chapters 3 and 4 present the synthesis
design procedure of a robust H., fuzzy controller and a robust H., fuzzy
filter for the class of UFSs. Then, Chapters 5 and 6 respectively present the
synthesis design procedure of a robust H., fuzzy controller and a robust H
fuzzy filter for the class of UFMJSs. Finally, to illustrative the effectiveness
of the design procedures, a numerical example is also given at the end of each
chapter.
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Robust H,, Fuzzy Control Design for
Uncertain Fuzzy Systems

In this chapter, we present a new technique for designing a robust fuzzy state
and output feedback controller for a TS fuzzy system with parametric uncer-
tainties. Based on an LMI approach, we develop a technique for designing a
robust fuzzy controller such that the L£o-gain of the mapping from the exoge-
nous input noise to the regulated output is less than a prescribed value.

3.1 System Description

In this chapter, we generalize the TS fuzzy system to represent a TS fuzzy
system with parametric uncertainties. As in [85], we examine a TS fuzzy
system with parametric uncertainties as follows:

#(t) = Yoy ma(v(6) |[4i + AAJa(t) + (B, + AByJw(t)
+Bo, + AByJu(t)],  @(0) =0

£(1) = Sy w161, + ACJe(0) + [Dro, + AD Jut] Y
y(t) = 31y miv(®)[[Ca, + ACs,Jo(t) + [Dar, + ADay Ju(®)]
where v(t) = [v1(t) -+ vp(t)] is the premise variable vector that may

depend on states in many cases, u;(v(t)) denotes the normalized time-
varying fuzzy weighting functions for each rule (i.e., p;(v(t)) > 0 and
Soi_i mi(v(t)) = 1), ¥ is the number of fuzzy sets, z(t) € R™ is the state
vector, u(t) € R™ is the input, w(t) € RP is the disturbance which be-
longs to L[0,00), y(t) € R’ is the measurement, z(t) € R* is the con-
trolled output, the matrices A;, By, Ba.,C1,,Cs,, D12, and Day, are of ap-
propriate dimensions, and r is the number of IF-THEN rules. The matrices
AA;, ABy,, ABy,, ACy,, ACs,, AD1y, and ADsy;, represent the uncertainties
in the system and satisfy the following assumption.
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Assumption 3.1
AAi = F(Z‘(t),t)Hll, ABL = F(I(t),t)HQN ABQl = F(x(t), t)Hgi,

AOli = F(I‘(t),t)Hzll, A027 = F(I(t),t)Hg;?, ADlgi = F(l‘(t),t)H(jl
and ADyy, = F(x(t),t)Hy,

where Hj,, j =1,2,---,7 are known matriz functions which characterize the
structure of the uncertainties. Furthermore, the following inequality holds:

[E (@), )l < p (3.2)

for any known positive constant p.
Next, let us recall the following definition.

Definition 1. Suppose v is a given positive number. A system (3.1) is said
to have an Lo-gain less than or equal to v if

T.f T.f
/ T ()2(8)dt < 42 [ / wT(t)w(t)dt] L 2(0)=0 (3.3)
0 0

for all Ty >0 and w(t) € L2]0,T¥].

3.2 Robust H, State-Feedback Control Design

The aim of this section is to design a robust H ., fuzzy state-feedback controller
of the form

u(t) = piKja(t) (3.4)
j=1

where K is the controller gain, such that the inequality (3.3) holds. The state
space form of the fuzzy system model (3.1) with the controller (3.4) is given
by

(1) = Y7y Sy ity [(Ai + Ba ) + (AA; + ABy K)a(t)

(3.5)
+[Bi, + ABJu()],  2(0) =0.
The following theorem provides sufficient conditions for the existence of a
robust Ho, fuzzy state-feedback controller. These sufficient conditions can be
derived by the Lyapunov approach.
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Theorem 1. Consider the system (3.1). Given a prescribed Hoo performance
v > 0 and a positive constant §, if there exist a matriz P = PT and matrices

Y, 5=1,2,---,r, satisfying the following linear matriz inequalities:
P>0 (3.6)
2 <0, 1=1,2,--- 71 (37)
_Qij + .jS <0, i<j<r (38)
where

AP+ PAT + By, Y; + Y BY ()7 ()7
Qij = ~ B{N —’}/I (*)T (39)
CliP + Dl?inj 0 _fyI
with
By, =[0I T8I By, ], Cy, = [22HT 0 VIApHE v2ACT ],

2

- T T‘ T
Dus, = [0 % HT VINHE VIDY, | A= (14 Y0 3 (1] 1

i=1 j=1

then the inequality (3.8) holds. Furthermore, a suitable choice of the fuzzy
controller is

u(t) = piKja(t) (3.10)
j=1
where
K;=Y;P". (3.11)
Proof: See Appendix. [ |

3.3 Robust H., Output Feedback Control Design

The nature of the information of the state available to the controller has a
major effect on the complexity of the designing problem and of the resulting
controller. The state-feedback control design problem is an easier problem in
which all information are available. However, in most real physical systems,
the state is not perfectly known, and so we must estimate it. The process of
estimating the system state from the measurement output that are available
is called the estimator design. By utilizing the state estimator, the output
feedback problem is converted to the state-feedback problem for a new prob-
lem. This new problem employs the estimated state as its own state variable
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and the solution of the new state-feedback problem leads to the solution of
the dynamic output feedback control problem. Basically, the dynamic output
feedback is a coupling of control and estimation.

This section aims at designing a full order dynamic H., fuzzy output
feedback controller of the form

B(t) = Sy X iy | Aig () + Biy(0)] (3.12)
u(t) = iy Cid(t)

where Z(t) € R™ is the controller’s state vector, Aij, B; and C; are parame-
ters of the controller which are to be determined, and ji; denotes the nor-
malized time-varying fuzzy weighting functions for each rule (i.e., fi; > 0 and
> fi; = 1), such that the inequality (3.3) holds.

In this section, we consider the designing of the robust H, output feedback
control into two cases as follows. In Subsection 3.3.1, we consider the case
where the premise variable of the fuzzy model p; is measurable, while in
Subsection 3.3.2, the premise variable which is assumed to be unmeasurable
is considered.

3.3.1 Case I-v(t) is available for feedback

The premise variable of the fuzzy model v(t) is available for feedback which
implies that p; is available for feedback. Thus, we can select our controller
that depends on p; as follows:

B(t) = iy Sy s | A () + Biy(0)| (3.13)
u(t) = iy i (1),

Before presenting our next results, the following lemma is recalled.

Lemma 1. Consider the system (3.1). Given a prescribed Ho performance
~ and a positive constant 8, if there exists a matric P = PT satisfying the
following linear matriz inequalities:

P>0 (3.14)
AP+ PADT ()T (»)7
(Bi{)T I (T | <0, 4,5=1,2,---,r (3.15)
cYp 0 -1
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} T

By, =[611610By, 0], Cy, =[2HL 02HE V2ApHE V2XCT,

Dis, = [0 22HF 0 V20pHT V2ADT, |, Da1, = [00 061 Doy, 1]

i
1
2

I T
and A = 1+p222[||H§;H2jH+||H%H7j||} :

i=1 j=1

then the inequality (3.3) is guaranteed.

Proof: See Appendix. [ |

Knowing that the controller’s premise variable is the same as the plant’s
premise variable, the left hand of (3.15) can be re-expressed as follows:

AYP + P(AYT +472B(BI)T + P(CTCAP. (3.16)

Before providing LMI-based sufficient conditions for the system (3.1) to have
an H, performance, let us partition the matrix P as follows:

X y-'-X

P=ly1_xx_y-

(3.17)

where X € R"*™ and Y € R™*". Utilizing the partition above, we define the
new controller’s input and output matrices as

Ayl 23

Bi A LY X]B; (3.18)

C;, = CGY.

Using these changes of variable, we have the following theorem.

Theorem 2. Consider the system (3.1). Given a prescribed Hoo performance
v > 0 and a positive constant &, if there exist matrices X = X1, Y =Y7T, B;

and C;, 1 =1,2,--- ,r, satisfying the following linear matrixz inequalities:
X1I
R

(3.19)

X>0 (3.20)

Y >0 (3.21)

Ui, <0, t=1,2,---,r (3.22)

Upy <0, 1=1,2,---,r ( )
Uiy, + %11, <0, i<j<r (3.24)
Wy, + Wy, <0, i<j<r (3.25)

i1

Ji
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where
AY +YAT + B, C; +CTBT +~72B, BT ()T
Uy, = 2 i ~2lCJ +Cz~ 2]’T+’Y 1,51y (*) (3.26)
’ [YCE + I D ] i
g _ [ATX + XA+ BiCy, + CF) %.T +CTCy, (0T o
22, — [X§11 + BiD21J _721 .
with

Bi, = [6I1610B, 0], Ci, = [2HT 02HL VarpHE v2ACL]",

Dia, = [0 2HT 0 V2ApHT 2ADT, 1", Doy, = [000 6T Dyy, 1]

T T 2
and A= 1+ 33 [1HE I, |+ 1 HL )]
i=1 j=1
then the prescribed Hoo performance v > 0 is guaranteed. Furthermore, a
suitable controller is of the form (3.13) with

Ay = [y = X] 7'M, v
B —[v'-x]"'B (3.28)
éi :CZ‘Y_I

where
M= AT — XAY — XBy,C;Y — [Y 7' = X|BiCy, Y
—CT[CLY + Dia,C;Y]  —~72 {XBli + [y - x] Bif)mi} BT, (3.29)

Proof: Suppose there exist X and Y such that the inequalities (3.19) and
(3.20)-(3.21) hold. The inequality (3.19) implies that the matrix P defined in
(3.16) is a positive definite matrix. Using the partition (3.17), the controller

(3.18) and multiplying (3.16) to the left by [§ é] and to the right by [11/ }(;] ,
we have
[Qlolw' @202“ } (3.30)
where
By, = AiY +YA] + By,C; +C By, +~ *By,B],
+[YCT +¢IDL, |[YCE +cTDL, )" (3.31)
Poo,, = ATX + XA; + B;iCy, + C1 Bl + CT ¢y,
+y 2 [X By, + BiDoy, | [X By, + BiDoy,]" (3.32)
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Note that &11,; and Pay,; are the Schur complements of ¥11,; and Way, ;, Using
(3.22)-(3.25), we have (3.30) less than zero. Hence, by Theorem 2, we learn
that the inequality (3.3) holds. |

3.3.2 Case II-v(t) is unavailable for feedback

The output feedback fuzzy controller is assumed to be the same as the premise
variables of the fuzzy system model. This actually means that the premise
variables of fuzzy system model are assumed to be measurable. However, in
general, it is extremely difficult to derive an accurate fuzzy system model by
imposing that all premise variables are measurable. In this subsection, we do
not impose that condition, we choose the premise variables of the controller to
be different from the premise variables of fuzzy system model of the plant. In
here, the premise variables of the controller are selected to be the estimated
premise variables of the plant. In the other words, the premise variable of the
fuzzy model v(t) is unavailable for feedback which implies y; is unavailable for
feedback. Hence, we cannot select our controller which depends on p;. Thus,
we select our controller as follows:

B(1) = 0y X ity Asy () + Biy(1)] (333
u(t) = E::l /lzClj:(t)
where [i; depends on the premise variable of the controller which is different
from p;.
Let us re-express the system (3.1) in terms of ji;, thus the plant’s premise
variable becomes the same as the controller’s premise variable. By doing so,

the result given in the previous case can then be applied here. First, let us
rewrite (3.1) as follows:

#(t) = Sy i [Ai + AAJa(t) + [By, + ABy Ju(t) + [Ba, + ABy,Ju(t)]
+ 200 |[Ai + AAJa(t) + [Br, + AByJw(t) + [Ba, + ABy,Ju(t)
— S | [As + AAJw(t) + [By, + ABy,Jw(t) + [Bs, + ABsJu(t)
2(6) = X0y i [[Cr, + AC)Ja(t) + [Dz, + ADspJu(t)|
+ 301 i[O, + ACyJa(t) + [Dia, + ADia,Ju(t)
]

(

y (
— X0 [[Cy, + ACyJa(t) + [Dia, + ADis Ju(t)

(t) + [Dax, + ADa1 Ju(t)|

]

]

) (
) (

i

y(t) = S0y [[Ca + ACy Ja
+Z::1 L [02 + ACs, x(t [D21i + ADQL.]’U} t)
1.

[Da1, + ADoy,|w

Ja(t) + (
)+ (

x(t

— e i [021 + ACy,
(3.34)
Rearranging (3.34) together with employing Assumption 3.1, we obtain
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i(t) = Xy i ([As + (), ) Hy, + (i = i) A1+ + (0 = fir) A,
0,0 — ) F, 4 F(0), 00— i) i Jo(0)
+1B,  F(), 0, + (11 = ) By + -+ (e — i) B,
FF (0, 8) (01— ) Ha, -+ F(al0),0)(te — or) o Ju(t)
+[B2, + F(x(t)at)Hs,; + (u1 — ) B, + -+ (tr — f1) Ba,
Fa(t),t) (i — i) Ha, + -+ + P(0(6),6) (1 — fir) Hy, Ju(t))
2(t) = i i ([C1, + F(@(t), ) Ha, + (= ) Cr, + -+ (= i) Ca,
FF((0),0) (1 — ), + -+ F((t), 0ty — fir) Ha, (1)
+[Di2, + F(2(t),t)Hs, + (11 — f1) D12, + -+ + (e — fr) D12,
FP(@(), )1 — ) Hs, + -+ + F(a(t), ) (e — fir) Hs, Ju(?)

908 = S e ([Co,+ F(0.0)Ho,+ (1 = )Co, 4+ (i = ),

HF((0: 0 — i) Ho, + -+ F(@(0),0) e — i) Ho,Ja(1)
+[Da1, + F(x(t),t)Hr, + (1 — fn)Da1, + -+ + (e — fir)Da1,
FF(@(),6)( — ) Hr, + -+ F(@(t), 1)y — fir) Hr, Ju())
(3.35)
Then, from (3.35), we get
B(t) = Yoy i [[Ai + AAJa(t) + [31 + ABy Ju(t)
+[Bs, + ABy,Ju(t)], (0) = 530

(
2(t) = Yi_y fui |[Ch, + ACy,Ja(t) 4 [Di2, + AD1g,Ju(t)
y(t) = Y1y fui |[Ca, + ACy, | (t) + [Da1, + ADay, Jw(t)

A/_ll = F(m,i‘,t)ﬁli, ABl,i = F(aj‘,jﬁ,t)ﬁgi, ABQl = F(Z‘,i‘,t)g&,

>
Q\
||

F((E z t)H4 5 ACQ = F(ZL’ T t)Hg, 5 ADlg :F(.’E,"ﬁ,t)Hﬁi
and AD2li :F(.I,I,t)H7i

with

Hy, = [HT AT -~-ATTHE~--H1TT]T, Hy, = [HI BT ... BT H;...Hg]T,
Hy, = [HE BY - B HY 0" f, = [#Eof-of ul .. mf]",
— T - T
Hs, = [H5T C;Fl“'C2TT Hngg;}  Hg, = [Hg D{QI...D{QT HgHa]

Ay, = [HE DL, --- DI, HT .. .HF]" and

F(x(t),2(t),t) = [F(x(t),t) (p1—pa) - (pr—fir) F(z(t),t)(pa—fn) -
F(z(t),t)(pr — m)}. Note that || F(z(t), #(t),t)|| < p where p = {3p% + 2} 2.
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p is derived by utilizing the concept of vector norm in basic system control
theory and the fact that p; >0, 2; >0, >0 gy =1and >, fi; = 1.

Note that the above technique is basically employed in order to obtain
the plant’s premise variable to be the same as the controller’s premise vari-
able; e.g. [27, 28]. Now, the premise variable of the system is the same as the
premise variable of the controller, thus we can apply the result given in Case I.

Theorem 3. Consider the system (3.1). Given a prescribed Hoo performance
v > 0 and a positive constant 0, if there exist matrices X, Y, B; and C;,
1=1,2,---,r, satisfying the following linear matrix inequalities:

R (3.31)
X>0 (3.38)
Y >0 (3.39)

W, <0, i=1,2,---,r (3.40)

Wy <0, i=1,2,---,r (3.41)

(3.42)
(3.43)

it

Wll,;j + !pllji <0, i<j<r 3.42
Lpggij + g/gzﬂ <0, i<j3<r 3.43
where
AY + YAT + By,C; + CIBY +~472B,, BT (+)7
T R s e v i R I CRE
[YCY, + ¢l D, | —I
v _ [ATX + XA+ BiCo, + CIBI +CTCy, (0)7 (3.45)
2%y [XBL -+ BiDglj} 7’}/2.[ .
with

=~ = R — J—— — — — T
By, =[6I1610By, 0], Cy, =[2HT 02HL V2XpH] Voxct ],

Dis, = [0 2HF 0 v2ApHL VZADL, |, Doy, = [00 061 Doy, I]

7

2

and X = {1+ 2* 33 (| HL Ha, || + | AL H || |

i=1 j=1

then the prescribed Hoo performance v > 0 is guaranteed. Furthermore, a
sugtable controller is of the form (3.33) with

= X
s = [yl -Xx] B (3.46)
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where
M;j = —AT = XAY — XBo,C;Y — [Y ! = X|BiCy,Y
~CT[CL,Y + Do, C;Y] — 2 {Xéli + [y - X] Bif)zli} BT

Proof: Since (3.36) is of the form of (3.1), it can be shown by employing the
proof for Theorem 2. ]

3.4 Example

Consider the following problem of the chaotic Lorenz system which is de-
scribed by the following equations; see [59]

.i‘l(t) = —0'],‘1(t) +U.132(t) +U( )+0 1w1( )
Ea(t) = ray(t) — @o(t) — 1 (t)ws(t) + 0.1wa(t)
() = 22(B2a(0) (0 1 0.l (1) (3.47)
t) =[] (t) 23 (t) 25 (1)]
) = Jx(t) + O Twi (¢ )

where x1(t), x2(t), x3(t) denote the state vectors, u(t) is the control input,
wq(t), wa(t), ws(t) are the disturbance noise inputs, y(¢) is the measurement
output, z(t) is the controlled output, J is the sensor matrix and the bounded
uncertain parameters o, r and b are given by 10+30%, 284+30% and 8/3+30%,
respectively. Note that the variables x1(t), 22(t) and z3(t) are treated as the
deviation variables (variables deviate from the desired trajectories).

Since the nonlinear terms in (3.47) can be viewed as a function of z1(t),
we can re-expressed (3.47) as

21(t) = —ox1(t) + ox2(t) + u(t) + 0.1wi (t)

Zo(t) = ray(t) — x2(t) — (z1(¢)) - 23(t) + 0.1ws ()

a(t) = (21(8) - (t) — bra(t) + 0. Lua (1) (3.48)
T

HOEAGIN

¢ (2] (t)
Jx (t)+01w1()

t

I

(t)
(t)

<

The control objective is to control the state variable z1(t) for the range
x1(t) € [N1 Na]. For the sake of simplicity, we will use as few rules as possible.
Note that Figure 3.1 shows the plot of the membership functions represented
by
—l’l(t)+N2 (El(t) —N1

Ny — Ny Ny — Ny -

Knowing that x1(¢) € [N1 Na], the nonlinear system (3.48) can be approx-
imated by the following two rules TS model:

My (1 (t)) = and Ma(z1(t)) =
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1 M l(xl) MZ(XI)

=20 -10 0 10 20 30

Fig. 3.1. Membership functions for the two fuzzy set.

Plant Rule 1: IF z1(t) is M;(z1(t)) THEN
z(t) = [A1 + AAy]x(t) + By, w(t) + Bo,u(t), x(0) =0,
Z(t) = Clrr(t))
y(t) = Cle(t) + D211w(t)'

Plant Rule 2: IF z4(t) is M3(z1(t)) THEN

x(t) = [Ag + AAQ]Q?(t) + 312w(t) + Bgzu(t), $(O) =0,
Z(t) = Clzx(t)7
y(t) = Co,z(t) + D21, w(t)

where
—-1010 O —-1010 O
A= 28 =1 =Ny |, A= 28 —1 =N, |,
0 N; —-8/3 0 N, -8/3
01 0 O 1
By, =By,=|0010], By, =By, |0],
0 0 0.1 0
100
Ci,=C1,|010|, Cy =Cy =J, Do, =Dy, = [0.1 00]7
001

AAl = F(l’(t),t)Hll, AAQ = F(I’(t),t)HlZ,
w(t) = o] () 23 (t) 25 (1)]" and w(t) = [w] () w3 (t) wg ()]

27

Let us choose the value of [N; Ns] in the membership function as
[-20 30]. Now, by assuming that in (3.2), [|[F(x(t),t)|| < p = 1 and since
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the values of o, r, b are uncertain but bounded within 30% of their nominal
values given in (3.47), we have

—0.30 030 0
H11 = H12 = 0.3r 0 0
0 0 —0.3b

State-feedback controller design

Using the LMI optimization algorithm and Theorem 1 with vy =1 and § =1,
we obtain

104.7498 —8.1629 —1.1823
P = | —8.1629 5.1783 0.9345 |,
—1.1823 0.9345 6.7383

K = [—38.8875 —816.1115 —3.9273},

Ky = [—37.4290 —815.5695 4.1287].

The resulting fuzzy controller is
2
u(t) = 3 K a(t)
j=1

where
pr = Mi(21(t)) and pg = Ma(x1(t)).

Output feedback controller design

Case I: v(t) are available for feedback

In this case, z1(t) = v(t) is assumed to be available for feedback; for
instance, J = [1 0 0]. This implies that u; is available for feedback. Using
the LMI optimization algorithm and Theorem 2 with v = 1 and § = 1, we
obtain the following results:

40.961 —0.3001 0.0003 64.041 —6.6279 —0.0180

X = | —0.3001 0.0326 —0.0020 | ,Y = | —6.6279 0.7784 0.0345 |,
0.0003 —0.0020 0.0529 ~0.0180 0.0345 0.8385

[ -52.645 913.03 1116837 [ -52.974 909.63 0.8313 ]

Aip = | 04211 —93.811 ~1.1202 |, A;o = | 0.5070 —93.0535 —0.2157 | ,

| 23239 —0.4233 0.0865 | | 2.3414  —0.2540 0.1024 |

~ [-54.839 91245 —6.7553] [ —54.767 913.461 —17.1638]

Apy = | 1.4467 —93.619 0.6829 |, Ap = | 1.3807 —94.074 1.5985 |,

| —3.5367 —0.1599 0.2080 | | —3.5229 —0.0374 0.1865 |
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. —110.4306 A 113.2188
B = 4.8589 , By = 6.1387 |,
2.9909 —4.5464

= [ —36.1488 —710.9845 —3.2817 | ,Co = [—35.9847 —709.7215 5.1803 ] .
The resulting fuzzy controller is

2

i(t) = Z Z pity Ay & (t) + Z i By (t)

i=1j=1 i=1
2 A
u(t) = ZpiCii"(t)
=1

where
pr = Mi(z1(t)) and po = Ma(x1(t)).

Case II: v(t) are unavailable for feedback

In this case, x1(t) = v(t) is assumed to be unavailable for feedback; for
instance, J = [0 0 1]. This implies that p; is unavailable for feedback. Using
the LMI optimization algorithm and Theorem 3 with v = 1 and § = 1, we
obtain the following results:

[ 15.386 —0.0454 0.0001 ] 195.08 —19.857 —0.0836
X = | —0.0454 0.0086 —0.0005|,Y = | —19.857 2.3203 0.1018 |,
| 0.0001 —0.0005 0.0121 | —0.0836 0.1018 2.5038
) [—72.511 15945 6.3456 | [—72.923 1603.7 —9.7233]
Ay = | 5.0232 —162.66 —0.6001 | , A5 = | 5.1345 —162.85 0.9974
| 1.2000 —0.7556 0.1000 | | 1.2000 —0.5689 0.1000 |
A [ —74.545 1595.2 —5.6743] A [—74.529 1595.2 —5.6744 ]
Ayy = | 55411 —162.17 0.5609 |, Ass = | 5.5411 —162.13 0.5966
| —1.7009 —0.9421 0.2000 | | —1.7008 —0.9432 0.2000 |
A —166.7783 ] A —173.8473
B, = 7.4682 |, By = 9.1193 |,
4.5048 —6.8346

Ci = [14.193 —410.52 —0.3593] , Cy = [14.236 —412.97 3.8984] .

The resulting fuzzy controller is
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Ratio of the regulated output energy to the disturbance energy

Fig. 3.2. The ratio of the regulated output energy to the disturbance noise energy:
Ty T
']0 Tzt (t)z(t)de

(fOTf wT(t)w(t)dt)'

where
fir = Mi(21(t)) and fio = Ma(21(t)).

Remark 1. Both robust fuzzy state and output controllers guarantee that the
Lo-gain, v, is less than the prescribed value. The ratio of the requlated output
energy to the disturbance input noise energy which is obtained by using the
Heoo fuzzy controllers is depicted in Figure 3.2. The disturbance input signals,
wy(t), wa(t) and ws(t), which were used during the simulation is given in
Figure 3.3. After 3 seconds, the ratio of the requlated output energy to the
disturbance input noise energy tends to a constant value which is about 0.32
for the state-feedback controller, and 0.21 for the output feedback controller in
Case I and 0.14 in Case II. Thus, for the state-feedback controller where v =
v/0.32 = 0.566, for output feedback controller in Case I where v = 1/0.21 =
0.458 and in Case II where v = +/0.14 = 0.374, all are less than the prescribed
value 1. 0
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Fig. 3.3. The disturbance input signals, w1 (t), w2 (t) and ws(t).

3.5 Conclusion

This chapter has investigated the problem of designing a robust fuzzy con-
troller for a TS fuzzy system with parametric uncertainties that guarantees
the L5-gain from an exogenous input to a regulated output being less than or
equal to the prescribed value. An LMI-based approach has been employed to
derive sufficient conditions for the existence of a robust H, fuzzy controller in
terms of a family of LMIs. Finally, a numerical simulation example has been
presented to illustrate the effectiveness of the designs.
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Robust H,, Fuzzy Filter Design
for Uncertain Fuzzy Systems

The aim of a filter is to estimate the values of internal system variables that
are not measured from the available output[86, 87, 88, 89, 90]. Estimation
problems arise in diverse fields such as communication, control and signal
processing. In this chapter, we develop a technique for designing an H filter
for a TS fuzzy system with parametric uncertainties. The H, filter that we
propose will ensure that the L£o-gain from an exogenous input to an estimate
error output is less than or equal to a prescribed value.

4.1 Robust H, Fuzzy Filter Design

This chapter deals with the problem of designing an H,, filter. Without loss
of generality, we assume that u(t) = 0. Let us recall the system (3.1) with
u(t) = 0 as follows:

i(t) = Yoy i [[Ai + AAJa(t) + [Br, + AByJw(t)], 2(0) =0
2(t) = Sy i[O, + ACy Ja(t)] (4.1)
y(t) = Xiy 1 [[Ca, + AC2Ja(t) + [Daa, + ADa Ju(t)|.
We are now aiming to design a full order dynamic Ho, fuzzy filter of the form
B(t) = S0y Sy ity [ A () + Biy(t)| 42)
() = Xiy 1iCi (1)
where Z(t) € R" is the filter’s state vector, 2 € R* is the estimate of z(t), A;j,
Bi and C’Z are parameters of the filter which are to be determined, and ji;

denotes the normalized time-varying fuzzy weighting functions for each rule
(ie., i; > 0and Y ._, fi; = 1), such that the following inequality holds

IS
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/OTf (Z(t) - é’(t))T (z(t) - 2(t))dt <7’ VOTf wT(t)w(t>dt] (4.3)

with (0) = 0, where (z(t) — 2(t)) is the estimated error output, for all Ty > 0
and w(t) € EQ[O,T}!‘].

Figure 4.1 shows the block diagram of a robust fuzzy filtering problem
associated with an uncertain fuzzy system. The major implication of this
approach is that the structure of the filter has to take into a account the
effect of uncertainty. The problem addressed is the design of a filter such that
the induced operator norm of the mapping from the noise w(t) to the filter
error e(t) = z(t) — 2(t) is kept within a prescribed bound for all admissible
parameter uncertainties. Clearly, in real control problems, all of the premise
variables are not necessarily measurable, thus two cases will be considered in
this section. Subsection 4.1.1 considers the case where the premise variable
of the fuzzy model p; is measurable, while in Subsection 4.1.2, the premise
variable is assumed to be unmeasurable.

z(t)
Lt), Uncertain Fuzzy System
4.1 y(®
+1_e()=z()—Z(1)
- Robust Fuzzy Filter 2
4.2)

Fig. 4.1. Block diagram of an uncertain fuzzy system with a robust Ho fuzzy filter.

4.1.1 Case I-v(t) is available for feedback

The premise variable of the fuzzy model v(t) is available for feedback which
implies that pu; is available for feedback. Thus, we can select our filter that
depends on p; as follows [91]:

B(t) = Sy Xy it [Asy () + Buy(1)] (4

é(t) = 22:1 ,uz-Cii‘(t).
Figure 4.2 shows the block diagram of the robust H., filtering problem
associated with uncertain fuzzy system in case that u; is available for feedback.
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z(t)
w(v) Uncertain Fuzzy System y(0)
“4.1
| Fuzzy Filter v N
(44) zr: 5 e(t)—z(t)—z(t)

Fig. 4.2. Block diagram of an uncertain fuzzy system with a robust Heo fuzzy filter
in Case I.

Before presenting our next results, the following lemma is recalled.

Lemma 2. Consider the system (4.1). Given a prescribed Ho performance
~ and a positive constant 6, if there exists a matric P = PT satisfying the
following linear matriz inequalities:

P>0 (4.5)
AGP +PAYT ()T ()7
(BT —2I ()7 | <0, i,j=1,2--,r (4.6)
cip 0 -1
where
i AL 0 ) Blj % A
A5= gy i | Pi=| gl | maci=i6n Ducy
J J
with
By, = [6IT0By, 0], Gy, =[2HT 2HT arpHT vV2ACT ],

Dia=[000—=v2AI]", Day, =[006I Dy, I]

1

2

and \= (1402 33 [IHE I, |+ | HL )] )

i=1 j=1

then the inequality (4.3) is guaranteed.
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Proof: The proof can be carried out by the same technique used in
Lemma 3.1. ]

Knowing that the filter’s premise variable is the same as the plant’s premise
variable, the left hand of (4.6) can be re-expressed as follows:

AP+ PADT H BB T )

C

Before providing LMI-based sufficient conditions for the system (4.1) to have
an H, performance, let us partition the matrix P as follows:

X y-l-X

P=ly-1_xx_y-!

(4.8)

where X € R"*™ and Y € R"*". Utilizing the partition above, we define the
new filter’s input and output matrices as

A A

2y - X]B

5.2 - X1 (19)

Using these changes of variable, we have the following theorem.

Theorem 4. Consider the system (4.1). Given a prescribed Ho, performance
v > 0 and a positive constant &, if there exist matrices X = X1, Y =Y7T, B;

and C;, 1 =1,2,--- ,r, satisfying the following linear matrix inequalities:
[f {,] >0 (4.10)
X>0 (4.11)
Y >0 (4.12)
U, <0, i=1,2,---,r (4.13)
Uo,, <0, i=1,2,---,r (4.14)
!pllij + !pllji <0, i<j<r (415)
Lpggij + ngﬂ <0, i<j<r (416)
where
A (Aiy YAl szélTiBle (*)T> (4.17)
Y [YCT + P DL I
A;FX + XA; + BiCQj T
WQQM = ( +C§:BJT + 0’11:6*1] ) (*) (418)

[Xéh- + Biﬁzlj] g —2I
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with

By, =[0I 108y, 0], Gy, =[%HT 2HT JarxpHT vaxCT]",
Dia=[000—v2\I]", Doy, = [006I Dy, I]

1

2

and A = 1+p2zz[||H§H2j\\+||H$;H7j||] :

i=1 j=1

then the prescribed Hoo performance v > 0 is guaranteed. Furthermore, a
suitable filter is of the form (4.4) with

Ay = [y = X] 7'M, v
B — [y -x]"'B (4.19)
éi :CiY_l

where

My = —AT — XAY — 2 {XBh + [yt - X]BiDmi(M)} B,

J

—[Y=' — X|BiCy,Y — CT [C1,Y + D12, C;Y]. (4.20)

Proof: Suppose there exist X and Y such that the inequalities (4.10) and
(4.11)-(4.12) hold. The inequality (4.10) implies that the matrix P defined in
(4.7) is a positive definite matrix. Using the partition (4.8), the filter (4.9)

and multiplying (4.7) to the left by [§ ﬂ and to the right by [3; ﬂ we

have

P11, 0
s 0 ] am

where
D1, = AY +YAT + 4728, BT + [YOF +¢IDY, J[vCE +cIDY, )"
By, = AT X + X A; + BiCy, + C3.B] + C1.Cy,
_ = ~ ~ =T
+y72 (X By, 4+ BiDa1,| [X By, + B;iDay, |

Note that @11,; and Pag,; are the Schur complements of ¥11,; and Was, ;. Using
(4.13)-(4.16), we have (4.21) less than zero. Hence, by Theorem 4, we learn
that the inequality (4.3) holds. |
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4.1.2 Case IT-v(t) is unavailable for feedback

Now, the premise variable of the fuzzy model v(t) is unavailable for feedback,
which implies pu; is unavailable for feedback. Hence, we cannot select our filter
which depends on ;. Thus, we select our filter as follows [91]:

B(t) = Ciy Sy i | A () + By (0)] (4.22)
(t) = X0, uCii(t)

where [i; depends on the premise variable of the filter which is different from
;. Figure 4.3 shows the block diagram of the robust H., filtering problem
associated with uncertain fuzzy system in case that u; is unavailable for feed-
back.

IS

z(t)

w(t) .
Uncertain Fuzzy System y(©)

“.1)

Fuzzy Filter v
(4.24) TUB
|

e(t)=z(t)-z(t)

X(t)

Fig. 4.3. Block diagram of an uncertain fuzzy system with a robust Heo fuzzy filter
in Case II.

By applying the same technique used in Subsection 3.3.2, we have the follow-
ing theorem.

Theorem 5. Consider the system (4.1). Given a prescribed Ho, performance
v > 0 and a positive constant &, if there exist matrices X = X1, Y =Y7T, B;
and C;, i =1,2,--- |1, satisfying the following linear matriz inequalities:
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Hf H >0 (4.23)
X >0 (4.24)
Y >0 (4.25)
Uy, <0, i=1,2--,r (4.26)
Wyy, <0, i=1,2,--,r (4.27)
U, + Wy, <0, i<j<r (4.28)
Upo, + W, <0, i<j<r (4.29)
where
Uy, = <AiY Frals WQQBlTiBE (*)T> (4.30)
YT +cI'DY)] —I
ATX + X A; + BiCy, T
Wy, = ( +CIBY 4+ CT ¢y, ) () (4.31)
[Xéh + Bz'ﬁmj]T -1
with

By, = [6I10By, 0], Gy, =[2aT 2AL AL vV2AcT ],
D1 =1[000—v2AI]", Dy, =[006I Dy, T]

1

s r 2
and X = {1+ 2* 33 (L, || + | AL H ] |
i=1 j=1

then the prescribed Hoo performance v > 0 is guaranteed. Furthermore, a
suitable filter is of the form (4.22) with

Ay = [y ' = X] 7'My Y2
Bi = [Y_l — X} _1Bi (432)
Ci = Ciyil

where

Proof: It can be shown by employing the same technique used in the proof for
Theorem 3. ]
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4.2 Example

Consider a tunnel diode circuit shown in Figure 4.4 where the tunnel diode is

characterized by

ip(t) = 0.002vp (t) + 0.01v3(t).

Let z1(t) = vo(t) and xo(t) = i1 (t) as the state variables, then the circuit is

L i

ST T

iLT
=

|O<+ &
|
Il
(N
&/
<
w)

Fig. 4.4. Tunnel diode circuit.

governed by the following state equations:

Ci1(t) = —0.002x1 (t) — 0.0123(t) + z2(¢)
Li’g(t) —SUl(t) - Rxg(t) + O.lUJQ(t)
y(t) = Jz(t) +0.1w(t)

A1) = [af () 25 t)]"

(4.34)

where w(t) is the disturbance noise input, y(t) is the measurement output, z(t)
is the state to be estimated and .J is the sensor matrix. Note that the variables
x1(t) and x5(t) are treated as the deviation variables (variables deviate from
the desired trajectories). The parameters in the circuit are given as follows:
C =20 mF, L = 1000 mH and R = 10 + 10% {2. With these parameters,

(4.34) can be rewritten as

@1(t) = —0.1z1(t) — (0.523(t)) - 21 (t) + 50x2(t)
i‘g(t) = —J?l(t) — (10 + AR).TQ(t) + 0.1w2(t)
y(t) = Jx(t) + 0.1wq (1)

() = [T 2T (1)]".

I

(4.35)
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For the sake of simplicity, we will use as few rules as possible. Assuming
that |x1(¢)| < 3, the nonlinear network system (4.35) can be approximated by
the following TS fuzzy model:

Plant Rule 1: IF z4(t) is My (z1(t)) THEN
x(t) = [A1 + AAq]z(t) + By,w(t), «(0)=0,
Z(t) = Ollx(t)7
y(t) = Coyx(t) + Doy, w(t).

Plant Rule 2: IF z4(t) is M3 (z1(t)) THEN

(1) = [As + Adg)a(t) + Buw(t), 2(0) =0,
2(t) = Cy,z(t),
y(t) = Co,x(t) + Dar,w(t)

where
—0.1 50 00 10

Al = |: 1 _10:|7 .Bl1 = |:001:|, Cll = |:O 1:|7 D211 = [01 0],
—4.6 50 00 10

2= { -1 —10}’ b = {0 0.1}’ = {0 1}’ Doy, = [0.10],

Cgl = 022 = J, AAl = F(l’(t),t)Hll and AAQ = F(.’E(t),t)H12

Now, by assuming that ||F(x(¢),t)|| < p = 1 and since the values of R are
uncertain but bounded within 10% of their nominal values given in (4.34), we

have
00
== 29,

Figure 4.5 shows the plots of the membership functions for Rules 1 and 2.

Case I-v(t) is available for feedback

In this case, z1(t) = v(t) is assumed to be available for feedback; for
instance, J = [1 0]. This implies that y; is available for feedback. Using the
LMI optimization algorithm and Theorem 4 with v =1 and § = 1, we obtain
the following results:

x _ [ 34.5536 —2.4910 v _ [0:8986 1.7528

= | —2.4910 0.8883 |’ = 11.7528 27.4284 |

A _ [~9.4003 ~1.1377 A _ [ 147653 ~1.3877

=1 63.2915 —3.7526 | 1271 79,5268 —2.9644 |
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A
,,,,, - 1 o __
\\ // Mz(xl)
[—‘> \\ ///
MI(XI) \\\ ///
-3 0 3 X,

Fig. 4.5. Membership functions for the two fuzzy set.

—5.8973 —0.9794]

P —11.3243 —1.2277
2171 49.9964 —4.1557 ’

Az = [ 61.4584 —3.3736

; ~0.1292 ; ~0.0312
B = [ 1.0828 ] Be = [ 0.7246 }
Cy = [—35.3890 —1.5720], Cy = [—34.7556 —1.5891].
Hence, the resulting fuzzy filter is
2 2 ) 2 .
a(t) = Z Zﬂiluinji'(t) + Zﬂszy(t)
i=1 j=1 i=1
2
(1) = Zﬂzczi(t)
i=1

where
p1 = Mi(z1(t)) and po = Ma(z1(1)).

Case II-v(t) is unavailable for feedback

In this case, 1(t) = v(t) is assumed to be unavailable for feedback; for
instance, J = [0 1]. This implies that p; is unavailable for feedback. Using
the LMI optimization algorithm and Theorem 5 with v = 1 and § = 1, we
obtain the following results:
_ | 77.3789 —15.9191 1.6782 —1.6006

Y =

X = —15.9191 5.3505 |’ —1.6006 27.7695 |’



z(t)

4.2 Example

| 3 L |l
| b V2

fuzzy estimated z(t)
— — linear estimated z(t)

2 4 6 8 10
Time (sec)

(a) Case I: The histories of z(t)

U R pu———ry
fuzzy estimated z(t) |
— - linear estimated z(t)

2 4 6 8 10
Time (sec)

(b) Case II: The histories of z(t)

Fig. 4.6. The histories of z(¢) in Cases I and II.
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A _ [—11.2662 —1.0260
=1 924376 —1.1388 |’
A _ [—11.8923 —1.0235
27 777075 —0.9892 |7
. —0.0181

B = [ 0.5905 }

Cy = [—111.7427 2.4315],

Hence, the resulting fuzzy filter is

where

4 Robust He Fuzzy Filter Design for Uncertain Fuzzy Systems

4. [—15.0307 —0.9550
1271 132.5941 —2.1872 |"

A, _ [—15.6465 —0.9299
27 1 115.8735 —1.7290 |’
R —0.0261

Bz = { 0.3875 }

Cy = [—111.7360 2.4290].

fir = My (81(t)) and fiz = Ma(&1(¢)).

Remark 2.

Figure 4.6 shows the responses of z(t). The disturbance input sig-

nal, w(t), which was used during the simulation is given in Figure 4.7. The

0.81

0.6

0.4

0.2

The disturbance input, w(t)

0 20

40 60
Time (sec)

80 100

Fig. 4.7. The disturbance input noise, w(t).
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Fig. 4.8. The ratio of the filter error energy to the disturbance noise energy:
(fUTf(z(t)*é(t))T(Z(t)fﬁ(t))dt)

Jo ! wT (®w()dt

simulation results for the ratio of the filter error energy to the disturbance in-
put noise energy obtained by using the Hoo fuzzy filter are depicted in Figure
4.8. After 100 seconds, the ratio of the filter error energy to the disturbance
input noise energy tends to a constant value which is about 0.14 in Case I
and 0.30 in Case II. Thus, in Case I where v =+/0.14 = 0.37 and in Case II
where v = 1/0.30 = 0.55, both are less than the prescribed value 1. O

4.3 Conclusion

We has studied the problem of designing a robust fuzzy filter for a TS fuzzy
system with parametric uncertainties that the guarantees the Lo-gain from
an exogenous input to an estimate error output being less than or equal to a
prescribed value. Sufficient conditions for the existence of the H, fuzzy filter
are given in terms of a set of LMIs. In contrast to the existing results, the
premise variables of the H., fuzzy filter are allowed to be different from the
premise variables of the TS fuzzy model of the plant. A numerical simulation
example has been presented to illustrate our design procedures. Note that the
optimization of the fuzzy filter requires firm effort in order to arrive at the
optimal of membership function and a number of fuzzy rules.



5

Robust H,, Fuzzy Control Design for
Uncertain Fuzzy Markovian Jump Systems

This chapter deals with the problem of designing a robust fuzzy state and
output feedback controller for a TS fuzzy system with MJs and parametric
uncertainties. We develop a technique for designing a robust fuzzy controller
that guarantees the Lo-gain of the mapping from the exogenous input noise to
the regulated output being less than the prescribed value. Sufficient conditions
for the existence of a robust H, fuzzy controller have been derived by solving
a set of linear matrix inequalities.

5.1 System Description

We further generalize the TS fuzzy system with parametric uncertainties to a
TS fuzzy system with MJs and parametric uncertainties as follows:

i(t) = Sy mv®) |[A(n(t)
[B1,(n(t)) + ABy, (n(t)

2() = Sy mv(®) [, (n(t
Do, (0(t)) + AD1s, (1())Ju(t)

y(t) = Loy m(w(8) [[Ca, (n(8) + ACz, (n(t))]a(t)
D1, (n(#)) + ADss, (n(t))w(t)|

+ A4 (n(t))]x(t)+
() + [Bz, (n(t)) + ABz, (n(t))]u(t) |,

Jw i
)+ AC, (n(t))](t)

)
)
)

(5.1)
]

with x(0) = 0, where v(t) = [v1(t) --- vy(t)] is the premise variable vec-
tor that may depend on states in many cases, u;(v(t)) denotes the normal-
ized time-varying fuzzy weighting functions for each rule (i.e., p;(v(t)) >
0 and Y ;_,pi(v(t)) = 1), ¥ is the number of fuzzy sets, z(t) € R"
is the state vector, u(t) € R™ is the input, w(t) € NP is the distur-
bance which belongs to £3[0,00), y(t) € R is the measurement, 2(t) €
R* is the controlled output, and the matrix functions A;(n(t)), Bi,(n(t)),
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By, (n(t))’ Cli(n(t))’ 0272 (77(75))’ Dy, (n(t))’ Doy, (n(t))’ AAi(n(t))’ ABli(n(t))a
ABy, (n(t)), ACy (1(t), AC,(n(t)), AD1s,(n(t)) and ADyy, (n(t)) are of
appropriate dimensions. {n(¢))} is a continuous-time discrete-state Markov
process taking values in a finite set S = {1,2,--- , s} with transition proba-

bility matrix Pr = {P.x(t)} given by

Bi(t) = Pr(n(t+ A) = kln(t) =)

_AA+0(4) ife#£k (5.2)
1+ AA+0() =k ’
where A > 0, and lima__.g % = 0. Here )\, > 0 is the transition rate from
mode 2 (system operating mode) to mode k (¢ # k), and
)\” = — Z Azk- (53)

k=1,k#1

For the convenience of notations, we let u; = wi(v(t), n = n(t), and

any matrix M (1) = M(p,m = 2). The matrix functions AA;(n), ABy,(n),
ABs,(n), ACy,(n), ACs,(n), AD1a,(n) and ADsy,(n) represent the time-
varying uncertainties in the system and satisfy the following assumption.

Assumption 5.1
AAZ(U) = F(‘T(t)anat)Hli(n)v ABL(T]) - F(‘T(t)7777t)H2i (77)7
ACQ«; (77) = F(x(t)7n7t)H51' (n)ﬂ ADIQi (77) = F(x(t)vnvt)HGi (77)7
and ADQL‘, (77) = F(I(t)vnvt)Hﬂ (7])

where Hj;(n), j =1,2,---,7 are known matrices which characterize the struc-
ture of the uncertainties. Furthermore, there exists a positive function p(n)
such that the following inequality holds:

1E (), n, D)l < p(n). (5.4)

Definition 2. Suppose v is a given positive real number. A system of the form
(5.1) is said to have an Lo-gain less than or equal to 7 if

Ty
E /0 LT (0)2(8) — 2ol (Hw(t)}y dt| <0, 2(0) =0 (5.5)

where E[-] denotes as the expectation operator, for all Ty > 0 and w(t) €
[O>Tf]'
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5.2 Robust H., State-Feedback Control Design

The aim of this section is to design a robust H, fuzzy state-feedback controller
of the form

t) = ZMjKj(n)x(t) (5.6)

where K;(n) is the controller gain, such that the inequality (5.5) is guaranteed.
The state space form of the fuzzy system model (5.1) with the controller (5.6)
is given by

B(t) = D211 2 Mikty {[(A (1) + B2, (1)K (1)) + (AA;i(1) + AB2, (1) K (2))]
#(t) + [B1, () + ABy, @w(t)],  =(0) = 0.

(5.7)

The following theorem provides sufficient conditions for the existence of a

robust Ho, fuzzy state-feedback controller. These sufficient conditions can be
derived by the Lyapunov approach.

Theorem 6. Consider the system (5.1). Given a prescribed Hoo performance
~v > 0, then the inequality (5.5) holds if forv=1,2,--- | s, there exist matrices
P(1) = PT(1) and any positive constants 6(2) such that the following linear
matriz inequalities hold:

P() >0 (5.8)
V(1) <0, i=1,2,---,r (
Uii(2) +¥5(1) <0, i<j<r (5.10)
where
A e (7
R()Bi,(2) —YR(2) (* *

TO=| T 0 are) (7 (1)

ZT () 0 0 =P
D5 (1) = Ai(1) P(2) + P() AT (1) + B, (1)Y; (1) + Y, (1) B3, (1) + Au P(2) (5.12)
75(1) = C1, (1) P(1) + D1, (1)Y;(2) (5.13)
R(2) = diag{d(2)I,1,6(2)I, I} (5.14)
Z() = ( PQ) - \/)\I(l HP() \/)\WH)P Vs P(2) ) (5.15)
P() = diag{P(l), -, P—1),P(t+1),---,P(s)} (5.16)
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Bi,(0)=[I11B,(x)] (5.17)
O (1) = [y HT (1) V2R(2)p() H (1) O %)CE(Z)]T (5.18)

) (5.19)

D12i (2) = [0 \/EN(Z)P(Z)H(?; (2) vp(2) Hy (
R() = |1 mmzz (1H5 0) H, O] | (5.20)

Furthermore, a suitable choice of the fuzzy controller is

= K0z (t) (5.21)
j=1

where
Kj(1) = Y;(0)(P(2)) ™. (5.22)

Proof: See Appendix. [ |

5.3 Robust H, Output Feedback Control Design

This section aims at designing a full order dynamic H ., fuzzy output feedback
controller of the form

B(t) = 0y S i [Aij (1)2(1) + Bz'@)y(t)} (5.23)
u(t) =1, 1 Ci ()2 (t)

where &(t) € R" is the controller’s state vector, A;;(2), B;(z) and C;(2) are
parameters of the controller which are to be determined, and fi; denotes the
normalized time-varying fuzzy weighting functions for each rule (i.e., fi; > 0
and ) ;_, fi; = 1), such that the inequality (5.5) holds. Clearly, in real control
problems, all of the premise variables are not necessarily measurable. Thus, we
can consider the designing of the robust H., output feedback control into two
cases as follows. In Subsection 5.3.1, we consider the case where the premise
variable of the fuzzy model p; is measurable, while in Subsection 5.3.2, the
premise variable which is assumed to be unmeasurable is considered.

5.3.1 Case I-v(t) is available for feedback

In this subsection, the premise variable of the fuzzy model v(t) is assumed
to be available for feedback. This enables us to design a controller which is
wi-dependent, i.e.,

B(t) = S0y Xy oty | A 2(0) + B0y (1) (5.2
u(t) =3, Uzcz( )Z(t).

Before presenting our next results, the following lemma is recalled.
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Lemma 3. Consider the system (5.1). Given a prescribed Hoo performance
~v > 0 and any positive constants §(z), for1=1,2,--- s, if there exists a ma-
triz function P(1) = PT (1) satisfying the following linear matriz inequalities:

P(z) >0 (5.25)

P()AL () + (A5 ()T P() + gy AP (k) ()7 ()7
(P(2)Bg (1))" 2T (x) 0 (5.26)
CH(2) 0 -I

where 1,7 =1,2,--- |7,

() o i;zi;)HT() VAR HE (1) VINWOL () |

Duo (1) = [0 B HT () 0 VAW HL () VIWDE, ()]

Dy1,(2) =10 0 0 6(2)] Da,(2) I]
R(2) = (1+p ZZ [1H3, (0) H: >||+H7,<>H7j(z>}) ,

then the inequality (5.5) is guaranteed.
Proof: See Appendix. [ ]

Knowing that the controller’s premise variable is the same as the plant’s
premise variable, the left hand side of (5.26) can be re-expressed as follows:

P(1)AY (1) + (A4 ()T P(2) + v 2P(1) B (1) (B4 (1) T P(2)
+ 305 AP (k) + (CH ()T CH ().

Before providing LMI-based sufficient conditions for the system (5.1) to have
the Hoo performance, let us partition the matrix P(z) as follows:

(5.27)

X(2) Y 7)) = X(2)

Y=i() - X(2) X(1) — Y1) (5.28)
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where X(2) = X7 (1) € R"*" and Y (2) = YT (1) € R"*". Utilizing the parti-
tion above, we define the new controller’s matrices as

Blun) 2 [Y10) = X ()| B(u,)

(5.29)
Clp,0) =

= C(u, )Y ().

The following theorem provides LMI-based sufficient conditions for the sys-
tem (5.1) to have an H, performance v with u; being available for feedback.

Theorem 7. Consider the system (5.1). Given a prescribed Hoo performance
v > 0 and any positive constants 6(1), forv=1,2,--- | s, if there exist matrices
X() = XT(), Y(u) = YT(2), Bi(2) and C;(1), i = 1,2,--- 7, satisfying the
following linear matrixz inequalities:

H((’) i’(z)} >0 (5.30)
X(2) >0 (5.31)
Y (1) >0 (5.32)
U, (1) <0, =121 (5.33)
Wyy, (1) <0, i=1,2--r (5.34)
Uy, (0) +¥11,,(1) <0, i<j<vr (5.35)
Woo,, (1) + Wao,, (1) <0, i< j<r (5.36)
where
Ai()Y (1) + Y () A] (1)
ALY (1) + 772 B, (1) B (1) | (0T (1)
¥, (1) = +B,,(1)C; (1) + CF (1) BY. (2) (5.37)
CL.(Y () + Di2,()C;(0) =T ()7
J"() 0 =Y
AT ()X (2) + X (1) Ai(2)
+Bi(2)Cs, (1) + CF (1) B} (1) ()"
Vs, (1) = +@ﬁﬁx>+zklmwp (5:3%)

with



5.3 Robust He Output Feedback Control Design 53

T0=[VaYE - Pen YO Dm0 - VALY )
V) = diag {¥(1), -, Y1), Ya+1), - ,Y<s>}

Bu(0) = B@I T 601 0 By, () 0]

Cu() = [ HT0) 0 BOHI() VIRW0HE () VW) ]

Dua,(0) = [0 PO HL() 0 VAW HL () VER0DE, W]
D51,(1) = [0 0 0 6()I Doy, (2) 1]
N) (1+p ZZ[IHz (1), ||+H7<>H7j<z>}) ,

then the prescribed Hoo performance v > 0 is guaranteed. Furthermore, a
suitable controller is of the form (5.24) with

Ay(@0) = [Y710) = X)) MY 1)
Bi(1) =[Y'(1) - X()] ' Bi(2) (5.39)
Ci(l) = Ci(l)Y_l Z)

'(5.40)

Proof: Suppose there exist X (z) and Y (:) such that the inequalities (5.30) and
(5.31)-(5.32) hold. The inequality (5.30) implies that the matrix P defined in
(5.27) is a positive definite matrix. Using the partition (5.28), the controller

)
(5.29) and multiplying (5.27) to the left by {?8 (ﬂ and to the right by
[Y}z) Y } we have
@11”. (Z) 0
{ 0 B, () (5.41)

where
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P11, (1) = Ai()Y (1) + Y (1)AT (1) + Ba, ()C; (1) + CT (1) BE (1) + MY (1)
+H[Y )L () + () D, 0] [Y ())CT () + €T () DTy, ()]
+7 7B, (B, () + T ()Y ()T (1) (5.42)
oo, (1) = AT ()X (1) + X (1) A; (2) + B; (1) Cs, (1) + CF () BY (2)
w?[X( )B1, (1) + Bi(1) Do, (0] [X (1) By, (2) + Bi(1) Do, (0)]

+CT )+ Z e X (k (5.43)

Note that ®11,,(2) and Poy,;(2) are the Schur complements of W1y, (2) and
Wy, (2). Using (5.33)—(5.36), we have (5.41) less than zero. Hence, by Theorem
7, we learn that the inequality (5.5) holds. [

5.3.2 Case II-v(t) is unavailable for feedback

In this case, the fuzzy model’s premise variable, v(t), is assumed to be un-
available for feedback. Under this assumption, the controller’s premise variable
cannot be selected to be the same as the plant’s premise variable, i.e,

B(t) = iy Xy s | A (02 () + Biy(®)] (5.44)
u(t) = 3iny fuCi()a(?)

where fi; is a function of the controller’s premise variable which is different
from the plant’s premise variable.

Now, let us re-express the system (5.1) in terms of fi;, thus the plant’s
premise variable becomes the same as the controller’s premise variable. By
doing so, the result given in the previous case can then be applied here. Note
that it can be done by using the same technique as in Subsection 3.3.2. After
some manipulation, we get

i(t) = Y0y i [Ai0) + A4 W)]a(®) + [By ( )+ ABy, ()]w()

+[TB2 (1) + ABy, (1) )}, z(0) ) (5.45)
2(t) = iy 1 [[Cri (1) + ACh, ()] (t) + [Diz, (2) + AD1a, (1)]u(t)
y(t) = Yiy | [Co, (1) + ACs, ()] (t) + [Day, (2) + ADoy, (1)]w(t)
where
AA;(2) = F(z(t),2(t),1,t)Hy, (1), ABy,(2) = F(z(t),2(t),1,t)Hy, (2),

ABs, (Z) = F(l’(t),.’i(t),l,t) 3; (Z)v Aéli(z) = F(l’(t),.’fﬁ(t),l,t)ﬁ;;i (Z)v
ACs, (1) = F(x(t), &(t), 0, t)Hs, (1), ADia, (1) = F(a(t),&(t), 0, t)He, (1)
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and ADyy, (1) = F(x(t),#(t),,t)Hr,(2)

" () = [HL () ATQ) - AT() HE(@) - HL@)]",
1o,(1) = [HE, () BL() -+ BL() HL() - HL(O)]',
1y, (1) = [H3,(1) BL() -+ BL() HL() - HL(O)]"
1,,() = [HL() CT0) -+ CL@) HL@) - HL@)]
15,(0) = [HL() C30) -+ CL() HE@) - HI ()],
He, (1) = [HE () D, () - DL, () HEG) - HE@)]",
Hr, (1) = [HL() DL, () - DL () HEG) - HE@)]"
and F(x(t), #(6),1,1) = [F(a(t),0,t) (u—fin) - (pe—fir) F(a(t),1,8)(u—
fn) o F((t),0 0 — )] Note that |[F(a(t), #(t),0,t)]| < (i) where

p(1) = {3p%(1) + 2} 2. p(2) is derived by utilizing the concept of vector norm in
the basic system control theory and the fact that p; >0, fi; >0, Y i pu; =1
and Y., ji; = 1.

In this new expression, the plant’s premise variable is now the same as
the controller’s premise variable. Note that the above technique is basically
employed in order to obtain the plant’s premise variable to be the same as
the controller’s premise variable; e.g. [27, 28]. Thus, applying Theorem 7, we
have the following LMI-based sufficient conditions for this case.

Theorem 8. Consider the system (5.1). Given a prescribed Ho, performance
~v > 0 and any positive constants 6(z), forv=1,2,--- s, if there exist matrices
X() = XT(), Y(2) = YT(2), Bi(2) and Ci(2), i = 1,2,--- ,r, satisfying the
following linear matriz inequalities:

H((Z) é(z)} >0 (5.46)
X(2) > 0 (5.47)

Y(2) >0 (5.48)

Wy, (1) <0, i=1,2-,r (5.49)

Was, (1) <0, i=1,2-,r (5.50)

V1, (1) +¥11,(2) <0, i<j<r (5.51)
Wop,, (1) +Wa,,(1) <0, i<j<r (5.52)

where
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Y () +Y () AT (1)
(-l-/\“Y(Z)—i-V 231 (1) BY. z)) ()T (x)T
P, () = |\ +B2,()C; () + €L () BE 0 (5.53)
Cr, ()Y () + Dio,)C; () —1 ()"
T () 0 —Y0)
AT ()X (1) + X (1)Ai(2)
(z)p L)+ CTWBI() | (0T
Yoz, (1) = | \+CL(0)C1, (1) + S5y Ak X (F) (5.54)

[()éb B.0Dn,0)] %1
with

T0 = [VAYE - A 0 Y 0 - VALY )
V() = diag {Y(l), L Y(—1), Y+ 1), - ,Y(s)}

By,(2) = [6()I I 6(x)I 0 By,(2) 0

PAT0) 0 AL ) VIRGAW L) VIROCL ()]

6(z)
Duo, (1) = [0 PO AL () 0 VIRWE0HE() VIRWDE, ()]
D 5()I D1, (2) I,

R(2) = (1+p )3 1z W ||+|H7<>H7j<z>]),

=1 j=1

then the prescribed Hoo performance v > 0 is guaranteed. Furthermore, a
suitable controller is of the form (5.44) with

Azm:[ L) = X(1)]” MY ()

Bi() = [Y'0) — X()] ' Bi(1) (5.55)
Ci(v) Ci(1)Y ~1(2)

-1

F(1) - XWAWY () - [Y70) - X(0)] Bi()Co, ()Y ()
~X()Bo, ()G ()Y (1) — Ty MY T RV (1)

(2
—y{X @B, () + [Y1(0) = X)) Bi(1)Dar, () } BE (1),

J

(5.56)

Proof: Since (5.45) is of the form of (5.1), it can be shown by employing the
proof for Theorem 7. [ ]
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5.4 Example

Consider a modified Samuelson multiplier-accelerator economic model based
on [92] which is governed by the following difference equations:

Y (k) = [C(k) + I(k) + G(k — 1)]
I(k) = (a+ Aa)[Y(k—1)—Y(k—2)] (5.57)
C(k) = (B+ AB)Y" (k—1)

where Y is the deviation of the national income from the desired national
income, [ is the deviation of the induced private investment from the desired
induced private investment, C' is the deviation of the consumption expen-
diture from the desired consumption expenditure, G is the deviation of the
government expenditure from the desired government expenditure decided at
the end of period (k — 1) for period k, « is the accelerator coefficient, [ is the
marginal propensity to consume parameter and v is the consume parameter
(v >1). Aa and AQS are the uncertain accelerator coeflicient and marginal
propensity to consume parameter, respectively. We assume that |Aa| < 0.1«
and |AG] <0.145.
Eliminating C(k) and I(k) in the above equations, we have

Y(k) = (B4 AB)YV(k—1) + (a+ Aa)Y (k— 1) + G(k — 1)

“(a+ Aa)Y (k- 2). (5.58)

By shifting one step forward and giving x1(k) = Y (k — 1), z2(k) = Y (k) and
u(k) = G(k), (5.58) becomes

[xl(k + 1)] = (—(a + Aa)xl(lgg;(f)(a + Aa)m(k‘)) + {O} u(k).

332(/41 + 1) —|—(ﬂ L Aﬁ)xg(k;) 1
(5.59)
Converting (5.59) to continuous-time system model, we have
3 (t) + 21 ()
ay (t) | _ —(a+ Aa)z (1) 0
L”;(t)} N +(a+ Aa)x;(t + L} u(t). (5.60)

+(B+ AB)ZY(t) + z2(t)

Based on [92], the general economic situations could be aggregated into three
modes as shown in Table 5.1:
The transition probability matrix that relates the three operation modes
is given as follows:
0.67 0.17 0.16
Py = 10.300.47 0.23
0.26 0.10 0.64

Assuming v = 2, (5.60) can be re-expressed as
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Table 5.1. Economic Terminology.

[Mode 2] Terminology|a(z) + Aa(1)[3(2) = AB(2)]

1 Normal 2.5 £10% | 0.3 £10%
2 Boom 43.7 £10% | —0.7 = 10%
3 Slump —-5.3+10%| 0.9 £10%

0] = | a0+ Qa0 +1] [ont)

N 8] wlt) + m ult)
N 0 0 } {azl(t)} (5.61)
Z)Aa(z) Aa(r) + AB()xza(t) | | x2(t)
I t
z(t) = | 2a(®)
y(t) = Jx(t) + [0 0.1]w(t)

where 1 (t) and z2(t) are the state vectors, u(t) is the controlled input which
represents the deviation of the government expenditure from the desired gov-
ernment expenditure, w(t) is the disturbance input which represents the un-
expected behavior of the economy, z(¢) is the controlled output, y(t) is the
measured output and J is the sensor matrix.

The control objective is to control the state variable x5 (¢) for the range
x2(t) € [N1 Na]. For the sake of simplicity, we will use as few rules as possible.
Note that Figure 5.1 shows the plot of the membership functions represented
by
—l‘g(t) + N2 l‘g(t) — N1

Ny — Ny Ny — Np -~

Knowing that z5(t) € [N1 Na], the nonlinear system (5.61) can be approx-
imated by the following TS fuzzy model:

M (z(1)) = and My (xo(t)) =

Plant Rule 1: IF z5(t) is M;(z2(t)) THEN

@(t) = [Ar(2) + AAL ()] () + By, (w(t) + Bz, (ult), 2(0) =0,
2(t) = Cr, ((b),
y(t) = Co, (1)2(t) + Doy, (1)uw(t).

£(t) = [A2(1) + AAz(1)]2(t) + B, (Jw(t) + Ba, (Wu(t),  x(0) =0,
Z(t) = C12 (Z){E(t),
y(t) = Co, (1)x(t) + D21, (1)w(t)
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I M) Moy

-3 0 3

Fig. 5.1. Membership functions for the two fuzzy set.

1 1 | ! 1
Ai(1) = [2,5 3.5+ 0.7N; |’ A1) = | 2535 +O.7NJ
1 1 | [ 1 1
A(2) = [_43.7 a5+ 17N | 2D = | 3ras 1.7N2]

1 1 1 [ 1 1
A(3) = [5.3 “a3r0an | 20 =53 4.3+0.1NJ

Bll(l) = Blz(l) = Bl1(2) = B12(2) = B11(3) = 312(3) = |:001 8:| ’

By, (1) = By, (1) = By, (2) = Ba,(2) = B, (3) = Ba, (3) = m 7

Cy,(1) =C1,(1) =C1,(2) =C1,(2) =C1,(3) =C1,(3) = [(1) (1)} 7

Cs, (1) = Co, (1) = C2,(2) = C2,(2) = C,(3) = C2,(3) = J,
Ds1, (1) = D1, (1) = Da1,(2) = D21,(2) = Da1,(3) = D21, (3) = [00.1],
AA1(1) = F(x(t),1,t)Hy, (1) and AAs(z) = F(x(t),e,t)Hy,(2).
Now, by assuming that in (5.61), ||F(x(¢),,t)|| < p(2) = 1, we have

0 0
Hy, (1) = [O.la(z) 0.1a(2) + O.I/B(Z)Nl]

0 0
and Hy,(2) = [_O.la(z) 0.1a(z) + O.lﬁ(Z)NQ] .

In this simulation, we select Ny = —3 and Ny = 3.
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State-feedback controller design

Using the LMI optimization algorithm and Theorem 6 with v = 1, we obtain

§(1) = 41.6486,

Yi(1) = 10 x [0.1044 —1.2592],

Ki(1) = [—20.7511 —8.7443],
§(2) = 46.1759,

Y1(2) = 10* x [0.7315 —2.2627 |,

K1(2) = [27.3538 —45.1409 |,
§(3) = 43.9140,

Y1(3) = 10 x [ —1.0664 2.4200],

Ki(3) = [—25.8817 —2.1590],

The resulting fuzzy controller is

P(1) = [ 47.4891 124.6312}7

—124.6312 439.7626
Ya(1) = 10% x [0.6278 —3.1062 |,
Ks(1) = [—20.7510 —12.9443 ],

55.3428 —128.5167
P = {—128.5167 423 3780 }

Y2(2) = 10* x [0.8369 —2.6946 |,
K5(2) = [11.6005 —60.1228],

52.1186 —130.8730
P@) = {—130.8730 448.0091 }’

Y>(3) = 10% x [ —0.9878 2.1512 ],

K»(3) = [—25.8817 —2.7590 .

u(t) = Z pi I (1) (t)

where

pr = Mi(22(t)) and pg = Ma(w2(t)).

Output feedback controller design

Case I: v(t) are available for feedback

In this case, v(t) = wz2(t) is assumed to be available for feedback; for
instance, J = [0 1]. This implies that p; is available for feedback. Using
the LMI optimization algorithm and Theorem 7 with v = 1 and §(z) = 1,we

obtain

43.3821 69.5718
X = [69.5718 386.9464]’

) 10.0318
An(l) = {_123.0107 —65.2591

1.0079 }

0.4960 —0.9002
Y = {—0.9002 3.6918 }

) 10.1591  0.9003
Aiz(1) = {—118.6456 —68.7917}’



) 10.0079  1.0933
A (1) = [—122.9968 —61.0529}
X —31.6693

Bl(l):[ 7.9142 }

Ci(1) = [—0.5184 —141.9962],

45.5544 6.0210
X@) = {6.0210 13.9210}’

0.1388 1.0140

5.4 Example 61

) 101352 0.9857
Az(1) = {—118.6317 —64.5855}’
) _31.5525

By (1) = [ 12.0990 }

Co(1) = [—5.8859 —159.0397 ],

0.1759 —0.0224
Y= {—0.0224 0.1156 }

0.0128 0.1141

~ _ 3 N _ 3
An(2) = 10% [1.3391 9.8999]"412(2) =107 x {0.1237 1.1135]’

0.0490 0.2208

0.0582 0.2511

P o 3 N _ 3
A21(2) = 107 x [—0.4355 —3.2840] A22(2) = 10° % {—0.5624 —3.7084]’

: 28,3321
Bi(2) = [ 173.4354 } !

C1(2) = 10% x [—0.1107 —1.2470],

29.6285 —39.4287
X@3) = [—39.4287 77.8877 ]

. —44.6535 —49.5945
An(3) = [—198.0970 —193.4395]’

) _44.5448 —48.9764
An(3) = [—198.0298 —192.4832]’

- 57.1346
Bi(3) = [32.6070}
C1(3) = [~173.3989 —161.6216 ],

The resulting fuzzy controller is

- —30.5197
B>(2) = [ 204.8014 } ’

Co(2) = 10% x [~0.1532 —1.3909],

0.3094 —0.3190
Y(3) = {—0.3190 1.1708 }

(3) = —44.7323 —49.9065
12977 1 _198.3023 —194.2173 |’

Y

(3) = —44.6237 —49.2884
2219/ = | ~198.2351 —193.2610 |’

b

- 57.4491
B2(3) = [33.3825} ’

Co(3) = [—173.5604 —162.2239 ].
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where

p1 = Mi(z2(t)) and po = Ma(w2(1)).

Case II: v(t) are unavailable for feedback

In this case, x2(t) = v(t) is assumed to be unavailable for feedback; for
instance, J = [1 0]. This implies that p; is unavailable for feedback. Using
the LMI optimization algorithm and Theorem 8 with v =1 and §(z) = 1, we

obtain
X(1) = 10° x [513233 gﬁgégg}
[, sz ]
Ay (1) = [_%318((3)83%%1 —362?5275]’
B = | Gaimos |

C1(1) = [—387.2706 —210.5697 |,

959.4300 32.4118
X(2) = {32.4118 17.3704]’
. 0.0453  0.3444
o 3
An(2) = 10° x [—0.4707 —3.5877}’

) 0.0126 0.0876
_ 3
A21(2) = 10° x [_0.1425 —1.1073}’

) 29,8494
B1(2) = [ 242.8519 } :

C1(2) = 10% x [—0.4706 —3.9083 ],

122.6259 —36.2691
X(3) = {—36.2691 197.3630}’
R 7.8694  —1.9796
An(3) = [—591.0791 —521.5024]’

R 7.8710  —1.9696
A2 (3) = [_591.0733 —520.8918]’

0.5085 —0.9378
Y1) = {—0.9378 3.7992 }

. 11.3178  3.2437
Ap(1) = [382.1906 210.8295}’
. 11.0869  3.0293

A (1) = {—381.8459 —206.3054}’
R —25.0573

By (1) = [ 40.0729 }

Co(1) = [—382.7788 —214.0931],

0.1839 —0.0244
Y(2) = {—0.0244 0.1146 }

Aia(2) = 10° x { 0.0444 0.3581 ]

—0.4609 —3.7309

A 0.0136  0.0910
_ 3
A2(2) = 10° x {—0.1554 —1.1506]’

. —36.4228
B2(2) = {291.8673}’
Co(2) = 10% x [~0.5140 —4.0561],

0.3101 —0.3537
Y(3) = {—0.3537 1.2375 }

. 7.8668  —1.9883
A12(3) = {—591.2649 —522.1170}

" 7.8683  —1.9782
A22(3) = {—591.2591 —521.5064}’
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- 5.5268 - 5.4929
Bi(3) = {3.1088}’ B2(3) = [3.3695}
C1(3) = [—595.5896 —516.0405 ], Co(3) = [—595.7740 —516.6495 ].
The resulting fuzzy controller is
2 2 R 2 )
B(t) =D > A (0)2() + D pBi(2)y(t)
=1 5=1 =1
2
u(t) =Y wCi()a(t)
i=1

where

Remark 3. Both robust fuzzy state and output feedback controllers guarantee
that the Lo-gain, 7y, is less than the prescribed value. Figure 5.2 shows the
changing between modes during the simulation with the initial mode 1. The
disturbance input signal, w(t), which was used during simulation is the rectan-
gular signal (magnitude 0.1 and frequency 10 Hz). The ratios of the regulated
output energy to the disturbance input noise energy for both cases are depicted
in Figure 5.8. After time = 3, the ratio of the regulated output energy to

2.8
2.6
241

221

Mode
2
|
l
l
J

1.8
16}
1.4}
1.2}

0 0.5 1 1.5 2 25 3
Time (sec)

Fig. 5.2. The result of the changing between modes during the simulation with the
initial mode 1.
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0.35 ‘ :

State feedback controller
—— Output feedback controller (Case 1)
— — Output feedback controller (Case Il) |

o
w
:

o
N
a
.
-
\
.

o
S

0.15

o
Y

0.05f 4

1.5 2 2.5 3
Time (sec)

o

Ratio of the regulated output energy to the disturbance energy

(=)
o
3
-

Fig. 5.3. The ratio of the regulated output energy to the disturbance noise energy,
Jod 2T (1)=(t)dt
Jof wT (Ww(tydt )

the disturbance input noise energy tends to a constant value which is about
0.18 for the state-feedback controller, and 0.22 for the output feedback con-
troller in Case I and 0.26 in Case II. Thus, for the state-feedback controller
where v = /0.18 = 0.424, and for output feedback controller in Case I where
v =+/0.22 = 0.469 and in Case II where v =+/0.26 = 0.510, all are less than
the prescribed value 1. i

5.5 Conclusion

In this chapter, the problem of designing a robust Hs, fuzzy controller for a
TS fuzzy system with MJs and parametric uncertainties has been presented.
Sufficient conditions for the existence of a robust H., fuzzy controller have
been derived in terms of a set of linear matrix inequalities. A numerical sim-
ulation example has been supplied to demonstrate the effectiveness of the
proposed design procedure.
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Robust 'H,, Fuzzy Filter Design for Uncertain
Fuzzy Markovian Jump Systems

This chapter presents a technique of designing a robust fuzzy filter for a TS
fuzzy system with MJs and parametric uncertainties. We develop a technique
for designing a robust fuzzy filter such that the Lo-gain of the mapping from
the exogenous input noise to the estimated error output is less than the pre-
scribed value. The proposed design is given in terms of LMIs.

6.1 Robust H, Fuzzy Filter Design

Without loss of generality, we assume u(t) = 0. Let us recall the system (5.1)
with u(t) = 0 as follows:

#(0) = Sy i [[AiCn) + AAs)]o(0) + [Br, (1) + ABy, (]w(t)], 2(0) =0

2() = X1y i [C1, () + ACy, ()| a(®)
y(t) = iyt [[Co, (n) + ACs, ()e(t) + [Dar, (n) + ADay, (n)]w(®)|.
(6.1)
The aim is to design a full order dynamic H, fuzzy filter of the form
B(t) = Y210 X5y iy | Ai 02 (1) + Bi()y ()] 62)

2(t) = Y1y uCi(2)2(t)

where Z(t) € R” is the filter’s state vector, 2 € R® is the estimate of z(t),
A;j(1), Bi(1) and C;(2) are parameters of the filter which are to be determined,
and [i; denotes the normalized time-varying fuzzy weighting functions for each
rule (i.e., fi; > 0 and >_;_, fi; = 1), such that the following inequality holds

E

/OTf {(z(t) - 2(t)>T<z(t) - 2(t)) _ 72wT(t)w(t)} dt] <0, 2(0) =0
(6.3)
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where E[-] stands for the mathematical expectation and (z(t) — 2(t)) is the
estimated error output, for all Ty > 0 and w(t) € [0, TY].

Clearly, in real control problems, all of the premise variables are not neces-
sarily measurable, thus two cases will be considered in this section. Subsection
6.1.1 considers the case where the premise variable of the fuzzy model p; is
measurable, while in Subsection 6.1.2, the premise variable is assumed to be
unmeasurable.

6.1.1 Case I-v(t) is available for feedback

The premise variable of the fuzzy model v(t) is available for feedback which
implies that pu; is available for feedback. Thus, we can select our filter that
depends on y; as follows [91]:

B(t) = Sy X it [Ai 02 (8) + Bi()y()] 64
2(t) = Yooy 1iCi(2)a(t).
Before presenting our next results, the following lemma is recalled.

Lemma 4. Consider the system (6.1). Given a prescribed Ho performance
~v > 0 and any positive constants 6(v), forv=1,2,--- | s, if there exist matrices
P(1) = PT(1) such that the following linear inequalities hold:

P(2) >0 (6.5)
P(1)A% (1) + (A% ()T P() + iy AP (k) ()T ()7

(P ()" ST ] <0 (66)
CH (1) 0 -I

where 1,7 =1,2,--- .71,

Nl

R() = | 14020 Y2 3 (1L ) Ha, ()] + 1HE ) He, @] |

i=1 j=1

then the inequality (6.3) is guaranteed.
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Proof: The proof can be carried out by the same technique used in Lemma
5.1. |

Knowing that the filter’s premise variable is the same as the plant’s premise
variable, the left hand side of (6.6) can be re-expressed as follows:

POAG@) + (AG@)TPW + 2 POBIOBI)TP) )
+ k1 AP (k) + (C5 (1) C (1)

Before providing LMI-based sufficient conditions for the system (5.1) with
u(t) = 0 to have an Ho, performance, let us partition the matrix P(z) given
by Lemma 4 as follows:

_ | X(@) Y7ie) = X(2)
PO=y=10) - x) x0) -y (65
where X (1) = XT(1) € R"*" and Y (2) = YT (1) € R"*". Utilizing the parti-
tion above, we define the new filter’s input and output matrices as

[Y='@) = X()] Bi2) (6.9)
C;(1)Y (1).

Using these changes of variable, we have the following theorem.

Theorem 9. Consider the system (6.1). Given a prescribed Ho, performance
v > 0 and any positive constants 6(1), forv=1,2,--- | s, if there exist matrices
X)) = XT(), Y() = YT(2), Bi(x) and C;(2), i = 1,2,--- ,7, satisfying the
following linear matriz inequalities:

H((’) é(z)} >0 (6.10)

X() >0 (6.11)

Y(2) >0 (6.12)

Uiy, (1) <0, i=1,2,--,r (6.13)

Was, (1) <0, i=1,2,-,r (6.14)

W1, (1) +P11,,(1) <0, i<j<r (6.15)

oy, (1) + W, (1) <0, i<j<r (6.16)

where

( A%(Z)Y( ) +2Y( )AzTN(;) > (*)T (*)T

Py, (0) = +):”Y( )+ B (0B, () (6.17)
’ CLY (W) + D) I ()7

T () 0 =Y()
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l”;’4 (ngXézg Hé‘(;’)(A)é’Q( ) | ()

+5i(1)C2; (1) + C3,(1)B; (v %) T

o, ()= | | cro) éi B +Z?%2:1 MK (R) (6.18)
BL(@X () + Dh, (Bl 0) =T

j(z)z[ MY @) o Ao Y (@) Aar Y (@) - ASZY(Z)}
d

V(1) = diag {Y(l), e, Ye—1), Ye+1), - ,Y(s)}

o)
Bu,(0) = @I 10 By,(0) 0]
Cu() = [$OHE () 9 HL6) VIGO0 HL6) VROCL0)]
D)= [0 00 —v2@I]"
Ds1,(2) =10 0 6(2)I D2y, (2) I

N(2) (l+p ZZ[”H2 ||+H7()H7j(l)|}) :

=1 j=1

then the prescribed Hoo performance v > 0 is guaranteed. Furthermore, a
suitable filter is of the form (6.4) with

Ay() = [V 1) = X ()] My()Y10)
Bi(1) =[Y7'(1) - X()] ' Bi(2) (6.19)
Ci(1) =C(1)Y (v
where
M) = —AT (1) — X (1) A ()Y (2) — [Y*l(z~) — X(z)]éi(z)ng (z}Y(z)
—zklmy <>@> oﬁmmym+Dumquw]
. z{ X + Y1 (z)}Bi(z)Dgli(z)}Bi ).
(6.20)

Proof: Suppose there exist X (¢) and Y (z) such that the inequalities (6.10) and
(6.11)-(6.12) hold. The inequality (6.10) implies that the matrix P(:) defined
in (6.7) is a positive definite matrix. Using the partition (6.8), the filter (6.9)

and multiplying (6.7) to the left by {Y@ I} and to the right by {Y@ Y(z)] ,

Y(2)0 I o
we have
o z‘j(l) 0
[ 110 Do, (z)} (6.21)

where
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S
Il
=
=
_|_
=
=
,i
+
2’
,“S
_|_
2
&
5

)
+[Y(2)@1Ti(2)+CT( )D 2 ()][Y (Z)C’IT;(Z)+C?(Z)D£(Z)]T
J(l)y‘l(Z)JT(Z) (6.22)

+CL (2 )+ Z e X (k (6.23)

Note that @1, and Pay,; are the Schur complements of U11,; and Wy, .. Using
(6.13)-(6.16), we have (6 21) less than zero. Hence, by Theorem 9, we learn
that the inequality (6.3) holds. ]

6.1.2 Case II-v(t) is unavailable for feedback

Now, the premise variable of the fuzzy model v(t) is unavailable for feedback
which implies p; is unavailable for feedback. Hence, we cannot select our filter
which depends on p;. Thus, we select our filter as follows [91]:

B(t) = Y0y Xy dufts | A (02 (8) + Biy(®)| (6.24)
2(t) = i1 mCi()2()
where f[i; depends on the premise variable of the filter which is different from

M-

By applying the same technique used in Subsection 3.3.2, we have the follow-
ing theorem.

Theorem 10. Consider the system (6.1). Given a prescribed Heo perfor-
mance v > 0 and any positive constants 0(2), for v+ = 1,2,--- s, if there
exist matrices X(1) = X1 (1), Y(2) = YT(2), Bi(2) and C;i(2), i = 1,2,--- 7,
satisfying the following linear matriz inequalities:

Hf(z) {/(Z)} >0 (6.25)
X() >0 (6.26)

Y(2) >0 (6.27)

Uyy,,(1) <0, i=1,2,---,r (6.28)

W2, (1) <0, i=1,2,---,r (6.29)

lpnij (1) + Wllji(l) <0, i<j<rwr (6.30)
W, (1) + W2, (1) <0, i<j<r (6.31)
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]

7

where
AWYO+YOATD o
U1, (1) = +>i”Y(Z) * 772~B1i(Z)BlTj @) (6.32)
N C1, ()Y (2) + D12(2)C;(2) —I (5"
I (1) 0 -2
(A, ) o
+B;(1)Cs, (1) + Tiijz (%)
WQQU (l) = +Ci17:(1 Cvlj (Z) + Zzz=1 )\lkX(k) (633)
BT ()X (2) + D3, (1)BT (2) I
with
J0) = [ ALY (2) A1 Y () /A1, Y () A Y ( )}
(1) = diag {¥ (1) Y(—1), Y(i+1) Y(s)}
Bi,(1) = [6()I T 0 By,(2) 0]
~ _ _ T
Cr(0) = [BRAT () 2LAL () VIRWPOEL @) VIRWCT ()]
Dia()=[0 00 —vaR@)I]"
(1) = I

(00 6() Do, (2)
R() (Hp ZZ[HHQ ||+H7<>H7j<z>|]) :
=1 j=1

then the prescribed Hoo performance v > 0 is guaranteed. Furthermore, a
suitable filter is of the form (6.24) with

Ay() = Y1) = X)) MY ()
Bi(1) =[Y ') - X()] ' Bi(2) (6.34)
Ci(r) =Ci(1)Y1(a)

where

Mij(0) = =AT (1) = X A40Y (1) = [Y (1) = X ()] Bi(1) C,

(6.35)

Proof: It can be shown by employing the same technique used in the proof for
Theorem 8. ]
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6.2 Example

Consider the tunnel diode circuit shown in Figure 4.4 where the tunnel diode
is characterized by
ip(t) = 0.002vp (t) + av)(t)

where « is the characteristic parameter. The circuit is governed by the follow-
ing state equations:

Ciy(t) = —0.002z1 (t) — az3(t) + x2(t)
L.i‘g(t) = —Q?l(t) — Rxg(t) + O.Iwg(t)

y(t) = Jz(t) + 0.1w(t) (6.36)
xl(t)
z(t) = [:vg(t)]

where w(t) is the disturbance noise input, y(¢) is the measurement output,
z(t) is the state to be estimated and J is the sensor matrix. Note that the
variables x1(t) and x3(t) are the deviation variables (variables deviate from
the desired trajectories). The parameters in the circuit are given as follows:
C =20 mF, L = 1000 mH and R = 10 (2. Suppose that this system is
aggregated into 3 modes as shown in Table 6.1:

Table 6.1. System Terminology.
[Mode 1]a(2) + Aa(u)]
1 0.01 +10%

2 0.02 £10%
3 0.03 £10%

with the nominal transition probability matrix that relates the three operation

modes
0.67 0.17 0.16

P, = [0.30 0.47 0.23
0.26 0.10 0.64

With these parameters, (6.36) can be rewritten as

#1(t) = —0.1a1 () — (Mﬁ(ﬂ) -1 () + 5022 (¢)

fz t) = 71‘1@) — IOIEQ(t) + Olwg(t)

y(t) = Jz(t) + 0.1wy (t) (6.37)
_ =)

z(t) = |:l‘2(t):|
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For the sake of simplicity, we will use as few rules as possible. Assuming
that |21 (¢)| < 3, the nonlinear network system (6.37) can be approximated by
the following TS fuzzy model:

Plant Rule 1: IF z4(t) is My (z1(t)) THEN

L(t) = [A1(1) + AA (1)]2(t) + Bi, (Yw(t), z(0) =0,
Z(t) = Cll (l)d)(t)7
y(t) = Co, (1)x(t) + Do, (1)w(?).

Plant Rule 2: IF z4(t) is Ma(z1(t)) THEN

o(t) = [A2(2) + AA2(1)]a(t) + By, (Yuw(t),  x(0) =0,
Z(t) = 012 (Z)l’(t),
y(t) = Co, (1)x(t) + D21, (1)w(t)

w=[2 %] aew=[205]
O R P e

—0.1 50 —13.6 50
[ -1 10}’ A2<3)_[ -1 10}’

B = Bu() = 0y |- cu=cn=[g],

Co, (1) = O, (1) = J, Doy, (1) = Da1, (1) = [0.10],
AA1 (1) = F(x(t),r,t)Hy, (1) and As(i) = F(a(t),2,t)Hi, (2).
Now, by assuming that ||F(z(t),t)]| < p(2) = 1, we have

where

Ai(3) =

Hy, (1) = [8 8] , Hi,(1) = [_00'45 8] 7
m@ = o] =] 0%,
H,(3) [88} and M, (3) = [_10'35 8} .

Note that the plot of the membership function Rules 1 and 2 is the same as
in Figure 4.5.
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Case I-v(t) is available for feedback

In this case, z1(t) = v(t) is assumed to be available for feedback; for
instance, J = [1 0]. This implies that u; is available for feedback. Using the
LMI optimization algorithm and Theorem 6.1 with v =1 and 6(1) = §(2) =
§(3) = 1, we obtain

1.3527 4.1536 }

15.9976 —0.2409
X = {4.1536 23.7154 }

Y1) = {—0.2409 0.5000

; —50.5324 —1.7600 ; —50.5324 —1.7600

An(l) = [9.7924 0.5462]’ A1) = [9.7924 0.5462}’

; —53.3639 —1.8542 ; —53.3639 —1.8542

Az(l) = [—19.4469 —0.3911]’ Az(l) = {—19.4469 —0.3911}’

- 0.2743 - 0.3067

Bi(1) = [—0.9846]’ B2(1) = {—1.2423}

C1(1) = [-35.3553 —1.1213], Cs(1) = [—35.3553 0.1110],
1.1422 3.3069 8.8351 —0.1880

X@) = {3.3069 19.7273}’ Y= [—0.1880 0.3363 }

; —52.3064 —2.3475 ; —52.3064 —2.3475
An(2) = [—3.8388 —0.5670]’ A(2) = [—3.8388 —0.5670}’
; —58.4742 —2.4526 ; —58.4742 —2.4526
An(2) = [—25.9706 —0.1006]’ A(2) = [—25.9706 —0.1006}’
- 0.4488 - 0.0851

Bi(2) = [—1.6417]’ B2(2) = {—0.5918}

C1(2) = [—35.3553 —0.1998 ], C5(2) = [—35.3553 —0.2554],

0.9146 2.5472 }

5.8540 —0.1805
X = {2.5472 16.0807 }

Y() = [0.1805 0.2579

; —53.3336 —2.8124 3 —53.3336 —2.8124
An(3) = [—0.7319 —0.7547]’ A12(3) = {—0.7319 —0.7547}

i —63.4126 —3.1736 ; —63.4126 —3.1736
Az (3) = [22.7881 0.0209]’ Az(3) = [22.7881 0.0209}’
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- 0.0795
B2(3) = {—0.7686} ’

Co(3) = [—35.3553 0.2665].

- 0.7630
Bi(3) = [—2.9262]’

C1(3) = [ ~35.3553 —1.6653],

The resulting fuzzy filter is

B(t) = iy Yiy i A (DE() + X7, s Bi()y (1)

. . (6.38)
2(t) = 2oy miCi(0)2(t)

where
p1 = Mi(z1(t)) and po = Ma(z1(1)).

Case II-v(t) is unavailable for feedback

In this case, x1(t) = v(¢) is assumed to be unavailable for feedback; for
instance, J = [0 1]. This implies that p; is unavailable for feedback. Using the
LMI optimization algorithm and Theorem 6.2 with v = 1 and 6(1) = §(2) =
§(3) =1, we obtain

1.3721 4.2243
X = {4.2243 24.1080}’

) 50.7139 —1.7308
An(l) = {—22.5449 —0.0146]’

; —53.6150 —1.7741
An(l) = {24.4667 ().8441]’
: 0.1802

Bi(1) = [—0.7387]’

C1(1) = [—35.3553 1.0222],

1.1564 3.3632
X2 = [3.3632 20.0687}’

; —52.9363 —2.1627
An(2) = {—15.3598 0.3097 ]

' —59.2867 —2.2823
A2(2) = {28.1564 0.9187]’
. 0.5723

Bi(2) = [—1.6360]’

14.7533 —0.2063
Y= [—0.2063 0.4399 }

. —50.7139 —1.7308
A1p(1) = {_22,5449 —0.0146}’

; —53.6150 —1.7741
An(l) = [24.4667 0.8441}’
- 0.5358

B2(1) = {—1.8729}

Cs(1) = [—35.3553 0.1221],

8.1386 —0.1553
Y2 = [0.1553 0.2925 }

; —52.9363 —2.1627
A12(2) = {—15.3598 0.3097 }
; —59.2867 —2.2823
A (2) = [28.1564 0.9187}’
. 1.0338

B2(2) = {—1.7367}
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C1(2) = [~35.3553 —1.4211], Cs(2) = [~35.3553 0],

0.9254 2.5969 }

5.4341 —0.1491
X = {2.5969 16.4096 }

Y = [—0.1491 0.2228

A = | Ty o |- A= | Tt wnee |
h =[BT - o]
B = | e | B = | |

C1(3) = [—35.3553 1.4877], Ca(3) = [—35.3553 —0.3775].

The resulting fuzzy filter is

B(t) = Yory Yooy faitg Ay () () + iy fuBi()y(t)

. (6.39)
() = Yor wCi2)i(t)

where
fir = My(21(t)) and fiz = Ma(21(1)).

Remark 4. Figures 6.1(a)-6.1(b), respectively, show the responses of x1(t) and
x9(t) in Cases I and II. Figure 6.2 shows the result of the changing between
modes during the simulation with the initial mode 2. The disturbance input
signal, w(t), which was used during the simulation is given in Figure 6.53. The
simulation results for the ratio of the filter error emergy to the disturbance
input noise energy obtained by using the Hoo fuzzy filter are depicted in Figure
6.4. After 15 seconds, the ratio of the filter error energy to the disturbance
input noise energy tends to a constant value which is about 0.33 in Case I and
0.38 in Case II. Thus, in Case I where v = 1/0.33 = 0.574 and in Case II
where v = 1/0.38 = 0.616, both are less than the prescribed value 1. O
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6

— X,
5 . Case I: fuzzy estimated x, (1
al |\ _ _ Case lI: fuzzy estimated X, ® ]

0

The state variable x

Time (sec)
(a) The histories of z1(t)

— (1)
0.6} Case I: fuzzy estimated x,(t) |
_ _ Case ll: fuzzy estimated x2(t)

The state variable xz(t)

-0.27;

Time (sec)
(b) The histories of x2(t)

Fig. 6.1. The histories of z1(t) and z2(t) in Cases I and II.
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251 1

Mode
N
|
|
|
\

1.5f 4

0 5 10 15
Time (sec)

Fig. 6.2. The result of the changing between modes during the simulation with the
initial mode 2.

0.8 4

0.4r :

The disturbance input, w(t)

-1 ! !
0 5 10 15
Time (sec)

Fig. 6.3. The disturbance input noise, w(t).
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Fig. 6.4. The ratio of the filter error energy to the disturbance noise energy:
(fon <z<t>—2(t>>T(z(t)—f(t))dt).

Jof wT (®yw(t)dt

6.3 Conclusion

This chapter presented a method for designing a robust fuzzy filter for a TS
fuzzy system with MJs which guarantees an induce £o norm bound constraint
on disturbance attenuation for all admissible uncertainties. Sufficient condi-
tions for the existence of the robust H, fuzzy filter have been derived in terms
of a family of LMIs. Finally, a numerical design example of the robust fuzzy
filter has been presented to illustrate our design procedures.
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Uncertain Fuzzy Singularly Perturbed Systems

7.1 Background and Motivation

Singularly perturbed systems (SPSs), sometimes called multiple time-scale
dynamic systems, normally occur due to the presence of small “parasitic”
parameters such as small time constants and masses. Examples of SPSs can
be found in every discipline. In power system models, a small “parasitic”
parameter can represent machine reactance or transients in voltage regulators.
In industrial control systems, it may represent time constants of drives and
actuators. In biochemical models, a small “parasitic” parameter can indicate
a small quantity of an enzyme. In flexible booster models, a small “parasitic”
parameter is due to bending modes and in nuclear reactor models, it is due
to fast neutrons. The presence of these “parasitic” parameters can make the
dimensionality of a dynamics system prohibitively high.

For the past three decades, SPSs have been intensively studied by many re-
searchers; e.g., [93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113, 114, 95, 100, 115, 116, 117, 118, 119, 120, 121].
The main purpose of the singular perturbation approach to analysis and de-
sign is the alleviation of high dimensionality and ill-conditioning which is
caused by the interaction of slow and fast dynamic modes. The separation of
states into slow and fast subsystems is a nontrivial modelling task demanding
insight and ingenuity on the part of the analyst. In state space, such systems
are commonly modelled using the mathematical framework of singular pertur-
bations, with a small parameter, say e, determining the degree of separation
between the “slow” and “fast” modes of the system. However, it is necessary
to note that it is possible to solve SPSs without separating into slow and
fast mode subsystems if the “parasitic” parameters are large enough. In the
case of having very small “parasitic” parameters which normally occur in the
description of various physical phenomena, a popular approach adopted to
handle these systems is based on the so-called reduction technique [104]. Ac-
cording to this technique, the fast variables are replaced by their steady states
obtained with “frozen” slow variables and controls, and the slow dynamics are
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approximated by the corresponding reduced order system. This time-scale is
asymptotic, that is, exact in the limit, as the ratio of the speeds of the slow
versus the fast dynamics tends to zero.

Some of the first works in the area of SPSs were investigated by Tikhonov,
[122], in 1948. This work related to the solution of differential equations with
a small parameter multiplying the derivative. Later, modern control theories
were introduced in the 1960’s by many researchers such as Bellman, Kalman
and others, which could be easily applied to the singularly perturbed problems;
e.g., [123, 124, 125]. As a result, the last 43 years has witnessed a rapid growth
in further development of these control methods for SPSs. Literature surveys
on singular perturbation, [103, 126], list over 350 post-1980’s references on
this topic.

In 1969, the singularly perturbed regulator problem was originally posed
by Sannuti and Kokotovic [102]. Their works were based on the condition of
assumed stability of certain partitions of the plant matrix and no fast out-
put terms. Later, the papers of Chow and Kokotovic [127] and Suzuki and
Miura [128] addressed control for the regulator and state-feedback stabiliza-
tion problem. The theory of composite feedback control was developed further
by Khalil, [101], in 1987. In recent decades, the research on SPSs in the Ho,
sense has been highly recognized in the control area due to the great practical
importance. For examples, Pan and Basar, [106, 107], investigated the Hoo-
optimal control of SPSs under both perfect and imperfect state measurement.
Shi and Dragan, [110, 111}, have considered the asymptotic Heo control design
of SPSs with parametric uncertainties. In [109], the authors have investigated
the decomposition solution of H, filter gain for SPSs, while the reduced-
order H,, optimal filtering for system with slow and fast modes has been
considered in [93]. Recently, Dragan, [129], has developed an H., controller
for LSPS-MJs via the slow-fast decomposition approach.

Although many researchers have studied the Ho control and filter design
of LSPSs and LSPS-MJs for many years, the Ho, control and filter design of
nonlinear singularly perturbed systems (NSPSs) and nonlinear singularly per-
turbed systems with Markovian jumps (NSPS-MJs) remains as open research
areas. This is generally due to the fact that NSPSs and NSPS-MJs cannot be
decomposed into slow and fast subsystems. Furthermore, if we employ the ex-
isting fuzzy results in [34, 35, 27, 38, 39, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53]
on the NSPS and NSPS-MJs, they end up with a family of ill-conditioned lin-
ear matrix inequalities (LMIs) resulting from the interaction of slow and fast
dynamic modes. In general, ill-conditioned LMIs are very difficult to solve.
Recently, there have been some attempts in H, control for a class of NSPSs,
however, nonlinearity only on the slow variables has been examined; e.g.,
[98, 130, 131, 132, 133, 134, 135]. A local state-feedback H, control problem
for affine NSPSs has been also addressed in [98]. In [136], a global state-
feedback H, control problem for a class of NSPSs described by the TS fuzzy
model has been studied. So far, to the best of our knowledge, an LMI ap-
proach to the H,, control and filter problem of the parametric uncertainties
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issue in NSPS and NSPS-MJ based on the TS fuzzy model has not yet been
considered in the literature.

This motivates us to consider the topics in UNSPSs and UNSPS-MJs since
in general, UNSPSs and UNSPS-MJs cannot be decomposed into slow and
fast subsystems. The commonly used method to solve the design problem for
these classes of systems is basically based on a linearized technique and a
slow-fast decomposition approach which may result in a system far from its
desired performance. Thus, it is necessary to have an approach that can help
us to overcome the design difficulties of the controller and filter for a class of
UNSPSs and UNSPS—-MJs.

Therefore, in order to bridge the gap, this book will present a new novel
methodology on designing a robust H, fuzzy controller and a robust Ho
fuzzy filter for a class of UNSPSs and UNSPS-MJs which are described by a
TS fuzzy system with parametric uncertainties and with/without MJs. The
proposed design approach in this book for a class of UFSPSs and UFSPS-MJs
does not involve the separation of states into slow and fast ones and it can
be applied not only to standard, but also to nonstandard nonlinear singularly
perturbed systems. The outline of presentation for Part II is given in next
section.

7.2 Outline of Part II

In Part II, the synthesis design procedure of a robust H, fuzzy controller and
a robust H fuzzy filter for a class of UNSPSs and UNSPS-MJs which is de-
scribed by a TS fuzzy system with parametric uncertainties and with/without
MJs is presented. The outline of Part II is presented as follows. Chapter 7 pro-
vides some background and motivation on UFSPSs. Chapters 8 and 9 present
the synthesis design procedure of a robust H., fuzzy controller and a robust
Hoo fuzzy filter for the class of UFSPSs. Then, Chapters 10 and 11 respec-
tively present the synthesis design procedure of a robust H, fuzzy controller
and a robust Hy fuzzy filter for the class of UFSPS-MJs. Finally, to illus-
trative the effectiveness of the design procedures, a numerical example is also
given at the end of each chapter.
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Robust H,, Fuzzy Control Design for
Uncertain Fuzzy Singularly Perturbed Systems

In this chapter, we present a new designing technique for a robust fuzzy state
and output feedback controller for a TS singularly perturbed fuzzy system
with parametric uncertainties. A technique for designing a robust fuzzy con-
troller such that the L£-gain of the mapping from the exogenous input noise
to the regulated output is less than the prescribed value has been developed.

8.1 System Description

In this chapter, we generalize the TS singularly perturbed fuzzy system to
represent a TS singularly perturbed fuzzy system with parametric uncertain-
ties. As in [136], we examine a TS singularly perturbed fuzzy system with
parametric uncertainties as follows:
Bei(t) = Yy ma(v(6) [[4i + AAJa(t) + [By, + AByJu(t)
+[Ba, + ABy,Ju(t)], (0) =0
2(t) =i mi(v() [[Cr, + AC, o (t) + [Di2, + AD12, Ju(t)

(
y(t) =2y wi(w(t) ][Oy, + ACo,Ja(t) + [Dar, + ADay, Jw(t)

1 . . .
where E, = 0 801. , € > 0 is the singular perturbation parameter, v(t) =
[v1(t) -+ wvy(t)] is the premise variable vector that may depend on states

in many cases, u;(v(t)) denotes the normalized time-varying fuzzy weight-
ing functions for each rule (i.e., p;(r(t)) > 0 and > i, pi(v(t)) = 1), ¥ is
the number of fuzzy sets, xz(t) € R" is the state vector, u(t) € R™ is the
input, w(t) € RP is the disturbance which belongs to £3[0, ), y(t) € R
is the measurement and z(t) € R° is the controlled output, the matrices
A;, B1,, Bsy;,C4,,Cy,, D12, and Doy, are of appropriate dimensions, and the
matrices AA;, ABy,, ABy,, ACy,, ACy,;, AD1s, and ADs;, represent the
uncertainties in the system and satisfy Assumption 3.1.
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8.2 Robust H, State-Feedback Control Design

The aim of this section is to design a robust H ., fuzzy state-feedback controller
of the form

u(t) = Zquﬂ(t) (8.2)

where K; is the controller gain, such that the inequality (3.3) holds. The state
space form of the fuzzy system model (8.1) with the controller (8.2) is given
by

Eei(t) = 30, 251 Hiky [[(Ai + By, K;) + (AA; + ABy, Kj)|2(t)

(8.3)
By, + ABJw()],  2(0) =0,
Sufficient conditions for the existence of a robust H., fuzzy state-feedback
controller are provided in the following lemma. The Lyapunov approach is
used to derived these sufficient conditions.

Lemma 5. Consider the system (8.1). Given a prescribed Hoo performance

v > 0 and a positive constant §, if there exist a matriz P. = PI and ma-

trices Y;, j = 1,2,--- ,r, satisfying the following e-dependent linear matriz
inequalities:
P.>0 (8.4)
Pii(e) <0, i=1,2,---,r (8.5)
Wij(e) + ¥ji(e) <0, i<j<r (8.6)
where

AEZ'Po+ EZ'PLAT + By, Y + Y[ BY (+)T ()7
@i(e) = BT —I ()T (8.7)
CliE{;lP‘g + D12i)/j 0 —’y]
with
By, =[0I 161 By,], Gy, =[2HT 0 VarpHT varxcT ",

2

_ T T T
Dia, = [0 220 V2pHE VDL )" a = (1402 Y3 (1L, 0] |
i=1j=1

then the inequality (3.3) holds. Furthermore, a suitable choice of the fuzzy
controller is
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.
u(t) = piK;(e)z(t) (8.8)
j=1

where

K;(e) = Y,P.'E.. (8.9)

Proof: The proof can be carried out by the same technique used in Theorem
1. [ |

Remark 5. The LMIs given in Lemma &5 become ill-conditioned when ¢ is
sufficiently small, which is always the case for the SPS. In general, these
ill-conditioned LMIs are very difficult to solve. Thus, to alleviate these ill-
conditioned LMIs, we have the following theorem which does not depend
on €. 0

Theorem 11. Consider the system (8.1). Given a prescribed Ho, perfor-
mance v > 0 and a positive constant &, if there exist a matrix P and ma-

trices Y;, j =1,2,--- 7, satisfying the following e-independent linear matriz
inequalities:

EP=P'E, PD=DP, EP+PD >0 (8.10)

U,; <0, i=1,2,---,r (811)

Ui +9;,, <0, i<j<r (8.12)

10 00
where B = <00>’D_ <OI> and

AP+ PTAT + By,Y; + Y BY (%) (x)7
Vij = By, —~I (%) (8.13)
G1. P+ DY, 0 —yI
with
By, =[0I T6I By, ], Cy, = [2HT 0 VIApHE v2ACT )",

2

_ T ks T
Dia, = [0 %0 VaNHE VDD, )" A= (14233 [, 1] |

i=1 j=1

then there exists a sufficiently small € > 0 such that the inequality (3.3) holds
for e € (0,€]. Furthermore, a suitable choice of the fuzzy controller is
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u(t) = pKju(t) (8.14)
j=1
where
K; =Y;P'. (8.15)

Proof: Suppose there exists a matrix P such that the inequality (8.10) holds,
then P is of the following form:

P= <£2; }23) (8.16)
with P, = PI' > 0 and P3 = P{ > 0. Let
P.=E.(P +¢P) (8.17)
with
P= (8%). (8.18)
Substituting (8.16) and (8.18) into (8.17), we have
P. = (EI;}QT ;]j;) . (8.19)

Clearly, P. = PT, and there exists a sufficient small & such that for ¢ € (0, ],
P. > 0. Using the matrix inversion lemma, we learn that

Pt = [Pl 4 eM.| B! (8.20)

. -1
where M, = —P~1P (I + 5P’1P) P~1. Substituting (8.17) and (8.20) into
(8.7), we obtain

;i + i (8.21)

where the e-independent linear matrix ¥;; is defined in (8.13) and the e-
dependent linear matrix is

AP+ PTAT + By, Yo, + YIBY ()7 ()7
iy = e 0 0 (7T (8.22)
C1, P+ Dia, Y-, 0 0

where Y, = K; M L. Note that the e-dependent linear matrix tends to zero
when e approaches zero.

Employing (8.10)-(8.13) and using the fact that for any given negative
definite matrix W, there exists an € > 0 such that W + I < 0, one can show
that there exists a sufficiently small £ > 0 such that for € € (0,£], (8.5) and
(8.6) hold. Since (8.4)-(8.6) hold, using Lemma 8.1, the inequality (3.3) holds
for e € (0,€] . ]
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8.3 Robust H,, Output Feedback Control Design

This section aims at designing a full order dynamic H, fuzzy output feedback
controller of the form

BL(1) = S Sy ity [ Ay (©)2(0) + Buy(®)] (823
ut) = 22:1 /:‘iéij(t)

where &(t) € R" is the controller’s state vector, A;(¢), B; and C; are pa-
rameters of the controller which are to be determined, and [i; denotes the
normalized time-varying fuzzy weighting functions for each rule (i.e., fi; > 0
and ) ;_, fi; = 1), such that the inequality (3.3) holds. Clearly, in real control
problems, all of the premise variables are not necessarily measurable. Thus,
we consider the designing of the robust H, output feedback control into two
cases as follows. In Subsection 8.3.1, we consider the case where the premise
variable of the fuzzy model p; is measurable, while in Subsection 8.3.2, the
premise variable which is assumed to be unmeasurable is considered.

8.3.1 Case I-v(t) is available for feedback

The premise variable of the fuzzy model v(t) is available for feedback which
implies that p; is available for feedback. Thus, we can select our controller
that depends on p; as follows:

Bei(t) = iy Xy iy | Aig(€)i(t) + Biy(t)] (8.24)
u(t) =Yy mCii ().

Before presenting our next results, the following lemma is recalled.

Lemma 6. Consider the system (8.1). Given a prescribed Hoo performance
7y and a positive constant §, if there exist matrices X. = X2, Y. =YL, B;(e)

and Ci(e), i = 1,2,--- ,r, satisfying the following e-dependent linear matriz
inequalities:

[fa i,J >0 (8.25)

X:>0 (8.26)

Y. >0 (8.27)

W (6) <0, i=1,2-,r (8.28)

Way, (€) <0, i=1,2--,r (8.29)

U, (e) +¥n1,,(e) <0, i<j<r (8.30)

Wos,, () +Wag,,(e) <0, i<j<r (8.31)



90 8 Robust Ho Fuzzy Control Design for UFSPSs

where
(EAn e B me e
Q/Hij (5) = +Es Cz (5>B2jE€ + EE Bl%BleE (832)
V.CF + B AcT () DYy | -1
A;TE‘;IXE -+ XsEglAl + Bi(€)C2j T
+CIBT(e) + CTC ()
Lngij (5) = 2;%j 1,1 T (833)
[XEEngL. n Bi(g)Dglj} 2T
with

~ =~ T
By, =[0I 1610By, 0], Ci, =[2HT 02HL V2 pH] V2XCE ],

Do, = [0 2HT 0 V2ApHT v2AD%, 1", Doy, = [000 6T Dyy, 1]

2

and A= (142 >3 [l |l + |5 ) |
i=1 j=1

then the system (8.1) has the prescribed Hoo performance v > 0. Furthermore,
a suitable controller is of the form (8.24) with

A -1
Ap(e) = B! = X My(oy

X -1
B =BV - X] Bie) (8.34)
C;  =Ci(e)BIY !

where

Mij(e) = —ATEZ' — X_EZ'AY. — X.E-'By,C;Y.
— [V = X EZ'BiCy, Y. — CF [Ch,Ye + Dig, Gy V2]
A2 {XEEE*B’li [yt XE]Es_léiDQh} Bl EZ'. (8.35)

Proof: The proof can be carried out by the same technique used in Lemma
3.1 and Theorem 2. [ |

Remark 6. The LMIs given in Lemma 6 may become ill-conditioned when &
is sufficiently small, which is always the case for the SPS. In general, these
ill-conditioned LMIs are very difficult to solve. Thus, to alleviate these ill-
conditioned LMIs, we have the following e-independent well-posed LMI-based
sufficient conditions for the UFSPS to obtain the prescribed Hoo performance.
|
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Theorem 12. Consider the system (8.1). Given a prescribed Heo perfor-
mance v > 0 and a positive constant §, if there exist matrices Xo, Yy, Bo,

and Co,, v+ = 1,2,--- | r, satisfying the following e-independent linear matriz

inequalities:
XoE 4+ DXy 1

I Yo + DY, >0 (8.36)

EXI = XoE, XI'D= DXy, XoE+ DX, >0 (8.37)

EYS =Y,E, Y{ D= DY, YoE+ DY, >0 (8.38)

&011“. <0, 1=1,2,---,r (839)

Uay,, <0, i=1,2,---,7r (8.40)

Lpllij + y'/llji <0, 1<j<r (841)

Spggij + Epggji <0, i<j3<r (842)

10 00
where B = <00>,D <OI>’

A YT + Yo AT + By.Co. + CT BT +~72B; BT ()T
v, = ( 0 045 2;L0; 0,2, T7 1,51, (*) (8.43)

[YoCE +CL DY, | 1
v - A?Xg + XoAz + B[)iCQj + C{Bg; + Ciélj (*)T (8 44)
22, = ~ ~ .
! [XoBi, + BoiDmJT —21

with
Bi, = [6I1610B,,0], Ci,=[2HT 02HT V2\pHT v2ACT]"

Do, = [0 2HT 0 V2ApHT v2ADT, 1", Doy, = [000 6T Dyy, 1]

2

and A= (14> 33 (| HE H, || + | B H || |

i=1 j=1

then there exists a sufficiently small £ > 0 such that for e € (0,&], the pre-
scribed Hoo performance v > 0 is guaranteed. Furthermore, a suitable con-
troller is of the form (8.24) with

Aijle) = Y71 = X Mo, ()Y
B, = [y =X By, (8.45)
G =CoY; !

where
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Mo, (e) = —AT = X.AY. = X.Bo, CjY. — [YV.! = X.] B,Cy, Y.
—CL[C,Ye + Duo, GYe] =7 2 { X By, + Vo' = Xl BiDay, | BT, (3.46)

X. {Xo—i—sX}E and Y1 = {Y —|—5N}E (8.47)

with X = D(X Xo) and N. = D((Yo—l)T _ Yo—l).
Proof: See Appendix. [ |

8.3.2 Case IT-v(t) is unavailable for feedback

Now, the premise variable of the fuzzy model v(¢) is unavailable for feedback
which implies p; is unavailable for feedback. Hence, we cannot select our
controller which depends on p;. Thus, we select our controller as follows:

(1) = Sy Sy e[ Ay a(0) + Buy(t)] (8.48)
u(t) =i G (t)

where [1; depends on the premise variable of the controller which is different
from p;.

Let us re-express the system (8.1) in terms of fi;, thus the plant’s premise
variable becomes the same as the controller’s premise variable. By doing so,
the result given in the previous case can then be applied here. Note that it
can be done by using the same technique as in Subsection 3.3.2. After some
manipulation, we get

Beilt) = S0y i [Ai + AAiJa(t) + [Bl + ABy Ju(?)
x(

1B, +ABQ.]} (t), z(0) =
(8.49)
2(t) =31 | [Cr, + ACJa(t) + [Diz, + ADiz,Juf(t)
y(t) =351 f1i|[Co; + ACy,]x(t) + [Dar, + ADay, Jw(t)
where
AA; = F(z,#,t)Hy,, ABy, = F(x,2,t)H,,, ABy, = F(z,%,t)Hs,,

with

Hy, = [HE AT -.-A,TH{---Hﬂ]T, Hy, = [HY BT -- BT HL ...HI
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Hs, = [H] BY - BY HE --ul)", Hy = [H] CT,...cf B} - HL]",
= [l ol .ol ml - HL)", Hs = [HL DY, DY, HE - HT]"
H;, = [H] D3, --- D}, H;fl-~-H7TT] and

F(a(t),2(t),t) = [F(x(t),t) (1 —pa) - (pr—fr) F2(t),t)(p1 — fin)
F(z(t),t)(ur — [LT)} Note that | F(z(t), Z(t),t)|| < p where p = {3p2+2}2. p
is derived by utilizing the concept of vector norm in the basic system control
theory and the fact that p; >0, 2; >0, >, =1and > |, a; =1.

Now, the premise variable of the system is the same as the premise variable
of the controller, thus we can apply the results given in Case I.

Theorem 13. Consider the system (8.1). Given a prescribed Heo perfor-
mance v > 0 and a positive constant §, if there exist matrices Xo, Yo, By,
and Co,, © = 1,2,--- ,r, satisfying the following e-independent linear matriz
inequalities:
XoE + DXy 1
I YoE + DY,
EXI = XoE, XI'D = DXy, XoE+ DX, >0
EY) =YoE, Y§ D= DY;, YoE+ DY, >0
wllv'<0; i:1727"'7r

it

(8.51)
(8.52)
(8.53)
Woo,, <0, i=1,2,---,r (8.54)
(8.55)
(8.56)

>0 (8.50)

Uiy, + %11, <0, i<jg<r
Uag,; + W2, <0, i<j<r

10 00
where B = <00>,D— <OI>’

AZ‘YOT + YOA? =+ BQiCOJ =+ Cng =+ ’}/72§11’é? (*)T
Lpllij - =7 T :;1 7 (857)
[YoCY, +C3, D15, ] I
T T T
by, — (ATXE + XoAict Bo,Co, + CLE] +CT6, (*)2 559
[XOBl +BO7D21 } 41

A b i 5 T _= < T
=[0I 16108y, 0], Cy,=[%2A] 022AT V2ApHT V2XCT ]

D12~:[ WT \f/\PHT V2ADY, ]Tv 521i: [OOO‘HD% I]
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and X = 1+pzzz [||H2 Hy, |+ |HL B || |

=1 j=1

then there exists a sufficiently small € > 0 such that for e € (0,£€], the pre-
scribed Hoo performance v > 0 is guaranteed. Furthermore, a suitable con-
troller is of the form (8.48) with

121” (5> = [Ye_l - Xa]_lMOU (5)Ys_1
B, = [Y;' =X By, (8.59)
G =Co Yy !
where
Mo, (e) = —AT — X A)Y. — X By, C;Y. — [Y! — X, BiCo, Y-
~CL[C,Ye + Do, G5Ye] =72 {XeBy, + [V - X ]B D2y, } élT (8.60)
Xo={Xo+eX} B and v = (¥ +eN B (801)

with X = D(XOT - X0> and N. = D((Ygl)T - Y(;l).

Proof: Since (8.49) is of the form of (8.1), it can be shown by employing the
proof for Theorem 12. ]

8.4 Example

Consider the tunnel diode circuit shown in Figure 8.1 where the tunnel diode
is characterized by

ip(t) = —0.2vp(t) — 0.01v3(t).

Assume that € is a “parasitic” inductance in the network. Let 21 (t) = ve(t)
be the capacitor voltage and x5 (t) = ir(¢) be the inductor current. Then, the
circuit shown in Figure 8.1 can be modelled by the following state equations:

Ciy(t) = 0.2z1(t) + 0.0123(t) + 22(t)
eia(t) = —x1(t) — Rxa(t) + u(t) + 0.1wa(t)
y(t) = Jz(t) +0.1w(t) (8.62)

$1(t)
z(t =
where u(t) is the control input, wi(t) is the measurement noise, wq(t) are

is the process noise which may represent un-modelled dynamics, y(t) is the
measured output, z(t) is the controlled output, J is the sensor matrix, x(t) =
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a O

Fig. 8.1. A tunnel diode circuit.

[2T(t) 2T()]" and w(t) = [wi (t) wi (t)]T. Note that the variables 1 (t) and
x9(t) are treated as the deviation variables (variables deviate from its desired
trajectories). The parameters in the circuit are given by C' = 100 mF and
R =1+0.3% 2, with these parameters (8.62) can be rewritten as

i1 (t) = 2x1(t) 4+ (0.122(¢)) - 21 (t) + 1022(t)

edo(t ) —z1(t) — (1 £ AR)z2(t) + u(t) + 0.1wo(1)

y(t) Jx(t) + 0.1w (¢) (8.63)
1(0}
2(1)

z(t)
For the sake of simplicity, we will use as few rules as possible. Assuming that

|z1(t)] < 3, the nonlinear network system (8.63) can be approximated by the
following TS fuzzy model:

Tz

Plant Rule 1: IF z4(¢) is M;(z1(t)) THEN

FLi(t) = [A1 + AA2(t) + Biw(t) + Ba,u(t), 2(0) =0,
z(t) = Cyz(t),
y(t) = Co,x(t) + Darw(?).

Plant Rule 2: IF z4(t) is My(z1(t)) THEN

E &(t) = [A2 + AAs]x(t) + Byw(t) + Bo,u(t), x(0) =0,
2(t) = Cra(t),
y(t) = Co,z(t) + Dayw(t)

where z(t) =[] () 23 ()]7, w(t) = [w] (1) w] (O],

2 10 2.9 10 00 0
A1 = {—1 —1]’ A2 = [—1 —1}’ By = {00.1]’ Bay = Bz, = M
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10

01{01

}, Co, = Co, = J, Doy = [010],

AA; = F(x(t),t)Hy,, AAy = F(x(t),t)H1, and E. = [(1) 2} '

Note that, the plot of the membership functions is the same as in Figure 4.2.
Now, by assuming that in (3.2), ||[F(z(t),?)|| < p = 1 and since the values
of R are uncertain but bounded within 30% of their nominal values given in

(8.62), we have
00
By =, = {0 0.3] '

State-feedback controller design

Employing the results given in Lemma 8.1 and the Matlab LMI solver, it
is easy to realize that when ¢ < 0.03, the LMIs become ill-conditioned and
the Matlab LMI solver yields the error message, “Rank Deficient”. Using the
LMI optimization algorithm and Theorem 11 with v = 1 and § = 1, we obtain

00943 0

X= 1 07111 1233692
Vi = [~0.0670 —413.6464], Yy = [—0.0447 —414.8722],
K; = [~25.9930 —3.3529], Ky = [~25.8312 —3.3629].

The resulting fuzzy controller is

u(t) = ZMjKjfU(t) (8.64)

where
p1 = My(x1(t)) and pg = Ma(21(t)).

Output feedback controller design

Note that by employing the results given in Lemma 8.2 and the Mat-
lab LMI solver, it is easy to realize that when ¢ < 0.03, the LMIs become
ill-conditioned and the Matlab LMI solver yields the error message, “Rank
Deficient”. Using the LMI optimization algorithm and Theorems 12-13 with
€ =0.01, vy =1 and § = 1, we obtain the following results:

Case I-v(t) are available for feedback
In this case, z1(t) = v(t) is assumed to be available for feedback; for
instance, J = [1 0]. This implies that y; is available for feedback.



. _ [0-3910 4.2648
0= 0 26.0371|

An(e) = | 30513 _18.6773

A [—89.4198 9.2455 ]

—85.8526 9.2514 ]

Agi(e) = [—3.4361 —18.6773

: 96.6841
B = [—1.7141}’

Cy = [—46.7003 —177.7428],

The resulting fuzzy controller is
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Yo

135.2417 —48.4620
0 143.3726 |’

Annle) = —89.4196 9.2461
12371 29811 —18.5296 |’

fy(e) = | 558523 9.2519
228) = | _ 33628 —18.5296 |’
X 94.0516

Bz = [—1.3324]’

Co = [ —45.9676 —176.2654].

2

E.i(t) = Z Z pintj Ay (e)a(t) + Z i By (t)

i=1 j=1
2 A
u(t) =Y wCid(t)
=1

where

=1

pr = Mi(z1(t)) and pg = Ma(w1(t)).

Case II: v(t) are unavailable for feedback

In this case, z1(t) = v(t) is assumed to be unavailable for feedback; for
instance, J = [0 1]. This implies that y; is unavailable for feedback.

. _ [0:3519 5.1178
0= 0 43.3952 |’

An(e) = —93.0660 9.3158
HAS) =1 _1.8731 —19.0234 |’

Aoy(e) = —90.5479 9.3235
271 22,1021 —19.0234 |7
R 100.8526

B = [—1.0284]’

C1 = [~28.0202 ~180.8999],

The resulting fuzzy controller is

v _ [225.4028 ~96.9239
0= 0 143.3726 |’

Apn(e) = —93.0657 9.3167
1237 1 -1.8291 —18.8706 |’

Agm(e) = —90.5476 9.3245
215 7 | —2.0581 —18.8706 |

- 99.2575
Bz = [—0.7994}’

S
I

[~27.5806 —179.3730].
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where

Remark 7. For a sufficiently small e, both robust fuzzy state and output feed-
back controllers guarantee that the Lo-gain, v, is less than the prescribed value.
The disturbance input signal, w(t), which was used during the simulation is
given in Figure 8.2. The ratio of the requlated output energy to the disturbance
input noise energy obtained by using the Hoo fuzzy controllers with ¢ = 0.01
is depicted in Figure 8.3. After 5 seconds, the ratio of the requlated output
energy to the disturbance input noise energy tends to a constant value which
is about 0.032 for the state-feedback controller, and 0.10 for the output feed-
back controller in Case I and 0.12 in Case II. Thus, for the state-feedback
controller where v = 1/0.032 = 0.178, and for output feedback controller in
Case I where v = +/0.10 = 0.316 and in Case II where v = +/0.12 = 0.346,
all are less than the prescribed value 1. Finally, Table 8.1 shows the result of

the performance index v with different values of . 0
0.1
S o0.05f
5
Q.
£
3
& or
£
p=}
@
©
2 -0.05f
-0.1 |
0 1 2 3 4 5
Time (sec)

Fig. 8.2. The disturbance input noise, w(t).



Table 8.1. The performance index ~ of the system with different values of €.

8.5 Conclusion
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The performance index ~
e |State-feedback|Output-feedback in Case I|Output-feedback in Case II
0.01 0.178 0.316 0.346
0.05 0.239 0.400 0.410
0.15 0.440 0.574 0.922
0.16 0.441 0.600 >1
0.28 0.500 0.989 > 1
0.29 0.503 > 1 >1
0.48 0.902 > 1 > 1
0.49 >1 > 1 > 1
>
2
£0.16 : : :
@ State feedback controller
< 014l —— Output feedback controller (Case 1) ||
g ’ — — Output feedback controller (Case Il)
p=}
BOA2f - ———— - — - —— - - - - == — =~ —
(0]
£ I
2 01yl ,
o) I
@ I
5 0.08f -
3 |
=
3 0.06 1 -
o [
2
8 0.04 b
=}
(@]
)
g 0.02 b
k]
9 0 I I I I
E 0 1 2 3 4 5
Time (sec)
Fig. 8.3. The ratio of the regulated output energy to the disturbance noise energy:

fOTf 2T () z(t)dt
Jof wT (Ww(tydt )

8.5 Conclusion

This chapter has examined the problem of designing a robust fuzzy state and
output feedback controller for a TS singularly perturbed fuzzy system with

parametric uncertainties. Sufficient conditions for the existence of a robust

fuzzy controller are derived in terms of a family of e-independent linear matrix
inequalities. A numerical simulation example has been presented to illustrate
the effectiveness of the designs.
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Robust 'H,, Fuzzy Filter Design for Uncertain
Fuzzy Singularly Perturbed Systems

This chapter presents a technique for designing a robust fuzzy filter for a TS
singularly perturbed fuzzy system with parametric uncertainties. We propose
the technique for designing a robust fuzzy filter such that the Lo-gain from
an exogenous input to an estimate error output is less than or equal to the
prescribed value. These results have been reported in [137].

9.1 Robust H,, Fuzzy Filter Design

Without loss of generality, in this chapter, we assume that u(¢) = 0. Let us
recall the system (8.1) with u(t) = 0 as follows:

Eoa(t) = Y1y pi|[Ai + AAil2(t) + [By, + ABh]“’@)} z(0) =0
) = i[O, + ACy Ja(t)] (9.1)
y(t) =iy | [Coy + ACy,]a(t) + [Dan, + ADzli]w(t)]

We are now aiming to design a full order dynamic Ho, fuzzy filter of the form

BL(t) = Sy Sy sy [ A (€ (1) + Buy(t)] 02)
2t =30 wCii(t)

where Z(t) € R” is the filter’s state vector, £ € R° is the estimate of z(t),
Aij (e), BZ and C’Z are parameters of the filter which are to be determined,
and fi; denotes the normalized time-varying fuzzy weighting functions for
each rule (i.e., i; > 0 and Y ;_, fi; = 1), such that the inequality (4.3) holds.
Clearly, in real control problems, all of the premise variables are not necessarily
measurable. In this section, we then consider the designing of the robust H.o
fuzzy filter into two cases as follows. Subsection 9.1.1 considers the case where
the premise variable of the fuzzy model u; is measurable, while in Subsection
9.1.2, the premise variable is assumed to be unmeasurable.
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9.1.1 Case I-v(t) is available for feedback

The premise variable of the fuzzy model v(t) is available for feedback which
implies that u; is available for feedback. Thus, we can select our filter that
depends on y; as follows [91]:

Eei(t) = Sy - ot | Aig(€)
( ) = Zi:l M%sz( )

Before presenting our next results, the following lemma is recalled.

E~]>
—~
~
~
+
883
<
<
—
~+
~—
[E——

Lemma 7. Consider the system (9.1). Given a prescribed Ho performance
v > 0 and a positive constant §, if there exist matrices X. = XX, Y. = YT,
Bi(e) and Ci(e), i = 1,2,---,r, satisfying the following e-dependent linear
matriz inequalities:

X. I
[I YJ >0 (9.4)
X.>0 (9.5)
Y- >0 (9.6)
Wll ()<O, 1=1,2,---,r (97)
oo, (6) <0, i=1,2,---,r (9.8)
wllii (E) + Wllﬁ (6) <0, i1<j3<r (99)
WQQU (6) + !pgzﬂ(ef) <0 1<j<r (910)
where
E7YAY. + Y. ATE- 4+ v 2E-1B, BT B! (x)T
Uy, (e) = : o fTZ . 714—; *ET Tll b *) (9.11)
[Y.CT + EZ'CT (e) DT —I
(AiTEngE + XEE5_141’ +~Bi(€)02j ) (*)T
Usa,, (c) = +C3,Bj () + C1,C, , (9.12)
[XEE‘;IBL; —+ Bi(S)Dzlj] 7’)/2_[
with

— [6TT0By, 0], Gy, = [22HT 2HT VaxpHE V2ACL]"

Dia=[000—v2\I]", Doy, = [006I Dyy, I]

2

and A= 14223 % [||H27;H2j\| + ||H$;H7j||] :
i=1j=1
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then the prescribed Hoo performance v > 0 is guaranteed. Furthermore, a
suitable filter is of the form (9.3) with

Aije) = B [Y7! = Xo] T Mij(e)Y?
B, =E.[v.'—X.] 'Bie) (9.13)
éz = Ci(e)Esileil

where

Mij(e) = —ATEZY — X.EZ'AY. — [Y7! — X EZ'BiCo, Y.
—01T1 [élea + DlQCA'ij]
2 {XEEth T Xs]EgléiD%} BYEZ'. (9.14)

Proof: The proof can be carried out by the same technique used in Lemma
4.1 and Theorem 4. [ |

Remark 8. The LMIs given in Lemma 7 may become ill-conditioned when &
is sufficiently small, which is always the case for the SPS. In general, these
ill-conditioned LMIs are very difficult to solve. Thus, to alleviate these ill-
conditioned LMIs, we have the following e-independent well-posed LMI-based
sufficient conditions for the UFSPS to obtain the prescribed Ho, performance.
|

Theorem 14. Consider the system (9.1). Given a prescribed Ho, perfor-
mance v > 0 and a positive constant &, if there exist matrices Xo, Yo, Bo,
and Co,, © = 1,2,---,r, satisfying the following e-independent linear matriz
inequalities:

XoE + DX, I
I YoE + DY,

EX!' = XoE, XI'D= DXy, XoE+ DX, >0

>0 (9.15)

EYF =Y,E, YD = DYy, YoE + DYy >0 9.17
!pllii
WQQ“. <0, 1=1,2,---,r 9.19

Uiy, + 11, <0, i<j<r
Q/QQU + ngji <0, 1<j<r

10 00
where £ = (OO)’D_ (OI)’

(9.16)
(9.17)
<0, i=1,2,---,7 (9.18)
(9.19)
(9.20)
(9.21)



104 9 Robust Heo Fuzzy Filter Design for UFSPSs

AYE + Y AT + v 2By, BT ()T
Uy, = SR e ) (9.22)
YoCT +cf D] —I
A;TXg + X()Az:f— lioiCQj (*)T
Va2, = +C3, B4, + C1.Cy, (9.23)

[XoBy, + 301D21j]T —*1

with
By, = [8IT0By, 0], G, =[%HE 2HT arpHT varxcT]"

i )

]T

Dis=[000~v2\ |, Doy, =[006I Dy, I]

2

and A = 1+p2zz[||H2TiH2jH+||H77;H7j||} :

i=1 j=1

then there exists a sufficiently small € > 0 such that for e € (0,£€], the pre-
scribed Hoo performance v > 0 is gquaranteed. Furthermore, a suitable filter is
of the form (9.83) with

Ajje) = [V = X Mo, ()Y
B =[Yyt - Xo]_lgoi (9.24)
G =CYy !

Moy, (€) = —AT = X AY. = [Yo! = X | BiCy, Y. = CT [C, Y. + DioCyY.]
2 { X.By, + [V - X, Bibgli}éﬂ (9.25)

X. = {Xo + EX}EE and Y. ! = {Ygl + ENE}EE (9.26)
with X = D(XOT - Xo) and N. = D((Yo—l)T - Yo—l).

Proof: The proof can be carried out by the same technique used in Theorem
12. [ |

9.1.2 Case II-v(t) is unavailable for feedback

Now, the premise variable of the fuzzy model v(¢) is unavailable for feedback
which implies p; is unavailable for feedback. Hence, we cannot select our filter
which depends on p;. Thus, we select our filter as follows [91]:

B (t) = X0, X5 ity | Aig ()2 () + Biy(#)| (9.27)
2ty =0 uCii(t)
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where f[i; depends on the premise variable of the filter which is different from
Hi-

By applying the same technique used in Subsection 3.3.2, we have the follow-
ing theorem.

Theorem 15. Consider the system (9.1). Given a prescribed Hoo perfor-
mance v > 0 and a positive constant §, if there exist matrices Xo, Yo, Bo,

and Co,, © = 1,2,--- ,r, satisfying the following e-independent linear matriz
inequalities:
XoFE + DXy I
I YoE + DY, >0 (9.28)
EX! = XoE, XI'D= DXy, XoFE+ DXy >0 (9.29)
EY] =YoE, YJ' D= DY,, YoE+ DYy >0 (9.30)

Ty, <0, i=1,2--,r

it

Wyy, <0, i=1,2--,r

(9.31)
(9-32)
Uy, Wy, <0, i<j<r (9.33)
Upg, + W, <0, i<j<r (9.34)

10 00
where £ = (OO)’D_ <OI>’

AYT + Yo AT + 4728y, BT ()T
oy, = (Ao YA BB () (9.35)
[YoCT + I D7) T
AT XT + XoA; + Bo,Cs, T
= = *
Wy, = +C3,B5, + CT.Cy, (9.36)
[X()Bli + BoiDm].]T —’}/21
with
By, =[61T0B,, 0], G, =[%AT 2HT VaxsAT vZacT ],

Dia=[000—v2XI]", Day, =[006I Dy, ]

1

K T 2
and A= (1402 33 [1HE I, ||+ | HL )] )
i=1 j=1
then there exists a sufficiently small € > 0 such that for ¢ € (0,é], the pre-

scribed Hoo performance v > 0 is guaranteed. Furthermore, a suitable filter is
of the form (9.27) with
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(&) = [V = X Mo, () V!
Xo] ™' Bo, (9.37)

Bi = [1/0_1 —

G =Gy !

Mo, (e) = —AF — X, AY. — V' = X.| BiCy, Y. — CT[Cy, Yz + Di1oC,Y2]
2 {Xeéh A Biﬁm}éfj (9.38)

X, = {Xo + EX}Eg and Y = {Ygl + 5N€}E€ (9.39)
with X = D(XOT - Xo) and N. = D((Yo—l)T - Yo—l),

Proof: It can be shown by employing the same technique used in the proof for
Theorem 13. u

9.2 Example

Consider the tunnel diode circuit shown in Figure 4.4 where the tunnel diode
is characterized by

ip(t) = 0.01up(t) + 0.050% ().

Assuming that the inductance, L, is the parasitic parameter and letting
21(t) = ve(t) and x9(t) = i,(t) as the state variables, we have

Ciq(t) = —0.0121(t) — 0.0523(t) + z2(t)
L.’i‘g(t) = - (t) — Rl‘g(t) + 0.1’(1)2(t>

y(t) = Jz(t) + 0.1w(t) (9.40)
_ =)
z(t) = 2a(t)

where w(t) is the disturbance noise input, y(t) is the measurement output, z(t)
is the state to be estimated and J is the sensor matrix. Note that the variables
x1(t) and z5(t) are treated as the deviation variables (variables deviate from
the desired trajectories). The parameters of the circuit are C = 100 mF,
R =10£10% 2 and L = ¢ H. With these parameters (9.40) can be rewritten
as

@1 (t) = —0.1z1(t) + 0.523(t) + 1025(2)

€$2(t) = 7%1(?5) - (10 + AR).TQ(t) + 01’(1)2(t)

y(t) = Jz(t) + 0.1wy (1) (9.41)

0 =[]
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For the sake of simplicity, we will use as few rules as possible. Assuming that
|z1(t)] < 3, the nonlinear network system (9.41) can be approximated by the
following TS fuzzy model:

Plant Rule 1: IF z1(t) is M;(z1(t)) THEN

E.i(t) = [A1 + AAy)x(t) + By, w(t), z(0) =0,
Z(t) = Cllx(t)v
y(t) = Co,z(t) + Doy, w(?).

Plant Rule 2: IF () is My(z1(t)) THEN

E i(t) = [As + AAs)x(t) + Bi,w(t), x(0) =0,
2(t) = Cr,a(1),
y(t) = Cox(t) + Dar,wi(t)

where z(t) = [2] (t) 23 ()], w(t) = [w{ () w3 (B)],

—0.1 10 —4.6 10 00
A= { -1 —1}’ ke { -1 —1}’ Bu =B, = [00.1}’

|
Cy = {oﬂ Coy = Co, = J, Doy = [0.10],

AAl = F(x(t)at)Hlu AAQ = F(,’E(t),t)le and EE - |:(1) 2:| .

Now, by assuming that [|F(x(t),t)|| < p = 1 and since the values of R are
uncertain but bounded within 10% of their nominal values given in (9.40), we

have
00
H,, =H,, = {O 1} .

Note that the plot of the membership function Rules 1 and 2 is the same
as in Figure 4.5. By employing the results given in Lemma 9.1 and the Matlab
LMI solver [138], it is easy to realize that e < 0.006 for the fuzzy filter design in
Case I and £ < 0.008 for the fuzzy filter design in Case II, the LMIs become
ill-conditioned and the Matlab LMI solver yields the error message, “Rank
Deficient”.

Case I-v(t) are available for feedback

In this case, z1(t) = v(t) is assumed to be available for feedback; for
instance, J = [1 0]. This implies that y; is available for feedback. Using the
LMI optimization algorithm and Theorem 14 with ¢ = 100 pH, v = 0.6 and
0 = 1, we obtain the following results:

0.4082 0.3597]

8.3868 —0.4368
Ko = [ 0 1.3551 Yo= [ }

0 1.2210
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() = [ 00074 —0.3532
1) =1 30,7181 —4.3834
) ~0.0928 —0.3138

Azi(e) = [34.7355 —3.8964
) 1.5835

B = [3.2008}’

Cy = [~1.7640 —0.8190],

Hence, the resulting fuzzy filter is

|
|

Apn(e) = —0.0674 —0.3532
1235/ 7 1 _30.7181 —4.3834 |’

Aple) = —0.0928 —0.3138
2215/ 7 1 -34.7355 —3.8964 |
. 1.2567
Bz = {3.8766]’

Cy = [4.5977 ~0.8190].

2

2 2
Ei(t) = maniAy()@(t) + Y pBiy(t)

i=1 j=1

2(t) =Y mCid(t)
=1

where

i=1

p1 = Mi(z1(t)) and po = Ma(z1(t)).

Case II: v(t) are unavailable for feedback

In this case, 1(t) = v(t) is assumed to be unavailable for feedback; for
instance, J = [0 1]. This implies that p; is unavailable for feedback. Using
the LMI optimization algorithm and Theorem 15 with ¢ = 100 uH, v = 0.6

and § = 1, we obtain the following results:

X, = [0.2572 0.3039}

0 3.1682
Au(E) = [__322.?3095900 :Zi}lig
421(5) = [__322.?:1554399 :gggﬁ
=[]

Cy = [4.3913 —0.1406 ],
The resulting fuzzy filter is

|
|

v _ [46.9058 ~2.0092
0= 0 71117 |

Ap(e) = —2.3050 —0.4186
128571 —32.3990 —4.4443 |’

Aom(e) = —2.3549 —0.3748
22\°) 7 | —32.4539 —3.9044 |’
. —0.3734

B2 = [ 5.1443 }

Cy = [1.9832 —0.1406 |.
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where

Remark 9. The ratios of the filter error energy to the disturbance input noise
energy are depicted in Figure 9.1 when € = 100 uH. The disturbance input sig-
nal, w(t), which was used during the simulation is the rectangular signal (mag-
nitude 0.9 and frequency 0.5 Hz). Figures 9.2(a)-9.2(b), respectively, show the
responses of x1(t) and x2(t) in Cases I and II. Table 9.1 shows the perfor-
mance index v with different values of € in Cases I and II. After 50 seconds,
the ratio of the filter error energy to the disturbance input noise energy tends
to a constant value which is about 0.02 in Case I and 0.08 in Case II. Thus,
in Case I where v =+/0.02 = 0.141 and in Case II where v = +/0.08 = 0.283,
both are less than the prescribed value 0.6. From Table 9.1, the mazimum value

0.31 Case |
—— Caselll

0251 1

0.15 4

01 1

0.05¢

Ratio of the filter error energy to the disturbance energy

0 50 100 150 200
Time (sec)

Fig. 9.1. The ratio of the filter error energy to the disturbance noise energy:
Jo ! (2(0) =2 T (=(t) 2t
o wT (®yw(t)dt ’
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03l — x,()
’ Case [: fuzzy estimated x y (t)
_ _ Case ll: fuzzy estimated X, (t)
0.2t 1
<
3 0.1
8
c
>
[0]
T 0
(5]
(0]
e
|_
-0.1
-0.2
0 5 10 15
Time (sec)
(a) The histories of z1(t)
0.06
0.04
0.02
Z—;\‘ 0
X
g _0.02F,
E 2
S -0.04
i}
©
4 —0.06 - 1
2
= -0.081 1
-0.1} — X,(1) 1
Case I: fuzzy estimated x2(t)
-0.12¢ — - Case II: fuzzy estimated x,(t) | 1
-0.14 : :
0 5 10 15
Time (sec)

(b) The histories of x2(t)

Fig. 9.2. The histories of the state variables, z1(t) and z2(t).
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Table 9.1. The performance index  of the system with different values of €.

The performance index y
e |Output-feedback in Case I|Output-feedback in Case II
0.0001 0.141 0.283
0.1 0.316 0.509
0.25 0.479 0.596
0.26 0.500 > 0.6
0.30 0.591 > 0.6
0.31 > 0.6 > 0.6

of € that guarantees the Lo-gain of the mapping from the exogenous input noise
to the filter error energy being less than 0.6 is 0.30 H, i.e., € € (0,0.30] H in
Case I, and 0.25 H, i.e., € € (0,0.25] H in Case II. O

9.3 Conclusion

The problem of designing a robust Ho, fuzzy e-independent filter for a TS
singularly perturbed fuzzy system with parametric uncertainties has been
considered. Sufficient conditions for the existence of the robust H., fuzzy
filter have been derived in terms of a family of e-independent LMIs. A nu-
merical simulation example has been also presented to illustrate the theory
development.
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Robust H,, Fuzzy Control Design for
Uncertain Fuzzy Singularly Perturbed Systems
with Markovian Jumps

We propose a new technique for designing a robust fuzzy state and output
feedback controller for a TS singularly perturbed fuzzy system with MJs and
parametric uncertainties. The proposed robust fuzzy controller guarantees the
Hso performance requirements. At the end of chapter, a numerical example
is given to demonstrate the effectiveness of the proposed design procedure.

10.1 System Description

The UNSPS—MJs under consideration can be described by a TS singularly
perturbed fuzzy system with MJs and parametric uncertainties as follows:

Eoi(t) = X2y i (v(0) [[4:(1(8) + AAi((2) (0
By, (1(t)) + ABy, (n(®)w(t) + [Ba, (1(1)) + ABa, (n(t))Ju(t)
) = X m)[[Cr(n(6) + ACy, (n(e)]a(t)
D2, (1(1)) + ADsz, (1(0)Ju(t)|
y(t) = S0 m)[[Co (1) + AC, (1))
D1, (n(8)) + ADar, (1)} (8)|

~—

(10.1)
I0
0el

ter, v(t) = [1/1 () -+ vy (t)} is the premise variable vector that may depend

with 2(0) = 0, where E. = [ } , € > 01is the singular perturbation parame-

on states in many cases, p;(v(t)) denotes the normalized time-varying fuzzy
weighting functions for each rule (i.e., p1;(v(t)) > 0 and >\, p;(v(t)) = 1), 9
is the number of fuzzy sets, z(t) € R” is the state vector, u(t) € R™ is the in-
put, w(t) € RP is the disturbance which belongs to £2[0,00), y(t) € R is the
measurement, z(t) € R* is the controlled output, and the matrix functions
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Ai(n(t))v Bli (n(t))’ BQi (n(t))a Cli (77(75))7 C2i (n(t))’ D12i (n(t))v D21i(n(t))7
ADsy,(n(t)) are of appropriate dimensions. {n(t))} is a continuous-time
discrete-state Markov process taking values in a finite set S = {1,2,--- , s}

with transition probability matrix Pr = {P,x(t)} given by

Bu(t) = Pr(n(t + A) = kln(t) = 1)

[ AA+0(4) ife#£k (10.2)
T 11+ AA+O0() ifi=k ’
where A > 0, and lima__,9 % = 0. Here A, > 0 is the transition rate from
mode 2 (system operating mode) to mode k (¢ # k), and
Ae=— > (10.3)

k=1,k#1

For the convenience of notations, we let u; = wi(v(t), n = n(t), and

any matrix M (,1) 2 M(p,n = 2). The matrix functions AA;(n), ABy,(n),
ABs,(n), AC1,(n), ACs,(n), AD12,(n) and ADa,(n) represent the time-
varying uncertainties in the system and satisfy Assumption 5.1.

10.2 Robust H., State-Feedback Control Design

The aim of this section is to design a robust H, fuzzy state-feedback controller
of the form

u(t) = Z 1 K (1) z(t) (10.4)

where K (2) is the controller gain, such that the inequality (5.5) holds. Before
presenting our next results, the following lemma is recalled.

Lemma 8. Consider the system (10.1). Given a prescribed Ho, performance
v >0, forv=1,2,--- s, if there exist matrices P.(1) = PT (1), any positive
constants §(1) and matrices Y;(2), j = 1,2,--- ,r, such that the following e-
dependent linear matrix inequalities hold:

P(2) >0 (10.5)
Yii(1,6) <0, i=1,2,---,r (10.6)
Wij(1,6) + ¥i(e,6) <0, i<j<r (10.7)

where
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Ui o (1
() = R(2)Bi,(2) —yR() (* *
AR B R R TR G (0.8
ZT(1,¢) 0 0 —Pe)
®ii(1,¢) = Ai()) E-VPo(0) + EZPP.(0) AT (1) + Ba, (0Y;0) + Y () B, (1)
+ A Pe(2) (10.9)
73;(1.€) = Co, (1) EZVPo(2) + Dia, (1)Y; (1) (10.10)
R(2) = diag{6()I,1,6(x)I, 1} (10.11)
= (\/EPE@ s M Pe() Ay Pe(1) - mm))
(10.12)
P(,e) = diag {P-(1), -+ ,P.(1—1), P-(s+ 1), , Po(s)} (10.13)
with
(1) = [11131 )] (10.14)
(1) = [0 m(z)p() ()0 VORWCT (W] (10.15)
Dy, (1) = [0 \ﬂt HE (1) 4p()HE () VIR()D, (1] (10.16)
R(2) = 1+p2(Z)ZZ{|H2Ti(Z)H2j(Z)]) , (10.17)

then the inequality (5.5) holds. Furthermore, a suitable choice of the fuzzy
controller is

u(t) = uiKe, () (t) (10.18)
j=1
where
K., (1) = Y;(2)(P-(1)) " E.. (10.19)

Proof: The proof can be carried out by the same technique used in Theorem
5.1. [ |

Remark 10. The LMIs given in Lemma 8 become ill-conditioned when € is
sufficiently small, which is always the case for the SPS-MJ. In general, these
ill-conditioned LMIs are very difficult to solve. Thus, to alleviate these ill-
conditioned LMIs, we have the following theorem which does not depend on €.
O
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Theorem 16. Consider the system (10.1). Given a prescribed Ho, perfor-
mance v > 0, for v = 1,2,--- s, if there exist matrices P(1), any positive
constants §(1) and matrices Y;(1), j = 1,2,--- ,r, such that the following e-
independent linear matrix inequalities hold:

EP() = PT())E, P(1)D = DP*(2), EP(1)+ P()D >0 (10.20)
Wi(1) <0, i=1,2,---,7 (10.21)
Wij (Z) + Wji(l) <0, 21<j<r (1022)

Py (T (T ()T

Z'a) 0 0 —P()
®i5(1) = Ai()P(2) + PT(1)AT(2) + Bo, (0Y;(0) + Y7 (1) BE, (1) + M P(2) (10.24)
7,5() = Cr,()P(2) + D1z, ()Y () (10.25)
R() = diag{5(1)I,1,5()I,1} (10.26)
20) = (VAaPO) - Ay PO) Ay PO) -+ VAGPG)  (1027)
P() = diag { P(1),+ , Pt~ 1), P+1),--+ , P(s)} (10.28)
pay = LW *;PT(Z) (10.29)

with

Bi,(0)=[I11B,(1)] (10.30)
Cr,(0) = [vp( T () V2R()p() HE (1) 0 V2RWCL ()] (1031)
Dia,(2) = [0 V2R()p()) HE, (2) vp(1) HE (1) V2R <3>D%;i<z>f (10.32)
R(1) = (1 +720) [|H§:<2>H%<z>|}) , (10.33)

then there exists a sufficiently small € > 0 such that the inequality (5.5) holds
for e € (0,€]. Furthermore, a suitable choice of the fuzzy controller is

u(t) = piK;()x(t) (10.34)
i=1

where
K;() = Y, ()(P(0) . (10.35)
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Proof: Suppose there exists a matrix P(z) such that the inequality (10.20)
holds, then P(2) is of the following form:

PO) = ( (( )) 0( )> (10.36)
with Py(2) = PL(2) > 0 and P3(2) = PL(2) > 0. Let
P.(1) = E.(P(1) +€P(2)) (10.37)
with
P() = (8 P20<’)) . (10.38)
Substituting (10.36) and (10.38) into (10.37), we have
P.(1) = <£2T(2) 228) . (10.39)

Clearly, P.(2) = PI (1), and there exists a sufficiently small ¢ such that for
€ (0,€], P-(z) > 0. Using the matrix inversion lemma, we learn that

Pl) = [P_l(z) + EME(Z)} B (10.40)

€

where M. (1) = —P~1(2)P(2) (I + eP_l(z)P(z))_l P~1(1). Substituting (10.37)
and (10.40) into (10.8), we obtain
Wij (Z) + 'l/fij (’L) (1041)

where the e-independent linear matrix W;;(¢) is defined in (10.23) and the
e-dependent linear matrix is

Vij(1) = € . 0
[CL()P@) + Diz, (Yz, (0)] 0 0 (x7
zI() 0 0 —P(r)
(10.42)
with Z. (1) = (mﬁ(z) mﬁ mp . \/)\Tsﬁ(z)),Pg(z)
= diag{]%(l)7~-- ,1%(2 - 1), (z + 1), ( )}, P(z) = w and

Ye, (1) = K;(:)M;*(2). Note that the E—dependent linear matrix tends to zero
when e approaches zero.

Employing (10.20)-(10.22) and knowing the fact that for any given negative
definite matrix W, there exists an € > 0 such that W + eI < 0, one can show
that there exists a sufficiently small & > 0 such that for £ € (0,€], (10.6) and
(10.7) hold. Since (10.5)-(10.7) hold, using Lemma 10.1, the inequality (5.5)

holds for € € (0,£] . ]
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10.3 Robust Ho, Fuzzy Output Feedback Control Design

This section aims at designing a full order dynamic H ., fuzzy output feedback
controller of the form

Boit) = S0y Y5y fifiy | Asg (1, €)a(0) + Bi()y(t) (10.43)
u(t) =i mCi0)i(t)

where &(t) € R" is the controller’s state vector, A;;(2,¢), B;(2) and C;(2) are
parameters of the controller which are to be determined, and fi; denotes the
normalized time-varying fuzzy weighting functions for each rule (i.e., fi; > 0
and ) ;_, fi; = 1), such that the inequality (5.5) holds. Clearly, in real control
problems, all of the premise variables are not necessarily measurable. Thus, we
can consider the designing of the robust H., output feedback control into two
cases as follows. In Subsection 10.3.1, we consider the case where the premise
variable of the fuzzy model p; is measurable, while in Subsection 10.3.2, the
premise variable which is assumed to be unmeasurable is considered.

10.3.1 Case I-v(t) is available for feedback

The premise variable of the fuzzy model v(t) is available for feedback which
implies that pu; is available for feedback. Thus, we can select our controller
that depends on p; as follows:

Bei(t) = iy Xy ity | Aig(,€)a(t) + Bi 0y (1) (10.44)
u(t) =300 mCi(0)a(t).

Before presenting our next results, the following lemma is recalled.

Lemma 9. Consider the system (10.1). Given a prescribed H, performance
v > 0 and any positive constants 6(1), forv = 1,2,--- | s, if there exist matrices
X.(1) = XX (1), Yo(2) = YL (2), Bi(1,¢) and Ci(1,¢), i = 1,2,--- ,r, satisfying
the following e-dependent linear matriz inequalities:

Xc(e) I

{I Y;(Z)} >0 10.45
X.(2) > 0 10.46
Y.(1) >0 10.47

(

( <07 i:1,2,"',T
Vi, (1,6) + W11, (0,6) <0, i<j<r

(1,6) <0, i<j<r

(10.45)

) (10.46)

) (10.47)
(1,6) <0, i=1,2,- 71 (10.48)
) (10.49)

) (10.50)

) (10.51)
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where
EZMA(0)Ye(2) + n(z)Aﬂz)E;l
ALY () S
P ESBLOBL OB | (9T (9T
U, (1,6) = +E71Bs, (1)C;(1,e) B! (10.52)
B 1T (s, 6)32 1) B
01i<>Y<>+E Dia (i ()~ ()7
T 0 —Y.(0)
(z) X.(0) + X: () B- ' A4i(0)
Bi(1,)C2, () + CE 0B (ne) | (07
22,9 = | \ 101000 0+ Sy X, Wz 1059
| X (B By, (1) + Bi(1,2) Dan, (0)]
with
T0 = VYo o Aane@) a0 o VAGY0)]
V() = diag {Y.(1), -+, Y- 1), V(e +1), - ,Ys<s>}
B1,() = ) 1 ()1 0 By,() 0]
~ T
Cr, () = [ %S HT () 0 BLHL () V2RO HL () VERECT ()]

Duo (1) = [0 B HT () 0 VAW HL () VWDE, ()]
Doy, (1) =1[0 0 0 6()I Doy, (2) I

2

R() <1+p )OS [ ||+||H7<>H7j<z>||}),

=1 j=1

then the prescribed Ho, performance v > 0 is guaranteed. Furthermore, a
suitable controller is of the form (10.44) with

z)] M (1,e)Y ()

Ajj(1e) = B[V () —
= E. )@)] ( £) (10.54)

i Y10 - e
B;(1) [yt Z) Xe(
Ci(1)  =Ci(1,e)EZYY 1

where
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Mij(1.e) = —AT (EZ' = X (1) B Ai(1)Ye(2)
L AROEP E( )]E 'Bi(1)Ca, (1) Y- (2)

—X.E-'By,(1)C ZAZkY =(2)

~CL )]G, Ye(0) + Diz, ()C; (zm(z)} - v*Q{XE@E;lBh(z)
+[Y ) - Xs(l)]Eg‘lE(z)Dmi(z)}B}; () E-. (10.55)

Proof: The proof can be carried out by the same technique used in Lemma
5.1 and Theorem 5.2. []

Remark 11. The LMIs given in Lemma 9 may become ill-conditioned when &
is sufficiently small, which is always the case for the SPS-MJ. In general,
these ill-conditioned LMIs are very difficult to solve. Thus, to alleviate these
ill-conditioned LMIs, we have the following e-independent well-posed LMI-
based sufficient conditions for the UFSPS-MJ to obtain the prescribed Hoo
performance. O

Theorem 17. Consider the system (10.1). Given a prescribed Ho, perfor-
mance v > 0 and any positive constants 6(1), for1=1,2,--- s, if there exist
matrices Xo(2), Yo(2), Bo, () and Co,(2), i = 1,2,--- ,r, satisfying the following
e-independent linear matriz inequalities:

Xo(v)E 4+ DXo(2 1
0() “I‘ 0()YO(Z)E+DYO() (10.56)
EXI (1) = Xo()E, XI(1)D = DXo(1), Xo(1)E+ DXo(2) >0 (10.57)
EY{ (1) = Yo()E, Y (1)D = DY,(v), ( VE + DYy(2) >0 (10.58)
@1, (1) < i=1,2,---,r (10.59)
%2”()<0, i=1,2,---,r (10.60)
Uiy, (1) +¥11,(2) <0, i<j<r (10.61)
Woo,, (1) +Waz,,(2) <0, i<j<r (10.62)

10
where B = <00>, D

),

i(1)Yg"

~ O

Il
BTN

+ () i
Wi, () = |\ +B2,(1)Co, (1) + € ()BE () (10.63)
C1, ()Y (0
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AT () X7 (1) + Xo()A ()

B ( +Bo, (1)C2; (1) + C3,(1) B¢, (1) ) (07T

W2, (1) = +01 ()01 () + 5y A Xoh) (10.64)
B (X3 () + D5y, (B (1) =T

)

with Xo(k) = XoWAXE® §) _ Yo+ @)

B0 = VAT - \Aan3o@) o) - VALY )]
Yolt) = diag {To(1), -, Volt=1), Yole+1), -+ Yo(s)}
Bi,() = [50)1 1 50)1 0 By, () 0]
G = [$QHL W) 0 BLHI() VEWAWHLE) VEROCLE) |
Duo, (1) = [0 29 HT () 0 VAW HE () VIR0DE, ()]

(@
Do1,(2) =10 0 0 6(2)I Da,(2) I

R() <1+p DS (LA0Y ||+||H7<>H7j<z>||}),

=1 j=1

then there exists a sufficiently small € > 0 such that for e € (0,£], the pre-
scribed Heoo performance v > 0 is guaranteed. Furthermore, a suitable con-
troller is of the form (10.44) with

Aij(re) = [V (@) = Xe(0)] Mo, (1,6)Y (1)
Bi) = [ - Xo()] 'Bo,() (10.65)
Ci(1) = Co,(1)Yy (1)

—1
1

Mo, (1,6) = —AT (1) = X (1) Ai()Y=(2) — [Y1(2) — Xo(2)] Bi(1) Ca, (1) Y (1)
( )

(1(;.66)
X.(2) = {Xo(z) n EX(Z)}EE (10.67)

and
Vo) = {Y5 (@) + eN.() } B (10.68)

with X (1) = D(XOT(Z) - Xo(z)) and N.(2) = D((Yo_l(z))T - Yo_l(z)).

Proof: See Appendix. [ ]
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10.3.2 Case II-v(t) is unavailable for feedback

Now, the premise variable of the fuzzy model v(t) is unavailable for feedback
which implies u; is unavailable for feedback. Hence, we cannot select our
controller which depends on p;. Thus, we select our controller as follows:

Bei(t) = iy X2y fufis | Asg(,€)a(t) + Bi(0)y(t) (10.69)
ut) =30, uCi()a(t)

where [1; depends on the premise variable of the controller which is different
from p;.

Let us re-express the system (10.1) in terms of i;, thus the plant’s premise
variable becomes the same as the controller’s premise variable. By doing so,
the result given in the previous case can then be applied here. Note that it
can be done by using the same technique as in Subsection 3.3.2. After some
manipulation, we get

Eei(t) = S0y us[[Ai(0) + AAi()]a(t) + [ () + ABy, ()]w(?)

+[B2, (1) + ABs, (0)]u(t) |, 2(0) =
2(t) =30 | [C1, (1) + ACY, ()] (t) + [Dr2, (1) + AD1a, (1)]u(t)
y(t) =i i |[C2, (1) + ACy, (1)]2(t) + [Da1, (2) + ADay, (1)]w(?)

(10.70)

AA;(2) = F(z(t),2(t),1,t)Hy, (1), ABy,(2) = F(z(t),2(t),1,t)Ha, (2),

ABsy, (1) = F(x(t),2(t),1,t)Hs, (1), ACy, (1) = F(x(t),2(t),1,t)Hy, (1),
ACy, (1) = F(x(t), 2(t),1,t)Hs, (1), ADlzi (z) = F(m(t) #(t),2,t)Hg, (1)

" ()= [HL() AT@) - ATG) HL@) - HL@)]",
Ho, () = [HL(2) BT,() - BLG) HEG) - HE()]"
1, (1) = [H3,(1) BL() -+ BL() HL() - HL(O)]',
1,,() = [HL(0) CLG) - CLG) HELG) - HL@)]
15,(0) = [HL() C30) -+ CL() HEG) - HI@)],
16,(2) = [HE(@) D5, () - D () HE@) - HE@)]"
77,0 = [HE() DL, - DE.() HL@) - HE@)]"
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and F(x(t). 2(t).1.6) = [F@(t).0.8) (u—in) - (i) F(e(t),0.t)(m
i) F(z(t),o,t)(u, — ﬂr)] Note that ||F(z(t),2(t),st)|| < p(z) where
p(1) = {3p2(1) +2}2. p(1) is derived by utilizing the concept of vector norm in
the basic system control theory and the fact that p; > 0, i, >0, > i, p; =1
and Y., ji; = 1.

In this new expression, the plant’s premise variable is now the same as

the controller’s premise variable. Thus, applying Theorem 17, we have the
following LMI-based sufficient conditions for this case.

Theorem 18. Consider the system (10.1). Given a prescribed Ho, perfor-
mance v > 0 and any positive constants §(z), forv=1,2,--- s, if there exist
matrices Xo(2), Yo(2), Bo, () and Co,(v), 1 = 1,2,--- ,r, satisfying the following
e-independent linear matrixz inequalities:

Xo(1)E + DXo(2) I

1 Yol0)E + DYo(2) (10.71)
EXI() = Xo()E, X{(1)D = DX,(2), Xo(2)E+ DXo(1) >0 (10.72)
EY{ (1) =Yo()E, Y (1)D = DY,(v), ( )E + DYy(2) >0 (10.73)
Uy, (1) < z:1,2,~~,7’ (10.74)
Wy, (1) < o, i=1,2,---,r (10.75)
V1, (2) +¥11,,(2) <0, i<j<r (10.76)
WQQU (Z) + WQQﬁ (Z) < O, ) <j § r (1077)
10 00
where B = <00>, D= <OI>’
Ai(WY5'(2) + Yo(1) AT (0)
X Yo(1) + 772 By, () B (1) | ()T (07T
T, (1) = |\ +B2,()Co, (2) + C& () B (1) (10.78)
Cr, ()Y (1) + Dia, (1)Co, (1) I (9"
JE () 0 —o(r)
Betcs )+ CLOM ) | (o
- +Bo,(1)C, (1) + ;";zé’;z (%)
V2, ()= 1 \LCL WG, (0 + X, M Xo(k) (1079)
B ()Xg () + D3, (B3, (2)  —*1

with Xo(k) = XeEHX0®) g ) - YY)
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B0 = [VATo) - a0 o) (e ¥o@) o VALT(0)

Yolw) = diag {Yo(1), -+, Yo(t—1), Yolu+1), -+ Yols)}

By,(1) = [6()I I §(1)I 0 By,(2) 0]

Da1,(1) =1[0 0 0 5(2)I Day,(2) I]

2

R() (1+p DS ||+|H7<>H7j<z>]),

=1 j=1

then there exists a sufficiently small € > 0 such that for e € (0,&], the pre-
scribed Hoo performance v > 0 is guaranteed. Furthermore, a suitable con-
troller is of the form (10.69) with

Ay 0,2) = X710 = Xe0] 7 Mo, (62¥10)
Bi(1) =Yy (1) = Xo(y)] Bo,(2) (10.80)
Ci(t) = Co, ()Y (1)

where

Mo, (1,e) = —AT (1) = X () Ai()Y=() — [V (o) —

J

)A; X.(0)] Bi(2)Ca, (Y- ()
~Xe()By, G5 (Y-(0) = Ty A¥e (R)Y2(0)
~CLO)[C1,Y-() + Dua, ()5 ()Y )]

(1(;.81)
X.(2) = { Xo()) +eX (1)} B (10.82)

and
Vo) = {Y5 ) +eN.() } B (10.83)

with X (1) = D(XOT (1) — Xo(2)

~
=)
3
IS
=
—~
~
S~—"

Il
!
/N
—
&5

—
—
~
N
=
bq
|
5
—
—~
o~
S~—"
~

Proof: Since (10.70) is of the form of (10.1), it can be shown by employing of
the proof for Theorem 17. ]
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10.4 Example

Consider a modified series dc motor model based on [139] as shown in Figure
10.1 which is governed by the following differential equations:

JEW — [ Lei2(t) — (D + AD)a(t)

dt

LEG — _Ri(t) — K, Lsi(t)a(t) + V(t)

(10.84)

where @(t) = w(t) —wrey(t) is the deviation of the actual angular velocity from
the desired angular velocity, i(t) = i(t) —i,.(t) is the deviation of the actual
current from the desired current, V(t) = V(t) — Vycz(t) is the deviation of the
actual input voltage from the desired input voltage, J is the moment of inertia,
K,, is the torque/back emf constant, D is the viscous friction coefficient, and
R, Ry, L, and Ly are the armature resistance, the field winding resistance,
the armature inductance and the field winding inductance, respectively, with

RZ2 R+ R, and L 2 L¢ + L,. Note that in a typical series-connected dc
motor, the condition L; > L, holds. When one obtains a series-connected dc
motor, we have i(t) = i,(t) = i7(t). Now let us assume that |AJ| < 0.1J.

|

Iy Iy
"W\ !
Ly Re

+

+

N
N A=

v back emf Vb
L, R,
O

\ |
RSN AN

- Do
Fig. 10.1. A modified series dc motor equivalent circuit.

Giving x1(t) = @(t), zo(t) = i(t) and u(t) = V(t), (10.84) becomes

. Km L
[ml(t) ] — [ _(J+DAJ) Tran@(t)

cint) | T | kL) R [28]+mu(t) (10.85)

where € = L represents a small parasitic parameter. Assume that, the system is
aggregated into 3 modes as shown in Table 10.1 and the transition probability
matrix that relates the three operation modes is given as follows:

0.67 0.17 0.16
P, = {0.300.47 0.23
0.26 0.10 0.64
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Table 10.1. System Terminology.

Mode 2|Moment of Inertia|J(z) £ AJ(2)
(kg-m?)
1 Small 0.0005 +£10%
Normal 0.005 £10%
3 Large 0.05 £10%

The parameters for the system are given as R = 10 {2, Ly = 0.005 H,
D =0.05 N-m/rad/s and K,,, =1 N - m/A. Substituting the parameters
into (10.85), we get

Lj::'clg(ft))] - [—o.od%i(t) Oj??ifg (t)] [28} + {091 8] w(t)

(i 48 S50 2

1 (10.86)

o =[or] [ H?]

y(t) = Sz(t) + 0 0 1] w(t)

where x(t) = [2T(t) 23(#)]T is the state variables, w(t) = [w] (t) wl (¥)]T
is the disturbance input, u(t) is the controlled input, z(¢) is the controlled
output, y(t) is the measured output and S is the sensor matrix.

The control objective is to control the state variable z5(t) for the range
x2(t) € [N1 Ng]. For the sake of simplicity, we will use as few rules as possible.
Note that Figure 10.2 shows the plot of the membership functions represented
by
71’2@) + NQ fﬂQ(t) — Nl

Ny — Ny Ny — Ny

Knowing that z2(f) € [Ny Ns], the nonlinear system (10.86) can be ap-
proximated by the following TS fuzzy model:

Plant Rule 1: IF z4(t) is My (z2(t)) THEN

M (z2(t)) = and My(wo(t)) =

E.i(t) = [A1(2) + AA; (0)]x(t) + By, ()w(t) + Be, (1)u(t), «(0) =0,
Z(t) = 011(1)1’.“)7
y(t) = C2, (1)z(t) + Da1, (w(t).

Plant Rule 2: IF z4(t) is Ma(z2(t)) THEN
E.i(t) = [A2(2) + AAs(2)]x(t) + B, (1)w(t) + Ba, (2)u(t), x(0) =0,

Z(t) =0Ch, (Z)I‘(t),
y(t) = C2,(1)a(t) + Doy, (w(t)
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1 M, (x5 M (x5

-3 0 3

Fig. 10.2. Membership functions for the two fuzzy set.

) R £

[ =100 10NV ] [ =100 10N
A1) = [—0.005N1 -10 |° Az(1) = | —0.005N, —10}
_ —10 N1 | _ —10 N2
Ai2) = [0.0051\71 -10]" A2(2) = | —0.005N, 10} ’
B -1 0.1V ] -1 01N,
Ai(3) = [—O.OO5N1 -10 |’ A2(3) = | —0.005N> —10 ]

Bll(l) = Blz(l) = Bl1(2) = B12(2) = B11(3) = 312(3) = |:001 8:| ’

Bay(1) = Boy(1) = Bay (2) = Ba, (2) = B, (3) = Bay(3) = [ﬂ

1 (1) = Cry(1) = Cr, (2) = Cy (2) = Oy (3) = Oy (3 [ }
021(1) = 022(1) = 021 (2) = 022( ) 021( ) 022 a

D1a, (1) = D12, (1) = D12,(2) = D12,(2) = D12,(3) = D12,(3) = [?] ;

Doy, (1) = Da1,(1) = D2y, (2) = D21,(2) = Da1,(3) = D21,(3) = [00.1],
AA(2) = F(a(t),2,t)Hy, (1) and AAy(r) = F(x(t),1,t)Hy,(2).
Now, by assuming that ||F(z(t),,t)|| < p(z) = 1, we have

__0.05 0.05 N1 _0.05 0.05 ]\[2
Hy (1) = [ 6(1) J(z)0 ] and Hy,(1) = |: 6(2) J(% ]

In this simulation, we select Ny = —3 and Ny = 3.
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State-feedback controller design

Employing the results given in Lemma 10.1 and the Matlab LMI solver
[138], it is easy to realize that when € < 0.005 for the state-feedback control
design, the LMIs become ill-conditioned and the Matlab LMI solver yields the
error message, “Rank Deficient”. Using the LMI optimization algorithm and
Theorem 8 with v = 1, we obtain

13925 0
6(1) = 86.6250, P(1) = {_0.0003 19.2537]’

Yi(1) = [577.5880 —126.6401],  Ya(1) = [—577.5935 —126.6804],

Ki(1) = [414.7894 —6.5774], Ks(1) = [—414.7961 —6.5795 ],
7.5856 0

5(2) = 69.8795, P@) = {0.0002 17.5735]’

Y1(2) = [52.6069 —110.0622], Y5(2) = [—52.6069 —110.0622],

K1(2) = [6.9351 —6.2629], K5(2) = [—6.9351 —6.2629 ],
3.8508 0

5(3) = 69.8795, P@) = {—0.0001 17.0254]’

Yi(3) = [577.5880 —126.6401],  Y5(3) = [—577.5880 —126.6401],

Ki(3) = [1.3114 —6.1753], K»(3) = [~1.3114 —6.1753].

The resulting fuzzy state-feedback controller is
2
u(t) =Y uiK;()a(t) (10.87)
j=1

where
p1 = My(x2(t)) and pg = Ma(wa(t)).

Output feedback controller design

Employing the results given in Lemma 10.2 and the Matlab LMI solver
[138], it is easy to realize that ¢ < 0.007 for the output feedback control
design in Case I and ¢ < 0.008 for the output feedback control design in Case
II, the LMIs become ill-conditioned and the Matlab LMI solver yields the
error message, “Rank Deficient”. Using the LMI optimization algorithm and
Theorems 17-18 with € = 0.005, v = 1 and §(1) = 6(2) = §(3) = 1, we obtain
the following results:
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In this case, x2(t) = v(t) is assumed to be available for feedback; for

8.3235 —0.0001
X(1) = { 0 3.6771 ]’

(1.e) = [ ~0:0011 —0.0036
©) T 1 -1.6317 —4.8951 |’

—0.0010 —0.0036
A1 (L,e) = [—1.6319 —4.8952]’

. ~0.2703
Bi(1) = [ 3.0312 ]

C1(1) = [0.0185 —1.7016],

3.6796 —0.0001
X(2) = { 0 41135 ]’

. —0.0002 —0.0008
An(2,e) = [_0.1459 —0.4384]’

. —0.0002 —0.0009
A91(2,e) = [—0.1460 —0.4387]’

. —0.0448
B1(2) = [ 0.1124 ]

C1(2) = [0.0039 —0.0839],

0.2416 —0.0001
X@3) = { 0 4.1502 ]

. —0.0011 —0.0012
A1 (3,¢) = [0.0145 0.0517]’

. —0.0011 —0.0014
A2 (3,¢) = [—0.0148 —0.0518]’

) ~0.0070
Bi(3) = [ 0.0098 ]

C1(3) = [0.0036 —0.0266 ],

instance, S = [0 1]. This implies that y; is available for feedback.

Y(1) = 10° x [1.6913 —0.0001],

0 4.0937

. —0.0011 —0.0036
Az(lye) = {—1.6317 —4.8951}’

. —0.0011 —0.0036
Aga(lye) = {—1.6319 —4.8952}’
. 0.2703

Ba(1) = {3.0312]’

Cy(1) = [ ~0.0948 —0.6823],

Y(2) = 10° x {1.2364 0.0001],

0 0.7850

R —0.0002 —0.0008
A12(2,e) = {_0.1459 —0.4384}’

) —0.0002 —0.0009
Agz(2,¢) = {—0,1460 —0.4387}’
) 0.0448

B,(2) = {0.1124]’

Cs(2) = [~0.0030 —0.0972],

9.9738 0.9206

_ 5

Y(3) =10° x { 0 1.0041]’
. —0.0011 —0.0012
A12(3,e) = {0.0145 0.0517}’
. —0.0011 —0.0014
Aa(3,e) = {—0.0148 —0.0518}

i 0.0070
B>(3) = [0.0098] ’

Ca(3) = [0.0036 —0.0244].
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The resulting fuzz

y controller is

Ba(t) = Y0 S0y pipti Ay (1, 0)a(t) + 0 mBi()y(t)
ut) = 2?21 ,uiéi(’t)i‘(t) (10.88)

where

Case II: v(t) are unavailable for feedback

p1 = Mi(22(t)) and po = Ma(w2(t)).

In this case, z5(t) = v(t) is assumed to be unavailable for feedback; for
instance, S = [1 0]. This implies that p; is unavailable for feedback.

5.1464 0.0015

X(l):[ .

Ay (le) = [

2.8529]’

—0.0018 —0.0058
—2.1031 —6.3093

) —0.0019 —0.0058
Ao (l,e) = [_2,1035 —6.3094
. 0.1238

bi(1) = [0.7738]’

C1(1) = [0.0473 —1.4904],

2.9941 0.0004

X(2)_{ 5

A (2,¢) = [

3.3210]’

—0.0002 —0.0010
—0.1807 —0.5430

. ~0.0002 —0.0012
A21(2,¢) = [—0.1808 —0.5431
. 0.1359

5i(2) = [0.0372]’

C1(2) = [0.0028 —0.0815],

0.2471 0.0001

X(3){ )

Ap1(3,6) = [

3.3689]’

—0.0005 —0.0012
—0.0178 —0.0639

J
J

J
J

J

Y(1) = 10* x [1'90180 4(.)6(4)1(;?11]’
A(1,e) = [igﬁ(fg;j :g;gggi}
A9 = | T35 o001
Ba) = [ o0s

Co(1) = [—0.1964 —0.5662],
1.4022 —0.0001

— 5
Y(2) = 10° { 0 0.8902 ]

; ~0.0002 —0.0010
Ar2(2) = [0.1807 0.5430}’

. —0.0002 —0.0012
Agz(2,¢) = {—0.1808 —0.5431}’

- 0.1359
B2(2) = [0.0461] ’

Cy(2) = [~0.0021 —0.0912],

¥(3) = 106 x {1.1311 0.1044]’

0 0.1139

) —0.0005 —0.0012
Aa(3,¢) = [—0.0178 —0.0639}’
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; —0.0006 —0.0011 i —0.0006 —0.0011
Az1(3,¢) = [—0.0178 —0.0641]’ Az(3,€) = {—0.0178 —0.0641}’
- 0.1591 - 0.1591

Bi(3) = [0.0025]’ B2(3) = {0.0047]’

C1(3) = [0.0025 —0.0363 ], Ca(3) = [0.0025 —0.0347].

The resulting fuzzy controller is
E.a(t) =Y, Z?:l fiifi; Agj (1, €)2(8) + Yy fuBi()y(t)
u(t) =i mCi(0)it)

where

(10.89)

fir = Mi(22(t)) and fiz = Ma(22(t)).

Remark 12. For a sufficiently small €, both robust fuzzy state and output feed-
back controllers guarantee that the Lo-gain, vy, is less than the prescribed value.
Figure 10.3 shows the result of the changing between modes during the sim-
ulation with the initial mode 1 and € = 0.005. The disturbance input signal,
w(t), which was used during the simulation is given in Figure 10.4. The ratio
of the regulated output energy to the disturbance input noise energy obtained
by using the Hoo fuzzy controllers is depicted in Figure 10.5. The ratio of the
requlated output energy to the disturbance input noise energy tends to a con-
stant value which is about 0.0097 for the state-feedback controller, and 0.0157
for the output feedback controller in Case I and 0.0162 for the output feed-
back controller in Case II . So v = +/0.0097 = 0.0985 for the state-feedback
controller, and v = +/0.0157 = 0.1259 for the output feedback controller in
Case I and v = v/0.0162 = 0.1273 for the output feedback controller in Case
1I which all are less than the prescribed value 1. Finally, Table 10.2 shows the
performance index, ~y, for different values of €. O

Table 10.2. The performance index 7 of the system with different values of ¢.

The performance index
e |State-feedback|Output-feedback in Case I|Output-feedback in Case 1T
0.005 0.0985 0.1259 0.1273
0.10 0.4796 0.5657 0.5831
0.31 0.8660 0.9643 0.9945
0.32 0.8832 0.9899 > 1
0.33 0.8944 > 1 > 1
0.40 0.9945 >1 > 1
0.41 > 1 > 1 > 1
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251 1

Mode

i

|

|

|

|

l

l

|

1.5}F 4

1i+— I I R B L

0 0.5 1 15 2 25 3
Time (sec)

Fig. 10.3. The result of the changing between modes during the simulation with
the initial mode 1.

0.05f ,

-0.05 4

The disturbance input, w(t)

0 0.5 1 1.5 2 25 3
Time (sec)

Fig. 10.4. The disturbance input, w(t).
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Fig. 10.5. The ratio of the regulated output energy to the disturbance noise energy,
Tt T
Jo 7 27 (t)z(t)dt

(fOTf wT(t)w(z)dt)'

10.5 Conclusion

A complete methodology of designing a robust fuzzy state and output feedback
controller for a TS singularly perturbed fuzzy system with MJs and parametric
uncertainties has been proposed. The design approach does not involve the
separation of states into slow and fast subsystems and it can be applied not
only to standard, but also to nonstandard UFSPS-MJs. Sufficient conditions
for the existence of the robust Ho, fuzzy controllers have been derived in
terms of a family of e-independent LMIs.
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Robust 'H,, Fuzzy Filter Design for Uncertain
Fuzzy Singularly Perturbed Systems
with Markovian Jumps

This chapter develops a technique for designing a robust fuzzy filter for a TS
singularly perturbed fuzzy system with MJs and parametric uncertainties. The
newly developed robust fuzzy filter guarantees the L£o-gain from an exogenous
input to an estimate error output being less than or equal to a prescribed
value.

11.1 Robust H, Fuzzy Filter Design

In this chapter, without loss of generality, we assume u(t) = 0. Let us recall
the system (10.1) with u(t) = 0 as follows:

Eea(t) =300 pi|[Ai(n) + AA;(n)]x(t) + [Bu, (n) + AB, (n)}w(t)} ,2(0) =0,

) = iy | [Cr, () + ACy ()] (t)]
y(t) = iy pi|[Co, () + AC2, ()] (t) + [Dax, (n) + ADzh(??)]W(t)}
(11.1)
The aim is to design a full order dynamic H, fuzzy filter of the form
EEI;‘(t) = Z;:l Z;:l ﬂiﬂj [Aij (Z’ E)i(t) + Bi(l)y(t)} (112)

2t =Y, mCi()E(t)

where Z(t) € R" is the filter’s state vector, £ € R° is the estimate of z(t),
Aij(1,€), Bi(2) and C;(1) are parameters of the filter which are to be deter-
mined, and i; denotes the normalized time-varying fuzzy weighting functions
for each rule (ie., 4; > 0 and >.._; fi; = 1), such that the inequality (6.3)
holds. Clearly, in real control problems, all of the premise variables are not
necessarily measurable. Thus, in this section, we consider the designing of the
robust Ho fuzzy filter into two cases as follows. Subsection 11.1.1 considers
the case where the premise variable of the fuzzy model u; is measurable, while
in Subsection 11.1.2, the premise variable is assumed to be unmeasurable.
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11.1.1 Case I-v(t) is available for feedback

The premise variable of the fuzzy model v(t) is available for feedback which
implies that pu; is available for feedback. Thus, we can select our filter that
depends on p; as follows [91]:

B (1) = S Yy sty [ A0 0)a0) + B o
é(t) Z =1 Mi Z()A(t)

Before presenting our next result, the following lemma is recalled.

Lemma 10. Consider the system (11.1). Given a prescribed Hoo performance
~v > 0 and any positive constants 6(v), forv=1,2,--- | s, if there exist matrices
X.(1) = XT(1), Y-(2) = YL (1), Bi(1,e) and C;(1,€), i = 1,2,--- ,r, satisfying
the following e-dependent linear matriz inequalities:

[?(l) és(z)} >0 (11.4)
X.(2) >0 (11.5)
Yo(2) >0 (11.6)
lpllm(l,f) <0, +=1,2,---,r (117)
WQQM(Z,E) <0, +1=1,2,---,7r (118)
Vi1, (e) + VW11, (1,e) <0, i<j<r (11.9)
Wz, (1,6) +Waa,,(1,6) <0, i<j<r (11.10)
where
EZ'A()Y: (1) + Ye() AT (B
+v‘2E "By, (1) B () ES! OO
Wiy, (1) = i A Yo (1) ESY (11.11)
Cr()Y=(t) + E-'Dia(0)C(1,6)  —1  (x)"
J"() 0 —Y:(2)
AT ()BT X (1) + X (1B YAi(2)
+B;(1,€)C2; (1) + C3,()B] (1,€) ()"
U, (1,8) = | \+CT(1)Ch, () + X5, A X (k)E! (11.12)
XE(Z)Eilé ( )—|—B 2, 6 Dgl Z :|T
with
j(’é) = [\/)‘7174}/8(2) T/ A(i—l)zn(l) )‘(7+1)z \/;Y :|
Y-(0) = diag {Yo(1), -+, YVelo—1), Yel+1), o Ys<s>}
By,(1) = [6()I T 0 By, (1) 0]
~ T
G () = | 5 T () %S HT W) VR@POHE () VIROCL )|
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D) =[000 —vaR@I]"
Dy, (1) =1[0 0 ()1 D21 (z) I]

R6) = (14220 S S 12 0 H, 0l + 1HE @), 0] |

=1 j=1

then the prescribed Ho, performance v > 0 is guaranteed. Furthermore, a

suitable filter is of the form (11.3) with

A1) = E[Y71(0) = X)) My, 0¥ 1)
Bi() = E[Y" 1() X()] " ( £) (11.13)
Ci(1)  =Ci(r,e)EZY ()

where

Mifne) = —ATWE - X (B 40Y()
~ (Y1) = Xe (0] B Bi()Co, (Y1)
S MY RY.0) - CLO) G, WY.0) + Dra, ()G, 00Y. )

—y H{Xe@E B, () + [V () - XeW)] B2 Bi()) Do, (1) } BY () B2
(11.14)

Proof: The proof can be carried out by the same technique used in Lemma
6.1 and Theorem 6.1. []

Remark 13. The LMIs given in Lemma 10 may become ill-conditioned when
€ 1s sufficiently small, which is always the case for the SPS-MJ. In general,
these ill-conditioned LMIs are very difficult to solve. Thus, to alleviate these
ill-conditioned LMIs, we have the following e-independent well-posed LMI-
based sufficient conditions for the UFSPS-MJs to obtain the prescribed Hoo
performance. O

Theorem 19. Consider the system (11.1). Given a prescribed Ho, perfor-
mance v > 0 and any positive constants §(z), forv=1,2,--- s, if there exist
matrices Xo(2), Yo(2), Bo, () and Co,(v), 1 = 1,2,--- ,r, satisfying the following
e-independent linear matrixz inequalities:



138 11 Robust Hoo Fuzzy Filter Design for UFSPS-MJs

Xo(1)E + DX I
o(?) i o) Yo(E + DYy | >0 (1L15)
EXT() = Xo()E, XL (1)D = DX(12), Xo(2)E + DXo(2) >0 (11.16)
EYy (1) = Yo()E, Yy (1)D = DY,(u), ( JE + DYy(2) > 0 (11.17)
Wy, (1) < i=1,2,---,r (11.18)
%Zﬁ.()<0 i=1,2,--,r (11.19)
Vi1, (2) +¥11,,(2) <0, i< j<r (11.20)
Wao, (1) +Waz,, (1) <0, i< j<r(11.21)

10 00
where B = (00>,D— (01),

A ()Y (1) + Yo () AT (1)

T +-2BL0BLw )
Uy, (1) = R Al (11.22)
Cr,(0)Yg (1) + D12()Co, (1) =1 ()"
Ji (1) 0 (1)
(A, )
_ +Do, (2)C2; (1) + C3, (1) b, (v (*)
Waa,, (1) = FET (WG, (1) + iy A Xo(k) (11.23)

with Xo(k) = Xo®HXE®) §) _ Yo+ @)

B = [VATo@ - 0o e Tel) - VAT
Wo() = diag {Fo(1), -+, To(—1), To(+1), - Yo(s)}
B() =[BT 10 Bi() 0

Cu(0) = [BOHL () 29 HT () VIROPWHE ) VROCT ()]

D) =1[000 —vaR@I]"
Do1,(1) = [0 0 6()I Doy, (2) 1]

2

R() <1+p IS (1t wn ||+||H7<>H7j<z>||}),

=1 j=1

then there exists a sufficiently small € > 0 such that for e € (0,£€], the pre-
seribed Hoo performance v > 0 is gquaranteed. Furthermore, a suitable filter is
of the form (11.3) with

(1) =

7
2

SOES
(2
() (2

(1] Mo, (1,0) Y (1)
0(1)] ' Bo, () (11.24)

><><

Qﬁ.—|

Aij (3
J?z‘()
Ci()

~
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where
Mo, (1) = =AT (1) = X.() A (Y= (1) = [Yo 1 (2) = Xo()] Bi()Co, ()Y2(0)
= S MY Y20 = L0 G, (0Y-0) + D) ()0
— X0 By, () + [V (2) = Xe(0)] Bio) Do, () } BT (1),
(11.25)
X.(2) = {Xo(z) + EX(Z)}EE (11.26)
and
vl = {¥5 ) +eNe() } B (11.27)

with X (1) = D(XOT(Z) - XO(Z)) and N.(2) = D((Yo_l(z))T - Yo_l(z)).

Proof: The proof can be carried out by a similar technique used in Theorem
17. [ |

11.1.2 Case II-v(t) is unavailable for feedback

Now, the premise variable of the fuzzy model v(¢) is unavailable for feedback
which implies p; is unavailable for feedback. Hence, we cannot select our filter
which depends on p;. Thus, we select our filter as follows [91]:

E.d(t) =X, X ity [Aij(% &)i(t) + Bi()y(t) (11.28)
2t) =2 Ci()E(t)
where [i; depends on the premise variable of the filter which is different from
[4i-
By applying the same technique used in Subsection 3.3.2, we have the follow-
ing theorem.

Theorem 20. Consider the system (11.1). Given a prescribed Ho, perfor-

mance v > 0 and any positive constants §(2), forv=1,2,--- s, if there exist

matrices Xo(2), Yo(2), Bo, () and Co,(2), 1 = 1,2,--- ,r, satisfying the following
e-independent linear matrixz inequalities:

X() (Z)E + DX() (Z) I

I Yo(2)E + DYy (2)

EXq (1) = Xo()E, Xg (1)D = DXo(1), Xo(2)E+ DXo(2) >0 (11.30)

EY{ (1) = Yo()E, Y§ (1)D = DY (2 ( JE +DYy(1) >0 ( )

Uy, (1) < i=1,2,---,r (11.32)

(11.33)

(11.34)

(11.35)

>0 (11.29)

);
(1

WZZH()<0) i:1,2,"',7'
Wi, (1) + W1, (1) <0, i<j<r
WQ?H (Z) + lpggji (’L) <0, 1<j<r
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10 00
where B = <00>,D <OI>’

Ai<z>Y0<>+Yo<>A?<z>> T T
. ()7 (%)
W1, (1) = ( ¢

“r:/\u%( ) +y 2Bl (Z) ,1;( (11.36)
Cr, ()Y (1) + D12(2)Co, (1) =1 (0)T
Jo (1) 0 =Xo(v)
( gf((z)))ég({)) +)éo<(>) i z) ) .
0,(1)C; (1) + C3, (1) Bj, (*)
Wna,, (1) = ilT(,L) :1 () + 2221 Ao Xo (k) (11.37)
B, ()Xg (1) + D3, (B (1) —*1

Co(k) = XEXI () ) Yo+ ()

=[ M Yo(t) - \//\ufl)io(’) \//\<z+1 VAT }
d

{?0(1), o, Yolu—1), Yo(er 1), - ,Yo(s)}

D) =[000 —ﬂ&(z)I]T

0
0
(0 =

G = ;’zi?ﬁﬂz) w0 AL (1) VERO)A AL () VEROOL0) |
0=

Das,()) = [0 0 6T Dar,() 1]

2

N(z)z(up?(nz [HH;;(z)ng(z)n+||H%<z>H7j<z>|}) ,

i=1 j=1

then there exists a sufficiently small € > 0 such that for e € (0,&], the pre-
scribed Hoo performance v > 0 is guaranteed. Furthermore, a suitable filter is

of the form (11.28) with

Aijloe) = Y21 0) = Xe0)] ” Mo, ()Y 0)
Bi() = [Yy ') = Xo(0)] 'Bo.(0) (11.38)
Gl =Co Yy
where
Mo (1:6) = — A7) = X(AO)Y-(0) - [ H(0) = Xe(@)] Bi(0)Co, (Y2 (0)
= i MY R = L0 G, (Y. 0) + D) )Y, 1)
— 2{X (1) + [Y: (1) — Xo(2)] Bi(2) Doy, ( )}BlTj(z)
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X (v) = {Xo(z) + 55((2)} E. (11.40)
and
Vo) = {¥5 ) +eNe() } B (11.41)
with X(2) = D(XE () = Xo(2)) and N.()) = D5 ()T = Y5 ()

Proof: It can be shown by employing the same technique used in the proof for
Theorem 18. |

11.2 Example

Consider the tunnel diode circuit shown in Figure 4.4 where the tunnel diode
is characterized by

ip(t) = 0.01vp(t) + av(t).

where « is the characteristic parameter. Assuming that the inductance, L, is
the parasitic parameter and letting 1 (t) = ve(t) and 22(t) = ir(t) as the
state variables, the circuit is governed by the following state equations:

Ciy(t) = —0.0121 () — ax(t) + z2(t)
L.’EQ(t) = —Z’l(t) — Rl’z(t) + 01w2(t)
y(t) = Jz(t)+ 0.1w(t) (11.42)

z1(t)
z(t =
*) L?z(t)}
where w(t) is the disturbance noise input, y(¢) is the measurement output,
z(t) is the state to be estimated and J is the sensor matrix. Note that the
variables x1(t) and x5(t) are the deviation variables (variables deviate from
the desired trajectories). The parameters in the circuit are given as follows:

C =100mF, R=10 2 and L = ¢ H. Suppose that this system is aggregated
into 3 modes as shown in Table 11.1 with the nominal transition probability

Table 11.1. System Terminology.
[Mode 1]a() + Aa(u)]
1 0.04 +10%

2 0.05 £10%
3 0.06 £10%




142 11 Robust Hoo Fuzzy Filter Design for UFSPS-MJs

matrix that relates the three operation modes

0.30 0.47 0.23
0.26 0.10 0.64

sz:

0.67 0.17 0.16]

With these parameters, (11.42) can be rewritten as

#1(t) = —0.1z(t) — (Mﬁ(ﬂ) 21 (t) + 102s(t)
€i‘2(t) = —.231(75) — 10$2(t) + 0.111}2(t)

y(t) = Jz(t) + 0.1wy ()

() = {xl(ﬂ .

I'Q(t)

(11.43)

For the sake of simplicity, we will use as few rules as possible. Assuming
that |z1(¢)] < 3, the nonlinear network system (11.43) can be approximated

by the following TS fuzzy model:
Plant Rule 1: IF z1(t) is M;(z1(t)) THEN

E.i(t) = [A1(2) + AA;(0)]x(t) + B1(1)w(t), «(0) =0,
2() = C1 (0 (t),
y(t) = Co(1)z(t) + D1 (1)w(?).
Plant Rule 2: IF z1(t) is M3(z1(t)) THEN
E.i(t) = [A2(2) + AAs(2)]x(t) + B1(v)w(t), x(0) =0,
2(t) = Cr(n)x(t),
y(t) = Co(2)x(t) + Doy (2)w(t)
where [—0.1 10 ] [—3.7 10 ]
A1) = i -1 ~10]° Az(1) = I -1 —10°
ae = ] ae = | T
[—0.1 10 [=5.5 10 ]
Al(g) = I -1 _10_ ) A2(3) = I -1 _10_ 5

00

B = Bi2) = 31 = [ oy - G =i - - |

Co(1) = C(2) = C5(3) = J, Dar(1) = Doy (2) = Doy (3) =

AAL(1) = Fa(t),0, ) Hy, (1), As(e) = F(a(t),0,t)H, (1) and E. — {1 0} .

Now, by assuming that ||F(z(t),t)]| < p(2) = 1, we have

10
01}’

[0.10],

Oe¢
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= [oo] - maw= 40
m@ = 0o] =740
Hy,(3) = [8 8} and H,,(3) = [_00'54 8} .

Note that the plot of the membership function Rules 1 and 2 is the same as
in Figure 4.5. By employing the results given in Lemma 11.1 and the Matlab
LMI solver [138], it is easy to realize that e < 0.006 for the fuzzy filter design in
Case I and ¢ < 0.008 for the fuzzy filter design in Case II, the LMIs become
ill-conditioned and the Matlab LMI solver yields the error message, “Rank
Deficient”.

Case I-v(t) is available for feedback

In this case, x1(t) v(t) is assumed to be available for feedback; for
instance, J = [1 0]. This implies that u; is available for feedback. Using the
LMI optimization algorithm and Theorem 19 with ¢ = 0.005, v = 0.1 and
§(1) = 6(2) = 6(3) = 1, we obtain

0.3035 0.2990
Xo(1) = [ 0 1.8550]’
R —0.3401 —0.2938
An(le) = [—13.7069 —4.9054}’
. —0.3208 —0.2937
Ani(l,e) = [13.9812 4.9054}’

- 1.8678
Bi(1) = [3.4400}

Ci(1) = [4.2343 —0.5409],

0.3092 0.3012
Xo(2) = [ 0 1.8555]’
R —0.3663 —0.3076
A (2,e) = [—19.8376 —4.8670}’
. —0.3013 —0.3074
A21(2,¢) = [—15.8345 —4.8670}’

: 1.9022
B.(2) = [3.9659} ’

16.1939 —1.1293
Yo(1) = [ 0  1.8488 }
R —0.3401 —0.2938
Az(lye) = {—13.7069 —4.9054]’
R —0.3208 —0.2937
Axn(l,e) = {13.9812 4.9054]’

- 1.6911
Ba(1) = {3.2380]’

Co(1) = [~2.5958 —0.5409 ],

13.8969 —0.9390
Yo(2) = [ 0 1.8359 }’
. —0.3663 —0.3076
Ar2(2,¢) = [_19.8376 —4.8670]’
. ~0.3013 —0.3074
Az(2,¢) = {—15.8345 —4.8670]’

- 1.6800
B2(2) = {3.6669]’
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C1(2) = [—3.6022 —0.5447],

Xo(3) = [0'3523 ?gggﬂ
An(3,e) = [:1Oi,13622£4 :2;2?;
A (3,¢) = [:105?4629993 :Zggfg
B3 = |0 |

C1(3) = [-2.1601 —0.5377],

The resulting fuzzy filter is

ELd(t) = 300y S0y pagi Aiy (1) (1) + 30y s Bi()y(1)

2(t) = Z?:;L 11:C;(2)2(t)

where

Case II-v(t) is unavailable for feedback

|
|

Co(2) = [2.2664 —0.5447],

Yo(3) = [16'%148 118(;)872}
A(3,¢) = {__101'.13622404 :2:32%]
Agy(3,¢) = {__105.24629993 :giggfg]
Ba3) = |y ogs)

Ca(3) = [2.2621 —0.5377].

)

)

(11.44)

p1 = My(z1(t)) and pg = Ma(z1(t)).

In this case, z1(t) = v(t) is assumed to be unavailable for feedback; for
instance, J = [0 1]. This implies that p; is unavailable for feedback. Using
the LMI optimization algorithm and Theorem 20 with € = 0.005, v = 0.1 and
§(1) = 6(2) = 6(3) = 1, we obtain

Xo(1) = [0'1516 ggggﬂ
Ai(le) = [_216,11105375 :gig;g
Ag(1,6) = [__2151)82533 :22;83
o= [252].

Ci(1) = [—2.6689 —0.1714],
0.1716 0.3248}

X°(2):[ 0 3.2336

|
|

Yo(1) = [51'%)382 _538?5233]
App(le) = {_216,11105375 :g?ggg
Ag(1,e) = {__215.2)825793 :ggzgé
san- [129]

Co(1) = [—3.3029 —0.1714],
43.9190 —2.7754]

YOQ):[ 0  5.7957

I
I
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Y

(2,¢) = —3.5597 —0.5789
7/ | —21.3510 —5.7661 |’

(2.6) = —3.5597 —0.5789
1242/ = 1 _21.3510 —5.7661 |’

; —0.6895 —0.5829]  ; —0.6895 —0.5829
Az(2,8) = [17.9062 5.5030}’ An(2e) = [17.9062 5.5030}’
- ~1.5778 - —1.6454

Bi(2) = [ 1.1687 ] B2(2) = [ 5.5538 ]

C1(2) = [1.1729 —0.1725], C2(2) = [~1.1600 —0.1725],

0.1714 0.3249]

50.8217 —3.2190
X°(3)_[ 0 32331 ]

Y0<3):[ 0  5.8776

; ~3.4814 —0.5690] —3.4814 —0.5690
An(3¢) = [—20.9458 —5.7828}’ A1z2(3,) = [—20.9458 —5.7828}’
; ~1.6192 —0.5739]  ; ~1.6192 —0.5739
Az(3,) = [—22.3779 —5.4611}’ Az(3€) = [—22.3779 —5.4611}’
- —1.5509 - ~1.6346

Bi(3) = [ 11672 ] B2(3) = [ 6.5203 ]

C1(3) = [1.1648 —0.1701], Co(3) = [-2.9627 —0.1701].

The resulting fuzzy filter is

ELd(t) = 30y S0y fuafiy Aiy (1) (1) + X0y 1 Bi()y(1)

A (11.45)
2(t) =2 mCi()2(t)

where
fu = Mi(21(t)) and fig = Ma(21(t)).

Remark 14. Figures 11.1(a)-11.1(b), respectively, show the responses of x1(t)
and x5(t) in Cases I and II. Figure 11.2 shows the result of the changing
between modes during the simulation with the initial mode 2 and € = 0.005.
The disturbance input signal, w(t), which was used during the simulation is
the rectangular signal (magnitude 0.9 and frequency 0.5 Hz). The ratio of the
filter error energy to the disturbance input noise energy obtained by using the
Hoo fuzzy filter in Case I and Case II is depicted in Figure 11.3. The ratio
of the regulated output energy to the disturbance input noise energy tends to
a constant value which is about 2.4 x 10™% for the fuzzy filter in Case I and
2.8 x 1074 for the fuzzy filter in Case II . So v = /2.4 x 10~% = 0.015 for
the fuzzy filter in Case I and v = v/2.8 x 10=4 = 0.017 for the fuzzy filter in
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0.06

0.04

0.02

The state variable x y (t)

-0.02

— X,
Case |: fuzzy estimated x y (t)
_ _ Case ll: fuzzy estimated X, (t)

-0.04
0 5 10 15
Time (sec)
(a) The histories of z1(t)
0.03
— X,
0.025¢ Case I fuzzy estimated x,(t)
0.02h | _ _ Case lI: fuzzy estimated x2(t) |
'\ \ ' I ) )
= [ ; , i\ - \ '
= 0015} oo \ \ . U
SN \ \ (A \ \ \ \ |\
2 oo01f | - ! \ \ \ A
2 A : : :
S 0.005} A \ \ \ A .
_9 .
©
i) ot . :
E // N : ; ; .
~ -0.005 / : ! / Ny Ny by A
Vi ; ; i ; N
-0.01 /1 /! ) /) /) /i 1
.'VI -// .'.l / ! 2
~0.015} il : by 3 0 1
J U Iy v v v
-0.02 : ‘
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Time (sec)
(b) The histories of x2(t)
Fig. 11.1. The histories of z1(¢) and z2(t) in Cases I and II.
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25}

Mode
n
|
J
]

1.5}

0 5 10 15
Time (sec)

Fig. 11.2. The result of the changing between modes during the simulation with
the initial mode 2.

Case |
— — Case ll |4

Ratio of the filter error energy to the disturbance energy
I
/

0 5 10 15
Time (sec)

|
-

Fig. 11.3. The ratio of the filter error energy to the disturbance noise energy:

Jof =20 T () —2(t))dt
o wT (®yw(t)dt
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Table 11.2. The performance index vy of the system with different values of e.

The performance index ~
e |Output-feedback in Case I|Output-feedback in Case II
0.005 0.015 0.017
0.01 0.071 0.090
0.02 0.086 > 0.1
0.03 0.098 > 0.1
0.04 > 0.1 > 0.1

Case II which are both less than the prescribed value 0.1. Finally, Table 11.2
shows the performance index, v, for different values of €. From Table 11.2,
one can see that the maximum value of € which guarantees the Lo-gain of the
mapping from the exogenous input noise to the filter error output being less
than the prescribed value, is 0.03, i.e., € € (0,0.03] for the fuzzy filter in Case
I and 0.01, i.e., € € (0,0.01] for the fuzzy filter in Case II. O

11.3 Conclusion

This chapter has developed a new framework for designing a robust fuzzy
filter for a TS singularly perturbed fuzzy system with MJs and parametric
uncertainties. Sufficient conditions for the existence of the robust H, fuzzy
filter have been derived in terms of a family of e-independent LMIs. The
proposed fuzzy filter has guaranteed the H,, performance requirements. A
numerical simulation example has been also presented to illustrate the theory
development.



Proof

Proof of Theorem 3.1

Using Assumption 3.1, the closed-loop fuzzy system (3.5) can be expressed as
follows:

#(t) = Sy 5oy mons ([ + BoKjla(t) + Bra() - (AD)
where
By, = [6I 141 By,],

and the disturbance @(t) is

LF(a(t),t) Hy,x(t)
w(t) = | , L@@ ) Hyw(t)

;F(x(t)at)(ﬂ).gin:ﬂ(t)
w(t

>

Let consider a Lyapunov function
V(x(t)) = yal (t)Qux(t)

where Q = P~!. Differentiate V(z(t)) along the closed-loop system (A.1)
yields

V(x(t)) = 7" ()Qx(t) + v2T (1) Qa(t) =
D i1 et ikt (WT(L‘)(Ai + By, K;)"Qu(t) +ya" (H)Q(A; + Bo, Kj)(t)

i (1) B, Qu(t) + 2T (NQBy, (1) ). (A.3)

Adding and subtracting —z7 (£)Z(t)++* >._, D im1 Dmet Dt Mk i i X
[@T (t)1w(t)] to and from (A.3), we get
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N =D D> mattipmpn [27 (1) @7 () ] %

i=1 j=1m=1n=1

(Ai + B, K;)TQ + Q(A; + By, K;) r
Jr(Cli+D12iKJ-)T((JI,,,L+D12W Kn) (%) x(t)
v w(t)

BTQ —~I

)+ 72 Z Z Z Z :uzluj/im:un ( Jo(t)]  (A.4)

i=1 j=1m=1n=1

where

= ZZMM[CL + Dyo, K;]a(t) (A.5)

i=1j=1
with C1, = [22HT 0 vV2\pHT V2ACL]" and Dy, = o WHg; V2ApH{,

T Q00
\/EADQI} . Pre and post multiply (3.7)-(3.8) ( 07 0) yields

001
(Ai + B2, K;))TQ + Q(A; + By, K. (%)
BfQ <0, (A.6)
Cl + Dlg K;

i=1,2,---,r, and

{ ((Ai + B2, Kj)"Q + Q(A; + By, Kj) (%) (*)T)
BfQ =1 (%)"
Ch, +D12 K; 0 —I

(Aj + By, Ki)"Q + Q(Aj + By, K;) (%) (%)7
+ BTQ —I (%)T <0, (A7)
Cl +D12 K; 0 —I

1 < j < r, respectively. Applying the Schur complement on (A.6)-(A.7) and
rearranging them, then we have

(Ai 4+ B2, Ki)TQ + Q(A; + By, K;) T
QRN 0.

+(éli+D12iKi)T(c~'1i+D12,3K'i) (A8)

_
BlTlQ —~I

i=1,2,---,r,and
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<(Ai+Bzin)TQ+Q(Ai+B2in)> ()7

+ (C~'1,3+D12,3 K])T(éli +D12in)

K]
BTQ —~I

(Aj + By, Ki)"Q + Q(A; + By, K;) T
*
+ +(Cl +D12 K)T(Cq J+D12 K) ( ) <0, (A9)

BlTj Q —~1

1 < j <r, respectively. Using (A.8)-(A.9) and the fact that

DD D0 D Hibtibmbn ME N

i=1 j=1m=1n=1
1 T I
< §ZZMM[M5MH + Ny Nijl, (A.10)
i=1 j=1
it is obvious that we have

(A; + B, K;)TQ + Q(Ai + By, K;) .
(C1 +D12 j)T(Cli+D127’,Kj) (*) <0 (A].].)

]
BliQ -1

where i,5 = 1,2,--- ,r. Since (A.11) is less than zero and the fact that p; > 0
and >0, p1; = 1, then (A.4) becomes

V() < -2 020 + 2 3 33 pitts im0 ()], (A12)

i=1 j=1 m=1n=1

Integrate both sides of (A.12) yields

e [T [0 E_jzmi_jgwumu x
wT(t)w(t)} dt
V(2(Ty) = V(2(0)) < OTf [ -2z ++° Z Z z_j Zijlmujumun x
wT(t)w(t)}dt. I

Using the fact that (0) = 0 and V(z(T})) > 0 for all Ty # 0, we get

[ s | [1SSTS S il Gatoar| . (413

i=1 j=1m=1n=1
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Putting Z(¢) and w(t) respectively given in (A.5) and (A.2) into (A.13) and

using the fact that ||F(x(t),t)|| < p, A2 = (1—i—p2 Sier g | Ha, Ho, ||]) and
(A.10), we have

T; T
/ ZZMM( 20227 (1)[Cy, + D2, K] [Ch, + D1, K;](t)

=1 j=1

+2020% " (O Hy, + Ho, K] [Ha, + Ho K ]a(t)) dt

Ty
<422 l/ w’ (t)w(t) dt] . (A.14)
0
Adding and subtracting
N2t —AQZZMM( )[Cr; + F(2(t),t)Ha, + D12, K
=1 j=1

+F (), 0)Ho, 1) [C1, + F(a(), ) Ha, + Di, K,
Fa(t), ) e, K;) (1) )

to and from (A.14), one obtains

T
/ ' {>\2 T(t +ZZN2MJ (2)\2 T()[C1, + D2, Kj]T %
0

=1 j=1
[C1, + D12, K;a(t) + 2X°p°a” (t)[Ha, + He, K] [Ha, + He, K] (t)
—X2z(t)[Cy, + F(x(t), t)Ha,
+Dio, K + F(x(t),t)He, K;]"[Ch, + F(x(t),t) Ha, + D12, K;

FF(a(t), ) H K (1)) | dt < 42N / Y Tl dt] . (A.15)
0

Using the triangular inequality and the fact that ||F'(x(t),t)]] < p, we have
XIS iy (xT(t) [C1, + Fx(t),t)Hy, + D1o, K; + F(a(t), t) Hg K]
X [Cr, + F(a(t), ) Ha, + Duo, K + F(a(t), 1) Ho, ;) 0(1))
< ET: ET: Hi b (2>\2$T(t) [C1, + Dio, K;]" [Ch, + Dio, K] a(t)
i=1 j=1
+202p20T () [Hy, + He, K;]" [Ha, + Hs, K] x(t)). (A.16)

Using (A.16) on (A.15), we obtain



A Proof 153

Ty Ty
/ 2T(t)2(t) < 72/ w? (H)w(t) dt. (A.17)
0 0
Hence, the inequality (3.3) holds. [

Proof of Lemma 3.1

The state space form of the fuzzy system model (3.1) with the controller
(3.13) is given by

Bt =i mzug(u (1) + Bija() (418
2(t) = Zi:l Ej:l pip Co £ (t)

where &(t) = [27(t) iT(t)]T and the matrix functions A%, B and C*7 are
defined in Lemma 1 and the disturbance is

$F(x(t), t)Hy,z(t)
F(a(t), t) Ha,w(t)
(t) _ (((t()ta t)‘[;{[?-i[lg)cxf()t) . (A.19)
w(t)
F(a(t), t) Hr,w(t)

Let choose a Lyapunov function
V(a(t) = 2" (H)Q(t), (A.20)

where Q = P~!. Differentiate V(Z(¢)) along the closed-loop system (A.18)
yields

V(a(t) = T (t)QE(t) + &7 (1) Qi(t)
—ZZM( JADTQi(t) + 7 (1)QAY (1)

+a” (OB Qa(t) + & (HQBY (1)), (A.21)
Add and subtract

O+ D0 DD hittitmpn[@() D (L)]

i=1 j=1m=1n=1
to and from (A.21) yields
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) = ZZ Z Zﬂiﬂjumﬂn [jT(t) wT(t)]

=1 j=1 m=1n=1

(™) er) [z

)+ Y00 3 im0 ((0). (A22)

i=1 j=1m=1n=1

Now suppose there exits a matrix P > 0 such that (3.15) holds, i.e.,

AP+ PADT ()T ()7
(B”) 21 ()T ] <0 (A.23)
C”P 0 -1
Q00
Pre and post multiply (A.23) 010 | yields
001
(ADTQ+ QAL ()T (%)
(sz)_ Q —2I (*)T < 0. (A.24)
cY 0 -I
The Schur complement of (A.24) is
(ADTQ+QAd + (e (0T
< ol (BZ{Z)T ol ol ey < 0. (A.25)

Using (A.25) and the fact in (A.10) together with the fact that p; > 0 and
i, i =1, then (A.22) becomes

V() < -0 +12 330 S0 ST ttttmpin 07 (). (A.26)

i=1 j=1m=1n=1
Integrate both sides of (A.26) yields

Ty Ty roor r r
e [T (00 +7 LY Y minimin

i=1 j=1 m=1n=1

[ () (1) )t

Tf r r T T
Var) - Vo) < [ (=00 +7 LY 30 Y wmimin

i=1 j=1m=1n=1

[wT(t)w(t)])dt.
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Using the fact that #(0) = 0 and V(&(Ty)) > 0 for all Ty # 0, we have

Ty T; v T r T
/0 2T ()5(t)dt < [ /0 SN Zuiujumun[wT(t)w(t)]] dt. (A.27)

i=1 j=1m=1n=1
Putting 2(¢) and w(t) respectively given in (A.18) and (A.19) into (A.27) and
using the fact that |[F(z(t),t)] < p, A2 = (1 + P 2 [HH2TH21|| +
||H%’;H7j||]> and (A.10), we have

Tf T I R .
/ ZZMM(”‘%T(Q[CM D1, Cj)T[C1, Dra, Cjl(t)
0

i=1 j= A A .
RN (O Ha, Ho, G [Hi, Ho,C)Ja(0)) di < X l /O W (Hyw(?) dt].
(A.28)

Adding and subtracting

(020 = 23S (&7 W], + Fla(t), )i, Dz, €

i=1 j=1

FF(x(t), t)HGiéj}T

(C1, + F(a(t),)Hy, D12,y

FF(z(t), t)HGiC'j}zﬁ(t))

to and from (A.28), one obtains

/0 N {A%T(t)z(w+i§jmuj(2vﬂ<t>m D12,Cj)7(Cy, Dia,Cjli(t)

+202p*&" (t)[Ha, Ho,Cj)" [Ha, He,Cyli(t)
~N2&"(1)[C, + F(a(t),t)Ha, D12, C; + F(a(t), ) He, C5]" x
[C1, + F(x(t),t)Hy, Dia,C; + Fla(t), t)H@éj];z(t))} dt

S 72)\2

Ty
/ wT (t)w(t) dt] ) (A.29)
0

Using the triangular inequality and the fact that || F(z(t),t)|| < p, we have



A iimuj (iT(t) [Ch + F(2(t),t)Hy, Dia,Cj + F(x(t),t)Hg,C; T
[ch. + F(x(t),t)Hy, Do, C; + F(a(t), t)HGiéj} ;E(t))

< leluuj (2227 (1) [, Dmiéjf 1 DG

2022 () [, Hﬁiéjr [y, 16,0)2(0). (A.30)

Using (A.30) on (A.29), we obtain

Ty Ty
/ T()2() < 42 / w” (Hyw(t) dt. (A.31)
0 0
Hence, the inequality (3.3) is guaranteed. [ |

Proof of Theorem 5.1

The closed-loop state space form of the fuzzy system model (5.1) with the
controller (5.6) is given by

B(t) =) iy ([Ai (1) + B, (1) K (1) (t) + [AAi(2) + ABy, (1) K; (1)) (t)

+[B1,(0) + ABy, (0)]w(t)), #(0) =0, (A.32)

or in a more compact form

i(t) = S0y X5 paty ([4:0) + Ba, K (0 (t) + Br, (VR()a(0))

(A.33)
where
Bi,(0) = [I 11 By,(v)] (A.34)
g
- 1 x(t),2,t)Ha, (2)w(t
O =R Plat), o, 1) Hs, (1) (0)a(t) (A.35)
w(t)
Consider a Lyapunov functional candidate as follows:
V(x(t),1) = vaT (1)Q()x(t), Vi€ S. (A.36)

Note that Q(2) is constant for each 2. For this choice, we have V(0,29) = 0
and V(x(t),2) — oo only when ||z(t)] — oc.
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Now let consider the weak infinitesimal operator A of the joint process
{(z(t),2),t > 0}, which is the stochastic analog of the deterministic derivative.
{(z(t),2),t > 0} is a Markov process with infinitesimal operator given by [80],

AV (x(t),2) = 7@ (OQ(t) + 2T ()Q)i(t) + vz Z A Q(k

=32 s (3" Q) [(As(0) + B, (0K (1)) (1)
2T (1) [4:(2) + Ba, 0 (0] Q) ()

+y27 (1)Q(1) By, ()R (1) (t)

+ya” (RO B )Q)z(t) + 72" ( me@ 2(t)) (A7)

Adding and subtracting

—N%(2)z )+ Z Z Z Z pittjm i [@7 (R ()@ (1)]

i=1 j=1 m=1n=1

to and from (A.37), we get

AV (2(t),2) = —R2(2)2 ) + 72 ZZ Z Zmugumun (OR()@(t)]

i=1 j=1m=1n=1

+R%(2) +72222u2ugumun{~(())rx

i=1 j=1 m=1n=1

[Ai<z>+Bzi<z>Kj<z>}TQ<z> )

+Q)[A; <>+Bg<>Kj<z>] () V(ﬂ. (A.38)
+Zk 1 sz(k)
RO)BL ()Q() —YR()

Now let us consider the following terms:

PY SIS w0 OR@BE] =22 ST ittt

i=1 j=1m=1n=1 i=1 j=1m=1n=1
F(a(t),0, ) Hy, ()x(t) 17 F(a(t),1,t)Hy,, (1)a(t)
y F(x(t),1,t)Ha, (1)w(t) R_l(z) F(x(t),1,t)Ha, (1)w(t)
F(z(t)vzvt)Hzn)( 1)K (1)z(t) F(x(t),1, t)H3( )( V) K (1)x(t)
w(t w(t

T T

2(1)72ZT:2T:ZZ {H W Hy. ()
5(2) M g o o & 1; 1 \2

i=1 j=1m=1n=1

—|—KJT(Z)H3TL (1)Hs,, (Z)Kn(l)}l‘(t) + NQ(Z)vsz(t)w(t) (A.39)
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and

T T

NZ(Z)ZT Z Zﬂzujlumﬂn Cl ( )

Fa(t),1,0)Hu, (1) + Dia, (VK (0) + F((0), 0, ) He, () K (1)
x| C1,, () + Fa(t),0,0)Ha,, ()
+D1z,, (VK1) + F((8),0,0) s, (0K, ()] 2(2)

T

T

< 282() Z Z > pittimpin” (£)]

[C1,2) + Dz, ()5 ()" [C,, (1) + Daz,, (0K ()] +
P (0) [Ha, (0) + Ho, (0K (2)]"
[H1,, (1) + He,, (1) K (0)] pa(t) (A.40)

where X() = (1-+ p?(2) S0y S5y [I1H5, () Ha, ()] ) . Hence,

Y DTN it [BT OR@@E)] + R2(0)2T (1)2()

i=1 j=1 m=1n=1
T

< Z Z Z Z pitsstimiin (27 () [C1, (0) + Do, V()] R71(0)

(€1, () + Do, VK (0)| 2(1)) + X220 (B () (A.41)

where
} T

(1) = [y HT, () VER)p() HE, (1) 0 VER()CT, 1)
T

= (
Dio,(t) = [0 VER()p() HE (2) 7p(0) HE (1) V2R() DTy, ()] -
)

Substituting (A.41) into (A.38), we have

(1) (1)a(t )+72N2( Jw” ()w(t)

T T

> ZZM%N]MMN [x((t))} By (1) [2((?)} (A.42)

i=1 j=1 m=1n=1

AV (2(t),1) < =R
+7

where
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Dijmn (1) = 2) + D1z, (2 )G ( Z)} X ()T

|: + D12 Z Kn(l i|
+ Zk 1 sz(k)
R()B{,(1)Q() —YR(1)

(A.43)

Using the fact

ZZ Z Z N’zﬂjumﬂn U mn = 2 Z Zﬂzﬂj z]

i=1 j=1 m=1n=1

Mi;(2)

=1 5=1
+Nij ()N ()],
we can rewrite (A.42) as follows:

AV(m(t),z) < —RZ2(0)2T (1) 2(t) + ¥*R2()w! (H)w(t)
t

%S 5] o )

= —R*(0)2" (1) 2(1) + "R (w” (Hw(t)
1T

N EEEY

where

J

FQU)(A() + Bo (0K; (1),
e baome] x| er |
RAW)[C1,(0) + Duo, (1)

+ Zzgl )‘sz(k)
R(1)BY,(1)Q() —R()

Pre and post multiplying (A.45) by

mz(%”%,

(Ai(2) + Bz, (1) K;(2))" Q( ))

[

with P(z) = Q1(1), we obtain



P()AT (1) + Y (1) B (2)

+AWP() + Bs, (Z)YJ()
E(@)Pi;(1)5() = %[01 (1) P(2 )+ D1, (2 yj(z)} -1 T
ij |:O1 ( +D12 z) ¢ Z}
P sz() ~1(k)P(
ROBLW R
(A.46)

Note that (A.46) is the Schur complement of ¥;;(z) defined in (5.11). Using
(5.9)-(5.10), we learn that
¢ij (Z) + @ji(l) < 0. (A48)

Following from (A.44), (A.47) and (A.48), we know that

AV (z(t),2) < —R2(2)2T (1) 2(t) + 22 ()wT (t)w(t). (A.49)
Applying the operator E[ fo -)dt] on both sides of (A.49), we obtain

Tf

Ty
E AV (z(t),2)dt <E/0 (—R2() 2T (1) 2(t) + *R2()wT (H)w(t))dt| .

(A.50)

0

From the Dynkin’s formula [75], it follows that

Ty
E /0 AV (x(t),v)dt | = E[V(2(Ty),«(Ty))] — E[V(2(0),2(0))]. (A.51)

Substitute (A.51) into (A.50) yields

0<E

Ty
/0 (—R2(0) 2T (1)2(t) + 72N2(z)wT(t)w(t))dt]
—E[V(x(Ty),u(Ty))] + E[V(x(0),2(0))].

Using (A.49) and the fact that V(z(0) = 0,(0)) = 0 and V' (x(Ty),+(T})) > 0,
we have

E

/OTf {ZT(t)z(t) - y2wT(t)w(t)}dt] <0. (A.52)

Hence, the inequality (5.5) holds. This completes the proof of Theorem 6. ®
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Proof of Lemma 5.1

The closed-loop state space form of the fuzzy system model (5.1) with the
controller (5.24) is given by

H0) = i S s (AT 020 + BI@a®)
(t) =3 22:1 1 Cof (1) (¢)

where &(t) = [z7(t) :%T(t)]T and the matrix functions A% (:), BY(z) and
C% (1) are defined in Lemma 3 and the disturbance is

()F( x(t),2,t)Hy, (2)x(t)
F(z(t), t)Hz Vw(t)
a0 — | A0 080 W)
sy F(a(t), 0, t) Hs, (1)(t)
W(t)

F(x(t),1,t)Hr, (1)w(t)

Let choose a stochastic Lyapunov function

N«

V(2(t),1) = 2T (t)P(1)z(t) V2 €S (A.54)

where P(1) is a constant positive definite matrix for each 2. For this choice,
we have V(0,19) = 0 and V(&(¢),2) — oo only when [|Z(t)|] — oo.

Consider the weak infinitesimal operator A of the joint process { (i(
0}, which is the stochastic analog of the deterministic derivative. {(Z(¢
0} is a Markov process with infinitesimal operator given by [80],

7 (t) Z Ak P (k)" (1)
k=1

= 30 sy (ST O TPW) + 5T (O POAL )0

=1 j=1

AV (&(t),2)

Il
<
~
~
~
o)
—~
~
~
8¢
~
~
+
8¢
~
~
~
e
—~

+a7 (£)(BY (1)) P()a(t) + 27 (t) P(1) B (1) (t)
()Y )\mP(k):ET(t)). (A.55)
k=1

Adding and subtracting

—R2(2) 2T (t)2(t) + ~* Z Z Z Z i o i [0 (£)2D(2)]

i=1 j=1m=1n=1

to and from (A.55), we get
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T ™ T

AV (x(t),2) = —N>(1)z )+ D Z it i pin [0 ()0 (1)]
i=1 j=1 m=1n=1
r r T T T
N2 (1) ) + Z Z Z 45 [ s [ ((t))} x
(A3 )T P() + P(l)A? @Y 7\ 12
(( s apm ) ) [w((?)} (A.56)
(B ()" P(2) -

Now let us consider the following terms:

VY DY IS st pn [0 @] =YD N it prmpin X
i=1 j=1m=1n=1 i=1 j=1 m=1n=1
s F(a(t), ) Hy, (a(t) [ s F(e(t),n ) Hy, (1) (t)
F(x(t),1,t) Ha, (2)w(t) F(x(t),1, ) H,, (1)u(t)
s F(a(t),1,t)Hs, (0C; (0)2(t) | | 555 F(w(t), 2,8 Hs,, (1) (1) (1)
s Fa(t), ) Hs, (1)a(t sy F (), 1,0 Hs,, ()(t)
w(t) w(t)
F( OO @) ] L F) ), (el

,U'J:U'm,un
i=1 j=1 m=1n=1

[ (Vo ) (ifi(”@%féi )] a0 + ot
| m (A.57)

and

T T

NQ(Z)ZT(t)Z(t) = NQ(Z) Z : Z Zﬂi/‘jumﬂnj’j(t) x

[C1,0) + PG(0), 0,0 Hi (1) Dro, ()C50) + Pa(t), 1, Ho, (0C5)]
{C’lm (1) + F(x(t),2,t)Hy, (1) Dia, (1)Cr(2) + F(x(t),2,t)Hg, (1)Cp(2)| Z(t)
T

< ZZ Z Zumjumun (2&2(1)#(15) [Cli(z) Dy, (z)C'j(z)] X

i=1 j=1m=1n=1

[Clm (1) Dsa,, (z)é’n(z)} Z(t) + 2N2(1)p2 (z)iT(t) X

(.0 Ho O] [Hi, () Ho, 0Ca]20)  (A58)

Nl

where R(z) > (1 +p2(1) {||H2Ti (1) Hy, (1) + || HE () H, (z)||D . Hence,
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IS St [@T ()i ()] + 82 ()27 (8)2(0)

i=1 j=1m=1n=1

<SS st (30| C1,() Diz (00|

i=1 j=1m=1n=1
(€1, () Diz, Ca(0)] (1)) + X220 (B () (A.59)
where
[ ”fé; L) VAW HE () VIWCL )]
) 0 VEN@p(WHE () VINWDE, ()]

D12, (1

Substituting (A.59) into (A.56), we have
<

AV (x(t),1) < =N ()" (1)z(t )+72N2()w (t)w(t)
T T T I( ) T ) $(t>
"’;;;;Mlhﬂmﬂ [w( ):| QZJmn(Z) |:u~)(t)] (A.60)
where
( (A7 ()" P(2) + P() A (1) > ()T
Dujonn(0) = | \+(CH@)TCm () + Y, A P(R) (A6
(B3 (1) P(2) -1

Using the fact

ZZZZ“Z“J”WL“" 1] mn —QZZIU‘ZMJ zg ()

i=1 j=1m=1n=1 =1 j=1

+Ni; ()N ()],
we can rewrite (A.61) as follows:

A~V(x(t), 1) < —R2(2)2T (1) 2(t) + ¥R ()wT (H)w(t)

T

oS [H0] 2,0 [Z0] e

where
( (A5 ()TP() + P() A% (1) ) ()T
(B (1))TP(2) -7’1

Note that (A.63) is the Schur complement of (5.26). Using the inequality
(5.26), we have
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AV (z(t),2) < —R2(2)2T (1) 2(t) + v*R2()wT (H)w(t). (A.64)
Applying the operator E[fOTf (-)dt] on both sides of (A.64), we obtain

Ty

E AV (z(t),1)dt| < E /0f(—N2(z)zT(t)z(t)+72N2(z)wT(t)w(t))dt .

(A.65)

0

From the Dynkin’s formula [75], it follows that

Ty

E AV (x(t),2)dt| = B[V (x(T}),+(Tf))] — E[V(2(0),2(0))]. (A.66)

0

Substitute (A.66) into (A.65) yields

O0<E

Ty
/0 (N2 ()7 ()=(t) + w?N%)wT(t)w(t))dt]
_E[V(2(Ty),(Ty))] + EV(2(0), 1(0))].

Using (A.49) and the fact that V(z(0) = 0,4(0)) = 0 and V' (x(Ty),+(Ty)) > 0,
we have

E

/OTf {ZT(t)z(t) —v2wT(t)w(t)}dt] <0. (A.67)

Hence the inequality (5.5) holds. This completes the proof of Lemma 3. =&

Proof of Theorem 8.2

Suppose the inequalities (8.36)-(8.38) hold, then the matrices X and Y; are
of the following forms:

_ Xl XQ _ Yl YQ
Xo— ( 0 X3> and Y0—<0 Ys)
with X7 = X{ >0, X3 =X >0,77 =Yl >0and Y3 = Y > 0.
Substituting X and Yp into (8.47), respectively, we have

X1 €X2>

X. = {Xo n eX}EE - (6X2T N (A.68)

and

N G B o —eY LYt
Vo= {5 eV B = <—€(Y1YQY31)T v . (A.69)
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Clearly, X, = XZ, and Y. ! = (Y. 1)T. Knowing the fact that the inverse of
a symmetric matrix is a symmetric matrix, we learn that Y, is a symmetric
matrix. Using the matrix inversion lemma, we can see that

Y, = E;l{Yo + af/} (A.70)

where Y = YoN. (I +eYyN.)~1Yy. Employing the Schur complement, one can
show that there exists a sufficiently small € such that for ¢ € (0, €], (8.26) and
(8.27) hold.

Now, we need to show that

()§ ;) > 0. (A.71)

By the Schur complement, it is equivalent to showing that
X.-Yv.'>o0. (A.72)

Substituting (A.68) and (A.69) into the left hand side of (A.72), we get

X, -yt e(Xo+ Y'Yy
EER = et (A.78)
The Schur complement of (8.36) is
[Xl —OYfl N _Oy3—1] > 0. (A.74)
According to (A.74), we learn that
X, -Y7'>0 and Xz3-Y;!'>0. (A.75)

Using (A.75) and the Schur complement, it can be shown that there exists a
sufficiently small £ > 0 such that for € € (0,£], (8.25) holds.

Next, employing (A.68), (A.69) and (A.70), the controller’s matrices given
in (8.34) can be re-expressed as follows:

Bi(e) = [Yg' = Xo| Bi + ¢[N. — X]B; 2 By, + ¢B.,

Jo TS (A.76)
CZ(E) = ClYO +€CZ'Y :Coi +€C€i.

Substituting (A.68), (A.69), (A.70) and (A.76) into (8.32) and (8.33), and

pre-post multiplying (8.32) by 05 ? , we, respectively, obtain
Wllij + w11ij and WQQU =+ 1#22”. (A77)

where the e-independent linear matrices W1y, and Way,; are defined in (8.43)
and (8.44), respectively and the e-dependent linear matrices are
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AYT + VAT + By,Ce, + CEBY ()7

ver+cron )" (4.78)

Vi1, =

ATX + XTA; + B.,Co, + C3BL ()T

{XBli +BEiD21J}T (4.79)

10221,]. =€

Note that the e-dependent linear matrices tend to zero when € approaches
Zero.

Employing (8.39)—(8.42) and knowing the fact that for any given negative
definite matrix W, there exists an € > 0 such that W + eI < 0, one can show
that there exists a sufficiently small € > 0 such that for ¢ € (0, €], (8.28)—(8.31)
hold. Since (8.25)-(8.31) hold, using Lemma 8.2, the inequality (3.3) holds. m

Proof of Theorem 10.2

Suppose the inequalities (10.56)-(10.58) hold, then the matrices X¢(2) and
Yo(2) are of the following forms:

1= (50543 - ()

with X1(2) = X{ (1) >0, X302) = XZ(2) >0, Y1(1) = YL (1) > 0 and Y3(1) =
YiF(2) > 0. Substituting Xo(2) and Yy(z) into (10.67)-(10.68), respectively, we
have

x50 2500) o
and
o @_( o T—eY*(zmune-l(z))' s
: —(Y W00 0) S0

Clearly, X.(2) = X' (2), and Y.} (2) = (Y. (). Knowing the fact that the
inverse of a symmetric matrix is a symmetric matrix, we learn that Y.(z)

is a symmetric matrix. Using the matrix inversion lemma, we can see that
Y.(2) = Ee_l{Yo(z)—i—EY/(z)} where Y (1) = Yo(1) N (2)(I+Yo(2) N2 (2)) "1 Y (2).
Employing the Schur complement, one can show that there exists a sufficiently

small € such that for € € (0,£], (10.46) and (10.47) hold.
Now, we need to show that

(XEI(Z) yf(@) > 0. (A.82)

By the Schur complement, it is equivalent to showing that
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X (1) =Y 1(2) > 0. (A.83)
Substituting (A.80) and (A.81) into the left hand side of (A.83), we get

X1(1) =Y, () e(Xa(2) + Y () Ya (1) Yy (2)
|:5(X2(Z) + Yl_l(l);'g(l)}/g_l(l))T E(Xg(i) _ Y3 1(1)) :| . (A84)

The Schur complement of (10.56) is

X1() =Y ) 0
{ i 0 _Y3_1(Z)} > 0. (A.85)

According to (A.85), we learn that
X1(2) =Y ) >0 and X3(2) — Y3 1(2) > 0. (A.86)

Using (A.86) and the Schur complement, it can be shown that there exists a
sufficiently small £ > 0 such that for € € (0,£], (10.45) holds.

Next, employing (A.80) and (A.81), the controller’s matrices given in
(10.54) can be re-expressed as follows:

Bi(1.€) = [Y5 ' () = Xo ()] Bi(1) + £ [Ne(2) = X(1)] Bi(2) = Bo, (1) + Bz, (1)
Cil1:€) = GV (1) +Ci)YT (1) 2 Co, (1) +Cc, 1)

(A.87)
Substituting (A.80),(A.81) and (A.87) into (10.52) and (10.53), and pre-post
E.00
multiplying (10.52) by [ 0 I 0 |, we respectively, obtain
00171
Wllij (Z) + wllij (Z) and !p22ij (Z) + ¢22ij (Z) (A88)

where the e-independent linear matrices ¥1;,;(2) and Way,,(2) are defined in
(10.63) and (10.64), respectively, and the e-dependent linear matrices are

A;()YT () + Y () AT (a)
+B2,(1)Cc, (1) + CL (1) B3, (1) | (9T ()T

Y11, (1) =€ WY (A.89)
Cr,(YT (1) + D12,(1)Ce; (1) 0 ()
JT () 0 Y@

and

U, (0) = € o 2 (A.90)
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where J (1) = [\/)\TJA/(Z) )\(i,l)lff(z) ,/)\(i+1)1?(2) )\55/(2)},

V) = diag {V(1), -, V-1, Y@+1), - V(s)} X(k) =
w and f’(z) = M Note that the e-dependent linear matrices
tend to zero when e approaches zero.

Employing (10.59)-(10.62) and knowing the fact that for any given negative
definite matrix W, there exists an € > 0 such that W+ eI < 0, one can show
that there exists a sufficiently small & > 0 such that for ¢ € (0,€], (10.48)-
(10.51) hold. Since (10.45)-(10.51) hold, using Lemma 9, the inequality (5.5)
holds. |
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